Science.gov

Sample records for 0-10 numerical rating

  1. Evaluation of the numeric rating scale for perception of effort during isometric elbow flexion exercise.

    PubMed

    Lampropoulou, Sofia; Nowicky, Alexander V

    2012-03-01

    The aim of the study was to examine the reliability and validity of the numerical rating scale (0-10 NRS) for rating perception of effort during isometric elbow flexion in healthy people. 33 individuals (32 ± 8 years) participated in the study. Three re-test measurements within one session and three weekly sessions were undertaken to determine the reliability of the scale. The sensitivity of the scale following 10 min isometric fatiguing exercise of the elbow flexors as well as the correlation of the effort with the electromyographic (EMG) activity of the flexor muscles were tested. Perception of effort was tested during isometric elbow flexion at 10, 30, 50, 70, 90, and 100% MVC. The 0-10 NRS demonstrated an excellent test-retest reliability [intra class correlation (ICC) = 0.99 between measurements taken within a session and 0.96 between 3 consecutive weekly sessions]. Exploratory curve fitting for the relationship between effort ratings and voluntary force, and underlying EMG showed that both are best described by power functions (y = ax ( b )). There were also strong correlations (range 0.89-0.95) between effort ratings and EMG recordings of all flexor muscles supporting the concurrent criterion validity of the measure. The 0-10 NRS was sensitive enough to detect changes in the perceived effort following fatigue and significantly increased at the level of voluntary contraction used in its assessment (p < 0.001). These findings suggest the 0-10 NRS is a valid and reliable scale for rating perception of effort in healthy individuals. Future research should seek to establish the validity of the 0-10 NRS in clinical settings.

  2. Estimating 1 min rain rate distributions from numerical weather prediction

    NASA Astrophysics Data System (ADS)

    Paulson, Kevin S.

    2017-01-01

    Internationally recognized prognostic models of rain fade on terrestrial and Earth-space EHF links rely fundamentally on distributions of 1 min rain rates. Currently, in Rec. ITU-R P.837-6, these distributions are generated using the Salonen-Poiares Baptista method where 1 min rain rate distributions are estimated from long-term average annual accumulations provided by numerical weather prediction (NWP). This paper investigates an alternative to this method based on the distribution of 6 h accumulations available from the same NWPs. Rain rate fields covering the UK, produced by the Nimrod network of radars, are integrated to estimate the accumulations provided by NWP, and these are linked to distributions of fine-scale rain rates. The proposed method makes better use of the available data. It is verified on 15 NWP regions spanning the UK, and the extension to other regions is discussed.

  3. Numerical computations of Orbiter flow fields and heating rates

    NASA Technical Reports Server (NTRS)

    Goodrich, W. D.; Li, C. P.; Houston, C. K.; Chiu, P.; Olmedo, L.

    1976-01-01

    Numerical computations of flow fields around an analytical description of the Space Shuttle Orbiter windward surface, including the root of the wing leading edge, are presented to illustrate the sensitivity of these calculations to several flow field modeling assumptions. Results of parametric flow field and boundary layer computations using the axisymmetric analogue concept to obtain three-dimensional heating rates, in conjunction with exact three-dimensional inviscid floe field solutions and two-dimensional boundary layer analysis - show the sensitivity of boundary layer edge conditions and heating rates to considerations of the inviscid flow field entropy layer, equilibrium air versus chemically and vibrationally frozen flow, and nonsimilar terms in the boundary layer computations. A cursory comparison between flow field predictions obtained from these methods and current Orbiter design methods has established a benchmark for selecting and adjusting these and future design methodologies.

  4. Evaluating the Controls on Magma Ascent Rates Through Numerical Modelling

    NASA Astrophysics Data System (ADS)

    Thomas, M. E.; Neuberg, J. W.

    2015-12-01

    The estimation of the magma ascent rate is a key factor in predicting styles of volcanic activity and relies on the understanding of how strongly the ascent rate is controlled by different magmatic parameters. The ability to link potential changes in such parameters to monitoring data is an essential step to be able to use these data as a predictive tool. We present the results of a suite of conduit flow models that assess the influence of individual model parameters such as the magmatic water content, temperature or bulk magma composition on the magma flow in the conduit during an extrusive dome eruption. By systematically varying these parameters we assess their relative importance to changes in ascent rate. The results indicate that potential changes to conduit geometry and excess pressure in the magma chamber are amongst the dominant controlling variables that effect ascent rate, but the single most important parameter is the volatile content (assumed in this case as only water). Modelling this parameter across a range of reported values causes changes in the calculated ascent velocities of up to 800%, triggering fluctuations in ascent rates that span the potential threshold between effusive and explosive eruptions.

  5. Verbal numerical scales are as reliable and sensitive as visual analog scales for rating dyspnea in young and older subjects.

    PubMed

    Morris, N R; Sabapathy, S; Adams, L; Kingsley, R A; Schneider, D A; Stulbarg, M S

    2007-08-01

    This study compared the use of a simple verbal 0-10 numerical rating scale (verbal NRS) and a visual analog scale (VAS) for the rating of dyspnea during exercise in a group of young and older subjects. Twelve younger (32+/-9 yr) and 12 older (71+/-7 yr) subjects used either the verbal NRS or the VAS in a randomised fashion to rate dyspnea during 60 s of uphill treadmill walking (range 5.6-8.8 km h(-1)) performed at either a low (17% grade) or high workload (26% grade) and then during recovery. Rating scales were evaluated twice on separate days (day 1 and day 2) at each workload. While the verbal NRS scores proved to be reliable throughout exercise and recovery, VAS scores were significantly (p<0.05) lower on day 2 during the low workload test (younger group) and the high workload test (older group). Verbal NRS ratings were consistently greater than VAS ratings at both workloads (p<0.001) for both young and older groups. The intra-class correlation coefficients for rating peak dyspnea using either the VAS or verbal NRS were consistently lower for the older subjects (range: r=0.54-0.67) than the younger subjects (range: r=0.70-0.86). Overall, subjects preferred the verbal NRS to the VAS. These results suggest that the verbal NRS compares favourably with the VAS for rating dyspnea during exercise without mask or mouthpiece. However, when rating peak dyspnea both scales appear less reliable when used by the older compared to young subjects.

  6. Measurement and numerical simulation of a small centrifugal compressor characteristics at small or negative flow rate

    NASA Astrophysics Data System (ADS)

    Tsukamoto, Kaname; Okada, Mizuki; Inokuchi, Yuzo; Yamasaki, Nobuhiko; Yamagata, Akihiro

    2017-04-01

    For centrifugal compressors used in automotive turbochargers, the extension of the surge margin is demanded because of lower engine speed. In order to estimate the surge line exactly, it is required to acquire the compressor characteristics at small or negative flow rate. In this paper, measurement and numerical simulation of the characteristics at small or negative flow rate are carried out. In the measurement, an experimental facility with a valve immediately downstream of the compressor is used to suppress the surge. In the numerical work, a new boundary condition that specifies mass flow rate at the outlet boundary is used to simulate the characteristics around the zero flow rate region. Furthermore, flow field analyses at small or negative flow rate are performed with the numerical results. The separated and re-circulated flow fields are investigated by visualization to identify the origin of losses.

  7. A comparison of experimental, theoretical, and numerical simulation Rayleigh-Taylor mixing rates.

    PubMed

    George, E; Glimm, J; Li, X-L; Marchese, A; Xu, Z-L

    2002-03-05

    We present a Rayleigh-Taylor mixing rate simulation with an acceleration rate falling within the range of experiments. The simulation uses front tracking to prevent interfacial mass diffusion. We present evidence to support the assertion that the lower acceleration rate found in untracked simulations is caused, at least to a large extent, by a reduced buoyancy force due to numerical interfacial mass diffusion. Quantitative evidence includes results from a time-dependent Atwood number analysis of the diffusive simulation, which yields a renormalized mixing rate coefficient for the diffusive simulation in agreement with experiment.

  8. Numerical solution of the Penna model of biological aging with age-modified mutation rate

    NASA Astrophysics Data System (ADS)

    Magdoń-Maksymowicz, M. S.; Maksymowicz, A. Z.

    2009-06-01

    In this paper we present results of numerical calculation of the Penna bit-string model of biological aging, modified for the case of a -dependent mutation rate m(a) , where a is the parent’s age. The mutation rate m(a) is the probability per bit of an extra bad mutation introduced in offspring inherited genome. We assume that m(a) increases with age a . As compared with the reference case of the standard Penna model based on a constant mutation rate m , the dynamics of the population growth shows distinct changes in age distribution of the population. Here we concentrate on mortality q(a) , a fraction of items eliminated from the population when we go from age (a) to (a+1) in simulated transition from time (t) to next time (t+1) . The experimentally observed q(a) dependence essentially follows the Gompertz exponential law for a above the minimum reproduction age. Deviation from the Gompertz law is however observed for the very old items, close to the maximal age. This effect may also result from an increase in mutation rate m with age a discussed in this paper. The numerical calculations are based on analytical solution of the Penna model, presented in a series of papers by Coe [J. B. Coe, Y. Mao, and M. E. Cates, Phys. Rev. Lett. 89, 288103 (2002)]. Results of the numerical calculations are supported by the data obtained from computer simulation based on the solution by Coe

  9. Numerical investigation on the regression rate of hybrid rocket motor with star swirl fuel grain

    NASA Astrophysics Data System (ADS)

    Zhang, Shuai; Hu, Fan; Zhang, Weihua

    2016-10-01

    Although hybrid rocket motor is prospected to have distinct advantages over liquid and solid rocket motor, low regression rate and insufficient efficiency are two major disadvantages which have prevented it from being commercially viable. In recent years, complex fuel grain configurations are attractive in overcoming the disadvantages with the help of Rapid Prototyping technology. In this work, an attempt has been made to numerically investigate the flow field characteristics and local regression rate distribution inside the hybrid rocket motor with complex star swirl grain. A propellant combination with GOX and HTPB has been chosen. The numerical model is established based on the three dimensional Navier-Stokes equations with turbulence, combustion, and coupled gas/solid phase formulations. The calculated fuel regression rate is compared with the experimental data to validate the accuracy of numerical model. The results indicate that, comparing the star swirl grain with the tube grain under the conditions of the same port area and the same grain length, the burning surface area rises about 200%, the spatially averaged regression rate rises as high as about 60%, and the oxidizer can combust sufficiently due to the big vortex around the axis in the aft-mixing chamber. The combustion efficiency of star swirl grain is better and more stable than that of tube grain.

  10. Assessment of accuracy of CFD simulations through quantification of a numerical dissipation rate

    NASA Astrophysics Data System (ADS)

    Domaradzki, J. A.; Sun, G.; Xiang, X.; Chen, K. K.

    2016-11-01

    The accuracy of CFD simulations is typically assessed through a time consuming process of multiple runs and comparisons with available benchmark data. We propose that the accuracy can be assessed in the course of actual runs using a simpler method based on a numerical dissipation rate which is computed at each time step for arbitrary sub-domains using only information provided by the code in question (Schranner et al., 2015; Castiglioni and Domaradzki, 2015). Here, the method has been applied to analyze numerical simulation results obtained using OpenFOAM software for a flow around a sphere at Reynolds number of 1000. Different mesh resolutions were used in the simulations. For the coarsest mesh the ratio of the numerical dissipation to the viscous dissipation downstream of the sphere varies from 4.5% immediately behind the sphere to 22% further away. For the finest mesh this ratio varies from 0.4% behind the sphere to 6% further away. The large numerical dissipation in the former case is a direct indicator that the simulation results are inaccurate, e.g., the predicted Strouhal number is 16% lower than the benchmark. Low numerical dissipation in the latter case is an indicator of an acceptable accuracy, with the Strouhal number in the simulations matching the benchmark. Supported by NSF.

  11. Effects of heterogeneity in aquifer permeability and biomass on biodegradation rate calculations - Results from numerical simulations

    USGS Publications Warehouse

    Scholl, M.A.

    2000-01-01

    Numerical simulations were used to examine the effects of heterogeneity in hydraulic conductivity (K) and intrinsic biodegradation rate on the accuracy of contaminant plume-scale biodegradation rates obtained from field data. The simulations were based on a steady-state BTEX contaminant plume-scale biodegradation under sulfate-reducing conditions, with the electron acceptor in excess. Biomass was either uniform or correlated with K to model spatially variable intrinsic biodegradation rates. A hydraulic conductivity data set from an alluvial aquifer was used to generate three sets of 10 realizations with different degrees of heterogeneity, and contaminant transport with biodegradation was simulated with BIOMOC. Biodegradation rates were calculated from the steady-state contaminant plumes using decreases in concentration with distance downgradient and a single flow velocity estimate, as is commonly done in site characterization to support the interpretation of natural attenuation. The observed rates were found to underestimate the actual rate specified in the heterogeneous model in all cases. The discrepancy between the observed rate and the 'true' rate depended on the ground water flow velocity estimate, and increased with increasing heterogeneity in the aquifer. For a lognormal K distribution with variance of 0.46, the estimate was no more than a factor of 1.4 slower than the true rate. For aquifer with 20% silt/clay lenses, the rate estimate was as much as nine times slower than the true rate. Homogeneous-permeability, uniform-degradation rate simulations were used to generate predictions of remediation time with the rates estimated from heterogeneous models. The homogeneous models were generally overestimated the extent of remediation or underestimated remediation time, due to delayed degradation of contaminants in the low-K areas. Results suggest that aquifer characterization for natural attenuation at contaminated sites should include assessment of the presence

  12. A numerical basis for strain-gradient plasticity theory: Rate-independent and rate-dependent formulations

    NASA Astrophysics Data System (ADS)

    Nielsen, K. L.; Niordson, C. F.

    2014-02-01

    A numerical model formulation of the higher order flow theory (rate-independent) by Fleck and Willis [2009. A mathematical basis for strain-gradient plasticity theory - part II: tensorial plastic multiplier. Journal of the Mechanics and Physics of Solids 57, 1045-1057.], that allows for elastic-plastic loading/unloading and the interaction of multiple plastic zones, is proposed. The predicted model response is compared to the corresponding rate-dependent version of visco-plastic origin, and coinciding results are obtained in the limit of small strain-rate sensitivity. First, (i) the evolution of a single plastic zone is analyzed to illustrate the agreement with earlier published results, whereafter examples of (ii) multiple plastic zone interaction, and (iii) elastic-plastic loading/unloading are presented. Here, the simple shear problem of an infinite slab constrained between rigid plates is considered, and the effect of strain gradients, strain hardening and rate sensitivity is brought out. For clarity of results, a 1D model is constructed following a procedure suitable for generalization to 2D and 3D.

  13. A comparison of the efficiency of numerical methods for integrating chemical kinetic rate equations

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, K.

    1984-01-01

    The efficiency of several algorithms used for numerical integration of stiff ordinary differential equations was compared. The methods examined included two general purpose codes EPISODE and LSODE and three codes (CHEMEQ, CREK1D and GCKP84) developed specifically to integrate chemical kinetic rate equations. The codes were applied to two test problems drawn from combustion kinetics. The comparisons show that LSODE is the fastest code available for the integration of combustion kinetic rate equations. It is shown that an iterative solution of the algebraic energy conservation equation to compute the temperature can be more efficient then evaluating the temperature by integrating its time-derivative.

  14. A numerical investigation of oxygen concentration dependence on biodegradation rate laws in vapor intrusion.

    PubMed

    Yao, Yijun; Shen, Rui; Pennel, Kelly G; Suuberg, Eric M

    2013-12-01

    In subsurface vapor intrusion, aerobic biodegradation has been considered as a major environmental factor that determines the soil gas concentration attenuation factors for contaminants such as petroleum hydrocarbons. The site investigation has shown that oxygen can play an important role in this biodegradation rate, and this paper explores the influence of oxygen concentration on biodegradation reactions included in vapor intrusion (VI) models. Two different three dimensional (3-D) numerical models of vapor intrusion were explored for their sensitivity to the form of the biodegradation rate law. A second order biodegradation rate law, explicitly including oxygen concentration dependence, was introduced into one model. The results indicate that the aerobic/anoxic interface depth is determined by the ratio of contaminant source vapor to atmospheric oxygen concentration, and that the contaminant concentration profile in the aerobic zone was significantly influenced by the choice of rate law.

  15. Sediment compaction rates and subsidence in deltaic plains: Numerical constraints and stratigraphic influences

    USGS Publications Warehouse

    Meckel, T.A.; ten Brink, U.S.; Williams, S.J.

    2007-01-01

    Natural sediment compaction in deltaic plains influences subsidence rates and the evolution of deltaic morphology. Determining compaction rates requires detailed knowledge of subsurface geotechnical properties and depositional history, neither of which is often readily available. To overcome this lack of knowledge, we numerically forward model the incremental sedimentation and compaction of stochastically generated stratigraphies with geotechnical properties typical of modern depositional environments in the Mississippi River delta plain. Using a Monte Carlo approach, the range of probable compaction rates for stratigraphies with compacted thicknesses −1. The fastest compacting stratigraphies are composed primarily of peat and bar sand, whereas the slowest compacting stratigraphies are composed of prodelta mud and natural levee deposits. These results suggest that compaction rates can significantly influence vertical and lateral stratigraphic trends during deltaic evolution.

  16. A numerical investigation of oxygen concentration dependence on biodegradation rate laws in vapor intrusion

    PubMed Central

    Yao, Yijun; Shen, Rui; Pennel, Kelly G.; Suuberg, Eric M.

    2013-01-01

    In subsurface vapor intrusion, aerobic biodegradation has been considered as a major environmental factor that determines the soil gas concentration attenuation factors for contaminants such as petroleum hydrocarbons. The site investigation showed that oxygen could play an important role in this biodegradation rate, and this paper explores the influence of oxygen concentration in biodegradation reactions included in vapor intrusion (VI) models. Two different three dimensional (3-D) numerical models of vapor intrusion were explored for their sensitivity to the form of the biodegradation rate law. A second order biodegradation rate law, explicitly including oxygen concentration dependence, was introduced into one model. The results indicate that the aerobic/anoxic interface depth is determined by the ratio of contaminant source vapor to atmospheric oxygen concentration, and that the contaminant concentration profile in the aerobic zone was significantly influenced by the choice of rate law. PMID:24197079

  17. Experimental and numerical study on tensile strength of concrete under different strain rates.

    PubMed

    Min, Fanlu; Yao, Zhanhu; Jiang, Teng

    2014-01-01

    The dynamic characterization of concrete is fundamental to understand the material behavior in case of heavy earthquakes and dynamic events. The implementation of material constitutive law is of capital importance for the numerical simulation of the dynamic processes as those caused by earthquakes. Splitting tensile concrete specimens were tested at strain rates of 10(-7) s(-1) to 10(-4) s(-1) in an MTS material test machine. Results of tensile strength versus strain rate are presented and compared with compressive strength and existing models at similar strain rates. Dynamic increase factor versus strain rate curves for tensile strength were also evaluated and discussed. The same tensile data are compared with strength data using a thermodynamic model. Results of the tests show a significant strain rate sensitive behavior, exhibiting dynamic tensile strength increasing with strain rate. In the quasistatic strain rate regime, the existing models often underestimate the experimental results. The thermodynamic theory for the splitting tensile strength of concrete satisfactorily describes the experimental findings of strength as effect of strain rates.

  18. Experimental and Numerical Study on Tensile Strength of Concrete under Different Strain Rates

    PubMed Central

    Min, Fanlu; Yao, Zhanhu; Jiang, Teng

    2014-01-01

    The dynamic characterization of concrete is fundamental to understand the material behavior in case of heavy earthquakes and dynamic events. The implementation of material constitutive law is of capital importance for the numerical simulation of the dynamic processes as those caused by earthquakes. Splitting tensile concrete specimens were tested at strain rates of 10−7 s−1 to 10−4 s−1 in an MTS material test machine. Results of tensile strength versus strain rate are presented and compared with compressive strength and existing models at similar strain rates. Dynamic increase factor versus strain rate curves for tensile strength were also evaluated and discussed. The same tensile data are compared with strength data using a thermodynamic model. Results of the tests show a significant strain rate sensitive behavior, exhibiting dynamic tensile strength increasing with strain rate. In the quasistatic strain rate regime, the existing models often underestimate the experimental results. The thermodynamic theory for the splitting tensile strength of concrete satisfactorily describes the experimental findings of strength as effect of strain rates. PMID:24883355

  19. Numerical Investigation of the Dynamic Compressive Behaviour of Rock Materials at High Strain Rate

    NASA Astrophysics Data System (ADS)

    Hao, Y.; Hao, H.

    2013-03-01

    The dynamic compressive strength of rock materials increases with the strain rate. They are usually obtained by conducting laboratory tests such as split Hopkinson pressure bar (SHPB) test or drop-weight test. It is commonly agreed now that the dynamic increase factor (DIF) obtained from impact test is affected by lateral inertia confinement, friction confinement between the specimen and impact materials and the specimen sizes and geometries. Therefore, those derived directly from testing data do not necessarily reflect the true dynamic material properties. The influences of these parameters, however, are not straightforward to be quantified in laboratory tests. Therefore, the empirical DIF relations of rock materials obtained directly from impact tests consist of contributions from lateral inertia and end friction confinements, which need be eliminated to reflect the true dynamic material properties. Moreover, different rocks, such as granite, limestone and tuff have different material parameters, e.g., equation of state (EOS) and strength, which may also affect the DIF of materials but are not explicitly studied in the open literature. In the present study, numerical models of granite, limestone and tuff materials with different EOS and strength under impact loads are developed to simulate SHPB tests and to study the influences of EOS and strength, lateral inertia confinement and end friction confinement effects on their respective DIFs in the strain rate range between 1 and 1,000 s-1. The commercial software AUTODYN with user-provided subroutines is used to perform the numerical simulations of SHPB tests. Numerical simulation results indicate that the lateral inertia confinement, friction confinement and specimen aspect ( L/ D) ratio significantly influence DIF obtained from impact tests and the inertia confinement effect is different for different rocks. Based on the numerical results, quantifications on the relative contributions from the lateral inertia

  20. A numerical and experimental analysis of reactor performance and deposition rates for CVD on monofilaments

    NASA Technical Reports Server (NTRS)

    Gokoglu, S. A.; Kuczmarski, M.; Veitch, L.; Tsui, P.; Chait, A.

    1990-01-01

    The computational fluid dynamics (CFD) code FLUENT is adopted to simulate a cylindrical upflow reactor designed for chemical vapor deposition (CVD) on monofilaments. Equilibrium temperature profiles along the fiber and quartz reactor wall are experimentally measured and used as boundary conditions in numerical simulations. Two-dimensional axisymmetric flow and temperature fields are calculated for hydrogen and argon; the effect of free convection is assessed. The gas and surface chemistry is included for predicting silicon deposition from silane. The model predictions are compared with experimentally measured silicon CVD rates. Inferences are made for optimum conditions to obtain uniformity.

  1. Microwave (SSM/I) Estimates of the Precipitation Rate to Improve Numerical Atmospheric Model Forecasts

    NASA Technical Reports Server (NTRS)

    Raymond, William H.; Olson, William S.

    1990-01-01

    Delay in the spin-up of precipitation early in numerical atmospheric forecasts is a deficiency correctable by diabatic initialization combined with diabatic forcing. For either to be effective requires some knowledge of the magnitude and vertical placement of the latent heating fields. Until recently the best source of cloud and rain water data was the remotely sensed vertical integrated precipitation rate or liquid water content. Vertical placement of the condensation remains unknown. Some information about the vertical distribution of the heating rates and precipitating liquid water and ice can be obtained from retrieval techniques that use a physical model of precipitating clouds to refine and improve the interpretation of the remotely sensed data. A description of this procedure and an examination of its 3-D liquid water products, along with improved modeling methods that enhance or speed-up storm development is discussed.

  2. A comparison of the efficiency of numerical methods for integrating chemical kinetic rate equations

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, K.

    1984-01-01

    A comparison of the efficiency of several algorithms recently developed for the efficient numerical integration of stiff ordinary differential equations is presented. The methods examined include two general-purpose codes EPISODE and LSODE and three codes (CHEMEQ, CREK1D, and GCKP84) developed specifically to integrate chemical kinetic rate equations. The codes are applied to two test problems drawn from combustion kinetics. The comparisons show that LSODE is the fastest code currently available for the integration of combustion kinetic rate equations. An important finding is that an iterative solution of the algebraic energy conservation equation to compute the temperature can be more efficient than evaluating the temperature by integrating its time-derivative.

  3. Estimation of geopotential from satellite-to-satellite range rate data: Numerical results

    NASA Technical Reports Server (NTRS)

    Thobe, Glenn E.; Bose, Sam C.

    1987-01-01

    A technique for high-resolution geopotential field estimation by recovering the harmonic coefficients from satellite-to-satellite range rate data is presented and tested against both a controlled analytical simulation of a one-day satellite mission (maximum degree and order 8) and then against a Cowell method simulation of a 32-day mission (maximum degree and order 180). Innovations include: (1) a new frequency-domain observation equation based on kinetic energy perturbations which avoids much of the complication of the usual Keplerian element perturbation approaches; (2) a new method for computing the normalized inclination functions which unlike previous methods is both efficient and numerically stable even for large harmonic degrees and orders; (3) the application of a mass storage FFT to the entire mission range rate history; (4) the exploitation of newly discovered symmetries in the block diagonal observation matrix which reduce each block to the product of (a) a real diagonal matrix factor, (b) a real trapezoidal factor with half the number of rows as before, and (c) a complex diagonal factor; (5) a block-by-block least-squares solution of the observation equation by means of a custom-designed Givens orthogonal rotation method which is both numerically stable and tailored to the trapezoidal matrix structure for fast execution.

  4. Numerical rate function determination in partial differential equations modeling cell population dynamics.

    PubMed

    Groh, Andreas; Kohr, Holger; Louis, Alfred K

    2017-02-01

    This paper introduces a method to solve the inverse problem of determining an unknown rate function in a partial differential equation (PDE) based on discrete measurements of the modeled quantity. The focus is put on a size-structured population balance equation (PBE) predicting the evolution of the number distribution of a single cell population as a function of the size variable. Since the inverse problem at hand is ill-posed, an adequate regularization scheme is required to avoid amplification of measurement errors in the solution method. The technique developed in this work to determine a rate function in a PBE is based on the approximate inverse method, a pointwise regularization scheme, which employs two key ideas. Firstly, the mollification in the directions of time and size variables are separated. Secondly, instable numerical data derivatives are circumvented by shifting the differentiation to an analytically given function. To examine the performance of the introduced scheme, adapted test scenarios have been designed with different levels of data disturbance simulating the model and measurement errors in practice. The success of the method is substantiated by visualizing the results of these numerical experiments.

  5. Finite Volume Numerical Methods for Aeroheating Rate Calculations from Infrared Thermographic Data

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran; Berry, Scott A.; Horvath, Thomas J.; Nowak, Robert J.

    2003-01-01

    The use of multi-dimensional finite volume numerical techniques with finite thickness models for calculating aeroheating rates from measured global surface temperatures on hypersonic wind tunnel models was investigated. Both direct and inverse finite volume techniques were investigated and compared with the one-dimensional semi -infinite technique. Global transient surface temperatures were measured using an infrared thermographic technique on a 0.333-scale model of the Hyper-X forebody in the Langley Research Center 20-Inch Mach 6 Air tunnel. In these tests the effectiveness of vortices generated via gas injection for initiating hypersonic transition on the Hyper-X forebody were investigated. An array of streamwise orientated heating striations were generated and visualized downstream of the gas injection sites. In regions without significant spatial temperature gradients, one-dimensional techniques provided accurate aeroheating rates. In regions with sharp temperature gradients due to the striation patterns two-dimensional heat transfer techniques were necessary to obtain accurate heating rates. The use of the one-dimensional technique resulted in differences of 20% in the calculated heating rates because it did not account for lateral heat conduction in the model.

  6. Effects of shear rate on propagation of blood clotting determined using microfluidics and numerical simulations.

    PubMed

    Runyon, Matthew K; Kastrup, Christian J; Johnson-Kerner, Bethany L; Ha, Thuong G Van; Ismagilov, Rustem F

    2008-03-19

    This paper describes microfluidic experiments with human blood plasma and numerical simulations to determine the role of fluid flow in the regulation of propagation of blood clotting. We demonstrate that propagation of clotting can be regulated by different mechanisms depending on the volume-to-surface ratio of a channel. In small channels, propagation of clotting can be prevented by surface-bound inhibitors of clotting present on vessel walls. In large channels, where surface-bound inhibitors are ineffective, propagation of clotting can be prevented by a shear rate above a threshold value, in agreement with predictions of a simple reaction-diffusion mechanism. We also demonstrate that propagation of clotting in a channel with a large volume-to-surface ratio and a shear rate below a threshold shear rate can be slowed by decreasing the production of thrombin, an activator of clotting. These in vitro results make two predictions, which should be experimentally tested in vivo. First, propagation of clotting from superficial veins to deep veins may be regulated by shear rate, which might explain the correlation between superficial thrombosis and the development of deep vein thrombosis (DVT). Second, nontoxic thrombin inhibitors with high binding affinities could be locally administered to prevent recurrent thrombosis after a clot has been removed. In addition, these results demonstrate the utility of simplified mechanisms and microfluidics for generating and testing predictions about the dynamics of complex biochemical networks.

  7. 28 CFR 0.10 - Attorney General's Advisory Committee of U.S. Attorneys.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the Associate Attorney General in formulating new programs for improvement of the criminal justice... U.S. Attorneys. 0.10 Section 0.10 Judicial Administration DEPARTMENT OF JUSTICE ORGANIZATION OF THE DEPARTMENT OF JUSTICE Office of the Attorney General § 0.10 Attorney General's Advisory Committee of...

  8. 28 CFR 0.10 - Attorney General's Advisory Committee of U.S. Attorneys.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the Associate Attorney General in formulating new programs for improvement of the criminal justice... U.S. Attorneys. 0.10 Section 0.10 Judicial Administration DEPARTMENT OF JUSTICE ORGANIZATION OF THE DEPARTMENT OF JUSTICE Office of the Attorney General § 0.10 Attorney General's Advisory Committee of...

  9. 28 CFR 0.10 - Attorney General's Advisory Committee of U.S. Attorneys.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the Associate Attorney General in formulating new programs for improvement of the criminal justice... U.S. Attorneys. 0.10 Section 0.10 Judicial Administration DEPARTMENT OF JUSTICE ORGANIZATION OF THE DEPARTMENT OF JUSTICE Office of the Attorney General § 0.10 Attorney General's Advisory Committee of...

  10. 28 CFR 0.10 - Attorney General's Advisory Committee of U.S. Attorneys.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the Associate Attorney General in formulating new programs for improvement of the criminal justice... U.S. Attorneys. 0.10 Section 0.10 Judicial Administration DEPARTMENT OF JUSTICE ORGANIZATION OF THE DEPARTMENT OF JUSTICE Office of the Attorney General § 0.10 Attorney General's Advisory Committee of...

  11. 28 CFR 0.10 - Attorney General's Advisory Committee of U.S. Attorneys.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the Associate Attorney General in formulating new programs for improvement of the criminal justice... U.S. Attorneys. 0.10 Section 0.10 Judicial Administration DEPARTMENT OF JUSTICE ORGANIZATION OF THE DEPARTMENT OF JUSTICE Office of the Attorney General § 0.10 Attorney General's Advisory Committee of...

  12. Effects of structure formation on the expansion rate of the Universe: An estimate from numerical simulations

    NASA Astrophysics Data System (ADS)

    Zhao, Xinghai; Mathews, Grant J.

    2011-01-01

    General relativistic corrections to the expansion rate of the Universe arise when the Einstein equations are averaged over a spatial volume in a locally inhomogeneous cosmology. It has been suggested that they may contribute to the observed cosmic acceleration. In this paper, we propose a new scheme that utilizes numerical simulations to make a realistic estimate of the magnitude of these corrections for general inhomogeneities in (3+1) spacetime. We then quantitatively calculate the volume averaged expansion rate using N-body large-scale structure simulations and compare it with the expansion rate in a standard FRW cosmology. We find that in the weak gravitational field limit, the converged corrections are slightly larger than the previous claimed 10-5 level, but not large enough nor even of the correct sign to drive the current cosmic acceleration. Nevertheless, the question of whether the cumulative effect can significantly change the expansion history of the Universe needs to be further investigated with strong-field relativity.

  13. Numerical simulation of hypersonic inlet flows with equilibrium or finite rate chemistry

    NASA Technical Reports Server (NTRS)

    Yu, Sheng-Tao; Hsieh, Kwang-Chung; Shuen, Jian-Shun; Mcbride, Bonnie J.

    1988-01-01

    An efficient numerical program incorporated with comprehensive high temperature gas property models has been developed to simulate hypersonic inlet flows. The computer program employs an implicit lower-upper time marching scheme to solve the two-dimensional Navier-Stokes equations with variable thermodynamic and transport properties. Both finite-rate and local-equilibrium approaches are adopted in the chemical reaction model for dissociation and ionization of the inlet air. In the finite rate approach, eleven species equations coupled with fluid dynamic equations are solved simultaneously. In the local-equilibrium approach, instead of solving species equations, an efficient chemical equilibrium package has been developed and incorporated into the flow code to obtain chemical compositions directly. Gas properties for the reaction products species are calculated by methods of statistical mechanics and fit to a polynomial form for C(p). In the present study, since the chemical reaction time is comparable to the flow residence time, the local-equilibrium model underpredicts the temperature in the shock layer. Significant differences of predicted chemical compositions in shock layer between finite rate and local-equilibrium approaches have been observed.

  14. A numerical investigation of the impact of turbulence on the feeding rates of Oithona davisae

    NASA Astrophysics Data System (ADS)

    Mariani, Patrizio; Botte, Vincenzo; Ribera d'Alcalà, Maurizio

    Individual based numerical simulations of the copepod, Oithona davisae, feeding on motile prey, Oxyrrhis marina, under variable turbulent conditions are performed. These simulations correspond to laboratory observations conducted by Saiz et al. [Saiz, E., Calbet, A., and Broglio, E., 2003. Effects of small-scale turbulence on copepods: the case of Oithona Davisae. Limnol. Oceanogr., 48:1304-1311.]. The flow field in the simulation is reconstructed by a kinematic simulation whose characteristic scales are derived from the grid mesh and the dissipation rates of the laboratory experiments. The kinematic simulation provides a simplified model, which while not fully realistic, captures the basic relevant feature of turbulence. A hop and sink swimming behaviour is prescribed for O. davisae, while O. marina moves along helical paths with random changes of directions. Three possible effects are tested: the existence of a time threshold in the duration of the contacts between predator and prey, a progressive reduction of the perceptive distance with increasing turbulence level and an abrupt reduction in feeding of O. davisae when the flow speed, in relation to the copepod position, is higher than a prescribed threshold. This last approach introduces an intermittency in the feeding which depends on the variations of velocity both in space and time within the numerical box. The introduction of the time threshold causes a dome-shaped relationship between the simulated enhancement factor and the dissipation rate, while with the other two effects, a monotonic decrease in the enhancement factor is observed, with values reasonably close to the ones observed in the laboratory experiment. In all the cases, the use of realistic values of biological parameters (e.g. swimming behaviour) reproduces response curves in the range of the observations.

  15. Numerical model of crustal accretion and cooling rates of fast-spreading mid-ocean ridges

    NASA Astrophysics Data System (ADS)

    Machetel, P.; Garrido, C. J.

    2013-10-01

    We designed a thermo-mechanical numerical model for fast-spreading mid-ocean ridge with variable viscosity, hydrothermal cooling, latent heat release, sheeted dyke layer, and variable melt intrusion possibilities. The model allows for modulating several accretion possibilities such as the "gabbro glacier" (G), the "sheeted sills" (S) or the "mixed shallow and MTZ lenses" (M). These three crustal accretion modes have been explored assuming viscosity contrasts of 2 to 3 orders of magnitude between strong and weak phases and various hydrothermal cooling conditions depending on the cracking temperatures value. Mass conservation (stream-function), momentum (vorticity) and temperature equations are solved in 2-D cartesian geometry using 2-D, alternate direction, implicit and semi-implicit finite-difference scheme. In a first step, an Eulerian approach is used solving iteratively the motion and temperature equations until reaching steady states. With this procedure, the temperature patterns and motions that are obtained for the various crustal intrusion modes and hydrothermal cooling hypotheses display significant differences near the mid-ocean ridge axis. In a second step, a Lagrangian approach is used, recording the thermal histories and cooling rates of tracers travelling from the ridge axis to their final emplacements in the crust far from the mid-ocean ridge axis. The results show that the tracer's thermal histories are depending on the temperature patterns and the crustal accretion modes near the mid-ocean ridge axis. The instantaneous cooling rates obtained from these thermal histories betray these discrepancies and might therefore be used to characterize the crustal accretion mode at the ridge axis. These deciphering effects are even more pronounced if we consider the average cooling rates occurring over a prescribed temperature range. Two situations were tested at 1275-1125 °C and 1050-850 °C. The first temperature range covers mainly the crystallization range

  16. Rovibrational bound states of SO2 isotopologues. I: Total angular momentum J = 0-10

    NASA Astrophysics Data System (ADS)

    Kumar, Praveen; Ellis, Joseph; Poirier, Bill

    2015-04-01

    Isotopic variation of the rovibrational bound states of SO2 for the four stable sulfur isotopes 32-34,36S is investigated in comprehensive detail. In a two-part series, we compute the low-lying energy levels for all values of total angular momentum in the range J = 0-20. All rovibrational levels are computed, to an extremely high level of numerical convergence. The calculations have been carried out using the ScalIT suite of parallel codes. The present study (Paper I) examines the J = 0-10 rovibrational levels, providing unambiguous symmetry and rovibrational label assignments for each computed state. The calculated vibrational energy levels exhibit very good agreement with previously reported experimental and theoretical data. Rovibrational energy levels, calculated without any Coriolis approximations, are reported here for the first time. Among other potential ramifications, this data will facilitate understanding of the origin of mass-independent fractionation of sulfur isotopes in the Archean rock record-of great relevance for understanding the "oxygen revolution".

  17. Territory occupancy rate of goshawk and gyrfalcon: no evidence of delayed numerical response to grouse numbers.

    PubMed

    Selås, Vidar; Kålås, John Atle

    2007-09-01

    Two recent studies on territory occupancy rates of goshawk Accipiter gentilis and gyrfalcon Falco rusticolus report a 2-3-year-delayed numerical response to grouse numbers, which is a requirement for a hypothesis of predator-generated grouse cycles. The time lags were assumed to reflect the average age of sexual maturity in the raptor species. In southern Norway, however, subadult (two-year-old) goshawk hens occupied only 18-25% of territories where occupancy was not recorded in the preceding year, and there was no significant relationship between the proportion of subadults among recruits and grouse indices two years earlier. We argue that territory occupancy rates are not appropriate indices of total raptor population levels, but rather reflect the proportion of territorial pairs that attempt to nest. Because this depends on the body condition of the hens, fluctuations in other important winter resident prey species (most important for the goshawk) and winter weather (most important for the gyrfalcon) should also be addressed. During 1988-2006, the annual proportion of goshawk territories with recorded nesting attempts in southern Norway was most closely related to the preceding autumn's population indices of black grouse Tetrao tetrix and mountain hare Lepus timidus, whereas the annual proportion of gyrfalcon territories with observations of falcons or with confirmed breeding attempts in central Norway were best explained by population indices of willow grouse Lagopus lagopus and ptarmigan L. mutus from the previous autumn, and by December temperatures. Hence, our studies do not support the predation hypothesis for grouse cycles.

  18. Large-scale dynamo growth rates from numerical simulations and implications for mean-field theories.

    PubMed

    Park, Kiwan; Blackman, Eric G; Subramanian, Kandaswamy

    2013-05-01

    Understanding large-scale magnetic field growth in turbulent plasmas in the magnetohydrodynamic limit is a goal of magnetic dynamo theory. In particular, assessing how well large-scale helical field growth and saturation in simulations match those predicted by existing theories is important for progress. Using numerical simulations of isotropically forced turbulence without large-scale shear with its implications, we focus on several additional aspects of this comparison: (1) Leading mean-field dynamo theories which break the field into large and small scales predict that large-scale helical field growth rates are determined by the difference between kinetic helicity and current helicity with no dependence on the nonhelical energy in small-scale magnetic fields. Our simulations show that the growth rate of the large-scale field from fully helical forcing is indeed unaffected by the presence or absence of small-scale magnetic fields amplified in a precursor nonhelical dynamo. However, because the precursor nonhelical dynamo in our simulations produced fields that were strongly subequipartition with respect to the kinetic energy, we cannot yet rule out the potential influence of stronger nonhelical small-scale fields. (2) We have identified two features in our simulations which cannot be explained by the most minimalist versions of two-scale mean-field theory: (i) fully helical small-scale forcing produces significant nonhelical large-scale magnetic energy and (ii) the saturation of the large-scale field growth is time delayed with respect to what minimalist theory predicts. We comment on desirable generalizations to the theory in this context and future desired work.

  19. Theoretical and numerical study of strain localization under high strain rate solicitation

    NASA Astrophysics Data System (ADS)

    Ranc, N.; Raynal, R.; Taravella, L.; Pina, V.; Hervé, P.

    2006-08-01

    Our study deals with the dynamic behavior of metallic materials and in particular of titanium alloy TA6V. For high strain rates, we can notice the occurrence of a phenomenon called adiabatic shearing. This phenomenon is about a plastic instability, which results in the appearance of a strain localization in narrow bands. In this paper we developed a thermo mechanical model to reproduce the formation and the propagation of adiabatic shear bands. A Johnson Cook thermo visco plastic behavior law was chosen for the titanium alloy TA6V. The law parameters were identified from static and dynamic torsion tests at various temperatures between ambient and 350circC. A 2D numerical simulation of torsion test was performed with the explicit finite elements code Abaqus. The thermo mechanical coupling and the heat conduction are taken into account. A roughness defect was inserted in the centre of a torsion specimen. The results showed that the strain of localization and the shear band speed increase when the amplitude and the size of the defect decrease.

  20. Statistical Models for the Analysis of Zero-Inflated Pain Intensity Numeric Rating Scale Data.

    PubMed

    Goulet, Joseph L; Buta, Eugenia; Bathulapalli, Harini; Gueorguieva, Ralitza; Brandt, Cynthia A

    2017-03-01

    Pain intensity is often measured in clinical and research settings using the 0 to 10 numeric rating scale (NRS). NRS scores are recorded as discrete values, and in some samples they may display a high proportion of zeroes and a right-skewed distribution. Despite this, statistical methods for normally distributed data are frequently used in the analysis of NRS data. We present results from an observational cross-sectional study examining the association of NRS scores with patient characteristics using data collected from a large cohort of 18,935 veterans in Department of Veterans Affairs care diagnosed with a potentially painful musculoskeletal disorder. The mean (variance) NRS pain was 3.0 (7.5), and 34% of patients reported no pain (NRS = 0). We compared the following statistical models for analyzing NRS scores: linear regression, generalized linear models (Poisson and negative binomial), zero-inflated and hurdle models for data with an excess of zeroes, and a cumulative logit model for ordinal data. We examined model fit, interpretability of results, and whether conclusions about the predictor effects changed across models. In this study, models that accommodate zero inflation provided a better fit than the other models. These models should be considered for the analysis of NRS data with a large proportion of zeroes.

  1. Pore-scale controls on calcite dissolution rates from flow-through laboratory and numerical experiments.

    PubMed

    Molins, Sergi; Trebotich, David; Yang, Li; Ajo-Franklin, Jonathan B; Ligocki, Terry J; Shen, Chaopeng; Steefel, Carl I

    2014-07-01

    A combination of experimental, imaging, and modeling techniques were applied to investigate the pore-scale transport and surface reaction controls on calcite dissolution under elevated pCO2 conditions. The laboratory experiment consisted of the injection of a solution at 4 bar pCO2 into a capillary tube packed with crushed calcite. A high resolution pore-scale numerical model was used to simulate the experiment based on a computational domain consisting of reactive calcite, pore space, and the capillary wall constructed from volumetric X-ray microtomography images. Simulated pore-scale effluent concentrations were higher than those measured by a factor of 1.8, with the largest component of the discrepancy related to uncertainties in the reaction rate model and its parameters. However, part of the discrepancy was apparently due to mass transport limitations to reactive surfaces, which were most pronounced near the inlet where larger diffusive boundary layers formed around grains and in slow-flowing pore spaces that exchanged mass by diffusion with fast flow paths. Although minor, the difference between pore- and continuum-scale results due to transport controls was discernible with the highly accurate methods employed and is expected to be more significant where heterogeneity is greater, as in natural subsurface materials.

  2. Numerical implementation of a crystal plasticity model with dislocation transport for high strain rate applications

    NASA Astrophysics Data System (ADS)

    Mayeur, Jason R.; Mourad, Hashem M.; Luscher, Darby J.; Hunter, Abigail; Kenamond, Mark A.

    2016-05-01

    This paper details a numerical implementation of a single crystal plasticity model with dislocation transport for high strain rate applications. Our primary motivation for developing the model is to study the influence of dislocation transport and conservation on the mesoscale response of metallic crystals under extreme thermo-mechanical loading conditions (e.g. shocks). To this end we have developed a single crystal plasticity theory (Luscher et al (2015)) that incorporates finite deformation kinematics, internal stress fields caused by the presence of geometrically necessary dislocation gradients, advection equations to model dislocation density transport and conservation, and constitutive equations appropriate for shock loading (equation of state, drag-limited dislocation velocity, etc). In the following, we outline a coupled finite element-finite volume framework for implementing the model physics, and demonstrate its capabilities in simulating the response of a [1 0 0] copper single crystal during a plate impact test. Additionally, we explore the effect of varying certain model parameters (e.g. mesh density, finite volume update scheme) on the simulation results. Our results demonstrate that the model performs as intended and establishes a baseline of understanding that can be leveraged as we extend the model to incorporate additional and/or refined physics and move toward a multi-dimensional implementation.

  3. Numerical Simulation of Cavitation in a Centrifugal Pump at Low Flow Rate

    NASA Astrophysics Data System (ADS)

    Tan, Lei; Cao, Shu-Liang; Wang, Yu-Ming; Zhu, Bao-Shan

    2012-01-01

    Based on the full cavitation model which adopts homogeneous flow supposition and considering the compressibility effect on cavitation flow to modify the re-normalization group k-in turbulence model by the density function, a computational model is developed to simulate cavitation flow of a centrifugal pump at low flow rate. The Navier-Stokes equation is solved with the SIMPLEC algorithm. The calculated curves of net positive suction head available (NPSHa) HNPSHa agree well with the experimental data. The critical point of cavitation in centrifugal pump can be predicted precisely, and the NPSH critical values derived from simulation are consistent with the experimental data. Thus the veracity and reliability of this computational model are verified. Based on the result of numerical simulation, the distribution of vapor volume fraction in the impeller and pressure at the impeller inlet are analyzed. Cavities first appear on the suction side of the blade head near the front shroud. A large number of cavities block the impeller channels, which leads to the sudden drop of head at the cavitation critical point. With the reduction of NPSHa, the distribution of pressure at the impeller inlet is more uniform.

  4. Ensemble Monte Carlo calculation of the hole initiated impact ionization rate in bulk GaAs and silicon using a k-dependent, numerical transition rate formulation

    NASA Technical Reports Server (NTRS)

    Oguzman, Ismail H.; Wang, Yang; Kolnik, Jan; Brennan, Kevin F.

    1995-01-01

    The hole initiated impact ionization rate in bulk silicon and GaAs is calculated using a numerical formulation of the impact ionization transition rate incorporated into an ensemble Monte Carlo simulation. The transition rate is calculated from Fermi's golden rule using a two-body screened Coulomb interaction including a wavevector dependent dielectric function. It is found that the effective threshold for hole initiated ionization is relatively soft in both materials, that the split-off band dominates the ionization process in GaAs. and that no clear dominance by any one band is observed in silicon, though the rate out of the light hole band is greatest.

  5. Numerical calculation of protein-ligand binding rates through solution of the Smoluchowski equation using smoothed particle hydrodynamics

    DOE PAGES

    Pan, Wenxiao; Daily, Michael; Baker, Nathan A.

    2015-05-07

    Background: The calculation of diffusion-controlled ligand binding rates is important for understanding enzyme mechanisms as well as designing enzyme inhibitors. Methods: We demonstrate the accuracy and effectiveness of a Lagrangian particle-based method, smoothed particle hydrodynamics (SPH), to study diffusion in biomolecular systems by numerically solving the time-dependent Smoluchowski equation for continuum diffusion. Unlike previous studies, a reactive Robin boundary condition (BC), rather than the absolute absorbing (Dirichlet) BC, is considered on the reactive boundaries. This new BC treatment allows for the analysis of enzymes with “imperfect” reaction rates. Results: The numerical method is first verified in simple systems and thenmore » applied to the calculation of ligand binding to a mouse acetylcholinesterase (mAChE) monomer. Rates for inhibitor binding to mAChE are calculated at various ionic strengths and compared with experiment and other numerical methods. We find that imposition of the Robin BC improves agreement between calculated and experimental reaction rates. Conclusions: Although this initial application focuses on a single monomer system, our new method provides a framework to explore broader applications of SPH in larger-scale biomolecular complexes by taking advantage of its Lagrangian particle-based nature.« less

  6. Numerical calculation of protein-ligand binding rates through solution of the Smoluchowski equation using smoothed particle hydrodynamics

    SciTech Connect

    Pan, Wenxiao; Daily, Michael; Baker, Nathan A.

    2015-05-07

    Background: The calculation of diffusion-controlled ligand binding rates is important for understanding enzyme mechanisms as well as designing enzyme inhibitors. Methods: We demonstrate the accuracy and effectiveness of a Lagrangian particle-based method, smoothed particle hydrodynamics (SPH), to study diffusion in biomolecular systems by numerically solving the time-dependent Smoluchowski equation for continuum diffusion. Unlike previous studies, a reactive Robin boundary condition (BC), rather than the absolute absorbing (Dirichlet) BC, is considered on the reactive boundaries. This new BC treatment allows for the analysis of enzymes with “imperfect” reaction rates. Results: The numerical method is first verified in simple systems and then applied to the calculation of ligand binding to a mouse acetylcholinesterase (mAChE) monomer. Rates for inhibitor binding to mAChE are calculated at various ionic strengths and compared with experiment and other numerical methods. We find that imposition of the Robin BC improves agreement between calculated and experimental reaction rates. Conclusions: Although this initial application focuses on a single monomer system, our new method provides a framework to explore broader applications of SPH in larger-scale biomolecular complexes by taking advantage of its Lagrangian particle-based nature.

  7. Slip rate depth distribution for active faults in Central Italy using numerical models

    NASA Astrophysics Data System (ADS)

    Finocchio, Debora; Barba, Salvatore; Basili, Roberto

    2016-09-01

    Slip rate is a critical parameter for describing geologic and earthquake rates of known active faults. Although faults are inherently three-dimensional surfaces, the paucity of data allows for estimating only the slip rate at the ground surface and often only few values for an entire fault. These values are frequently assumed as proxies or as some average of slip rate at depth. Evidence of geological offset and single earthquake displacement, as well as mechanical requirements, show that fault slip varies significantly with depth. Slip rate should thus vary in a presumably similar way, yet these variations are rarely considered. In this work, we tackle the determination of slip rate depth distributions by applying the finite element method on a 2D vertical section, with stratification and faults, across the central Apennines, Italy. In a first step, we perform a plane-stress analysis assuming visco-elasto-plastic rheology and then search throughout a large range of values to minimize the RMS deviation between the model and the interseismic GPS velocities. Using a parametric analysis, we assess the accuracy of the best model and the sensitivity of its parameters. In a second step, we unlock the faults and let the model simulate 10 kyr of deformation to estimate the fault long-term slip rates. The overall average slip rate at depth is approximately 1.1 mm/yr for normal faults and 0.2 mm/yr for thrust faults. A maximum value of about 2 mm/yr characterizes the Avezzano fault that caused the 1915, Mw 7.0 earthquake. The slip rate depth distribution varies significantly from fault to fault and even between neighbouring faults, with maxima and minima located at different depths. We found uniform distributions only occasionally. We suggest that these findings can strongly influence the forecasting of cumulative earthquake depth distributions based on long-term fault slip rates.

  8. A new method for representing multiple wells with arbitrary rates in numerical reservoir simulation

    SciTech Connect

    Peaceman, D.W.

    1995-12-31

    A new equation is presented for calculating the equivalent wellblock radii for all N{sub w} wells in a reservoir. Arbitrary well rates and the interaction between wells are fully accounted for. The data required for the new equation may be obtained in a preprocessor by calculating N{sub w} single-phase pressure distributions. Then an accurate equivalent wellblock radius can be calculated for each well each time step, even under conditions where well rates vary with time.

  9. A Numerical Study of Water Loss Rate Distributions in MDCT-based Human Airway Models

    PubMed Central

    Wu, Dan; Miyawaki, Shinjiro; Tawhai, Merryn H.; Hoffman, Eric A.; Lin, Ching-Long

    2015-01-01

    Both three-dimensional (3D) and one-dimensional (1D) computational fluid dynamics (CFD) methods are applied to study regional water loss in three multi-detector row computed-tomography (MDCT)-based human airway models at the minute ventilations of 6, 15 and 30 L/min. The overall water losses predicted by both 3D and 1D models in the entire respiratory tract agree with available experimental measurements. However, 3D and 1D models reveal different regional water loss rate distributions due to the 3D secondary flows formed at bifurcations. The secondary flows cause local skewed temperature and humidity distributions on inspiration acting to elevate the local water loss rate; and the secondary flow at the carina tends to distribute more cold air to the lower lobes. As a result, the 3D model predicts that the water loss rate first increases with increasing airway generation, and then decreases as the air approaches saturation, while the 1D model predicts a monotonic decrease of water loss rate with increasing airway generation. Moreover, the 3D (or 1D) model predicts relatively higher water loss rates in lower (or upper) lobes. The regional water loss rate can be related to the non-dimensional wall shear stress (τ*) by the non-dimensional mass transfer coefficient (h0*) as h0* = 1.15 τ*0.272, R = 0.842. PMID:25869455

  10. Numerical calculation of protein-ligand binding rates through solution of the Smoluchowski equation using smooth particle hydrodynamics

    SciTech Connect

    Pan, Wenxiao; Daily, Michael D.; Baker, Nathan A.

    2015-12-01

    We demonstrate the accuracy and effectiveness of a Lagrangian particle-based method, smoothed particle hydrodynamics (SPH), to study diffusion in biomolecular systems by numerically solving the time-dependent Smoluchowski equation for continuum diffusion. The numerical method is first verified in simple systems and then applied to the calculation of ligand binding to an acetylcholinesterase monomer. Unlike previous studies, a reactive Robin boundary condition (BC), rather than the absolute absorbing (Dirichlet) boundary condition, is considered on the reactive boundaries. This new boundary condition treatment allows for the analysis of enzymes with "imperfect" reaction rates. Rates for inhibitor binding to mAChE are calculated at various ionic strengths and compared with experiment and other numerical methods. We find that imposition of the Robin BC improves agreement between calculated and experimental reaction rates. Although this initial application focuses on a single monomer system, our new method provides a framework to explore broader applications of SPH in larger-scale biomolecular complexes by taking advantage of its Lagrangian particle-based nature.

  11. Direct numerical simulation of a 2D-stented aortic heart valve at physiological flow rates.

    PubMed

    Dimakopoulos, Y; Bogaerds, A C B; Anderson, P D; Hulsen, M A; Baaijens, F P T

    2012-01-01

    We study the nonlinear interaction of an aortic heart valve, composed of hyperelastic corrugated leaflets of finite density attached to a stented vessel under physiological flow conditions. In our numerical simulations, we use a 2D idealised representation of this arrangement. Blood flow is caused by a time-varying pressure gradient that mimics that of the aortic valve and corresponds to a peak Reynolds number equal to 4050. Here, we fully account for the shear-thinning behaviour of the blood and large deformations and contact between the leaflets by solving the momentum and mass balances for blood and leaflets. The mixed finite element/Galerkin method along with linear discontinuous Lagrange multipliers for coupling the fluid and elastic domains is adopted. Moreover, a series of challenging numerical issues such as the finite length of the computational domain and the conditions that should be imposed on its inflow/outflow boundaries, the accurate time integration of the parabolic and hyperbolic momentum equations, the contact between the leaflets and the non-conforming mesh refinement in part of the domain are successfully resolved. Calculations for the velocity and the shear stress fields of the blood reveal that boundary layers appear on both sides of a leaflet. The one along the ventricular side transfers blood with high momentum from the core region of the vessel to the annulus or the sinusoidal expansion, causing the continuous development of flow instabilities. At peak systole, vortices are convected in the flow direction along the annulus of the vessel, whereas during the closure stage of the valve, an extremely large vortex develops in each half of the flow domain.

  12. A method for the direct numerical simulation of hypersonic boundary-layer instability with finite-rate chemistry

    SciTech Connect

    Marxen, Olaf; Magin, Thierry E.; Shaqfeh, Eric S.G.; Iaccarino, Gianluca

    2013-12-15

    A new numerical method is presented here that allows to consider chemically reacting gases during the direct numerical simulation of a hypersonic fluid flow. The method comprises the direct coupling of a solver for the fluid mechanical model and a library providing the physio-chemical model. The numerical method for the fluid mechanical model integrates the compressible Navier–Stokes equations using an explicit time advancement scheme and high-order finite differences. This Navier–Stokes code can be applied to the investigation of laminar-turbulent transition and boundary-layer instability. The numerical method for the physio-chemical model provides thermodynamic and transport properties for different gases as well as chemical production rates, while here we exclusively consider a five species air mixture. The new method is verified for a number of test cases at Mach 10, including the one-dimensional high-temperature flow downstream of a normal shock, a hypersonic chemical reacting boundary layer in local thermodynamic equilibrium and a hypersonic reacting boundary layer with finite-rate chemistry. We are able to confirm that the diffusion flux plays an important role for a high-temperature boundary layer in local thermodynamic equilibrium. Moreover, we demonstrate that the flow for a case previously considered as a benchmark for the investigation of non-equilibrium chemistry can be regarded as frozen. Finally, the new method is applied to investigate the effect of finite-rate chemistry on boundary layer instability by considering the downstream evolution of a small-amplitude wave and comparing results with those obtained for a frozen gas as well as a gas in local thermodynamic equilibrium.

  13. Finite Volume Numerical Methods for Aeroheating Rate Calculations from Infrared Thermographic Data

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran; Berry, Scott A.; Horvath, Thomas J.; Nowak, Robert J.

    2006-01-01

    The use of multi-dimensional finite volume heat conduction techniques for calculating aeroheating rates from measured global surface temperatures on hypersonic wind tunnel models was investigated. Both direct and inverse finite volume techniques were investigated and compared with the standard one-dimensional semi-infinite technique. Global transient surface temperatures were measured using an infrared thermographic technique on a 0.333-scale model of the Hyper-X forebody in the NASA Langley Research Center 20-Inch Mach 6 Air tunnel. In these tests the effectiveness of vortices generated via gas injection for initiating hypersonic transition on the Hyper-X forebody was investigated. An array of streamwise-orientated heating striations was generated and visualized downstream of the gas injection sites. In regions without significant spatial temperature gradients, one-dimensional techniques provided accurate aeroheating rates. In regions with sharp temperature gradients caused by striation patterns multi-dimensional heat transfer techniques were necessary to obtain more accurate heating rates. The use of the one-dimensional technique resulted in differences of 20% in the calculated heating rates compared to 2-D analysis because it did not account for lateral heat conduction in the model.

  14. Numerical study of strain-rate effect in cold rolls forming of steel

    NASA Astrophysics Data System (ADS)

    Falsafi, J.; Demirci, E.; Silberschmidt, V. V.

    2013-07-01

    Cold roll forming (CRF) is a well-known continuous manufacturing process, in which a flat strip is deformed by successive rotating pairs of tools, without changing the material thickness. In the past decades, to lessen the process-development efforts, finite-element simulations have been increasingly employed to improve the process design and predict the manufacturing-induced defects. One of the important aspects in design of the CRF process is consideration of resulting strains in the final product as the material passes through several complex forming stands. Sufficient knowledge of longitudinal strain in the workpiece is required to set various process parameters. Increasing a process speed in a roll forming operation can bring cost advantages, but the influence of the forming speed on the strain distribution should be explored. This study is focussed on a strain-rate effect in the CRF process of steel sheets. The strain-rate dependency of a plastic behaviour observed in most metals can affect the finished product's quality as well as process parameters. This paper investigates the influence of the strain rate on longitudinal strains induced in the roll forming operation by incorporating a phenomenological Johnson-Cook constitutive model, which allows studying the impact of the process speed on the output product. Taking advantage of 3D finite element analysis, a roll forming process was simulated using MCS.Marc, comprising a complete set of forming stations. Through the changing of the process speed, the strain rate impact on longitudinal peak strains and forming length was investigated. The results highlight the effect of the strain rate on edge thinning and subsequent undesirable distortions in the product.

  15. Numerical Modelling of Wire-EDM for Predicting Erosion Rate of Silicon

    NASA Astrophysics Data System (ADS)

    Joshi, Kamlesh; Sharma, Gaurav; Dongre, Ganesh; Joshi, Suhas Sitaram

    2017-02-01

    Recently, a lot of work is carried out in photovoltaic industry for slicing Si ingots using non-conventional technique like wire-EDM apart from conventional techniques like inner diameter saw and multi-wire saw. It is an emerging technology in field of Si wafer slicing and has a potential to be cost efficient. It reduces the kerf-loss and produces crack-free Si wafers. In general, the process of Si wafer cutting using wire-EDM is less understood due to its complex nature. In this work, the complex phenomena like formation of plasma channel, melting and erosion of Si material has been modelled mathematically. Further, the effect of input energy parameters like current, open voltage and pulse on-time on plasma and plasma-ingot interface temperature has been studied. The model is further extended along the length of the wire to evaluate the erosion depth and rate. The effect of process parameters on erosion depth and rate was validated experimentally. The model considers variation in material removal through the `plasma flushing efficiency'.

  16. Strain-rate sensitivity of foam materials: A numerical study using 3D image-based finite element model

    NASA Astrophysics Data System (ADS)

    Sun, Yongle; Li, Q. M.; Withers, P. J.

    2015-09-01

    Realistic simulations are increasingly demanded to clarify the dynamic behaviour of foam materials, because, on one hand, the significant variability (e.g. 20% scatter band) of foam properties and the lack of reliable dynamic test methods for foams bring particular difficulty to accurately evaluate the strain-rate sensitivity in experiments; while on the other hand numerical models based on idealised cell structures (e.g. Kelvin and Voronoi) may not be sufficiently representative to capture the actual structural effect. To overcome these limitations, the strain-rate sensitivity of the compressive and tensile properties of closed-cell aluminium Alporas foam is investigated in this study by means of meso-scale realistic finite element (FE) simulations. The FE modelling method based on X-ray computed tomography (CT) image is introduced first, as well as its applications to foam materials. Then the compression and tension of Alporas foam at a wide variety of applied nominal strain-rates are simulated using FE model constructed from the actual cell geometry obtained from the CT image. The stain-rate sensitivity of compressive strength (collapse stress) and tensile strength (0.2% offset yield point) are evaluated when considering different cell-wall material properties. The numerical results show that the rate dependence of cell-wall material is the main cause of the strain-rate hardening of the compressive and tensile strengths at low and intermediate strain-rates. When the strain-rate is sufficiently high, shock compression is initiated, which significantly enhances the stress at the loading end and has complicated effect on the stress at the supporting end. The plastic tensile wave effect is evident at high strain-rates, but shock tension cannot develop in Alporas foam due to the softening associated with single fracture process zone occurring in tensile response. In all cases the micro inertia of individual cell walls subjected to localised deformation is found to

  17. Numerical investigation and thermodynamic analysis of the effect of electrolyte flow rate on performance of all vanadium redox flow batteries

    NASA Astrophysics Data System (ADS)

    Khazaeli, Ali; Vatani, Ali; Tahouni, Nassim; Panjeshahi, Mohammad Hassan

    2015-10-01

    In flow batteries, electrolyte flow rate plays a crucial role on the minimizing mass transfer polarization which is at the compensation of higher pressure drop. In this work, a two-dimensional numerical method is applied to investigate the effect of electrolyte flow rate on cell voltage, maximum depth of discharge and pressure drop a six-cell stack of VRFB. The results show that during the discharge process, increasing electrolyte flow rate can raise the voltage of each cell up to 50 mV on average. Moreover, the maximum depth of discharge dramatically increases with electrolyte flow rate. On the other hand, the pressure drop also positively correlates with electrolyte flow rate. In order to investigate all these effects simultaneously, average energy and exergy efficiencies are introduced in this study for the transient process of VRFB. These efficiencies give insight into choosing an appropriate strategy for the electrolyte flow rate. Finally, the energy efficiency of electricity storage using VRFB is investigated and compared with other energy storage systems. The results illustrate that this kind of battery has at least 61% storage efficiency based on the second law of thermodynamics, which is considerably higher than that of their counterparts.

  18. Diastolic Calcium Release Controls the Beating Rate of Rabbit Sinoatrial Node Cells: Numerical Modeling of the Coupling Process

    PubMed Central

    Maltsev, Victor A.; Vinogradova, Tatiana M.; Bogdanov, Konstantin Y.; Lakatta, Edward G.; Stern, Michael D.

    2004-01-01

    Recent studies employing Ca2+ indicators and confocal microscopy demonstrate substantial local Ca2+ release beneath the cell plasma membrane (subspace) of sinoatrial node cells (SANCs) occurring during diastolic depolarization. Pharmacological and biophysical experiments have suggested that the released Ca2+ interacts with the plasma membrane via the ion current (INaCa) produced by the Na+/Ca2+ exchanger and constitutes an important determinant of the pacemaker rate. This study provides a numerical validation of the functional importance of diastolic Ca2+ release for rate control. The subspace Ca2+ signals in rabbit SANCs were measured by laser confocal microscopy, averaged, and calibrated. The time course of the subspace [Ca2+] displayed both diastolic and systolic components. The diastolic component was mainly due to the local Ca2+ releases; it was numerically approximated and incorporated into a SANC cellular electrophysiology model. The model predicts that the diastolic Ca2+ release strongly interacts with plasma membrane via INaCa and thus controls the phase of the action potential upstroke and ultimately the final action potential rate. PMID:15041695

  19. Numerical analysis of high strain rate failure of electro-magnetically loaded steel sheets

    NASA Astrophysics Data System (ADS)

    Erice, Borja; Mohr, Dirk

    2015-09-01

    Electro-magnetic forces provide a potentially power full means in designing dynamic experiments with active control of the loading conditions. This article deals with the development of computational models to simulate the thermo-mechanical response of electro-magnetically loaded metallic structures. The model assumes linear electromagnetic constitutive equations and time-independent electric induction to estimate the Joule heating and the Lorentz forces. The latter are then taken into account when evaluating stress equilibrium. A thermo-visco-plastic model with Johnson-Cook type of temperature and strain rate dependence and combined Swift-Voce hardening is used to evaluate the material's thermo-mechanical response. As a first application, the model is used to analyse the effect of electro-magnetic loading on the ductility of advanced high strength steels.

  20. Numerical study of the effect of turbulence on rate of reactions in the MILD combustion regime

    NASA Astrophysics Data System (ADS)

    Mardani, Amir; Tabejamaat, Sadegh; Baig Mohammadi, Mohammadreza

    2011-12-01

    In this paper, the importance of fluctuations in flow field parameters is studied under MILD combustion conditions. In this way, a turbulent non-premixed CH4+H2 jet flame issuing into a hot and deficient co-flow air is modeled using the RANS Axisymmetric equations. The modeling is carried out using the EDC model to describe the turbulence-chemistry interaction. The DRM-22 reduced mechanism and the GRI2.11 full mechanism are used to represent the chemical reactions of H2/methane jet flame. Results illustrate that although the fluctuations in temperature field are small and the reaction zone volume are large in the MILD regime, the fluctuations in temperature and species concentrations are still effective on the flow field. Also, inappropriate dealing with the turbulence effect on chemistry leads to errors in prediction of temperature up to 15% in the present flame. By decreasing of O2 concentration of hot co-flow air, the effect of fluctuations in flow field parameters on flame characteristics are still significant and its effect on species reaction rates does not decrease. On the other hand, although decreasing of jet inlet Reynolds number at constant inlet turbulence intensity addresses to smaller fluctuations in flow filed, it does not lead to lower the effect of turbulence on species distribution and temperature field under MILD combustion conditions.

  1. A critical analysis of the accuracy of several numerical techniques for combustion kinetic rate equations

    NASA Technical Reports Server (NTRS)

    Radhadrishnan, Krishnan

    1993-01-01

    A detailed analysis of the accuracy of several techniques recently developed for integrating stiff ordinary differential equations is presented. The techniques include two general-purpose codes EPISODE and LSODE developed for an arbitrary system of ordinary differential equations, and three specialized codes CHEMEQ, CREK1D, and GCKP4 developed specifically to solve chemical kinetic rate equations. The accuracy study is made by application of these codes to two practical combustion kinetics problems. Both problems describe adiabatic, homogeneous, gas-phase chemical reactions at constant pressure, and include all three combustion regimes: induction, heat release, and equilibration. To illustrate the error variation in the different combustion regimes the species are divided into three types (reactants, intermediates, and products), and error versus time plots are presented for each species type and the temperature. These plots show that CHEMEQ is the most accurate code during induction and early heat release. During late heat release and equilibration, however, the other codes are more accurate. A single global quantity, a mean integrated root-mean-square error, that measures the average error incurred in solving the complete problem is used to compare the accuracy of the codes. Among the codes examined, LSODE is the most accurate for solving chemical kinetics problems. It is also the most efficient code, in the sense that it requires the least computational work to attain a specified accuracy level. An important finding is that use of the algebraic enthalpy conservation equation to compute the temperature can be more accurate and efficient than integrating the temperature differential equation.

  2. Room Temperature Antiferromagnetic Ordering of Nanocrystalline Tb1.90Ni0.10O3

    NASA Astrophysics Data System (ADS)

    Mandal, J.; Dalal, M.; Sarkar, B. J.; Chakrabarti, P. K.

    2017-02-01

    Nanocrystalline Ni-doped terbium oxide (Tb1.90Ni0.10O3) has been synthesized by the co-precipitation method followed by annealing at 700°C for 6 h in vacuum. The crystallographic phase and the substitution of Ni2+ ions in the lattice of Tb2O3 are confirmed by Rietveld analysis of the x-ray diffraction pattern using the software MAUD. High-resolution transmission electron microscopy is also carried out to study the morphology of the sample. Magnetic measurements are carried out at different temperatures from 5 K to 300 K using a superconducting quantum interference device (SQUID) magnetometer. The dependence of the magnetization of Tb1.90Ni0.10O3 as a function of temperature ( M- T) and magnetic field ( M- H) suggests the presence of both paramagnetic and antiferromagnetic phase at room temperature, but antiferromagnetic phase dominates below ˜120 K. The lack of saturation in the M- H curve and good fitting of the M- T curve by the Johnston formula also indicate the presence of both paramagnetic and antiferromagnetic phase at room temperature. Interestingly, an antiferromagnetic to ferromagnetic phase transition is observed below ˜40 K. The result also shows a high value of magnetization at 5 K.

  3. Preliminary numerical study on the cumulus-stratus transition induced by the increase of formation rate of aerosols

    NASA Astrophysics Data System (ADS)

    Shima, Shin-ichiro; Hasegawa, Koichi; Kusano, Kanya

    2015-04-01

    The influence of aerosol-cloud interactions on the steady state of marine stratocumulus is investigated through a series of numerical simulations of an idealized meteorological system in which aerosols are formed constantly. We constructed the system by modifying the set-up based on the RICO composite case defined in van Zanten et al. (2011). The super-droplet method (SDM) (Shima, 2008; Shima et al., 2009) is used for the simulation of cloud microphysical processes. The SDM is a particle-based and probabilistic method, with which the time evolution of aerosol/cloud/precipitation particles are calculated in a unified and accurate manner. For the simulation of atmospheric fluid dynamical processes, the cloud resolving model CReSS (Tsuboki, 2008) is used, in which the quasi-compressible approximation and the sound mode splitting method are applied. The steady states of the system are compared changing the aerosol nucleation rate and the initial number density of aerosols. It is observed that the system gradually evolves to reach its final steady state in a few days, which is irrelevant to the initial number density of aerosols. A transition of the final steady state from cumuli to strati occurs when the aerosol formation rate is increased. Chemical reactions in the gas phase and the liquid phase are not yet incorporated in the model, and the numerical simulations are performed in two dimensions. For these limitations, the results obtained are still preliminary.

  4. Numerical study of pressure fluctuations transfer law in different flow rate of turbine mode in a prototype pump turbine

    NASA Astrophysics Data System (ADS)

    Sun, Y. K.; Zuo, Z. G.; Liu, S. H.; Wu, Y. L.; Liu, J. T.; Qin, D. Q.; Wei, X. Z.

    2013-12-01

    Numerical simulation using SST k-w turbulence model was carried out, to predict pressure fluctuation transfer law in turbine mode. Three operating points with different mass flow rates are simulated. The results of numerical simulation show that, the amplitude and frequency of pressure fluctuations in different positions are very different. The transfer law of amplitude and frequency of pressure fluctuations change with different position and different mass flow rate. Blade passing frequency (BPF) is the first dominant frequency in vaneless space, while component in this frequency got smaller in the upstream and downstream of vaneless space when the mass flow is set. Furthermore triple blade passing frequency (3BPF) component obtained a different transfer law through the whole flow passage. The amplitude and frequency of pressure fluctuations is also different in different circumference position of vaneless space. When the mass flow is different, the distribution of pressure fluctuations in circumference is different. The frequency component of pressure fluctuations in all the positions is different too.

  5. A numerical and experimental study of temperature effects on deformation behavior of carbon steels at high strain rates

    NASA Astrophysics Data System (ADS)

    Pouya, M.; Winter, S.; Fritsch, S.; F-X Wagner, M.

    2017-03-01

    Both in research and in the light of industrial applications, there is a growing interest in methods to characterize the mechanical behavior of materials at high strain rates. This is particularly true for steels (the most important structural materials), where often the strain rate-dependent material behavior also needs to be characterized in a wide temperature range. In this study, we use the Finite Element Method (FEM), first, to model the compressive deformation behavior of carbon steels under quasi-static loading conditions. The results are then compared to experimental data (for a simple C75 steel) at room temperature, and up to testing temperatures of 1000 °C. Second, an explicit FEM model that captures wave propagation phenomena during dynamic loading is developed to closely reflect the complex loading conditions in a Split-Hopkinson Pressure Bar (SHPB) – an experimental setup that allows loading of compression samples with strain rates up to 104 s-1 The dynamic simulations provide a useful basis for an accurate analysis of dynamically measured experimental data, which considers reflected elastic waves. By combining numerical and experimental investigations, we derive material parameters that capture the strain rate- and temperature-dependent behavior of the C75 steel from room temperature to 1000 °C, and from quasi-static to dynamic loading.

  6. Gully recharge rates and debris flows: A combined numerical modeling and field-based investigation, Haida Gwaii, British Columbia

    NASA Astrophysics Data System (ADS)

    Martin, Yvonne E.; Johnson, E. A.; Chaikina, Olga

    2017-02-01

    Rainfall, snowmelt and/or other mass movements are possible triggers to initiate debris flows. In supply-limited landscapes, clastic and organic materials (together termed debris) accumulate in the gully via various geomorphic processes that occur on gully sidewalls. The conceptualization of this phenomenon has been termed the gully recharge rate, with several recent field studies measuring such rates in coastal British Columbia. In the present study, a simple numerical model is introduced to estimate debris flow volumes in Haida Gwaii, British Columbia based on debris flow recurrence intervals, gully recharge rates and factors affecting deposition of debris flow material. Debris flow volumes obtained in model runs are somewhat lower than field-based values by about half, which is a reasonable result for this exploratory study. The annual erosion rate (clastic material) for debris flows in the model run is 0.031 mm yr- 1. This value is about 0.57 × of the field-based value and is lower than the erosion rate for debris slides in Haida Gwaii of 0.1 mm yr- 1. Deposition of debris flows in the model occurs in 60% of cases due to a decrease in channel gradient, with deposition resulting from high stream junction angles being less common. Locations for initiation of debris flow deposition were situated in stream orders 3 and 4 in 60% of cases. Sensitivity analysis shows that in comparison to other model variables, recharge rate has the greatest effect on the statistics and frequency distributions of debris flow volumes and total debris flow volume (summation of all debris activity in a basin) over the study time period.

  7. Numerical Simulation of the Combustion of Fuel Droplets: Finite Rate Kinetics and Flame Zone Grid Adaptation (CEFD)

    NASA Technical Reports Server (NTRS)

    Gogos, George; Bowen, Brent D.; Nickerson, Jocelyn S.

    2002-01-01

    The NASA Nebraska Space Grant (NSGC) & EPSCoR programs have continued their effort to support outstanding research endeavors by funding the Numerical Simulation of the Combustion of Fuel Droplets study at the University of Nebraska at Lincoln (UNL). This team of researchers has developed a transient numerical model to study the combustion of suspended and moving droplets. The engines that propel missiles, jets, and many other devices are dependent upon combustion. Therefore, data concerning the combustion of fuel droplets is of immediate relevance to aviation and aeronautical personnel, especially those involved in flight operations. The experiments being conducted by Dr. Gogos and Dr. Nayagam s research teams, allow investigators to gather data for comparison with theoretical predictions of burning rates, flame structures, and extinction conditions. The consequent improved hndamental understanding droplet combustion may contribute to the clean and safe utilization of fossil hels (Williams, Dryer, Haggard & Nayagam, 1997, 72). The present state of knowledge on convective extinction of he1 droplets derives fiom experiments conducted under normal gravity conditions. However, any data obtained with suspended droplets under normal gravity are grossly affected by gravity. The need to obtain experimental data under microgravity conditions is therefore well justified and addresses one of the goals of NASA s Human Exploration and Development of Space (HEDS) microgravity combustion experiment.

  8. Numerical studies on sizing/ rating of plate fin heat exchangers for a modified Claude cycle based helium liquefier/ refrigerator

    NASA Astrophysics Data System (ADS)

    Goyal, M.; Chakravarty, A.; Atrey, M. D.

    2017-02-01

    Performance of modern helium refrigeration/ liquefaction systems depends significantly on the effectiveness of heat exchangers. Generally, compact plate fin heat exchangers (PFHE) having very high effectiveness (>0.95) are used in such systems. Apart from basic fluid film resistances, various secondary parameters influence the sizing/ rating of these heat exchangers. In the present paper, sizing calculations are performed, using in-house developed numerical models/ codes, for a set of high effectiveness PFHE for a modified Claude cycle based helium liquefier/ refrigerator operating in the refrigeration mode without liquid nitrogen (LN2) pre-cooling. The combined effects of secondary parameters like axial heat conduction through the heat exchanger metal matrix, parasitic heat in-leak from surroundings and variation in the fluid/ metal properties are taken care of in the sizing calculation. Numerical studies are carried out to predict the off-design performance of the PFHEs in the refrigeration mode with LN2 pre-cooling. Iterative process cycle calculations are also carried out to obtain the inlet/ exit state points of the heat exchangers.

  9. Interfacial kinematics and governing mechanisms under the influence of high strain rate impact conditions: Numerical computations of experimental observations

    NASA Astrophysics Data System (ADS)

    Raoelison, R. N.; Sapanathan, T.; Padayodi, E.; Buiron, N.; Rachik, M.

    2016-11-01

    This paper investigates the complex interfacial kinematics and governing mechanisms during high speed impact conditions. A robust numerical modelling technique using Eulerian simulations are used to explain the material response of the interface subjected to a high strain rate collision during a magnetic pulse welding. The capability of this model is demonstrated using the predictions of interfacial kinematics and revealing the governing mechanical behaviours. Numerical predictions of wave formation resulted with the upward or downward jetting and complex interfacial mixing governed by wake and vortex instabilities corroborate the experimental observations. Moreover, the prediction of the material ejection during the simulation explains the experimentally observed deposited particles outside the welded region. Formations of internal cavities along the interface is also closely resemble the resulted confined heating at the vicinity of the interface appeared from those wake and vortex instabilities. These results are key features of this simulation that also explains the potential mechanisms in the defects formation at the interface. These results indicate that the Eulerian computation not only has the advantage of predicting the governing mechanisms, but also it offers a non-destructive approach to identify the interfacial defects in an impact welded joint.

  10. Numerical Simulations of Turbulent Molecular Clouds Regulated by Radiation Feedback Forces. I. Star Formation Rate and Efficiency

    NASA Astrophysics Data System (ADS)

    Raskutti, Sudhir; Ostriker, Eve C.; Skinner, M. Aaron

    2016-10-01

    Radiation feedback from stellar clusters is expected to play a key role in setting the rate and efficiency of star formation in giant molecular clouds. To investigate how radiation forces influence realistic turbulent systems, we have conducted a series of numerical simulations employing the Hyperion radiation hydrodynamics solver, considering the regime that is optically thick to ultraviolet and optically thin to infrared radiation. Our model clouds cover initial surface densities between Σ cl,0∼ 10--300 M⊙ pc-2, with varying initial turbulence. We follow them through turbulent, self-gravitating collapse, star cluster formation, and cloud dispersal by stellar radiation. All our models display a log-normal distribution of gas surface density Σ for an initial virial parameter αvir,0=2, the log-normal standard deviation is σln Σ =1-1.5 and the star formation rate coefficient ɛff,ρ=0.3-0.5, both of which are sensitive to turbulence but not radiation feedback. The net star formation efficiency (SFE) ɛfinal increases with Σcl,0 and decreases with α vir,0. We interpret these results via a simple conceptual framework, whereby steady star formation increases the radiation force, such that local gas patches at successively higher Σ become unbound. Based on this formalism (with fixed σln Σ), we provide an analytic upper bound on ɛfinal, which is in good agreement with our numerical results. The final SFE depends on the distribution of Eddington ratios in the cloud and is strongly increased by the turbulent compression of gas.

  11. An investigation of the effect of pore scale flow on average geochemical reaction rates using direct numerical simulation

    SciTech Connect

    Molins, Sergi; Trebotich, David; Steefel, Carl I.; Shen, Chaopeng

    2012-03-30

    The scale-dependence of geochemical reaction rates hinders their use in continuum scale models intended for the interpretation and prediction of chemical fate and transport in subsurface environments such as those considered for geologic sequestration of CO2. Processes that take place at the pore scale, especially those involving mass transport limitations to reactive surfaces, may contribute to the discrepancy commonly observed between laboratory-determined and continuum-scale or field rates. In this study we investigate the dependence of mineral dissolution rates on the pore structure of the porous media by means of pore scale modeling of flow and multicomponent reactive transport. The pore scale model is composed of high-performance simulation tools and algorithms for incompressible flow and conservative transport combined with a general-purpose multicomponent geochemical reaction code. The model performs direct numerical simulation of reactive transport based on an operator-splitting approach to coupling transport and reactions. The approach is validated with a Poiseuille flow single-pore experiment and verified with an equivalent 1-D continuum-scale model of a capillary tube packed with calcite spheres. Using the case of calcite dissolution as an example, the high-resolution model is used to demonstrate that nonuniformity in the flow field at the pore scale has the effect of decreasing the overall reactivity of the system, even when systems with identical reactive surface area are considered. In conclusion, the effect becomes more pronounced as the heterogeneity of the reactive grain packing increases, particularly where the flow slows sufficiently such that the solution approaches equilibrium locally and the average rate becomes transport-limited.

  12. An investigation of the effect of pore scale flow on average geochemical reaction rates using direct numerical simulation

    SciTech Connect

    Molins, Sergi; Trebotich, David; Steefel, Carl; Shen, Chaopeng

    2012-03-30

    The scale-dependence of geochemical reaction rates hinders their use in continuum scale models intended for the interpretation and prediction of chemical fate and transport in subsurface environments such as those considered for geologic sequestration of CO{sub 2}. Processes that take place at the pore scale, especially those involving mass transport limitations to reactive surfaces, may contribute to the discrepancy commonly observed between laboratory-determined and continuum-scale or field rates. Here, the dependence of mineral dissolution rates on the pore structure of the porous media is investigated by means of pore scale modeling of flow and multicomponent reactive transport. The pore scale model is composed of high-performance simulation tools and algorithms for incompressible flow and conservative transport combined with a general-purpose multicomponent geochemical reaction code. The model performs direct numerical simulation of reactive transport based on an operator-splitting approach to coupling transport and reactions. The approach is validated with a Poiseuille flow single-pore experiment and verified with an equivalent 1-D continuum-scale model of a capillary tube packed with calcite spheres. Using the case of calcite dissolution as an example, the high-resolution model is used to demonstrate that nonuniformity in the flow field at the pore scale has the effect of decreasing the overall reactivity of the system, even when systems with identical reactive surface area are considered. The effect becomes more pronounced as the heterogeneity of the reactive grain packing increases, particularly where the flow slows sufficiently such that the solution approaches equilibrium locally and the average rate becomes transport-limited.

  13. 17 CFR 240.0-10 - Small entities under the Securities Exchange Act for purposes of the Regulatory Flexibility Act.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 17 Commodity and Securities Exchanges 3 2012-04-01 2012-04-01 false Small entities under the Securities Exchange Act for purposes of the Regulatory Flexibility Act. 240.0-10 Section 240.0-10 Commodity... Regulatory Flexibility Act. For purposes of Commission rulemaking in accordance with the provisions...

  14. 17 CFR 240.0-10 - Small entities under the Securities Exchange Act for purposes of the Regulatory Flexibility Act.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 17 Commodity and Securities Exchanges 3 2011-04-01 2011-04-01 false Small entities under the Securities Exchange Act for purposes of the Regulatory Flexibility Act. 240.0-10 Section 240.0-10 Commodity... Regulatory Flexibility Act. For purposes of Commission rulemaking in accordance with the provisions...

  15. 17 CFR 270.0-10 - Small entities under the Investment Company Act for purposes of the Regulatory Flexibility Act.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 17 Commodity and Securities Exchanges 3 2011-04-01 2011-04-01 false Small entities under the Investment Company Act for purposes of the Regulatory Flexibility Act. 270.0-10 Section 270.0-10 Commodity... Regulatory Flexibility Act. (a) General. For purposes of Commission rulemaking in accordance with...

  16. 17 CFR 270.0-10 - Small entities under the Investment Company Act for purposes of the Regulatory Flexibility Act.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 17 Commodity and Securities Exchanges 3 2013-04-01 2013-04-01 false Small entities under the Investment Company Act for purposes of the Regulatory Flexibility Act. 270.0-10 Section 270.0-10 Commodity... Regulatory Flexibility Act. (a) General. For purposes of Commission rulemaking in accordance with...

  17. 17 CFR 240.0-10 - Small entities under the Securities Exchange Act for purposes of the Regulatory Flexibility Act.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 17 Commodity and Securities Exchanges 4 2014-04-01 2014-04-01 false Small entities under the Securities Exchange Act for purposes of the Regulatory Flexibility Act. 240.0-10 Section 240.0-10 Commodity... Regulatory Flexibility Act. For purposes of Commission rulemaking in accordance with the provisions...

  18. 17 CFR 270.0-10 - Small entities under the Investment Company Act for purposes of the Regulatory Flexibility Act.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Small entities under the Investment Company Act for purposes of the Regulatory Flexibility Act. 270.0-10 Section 270.0-10 Commodity... Regulatory Flexibility Act. (a) General. For purposes of Commission rulemaking in accordance with...

  19. 17 CFR 240.0-10 - Small entities under the Securities Exchange Act for purposes of the Regulatory Flexibility Act.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 17 Commodity and Securities Exchanges 3 2013-04-01 2013-04-01 false Small entities under the Securities Exchange Act for purposes of the Regulatory Flexibility Act. 240.0-10 Section 240.0-10 Commodity... Regulatory Flexibility Act. For purposes of Commission rulemaking in accordance with the provisions...

  20. 17 CFR 270.0-10 - Small entities under the Investment Company Act for purposes of the Regulatory Flexibility Act.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 17 Commodity and Securities Exchanges 3 2012-04-01 2012-04-01 false Small entities under the Investment Company Act for purposes of the Regulatory Flexibility Act. 270.0-10 Section 270.0-10 Commodity... Regulatory Flexibility Act. (a) General. For purposes of Commission rulemaking in accordance with...

  1. 17 CFR 270.0-10 - Small entities under the Investment Company Act for purposes of the Regulatory Flexibility Act.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 17 Commodity and Securities Exchanges 4 2014-04-01 2014-04-01 false Small entities under the Investment Company Act for purposes of the Regulatory Flexibility Act. 270.0-10 Section 270.0-10 Commodity... Regulatory Flexibility Act. (a) General. For purposes of Commission rulemaking in accordance with...

  2. Psychometric Properties of the Pain Numeric Rating Scale When Applied to Multiple Body Regions among Professional Musicians

    PubMed Central

    2016-01-01

    Background Despite the broad popularity of a numeric rating scale (NRS) its psychometric properties are not well known. The objective was to determine if there is any difference in the discrimination ability of the NRS when used for measuring pain severity separately in different body regions. Methods Cross-sectional survey study of 630 professional musicians. Item Response Theory (IRT) was used to define the psychometric properties of the NRS. Results The discrimination ability of the pain NRS was dependent on the body area to which it was applied. The discrimination was low 0.5 (95% CI 0.4. to 0.7) for the hand region and perfect for the shoulder and upper part of the neck– 3.2 (95% CI 1.2 to 5.2) and 10.5 (95% CI 10.0 to 10.9), respectively. Both shoulder and neck NRSs showed a great shift towards higher levels of pain severity meaning that the ability of the NRS to discriminate low levels of pain is poor. NRS scores obtained from all other regions did not demonstrate any discrimination ability. Conclusions The pain NRS might have different psychometric properties depending on the body area to which it is applied. Overall, the modest discrimination ability of the pain NRS implies that it should be used in screening questionnaires with some reservations. PMID:27603011

  3. The Worst Itch Numeric Rating Scale for patients with moderate to severe plaque psoriasis or psoriatic arthritis.

    PubMed

    Naegeli, April N; Flood, Emuella; Tucker, Jennifer; Devlen, Jennifer; Edson-Heredia, Emily

    2015-06-01

    Plaque psoriasis (PP) and psoriatic arthritis (PsA) are autoinflammatory chronic conditions associated with skin involvement. Pruritus, or itching, is a prevalent and bothersome symptom in patients with PP and is associated with reduced health-related quality of life. The Worst Itch Numeric Rating Scale (WI-NRS) has been developed as a simple, single item with which to assess the patient-reported severity of this symptom at its most intense during the previous 24-hour period. Qualitative research was undertaken to assess the content validity of the WI-NRS. Patients with moderate to severe PP and patients with PsA were recruited from clinical sites in the USA. The qualitative research entailed two-part interviews, which began with concept elicitation to gain understanding of patients' experiences of itching, followed by cognitive debriefing of the WI-NRS to assess the instrument's understandability, clarity, and degree of appropriateness from the patient's perspective. Twelve patients with PP and 22 with PsA participated in the study. Patients reported that itching was an important and relevant symptom of their psoriatic disease. The WI-NRS was reported to be complete and easy to understand; the recall period was considered appropriate, the response scale was familiar, and, overall, the instrument was found to be appropriate for assessing itching severity. Patient responses support the content validity of the WI-NRS. The psychometric properties of the tool will be evaluated in future studies.

  4. A Numerical Solution to the Boltzmann Equation for Use in Calculating Pumping Rates in a CO2 Discharge Laser

    DTIC Science & Technology

    1989-12-01

    Numerical Solution ....... ....................... 113 E.1 Gauss- Jordan .......................................... 113 E.2 L-U Decomposition...2.4 Numerical Solution of the Boltzmann Equation Four numerical were used to solve equation (39). These were: : Gauss- Jordan , L-U Decom- position...both the Gauss- Jordan and L-U decomposition methods. 2.5 Transport Coefficiente In order to provide the required input to the laser design program CO2OSC

  5. Screening for Pain in the Ambulatory Cancer Setting: Is 0-10 Enough?

    PubMed Central

    LeBaron, Virginia T.; Blonquist, Traci M.; Hong, Fangxin; Halpenny, Barbara; Berry, Donna L.

    2015-01-01

    Purpose: The purpose of this study was to explore concordance between patient self-reports of pain on validated questionnaires and discussions of pain in the ambulatory oncology setting. Methods: Adult, ambulatory patients (N = 452) with all stages of cancer were included. Three pain measures were evaluated: two items from the Symptom Distress Scale (frequency [SDSF] and intensity [SDSI]) and the Pain Intensity Numeric Scale (PINS). Relevant pain was defined as: (1) scores 3 of 5 on SDSF or SDSI or 5 of 10 on the (PINS); or (2) discussion of existing pain in an audio-recorded clinic visit. For each scale, McNemar's test assessed concordance of patient self-reports of relevant pain with discussions of relevant pain in the audio-recorded clinic visit. Sensitivity, specificity, and accuracy were calculated and a receiver operating characteristic analysis evaluated thresholds on self-report pain questionnaires to best identify relevant pain discussed in clinic. Results: Identification of relevant pain by self-report was discordant (P < .001) with discussed pain coded in audio-recorded visits for all three measures. Specificity was higher for intensity (SDSI, 0.94; PINS, 0.97) than frequency (SDSF, 0.87); sensitivity was higher for frequency (SDSF, 0.35) than intensity (SDSI, 0.24; PINS, 0.12). Accuracy was higher for the SDS pain items (SDSF, 0.57; SDSI, 0.54) than for PINS (0.48). Receiver operating characteristic analysis curves suggest that lower threshold scores may improve the identification of relevant pain. Conclusion: Self-report pain screening measures favored specificity over sensitivity. Asking about pain frequency (in addition to intensity) and reconsidering threshold scores on pain intensity scales may be practical strategies to more accurately identify patients with cancer who have relevant pain. PMID:26306620

  6. Using numerical simulation methods to predict the effects of balancing coal and primary air flow rates on furnace emissions

    SciTech Connect

    Schwab, M.J.; Nelson, R.K.; Hardman, R.R.; Facchiano, T.

    1996-12-31

    This paper presents the technical results of a computer modeling exercise to quantify the impacts of balanced and unbalanced coal flows on NO{sub x} emissions and other boiler performance indicators. Using Airflow Sciences Corporation`s proprietary codes, separate computational fluid dynamics models of the furnace region and coal nozzles of a 200 MW{sub e} tangentially-fired boiler equipped with an ABB C-E Services Low NO{sub x} Concentric Firing System (Level II) were constructed. In modeling the coal combustion process, the numerical simulation of gas conditions within the furnace is accomplished by coupling the fluid dynamics relationships with sub-models that predict heat transfer (conduction, convection and radiation), turbulence, coal particle trajectories and temperatures, coal devolatilization, char combustion and equilibrium (mixing limited) chemistry. The equilibrium chemistry sub-model defines concentrations of the products of combustion at all locations within the furnace, with the exception of NO{sub x} concentrations. The generation of NO{sub x} is decoupled from the CFD simulation and is determined using finite-rate chemistry. The model was validated using test results from a recently completed US Department of Energy-sponsored Clean Coal Project at Gulf Power Company`s Plant Lansing Smith Unit 2. Validation was accomplished through comparison of the model results with experimental data including NO{sub x} emissions, unburned carbon, furnace exit gas temperatures, carbon monoxide levels, and excess oxygen values. Following validation, additional simulations were run to quantify the effect of balanced and unbalanced coal flows. Conditions simulated included the as-found condition, a fully balanced condition, a mill-by-mill fully balanced condition, and a {+-}10 percent balanced condition. The results showed that NO{sub x} emissions were not significantly affected by improving the distributions of primary air and coal between the burners.

  7. Cycling Stability Performance of La0.75Mg0.25Ni3.5Si0.10 Hydrogen Storage Alloy in Discharge-Charge System

    NASA Astrophysics Data System (ADS)

    Liu, Zhaojiang; Huang, Lei; Wan, Qi; Li, Xu; Guang, Ma; Li, Ping

    2014-12-01

    La0.75Mg0.25Ni3.5Si0.10 hydrogen storage alloy was prepared by vacuum induction melting furnace and subsequently heated treatment at 940°C for 8 h and cooled to room temperature in the oven. The electrochemical properties of La0.75Mg0.25Ni3.5Si0.10 compound were measured by LAND CT2001A battery test system. The morphologies of the samples were characterized by scanning electron microscopy (SEM). The surface state of samples was analyzed by X-ray photoelectron spectroscopy (XPS). It was found that the charge-discharge rate plays the key impact on the cycling stability of the alloy. During the cycle test, the prepared La0.75Mg0.25Ni3.5Si0.10 compound presented an excellent capacity retention at the charge-discharge of 1 C while the capacity of sample declined rapidly at 0.2 C. The excellent cycling stability performance of La0.75Mg0.25Ni3.5Si0.10 electrode at 1 C could be attributed to the less powder and less oxidation of surface effective active elements. The pulverization inevitably leads to the separation of the part of the cracking alloy and the electrode, resulting in reduction of the effective active substance and increasing attenuation of the capacity per cycle. In addition, on the analysis of the different cut-off potential effects on the electrode, it was found that the La0.75Mg0.25Ni3.5Si0.10 electrode shows good comprehensive electrochemical properties at 1 C cut-off 0.6-0.7 V. During charging, heavy overcharge will not be conducive to cycling stability performance during the charging test.

  8. Structural, electrical and magnetic properties of Bi{sub 0.90}La{sub 0.10}Fe{sub 0.90}Co{sub 0.10}O{sub 3} ceramics

    SciTech Connect

    Muneeswaran, M.; Giridharan, N. V.; Bhuvaneswari, S.; Senguttuvan, G.

    2014-04-24

    Multiferroic Bi{sub 0.90}La{sub 0.10}Fe{sub 0.90}Co{sub 0.10}O{sub 3} ceramics have been synthesized via soft chemical co-precipitation method. From the X-ray diffraction analysis, ceramic powder sintered at 600°C was found to be single phase belonging to the rhombohedral structure with R3c space group confirmed by Rietveld analysis. Further, dielectric, Leakage and magnetic studies were performed at room temperature.

  9. 17 CFR 240.0-10 - Small entities under the Securities Exchange Act for purposes of the Regulatory Flexibility Act.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... purposes of a particular rulemaking proceeding, the term small business or small organization shall: (a... “issuer” or “person” that, on the last day of its most recent fiscal year, had total assets of $5 million... the meaning ascribed to those terms by § 270.0-10 of this chapter; (c) When used with reference to...

  10. RESPONSIVENESS OF THE ACTIVITIES OF DAILY LIVING SCALE OF THE KNEE OUTCOME SURVEY AND NUMERIC PAIN RATING SCALE IN PATIENTS WITH PATELLOFEMORAL PAIN

    PubMed Central

    Piva, Sara R.; Gil, Alexandra B.; Moore, Charity G.; Fitzgerald, G. Kelley

    2016-01-01

    Objective To assess internal and external responsiveness of the Activity of Daily Living Scale of the Knee Outcome Survey and Numeric Pain Rating Scale on patients with patellofemoral pain. Design One group pre-post design. Subjects A total of 60 individuals with patellofemoral pain (33 women; mean age 29.9 (standard deviation 9.6) years). Methods The Activity of Daily Living Scale and the Numeric Pain Rating Scale were assessed before and after 8 weeks of physical therapy program. Patients completed a global rating of change scale at the end of therapy. The standardized effect size, Guyatt responsiveness index, and the minimum clinical important difference were calculated. Results Standardized effect size of the Activity of Daily Living Scale was 0.63, Guyatt responsiveness index was 1.4, area under the curve was 0.83 (95% confidence interval: 0.72, 0.94), and the minimum clinical important difference corresponded to an increase of 7.1 percentile points. Standardized effect size of the Numeric Pain Rating Scale was 0.72, Guyatt responsiveness index was 2.2, area under the curve was 0.80 (95% confidence interval: 0.70, 0.92), and the minimum clinical important difference corresponded to a decrease of 1.16 points. Conclusion Information from this study may be helpful to therapists when evaluating the effectiveness of rehabilitation intervention on physical function and pain, and to power future clinical trials on patients with patellofemoral pain. PMID:19229444

  11. Catalytic behaviour and copper leaching of Cu0.10Zn0.90Al1.90Fe0.10O4 spinel for catalytic wet air oxidation of phenol.

    PubMed

    Xu, Aihua; Sun, Chenglin

    2012-06-01

    A Cu0.10Zn0.90Al1.90Fe0.10O4 spinel catalyst prepared by the sol-gel method was tested for catalytic wet air oxidation (CWAO) of phenol. The catalyst showed high activity for phenol degradation. During successive test at 170 degrees C, 100% phenol conversion and 95% chemical oxygen demand (COD) removal were observed. Results from scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) indicated that the catalyst structure remained unchanged during reaction. From the analysis of temperature programmed reduction (TPR), diffuse reflectance UV-Vis spectra (DR UV-Vis) and activity assay at basic solution pH, it can be suggested that the highly dispersed copper ions on the catalyst surface were almost completely dissolved into the reaction solution, whereas the tetra-coordinated copper ions were not only stable against leaching but also active towards phenol degradation.

  12. Photoluminescence properties of Y0.75-xGdxAl0.10BO3:Eu3+0.10, 0.05R3+ (R = Sc, Bi) (0.00 <= x <= 0.45)

    NASA Astrophysics Data System (ADS)

    Li, Jie; Wang, Yu-Hua; Dong, Qi-Zheng; Liu, Ji-Di

    2010-06-01

    Y0.75-xGdxAl0.10BO3:Eu3+0.10, 0.05R3+ (R = Sc, Bi) (0.00 <= x <= 0.45) powder samples are prepared by solid-state reaction and their luminescence properties are investigated. With the replacement of Y3+ ions by Sc3+ (or Bi3+) and Gd3+ ions in (Y,Al)BO3:Eu, the intensities of emission at 254 and 147 nm are remarkably improved, because Sc3+ ions can absorb UV light and transfer the energy to Eu3+ ions efficiently. Moreover, Gd3+ and Bi3+ ions act as an intermediate “bridge" between the sensitizer and the activator (Eu3+) in energy transfer to produce light in the (Y, Gd)BO3:Bi3+, Eu3+ system more effectively. After doping an appropriate concentration of Gd3+ into Y0.50Gd0.25Al0.10BO3:Eu3+0.01, Bi3+0.05, the emission intensity reaches its maximum, which is nearly 110% compared with the red commercial phosphor (Y,Gd)BO3:Eu and better chromaticity coordinates (0.650, 0.350) are obtained.

  13. Effects of emission layer doping on the spatial distribution of charge and host recombination rate density in organic light emitting devices: A numerical study

    SciTech Connect

    Li, Yanli; Zhou, Maoqing; Zheng, Tingcai; Yao, Bo; Peng, Yingquan

    2013-12-28

    Based on drift-diffusion theory, a numerical model of the doping of a single energy level trap in the emission layer of an organic light emitting device (OLED) was developed, and the effects of doping of this single energy level trap on the distribution of the charge density, the recombination rate density, and the electric field in single- and double-layer OLEDs were studied numerically. The results show that by doping the n-type (p-type) emission layer with single energy electron (hole) traps, the distribution of the recombination rate density can be tuned and shifted, which is useful for improvement of the device performance by reduced electrode quenching or for realization of desirable special functions, e.g., emission spectrum tuning in multiple dye-doped white OLEDs.

  14. Estimating the designated use attainment decision error rates of US Environmental Protection Agency's proposed numeric total phosphorus criteria for Florida, USA, colored lakes.

    PubMed

    McLaughlin, Douglas B

    2012-01-01

    The utility of numeric nutrient criteria established for certain surface waters is likely to be affected by the uncertainty that exists in the presence of a causal link between nutrient stressor variables and designated use-related biological responses in those waters. This uncertainty can be difficult to characterize, interpret, and communicate to a broad audience of environmental stakeholders. The US Environmental Protection Agency (USEPA) has developed a systematic planning process to support a variety of environmental decisions, but this process is not generally applied to the development of national or state-level numeric nutrient criteria. This article describes a method for implementing such an approach and uses it to evaluate the numeric total P criteria recently proposed by USEPA for colored lakes in Florida, USA. An empirical, log-linear relationship between geometric mean concentrations of total P (a potential stressor variable) and chlorophyll a (a nutrient-related response variable) in these lakes-that is assumed to be causal in nature-forms the basis for the analysis. The use of the geometric mean total P concentration of a lake to correctly indicate designated use status, defined in terms of a 20 µg/L geometric mean chlorophyll a threshold, is evaluated. Rates of decision errors analogous to the Type I and Type II error rates familiar in hypothesis testing, and a 3rd error rate, E(ni) , referred to as the nutrient criterion-based impairment error rate, are estimated. The results show that USEPA's proposed "baseline" and "modified" nutrient criteria approach, in which data on both total P and chlorophyll a may be considered in establishing numeric nutrient criteria for a given lake within a specified range, provides a means for balancing and minimizing designated use attainment decision errors.

  15. Comparison of heat transfer in liquid and slush nitrogen by numerical simulation of cooling rates for French straws used for sperm cryopreservation.

    PubMed

    Sansinena, M; Santos, M V; Zaritzky, N; Chirife, J

    2012-05-01

    Slush nitrogen (SN(2)) is a mixture of solid nitrogen and liquid nitrogen, with an average temperature of -207 °C. To investigate whether plunging a French plastic straw (commonly used for sperm cryopreservation) in SN(2) substantially increases cooling rates with respect to liquid nitrogen (LN(2)), a numerical simulation of the heat conduction equation with convective boundary condition was used to predict cooling rates. Calculations performed using heat transfer coefficients in the range of film boiling confirmed the main benefit of plunging a straw in slush over LN(2) did not arise from their temperature difference (-207 vs. -196 °C), but rather from an increase in the external heat transfer coefficient. Numerical simulations using high heat transfer (h) coefficients (assumed to prevail in SN(2)) suggested that plunging in SN(2) would increase cooling rates of French straw. This increase of cooling rates was attributed to a less or null film boiling responsible for low heat transfer coefficients in liquid nitrogen when the straw is placed in the solid-liquid mixture or slush. In addition, predicted cooling rates of French straws in SN(2) tended to level-off for high h values, suggesting heat transfer was dictated by heat conduction within the liquid filled plastic straw.

  16. Study I: effects of 0.06% and 0.10% blood alcohol concentration on human postural control.

    PubMed

    Modig, F; Patel, M; Magnusson, M; Fransson, P A

    2012-03-01

    Alcohol intoxication causes many accidental falls presented at emergency departments, with the injury severity often related to level of blood alcohol concentration (BAC). One way to evaluate the decline in postural control and the fall risk is to assess standing stability when challenged. The study objective was to comprehensively investigate alcohol-related impairments on postural control and adaptive motor learning at specific BAC levels. Effects of alcohol intoxication at 0.06% and 0.10% BAC were examined with posturography when unperturbed or perturbed by calf vibration. Twenty-five participants (mean age 25.1 years) were investigated standing with either eyes open or closed. Our results revealed several significant findings: (1) stability declined much faster from alcohol intoxication between 0.06% and 0.10% BAC (60-140%) compared with between 0.0% and 0.06% BAC (30%); (2) sustained exposure to repeated balance perturbations augmented the alcohol-related destabilization; (3) there were stronger effects of alcohol intoxication on stability in lateral direction than in anteroposterior direction; and (4) there was a gradual degradation of postural control particularly in lateral direction when the balance perturbations were repeated at 0.06% and 0.10% BAC, indicating adaptation deficits when intoxicated. To summarize, alcohol has profound deteriorating effects on human postural control, which are dose dependent, time dependent and direction specific. The maximal effects of alcohol intoxication on physiological performance might not be evident initially, but may be revealed first when under sustained sensory-motor challenges.

  17. Numerical reconstruction of high dose rate zones due to the Fukushima Dai-ichi Nuclear Power Plant accident.

    PubMed

    Katata, Genki; Terada, Hiroaki; Nagai, Haruyasu; Chino, Masamichi

    2012-09-01

    To understand how the high dose rate zones were created during the Fukushima Dai-ichi Nuclear Power Plant (FNPP1) accident on March 2011, the atmospheric dispersion of radionuclides during the period from 15 to 17 March was reproduced by using a computer-based nuclear emergency response system, WSPEEDI-II. With use of limited environmental monitoring data, prediction accuracy of meteorological and radiological fields by the system was improved to obtain best estimates of release rates, radiation dose maps, and plume movements. A large part of current high dose rate zones in Fukushima was explained by simulated surface deposition of radionuclides due to major releases of radionuclides on 15 March. In the simulation, the highest dose rate zones to the northwest of FNPP1 were created by a significant deposition of radionuclides discharged from FNPP1 during the afternoon. The results indicate that two environmental factors, i.e., rainfall and topography, strongly affected the spatial patterns of surface deposition of radionuclides. The wet deposition due to rainfall particularly played an important role in the formation of wide and heterogeneous distributions of high dose rate zones. The simulation also demonstrated that the radioactive plume flowed along the valleys to its leeward, which can expand the areas of a large amount of surface deposition in complex topography.

  18. Numerical analysis of the effect of electrode spacing on deposition rate profiles in a capacitively coupled plasma reactor

    NASA Astrophysics Data System (ADS)

    Kim, Ho Jun; Lee, Hae June

    2016-12-01

    The effect of reactor dimension on deposition rate profiles is analyzed with a two-dimensional (2D) fluid simulation of a capacitively coupled plasma (CCP) reactor to deposit a hydrogenated silicon nitride (SiN x H y ) film with a SiH4/NH3/N2/He gas mixture. We focus on the complex function of electrode spacing to reveal the physical relation between reactor geometry and deposition rate profiles. The simulation demonstrates that the localization of electron density is concentrated close to the powered electrode periphery for electrode spacing of 9 mm. However, the plasma distribution becomes bulk dominated with electrode spacing of 15 mm by relaxing the localization. As a result, the increase in the electrode spacing creates a more uniform electron power density profile, and the deposition rate profile of SiN x H y film changes from convex to concave in a radial direction. The change in the deposition rate profile is validated through comparison with the experimental observation, which agrees well with the simulation results with errors of less than 5%. The deposition rate profile with electrode spacing of 9 mm is very sensitive to the non-uniform gas density condition applied to the showerhead inlet. However, the deposition rate profile with electrode spacing of 15 mm is not sensitive to the inlet gas profile because of the increasing residence time. The increase of the electrode spacing promotes molecule-molecule gas phase reactions and consequently weakens the effect of the inlet boundary condition.

  19. Investigation of numerical viscosities and dissipation rates of second-order TVD-MUSCL schemes for implicit large-eddy simulation

    NASA Astrophysics Data System (ADS)

    Bidadi, Shreyas; Rani, Sarma L.

    2015-01-01

    Monotonically integrated large-eddy simulation (MILES) approach utilizes the dissipation inherent to shock-capturing schemes to emulate the role played by explicit subgrid-scale eddy diffusivity at the high-wavenumber end of the turbulent energy spectrum. In the current study, a novel formulation is presented for quantifying the numerical viscosity inherent to Roe-based second-order TVD-MUSCL schemes for the Euler equations. Using this formulation, the effects of numerical viscosity and dissipation rate on implicit large-eddy simulations of turbulent flows are investigated. At first, the three-dimensional (3-D) finite-volume extension of the original Roe's flux, including Roe's Jacobian matrix, is presented. The fluxes are then extended to second-order using van Leer's MUSCL extrapolation technique. Starting from the 3-D Roe-MUSCL flux, an expression is derived for the numerical viscosity as a function of flux limiter and characteristic speed for each conserved variable, distance between adjacent cell centers, and a scaling parameter. Motivated by Thornber et al. [16] study, the high numerical viscosity inherent to TVD-MUSCL schemes is mitigated using a z-factor that depends on local Mach number. The TVD limiters, along with the z-factor, were initially applied to the 1-D shock-tube and 2-D inviscid supersonic wedge flows. Spatial profiles of numerical viscosities are plotted, which provide insights into the role of these limiters in controlling the dissipative nature of Roe's flux while maintaining monotonicity and stability in regions of high gradients. Subsequently, a detailed investigation was performed of decaying homogeneous isotropic turbulence with varying degrees of compressibility. Spectra of numerical viscosity and dissipation rate are presented, which clearly demonstrate the effectiveness of the z-factor both in narrowing the wavenumber range in which dissipation occurs, and in shifting the location of dissipation peak closer to the cut-off wavenumber

  20. Physical and numerical sources of computational inefficiency in integration of chemical kinetic rate equations: Etiology, treatment and prognosis

    NASA Technical Reports Server (NTRS)

    Pratt, D. T.; Radhakrishnan, K.

    1986-01-01

    The design of a very fast, automatic black-box code for homogeneous, gas-phase chemical kinetics problems requires an understanding of the physical and numerical sources of computational inefficiency. Some major sources reviewed in this report are stiffness of the governing ordinary differential equations (ODE's) and its detection, choice of appropriate method (i.e., integration algorithm plus step-size control strategy), nonphysical initial conditions, and too frequent evaluation of thermochemical and kinetic properties. Specific techniques are recommended (and some advised against) for improving or overcoming the identified problem areas. It is argued that, because reactive species increase exponentially with time during induction, and all species exhibit asymptotic, exponential decay with time during equilibration, exponential-fitted integration algorithms are inherently more accurate for kinetics modeling than classical, polynomial-interpolant methods for the same computational work. But current codes using the exponential-fitted method lack the sophisticated stepsize-control logic of existing black-box ODE solver codes, such as EPISODE and LSODE. The ultimate chemical kinetics code does not exist yet, but the general characteristics of such a code are becoming apparent.

  1. Numerical solution to the Boltzmann equation for use in calculating pumping rates in a CO sub 2 discharge laser. Master's thesis

    SciTech Connect

    Honey, D.A.

    1989-12-01

    The collisional Boltzmann equation was solved numerically to obtain excitation rates for use in a CO{sub 2} laser design program. The program was written in Microsoft QuickBasic for use on the IBM Personal Computer or equivalent. Program validation involved comparisons of computed transport coefficients with experimental data and previous theoretical work. Four different numerical algorithms were evaluated in terms of accuracy and efficiency. L-U decomposition was identified as the preferred approach. The calculated transport coefficients were found to agree with empirical data within one to five percent. The program was integrated into a CO{sub 2} laser design program. Studies were then performed to evaluate the effects on predicted laser output power and energy density as parameters affecting electron kinetics were changed. Plotting routines were written for both programs.

  2. Theoretical investigation of wave-vector-dependent analytical and numerical formulations of the interband impact-ionization transition rate for electrons in bulk silicon and GaAs

    NASA Technical Reports Server (NTRS)

    Kolnik, Jan; Wang, Yang; Oguzman, Ismail H.; Brennan, Kevin F.

    1994-01-01

    The electron interband impact-ionization rate for both silicon and gallium arsenide is calculated using an ensemble Monte Carlo simulation with the expressed purpose of comparing different formulations of the interband ionization transition rate. Specifically, three different treatments of the transition rate are examined: the traditional Keldysh formula, a new k-dependent analytical formulation first derived by W. Quade, E. Scholl, and M. Rudan (1993), and a more exact, numerical method of Y. Wang and K. F. Brennan (1994). Although the completely numerical formulation contains no adjustable parameters and as such provides a very reliable result, it is highly computationally intensive. Alternatively, the Keldysh formular, although inherently simple and computationally efficient, fails to include the k dependence as well as the details of the energy band structure. The k-dependent analytical formulation of Quade and co-workers overcomes the limitations of both of these models but at the expense of some new parameterization. It is found that the k-dependent analytical method of Quade and co-workers produces very similar results to those obtained with the completely numerical model for some quantities. Specifically, both models predict that the effective threshold for impact ionization in GaAs and silicon is quite soft, that the majority of ionization events originate from the second conduction band in both materials, and that the transition rate is k dependent. Therefore, it is concluded that the k-dependent analytical model can qualitatively reproduce results similar to those obtained with the numerical model yet with far greater computational efficiency. Nevertheless, there exist some important drawbacks to the k-dependent analytical model of Quade and co-workers: These are that it does not accurately reproduce the quantum yield data for bulk silicon, it requires determination of a new parameter, related physically to the overlap intergrals of the Bloch state which

  3. Theoretical Investigation of Wave-Vector-Dependent Analytical and Numerical Formulations of the Interband Impact-Ionization Transition Rate for Electron in Bulk Silicon and GaAs

    NASA Technical Reports Server (NTRS)

    Kolnik, Jan; Wang, Yang; Oguzman, Ismail H.; Brennan, Kevin F.

    1994-01-01

    The electron interband impact-ionization rate for both silicon and gallium arsenide is calculated using an ensemble Monte Carlo simulation with the expressed purpose of comparing different formulations of the interband ionization transition rate. Specifically, three different treatments of the transition rate are examined: the traditional Keldysh formula, a new k-dependent analytical formulation first derived by W. Quade, E Scholl, and M. Rudan, and a more exact, numerical method of Y. Wang and K. F. Brennan. Although the completely numerical formulation contains no adjustable parameters and as such provides a very reliable result, it is highly computationally intensive. Alternatively, the Keldysh formula, although inherently simple and computationally efficient, fails to include the k dependence as well as the details of the energy band structure. The k-dependent analytical formulation of Quade and co-workers overcomes the limitations of both of these models but at the expense of some new parameterization. It is found that the k-dependent analytical method of Quade and co-workers produces very similar results to those obtained with (he completely numerical model for some quantities. Specifically, both models predict that the effective threshold for impact ionization in GaAs and silicon is quite soft, that the majority of ionization events originate from the second conduction band in both materials, and that the transition rate is k dependent. Therefore, it is concluded that the k-dependent analytical model can qualitatively reproduce results similar to those obtained with the numerical model yet with far greater computational efficiency. Nevertheless, there exist some important drawbacks to the k-dependent analytical model of Quade and co-workers: These are that it does not accurately reproduce the quantum yield data for bulk silicon, it requires determination of a new parameter, related physically to (he overlap integrals of the Bloch state which can only be

  4. Analysis of Current DNA Encoded Library Screening Data Indicates Higher False Negative Rates for Numerically Larger Libraries.

    PubMed

    Satz, Alexander L; Hochstrasser, Remo; Petersen, Ann C

    2017-03-17

    To optimize future DNA-encoded library design, we have attempted to quantify the library size at which the signal becomes undetectable. To accomplish this we (i) have calculated that percent yields of individual library members following a screen range from 0.002 to 1%, (ii) extrapolated that ∼1 million copies per library member are required at the outset of a screen, and (iii) from this extrapolation predict that false negative rates will begin to outweigh the benefit of increased diversity at library sizes >10(8). The above analysis is based upon a large internal data set comprising multiple screens, targets, and libraries; we also augmented our internal data with all currently available literature data. In theory, high false negative rates may be overcome by employing larger amounts of library; however, we argue that using more than currently reported amounts of library (≫10 nmoles) is impractical. The above conclusions may be generally applicable to other DNA encoded library platforms, particularly those platforms that do not allow for library amplification.

  5. Effect of therapeutic femtosecond laser pulse energy, repetition rate, and numerical aperture on laser-induced second and third harmonic generation in corneal tissue.

    PubMed

    Calhoun, William R; Ilev, Ilko K

    2015-05-01

    Clinical therapy incorporating femtosecond laser (FSL) devices is a quickly growing field in modern biomedical technology due to their precision and ability to generate therapeutic effects with substantially less laser pulse energy. FSLs have the potential to produce nonlinear optical effects such as harmonic generation (HG), especially in tissues with significant nonlinear susceptibilities such as the cornea. HG in corneal tissue has been demonstrated in nonlinear harmonic microscopy using low-power FSLs. Furthermore, the wavelength ranges of harmonic spectral emissions generated in corneal tissues are known to be phototoxic above certain intensities. We have investigated how the critical FSL parameters pulse energy, pulse repetition rate, and numerical aperture influence both second (SHG) and third harmonic generation (THG) in corneal tissue. Experimental results demonstrated corresponding increases in HG intensity with increasing repetition rate and numerical aperture. HG duration decreased with increasing repetition rate and pulse energy. The data also demonstrated a significant difference in HG between FSL parameters representing the two most common classes of FSL therapeutic devices.

  6. Assessment of external heat transfer coefficient during oocyte vitrification in liquid and slush nitrogen using numerical simulations to determine cooling rates.

    PubMed

    Santos, M V; Sansinena, M; Zaritzky, N; Chirife, J

    2012-01-01

    In oocyte vitrification, plunging directly into liquid nitrogen favor film boiling and strong nitrogen vaporization. A survey of literature values of heat transfer coefficients (h) for film boiling of small metal objects with different geometries plunged in liquid nitrogen revealed values between 125 to 1000 W per per square m per K. These h values were used in a numerical simulation of cooling rates of two oocyte vitrification devices (open-pulled straw and Cryotop), plunged in liquid and slush nitrogen conditions. Heat conduction equation with convective boundary condition was considered a linear mathematical problem and was solved using the finite element method applying the variational formulation. COMSOL Multiphysics was used to simulate the cooling process of the systems. Predicted cooling rates for OPS and Cryotop when cooled at -196 degree C (liquid nitrogen) or -207 degree C (average for slush nitrogen) for heat transfer coefficients estimated to be representative of film boiling, indicated lowering the cooling temperature produces only a maximum 10 percent increase in cooling rates; confirming the main benefit of plunging in slush over liquid nitrogen does not arise from their temperature difference. Numerical simulations also demonstrated that a hypothetical four-fold increase in the cooling rate of vitrification devices when plunging in slush nitrogen would be explained by an increase in heat transfer coefficient. This improvement in heat transfer (i.e., high cooling rates) in slush nitrogen is attributed to less or null film boiling when a sample is placed in slush (mixture of liquid and solid nitrogen) because it first melts the solid nitrogen before causing the liquid to boil and form a film.

  7. Effects of initial iron corrosion rate on long-term performance of iron permeable reactive barriers: column experiments and numerical simulation.

    PubMed

    suk O, Jin; Jeen, Sung-Wook; Gillham, Robert W; Gui, Lai

    2009-01-26

    Column experiments and numerical simulation were conducted to test the hypothesis that iron material having a high corrosion rate is not beneficial for the long-term performance of iron permeable reactive barriers (PRBs) because of faster passivation of iron and greater porosity loss close to the influent face of the PRBs. Four iron materials (Connelly, Gotthart-Maier, Peerless, and ISPAT) were used for the column experiments, and the changes in reactivity toward cis-dichloroethene (cis-DCE) degradation in the presence of dissolved CaCO3 were evaluated. The experimental results showed that the difference in distribution of the accumulated precipitates, resulting from differences in iron corrosion rate, caused a difference in the migration rate of the cis-DCE profiles and a significant difference in the pattern of passivation, indicating a faster passivation in the region close to the influent end for the material having a higher corrosion rate. For the numerical simulation, the accumulation of secondary minerals and reactivity loss of iron were coupled using an empirically-derived relationship that was incorporated into a multi-component reactive transport model. The simulation results provided a reasonable representation of the evolution of iron reactivity toward cis-DCE treatment and the changes in geochemical conditions for each material, consistent with the observed data. The simulations for long-term performance were also conducted to further test the hypothesis and predict the differences in performance over a period of 40 years under typical groundwater conditions. The predictions showed that the cases of higher iron corrosion rates had earlier cis-DCE breakthrough and more reduction in porosity starting from near the influent face, due to more accumulation of carbonate minerals in that region. Therefore, both the experimental and simulation results appear to support the hypothesis and suggest that reactivity changes of iron materials resulting from

  8. A Numerical Investigation of the Extinction of Low Strain Rate Diffusion Flames by an Agent in Microgravity

    NASA Technical Reports Server (NTRS)

    Puri, Ishwar K.

    2004-01-01

    Our goal has been to investigate the influence of both dilution and radiation on the extinction process of nonpremixed flames at low strain rates. Simulations have been performed by using a counterflow code and three radiation models have been included in it, namely, the optically thin, the narrowband, and discrete ordinate models. The counterflow flame code OPPDIFF was modified to account for heat transfer losses by radiation from the hot gases. The discrete ordinate method (DOM) approximation was first suggested by Chandrasekhar for solving problems in interstellar atmospheres. Carlson and Lathrop developed the method for solving multi-dimensional problem in neutron transport. Only recently has the method received attention in the field of heat transfer. Due to the applicability of the discrete ordinate method for thermal radiation problems involving flames, the narrowband code RADCAL was modified to calculate the radiative properties of the gases. A non-premixed counterflow flame was simulated with the discrete ordinate method for radiative emissions. In comparison with two other models, it was found that the heat losses were comparable with the optically thin and simple narrowband model. The optically thin model had the highest heat losses followed by the DOM model and the narrow-band model.

  9. Oceanic transform fault earthquake nucleation process and source scaling relations - A numerical modeling study with rate-state friction (Invited)

    NASA Astrophysics Data System (ADS)

    Liu, Y.; McGuire, J. J.; Behn, M. D.

    2013-12-01

    We use a three-dimensional strike-slip fault model in the framework of rate and state-dependent friction to investigate earthquake behavior and scaling relations on oceanic transform faults (OTFs). Gabbro friction data under hydrothermal conditions are mapped onto OTFs using temperatures from (1) a half-space cooling model, and (2) a thermal model that incorporates a visco-plastic rheology, non-Newtonian viscous flow and the effects of shear heating and hydrothermal circulation. Without introducing small-scale frictional heterogeneities on the fault, our model predicts that an OTF segment can transition between seismic and aseismic slip over many earthquake cycles, consistent with the multimode hypothesis for OTF ruptures. The average seismic coupling coefficient χ is strongly dependent on the ratio of seismogenic zone width W to earthquake nucleation size h*; χ increases by four orders of magnitude as W/h* increases from ~ 1 to 2. Specifically, the average χ = 0.15 +/- 0.05 derived from global OTF earthquake catalogs can be reached at W/h* ≈ 1.2-1.7. The modeled largest earthquake rupture area is less than the total seismogenic area and we predict a deficiency of large earthquakes on long transforms, which is also consistent with observations. Earthquake magnitude and distribution on the Gofar (East Pacific Rise) and Romanche (equatorial Mid-Atlantic) transforms are better predicted using the visco-plastic model than the half-space cooling model. We will also investigate how fault gouge porosity variation during an OTF earthquake nucleation phase may affect the seismic wave velocity structure, for which up to 3% drop was observed prior to the 2008 Mw6 Gofar earthquake.

  10. Preparation of UC0.07-0.10N0.90-0.93 spheres for TRISO coated fuel particles

    SciTech Connect

    Collins, Jack Lee; Hunt, Rodney Dale; Johnson, Jared A; Silva, Chinthaka M; Lindemer, Terrence

    2014-01-01

    The U.S. Department of Energy is considering a new nuclear fuel, which should be much more impervious during a loss of coolant accident. The fuel would consist of tristructural isotropic coated particles with dense uranium nitride (UN) kernels. The objectives of this effort are to make uranium oxide microspheres with adequately dispersed carbon nanoparticles and to convert these microspheres into UN kernels. Recent improvements to internal gelation process were successfully applied to the production of uranium gel spheres with different concentrations of carbon black. After the spheres were washed, a simple, two-step heat profile was used to produce kernels with a chemical composition of UC0.07 0.10N0.90 0.93. The first step involved heating the microspheres to 2023 K in a vacuum, and in the second step, the microspheres were held at 1873 K for 6 hrs in nitrogen.

  11. A comparative numerical study of rotating and stationary RF coils in terms of flip angle and specific absorption rate for 7 T MRI

    NASA Astrophysics Data System (ADS)

    Trakic, A.; Jin, J.; Li, M. Y.; McClymont, D.; Weber, E.; Liu, F.; Crozier, S.

    2013-11-01

    While high-field magnetic resonance imaging promises improved image quality and faster scan time, it is affected by non-uniform flip angle distributions and unsafe specific absorption rate levels within the patient, as a result of the complicated radiofrequency (RF) field - tissue interactions. This numerical study explored the possibility of using a single mechanically rotating RF coil for RF shimming and specific absorption rate management applications at 7 T. In particular, this new approach (with three different RF coil element arrangements) was compared against both an 8-channel parallel coil array and a birdcage volume coil, with and without RF current optimisation. The evaluation was conducted using an in-house developed and validated finite-difference time-domain method in conjunction with a tissue-equivalent human head model. It was found that, without current optimisation, the rotating RF coil method produced a more uniform flip angle distribution and a lower maximum global and local specific absorption rate compared to the 8-channel parallel coil array and birdcage resonator. In addition, due to the large number of degrees of freedom in the form of rotated sensitivity profiles, the rotating RF coil approach exhibited good RF shimming and specific absorption rate management performance. This suggests that the proposed method can be useful in the development of techniques that address contemporary RF issues associated with high-field magnetic resonance imaging.

  12. A comparative numerical study of rotating and stationary RF coils in terms of flip angle and specific absorption rate for 7 T MRI.

    PubMed

    Trakic, A; Jin, J; Li, M Y; McClymont, D; Weber, E; Liu, F; Crozier, S

    2013-11-01

    While high-field magnetic resonance imaging promises improved image quality and faster scan time, it is affected by non-uniform flip angle distributions and unsafe specific absorption rate levels within the patient, as a result of the complicated radiofrequency (RF) field-tissue interactions. This numerical study explored the possibility of using a single mechanically rotating RF coil for RF shimming and specific absorption rate management applications at 7 T. In particular, this new approach (with three different RF coil element arrangements) was compared against both an 8-channel parallel coil array and a birdcage volume coil, with and without RF current optimisation. The evaluation was conducted using an in-house developed and validated finite-difference time-domain method in conjunction with a tissue-equivalent human head model. It was found that, without current optimisation, the rotating RF coil method produced a more uniform flip angle distribution and a lower maximum global and local specific absorption rate compared to the 8-channel parallel coil array and birdcage resonator. In addition, due to the large number of degrees of freedom in the form of rotated sensitivity profiles, the rotating RF coil approach exhibited good RF shimming and specific absorption rate management performance. This suggests that the proposed method can be useful in the development of techniques that address contemporary RF issues associated with high-field magnetic resonance imaging.

  13. Computation of the time-varying flow rate from an artesian well in central Dade County, Florida, by analytical and numerical simulation methods

    USGS Publications Warehouse

    Merritt, Michael L.

    1995-01-01

    To construct a digital simulation of a plume of brackish water in the surficial Biscayne aquifer of central Dade County, Florida, that originated from a flowing artesian well, it was necessary to quantify the rate of spillage and the consequent point-source loading of the aquifer. However, a flow-rate measurement (2,350 gallons per minute) made 2 months after drilling of the well in 1944 was inconsistent with later measurements (1,170 gallons per minute) in 1964, 1965, and 1969. Possible explanations were the: (1) drawdown of the aquifer over time; (2) raising of the altitude at which the water was discharged; (3) installation of 80 feet of 8-inch liner; (4) an increase in the density of the flowing water; and (5) gradual deterioration of the well casing. The first approach to reconciling the measured flow rates was to apply a form of the equation for constant-drawdown analysis often used to estimate aquifer transmissivity. Next, a numerical simulation analysis was made that pro- vided the means to account for friction loss in the well and recharge across vertically adjacent con- fining layers and from lateral boundaries. The numerical analysis required the construction of a generalized model of the subsurface from the surficial Biscayne aquifer to the cavernous, dolomitic Boulder Zone at a depth of 3,000 feet. Calibration of the generalized flow model required that the moddle confining unit of the Floridan aquifer system separating the artesian flow zone in the Upper Floridan aquifer from the Lower Floridan aquifer (the Boulder Zone) have a vertical hydraulic conductivity of at least 1 foot per day. The intermediate confining unit separating the flow zone from the surficial Biscayne aquifer was assigned a much lower hydraulic conductivity (0.01 foot per day or less). The model indicated that the observed mounding of Upper Floridan aquifer heads along the axis of the Florida Peninsula was related to the variable depth of the freshwater and brackish-water zone

  14. Magnetic phase transition of nanocrystalline Fe-doped samarium oxide (Sm1.90Fe0.10O3)

    NASA Astrophysics Data System (ADS)

    Mandal, J.; Sarkar, B. J.; Deb, A. K.; Chakrabarti, P. K.

    2014-12-01

    Nanocrystalline Fe3+ doped samarium oxide (Sm1.90Fe0.10O3) has been prepared by the co-precipitation method. The as prepared sample has been annealed at 700 °C for 6 h in an argon atmosphere. The pure crystallographic phase as well as the substitution of Fe3+ ions in the lattice of Sm2O3 is confirmed by Rietveld analysis of the X-ray diffraction patterns. The variation of magnetic susceptibility (χ) with temperature (T) is recorded by a Faraday Magnetometer in the temperature range of 300-14 K. The variation of χ vs. T down to ~50 K was successfully fitted by the Curie-Weiss law and below this temperature, susceptibility increases very rapidly, which suggests the presence of ordering at low temperature. To explore this, magnetic measurements are also carried out at different temperatures down to 2 K by using a SQUID Magnetometer. No hysteretic behavior is observed down to 50 K, but a feeble ferromagnetic behavior is observed in the magnetization vs. field curve recorded at ~30 K. A clear hysteresis loop is observed at 2 K with a comparatively high value of maximum magnetization (~3.32 emu/gm). The observed magnetic phase transition is analyzed by using the dipole-dipole interaction among the magnetic nanoparticles at low temperature.

  15. Preparation of UC0.07-0.10N0.90-0.93 spheres for TRISO coated fuel particles

    NASA Astrophysics Data System (ADS)

    Hunt, R. D.; Silva, C. M.; Lindemer, T. B.; Johnson, J. A.; Collins, J. L.

    2014-05-01

    The US Department of Energy is considering a new nuclear fuel that would be less susceptible to ruptures during a loss-of-coolant accident. The fuel would consist of tristructural isotropic coated particles with dense uranium nitride (UN) kernels with diameters of 650 or 800 μm. The objectives of this effort are to make uranium oxide microspheres with adequately dispersed carbon nanoparticles and to convert these microspheres into UN spheres, which could be then sintered into kernels. Recent improvements to the internal gelation process were successfully applied to the production of uranium gel spheres with different concentrations of carbon black. After the spheres were washed and dried, a simple two-step heat profile was used to produce porous microspheres with a chemical composition of UC0.07-0.10N0.90-0.93. The first step involved heating the microspheres to 2023 K in a vacuum, and in the second step, the microspheres were held at 1873 K for 6 h in flowing nitrogen.

  16. Development and numerical/experimental characterization of a lab-scale flat flame reactor allowing the analysis of pulverized solid fuel devolatilization and oxidation at high heating rates

    SciTech Connect

    Lemaire, R. Menanteau, S.

    2016-01-15

    This paper deals with the thorough characterization of a new experimental test bench designed to study the devolatilization and oxidation of pulverized fuel particles in a wide range of operating conditions. This lab-scale facility is composed of a fuel feeding system, the functioning of which has been optimized by computational fluid dynamics. It allows delivering a constant and time-independent mass flow rate of fuel particles which are pneumatically transported to the central injector of a hybrid McKenna burner using a carrier gas stream that can be inert or oxidant depending on the targeted application. A premixed propane/air laminar flat flame stabilized on the porous part of the burner is used to generate the hot gases insuring the heating of the central coal/carrier-gas jet with a thermal gradient similar to those found in industrial combustors (>10{sup 5} K/s). In the present work, results issued from numerical simulations performed a priori to characterize the velocity and temperature fields in the reaction chamber have been analyzed and confronted with experimental measurements carried out by coupling particle image velocimetry, thermocouple and two-color pyrometry measurements so as to validate the order of magnitude of the heating rate delivered by such a new test bench. Finally, the main features of the flat flame reactor we developed have been discussed with respect to those of another laboratory-scale system designed to study coal devolatilization at a high heating rate.

  17. Development and numerical/experimental characterization of a lab-scale flat flame reactor allowing the analysis of pulverized solid fuel devolatilization and oxidation at high heating rates

    NASA Astrophysics Data System (ADS)

    Lemaire, R.; Menanteau, S.

    2016-01-01

    This paper deals with the thorough characterization of a new experimental test bench designed to study the devolatilization and oxidation of pulverized fuel particles in a wide range of operating conditions. This lab-scale facility is composed of a fuel feeding system, the functioning of which has been optimized by computational fluid dynamics. It allows delivering a constant and time-independent mass flow rate of fuel particles which are pneumatically transported to the central injector of a hybrid McKenna burner using a carrier gas stream that can be inert or oxidant depending on the targeted application. A premixed propane/air laminar flat flame stabilized on the porous part of the burner is used to generate the hot gases insuring the heating of the central coal/carrier-gas jet with a thermal gradient similar to those found in industrial combustors (>105 K/s). In the present work, results issued from numerical simulations performed a priori to characterize the velocity and temperature fields in the reaction chamber have been analyzed and confronted with experimental measurements carried out by coupling particle image velocimetry, thermocouple and two-color pyrometry measurements so as to validate the order of magnitude of the heating rate delivered by such a new test bench. Finally, the main features of the flat flame reactor we developed have been discussed with respect to those of another laboratory-scale system designed to study coal devolatilization at a high heating rate.

  18. Development and numerical/experimental characterization of a lab-scale flat flame reactor allowing the analysis of pulverized solid fuel devolatilization and oxidation at high heating rates.

    PubMed

    Lemaire, R; Menanteau, S

    2016-01-01

    This paper deals with the thorough characterization of a new experimental test bench designed to study the devolatilization and oxidation of pulverized fuel particles in a wide range of operating conditions. This lab-scale facility is composed of a fuel feeding system, the functioning of which has been optimized by computational fluid dynamics. It allows delivering a constant and time-independent mass flow rate of fuel particles which are pneumatically transported to the central injector of a hybrid McKenna burner using a carrier gas stream that can be inert or oxidant depending on the targeted application. A premixed propane/air laminar flat flame stabilized on the porous part of the burner is used to generate the hot gases insuring the heating of the central coal/carrier-gas jet with a thermal gradient similar to those found in industrial combustors (>10(5) K/s). In the present work, results issued from numerical simulations performed a priori to characterize the velocity and temperature fields in the reaction chamber have been analyzed and confronted with experimental measurements carried out by coupling particle image velocimetry, thermocouple and two-color pyrometry measurements so as to validate the order of magnitude of the heating rate delivered by such a new test bench. Finally, the main features of the flat flame reactor we developed have been discussed with respect to those of another laboratory-scale system designed to study coal devolatilization at a high heating rate.

  19. Effect of frictional heating and thermal advection on pre-seismic sliding: a numerical simulation using a rate-, state- and temperature-dependent friction law

    NASA Astrophysics Data System (ADS)

    de Lorenzo, Salvatore; Loddo, Mariano

    2010-01-01

    Laboratory experiments on simulated faults in rocks clearly show the temperature dependence of dynamic rock friction. Since rocks surrounding faults are permeable, we have developed a numerical method to describe the thermo-mechanical evolution of the pre-seismic sliding phase which takes into account both the rate-, state- and temperature-dependent friction law and the heat advection term in the energy equation. We consider a laminar fluid motion perpendicular to a vertical fault plane and assume that fluids move away from the fault plane. A semi-analytical temperature solution which accounts for the variability of slip velocity and stress on the fault has been found. This solution has been generalized to the case of a time varying fluid velocity and then was used to include the thermal pressurization effect. After discretizing the temperature solution, the evolution of the system is obtained by the solution of a system of first order differential equations which allows us to determine the evolution of slip, slip rate, friction coefficient, effective normal stress, temperature and fluid velocity. The numerical solutions are found using a Runge-Kutta method with an adaptative stepsize control in time. When the thermal pressurization effects can be neglected, the heat advection effect gives rise to a delay, with respect to the purely conductive case, of the earthquake occurrence time. This delay increases with increasing permeability H of the system. When the thermal pressurization effects are taken into account the situation is opposite, i.e. the onset of instability tends to precede that of the purely conductive case. The advance in the time of occurrence of instability increases with increasing coefficient of thermal pressurization. In the small permeability range ( H ≤ 10 -18 m 2), the seismic moment and nucleation length of the pre-seismic phase are significantly smaller than those predicted by the purely conductive model.

  20. Optimizing the distribution of resources between enzymes of carbon metabolism can dramatically increase photosynthetic rate: a numerical simulation using an evolutionary algorithm.

    PubMed

    Zhu, Xin-Guang; de Sturler, Eric; Long, Stephen P

    2007-10-01

    The distribution of resources between enzymes of photosynthetic carbon metabolism might be assumed to have been optimized by natural selection. However, natural selection for survival and fecundity does not necessarily select for maximal photosynthetic productivity. Further, the concentration of a key substrate, atmospheric CO(2), has changed more over the past 100 years than the past 25 million years, with the likelihood that natural selection has had inadequate time to reoptimize resource partitioning for this change. Could photosynthetic rate be increased by altered partitioning of resources among the enzymes of carbon metabolism? This question is addressed using an "evolutionary" algorithm to progressively search for multiple alterations in partitioning that increase photosynthetic rate. To do this, we extended existing metabolic models of C(3) photosynthesis by including the photorespiratory pathway (PCOP) and metabolism to starch and sucrose to develop a complete dynamic model of photosynthetic carbon metabolism. The model consists of linked differential equations, each representing the change of concentration of one metabolite. Initial concentrations of metabolites and maximal activities of enzymes were extracted from the literature. The dynamics of CO(2) fixation and metabolite concentrations were realistically simulated by numerical integration, such that the model could mimic well-established physiological phenomena. For example, a realistic steady-state rate of CO(2) uptake was attained and then reattained after perturbing O(2) concentration. Using an evolutionary algorithm, partitioning of a fixed total amount of protein-nitrogen between enzymes was allowed to vary. The individual with the higher light-saturated photosynthetic rate was selected and used to seed the next generation. After 1,500 generations, photosynthesis was increased substantially. This suggests that the "typical" partitioning in C(3) leaves might be suboptimal for maximizing the light

  1. Cut-Off Points for Mild, Moderate, and Severe Pain on the Numeric Rating Scale for Pain in Patients with Chronic Musculoskeletal Pain: Variability and Influence of Sex and Catastrophizing.

    PubMed

    Boonstra, Anne M; Stewart, Roy E; Köke, Albère J A; Oosterwijk, René F A; Swaan, Jeannette L; Schreurs, Karlein M G; Schiphorst Preuper, Henrica R

    2016-01-01

    Objectives: The 0-10 Numeric Rating Scale (NRS) is often used in pain management. The aims of our study were to determine the cut-off points for mild, moderate, and severe pain in terms of pain-related interference with functioning in patients with chronic musculoskeletal pain, to measure the variability of the optimal cut-off points, and to determine the influence of patients' catastrophizing and their sex on these cut-off points. Methods: 2854 patients were included. Pain was assessed by the NRS, functioning by the Pain Disability Index (PDI) and catastrophizing by the Pain Catastrophizing Scale (PCS). Cut-off point schemes were tested using ANOVAs with and without using the PSC scores or sex as co-variates and with the interaction between CP scheme and PCS score and sex, respectively. The variability of the optimal cut-off point schemes was quantified using bootstrapping procedure. Results and conclusion: The study showed that NRS scores ≤ 5 correspond to mild, scores of 6-7 to moderate and scores ≥8 to severe pain in terms of pain-related interference with functioning. Bootstrapping analysis identified this optimal NRS cut-off point scheme in 90% of the bootstrapping samples. The interpretation of the NRS is independent of sex, but seems to depend on catastrophizing. In patients with high catastrophizing tendency, the optimal cut-off point scheme equals that for the total study sample, but in patients with a low catastrophizing tendency, NRS scores ≤ 3 correspond to mild, scores of 4-6 to moderate and scores ≥7 to severe pain in terms of interference with functioning. In these optimal cut-off schemes, NRS scores of 4 and 5 correspond to moderate interference with functioning for patients with low catastrophizing tendency and to mild interference for patients with high catastrophizing tendency. Theoretically one would therefore expect that among the patients with NRS scores 4 and 5 there would be a higher average PDI score for those with low

  2. Cost of owning and operating a 9-32-0/10-34-0 facility. [Ammonium polyphosphate base suspension

    SciTech Connect

    Williams, R.J.

    1984-04-01

    This analysis specifies the relative economics of a 20-ton per hour combination 9-32-0/10-34-0 plant for a midwest location. The major points are: (A) Initial investment in on-site plant and equipment ranges from $192,000 to $242,000 (excluding storage costs) depending on use of fluid clay or dry clay respectively. Storage costs are a major cost outlay depending on scheduling of raw materials and final products. When storage and off-site costs such as truck scales, office building, and spare parts inventory were added, initial investment was from $356,000 (using fluid clay) to $406,000 (using dry clay). Since storage costs may be conservative, a total investment of $450,000 to $500,000 appears reasonable for planning purposes. (B) Annualized costs show raw materials as the predominant cost factor. For a 20-ton per hour plant, operated between 5000 tpy and 11,000 tpy, raw materials cost account for 81 to 89 percent of total annual costs. (C) Expected delivered phosphoric acid prices (1984) used in the analysis were $3.65 per unit (Ortho) and $4.56 per unit (Super). With a 60/40 annual production ratio in producing 10-34-0/9-32-0, the weighted break-even price ranged from $202 per ton for a 5000 tpy volume to $184 per ton for an 11,000 tpy volume. When revenues for the final product were set at $210 per ton for 10-34-0 and $183 per ton for 9-32-0, the breakeven volume was between 5000 and 6000 tons per year. As price estimates for the final products go down, this break-even volume will increase if everything else remains the same. (D) Although these estimates suggest economic feasibility for volumes above the breakeven point, this feasibility is highly sensitive to raw material cost and final product prices. Thus, quotes on prices and tonnages should not be divorced from assumptions on raw materials and revenues. 1 reference, 2 figures, 6 tables.

  3. Are large concentration of atomic H storable in tritium-impregnated solid in H2 below 0.10 K

    NASA Technical Reports Server (NTRS)

    Rosen, G.; Webeler, R. W. H.

    1979-01-01

    The storage and release of atomic hydrogen produced by the beta decay of tritium contained in a crystalline solid H2 matrix at concentrations greater than 2% and temperatures below 0.80 K are investigated. The temperature of a sample chamber containing tritium-impregnated H2 and placed in the mixing chamber of a dilution refrigerator was measured as the chamber was heated and cooled in order to determine the rates of energy storage and release. It is found that for samples containing 1.2 wt.% tritium, after storage at 0.054 K for 40 h, an increase in sample temperature to a trigger point of 0.17 K leads to an energy release due to the destabilization of atomic H in H2 as predicted by the phenomenological rate process theory. For a tritium weight fraction of 2.5%, energy releases were triggered at 0.54 and 0.82 K after storage at 0.080 K, indicating the trapping of H atoms at the sites of T2 and HT molecules in the sample. The application of a 15 kG magnetic field is shown to increase the storage capacity of T2 traps while reducing that of HT traps, and to lower the trigger temperatures of both. Results suggest that the direct conversion of nuclear energy to chemical energy may become technically feasible in the future.

  4. Numerical Boundary Condition Procedures

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Topics include numerical procedures for treating inflow and outflow boundaries, steady and unsteady discontinuous surfaces, far field boundaries, and multiblock grids. In addition, the effects of numerical boundary approximations on stability, accuracy, and convergence rate of the numerical solution are discussed.

  5. Numerical analysis of specific absorption rate in the human head due to a 13.56 MHz RFID-based intra-ocular pressure measurement system

    NASA Astrophysics Data System (ADS)

    Hirtl, Rene; Schmid, Gernot

    2013-09-01

    A modern wireless intra-ocular pressure monitoring system, based on 13.56 MHz inductively coupled data transmission, was dosimetrically analyzed with respect to the specific absorption rate (SAR) induced inside the head and the eye due to the electromagnetic field exposure caused by the reader antenna of the transmission system. The analysis was based on numerical finite difference time domain computations using a high resolution anatomical eye model integrated in a modern commercially available anatomical model of a male head. Three different reader antenna configurations, a 7-turn elliptic (30 mm × 50 mm) antenna at 12 mm distance from the eye, a flexible circular antenna (60 mm diameter, 8 turns on 2 mm substrate) directly attached to the skin, and a circular 7-turn antenna (30 mm diameter at 12 mm distance to the eye) were analyzed, respectively. Possible influences of the eye-lid status (closed or opened) and the transponder antenna contained in a contact lens directly attached to the eye were taken into account. The results clearly demonstrated that for typical reader antenna currents required for proper data transmission, the SAR values remain far below the limits for localized exposure of the head, as defined by the International Commission for Non-Ionizing Radiation Protection. Particularly the induced SAR inside the eye was found to be substantially (orders of magnitudes for typical reader antenna currents in the order of 1 A turn) below values which have been reported to be critical with respect to thermally induced adverse health effects in eye tissues.

  6. Teamwork for Oversight of Processes and Systems (TOPS). Implementation guide for TOPS version 2.0, 10 August 1992

    NASA Astrophysics Data System (ADS)

    Strand, Albert A.; Jackson, Darryl J.

    As the nation redefines priorities to deal with a rapidly changing world order, both government and industry require new approaches for oversight of management systems, particularly for high technology products. Declining defense budgets will lead to significant reductions in government contract management personnel. Concurrently, defense contractors are reducing administrative and overhead staffing to control costs. These combined pressures require bold approaches for the oversight of management systems. In the Spring of 1991, the DPRO and TRW created a Process Action Team (PAT) to jointly prepare a Performance Based Management (PBM) system titled Teamwork for Oversight of Processes and Systems (TOPS). The primary goal is implementation of a performance based management system based on objective data to review critical TRW processes with an emphasis on continuous improvement. The processes are: Finance and Business Systems, Engineering and Manufacturing Systems, Quality Assurance, and Software Systems. The team established a number of goals: delivery of quality products to contractual terms and conditions; ensure that TRW management systems meet government guidance and good business practices; use of objective data to measure critical processes; elimination of wasteful/duplicative reviews and audits; emphasis on teamwork--all efforts must be perceived to add value by both sides and decisions are made by consensus; and synergy and the creation of a strong working trust between TRW and the DPRO. TOPS permits the adjustment of oversight resources when conditions change or when TRW systems performance indicate either an increase or decrease in surveillance is appropriate. Monthly Contractor Performance Assessments (CPA) are derived from a summary of supporting system level and process-level ratings obtained from objective process-level data. Tiered, objective, data-driven metrics are highly successful in achieving a cooperative and effective method of measuring

  7. Teamwork for Oversight of Processes and Systems (TOPS). Implementation guide for TOPS version 2.0, 10 August 1992

    NASA Technical Reports Server (NTRS)

    Strand, Albert A.; Jackson, Darryl J.

    1992-01-01

    As the nation redefines priorities to deal with a rapidly changing world order, both government and industry require new approaches for oversight of management systems, particularly for high technology products. Declining defense budgets will lead to significant reductions in government contract management personnel. Concurrently, defense contractors are reducing administrative and overhead staffing to control costs. These combined pressures require bold approaches for the oversight of management systems. In the Spring of 1991, the DPRO and TRW created a Process Action Team (PAT) to jointly prepare a Performance Based Management (PBM) system titled Teamwork for Oversight of Processes and Systems (TOPS). The primary goal is implementation of a performance based management system based on objective data to review critical TRW processes with an emphasis on continuous improvement. The processes are: Finance and Business Systems, Engineering and Manufacturing Systems, Quality Assurance, and Software Systems. The team established a number of goals: delivery of quality products to contractual terms and conditions; ensure that TRW management systems meet government guidance and good business practices; use of objective data to measure critical processes; elimination of wasteful/duplicative reviews and audits; emphasis on teamwork--all efforts must be perceived to add value by both sides and decisions are made by consensus; and synergy and the creation of a strong working trust between TRW and the DPRO. TOPS permits the adjustment of oversight resources when conditions change or when TRW systems performance indicate either an increase or decrease in surveillance is appropriate. Monthly Contractor Performance Assessments (CPA) are derived from a summary of supporting system level and process-level ratings obtained from objective process-level data. Tiered, objective, data-driven metrics are highly successful in achieving a cooperative and effective method of measuring

  8. High temperature x-ray diffraction studies on antiferroelectric and ferroelectric phase transitions in (Pb1-xBax)ZrO3 (x=0.05,0.10)

    NASA Astrophysics Data System (ADS)

    Pokharel, Bhadra P.; Pandey, Dhananjai

    2001-09-01

    We have carried out high temperature x-ray diffraction studies on (Pb1-xBax)ZrO3(PBZ) to correlate the large thermal hysteresis (˜100 °C for x=0.05) and irreversibility (for x=0.10) of the antiferroelectric (AFE)-ferroelectric (FE) phase transition observed in dielectric measurements with structural changes. It is shown that for both the compositions, the sequence of phase transitions during heating is orthorhombic antiferroelectric (AO) to rhombohedral ferroelectric (FR) and then to cubic paraelectric (PC). The wide phase coexistence region (˜80 °C for x=0.05 and ˜160 °C for x=0.10) and the arrest of the FR to AO transition for x=0.10 during cooling strongly indicate first order character of the AO-FR transition. It is shown that the transformation strains associated with the AO to FR transition increases with Ba2+ concentration from a value of 0.6% for x=0 to 0.9% for 0.10. Similarities of the AO-FR transition in PBZ with nonthermoelastic martensitic transformations are pointed out. The FR to PC transition is also shown to be first order but with a small thermal hysteresis (˜10 °C) and a small discontinuous change in the cell volume (˜0.5%).

  9. Calculation of Inter-Subchannel Turbulent Mixing Rate and Heat Transfer in a Triangular-Arrayed Rod Bundle Using Direct Numerical Simulation

    SciTech Connect

    Yudov, Yury V.

    2006-07-01

    The direct numerical simulation, extended to boundary - fitted coordinate, has been carried out for a fully-developed turbulent flow thermal hydraulics in a triangular rod bundle. The rod bundle is premised to be an infinite array. The spacer grid effects are ignored. The purpose of this work is to verify DNS methodology to be applied for deriving coefficients for inter-subchannel turbulent mixing and heat transfer on a rod. These coefficients are incorporated in subchannel analysis codes. To demonstrate the validity of this methodology, numerical calculation was performed for the bundle with the pitch to diameter ratio 1.2, at friction Reynolds number of 600 and Prandtl number of 1. The results for the hydraulic parameters are compared with published DNS data, and the results for the heat exchange coefficients -- with those obtained using semi-empirical correlations. (authors)

  10. Evaluation of dispersive mixing, extension rate and bubble size distribution using numerical simulation of a non-Newtonian fluid in a twin-screw mixer

    NASA Astrophysics Data System (ADS)

    Rathod, Maureen L.

    Initially 3D FEM simulation of a simplified mixer was used to examine the effect of mixer configuration and operating conditions on dispersive mixing of a non-Newtonian fluid. Horizontal and vertical velocity magnitudes increased with increasing mixer speed, while maximum axial velocity and shear rate were greater with staggered paddles. In contrast, parallel paddles produced an area of efficient dispersive mixing between the center of the paddle and the barrel wall. This study was expanded to encompass the complete nine-paddle mixing section using power-law and Bird-Carreau fluid models. In the center of the mixer, simple shear flow was seen, corresponding with high [special character omitted]. Efficient dispersive mixing appeared near the barrel wall at all flow rates and near the barrel center with parallel paddles. Areas of backflow, improving fluid retention time, occurred with staggered paddles. The Bird-Carreau fluid showed greater influence of paddle motion under the same operating conditions due to the inelastic nature of the fluid. Shear-thinning behavior also resulted in greater maximum shear rate as shearing became easier with decreasing fluid viscosity. Shear rate distributions are frequently calculated, but extension rate calculations have not been made in a complex geometry since Debbaut and Crochet (1988) defined extension rate as the ratio of the third to the second invariant of the strain rate tensor. Extension rate was assumed to be negligible in most studies, but here extension rate is shown to be significant. It is possible to calculate maximum stable bubble diameter from capillary number if shear and extension rates in a flow field are known. Extension rate distributions were calculated for Newtonian and non-Newtonian fluids. High extension and shear rates were found in the intermeshing region. Extension is the major influence on critical capillary number and maximum stable bubble diameter, but when extension rate values are low shear rate has

  11. What Is Numerical Control?

    ERIC Educational Resources Information Center

    Goold, Vernell C.

    1977-01-01

    Numerical control (a technique involving coded, numerical instructions for the automatic control and performance of a machine tool) does not replace fundamental machine tool training. It should be added to the training program to give the student an additional tool to accomplish production rates and accuracy that were not possible before. (HD)

  12. Pressure distributions obtained on a 0.10-scale model of the space shuttle Orbiter's forebody in the AEDC 16T propulsion wind tunnel

    NASA Technical Reports Server (NTRS)

    Siemers, P. M., III; Henry, M. W.

    1986-01-01

    Pressure distribution test data obtained on a 0.10-scale model of the forward fuselage of the Space Shuttle Orbiter are presented without analysis. The tests were completed in the AEDC 16T Propulsion Wind Tunnel. The 0.10-scale model was tested at angles of attack from -2 deg to 18 deg and angles of side slip from -6 to 6 deg at Mach numbers from 0.25 to 1/5 deg. The tests were conducted in support of the development of the Shuttle Entry Air Data System (SEADS). In addition to modeling the 20 SEADS orifices, the wind-tunnel model was also instrumented with orifices to match Development Flight Instrumentation (DFI) port locations that existed on the Space Shuttle Orbiter Columbia (OV-102) during the Orbiter Flight Test program. This DFI simulation has provided a means of comparisons between reentry flight pressure data and wind-tunnel and computational data.

  13. Computation of the time-varying flow rate from an artesian well in central Dade County, Florida, by analytical and numerical simulation methods

    USGS Publications Warehouse

    Merritt, Michael L.

    1997-01-01

    Simulation modeling techniques can by used advantageously in estimating artesian flow rates of wells in the upper Floridan Aquifer or for estimating transmissivity based in measured flow rates. The generalized aquifer model was useful in testing conceptual models of the relation between the various aquifers and confining layers beneath the surface of Dade County.

  14. Finite-Layer Method: Exact Numerical and Analytical Calculations of the Energy Release Rate for Unidirectional Composite Specimens in Double-Cantilever Beam and End-Notched Flexure Tests

    NASA Astrophysics Data System (ADS)

    Timonin, A. M.

    2016-09-01

    Based on the finite-layer method, a method for evaluating the stress-strain state and energy release rate for specimens with delaminations in double-cantilever beam and end-notched flexure tests is proposed. Exact numerical solutions of boundary-value problems for the "stiff" systems of differential equations describing deformations of test specimens are obtained. The distributions of forces, moments, displacements, and rotations in the specimens and the distributions of normal and tangential stresses on their midline are presented. New closed-form expressions for these functions and for compliance of the specimens are developed. Calculation results for the energy release rate obtained by a numerical differentiation and from analytical relations are presented. Two new techniques for estimating the energy release rate are proposed: (1) using the calculated values of peak stress and jumps of displacements at the tip of delamination; (2) by evaluation of indeterminacy at the tip of delamination with the use of stresses and derivatives of stresses and displacements. The effect of the transverse shear and Poisson ratio on the results is estimated. A comparison of the numerical and analytical solutions obtained with known results and the ASTM standard is presented.

  15. Ozone concentration and pulmonary response relationships for 6. 6-hour exposures with five hours of moderate exercise to 0. 08, 0. 10, and 0. 12 ppm

    SciTech Connect

    Horstman, D.H.; Folinsbee, L.J.; Ives, P.J.; Abdul-Salaam, S.; McDonnell, W.F. )

    1990-11-01

    The magnitudes of pulmonary responses we previously observed (1) following 6.6-h exposures to 0.12 ppm ozone (O3) suggested that responses would also occur with similar exposures at lower O3 concentrations. The objective of this study was to determine the extent of pulmonary function decrements, respiratory discomfort, and increased airway reactivity to methacholine induced by exposure to O3 below 0.12 ppm. Separate 6.6-h chamber exposures to 0.00, 0.08, 0.10, and 0.12 ppm O3 included six 50-min periods of moderate exercise (VE approximately equal to 39 L/min, HR approximately equal to 115 bpm, and VO2 approximately equal to 1.5 L/min). Each exercise period was followed by 10 min of rest. A 35-min lunch break was included midway through the exposure. Although not intended as an exact simulation, the overall duration, intensity, and metabolic requirements of the exercise performed were representative of a day of moderate to heavy work or play. Preexposure FEV1 averaged 4.39 L, and essentially no change (+0.03 L) occurred with exposure to 0.00 ppm O3. Significant decreases (p less than 0.01) of -0.31, -0.30, and -0.54 L were observed with exposures to 0.08, 0.10, and 0.12 ppm, respectively. The provocative dose of methacholine required to increase airway resistance by 100% (PD100) was 58 cumulative inhalation units (CIU) following exposure to 0.00 ppm and was significantly reduced (p less than 0.01) to 37 CIU at 0.08, 31 CIU at 0.10, and 26 CIU at 0.12 ppm O3; reductions in PD100 are considered indicative of increases in nonspecific airway responsiveness.

  16. Numerical Development

    ERIC Educational Resources Information Center

    Siegler, Robert S.; Braithwaite, David W.

    2016-01-01

    In this review, we attempt to integrate two crucial aspects of numerical development: learning the magnitudes of individual numbers and learning arithmetic. Numerical magnitude development involves gaining increasingly precise knowledge of increasing ranges and types of numbers: from non-symbolic to small symbolic numbers, from smaller to larger…

  17. Hindi Numerals.

    ERIC Educational Resources Information Center

    Bright, William

    In most languages encountered by linguists, the numerals, considered as a paradigmatic set, constitute a morpho-syntactic problem of only moderate complexity. The Indo-Aryan language family of North India, however, presents a curious contrast. The relatively regular numeral system of Sanskrit, as it has developed historically into the modern…

  18. Rates, causes, and dynamic of long-term landscape evolution of the South Atlantic "passive continental margin", Brazil and Namibia, as revealed by thermo-kinematic numerical modeling.

    NASA Astrophysics Data System (ADS)

    Christian, Stippich; Anton, Glasmacher Ulrich; Peter, Christian, Hackspacher

    2014-05-01

    The aim of the research is to quantify the long-term landscape evolution of the South Atlantic passive continental margin (SAPCM) in SE-Brazil and NW-Namibia. Excellent onshore outcrop conditions and complete rift to post-rift archives between Sao Paulo and Porto Alegre and in the transition from Namibia to Angola (onshore Walvis ridge) allow a high precision quantification of exhumation, and uplift rates, influencing physical parameters, long-term acting forces, and process-response systems. Research will integrate the published and partly published thermochronological data from Brazil and Namibia, and test lately published new concepts on causes of long-term landscape evolution at rifted margins. The climate-continental margin-mantle coupled process-response system is caused by the interaction between endogenous and exogenous forces, which are related to the mantle-process driven rift - drift - passive continental margin evolution of the South Atlantic, and the climate change since the Early/Late Cretaceous climate maximum. Special emphasis will be given to the influence of long-living transform faults such as the Florianopolis Fracture Zone (FFZ) on the long-term topography evolution of the SAPCM's. A long-term landscape evolution model with process rates will be achieved by thermo-kinematic 3-D modeling (software code PECUBE and FastCape). Testing model solutions obtained for a multidimensional parameter space against the real thermochronological and geomorphological data set, the most likely combinations of parameter rates, and values can be constrained. The data and models will allow separating the exogenous and endogenous forces and their process rates.

  19. Flow rates in the East Pacific rise (21/sup 0/N) hot springs, and numerical investigations of two regimes of hydrothermal circulation

    SciTech Connect

    Converse, D.R.

    1985-01-01

    Flow rates of 0.7 to 2.4 m/s were measured in the hot springs on the East Pacific Rise (21/sup 0/N). We estimate that the Southwest, National Geographic, and the OBS vents collectively discharge 2 x 10/sup 8/ watts and 150 kg H/sub 2/O/S. The lifetimes of hot springs can not exceed 40,000 years because of the limited heat supply. Mechanical or chemical clogging of the flow routes may shorten these lifetime significantly. We predict that less than 3% of the sulfide particles debouched by the hot springs settle near the vents.

  20. A QUARTER-CENTURY OF OBSERVATIONS OF COMET 10P/TEMPEL 2 AT LOWELL OBSERVATORY: CONTINUED SPIN-DOWN, COMA MORPHOLOGY, PRODUCTION RATES, AND NUMERICAL MODELING

    SciTech Connect

    Knight, Matthew M.; Schleicher, David G.; Schwieterman, Edward W.; Christensen, Samantha R.; Farnham, Tony L.

    2012-11-01

    We report on photometry and imaging of Comet 10P/Tempel 2 obtained at Lowell Observatory from 1983 through 2011. We measured a nucleus rotation period of 8.950 {+-} 0.002 hr from 16 nights of imaging acquired between 2010 September and 2011 January. This rotation period is longer than the period we previously measured in 1999, which was itself longer than the period measured in 1988, and demonstrates that Tempel 2 is continuing to spin down, presumably due to torques caused by asymmetric outgassing. A nearly linear jet was observed which varied little during a rotation cycle in both R and CN images acquired during the 1999 and 2010 apparitions. We measured the projected direction of this jet throughout the two apparitions and, under the assumption that the source region of the jet was near the comet's pole, determined a rotational pole direction of R.A./decl. = 151 Degree-Sign /+59 Degree-Sign from CN measurements and R.A./decl. = 173 Degree-Sign /+57 Degree-Sign from dust measurements (we estimate a circular uncertainty of 3 Degree-Sign for CN and 4 Degree-Sign for dust). Different combinations of effects likely bias both gas and dust solutions and we elected to average these solutions for a final pole direction of R.A./decl. = 162 Degree-Sign {+-} 11 Degree-Sign /+58 Degree-Sign {+-} 1 Degree-Sign . Photoelectric photometry was acquired on 3 nights in 1983, 2 nights in 1988, 19 nights in 1999/2000, and 10 nights in 2010/2011. The activity exhibited a steep 'turn-on' {approx}3 months prior to perihelion (the exact timing of which varies) and a relatively smooth decline after perihelion. The activity during the 1999 and 2010 apparitions was similar; limited data in 1983 and 1988 (along with IUE data from the literature) were systematically higher and the difference cannot be explained entirely by the smaller perihelion distance. We measured a 'typical' composition, in agreement with previous investigators. Monte Carlo numerical modeling with our pole solution best

  1. Surface photovoltage investigations of Cd 1-xMn xTe for x = 0.01 and 0.10

    NASA Astrophysics Data System (ADS)

    Kuźmiński, S.; Szaynok, A. T.

    1988-07-01

    Surface photovoltage investigations of Cd 1- xMn xTe monocrystals for x = 0.01 and 0.10 were performed in the temperature range between 100 and 300 K with a modified Kelvin method at a pressure of 10 -5 Pa. The surfaces with orientation (110) were ground, polished with "Gamal", and rinsed in acetone and alcohol. Three types of effects were observed on the surface spectroscopy curves: A sharp increase in photovoltage, connected with the electron band-to-band transitions for a photon energy equal to the energy gap. Photovoltage quenching attributed to the existence of surface states with energy just above the edge of the valence band. Increase in photovoltage in the range between 0.9 and 1.0 eV resulting from electron transitions between the valence band and energy states connected with manganese ions.

  2. Investigation of dielectric and electrical behaviour of nanocrystalline Zn1-xMnxO (x=0 to 0.10) semiconductors synthesized by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Choudhury, S.; Sain, S.; Mandal, M. K.; Pradhan, S. K.; Meikap, A. K.

    2016-07-01

    The results on the measurement of electric and dielectric behaviour and capacitance-voltage characteristics of Zn1-xMnxO (x=0 to 0.10) nanocrystalline semiconductors are reported. Direct current conductivity increases with the increase Mn concentration and its thermal behavior can be explained by adiabatic polaronic hopping model. The alternating current conductivity obeys a power law of temperature and frequency. The temperature exponent p strongly depends on Mn concentration. The temperature dependence of frequency exponent s suggests that the overlapping large polaron conduction model is the appropriate conduction mechanism for the investigated samples. The interfacial boundaries and grain contribution to the dielectric properties can be identified by the analysis of complex impedance. Relaxation behaviour of the samples can be explained from the analysis of the electric modulus. Formation of Schottky diode can be described from capacitance-voltage characteristic of the samples and different diode parameters can be extracted from it.

  3. Influence of sodium doping on the electrical and magnetic properties of La0.90Li0.10MnO3 manganites

    NASA Astrophysics Data System (ADS)

    Mohamed, H. F.

    2017-02-01

    Monovalent perovskite manganites La0.90Li0.10-xNaxMnO3 were synthesized by using the solid-state reaction method. The crystal structure analysis presented that the samples are a single-phase rhombohedral (R 3 bar c) structure with no detectable impurity phases. Magnetic measurement showed a cusp at a certain temperature TC/F that gradually disappeared with adding the Na content. The samples undergo ferromagnetic-paramagnetic transition, accompanying the metal-semiconductor transition at Tms. There is irreversible on low field M (T)ZFC and M (T)FC curves which gradual decrease with increasing the Na doping. The resistivity values decreased and the Tms increased as doping of sodium increased. In addition, two-transition temperature Tms appeared just by adding the sodium. In short, the influence of partial substitution of lithium by sodium at A-site cation of lanthanum manganite on its physical properties was studied.

  4. Reactions in 1,1,1-trifluoroacetone triggered by low energy electrons (0-10 eV): from simple bond cleavages to complex unimolecular reactions.

    PubMed

    Illenberger, Eugen; Meinke, Martina C

    2014-08-21

    The impact of low energy electrons (0-10 eV) to 1,1,1-trifluoroacetone yields a variety of fragment anions which are formed via dissociative electron attachment (DEA) through three pronounced resonances located at 0.8 eV, near 4 eV, and in the energy range 8-9 eV. The fragment ions arise from different reactions ranging from the direct cleavage of one single or double bond (formation of F(-), CF3(-), O(-), (M-H)(-), and M-F)(-)) to remarkably complex unimolecular reactions associated with substantial geometric and electronic rearrangement in the transitory intermediate (formation of OH(-), FHF(-), (M-HF)(-), CCH(-), and HCCO(-). The ion CCH(-), for example, is formed by an excision of unit from the target molecule through the concerted cleavage of four bonds and recombination to H2O within the neutral component of the reaction.

  5. Ozone-concentration and pulmonary-response relationships for 6. 6-hour exposures with five hours of moderate exercise to 0. 08, 0. 10, and 0. 12 ppm

    SciTech Connect

    Horstman, D.H.; Folinsbee, L.J.; Ives, P.J.; Salaam, S.A.; McDonnell, W.F.

    1990-01-01

    The magnitudes of pulmonary responses the authors previously observed (1) following 6.6-h exposure to 0.12 ppm ozone (O{sub 3}) suggested that responses would also occur with similar exposures at lower O{sub 3} concentrations. The objective of the study was to determine the extent of pulmonary function decrements, respiratory discomfort, and increased airway reactivity to methacholine induced by exposure to O{sub 3} below 0.12 ppm. Separate 6.6-h chamber exposures to 0.00, 0.08, 0.10, and 0.12 ppm O3 included six 50-min periods of moderate exercise (VE = 39 L/min, HR = 115 bpm, and VO2 = 1.5 L/min). Each exercise period was followed by 10 min of rest. A 35-min lunch break was included midway through the exposure. Although not intended as an exact simulation, the overall duration, intensity, and metabolic requirements of the exercise performed were representative of a day of moderate to heavy work or play. Preexposure FEV, averaged 4.39 L, and essentially no change (+0.03 L) occurred with exposure to 0.00 ppm O{sub 3}. Significant decreases (p<0.01) of -0.31, -0.30, and -0.54 L were observed with exposures to 0.08, 0.10, and 0.12 ppm, respectively. The study concludes that exposure to O{sub 3} at levels often found in ambient air while engaged in activity representative of a typical day of moderate to heavy work or play induced clinically meaningful pulmonary responses.

  6. Proportion-corrected scaled voxel models for Japanese children and their application to the numerical dosimetry of specific absorption rate for frequencies from 30 MHz to 3 GHz

    NASA Astrophysics Data System (ADS)

    Nagaoka, Tomoaki; Kunieda, Etsuo; Watanabe, Soichi

    2008-12-01

    The development of high-resolution anatomical voxel models of children is difficult given, inter alia, the ethical limitations on subjecting children to medical imaging. We instead used an existing voxel model of a Japanese adult and three-dimensional deformation to develop three voxel models that match the average body proportions of Japanese children at 3, 5 and 7 years old. The adult model was deformed to match the proportions of a child by using the measured dimensions of various body parts of children at 3, 5 and 7 years old and a free-form deformation technique. The three developed models represent average-size Japanese children of the respective ages. They consist of cubic voxels (2 mm on each side) and are segmented into 51 tissues and organs. We calculated the whole-body-averaged specific absorption rates (WBA-SARs) and tissue-averaged SARs for the child models for exposures to plane waves from 30 MHz to 3 GHz; these results were then compared with those for scaled down adult models. We also determined the incident electric-field strength required to produce the exposure equivalent to the ICNIRP basic restriction for general public exposure, i.e., a WBA-SAR of 0.08 W kg-1.

  7. Structural and dynamic electromagnetic properties of Ni0.27 Cu0.10 Zn0.63 Alx Fe2-x O4

    NASA Astrophysics Data System (ADS)

    Hossen, M. Belal; Hossain, A. K. M. Akther

    2015-08-01

    The influence of Al substitution on the structural and electromagnetic properties of Ni0.27Cu0.10Zn0.63AlxFe2 - xO4; (where x = 0.0 to x = 0.16 with step = 0.02) prepared by the combustion technique, has been investigated. X-ray diffraction analysis confirms the presence of single phase cubic spinel structure without any secondary phase. The lattice constant, theoretical density, bulk density and average grain size decreases with increasing Al content. B-H loops have been traced for all the compositions and the various hysteresis parameters like saturation induction, coercivity, remanance, remanance ratio and power loss have been studied as a function of Al content. The saturation induction and the initial permeability increases with sintering temperature up to 1150 °C where the maximum bulk density is obtained, while for higher sintering temperature they decrease. The variation of complex initial permeability for Al substituted NiCuZn ferrites can be presented as a form of semicircle so called the Cole-Cole plot and the relaxation phenomena were explained with various shapes of the plots. The analysis of complex impedance spectra by an equivalent circuit model were used to separate the grain and grain boundary resistance of various Ni0.27 Cu0.10 Zn0.63 Alx Fe2 - x O4 . The impedance plot showed the first semicircle at high frequency which corresponds to grain effect and the second semicircle at lower frequency which corresponds to grain boundary (conduction phenomenon). Both grain and grain boundary resistance increases with increasing Al content and the relative increase of grain resistance is larger than the grain boundary resistance. The frequency dependent conductivity results support the double (Jonscher's modified) power law,σT (ω) = σ (o) +A1 ω n1 +A2 ω n2 , and the results showed evidence of three types of conduction process at room temperature: (i) low frequency conductivity is due to long-range ordering (frequency independent or its tendency

  8. Numerical Integration

    ERIC Educational Resources Information Center

    Sozio, Gerry

    2009-01-01

    Senior secondary students cover numerical integration techniques in their mathematics courses. In particular, students would be familiar with the "midpoint rule," the elementary "trapezoidal rule" and "Simpson's rule." This article derives these techniques by methods which secondary students may not be familiar with and an approach that…

  9. Numerical Relativity

    NASA Technical Reports Server (NTRS)

    Baker, John G.

    2009-01-01

    Recent advances in numerical relativity have fueled an explosion of progress in understanding the predictions of Einstein's theory of gravity, General Relativity, for the strong field dynamics, the gravitational radiation wave forms, and consequently the state of the remnant produced from the merger of compact binary objects. I will review recent results from the field, focusing on mergers of two black holes.

  10. Theoretical study of hole initiated impact ionization in bulk silicon and GaAs using a wave-vector-dependent numerical transition rate formulation within an ensemble Monte Carlo calculation

    NASA Technical Reports Server (NTRS)

    Oguzman, Ismail H.; Wang, Yang; Kolnik, Jan; Brennan, Kevin F.

    1995-01-01

    In this paper, calculations of the hole initiated interband impact ionization rate in bulk silicon and GaAs are presented based on an ensemble Monte Carlo simulation with the inclusion of a wave-vector-dependent numerical transition rate formulation. The ionization transition rate is determined for each of the three valence bands, heavy, light, and split-off, using Fermi's golden rule with a two-body, screened Coulomb interaction. The dielectric function used within the calculation is assumed to be wave-vector-dependent. Calculations of the field-dependent impact ionization rate as well as the quantum yield are presented. It is found from both the quantum yield results and examination of the hole distribution function that the effective threshold energy for hole initiated impact ionization is relatively soft, similar to that predicted for the corresponding electron initiated ionization events occur more frequently than either heavy or split-offf initiated ionization events in bulk silicon over the applied electric field strengths examined here, 250-500 kV/cm. Conversely,in GaAs, the vast majority of hole initated ionization events originate from holes within the split-off band.

  11. Pressure distributions obtained on a 0.10-scale model of the Space Shuttle Orbiter's forebody in the Ames Unitary Plan Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Siemers, P. M., III; Henry, M. W.

    1986-01-01

    Pressure distribution test data obtained on a 0.10-scale model of the forward fuselage of the Space Shuttle Orbiter are presented without analysis. The tests were completed in the Ames Unitary Wind Tunnel (UPWT). The UPWT tests were conducted in two different test sections operating in the continuous mode, the 8 x 7 feet and 9 x 7 feet test sections. Each test section has its own Mach number range, 1.6 to 2.5 and 2.5 to 3.5 for the 9 x 7 feet and 8 x 7 feet test section, respectively. The test Reynolds number ranged from 1.6 to 2.5 x 10 to the 6th power ft and 0.6 to 2.0 x 10 to the 6th power ft, respectively. The tests were conducted in support of the development of the Shuttle Entry Air Data System (SEADS). In addition to modeling the 20 SEADS orifices, the wind-tunnel model was also instrumented with orifices to match Development Flight Instrumentation (DFI) port locations that existed on the Space Shuttle Columbia (OV-102) during the Orbiter Flight test program. This DFI simulation has provided a means for comparisons between reentry flight pressure data and wind-tunnel and computational data.

  12. Effect of yttrium on microstructure, dielectric, ferroelectric and optical properties of BaZr0.10Ti0.90O3 nanoceramics

    NASA Astrophysics Data System (ADS)

    Kumar Patel, Piyush; Yadav, K. L.

    2014-06-01

    Y3+ doped barium zirconium titanate Ba(1-3x/2)Yx(Zr0.10Ti0.90)O3 ceramics were synthesized by the sol-gel method. Single phase compounds were confirmed by X-ray diffraction. Morphological analysis shows that the addition of Y3+ content inhibits the grain growth and remarkably changes the dielectric and ferroelectric properties. The temperature dependence of dielectric constant shows a change due to the material's diffuse phase transition, with a shift of the Curie temperature towards room temperature. High dielectric constant (~7937) with low dielectric loss (~0.05) was found for x=0.01 composition at Curie temperature. The diffusivity parameter was calculated as a function of Y3+ content and diffuseness was found to increase with increasing Y3+ content. The remnant polarization shows a slight increase up to x=0.01 composition and then decreases with increasing Y3+ content. The UV-visible optical absorption spectra show that the band gap increases from 3.71 eV to 3.96 eV with increasing Y3+ content.

  13. Structural and dielectric studies of Bi (Ni0.45Ti0.45Fe0.10) O3 ceramics

    NASA Astrophysics Data System (ADS)

    Kumar, Nitin; Shukla, Alok; Choudhary, R. N. P.; Behera, C.

    2016-05-01

    In the present investigation, a solid solution of BiFeO3 and NiTiO3 i.e., Bi(Ni0.45Ti0.45Fe0.10)O3 (abbreviation is BNTF) have been synthesized using a solid-state reaction technique. Structural and dielectric properties of BNTF ceramics have been studied in details to understand their properties. Preliminary X-ray diffraction analysis confirm the formation of a new system, which is different from that of its parent compounds. Substitution of a small amount of NiTiO3 into BiFeO3 enhances dielectric and ferroelectric properties, and reduces electrical leakage current or tangent loss. It was shown by XRD that at room temperature structure of the compound is of single-phase with tetragonal symmetry. Some electrical characteristics (dielectric constant and loss) studied over a wide frequency (1 kHz-1 MHz) and temperature (25-400°C) ranges have provided many more interesting information useful for devices.

  14. Identifying the sources of ferromagnetism in sol-gel synthesized Zn1-xCoxO (0≤x≤0.10) nanoparticles

    NASA Astrophysics Data System (ADS)

    Beltrán, J. J.; Barrero, C. A.; Punnoose, A.

    2016-08-01

    We have carefully investigated the structural, optical and electronic properties and related them with changes in the magnetism of sol-gel synthesized Zn1-xCoxO (0≤x≤0.10) nanoparticles. Samples with x≤0.05 were free of spurious phases. Samples with x≤0.03 were found to be with only high spin Co2+ ions into ZnO structure, whereas sample with x=0.05, exhibited the presence of high spin Co2+ and low spin Co3+. We found that the intensity of the main EPR peak associated with Co2+ varies with the nominal Co content in a similar manner as the saturation magnetization and coercive field do. These results point out that the ferromagnetism in these samples should directly be correlated with the presence of divalent cobalt ions. Bound magnetic polaron (BMP) model and the charge transfer model are insufficient to explain the ferromagnetic properties of Zn1-xCoxO nanoparticles. The room temperature ferromagnetism (RTFM) may be originated from a combination of several factors such as the interaction of high spin Co2+ ions, perturbation/alteration and/or changes in the electronic structure of ZnO close to the valence band edge and grain boundary effects.

  15. Numerical Optimization

    DTIC Science & Technology

    1992-12-01

    fisica matematica . ABSTRACT - We consider a new method for the numerical solution both of non- linear systems of equations and of cornplementauity... Matematica , Serie V11 Volume 9 , Roma (1989), 521-543 An Inexact Continuous Method for the Solution of Large Systems of Equations and Complementarity...34 - 00185 Roma - Italy APPENDIX 2 A Quadratically Convergent Method for Unear Programming’ Stefano Herzel Dipartimento di Matematica -G. Castelnuovo

  16. Magnetic and structural characteristics of multiferroic Fe3O4/(Bi3.25Nd0.65Eu0.10)Ti3O12 composite thin films deposited by metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Kobune, Masafumi; Furotani, Ryosuke; Fujita, Satoshi; Kikuchi, Kazuki; Kikuchi, Takeyuki; Fujisawa, Hironori; Shimizu, Masaru; Fukumuro, Naoki

    2016-10-01

    Ferromagnetic magnetite (Fe3O4) thin films for magnetoelectric multiferroic applications were deposited on (200) (Bi3.25Nd0.65Eu0.10)Ti3O12 (BNEuT)/(101) Nb:TiO2 substrates by metalorganic chemical vapor deposition (MOCVD) using an iron(III) tris(2,2,6,6-tetramethyl-3,5-heptanedionato) precursor as the iron source. The BNEuT film utilized as a ferroelectric template material was in the form of freestanding nanoplates with narrow spaces between them. The effects of deposition conditions such as the deposition time and substrate temperature on the magnetic and structural characteristics of the Fe3O4/BNEuT composite films were investigated. All the films consisted of mostly single-phase Fe3O4 with a cubic inverse-spinel structure. When deposition was carried out at temperatures of 400-420 °C, the filling rates of particles introduced into the narrow spaces between the BNEuT nanoplates exhibited high values of 76-89% including the amorphous phase. This suggested that the deposition in this temperature range made progress according to the growth mechanism of MOCVD in the surface reaction rate determining state. Room-temperature magnetic moment-magnetic field curves for Fe3O4 thin films deposited at 400-500 °C for 60 min exhibited narrow rectangular hysteresis loops, indicating typical soft magnetic characteristics.

  17. Enhancing conjugation rate of antibodies to carboxylates: Numerical modeling of conjugation kinetics in microfluidic channels and characterization of chemical over-exposure in conventional protocols by quartz crystal microbalance

    PubMed Central

    Asiaei, Sasan; Smith, Brendan

    2015-01-01

    This research reports an improved conjugation process for immobilization of antibodies on carboxyl ended self-assembled monolayers (SAMs). The kinetics of antibody/SAM binding in microfluidic heterogeneous immunoassays has been studied through numerical simulation and experiments. Through numerical simulations, the mass transport of reacting species, namely, antibodies and crosslinking reagent, is related to the available surface concentration of carboxyl ended SAMs in a microchannel. In the bulk flow, the mass transport equation (diffusion and convection) is coupled to the surface reaction between the antibodies and SAM. The model developed is employed to study the effect of the flow rate, conjugating reagents concentration, and height of the microchannel. Dimensionless groups, such as the Damköhler number, are used to compare the reaction and fluidic phenomena present and justify the kinetic trends observed. Based on the model predictions, the conventional conjugation protocol is modified to increase the yield of conjugation reaction. A quartz crystal microbalance device is implemented to examine the resulting surface density of antibodies. As a result, an increase in surface density from 321 ng/cm2, in the conventional protocol, to 617 ng/cm2 in the modified protocol is observed, which is quite promising for (bio-) sensing applications. PMID:26697125

  18. Development of ferroelectric correlations in the quantum paraelectric and antiferrodistortive regimes in BaxSr1-xTiO3 (x ≤ 0.10)

    NASA Astrophysics Data System (ADS)

    Hassnain Jaffari, G.; Mehmood, Zahid; Iqbal, Asad M.; Hasanain, S. K.; Ismat Shah, S.

    2014-08-01

    The dielectric response ɛ ( T ) of BaxSr1-xTiO3 (x ≤ 0.1) for compositions at and below the critical composition for the ferroelectric transition has been studied. With progressive Ba substitution, the growth of ferroelectric correlations and the weakening of the Antiferrodistortive (AFD) and the quantum paraelectric (QPE) effects have been studied by monitoring the changes in both the in and out of phase parts of the dielectric response. For the compositions close to pure SrTiO3 (x = 0 and x = 0.02), the temperature dependence exhibits a continuous rise in the in-phase part and no ferroelectric peak, consistent with the QPE behavior. With increasing Ba substitution, the low temperature behavior of the in phase part ɛ ' progressively changes from a continuous rise to exhibit a weak maximum and finally to a well developed cusp. For higher Ba concentrations, the low temperature peak (T ˜ 50K), which corresponds to ferroelectric correlations, becomes increasingly sharper until at the critical composition, x = 0.10, the system shows a single well defined ferroelectric peak. However, the out of phase response of the x = 0.1 composition exhibited a succession of three BaTiO3 type ferroelectric transitions. For x ≤ 0.04, the out of phase part shows evidence of an ordering around T ˜ 100K, which is the expected AFD ordering temperature. The deviations of the ɛ ' ( T ) data from the Curie-Weiss law have been analyzed within the frame work of two different theoretical models. It was determined that the dielectric behavior for lower concentrations of Ba (up to x ≤ 0.08) was explainable in terms of a model of non-interacting regions which are themselves homogeneously polarized and undergo a second order phase transition. For the phase boundary composition, i.e., x = 0.1, on the other hand, the data are explainable in terms of the Sherrington and Kirkpatrick model which includes the effects of weak correlations between the polar regions characterized by a glassy

  19. Room temperature long range ferromagnetic ordering in Ni{sub 0.58}Zn{sub 0.42}Co{sub 0.10}Cu{sub 0.10}Fe{sub 1.8}O{sub 4} nano magnetic system

    SciTech Connect

    Sarveena, Chand, Jagdish; Verma, S.; Singh, M.; Kotnala, R. K.; Batoo, K. M.

    2015-06-24

    The structural and magnetic behavior of sol-gel autocombustion synthesized nanocrystalline Ni{sub 0.58}Zn{sub 0.42}Co{sub 0.10}Cu{sub 0.10}Fe{sub 1.8}O{sub 4} have been investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), Mössbauer spectroscopy and vibrating sample magnetometer(VSM). Sample of high purity and high homogeneity was obtained by calcination at low temperature (500°C) resulting in nanoparticles of average diameter ∼15nm as determined by XRD and further confirmed by TEM. X-ray diffraction (XRD) and selective area diffraction (SAED) confirmed the single phase of the sample. Mössbauer results are supported by magnetization data. Well defined sextets and appearance of hysteresis at room temperature indicate the existence of ferromagnetic coupling at room temperature finding material utility in magnetic storage data. The existence of iron in ferric state confirmed by isomer shift is a clear evidence of improved magnetic properties of the present system.

  20. FINAL REPORT INTEGRATED DM1200 MELTER TESTING OF BUBBLER CONFIGURATIONS USING HLW AZ-101 SIMULANTS VSL-04R4800-4 REV 0 10/5/04

    SciTech Connect

    KRUGER AA; MATLACK KS; GONG W; BARDAKCI T; D'ANGELO NA; LUTZE W; CALLOW RA; BRANDYS M; KOT WK; PEGG IL

    2011-12-29

    This report documents melter and off-gas performance results obtained on the DM1200 HLW Pilot Melter during processing of AZ-101 HLW simulants. The tests reported herein are a subset of six tests from a larger series of tests described in the Test Plan for the work; results from the other tests have been reported separately. The solids contents of the melter feeds were based on the WTP baseline value for the solids content of the feeds from pretreatment which changed during these tests from 20% to 15% undissolved solids resulting in tests conducted at two feed solids contents. Based on the results of earlier tests with single outlet 'J' bubblers, initial tests were performed with a total bubbling rate of 651 pm. The first set of tests (Tests 1A-1E) addressed the effects of skewing this total air flow rate back and forth between the two installed bubblers in comparison to a fixed equal division of flow between them. The second set of tests (2A-2D) addressed the effects of bubbler depth. Subsequently, as the location, type and number of bubbling outlets were varied, the optimum bubbling rate for each was determined. A third (3A-3C) and fourth (8A-8C) set of tests evaluated the effects of alternative bubbler designs with two gas outlets per bubbler instead of one by placing four bubblers in positions simulating multiple-outlet bubblers. Data from the simulated multiple outlet bubblers were used to design bubblers with two outlets for an additional set of tests (9A-9C). Test 9 was also used to determine the effect of small sugar additions to the feed on ruthenium volatility. Another set of tests (10A-10D) evaluated the effects on production rate of spiking the feed with chloride and sulfate. Variables held constant to the extent possible included melt temperature, plenum temperature, cold cap coverage, the waste simulant composition, and the target glass composition. The feed rate was increased to the point that a constant, essentially complete, cold cap was achieved

  1. Deuteron NMR study of dynamics and of coexistence of paraelectric and ferroelectric phases in Rb0.90(ND4)0.10D2AsO4

    NASA Astrophysics Data System (ADS)

    Pinto, Nicholas J.; Howell, Francis L.; Schmidt, V. Hugo

    1993-09-01

    The deuteron glass Rb1-x(ND4)xD2AsO4 (DRADA) is a mixed crystal of RbD2AsO4 (DRDA) and ND4D2AsO4 (DADA). Deuteron nuclear magnetic resonance has been performed on the acid and ammonium deuterons. The crystal studied has an ammonium concentration (x=0.10) that puts it in the coexistence region of the phase diagram. Line-shape measurements of the ammonium deuterons show the coexistence of the ferroelectric (FE) and paraelectric (PE) phases as the temperature is lowered below the ferroelectric-phase-transition temperature Tc. The acid deuteron line shape on the other hand is found to broaden as the temperature is reduced but is unaffected by the ferroelectric transition. Spin-lattice-relaxation measurements have been performed and the activation energies for the relaxation processes have been computed. The relaxation-rate anomaly for acid deuterons in the ferroelectric-transition range indicates a short correlation length for the FE phase in the coexistence region of the phase diagram.

  2. Enhanced Shrinkage of Lanthanum Strontium Manganite (La0.90Sr0.10MnO3+δ) Resulting from Thermal and Oxygen Partial Pressure Cycling

    SciTech Connect

    McCarthy, Ben; Pederson, Larry R.; Anderson, Harlan U.; Zhou, Xiao Dong; Singh, Prabhakar; Coffey, Greg W.; Thomsen, Ed C.

    2007-10-01

    Exposure of La0.9Sr0.1MnO3+δ to repeated oxygen partial pressure cycles (air/10 ppm O2) resulted in enhanced densification rates, similar to behavior shown previously due to thermal cycling. Shrinkage rates in the temperature range 700 to 1000oC were orders of magnitude higher than Makipirtti-Meng model estimations based on stepwise isothermal dilatometry results at high temperature. A maximum in enhanced shrinkage due to oxygen partial pressure cycling occurred at 900oC. Shrinkage was greatest when LSM-10 bars that were first equilibrated in air were exposed to gas flows of lower oxygen fugacity than in the reverse direction. The former creates transient cation and oxygen vacancies well above the equilibrium concentration, resulting in enhanced mobility. These vacancies annihilate as Schottky equilibria is re-established, whereas the latter condition does not lead to excess vacancy concentrations.

  3. Population inversion of 1G4 excited state of Tm3+ investigated by means of numerical solutions of the rate equations system in Yb:Tm:Nd:LiYF4 crystal

    NASA Astrophysics Data System (ADS)

    Librantz, André Felipe Henriques; Gomes, Laércio; Courrol, Lilia Coronato; Ranieri, Izilda Marcia; Baldochi, Sonia Lícia

    2009-06-01

    In this work we present the spectroscopic properties of LiYF4 (YLF) single crystals activated with thulium and codoped with ytterbium and neodymium ions. The most important processes that lead to the thulium upconversion emissions in the blue region were identified. A time-resolved luminescence spectroscopy technique was employed to measure the luminescence decays and to determine the most important mechanisms involved in the upconversion process that populates G14(Tm3+) excited state. Analysis of the energy transfer processes dynamics using selective pulsed laser excitations in Yb:Tm:Nd, Tm:Nd, and Tm:Yb YLF crystals shows that the energy transfer from Nd3+ to Yb3+ ions is the mechanism responsible for the enhancement in the blue upconversion efficiency in the Yb:Tm:Nd:YLF when compared with the Yb:Tm system. A study of the energy transfer processes in YLF:Yb:Tm:Nd crystal showed that the G14 excited level is mainly populated by a sequence of two nonradiative energy transfers that start well after the Nd3+ and Tm3+ excitations at 797 nm according to Nd3+(F43/2)→Yb3+(F27/2), followed by Yb3+(F25/2)→Tm(H34)→Tm3+(G14) . Results of numerical simulation of the rate equations system showed that a population inversion for 481.4 nm laser emission line is attained for a pumping rate threshold of 26 s-1, which is equivalent to an intensity of 880 W cm-2 for a continuous laser pumping at 797 nm. On the other hand, a population inversion was not observed for the case of 960 nm (Yb3+) pumping.

  4. Cut-Off Points for Mild, Moderate, and Severe Pain on the Numeric Rating Scale for Pain in Patients with Chronic Musculoskeletal Pain: Variability and Influence of Sex and Catastrophizing

    PubMed Central

    Boonstra, Anne M.; Stewart, Roy E.; Köke, Albère J. A.; Oosterwijk, René F. A.; Swaan, Jeannette L.; Schreurs, Karlein M. G.; Schiphorst Preuper, Henrica R.

    2016-01-01

    Objectives: The 0–10 Numeric Rating Scale (NRS) is often used in pain management. The aims of our study were to determine the cut-off points for mild, moderate, and severe pain in terms of pain-related interference with functioning in patients with chronic musculoskeletal pain, to measure the variability of the optimal cut-off points, and to determine the influence of patients’ catastrophizing and their sex on these cut-off points. Methods: 2854 patients were included. Pain was assessed by the NRS, functioning by the Pain Disability Index (PDI) and catastrophizing by the Pain Catastrophizing Scale (PCS). Cut-off point schemes were tested using ANOVAs with and without using the PSC scores or sex as co-variates and with the interaction between CP scheme and PCS score and sex, respectively. The variability of the optimal cut-off point schemes was quantified using bootstrapping procedure. Results and conclusion: The study showed that NRS scores ≤ 5 correspond to mild, scores of 6–7 to moderate and scores ≥8 to severe pain in terms of pain-related interference with functioning. Bootstrapping analysis identified this optimal NRS cut-off point scheme in 90% of the bootstrapping samples. The interpretation of the NRS is independent of sex, but seems to depend on catastrophizing. In patients with high catastrophizing tendency, the optimal cut-off point scheme equals that for the total study sample, but in patients with a low catastrophizing tendency, NRS scores ≤ 3 correspond to mild, scores of 4–6 to moderate and scores ≥7 to severe pain in terms of interference with functioning. In these optimal cut-off schemes, NRS scores of 4 and 5 correspond to moderate interference with functioning for patients with low catastrophizing tendency and to mild interference for patients with high catastrophizing tendency. Theoretically one would therefore expect that among the patients with NRS scores 4 and 5 there would be a higher average PDI score for those with low

  5. The nonlinear and saturable absorption characteristics of Ga0.90In0.10Se and Ga0.85In0.15Se semiconductor crystals and their amorphous thin films

    NASA Astrophysics Data System (ADS)

    Karatay, Ahmet; Aksoy, Çagla; Gul Yaglioglu, H.; Elmali, Ayhan; Kürüm, Ulaş; Ateş, Aytunç; Gasanly, Nizami

    2011-07-01

    We investigated the nonlinear and saturable absorption characteristics of Ga0.90In0.10Se and Ga0.85In0.15Se semiconductor crystals and their very thin amorphous films by open aperture (OA) Z-scan and pump-probe techniques. The linear absorption spectra indicated a blue shift in energy with increasing film thickness. This can be attributed to the quantum confinement effect. For both 4 ns and 65 ps pulse durations the two photon absorption coefficients of Ga0.90In0.10Se and Ga0.85In0.15Se crystals increased with increasing input intensities. The life time of the localized defect states was measured as 3 ns for both Ga0.90In0.10Se and Ga0.85In0.15Se films while it was around 10 ns for GaSe and InSe films. Open aperture Z-scan experiments with a 4 ns pulse duration did not exhibit any saturable absorption behavior for thin films since the life time of localized defect states was not long enough to saturate these films. Thinner films exhibited saturable absorption and thicker films exhibited nonlinear absorption for a 65 ps pulse duration. This behavior was attributed to increasing localized defect states with increasing film thickness. The experimental curves were fitted to the theory of the open aperture Gaussian-beam Z-scan based on the Adomian decomposition method incorporating one photon, two photon, and free carrier absorptions and their saturations. The lowest saturation intensity threshold for the Ga0.90In0.10Se film was found to be 1.38 × 102 MW cm - 2 for 43 nm film thickness.

  6. Revised numerical wrapper for PIES code

    NASA Astrophysics Data System (ADS)

    Raburn, Daniel; Reiman, Allan; Monticello, Donald

    2015-11-01

    A revised external numerical wrapper has been developed for the Princeton Iterative Equilibrium Solver (PIES code), which is capable of calculating 3D MHD equilibria with islands. The numerical wrapper has been demonstrated to greatly improve the rate of convergence in numerous cases corresponding to equilibria in the TFTR device where magnetic islands are present. The numerical wrapper makes use of a Jacobian-free Newton-Krylov solver along with adaptive preconditioning and a sophisticated subspace-restricted Levenberg-Marquardt backtracking algorithm. The details of the numerical wrapper and several sample results are presented.

  7. Results of an air data probe investigation utilizing a 0.10 scale orbiter forebody (model 57-0) in the Ames Research Center 14-foot wind tunnel (OA220)

    NASA Technical Reports Server (NTRS)

    Esparza, V.; Thornton, D. E.

    1976-01-01

    Results are presented of a 0.10 scale orbiter forebody test with left and right mounted air data probes (ADP) as well as a flight test probe (nose boom). Left and right ADP data were obtained at Mach numbers of .3, .4, .5, .6, .7, .8, .85, .9, .95, .98, 1.05 and 1.1 through a Reynolds number range of 1.3 to 4.4 million. Nose boom data were obtained at Mach numbers of .3, .4, .5, .6, .7, .9 and .98.

  8. Sub-10 μm grain size, Ba1-xCaxTi0.9Zr0.1O3 (x = 0.10 and x = 0.15) piezoceramics processed using a reduced thermal treatment

    NASA Astrophysics Data System (ADS)

    Reyes-Montero, A.; Pardo, L.; López-Juárez, R.; González, A. M.; Rea-López, S. O.; Cruz, M. P.; Villafuerte-Castrejón, M. E.

    2015-06-01

    The solid-state synthesis of Ba1-xCaxTi0.9Zr0.1O3 (x = 0.10, 0.15) (BCTZ) powder and the processing method of ceramics, by the use of reduced synthesis time and temperature (1250 °C for 2 h), are reported. Homogeneous and dense (≥95%) ceramic microstructures with sub-10 μm grain size were obtained under all sintering conditions. A comparative study of their ferro-piezoelectric properties as a function of sintering temperatures is presented. The study shows the role of the grain size effect for improving both piezoelectric and ferroelectric properties of these materials. With an increase of the sintering temperature, grain growth was promoted; therefore, higher ferro-piezoelectric values were obtained (at 1400 °C, for x = 0.10: d33 = 300 pC/N, {{d}31}=-150 pC/N, kp = 48% for x = 0.15: d33 = 410 pC/N, d31 =-154 pC/N, kp = 50%). In addition, a diffuse phase transition is observed in these BCTZ ceramics with a Curie temperature near 100 °C at 1 kHz.

  9. Composition and temperature dependence of ferroelectric and pyroelectric properties of (1 − x)[PMN–PT(65/35)]–xPZ (0 ≤ x ≤ 0.10) ceramics

    SciTech Connect

    Jiang, Tong; Li, Qiang; Yan, Qingfeng; Luo, Nengneng; Zhang, Yiling; Chu, Xiangcheng

    2014-11-15

    Highlights: • PMN–PT–PZ ceramics with PZ content smaller than 0.10 mol% were synthesized. • T{sub rt} of the PMN–PT–PZ ceramics increased linearly with the increase of PZ constant. • A mutation of the ferroelectric and pyroelectric properties was observed near T{sub rt}. - Abstract: (1 − x)[Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}–PbTiO{sub 3} (65/35)]–xPbZrO{sub 3} (PMN–PT–PZ) ceramics near morphotropic phase boundary with 0 ≤ x ≤ 0.10 were synthesized via the conventional solid-state reaction method. X-ray diffraction and variable temperature dielectric property characterization indicated that the rhombohedral to tetragonal phase transition temperature (T{sub rt}) increased linearly with the increase of PZ constant. The composition and temperature dependence of their ferroelectric and pyroelectric properties were also investigated. The results showed that there appeared mutation for remnant polarization, coercive field, as well as pyroelectric coefficient at the temperate range near T{sub rt}, which was ascribed to the reorientation of dipoles caused by the rhombohedral–tetragonal phase transition.

  10. Moore's Law and Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Voller, V. R.; Porté-Agel, F.

    2002-07-01

    An estimate of the rate of increase in numerical simulation grid sizes with time is obtained by counting the grids (measured in terms of number of node points) reported in the nine volumes of an established proceedings on the numerical modeling of solidification phenomena dating back to 1980. It is shown that the largest grids used in a given year increase at a rate consistent with the well-known Moore's law on computing power, i.e., the number of nodes in the grids double every 18 months. From this observation, approximate bounds on the available grid size in a current year are established. This approximation is used to provide projections as to when, assuming Moore's law continues to hold, direct simulations of physical phenomena, which resolve to the smallest scale present, will be achievable.

  11. Numerical accuracy assessment

    NASA Astrophysics Data System (ADS)

    Boerstoel, J. W.

    1988-12-01

    A framework is provided for numerical accuracy assessment. The purpose of numerical flow simulations is formulated. This formulation concerns the classes of aeronautical configurations (boundaries), the desired flow physics (flow equations and their properties), the classes of flow conditions on flow boundaries (boundary conditions), and the initial flow conditions. Next, accuracy and economical performance requirements are defined; the final numerical flow simulation results of interest should have a guaranteed accuracy, and be produced for an acceptable FLOP-price. Within this context, the validation of numerical processes with respect to the well known topics of consistency, stability, and convergence when the mesh is refined must be done by numerical experimentation because theory gives only partial answers. This requires careful design of text cases for numerical experimentation. Finally, the results of a few recent evaluation exercises of numerical experiments with a large number of codes on a few test cases are summarized.

  12. Numerical models of complex diapirs

    NASA Astrophysics Data System (ADS)

    Podladchikov, Yu.; Talbot, C.; Poliakov, A. N. B.

    1993-12-01

    Numerically modelled diapirs that rise into overburdens with viscous rheology produce a large variety of shapes. This work uses the finite-element method to study the development of diapirs that rise towards a surface on which a diapir-induced topography creeps flat or disperses ("erodes") at different rates. Slow erosion leads to diapirs with "mushroom" shapes, moderate erosion rate to "wine glass" diapirs and fast erosion to "beer glass"- and "column"-shaped diapirs. The introduction of a low-viscosity layer at the top of the overburden causes diapirs to develop into structures resembling a "Napoleon hat". These spread lateral sheets.

  13. Evolution of the Electronic State through the Reduction Annealing in Electron-Doped Pr1.3-xLa0.7CexCuO4+δ (x=0.10) Single Crystals: Antiferromagnetism, Kondo Effect, and Superconductivity

    NASA Astrophysics Data System (ADS)

    Adachi, Tadashi; Mori, Yosuke; Takahashi, Akira; Kato, Masatsune; Nishizaki, Terukazu; Sasaki, Takahiko; Kobayashi, Norio; Koike, Yoji

    2013-06-01

    The evolution of the electronic state through the reduction annealing has been investigated in electron-doped Pr1.3-xLa0.7CexCuO4+δ (x=0.10) single crystals with the so-called T' structure. From the ab-plane and c-axis electrical resistivity measurements in magnetic fields, it has been found that, through the reduction annealing, the strongly localized state of carriers accompanied by the antiferromagnetic (AF) pseudogap in the as-grown crystal changes to a metallic state bringing about the Kondo effect without AF pseudogap and to a superconducting state. These results are able to be understood in terms of a model based on the strong electron correlation. The complete removal of excess oxygen in the T'-cuprates is expected to result in the appearance of superconductivity in a wide range of the Ce concentration including the parent compound of x=0.

  14. Band alignment of InAs1-xSbx (0.050.10 heterostructures

    NASA Astrophysics Data System (ADS)

    Wu, Chen-Jun; Tsai, Gene; Lin, Hao-Hsiung

    2009-05-01

    We determined the unstrained conduction-band and valence-band edge energies of InAs1-xSbx (0.050.10 quantum wells (QWs) that was measured in the temperature range 10-300 K. The results reveal that the QWs exhibit type-I band alignment. Furthermore, the valence band accounts for 65% of the energy-gap bowing of InAsSb. We propose a valence-band anticrossing (VBAC) model to explain the bowing of the valence band in InAsSb. Moreover, the spin-orbit splitting energy of InAsSb calculated by our VBAC model fits well with the experimental results reported in previous studies.

  15. Strain and vacancy cluster behavior of vanadium and tungsten-doped Ba[Zr{sub 0.10}Ti{sub 0.90}]O{sub 3} ceramics

    SciTech Connect

    Moura, F.; Simoes, A. Z.; Cavalcante, L. S.; Zampieri, M.; Varela, J. A.; Longo, E.; Zaghete, M. A.; Simoes, M. L.

    2008-01-21

    Strain and vacancy clusters behavior of polycrystalline vanadium (V) and tungsten (W)-doped Ba[Zr{sub 0.10}Ti{sub 0.90}]O{sub 3}, (BZT:2%V) and (BZT:2%W) ceramics obtained by the mixed oxide method was evaluated. Substitution of V and W reduces the distortion of octahedral clusters, decreasing the Raman modes. Electron paramagnetic resonance data indicate that the addition of dopants leads to defects and symmetry changes in the BZT lattice. Remnant polarization and coercive field are affected by V and W substitution due the electron-relaxation mode. The unipolar strain E curves as a function of electric field reach its maximum value for BZT:2%V and BZT:2%W ceramics.

  16. High-Speed Wind-Tunnel Investigation of the Lateral Stability Characteristics of a 0.10-Scale Model of the Grumman XF9F-2 Airplane, TED No. NACA DE 301

    NASA Technical Reports Server (NTRS)

    Polhamus, Edward C.; King, Thomas J., Jr.

    1949-01-01

    An investigation was made in the Langley high-speed 7- by 10-foot tunnel to determine the high-speed lateral and directional stability characteristics of a 0.10-scale model of the Grumman XF9F-2 airplane in the Mach number range from 0.40 to 0.85. The results indicate that static lateral and directional stability is present throughout the Mach number range investigated although in the Mach number range from 0.75 to 0.85 there is an appreciable decrease in rolling moment due to sideslip. Calculations of the dynamic stability indicate that according to current flying-quality requirements the damping of the lateral oscillation, although probably satisfactory for the sea-level condition, may not be satisfactory for the majority of the altitude conditions investigated

  17. Synthesis, electrical and thermal properties of Bi{sub 4}V{sub 2−x}Y{sub x}O{sub 11} (x=0.0 and 0.10) ceramics

    SciTech Connect

    Sahu, S. Roy, M.

    2014-04-24

    Polycrystalline ceramic samples of Bi{sub 4}V{sub 2−x}Y{sub x}O{sub 11} (x=0.0 and 0.10) have been synthesized by standard solid state reaction method. The formation of the compounds has been verified by room temperature (RT) X-ray diffraction. The frequency and temperature dependent dielectric constant of both the compounds have been measured. The dielectric studies indicate that the materials are highly lossy. The dc conductivity of the materials has been measured as a function of temperature from RT to 653K and their activation energies were calculated using Arrhenius relation σ = σ{sub o}exp(-Ea/kT). The specific heat and heat flow of both the compounds were determined as a function of temperature using Modulated Differential Scanning Calorimetry (MDSC)

  18. Intrabeam scattering formulas for fast numerical evaluation

    SciTech Connect

    Nagaitsev, Sergei; /Fermilab

    2005-03-01

    Expressions for small-angle multiple intrabeam scattering (IBS) emittance growth rates are normally expressed through integrals, which require a numeric evaluation at various locations of the accelerator lattice. In this paper, I demonstrate that the IBS growth rates can be presented in closed-form expressions with the help of the so-called symmetric elliptic integral. This integral can be evaluated numerically by a very efficient recursive method by employing the duplication theorem. Several examples of IBS rates for a smooth-lattice approximation, equal transverse temperatures and plasma temperature relaxation are given.

  19. In-situ Electric Field-Induced Modulation of Photoluminescence in Pr-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 Lead-Free Ceramics

    PubMed Central

    Sun, Hai Ling; Wu, Xiao; Chung, Tat Hang; Kwok, K. W.

    2016-01-01

    Luminescent materials with dynamic photoluminescence activity have aroused special interest because of their potential widespread applications. One proposed approach of directly and reversibly modulating the photoluminescence emissions is by means of introducing an external electric field in an in-situ and real-time way, which has only been focused on thin films. In this work, we demonstrate that real-time electric field-induced photoluminescence modulation can be realized in a bulk Ba0.85Ca0.15Ti0.90Zr0.10O3 ferroelectric ceramic doped with 0.2 mol% Pr3+, owing to its remarkable polarization reversal and phase evolution near the morphotropic phase boundary. Along with in-situ X-ray diffraction analysis, our results reveal that an applied electric field induces not only typical polarization switching and minor crystal deformation, but also tetragonal-to-rhombohedral phase transformation of the ceramic. The electric field-induced phase transformation is irreversible and engenders dominant effect on photoluminescence emissions as a result of an increase in structural symmetry. After it is completed in a few cycles of electric field, the photoluminescence emissions become governed mainly by the polarization switching, and thus vary reversibly with the modulating electric field. Our results open a promising avenue towards the realization of bulk ceramic-based tunable photoluminescence activity with high repeatability, flexible controllability, and environmental-friendly chemical process. PMID:27339815

  20. Synthesis and crystal structure of 4-(2-ammonio­eth­yl)morpholin-4-ium di­chlorido­diiodido­cadmate/chlorido­tri­iodido­cadmate (0.90/0.10)

    PubMed Central

    Mahbouli Rhouma, Najla; Rayes, Ali; Mezzadri, Francesco; Calestani, Gianluca; Loukil, Mohamed

    2016-01-01

    The crystal structure of the title compound, (C6H16N2O)[CdCl1.90I2.10], a new organic–inorganic hybrid salt synthesized in the form of single crystals, consists of discrete statistically distributed di­chlorido­diiodido­cadmate/chlorido­tri­iodido­cadmate anions (occupancy ratio 0.90:0.10) and 4-(2-ammonio­eth­yl)morpholin-4-ium cations, [NH3(CH2)2NH(CH2)4O]2+. The cations are linked by inter­molecular N—H⋯O hydrogen bonds, forming corrugated chains extending parallel to the c axis. The [CdCl1.90I2.10]2− tetra­halidocadmate anions lie between the chains to maximize the electrostatic inter­actions and are connected with the organic cations via N—H⋯Cl and C—H⋯Cl(I) hydrogen bonds developing in the ab plane and leading to the formation of a three-dimensional network structure. The tetra­coordinate CdII atom has a distorted tetra­hedral conformation, with a τ4 index of 0.87. PMID:27746929

  1. Average and local atomic-scale structure in BaZrxTi(1-x)O3 (x = 0. 10, 0.20, 0.40) ceramics by high-energy x-ray diffraction and Raman spectroscopy.

    PubMed

    Buscaglia, Vincenzo; Tripathi, Saurabh; Petkov, Valeri; Dapiaggi, Monica; Deluca, Marco; Gajović, Andreja; Ren, Yang

    2014-02-12

    High-resolution x-ray diffraction (XRD), Raman spectroscopy and total scattering XRD coupled to atomic pair distribution function (PDF) analysis studies of the atomic-scale structure of archetypal BaZrxTi(1-x)O3 (x = 0.10, 0.20, 0.40) ceramics are presented over a wide temperature range (100-450 K). For x = 0.1 and 0.2 the results reveal, well above the Curie temperature, the presence of Ti-rich polar clusters which are precursors of a long-range ferroelectric order observed below TC. Polar nanoregions (PNRs) and relaxor behaviour are observed over the whole temperature range for x = 0.4. Irrespective of ceramic composition, the polar clusters are due to locally correlated off-centre displacement of Zr/Ti cations compatible with local rhombohedral symmetry. Formation of Zr-rich clusters is indicated by Raman spectroscopy for all compositions. Considering the isovalent substitution of Ti with Zr in BaZrxTi1-xO3, the mechanism of formation and growth of the PNRs is not due to charge ordering and random fields, but rather to a reduction of the local strain promoted by the large difference in ion size between Zr(4+) and Ti(4+). As a result, non-polar or weakly polar Zr-rich clusters and polar Ti-rich clusters are randomly distributed in a paraelectric lattice and the long-range ferroelectric order is disrupted with increasing Zr concentration.

  2. The coercivity and domain structure of Sm(CobalFe0.1CuxZr0.033)6.9 (x = 0.07, 0.10, 0.13) high temperature permanent magnets

    NASA Astrophysics Data System (ADS)

    Wang, Guangjian; Jiang, Chengbao

    2012-08-01

    The domain structures have been found to be different in the Sm(CobalFe0.1CuxZr0.033)6.9 magnets (x = 0.07, 0.10, 0.13) with the abnormal and normal temperature dependence of coercivity by quenching at 400 °C and 600 °C, respectively. In the magnets with abnormal temperature dependence of coercivity, the domain structure shows more like the strip domain which is typical domain shape of the ferromagnets of easy-axis anisotropy, while the domain structure becomes narrower and shows more additional domains in the magnets with normal temperature dependence of coercivity. The difference of the domain structure can be attributed to whether the Cu is homogeneous in the 1:5 cell boundary phase, and this will lead to different domain wall pinning and different temperature dependence of coercivity in the magnets according to the noncontinuous domain wall pinning model. As the Cu is nearly homogeneous in the 1:5 cell boundary phase, the domain wall should be pinned near the interface between 2:17 cell phase and 1:5 cell boundary phase, and the coercivity shows abnormal temperature dependence. On the contrary, the domain wall should be pinned into the 1:5 cell boundary phase, where a gradient of Cu content exists, leading to the normal temperature of coercivity.

  3. The enhancing performance of (Ba{sub 0.85}Ca{sub 0.15}Ti{sub 0.90}Zr{sub 0.10})O{sub 3} ceramics by tuning anatase–rutile phase structure

    SciTech Connect

    Chao, Xiaolian; Wang, Juanjuan; Wang, Zhongming; Zhang, Ting; Yang, Zupei; Li, Guangzhao

    2016-04-15

    Graphical abstract: Titanium dioxide (TiO{sub 2}) with different phase structure had interesting influence on the crystal structure, microstructure, the sintering temperature and electrical properties. - Highlights: • BCZT ceramics were prepared using either anatase or rutile structures as Ti source. • Orthorhombic and tetragonal mixture structure was exhibited by adjusting Ti source. • The optimal properties were observed in BCZT ceramics with rutile titanium dioxide. - Abstract: To research effect of raw materials TiO{sub 2} with the phase structures on the crystal structure, microstructure and electrical properties of lead-free (Ba{sub 0.85}Ca{sub 0.15})(Ti{sub 0.90}Zr{sub 0.10})O{sub 3} (BCZT) ceramics, BCZT ceramics using either anatase or rutile as Ti source were synthesized by solid-state reaction. Titanium dioxide (TiO{sub 2}) with anatase/rutile phase structures had interesting influence on the crystal structure, microstructure and the sintering temperature by the X-ray diffraction and SEM, which also played an important role in improved electrical properties. The BCZT ceramics with rutile titanium dioxide demonstrated optimal piezoelectric and dielectric properties: d{sub 33} = 590 pC/N, k{sub p} = 0.46, ε{sub r} = 2810, tanδ = 0.014 and T{sub c} = 91 °C, which was obviously superior to BCZT ceramics with anatase titanium dioxide.

  4. In-situ Electric Field-Induced Modulation of Photoluminescence in Pr-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 Lead-Free Ceramics

    NASA Astrophysics Data System (ADS)

    Sun, Hai Ling; Wu, Xiao; Chung, Tat Hang; Kwok, K. W.

    2016-06-01

    Luminescent materials with dynamic photoluminescence activity have aroused special interest because of their potential widespread applications. One proposed approach of directly and reversibly modulating the photoluminescence emissions is by means of introducing an external electric field in an in-situ and real-time way, which has only been focused on thin films. In this work, we demonstrate that real-time electric field-induced photoluminescence modulation can be realized in a bulk Ba0.85Ca0.15Ti0.90Zr0.10O3 ferroelectric ceramic doped with 0.2 mol% Pr3+, owing to its remarkable polarization reversal and phase evolution near the morphotropic phase boundary. Along with in-situ X-ray diffraction analysis, our results reveal that an applied electric field induces not only typical polarization switching and minor crystal deformation, but also tetragonal-to-rhombohedral phase transformation of the ceramic. The electric field-induced phase transformation is irreversible and engenders dominant effect on photoluminescence emissions as a result of an increase in structural symmetry. After it is completed in a few cycles of electric field, the photoluminescence emissions become governed mainly by the polarization switching, and thus vary reversibly with the modulating electric field. Our results open a promising avenue towards the realization of bulk ceramic-based tunable photoluminescence activity with high repeatability, flexible controllability, and environmental-friendly chemical process.

  5. In-situ Electric Field-Induced Modulation of Photoluminescence in Pr-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 Lead-Free Ceramics.

    PubMed

    Sun, Hai Ling; Wu, Xiao; Chung, Tat Hang; Kwok, K W

    2016-06-24

    Luminescent materials with dynamic photoluminescence activity have aroused special interest because of their potential widespread applications. One proposed approach of directly and reversibly modulating the photoluminescence emissions is by means of introducing an external electric field in an in-situ and real-time way, which has only been focused on thin films. In this work, we demonstrate that real-time electric field-induced photoluminescence modulation can be realized in a bulk Ba0.85Ca0.15Ti0.90Zr0.10O3 ferroelectric ceramic doped with 0.2 mol% Pr(3+), owing to its remarkable polarization reversal and phase evolution near the morphotropic phase boundary. Along with in-situ X-ray diffraction analysis, our results reveal that an applied electric field induces not only typical polarization switching and minor crystal deformation, but also tetragonal-to-rhombohedral phase transformation of the ceramic. The electric field-induced phase transformation is irreversible and engenders dominant effect on photoluminescence emissions as a result of an increase in structural symmetry. After it is completed in a few cycles of electric field, the photoluminescence emissions become governed mainly by the polarization switching, and thus vary reversibly with the modulating electric field. Our results open a promising avenue towards the realization of bulk ceramic-based tunable photoluminescence activity with high repeatability, flexible controllability, and environmental-friendly chemical process.

  6. Doping effect on the structural properties of Cu1-x(Ni, Zn, Al and Fe)xO samples (00.10): An experimental and computational study

    NASA Astrophysics Data System (ADS)

    Amaral, J. B.; Araujo, R. M.; Pedra, P. P.; Meneses, C. T.; Duque, J. G. S.; dos S. Rezende, M. V.

    2016-09-01

    In this work, the effect of insertion of transition metal, TM (=Ni, Zn, Al and Fe), ions in Cu1-xTMxO samples (00.10) prepared via co-precipitation method is studied through experimental and computational methods. The analyses of X-ray diffraction (XRD) patterns using Rietveld refinement show that i) at x=0, all samples present a monoclinic crystal system with space group C2/c and ii) for increasing the TM-doping, Ni and Zn-doped samples show a small amount of spurious phases for concentrations above x=0.05. Based on these results, a defect disorder study for using atomistic computational simulations which is based on the lattice energy minimization technique is employed to predict the location of the dopant ions in the structure. In agreement with XRD data, our computational results indicate that the trivalent (Al and Fe ions) are more favorable to be incorporated into CuO matrix than the divalent (Ni and Zn ions).

  7. High charge-discharge performance of Pb0.98La0.02(Zr0.35Sn0.55Ti0.10)0.995O3 antiferroelectric ceramics

    NASA Astrophysics Data System (ADS)

    Xu, Chenhong; Liu, Zhen; Chen, Xuefeng; Yan, Shiguang; Cao, Fei; Dong, Xianlin; Wang, Genshui

    2016-08-01

    The energy storage performance and charge-discharge properties of Pb0.98La0.02(Zr0.35Sn0.55Ti0.10)0.995O3 (PLZST) antiferroelectric ceramics were investigated through directly measuring the hysteresis loops and pulse discharge current-time curves. The energy density only varies 0.2% per degree from 25 °C to 85 °C, and the energy efficiency maintains at about 90%. Furthermore, an approximate calculating model of maximum power density pmax was established for the discharge process. Under a relatively high working electric field (8.2 kV/mm), this ceramics possess a greatly enhanced power density of 18 MW/cm3. Moreover, the pulse power properties did not show degradation until 1500 times of charge-discharge cycling. The large released energy density, high energy efficiency, good temperature stability, greatly enhanced power density, and excellent fatigue endurance combined together make this PLZST ceramics an ideal candidate for pulse power applications.

  8. Rocket engine numerical simulation

    NASA Technical Reports Server (NTRS)

    Davidian, Ken

    1993-01-01

    The topics are presented in view graph form and include the following: a definition of the rocket engine numerical simulator (RENS); objectives; justification; approach; potential applications; potential users; RENS work flowchart; RENS prototype; and conclusions.

  9. Rocket engine numerical simulator

    NASA Technical Reports Server (NTRS)

    Davidian, Ken

    1993-01-01

    The topics are presented in viewgraph form and include the following: a rocket engine numerical simulator (RENS) definition; objectives; justification; approach; potential applications; potential users; RENS work flowchart; RENS prototype; and conclusion.

  10. Structure, sintering behavior, and microwave dielectric properties of (1 − x) CaWO{sub 4}–xYLiF{sub 4} (0.02 ≤ x ≤ 0.10) ceramics

    SciTech Connect

    Bian, Jian Jiang Ding, Yao Min

    2015-07-15

    Highlights: • Structure, sinterability, and dielectric properties of CaWO{sub 4}–YLiF{sub 4} were studied. • CaWO{sub 4} can be densified (TD 97%) at 750 °C/2 h by YLiF{sub 4} doping. • Excellent microwave dielectric properties could be obtained. - Abstract: Structures and sintering behaviors of (1 − x) CaWO{sub 4}–xYLiF{sub 4} (0.02 ≤ x ≤ 0.10) ceramic have been investigated by X-ray powder diffraction (XRD), dilatometry, scanning electron microscopy (SEM) in this work. The microwave dielectric properties were measured with a network analyzer at the frequency of about 8–15 GHz. Limited solid solution could be formed within the compositional range of x < 0.1. The sintering temperature of CaWO{sub 4} could successfully be reduced to ∼750 °C/2 h by doping with small amount of YLiF{sub 4}. An optimized microwave dielectric properties with ϵ{sub r} = 10.5, Q × f = 73 000 GHz and τ{sub f} = −37.7 ppm/°C could be obtained after sintered at the 750 °C for 2 h for x = 0.04 compositions. XRD and back scattering SEM analysis indicated that the (1 − x) CaWO{sub 4}–xYLiF{sub 4} (x = 0.04) ceramic could be chemically compatible with Ag after sintering at 750 °C/2 h.

  11. Synthesis, magnetic and dielectric characterization of nanocrystalline solid solutions of In{sub 2−x}Ni{sub x}O{sub 3} (x = 0.05, 0.10 and 0.15)

    SciTech Connect

    Ahmad, Tokeer; Khatoon, Sarvari; Coolahan, Kelsey

    2013-09-01

    Graphical abstract: Monophasic and crystalline In{sub 2−x}Ni{sub x}O{sub 3} nanoparticles of size 8–15 nm have been synthesized solvothermally and showed red shift in energy band gap which decreases on increasing Ni{sup 2+} concentration in In{sub 2}O{sub 3} host lattice. - Highlights: • Monophasic Ni-doped In{sub 2}O{sub 3} nanoparticles by solvothermal method for first time. • Plausible reaction mechanism using thermogravimetric analysis. • High surface area with small particle size obtained. • Solid solutions exhibit paramagnetism with very weak antiferromagnetic interactions. - Abstract: In{sub 2−x}Ni{sub x}O{sub 3} (x = 0.05, 0.10 and 0.15) nanoparticles were successfully synthesized by solvothermal method by the thermal decomposition of oxalate precursor at 450 °C for the first time. X-ray diffraction studies showed the formation of highly crystalline and monophasic cubic structure of In{sub 2}O{sub 3} which is attributed to the formation of solid solution. These nanoparticles show good optical transmittance in the visible region. Optical measurements showed an energy band gap which decreases with increasing Ni concentration. The grain size decreases from 15 nm to 8 nm and surface area increases from 90 to 254 m{sup 2} g{sup −1} on increasing the Ni concentration. High dielectric constant and dielectric loss has been obtained which indicates the conducting nature of these solid solutions. Magnetic measurements showed that the samples are strong paramagnetic in nature with very weak antiferromagnetic interactions. No evidence of ferromagnetism is observed for these solid solutions at room temperature.

  12. Phase equilibria in the Mo-Fe-P system at 800 °C and structure of ternary phosphide (Mo(1-x)Fe(x))3P (0.10 ≤ x ≤ 0.15).

    PubMed

    Oliynyk, Anton O; Lomnytska, Yaroslava F; Dzevenko, Mariya V; Stoyko, Stanislav S; Mar, Arthur

    2013-01-18

    Construction of the isothermal section in the metal-rich portion (<67 atom % P) of the Mo-Fe-P phase diagram at 800 °C has led to the identification of two new ternary phases: (Mo(1-x)Fe(x))(2)P (x = 0.30-0.82) and (Mo(1-x)Fe(x))(3)P (x = 0.10-0.15). The occurrence of a Co(2)Si-type ternary phase (Mo(1-x)Fe(x))(2)P, which straddles the equiatomic composition MoFeP, is common to other ternary transition-metal phosphide systems. However, the ternary phase (Mo(1-x)Fe(x))(3)P is unusual because it is distinct from the binary phase Mo(3)P, notwithstanding their similar compositions and structures. The relationship has been clarified through single-crystal X-ray diffraction studies on Mo(3)P (α-V(3)S-type, space group I42m, a = 9.7925(11) Å, c = 4.8246(6) Å) and (Mo(0.85)Fe(0.15))(3)P (Ni(3)P-type, space group I4, a = 9.6982(8) Å, c = 4.7590(4) Å) at -100 °C. Representation in terms of nets containing fused triangles provides a pathway to transform these closely related structures through twisting. Band structure calculations support the adoption of these structure types and the site preference of Fe atoms. Electrical resistivity measurements on (Mo(0.85)Fe(0.15))(3)P reveal metallic behavior but no superconducting transition.

  13. Numerical Techniques in Acoustics

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J. (Compiler)

    1985-01-01

    This is the compilation of abstracts of the Numerical Techniques in Acoustics Forum held at the ASME's Winter Annual Meeting. This forum was for informal presentation and information exchange of ongoing acoustic work in finite elements, finite difference, boundary elements and other numerical approaches. As part of this forum, it was intended to allow the participants time to raise questions on unresolved problems and to generate discussions on possible approaches and methods of solution.

  14. Frontiers in Numerical Relativity

    NASA Astrophysics Data System (ADS)

    Evans, Charles R.; Finn, Lee S.; Hobill, David W.

    2011-06-01

    Preface; Participants; Introduction; 1. Supercomputing and numerical relativity: a look at the past, present and future David W. Hobill and Larry L. Smarr; 2. Computational relativity in two and three dimensions Stuart L. Shapiro and Saul A. Teukolsky; 3. Slowly moving maximally charged black holes Robert C. Ferrell and Douglas M. Eardley; 4. Kepler's third law in general relativity Steven Detweiler; 5. Black hole spacetimes: testing numerical relativity David H. Bernstein, David W. Hobill and Larry L. Smarr; 6. Three dimensional initial data of numerical relativity Ken-ichi Oohara and Takashi Nakamura; 7. Initial data for collisions of black holes and other gravitational miscellany James W. York, Jr.; 8. Analytic-numerical matching for gravitational waveform extraction Andrew M. Abrahams; 9. Supernovae, gravitational radiation and the quadrupole formula L. S. Finn; 10. Gravitational radiation from perturbations of stellar core collapse models Edward Seidel and Thomas Moore; 11. General relativistic implicit radiation hydrodynamics in polar sliced space-time Paul J. Schinder; 12. General relativistic radiation hydrodynamics in spherically symmetric spacetimes A. Mezzacappa and R. A. Matzner; 13. Constraint preserving transport for magnetohydrodynamics John F. Hawley and Charles R. Evans; 14. Enforcing the momentum constraints during axisymmetric spacelike simulations Charles R. Evans; 15. Experiences with an adaptive mesh refinement algorithm in numerical relativity Matthew W. Choptuik; 16. The multigrid technique Gregory B. Cook; 17. Finite element methods in numerical relativity P. J. Mann; 18. Pseudo-spectral methods applied to gravitational collapse Silvano Bonazzola and Jean-Alain Marck; 19. Methods in 3D numerical relativity Takashi Nakamura and Ken-ichi Oohara; 20. Nonaxisymmetric rotating gravitational collapse and gravitational radiation Richard F. Stark; 21. Nonaxisymmetric neutron star collisions: initial results using smooth particle hydrodynamics

  15. Numerical ability predicts mortgage default.

    PubMed

    Gerardi, Kristopher; Goette, Lorenz; Meier, Stephan

    2013-07-09

    Unprecedented levels of US subprime mortgage defaults precipitated a severe global financial crisis in late 2008, plunging much of the industrialized world into a deep recession. However, the fundamental reasons for why US mortgages defaulted at such spectacular rates remain largely unknown. This paper presents empirical evidence showing that the ability to perform basic mathematical calculations is negatively associated with the propensity to default on one's mortgage. We measure several aspects of financial literacy and cognitive ability in a survey of subprime mortgage borrowers who took out loans in 2006 and 2007, and match them to objective, detailed administrative data on mortgage characteristics and payment histories. The relationship between numerical ability and mortgage default is robust to controlling for a broad set of sociodemographic variables, and is not driven by other aspects of cognitive ability. We find no support for the hypothesis that numerical ability impacts mortgage outcomes through the choice of the mortgage contract. Rather, our results suggest that individuals with limited numerical ability default on their mortgage due to behavior unrelated to the initial choice of their mortgage.

  16. Freddie Fish. A Primary Environmental Study of Basic Numerals, Sets, Ordinals and Shapes.

    ERIC Educational Resources Information Center

    Kraynak, Ola

    This teacher's guide and study guide are an environmental approach to mathematics education in the primary grades. The mathematical studies of the numerals 0-10, ordinals, number sets, and basic shapes - diamond, circle, square, rectangle, and triangle - are developed through the story of Freddie Fish and his search for clean water. The…

  17. Identifying the sources of ferromagnetism in sol-gel synthesized Zn{sub 1−x}Co{sub x}O (0≤x≤0.10) nanoparticles

    SciTech Connect

    Beltrán, J.J.; Barrero, C.A.; Punnoose, A.

    2016-08-15

    We have carefully investigated the structural, optical and electronic properties and related them with changes in the magnetism of sol-gel synthesized Zn{sub 1−x}Co{sub x}O (0≤x≤0.10) nanoparticles. Samples with x≤0.05 were free of spurious phases. Samples with x≤0.03 were found to be with only high spin Co{sup 2+} ions into ZnO structure, whereas sample with x=0.05, exhibited the presence of high spin Co{sup 2+} and low spin Co{sup 3+}. We found that the intensity of the main EPR peak associated with Co{sup 2+} varies with the nominal Co content in a similar manner as the saturation magnetization and coercive field do. These results point out that the ferromagnetism in these samples should directly be correlated with the presence of divalent cobalt ions. Bound magnetic polaron (BMP) model and the charge transfer model are insufficient to explain the ferromagnetic properties of Zn{sub 1−x}Co{sub x}O nanoparticles. The room temperature ferromagnetism (RTFM) may be originated from a combination of several factors such as the interaction of high spin Co{sup 2+} ions, perturbation/alteration and/or changes in the electronic structure of ZnO close to the valence band edge and grain boundary effects. - Graphical abstract: The intensity of the main EPR peak associated with Co{sup 2+} varies with the nominal Co content in a similar manner as the saturation magnetization and coercive field do. These results point out that the ferromagnetism in these samples should directly be correlated with the presence of Co{sup 2+} ions. Display Omitted - Highlights: • Systematic and carefully study of physical-chemical properties of Zn{sub 1−x}Co{sub x}O nanoparticles. • Samples with x=0.01 and 0.03 were found to be with only high spin Co{sup 2+}. • Sample with x=0.05, exhibited the presence of high spin Co{sup 2+} and low spin Co{sup 3+}. • The BMP and charge transfer models seem not explain the ferromagnetic properties. • RTFM: high spin Co{sup 2+} ions

  18. Numerical Investigation of Boiling

    NASA Astrophysics Data System (ADS)

    Sagan, Michael; Tanguy, Sebastien; Colin, Catherine

    2012-11-01

    In this work, boiling is numerically investigated, using two phase flow direct numerical simulation based on a level set / Ghost Fluid method. Nucleate boiling implies both thermal issue and multiphase dynamics issues at different scales and at different stages of bubble growth. As a result, the different phenomena are investigated separately, considering their nature and the scale at which they occur. First, boiling of a static bubble immersed in an overheated liquid is analysed. Numerical simulations have been performed at different Jakob numbers in the case of strong density discontinuity through the interface. The results show a good agreement on bubble radius evolution between the theoretical evolution and numerical simulation. After the validation of the code for the Scriven test case, interaction of a bubble with a wall is studied. A numerical method taking into account contact angle is evaluated by comparing simulations of the spreading of a liquid droplet impacting on a plate, with experimental data. Then the heat transfer near the contact line is investigated, and simulations of nucleate boiling are performed considering different contact angles values. Finally, the relevance of including a model to take into account the evaporation of the micro layer is discussed.

  19. Toward Scientific Numerical Modeling

    NASA Technical Reports Server (NTRS)

    Kleb, Bil

    2007-01-01

    Ultimately, scientific numerical models need quantified output uncertainties so that modeling can evolve to better match reality. Documenting model input uncertainties and verifying that numerical models are translated into code correctly, however, are necessary first steps toward that goal. Without known input parameter uncertainties, model sensitivities are all one can determine, and without code verification, output uncertainties are simply not reliable. To address these two shortcomings, two proposals are offered: (1) an unobtrusive mechanism to document input parameter uncertainties in situ and (2) an adaptation of the Scientific Method to numerical model development and deployment. Because these two steps require changes in the computational simulation community to bear fruit, they are presented in terms of the Beckhard-Harris-Gleicher change model.

  20. Introduction to Numerical Methods

    SciTech Connect

    Schoonover, Joseph A.

    2016-06-14

    These are slides for a lecture for the Parallel Computing Summer Research Internship at the National Security Education Center. This gives an introduction to numerical methods. Repetitive algorithms are used to obtain approximate solutions to mathematical problems, using sorting, searching, root finding, optimization, interpolation, extrapolation, least squares regresion, Eigenvalue problems, ordinary differential equations, and partial differential equations. Many equations are shown. Discretizations allow us to approximate solutions to mathematical models of physical systems using a repetitive algorithm and introduce errors that can lead to numerical instabilities if we are not careful.

  1. Numerical-Optimization Program

    NASA Technical Reports Server (NTRS)

    Vanderplaats, Garret N.

    1991-01-01

    Automated Design Synthesis (ADS) computer program is general-purpose numerical-optimization program for design engineering. Provides wide range of options for solution of constrained and unconstrained function minimization problems. Suitable for such applications as minimum-weight design. Written in FORTRAN 77.

  2. Numerical Estimation in Preschoolers

    ERIC Educational Resources Information Center

    Berteletti, Ilaria; Lucangeli, Daniela; Piazza, Manuela; Dehaene, Stanislas; Zorzi, Marco

    2010-01-01

    Children's sense of numbers before formal education is thought to rely on an approximate number system based on logarithmically compressed analog magnitudes that increases in resolution throughout childhood. School-age children performing a numerical estimation task have been shown to increasingly rely on a formally appropriate, linear…

  3. Numerical methods in control

    NASA Astrophysics Data System (ADS)

    Mehrmann, Volker; Xu, Hongguo

    2000-11-01

    We study classical control problems like pole assignment, stabilization, linear quadratic control and H[infinity] control from a numerical analysis point of view. We present several examples that show the difficulties with classical approaches and suggest reformulations of the problems in a more general framework. We also discuss some new algorithmic approaches.

  4. Electrochemical performance of LiFe(1-x)MnxPO4 (x = 0, 0.10, 0.15, 0.2) synthesized by solid state process as cathode material for Li-ion battery

    NASA Astrophysics Data System (ADS)

    Triwibowo, J.; Priyono, S.; Purawiardi, R. I.; Ratri, C. R.; Suwandi, E.

    2016-02-01

    Mn-doped LiFePO4 was synthesized through solid state process. Starting materials as LiOH.2H2O, Fe2O3, MnO2, H3PO4 and citric acid were technical grade materials. Synthesis process was conducted in two step heating process. The first heating process was purposed to remove organic materials at temperature of 320 °C for 10 hours in inert atmosphere. Subsequently, the second heating process was conducted at 800 °C for 8 hours also in inert atmosphere. Obtained phase was further observed by means of XRD. Morphology of the obtained powder was analyzed by SEM. The electrochemical performance was observed by cyclic voltammetry with the potential range 2 - 4.2 V under the scan rate mV/s. The rate capability of the obtained material was determined by charge-discharge test under various C-rates (0.5-10C) for potential range of 2 - 4.2 V.

  5. Recent advances in numerical PDEs

    NASA Astrophysics Data System (ADS)

    Zuev, Julia Michelle

    standard algorithm and is just as accurate. Topic 3. The well-known ADI-FDTD method for solving Maxwell's curl equations is second-order accurate in space/time, unconditionally stable, and computationally efficient. We research Richardson extrapolation -based techniques to improve time discretization accuracy for spatially oversampled ADI-FDTD. A careful analysis of temporal accuracy, computational efficiency, and the algorithm's overall stability is presented. Given the context of wave- type PDEs, we find that only a limited number of extrapolations to the ADI-FDTD method are beneficial, if its unconditional stability is to be preserved. We propose a practical approach for choosing the size of a time step that can be used to improve the efficiency of the ADI-FDTD algorithm, while maintaining its accuracy and stability. Topic 4. Shock waves and their energy dissipation properties are critical to understanding the dynamics controlling the MHD turbulence. Numerical advection algorithms used in MHD solvers (e.g. the ZEUS package) introduce undesirable numerical viscosity. To counteract its effects and to resolve shocks numerically, Richtmyer and von Neumann's artificial viscosity is commonly added to the model. We study shock power by analyzing the influence of both artificial and numerical viscosity on energy decay rates. Also, we analytically characterize the numerical diffusivity of various advection algorithms by quantifying their diffusion coefficients e.

  6. Information Based Numerical Practice.

    DTIC Science & Technology

    1987-02-01

    N I IIi I2 LA 1.6 liii I~JIIN MARYLAND COLLEGE PARK CAMPUS INSTITUTE FOR PHYSICAL SCIENCE AND TECHNOLOGY Technical Note S1-1059 INFORMATION BASED...K-0169 9. PERFORMING ORGANIZATION NMEU AMC ADDRESS 16. PROGRAM CELEMNT. PROJECT. TASK AREA & WORK UNIT NUNSERS, Institute for Physical Science and...BASED NUMERICAL PRACTICE I. Babuska Institute for Physical Science and Technology University of Maryland, College Park, MD 20740 a Partially supported by

  7. Numerical Relativistic Quantum Optics

    DTIC Science & Technology

    2013-11-08

    Introduction 1 II. Relativistic Wave Equations 2 III. Stationary States 4 A. Analytical Solutions for Coulomb Potentials 4 B. Numerical Solutions...C. Relativistic Ionization Example 15 V. Computational Performance 18 VI. Conclusions 21 VII. Acknowledgements 22 References 23 1 I. INTRODUCTION ...peculiar result that B0 = 1 TG is a weak field. At present, such fields are observed only in connection with astrophysical phenomena [14]. The highest

  8. Hybrid undulator numerical optimization

    SciTech Connect

    Hairetdinov, A.H.; Zukov, A.A.

    1995-12-31

    3D properties of the hybrid undulator scheme arc studied numerically using PANDIRA code. It is shown that there exist two well defined sets of undulator parameters which provide either maximum on-axis field amplitude or minimal higher harmonics amplitude of the basic undulator field. Thus the alternative between higher field amplitude or pure sinusoidal field exists. The behavior of the undulator field amplitude and harmonics structure for a large set of (undulator gap)/(undulator wavelength) values is demonstrated.

  9. Numerical Modeling of Airblast.

    DTIC Science & Technology

    1987-06-01

    REPORT SAIC 87/1701 June 1987 Dr.. Submitted to: cp Dr. Jay Boris Laboratory for Computational Physics Accet F4,r Naval Research Laboratory I...boundary layer physical assumptions provides an unsteady prediction of the mass flux emerging from the ground. This model was first proposed by Mirels...the physics modeled will be explained. High explosive dust cloud simulation provides a research path when combined with numerical calculations can lead

  10. Numerical Simulations of Thermobaric Explosions

    SciTech Connect

    Kuhl, A L; Bell, J B; Beckner, V E; Khasainov, B

    2007-05-04

    A Model of the energy evolution in thermobaric explosions is presented. It is based on the two-phase formulation: conservation laws for the gas and particle phases along with inter-phase interaction terms. It incorporates a Combustion Model based on the mass conservation laws for fuel, air and products; source/sink terms are treated in the fast-chemistry limit appropriate for such gas dynamic fields. The Model takes into account both the afterburning of the detonation products of the booster with air, and the combustion of the fuel (Al or TNT detonation products) with air. Numerical simulations were performed for 1.5-g thermobaric explosions in five different chambers (volumes ranging from 6.6 to 40 liters and length-to-diameter ratios from 1 to 12.5). Computed pressure waveforms were very similar to measured waveforms in all cases - thereby proving that the Model correctly predicts the energy evolution in such explosions. The computed global fuel consumption {mu}(t) behaved as an exponential life function. Its derivative {dot {mu}}(t) represents the global rate of fuel consumption. It depends on the rate of turbulent mixing which controls the rate of energy release in thermobaric explosions.

  11. Pneumotachometer counts respiration rate of human subject

    NASA Technical Reports Server (NTRS)

    Graham, O.

    1964-01-01

    To monitor breaths per minute, two rate-to-analog converters are alternately used to read and count the respiratory rate from an impedance pneumograph sequentially displayed numerically on electroluminescent matrices.

  12. Numerical simulation of aneurysm hemodynamics

    NASA Astrophysics Data System (ADS)

    MacVicar, Stephen; Huynh, Sophia; Rossmann, Jenn

    2003-11-01

    Rupture of intracranial aneurysms is the leading cause of spontaneous subarachnoid hemorrhage, with high rates of morbidity and mortality. Numerical simulations of flow in a variety of two-dimensional and three-dimensional saccular aneurysm geometries were performed to evaluate possible sites and mechanisms for aneurysm growth and rupture. The governing equations were solved in their finite volume formulation for both steady and pulsatile flows. Recirculation zones and secondary flows were observed in aneurysms and arteries. Regions of elevated and oscillating shear stress were observed, often at the aneurysm's distal shoulder. The influence of several geometric factors, including vessel curvature, branching angle, and aneurysm shape, on flow patterns and fluid mechanical forces was studied, with the goal of assessing the risks posed by given aneurysm geometry.

  13. Numerical computation of Pop plot

    SciTech Connect

    Menikoff, Ralph

    2015-03-23

    The Pop plot — distance-of-run to detonation versus initial shock pressure — is a key characterization of shock initiation in a heterogeneous explosive. Reactive burn models for high explosives (HE) must reproduce the experimental Pop plot to have any chance of accurately predicting shock initiation phenomena. This report describes a methodology for automating the computation of a Pop plot for a specific explosive with a given HE model. Illustrative examples of the computation are shown for PBX 9502 with three burn models (SURF, WSD and Forest Fire) utilizing the xRage code, which is the Eulerian ASC hydrocode at LANL. Comparison of the numerical and experimental Pop plot can be the basis for a validation test or as an aid in calibrating the burn rate of an HE model. Issues with calibration are discussed.

  14. 3-D numerical simulations of eruption clouds: Effects of the environmental wind on the turbulent mixing

    NASA Astrophysics Data System (ADS)

    Suzuki, Y. J.; Koyaguchi, T.

    2011-12-01

    During an explosive volcanic eruption, a mixture of volcanic gas and solid pyroclasts are ejected from a volcanic vent with a high temperature. As it rises, the mixture entrains ambient air owing to turbulent mixing. The entrained air expands by heating from the hot pyroclasts, and the eruption cloud (i.e., the ejected material plus the entrained air) rises as a buoyant plume. Because the plume height is principally determined by the balance between the thermal energy ejected at the vent and the work done in transporting the ejected material plus entrained air through the atmospheric stratification, it is controlled by the efficiency of turbulent mixing; as the amount of entrained air increases, the plume height decreases. In the 1-D models of eruption column (e.g., Woods, 1988), the plume height is calculated on the assumption that the mean inflow velocity across the edge of turbulent jet and/or plume is proportional to the mean vertical velocity (Morton et al., 1956). Experimental studies suggest that the proportionality constant (i.e., entrainment coefficient, k), which represents the efficiency of turbulent mixing, is about 0.10 for pure plumes when there is no wind. When an environmental wind is present, however, the interaction between a buoyant plume and the wind may enhance the entrainment of air and can significantly decrease the plume height (Bursik, 2001). In order to investigate the effects of wind on the vortical structures and the efficiency of turbulent mixing in an eruption cloud, we have carried out 3-D numerical simulations of eruption column which is ejected in a wind field. The simulation results indicate that a buoyant plume vertically rises as a "strong plume" (e.g., Bonadonna et al., 2003) when the wind velocity is low: the cloud reaches the neutral buoyancy level and overshoots until the upward momentum is exhausted. In this case, the plume height is consistent with prediction by the 1-D model with k~0.10. When the wind velocity is high, on

  15. "Recognizing Numerical Constants"

    NASA Technical Reports Server (NTRS)

    Bailey, David H.; Craw, James M. (Technical Monitor)

    1995-01-01

    The advent of inexpensive, high performance computer and new efficient algorithms have made possible the automatic recognition of numerically computed constants. In other words, techniques now exist for determining, within certain limits, whether a computed real or complex number can be written as a simple expression involving the classical constants of mathematics. In this presentation, some of the recently discovered techniques for constant recognition, notably integer relation detection algorithms, will be presented. As an application of these methods, the author's recent work in recognizing "Euler sums" will be described in some detail.

  16. Confidence in Numerical Simulations

    SciTech Connect

    Hemez, Francois M.

    2015-02-23

    This PowerPoint presentation offers a high-level discussion of uncertainty, confidence and credibility in scientific Modeling and Simulation (M&S). It begins by briefly evoking M&S trends in computational physics and engineering. The first thrust of the discussion is to emphasize that the role of M&S in decision-making is either to support reasoning by similarity or to “forecast,” that is, make predictions about the future or extrapolate to settings or environments that cannot be tested experimentally. The second thrust is to explain that M&S-aided decision-making is an exercise in uncertainty management. The three broad classes of uncertainty in computational physics and engineering are variability and randomness, numerical uncertainty and model-form uncertainty. The last part of the discussion addresses how scientists “think.” This thought process parallels the scientific method where by a hypothesis is formulated, often accompanied by simplifying assumptions, then, physical experiments and numerical simulations are performed to confirm or reject the hypothesis. “Confidence” derives, not just from the levels of training and experience of analysts, but also from the rigor with which these assessments are performed, documented and peer-reviewed.

  17. Numerical Propulsion System Simulation

    NASA Technical Reports Server (NTRS)

    Naiman, Cynthia

    2006-01-01

    The NASA Glenn Research Center, in partnership with the aerospace industry, other government agencies, and academia, is leading the effort to develop an advanced multidisciplinary analysis environment for aerospace propulsion systems called the Numerical Propulsion System Simulation (NPSS). NPSS is a framework for performing analysis of complex systems. The initial development of NPSS focused on the analysis and design of airbreathing aircraft engines, but the resulting NPSS framework may be applied to any system, for example: aerospace, rockets, hypersonics, power and propulsion, fuel cells, ground based power, and even human system modeling. NPSS provides increased flexibility for the user, which reduces the total development time and cost. It is currently being extended to support the NASA Aeronautics Research Mission Directorate Fundamental Aeronautics Program and the Advanced Virtual Engine Test Cell (AVETeC). NPSS focuses on the integration of multiple disciplines such as aerodynamics, structure, and heat transfer with numerical zooming on component codes. Zooming is the coupling of analyses at various levels of detail. NPSS development includes capabilities to facilitate collaborative engineering. The NPSS will provide improved tools to develop custom components and to use capability for zooming to higher fidelity codes, coupling to multidiscipline codes, transmitting secure data, and distributing simulations across different platforms. These powerful capabilities extend NPSS from a zero-dimensional simulation tool to a multi-fidelity, multidiscipline system-level simulation tool for the full development life cycle.

  18. Using PASCAL for numerical analysis

    NASA Technical Reports Server (NTRS)

    Volper, D.; Miller, T. C.

    1978-01-01

    The data structures and control structures of PASCAL enhance the coding ability of the programmer. Proposed extensions to the language further increase its usefulness in writing numeric programs and support packages for numeric programs.

  19. Perspectives in numerical astrophysics:

    NASA Astrophysics Data System (ADS)

    Reverdy, V.

    2016-12-01

    In this discussion paper, we investigate the current and future status of numerical astrophysics and highlight key questions concerning the transition to the exascale era. We first discuss the fact that one of the main motivation behind high performance simulations should not be the reproduction of observational or experimental data, but the understanding of the emergence of complexity from fundamental laws. This motivation is put into perspective regarding the quest for more computational power and we argue that extra computational resources can be used to gain in abstraction. Then, the readiness level of present-day simulation codes in regard to upcoming exascale architecture is examined and two major challenges are raised concerning both the central role of data movement for performances and the growing complexity of codes. Software architecture is finally presented as a key component to make the most of upcoming architectures while solving original physics problems.

  20. Numerical relativity beyond astrophysics.

    PubMed

    Garfinkle, David

    2017-01-01

    Though the main applications of computer simulations in relativity are to astrophysical systems such as black holes and neutron stars, nonetheless there are important applications of numerical methods to the investigation of general relativity as a fundamental theory of the nature of space and time. This paper gives an overview of some of these applications. In particular we cover (i) investigations of the properties of spacetime singularities such as those that occur in the interior of black holes and in big bang cosmology. (ii) investigations of critical behavior at the threshold of black hole formation in gravitational collapse. (iii) investigations inspired by string theory, in particular analogs of black holes in more than 4 spacetime dimensions and gravitational collapse in spacetimes with a negative cosmological constant.

  1. Numerical relativity beyond astrophysics

    NASA Astrophysics Data System (ADS)

    Garfinkle, David

    2017-01-01

    Though the main applications of computer simulations in relativity are to astrophysical systems such as black holes and neutron stars, nonetheless there are important applications of numerical methods to the investigation of general relativity as a fundamental theory of the nature of space and time. This paper gives an overview of some of these applications. In particular we cover (i) investigations of the properties of spacetime singularities such as those that occur in the interior of black holes and in big bang cosmology. (ii) investigations of critical behavior at the threshold of black hole formation in gravitational collapse. (iii) investigations inspired by string theory, in particular analogs of black holes in more than 4 spacetime dimensions and gravitational collapse in spacetimes with a negative cosmological constant.

  2. Numerical Modeling of Ablation Heat Transfer

    NASA Technical Reports Server (NTRS)

    Ewing, Mark E.; Laker, Travis S.; Walker, David T.

    2013-01-01

    A unique numerical method has been developed for solving one-dimensional ablation heat transfer problems. This paper provides a comprehensive description of the method, along with detailed derivations of the governing equations. This methodology supports solutions for traditional ablation modeling including such effects as heat transfer, material decomposition, pyrolysis gas permeation and heat exchange, and thermochemical surface erosion. The numerical scheme utilizes a control-volume approach with a variable grid to account for surface movement. This method directly supports implementation of nontraditional models such as material swelling and mechanical erosion, extending capabilities for modeling complex ablation phenomena. Verifications of the numerical implementation are provided using analytical solutions, code comparisons, and the method of manufactured solutions. These verifications are used to demonstrate solution accuracy and proper error convergence rates. A simple demonstration of a mechanical erosion (spallation) model is also provided to illustrate the unique capabilities of the method.

  3. Numerical approach for unstructured quantum key distribution

    PubMed Central

    Coles, Patrick J.; Metodiev, Eric M.; Lütkenhaus, Norbert

    2016-01-01

    Quantum key distribution (QKD) allows for communication with security guaranteed by quantum theory. The main theoretical problem in QKD is to calculate the secret key rate for a given protocol. Analytical formulas are known for protocols with symmetries, since symmetry simplifies the analysis. However, experimental imperfections break symmetries, hence the effect of imperfections on key rates is difficult to estimate. Furthermore, it is an interesting question whether (intentionally) asymmetric protocols could outperform symmetric ones. Here we develop a robust numerical approach for calculating the key rate for arbitrary discrete-variable QKD protocols. Ultimately this will allow researchers to study ‘unstructured' protocols, that is, those that lack symmetry. Our approach relies on transforming the key rate calculation to the dual optimization problem, which markedly reduces the number of parameters and hence the calculation time. We illustrate our method by investigating some unstructured protocols for which the key rate was previously unknown. PMID:27198739

  4. Numeric Databases in the Sciences.

    ERIC Educational Resources Information Center

    Meschel, S. V.

    1984-01-01

    Provides exploration into types of numeric databases available (also known as source databases, nonbibliographic databases, data-files, data-banks, fact banks); examines differences and similarities between bibliographic and numeric databases; identifies disciplines that utilize numeric databases; and surveys representative examples in the…

  5. Personalized numerical observer

    NASA Astrophysics Data System (ADS)

    Brankov, Jovan G.; Pretorius, P. Hendrik

    2010-02-01

    It is widely accepted that medical image quality should be assessed using task-based criteria, such as humanobserver (HO) performance in a lesion-detection (scoring) task. HO studies are time consuming and cost prohibitive to be used for image quality assessment during development of either reconstruction methods or imaging systems. Therefore, a numerical observer (NO), a HO surrogate, is highly desirable. In the past, we have proposed and successfully tested a NO based on a supervised-learning approach (namely a support vector machine) for cardiac gated SPECT image quality assessment. In the supervised-learning approach, the goal is to identify the relationship between measured image features and HO myocardium defect likelihood scores. Thus far we have treated multiple HO readers by simply averaging or pooling their respective scores. Due to observer variability, this may be suboptimal and less accurate. Therefore, in this work, we are setting our goal to predict individual observer scores independently in the hope to better capture some relevant lesion-detection mechanism of the human observers. This is even more important as there are many ways to get equivalent observer performance (measured by area under receiver operating curve), and simply predicting some joint (average or pooled) score alone is not likely to succeed.

  6. Numerical Relativity and Astrophysics

    NASA Astrophysics Data System (ADS)

    Lehner, Luis; Pretorius, Frans

    2014-08-01

    Throughout the Universe many powerful events are driven by strong gravitational effects that require general relativity to fully describe them. These include compact binary mergers, black hole accretion, and stellar collapse, where velocities can approach the speed of light and extreme gravitational fields (ΦNewt/c2≃1) mediate the interactions. Many of these processes trigger emission across a broad range of the electromagnetic spectrum. Compact binaries further source strong gravitational wave emission that could directly be detected in the near future. This feat will open up a gravitational wave window into our Universe and revolutionize our understanding of it. Describing these phenomena requires general relativity, and—where dynamical effects strongly modify gravitational fields—the full Einstein equations coupled to matter sources. Numerical relativity is a field within general relativity concerned with studying such scenarios that cannot be accurately modeled via perturbative or analytical calculations. In this review, we examine results obtained within this discipline, with a focus on its impact in astrophysics.

  7. Hybrid Experimental-Numerical Stress Analysis.

    DTIC Science & Technology

    1983-04-01

    components# biomechanics and fracture mechanics. .4 ELASTIC ANALYSIS OF STRUCTURAL COMPONENTS The numerical techniques used In modern hybrid technique for...measured E24] relations of probe force versus probe area under applanation tonametry. ELASTIC-PASTIC FRACTURE MECHANICS Fracture parameters governing...models of the crack. Strain energy release rate and stress intensity factor in linear elastic fracture mechanics, which is a well established analog

  8. Numerical methods used in fusion science numerical modeling

    NASA Astrophysics Data System (ADS)

    Yagi, M.

    2015-04-01

    The dynamics of burning plasma is very complicated physics, which is dominated by multi-scale and multi-physics phenomena. To understand such phenomena, numerical simulations are indispensable. Fundamentals of numerical methods used in fusion science numerical modeling are briefly discussed in this paper. In addition, the parallelization technique such as open multi processing (OpenMP) and message passing interface (MPI) parallel programing are introduced and the loop-level parallelization is shown as an example.

  9. Numerical estimation of densities

    NASA Astrophysics Data System (ADS)

    Ascasibar, Y.; Binney, J.

    2005-01-01

    We present a novel technique, dubbed FIESTAS, to estimate the underlying density field from a discrete set of sample points in an arbitrary multidimensional space. FIESTAS assigns a volume to each point by means of a binary tree. Density is then computed by integrating over an adaptive kernel. As a first test, we construct several Monte Carlo realizations of a Hernquist profile and recover the particle density in both real and phase space. At a given point, Poisson noise causes the unsmoothed estimates to fluctuate by a factor of ~2 regardless of the number of particles. This spread can be reduced to about 1dex (~26 per cent) by our smoothing procedure. The density range over which the estimates are unbiased widens as the particle number increases. Our tests show that real-space densities obtained with an SPH kernel are significantly more biased than those yielded by FIESTAS. In phase space, about 10 times more particles are required in order to achieve a similar accuracy. As a second application we have estimated phase-space densities in a dark matter halo from a cosmological simulation. We confirm the results of Arad, Dekel & Klypin that the highest values of f are all associated with substructure rather than the main halo, and that the volume function v(f) ~f-2.5 over about four orders of magnitude in f. We show that a modified version of the toy model proposed by Arad et al. explains this result and suggests that the departures of v(f) from power-law form are not mere numerical artefacts. We conclude that our algorithm accurately measures the phase-space density up to the limit where discreteness effects render the simulation itself unreliable. Computationally, FIESTAS is orders of magnitude faster than the method based on Delaunay tessellation that Arad et al. employed, making it practicable to recover smoothed density estimates for sets of 109 points in six dimensions.

  10. 16 CFR 0.10 - Office of the Executive Director.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., financial management, information technology, and human resources. ... Chairman, is the chief operating official who develops and implements management and administrative... on strategic planning and assessing the management and resource implications of any proposed...

  11. 16 CFR 0.10 - Office of the Executive Director.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., financial management, information technology, and human resources. ... Chairman, is the chief operating official who develops and implements management and administrative... on strategic planning and assessing the management and resource implications of any proposed...

  12. 16 CFR 0.10 - Office of the Executive Director.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., financial management, information technology, and human resources. ... Chairman, is the chief operating official who develops and implements management and administrative... on strategic planning and assessing the management and resource implications of any proposed...

  13. 16 CFR 0.10 - Office of the Executive Director.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., financial management, information technology, and human resources. ... Chairman, is the chief operating official who develops and implements management and administrative... on strategic planning and assessing the management and resource implications of any proposed...

  14. 16 CFR 0.10 - Office of the Executive Director.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... on strategic planning and assessing the management and resource implications of any proposed action... Chairman, is the chief operating official who develops and implements management and administrative..., financial management, information technology, and human resources....

  15. Influence of Ar addition on ozone generation in a non-thermal plasma—a numerical investigation

    NASA Astrophysics Data System (ADS)

    Chen, Hsin Liang; Lee, How Ming; Chen, Shiaw Huei; Wei, Ta Chin; Been Chang, Moo

    2010-10-01

    A numerical model based on a dielectric barrier discharge is developed in this study to investigate the influence of Ar addition on ozone generation. The simulation results show good agreement with the experimental data, confirming the validity of the numerical model. The mechanisms regarding how the Ar addition affects ozone generation are investigated with the assistance of a numerical simulation by probing into the following two questions, (1) why the ozone concentration just slightly decreases in the low specific input energy (SIE, the ratio of discharge power to gas flow rate) region even if the inlet O2 concentration is substantially decreased and (2) why the variation of the increased rate of ozone concentration with SIE (i.e. the variation in the slope of ozone concentration versus SIE) is more significant for an O2/Ar mixture plasma. As SIE is relatively low, ozone decomposition through electron-impact and radical attack reactions is less significant because of low ozone concentration and gas temperature. Therefore, the ozone concentration depends mainly on the amount of oxygen atoms generated. The simulation results indicate that the amount of oxygen atoms generated per electronvolt for Ar concentrations of 0%, 10%, 30%, 50% and 80% are 0.178, 0.174, 0.169, 0.165 and 0.166, respectively, explaining why the ozone concentration does not decrease linearly with the inlet O2 concentration in the low SIE region. On the other hand, the simulation results show that increasing Ar concentration would lead to a lower reduced field and a higher gas temperature. The former would lead to an increase in the rate constant of e + O3 → e + O + O2 while the latter would result in a decrease in the rate constant of O + O2 + M → O3 + M and an increase in that of O3 + O → 2O2. The changes in the rate constants of these reactions would have a negative effect on ozone generation, which is the rationale for the second question.

  16. Rates inferred from the space debris catalog

    SciTech Connect

    Canavan, G.H.

    1996-08-01

    Collision and fragmentation rates are inferred from the AFSPC space debris catalog and compare with estimates from other treatments. The collision rate is evaluated without approximation. The fragmentation rate requires additional empirical assessments. The number of fragments per collision is low compared to analytic and numerical treatments, is peaked low, and falls rapidly with altitude.

  17. Highly Parallel, High-Precision Numerical Integration

    SciTech Connect

    Bailey, David H.; Borwein, Jonathan M.

    2005-04-22

    This paper describes a scheme for rapidly computing numerical values of definite integrals to very high accuracy, ranging from ordinary machine precision to hundreds or thousands of digits, even for functions with singularities or infinite derivatives at endpoints. Such a scheme is of interest not only in computational physics and computational chemistry, but also in experimental mathematics, where high-precision numerical values of definite integrals can be used to numerically discover new identities. This paper discusses techniques for a parallel implementation of this scheme, then presents performance results for 1-D and 2-D test suites. Results are also given for a certain problem from mathematical physics, which features a difficult singularity, confirming a conjecture to 20,000 digit accuracy. The performance rate for this latter calculation on 1024 CPUs is 690 Gflop/s. We believe that this and one other 20,000-digit integral evaluation that we report are the highest-precision non-trivial numerical integrations performed to date.

  18. Direct numerical simulation of hot jets

    NASA Technical Reports Server (NTRS)

    Jacob, Marc C.

    1993-01-01

    The ultimate motivation of this work is to investigate the stability of two dimensional heated jets and its implications for aerodynamic sound generation from data obtained with direct numerical simulations (DNS). As pointed out in our last report, these flows undergo two types of instabilities, convective or absolute, depending on their temperature. We also described the limits of earlier experimental and theoretical studies and explained why a numerical investigation could give us new insight into the physics of these instabilities. The aeroacoustical interest of these flows was also underlined. In order to reach this goal, we first need to succeed in the DNS of heated jets. Our past efforts have been focused on this issue which encountered several difficulties. Our numerical difficulties are directly related to the physical problem we want to investigate since these absolutely or almost absolutely unstable flows are by definition very sensitive to the smallest disturbances and are very likely to reach nonlinear saturation through a numerical feedback mechanism. As a result, it is very difficult to compute a steady laminar solution using a spatial DNS. A steady state was reached only for strongly co-flowed jets, but these flows are almost equivalent to two independent mixing layers. Thus they are far from absolute instability and have much lower growth rates.

  19. Computerized Numerical Control Curriculum Guide.

    ERIC Educational Resources Information Center

    Reneau, Fred; And Others

    This guide is intended for use in a course in programming and operating a computerized numerical control system. Addressed in the course are various aspects of programming and planning, setting up, and operating machines with computerized numerical control, including selecting manual or computer-assigned programs and matching them with…

  20. Numerical simulation of Bootstrap Current

    SciTech Connect

    Wu, Yanlin; White, R.B.

    1993-05-01

    The neoclassical theory of Bootstrap Current in toroidal systems is calculated in magnetic flux coordinates and confirmed by numerical simulation. The effects of magnetic ripple, loop voltage, and magnetic and electrostatic perturbations on bootstrap current for the cases of zero and finite plasma pressure are studied. The numerical results are in reasonable agreement with analytical estimates.

  1. Numerical simulation of dusty plasmas

    SciTech Connect

    Winske, D.

    1995-09-01

    The numerical simulation of physical processes in dusty plasmas is reviewed, with emphasis on recent results and unresolved issues. Three areas of research are discussed: grain charging, weak dust-plasma interactions, and strong dust-plasma interactions. For each area, we review the basic concepts that are tested by simulations, present some appropriate examples, and examine numerical issues associated with extending present work.

  2. Numerical Approaches to Spacetime Singularities.

    PubMed

    Berger, Beverly K

    1998-01-01

    This review updates a previous review article [22]. Numerical exploration of the properties of singularities could, in principle, yield detailed understanding of their nature in physically realistic cases. Examples of numerical investigations into the formation of naked singularities, critical behavior in collapse, passage through the Cauchy horizon, chaos of the Mixmaster singularity, and singularities in spatially inhomogeneous cosmologies are discussed.

  3. Digital cardiometer computes and displays heartbeat rate

    NASA Technical Reports Server (NTRS)

    Mitchell, V. M.

    1964-01-01

    To compute the heartbeat rate from the waveform output of an electrocardiogram, a digital cardiometer with solid state circuit elements has been developed. This computes the beat every 15 seconds and visually presents the data on numerical display tubes.

  4. Numerical calculation for cavitation flow of inducer

    NASA Astrophysics Data System (ADS)

    Ning, C.; Wang, Y.; Zhu, Z. T.; Xie, S. F.; Zhao, L. F.; Liu, Z. C.

    2015-01-01

    Inducer has significant effect on improving the cavitation characteristic of centrifugal pump. Several inducers were designed and modeled by Pro/E software. The mesh of flow field was done by ICEM and then was imported to ANSYS CFX to analyze the inducer's cavitation characteristic. Effects of the blade number on the performance of an inducer are investigated in the present paper. The inducers were designed on the basis of identical design flow rate and identical pressure elevation at nominal flow rate. The study focuses on the steady behavior of the inducers in cavitating conditions. Evolutions of performance, torque, mass flow rate, and amplitude of radial forces on the shaft according to the inlet pressure are considered. Furthermore, cavitation instabilities are analyzed in the study. The purpose of the present study is to investigate the pressure distribution and vapour volume fraction distribution through numerical simulations using the Navier-stokes solver with computational fluid dynamics (CFD) code.

  5. Numerical and experimental investigations on cavitation erosion

    NASA Astrophysics Data System (ADS)

    Fortes Patella, R.; Archer, A.; Flageul, C.

    2012-11-01

    A method is proposed to predict cavitation damage from cavitating flow simulations. For this purpose, a numerical process coupling cavitating flow simulations and erosion models was developed and applied to a two-dimensional (2D) hydrofoil tested at TUD (Darmstadt University of Technology, Germany) [1] and to a NACA 65012 tested at LMH-EPFL (Lausanne Polytechnic School) [2]. Cavitation erosion tests (pitting tests) were carried out and a 3D laser profilometry was used to analyze surfaces damaged by cavitation [3]. The method allows evaluating the pit characteristics, and mainly the volume damage rates. The paper describes the developed erosion model, the technique of cavitation damage measurement and presents some comparisons between experimental results and numerical damage predictions. The extent of cavitation erosion was correctly estimated in both hydrofoil geometries. The simulated qualitative influence of flow velocity, sigma value and gas content on cavitation damage agreed well with experimental observations.

  6. A numerical method for predicting hypersonic flowfields

    NASA Technical Reports Server (NTRS)

    Maccormack, Robert W.; Candler, Graham V.

    1989-01-01

    The flow about a body traveling at hypersonic speed is energetic enough to cause the atmospheric gases to chemically react and reach states in thermal nonequilibrium. The prediction of hypersonic flowfields requires a numerical method capable of solving the conservation equations of fluid flow, the chemical rate equations for specie formation and dissociation, and the transfer of energy relations between translational and vibrational temperature states. Because the number of equations to be solved is large, the numerical method should also be as efficient as possible. The proposed paper presents a fully implicit method that fully couples the solution of the fluid flow equations with the gas physics and chemistry relations. The method flux splits the inviscid flow terms, central differences of the viscous terms, preserves element conservation in the strong chemistry source terms, and solves the resulting block matrix equation by Gauss Seidel line relaxation.

  7. Primordial Black Holes from First Principles (numerics)

    NASA Astrophysics Data System (ADS)

    Bloomfield, Jolyon; Moss, Zander; Lam, Casey; Russell, Megan; Face, Stephen; Guth, Alan

    2017-01-01

    In order to compute accurate number densities and mass spectra for primordial black holes from an inflationary power spectrum, one needs to perform Monte Carlo integration over field configurations. This requires a method of determining whether a black hole will form, and if so, what its mass will be, for each sampled configuration. In order for such an integral to converge within any reasonable time, this requires a highly efficient process for making these determinations. We present a numerical pipeline that is capable of making reasonably accurate predictions for black holes and masses at the rate of a few seconds per sample (including the sampling process), utilizing a fully-nonlinear numerical relativity code in 1+1 dimensions.

  8. Numerical Hydrodynamics in General Relativity.

    PubMed

    Font, José A

    2000-01-01

    The current status of numerical solutions for the equations of ideal general relativistic hydrodynamics is reviewed. Different formulations of the equations are presented, with special mention of conservative and hyperbolic formulations well-adapted to advanced numerical methods. A representative sample of available numerical schemes is discussed and particular emphasis is paid to solution procedures based on schemes exploiting the characteristic structure of the equations through linearized Riemann solvers. A comprehensive summary of relevant astrophysical simulations in strong gravitational fields, including gravitational collapse, accretion onto black holes and evolution of neutron stars, is also presented.

  9. Numerical Simulation of Nix's Rotation

    NASA Video Gallery

    This is a numerical simulation of the orientation of Nix as seen from the center of the Pluto system. It has been sped up so that one orbit of Nix around Pluto takes 2 seconds instead of 25 days. L...

  10. Numerical Approaches to Spacetime Singularities.

    PubMed

    Berger, Beverly K

    2002-01-01

    This Living Review updates a previous version [25] which is itself an update of a review article [31]. Numerical exploration of the properties of singularities could, in principle, yield detailed understanding of their nature in physically realistic cases. Examples of numerical investigations into the formation of naked singularities, critical behavior in collapse, passage through the Cauchy horizon, chaos of the Mixmaster singularity, and singularities in spatially inhomogeneous cosmologies are discussed.

  11. Numerical Optimization Using Computer Experiments

    NASA Technical Reports Server (NTRS)

    Trosset, Michael W.; Torczon, Virginia

    1997-01-01

    Engineering design optimization often gives rise to problems in which expensive objective functions are minimized by derivative-free methods. We propose a method for solving such problems that synthesizes ideas from the numerical optimization and computer experiment literatures. Our approach relies on kriging known function values to construct a sequence of surrogate models of the objective function that are used to guide a grid search for a minimizer. Results from numerical experiments on a standard test problem are presented.

  12. Numerical modeling of preburner flowfield

    NASA Astrophysics Data System (ADS)

    Chow, A. S.; Mo, J. D.; Jin, K. R.

    1993-06-01

    This work is intended to numerically predict the flowfields inside the preburner of the Space Shuttle Main Engine. The computer code (FDNS) based on pressure correction method is modified and adapted with an elliptic grid generator. The original configuration of the preburner in conjunction with downstream gas turbines has been simplified geometrically and numerically modeled at its full power in this work. The computational results are presented and qualitatively discussed with test data collected in NASA/MSFC.

  13. Bidirectional Modulation of Numerical Magnitude.

    PubMed

    Arshad, Qadeer; Nigmatullina, Yuliya; Nigmatullin, Ramil; Asavarut, Paladd; Goga, Usman; Khan, Sarah; Sander, Kaija; Siddiqui, Shuaib; Roberts, R E; Cohen Kadosh, Roi; Bronstein, Adolfo M; Malhotra, Paresh A

    2016-05-01

    Numerical cognition is critical for modern life; however, the precise neural mechanisms underpinning numerical magnitude allocation in humans remain obscure. Based upon previous reports demonstrating the close behavioral and neuro-anatomical relationship between number allocation and spatial attention, we hypothesized that these systems would be subject to similar control mechanisms, namely dynamic interhemispheric competition. We employed a physiological paradigm, combining visual and vestibular stimulation, to induce interhemispheric conflict and subsequent unihemispheric inhibition, as confirmed by transcranial direct current stimulation (tDCS). This allowed us to demonstrate the first systematic bidirectional modulation of numerical magnitude toward either higher or lower numbers, independently of either eye movements or spatial attention mediated biases. We incorporated both our findings and those from the most widely accepted theoretical framework for numerical cognition to present a novel unifying computational model that describes how numerical magnitude allocation is subject to dynamic interhemispheric competition. That is, numerical allocation is continually updated in a contextual manner based upon relative magnitude, with the right hemisphere responsible for smaller magnitudes and the left hemisphere for larger magnitudes.

  14. Numerical anomalies mimicking physical effects

    SciTech Connect

    Menikoff, R.

    1995-09-01

    Numerical simulations of flows with shock waves typically use finite-difference shock-capturing algorithms. These algorithms give a shock a numerical width in order to generate the entropy increase that must occur across a shock wave. For algorithms in conservation form, steady-state shock waves are insensitive to the numerical dissipation because of the Hugoniot jump conditions. However, localized numerical errors occur when shock waves interact. Examples are the ``excess wall heating`` in the Noh problem (shock reflected from rigid wall), errors when a shock impacts a material interface or an abrupt change in mesh spacing, and the start-up error from initializing a shock as a discontinuity. This class of anomalies can be explained by the entropy generation that occurs in the transient flow when a shock profile is formed or changed. The entropy error is localized spatially but under mesh refinement does not decrease in magnitude. Similar effects have been observed in shock tube experiments with partly dispersed shock waves. In this case, the shock has a physical width due to a relaxation process. An entropy anomaly from a transient shock interaction is inherent in the structure of the conservation equations for fluid flow. The anomaly can be expected to occur whenever heat conduction can be neglected and a shock wave has a non-zero width, whether the width is physical or numerical. Thus, the numerical anomaly from an artificial shock width mimics a real physical effect.

  15. Bidirectional Modulation of Numerical Magnitude

    PubMed Central

    Arshad, Qadeer; Nigmatullina, Yuliya; Nigmatullin, Ramil; Asavarut, Paladd; Goga, Usman; Khan, Sarah; Sander, Kaija; Siddiqui, Shuaib; Roberts, R. E.; Cohen Kadosh, Roi; Bronstein, Adolfo M.; Malhotra, Paresh A.

    2016-01-01

    Numerical cognition is critical for modern life; however, the precise neural mechanisms underpinning numerical magnitude allocation in humans remain obscure. Based upon previous reports demonstrating the close behavioral and neuro-anatomical relationship between number allocation and spatial attention, we hypothesized that these systems would be subject to similar control mechanisms, namely dynamic interhemispheric competition. We employed a physiological paradigm, combining visual and vestibular stimulation, to induce interhemispheric conflict and subsequent unihemispheric inhibition, as confirmed by transcranial direct current stimulation (tDCS). This allowed us to demonstrate the first systematic bidirectional modulation of numerical magnitude toward either higher or lower numbers, independently of either eye movements or spatial attention mediated biases. We incorporated both our findings and those from the most widely accepted theoretical framework for numerical cognition to present a novel unifying computational model that describes how numerical magnitude allocation is subject to dynamic interhemispheric competition. That is, numerical allocation is continually updated in a contextual manner based upon relative magnitude, with the right hemisphere responsible for smaller magnitudes and the left hemisphere for larger magnitudes. PMID:26879093

  16. The distant type Ia supernova rate

    SciTech Connect

    Pain, R.; Fabbro, S.; Sullivan, M.; Ellis, R.S.; Aldering, G.; Astier, P.; Deustua, S.E.; Fruchter, A.S.; Goldhaber, G.; Goobar, A.; Groom, D.E.; Hardin, D.; Hook, I.M.; Howell, D.A.; Irwin, M.J.; Kim, A.G.; Kim, M.Y.; Knop, R.A.; Lee, J.C.; Perlmutter, S.; Ruiz-Lapuente, P.; Schahmaneche, K.; Schaefer, B.; Walton, N.A.

    2002-05-20

    We present a measurement of the rate of distant Type Ia supernovae derived using 4 large subsets of data from the Supernova Cosmology Project. Within this fiducial sample,which surveyed about 12 square degrees, thirty-eight supernovae were detected at redshifts 0.25--0.85. In a spatially flat cosmological model consistent with the results obtained by the Supernova Cosmology Project, we derive a rest-frame Type Ia supernova rate at a mean red shift z {approx_equal} 0.55 of 1.53 {sub -0.25}{sub -0.31}{sup 0.28}{sup 0.32} x 10{sup -4} h{sup 3} Mpc{sup -3} yr{sup -1} or 0.58{sub -0.09}{sub -0.09}{sup +0.10}{sup +0.10} h{sup 2} SNu(1 SNu = 1 supernova per century per 10{sup 10} L{sub B}sun), where the first uncertainty is statistical and the second includes systematic effects. The dependence of the rate on the assumed cosmological parameters is studied and the redshift dependence of the rate per unit comoving volume is contrasted with local estimates in the context of possible cosmic star formation histories and progenitor models.

  17. The Distant Type Ia Supernova Rate

    DOE R&D Accomplishments Database

    Pain, R.; Fabbro, S.; Sullivan, M.; Ellis, R. S.; Aldering, G.; Astier, P.; Deustua, S. E.; Fruchter, A. S.; Goldhaber, G.; Goobar, A.; Groom, D. E.; Hardin, D.; Hook, I. M.; Howell, D. A.; Irwin, M. J.; Kim, A. G.; Kim, M. Y.; Knop, R. A.; Lee, J. C.; Perlmutter, S.; Ruiz-Lapuente, P.; Schahmaneche, K.; Schaefer, B.; Walton, N. A.

    2002-05-28

    We present a measurement of the rate of distant Type Ia supernovae derived using 4 large subsets of data from the Supernova Cosmology Project. Within this fiducial sample, which surveyed about 12 square degrees, thirty-eight supernovae were detected at redshifts 0.25--0.85. In a spatially flat cosmological model consistent with the results obtained by the Supernova Cosmology Project, we derive a rest-frame Type Ia supernova rate at a mean red shift z {approx_equal} 0.55 of 1.53 {sub -0.25}{sub -0.31}{sup 0.28}{sup 0.32} x 10{sup -4} h{sup 3} Mpc{sup -3} yr{sup -1} or 0.58{sub -0.09}{sub -0.09}{sup +0.10}{sup +0.10} h{sup 2} SNu(1 SNu = 1 supernova per century per 10{sup 10} L{sub B}sun), where the first uncertainty is statistical and the second includes systematic effects. The dependence of the rate on the assumed cosmological parameters is studied and the redshift dependence of the rate per unit comoving volume is contrasted with local estimates in the context of possible cosmic star formation histories and progenitor models.

  18. Numerical Simulation of Aircraft Trailing Vortices

    NASA Technical Reports Server (NTRS)

    Proctor, Fred H.; Switzer, George F.

    2000-01-01

    The increase in air traffic is currently outpacing the development of new airport runways. This is leading to greater air traffic congestion, resulting in costly delays and cancellations. The National Aeronautics and Space Administration (NASA) under its Terminal Area Productivity (TAP) program is investigating new technologies that will allow increased airport capacity while maintaining the present standards for safety. As an element of this program, the Aircraft Vortex Spacing System (AVOSS) is being demonstrated in July 2000, at Dallas Ft-Worth Airport. This system allows reduced aircraft separations, thus increasing the arrival and departure rates, while insuring that wake vortices from a leading aircraft do not endanger trailing aircraft. The system uses predictions or wake vortex position and strength based on input from the current weather state. This prediction is accomplished by a semi-empirical model developed from theory, field observations, and relationships derived from numerical wake vortex simulations. Numerical experiments with a Large Eddy Simulation (LES) model are being conducted in order to provide guidance for the enhancement of these prediction algorithms. The LES Simulations of wake vortices are carried out with NASA's Terminal Area Simulation System (TASS). Previous wake vortex investigations with TASS are described. The primary objective of these numerical studies has been to quantify vortex transport and decay in relation to atmospheric variables. This paper summarizes many of the previous investigations with the TASS model and presents some new results regarding the onset of wake vortex decay.

  19. Numerical MHD codes for modeling astrophysical flows

    NASA Astrophysics Data System (ADS)

    Koldoba, A. V.; Ustyugova, G. V.; Lii, P. S.; Comins, M. L.; Dyda, S.; Romanova, M. M.; Lovelace, R. V. E.

    2016-05-01

    We describe a Godunov-type magnetohydrodynamic (MHD) code based on the Miyoshi and Kusano (2005) solver which can be used to solve various astrophysical hydrodynamic and MHD problems. The energy equation is in the form of entropy conservation. The code has been implemented on several different coordinate systems: 2.5D axisymmetric cylindrical coordinates, 2D Cartesian coordinates, 2D plane polar coordinates, and fully 3D cylindrical coordinates. Viscosity and diffusivity are implemented in the code to control the accretion rate in the disk and the rate of penetration of the disk matter through the magnetic field lines. The code has been utilized for the numerical investigations of a number of different astrophysical problems, several examples of which are shown.

  20. Numeral Incorporation in Japanese Sign Language

    ERIC Educational Resources Information Center

    Ktejik, Mish

    2013-01-01

    This article explores the morphological process of numeral incorporation in Japanese Sign Language. Numeral incorporation is defined and the available research on numeral incorporation in signed language is discussed. The numeral signs in Japanese Sign Language are then introduced and followed by an explanation of the numeral morphemes which are…

  1. Determination of rate distributions from kinetic experiments.

    PubMed

    Steinbach, P J; Chu, K; Frauenfelder, H; Johnson, J B; Lamb, D C; Nienhaus, G U; Sauke, T B; Young, R D

    1992-01-01

    Rate processes in proteins are often not adequately described by simple exponential kinetics. Instead of modeling the kinetics in the time domain, it can be advantageous to perform a numerical inversion leading to a rate distribution function f(lambda). The features observed in f(lambda) (number, positions, and shapes of peaks) can then be interpreted. We discuss different numerical techniques for obtaining rate distribution functions, with special emphasis on the maximum entropy method. Examples are given for the application of these techniques to flash photolysis data of heme proteins.

  2. Inhomogeneous cosmology with numerical relativity

    NASA Astrophysics Data System (ADS)

    Macpherson, Hayley J.; Lasky, Paul D.; Price, Daniel J.

    2017-03-01

    We perform three-dimensional numerical relativity simulations of homogeneous and inhomogeneous expanding spacetimes, with a view toward quantifying nonlinear effects from cosmological inhomogeneities. We demonstrate fourth-order convergence with errors less than one part in 1 06 in evolving a flat, dust Friedmann-Lemaître-Roberston-Walker spacetime using the Einstein Toolkit within the Cactus framework. We also demonstrate agreement to within one part in 1 03 between the numerical relativity solution and the linear solution for density, velocity and metric perturbations in the Hubble flow over a factor of ˜350 change in scale factor (redshift). We simulate the growth of linear perturbations into the nonlinear regime, where effects such as gravitational slip and tensor perturbations appear. We therefore show that numerical relativity is a viable tool for investigating nonlinear effects in cosmology.

  3. A numerical method of regenerator

    NASA Astrophysics Data System (ADS)

    Zhu, Shaowei; Matsubara, Yoichi

    2004-02-01

    A numerical method for regenerators is introduced in this paper. It is not only suitable for the regenerators in cryocoolers and Stirling engines, but also suitable for the stacks in acoustic engines and the pulse tubes in pulse tube refrigerators. The numerical model is one dimensional periodic unsteady flow model. The numerical method is based on the control volume concept with the implicitly solve method. The iteration acceleration method, which considers the one-dimensional periodic unsteady problem as the steady two-dimensional problem, is used for decreasing the calculation time. By this method, the regenerator in an inertance tube pulse tube refrigerator was simulated. The result is useful for understanding how the inefficiency of the regenerator changes with the inertance effect.

  4. Numerical Simulation of Black Holes

    NASA Astrophysics Data System (ADS)

    Teukolsky, Saul

    2003-04-01

    Einstein's equations of general relativity are prime candidates for numerical solution on supercomputers. There is some urgency in being able to carry out such simulations: Large-scale gravitational wave detectors are now coming on line, and the most important expected signals cannot be predicted except numerically. Problems involving black holes are perhaps the most interesting, yet also particularly challenging computationally. One difficulty is that inside a black hole there is a physical singularity that cannot be part of the computational domain. A second difficulty is the disparity in length scales between the size of the black hole and the wavelength of the gravitational radiation emitted. A third difficulty is that all existing methods of evolving black holes in three spatial dimensions are plagued by instabilities that prohibit long-term evolution. I will describe the ideas that are being introduced in numerical relativity to deal with these problems, and discuss the results of recent calculations of black hole collisions.

  5. Numerical Package in Computer Supported Numeric Analysis Teaching

    ERIC Educational Resources Information Center

    Tezer, Murat

    2007-01-01

    At universities in the faculties of Engineering, Sciences, Business and Economics together with higher education in Computing, it is stated that because of the difficulty, calculators and computers can be used in Numerical Analysis (NA). In this study, the learning computer supported NA will be discussed together with important usage of the…

  6. Numerical relativity and spectral methods

    NASA Astrophysics Data System (ADS)

    Grandclement, P.

    2016-12-01

    The term numerical relativity denotes the various techniques that aim at solving Einstein's equations using computers. Those computations can be divided into two families: temporal evolutions on the one hand and stationary or periodic solutions on the other one. After a brief presentation of those two classes of problems, I will introduce a numerical tool designed to solve Einstein's equations: the KADATH library. It is based on the the use of spectral methods that can reach high accuracy with moderate computational resources. I will present some applications about quasicircular orbits of black holes and boson star configurations.

  7. The representation of numerical magnitude

    PubMed Central

    Brannon, Elizabeth M

    2006-01-01

    The combined efforts of many fields are advancing our understanding of how number is represented. Researchers studying numerical reasoning in adult humans, developing humans and non-human animals are using a suite of behavioral and neurobiological methods to uncover similarities and differences in how each population enumerates and compares quantities to identify the neural substrates of numerical cognition. An important picture emerging from this research is that adult humans share with non-human animals a system for representing number as language-independent mental magnitudes and that this system emerges early in development. PMID:16546373

  8. Investigation of the Static Longitudinal and Lateral Stability Characteristics of a 0.10-Scale Model of a Three-Stage Configuration of the Scout Research Vehicle at Mach Numbers of 2.29, 2.96, 3.96, and 4.65

    NASA Technical Reports Server (NTRS)

    Jernell, Lloyd S.

    1961-01-01

    An investigation w a s made i n the Langley Unitary Plan wind tunnel o determine the effects of fin area and the effects of antennas and w iring tunnels on the static longitudinal and lateral stability of a 0 .10- scale model of a three- stage configuration of the Scout vehicle. The tests were performed at Mach numbers of 2.29, 2.96, 3.96, and 4. 65 6 and at Reynolds numbers of about 3.5 X 10 per foot.

  9. Conditional Convergence of Numerical Series

    ERIC Educational Resources Information Center

    Gomez, E.; Plaza, A.

    2002-01-01

    One of the most astonishing properties when studying numerical series is that the sum is not commutative, that is the sum may change when the order of its elements is altered. In this note an example is given of such a series. A well-known mathematical proof is given and a MATLAB[C] program used for different rearrangements of the series…

  10. Numerical calculations of flow fields

    NASA Technical Reports Server (NTRS)

    Anderson, D.; Vogel, J. M.

    1973-01-01

    Numerical calculations were made of flow fields generated by various aerodynamic configurations. Data cover flow fields generated by a finitely thick lifting three dimensional wing with subsonic tips moving at supersonic speeds, cross flow instability associated with lifting delta wing configurations such as space shuttles, and flow fields produced by a lifting elliptic cone. Finite difference techniques were used to determine elliptic cone flow.

  11. Numerical modeling of a vortex stabilized arcjet

    NASA Astrophysics Data System (ADS)

    Pawlas, Gary Edward

    examined. Comparisons with experimental data and previous numerical results were in excellent agreement. Quantities examined included Mach number and static wall pressure distributions, and oblique shock structures. rate and thrust decreased. &The technique was used to predict the flow through a typical arcjet thruster geometry. Results indicate swirl and viscosity play an important role in the complex geometry of an arcjet by shifting the Mach contours upstream and reducing the mass flow rate and thrust.

  12. Sparseness and Roughness of Foreign Exchange Rates

    NASA Astrophysics Data System (ADS)

    Vandewalle, N.; Ausloos, M.

    An accurate multiaffine analysis of 23 foreign currency exchange rates has been performed. The roughness exponent H1 which characterizes the excursion of the exchange rate has been numerically measured. The degree of intermittency C1 has been also estimated. In the (H1,C1) phase diagram, the currency exchange rates are dispersed in a wide region around the Brownian motion value (H1=0.5,C1=0) and have a significantly intermittent component (C1≠0).

  13. Numerical discrimination is mediated by neural coding variation.

    PubMed

    Prather, Richard W

    2014-12-01

    One foundation of numerical cognition is that discrimination accuracy depends on the proportional difference between compared values, closely following the Weber-Fechner discrimination law. Performance in non-symbolic numerical discrimination is used to calculate individual Weber fraction, a measure of relative acuity of the approximate number system (ANS). Individual Weber fraction is linked to symbolic arithmetic skills and long-term educational and economic outcomes. The present findings suggest that numerical discrimination performance depends on both the proportional difference and absolute value, deviating from the Weber-Fechner law. The effect of absolute value is predicted via computational model based on the neural correlates of numerical perception. Specifically, that the neural coding "noise" varies across corresponding numerosities. A computational model using firing rate variation based on neural data demonstrates a significant interaction between ratio difference and absolute value in predicting numerical discriminability. We find that both behavioral and computational data show an interaction between ratio difference and absolute value on numerical discrimination accuracy. These results further suggest a reexamination of the mechanisms involved in non-symbolic numerical discrimination, how researchers may measure individual performance, and what outcomes performance may predict.

  14. Finite elasto-plastic deformation. I - Theory and numerical examples

    NASA Technical Reports Server (NTRS)

    Osias, J. R.; Swedlow, J. L.

    1974-01-01

    It is demonstrated that the problem of elasto-plastic finite deformation is governed by a quasi-linear model irrespective of deformation magnitude. This feature follows from the adoption of a rate viewpoint toward finite deformation analysis in an Eulerian reference frame. Objectivity of the formulation is preserved by introduction of a frame-invariant stress rate. Equations for piece-wise linear incremental finite element analysis are developed by application of the Galerkin method to the instantaneously linear governing differential equations of the quasi-linear model. Numerical solution capability has been established for problems of plane strain and plane stress. The accuracy of the numerical analysis is demonstrated by consideration of a number of problems of homogeneous finite deformation admitting comparative analytic solution. It is shown that accurate, objective numerical solutions can be obtained for problems involving dimensional changes of an order of magnitude and rotations of a full radian.

  15. Numerical modeling of a large deformation thermoforming process

    SciTech Connect

    Schrank, M.G.

    1988-04-01

    A numerical solution, using finite element methods, is presented for the simulation of a blow-molding process used to form a thermoplastic polymer (polyethylene terephthalate). The constitutive relationship employed in the analysis is a modification of the creep power law, allowing both strain hardening and strain rate hardening of the material. Analytical results compare well with experimental data for both rate of deformation during the forming process and strain distribution in the final formed configuration. 15 figs.

  16. Impacts of multiple stressors on growth and metabolic rate of Malaclemys terrapin.

    PubMed

    Holliday, Dawn K; Elskus, Adria A; Roosenburg, Willem M

    2009-02-01

    Coastal species encounter numerous physiological stressors ranging from daily fluctuations in salinity and temperature to anthropogenic contaminants, yet the effects of such stressor combinations on aquatic organisms remain largely unknown. Exposure to environmental contaminants, such as polychlorinated biphenyls (PCBs), can disrupt physiological processes, and while physiological responses to salinity change are well understood, the combined effects of salinity change and contaminants on these processes are unknown. Marine and brackish water turtles are often simultaneously exposed to both stressors. We exposed male, eight-month-old diamondback terrapins to one of four salinity treatments (0, 10, 20, and 30 parts per thousand) in the presence and absence of the anthropogenic stressor 3,3',4,4',5-pentachlorobiphenyl (PCB 126, 20 microg/g via intraperitoneal injection) and monitored growth (carapace length and mass) and metabolic rate for six months. Exposure to PCB 126 significantly reduced growth (p < 0.0001), lowered standard metabolic rates (SMRs; p < 0.0001), and altered respiratory pattern (p < 0.0001). Salinity stress reduced growth (p < 0.0001) and altered the respiratory pattern (p < 0.0001) but had no overall effect on metabolic rate (p = 0.33). No interactive effects of PCBs and salinity were seen on either growth or metabolic rate. Our data indicate terrapins may be able to cope with some effects of salinity change through physiological adjustments but are less able to cope with PCBs. We show that PCB 126 disrupts the ecophysiological mechanisms that affect life history traits and thus ultimately could alter population structure and dynamics. The present study enriches our understanding of the environmental toxicology of reptiles and aids in the interpretation of health conditions documented in field-collected turtles contaminated with PCBs.

  17. 3D Numerical simulations of oblique subduction

    NASA Astrophysics Data System (ADS)

    Malatesta, C.; Gerya, T.; Scambelluri, M.; Crispini, L.; Federico, L.; Capponi, G.

    2012-04-01

    In the past 2D numerical studies (e.g. Gerya et al., 2002; Gorczyk et al., 2007; Malatesta et al., 2012) provided evidence that during intraoceanic subduction a serpentinite channel forms above the downgoing plate. This channel forms as a result of hydration of the mantle wedge by uprising slab-fluids. Rocks buried at high depths are finally exhumed within this buoyant low-viscosity medium. Convergence rate in these 2D models was described by a trench-normal component of velocity. Several present and past subduction zones worldwide are however driven by oblique convergence between the plates, where trench-normal motion of the subducting slab is coupled with trench-parallel displacement of the plates. Can the exhumation mechanism and the exhumation rates of high-pressure rocks be affected by the shear component of subduction? And how uprise of these rocks can vary along the plate margin? We tried to address these questions performing 3D numerical models that simulate an intraoceanic oblique subduction. The models are based on thermo-mechanical equations that are solved with finite differences method and marker-in-cell techniques combined with multigrid approach (Gerya, 2010). In most of the models a narrow oceanic basin (500 km-wide) surrounded by continental margins is depicted. The basin is floored by either layered or heterogeneous oceanic lithosphere with gabbro as discrete bodies in serpentinized peridotite and a basaltic layer on the top. A weak zone in the mantle is prescribed to control the location of subduction initiation and therefore the plate margins geometry. Finally, addition of a third dimension in the simulations allowed us to test the role of different plate margin geometries on oblique subduction dynamics. In particular in each model we modified the dip angle of the weak zone and its "lateral" geometry (e.g. continuous, segmented). We consider "continuous" weak zones either parallel or increasingly moving away from the continental margins

  18. Development of a numerical pump testing framework.

    PubMed

    Kaufmann, Tim A S; Gregory, Shaun D; Büsen, Martin R; Tansley, Geoff D; Steinseifer, Ulrich

    2014-09-01

    It has been shown that left ventricular assist devices (LVADs) increase the survival rate in end-stage heart failure patients. However, there is an ongoing demand for an increased quality of life, fewer adverse events, and more physiological devices. These challenges necessitate new approaches during the design process. In this study, computational fluid dynamics (CFD), lumped parameter (LP) modeling, mock circulatory loops (MCLs), and particle image velocimetry (PIV) are combined to develop a numerical Pump Testing Framework (nPTF) capable of analyzing local flow patterns and the systemic response of LVADs. The nPTF was created by connecting a CFD model of the aortic arch, including an LVAD outflow graft to an LP model of the circulatory system. Based on the same geometry, a three-dimensional silicone model was crafted using rapid prototyping and connected to an MCL. PIV studies of this setup were performed to validate the local flow fields (PIV) and the systemic response (MCL) of the nPTF. After validation, different outflow graft positions were compared using the nPTF. Both the numerical and the experimental setup were able to generate physiological responses by adjusting resistances and systemic compliance, with mean aortic pressures of 72.2-132.6 mm Hg for rotational speeds of 2200-3050 rpm. During LVAD support, an average flow to the distal branches (cerebral and subclavian) of 24% was found in the experiments and the nPTF. The flow fields from PIV and CFD were in good agreement. Numerical and experimental tools were combined to develop and validate the nPTF, which can be used to analyze local flow fields and the systemic response of LVADs during the design process. This allows analysis of physiological control parameters at early development stages and may, therefore, help to improve patient outcomes.

  19. Numerical Modelling of Electrical Discharges

    NASA Astrophysics Data System (ADS)

    Durán-Olivencia, F. J.; Pontiga, F.; Castellanos, A.

    2014-03-01

    The problem of the propagation of an electrical discharge between a spherical electrode and a plane has been solved by means of finite element methods (FEM) using a fluid approximation and assuming weak ionization and local equilibrium with the electric field. The numerical simulation of this type of problems presents the usual difficulties of convection-diffusion-reaction problems, in addition to those associated with the nonlinearities of the charged species velocities, the formation of steep gradients of the electric field and particle densities, and the coexistence of very different temporal scales. The effect of using different temporal discretizations for the numerical integration of the corresponding system of partial differential equations will be here investigated. In particular, the so-called θ-methods will be used, which allows to implement implicit, semi-explicit and fully explicit schemes in a simple way.

  20. Numerical simulation of heat exchanger

    SciTech Connect

    Sha, W.T.

    1985-01-01

    Accurate and detailed knowledge of the fluid flow field and thermal distribution inside a heat exchanger becomes invaluable as a large, efficient, and reliable unit is sought. This information is needed to provide proper evaluation of the thermal and structural performance characteristics of a heat exchanger. It is to be noted that an analytical prediction method, when properly validated, will greatly reduce the need for model testing, facilitate interpolating and extrapolating test data, aid in optimizing heat-exchanger design and performance, and provide scaling capability. Thus tremendous savings of cost and time are realized. With the advent of large digital computers and advances in the development of computational fluid mechanics, it has become possible to predict analytically, through numerical solution, the conservation equations of mass, momentum, and energy for both the shellside and tubeside fluids. The numerical modeling technique will be a valuable, cost-effective design tool for development of advanced heat exchangers.

  1. Numerical Hydrodynamics in Special Relativity.

    PubMed

    Martí, José Maria; Müller, Ewald

    2003-01-01

    This review is concerned with a discussion of numerical methods for the solution of the equations of special relativistic hydrodynamics (SRHD). Particular emphasis is put on a comprehensive review of the application of high-resolution shock-capturing methods in SRHD. Results of a set of demanding test bench simulations obtained with different numerical SRHD methods are compared. Three applications (astrophysical jets, gamma-ray bursts and heavy ion collisions) of relativistic flows are discussed. An evaluation of various SRHD methods is presented, and future developments in SRHD are analyzed involving extension to general relativistic hydrodynamics and relativistic magneto-hydrodynamics. The review further provides FORTRAN programs to compute the exact solution of a 1D relativistic Riemann problem with zero and nonzero tangential velocities, and to simulate 1D relativistic flows in Cartesian Eulerian coordinates using the exact SRHD Riemann solver and PPM reconstruction.

  2. Numerical simulation of gravel packing

    SciTech Connect

    Winterfeld, P.H.; Schroeder, D.E. Jr. )

    1992-08-01

    To obtain maximum productivity from unconsolidated formations where sand control is required, it is important to understand the mechanics of gravel packing. This paper describes a finite-element, numerical simulator that can predict gravel placement in the perforations and annulus of a wellbore. The equations for the simulator include mass and momentum conservation. Wellbore geometry, physical properties, and fluid and gravel-pack properties are simulator input. Experiments in a 100-ft full-scale wellbore model for three gravel-packing configurations have been successfully simulated. These configurations are a circulating pack with a washpipe, a squeeze pack, and a circulating/squeeze pack with a washpipe and a lower telltale screen. The low cost, speed, and extrapolation capabilities of the numerical simulator will greatly enhance our ability to predict gravel placement in a wellbore.

  3. Numerical simulation of Ulysses nutation

    NASA Technical Reports Server (NTRS)

    Marirrodriga, C. Garcia; Zeischka, J.; Boslooper, E. C.

    1993-01-01

    A numerical simulation has been performed on the in-orbit instability of the Ulysses Spacecraft. The thermal excitation from the solar flux, the flexible axial boom and its deployment mechanism have been modeled and analyzed. The simulation shows that the nutation build-up has been originated by the solar input on the axial boom coupled with the system nutation frequency of the spacecraft. The results agree with the observed behavior.

  4. Numerical Simulation of Protoplanetary Vortices

    DTIC Science & Technology

    2003-12-01

    UNCLASSIFIED Center for Turbulence Research 81 Annual Research Briefs 2003 Numerical simulation of protoplanetary vortices By H. Lin, J.A. Barranco t AND P.S...planetesimals and planets. In earlier works ( Barranco & Marcus 2000; Barranco et al. 2000; Lin et al. 2000) we have briefly described the possible physical...transport. In particular, Barranco et al. (2000) provided a general mathe- matical framework that is suitable for the asymptotic regime of the disk

  5. Cuba: Multidimensional numerical integration library

    NASA Astrophysics Data System (ADS)

    Hahn, Thomas

    2016-08-01

    The Cuba library offers four independent routines for multidimensional numerical integration: Vegas, Suave, Divonne, and Cuhre. The four algorithms work by very different methods, and can integrate vector integrands and have very similar Fortran, C/C++, and Mathematica interfaces. Their invocation is very similar, making it easy to cross-check by substituting one method by another. For further safeguarding, the output is supplemented by a chi-square probability which quantifies the reliability of the error estimate.

  6. Requirements definition by numerical simulation

    NASA Astrophysics Data System (ADS)

    Hickman, James J.; Kostas, Chris; Tsang, Kang T.

    1994-10-01

    We are investigating the issues involved in requirements definition for narcotics interdiction: how much of a particular signature is possible, how does this amount change for different conditions, and what is the temporal relationship in various scenarios. Our approach has been to simulate numerically the conditions that arise during vapor or particulate transport. The advantages of this approach are that (1) a broad range of scenarios can be rapidly and inexpensively analyzed by simulation, and (2) simulations can display quantities that are difficult or impossible to measure. The drawback of this approach is that simulations cannot include all of the phenomena present in a real measurement, and therefore the fidelity of the simulation results is always an issue. To address this limitation, we will ultimately combine the results of numerical simulations with measurements of physical parameters for inclusion in the simulation. In this paper, we discuss these issues and how they apply to the current problems in narcotics interdictions, especially cargo containers. We also show the results of 1D and 3D numerical simulations, and compare these results with analytical solutions. The results indicate that this approach is viable. We also present data from 3D simulations of vapor transport in a loaded cargo container and some of the issues present in this ongoing work.

  7. In Praise of Numerical Computation

    NASA Astrophysics Data System (ADS)

    Yap, Chee K.

    Theoretical Computer Science has developed an almost exclusively discrete/algebraic persona. We have effectively shut ourselves off from half of the world of computing: a host of problems in Computational Science & Engineering (CS&E) are defined on the continuum, and, for them, the discrete viewpoint is inadequate. The computational techniques in such problems are well-known to numerical analysis and applied mathematics, but are rarely discussed in theoretical algorithms: iteration, subdivision and approximation. By various case studies, I will indicate how our discrete/algebraic view of computing has many shortcomings in CS&E. We want embrace the continuous/analytic view, but in a new synthesis with the discrete/algebraic view. I will suggest a pathway, by way of an exact numerical model of computation, that allows us to incorporate iteration and approximation into our algorithms’ design. Some recent results give a peek into how this view of algorithmic development might look like, and its distinctive form suggests the name “numerical computational geometry” for such activities.

  8. Numerical simulation of conservation laws

    NASA Technical Reports Server (NTRS)

    Chang, Sin-Chung; To, Wai-Ming

    1992-01-01

    A new numerical framework for solving conservation laws is being developed. This new approach differs substantially from the well established methods, i.e., finite difference, finite volume, finite element and spectral methods, in both concept and methodology. The key features of the current scheme include: (1) direct discretization of the integral forms of conservation laws, (2) treating space and time on the same footing, (3) flux conservation in space and time, and (4) unified treatment of the convection and diffusion fluxes. The model equation considered in the initial study is the standard one dimensional unsteady constant-coefficient convection-diffusion equation. In a stability study, it is shown that the principal and spurious amplification factors of the current scheme, respectively, are structurally similar to those of the leapfrog/DuFort-Frankel scheme. As a result, the current scheme has no numerical diffusion in the special case of pure convection and is unconditionally stable in the special case of pure diffusion. Assuming smooth initial data, it will be shown theoretically and numerically that, by using an easily determined optimal time step, the accuracy of the current scheme may reach a level which is several orders of magnitude higher than that of the MacCormack scheme, with virtually identical operation count.

  9. Numerical methods for turbulent flow

    NASA Technical Reports Server (NTRS)

    Turner, James C., Jr.

    1988-01-01

    It has generally become accepted that the Navier-Strokes equations predict the dynamic behavior of turbulent as well as laminar flows of a fluid at a point in space away form a discontinuity such as a shock wave. Turbulence is also closely related to the phenomena of non-uniqueness of solutions of the Navier-Strokes equations. These second order, nonlinear partial differential equations can be solved analytically for only a few simple flows. Turbulent flow fields are much to complex to lend themselves to these few analytical methods. Numerical methods, therefore, offer the only possibility of achieving a solution of turbulent flow equations. In spite of recent advances in computer technology, the direct solution, by discrete methods, of the Navier-Strokes equations for turbulent flow fields is today, and in the foreseeable future, impossible. Thus the only economically feasible way to solve practical turbulent flow problems numerically is to use statistically averaged equations governing mean-flow quantities. The objective is to study some recent developments relating to the use of numerical methods to study turbulent flow.

  10. Numerical technique for solving the radiative transfer equation for a spherical shell atmosphere.

    PubMed

    Herman, B M; Ben-David, A; Thome, K J

    1994-03-20

    A method for numerically solving the equation of radiative transfer in a spherical shell atmosphere is presented. The method uses a conical boundary and a Gauss-Seidel iteration scheme to solve for all orders of scattering along a single radial line in the atmosphere. Tests of the model indicate an accuracy better than 1% for most Earth-atmosphere situations. Results from this model are compared with flat-atmosphere model results for a scattering-only atmosphere. These comparisons indicate that excluding spherical effects for solar zenith angles greater than 85° leads to errors larger than 5% at optical depths as small as 0.10.

  11. Numerical Analysis of Convection/Transpiration Cooling

    NASA Technical Reports Server (NTRS)

    Glass, David E.; Dilley, Arthur D.; Kelly, H. Neale

    1999-01-01

    An innovative concept utilizing the natural porosity of refractory-composite materials and hydrogen coolant to provide CONvective and TRANspiration (CONTRAN) cooling and oxidation protection has been numerically studied for surfaces exposed to a high heat flux, high temperature environment such as hypersonic vehicle engine combustor walls. A boundary layer code and a porous media finite difference code were utilized to analyze the effect of convection and transpiration cooling on surface heat flux and temperature. The boundary, layer code determined that transpiration flow is able to provide blocking of the surface heat flux only if it is above a minimum level due to heat addition from combustion of the hydrogen transpirant. The porous media analysis indicated that cooling of the surface is attained with coolant flow rates that are in the same range as those required for blocking, indicating that a coupled analysis would be beneficial.

  12. Numerical Studies of Impurities in Fusion Plasmas

    DOE R&D Accomplishments Database

    Hulse, R. A.

    1982-09-01

    The coupled partial differential equations used to describe the behavior of impurity ions in magnetically confined controlled fusion plasmas require numerical solution for cases of practical interest. Computer codes developed for impurity modeling at the Princeton Plasma Physics Laboratory are used as examples of the types of codes employed for this purpose. These codes solve for the impurity ionization state densities and associated radiation rates using atomic physics appropriate for these low-density, high-temperature plasmas. The simpler codes solve local equations in zero spatial dimensions while more complex cases require codes which explicitly include transport of the impurity ions simultaneously with the atomic processes of ionization and recombination. Typical applications are discussed and computational results are presented for selected cases of interest.

  13. Numerical Simulations of Acoustically Driven, Burning Droplets

    NASA Technical Reports Server (NTRS)

    Kim, H.-C.; Karagozian, A. R.; Smith, O. I.; Urban, Dave (Technical Monitor)

    1999-01-01

    This computational study focuses on understanding and quantifying the effects of external acoustical perturbations on droplet combustion. A one-dimensional, axisymmetric representation of the essential diffusion and reaction processes occurring in the vicinity of the droplet stagnation point is used here in order to isolate the effects of the imposed acoustic disturbance. The simulation is performed using a third order accurate, essentially non-oscillatory (ENO) numerical scheme with a full methanol-air reaction mechanism. Consistent with recent microgravity and normal gravity combustion experiments, focus is placed on conditions where the droplet is situated at a velocity antinode in order for the droplet to experience the greatest effects of fluid mechanical straining of flame structures. The effects of imposed sound pressure level and frequency are explored here, and conditions leading to maximum burning rates are identified.

  14. Numerical experiments on the clustering of galaxies

    NASA Technical Reports Server (NTRS)

    Miller, R. H.

    1983-01-01

    Consistent and robust growth rates for disturbances which lead to galaxy clustering are obtainable with a precision of 1-2 percent, in numerical experiments that encompass such conditions as expansion, nonexpansion, and parameter variations. The experiments have given attention to the dominant physical processes of gravitational clustering in an expanding universe of conventional matter, and are based on n-body integrations for 100,000 particles responding self-consistently to forces of self-gravitation with periodic boundary conditions. Observed structures of the scale of galaxy clusters and superclusters are most easily described in terms of matter swept away from growing empty regions. The result of this process has a cellular appearance which resembles clustering of the scale of large voids and superclusters.

  15. Numerical Analysis of Convection/Transpiration Cooling

    NASA Technical Reports Server (NTRS)

    Glass, David E.; Dilley, Arthur D.; Kelly, H. Neale

    1999-01-01

    An innovative concept utilizing the natural porosity of refractory-composite materials and hydrogen coolant to provide CONvective and TRANspiration (CONTRAN) cooling and oxidation protection has been numerically studied for surfaces exposed to a high heat flux high temperature environment such as hypersonic vehicle engine combustor walls. A boundary layer code and a porous media finite difference code were utilized to analyze the effect of convection and transpiration cooling on surface heat flux and temperature. The boundary layer code determined that transpiration flow is able to provide blocking of the surface heat flux only if it is above a minimum level due to heat addition from combustion of the hydrogen transpirant. The porous media analysis indicated that cooling of the surface is attained with coolant flow rates that are in the same range as those required for blocking, indicating that a coupled analysis would be beneficial.

  16. High Rate Digital Demodulator ASIC

    NASA Technical Reports Server (NTRS)

    Ghuman, Parminder; Sheikh, Salman; Koubek, Steve; Hoy, Scott; Gray, Andrew

    1998-01-01

    The architecture of High Rate (600 Mega-bits per second) Digital Demodulator (HRDD) ASIC capable of demodulating BPSK and QPSK modulated data is presented in this paper. The advantages of all-digital processing include increased flexibility and reliability with reduced reproduction costs. Conventional serial digital processing would require high processing rates necessitating a hardware implementation in other than CMOS technology such as Gallium Arsenide (GaAs) which has high cost and power requirements. It is more desirable to use CMOS technology with its lower power requirements and higher gate density. However, digital demodulation of high data rates in CMOS requires parallel algorithms to process the sampled data at a rate lower than the data rate. The parallel processing algorithms described here were developed jointly by NASA's Goddard Space Flight Center (GSFC) and the Jet Propulsion Laboratory (JPL). The resulting all-digital receiver has the capability to demodulate BPSK, QPSK, OQPSK, and DQPSK at data rates in excess of 300 Mega-bits per second (Mbps) per channel. This paper will provide an overview of the parallel architecture and features of the HRDR ASIC. In addition, this paper will provide an over-view of the implementation of the hardware architectures used to create flexibility over conventional high rate analog or hybrid receivers. This flexibility includes a wide range of data rates, modulation schemes, and operating environments. In conclusion it will be shown how this high rate digital demodulator can be used with an off-the-shelf A/D and a flexible analog front end, both of which are numerically computer controlled, to produce a very flexible, low cost high rate digital receiver.

  17. Entropy Splitting and Numerical Dissipation

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Vinokur, M.; Djomehri, M. J.

    1999-01-01

    A rigorous stability estimate for arbitrary order of accuracy of spatial central difference schemes for initial-boundary value problems of nonlinear symmetrizable systems of hyperbolic conservation laws was established recently by Olsson and Oliger (1994) and Olsson (1995) and was applied to the two-dimensional compressible Euler equations for a perfect gas by Gerritsen and Olsson (1996) and Gerritsen (1996). The basic building block in developing the stability estimate is a generalized energy approach based on a special splitting of the flux derivative via a convex entropy function and certain homogeneous properties. Due to some of the unique properties of the compressible Euler equations for a perfect gas, the splitting resulted in the sum of a conservative portion and a non-conservative portion of the flux derivative. hereafter referred to as the "Entropy Splitting." There are several potential desirable attributes and side benefits of the entropy splitting for the compressible Euler equations that were not fully explored in Gerritsen and Olsson. The paper has several objectives. The first is to investigate the choice of the arbitrary parameter that determines the amount of splitting and its dependence on the type of physics of current interest to computational fluid dynamics. The second is to investigate in what manner the splitting affects the nonlinear stability of the central schemes for long time integrations of unsteady flows such as in nonlinear aeroacoustics and turbulence dynamics. If numerical dissipation indeed is needed to stabilize the central scheme, can the splitting help minimize the numerical dissipation compared to its un-split cousin? Extensive numerical study on the vortex preservation capability of the splitting in conjunction with central schemes for long time integrations will be presented. The third is to study the effect of the non-conservative proportion of splitting in obtaining the correct shock location for high speed complex shock

  18. Direct numerical simulation of turbulent reacting flows

    SciTech Connect

    Chen, J.H.

    1993-12-01

    The development of turbulent combustion models that reflect some of the most important characteristics of turbulent reacting flows requires knowledge about the behavior of key quantities in well defined combustion regimes. In turbulent flames, the coupling between the turbulence and the chemistry is so strong in certain regimes that is is very difficult to isolate the role played by one individual phenomenon. Direct numerical simulation (DNS) is an extremely useful tool to study in detail the turbulence-chemistry interactions in certain well defined regimes. Globally, non-premixed flames are controlled by two limiting cases: the fast chemistry limit, where the turbulent fluctuations. In between these two limits, finite-rate chemical effects are important and the turbulence interacts strongly with the chemical processes. This regime is important because industrial burners operate in regimes in which, locally the flame undergoes extinction, or is at least in some nonequilibrium condition. Furthermore, these nonequilibrium conditions strongly influence the production of pollutants. To quantify the finite-rate chemistry effect, direct numerical simulations are performed to study the interaction between an initially laminar non-premixed flame and a three-dimensional field of homogeneous isotropic decaying turbulence. Emphasis is placed on the dynamics of extinction and on transient effects on the fine scale mixing process. Differential molecular diffusion among species is also examined with this approach, both for nonreacting and reacting situations. To address the problem of large-scale mixing and to examine the effects of mean shear, efforts are underway to perform large eddy simulations of round three-dimensional jets.

  19. Towards numerical prediction of cavitation erosion

    PubMed Central

    Fivel, Marc; Franc, Jean-Pierre; Chandra Roy, Samir

    2015-01-01

    This paper is intended to provide a potential basis for a numerical prediction of cavitation erosion damage. The proposed method can be divided into two steps. The first step consists in determining the loading conditions due to cavitation bubble collapses. It is shown that individual pits observed on highly polished metallic samples exposed to cavitation for a relatively small time can be considered as the signature of bubble collapse. By combining pitting tests with an inverse finite-element modelling (FEM) of the material response to a representative impact load, loading conditions can be derived for each individual bubble collapse in terms of stress amplitude (in gigapascals) and radial extent (in micrometres). This step requires characterizing as accurately as possible the properties of the material exposed to cavitation. This characterization should include the effect of strain rate, which is known to be high in cavitation erosion (typically of the order of several thousands s−1). Nanoindentation techniques as well as compressive tests at high strain rate using, for example, a split Hopkinson pressure bar test system may be used. The second step consists in developing an FEM approach to simulate the material response to the repetitive impact loads determined in step 1. This includes a detailed analysis of the hardening process (isotropic versus kinematic) in order to properly account for fatigue as well as the development of a suitable model of material damage and failure to account for mass loss. Although the whole method is not yet fully operational, promising results are presented that show that such a numerical method might be, in the long term, an alternative to correlative techniques used so far for cavitation erosion prediction. PMID:26442139

  20. Towards numerical prediction of cavitation erosion.

    PubMed

    Fivel, Marc; Franc, Jean-Pierre; Chandra Roy, Samir

    2015-10-06

    This paper is intended to provide a potential basis for a numerical prediction of cavitation erosion damage. The proposed method can be divided into two steps. The first step consists in determining the loading conditions due to cavitation bubble collapses. It is shown that individual pits observed on highly polished metallic samples exposed to cavitation for a relatively small time can be considered as the signature of bubble collapse. By combining pitting tests with an inverse finite-element modelling (FEM) of the material response to a representative impact load, loading conditions can be derived for each individual bubble collapse in terms of stress amplitude (in gigapascals) and radial extent (in micrometres). This step requires characterizing as accurately as possible the properties of the material exposed to cavitation. This characterization should include the effect of strain rate, which is known to be high in cavitation erosion (typically of the order of several thousands s(-1)). Nanoindentation techniques as well as compressive tests at high strain rate using, for example, a split Hopkinson pressure bar test system may be used. The second step consists in developing an FEM approach to simulate the material response to the repetitive impact loads determined in step 1. This includes a detailed analysis of the hardening process (isotropic versus kinematic) in order to properly account for fatigue as well as the development of a suitable model of material damage and failure to account for mass loss. Although the whole method is not yet fully operational, promising results are presented that show that such a numerical method might be, in the long term, an alternative to correlative techniques used so far for cavitation erosion prediction.

  1. Frequency-dependent impedance spectroscopy on the 0.925(Bi0.5Na0.40K0.10)TiO3-0.075(Ba0.70Sr0.30)TiO3 ceramic

    NASA Astrophysics Data System (ADS)

    Ullah, Amir; Rahman, Muneeb-ur; Iqbal, Muhammad Javid; Ahn, Chang Won; Kim, Ill Won; Ullah, Aman

    2016-06-01

    The electrical properties of the 0.925(Bi0.5(Na0.40K0.10)TiO3-0.075(Ba0.70Sr0.30)TiO3 (0.925BNKT-0.075BST) ceramic were investigated by using AC impedance spectroscopy over a wide range of frequencies (10 -2 ~ 105 Hz). The X-ray diffraction patterns confirmed the formation of a single-phase compound. A single semicircular arc in the impedance spectrum indicates that the main contribution of the bulk resistance ( R b ) were due to grain effects, with Rb decreasing with increasing temperature. The conductivity of the ceramics increased with increasing temperature, and the activation energy resulting from the DC conductivity was 0.86 eV. The ceramic displayed a typical negative temperature coefficient of resistance (NTCR) behavior, like that of a semiconductor.

  2. Statistical theory of asteroid escape rates.

    PubMed

    Jaffé, Charles; Ross, Shane D; Lo, Martin W; Marsden, Jerrold; Farrelly, David; Uzer, T

    2002-07-01

    Transition states in phase space are identified and shown to regulate the rate of escape of asteroids temporarily captured in circumplanetary orbits. The transition states, similar to those occurring in chemical reaction dynamics, are then used to develop a statistical semianalytical theory for the rate of escape of asteroids temporarily captured by Mars. Theory and numerical simulations are found to agree to better than 1%. These calculations suggest that further development of transition state theory in celestial mechanics, as an alternative to large-scale numerical simulations, will be a fruitful approach to mass transport calculations.

  3. Advanced Numerical Model for Irradiated Concrete

    SciTech Connect

    Giorla, Alain B.

    2015-03-01

    In this report, we establish a numerical model for concrete exposed to irradiation to address these three critical points. The model accounts for creep in the cement paste and its coupling with damage, temperature and relative humidity. The shift in failure mode with the loading rate is also properly represented. The numerical model for creep has been validated and calibrated against different experiments in the literature [Wittmann, 1970, Le Roy, 1995]. Results from a simplified model are shown to showcase the ability of numerical homogenization to simulate irradiation effects in concrete. In future works, the complete model will be applied to the analysis of the irradiation experiments of Elleuch et al. [1972] and Kelly et al. [1969]. This requires a careful examination of the experimental environmental conditions as in both cases certain critical information are missing, including the relative humidity history. A sensitivity analysis will be conducted to provide lower and upper bounds of the concrete expansion under irradiation, and check if the scatter in the simulated results matches the one found in experiments. The numerical and experimental results will be compared in terms of expansion and loss of mechanical stiffness and strength. Both effects should be captured accordingly by the model to validate it. Once the model has been validated on these two experiments, it can be applied to simulate concrete from nuclear power plants. To do so, the materials used in these concrete must be as well characterized as possible. The main parameters required are the mechanical properties of each constituent in the concrete (aggregates, cement paste), namely the elastic modulus, the creep properties, the tensile and compressive strength, the thermal expansion coefficient, and the drying shrinkage. These can be either measured experimentally, estimated from the initial composition in the case of cement paste, or back-calculated from mechanical tests on concrete. If some

  4. Quantitative comparisons of numerical models of brittle wedge dynamics

    NASA Astrophysics Data System (ADS)

    Buiter, Susanne

    2010-05-01

    Numerical and laboratory models are often used to investigate the evolution of deformation processes at various scales in crust and lithosphere. In both approaches, the freedom in choice of simulation method, materials and their properties, and deformation laws could affect model outcomes. To assess the role of modelling method and to quantify the variability among models, we have performed a comparison of laboratory and numerical experiments. Here, we present results of 11 numerical codes, which use finite element, finite difference and distinct element techniques. We present three experiments that describe shortening of a sand-like, brittle wedge. The material properties of the numerical ‘sand', the model set-up and the boundary conditions are strictly prescribed and follow the analogue setup as closely as possible. Our first experiment translates a non-accreting wedge with a stable surface slope of 20 degrees. In agreement with critical wedge theory, all models maintain the same surface slope and do not deform. This experiment serves as a reference that allows for testing against analytical solutions for taper angle, root-mean-square velocity and gravitational rate of work. The next two experiments investigate an unstable wedge in a sandbox-like setup, which deforms by inward translation of a mobile wall. The models accommodate shortening by formation of forward and backward shear zones. We compare surface slope, rate of dissipation of energy, root-mean-square velocity, and the location, dip angle and spacing of shear zones. We show that we successfully simulate sandbox-style brittle behaviour using different numerical modelling techniques and that we obtain the same styles of deformation behaviour in numerical and laboratory experiments at similar levels of variability. The GeoMod2008 Numerical Team: Markus Albertz, Michelle Cooke, Tony Crook, David Egholm, Susan Ellis, Taras Gerya, Luke Hodkinson, Boris Kaus, Walter Landry, Bertrand Maillot, Yury Mishin

  5. Gyrotactic trapping: A numerical study

    NASA Astrophysics Data System (ADS)

    Ghorai, S.

    2016-04-01

    Gyrotactic trapping is a mechanism proposed by Durham et al. ["Disruption of vertical motility by shear triggers formation of thin Phytoplankton layers," Science 323, 1067-1070 (2009)] to explain the formation of thin phytoplankton layer just below the ocean surface. This mechanism is examined numerically using a rational model based on the generalized Taylor dispersion theory. The crucial role of sedimentation speed in the thin layer formation is demonstrated. The effects of variation in different parameters on the thin layer formation are also investigated.

  6. Discrete observability and numerical quadrature

    NASA Technical Reports Server (NTRS)

    Martin, Clyde F.; Wang, Xiaochang; Stamp, Mark

    1991-01-01

    The authors consider the problem of approximate observability of a one-dimensional diffusion equation on a finite spatial domain with spatial point measurements. The problem of the optimal selection of the measurement points is considered under three conditions: (1) no preassigned measurement nodes; (2) one preassigned node and; (3) two preassigned nodes. The main observation is that the optimal choice is related to three classical procedures in numerical analysis: (1) Gaussian quadrature; (2) Radau quadrature and; (3) Lobatto quadrature. It is shown that the existence of the Radau and Lobatto quadrature is closely related to classical root locus theory.

  7. Disruptive Innovation in Numerical Hydrodynamics

    SciTech Connect

    Waltz, Jacob I.

    2012-09-06

    We propose the research and development of a high-fidelity hydrodynamic algorithm for tetrahedral meshes that will lead to a disruptive innovation in the numerical modeling of Laboratory problems. Our proposed innovation has the potential to reduce turnaround time by orders of magnitude relative to Advanced Simulation and Computing (ASC) codes; reduce simulation setup costs by millions of dollars per year; and effectively leverage Graphics Processing Unit (GPU) and future Exascale computing hardware. If successful, this work will lead to a dramatic leap forward in the Laboratory's quest for a predictive simulation capability.

  8. Results from Numerical General Relativity

    NASA Technical Reports Server (NTRS)

    Baker, John G.

    2011-01-01

    For several years numerical simulations have been revealing the details of general relativity's predictions for the dynamical interactions of merging black holes. I will review what has been learned of the rich phenomenology of these mergers and the resulting gravitational wave signatures. These wave forms provide a potentially observable record of the powerful astronomical events, a central target of gravitational wave astronomy. Asymmetric radiation can produce a thrust on the system which may accelerate the single black hole resulting from the merger to high relative velocity.

  9. Numerical methods for multibody systems

    NASA Technical Reports Server (NTRS)

    Glowinski, Roland; Nasser, Mahmoud G.

    1994-01-01

    This article gives a brief summary of some results obtained by Nasser on modeling and simulation of inequality problems in multibody dynamics. In particular, the augmented Lagrangian method discussed here is applied to a constrained motion problem with impulsive inequality constraints. A fundamental characteristic of the multibody dynamics problem is the lack of global convexity of its Lagrangian. The problem is transformed into a convex analysis problem by localization (piecewise linearization), where the augmented Lagrangian has been successfully used. A model test problem is considered and a set of numerical experiments is presented.

  10. Numerical simulation of low Prandtl number turbulent mixing

    NASA Astrophysics Data System (ADS)

    Gibson, C.; Rogers, M.; Chasnov, J.; Petresky, J.

    1990-12-01

    Numerical simulations of turbulent mixing of strongly diffusive scalar fields were carried out with and without subgrid-scale modeling of the small-scale strain field. For low Reynolds number flows, when the rate of strain field (determined primarily by the small scales) is fully resolved, the scalar microstructure was found to collapse under Batchelor rate-of-strain scaling even for small Prandtl numbers, in agreement with Kerr. For high Reynolds number flows, when small-scale straining is modeled with a subgrid-scale model, the scalar microstructure follows the Batchelor, Howells, and Townsend predictions that the small-scale rate-of-strain is irrelevant.

  11. Numerical Propulsion System Simulation Architecture

    NASA Technical Reports Server (NTRS)

    Naiman, Cynthia G.

    2004-01-01

    The Numerical Propulsion System Simulation (NPSS) is a framework for performing analysis of complex systems. Because the NPSS was developed using the object-oriented paradigm, the resulting architecture is an extensible and flexible framework that is currently being used by a diverse set of participants in government, academia, and the aerospace industry. NPSS is being used by over 15 different institutions to support rockets, hypersonics, power and propulsion, fuel cells, ground based power, and aerospace. Full system-level simulations as well as subsystems may be modeled using NPSS. The NPSS architecture enables the coupling of analyses at various levels of detail, which is called numerical zooming. The middleware used to enable zooming and distributed simulations is the Common Object Request Broker Architecture (CORBA). The NPSS Developer's Kit offers tools for the developer to generate CORBA-based components and wrap codes. The Developer's Kit enables distributed multi-fidelity and multi-discipline simulations, preserves proprietary and legacy codes, and facilitates addition of customized codes. The platforms supported are PC, Linux, HP, Sun, and SGI.

  12. Numerical micromagnetism of strong inhomogeneities

    NASA Astrophysics Data System (ADS)

    Andreas, Christian; Gliga, Sebastian; Hertel, Riccardo

    2014-08-01

    The size of micromagnetic structures, such as domain walls or vortices, is comparable to the exchange length of the ferromagnet. Both, the exchange length of the stray field ls and the magnetocrystalline exchange length lk, are material-dependent quantities that usually lie in the nanometer range. This emphasizes the theoretical challenges associated with the mesoscopic nature of micromagnetism: the magnetic structures are much larger than the atomic lattice constant, but at the same time much smaller than the sample size. In computer simulations, the smallest exchange length serves as an estimate for the largest cell size admissible to prevent appreciable discretization errors. This general rule is not valid in special situations where the magnetization becomes particularly inhomogeneous. When such strongly inhomogeneous structures develop, micromagnetic simulations inevitably contain systematic and numerical errors. It is suggested to combine micromagnetic theory with a Heisenberg model to resolve such problems. We analyze cases where strongly inhomogeneous structures pose limits to standard micromagnetic simulations, arising from fundamental aspects as well as from numerical drawbacks.

  13. Numerical Model for Hydrovolcanic Explosions.

    NASA Astrophysics Data System (ADS)

    Mader, Charles; Gittings, Michael

    2007-03-01

    A hydrovolcanic explosion is generated by the interaction of hot magma with ground water. It is called Surtseyan after the 1963 explosive eruption off Iceland. The water flashes to steam and expands explosively. Liquid water becomes water gas at constant volume and generates pressures of about 3GPa. The Krakatoa hydrovolcanic explosion was modeled using the full Navier-Stokes AMR Eulerian compressible hydrodynamic code called SAGE [1] which includes the high pressure physics of explosions. The water in the hydrovolcanic explosion was described as liquid water heated by magma to 1100 K. The high temperature water is treated as an explosive with the hot liquid water going to water gas. The BKW [2] steady state detonation state has a peak pressure of 8.9 GPa, a propagation velocity of 5900 meters/sec and the water is compressed to 1.33 g/cc. [1] Numerical Modeling of Water Waves, Second Edition, Charles L. Mader, CRC Press 2004. [2] Numerical Modeling of Explosions and Propellants, Charles L. Mader, CRC Press 1998.

  14. Suppressing the numerical Cherenkov radiation in the Yee numerical scheme

    SciTech Connect

    Nuter, Rachel Tikhonchuk, Vladimir

    2016-01-15

    The next generation of laser facilities will routinely produce relativistic particle beams from the interaction of intense laser pulses with solids and/or gases. Their modeling with Particle-In-Cell (PIC) codes needs dispersion-free Maxwell solvers in order to properly describe the interaction of electromagnetic waves with relativistic particles. A particular attention is devoted to the suppression of the numerical Cherenkov instability, responsible for the noise generation. It occurs when the electromagnetic wave is artificially slowed down because of the finite mesh size, thus allowing for the high energy particles to propagate with super-luminous velocities. In the present paper, we show how a slight increase of the light velocity in the Maxwell's equations enables to suppress this instability while keeping a good overall precision of calculations.

  15. Numerical Study of Suspension Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Farrokhpanah, Amirsaman; Coyle, Thomas W.; Mostaghimi, Javad

    2017-01-01

    A numerical study of suspension plasma spraying is presented in the current work. The liquid suspension jet is replaced with a train of droplets containing the suspension particles injected into the plasma flow. Atomization, evaporation, and melting of different components are considered for droplets and particles as they travel toward the substrate. Effect of different parameters on particle conditions during flight and upon impact on the substrate is investigated. Initially, influence of the torch operating conditions such as inlet flow rate and power is studied. Additionally, effect of injector parameters like injection location, flow rate, and angle is examined. The model used in the current study takes high-temperature gradients and non-continuum effects into account. Moreover, the important effect of change in physical properties of suspension droplets as a result of evaporation is included in the model. These mainly include variations in heat transfer properties and viscosity. Utilizing this improved model, several test cases have been considered to better evaluate the effect of different parameters on the quality of particles during flight and upon impact on the substrate.

  16. Numerical simulation of pump-intake vortices

    NASA Astrophysics Data System (ADS)

    Rudolf, Pavel; Klas, Roman

    2015-05-01

    Pump pre-swirl or uneven flow distribution in front of the pump can induce pump-intake vortices. These phenomena result in blockage of the impeller suction space, deterioration of efficiency, drop of head curve and earlier onset of cavitation. Real problematic case, where head curve drop was documented, is simulated using commercial CFD software. Computational simulation was carried out for three flow rates, which correspond to three operating regimes of the vertical pump. The domain consists of the pump sump, pump itself excluding the impeller and the delivery pipe. One-phase approach is applied, because the vortex cores were not filled with air during observation of the real pump operation. Numerical simulation identified two surface vortices and one bottom vortex. Their position and strength depend on the pump flow rate. Paper presents detail analysis of the flow field on the pump intake, discusses influence of the vortices on pump operation and suggests possible actions that should be taken to suppress the intake vortices.

  17. Numerical modeling of chemical vapor deposition (CVD) in a horizontal reactor

    NASA Technical Reports Server (NTRS)

    Sheikholeslami, M. Z.; Jasinski, T.; Fretz, K. W.

    1988-01-01

    In the present numerical prediction of the deposition rate of silicon from silane in a CVD process, the conservation equations for mass, momentum, energy, and chemical species are solved on a staggered grid using the SIMPLE algorithm, while the rate of chemical reactions in the gas phase and on the susceptor surface is obtained from an Arrhenius rate equation. Predicted deposition rates as a function of position along the susceptor with and without the gas phase chemical reaction are compared with the available experimental and numerical data; agreement is excellent except at the leading edge of the susceptor, where the deposition rate is overpredicted.

  18. Numerical investigation of mixed convective hydromagnetic nonlinear nanofluid flow past an inclined plate

    NASA Astrophysics Data System (ADS)

    Anjali Devi, S. P.; Suriyakumar, P.

    2013-09-01

    The nonlinear, steady, mixed convective, two-dimensional laminar hydromagnetic boundary layer flow of copper-water and alumina-water nanofluids over an inclined flat plate with an angle of inclination α in the presence of uniform transverse magnetic field is investigated in this work. The governing nonlinear partial differential equations of the problem are transformed into nonlinear ordinary differential equations by utilizing suitable similarity transformations and the resulting nonlinear ordinary differential equations are solved numerically using MATLAB. Numerical results for dimensionless velocity and temperature of the nanofluid flows are obtained and computations for the various values of Magnetic interaction parameter, angle of inclination, volume fraction, Prandtl number and mixed convection parameter. The range of volume fraction of nanofluids and the angle of inclination under study are as follows: 0.00 ≤ φ ≤ 0.10 and 0° ≤ α ≤ 60°. The results are displayed graphically to show the interesting aspects of the nanofluids.

  19. [Resting heart rate and cardiovascular disease].

    PubMed

    Brito Díaz, Buenaventura; Alemán Sánchez, José Juan; Cabrera de León, Antonio

    2014-07-07

    Heart rate reflects autonomic nervous system activity. Numerous studies have demonstrated that an increased heart rate at rest is associated with cardiovascular morbidity and mortality as an independent risk factor. It has been shown a link between cardiac autonomic balance and inflammation. Thus, an elevated heart rate produces a micro-inflammatory response and is involved in the pathogenesis of endothelial dysfunction. In turn, decrease in heart rate produces benefits in congestive heart failure, myocardial infarction, atrial fibrillation, obesity, hyperinsulinemia, insulin resistance, and atherosclerosis. Alteration of other heart rate-related parameters, such as their variability and recovery after exercise, is associated with risk of cardiovascular events. Drugs reducing the heart rate (beta-blockers, calcium antagonists and inhibitors of If channels) have the potential to reduce cardiovascular events. Although not recommended in healthy subjects, interventions for reducing heart rate constitute a reasonable therapeutic goal in certain pathologies.

  20. Numerical calculations of flow fields

    NASA Technical Reports Server (NTRS)

    Anderson, D. M.; Vogel, J. M.

    1972-01-01

    The solutions to the equations of motion for inviscid fluid flow around a pointed elliptic cone at incidence are presented. The numerical method used, MacCormack's second order preferential predictor-corrector finite difference approximation, is applied to the fluid flow equations derived in conservation-law form. The entropy boundary condition, hitherto unused for elliptic cone problems, is investigated and compared to reflection boundary condition solutions. The stagnation streamline movement of the inclined elliptic cone is noted and surface pressure coefficients are plotted. Also presented are solutions for an elliptic cone and a circular cone at zero incidence and a circular cone at a small angle of attack. Comparisons are made between these present solutions and previously published theory.

  1. Numerical classification of coding sequences

    NASA Technical Reports Server (NTRS)

    Collins, D. W.; Liu, C. C.; Jukes, T. H.

    1992-01-01

    DNA sequences coding for protein may be represented by counts of nucleotides or codons. A complete reading frame may be abbreviated by its base count, e.g. A76C158G121T74, or with the corresponding codon table, e.g. (AAA)0(AAC)1(AAG)9 ... (TTT)0. We propose that these numerical designations be used to augment current methods of sequence annotation. Because base counts and codon tables do not require revision as knowledge of function evolves, they are well-suited to act as cross-references, for example to identify redundant GenBank entries. These descriptors may be compared, in place of DNA sequences, to extract homologous genes from large databases. This approach permits rapid searching with good selectivity.

  2. Numerical Investigations of Magnetohydrodynamic Turbulence

    NASA Astrophysics Data System (ADS)

    Mueller, W. C.

    2006-12-01

    Incompressible magnetohydrodynamic turbulence studied by large-scale direct numerical simulations has revealed a number of new interesting facets. The Goldreich-Sridhar phenomenology partly breaks down in turbulence subject to a strong mean magnetic field. This leads to a measureable anisotropy of two-point statistics. The nonlinear dynamics of kinetic (E^K) and magnetic energy (E^M) is the result of a dynamical equilibrium of Alfvén effect and a small-sale dynamo leading to a scaling relation between total and residual energy: (E^M-E^K)~ k(E^K+E^M)2. The probability density functions of cascading quantities are found to exhibit mono-scaling.

  3. Numerical reconstruction of optical surfaces.

    PubMed

    Nam, Jayoung; Rubinstein, Jacob

    2008-07-01

    There are several problems in optics that involve the reconstruction of surfaces such as wavefronts, reflectors, and lenses. The reconstruction problem often leads to a system of first-order differential equations for the unknown surface. We compare several numerical methods for integrating differential equations of this kind. One class of methods involves a direct integration. It is shown that such a technique often fails in practice. We thus consider one method that provides an approximate direct integration; we show that it is always converging and that it provides a stable, accurate solution even in the presence of measurement noise. In addition, we consider a number of methods that are based on converting the original equation into a minimization problem.

  4. On numerically accurate finite element

    NASA Technical Reports Server (NTRS)

    Nagtegaal, J. C.; Parks, D. M.; Rice, J. R.

    1974-01-01

    A general criterion for testing a mesh with topologically similar repeat units is given, and the analysis shows that only a few conventional element types and arrangements are, or can be made suitable for computations in the fully plastic range. Further, a new variational principle, which can easily and simply be incorporated into an existing finite element program, is presented. This allows accurate computations to be made even for element designs that would not normally be suitable. Numerical results are given for three plane strain problems, namely pure bending of a beam, a thick-walled tube under pressure, and a deep double edge cracked tensile specimen. The effects of various element designs and of the new variational procedure are illustrated. Elastic-plastic computation at finite strain are discussed.

  5. Petrov Classification in Numerical Relativity

    NASA Astrophysics Data System (ADS)

    Owen, Robert

    2010-02-01

    The algebraic classification system of Petrov, Pirani, and Penrose provides a method to unambiguously characterize the gravitational degrees of freedom point-by-point throughout a spacetime. It is tempting to apply this system to the numerically-generated spacetimes that have recently proliferated, and some work has already gone in this direction. However, spacetimes of current physical interest --- such as binary black hole mergers --- raise subtleties in that they are generically, strictly speaking, Type I, but approximately, in some sense, Type D. To make any such claims about ``approximate Petrov class'' meaningful, one must introduce a ``degeneracy measure'' on the space of null rays. In this talk, I will describe some of the difficulties in this undertaking, and present results applying such degeneracy measures to binary black hole simulations from the Caltech/Cornell/CITA group. )

  6. Numerical optimization using flow equations.

    PubMed

    Punk, Matthias

    2014-12-01

    We develop a method for multidimensional optimization using flow equations. This method is based on homotopy continuation in combination with a maximum entropy approach. Extrema of the optimizing functional correspond to fixed points of the flow equation. While ideas based on Bayesian inference such as the maximum entropy method always depend on a prior probability, the additional step in our approach is to perform a continuous update of the prior during the homotopy flow. The prior probability thus enters the flow equation only as an initial condition. We demonstrate the applicability of this optimization method for two paradigmatic problems in theoretical condensed matter physics: numerical analytic continuation from imaginary to real frequencies and finding (variational) ground states of frustrated (quantum) Ising models with random or long-range antiferromagnetic interactions.

  7. Numerical experiments in homogeneous turbulence

    NASA Technical Reports Server (NTRS)

    Rogallo, R. S.

    1981-01-01

    The direct simulation methods developed by Orszag and Patternson (1972) for isotropic turbulence were extended to homogeneous turbulence in an incompressible fluid subjected to uniform deformation or rotation. The results of simulations for irrotational strain (plane and axisymmetric), shear, rotation, and relaxation toward isotropy following axisymmetric strain are compared with linear theory and experimental data. Emphasis is placed on the shear flow because of its importance and because of the availability of accurate and detailed experimental data. The computed results are used to assess the accuracy of two popular models used in the closure of the Reynolds-stress equations. Data from a variety of the computed fields and the details of the numerical methods used in the simulation are also presented.

  8. Numerical optimization using flow equations

    NASA Astrophysics Data System (ADS)

    Punk, Matthias

    2014-12-01

    We develop a method for multidimensional optimization using flow equations. This method is based on homotopy continuation in combination with a maximum entropy approach. Extrema of the optimizing functional correspond to fixed points of the flow equation. While ideas based on Bayesian inference such as the maximum entropy method always depend on a prior probability, the additional step in our approach is to perform a continuous update of the prior during the homotopy flow. The prior probability thus enters the flow equation only as an initial condition. We demonstrate the applicability of this optimization method for two paradigmatic problems in theoretical condensed matter physics: numerical analytic continuation from imaginary to real frequencies and finding (variational) ground states of frustrated (quantum) Ising models with random or long-range antiferromagnetic interactions.

  9. Physical and Relativistic Numerical Cosmology.

    PubMed

    Anninos, Peter

    1998-01-01

    In order to account for the observable Universe, any comprehensive theory or model of cosmology must draw from many disciplines of physics, including gauge theories of strong and weak interactions, the hydrodynamics and microphysics of baryonic matter, electromagnetic fields, and spacetime curvature, for example. Although it is difficult to incorporate all these physical elements into a single complete model of our Universe, advances in computing methods and technologies have contributed significantly towards our understanding of cosmological models, the Universe, and astrophysical processes within them. A sample of numerical calculations addressing specific issues in cosmology are reviewed in this article: from the Big Bang singularity dynamics to the fundamental interactions of gravitational waves; from the quark-hadron phase transition to the large scale structure of the Universe. The emphasis, although not exclusively, is on those calculations designed to test different models of cosmology against the observed Universe.

  10. Numerical modeling of volcanic arc development

    NASA Astrophysics Data System (ADS)

    Gerya, T.; Gorczyk, W.; Nikolaeva, K.

    2007-05-01

    We have created a new coupled geochemical-petrological-thermomechanical numerical model of subduction associated with volcanic arc development. The model includes spontaneous slab bending, subducted crust dehydration, aqueous fluid transport, mantle wedge melting and melt extraction resulting in crustal growth. Two major volcanic arc settings are modeled so far: active continental margins, and intraoceanic subduction. In case of Pacific-type continental margin two fundamentally different regimes of melt productivity are observed in numerical experiments which are in line with natural observations: (1) During continuous convergence with coupled plates highest amounts of melts are formed immediately after the initiation of subduction and then decrease rapidly with time due to the steepening of the slab inclination angle precluding formation of partially molten mantle wedge plumes; (2) During subduction associated with slab delamination and trench retreat resulting in the formation of a pronounced back arc basin with a spreading center in the middle melt production increases with time due to shallowing/stabilization of slab inclination associated with upward asthenospheric mantle flow toward the extension region facilitating propagation of hydrous partially molten plumes from the slab. In case of spontaneous nucleation of retreating oceanic subduction two scenarios of tecono-magmatic evolution are distinguished: (1) decay and, ultimately, the cessation of subduction and related magmatic activity, (2) increase in subduction rate (to up to ~12 cm/yr) and stabilization of subduction and magmatic arc growth. In the first case the duration of subduction correlates positively with the intensity of melt extraction: the period of continued subduction increases from 15,4 Myrs to 47,6 Myrs with the increase of melt extraction threshold from 1% to 9%. In scenario (1) the magmatic arc crust includes large amounts of rocks formed by melting of subducted crust atop the thermally

  11. Seafloor weathering buffering climate: numerical experiments

    NASA Astrophysics Data System (ADS)

    Farahat, N. X.; Archer, D. E.; Abbot, D. S.

    2013-12-01

    Continental silicate weathering is widely held to consume atmospheric CO2 at a rate controlled in part by temperature, resulting in a climate-weathering feedback [Walker et al., 1981]. It has been suggested that weathering of oceanic crust of warm mid-ocean ridge flanks also has a CO2 uptake rate that is controlled by climate [Sleep and Zahnle, 2001; Brady and Gislason, 1997]. Although this effect might not be significant on present-day Earth [Caldeira, 1995], seafloor weathering may be more pronounced during snowball states [Le Hir et al., 2008], during the Archean when seafloor spreading rates were faster [Sleep and Zahnle, 2001], and on waterworld planets [Abbot et al., 2012]. Previous studies of seafloor weathering have made significant contributions using qualitative, generally one-box, models, and the logical next step is to extend this work using a spatially resolved model. For example, experiments demonstrate that seafloor weathering reactions are temperature dependent, but it is not clear whether the deep ocean temperature affects the temperature at which the reactions occur, or if instead this temperature is set only by geothermal processes. Our goal is to develop a 2-D numerical model that can simulate hydrothermal circulation and resulting alteration of oceanic basalts, and can therefore address such questions. A model of diffusive and convective heat transfer in fluid-saturated porous media simulates hydrothermal circulation through porous oceanic basalt. Unsteady natural convection is solved for using a Darcy model of porous media flow that has been extensively benchmarked. Background hydrothermal circulation is coupled to mineral reaction kinetics of basaltic alteration and hydrothermal mineral precipitation. In order to quantify seafloor weathering as a climate-weathering feedback process, this model focuses on hydrothermal reactions that influence carbon uptake as well as ocean alkalinity: silicate rock dissolution, calcium and magnesium leaching

  12. Modeling supersonic combustion using a fully-implicit numerical method

    NASA Technical Reports Server (NTRS)

    Maccormack, Robert W.; Wilson, Gregory J.

    1990-01-01

    A fully-implicit finite-volume algorithm for two-dimensional axisymmetric flows has been coupled to a detailed hydrogen-air reaction mechanism (13 species and 33 reactions) so that supersonic combustion phenomena may be investigated. Numerical computations are compared with ballistic-range shadowgraphs of Lehr (1972) that exhibit two discontinuities caused by a blunt body as it passes through a premixed stoichiometric hydrogen-air mixture. The suitability of the numerical procedure for simulating these double-front flows is shown. The requirements for the physical formulation and the numerical modeling of these flowfields are discussed. Finally, the sensitivity of these external flowfields to changes in certain key reaction rate constants is examined.

  13. Numerical analysis of eccentric orifice plate using ANSYS Fluent software

    NASA Astrophysics Data System (ADS)

    Zahariea, D.

    2016-11-01

    In this paper the eccentric orifice plate is qualitative analysed as compared with the classical concentric orifice plate from the point of view of sedimentation tendency of solid particles in the fluid whose flow rate is measured. For this purpose, the numerical streamlines pattern will be compared for both orifice plates. The numerical analysis has been performed using ANSYS Fluent software. The methodology of CFD analysis is presented: creating the 3D solid model, fluid domain extraction, meshing, boundary condition, turbulence model, solving algorithm, convergence criterion, results and validation. Analysing the numerical streamlines, for the concentric orifice plate can be clearly observed two circumferential regions of separated flows, upstream and downstream of the orifice plate. The bottom part of these regions are the place where the solid particles could sediment. On the other hand, for the eccentric orifice plate, the streamlines pattern suggest that no sedimentation will occur because at the bottom area of the pipe there are no separated flows.

  14. NUMERICAL SIMULATION OF NATURAL GAS-SWIRL BURNER

    SciTech Connect

    Ala Qubbaj

    2005-03-01

    A numerical simulation of a turbulent natural gas jet diffusion flame at a Reynolds number of 9000 in a swirling air stream is presented. The numerical computations were carried out using the commercially available software package CFDRC. The instantaneous chemistry model was used as the reaction model. The thermal, composition, flow (velocity), as well as stream function fields for both the baseline and air-swirling flames were numerically simulated in the near-burner region, where most of the mixing and reactions occur. The results were useful to interpret the effects of swirl in enhancing the mixing rates in the combustion zone as well as in stabilizing the flame. The results showed the generation of two recirculating regimes induced by the swirling air stream, which account for such effects. The present investigation will be used as a benchmark study of swirl flow combustion analysis as a step in developing an enhanced swirl-cascade burner technology.

  15. Numerical simulation of drop and bubble dynamics with soluble surfactant

    NASA Astrophysics Data System (ADS)

    Wang, Qiming; Siegel, Michael; Booty, Michael R.

    2014-05-01

    Numerical computations are presented to study the effect of soluble surfactant on the deformation and breakup of an axisymmetric drop or bubble stretched by an imposed linear strain flow in a viscous fluid. At the high values of bulk Peclet number Pe in typical fluid-surfactant systems, there is a thin transition layer near the interface in which the surfactant concentration varies rapidly. The large surfactant gradients are resolved using a fast and accurate "hybrid" numerical method that incorporates a separate, singular perturbation analysis of the dynamics in the transition layer into a full numerical solution of the free boundary problem. The method is used to investigate the dependence of drop deformation on parameters that characterize surfactant solubility. We also compute resolved examples of tipstreaming, and investigate its dependence on parameters such as flow rate and bulk surfactant concentration.

  16. Revealing Educationally Critical Aspects of Rate

    ERIC Educational Resources Information Center

    Herbert, Sandra; Pierce, Robyn

    2012-01-01

    Rate (of change) is an important but complicated mathematical concept describing a ratio comparing two different numeric, measurable quantities. Research referring to students' difficulties with this concept spans more than 20 years. It suggests that problems experienced by some calculus students are likely a result of pre-existing limited or…

  17. Bending rate damping in elastic systems

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Wang, Y.; Fabiano, R. H.

    1989-01-01

    Preliminary results of an investigation of the bending rate damping model for elastic structures are presented. A model for which the internal damping term is physically plausible and which can accomodate cantilevered boundary conditions is discussed. The model formulation and mathematical foundations are given, and numerical results are discussed.

  18. Numerical modeling of a vortex stabilized arcjet

    NASA Astrophysics Data System (ADS)

    Pawlas, Gary E.

    1992-11-01

    Arcjet thrusters are being actively considered for use in Earth orbit maneuvering applications. Experimental studies are currently the chief means of determining an optimal thruster configuration. Earlier numerical studies have failed to include all of the effects found in typical arcjets including complex geometries, viscosity, and swirling flow. Arcjet geometries are large area ratio converging nozzles with centerbodies in the subsonic portion of the nozzle. The nozzle walls serve as the anode while the centerbody functions as the cathode. Viscous effects are important because the Reynolds number, based on the throat radius, is typically less than 1,000. Experimental studies have shown that a swirl or circumferential velocity component stabilizes a constricted arc. This dissertation describes the equations governing flow through a constricted arcjet thruster. An assumption that the flowfield is in local thermodynamic equilibrium leads to a single fluid plasma temperature model. An order of magnitude analysis reveals the governing fluid mechanics equations are uncoupled from the electromagnetic field equations. A numerical method is developed to solve the governing fluid mechanics equations, the Thin Layer Navier-Stokes equations. A coordinate transformation is employed in deriving the governing equations to simplify the application of boundary conditions in complex geometries. An axisymmetric formulation is employed to include the swirl velocity component as well as the axial and radial velocity components. The numerical method is an implicit finite-volume technique and allows for large time steps to reach a converged steady-state solution. The inviscid fluxes are flux-split, and Gauss-Seidel line relaxation is used to accelerate convergence. Converging-diverging nozzles with exit-to-throat area ratios up to 100:1 and annular nozzles were examined. Quantities examined included Mach number and static wall pressure distributions, and oblique shock structures. As

  19. Descriptive Report on Numerically Controlled Equipment.

    ERIC Educational Resources Information Center

    Campbell, Clifton P.

    This report presents descriptive information on numerically controlled operational devises. The information is designed for the education and training community, manufacturers, supervisors, machine operators, and others who do not have an extensive technical background in numerical control. In the first of three chapters, numerical control…

  20. Numeric Databases in the 80s.

    ERIC Educational Resources Information Center

    Fried, John B.; Kovacs, Gabor J.

    1982-01-01

    Defining a numeric database as a computer-readable collection of data predominantly numeric in nature, this article reviews techniques and technologies having a positive influence on the growth of numeric databases, such as videotex, mini- and microcomputers, artificial intelligence, improved software, telecommunications, and office automation.…

  1. Revealing Numerical Solutions of a Differential Equation

    ERIC Educational Resources Information Center

    Glaister, P.

    2006-01-01

    In this article, the author considers a student exercise that involves determining the exact and numerical solutions of a particular differential equation. He shows how a typical student solution is at variance with a numerical solution, suggesting that the numerical solution is incorrect. However, further investigation shows that this numerical…

  2. Numerical Simulation of Nanostructure Growth

    NASA Technical Reports Server (NTRS)

    Hwang, Helen H.; Bose, Deepak; Govindan, T. R.; Meyyappan, M.

    2004-01-01

    Nanoscale structures, such as nanowires and carbon nanotubes (CNTs), are often grown in gaseous or plasma environments. Successful growth of these structures is defined by achieving a specified crystallinity or chirality, size or diameter, alignment, etc., which in turn depend on gas mixture ratios. pressure, flow rate, substrate temperature, and other operating conditions. To date, there has not been a rigorous growth model that addresses the specific concerns of crystalline nanowire growth, while demonstrating the correct trends of the processing conditions on growth rates. Most crystal growth models are based on the Burton, Cabrera, and Frank (BCF) method, where adatoms are incorporated into a growing crystal at surface steps or spirals. When the supersaturation of the vapor is high, islands nucleate to form steps, and these steps subsequently spread (grow). The overall bulk growth rate is determined by solving for the evolving motion of the steps. Our approach is to use a phase field model to simulate the growth of finite sized nanowire crystals, linking the free energy equation with the diffusion equation of the adatoms. The phase field method solves for an order parameter that defines the evolving steps in a concentration field. This eliminates the need for explicit front tracking/location, or complicated shadowing routines, both of which can be computationally expensive, particularly in higher dimensions. We will present results demonstrating the effect of process conditions, such as substrate temperature, vapor supersaturation, etc. on the evolving morphologies and overall growth rates of the nanostructures.

  3. Analysis of single ring infiltrometer test by direct numerical modeling

    NASA Astrophysics Data System (ADS)

    Réfloch, Aurore; Oxarango, Laurent; Rossier, Yvan; Gaudet, Jean Paul

    2016-04-01

    The well field of the Lyon metropolitan area provides drinking water to approximately 1,300,000 inhabitants. It is equipped with 12 infiltration basins. These basins have two main goals: sustaining the water table in times of peak demand for water, and preventing a possible contamination from the Rhône river by inverting groundwater flow direction. The water infiltration under the basins is thus crucial for the overall hydrogeologic behavior of the site. In order to characterize this phenomenon, a set of infiltrometer tests were performed to estimate the soil hydraulic properties. The soil is a coarse alluvial deposits. In order to deal with its sparse granulometric curve, a large single ring infiltrometer (1 meter in diameter) was used. A constant hydraulic head (=0.07 m) was imposed during the test. Two kinds of data are recorded: the amount of water infiltrated over time and the extension of the moisture stain around the ring. The main hydraulic properties are estimated using Richard's equation in a 2D axi-symmetric configuration. Simulations are performed using a finite element commercial software package (Comsol Multiphysics 5.1). According to simplified numerical models, an average homogeneous saturated permeability of the alluvial deposits is estimated at 5.0 10-6 m.s-1. However, such a simple model is not able to represent accurately the moisture stain at the soil surface. More complex models introduce anisotropy of permeability in the alluvium layer, with mono or bi-layer domain. In these cases, experimental and modeling results are consistent, both for the amount of water infiltrated over time and the extension of the moisture stain around the ring. The hydraulic anisotropy in the soil could be due to the stratified nature of alluvial deposits and to soil compaction during the construction of infiltration basins. Keywords: Single ring infiltrometer test, artificial aquifer recharge, numerical modeling.

  4. Numerical homogenization on approach for stokesian suspensions.

    SciTech Connect

    Haines, B. M.; Berlyand, L. V.; Karpeev, D. A.

    2012-01-20

    In this technical report we investigate efficient methods for numerical simulation of active suspensions. The prototypical system is a suspension of swimming bacteria in a Newtonian fluid. Rheological and other macroscopic properties of such suspensions can differ dramatically from the same properties of the suspending fluid alone or of suspensions of similar but inactive particles. Elongated bacteria, such as E. coli or B. subtilis, swim along their principal axis, propelling themselves with the help of flagella, attached at the anterior of the organism and pushing it forward in the manner of a propeller. They interact hydrodynamically with the surrounding fluid and, because of their asymmetrical shape, have the propensity to align with the local flow. This, along with the dipolar nature of bacteria (the two forces a bacterium exerts on a fluid - one due to self-propulsion and the other opposing drag - have equal magnitude and point in opposite directions), causes nearby bacteria to tend to align, resulting in a intermittent local ordering on the mesoscopic scale, which is between the microscopic scale of an individual bacterium and the macroscopic scale of the suspension (e.g., its container). The local ordering is sometimes called a collective mode or collective swimming. Thanks to self-propulsion, collective modes inject momentum into the fluid in a coherent way. This enhances the local strain rate without changing the macroscopic stress applied at the boundary of the container. The macroscopic effective viscosity of the suspension is defined roughly as the ratio of the applied stress to the bulk strain rate. If local alignment and therefore local strain-rate enhancement, are significant, the effective viscosity can be appreciably lower than that of the corresponding passive suspension or even of the surrounding fluid alone. Indeed, a sevenfold decrease in the effective viscosity was observed in experiments with B. subtilis. More generally, local collective

  5. Numerical Modelling of Wave Interaction with Porous Structures

    NASA Astrophysics Data System (ADS)

    Gao, F.; M., D.; M., D.; G., C.

    This paper presents a numerical model for simulating wave interaction with porous structures. By using the free surface-capturing approach together with a novel Cartesian cut cell treatment, the Finite Volume Model calculates the two phase flows out side of porous structure based on the Navier-Stokes equations, while the flow in the porous structure is described by Navier-Stokes type model equations. The free surface of water is treated as a contact discontinuity in the density field which is captured automatically as part of the numerical solution by using a time-accurate artificial compressibility method and high resolution Godunov-type scheme. The numerical model is first calibrated by simple test for a steady flow passing through a porous block. Reasonably good agreements with other numerical results are obtained. After that, the numerical model is used to simulate the breaking wave overtopping a caisson breakwater, protected by a layer of armor units. The results show that the porous armor layer is effective in reducing the overtopping rate as well as in protecting the stability of the caisson breakwater.

  6. The numerical scheme development of a simplified frozen soil model

    NASA Astrophysics Data System (ADS)

    Li, Qian; Sun, Shufen; Dai, Qiudan

    2009-09-01

    In almost all frozen soil models used currently, three variables of temperature, ice content and moisture content are used as prognostic variables and the rate term, accounting for the contribution of the phase change between water and ice, is shown explicitly in both the energy and mass balance equations. The models must be solved by a numerical method with an iterative process, and the rate term of the phase change needs to be pre-estimated at the beginning in each iteration step. Since the rate term of the phase change in the energy equation is closely related to the release or absorption of the great amount of fusion heat, a small error in the rate term estimation will introduce greater error in the energy balance, which will amplify the error in the temperature calculation and in turn, cause problems for the numerical solution convergence. In this work, in order to first reduce the trouble, the methodology of the variable transformation is applied to a simplified frozen soil model used currently, which leads to new frozen soil scheme used in this work. In the new scheme, the enthalpy and the total water equivalent are used as predictive variables in the governing equations to replace temperature, volumetric soil moisture and ice content used in many current models. By doing so, the rate terms of the phase change are not shown explicitly in both the mass and energy equations and its pre-estimation is avoided. Secondly, in order to solve this new scheme more functionally, the development of the numerical scheme to the new scheme is described and a numerical algorithm appropriate to the numerical scheme is developed. In order to evaluate the new scheme of the frozen soil model and its relevant algorithm, a series of model evaluations are conducted by comparing numerical results from the new model scheme with three observational data sets. The comparisons show that the results from the model are in good agreement with these data sets in both the change trend of

  7. Equivalent beam modeling using numerical reduction techniques

    NASA Technical Reports Server (NTRS)

    Chapman, J. M.; Shaw, F. H.

    1987-01-01

    Numerical procedures that can accomplish model reductions for space trusses were developed. Three techniques are presented that can be implemented using current capabilities within NASTRAN. The proposed techniques accomplish their model reductions numerically through use of NASTRAN structural analyses and as such are termed numerical in contrast to the previously developed analytical techniques. Numerical procedures are developed that permit reductions of large truss models containing full modeling detail of the truss and its joints. Three techniques are presented that accomplish these model reductions with various levels of structural accuracy. These numerical techniques are designated as equivalent beam, truss element reduction, and post-assembly reduction methods. These techniques are discussed in detail.

  8. Numerical Studies of Topological phases

    NASA Astrophysics Data System (ADS)

    Geraedts, Scott

    The topological phases of matter have been a major part of condensed matter physics research since the discovery of the quantum Hall effect in the 1980s. Recently, much of this research has focused on the study of systems of free fermions, such as the integer quantum Hall effect, quantum spin Hall effect, and topological insulator. Though these free fermion systems can play host to a variety of interesting phenomena, the physics of interacting topological phases is even richer. Unfortunately, there is a shortage of theoretical tools that can be used to approach interacting problems. In this thesis I will discuss progress in using two different numerical techniques to study topological phases. Recently much research in topological phases has focused on phases made up of bosons. Unlike fermions, free bosons form a condensate and so interactions are vital if the bosons are to realize a topological phase. Since these phases are difficult to study, much of our understanding comes from exactly solvable models, such as Kitaev's toric code, as well as Levin-Wen and Walker-Wang models. We may want to study systems for which such exactly solvable models are not available. In this thesis I present a series of models which are not solvable exactly, but which can be studied in sign-free Monte Carlo simulations. The models work by binding charges to point topological defects. They can be used to realize bosonic interacting versions of the quantum Hall effect in 2D and topological insulator in 3D. Effective field theories of ''integer'' (non-fractionalized) versions of these phases were available in the literature, but our models also allow for the construction of fractional phases. We can measure a number of properties of the bulk and surface of these phases. Few interacting topological phases have been realized experimentally, but there is one very important exception: the fractional quantum Hall effect (FQHE). Though the fractional quantum Hall effect we discovered over 30

  9. Numerical simulations of a diode laser BPH treatment system

    NASA Astrophysics Data System (ADS)

    London, Richard A.; Esch, Victor C.; Papademetriou, Stephanos

    1999-06-01

    Numerical simulations are presented of the laser-tissue interaction of a diode laser system for treating benign prostate hyperplasia. The numerical model includes laser light transport, heat transport, cooling due to blood perfusion, thermal tissue damage, and enthalpy of tissue damage. Comparisons of the stimulation results to clinical data are given. We report that a reasonable variation from a standard set of input data produces heating times which match those measured in the clinical trials. A general trend of decreasing damage volume with increasing heating time is described. We suggest that the patient-to-patient variability seen in the data can be explained by differences in fundamental biophysical properties such as the optical coefficients. Further work is identified, including the measurement and input to the model of several specific data parameters such as optical coefficients, blood perfusion cooling rate, and coagulation rates.

  10. Application of Numerical Optimization to Aluminum Alloy Wheel Casting

    NASA Astrophysics Data System (ADS)

    Duan, J.; Reilly, C.; Maijer, D. M.; Cockcroft, S. L.; Phillion, A. B.

    2015-06-01

    A method of numerically optimizing the cooling conditions in a low- pressure die casting process from the standpoint of maintaining good directional solidification, high cooling rates and reduced cycle times has been developed for the production of aluminumalloy wheels. The method focuses on the optimization of cooling channel timing and utilizes an open source numerical optimization algorithm coupled with an experimentally validated, ABAQUS-based, heat transfer model of the casting process. Key features of the method include: 1) carefully designed constraint functions to ensure directional solidification along the centerlineof the wheel; and 2) carefully formulated objective functions to maximize cooling rate. The method has been implemented on a prototype production die and the results have been tested with plant trial test.

  11. Numerical simulations of a diode laser BPH treatment system

    SciTech Connect

    Esch, V; London, R A; Papademetriou, S

    1999-02-23

    Numerical simulations are presented of the laser-tissue interaction of a diode laser system for treating benign prostate hyperplasia. The numerical model includes laser light transport, heat transport, cooling due to blood perfusion, thermal tissue damage, and enthalpy of tissue damage. Comparisons of the simulation results to clinical data are given. We report that a reasonable variation from a standard set of input data produces heating times which match those measured in the clinical trials. A general trend of decreasing damage volume with increasing heating time is described. We suggest that the patient-to- patient variability seen in the data can be explained by differences in fundamental biophysical properties such as the optical coefficients. Further work is identified, including the measurement and input to the model of several specific data parameters such as optical coefficients, blood perfusion cooling rate, and coagulation rates.

  12. Rate determination from vector observations

    NASA Technical Reports Server (NTRS)

    Weiss, Jerold L.

    1993-01-01

    Vector observations are a common class of attitude data provided by a wide variety of attitude sensors. Attitude determination from vector observations is a well-understood process and numerous algorithms such as the TRIAD algorithm exist. These algorithms require measurement of the line of site (LOS) vector to reference objects and knowledge of the LOS directions in some predetermined reference frame. Once attitude is determined, it is a simple matter to synthesize vehicle rate using some form of lead-lag filter, and then, use it for vehicle stabilization. Many situations arise, however, in which rate knowledge is required but knowledge of the nominal LOS directions are not available. This paper presents two methods for determining spacecraft angular rates from vector observations without a priori knowledge of the vector directions. The first approach uses an extended Kalman filter with a spacecraft dynamic model and a kinematic model representing the motion of the observed LOS vectors. The second approach uses a 'differential' TRIAD algorithm to compute the incremental direction cosine matrix, from which vehicle rate is then derived.

  13. Numerical calculation of granular entropy.

    PubMed

    Asenjo, Daniel; Paillusson, Fabien; Frenkel, Daan

    2014-03-07

    We present numerical simulations that allow us to compute the number of ways in which N particles can pack into a given volume V. Our technique modifies the method of Xu, Frenkel, and Liu [Phys. Rev. Lett. 106, 245502 (2011)] and outperforms existing direct enumeration methods by more than 200 orders of magnitude. We use our approach to study the system size dependence of the number of distinct packings of a system of up to 128 polydisperse soft disks. We show that, even though granular particles are distinguishable, we have to include a factor 1=N! to ensure that the entropy does not change when exchanging particles between systems in the same macroscopic state. Our simulations provide strong evidence that the packing entropy, when properly defined, is extensive. As different packings are created with unequal probabilities, it is natural to express the packing entropy as S = − Σ(i)p(i) ln pi − lnN!, where pi denotes the probability to generate the ith packing. We can compute this quantity reliably and it is also extensive. The granular entropy thus (re)defined, while distinct from the one proposed by Edwards [J. Phys. Condens. Matter 2, SA63 (1990)], does have all the properties Edwards assumed.

  14. Spectral Methods for Numerical Relativity.

    PubMed

    Grandclément, Philippe; Novak, Jérôme

    2009-01-01

    Equations arising in general relativity are usually too complicated to be solved analytically and one must rely on numerical methods to solve sets of coupled partial differential equations. Among the possible choices, this paper focuses on a class called spectral methods in which, typically, the various functions are expanded in sets of orthogonal polynomials or functions. First, a theoretical introduction of spectral expansion is given with a particular emphasis on the fast convergence of the spectral approximation. We then present different approaches to solving partial differential equations, first limiting ourselves to the one-dimensional case, with one or more domains. Generalization to more dimensions is then discussed. In particular, the case of time evolutions is carefully studied and the stability of such evolutions investigated. We then present results obtained by various groups in the field of general relativity by means of spectral methods. Work, which does not involve explicit time-evolutions, is discussed, going from rapidly-rotating strange stars to the computation of black-hole-binary initial data. Finally, the evolution of various systems of astrophysical interest are presented, from supernovae core collapse to black-hole-binary mergers.

  15. Numerical Calculation of Granular Entropy

    NASA Astrophysics Data System (ADS)

    Asenjo, Daniel; Paillusson, Fabien; Frenkel, Daan

    2014-03-01

    We present numerical simulations that allow us to compute the number of ways in which N particles can pack into a given volume V. Our technique modifies the method of Xu, Frenkel, and Liu [Phys. Rev. Lett. 106, 245502 (2011)] and outperforms existing direct enumeration methods by more than 200 orders of magnitude. We use our approach to study the system size dependence of the number of distinct packings of a system of up to 128 polydisperse soft disks. We show that, even though granular particles are distinguishable, we have to include a factor 1/N! to ensure that the entropy does not change when exchanging particles between systems in the same macroscopic state. Our simulations provide strong evidence that the packing entropy, when properly defined, is extensive. As different packings are created with unequal probabilities, it is natural to express the packing entropy as S=-∑ipilnpi-lnN!, where pi denotes the probability to generate the ith packing. We can compute this quantity reliably and it is also extensive. The granular entropy thus (re)defined, while distinct from the one proposed by Edwards [J. Phys. Condens. Matter 2, SA63 (1990)], does have all the properties Edwards assumed.

  16. On Some Numerical Dissipation Schemes

    NASA Technical Reports Server (NTRS)

    Swanson, R. C.; Radespiel, R.; Turkel, E.

    1998-01-01

    Several schemes for introducing an artificial dissipation into a central difference approximation to the Euler and Navier Stokes equations are considered. The focus of the paper is on the convective upwind and split pressure (CUSP) scheme, which is designed to support single interior point discrete shock waves. This scheme is analyzed and compared in detail with scalar dissipation and matrix dissipation (MATD) schemes. Resolution capability is determined by solving subsonic, transonic, and hypersonic flow problems. A finite-volume discretization and a multistage time-stepping scheme with multigrid are used to compute solutions to the flow equations. Numerical solutions are also compared with either theoretical solutions or experimental data. For transonic airfoil flows the best accuracy on coarse meshes for aerodynamic coefficients is obtained with a simple MATD scheme. The coarse-grid accuracy for the original CUSP scheme is improved by modifying the limiter function used with the scheme, giving comparable accuracy to that obtained with the MATD scheme. The modifications reduce the background dissipation and provide control over the regions where the scheme can become first order.

  17. Numerical modeling of enclosure convection

    NASA Technical Reports Server (NTRS)

    Duh, J. C.

    1989-01-01

    A numerical study on the steady and unsteady natural convection in two-dimensional rectangular enclosures has been performed by a time-accurate ADI finite difference scheme. The study covered a range of Rayleigh numbers between 1000 and 10 to the 7th, aspect ratios between 0.2 and 10.0, and tilt angles between -90 (heating from bottom) and +90 deg (heating from top). Various Prandtl numbers have been studied, but only the results of water (Pr = 7.0) are reported here due to space limitations. The physics revealed, however, includes the convection phenomena and the Rayleigh-Benard stability, as well as the combined mechanism of these two. The onset of secondary cells is determined by using a velocity map, which is simpler and cleaner, instead of a streamline plot. The critical Ra number for the occurrence of these secondary cells is shown to be lower than can be detected by experimental studies. On the Rayleigh-Benard stability part, a second transition from stable single-cell convection to periodic multicellular convection is disclosed.

  18. Numerical Modeling of Nanoelectronic Devices

    NASA Technical Reports Server (NTRS)

    Klimeck, Gerhard; Oyafuso, Fabiano; Bowen, R. Chris; Boykin, Timothy

    2003-01-01

    Nanoelectronic Modeling 3-D (NEMO 3-D) is a computer program for numerical modeling of the electronic structure properties of a semiconductor device that is embodied in a crystal containing as many as 16 million atoms in an arbitrary configuration and that has overall dimensions of the order of tens of nanometers. The underlying mathematical model represents the quantummechanical behavior of the device resolved to the atomistic level of granularity. The system of electrons in the device is represented by a sparse Hamiltonian matrix that contains hundreds of millions of terms. NEMO 3-D solves the matrix equation on a Beowulf-class cluster computer, by use of a parallel-processing matrix vector multiplication algorithm coupled to a Lanczos and/or Rayleigh-Ritz algorithm that solves for eigenvalues. In a recent update of NEMO 3-D, a new strain treatment, parameterized for bulk material properties of GaAs and InAs, was developed for two tight-binding submodels. The utility of the NEMO 3-D was demonstrated in an atomistic analysis of the effects of disorder in alloys and, in particular, in bulk In(x)Ga(l-x)As and in In0.6Ga0.4As quantum dots.

  19. The Tukey Honestly Significant Difference Procedure and Its Control of the Type I Error-Rate.

    ERIC Educational Resources Information Center

    Barnette, J. Jackson; McLean, James E.

    Tukey's Honestly Significant Difference (HSD) procedure (J. Tukey, 1953) is probably the most recommended and used procedure for controlling Type I error rate when making multiple pairwise comparisons as follow-ups to a significant omnibus F test. This study compared observed Type I errors with nominal alphas of 0.01, 0.05, and 0.10 compared for…

  20. Efficient numerical methods for entropy-linear programming problems

    NASA Astrophysics Data System (ADS)

    Gasnikov, A. V.; Gasnikova, E. B.; Nesterov, Yu. E.; Chernov, A. V.

    2016-04-01

    Entropy-linear programming (ELP) problems arise in various applications. They are usually written as the maximization of entropy (minimization of minus entropy) under affine constraints. In this work, new numerical methods for solving ELP problems are proposed. Sharp estimates for the convergence rates of the proposed methods are established. The approach described applies to a broader class of minimization problems for strongly convex functionals with affine constraints.

  1. Numerical modeling of injection experiments at The Geysers

    SciTech Connect

    Pruess, Karsten; Enedy, Steve

    1993-01-28

    Data from injection experiments in the southeast Geysers are presented that show strong interference (both negative and positive) with a neighboring production well. Conceptual and numerical models are developed that explain the negative interference (decline of production rate) in terms of heat transfer limitations and water-vapor relative permeability effects. Recovery and overrecovery following injection shut-in are attributed to boiling of injected fluid, with heat of vaporization provided by the reservoir rocks.

  2. Numerical modeling of injection experiments at The Geysers

    SciTech Connect

    Pruess, K.; Enedy, S.

    1993-01-01

    Data from injection experiments in the southeast Geysers are presented that show strong interference (both negative and positive) with a neighboring production well. Conceptual and numerical models are developed that explain the negative interference (decline of production rate) in terms of heat transfer limitations and water-vapor relative permeability effects. Recovery and over-recovery following injection shut-in are attributed to boiling of injected fluid, with heat of vaporization provided by the reservoir rocks.

  3. Numerical Simulations of High Enthalpy Pulse Facilities

    NASA Technical Reports Server (NTRS)

    Wilson, Gregory J.; Edwards, Thomas A. (Technical Monitor)

    1995-01-01

    Axisymmetric flows within shock tubes and expansion tubes are simulated including the effects of finite rate chemistry and both laminar and turbulent boundary layers. The simulations demonstrate the usefulness of computational fluid dynamics for characterizing the flows in high enthalpy pulse facilities. The modeling and numerical requirements necessary to simulate these flows accurately are also discussed. Although there is a large body of analysis which explains and quantifies the boundary layer growth between the shock and the interface in a shock tube, there is a need for more detailed solutions. Phenomena such as thermochemical nonequilibrium. or turbulent transition behind the shock are excluded in the assumptions of Mirels' analysis. Additionally there is inadequate capability to predict the influence of the boundary layer on the expanded gas behind the interface. Quantifying the gas in this region is particularly important in expansion tubes because it is the location of the test gas. Unsteady simulations of the viscous flow in shock tubes are computationally expensive because they must follow features such as a shock wave over the length of the facility and simultaneously resolve the small length scales within the boundary layer. As a result, efficient numerical algorithms are required. The numerical approach of the present work is to solve the axisymmetric gas dynamic equations using an finite-volume formulation where the inviscid fluxes are computed with a upwind TVD scheme. Multiple species equations are included in the formulation so that finite-rate chemistry can be modeled. The simulations cluster grid points at the shock and interface and translate this clustered grid with these features to minimize numerical errors. The solutions are advanced at a CFL number of less than one based on the inviscid gas dynamics. To avoid limitations on the time step due to the viscous terms, these terms are treated implicitly. This requires a block tri

  4. How 15 hundred is like 15 cherries: effect of progressive alignment on representational changes in numerical cognition.

    PubMed

    Thompson, Clarissa A; Opfer, John E

    2010-01-01

    How does understanding the decimal system change with age and experience? Second, third, sixth graders, and adults (Experiment 1: N = 96, mean ages = 7.9, 9.23, 12.06, and 19.96 years, respectively) made number line estimates across 3 scales (0-1,000, 0-10,000, and 0-100,000). Generation of linear estimates increased with age but decreased with numerical scale. Therefore, the authors hypothesized highlighting commonalities between small and large scales (15:100::1500:10000) might prompt children to generalize their linear representations to ever-larger scales. Experiment 2 assigned second graders (N = 46, mean age = 7.78 years) to experimental groups differing in how commonalities of small and large numerical scales were highlighted. Only children experiencing progressive alignment of small and large scales successfully produced linear estimates on increasingly larger scales, suggesting analogies between numeric scales elicit broad generalization of linear representations.

  5. Recent deformation rates on Venus

    NASA Astrophysics Data System (ADS)

    Grimm, Robert E.

    1994-11-01

    Constraints on the recent geological evolution of Venus may be provided by quantitative estimates of the rates of the principal resurfacing processes, volcanism and tectonism. This paper focuses on the latter, using impact craters as strain indicators. The total postimpact tectonic strain lies in the range 0.5-6.5%, which defines a recent mean strain rate of 10-18-10-17/s when divided by the mean surface age. Interpretation of the cratering record as one of pure production requires a decline in resurfacing rates at about 500 Ma (catastrophic resurfacing model). If distributed tectonic resurfacing contributed strongly before that time, as suggested by the widespread occurrence of tessera as inliers, the mean global strain rate must have been at least approximately 10-15/s, which is also typical of terrestrial active margins. Numerical calculations of the response of the lithosphere to inferred mantle convective forces were performed to test the hypothesis that a decrease in surface strain rate by at least two orders of magnitude could be caused by a steady decline in heat flow over the last billion years. Parameterized convection models predict that the mean global thermal gradient decreases by only about 5 K/km over this time; even with the exponential dependence of viscosity upon temperature, the surface strain rate drops by little more than one order of magnitude. Strongly unsteady cooling and very low thermal gradients today are necessary to satisfy the catastrophic model. An alternative, uniformitarian resurfacing hypothesis holds that Venus is resurfaced in quasi-random 'patches' several hundred kilometers in size that occur in response to changing mantle convection patterns.

  6. Numerical Simulations of Disk-Planet Interactions

    NASA Astrophysics Data System (ADS)

    D'Angelo, Gennaro

    2003-06-01

    The aim of this thesis is the study the dynamical interactions occurring between a forming planet and its surrounding protostellar environment. This task is accomplished by means of both 2D and 3D numerical simulations. The first part of this work concerned global simulations in 3D. These were intended to investigate large-scale effects caused by a Jupiter-size body still in the process of accreting matter from its surroundings. Simulations show that, despite a density gap forms along the orbital path, Jupiter-mass protoplanets still accrete at a rate on the order of 0.01 Earth's masses per year when they are embedded in a minimum-mass Solar nebula. In the same conditions, the migration time scale due to gravitational torques by the disk is around 100000 years. The second part of the work was dedicated to perform 2D calculations, by employing a nested-grid technique. This method allows to carry out global simulations of planets orbiting in disks and, at the same time, to resolve in great detail the dynamics of the flow inside the Roche lobe of both massive and low-mass planets. Regardless of the planet mass, the high resolution supplied by the nested-grid technique permits an evaluation of the torques, resulting from short and very short range gravitational interactions, more reliable than the one previously estimated with the aid of numerical methods. Likewise, the mass flow onto the planet is computed in a more accurate fashion. Resulting migration time scales are in the range from 20000 years, for intermediate-mass planets, to 1000000 years, for very low-mass as well as high-mass planets. Circumplanetary disks form inside of the Roche lobe of Jupiter-size secondaries. In order to evaluate the consequences of the flat geometry on the local flow structure around planets, 3D nested-grid simulations were carried out to investigate a range of planetary masses spanning from 1.5 Earth's masses to one Jupiter's mass. Outcomes show that migration rates are relatively

  7. Playing Linear Numerical Board Games Promotes Low-Income Children's Numerical Development

    ERIC Educational Resources Information Center

    Siegler, Robert S.; Ramani, Geetha B.

    2008-01-01

    The numerical knowledge of children from low-income backgrounds trails behind that of peers from middle-income backgrounds even before the children enter school. This gap may reflect differing prior experience with informal numerical activities, such as numerical board games. Experiment 1 indicated that the numerical magnitude knowledge of…

  8. High-resolution spectroscopy of the {A}^{1}{\\rm{\\Pi }}(v^{\\prime} =0{--}10){--}{X}^{1}{{\\rm{\\Sigma }}}^{+}(v^{\\prime\\prime} =0) bands in 13C18O: term values, ro-vibrational oscillator strengths and Hönl-London corrections

    NASA Astrophysics Data System (ADS)

    Lemaire, J. L.; Eidelsberg, M.; Heays, A. N.; Gavilan, L.; Federman, S. R.; Stark, G.; Lyons, J. R.; de Oliveira, N.; Joyeux, D.

    2016-08-01

    Our knowledge of astronomical environments containing CO depends on accurate molecular data to reproduce and interpret observations. The constant improvement in UV space instrumentation, both in sensitivity and resolution, requires increasingly detailed laboratory data. Following a long-term experimental campaign at the SOLEIL Synchrotron facility, we have acquired complete datasets on the CO isotopologues in the vacuum ultraviolet. Absorption spectra were recorded using the Fourier-transform spectrometer installed on the DESIRS beamline, providing a resolving power R > 106 in the 8-12 eV range. Such resolution allows the analysis of individual line positions and strengths in electronic transitions and the location of perturbations. We continue our previous work on A-X bands of 12C16O and 13C16O, reporting here measurements for the 13C18O isotopologue. Gas column densities in the differentially-pumped system were calibrated using the B {}1{{{Σ }}}+-X {}1{{{Σ }}}+({v}\\prime =0,v\\prime\\prime =0) band. Absorption bands are analyzed by synthesizing line and band profiles and fitting them to measured spectra. New results for A {}1{{\\Pi }}({v}\\prime =0{--}10)-X {}1{{{Σ }}}+(v\\prime\\prime =0) bands include precise line assignments, term values, band-integrated oscillator strengths as well as individual ro-vibrational oscillator strengths and Hönl-London corrections. For ({v}\\prime =1) our results are compared with earlier studies. The interpretation of mixed perturbing bands, complementing an earlier study, is also presented as well as precise line assignments and term values for the B {}1{{{Σ }}}+-X {}1{{{Σ }}}+(0-0) band calibrator, and the nearby B-X (1-0) and C {}1{{{Σ }}}+-X {}1{{{Σ }}}+(0-0) bands.

  9. Realization of small intrinsic hysteresis with large magnetic entropy change in La{sub 0.8}Pr{sub 0.2}(Fe{sub 0.88}Si{sub 0.10}Al{sub 0.02}){sub 13} by controlling itinerant-electron characteristics

    SciTech Connect

    Fujita, A.; Matsunami, D.; Yako, H.

    2014-03-24

    Tuning of phase-transition characteristics in La(Fe{sub x}Si{sub 1−x}){sub 13} was conducted in view of the correlation between microscopic itinerant electron natures and macroscopic thermodynamic (magnetocaloric) quantities. To realize a small hysteresis loss Q{sub H} accompanied by a large magnetic entropy change ΔS{sub M} in La(Fe{sub x}Si{sub 1−x}){sub 13}, two types of modulation based on itinerant electron characteristics, namely, the Fermi-level shift and the magnetovolume effect were combined by complex partial substitution of Al and Pr. Ab-initio calculations predict the reduction of a transition hysteresis owing to the Fermi-level shift after partial substitution of Al. On the other hand, the chemical pressure arisen from partial substitution of Pr enhances ΔS{sub M} through magnetovolume effect. The selective enhancement of ΔS{sub M} apart from Q{sub H} by the magnetovolume effect is well explained by the phenomenological Landau model. Consequently, ΔS{sub M} of La{sub 0.8}Pr{sub 0.2}(Fe{sub 0.88}Si{sub 0.10}Al{sub 0.02}){sub 13} is −18 J/kg K under a magnetic field change of 0–1.2 T, while the maximum value of Q{sub H} becomes 1/6 of that for La(Fe{sub 0.88}Si{sub 0.12}){sub 13}.

  10. Analytical and numerical investigations of spontaneous imbibition in porous media

    NASA Astrophysics Data System (ADS)

    Nooruddin, Hasan A.; Blunt, Martin J.

    2016-09-01

    We present semianalytical solutions for cocurrent displacements with some degree of countercurrent flow. The solution assumes a one-dimensional horizontal displacement of two immiscible incompressible fluids with arbitrary viscosities and saturation-dependent relative permeability and capillary pressures. We address the impact of the system length on the degree of countercurrent flow when there is no pressure drop in the nonwetting phase across the system, assuming negligible capillary back pressure at the inlet boundary of the system. It is shown that in such displacements, the fractional flow can be used to determine a critical water saturation, from which regions of both cocurrent and countercurrent flow are identified. This critical saturation changes with time as the saturation front moves into the porous medium. Furthermore, the saturation profile in the approach presented here is not necessarily a function of distance divided by the square root of time. We also present approximate solutions using a perturbative approach, which is valid for a wide range of flow conditions. This approach requires less computational power and is much easier to implement than the implicit integral solutions used in previous work. Finally, a comprehensive comparison between analytical and numerical solutions is presented. Numerical computations are performed using traditional finite-difference formulations and convergence analysis shows a generally slow convergence rate for water imbibition rates and saturation profiles. This suggests that most coarsely gridded simulations give a poor estimate of imbibition rates, while demonstrating the value of these analytical solutions as benchmarks for numerical studies, complementing Buckley-Leverett analysis.

  11. Numerical analysis of decoy state quantum key distribution protocols

    SciTech Connect

    Harrington, Jim W; Rice, Patrick R

    2008-01-01

    Decoy state protocols are a useful tool for many quantum key distribution systems implemented with weak coherent pulses, allowing significantly better secret bit rates and longer maximum distances. In this paper we present a method to numerically find optimal three-level protocols, and we examine how the secret bit rate and the optimized parameters are dependent on various system properties, such as session length, transmission loss, and visibility. Additionally, we show how to modify the decoy state analysis to handle partially distinguishable decoy states as well as uncertainty in the prepared intensities.

  12. Numerical modeling of atoll island hydrogeology.

    PubMed

    Bailey, R T; Jenson, J W; Olsen, A E

    2009-01-01

    We implemented Ayers and Vachers' (1986) inclusive conceptual model for atoll island aquifers in a comprehensive numerical modeling study to evaluate the response of the fresh water lens to selected controlling climatic and geologic variables. Climatic factors include both constant and time-varying recharge rates, with particular attention paid to the effects of El Niño and the associated drought it brings to the western Pacific. Geologic factors include island width; hydraulic conductivity of the uppermost Holocene-age aquifer, which contains the fresh water lens; the depth to the contact with the underlying, and much more conductive, Pleistocene karst aquifer, which transmits tidal signals to the base of the lens; and the presence or absence of a semiconfining reef flat plate on the ocean side. Sensitivity analyses of steady-steady simulations show that lens thickness is most strongly sensitive to the depth to the Holocene-Pleistocene contact and to the hydraulic conductivity of the Holocene aquifer, respectively. Comparisons between modeling results and published observations of atoll island lens thicknesses suggest a hydraulic conductivity of approximately 50 m/d for leeward islands and approximately 400 m/d for windward islands. Results of transient simulations show that lens thickness fluctuations during average seasonal conditions and El Niño events are quite sensitive to island width, recharge rate, and hydraulic conductivity of the Holocene aquifer. In general, the depletion of the lens during drought conditions is most drastic for small, windward islands. Simulation results suggest that recovery from a 6-month drought requires about 1.5 years.

  13. H2-blocker modulates heart rate variability.

    PubMed

    Ooie, T; Saikawa, T; Hara, M; Ono, H; Seike, M; Sakata, T

    1999-01-01

    The use of H2-blockers in the treatment of patients with peptic ulcer has become popular. However, this treatment has adverse cardiovascular effects. The aim of this study was to investigate proarrhythmic rhythm and autonomic nervous activity by analyzing heart rate variability in patients treated with omeprazole, ranitidine, and plaunotol. Nineteen patients (mean age 67.5 +/- 2.7 years) with active gastric ulcer were treated with omeprazole (20 mg/day) for 8 weeks, then ranitidine (300 mg/day) for the next 4 months, and finally plaunotol (240 mg/day). At each stage of the treatment, Holter electrocardiography was performed, and heart rate variability and arrhythmias analyzed. Heart rate variability yielded power in the low- (0.04-0.15 Hz) and high-frequency components (0.15-0.4 Hz). Although both ranitidine and omeprazole induced little change in cardiac rhythm, the high-frequency power was higher (10.3 +/- 0.8 vs 8.6 +/- 0.6 ms, P < 0.05) and the ratio of low-to-high frequency power was lower (1.41 +/-0.10 vs 1.59 +/- 0.09. P < 0.05) during ranitidine than during plaunotol treatment. Cosinor analysis of heart rate variability revealed a decreased amplitude of low-frequency power during omeprazole compared with during ranitidine and plaunotol treatment. Ranitidine modulated high-frequency power which may be related to the adverse cardiovascular effects of H2-blocker.

  14. Collisionless microinstabilities in stellarators. II. Numerical simulations

    NASA Astrophysics Data System (ADS)

    Proll, J. H. E.; Xanthopoulos, P.; Helander, P.

    2013-12-01

    Microinstabilities exhibit a rich variety of behavior in stellarators due to the many degrees of freedom in the magnetic geometry. It has recently been found that certain stellarators (quasi-isodynamic ones with maximum-J geometry) are partly resilient to trapped-particle instabilities, because fast-bouncing particles tend to extract energy from these modes near marginal stability. In reality, stellarators are never perfectly quasi-isodynamic, and the question thus arises whether they still benefit from enhanced stability. Here, the stability properties of Wendelstein 7-X and a more quasi-isodynamic configuration, QIPC, are investigated numerically and compared with the National Compact Stellarator Experiment and the DIII-D tokamak. In gyrokinetic simulations, performed with the gyrokinetic code GENE in the electrostatic and collisionless approximation, ion-temperature-gradient modes, trapped-electron modes, and mixed-type instabilities are studied. Wendelstein 7-X and QIPC exhibit significantly reduced growth rates for all simulations that include kinetic electrons, and the latter are indeed found to be stabilizing in the energy budget. These results suggest that imperfectly optimized stellarators can retain most of the stabilizing properties predicted for perfect maximum-J configurations.

  15. Numerical simulation of tulip flame dynamics

    SciTech Connect

    Cloutman, L.D.

    1991-11-30

    A finite difference reactive flow hydrodynamics program based on the full Navier-Stokes equations was used to simulate the combustion process in a homogeneous-charge, constant-volume combustion bomb in which an oddly shaped flame, known as a ``tulip flame`` in the literature, occurred. The ``tulip flame`` was readily reproduced in the numerical simulations, producing good agreement with the experimental flame shapes and positions at various times. The calculations provide sufficient detail about the dynamics of the experiment to provide some insight into the physical mechanisms responsible for the peculiar flame shape. Several factors seem to contribute to the tulip formation. The most important process is the baroclinic production of vorticity by the flame front, and this rate of production appears to be dramatically increased by the nonaxial flow generated when the initial semicircular flame front burns out along the sides of the chamber. The vorticity produces a pair of vortices behind the flame that advects the flame into the tulip shape. Boundary layer effects contribute to the details of the flame shape next to the walls of the chamber, but are otherwise not important. 24 refs.

  16. Numerical simulation of tulip flame dynamics

    SciTech Connect

    Cloutman, L.D.

    1991-11-30

    A finite difference reactive flow hydrodynamics program based on the full Navier-Stokes equations was used to simulate the combustion process in a homogeneous-charge, constant-volume combustion bomb in which an oddly shaped flame, known as a tulip flame'' in the literature, occurred. The tulip flame'' was readily reproduced in the numerical simulations, producing good agreement with the experimental flame shapes and positions at various times. The calculations provide sufficient detail about the dynamics of the experiment to provide some insight into the physical mechanisms responsible for the peculiar flame shape. Several factors seem to contribute to the tulip formation. The most important process is the baroclinic production of vorticity by the flame front, and this rate of production appears to be dramatically increased by the nonaxial flow generated when the initial semicircular flame front burns out along the sides of the chamber. The vorticity produces a pair of vortices behind the flame that advects the flame into the tulip shape. Boundary layer effects contribute to the details of the flame shape next to the walls of the chamber, but are otherwise not important. 24 refs.

  17. Externally fed star formation: a numerical study

    NASA Astrophysics Data System (ADS)

    Mohammadpour, Motahareh; Stahler, Steven W.

    2013-08-01

    We investigate, through a series of numerical calculations, the evolution of dense cores that are accreting external gas up to and beyond the point of star formation. Our model clouds are spherical, unmagnetized configurations with fixed outer boundaries, across which gas enters subsonically. When we start with any near-equilibrium state, we find that the cloud's internal velocity also remains subsonic for an extended period, in agreement with observations. However, the velocity becomes supersonic shortly before the star forms. Consequently, the accretion rate building up the protostar is much greater than the benchmark value c_s^3/G, where cs is the sound speed in the dense core. This accretion spike would generate a higher luminosity than those seen in even the most embedded young stars. Moreover, we find that the region of supersonic infall surrounding the protostar races out to engulf much of the cloud, again in violation of the observations, which show infall to be spatially confined. Similar problematic results have been obtained by all other hydrodynamic simulations to date, regardless of the specific infall geometry or boundary conditions adopted. Low-mass star formation is evidently a quasi-static process, in which cloud gas moves inward subsonically until the birth of the star itself. We speculate that magnetic tension in the cloud's deep interior helps restrain the infall prior to this event.

  18. Numerical Modeling of Ocular Dysfunction in Space

    NASA Technical Reports Server (NTRS)

    Nelson, Emily S.; Mulugeta, Lealem; Vera, J.; Myers, J. G.; Raykin, J.; Feola, A. J.; Gleason, R.; Samuels, B.; Ethier, C. R.

    2014-01-01

    Upon introduction to microgravity, the near-loss of hydrostatic pressure causes a marked cephalic (headward) shift of fluid in an astronaut's body. The fluid shift, along with other factors of spaceflight, induces a cascade of interdependent physiological responses which occur at varying time scales. Long-duration missions carry an increased risk for the development of the Visual Impairment and Intracranial Pressure (VIIP) syndrome, a spectrum of ophthalmic changes including posterior globe flattening, choroidal folds, distension of the optic nerve sheath, kinking of the optic nerve and potentially permanent degradation of visual function. In the cases of VIIP found to date, the initial onset of symptoms occurred after several weeks to several months of spaceflight, by which time the gross bodily fluid distribution is well established. We are developing a suite of numerical models to simulate the effects of fluid shift on the cardiovascular, central nervous and ocular systems. These models calculate the modified mean volumes, flow rates and pressures that are characteristic of the altered quasi-homeostatic state in microgravity, including intracranial and intraocular pressures. The results of the lumped models provide initial and boundary data to a 3D finite element biomechanics simulation of the globe, optic nerve head and retrobulbar subarachnoid space. The integrated set of models will be used to investigate the evolution of the biomechanical stress state in the ocular tissues due to long-term exposure to microgravity.

  19. Numerical Modeling of Suspension HVOF Spray

    NASA Astrophysics Data System (ADS)

    Jadidi, M.; Moghtadernejad, S.; Dolatabadi, A.

    2016-02-01

    A three-dimensional two-way coupled Eulerian-Lagrangian scheme is used to simulate suspension high-velocity oxy-fuel spraying process. The mass, momentum, energy, and species equations are solved together with the realizable k-ɛ turbulence model to simulate the gas phase. Suspension is assumed to be a mixture of solid particles [mullite powder (3Al2O3·2SiO2)], ethanol, and ethylene glycol. The process involves premixed combustion of oxygen-propylene, and non-premixed combustion of oxygen-ethanol and oxygen-ethylene glycol. One-step global reaction is used for each mentioned reaction together with eddy dissipation model to compute the reaction rate. To simulate the droplet breakup, Taylor Analogy Breakup model is applied. After the completion of droplet breakup, and solvent evaporation/combustion, the solid suspended particles are tracked through the domain to determine the characteristics of the coating particles. Numerical simulations are validated against the experimental results in the literature for the same operating conditions. Seven or possibly eight shock diamonds are captured outside the nozzle. In addition, a good agreement between the predicted particle temperature, velocity, and diameter, and the experiment is obtained. It is shown that as the standoff distance increases, the particle temperature and velocity reduce. Furthermore, a correlation is proposed to determine the spray cross-sectional diameter and estimate the particle trajectories as a function of standoff distance.

  20. On the value of the reconnection rate

    NASA Astrophysics Data System (ADS)

    Comisso, L.; Bhattacharjee, A.

    2016-12-01

    Numerical simulations have consistently shown that the reconnection rate in certain collisionless regimes can be fast, of the order of ABu$ , where A$ and u$ are the Alfvén speed and the reconnecting magnetic field upstream of the ion diffusion region. This particular value has been reported in myriad numerical simulations under disparate conditions. However, despite decades of research, the reasons underpinning this specific value remain mysterious. Here, we present an overview of this problem and discuss the conditions under which the `0.1 value' is attained. Furthermore, we explain why this problem should be interpreted in terms of the ion diffusion region length.

  1. Simulating reionization in numerical cosmology

    NASA Astrophysics Data System (ADS)

    Sokasian, Aaron

    2003-11-01

    The incorporation of radiative transfer effects into cosmological hydrodynamical simulations is essential for understanding how the intergalactic medium (IGM) makes the transition from a neutral medium to one that is almost fully ionized. I present an approximate numerical method designed to study in a statistical sense how a cosmological density field is ionized by various sets of sources. The method requires relatively few time steps and can be employed with simulations of high resolution. First, I explore the reionization history of Helium II by z < 6 quasars. Comparisons between HeII opacities measured observationally and inferred from our analysis reveal that the uncertainties in the empirical luminosity function provide enough leeway to provide a satisfactory match. A property common to all the calculations is that the epoch of Helium II reionization must have occurred between 3≲z≲4 . I extend my analysis to study the constraints that can be placed on the nature of the cosmic ultraviolet (UV) background in the redshift interval 2.5≲z≲5 . I find that in order to simultaneously match observational estimates of the HI and HeII opacities, galaxies and quasars must contribute about equally to the ionizing background in HI at z ≃ 3. Moreover, my analysis requires the stellar component to rise for z > 3 to compensate for the declining contribution from bright quasars at higher redshift. To investigate how stellar source may have reionized the universe at z > 6, I have combined our 3D radiative transfer code with high resolution hydrodynamical simulations to study how population II and III type stars affected the reionization process. The resulting complex reionization histories are presented and comparisons made with observational constraints on the neutral fraction of hydrogen at z ˜ 6 derived from the z = 6.28 SDSS quasar of Becker and coworkers and the recent WMAP measurements of the electron scattering optical depth analysis of Kogut

  2. Numerical Simulation of Protoplanetary Vortices

    NASA Technical Reports Server (NTRS)

    Lin, H.; Barranco, J. A.; Marcus, P. S.

    2003-01-01

    The fluid dynamics within a protoplanetary disk has been attracting the attention of many researchers for a few decades. Previous works include, to list only a few among many others, the well-known prescription of Shakura & Sunyaev, the convective and instability study of Stone & Balbus and Hawley et al., the Rossby wave approach of Lovelace et al., as well as a recent work by Klahr & Bodenheimer, which attempted to identify turbulent flow within the disk. The disk is commonly understood to be a thin gas disk rotating around a central star with differential rotation (the Keplerian velocity), and the central quest remains as how the flow behavior deviates (albeit by a small amount) from a strong balance established between gravitational and centrifugal forces, transfers mass and momentum inward, and eventually forms planetesimals and planets. In earlier works we have briefly described the possible physical processes involved in the disk; we have proposed the existence of long-lasting, coherent vortices as an efficient agent for mass and momentum transport. In particular, Barranco et al. provided a general mathematical framework that is suitable for the asymptotic regime of the disk; Barranco & Marcus (2000) addressed a proposed vortex-dust interaction mechanism which might lead to planetesimal formation; and Lin et al. (2002), as inspired by general geophysical vortex dynamics, proposed basic mechanisms by which vortices can transport mass and angular momentum. The current work follows up on our previous effort. We shall focus on the detailed numerical implementation of our problem. We have developed a parallel, pseudo-spectral code to simulate the full three-dimensional vortex dynamics in a stably-stratified, differentially rotating frame, which represents the environment of the disk. Our simulation is validated with full diagnostics and comparisons, and we present our results on a family of three-dimensional, coherent equilibrium vortices.

  3. Rating Movies and Rating the Raters Who Rate Them.

    PubMed

    Zhou, Hua; Lange, Kenneth

    2009-11-01

    The movie distribution company Netflix has generated considerable buzz in the statistics community by offering a million dollar prize for improvements to its movie rating system. Among the statisticians and computer scientists who have disclosed their techniques, the emphasis has been on machine learning approaches. This article has the modest goal of discussing a simple model for movie rating and other forms of democratic rating. Because the model involves a large number of parameters, it is nontrivial to carry out maximum likelihood estimation. Here we derive a straightforward EM algorithm from the perspective of the more general MM algorithm. The algorithm is capable of finding the global maximum on a likelihood landscape littered with inferior modes. We apply two variants of the model to a dataset from the MovieLens archive and compare their results. Our model identifies quirky raters, redefines the raw rankings, and permits imputation of missing ratings. The model is intended to stimulate discussion and development of better theory rather than to win the prize. It has the added benefit of introducing readers to some of the issues connected with analyzing high-dimensional data.

  4. Numerical analysis of heat transfer in the exhaust gas flow in a diesel power generator

    NASA Astrophysics Data System (ADS)

    Brito, C. H. G.; Maia, C. B.; Sodré, J. R.

    2016-09-01

    This work presents a numerical study of heat transfer in the exhaust duct of a diesel power generator. The analysis was performed using two different approaches: the Finite Difference Method (FDM) and the Finite Volume Method (FVM), this last one by means of a commercial computer software, ANSYS CFX®. In FDM, the energy conservation equation was solved taking into account the estimated velocity profile for fully developed turbulent flow inside a tube and literature correlations for heat transfer. In FVM, the mass conservation, momentum, energy and transport equations were solved for turbulent quantities by the K-ω SST model. In both methods, variable properties were considered for the exhaust gas composed by six species: CO2, H2O, H2, O2, CO and N2. The entry conditions for the numerical simulations were given by experimental data available. The results were evaluated for the engine operating under loads of 0, 10, 20, and 37.5 kW. Test mesh and convergence were performed to determine the numerical error and uncertainty of the simulations. The results showed a trend of increasing temperature gradient with load increase. The general behaviour of the velocity and temperature profiles obtained by the numerical models were similar, with some divergence arising due to the assumptions made for the resolution of the models.

  5. Altered segregation pattern and numerical chromosome abnormalities interrelate in spermatozoa from Robertsonian translocation carriers.

    PubMed

    Godo, Anna; Blanco, Joan; Vidal, Francesca; Sandalinas, Mireia; Garcia-Guixé, Elena; Anton, Ester

    2015-07-01

    The aim of this study was to assess whether there is a relationship between numerical chromosome abnormalities and certain segregation modes in spermatozoa from Robertsonian translocation carriers. A sequential fluorescence in-situ hybridization protocol based on two successive hybridization rounds was performed on sperm samples from one t(13;22) and ten t(13;14) carriers. Patient inclusion criteria included the presence of a positive interchromosomal effect (ICE). In the first round, numerical abnormalities for chromosomes 15/22, 18, 21, X and Y were analysed. In the second round, the segregation outcome of the rearranged chromosomes was evaluated in the numerically abnormal spermatozoa detected in the first round, as well as in randomly assessed spermatozoa. Aneuploid spermatozoa showed statistical differences in all segregation modes when compared with randomly assessed spermatozoa: alternate (50.7% versus 84.3%), adjacent (36.6% versus 14.6%) and 3:0 (10.2% versus 1%). Diploid/multiple disomic spermatozoa showed differences in alternate (3.7% versus 84.3%) and 3:0 (67.6% versus 1%). We concluded that in Robertsonian translocation carriers that exhibit ICE, numerically abnormal spermatozoa preferentially contain unbalanced segregation products. This might be explained by heterosynapsis acting as a rescue mechanism that would lead to aberrant recombination, which is a predisposing factor for non-disjunction events.

  6. Complete thermodynamically consistent kinetic model of particle nucleation and growth: Numerical study of the applicability of the classical theory of homogeneous nucleation

    NASA Astrophysics Data System (ADS)

    Chesnokov, Evgeni N.; Krasnoperov, Lev N.

    2007-04-01

    conclusion is particularly important for nucleation from supersaturated water vapor, since these processes for water molecules at and below the atmospheric pressure are in the low pressure limit, and the rate constants can be several orders of magnitude lower than the gas kinetic. In addition, the impact of the thermodynamic inconsistency of the previously developed partially reversible kinetic numerical models was assessed. At typical experimental conditions for water nucleation, S0=10 and Θ =10 (T=250K), the error in the particle nucleation rate introduced by the thermodynamic inconsistency exceeds one order of magnitude.

  7. Numerical Modeling of Plasmas in which Nanoparticles Nucleate and Grow

    NASA Astrophysics Data System (ADS)

    Agarwal, Pulkit

    Dusty plasmas refer to a broad category of plasmas. Plasmas such as argon-silane plasmas in which particles nucleate and grow are widely used in semiconductor processing and nanoparticle manufacturing. In such dusty plasmas, the plasma and the dust particles are strongly coupled to each other. This means that the presence of dust particles significantly affects the plasma properties and vice versa. Therefore such plasmas are highly complex and they involve several interesting phenomena like nucleation, growth, coagulation, charging and transport. Dusty plasma afterglow is equally complex and important. Especially, residual charge on dust particles carries special significance in several industrial and laboratory situations and it has not been well understood. A 1D numerical model was developed of a low-pressure capacitively-coupled plasma in which nanoparticles nucleate and grow. Polydispersity of particle size distributions can be important in such plasmas. Sectional method, which is well known in aerosol literature, was used to model the evolving particle size and charge distribution. The numerical model is transient and one-dimensional and self consistently accounts for nucleation, growth, coagulation, charging and transport of dust particles and their effect on plasma properties. Nucleation and surface growth rates were treated as input parameters. Results were presented in terms of particle size and charge distribution with an emphasis on importance of polydispersity in particle growth and dynamics. Results of numerical model were compared with experimental measurements of light scattering and light emission from plasma. Reasonable qualitative agreement was found with some discrepancies. Pulsed dusty plasma can be important for controlling particle production and/or unwanted particle deposition. In this case, it is important to understand the behavior of the particle cloud during the afterglow following plasma turn-off. Numerical model was modified to self

  8. Numerical Models of Ophiolite Genesis and Obduction

    NASA Astrophysics Data System (ADS)

    Guilmette, C.; Beaumont, C.; Jamieson, R.

    2013-12-01

    Ophiolites are relics of oceanic lithosphere tectonically emplaced in continental settings. They are diagnostic features of continental suture zones, where they mark past plate boundaries. Even after having been studied for more than 40 years, the mechanisms involved in the genesis and subsequent obduction of ophiolites over continental margins are still debated. We present the results of 2D thermal-mechanical numerical models that successfully reproduce characteristics of natural examples like the Semail, Bay of Islands, Yarlung-Zangbo, and Coast Range ophiolites. The numerical models are upper mantle scale and use pressure-, temperature- and strain-dependent viscous-plastic rheologies. Both divergent and convergent velocity boundary conditions are used and tectonic boundary forces are monitored. The models start with the rifting of a stable continent, followed by development of an ocean ridge and accretion of oceanic lithosphere at a total rate of 3 cm/y. Once a specified ocean size/age is achieved, the velocity boundary conditions are reversed leading to convergence and the spontaneous inception of a suduction zone at the mid-ocean ridge. We present results for models including different ages of oceans (40 to 90 Ma) and different convergence velocities (5 to 15 cm/y). The interaction between the lower plate passive margin and the oceanic upper plate results in 5 different tectonic styles. These differ mainly by the presence or absence of oceanic spreading in the upper plate (back-arc basin), leading to supra-subduction zone ophiolites vs. MORB-type, and by the behaviour of the oceanic slab, e.g., slab rollback vs. breakoff. The evolution of effective slab pull is interpreted to be the major control on the resulting tectonic style. Low effective slab pull models (young oceans and fast convergence rates) fail to obduct an ophiolite. Strong effective slab pull models (old oceans and lower convergence rates) result in subduction zone retreat and spontaneous oceanic

  9. The Geometric Grids of the Hieratic Numeral.

    NASA Astrophysics Data System (ADS)

    Aboulfotouh, Hossam M. K.

    The paper discusses the geometrical designs of the hieratic numeral signs. It shows the regular-grid-patterns of squares upon which, the shapes of the already decoded hieratic numeral-signs, have been designed. Also, it shows the design of some hieratic numeral signs, based on subdividing the circle; and the hieratic signs of modular notation. It might reveal the basic geometrical level of understanding of anonymous ancient Egyptians who designed them some four thousand years ago.

  10. Numerical Algorithm for Delta of Asian Option.

    PubMed

    Zhang, Boxiang; Yu, Yang; Wang, Weiguo

    2015-01-01

    We study the numerical solution of the Greeks of Asian options. In particular, we derive a close form solution of Δ of Asian geometric option and use this analytical form as a control to numerically calculate Δ of Asian arithmetic option, which is known to have no explicit close form solution. We implement our proposed numerical method and compare the standard error with other classical variance reduction methods. Our method provides an efficient solution to the hedging strategy with Asian options.

  11. Numerical Methods For Chemically Reacting Flows

    NASA Technical Reports Server (NTRS)

    Leveque, R. J.; Yee, H. C.

    1990-01-01

    Issues related to numerical stability, accuracy, and resolution discussed. Technical memorandum presents issues in numerical solution of hyperbolic conservation laws containing "stiff" (relatively large and rapidly changing) source terms. Such equations often used to represent chemically reacting flows. Usually solved by finite-difference numerical methods. Source terms generally necessitate use of small time and/or space steps to obtain sufficient resolution, especially at discontinuities, where incorrect mathematical modeling results in unphysical solutions.

  12. Numerical simulation of interplanetary dynamics

    NASA Astrophysics Data System (ADS)

    Wu, Chin-Chun

    This dissertation discusses investigations into the physics of the propagation of solar generated disturbances in the interplanetary medium. The motivation to initiate this study was two-fold: (1) understanding the fundamental physics of the nonlinear interactions of solar generated MHD shocks and non-homogeneous interplanetary medium, and (2) understanding the physics of solar generated disturbance effects on the Earth's environment, (i.e. the solar connection to the geomagnetic storm). In order to achieve these goals, the authors employed two numerical models to encompass these studies. In the first part, a one-dimensional MHD code with adaptive grids is used to study the evolution of interplanetary slow shocks (ISS), the interaction of a forward slow shock with a reverse slow shock, and the interaction of a fast shock with a slow shock. Results show that the slow shocks can be generated by a decreasing density, velocity or temperature perturbation or by a pressure pulse by following a forward fast shock and that slow shocks can propagate over 1 AU; results also show that the ISS never evolves into fast shocks. Interestingly, it is also found that an ISS could be 'eaten up' by an interplanetary fast shock (IFS) catching up from behind. This could be a reason that the slow shock has been difficult to observe near 1 AU. In addition, a forward slow shock could be dissipated by following a strong forward fast shock (Mach number greater than 1.7). In the second part, a fully three-dimensional (3D), time-dependent, MHD interplanetary global model (3D IGM) is used to study the relationship between different forms of solar activity and transient variations of the north-south component, Bx, of the interplanetary magnetic field, IMF, at 1 AU. One form of solar activity, the flare, is simulated by using a pressure pulse at different locations near the solar surface and observing the simulated IMF evolution of Btheta (= -Bx) at 1 AU. Results show that, for a given pressure

  13. Numerical Simulations of Granular Processes

    NASA Astrophysics Data System (ADS)

    Richardson, Derek C.; Michel, Patrick; Schwartz, Stephen R.; Ballouz, Ronald-Louis; Yu, Yang; Matsumura, Soko

    2014-11-01

    Spacecraft images and indirect observations including thermal inertia measurements indicate most small bodies have surface regolith. Evidence of granular flow is also apparent in the images. This material motion occurs in very low gravity, therefore in a completely different gravitational environment than on the Earth. Understanding and modeling these motions can aid in the interpretation of imaged surface features that may exhibit signatures of constituent material properties. Also, upcoming sample-return missions to small bodies, and possible future manned missions, will involve interaction with the surface regolith, so it is important to develop tools to predict the surface response. We have added new capabilities to the parallelized N-body gravity tree code pkdgrav [1,2] that permit the simulation of granular dynamics, including multi-contact physics and friction forces, using the soft-sphere discrete-element method [3]. The numerical approach has been validated through comparison with laboratory experiments (e.g., [3,4]). Ongoing and recently completed projects include: impacts into granular materials using different projectile shapes [5]; possible tidal resurfacing of asteroid Apophis during its 2029 encounter [6]; the Brazil-nut effect in low gravity [7]; and avalanche modeling.Acknowledgements: DCR acknowledges NASA (grants NNX08AM39G, NNX10AQ01G, NNX12AG29G) and NSF (AST1009579). PM acknowledges the French agency CNES. SRS works on the NEOShield Project funded under the European Commission’s FP7 program agreement No. 282703. SM acknowledges support from the Center for Theory and Computation at U Maryland and the Dundee Fellowship at U Dundee. Most simulations were performed using the YORP cluster in the Dept. of Astronomy at U Maryland and on the Deepthought High-Performance Computing Cluster at U Maryland.References: [1] Richardson, D.C. et al. 2000, Icarus 143, 45; [2] Stadel, J. 2001, Ph.D. Thesis, U Washington; [3] Schwartz, S.R. et al. 2012, Gran

  14. Numerical tools for atomistic simulations.

    SciTech Connect

    Fang, H.; Gullett, Philip Michael; Slepoy, Alexander; Horstemeyer, Mark F.; Baskes, Michael I.; Wagner, Gregory John; Li, Mo

    2004-01-01

    The final report for a Laboratory Directed Research and Development project entitled 'Parallel Atomistic Computing for Failure Analysis of Micromachines' is presented. In this project, atomistic algorithms for parallel computers were developed to assist in quantification of microstructure-property relations related to weapon micro-components. With these and other serial computing tools, we are performing atomistic simulations of various sizes, geometries, materials, and boundary conditions. These tools provide the capability to handle the different size-scale effects required to predict failure. Nonlocal continuum models have been proposed to address this problem; however, they are phenomenological in nature and are difficult to validate for micro-scale components. Our goal is to separately quantify damage nucleation, growth, and coalescence mechanisms to provide a basis for macro-scale continuum models that will be used for micromachine design. Because micro-component experiments are difficult, a systematic computational study that employs Monte Carlo methods, molecular statics, and molecular dynamics (EAM and MEAM) simulations to compute continuum quantities will provide mechanism-property relations associated with the following parameters: specimen size, number of grains, crystal orientation, strain rates, temperature, defect nearest neighbor distance, void/crack size, chemical state, and stress state. This study will quantify sizescale effects from nanometers to microns in terms of damage progression and thus potentially allow for optimized micro-machine designs that are more reliable and have higher fidelity in terms of strength. In order to accomplish this task, several atomistic methods needed to be developed and evaluated to cover the range of defects, strain rates, temperatures, and sizes that a material may see in micro-machines. Therefore we are providing a complete set of tools for large scale atomistic simulations that include pre-processing of

  15. Nonlinear dynamics and numerical uncertainties in CFD

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sweby, P. K.

    1996-01-01

    The application of nonlinear dynamics to improve the understanding of numerical uncertainties in computational fluid dynamics (CFD) is reviewed. Elementary examples in the use of dynamics to explain the nonlinear phenomena and spurious behavior that occur in numerics are given. The role of dynamics in the understanding of long time behavior of numerical integrations and the nonlinear stability, convergence, and reliability of using time-marching, approaches for obtaining steady-state numerical solutions in CFD is explained. The study is complemented with spurious behavior observed in CFD computations.

  16. Probabilistic numerics and uncertainty in computations

    PubMed Central

    Hennig, Philipp; Osborne, Michael A.; Girolami, Mark

    2015-01-01

    We deliver a call to arms for probabilistic numerical methods: algorithms for numerical tasks, including linear algebra, integration, optimization and solving differential equations, that return uncertainties in their calculations. Such uncertainties, arising from the loss of precision induced by numerical calculation with limited time or hardware, are important for much contemporary science and industry. Within applications such as climate science and astrophysics, the need to make decisions on the basis of computations with large and complex data have led to a renewed focus on the management of numerical uncertainty. We describe how several seminal classic numerical methods can be interpreted naturally as probabilistic inference. We then show that the probabilistic view suggests new algorithms that can flexibly be adapted to suit application specifics, while delivering improved empirical performance. We provide concrete illustrations of the benefits of probabilistic numeric algorithms on real scientific problems from astrometry and astronomical imaging, while highlighting open problems with these new algorithms. Finally, we describe how probabilistic numerical methods provide a coherent framework for identifying the uncertainty in calculations performed with a combination of numerical algorithms (e.g. both numerical optimizers and differential equation solvers), potentially allowing the diagnosis (and control) of error sources in computations. PMID:26346321

  17. Probabilistic numerics and uncertainty in computations.

    PubMed

    Hennig, Philipp; Osborne, Michael A; Girolami, Mark

    2015-07-08

    We deliver a call to arms for probabilistic numerical methods: algorithms for numerical tasks, including linear algebra, integration, optimization and solving differential equations, that return uncertainties in their calculations. Such uncertainties, arising from the loss of precision induced by numerical calculation with limited time or hardware, are important for much contemporary science and industry. Within applications such as climate science and astrophysics, the need to make decisions on the basis of computations with large and complex data have led to a renewed focus on the management of numerical uncertainty. We describe how several seminal classic numerical methods can be interpreted naturally as probabilistic inference. We then show that the probabilistic view suggests new algorithms that can flexibly be adapted to suit application specifics, while delivering improved empirical performance. We provide concrete illustrations of the benefits of probabilistic numeric algorithms on real scientific problems from astrometry and astronomical imaging, while highlighting open problems with these new algorithms. Finally, we describe how probabilistic numerical methods provide a coherent framework for identifying the uncertainty in calculations performed with a combination of numerical algorithms (e.g. both numerical optimizers and differential equation solvers), potentially allowing the diagnosis (and control) of error sources in computations.

  18. A numerical study of the direct contact condensation on a horizontal surface

    NASA Technical Reports Server (NTRS)

    Hasan, M. M.; Lin, C. S.

    1991-01-01

    The results of a numerical study of the direct contact condensation on a slowly moving horizontal liquid surface are presented. The geometrical configuration and the input conditions used to obtain numerical solutions are representative to those of experiments of Celata et al. The effects of Prandtl number (Pr), inflow Reynolds number, and Richardson number on the condensation rate are investigated. Numerical predictions of condensation rate for laminar flow are in good agreement with experimental data. The effect of buoyancy on the condensation rate is characterized by Richardson number. A correlation based on the numerical solutions is developed to predict the average condensation Nusselt number in terms of Richardson number, Peclet number, and inflow Reynolds number.

  19. Cross section dependence of event rates at neutrino telescopes.

    PubMed

    Hussain, S; Marfatia, D; McKay, D W; Seckel, D

    2006-10-20

    We examine the dependence of event rates at neutrino telescopes on the neutrino-nucleon cross section for neutrinos with energy above 1 PeV, and contrast the results with those for cosmic ray experiments. Scaling of the standard model cross sections leaves the rate of upward events essentially unchanged. Details, such as detector depth and cross section inelasticity, can influence rates. Numerical estimates of upward shower, muon, and tau event rates in the IceCube detector confirm these results.

  20. Rocket Engine Numerical Simulator (RENS)

    NASA Technical Reports Server (NTRS)

    Davidian, Kenneth O.

    1997-01-01

    Work is being done at three universities to help today's NASA engineers use the knowledge and experience of their Apolloera predecessors in designing liquid rocket engines. Ground-breaking work is being done in important subject areas to create a prototype of the most important functions for the Rocket Engine Numerical Simulator (RENS). The goal of RENS is to develop an interactive, realtime application that engineers can utilize for comprehensive preliminary propulsion system design functions. RENS will employ computer science and artificial intelligence research in knowledge acquisition, computer code parallelization and objectification, expert system architecture design, and object-oriented programming. In 1995, a 3year grant from the NASA Lewis Research Center was awarded to Dr. Douglas Moreman and Dr. John Dyer of Southern University at Baton Rouge, Louisiana, to begin acquiring knowledge in liquid rocket propulsion systems. Resources of the University of West Florida in Pensacola were enlisted to begin the process of enlisting knowledge from senior NASA engineers who are recognized experts in liquid rocket engine propulsion systems. Dr. John Coffey of the University of West Florida is utilizing his expertise in interviewing and concept mapping techniques to encode, classify, and integrate information obtained through personal interviews. The expertise extracted from the NASA engineers has been put into concept maps with supporting textual, audio, graphic, and video material. A fundamental concept map was delivered by the end of the first year of work and the development of maps containing increasing amounts of information is continuing. Find out more information about this work at the Southern University/University of West Florida. In 1996, the Southern University/University of West Florida team conducted a 4day group interview with a panel of five experts to discuss failures of the RL10 rocket engine in conjunction with the Centaur launch vehicle. The

  1. The rating reliability calculator

    PubMed Central

    Solomon, David J

    2004-01-01

    Background Rating scales form an important means of gathering evaluation data. Since important decisions are often based on these evaluations, determining the reliability of rating data can be critical. Most commonly used methods of estimating reliability require a complete set of ratings i.e. every subject being rated must be rated by each judge. Over fifty years ago Ebel described an algorithm for estimating the reliability of ratings based on incomplete data. While his article has been widely cited over the years, software based on the algorithm is not readily available. This paper describes an easy-to-use Web-based utility for estimating the reliability of ratings based on incomplete data using Ebel's algorithm. Methods The program is available public use on our server and the source code is freely available under GNU General Public License. The utility is written in PHP, a common open source imbedded scripting language. The rating data can be entered in a convenient format on the user's personal computer that the program will upload to the server for calculating the reliability and other statistics describing the ratings. Results When the program is run it displays the reliability, number of subject rated, harmonic mean number of judges rating each subject, the mean and standard deviation of the averaged ratings per subject. The program also displays the mean, standard deviation and number of ratings for each subject rated. Additionally the program will estimate the reliability of an average of a number of ratings for each subject via the Spearman-Brown prophecy formula. Conclusion This simple web-based program provides a convenient means of estimating the reliability of rating data without the need to conduct special studies in order to provide complete rating data. I would welcome other researchers revising and enhancing the program. PMID:15117416

  2. Theoretical and numerical predictions of hypervelocity impact-generated plasma

    NASA Astrophysics Data System (ADS)

    Li, Jianqiao; Song, Weidong; Ning, Jianguo

    2014-08-01

    The hypervelocity impact generated plasmas (HVIGP) in thermodynamic non-equilibrium state were theoretically analyzed, and a physical model was presented to explore the relationship between plasma ionization degree and internal energy of the system by a group of equations including a chemical reaction equilibrium equation, a chemical reaction rate equation, and an energy conservation equation. A series of AUTODYN 3D (a widely used software in dynamic numerical simulations and developed by Century Dynamic Inc.) numerical simulations of the impacts of hypervelocity Al projectile on its targets at different incident angles were performed. The internal energy and the material density obtained from the numerical simulations were then used to calculate the ionization degree and the electron temperature. Based on a self-developed 2D smooth particle hydrodynamic (SPH) code and the theoretical model, the plasmas generated by 6 hypervelocity impacts were directly simulated and their total charges were calculated. The numerical results are in good agreements with the experimental results as well as the empirical formulas, demonstrating that the theoretical model is justified by the AUTODYN 3D and self-developed 2D SPH simulations and applicable to predict HVIGPs. The study is of significance for astrophysical and cosmonautic researches and safety.

  3. Theoretical and numerical predictions of hypervelocity impact-generated plasma

    SciTech Connect

    Li, Jianqiao; Song, Weidong Ning, Jianguo

    2014-08-15

    The hypervelocity impact generated plasmas (HVIGP) in thermodynamic non-equilibrium state were theoretically analyzed, and a physical model was presented to explore the relationship between plasma ionization degree and internal energy of the system by a group of equations including a chemical reaction equilibrium equation, a chemical reaction rate equation, and an energy conservation equation. A series of AUTODYN 3D (a widely used software in dynamic numerical simulations and developed by Century Dynamic Inc.) numerical simulations of the impacts of hypervelocity Al projectile on its targets at different incident angles were performed. The internal energy and the material density obtained from the numerical simulations were then used to calculate the ionization degree and the electron temperature. Based on a self-developed 2D smooth particle hydrodynamic (SPH) code and the theoretical model, the plasmas generated by 6 hypervelocity impacts were directly simulated and their total charges were calculated. The numerical results are in good agreements with the experimental results as well as the empirical formulas, demonstrating that the theoretical model is justified by the AUTODYN 3D and self-developed 2D SPH simulations and applicable to predict HVIGPs. The study is of significance for astrophysical and cosmonautic researches and safety.

  4. Numerical estimation of cavitation intensity

    NASA Astrophysics Data System (ADS)

    Krumenacker, L.; Fortes-Patella, R.; Archer, A.

    2014-03-01

    Cavitation may appear in turbomachinery and in hydraulic orifices, venturis or valves, leading to performance losses, vibrations and material erosion. This study propose a new method to predict the cavitation intensity of the flow, based on a post-processing of unsteady CFD calculations. The paper presents the analyses of cavitating structures' evolution at two different scales: • A macroscopic one in which the growth of cavitating structures is calculated using an URANS software based on a homogeneous model. Simulations of cavitating flows are computed using a barotropic law considering presence of air and interfacial tension, and Reboud's correction on the turbulence model. • Then a small one where a Rayleigh-Plesset software calculates the acoustic energy generated by the implosion of the vapor/gas bubbles with input parameters from macroscopic scale. The volume damage rate of the material during incubation time is supposed to be a part of the cumulated acoustic energy received by the solid wall. The proposed analysis method is applied to calculations on hydrofoil and orifice geometries. Comparisons between model results and experimental works concerning flow characteristic (size of cavity, pressure,velocity) as well as pitting (erosion area, relative cavitation intensity) are presented.

  5. Glomerular filtration rate

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/007305.htm Glomerular filtration rate To use the sharing features on this page, please enable JavaScript. Glomerular filtration rate (GFR) is a test used to check ...

  6. Numerical Integration: One Step at a Time

    ERIC Educational Resources Information Center

    Yang, Yajun; Gordon, Sheldon P.

    2016-01-01

    This article looks at the effects that adding a single extra subdivision has on the level of accuracy of some common numerical integration routines. Instead of automatically doubling the number of subdivisions for a numerical integration rule, we investigate what happens with a systematic method of judiciously selecting one extra subdivision for…

  7. An Integrative Theory of Numerical Development

    ERIC Educational Resources Information Center

    Siegler, Robert; Lortie-Forgues, Hugues

    2014-01-01

    Understanding of numerical development is growing rapidly, but the volume and diversity of findings can make it difficult to perceive any coherence in the process. The integrative theory of numerical development posits that a coherent theme is present, however--progressive broadening of the set of numbers whose magnitudes can be accurately…

  8. Nonclassicality thresholds for multiqubit states: Numerical analysis

    SciTech Connect

    Gruca, Jacek; Zukowski, Marek; Laskowski, Wieslaw; Kiesel, Nikolai; Wieczorek, Witlef; Weinfurter, Harald; Schmid, Christian

    2010-07-15

    States that strongly violate Bell's inequalities are required in many quantum-informational protocols as, for example, in cryptography, secret sharing, and the reduction of communication complexity. We investigate families of such states with a numerical method which allows us to reveal nonclassicality even without direct knowledge of Bell's inequalities for the given problem. An extensive set of numerical results is presented and discussed.

  9. NUMERICAL NOISE PM SIMULATION IN CMAQ

    EPA Science Inventory

    We have found that numerical noise in the latest release of CMAQ using the yamo advection scheme when compiled on Linux cluster with pgf90 (5.0 or 6.0). We recommend to use -C option to eliminate the numerical noise.

  10. Food for Thought: A Few Numerical Delicacies

    ERIC Educational Resources Information Center

    Hong, L.; Thoo, J. B.

    2004-01-01

    Many students, when they take an elementary differential equations course for the first time, bring with them misconceptions from numerical methods that they had learnt in their calculus courses, most notable of which concerns the mesh width in using a numerical method. It is important that we strive to dispel any of these misconceptions as well…

  11. Verbal Interference Suppresses Exact Numerical Representation

    ERIC Educational Resources Information Center

    Frank, Michael C.; Fedorenko, Evelina; Lai, Peter; Saxe, Rebecca; Gibson, Edward

    2012-01-01

    Language for number is an important case study of the relationship between language and cognition because the mechanisms of non-verbal numerical cognition are well-understood. When the Piraha (an Amazonian hunter-gatherer tribe who have no exact number words) are tested in non-verbal numerical tasks, they are able to perform one-to-one matching…

  12. Structure and Construction of Numeric Databases.

    ERIC Educational Resources Information Center

    Soergel, Dagobert

    1982-01-01

    This discussion of the general principles of structure and construction of numeric databases introduces the concept of data points, their relationship to each other, and their storage in a nonredundant way. The collection of numeric data and their integration into the database structure are explained. Eight references are cited. (EJS)

  13. Pure Left Neglect for Arabic Numerals

    ERIC Educational Resources Information Center

    Priftis, Konstantinos; Albanese, Silvia; Meneghello, Francesca; Pitteri, Marco

    2013-01-01

    Arabic numerals are diffused and language-free representations of number magnitude. To be effectively processed, the digits composing Arabic numerals must be spatially arranged along a left-to-right axis. We studied one patient (AK) to show that left neglect, after right hemisphere damage, can selectively impair the computation of the spatial…

  14. Handbook of noise ratings

    NASA Technical Reports Server (NTRS)

    Pearsons, K. S.; Bennett, R. L.

    1974-01-01

    The handbook was compiled to provide information in a concise form, describing the multitude of noise rating schemes. It is hoped that by describing the noise rating methods in a single volume the user will have better access to the definitions, application and calculation procedures of the current noise rating methods.

  15. Numerical simulation of seasonal groundwater pumping

    NASA Astrophysics Data System (ADS)

    Filimonova, Elena; Baldenkov, Mikhail

    2015-04-01

    Increasing scarcity and contamination of water recourses require innovative water management strategies such as combined water system. The combined water system is a complex technology comprising two separate wells, major catchment-zone well and compensation pumping well, located inside a single stream basin. The major well is supplied by the well's catchment zone or surface flow, thus depleting the stream flow. The pumping rate of a major well is determined by the difference between the current stream flow and the minimum permissible stream flow. The deficiency of the stream flow in dry seasons can be compensated for by the short-term pumping of groundwater. The compensation pumping rate is determined by the difference between water demand and the permissible water withdrawal of the major well. The source for the compensation well is the aquifer storage. The estimation of streamflow depletion caused by compensation pumping is major question to evaluate the efficiency of the combined water system. Short-term groundwater pumping can use aquifer storage instead of catchment-zone water until the drawdown reaches the edge of the stream. Traditionally pumping simulation calculates in two-step procedure. Natural conditions, an aquifer system is in an approximate dynamic equilibrium, describe by steady-state model. A steady-state solution provides an initial heads, a set of flows through boundaries, and used as initial state for transient solutions, when pumping is imposed on an aquifer system. The transient solutions provide the total change in flows through the boundaries. A difference between the transient and steady-state solutions estimates the capture and the streamflow depletion. Numerical modeling of cyclical compensation pumping has special features: the periodic solution, the seasonal changes through the boundaries and the importance even small drawdown of stream level. When seasonality is a modeling feature, traditional approach leads to mistaken values of

  16. Localized fluidization in granular materials: Theoretical and numerical study

    NASA Astrophysics Data System (ADS)

    Montellà, E. P.; Toraldo, M.; Chareyre, B.; Sibille, L.

    2016-11-01

    We present analytical and numerical results on localized fluidization within a granular layer subjected to a local injection of fluid. As the injection rate increases the three different regimes previously reported in the literature are recovered: homogeneous expansion of the bed, fluidized cavity in which fluidization starts developing above the injection area, and finally the chimney of fluidized grains when the fluidization zone reaches the free surface. The analytical approach is at the continuum scale, based on Darcy's law and Therzaghi's effective stress principle. It provides a good description of the phenomenon as long as the porosity of the granular assembly remains relatively homogeneous, i.e., for small injection rates. The numerical approach is at the particle scale based on the coupled discrete element method and a pore-scale finite volume method. It tackles the more heterogeneous situations which occur at larger injection rates. The results from both methods are in qualitative agreement with data published independently. A more quantitative agreement is achieved by the numerical model. A direct link is evidenced between the occurrence of the different regimes of fluidization and the injection aperture. While narrow apertures let the three different regimes be distinguished clearly, larger apertures tend to produce a single homogeneous fluidization regime. In the former case, it is found that the transition between the cavity regime and the chimney regime for an increasing injection rate coincides with a peak in the evolution of inlet pressure. Finally, the occurrence of the different regimes is defined in terms of the normalized flux and aperture.

  17. Electrohydraulic forming of dual phase steels; numerical and experimental work

    NASA Astrophysics Data System (ADS)

    Hassannejadasl, Amir; Green, Daniel E.; Golovashchenko, Sergey F.

    2013-12-01

    Electrohydraulic Forming (EHF) is a high velocity forming process, in which the strain-rate in the sheet metal can reach very high values depending on the prescribed input energy, the chamber geometry, the die geometry, instrumentation efficiency and the mechanical properties of the sheet material. In EHF, a high voltage discharge between electrodes that are submerged in a water-filled chamber generates a plasma channel that leads to propagation of a shockwave through the water that forms the sheet, with or without a die, in less than a millisecond. EHF generates a complex pressure pulse history that is extremely challenging to simulate. In this work, three-dimensional finite element simulations of DP590 sheet were completed in free-forming (EHFF) and die-forming (EHDF) conditions using ABAQUS/Explicit and a combination of Eulerian and Lagrangian elements. The Johnson-Cook constitutive plasticity model was selected and the parameters were calibrated based on uniaxial tensile test data at different strain-rates. A comprehensive numerical study was carried out with a view to understanding the differences between EHFF and EHDF in terms of the history of the deformation profile of the specimen, the strain-rate history, the loading path and through-thickness stresses. Higher strain-rates and more complex strain-paths were predicted in EHDF compared to EHFF due to dynamic sheet/die interaction. Good correlation between the experimental and numerical results demonstrated the ability of numerical models to accurately predict the history of the deformation profile in both EHDF and EHFF conditions.

  18. Localized fluidization in granular materials: Theoretical and numerical study.

    PubMed

    Montellà, E P; Toraldo, M; Chareyre, B; Sibille, L

    2016-11-01

    We present analytical and numerical results on localized fluidization within a granular layer subjected to a local injection of fluid. As the injection rate increases the three different regimes previously reported in the literature are recovered: homogeneous expansion of the bed, fluidized cavity in which fluidization starts developing above the injection area, and finally the chimney of fluidized grains when the fluidization zone reaches the free surface. The analytical approach is at the continuum scale, based on Darcy's law and Therzaghi's effective stress principle. It provides a good description of the phenomenon as long as the porosity of the granular assembly remains relatively homogeneous, i.e., for small injection rates. The numerical approach is at the particle scale based on the coupled discrete element method and a pore-scale finite volume method. It tackles the more heterogeneous situations which occur at larger injection rates. The results from both methods are in qualitative agreement with data published independently. A more quantitative agreement is achieved by the numerical model. A direct link is evidenced between the occurrence of the different regimes of fluidization and the injection aperture. While narrow apertures let the three different regimes be distinguished clearly, larger apertures tend to produce a single homogeneous fluidization regime. In the former case, it is found that the transition between the cavity regime and the chimney regime for an increasing injection rate coincides with a peak in the evolution of inlet pressure. Finally, the occurrence of the different regimes is defined in terms of the normalized flux and aperture.

  19. Numerical simulations of cryogenic cavitating flows

    NASA Astrophysics Data System (ADS)

    Kim, Hyunji; Kim, Hyeongjun; Min, Daeho; Kim, Chongam

    2015-12-01

    The present study deals with a numerical method for cryogenic cavitating flows. Recently, we have developed an accurate and efficient baseline numerical scheme for all-speed water-gas two-phase flows. By extending such progress, we modify the numerical dissipations to be properly scaled so that it does not show any deficiencies in low Mach number regions. For dealing with cryogenic two-phase flows, previous EOS-dependent shock discontinuity sensing term is replaced with a newly designed EOS-free one. To validate the proposed numerical method, cryogenic cavitating flows around hydrofoil are computed and the pressure and temperature depression effect in cryogenic cavitation are demonstrated. Compared with Hord's experimental data, computed results are turned out to be satisfactory. Afterwards, numerical simulations of flow around KARI turbopump inducer in liquid rocket are carried out under various flow conditions with water and cryogenic fluids, and the difference in inducer flow physics depending on the working fluids are examined.

  20. Eulerian-Lagrangian numerical scheme for simulating advection, dispersion, and transient storage in streams and a comparison of numerical methods

    USGS Publications Warehouse

    Cox, T.J.; Runkel, R.L.

    2008-01-01

    Past applications of one-dimensional advection, dispersion, and transient storage zone models have almost exclusively relied on a central differencing, Eulerian numerical approximation to the nonconservative form of the fundamental equation. However, there are scenarios where this approach generates unacceptable error. A new numerical scheme for this type of modeling is presented here that is based on tracking Lagrangian control volumes across a fixed (Eulerian) grid. Numerical tests are used to provide a direct comparison of the new scheme versus nonconservative Eulerian numerical methods, in terms of both accuracy and mass conservation. Key characteristics of systems for which the Lagrangian scheme performs better than the Eulerian scheme include: nonuniform flow fields, steep gradient plume fronts, and pulse and steady point source loadings in advection-dominated systems. A new analytical derivation is presented that provides insight into the loss of mass conservation in the nonconservative Eulerian scheme. This derivation shows that loss of mass conservation in the vicinity of spatial flow changes is directly proportional to the lateral inflow rate and the change in stream concentration due to the inflow. While the nonconservative Eulerian scheme has clearly worked well for past published applications, it is important for users to be aware of the scheme's limitations. ?? 2008 ASCE.

  1. Numerical simulation of baroclinic Jovian vortices

    NASA Technical Reports Server (NTRS)

    Achterberg, Richard K.; Ingersoll, Andrew P.

    1994-01-01

    We examine the evolution of baroclinic vortices in a time-dependent, nonlinear numerical model of a Jovian atmosphere. The model uses a normal-mode expansion in the vertical, using the barotropic and first two baroclinic modes. Results for the stability of baroclinic vortices on an f plane in the absence of a mean zonal flow are similar to results of Earth vortex models, although the presence of a fluid interior on the Jovian planets shifts the stability boundaries to smaller length scales. The presence of a barotropic mean zonal flow in the interior stabilizes vortices against instability and significantly modifies the finite amplitude form of baroclinic instabilities. The effect of a zonal flow on a form of barotropic instability produces periodic oscillations in the latitude and longitude of the vortex as observed at the level of the cloud tops. This instability may explain some, but not all, observations of longitudinal oscillations of vortices on the outer planets. Oscillations in aspect ratio and orientation of stable vortices in a zonal shear flow are observed in this baroclinic model, as in simpler two-dimensional models. Such oscillations are also observed in the atmospheres of Jupiter and Neptune. The meridional propagation and decay of vortices on a beta plane is inhibited by the presence of a mean zonal flow. The direction of propagation of a vortex relative to the mean zonal flow depends upon the sign of the meridional potential vorticity gradient; combined with observations of vortex drift rates, this may provide a constraint on model assumption for the flow in the deep interior of the Jovian planets.

  2. MHD micropumping of power-law fluids: A numerical solution

    NASA Astrophysics Data System (ADS)

    Moghaddam, Saied

    2013-02-01

    The performance of MHD micropumps is studied numerically assuming that the viscosity of the fluid is shear-dependent. Using power-law model to represent the fluid of interest, the effect of power-law exponent, N, is investigated on the volumetric flow rate in a rectangular channel. Assuming that the flow is laminar, incompressible, two-dimensional, but (approximately) unidirectional, finite difference method (FDM) is used to solve the governing equations. It is found that shear-thinning fluids provide a larger flow rate as compared to Newtonian fluids provided that the Hartmann number is above a critical value. There exists also an optimum Hartmann number (which is larger than the critical Hartmann number) at which the flow rate is maximum. The power-law exponent, N, strongly affects the optimum geometry depending on the Hartmann number being smaller or larger than the critical Hartmann number.

  3. Mapping numerical magnitudes onto symbols: the numerical distance effect and individual differences in children's mathematics achievement.

    PubMed

    Holloway, Ian D; Ansari, Daniel

    2009-05-01

    Although it is often assumed that abilities that reflect basic numerical understanding, such as numerical comparison, are related to children's mathematical abilities, this relationship has not been tested rigorously. In addition, the extent to which symbolic and nonsymbolic number processing play differential roles in this relationship is not yet understood. To address these questions, we collected mathematics achievement measures from 6- to 8-year-olds as well as reaction times from a numerical comparison task. Using the reaction times, we calculated the size of the numerical distance effect exhibited by each child. In a correlational analysis, we found that the individual differences in the distance effect were related to mathematics achievement but not to reading achievement. This relationship was found to be specific to symbolic numerical comparison. Implications for the role of basic numerical competency and the role of accessing numerical magnitude information from Arabic numerals for the development of mathematical skills and their impairment are discussed.

  4. Numerical simulation of viscous cavitating flow around a ship propeller

    NASA Astrophysics Data System (ADS)

    Zhu, Zhi-Feng; Fang, Shi-Liang; Wang, Xiao-Yan; Meng, Zhao-Wen; Liu, Ping-Xiang; Du, Xuan-Min

    2011-09-01

    In the present study, cavitation and a ship propeller wake are reported by computed fluid dynamics based on viscous multiphase flow theory. Some recent validation results with a hybrid grid based on unsteady Navier-Stokes (N-S) and bubble dynamics equations are presented to predict velocity, pressure and vapor volume fraction in propeller wake in a uniform inflow. Numerical predictions of sheet cavitation, tip vortex cavitation and hub vortex cavitation are in agreement with the experimental data, same as numerical predictions of longitudinal and transversal evolution of the axial velocity. Blade and shaft rate frequency of propeller is well predicted by the computed results of pressure, and tip vortex is the most important to generate the pressure field within the near wake. The overall results indicate that the present approach is reliable for prediction of cavitation and propeller wake on the condition of uniform inflow.

  5. Direct numerical simulation of a combusting droplet with convection

    NASA Technical Reports Server (NTRS)

    Liang, Pak-Yan

    1992-01-01

    The evaporation and combustion of a single droplet under forced and natural convection was studied numerically from first principles using a numerical scheme that solves the time-dependent multiphase and multispecies Navier-Stokes equations and tracks the sharp gas-liquid interface cutting across an arbitrary Eulerian grid. The flow fields both inside and outside of the droplet are resolved in a unified fashion. Additional governing equations model the interphase mass, energy, and momentum exchange. Test cases involving iso-octane, n-hexane, and n-propanol droplets show reasonable comparison rate, and flame stand-off distance. The partially validated code is, thus, readied to be applied to more demanding droplet combustion situations where substantial drop deformation render classical models inadequate.

  6. An analytical theory of planetary rotation rates

    NASA Technical Reports Server (NTRS)

    Harris, A. W.

    1977-01-01

    An approximate analytical theory is derived for the rate of rotation acquired by a planet as it grows from the solar nebula. This theory was motivated by a numerical study by Giuli, and yields fair agreement with his results. The periods of planetary rotation obtained are proportional to planetesimal encounter velocity, and appear to suggest lower values of this velocity than are commonly assumed to have existed during planetary formation.

  7. VERSE-Guided Numerical RF Pulse Design: A Fast Method for Peak RF Power Control

    PubMed Central

    Lee, Daeho; Grissom, William A.; Lustig, Michael; Kerr, Adam B.; Stang, Pascal P.; Pauly, John M.

    2013-01-01

    In parallel excitation, the computational speed of numerical radiofrequency (RF) pulse design methods is critical when subject dependencies and system nonidealities need to be incorporated on-the-fly. One important concern with optimization-based methods is high peak RF power exceeding hardware or safety limits. Hence, online controllability of the peak RF power is essential. Variable-rate selective excitation pulse reshaping is ideally suited to this problem due to its simplicity and low computational cost. In this work, we first improve the fidelity of variable-rate selective excitation implementation for discrete-time waveforms through waveform oversampling such that variable-rate selective excitation can be robustly applied to numerically designed RF pulses. Then, a variable-rate selective excitation-guided numerical RF pulse design is suggested as an online RF pulse design framework, aiming to simultaneously control peak RF power and compensate for off-resonance. PMID:22135085

  8. An Introduction to Numerical Control. Problems for Numerical Control Part Programming.

    ERIC Educational Resources Information Center

    Campbell, Clifton P.

    This combination text and workbook is intended to introduce industrial arts students to numerical control part programming. Discussed in the first section are the impact of numerical control, training efforts, numerical control in established programs, related information for drafting, and the Cartesian Coordinate System and dimensioning…

  9. Numeral-Incorporating Roots in Numeral Systems: A Comparative Analysis of Two Sign Languages

    ERIC Educational Resources Information Center

    Fuentes, Mariana; Massone, Maria Ignacia; Fernandez-Viader, Maria del Pilar; Makotrinsky, Alejandro; Pulgarin, Francisca

    2010-01-01

    Numeral-incorporating roots in the numeral systems of Argentine Sign Language (LSA) and Catalan Sign Language (LSC), as well as the main features of the number systems of both languages, are described and compared. Informants discussed the use of numerals and roots in both languages (in most cases in natural contexts). Ten informants took part in…

  10. Numerical studies of fast ion slowing down rates in cool magnetized plasma using LSP

    NASA Astrophysics Data System (ADS)

    Evans, Eugene S.; Kolmes, Elijah; Cohen, Samuel A.; Rognlien, Tom; Cohen, Bruce; Meier, Eric; Welch, Dale R.

    2016-10-01

    In MFE devices, rapid transport of fusion products from the core into the scrape-off layer (SOL) could perform the dual roles of energy and ash removal. The first-orbit trajectories of most fusion products from small field-reversed configuration (FRC) devices will traverse the SOL, allowing those particles to deposit their energy in the SOL and be exhausted along the open field lines. Thus, the fast ion slowing-down time should affect the energy balance of an FRC reactor and its neutron emissions. However, the dynamics of fast ion energy loss processes under the conditions expected in the FRC SOL (with ρe <λDe) are analytically complex, and not yet fully understood. We use LSP, a 3D electromagnetic PIC code, to examine the effects of SOL density and background B-field on the slowing-down time of fast ions in a cool plasma. As we use explicit algorithms, these simulations must spatially resolve both ρe and λDe, as well as temporally resolve both Ωe and ωpe, increasing computation time. Scaling studies of the fast ion charge (Z) and background plasma density are in good agreement with unmagnetized slowing down theory. Notably, Z-scaling represents a viable way to dramatically reduce the required CPU time for each simulation. This work was supported, in part, by DOE Contract Number DE-AC02-09CH11466.

  11. Numerical evaluation of a sensible heat balance method to determine rates of soil freezing and thawing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In-situ determination of ice formation and thawing in soils is difficult despite its importance for many environmental processes. A sensible heat balance (SHB) method using a sequence of heat pulse probes has been shown to accurately measure water evaporation in subsurface soil, and it has the poten...

  12. Numerical simulation of leakage rates of labyrinth seal in reciprocating compressor

    NASA Astrophysics Data System (ADS)

    Tang, H. N.; Yao, H.; Wang, S. J.; Meng, X. S.; Qiao, H. T.; Qiao, J. H.

    2017-01-01

    The influence of labyrinth seal structure on leakage behaviour in a reciprocating compressor was addressed in this paper. The effects of the main labyrinth seal parameters, such as tooth angle, sealing clearance, and cavity depth, were compared using FLUENT software and iterative calculation results. Simulations of the sealing process with the influence of internal structure size of labyrinth seal performance in different structures were conducted to explore the characteristics of fluid flow. By comparing the simulations of leakage of fluid- structure interaction and experience formula calculations, the results revealed the validity of the fluid-structure interaction analysis method. The CFD analysis method for fluid-structure coupling was adopted to verify the theory of labyrinth seals and for the design of a labyrinth structure.

  13. Fine Root Mortality Rates in a Temperate Forest: Estimates using Radiocarbon Data and Numerical Modeling

    SciTech Connect

    Riley, William J.; Gaudinski, Julia B.; Torn, Margaret S.; JoslinJr., John D.; Hanson, Paul J

    2009-01-01

    Carbon (C) fluxes through roots are the most uncertain of all C exchanges between the atmosphere, plants, and soil. Yet the three dominant methods to characterize root C fluxes (minirhizotron, sequential coring, and isotopes) yield significantly different estimates of temperate forest root mortality turnover times. We contend that these discrepancies result from limitations in interpreting these very distinct types of observations. In this study we used a whole-ecosystem 14C label to develop, parameterize, and test a model (Radix1.0) of fine-root mortality and decomposition. Radix simulates two live roots pools (one with structural and non-structural C components), two dead root pools, non-normally distributed root mortality turnover times, a stored C pool, seasonal growth and respiration patterns, a best-fit to measurements approach to estimate model parameters, and Monte Carlo uncertainty analysis. We applied Radix at a temperate forest in Oak Ridge Tennessee using 14C measurements from two root size classes (<0.5 mm and 0.5−2.0 mm) and three soil depth increments (O horizon, 0−15, and 30−60 cm). Predicted root lifetimes were 0.1-0.9 y and 11-14 y for fast and slow live root pools respectively, and 0.1-4 y and 11-14 y for fast and slow dead root pool decomposition turnover times, respectively. We estimated that C fluxes through fine roots <2 mm diameter are ~40, 220, and 90 g C m-2 y 1 in the O horizon, 0−15 cm, and 30−60 cm depth intervals, respectively. We conclude that accurate characterization of C flows through fine roots required a model with two live fine-root pools, two dead fine-root pools, and root respiration. Further, root turnover times on the order of a decade imply different response times in biomass and growth than are currently predicted by models with a single annual turnover pool.

  14. Fine-root mortality rates in a temperate forest: Estimates using radiocarbon data and numerical modeling

    SciTech Connect

    Riley, W.J.; Gaudinski, J.B.; Torn, M.S.; Joslin, J.D.; Hanson, P.J.

    2009-09-01

    We used an inadvertent whole-ecosystem {sup 14}C label at a temperate forest in Oak Ridge, Tennessee, USA to develop a model (Radix1.0) of fine-root dynamics. Radix simulates two live-root pools, two dead-root pools, non-normally distributed root mortality turnover times, a stored carbon (C) pool, and seasonal growth and respiration patterns. We applied Radix to analyze measurements from two root size classes (< 0.5 and 0.5-2.0 mm diameter) and three soil-depth increments (O horizon, 0-15 cm and 30-60 cm). Predicted live-root turnover times were < 1 yr and 10 yr for short- and long-lived pools, respectively. Dead-root pools had decomposition turnover times of 2 yr and 10 yr. Realistic characterization of C flows through fine roots requires a model with two live fine-root populations, two dead fine-root pools, and root respiration. These are the first fine-root turnover time estimates that take into account respiration, storage, seasonal growth patterns, and non-normal turnover time distributions. The presence of a root population with decadal turnover times implies a lower amount of belowground net primary production used to grow fine-root tissue than is currently predicted by models with a single annual turnover pool.

  15. Numerical simulation and modeling of combustion in scramjets

    NASA Astrophysics Data System (ADS)

    Clark, Ryan James

    In the last fifteen years the development of a viable scramjet has quickly approached the following long term goals: responsive sub-orbital space access; long-range, prompt global strike; and high-speed transportation. Nonetheless, there are significant challenges that need to be resolved. These challenges include high skin friction drag and high heat transfer rates, inherent to vehicles in sustained, hypersonic flight. Another challenge is sustaining combustion. Numerical simulation and modeling was performed to provide insight into reducing skin friction drag and sustaining combustion. Numerical simulation was used to investigate boundary layer combustion, which has been shown to reduce skin friction drag. The objective of the numerical simulations was to quantify the effect of fuel injection parameters on boundary layer combustion and ultimately on the change in the skin friction coefficient and heat transfer rate. A qualitative analysis of the results suggest that the reduction in the skin friction coefficient depends on multiple parameters and potentially an interaction between parameters. Sustained combustion can be achieved through a stabilized detonation wave. Additionally, stabilizing a detonation wave will yield rapid combustion. This will allow for a shorter and lighter-weight engine system, resulting in less required combustor cooling. A stabilized detonation wave was numerically modeled for various inlet and geometric cases. The effect of fuel concentration, inlet Mach number, and geometric configuration on the stability of a detonation wave was quantified. Correlations were established between fuel concentration, inlet speed, geometric configuration and parameters characterizing the detonation wave. A linear relationship was quantified between the fuel concentration and the parameters characterizing the detonation wave.

  16. Did Unilateral Divorce Laws Raise Divorce Rates in Western Europe?

    ERIC Educational Resources Information Center

    Kneip, Thorsten; Bauer, Gerrit

    2009-01-01

    The increase in European divorce rates over the past decades was accompanied by several changes in divorce laws. Yet for European countries, research on the effects of divorce law on the divorce rate is scarce. Most of the existing studies are based on data from North America and provide numerous, but inconsistent, results. We use fixed-effects…

  17. Confidence bands for measured economically optimal nitrogen rates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While numerous researchers have computed economically optimal N rate (EONR) values from measured yield – N rate data, nearly all have neglected to compute or estimate the statistical reliability of these EONR values. In this study, a simple method for computing EONR and its confidence bands is descr...

  18. Numerical Modeling of the Stability of Face-Centered Cubic Metals with High Vacancy Concentration

    SciTech Connect

    Brian P. Somerday; M. I. Baskes

    1998-12-01

    The objective of this research is to assess the possibility of forming an atomically porous structure in a low-density metal, e.g., Al with vacancies up to 0.20/lattice site; and to examine the effects of hydrogen and vacancy concentration on the stability of an atomically porous structure that has been experimentally produced in nickel. The approach involves numerical modeling using the Embedded-Atom Method (EAM). High vacancy concentrations cause the Al lattice to disorder at 300K. In contrast, Ni retains the face-centered-cubic structure at 300K for vacancy concentrations up to 0.15 Vac/lattice site. Unexpectedly, the lattice with 0.15 Vac/lattice site is more stable than the lattice with 0.10 or 0.20 Vac/lattice site. The Ni systems with 0.10 and 0.15 Vac/lattice site exhibit domains consisting of uniform lattice rotations. The Ni lattice with 0.15 Vac/lattice site is more stable with an initial distribution of random vacancies compared to ordered vacancies. The equilibrium lattice structures of Ni a d Al containing vacancies and H are less ordered to structures with vacancies only at 300K.

  19. Numerical Continuation of Hamiltonian Relative Periodic Orbits

    NASA Astrophysics Data System (ADS)

    Wulff, Claudia; Schebesch, Andreas

    2008-08-01

    The bifurcation theory and numerics of periodic orbits of general dynamical systems is well developed, and in recent years, there has been rapid progress in the development of a bifurcation theory for dynamical systems with structure, such as symmetry or symplecticity. But as yet, there are few results on the numerical computation of those bifurcations. The methods we present in this paper are a first step toward a systematic numerical analysis of generic bifurcations of Hamiltonian symmetric periodic orbits and relative periodic orbits (RPOs). First, we show how to numerically exploit spatio-temporal symmetries of Hamiltonian periodic orbits. Then we describe a general method for the numerical computation of RPOs persisting from periodic orbits in a symmetry breaking bifurcation. Finally, we present an algorithm for the numerical continuation of non-degenerate Hamiltonian relative periodic orbits with regular drift-momentum pair. Our path following algorithm is based on a multiple shooting algorithm for the numerical computation of periodic orbits via an adaptive Poincaré section and a tangential continuation method with implicit reparametrization. We apply our methods to continue the famous figure eight choreography of the three-body system. We find a relative period doubling bifurcation of the planar rotating eight family and compute the rotating choreographies bifurcating from it.

  20. Reliability of Complex Nonlinear Numerical Simulations

    NASA Technical Reports Server (NTRS)

    Yee, H. C.

    2004-01-01

    This work describes some of the procedure to ensure a higher level of confidence in the predictability and reliability (PAR) of numerical simulation of multiscale complex nonlinear problems. The focus is on relating PAR of numerical simulations with complex nonlinear phenomena of numerics. To isolate sources of numerical uncertainties, the possible discrepancy between the chosen partial differential equation (PDE) model and the real physics and/or experimental data is set aside. The discussion is restricted to how well numerical schemes can mimic the solution behavior of the underlying PDE model for finite time steps and grid spacings. The situation is complicated by the fact that the available theory for the understanding of nonlinear behavior of numerics is not at a stage to fully analyze the nonlinear Euler and Navier-Stokes equations. The discussion is based on the knowledge gained for nonlinear model problems with known analytical solutions to identify and explain the possible sources and remedies of numerical uncertainties in practical computations. Examples relevant to turbulent flow computations are included.

  1. Solutions of two-factor models with variable interest rates

    NASA Astrophysics Data System (ADS)

    Li, Jinglu; Clemons, C. B.; Young, G. W.; Zhu, J.

    2008-12-01

    The focus of this work is on numerical solutions to two-factor option pricing partial differential equations with variable interest rates. Two interest rate models, the Vasicek model and the Cox-Ingersoll-Ross model (CIR), are considered. Emphasis is placed on the definition and implementation of boundary conditions for different portfolio models, and on appropriate truncation of the computational domain. An exact solution to the Vasicek model and an exact solution for the price of bonds convertible to stock at expiration under a stochastic interest rate are derived. The exact solutions are used to evaluate the accuracy of the numerical simulation schemes. For the numerical simulations the pricing solution is analyzed as the market completeness decreases from the ideal complete level to one with higher volatility of the interest rate and a slower mean-reverting environment. Simulations indicate that the CIR model yields more reasonable results than the Vasicek model in a less complete market.

  2. Rates and progenitors of type Ia supernovae

    SciTech Connect

    Wood-Vasey, William Michael

    2004-01-01

    analyzing the true sensitivity of a multi-epoch supernova search and finds a Type Ia supernova rate from z ~ 0.01-0.1 of rV = 4.26$+1.39 +0.10\\atop{-1.93 -0.10}$h3 x 10-4 SNe Ia/yr/Mpc3 from a preliminary analysis of a subsample of the SNfactory prototype search. Several unusual supernovae were found in the course of the SNfactory prototype search. One in particular, SN 2002ic, was the first SN Ia to exhibit convincing evidence for a circumstellar medium and offers valuable insight into the progenitors of Type Ia supernovae.

  3. Numerical recipes, The art of scientific computing

    SciTech Connect

    Press, W.H.; Flannery, B.P.; Teukolsky, S.; Vetterling, W.T.

    1986-01-01

    Seventeen chapter are divided into 130 sections provide a self-contained treatment that derives, critically discusses, and actually implements over 200 of the most important numerical algorithms for scientific work. Each algorithm is presented both in FORTRAN and Pascal, with the source programs printed in the book itself. The scope of Numerical Recipes ranges from standard areas of numerical analysis (linear algebra, differential equations, roots) through subjects useful to signal processing (Fourier methods, filtering), data analysis (least squares, robust fitting, statistical functions), simulation (random deviates and Monte Carlo). The routines themselves are available for a wide variety of different computers, from personal computers to mainframes, and are largely portable among different machines.

  4. Direct Numerical Simulations of Plunging Airfoils

    DTIC Science & Technology

    2010-01-07

    Schmidt and E Turkel, Numerical Solutions of the Euler Equations by Finite Volume Methods Using Runge-Kutta Time-Stepping Schemes, AIAA paper 81-1259...Ω ( p ∂vj ∂xj − σij ∂v i ∂xj ) dV (4) Definition 1 A numerical scheme to solve the viscous Navier-Stokes equations is said to be Kinetic Energy...Direct Numerical Simulations of Plunging Airfoils Yves Allaneau∗ and Antony Jameson† Stanford University, Stanford, California, 94305, USA This paper

  5. Structure of turbulence at high shear rate

    NASA Technical Reports Server (NTRS)

    Lee, Moon Joo; Kim, John; Moin, Parviz

    1990-01-01

    The structure of homogeneous turbulence subject to high shear rate has been investigated by using three-dimensional, time-dependent numerical simulations of the Navier-Stokes equations. This study indicates that high shear rate alone is sufficient for generation of the streaky structures, and that the presence of a solid boundary is not necessary. Evolution of the statistical correlations is examined to determine the effect of high shear rate on the development of anisotropy in turbulence. It is shown that the streamwise fluctuating motions are enhanced so profoundly that a highly anisotropic turbulence state with a 'one-component' velocity field and 'two-component' vorticity field develops asymptotically as total shear increases. Because of high-shear rate, rapid distortion theory predicts remarkably well the anisotropic behavior of the structural quantities.

  6. Numerical simulations of the blood flow through vertebral arteries.

    PubMed

    Jozwik, Krzysztof; Obidowski, Damian

    2010-01-19

    Vertebral arteries are two arteries whose structure and location in human body result in development of special flow conditions. For some of the arteries, one can observe a significant difference between flow rates in the left and the right arteries during ultrasonography diagnosis. Usually the reason of such a difference was connected with pathology of the artery in which a smaller flow rate was detected. Simulations of the flow through the selected type of the vertebral artery geometry for twenty five cases of artery diameters have been carried out. The main aim of the presented experiment was to visualize the flow in the region of vertebral arteries junction in the origin of the basilar artery. It is extremely difficult to examine this part of human circulation system, thus numerical experiments may be helpful in understanding the phenomena occurring when two relatively large arteries join together to form one vessel. The obtained results have shown that an individual configuration and diameters of particular arteries can exert an influence on the flow in them and affect a significant difference between flow rates for vertebral arteries. It has been assumed in the investigations that modelled arteries were absolutely normal, without any pathology. In the numerical experiment, the non-Newtonian model of blood was employed.

  7. Multiphase, multicomponent numerical model of bioventing with nonequilibrium mass exchange

    SciTech Connect

    Lang, J.R.; Rathfelder, K.M.; Abriola, L.M.

    1995-12-31

    A numerical model is presented that has been specifically designed to simulate the combined processes of soil vapor extraction and enhanced bioremediation known as bioventing. In this model, equations describing multiphase flow, multicomponent advective diffusive transport, and biodegradation are coupled. An entrapped organic residual, mobile gas and aqueous phases, and a reactive biophase are modeled. Components include n organic contaminants, oxygen, nitrogen, and water. Rate-limited mass exchange between the phases is simulated using linear driving force expressions. These expressions model volatilization and dissolution of the entrapped organic residual, rate-limited transport between the gas and aqueous phases, and rate-limited transport to the biophase. Monod-type kinetic expressions are employed to describe biophase utilization of substrates, the electron acceptor, and a limiting nutrient, as well as the growth of the microbial population. The coupled nonlinear governing equations are solved using a set iterative finite element method. Numerical simulations are presented for one-dimensional bench-scale column studies. These simulations illustrate the potential importance of biological degradation in the remediation of systems that are subject to mass transfer limitations.

  8. Observed Barium Emission Rates

    NASA Technical Reports Server (NTRS)

    Stenbaek-Nielsen, H. C.; Wescott, E. M.; Hallinan, T. J.

    1993-01-01

    The barium releases from the CRRES satellite have provided an opportunity for verifying theoretically calculated barium ion and neutral emission rates. Spectra of the five Caribbean releases in the summer of 1991 were taken with a spectrograph on board a U.S. Air Force jet aircraft. Because the line of sight release densities are not known, only relative rates could be obtained. The observed relative rates agree well with the theoretically calculated rates and, together with other observations, confirm the earlier detailed theoretical emission rates. The calculated emission rates can thus with good accuracy be used with photometric observations. It has been postulated that charge exchange between neutral barium and oxygen ions represents a significant source for ionization. If so. it should be associated with emissions at 4957.15 A and 5013.00 A, but these emissions were not detected.

  9. Numerical Studies of High-Z Plasma in the HyperV Plasma Guns

    NASA Astrophysics Data System (ADS)

    Wu, Linchun; Messer, Sarah; Witherspoon, F. Douglas; Welch, Dale; Thoma, Carsten; Phillips, Mike; Bogatu, I. Nick; Galkin, Sergei; Macfarlane, Joe; Golovkin, Igor

    2010-11-01

    Numerical studies of railguns and coaxial guns at HyperV Technologies Corp. include simulations of hypervelocity plasma transport in the gun, plasma expansion out of the nozzle, and two or more jets merging in vacuum. Plasma detachment, merging jets temperature and charge state evolution are examined in these processes. High-Z materials, such as argon and xenon, are used throughout these simulations. The plasma moves with an initial velocity of 0-10 km/s (80-100 km/s for jet merging), the initial number density ranges from 10^15cm-3 to 10^18cm-3, and the merging jets are several centimeters in radius. The LSP code is used to perform the simulations using improved fluid algorithms and equation-of-state models from Voss and atomic data from Prism.

  10. Numerical Simulation of Two-Phase Critical Flow with the Phase Change in the Nozzle Tube

    NASA Astrophysics Data System (ADS)

    Ishigaki, Masahiro; Watanabe, Tadashi; Nakamura, Hideo

    Two-phase critical flow in the nozzle tube is analyzed numerically by the best estimate code TRACE and the CFD code FLUENT, and the performance of the mass flow rate estimation by the numerical codes is discussed. For the best estimate analysis by the TRACE code, the critical flow option is turned on. The mixture model is used with the cavitation model and the evaporation-condensation model for the numerical simulation by the FLUENT code. Two test cases of the two-phase critical flow are analyzed. One case is the critical flashing flow in a convergent-divergent nozzle (Super Moby Dick experiment), and the other case is the break nozzle flow for a steam generator tube rupture experiment of pressurized water reactors at Large Scale Test Facility of Japan Atomic Energy Agency. The calculation results of the mass flow rates by the numerical simulations show good agreements with the experimental results.

  11. Velocity and shear rate estimates of some non-Newtonian oscillatory flows in tubes

    NASA Astrophysics Data System (ADS)

    Kutev, N.; Tabakova, S.; Radev, S.

    2016-10-01

    The two-dimensional Newtonian and non-Newtonian (Carreau viscosity model used) oscillatory flows in straight tubes are studied theoretically and numerically. The corresponding analytical solution of the Newtonian flow and the numerical solution of the Carreau viscosity model flow show differences in velocity and shear rate. Some estimates for the velocity and shear rate differences are theoretically proved. As numerical examples the blood flow in different type of arteries and the polymer flow in pipes are considered.

  12. Writing arabic numerals in an agraphic patient.

    PubMed

    Delazer, M; Denes, G

    1998-09-01

    We report on the writing of Arabic numerals in a patient whose alphabetical script was restricted to graphemic jargon (Schonauer & Denes, 1994). The analysis of writing errors in Arabic script over three testing sessions (4, 10, and 13 months after stroke) confirmed the separate processing of syntactic and lexical information in number production proposed by current models. The changing error pattern over time reflected some difficulties observed in developmental studies on the acquisition of Arabic numeral writing. Errors were mostly of the syntactic type and (at a certain stage) were based on the verbal form of the numerals. As reported in neuropsychological (Noel & Seron, 1995) and developmental (Power & Dal Martello, 1990; Seron & Fayol, 1994) studies, sum relations were more difficult to transcode than product relations within complex numerals.

  13. Resolution requirements for numerical simulations of transition

    NASA Technical Reports Server (NTRS)

    Zang, Thomas A.; Krist, Steven E.; Hussaini, M. Yousuff

    1989-01-01

    The resolution requirements for direct numerical simulations of transition to turbulence are investigated. A reliable resolution criterion is determined from the results of several detailed simulations of channel and boundary-layer transition.

  14. Numerical solution of a tunneling equation

    SciTech Connect

    Wang, C.Y.; Carter, M.D.; Batchelor, D.B.; Jaeger, E.F.

    1994-04-01

    A numerical method is presented to solve mode conversion equations resulting from the use of radio frequency (rf) waves to heat plasmas. The solutions of the mode conversion equations contain exponentially growing modes, and ordinary numerical techniques give large errors. To avoid the unphysical growing modes, a set of boundary conditions are found, that eliminate the unphysical modes. The mode conversion equations are then solved with the boundary conditions as a standard two-point boundary value problem. A tunneling equation (one of the mode conversion equations without power absorption) is solved as a specific example of this numerical technique although the technique itself is very general and can be easily applied to solve any mode conversion equation. The results from the numerical calculation agree very well with those found from asymptotic analysis.

  15. Numerical Control--An Industry View

    ERIC Educational Resources Information Center

    Miller, Edward E.

    1975-01-01

    The author discusses rapid changes in the fields of numerical control (N/C) and computer-aided manufacturing (CAM) and offers suggestions for vocational educators in meeting the need for trained workers and technically educated professionals and managers. (EA)

  16. Development of Pelton turbine using numerical simulation

    NASA Astrophysics Data System (ADS)

    Patel, K.; Patel, B.; Yadav, M.; Foggia, T.

    2010-08-01

    This paper describes recent research and development activities in the field of Pelton turbine design. Flow inside Pelton turbine is most complex due to multiphase (mixture of air and water) and free surface in nature. Numerical calculation is useful to understand flow physics as well as effect of geometry on flow. The optimized design is obtained using in-house special optimization loop. Either single phase or two phase unsteady numerical calculation could be performed. Numerical results are used to visualize the flow pattern in the water passage and to predict performance of Pelton turbine at full load as well as at part load. Model tests are conducted to determine performance of turbine and it shows good agreement with numerically predicted performance.

  17. Numerical noise in ocean and estuarine models

    USGS Publications Warehouse

    Walters, R.; Carey, G.F.

    1984-01-01

    Approximate methods for solving the shallow water equations may lead to solutions exhibiting large fictitious, numerically-induced oscillations. The analysis of the discrete dispersion relation and modal solutions of small wavelengths provides a powerful technique for assessing the sensitivity of alternative numerical schemes to irregular data which may lead to such oscillatory numerical noise. For those schemes where phase speed vanishes at a finite wavenumber or there are multiple roots for wavenumber, oscillation modes can exist which are uncoupled from the dynamics of the problem. The discrete modal analysis approach is used here to identify two classes of spurious oscillation modes associated respectively with the two different asymptotic limits corresponding to estuarine and large scale ocean models. The analysis provides further insight into recent numerical results for models which include large spatial scales and Coriolis acceleration. ?? 1984.

  18. Numerical Stimulation of Multicomponent Chromatography Using Spreadsheets.

    ERIC Educational Resources Information Center

    Frey, Douglas D.

    1990-01-01

    Illustrated is the use of spreadsheet programs for implementing finite difference numerical simulations of chromatography as an instructional tool in a separations course. Discussed are differential equations, discretization and integration, spreadsheet development, computer requirements, and typical simulation results. (CW)

  19. Symbolic-numeric interface: A review

    NASA Technical Reports Server (NTRS)

    Ng, E. W.

    1980-01-01

    A survey of the use of a combination of symbolic and numerical calculations is presented. Symbolic calculations primarily refer to the computer processing of procedures from classical algebra, analysis, and calculus. Numerical calculations refer to both numerical mathematics research and scientific computation. This survey is intended to point out a large number of problem areas where a cooperation of symbolic and numerical methods is likely to bear many fruits. These areas include such classical operations as differentiation and integration, such diverse activities as function approximations and qualitative analysis, and such contemporary topics as finite element calculations and computation complexity. It is contended that other less obvious topics such as the fast Fourier transform, linear algebra, nonlinear analysis and error analysis would also benefit from a synergistic approach.

  20. Numerical models for high beta magnetohydrodynamic flow

    SciTech Connect

    Brackbill, J.U.

    1987-01-01

    The fundamentals of numerical magnetohydrodynamics for highly conducting, high-beta plasmas are outlined. The discussions emphasize the physical properties of the flow, and how elementary concepts in numerical analysis can be applied to the construction of finite difference approximations that capture these features. The linear and nonlinear stability of explicit and implicit differencing in time is examined, the origin and effect of numerical diffusion in the calculation of convective transport is described, and a technique for maintaining solenoidality in the magnetic field is developed. Many of the points are illustrated by numerical examples. The techniques described are applicable to the time-dependent, high-beta flows normally encountered in magnetically confined plasmas, plasma switches, and space and astrophysical plasmas. 40 refs.

  1. Value-Engineering Review for Numerical Control

    NASA Technical Reports Server (NTRS)

    Warner, J. L.

    1984-01-01

    Selecting parts for conversion from conventional machining to numerical control, value-engineering review performed for every part to identify potential changes to part design that result in increased production efficiency.

  2. NPP ATMS Snowfall Rate Product

    NASA Technical Reports Server (NTRS)

    Meng, Huan; Ferraro, Ralph; Kongoli, Cezar; Wang, Nai-Yu; Dong, Jun; Zavodsky, Bradley; Yan, Banghua

    2015-01-01

    Passive microwave measurements at certain high frequencies are sensitive to the scattering effect of snow particles and can be utilized to retrieve snowfall properties. Some of the microwave sensors with snowfall sensitive channels are Advanced Microwave Sounding Unit (AMSU), Microwave Humidity Sounder (MHS) and Advance Technology Microwave Sounder (ATMS). ATMS is the follow-on sensor to AMSU and MHS. Currently, an AMSU and MHS based land snowfall rate (SFR) product is running operationally at NOAA/NESDIS. Based on the AMSU/MHS SFR, an ATMS SFR algorithm has been developed recently. The algorithm performs retrieval in three steps: snowfall detection, retrieval of cloud properties, and estimation of snow particle terminal velocity and snowfall rate. The snowfall detection component utilizes principal component analysis and a logistic regression model. The model employs a combination of temperature and water vapor sounding channels to detect the scattering signal from falling snow and derive the probability of snowfall (Kongoli et al., 2015). In addition, a set of NWP model based filters is also employed to improve the accuracy of snowfall detection. Cloud properties are retrieved using an inversion method with an iteration algorithm and a two-stream radiative transfer model (Yan et al., 2008). A method developed by Heymsfield and Westbrook (2010) is adopted to calculate snow particle terminal velocity. Finally, snowfall rate is computed by numerically solving a complex integral. NCEP CMORPH analysis has shown that integration of ATMS SFR has improved the performance of CMORPH-Snow. The ATMS SFR product is also being assessed at several NWS Weather Forecast Offices for its usefulness in weather forecast.

  3. Numerical solutions of the three-dimensional magnetohydrodynamic alpha model.

    PubMed

    Mininni, Pablo D; Montgomery, David C; Pouquet, Annick

    2005-04-01

    We present direct numerical simulations and alpha -model simulations of four familiar three-dimensional magnetohydrodynamic (MHD) turbulence effects: selective decay, dynamic alignment, inverse cascade of magnetic helicity, and the helical dynamo effect. The MHD alpha model is shown to capture the long-wavelength spectra in all these problems, allowing for a significant reduction of computer time and memory at the same kinetic and magnetic Reynolds numbers. In the helical dynamo, not only does the alpha model correctly reproduce the growth rate of magnetic energy during the kinematic regime, it also captures the nonlinear saturation level and the late generation of a large scale magnetic field by the helical turbulence.

  4. Thrombosis modeling in intracranial aneurysms: a lattice Boltzmann numerical algorithm

    NASA Astrophysics Data System (ADS)

    Ouared, R.; Chopard, B.; Stahl, B.; Rüfenacht, D. A.; Yilmaz, H.; Courbebaisse, G.

    2008-07-01

    The lattice Boltzmann numerical method is applied to model blood flow (plasma and platelets) and clotting in intracranial aneurysms at a mesoscopic level. The dynamics of blood clotting (thrombosis) is governed by mechanical variations of shear stress near wall that influence platelets-wall interactions. Thrombosis starts and grows below a shear rate threshold, and stops above it. Within this assumption, it is possible to account qualitatively well for partial, full or no occlusion of the aneurysm, and to explain why spontaneous thrombosis is more likely to occur in giant aneurysms than in small or medium sized aneurysms.

  5. Projected discrete ordinates methods for numerical transport problems

    SciTech Connect

    Larsen, E.W.

    1985-01-01

    A class of Projected Discrete-Ordinates (PDO) methods is described for obtaining iterative solutions of discrete-ordinates problems with convergence rates comparable to those observed using Diffusion Synthetic Acceleration (DSA). The spatially discretized PDO solutions are generally not equal to the DSA solutions, but unlike DSA, which requires great care in the use of spatial discretizations to preserve stability, the PDO solutions remain stable and rapidly convergent with essentially arbitrary spatial discretizations. Numerical results are presented which illustrate the rapid convergence and the accuracy of solutions obtained using PDO methods with commonplace differencing methods.

  6. Numerical study of nanoparticle formation in a free turbulent jet

    NASA Astrophysics Data System (ADS)

    Gilfanov, A. K.; Koch, W.; Zaripov, S. K.; Rybdylova, O. D.

    2016-11-01

    Di-ethyl-hexyl-sebacate (DEHS) aerosol nanoparticle formation in a free turbulent jet as a result of nucleation, condensation and coagulation is studied using fluid flow simulation and the method of moments under the assumption of lognormal particle size distribution. The case of high nucleation rates and the coagulation-controlled growth of particles is considered. The formed aerosol performance is jet is numerically investigated for the various nozzle diameters and two approximations of the saturation pressure dependence on the temperature. It is demonstrated that a higher polydispersity of the aerosol is obtained for smaller nozzle diameters.

  7. Numerical simulation of carbon arc discharge for nanoparticle synthesis

    NASA Astrophysics Data System (ADS)

    Kundrapu, M.; Keidar, M.

    2012-07-01

    Arc discharge with catalyst-filled carbon anode in helium background was used for the synthesis of carbon nanoparticles. In this paper, we present the results of numerical simulation of carbon arc discharges with arc current varying from 10 A to 100 A in a background gas pressure of 68 kPa. Anode sublimation rate and current voltage characteristics are compared with experiments. Distribution of temperature and species density, which is important for the estimation of the growth of nanoparticles, is obtained. The probable location of nanoparticle growth region is identified based on the temperature range for the formation of catalyst clusters.

  8. Simple numerical method for solving the steady Euler equations

    NASA Technical Reports Server (NTRS)

    Von Lavante, E.; Melson, N. Duane

    1987-01-01

    A numerical method for solving the isenthalpic form of the governing equations for compressible inviscid flows is developed. The method is based on the concept of flux vector splitting in its implicit form and is tested on several demanding configurations. Time marching to steady state is accelerated by the implementation of the multigrid procedure which very effectively increases the rate of convergence. Steady-state results are obtained for various test cases. Only short computational times are required due to the relative efficiency of the basic method.

  9. Simple numerical method for predicting steady compressible flows

    NASA Technical Reports Server (NTRS)

    Von Lavante, E.; Melson, N. Duane

    1987-01-01

    The present numerical method for the solution of the isenthalpic form of the governing equations for compressible viscous and inviscid flows has its basis in the concept of flux vector splitting in its implicit form, and has been tested in the cases of several difficult viscous and inviscid configurations. An acceleration of time-marching to steady state is accomplished by implementing a multigrid procedure which effectively increases the convergence rate. The steady state results obtained are largely of good quality, and required only short computational times.

  10. Numerical Investigation of Second-Law Characteristics of Ramjet Throttling

    DTIC Science & Technology

    2012-01-01

    the flight altitude (10 km) the mass flow rate entering both the ramjet designs was fixed at 0.284 kg/s. Figure 2.2 shows the outline of the final...November 2006. [5] Riggins, D., Moorhouse, D., Taylor, T., and Terhune, L., “Methods for the Design of Energy Efficient High-Speed Aerospace Vehicles ...numerical study of a generic axisymmetric ramjet operating at conditions corresponding to flight Mach 3.0 and a standard altitude of 10 km is presented

  11. A numerical and experimental study of confined swirling jets

    NASA Technical Reports Server (NTRS)

    Nikjooy, M.; Mongia, H. C.; Samuelsen, G. S.; Mcdonell, V. G.

    1989-01-01

    A numerical and experimental study of a confined strong swirling flow is presented. Detailed velocity measurements are made using a two-component laser Doppler velocimeter (LDV) technique. Computations are performed using a differential second-moment (DSM) closure. The effect of inlet dissipation rate on calculated mean and turbulence fields is investigated. Various model constants are employed in the pressure-strain model to demonstrate their influences on the predicted results. Finally, comparison of the DSM calculations with the algebraic second-monent (ASM) closure results shows that the DSM is better suited for complex swirling flow analysis.

  12. Simple numerical method for predicting steady compressible flows

    NASA Technical Reports Server (NTRS)

    Vonlavante, Ernst; Nelson, N. Duane

    1986-01-01

    A numerical method for solving the isenthalpic form of the governing equations for compressible viscous and inviscid flows was developed. The method was based on the concept of flux vector splitting in its implicit form. The method was tested on several demanding inviscid and viscous configurations. Two different forms of the implicit operator were investigated. The time marching to steady state was accelerated by the implementation of the multigrid procedure. Its various forms very effectively increased the rate of convergence of the present scheme. High quality steady state results were obtained in most of the test cases; these required only short computational times due to the relative efficiency of the basic method.

  13. Preliminary numerical analysis of improved gas chromatograph model

    NASA Technical Reports Server (NTRS)

    Woodrow, P. T.

    1973-01-01

    A mathematical model for the gas chromatograph was developed which incorporates the heretofore neglected transport mechanisms of intraparticle diffusion and rates of adsorption. Because a closed-form analytical solution to the model does not appear realizable, techniques for the numerical solution of the model equations are being investigated. Criteria were developed for using a finite terminal boundary condition in place of an infinite boundary condition used in analytical solution techniques. The class of weighted residual methods known as orthogonal collocation is presently being investigated and appears promising.

  14. Numerical Study of Orbital Trajectories about Phobos

    DTIC Science & Technology

    1988-12-01

    COF NUMERICAL STUDY OF ORBITAL TRAJECTORIES ABOUT PHOBOS THESIS Robert B. Teets Captain, USAF AFIT/GS0/AA/8 8D- 16 ..................D TIC SELECTEh...ful em t%... . 𔄂 9 ... 3 ...29 ...058_... AFIT/GSO/AA/88D-16 0 NUMERICAL STUDY OF ORBITAL TRAJECTORIES ABOUT PHOBOS THESIS Robert B. Teets Captain...ORBITAL TRAJECTORIES ABOUT PHOBOS THESIS Presented to the Faculty of the School of Engineering of the Air Force Institute of Technology Air University In

  15. Numerical tsunami modeling and the bottom relief

    NASA Astrophysics Data System (ADS)

    Kulikov, E. A.; Gusiakov, V. K.; Ivanova, A. A.; Baranov, B. V.

    2016-11-01

    The effect of the quality of bathymetric data on the accuracy of tsunami-wave field calculation is considered. A review of the history of the numerical tsunami modeling development is presented. Particular emphasis is made on the World Ocean bottom models. It is shown that the modern digital bathymetry maps, for example, GEBCO, do not adequately simulate the sea bottom in numerical models of wave propagation, leading to considerable errors in estimating the maximum tsunami run-ups on the coast.

  16. Numerical Simulations of Thermographic Responses in Composites

    NASA Technical Reports Server (NTRS)

    Winfree, William P.; Cramer, K. Elliot; Zalameda, Joseph N.; Howell, Patricia A.

    2015-01-01

    Numerical simulations of thermographic responses in composite materials have been a useful for evaluating and optimizing thermographic analysis techniques. Numerical solutions are particularly beneficial for thermographic techniques, since the fabrication of specimens with realistic flaws is difficult. Simulations are presented with different ply layups that incorporated the anisotropic thermal properties that exist in each ply. The results are compared to analytical series solutions and thermal measurements on composites with flat bottom holes and delaminations.

  17. Numerical quadratures for approximate computation of ERBS

    NASA Astrophysics Data System (ADS)

    Zanaty, Peter

    2013-12-01

    In the ground-laying paper [3] on expo-rational B-splines (ERBS), the default numerical method for approximate computation of the integral with C∞-smooth integrand in the definition of ERBS is Romberg integration. In the present work, a variety of alternative numerical quadrature methods for computation of ERBS and other integrals with smooth integrands are studied, and their performance is compared on several benchmark examples.

  18. Hardware-Independent Proofs of Numerical Programs

    NASA Technical Reports Server (NTRS)

    Boldo, Sylvie; Nguyen, Thi Minh Tuyen

    2010-01-01

    On recent architectures, a numerical program may give different answers depending on the execution hardware and the compilation. Our goal is to formally prove properties about numerical programs that are true for multiple architectures and compilers. We propose an approach that states the rounding error of each floating-point computation whatever the environment. This approach is implemented in the Frama-C platform for static analysis of C code. Small case studies using this approach are entirely and automatically proved

  19. Numerical Study of a Convective Turbulence Encounter

    NASA Technical Reports Server (NTRS)

    Proctor, Fred H.; Hamilton, David W.; Bowles, Roland L.

    2002-01-01

    A numerical simulation of a convective turbulence event is investigated and compared with observational data. The specific case was encountered during one of NASA's flight tests and was characterized by severe turbulence. The event was associated with overshooting convective turrets that contained low to moderate radar reflectivity. Model comparisons with observations are quite favorable. Turbulence hazard metrics are proposed and applied to the numerical data set. Issues such as adequate grid size are examined.

  20. Reduced-order modelling numerical homogenization.

    PubMed

    Abdulle, A; Bai, Y

    2014-08-06

    A general framework to combine numerical homogenization and reduced-order modelling techniques for partial differential equations (PDEs) with multiple scales is described. Numerical homogenization methods are usually efficient to approximate the effective solution of PDEs with multiple scales. However, classical numerical homogenization techniques require the numerical solution of a large number of so-called microproblems to approximate the effective data at selected grid points of the computational domain. Such computations become particularly expensive for high-dimensional, time-dependent or nonlinear problems. In this paper, we explain how numerical homogenization method can benefit from reduced-order modelling techniques that allow one to identify offline and online computational procedures. The effective data are only computed accurately at a carefully selected number of grid points (offline stage) appropriately 'interpolated' in the online stage resulting in an online cost comparable to that of a single-scale solver. The methodology is presented for a class of PDEs with multiple scales, including elliptic, parabolic, wave and nonlinear problems. Numerical examples, including wave propagation in inhomogeneous media and solute transport in unsaturated porous media, illustrate the proposed method.

  1. Beware Capital Charge Rates

    SciTech Connect

    Stauffer, Hoff

    2006-04-15

    The capital charge rate has a material effect in cost comparisons. Care should be taken to calculate it correctly and use it properly. The most common mistake is to use a nominal, rather than real, capital charge rate. To make matters worse, the common short-cut formula does not work well. (author)

  2. Metabolic rate measurement system

    NASA Technical Reports Server (NTRS)

    Koester, K.; Crosier, W.

    1980-01-01

    The Metabolic Rate Measurement System (MRMS) is an uncomplicated and accurate apparatus for measuring oxygen consumption and carbon dioxide production of a test subject. From this one can determine the subject's metabolic rate for a variety of conditions, such as resting or light exercise. MRMS utilizes an LSI/11-03 microcomputer to monitor and control the experimental apparatus.

  3. Scaling metabolic rate fluctuations

    PubMed Central

    Labra, Fabio A.; Marquet, Pablo A.; Bozinovic, Francisco

    2007-01-01

    Complex ecological and economic systems show fluctuations in macroscopic quantities such as exchange rates, size of companies or populations that follow non-Gaussian tent-shaped probability distributions of growth rates with power-law decay, which suggests that fluctuations in complex systems may be governed by universal mechanisms, independent of particular details and idiosyncrasies. We propose here that metabolic rate within individual organisms may be considered as an example of an emergent property of a complex system and test the hypothesis that the probability distribution of fluctuations in the metabolic rate of individuals has a “universal” form regardless of body size or taxonomic affiliation. We examined data from 71 individuals belonging to 25 vertebrate species (birds, mammals, and lizards). We report three main results. First, for all these individuals and species, the distribution of metabolic rate fluctuations follows a tent-shaped distribution with power-law decay. Second, the standard deviation of metabolic rate fluctuations decays as a power-law function of both average metabolic rate and body mass, with exponents −0.352 and −1/4 respectively. Finally, we find that the distributions of metabolic rate fluctuations for different organisms can all be rescaled to a single parent distribution, supporting the existence of general principles underlying the structure and functioning of individual organisms. PMID:17578913

  4. Applications of Reaction Rate

    ERIC Educational Resources Information Center

    Cunningham, Kevin

    2007-01-01

    This article presents an assignment in which students are to research and report on a chemical reaction whose increased or decreased rate is of practical importance. Specifically, students are asked to represent the reaction they have chosen with an acceptable chemical equation, identify a factor that influences its rate and explain how and why it…

  5. Two Different Methods for Numerical Solution of the Modified Burgers' Equation

    PubMed Central

    Karakoç, Seydi Battal Gazi; Başhan, Ali; Geyikli, Turabi

    2014-01-01

    A numerical solution of the modified Burgers' equation (MBE) is obtained by using quartic B-spline subdomain finite element method (SFEM) over which the nonlinear term is locally linearized and using quartic B-spline differential quadrature (QBDQM) method. The accuracy and efficiency of the methods are discussed by computing L 2 and L ∞ error norms. Comparisons are made with those of some earlier papers. The obtained numerical results show that the methods are effective numerical schemes to solve the MBE. A linear stability analysis, based on the von Neumann scheme, shows the SFEM is unconditionally stable. A rate of convergence analysis is also given for the DQM. PMID:25162064

  6. Two different methods for numerical solution of the modified Burgers' equation.

    PubMed

    Karakoç, Seydi Battal Gazi; Başhan, Ali; Geyikli, Turabi

    2014-01-01

    A numerical solution of the modified Burgers' equation (MBE) is obtained by using quartic B-spline subdomain finite element method (SFEM) over which the nonlinear term is locally linearized and using quartic B-spline differential quadrature (QBDQM) method. The accuracy and efficiency of the methods are discussed by computing L 2 and L ∞ error norms. Comparisons are made with those of some earlier papers. The obtained numerical results show that the methods are effective numerical schemes to solve the MBE. A linear stability analysis, based on the von Neumann scheme, shows the SFEM is unconditionally stable. A rate of convergence analysis is also given for the DQM.

  7. Numerical Speed of Sound and its Application to Schemes for all Speeds

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing; Edwards, Jack R.

    1999-01-01

    The concept of "numerical speed of sound" is proposed in the construction of numerical flux. It is shown that this variable is responsible for the accurate resolution of' discontinuities, such as contacts and shocks. Moreover, this concept can he readily extended to deal with low speed and multiphase flows. As a results, the numerical dissipation for low speed flows is scaled with the local fluid speed, rather than the sound speed. Hence, the accuracy is enhanced the correct solution recovered, and the convergence rate improved. We also emphasize the role of mass flux and analyze the behavior of this flux. Study of mass flux is important because the numerical diffusivity introduced in it can be identified. In addition, it is the term common to all conservation equations. We show calculated results for a wide variety of flows to validate the effectiveness of using the numerical speed of sound concept in constructing the numerical flux. We especially aim at achieving these two goals: (1) improving accuracy and (2) gaining convergence rates for all speed ranges. We find that while the performance at high speed range is maintained, the flux now has the capability of performing well even with the low: speed flows. Thanks to the new numerical speed of sound, the convergence is even enhanced for the flows outside of the low speed range. To realize the usefulness of the proposed method in engineering problems, we have also performed calculations for complex 3D turbulent flows and the results are in excellent agreement with data.

  8. Transient Numerical Modeling of Catalytic Channels

    NASA Technical Reports Server (NTRS)

    Struk, Peter M.; Dietrich, Daniel L.; Miller, Fletcher J.; T'ien, James S.

    2007-01-01

    This paper presents a transient model of catalytic combustion suitable for isolated channels and monolith reactors. The model is a lumped two-phase (gas and solid) model where the gas phase is quasi-steady relative to the transient solid. Axial diffusion is neglected in the gas phase; lateral diffusion, however, is accounted for using transfer coefficients. The solid phase includes axial heat conduction and external heat loss due to convection and radiation. The combustion process utilizes detailed gas and surface reaction models. The gas-phase model becomes a system of stiff ordinary differential equations while the solid phase reduces, after discretization, into a system of stiff ordinary differential-algebraic equations. The time evolution of the system came from alternating integrations of the quasi-steady gas and transient solid. This work outlines the numerical model and presents some sensitivity studies on important parameters including internal transfer coefficients, catalytic surface site density, and external heat-loss (if applicable). The model is compared to two experiments using CO fuel: (1) steady-state conversion through an isothermal platinum (Pt) tube and (2) transient propagation of a catalytic reaction inside a small Pt tube. The model requires internal mass-transfer resistance to match the experiments at lower residence times. Under mass-transport limited conditions, the model reasonably predicted exit conversion using global mass-transfer coefficients. Near light-off, the model results did not match the experiment precisely even after adjustment of mass-transfer coefficients. Agreement improved for the first case after adjusting the surface kinetics such that the net rate of CO adsorption increased compared to O2. The CO / O2 surface mechanism came from a sub-set of reactions in a popular CH4 / O2 mechanism. For the second case, predictions improved for lean conditions with increased external heat loss or adjustment of the kinetics as in the

  9. Benchmark calculations of thermal reaction rates. I - Quantal scattering theory

    NASA Technical Reports Server (NTRS)

    Chatfield, David C.; Truhlar, Donald G.; Schwenke, David W.

    1991-01-01

    The thermal rate coefficient for the prototype reaction H + H2 yields H2 + H with zero total angular momentum is calculated by summing, averaging, and numerically integrating state-to-state reaction probabilities calculated by time-independent quantum-mechanical scattering theory. The results are very carefully converged with respect to all numerical parameters in order to provide high-precision benchmark results for confirming the accuracy of new methods and testing their efficiency.

  10. Numerical studies of diffusive shock acceleration at spherical shocks

    NASA Astrophysics Data System (ADS)

    Kang, Hyesung; Jones, T. W.

    2006-05-01

    We have developed a cosmic ray (CR) shock code in one-dimensional spherical geometry with which the particle distribution, the gas flow and their nonlinear interaction can be followed numerically in a frame comoving with an expanding shock. In order to accommodate a very wide dynamic range of diffusion length scales in the CR shock problem, we have incorporated subzone shock tracking and adaptive mesh refinement techniques. We find the spatial grid resolution required for numerical convergence is less stringent in this code compared to typical, fixed-grid Eulerian codes. The improved convergence behavior derives from maintaining the shock discontinuity inside the same grid zone in the comoving code. That feature improves numerical estimates of the compression rate experienced by CRs crossing the subshock compared to codes that allow the subshock to drift on the grid. Using this code with a Bohm-like diffusion model we have calculated the CR acceleration and the nonlinear feedback at supernova remnant shocks during the Sedov-Taylor stage. Similarly to plane-parallel shocks, with an adopted thermal leakage injection model, about 10 -3 of the particles that pass through the shock and up to 60% of the explosion energy are transferred to the CR component. These results are in good agreement with previous nonlinear spherical CR shock calculations of Berezhko and collaborators.

  11. Numerical solution of High-kappa model of superconductivity

    SciTech Connect

    Karamikhova, R.

    1996-12-31

    We present formulation and finite element approximations of High-kappa model of superconductivity which is valid in the high {kappa}, high magnetic field setting and accounts for applied magnetic field and current. Major part of this work deals with steady-state and dynamic computational experiments which illustrate our theoretical results numerically. In our experiments we use Galerkin discretization in space along with Backward-Euler and Crank-Nicolson schemes in time. We show that for moderate values of {kappa}, steady states of the model system, computed using the High-kappa model, are virtually identical with results computed using the full Ginzburg-Landau (G-L) equations. We illustrate numerically optimal rates of convergence in space and time for the L{sup 2} and H{sup 1} norms of the error in the High-kappa solution. Finally, our numerical approximations demonstrate some well-known experimentally observed properties of high-temperature superconductors, such as appearance of vortices, effects of increasing the applied magnetic field and the sample size, and the effect of applied constant current.

  12. Dynamic Study on Fracture Problems in Viscoelastic Sedimentary Rocks Using the Numerical Manifold Method

    NASA Astrophysics Data System (ADS)

    Wu, Zhijun; Wong, Louis Ngai Yuen; Fan, Lifeng

    2013-11-01

    The viscoelastic deformation behavior of a sedimentary rock under different loading rates is numerically modeled and investigated by the numerical manifold method (NMM). By incorporating a modified 3-element viscoelastic constitutive mode in the NMM, crack initiation and propagation criteria, and crack identification and evolution techniques, the effects of the loading rates on the cracking behavior of a sedimentary rock, such as crack open displacement, crack sliding displacement, crack initiation, crack propagation and final failure mode, are successfully modeled. The numerical results reveal that under a high loading rate (>1,000 MPa/s), due to the viscoelastic property of the sedimentary rock, not only the structural behavior deviates from that of elastic model, but also different cracking processes and final failure modes are obtained.

  13. 20 CFR 30.910 - Will an impairment that cannot be assigned a numerical percentage using the AMA's Guides be...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... AMA's Guides be included in the impairment rating? (a) An impairment of an organ or body function that... dysfunction of the nervous system, and cannot be assigned a numerical percentage using the AMA's Guides, will... documented physical dysfunctions of the nervous system can be assigned numerical percentages using the...

  14. 20 CFR 30.910 - Will an impairment that cannot be assigned a numerical percentage using the AMA's Guides be...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... AMA's Guides be included in the impairment rating? (a) An impairment of an organ or body function that... dysfunction of the nervous system, and cannot be assigned a numerical percentage using the AMA's Guides, will... documented physical dysfunctions of the nervous system can be assigned numerical percentages using the...

  15. 20 CFR 30.910 - Will an impairment that cannot be assigned a numerical percentage using the AMA's Guides be...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... AMA's Guides be included in the impairment rating? (a) An impairment of an organ or body function that... dysfunction of the nervous system, and cannot be assigned a numerical percentage using the AMA's Guides, will... documented physical dysfunctions of the nervous system can be assigned numerical percentages using the...

  16. MODELING THE RATE-CONTROLLED SORPTION OF HEXAVALENT CHROMIUM.

    USGS Publications Warehouse

    Grove, D.B.; Stollenwerk, K.G.

    1985-01-01

    Sorption of chromium VI on the iron-oxide- and hydroxide-coated surface of alluvial material was numerically simulated with rate-controlled reactions. Reaction kinetics and diffusional processes, in the form of film, pore, and particle diffusion, were simulated and compared with experimental results. The use of empirically calculated rate coefficients for diffusion through the reacting surface was found to simulate experimental data; pore or particle diffusion is believed to be a possible rate-controlling mechanism. The use of rate equations to predict conservative transport and rate- and local-equilibrium-controlled reactions was shown to be feasible.

  17. Numerical Investigation of the Formation and Detachment of Droplets from Pores in a Shear Flow Field

    NASA Astrophysics Data System (ADS)

    Feigl, Kathleen; Tanner, Franz X.; Windhab, Erich J.

    2010-09-01

    The formation and detachment behavior of droplets from a pore opening into a simple shear field within a channel gap is investigated using numerical simulations. The mathematical model consists of the governing equations for an incompressible two-phase flow problem with a moving contact line. These equations are numerically solved using the volume-of-fluid method implemented in the open source software OpenFOAM. A parameter study was performed to determine the effect of relevant dimensionless parameters on the formation and detachment behavior of the droplets. These dimensionless parameters involve the pore size, pore flow rate, gap shear rate, interfacial tension, and the viscosity and density of the two fluid phases. For the parameter range considered in this study, different degrees of jetting behavior were observed. Also, the sizes of the detached droplets were seen to decrease as the gap shear rate increased, and increase with the pore flow rate, with the gap shear rate having a larger effect.

  18. National ART Success Rates

    MedlinePlus

    ... 2: ART Cycles using fresh nondonor eggs or embryos What are the steps for an ART cycle ... 37MB] Section 3: ART Cycles using frozen nondonor embryos Did implantation rates differ by a woman’s age? [ ...

  19. The ratings game

    NASA Astrophysics Data System (ADS)

    Braben, Donald W.

    2009-04-01

    How sad to read a supposedly serious debate among distinguished physicists (February p19) about which combinations of the latest Research Assessment Exercise (RAE) ratings represent a university physics department's true strengths.

  20. Rating the Risks.

    ERIC Educational Resources Information Center

    Slovic, Paul; And Others

    1979-01-01

    Explains how people arrive at personal hazard assessments. Explores why people overestimate some hazards and underestimate others. Examines risk ratings for activities and technologies such as nuclear power, motor vehicles, pesticides, and vaccinations. (MA)