Science.gov

Sample records for 0-15 cm soil

  1. Mid-continent fall temperatures at the 10-cm soil depth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recommendations for applying N-fertilizer in autumn involve delaying applications until daily soil temperature at 10 cm depth is = or < 10° C. Daily soil temperature data during autumn were examined from 26 sites along a transect from 36° to 49° N latitude in the mid-continent USA. After soils first...

  2. Numerical simulation of soil brightness temperatures at wavelength of 21 cm

    NASA Technical Reports Server (NTRS)

    Mo, T.; Schmugge, T. J.

    1981-01-01

    A simulation model is applied to reproduce some observed brightness temperatures at a wavelength of 21 cm. The simulated results calculated with two different soil textures are compared directly with observations measured over fields in Arizona and South Dakota. It is found that good agreement is possible by properly adjusting the surface roughness parameter. Correlation analysis and linear regression of the brightness temperatures versus soil moistures are also carried out.

  3. Estimation of CO2 diffusion coefficient at 0-10 cm depth in undisturbed and tilled soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diffusion coefficients (D) of CO2 at 0 – 10 cm layers in undisturbed and tilled soil conditions were estimated using Penman, Millington-Quirk, Ridgwell et al. (1999), Troeh et al., and Moldrup et al. models. Soil bulk density and volumetric soil water content ('v) at 0 – 10 cm were measured on April...

  4. Biocrusts serve as biomarkers for the upper 30 cm soil water content

    NASA Astrophysics Data System (ADS)

    Kidron, Giora J.; Benenson, Itzhak

    2014-02-01

    Knowledge regarding the spatial distribution of moisture in soil is of great importance especially in arid regions where water is scarce. Following a previous research that showed a significant relationship between daylight surface wetness duration and the average chlorophyll content of 5 biocrusts in the Negev Desert (Israel), and the resultant outcome that pointed to the possible use of biocrusts as biomarkers for surface wetness duration, we hypothesize that biocrusts may also serve as biomarkers for the moisture content of the upper soil layer. Toward this end, daylight surface wetness duration was measured at 5 crust types following rain events during 1993-1995 along with periodical soil sampling of the upper 30 cm (at 5 cm intervals) of the soil profiles underlying these biocrusts. The findings showed a positive linear relationship between daylight surface wetness duration and the chlorophyll content of the crusts (r2 = 0.96-0.97). High correlations were also found between daylight surface wetness duration and the available water content (r2 = 0.96) and duration (r2 = 0.85-0.88) of the upper 30 cm soil and between the chlorophyll content of the crust and the available water content (r2 = 0.93-0.96) and duration (r2 = 0.78-0.84). Topography-induced shading and slope position (which determined additional water either by runoff or subsurface flow) are seen responsible for the clear link between subsurface moisture content, daylight surface wetness duration and chlorophyll content of the crust. This link points to the possible use of biocrusts as biomarkers for subsurface water content and highlights the importance of crust typology and mapping for the study of the spatial distribution of water and their potential use for the study of ecosystem structure and function.

  5. A case study demonstration of the soil temperature extrema recovery rates after precipitation cooling at 10-cm soil depth

    NASA Technical Reports Server (NTRS)

    Welker, Jean Edward

    1991-01-01

    Since the invention of maximum and minimum thermometers in the 18th century, diurnal temperature extrema have been taken for air worldwide. At some stations, these extrema temperatures were collected at various soil depths also, and the behavior of these temperatures at a 10-cm depth at the Tifton Experimental Station in Georgia is presented. After a precipitation cooling event, the diurnal temperature maxima drop to a minimum value and then start a recovery to higher values (similar to thermal inertia). This recovery represents a measure of response to heating as a function of soil moisture and soil property. Eight different curves were fitted to a wide variety of data sets for different stations and years, and both power and exponential curves were fitted to a wide variety of data sets for different stations and years. Both power and exponential curve fits were consistently found to be statistically accurate least-square fit representations of the raw data recovery values. The predictive procedures used here were multivariate regression analyses, which are applicable to soils at a variety of depths besides the 10-cm depth presented.

  6. Effects of modified soil water-heat physics on RegCM4 simulations of climate over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Wang, Xuejia; Pang, Guojin; Yang, Meixue; Wan, Guoning

    2016-06-01

    To optimize the description of land surface processes and improve climate simulations over the Tibetan Plateau (TP), a modified soil water-heat parameterization scheme (SWHPS) is implemented into the Community Land Model 3.5 (CLM3.5), which is coupled to the regional climate model 4 (RegCM4). This scheme includes Johansen's soil thermal conductivity scheme together with Niu's groundwater module. Two groups of climate simulations are then performed using the original RegCM4 and revised RegCM4 to analyze the effects of the revised SWHPS on regional climate simulations. The effect of the revised RegCM4 on simulated air temperature is relatively small (with mean biases changing by less than 0.1°C over the TP). There are overall improvements in the simulation of winter and summer air temperature but increased errors in the eastern TP. It has a significant effect on simulated precipitation. There is also a clear improvement in simulated annual and winter precipitation, particularly over the northern TP, including the Qilian Mountains and the source region of the Yellow River. There are, however, increased errors in precipitation simulation in parts of the southern TP. The precipitation difference between the two models is caused mainly by their convective precipitation difference, particularly in summer. Overall, the implementation of the new SWHPS into the RegCM4 has a significant effect not only on land surface variables but also on the overlying atmosphere through various physical interactions.

  7. 47 CFR 0.15 - Functions of the Office.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Functions of the Office. 0.15 Section 0.15 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL COMMISSION ORGANIZATION Organization Office of Media Relations § 0.15 Functions of the Office. (a) Enhance public understanding of and compliance with the Commission's regulatory...

  8. Assessing potential of vertical average soil moisture (0-40cm) estimation for drought monitoring using MODIS data: a case study

    NASA Astrophysics Data System (ADS)

    Ma, Jianwei; Huang, Shifeng; Li, Jiren; Li, Xiaotao; Song, Xiaoning; Leng, Pei; Sun, Yayong

    2015-12-01

    Soil moisture is an important parameter in the research of hydrology, agriculture, and meteorology. The present study is designed to produce a near real time soil moisture estimation algorithm by linking optical/IR measurements to ground measured soil moisture, and then used to monitoring region drought. It has been found that the Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST) are related to surface soil moisture. Therefore, a relationship between ground measurement soil moisture and NDVI and LST can be developed. Six days' NDVI and LST data calculated from Terra Moderate Resolution Imaging Spectroradiometer (MODIS) of Shandong province during October in 2009 to May in 2010 were combined with ground measured volumetric soil moisture in different depth (10cm, 20cm, 40cm, and mean in vertical (0-40cm)) and different soil type to determine regression relationships at a 1 km scale. Based on the regression relationships, mean volumetric soil moisture in vertical (0-40cm) at 1 km resolution can be calculated over the Shandong province, and then drought maps were obtained. The result shows that significantly relationship exists between the NDVI and LST and soil moisture at different soil depths, and regression relationships are soil type dependent. What is more, the drought monitoring results agree well with actual situation.

  9. Comparison of 2.8- and 21-cm microwave radiometer observations over soils with emission model calculations

    NASA Technical Reports Server (NTRS)

    Burke, W. J.; Schmugge, T.; Paris, J. F.

    1979-01-01

    An airborne experiment was conducted under NASA auspices to test the feasibility of detecting soil moisture by microwave remote sensing techniques over agricultural fields near Phoenix, Arizona at midday of April 5, 1974 and at dawn of the following day. Extensive ground data were obtained from 96 bare, sixteen hectare fields. Observations made using a scanning (2.8 cm) and a nonscanning (21 cm) radiometer were compared with the predictions of a radiative transfer emission model. It is shown that (1) the emitted intensity at both wavelengths correlates best with the near surface moisture, (2) surface roughness is found to more strongly affect the degree of polarization than the emitted intensity, (3) the slope of the intensity-moisture curves decreases in going from day to dawn, and (4) increased near surface moisture at dawn is characterized by increased polarization of emissions. The results of the experiment indicate that microwave techniques can be used to observe the history of the near surface moisture. The subsurface history must be inferred from soil physics models which use microwave results as boundary conditions.

  10. 28 CFR 0.15 - Deputy Attorney General.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., or political opinion. (2) Review cases decided by the Board of Immigration Appeals pursuant to 8 CFR... Register citations affecting § 0.15, see the List of CFR Sections Affected, which appears in the Finding... Executive Office of the President. (4) Coordinate and control the Department's reaction to...

  11. 28 CFR 0.15 - Deputy Attorney General.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., or political opinion. (2) Review cases decided by the Board of Immigration Appeals pursuant to 8 CFR... Register citations affecting § 0.15, see the List of CFR Sections Affected, which appears in the Finding... disturbances and terrorism. (5) Perform such other duties and functions as may be assigned from time to time...

  12. 28 CFR 0.15 - Deputy Attorney General.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., or political opinion. (2) Review cases decided by the Board of Immigration Appeals pursuant to 8 CFR... Register citations affecting § 0.15, see the List of CFR Sections Affected, which appears in the Finding... and programs and in providing overall supervision and direction to all organizational units of...

  13. Influence of soil moisture on soil respiration

    NASA Astrophysics Data System (ADS)

    Fer, Miroslav; Kodesova, Radka; Nikodem, Antonin; Klement, Ales; Jelenova, Klara

    2015-04-01

    The aim of this work was to describe an impact of soil moisture on soil respiration. Study was performed on soil samples from morphologically diverse study site in loess region of Southern Moravia, Czech Republic. The original soil type is Haplic Chernozem, which was due to erosion changed into Regosol (steep parts) and Colluvial soil (base slope and the tributary valley). Soil samples were collected from topsoils at 5 points of the selected elevation transect and also from the parent material (loess). Grab soil samples, undisturbed soil samples (small - 100 cm3, and large - 713 cm3) and undisturbed soil blocks were taken. Basic soil properties were determined on grab soil samples. Small undisturbed soil samples were used to determine the soil water retention curves and the hydraulic conductivity functions using the multiple outflow tests in Tempe cells and a numerical inversion with HYDRUS 1-D. During experiments performed in greenhouse dry large undisturbed soil samples were wetted from below using a kaolin tank and cumulative water inflow due to capillary rise was measured. Simultaneously net CO2 exchange rate and net H2O exchange rate were measured using LCi-SD portable photosynthesis system with Soil Respiration Chamber. Numerical inversion of the measured cumulative capillary rise data using the HYDRUS-1D program was applied to modify selected soil hydraulic parameters for particular conditions and to simulate actual soil water distribution within each soil column in selected times. Undisturbed soil blocks were used to prepare thin soil sections to study soil-pore structure. Results for all soil samples showed that at the beginning of soil samples wetting the CO2 emission increased because of improving condition for microbes' activity. The maximum values were reached for soil column average soil water content between 0.10 and 0.15 cm3/cm3. Next CO2 emission decreased since the pore system starts filling by water (i.e. aggravated conditions for microbes

  14. Synthesis and Hydrogen Desorption Properties of Mg1.7Al0.15Ti0.15Ni-CNT Nanocomposite Powder

    NASA Astrophysics Data System (ADS)

    Enayati, M. H.; Karimzadeh, F.; Jafari, M.; Sabooni, S.

    2015-03-01

    In this research, the effects of nanocrystallization and incorporation of aluminum, titanium, and carbon nanotubes (CNTs) on hydrogen desorption behavior of Mg2Ni alloy were investigated. Toward this purpose, nanocrystalline Mg2Ni intermetallic compound with average grain size of 20 nm was prepared by ball milling of elemental magnesium and nickel powders. Mg2Ni powder was then ball milled with aluminum and titanium powders for 20 h to dissolve these elements into the Mg2Ni structure, leading to the formation of Mg1.7Al0.15Ti0.15Ni compound. The elemental x-ray mapping analysis revealed the uniform dissolution of aluminum and titanium inside the Mg2Ni structure. Mg2Ni and Mg1.7Al0.15Ti0.15Ni compounds were further ball milled with 3 wt.% CNT for 5 h. The high-resolution field emission scanning electron microscopy and transmission electron microscopy revealed that CNTs have retained their tubular shape after ball-milling process. The hydrogen desorption properties of the samples were identified using a Sieverts-type apparatus at 473 K. The Mg2Ni, Mg2Ni-CNT, and Mg1.7Ti0.15Al0.15-CNT samples showed the desorbed hydrogen of 0.17, 0.25, and 0.28 wt.% after 1 h, respectively, indicating 47 and 65% increase in the hydrogen desorption capability of Mg2Ni via CNT addition and co-presence of aluminum-titanium-CNT. The direct hydrogen diffusion through CNTs and development of local atomic distortion due to substitution of magnesium atoms by aluminum and titanium appears to be responsible for enhancement of desorption behavior of Mg1.7Al0.15Ti0.15-3 wt.% CNT.

  15. Disorder - driven phase transition in La0.37Bi0.15Sm0.15Ca0.33MnO3

    NASA Astrophysics Data System (ADS)

    Ade, Ramesh; Singh, R.

    2015-06-01

    We report the effect of disorder on the properties of La0.37Bi0.15Sm0.15Ca0.33MnO3 manganite synthesized by sol - gel method. The critical properties were investigated through various techniques such as modified - Arrott plot, Kouvel - Fisher method and critical isotherm analysis. The sample show second- order phase transition near critical point. The decrease in magnetization (M), Curie temperature (TC), evolution of spin or cluster glass behavior and the nature of phase transition compared to first - order transition in La0.67Ca0.33MnO3 are ascribed to the disorder caused by the size mismatch of the A-site cations with Bi and Sm doping at La- site.

  16. Ferroelectric properties of pulsed laser deposited Ba(Zr0.15Ti0.85)O3 thin films

    NASA Astrophysics Data System (ADS)

    James, A. R.; Prakash, Chandra

    2004-02-01

    Thin films of Ba(Zr0.15Ti0.85)O3 were crystallized in situ at several different oxygen background pressures and temperatures. The optimal temperature and pressure for obtaining films with smooth surface morphology and good electrical properties was found to be 675 °C and 300 mTorr, respectively. Films grown at this temperature were found to have a Pr of 3.31 μC/cm2 and an Ec of 93.5 kV/cm. Low field dielectric measurements and C-V measurements were performed in order to study the dielectric behavior of the films. A tunability of ˜45% was recorded on the films.

  17. Growth and dislocation etching of InBi 1-xSe x ( x=0.15) single crystals

    NASA Astrophysics Data System (ADS)

    Shah, Dimple; Pandya, G. R.; Vyas, S. M.

    2009-01-01

    Single crystals of InBi 0.85 Se .15 ( x=0.15) have been grown by the zone melting method. The freezing interface temperature gradient was 65 °C/cm and the best-quality single crystal has been obtained at growth velocity 1.5 cm/h. The crystals grown by the zone melting method have been observed to exhibit certain typical features on their top free surfaces. The energy dispersive analysis of X-ray (EDAX) technique has been used for testing the presence of constituent element of InBi:Se single crystal. A new dislocation etchant has been developed by the successive trial-error method. The dislocation etchant has been found to give reproducible etch-pits on the cleavage surface. Various standard tests for a dislocation etchant have been carried out and results are reported.

  18. Ganciclovir ophthalmic gel, 0.15%: a valuable tool for treating ocular herpes

    PubMed Central

    Colin, Joseph

    2007-01-01

    Ocular herpes simplex virus (HSV) infection remains a major cause of corneal blindness. Several topical and oral antiviral medications have been used to treat herpetic keratitis. Advances in topical ophthalmic antivirals have been made over the past several decades. The first antivirals that were discovered were cytotoxic, while the antivirals developed more recently, such as acyclovir and ganciclovir, have exceeded these drugs in both efficacy and tolerability. Commercially available outside of the US since 1996, ganciclovir ophthalmic gel, 0.15% (GCV 0.15%, European tradename: Virgan®) is sold in more than 30 countries and has become the standard of care in treating acute herpetic keratitis. GCV 0.15% has been studied in animal models of ocular herpes, in healthy volunteers, and in several clinical studies. It has been found to be safe and effective at treating acute superficial herpetic keratitis. Previous preclinical studies of ganciclovir have shown activity against several common adenovirus strains and one recent clinical study demonstrated clinical effect against adenoviral conjunctivitis. This review is intended to provide a comprehensive overview of the GCV 0.15%, including a brief summary of the etiology and available treatments for ocular HSV, an explanation of GCV 0.15% mechanism of action, a compendium of preclinical and clinical GCV 0.15% studies, and an introduction into new areas of interest involving this drug. PMID:19668521

  19. Variations in the depth distribution of phosphorus in soil profiles and implications for model-based catchment-scale predictions of phosphorus delivery to surface waters

    NASA Astrophysics Data System (ADS)

    Owens, P. N.; Deeks, L. K.; Wood, G. A.; Betson, M. J.; Lord, E. I.; Davison, P. S.

    2008-02-01

    SummaryThe PSYCHIC process-based model for predicting sediment and phosphorus (P) transfer within catchments uses spatial data on soil-P derived from the National Soil Inventory (NSI) data set. These soil-P values are based on bulked 0-15 cm depth and do not account for variations in soil-P with depth. We describe the depth distribution of soil-P (total and Olsen) in grassland and arable soils for the dominant soil types in the two PSYCHIC study catchments: the Avon and the Wye, UK. There were clear variations in soil-P (particularly Olsen-P) concentrations with depth in untilled grassland soils while concentrations of total-P were broadly constant within the plough layer of arable soils. Concentrations of Olsen-P in arable soils, however, exhibited maximum values near the soil surface reflecting surface applications of fertilisers and manures between consecutive ploughing events. When the soil-P concentrations for the surface soil (0-5 cm average) were compared to both the profile-averaged (0-15 cm) and the NSI (0-15 cm) values, those for the surface soil were considerably greater than those for the average 0-15 cm depth. Modelled estimates of P loss using the depth-weighted average soil-P concentrations for the 0-5 cm depth layer were up to 14% greater than those based on the NSI data set due to the preferential accumulation of P at the soil surface. These findings have important implications for the use of soil-P data (and other data) in models to predict P losses from land to water and the interpretation of these predictions for river basin management.

  20. Morphological and crystallographic evolution of bainite transformation in Fe-0.15C binary alloy.

    PubMed

    Zhang, Di; Terasaki, Hidenori; Komizo, Yuichi

    2010-01-01

    In this article, an in situ observation method, combining laser scanning confocal microscopy and electron backscattering diffraction, was used to investigate the morphological and crystallographic evolution of bainite transformation in a Fe-0.15C binary alloy. The nucleation at a grain boundary and inclusions, sympathetic nucleation, and impingement event of bainitic ferrite were directly shown in real time. The variant evolution during bainite transformation and misorientation between bainitic ferrites were clarified. Strong variant selection was observed during sympathetic nucleation. PMID:19588518

  1. Chernobyl fallout in the uppermost (0-3 cm) humus layer of forest soil in Finland, North East Russia and the Baltic countries in 2000--2003.

    PubMed

    Ylipieti, J; Rissanen, K; Kostiainen, E; Salminen, R; Tomilina, O; Täht, K; Gilucis, A; Gregorauskiene, V

    2008-12-15

    The situation resulting from the Chernobyl fallout in 1987 was compared to that in 2000--2001 in Finland and NW Russia and that in 2003 in the Baltic countries. 786 humus (0-3 cm layer) samples were collected during 2000--2001 in the Barents Ecogeochemistry Project, and 177 samples in the Baltic countries in 2003. Nuclides emitting gamma-radiation in the 0-3 cm humus layer were measured by the Radiation and Nuclear Safety Authority-STUK in Finland. In 1987 the project area was classified by the European Commission into four different fallout classes. 137Cs inventory Bg/m2 levels measured in 2000--2003 were compared to the EU's class ranges. Fitting over the whole project area was implemented by generalizing the results for samples from the Baltic countries, for which Bq/m2 inventories could be calculated. A rough estimation was made by comparing the mass of organic matter and humus with 137Cs concentrations in these two areas. Changes in 137Cs concentration levels are illustrated in both thematic maps and tables. Radionuclide 137Cs concentrations (Bq/kg d.w.) were detected in the humus layer at all the 988 sampling sites. 134Cs was still present in 198 sites 15 years after the nuclear accident in Chernobyl. No other anthropogenic nuclides emitting gamma-radiation were detected, but low levels of 60Co, 125Sb and 154Eu isotopes were found in 14 sites. Fifteen years after the Chernobyl accident, the radioactive nuclide 137Cs was and still is the most significant fallout radionuclide in the environment and in food chains. The results show that the fallout can still be detected in the uppermost humus layer in North East Europe. PMID:18845315

  2. Thermal and magnetic properties of copper potassium tutton salt below 0. 15 K

    SciTech Connect

    Fujii, Y.; Shigi, T.

    1988-08-01

    The specific heat and the ac susceptibility of copper potassium tutton salt have been measured between 0.01 and 0.15 K. The magnetic phase transition from the paramagnetic to the canted ferromagnetic state was observed at 29.5 mK in zero field. From the obtained electronic entropy curve this salt is considered to be a Heisenberg-type ferromagnet. The copper nuclear specific heat of the hyperfine splitting is estimated to be C/sub N/ = 1.1 /times/ 10/sup /minus/5/R/(T/sup 2//(K/sup 2/)), which is one order smaller than the value calculated from previous results of the paramagnetic resonance.

  3. Optical constraints of kerogen from 0.15 to 40 microns: Comparison with meteoritic organics

    NASA Technical Reports Server (NTRS)

    Khare, Bishun N.; Thompson, W. R.; Sagan, C.; Arakawa, E. T.; Meisse, C.; Gilmour, I.

    1990-01-01

    Kerogens are dark, complex organic materials produced on the Earth primarily by geologic processing of biologic materials, but kerogens have chemical and spectral similarities to some classes of highly processed extraterrestrial organic materials. Kerogen-like solids were proposed as constitutents of the very dark reddish surfaces of some asteroids and are also spectrally similar to some carbonaceous organic residues and the Iapetus dark material. Kerogen can thus serve as a useful laboratory analog to very dark, spectrally red extraterrestrial materials; its optical constants can be used to investigate the effects of particle size, void space and mixing of bright and dark components in models of scattering by dark asteroidal, cometary, and satellite surfaces. Measurements of the optical constants of both Type 2 kerogen and of macromolecular organic residue from the Murchison carbonaceous chondrite via transmission and reflection measurements on thin films are reported. The real part of the refractive index, n, is determined by variable incidence-angle reflectance to be 1.60 + or - 0.05 from 0.4 to 2.0 micrometers wavelength. Work extending the measurement of n to longer wavelengths is in progress. The imaginary part of the refractive index, k, shows substantial structure from 0.15 to 40 micrometers. The values are accurate to + or - 20 percent in the UV and IR regions and to + or - 30 percent in the visible. The k values of organic residues were also measured from the Murchison meteorite. Comparison of the kerogen and Murchison data reveals that between 0.15 and 40 microns, Murchison has a similar structure but no bands as sharp as in kerogen, and that the k values for Murchison are significantly higher than those of kerogen.

  4. Ubiquitous CM and DM

    NASA Technical Reports Server (NTRS)

    Crowley, Sandra L.

    2000-01-01

    Ubiquitous is a real word. I thank a former Total Quality Coach for my first exposure some years ago to its existence. My version of Webster's dictionary defines ubiquitous as "present, or seeming to be present, everywhere at the same time; omnipresent." While I believe that God is omnipresent, I have come to discover that CM and DM are present everywhere. Oh, yes; I define CM as Configuration Management and DM as either Data or Document Management. Ten years ago, I had my first introduction to the CM world. I had an opportunity to do CM for the Space Station effort at the NASA Lewis Research Center. I learned that CM was a discipline that had four areas of focus: identification, control, status accounting, and verification. I was certified as a CMIl graduate and was indoctrinated about clear, concise, and valid. Off I went into a world of entirely new experiences. I was exposed to change requests and change boards first hand. I also learned about implementation of changes, and then of technical and CM requirements.

  5. UNIFORM INFALL TOWARD THE COMETARY H II REGION IN THE G34.26+0.15 COMPLEX?

    SciTech Connect

    Liu, Tie; Wu, Yuefang; Zhang, Huawei E-mail: ywu@pku.edu.cn

    2013-10-10

    Gas accretion is a key process in star formation. However, gas infall detections in high-mass, star-forming regions with high spatial resolution observations are rare. Here, we report the detection of gas infall toward a cometary ultracompact H II region ({sup C)} in the G34.26+0.15 complex. The observations were made with the IRAM 30 m, the James Clerk Maxwell Telescope 15 m telescope, and the Submillimeter Array (SMA). The hot core associated with 'C' has a mass of ∼76 ± 11 M{sub ☉} and a volume density of (1.1 ± 0.2) × 10{sup 8} cm{sup –3}. The HCN (3-2) and HCO{sup +} (1-0) lines observed by single dishes and the CN (2-1) lines observed by the SMA show redshifted absorption features, indicating gas infall. We found a linear relationship between the line width and optical depth of the CN (2-1) lines. Those transitions with larger optical depths and line widths have larger absorption areas. However, the infall velocities measured from different lines seem to be constant, indicating that the gas infall is uniform. We also investigated the evolution of gas infall in high-mass, star-forming regions. A tight relationship was found between the infall velocity and the total dust/gas mass. At stages prior to the hot core phase, the typical infall velocity and mass infall rate are ∼1 km s{sup –1} and ∼10{sup –4} M{sub ☉} yr{sup –1}, respectively. While in more evolved regions, the infall velocity and mass infall rates can reach as high as several km s{sup –1} and ∼10{sup –3}-10{sup –2} M{sub ☉} yr{sup –1}, respectively. Accelerated infall has been detected toward some hypercompact H II and ultracompact H II regions. However, the acceleration phenomenon is not seen in more evolved ultracompact H II regions (e.g., G34.26+0.15)

  6. Soil organic carbon mining versus priming - controls of soil organic carbon stocks along a management gradient

    NASA Astrophysics Data System (ADS)

    Blanes, M. Carmen; Reinsch, Sabine; Glanville, Helen C.; Jones, Davey L.; Carreira, José A.; Pastrana, David N.; Emmett, Bridget A.

    2015-04-01

    Soil carbon (C), nitrogen (N) and phosphorous (P) are assumed to be connected stoichiometrically and C:N(:P) ratios are frequently used to interpret the soils nutrient status. However, plants are capable of initiating the supply of nutrients by releasing rhizodeposits into the soil, thereby stimulating soil organic matter decomposition mediated by the rhizosphere microbial community. To test the relative importance of the two mechanisms across a fertility gradient in the UK we carried out a laboratory experiment. Intact soil cores from two depths (0-15 cm and 85-100 cm) were incubated and C, N and P were added in all possible combinations resulting in a total of 216 soil cores. Soil respiration was measured (1 h incubation, 10 oC) nine times over a 2 week period. Preliminary results indicate that all soils were C limited at the surface as measured as increased soil CO2 efflux. N additions increased soil respiration only marginally, whereas C+N stimulated microbial activity on the surface, and was even more pronounced in the deeper soil layer. Belowground responses to C+P were small and even smaller for N+P but similar for both soil depths. Our results indicate nutrient controls on soil organic matter turnover differ not only across a management/fertility gradient but also vertically down the soil profile.

  7. 21-cm Intensity Mapping

    NASA Astrophysics Data System (ADS)

    Chang, Tzu-Ching; GBT-HIM Team

    2016-01-01

    The redshifted 21-cm emission from neutral hydrogen has emerged as a powerful probe for large-scale structure; a significant fraction of the observable universe can be mapped in the Intensity Mapping regime out to high redshifts. At redshifts around unity, the 21-cm emission traces the matter distribution and can be used to measure the Baryon Acoustic Oscillation (BAO) signature and constrain dark energy properties. I will describe our HI Intensity Mapping program at the Green Bank Telescope (GBT), aiming at measuring the 21cm power spectrum at z=0.8. A 800-MHz multi-beam focal-plane array for the GBT is currently under construction in order to facilitate a large-scale survey for BAO and the redshift-space distortion measurements for cosmological constraints.

  8. Evaluation of the SC-1/megasonic clean for sub-0.15 micron particle removal

    SciTech Connect

    Adkins, C.L.J.; Resnick, P.J.; Clews, P.J.; Thomas, E.V.; Korbe, N.C.; Cannaday, S.T.

    1994-07-01

    A statistical design of experiments approach has been employed to evaluate the particle removal efficacy of the SC-1/megasonic clean for sub-0.15 {mu}m inorganic particles. The effects of megasonic input power, solution chemistry, bath temperature, and immersion time have been investigated. Immersion time was not observed to be a statistically significant factor. The NH{sub 4}OH/H{sub 2}O{sub 2} ratio was significant, but varying the molar H{sub 2}O{sub 2} concentration had no effect on inorganic particle removal. Substantially diluted chemistries, performed with high megasonic input power and moderate-to-elevated temperatures, was shown to be very effective for small particle removal. Bath composition data show extended lifetimes can be obtained when high purity chemicals are used at moderate (eg., 45{degrees}C) temperature. Transition metal surface concentrations and surface roughness have been measured after dilute SC-1 processing and compared to metallic contamination following traditional SC-1.

  9. The mass function of ω Centauri down to 0.15 Msolar

    NASA Astrophysics Data System (ADS)

    Sollima, A.; Ferraro, F. R.; Bellazzini, M.

    2007-11-01

    By means of deep FORS1/VLT and ACS/Hubble Space Telescope observations of a wide area in the stellar system ω Cen we measured the luminosity function of main-sequence stars down to R = 22.6 and IF814W = 24.5. The luminosity functions obtained have been converted into mass functions and compared with analytical initial mass functions (IMFs) available in the literature. The mass function obtained, reaching M ~ 0.15Msolar, can be well reproduced by a broken power law with indices α = -2.3 for M > 0.5Msolar and α = -0.8 for M < 0.5Msolar. Since the stellar populations of ω Cen have been proved to be actually unaffected by dynamical evolution processes, the mass function measured in this stellar system should represent the best approximation of the IMF of a star cluster. The comparison with the MF measured in other Galactic globular clusters suggests that possible primordial differences in the slope of the low-mass end of their MF could exist. Based on observations collected at the European Southern Observatory within the observing program 74.D-0369(B). Also based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. E-mail: antonio.sollima@bo.astro.it

  10. Pulsed Laser Deposition of BaCe(sub 0.85)Y(sub 0.15)0(sub 3) FILMS

    NASA Technical Reports Server (NTRS)

    Dynys, F. W.; Sayir, A.

    2006-01-01

    Pulsed laser deposition has been used to grow nanostructured BaCe(sub 0.85)Y(sub 0.15)0(sub 3) films. The objective is to enhance protonic conduction by reduction of membrane thickness. Sintered samples and laser targets were prepared by sintering BaCe(sub 0.85)Y(sub 0.15)O(sub 3) powders derived by solid state synthesis. Films 2 to 6 m thick were deposited by KrF excimer laser on Si and porous Al2O3 substrates. Nanocrystalline films were fabricated at deposition temperatures of 600-800 C deg at O2 pressure of 30 mTorr and laser fluence of 1.2 J/cm square. Films were characterized by x-ray diffraction, scanning electron microscopy and electrical impedance spectroscopy. Dense single phase BaCe(sub 0.85)Y((sub 0.15) 0(sub 3) films with a columnar growth morphology is observed, preferred crystal growth was found to be dependent upon deposition temperature and substrate type. Electrical conductivity of bulk samples produced by solid state sintering and thin film samples were measured over a temperature range of 100 C deg to 900 C deg in moist argon. Electrical conduction of the fabricated films was 1 to 4 orders of magnitude lower than the sintered bulk samples. With respect to the film growth direction, activation energy for electrical conduction is 3 times higher in the perpendicular direction than the parallel direction.

  11. Halogens in CM Chondrites

    NASA Astrophysics Data System (ADS)

    Menard, J. M.; Caron, B.; Jambon, A.; Michel, A.; Villemant, B.

    2013-09-01

    We set up an extraction line of halogens (fluorine, chlorine) by pyrohydrolysis with 50 mg of rock. We analyzed 7 CM2 chondrites found in Antarctica and found that the Cl content of meteorites with an intact fusion crust is higher than those without.

  12. Efficacy of 1,3-Dichloropropene in Soil Amended with Compost and Unamended Soil

    PubMed Central

    Riegel, C.; Nelson, S. D.; Dickson, D. W.; Allen, L. H.; Peterson, L. G.

    2001-01-01

    1,3-Dichloropropene (1,3-D) is a likely alternative soil fumigant for methyl bromide. The objective was to determine root-knot nematode, Meloidogyne incognita, survival in microplots after exposure to 1,3-D for various periods of time in soil that have previously been amended with compost. The treatments were 1,3-D applied broadcast at 112 liters/ha and untreated controls in both compost-amended and unamended soil. Soil samples were collected from each microplot at 6, 24, 48, 72, and 96 hours after fumigation at three depths (0-15, 15-30, and 30-45 cm). One week after fumigation, six tomato seedlings were transplanted into each microplot and root galling was recorded 6 weeks later. Plants grown in fumigated compost-amended soil had more galls than plants from fumigated unamended soil at P ≤ 0.1. Gall indices from roots in fumigated soil amended with compost were not different from nonfumigated controls. Based on soil bioassays, the number of galls decreased with increasing time after fumigation in both compost-amended and unamended soil at 0-to-15 and 15-to-30 cm depths, but not at 30 to 45 cm deep. Higher soil water content due to the elevated levels of organic matter in the soil at these depths may have interfered with 1,3-D movement, thus reducing its efficacy. PMID:19265889

  13. Perovskite Sr₁-xCexCoO₃-δ (0.05 ≤ x ≤ 0.15) as superior cathodes for intermediate temperature solid oxide fuel cells.

    PubMed

    Yang, Wei; Hong, Tao; Li, Shuai; Ma, Zhaohui; Sun, Chunwen; Xia, Changrong; Chen, Liquan

    2013-02-01

    Perovskite Sr(1-x)Ce(x)CoO(3-δ) (0.05 ≤ x ≤ 0.15) have been prepared by a sol-gel method and studied as cathodes for intermediate temperature solid oxide fuel cells. As SOFC cathodes, Sr(1-x)Ce(x)CoO(3-δ) materials have sufficiently high electronic conductivities and excellent chemical compatibility with SDC electrolyte. The peak power density of cells with Sr(0.95)Ce(0.05)CoO(3-δ) is 0.625 W cm(-2) at 700 °C. By forming a composite cathode with an oxygen ion conductor SDC, the peak power density of the cell with Sr(0.95)Ce(0.05)CoO(3-δ)-30 wt %SDC composite cathode, reaches 1.01 W cm(-2) at 700 °C, better than that of Sm(0.5)Sr(0.5)CoO(3)-based cathode. All these results demonstrates that Sr(1-x)Ce(x)CoO(3-δ) (0.05 ≤ x ≤ 0.15)-based materials are promising cathodes for an IT-SOFC. PMID:23336216

  14. Phosphorus Release to Floodwater from Calcareous Surface Soils and Their Corresponding Subsurface Soils under Anaerobic Conditions.

    PubMed

    Jayarathne, P D K D; Kumaragamage, D; Indraratne, S; Flaten, D; Goltz, D

    2016-07-01

    Enhanced phosphorus (P) release from soils to overlying water under flooded, anaerobic conditions has been well documented for noncalcareous and surface soils, but little information is available for calcareous and subsurface soils. We compared the magnitude of P released from 12 calcareous surface soils and corresponding subsurface soils to overlying water under flooded, anaerobic conditions and examined the reasons for the differences. Surface (0-15 cm) and subsurface (15-30 cm) soils were packed into vessels and flooded for 8 wk. Soil redox potential and concentrations of dissolved reactive phosphorus (DRP) and total dissolved Ca, Mg, Fe, and Mn in floodwater and pore water were measured weekly. Soil test P was significantly smaller in subsurface soils than in corresponding surface soils; thus, the P release to floodwater from subsurface soils was significantly less than from corresponding surface soils. Under anaerobic conditions, floodwater DRP concentration significantly increased in >80% of calcareous surface soils and in about 40% of subsurface soils. The increase in floodwater DRP concentration was 2- to 17-fold in surface soils but only 4- to 7-fold in subsurface soils. With time of flooding, molar ratios of Ca/P and Mg/P in floodwater increased, whereas Fe/P and Mn/P decreased, suggesting that resorption and/or reprecipitation of P took place involving Fe and Mn. Results indicate that P release to floodwater under anaerobic conditions was enhanced in most calcareous soils. Surface and subsurface calcareous soils in general behaved similarly in releasing P under flooded, anaerobic conditions, with concentrations released mainly governed by initial soil P concentrations. PMID:27380087

  15. Effect of chromated copper arsenate structures on adjacent soil arsenic concentrations.

    PubMed

    Patch, Steven C; Scheip, Katherine; Brooks, Billy

    2011-06-01

    Structures made of chromated copper arsenic (CCA) have been shown to leach arsenic into the surrounding soil. Soil cores were taken adjacent to six CCA decks at 0, 15, 60 and 300 cm from the deck at depths of 0-10, 10-20, and 20-30 cm, and were analyzed for soil arsenic concentrations. Median soil arsenic concentrations ranged from 1.8 μg/g at a depth of 10-20 cm and a distance of 300 cm to 34.5 μg/g at a depth of 0-10 cm and a distance of 30 cm. Soil arsenic concentrations taken at depths of 0-10 and 10-20 cm decreased as distance from the deck increased. Soil arsenic concentrations close to the deck were higher at lower soil depths and at homes with greater deck wipe arsenic concentrations. Age of deck and slope of land had significant effects on the differences in arsenic concentrations between samples taken at different distances when evaluated in models by themselves, but not in models adjusting for deck wipe concentrations. Size of deck and bulk density of soil did not have significant effects on soil arsenic concentrations. PMID:21505794

  16. Changes to Stream Water and Soil Temperature Regimes Pre and Post Forest Harvesting in Low Order Boreal Forest Watersheds.

    NASA Astrophysics Data System (ADS)

    Allan, C. J.; Najaf, P.; Mackereth, R.; Steedman, R.

    2014-12-01

    Soil and stream water temperatures were logged at 15 minute intervals (1995-2008) pre and post logging at four intensively monitored zero order boreal forest watersheds in NW Ontario, Canada. Trends in post logging changes to daily average, maximum and diurnal ranges in stream water and soil temperatures are presented. Changes to the soil temperature regime were found to be spatially variable and dependent upon aspect, hill slope position and soil moisture regime. In general, soil temperature displayed a hysteretic behavior in relation to reference sites during the post logging period with significantly warmer spring and summer temperatures and similar autumn temperatures. Stream water temperature appeared to be controlled by post logging surface soil temperatures (0-15 cm) as opposed to deeper (30-40 cm) soil temperatures during the pretreatment period. Results are compared to previous studies and implications for soil microbial processes and stream benthic communities are highlighted.

  17. Hollow Sodium Tungsten Bronze (Na0.15WO3) Nanospheres: Preparation, Characterization, and Their Adsorption Properties

    PubMed Central

    2009-01-01

    We report herein a facile method for the preparation of sodium tungsten bronzes hollow nanospheres using hydrogen gas bubbles as reactant for chemical reduction of tungstate to tungsten and as template for the formation of hollow nanospheres at the same time. The chemical composition and the crystalline state of the as-prepared hollow Na0.15WO3nanospheres were characterized complementarily, and the hollow structure formation mechanism was proposed. The hollow Na0.15WO3nanospheres showed large Brunauer–Emment–Teller specific area (33.8 m2 g−1), strong resistance to acids, and excellent ability to remove organic molecules such as dye and proteins from aqueous solutions. These illustrate that the hollow nanospheres of Na0.15WO3should be a useful adsorbent. PMID:20596394

  18. Hollow Sodium Tungsten Bronze (Na0.15WO3) Nanospheres: Preparation, Characterization, and Their Adsorption Properties.

    PubMed

    Hou, Jing; Zuo, Guanke; Shen, Guangxia; Guo, He; Liu, Hui; Cheng, Ping; Zhang, Jingyan; Guo, Shouwu

    2009-01-01

    We report herein a facile method for the preparation of sodium tungsten bronzes hollow nanospheres using hydrogen gas bubbles as reactant for chemical reduction of tungstate to tungsten and as template for the formation of hollow nanospheres at the same time. The chemical composition and the crystalline state of the as-prepared hollow Na0.15WO3nanospheres were characterized complementarily, and the hollow structure formation mechanism was proposed. The hollow Na0.15WO3nanospheres showed large Brunauer-Emment-Teller specific area (33.8 m2 g-1), strong resistance to acids, and excellent ability to remove organic molecules such as dye and proteins from aqueous solutions. These illustrate that the hollow nanospheres of Na0.15WO3should be a useful adsorbent. PMID:20596394

  19. Magnetotransport and thermal properties characterization of 55 K superconductor SmFeAsO0.85F0.15

    NASA Astrophysics Data System (ADS)

    Srivastava, Amit; Pal, Anand; Singh, Saurabh; Shekhar, C.; Singh, H. K.; Awana, V. P. S.; Srivastava, O. N.

    2013-09-01

    This report fairly underlines the magneto-transport, thermal properties characterization and bulk superconductivity in the FeAs-based SmFeAsO0.85F0.1. The phase formation and structure are confirmed by Rietveld analysis of room temperature powder X-ray diffraction (XRD) data. Electron microscopy was employed to unravel the micro structural details, such as perfection of the lattice and the grain morphology including size and boundaries. The electrical and magnetic measurements have been carried out to confirm the bulk superconductivity and understand the nature of electrical transport in the normal and superconducting state. The intra-grain critical current density (Jc) with applied magnetic field is calculated from isothermal DC magnetization (MH) plots using conventional Bean critical state model. Superconductivity is observed at transition temperature (Tc) above 55 K without HPHT (high pressure high temperature) synthesis route. The value of Jc is found to be around 5.26 × 104 A/cm2 at 5 K in zero field. The dependence of thermally activated flux flow energy (U/kB) on the applied magnetic field has been observed. AC susceptibility measurements were performed for 55 K superconducting SmFeAsO0.85F0.15 sample at various amplitude of applied AC drive field and its granular nature is confirmed. The parent compound SmFeAsO is found to be magnetic with Fe spin density wave (SDW) like order below 150 K, on the other hand the F doped SmFeAsO0.85F0.15 sample is bulk superconducting at below 55 K. Both Fe (SDW) at 150 K for SmFeAsO and 55 K superconductivity in case of SmFeAsO0.85F0.15 sample has confirmed by Specific heat [Cp(T)] measurement too. Further Sm orders anti-ferro-magnetically at 4.5 K for non-superconducting and at 3.5 K for superconducting samples, also the entropy change is reduced significantly for the later than the former. Summarily complete physical property characterization for both non-superconducting SmFeAsO and 55 K superconductor SmFeAsO0.85F0.15

  20. Magnetic field penetration depth of La(1.85)Sr(0.15)CuO4 measured by muon spin relaxation

    NASA Technical Reports Server (NTRS)

    Kossler, W. J.; Kempton, J. R.; Yu, X. H.; Schone, H. E.; Uemura, Y. J.

    1987-01-01

    Muon-spin-relaxation measurements have been performed on a high-Tc superconductor La(1.85)Sr(0.15)CuO4. In an external transverse magnetic field of 500 G, a magnetic field penetration depth of 2000 A at T = 10 K has been determined from the muon-spin-relaxation rate which increased with decreasing temperature below Tc. From this depth and the Pauli susceptibility, the superconducting carrier density is estimated at 3 x 10 to the 21st per cu cm. The zero-field relaxation rates above and below Tc were equal, which suggests that the superconducting state in this sample is not associated with detectable static magnetic ordering.

  1. Enhanced electric field tunable dielectric properties of Ba(Sn0.15Ti0.85)O3 thin films

    NASA Astrophysics Data System (ADS)

    Song, S. N.; Zhai, J. W.; Gao, L. N.; Yao, X.; Hung, T. F.; Xu, Z. K.

    2008-11-01

    Highly (100)-oriented barium stannate titanate Ba(Sn0.15Ti0.85)O3 (BTS) thin films were deposited on SrTiO3 (STO) and Nb doped SrTiO3 (NSTO) single-crystal substrates through sol-gel process, respectively. Coplanar capacitance and parallel plate capacitance structure configurations were formed by preparing interdigital electrodes (IDEs) and parallel plate electrodes (PPEs) on BTS thin film. The tunability of films with IDE was 45.54%, while the tunability of films with PPE was only 11.54% at the frequency of 1 MHz with an applied electric field of 80 kV/cm. This result showed that the tunability in the a-b plane contributes markedly to the measurements obtained with the IDE.

  2. Large pyroelectric figure of merits for Sr-modified Ba0.85Ca0.15Zr0.1Ti0.9O3 ceramics

    NASA Astrophysics Data System (ADS)

    Patel, Satyanarayan; Chauhan, Aditya; Vaish, Rahul

    2016-02-01

    In the present work ferroelectric, dielectric and pyroelectric properties of Sr-modified Ba0.85Ca0.15Zr0.1Ti0.9O3 ceramics were investigated. A significant increase in polarization has been observed, from 16 μC/cm2 to 25 μC/cm2 for 15% Sr added BCZT compositions. Correspondingly an improvement in dielectric constant, from 2743 to 4040, was observed at room temperature (1 MHz). It was found that Curie-Weiss temperature (TCW) decreases from 357 K to 308 K for 15% Sr containing BCZT ceramics. Simultaneously, it also enhances the order-disorder to displacing phase transition as γ varies from 1.91 to 1.31. Pyroelectric coefficient was found to be 25 μC/cm2K at 308 K. Finally, pyroelectric figures of merit (FOMs) for voltage responsivity (Fv), current responsivity (Fi), detectivity (Fd), energy harvesting (Fe) and new energy harvesting (Fe∗) are calculated. A large improvement in pyroelectric FOMs indicates that it might be a potential material for pyroelectric applications.

  3. Quantitative x-ray diffraction analysis of bimodal damage distributions in Tm implanted Al0.15Ga0.85N

    NASA Astrophysics Data System (ADS)

    Magalhães, S.; Fialho, M.; Peres, M.; Lorenz, K.; Alves, E.

    2016-04-01

    In this work radial symmetric x-ray diffraction scans of Al0.15Ga0.85N thin films implanted with Tm ions were measured to determine the lattice deformation and crystal quality as functions of depth. The alloys were implanted with 300 keV Tm with 10° off-set to the sample normal to avoid channelling, with fluences varying between 1013 Tm cm-2 and 5  ×  1015 Tm cm-2. Simulations of the radial 2θ-ω scans were performed under the frame of the dynamical theory of x-ray diffraction assuming Gaussian distributions of the lattice strain induced by implantation defects. The structure factor of the individual layers is multiplied by a static Debye-Waller factor in order to take into account the effect of lattice disorder due to implantation. For higher fluences two asymmetric Gaussians are required to describe well the experimental diffractograms, although a single asymmetric Gaussian profile for the deformation is found in the sample implanted with 1013 Tm cm-2. After thermal treatment at 1200 °C, the crystal quality partially recovers as seen in a reduction of the amplitude of the deformation maximum as well as the total thickness of the deformed layer. Furthermore, no evidence of changes with respect to the virgin crystal mosaicity is found after implantation and annealing.

  4. Mn-doped 0.15BiInO3-0.85PbTiO3 piezoelectric films deposited by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Lee, Sun Young; Ko, Song Won; Lee, Soonil; Trolier-McKinstry, Susan

    2012-05-01

    Undoped, 0.5 and 1.0 mol. % Mn-doped 0.15BiInO3-0.85PbTiO3 films were grown on PbTiO3/Pt/Ti/SiO2/Si substrates by pulsed laser deposition. Phase-pure perovskite films were obtained at a substrate temperature of 585 °C irrespective of Mn doping level. The 0.5 mol. % Mn-doped films showed a room temperature permittivity of 480 and a dielectric loss tangent of 0.015 at 100 kHz after 650 °C post-deposition annealing. The coercive field and remanent polarization were 80 kV/cm and 29 µC/cm2, respectively. The ferroelectric transition temperature of the films ranged from 535 to 585 °C. The e31,f piezoelectric coefficient was -7.1 C/m2. X-ray diffraction and phase transition temperature data showed that the Mn atoms substitute on the Ti-site as Mn3+; the resulting films have p-type conduction characteristics.

  5. Synthesis and electrochemical performance of LiNi{sub 0.7}Co{sub 0.15}Mn{sub 0.15}O{sub 2} as gradient cathode material for lithium batteries

    SciTech Connect

    Zhang, Lipeng; Dong, Tao; Yu, Xianjin; Dong, Yunhui; Zhao, Zengdian; Li, Heng

    2012-11-15

    Highlights: ► The gradient precursors Ni{sub 0.7}Co{sub 0.15}Mn{sub 0.15}(OH){sub 2} is prepared by hydroxide co-precipitating. ► The cathode materials is synthesized by mixing the precursor with 5% excess LiOH·H{sub 2}O. ► The XRD results show that cathode materials present layered α-NaFeO{sub 2} typical crystal. ► Material sintered at 850 °C shows the best performance, with high-capacity and recyclability. -- Abstract: LiNi{sub 0.7}Co{sub 0.15}Mn{sub 0.15}O{sub 2} as a cathode material for lithium batteries was synthesized by mixing hydroxide co-precipitated precursors with 5% excess LiOH·H{sub 2}O. Its structural and electrochemical properties were investigated using X-ray diffractometry, scanning electron microscopy, galvanostatic charge–discharge test, and electrochemical impedance spectroscopy. The results indicated that well-ordering layered LiNi{sub 0.7}Co{sub 0.15}Mn{sub 0.15}O{sub 2} cathode materials were successfully prepared in air at 750, 800, and 850°C with α-NaFeO{sub 2} typical crystal. The results of charge–discharge test demonstrated that the gradient cathode material sintered at 850 °C exhibited the best electrochemical performance with the initial discharge capacity of 164 mA h g{sup −1} at 0.2 C and lower electrochemical impedance. Nickel has low price. LiNiO{sub 2} cathode materials have high specific capacity, their theoretical capacity is 274 mA h g{sup −1} and with low self-discharge rate. So the Ni, Co, Mn ternary layer-structural compounds with high Ni content are showing to be promising cathode materials for lithium batteries. The techniques and research results in this paper are utilizable for the study of this kind of lithium battery materials.

  6. Disorder - driven phase transition in La{sub 0.37}Bi{sub 0.15}Sm{sub 0.15}Ca{sub 0.33}MnO{sub 3}

    SciTech Connect

    Ade, Ramesh; Singh, R.

    2015-06-24

    We report the effect of disorder on the properties of La{sub 0.37}Bi{sub 0.15}Sm{sub 0.15}Ca{sub 0.33}MnO{sub 3} manganite synthesized by sol – gel method. The critical properties were investigated through various techniques such as modified - Arrott plot, Kouvel - Fisher method and critical isotherm analysis. The sample show second- order phase transition near critical point. The decrease in magnetization (M), Curie temperature (T{sub C}), evolution of spin or cluster glass behavior and the nature of phase transition compared to first - order transition in La{sub 0.67}Ca{sub 0.33}MnO{sub 3} are ascribed to the disorder caused by the size mismatch of the A-site cations with Bi and Sm doping at La- site.

  7. Thermal and electric properties of Nd(1.85)Ce(0.15)CuO(4-y) and Pr(1.85)Ce(0.15)CuO(4-y)

    NASA Technical Reports Server (NTRS)

    Lim, Z. S.; Han, K. H.; Lee, Sung-Ik; Jeong, Yoon H.; Song, Y. S.; Park, Y. W.

    1991-01-01

    Electric resistivity, magnetic susceptibility, thermoelectric power, and Hall coefficient of Nd(1.85)Ce(0.15)CuO(4-y) and Pr(1.85)Ce(0.15)CuO(4-y) whose onset temperature of the superconductivity are 24 and 23 K were measured. Experimental results show many interesting features. In particular, the Hall coefficients are negative and relatively flat as a function of temperature. However, the temperature dependence of the thermoelectric power (TEP) for these two samples shows the positive sign for both samples in contrast to the previous results. Moreover, TEP for both samples remains flat in the normal state below 250 K, but decreases rapidly above 250 K. TEP of only Pr(1.85)Ce(0.15)CuO(4-y) shows a peak near 50 K. Finally, onset temperatures of sudden drop of TEP are higher than those of resistance drop. The physical properties of these samples produced at different conditions such as different heat treatment temperatures, atmospheres were also measured. TEP and resistance measurement show that oxygen deficiency is essential to produce better superconducting samples. Correlation between TEP and superconductivity for these different samples are discussed.

  8. Thermal and electric properties of Nd(1.85)Ce(0.15)CuO(4-y) and Pr(1.85)Ce(0.15)CuO(4-y)

    NASA Technical Reports Server (NTRS)

    Lim, Z. S.; Han, K. H.; Lee, Sung-Ik; Jeong, Yoon H.; Song, Y. S.; Park, Y. W.

    1990-01-01

    Electric resistivity, magnetic susceptibility, thermoelectric power, and Hall coefficient of Nd(1.85)Ce(0.15)CuO(4-y) and Pr(1.85)Ce(0.15)CuO(4-y) whose onset temperature of the superconductivity are 24 K and 23 K were measured. Experimental results show many interesting features. In particular, the Hall coefficients are negative and relatively flat as a function of temperature. However, the temperature dependence of the thermoelectric power (TEP) for these two samples shows the positive sign for both samples in contrast to the previous results. Moreover TEP for both samples remains flat in the normal state below 250 K, but decreases rapidly above 250 K. TEP of only Pr(1.85)Ce(0.15)CuO(4-y) shows a peak near 50 K. Finally onset temperatures of sudden drop of TEP are higher than those of resistance drop. The physical properties of these samples produced at different conditions such as different heat treatment temperatures, atmospheres were also measured. TEP and resistance measurement show that oxygen deficiency is essential to produce better superconducting samples. Correlation between TEP and superconductivity for these different samples will be discussed.

  9. Short-term grazing exclusion has no impact on soil properties and nutrients of degraded alpine grassland in Tibet, China

    NASA Astrophysics Data System (ADS)

    Lu, X.; Yan, Y.; Sun, J.; Zhang, X.; Chen, Y.; Wang, X.; Cheng, G.

    2015-08-01

    Since the 1980s, alpine grasslands have been seriously degraded on the Tibetan Plateau. Grazing exclusion by fencing has been widely adopted to restore degraded grasslands. To clarify the effect of grazing exclusion on soil quality, we investigated soil properties and nutrients by comparing free grazing (FG) and grazing exclusion (GE) grasslands in Tibet. Soil properties, including soil bulk density, pH, particle size distributions, and proportion of aggregates, were not significant different between FG and GE plots. Soil organic carbon, soil available nitrogen, available phosphorus contents did not differ with grazing exclusion treatments in both 0-15 and 15-30 cm layer. However, soil total nitrogen and total phosphorus contents were remarkably reduced due to grazing exclusion at the 0-15 cm depth. Furthermore, growing season temperature and/or growing season precipitation had significant effects on almost all soil properties and nutrients indicators. This study demonstrates that grazing exclusion had no impact on most soil properties and nutrients in Tibet. Additionally, the potential shift of climate conditions should be considered when recommend any policies designed for alpine grasslands degraded soil restoration in the future. Nevertheless, because the results of the present study come from short term (6-8 years) grazing exclusion, the assessments of the ecological effects of the grazing exclusion management strategy on soil quality of degraded alpine grasslands in Tibet still need long term continued research.

  10. Short-term grazing exclusion has no impact on soil properties and nutrients of degraded alpine grassland in Tibet, China

    NASA Astrophysics Data System (ADS)

    Lu, X.; Yan, Y.; Sun, J.; Zhang, X.; Chen, Y.; Wang, X.; Cheng, G.

    2015-11-01

    Since the 1980s, alpine grasslands have been seriously degraded on the Tibetan Plateau. Grazing exclusion by fencing has been widely adopted to restore degraded grasslands. To clarify the effect of grazing exclusion on soil quality, we investigated soil properties and nutrients by comparing free-grazing (FG) and grazing exclusion (GE) grasslands in Tibet. Soil properties - including soil bulk density, pH, particle size distributions, and proportion of aggregates - showed no significant difference between FG and GE plots. Soil organic carbon, soil available nitrogen, and available phosphorus contents did not differ with grazing exclusion treatments in both the 0-15 and 15-30 cm layer. However, soil total nitrogen and total phosphorus contents were remarkably reduced due to grazing exclusion at 0-15 cm depth. Furthermore, growing season temperature and/or growing season precipitation had significant effects on almost all soil property and nutrient indicators. This study demonstrates that grazing exclusion had no impact on most soil properties and nutrients in Tibet. Additionally, the potential shift of climate conditions should be considered when recommending any policy designed for restoration of degraded soil in alpine grasslands in the future. Nevertheless, because the results of the present study come from a short-term (6-8 years) grazing exclusion, the assessments of the ecological effects of the grazing exclusion management strategy on soil quality of degraded alpine grasslands in Tibet still need long-term continued research.

  11. Carbon Sequestration in Reclaimed Mined Soils of Ohio

    SciTech Connect

    K. Lorenz; M.K. Shukla; R. Lal

    2006-04-01

    This research project is aimed at assessing the soil organic carbon (SOC) sequestration potential of reclaimed mine soils (RMS). The experimental sites were characterized by distinct age chronosequences of reclaimed mine soil and were located in Guernsey, Morgan, Noble, and Muskingum Counties of Ohio. These sites are owned and maintained by American Electrical Power. These sites were reclaimed (1) with topsoil application, and (2) without topsoil application, and were under continuous grass or forest cover. This report presents the results from two forest sites reclaimed with topsoil application and reclaimed in 1994 (R94-F) and in 1973 (R73-F), and two forest sites without topsoil application and reclaimed in 1969 (R69-F) and 1962 (R62-F). Results from one site under grass without topsoil application and reclaimed in 1962 (R62-G) are also shown. Three core soil samples were collected from each of the experimental sites and each landscape position (upper, middle and lower) for 0-15 and 15-30 cm depths, and saturated hydraulic conductivity (Ks), volumes of transport (VTP) pores, and available water capacity (AWC) were determined. No significant differences were observed in VTP and AWC in 0-15 cm and 15-30 cm depths among the sites R94-F and R73-F reclaimed with topsoil application and under continuous forest cover (P<0.05). VTP and AWC did also not differ among upper, middle and lower landscape positions. However, saturated hydraulic conductivity in 0-15 cm depth at R73-F was significantly lower at the lower compared to the upper landscape position. No significant differences were observed for Ks among landscape positions at R94-F. No significant differences were observed in VTP and AWC among landscape positions and depths within R69-F, R62-F and R62-G. However, saturated hydraulic conductivity was higher in 0-15 cm depth at R62-F than at R69-F and R62-G. At the latter site, Ks was higher in the upper compared to the lower landscape position whereas Ks did not

  12. Unconventional superconductivity in CaFe0.85Co0.15AsF evidenced by torque measurements

    NASA Astrophysics Data System (ADS)

    Xiao, Hong; Li, X. J.; Mu, G.; Hu, T.

    Out-of-plane angular dependent torque measurements were performed on CaFe0.85Co0.15AsF single crystals. Abnormal superconducting fluctuation, featured by enhanced diamagnetism with magnetic field, is detected up to about 1.5 times superconducting transition temperature Tc. Compared to cuprate superconductors, the fluctuation effect in iron-based superconductor is less pronounced. Anisotropy parameter γ is obtained from the mixed state torque data and it is found that γ shows both magnetic field and temperature depenence, pointing to multiband superconductivity. The temperature dependence of penetration depth λ (T) suggests unconventional superconductivity in CaFe0.85Co0.15AsF.

  13. Soil respiration characteristics in different land uses and response of soil organic carbon to biochar addition in high-latitude agricultural area.

    PubMed

    Ouyang, Wei; Geng, Xiaojun; Huang, Wejia; Hao, Fanghua; Zhao, Jinbo

    2016-02-01

    The farmland tillage practices changed the soil chemical properties, which also impacted the soil respiration (R s ) process and the soil carbon conservation. Originally, the farmland in northeast China had high soil carbon content, which was decreased in the recent decades due to the tillage practices. To better understand the R s dynamics in different land use types and its relationship with soil carbon loss, soil samples at two layers (0-15 and 15-30 cm) were analyzed for organic carbon (OC), total nitrogen (TN), total phosphorus (TP), total carbon (TC), available nitrogen (AN), available phosphorus (AP), soil particle size distribution, as well as the R s rate. The R s rate of the paddy land was 0.22 (at 0-15 cm) and 3.01 (at 15-30 cm) times of the upland. The average concentrations of OC and clay content in cultivated areas were much lower than in non-cultivated areas. The partial least squares analysis suggested that the TC and TN were significantly related to the R s process in cultivated soils. The upland soil was further used to test soil CO2 emission response at different biochar addition levels during 70-days incubation. The measurement in the limited incubation period demonstrated that the addition of biochar improved the soil C content because it had high concentration of pyrogenic C, which was resistant to mineralization. The analysis showed that biochar addition can promote soil OC by mitigating carbon dioxide (CO2) emission. The biochar addition achieved the best performance for the soil carbon conservation in high-latitude agricultural area due to the originally high carbon content. PMID:26408119

  14. Ganciclovir ophthalmic gel 0.15% for the treatment of acute herpetic keratitis: background, effectiveness, tolerability, safety, and future applications

    PubMed Central

    Chou, Timothy Y; Hong, Bennett Y

    2014-01-01

    Eye disease due to herpes simplex virus (HSV) is a leading cause of ocular morbidity and the number one infectious cause of unilateral corneal blindness in the developed parts of the globe. Recurrent keratitis can result in progressive corneal scarring, thinning, and vascularization. Antiviral agents employed against HSV have primarily been nucleoside analogs. Early generation drugs included idoxuridine, iododesoxycytidine, vidarabine, and trifluridine. While effective, they tended to have low bioavailability and measurable local cellular toxicity due to their nonselective mode of action. Acyclovir 0.3% ointment is a more selective agent, and had become a first-line topical drug for acute HSV keratitis in Europe and other places outside of the US. Ganciclovir 0.15% gel is the most recently approved topical treatment for herpes keratitis. Compared to acyclovir 0.3% ointment, ganciclovir 0.15% gel has been shown to be better tolerated and no less effective in several Phase II and III trials. Additionally, topical ganciclovir does not cause adverse systemic side effects and is therapeutic at lower concentrations. Based on safety, efficacy, and tolerability, ganciclovir 0.15% gel should now be considered a front-line topical drug in the treatment of dendritic herpes simplex epithelial keratitis. Topics of future investigation regarding other potential uses for ganciclovir gel may include the prophylaxis of recurrent HSV epithelial keratitis, treatment of other forms of ocular disease caused by herpesviruses and adenovirus, and ganciclovir gel as an adjunct to antitumor therapy. PMID:25187721

  15. Impacts of Soil Warming and Plant Rhizosphere on Root Litter Decomposition at Different Soil Depths in a Mediterranuan Grassland Lysimeter Facility

    NASA Astrophysics Data System (ADS)

    Zhu, B.; Hicks Pries, C.; Castanha, C.; Curtis, J. B.; Porras, R. C.; Torn, M. S.

    2014-12-01

    Accurate understanding of soil carbon cycling is critical for predicting climate-ecosystem feedbacks. Decomposition of root litter and its transformation into soil organic matter (SOM) are critical processes of soil carbon cycling. We aim to study the impacts of soil warming and plant rhizosphere on the fate of 13C-labeled roots buried at two soil depths using a field lysimeter facility at Hopland, California. The lysimeters contain soil columns of 38-cm diameter and 48-cm depth (0-15 cm A-horizon, and 15-48 cm B-horizon, Laughlin soil series) sown with annual grasses dominated by Avena barbata. The experiment has three treatments (planted-ambient, planted-warming (+4°C), and unplanted-ambient). In February 2014, 13C-labeled A. fatua roots were added to two depths (8-12 and 38-42 cm). We measured root-derived 13C in respired CO2 collected at the soil surface and in leachate dissolved organic carbon (DOC) collected from the lysimeters during the growing season and in soil harvested in August 2014. We found (1) soil temperature at two depths (10- and 40-cm) have been elevated by 4±0.2°C in the warmed compared to the ambient lysimeters; (2) surface (10-cm) volumetric soil moisture followed this order (unplanted-ambient > planted-ambient > planted-warming), while subsurface (40-cm) soil moisture showed little variation among treatments; (3) ecosystem respiration was enhanced by soil warming during the early growing season (March 15th and April 5th) when soil moisture was not limiting (>20%), while it was suppressed by soil warming during the late growing season (May 7th) when soil moisture was limiting (<20%), and was not significantly different among treatments towards the end of growing season (May 20th); and (4) aboveground plant biomass increased 25% with soil warming. More data including 13C values of ecosystem respiration, DOC loss, and harvested soil samples, as well as soil nutrient supply rates, microbial biomass and community structure will be presented

  16. A comprehensive investigation of structural, morphological, hydrogen absorption and magnetic properties of MmNi4.22Co0.48Mn0.15Al0.15 alloy

    NASA Astrophysics Data System (ADS)

    Zareii, Seyyed Mojtaba; Arabi, Hadi; Pourarian, Faiz

    2014-05-01

    A comprehensive study of structural, morphological, hydrogen absorption and magnetic properties of MmNi4.22 Co0.48Mn0.15Al0.15 alloy as a promising hydrogen storage media was investigated. The X-ray diffraction (XRD) profiles show that the alloy maintains its crystal structure (hexagonal LaNi5-type) even after 30 hydrogenation/dehydrogenation (H/D) cycles. However, the XRD peaks are found to be slightly broadened after cycling. SEM images reveal that particles size of the cycled sample decreases, with more uniform particle size distribution compared to noncycled ones. The pressure-composition (PC) isotherms and kinetics curves of hydrogen absorption reaction were obtained at different working temperatures by using a homemade Sievert apparatus. The enthalpy and entropy of hydride formation of the alloy were evaluated. Furthermore, the Jander diffusion and Johnson-Mehl-Avrami models as the fitting models were employed to study the kinetic mechanism of hydriding reaction and its activation energy. The room temperature magnetic measurements indicate that the milling and H/D cycling change the magnetic properties of the as-annealed alloy.

  17. Ramp-edge junctions between superconducting Nd1.85Ce0.15CuO4 and La1.85Sr0.15CuO4

    NASA Astrophysics Data System (ADS)

    Hoek, M.; Coneri, F.; Renshaw Wang, X.; Hilgenkamp, H.

    2016-03-01

    We have fabricated in-plane ramp-edge junctions between Nd1.85Ce0.15CuO4 (NCCO) and La1.85Sr0.15CuO4 (LSCO) where both layers are superconducting. At the interface, we find an insulating barrier in electronic transport. The barrier is shown to be a tunneling barrier with a combination of inelastic and elastic tunneling, the former is indicated by the appearance of the LSCO phonon density of states in {{{d}}}2I/{{d}}{V}2 measurements and the latter is inferred from the temperature dependence of the conductance. The energy scale of the barrier is smaller than would be expected from band alignment found by considering the cuprates as degenerate semiconductors. It is closest to the scenario where hybridization of the O 2p valence band states dictate band alignment. Additional experiments with overdoped interlayers of Nd1.8Ce0.2CuO4 and La1.75Sr0.25CuO4 show that the origin of the barrier is most likely a combination of electronic depletion mainly in the NCCO and a strain effect in the LSCO.

  18. Lithium-Rich Layered Oxide Li1.18 Ni0.15 Co0.15 Mn0.52 O2 as the Cathode Material for Hybrid Sodium-Ion Batteries.

    PubMed

    Wei, Zhixuan; Gao, Yu; Wang, Lei; Zhang, Chaoyang; Bian, Xiaofei; Fu, Qiang; Wang, Chunzhong; Wei, Yingjin; Du, Fei; Chen, Gang

    2016-08-01

    Li-rich layered oxide Li1.18 Ni0.15 Co0.15 Mn0.52 O2 (LNCM) is, for the first time, examined as the positive electrode for hybrid sodium-ion battery and its Na(+) storage properties are comprehensively studied in terms of galvanostatic charge-discharge curves, cyclic voltammetry and rate capability. LNCM in the proposed sodium-ion battery demonstrates good rate capability whose discharge capacity reaches about 90 mA h g(-1) at 10 C rate and excellent cycle stability with specific capacity of about 105 mA h g(-1) for 200 cycles at 5 C rate. Moreover, ex situ ICP-OES suggests interesting mixed-ions migration processes: In the initial two cycles, only Li(+) can intercalate into the LNCM cathode, whereas both Li(+) and Na(+) work together as the electrochemical cycles increase. Also the structural evolution of LNCM is examined in terms of ex situ XRD pattern at the end of various charge-discharge scans. The strong insight obtained from this study could be beneficial to the design of new layered cathode materials for future rechargeable sodium-ion batteries. PMID:27320123

  19. Low-temperature specific heat of magnetic superconductors Dy0.6Y0.4Rh3.85Ru0.15B4 and Dy0.6Y0.4Rh4B4

    NASA Astrophysics Data System (ADS)

    Terekhov, A. V.; Zolochevskii, I. V.; Ishchenko, L. A.; Zaleski, A.; Khlybov, E. P.; Lachenkov, S. A.

    2016-03-01

    Specific heat CM(T) of polycrystalline Dy0.6Y0.4Rh4B4 and Dy0.6Y0.4Rh3.85Ru0.15B4 was studied in the temperature range of 0.5-9 K and magnetic fields 0-10 kOe for the first time. It was found that the λ-anomaly in the specific heat exists at Tc ≈ 6 K for Dy0.6Y0.4Rh4B4 and at Tc ≈ 6.6 K for Dy0.6Y0.4Rh3.85Ru0.15B4. It is suppressed in a magnetic field and shifted to lower temperatures. Partial substitution of Rh by Ru enhances superconductivity, presumably, due to stronger inner magnetism of the dysprosium sublattice in Dy0.6Y0.4Rh4B4 as compared with Dy0.6Y0.4Rh3.85Ru0.15B4. Furthermore, it was observed that the molar heat capacity CM(T) of Dy0.6Y0.4Rh3.85Ru0.15B4 increases with decreasing temperature for T < 4 K. In Dy0.6Y0.4Rh4B4, an increase in CM(T) with decreasing temperature is accompanied by the appearance of a maximum at Tmax = 1.5 K, which might be a manifestation of the magnetic phase transition in the dysprosium subsystem at this temperature.

  20. Unusual magnetoresistance in cubic B20 Fe0.85Co0.15Si chiral magnets

    NASA Astrophysics Data System (ADS)

    Huang, S. X.; Chen, Fei; Kang, Jian; Zang, Jiadong; Shu, G. J.; Chou, F. C.; Chien, C. L.

    2016-06-01

    The B20 chiral magnets with broken inversion symmetry and C4 rotation symmetry have attracted much attention. The broken inversion symmetry leads to the Dzyaloshinskii–Moriya that gives rise to the helical and Skyrmion states. We report the unusual magnetoresistance (MR) of B20 chiral magnet Fe0.85Co0.15Si that directly reveals the broken C4 rotation symmetry and shows the anisotropic scattering by Skyrmions with respect to the current directions. The intimacy between unusual MR and broken symmetry is well confirmed by theoretically studying an effective Hamiltonian with spin–orbit coupling. The unusual MR serves as a transport signature for the Skyrmion phase.

  1. [Effects of conservation tillage on the composition of soil exchangeable base].

    PubMed

    Hu, Ning; Lou, Yi-Lai; Zhang, Xiao-Ke; Liang, Wen-Ju; Liang, Lei

    2010-06-01

    Taking the soil in Zhangwu County of Liaoning Province as test object, a comparative study was made to understand the composition of soil exchangeable base under traditional tillage and 6-year conservation tillage (no-tillage plus straw mulch). Comparing with traditional tillage, conservation tillage increased the total amount of exchangeable base (SEB) and the contents of exchangeable K, Ca, and Mg in top (0-15 cm) soil, suggesting its positive effect in increasing soil nutrient holding capacity and buffering ability. This effect had a close relationship with the changes of soil organic matter and clay contents, according to correlation analysis. In addition, the K/SEB and Ca/Mg ratios were higher, while the (Ca+Mg)/SEB, Ca/K, and Mg/K ratios were lower under conservation tillage than under traditional tillage, illustrating that the effects of conservation tillage on soil exchangeable base were mainly presented in the relative enrichment of soil exchangeable Ca and K, especially K. Conservation tillage increased the stratification ratio (0-5 cm/5-15 cm and 0-5 cm/15-30 cm) of soil exchangeable K, Ca, and Mg, and SEB, suggesting the increase of the vertical variability of SEB in plough layer. PMID:20873625

  2. Remarkable magnetostructural coupling around the magnetic transition in CeCo0.85Fe0.15Si

    NASA Astrophysics Data System (ADS)

    Correa, V. F.; Betancourth, D.; Sereni, J. G.; Caroca Canales, N.; Geibel, C.

    2016-09-01

    We report a detailed study of the magnetic properties of CeCo0.85Fe0.15Si under high magnetic fields (up to 16 Tesla) measuring different physical properties such as specific heat, magnetization, electrical resistivity, thermal expansion and magnetostriction. CeCo0.85Fe0.15Si becomes antiferromagnetic at {{T}N}≈ 6.7 K. However, a broad tail (onset at {{T}X}≈ 13 K) in the specific heat precedes that second order transition. This tail is also observed in the temperature derivative of the resistivity. However, it is particularly noticeable in the thermal expansion coefficient where it takes the form of a large bump centered at T X . A high magnetic field practically washes out that tail in the resistivity. But surprisingly, the bump in the thermal expansion coefficient becomes a well pronounced peak fully split from the magnetic transition at T N . Concurrently, the magnetoresistance also switches from negative to positive above T N . The magnetostriction is considerable and irreversible at low temperature (\\frac{Δ L}{L}(16~T)∼ 4× {{10}-4} at 2 K) when the magnetic interactions dominate. A broad jump in the field dependence of the magnetostriction observed at low T may be the signature of a weak ongoing metamagnetic transition. Taking altogether the results indicate the importance of the lattice effects on the development of the magnetic order in these alloys.

  3. A 0.15-scale study of configuration effects on the aerodynamic interaction between main rotor and fuselage

    NASA Technical Reports Server (NTRS)

    Trept, Ted

    1984-01-01

    Hover and forward flight tests were conducted to investigate the mutual aerodynamic interaction between the main motor and fuselage of a conventional helicopter configuration. A 0.15-scale Model 222 two-bladed teetering rotor was combined with a 0.15-scale model of the NASA Ames 40x80-foot wind tunnel 1500 horsepower test stand fairing. Configuration effects were studied by modifying the fairing to simulate a typical helicopter forebody. Separation distance between rotor and body were also investigated. Rotor and fuselage force and moment as well as pressure data are presented in graphical and tabular format. Data was taken over a range of thrust coefficients from 0.002 to 0.007. In forward flight speed ratio was varied from 0.1 to 0.3 with shaft angle varying from +4 to -12 deg. The data show that the rotors effect on the fuselage may be considerably more important to total aircraft performance than the effect of the fuselage on the rotor.

  4. Remarkable magnetostructural coupling around the magnetic transition in CeCo0.85Fe0.15Si.

    PubMed

    Correa, V F; Betancourth, D; Sereni, J G; Caroca Canales, N; Geibel, C

    2016-09-01

    We report a detailed study of the magnetic properties of CeCo0.85Fe0.15Si under high magnetic fields (up to 16 Tesla) measuring different physical properties such as specific heat, magnetization, electrical resistivity, thermal expansion and magnetostriction. CeCo0.85Fe0.15Si becomes antiferromagnetic at [Formula: see text] K. However, a broad tail (onset at [Formula: see text] K) in the specific heat precedes that second order transition. This tail is also observed in the temperature derivative of the resistivity. However, it is particularly noticeable in the thermal expansion coefficient where it takes the form of a large bump centered at T X . A high magnetic field practically washes out that tail in the resistivity. But surprisingly, the bump in the thermal expansion coefficient becomes a well pronounced peak fully split from the magnetic transition at T N . Concurrently, the magnetoresistance also switches from negative to positive above T N . The magnetostriction is considerable and irreversible at low temperature ([Formula: see text] at 2 K) when the magnetic interactions dominate. A broad jump in the field dependence of the magnetostriction observed at low T may be the signature of a weak ongoing metamagnetic transition. Taking altogether the results indicate the importance of the lattice effects on the development of the magnetic order in these alloys. PMID:27357448

  5. An AlN/Al0.85Ga0.15N high electron mobility transistor

    NASA Astrophysics Data System (ADS)

    Baca, Albert G.; Armstrong, Andrew M.; Allerman, Andrew A.; Douglas, Erica A.; Sanchez, Carlos A.; King, Michael P.; Coltrin, Michael E.; Fortune, Torben R.; Kaplar, Robert J.

    2016-07-01

    An AlN barrier high electron mobility transistor (HEMT) based on the AlN/Al0.85Ga0.15N heterostructure was grown, fabricated, and electrically characterized, thereby extending the range of Al composition and bandgap for AlGaN channel HEMTs. An etch and regrowth procedure was implemented for source and drain contact formation. A breakdown voltage of 810 V was achieved without a gate insulator or field plate. Excellent gate leakage characteristics enabled a high Ion/Ioff current ratio greater than 107 and an excellent subthreshold slope of 75 mV/decade. A large Schottky barrier height of 1.74 eV contributed to these results. The room temperature voltage-dependent 3-terminal off-state drain current was adequately modeled with Frenkel-Poole emission.

  6. Unusual magnetoresistance in cubic B20 Fe0.85Co0.15Si chiral magnets

    DOE PAGESBeta

    Huang, S. X.; Chen, Fei; Kang, Jian; Zang, Jiadong; Shu, G. J.; Chou, F. C.; Chien, C. L.

    2016-06-24

    The B20 chiral magnets with broken inversion symmetry and C4 rotation symmetry have attracted much attention. The broken inversion symmetry leads to the Dzyaloshinskii–Moriya that gives rise to the helical and Skyrmion states.Wereport the unusual magnetoresistance (MR) of B20 chiral magnet Fe0.85Co0.15Si that directly reveals the broken C4 rotation symmetry and shows the anisotropic scattering by Skyrmions with respect to the current directions. The intimacy between unusual MR and broken symmetry is well confirmed by theoretically studying an effective Hamiltonian with spin–orbit coupling. In conclusion, the unusual MR serves as a transport signature for the Skyrmion phase.

  7. The ferroelectricity in perovskite K0.85Ba0.15TaO3+0.075 nanocrystallites

    NASA Astrophysics Data System (ADS)

    Shang, Mingyu; Xu, Chong; Chen, Yan; Ding, Qingfeng; Yuan, Hongming; Sun, Fengyue; Feng, Shouhua

    2015-08-01

    The perovskite K0.85Ba0.15TaO3+0.075 nanocrystallites have been synthesized by mild hydrothermal method for the first time. The powder X-ray diffraction analysis indicates that the crystallographic structure is a primitive cubic, space group Pm-3m with a unit cell edge a=4.00 Å. Heavily Ba doped in K-site was achieved in the perovskite structure with excess oxygen to balance the charge. The chemical substitution changes the crystal structure and electronic structure of KTaO3, which has an impact on its polarization property and induce a ferroelectric phase. The temperature-dependent dielectric response from 300 K to 600 K and hysteresis loop at 300 K provide direct evidence for the ferroelectric character. Its Curie temperature has been obtained from relative dielectric and thermal analysis (TC=460 K).

  8. Nonlinear structure-composition relationships in the Ge1-ySny/Si(100) (y<0.15) system

    DOE PAGESBeta

    Beeler, R.; Roucka, R.; Chizmeshya, A. V. G.; Kouvetakis, J.; Menéndez, J.

    2011-07-26

    The compositional dependence of the cubic lattice parameter in Ge1-ySny alloys has been revisited. Large 1000-atom supercell ab initio simulations confirm earlier theoretical predictions that indicate a positive quadratic deviation from Vegard's law, albeit with a somewhat smaller bowing coefficient, θ = 0.047 Å, than found from 64-atom cell simulations (θ = 0.063 Å). On the other hand, measurements from an extensive set of alloy samples with compositions y < 0.15 reveal a negative deviation from Vegard's law. The discrepancy with earlier experimental data, which supported the theoretical results, is traced back to an unexpected compositional dependence of the residualmore » strain after growth on Si substrates. The experimental bowing parameter for the relaxed lattice constant of the alloys is found to be θ = -0.066 Å. Possible reasons for the disagreement between theory and experiment are discussed in detail.« less

  9. Citrate-complexation synthesized Ce0.85Gd0.15O2-δ (GDC15) as solid electrolyte for intermediate temperature SOFC

    NASA Astrophysics Data System (ADS)

    Anjaneya, K. C.; Manjanna, J.; Nayaka, G. P.; Ashwin Kumar, V. M.; Govindaraj, G.; Ganesha, K. N.

    2014-08-01

    A typical Ce0.85Gd0.15O2-δ (GDC15) composition of CeO2-Gd2O3 system is synthesized by modified sol-gel technique known as citrate-complexation. TG-DTA, XRD, FT-IR, Raman, FE-SEM/EDX and ac-impedance analysis are carried out for structural and electrical characterization. XRD pattern confirmed the well crystalline cubic fluorite structure of GDC15 after calcining at 873 K. Raman spectral bands at 463, 550 and 600 cm-1 are also in agreement with these structural features. FE-SEM image shows well-defined grains separated from grain boundary and good densification. Ac-impedance studies reveal that GDC15 has oxide ionic conductivity similar to that reported for Ce0.9Gd0.1O2-δ (GDC10) and Ce0.8Gd0.2O2-δ (GDC20). Ionic and electronic transference numbers at 673 K are found to be 0.95 and 0.05, respectively. This indicates the possible application of GDC15 as a potential electrolyte for IT-SOFCs.

  10. Highly Reliable 0.15 μm/14 F2 Cell Ferroelectric Random Access Memory Capacitor Using SrRuO3 Buffer Layer

    NASA Astrophysics Data System (ADS)

    Heo, Jang‑Eun; Bae, Byoung‑Jae; Yoo, Dong‑Chul; Nam, Sang‑Don; Lim, Ji‑Eun; Im, Dong‑Hyun; Joo, Suk‑Ho; Jung, Yong‑Ju; Choi, Suk‑Hun; Park, Soon‑Oh; Kim, Hee‑Seok; Chung, U‑In; Moon, Joo‑Tae

    2006-04-01

    We investigated a novel technique of modifying the interface between a Pb(ZrxTi1-x)O3 (PZT) thin film and electrodes for high density 64 Mbit ferroelectric random access memory (FRAM) device. Using a SrRuO3 buffer layer, we successfully developed highly reliable 0.15 μm/14 F2 cell FRAM capacitors with 75-nm-thick polycrystalline PZT thin films. The SrRuO3 buffer layer greatly enhanced ferroelectric characteristics due to the decrease in interfacial defect density. In PZT capacitors with a total thickness of 180 nm for whole capacitor stack, a remnant polarization of approximately 42 μC/cm2 was measured with a 1.4 V operation. In addition, an opposite state remnant polarization loss of less than 15% was observed after baking at 150 °C for 100 h. In particular, we found that the SrRuO3 buffer layer also played a key role in inhibiting the diffusion of Pb and O from the PZT thin films.

  11. Wildfire effects on biological properties of soils in forest-steppe ecosystems of Russia

    NASA Astrophysics Data System (ADS)

    Maksimova, E.; Abakumov, E.

    2014-01-01

    Soils affected by forest wildfires in 2010 in Russia were studied on postfire and mature plots near the Togljatty city, Samara region. Soil biological properties and ash composition dynamics were investigated under the forest fire affect: a place of local forest fire, riding forest fire and unaffected site by fire-control (mature) during 3 yr of restoration. Soil samples were collected at 0-15 cm. Soil biological properties was measured by the fumigation method. The analytical data obtained shows that wildfires lead to serious changes in a soil profile and soil chemistry of upper horizons. Wildfires change a chemical composition of soil horizons and increase their ash-content. Fires lead to accumulation of biogenic elements' content (P and K) in the solum fine earth. Calcium content is increased as a result of fires that leads to an alkaline pH of the solum. The values of nutrients decreased as a result of leaching out with an atmospheric precipitation during the second year of restoration. Thus, when the upper horizons are burning the ash arriving on a soil surface enrich it with nutrients. The mature (unaffected by fire) soils is characterized by the greatest values of soil microbial biomass in the top horizon and, respectively, the bigger values of basal respiration whereas declining of the both parameters was revealed on postfire soils. Nevertheless this influence does not extend on depth more than 10 cm. Thus, fire affect on the soil were recognized in decreasing of microbiological activity.

  12. Sound velocities of bcc-Fe and Fe0.85Si0.15 alloy at high pressure and temperature

    NASA Astrophysics Data System (ADS)

    Liu, Jin; Lin, Jung-Fu; Alatas, Ahmet; Bi, Wenli

    2014-08-01

    Studying the velocity-density profiles of iron and iron-silicon alloy at high pressures and temperatures is critical for understanding the Earth’s core as well as the interiors of other planetary bodies. Here we have investigated the compressional wave velocity (VP) and density (ρ) profiles of polycrystalline bcc-Fe and Fe0.85Si0.15 alloy (8 wt.% Si) using in situ high-energy resolution inelastic X-ray scattering (HERIX) and synchrotron X-ray diffraction spectroscopies in an externally-heated diamond anvil cell (EHDAC) up to 15 GPa and 700 K. Based on the measured velocity-density (VP-ρ) and velocity-pressure (VP-P) relations of bcc-Fe at simultaneous high pressure and temperature (P-T) conditions, our results show a strong VP reduction at elevated temperatures at a constant density. Comparison of the VP-ρ profiles between the bcc-Fe and bcc-Fe0.85Si0.15 alloy indicates that the alloying effect of additional 8 wt.% Si on the VP-ρ relationship of bcc-Fe is predominant via a constant density decrease of approximately 0.6 g/cm3 (7%). Compared with the literature velocity results for bcc and hcp Fe-Si alloys, the bcc-Fe and Fe-Si alloys exhibit higher VP than their hcp phase counterparts at the given bcc-hcp transition pressures. Our results here strongly support the notion that high temperature has a strong effect on the VP of Fe and that the VP-ρ profile of Fe can be affected by structural and magnetic transitions. Analyses on literature elastic constants of the bcc Fe-Si alloys, as a function of P-T and Si content, show that the bcc phase displays extremely high VP anisotropy of 16-30% and VS splitting anisotropy of 40-90% at high temperatures, while the addition of Si further enhances the anisotropy. Due to the extremely high elastic anisotropy of the bcc Fe-Si alloy, a certain portion of the bcc Fe-Si alloy with the lattice-preferred orientation may produce VP and VS anisotropies to potentially account for the observed seismic anisotropy in the inner core.

  13. Assessment of soil biological quality index (QBS-ar) in different crop rotation systems in paddy soils

    NASA Astrophysics Data System (ADS)

    Nadimi-Goki, Mandana; Bini, Claudio; haefele, Stephan

    2013-04-01

    New methods, based on soil microarthropods for soil quality evaluation have been proposed by some Authors. Soil microarthropods demonstrated to respond sensitively to land management practices and to be correlated with beneficial soil functions. QBS Index (QBS-ar) is calculated on the basis of microarthropod groups present in a soil sample. Each biological form found in the sample receives a score from 1 to 20 (eco-morphological index, EMI), according to its adaptation to soil environment. The objective of this study was to evaluate the effect of various rotation systems and sampling periods on soil biological quality index, in paddy soils. For the purpose of this study surface soil samples (0-15 cm depth) were collected from different rotation systems (rice-rice-rice, soya-rice-rice, fallow-rice and pea-soya-rice) with three replications, and four sampling times in April (after field preparation), June (after seedling), August (after tillering stage) and October (after rice harvesting). The study area is located in paddy soils of Verona area, Northern Italy. Soil microarthropods from a total of 48 samples were extracted and classified according to the Biological Quality of Soil Index (QBS-ar) method. In addition soil moisture, Cumulative Soil Respiration and pH were measured in each site. More diversity of microarthropod groups was found in June and August sampling times. T-test results between different rotations did not show significant differences while the mean difference between rotation and different sampling times is statistically different. The highest QBS-ar value was found in the fallow-rice rotation in the forth soil sampling time. Similar value was found in soya-rice-rice rotation. Result of linear regression analysis indicated that there is significant correlation between QBS-ar values and Cumulative Soil Respiration. Keywords: soil biological quality index (QBS-ar), Crop Rotation System, paddy soils, Italy

  14. Serpentine Nanotubes in CM Chondrites

    NASA Technical Reports Server (NTRS)

    Zega, Thomas J.; Garvie, Laurence A. J.; Dodony, Istvan; Buseck, Peter R.

    2004-01-01

    The CM chondrites are primitive meteorites that formed during the early solar system. Although they retain much of their original physical character, their matrices and fine-grained rims (FGRs) sustained aqueous alteration early in their histories [1- 3]. Serpentine-group minerals are abundant products of such alteration, and information regarding their structures, compositions, and spatial relationships is important for determining the reactions that produced them and the conditions under which they formed. Our recent work on FGRs and matrices of the CM chondrites has revealed new information on the structures and compositions of serpentine-group minerals [4,5] and has provided insights into the evolution of these primitive meteorites. Here we report on serpentine nanotubes from the Mighei and Murchison CM chondrites [6].

  15. Variation of the lunar highland surface roughness at baseline 0.15-100 km and the relationship to relative age

    NASA Astrophysics Data System (ADS)

    Yokota, Y.; Gwinner, K.; Oberst, J.; Haruyama, J.; Matsunaga, T.; Morota, T.; Noda, H.; Araki, H.; Ohtake, M.; Yamamoto, S.; Gläser, P.; Ishihara, Y.; Honda, C.; Hirata, N.; Demura, H.

    2014-03-01

    We report the surface roughness analysis of the lunar highlands for the baseline range 0.15-100 km. We use the Median Differential Slope αm to investigate the scale dependency of the roughness and derive the global αm distribution from SELENE Laser Altimeter and Terrain Camera data. While αm(l) versus baseline l (km) plots vary among different highland types, all highlands commonly show a peak at 3-30 km. The Pre-Nectarian surface shows a relatively large αm(20-30 km). Our analysis is supported by the simulation of synthetic surface cratering models and crater statistics. In our simulation, a peak of αm(30 km) is successfully reproduced. The actual crater density shows good correlation with an empirical roughness indicator. However, a large part of the Nectarian surface shows a peak at 6-9 km baseline. This peak may be caused by secondary craters and ejecta deposit textures from the Nectarian system basins.

  16. Metal and nanoparticle occurrence in biosolid-amended soils.

    PubMed

    Yang, Yu; Wang, Yifei; Westerhoff, Paul; Hristovski, Kiril; Jin, Virginia L; Johnson, Mari-Vaughn V; Arnold, Jeffrey G

    2014-07-01

    Metals can accumulate in soils amended with biosolids in which metals have been concentrated during wastewater treatment. The goal of this study is to inspect agricultural sites with long-term biosolid application for a suite of regulated and unregulated metals, including some potentially present as commonly used engineered nanomaterials (ENMs). Sampling occurred in fields at a municipal and a privately operated biosolid recycling facilities in Texas. Depth profiles of various metals were developed for control soils without biosolid amendment and soils with different rates of biosolid application (6.6 to 74 dry tons per hectare per year) over 5 to 25 years. Regulated metals of known toxicity, including chromium, copper, cadmium, lead, and zinc, had higher concentrations in the upper layer of biosolid-amended soils (top 0-30 cm or 0-15 cm) than in control soils. The depth profiles of unregulated metals (antimony, hafnium, molybdenum, niobium, gold, silver, tantalum, tin, tungsten, and zirconium) indicate higher concentrations in the 0-30 cm soil increment than in the 70-100 cm soil increment, indicating low vertical mobility after entering the soils. Titanium-containing particles between 50 nm and 250 nm in diameter were identified in soil by transmission electron microscopy (TEM) coupled with energy dispersive x-ray spectroscopy (EDX) analysis. In conjunction with other studies, this research shows the potential for nanomaterials used in society that enter the sewer system to be removed at municipal biological wastewater treatment plants and accumulate in agricultural fields. The metal concentrations observed herein could be used as representative exposure levels for eco-toxicological studies in these soils. PMID:24742554

  17. 344 cm x 86 cm low mass vacuum window

    SciTech Connect

    Reimers, R.M.; Porter, J.; Meneghetti, J.; Wilde, S.; Miller, R.

    1983-08-01

    The LBL Heavy Ion Spectrometer System (HISS) superconducting magnet contains a 1 m x 3.45 m x 2 m vacuum tank in its gap. A full aperture thin window was needed to minimize background as the products of nuclear collisions move from upstream targets to downstream detectors. Six windows were built and tested in the development process. The final window's unsupported area is 3m/sup 2/ with a 25 cm inward deflection. The design consists of a .11 mm Nylon/aluminum/polypropylene laminate as a gas seal and .55 mm woven aramid fiber for strength. Total mass is 80 milligrams per cm/sup 2/. Development depended heavily on past experience and testing. Safety considerations are discussed.

  18. BACE0.85Y0.15O3-DELTA Based Materials for Inovative Monolithic Solid Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    Krezhov, Kiril; Vladikova, Daria

    2016-07-01

    Solid oxide fuel cells (SOFCs) offer a promising green technology of direct conversion of chemical energy of fuel into electricity. Among the families of metal oxides, which can be successfully used as electrodes (cathodes or anodes) in SOFC, certain members of the large family of transition-metal oxides with perovskite structure ABO _{3} were found very prospective to fulfil most of the features required for preparation of mixed ionic-electronic conductor (MIEC) oxide materials for SOFCs operated in the intermediate temperature range. In this regard Barium cerate with Y-substitution at the B-site (Ce site) is well known for excellent conduction capabilities in the temperature range 400-800 °C as a result from the proton motion in the crystal lattice. Doping with Y ^{3+} is very effective and the proton conductivity in BaCe _{1-x}Y _{x}O _{3-δ} increases with the increasing of the dopant concentration up to x =0.2. However, the phase behaviour of the composition BCY20 (x=0.20) is very complicated. Even at room temperature the crystalline structure remains contradictory because various structures of monoclinic, rhombohedral and orthorhombic symmetry are reported. The characterization of the chemical composition and stability, oxygen stoichiometry and cationic ratios of each synthesized phase is of great importance to understand the defect-chemistry that would govern the transport properties. We report on oxygen-deficient BaCe _{0.85}Y _{0.15}O _{3-δ} (BCY15) perovskites prepared by auto-combustion with following calcination at high temperature. The structural details of powder, dense and porous samples of materials based on BCY15 were investigated from full profile analysis of neutron and x-ray diffraction patterns. The materials were used recently as cathode, anode and central membrane in an innovative monolithic design of SOFC.

  19. Measurements of soil and canopy exchange rates in the Amazon rain forest using 222Rn

    NASA Astrophysics Data System (ADS)

    Trumbore, S. E.; Keller, M.; Wofsy, S. C.; da Costa, J. M.

    1990-09-01

    Measurements of the emission of 222Rn from Amazon forest soils, and profiles of 222Rn in air were used to study the ventilation of the soil atmosphere and the nocturnal forest canopy. The emission of 222Rn from the yellow clay soils dominant in the study area averaged 0.38±0.07 atom cm-2 s-1. Nearby sand soils had similar fluxes, averaging 0.30 ± 0.07 atom cm-2 s-1. The effective diffusivity in the clay soil (0.008±0.004 cm2 s-1), was lower than that for the sand soil (0.033±0.030 cm2 s-1). Profiles of 222Rn and CO2 in air showed steepest concentration gradients in the layer between 0 and 3 m above the soil surface. Aerodynamic resistances calculated for this layer from 222Rn and CO2 varied from 1.6 to 18 s cm-1, with greater resistance during the afternoon than at night. Time averaged profiles of 222Rn in the forest canopy measured during the evening and night were combined with the soil flux measurements to compute the resistance of the subcanopy to exchange with overlying air. The integrated nocturnal rate of gas exchange between the canopy layer (0 to 41 m) and overlying atmosphere based on 222Rn averaged 0.33±0.15 cm s-1. An independent estimate of gas exchange, based on 13 nights of CO2 profiles, averaged 0.21±0.40 cm s-1. These exchange rates correspond to flushing times for the 41 m canopy layer of 3.4 and 5.5 hours, respectively. Comparison of 222Rn and CO2 profiles show that the nocturnal production of CO2 by above-ground vegetation was about 20% of the soil emission source, consistent with data from eddy-correlation experiments (Fan et al., this issue).

  20. AMR on the CM-2

    NASA Technical Reports Server (NTRS)

    Berger, Marsha J.; Saltzman, Jeff S.

    1992-01-01

    We describe the development of a structured adaptive mesh algorithm (AMR) for the Connection Machine-2 (CM-2). We develop a data layout scheme that preserves locality even for communication between fine and coarse grids. On 8K of a 32K machine we achieve performance slightly less than 1 CPU of the Cray Y-MP. We apply our algorithm to an inviscid compressible flow problem.

  1. Residues of endosulfan in surface and subsurface agricultural soil and its bioremediation.

    PubMed

    Odukkathil, Greeshma; Vasudevan, Namasivayam

    2016-01-01

    The persistence of many hydrophobic pesticides has been reported by various workers in various soil environments and its bioremediation is a major concern due to less bioavailability. In the present study, the pesticide residues in the surface and subsurface soil in an area of intense agricultural activity in Pakkam Village of Thiruvallur District, Tamilnadu, India, and its bioremediation using a novel bacterial consortium was investigated. Surface (0-15 cm) and subsurface soils (15-30 cm and 30-40 cm) were sampled, and pesticides in different layers of the soil were analyzed. Alpha endosulfan and beta endosulfan concentrations ranged from 1.42 to 3.4 mg/g and 1.28-3.1 mg/g in the surface soil, 0.6-1.4 mg/g and 0.3-0.6 mg/g in the subsurface soil (15-30 cm), and 0.9-1.5 mg/g and 0.34-1.3 mg/g in the subsurface soil (30-40 cm) respectively. Residues of other persistent pesticides were also detected in minor concentrations. These soil layers were subjected to bioremediation using a novel bacterial consortium under a simulated soil profile condition in a soil reactor. The complete removal of alpha and beta endosulfan was observed over 25 days. Residues of endosulfate were also detected during bioremediation, which was subsequently degraded on the 30th day. This study revealed the existence of endosulfan in the surface and subsurface soils and also proved that the removal of such a ubiquitous pesticide in the surface and subsurface environment can be achieved in the field by bioaugumenting a biosurfactant-producing bacterial consortium that degrades pesticides. PMID:26413801

  2. Transparent magnetic state in single crystal Nd(1.85)Ce(0.15)CuO(4-y) superconductors

    NASA Technical Reports Server (NTRS)

    Zuo, F.

    1995-01-01

    Several experimental studies have been reported as evidence of Josephson coupling between the superconducting layers in the highly anisotropic oxide such as the Bi2Sr2CaCu2O8 and Tl2Ba2CuO6 systems. These include the large penetration depth of 100 mu m measured, ac and dc Josephson effects. Recently two critical temperatures corresponding to Josephson coupling in between the layers and the Berezinskii-Kosterlitz-Thouless transition in the ab-plane have been directly observed in the transport measurements. If the field is applied parallel to the superconducting layers, the magnetic excitation is not the conventional Abrikosov vortices, but the Josephson vortices which extend lambda(sub ab) in the c-axis direction and lambda(sub J) = gamma s in the plane (s is the interlayer distance, gamma is the anisotropy constant). Because of the weak screening effect associated with the Josephson vortices, there have been predictions of magnetic transparent states at magnetic field above a characteristic field H(sub J), a behavior distinctively different from that of the type-II superconductors. In this paper, we report an experimental result which illustrates a transition from the Meissner state to the magnetic transparent state in single crystal of Nd(1.85)Ce(0.15)CuO(4-y). Magnetization has been measured as a function of temperature and field in the magnetic field parallel or close to ab-plane geometry. For a fixed magnetic field, the magnetization shows a two-step transition in M(T); for a fixed temperature, the magnetization shows an abrupt change to almost zero value above a characteristic field H(sub J), an indication of magnetic transparent state. The data of magnetization as a function of field clearly deviates from the behavior predicted by the Abrikosov theory for type-II superconductors. Instead, the data fit well into the picture of Josephson decoupling between the CuO2 layers.

  3. Rooting Dynamics and Soil Water Variation of Native Shrubs

    NASA Astrophysics Data System (ADS)

    Kizito, A.; Dragila, M. I.; Sene, M.; Dick, R.

    2003-12-01

    Understanding the relationships that exist in the soil-plant-atmosphere continuum in semi-arid areas presents particular challenges, requiring accurate quantification of soil water with depth, a highly variable and limiting parameter in these vulnerable ecosystems. Two sites in the Peanut Basin of Senegal were selected to study rooting patterns of native shrubs and the corresponding variation of water distribution within the soil profile in both the dry and wet season. During dry periods or dry spells in the wet season, soil moisture content (θ v) surrounding the shrub's shallow roots is substantially moister than the adjacent soil matrix. It is therefore hypothesized, that nearing a condition of water stress, shrubs may participate in redistribution of soil water, effectively changing their own environment and enhancing their survival as well as that of neighboring annual crops. A possible region of water redistribution is interpreted to be between 15-75 cm depth, with the upper 0-15 cm remaining typically dry (θ v < 1 m3m-3) and forming a self mulching mechanism protecting lower horizons from the intense evaporation, and the lower 75 to 105 cm depth acting as a "moist reservoir" (θ v ˜ 6 m3m-3). We investigated shrub root depths, distribution, size, density and gravimetric soil water variation at 15 cm depth increments to 110 cm, and at 10 cm lateral spread increments to 200 cm from each shrub trunk. Shrubs exhibited a complex heterogeneous rooting system with approximately 50% of the root biomass occurring in the upper 30 cm and 95% in the upper 110 cm. Root study and soil moisture results are used to select optimal sensor placement in relation to shrub root depth and lateral spread extent. Monitoring is continuing for soil water and tension variation with sensors concentrated between 15 and 75 cm. Accurate quantitative data on the vertical and horizontal distribution of roots permits us to estimate how shrubs may alter water use by annual crops and modify

  4. CARBON SEQUESTRATION IN RECLAIMED MINED SOILS OF OHIO

    SciTech Connect

    M.K. Shukla; R. Lal

    2004-07-01

    This research project is aimed at assessing the soil organic carbon (SOC) sequestration potential of reclaimed minesoils (RMS). The experimental sites, owned and maintained by the American Electrical Power, are located in Guernsey, Morgan, Noble, and Muskingum Counties of Ohio. These sites, characterized by age chronosequences, were reclaimed with and without topsoil application and are under continuous grass or forest cover. During this quarter, bulk and core soil samples were collected from all 13 experimental sites for 0-15 cm, 15-30 cm, and 30-50 cm depths. In addition, 54 experimental plots (4 x 4 m) were established at three separate locations on reclaimed minesites to assess the influence of compost application on SOC during project period 2. This report presents the results from two sites reclaimed during 1978. The first site is under grass and the other under forest cover. The soil bulk density ({rho}{sub b}), SOC, total nitrogen (TN) concentrations and stocks were determined for these two sites on a 20 x 20 m grid. The preliminary analysis showed that the {rho}{sub b} ranged from 0.88 Mg m{sup -3} to 1.16 Mg m{sup -3} for 0-15 cm, 0.91 Mg m{sup -3} to 1.32 Mg m{sup -3} for 15-30 cm, and 1.37 Mg m{sup -3} to 1.93 Mg m{sup -3} for 30-50 cm depths in Cumberland tree site, and it's statistical variability was low. The variability in {rho}{sub b} was also low in Wilds grass site and ranged from 0.82 Mg m{sup -3} to 1.18 Mg m{sup -3} for 0-15 cm, 1.04 Mg m{sup -3} to 1.37 Mg m{sup -3} for 15-30 cm, and 1.18 Mg m{sup -3} to 1.83 Mg m{sup -3} for 30-50 cm depths. The {rho}{sub b} showed strong spatial dependence for 0-15 cm depth only in the Cumberland tree site. The SOC concentrations and stocks were highly variable with CV > 0.36 from all depths in both Wilds grass site and Cumberland tree site. The SOC stocks showed strong spatial dependence for 0-15 cm and 15-30 cm depths and moderate to strong for 20-50 cm depth in the Cumberland tree site. In contrast, in

  5. Cardiovascular rhythms in the 0.15-Hz band: common origin of identical phenomena in man and dog in the reticular formation of the brain stem?

    PubMed

    Perlitz, Volker; Lambertz, Manfred; Cotuk, Birol; Grebe, Reinhard; Vandenhouten, Ralf; Flatten, Guido; Petzold, Ernst Richard; Schmid-Schönbein, Holger; Langhorst, Peter

    2004-09-01

    Selected examples from experiments in humans and dogs with time series of reticular neurons, respiration, arterial blood pressure and cutaneous forehead blood content fluctuations were analysed using multiscaled time-frequency distribution, post-event-scan and pointwise transinformation. We found in both experiments a "0.15-Hz rhythm" exhibiting periods of spindle waves (increasing and decreasing amplitudes), phase synchronized with respiration at 1:2 and 1:1 integer number ratios. At times of wave-epochs and n:m phase synchronization, the 0.15-Hz rhythm appeared in heart rate and arterial blood pressure. As phase synchronization of the 0.15-Hz rhythm with respiration was established at a 1:1 integer number ratio, all cardiovascular-respiratory oscillations were synchronized at 0.15 Hz. Analysis of a canine experiment supplied evidence that the emergence of the 0.15-Hz rhythm and n:m phase synchronization appears to result from a decline in the level of the general activity of the organism associated with a decline in the level of activity of reticular neurons in the lower brainstem network. These findings corroborate the notion of the 0.15-Hz rhythm as a marker of the "trophotropic mode of operation" first introduced by W.R. Hess. PMID:15138824

  6. Optical Characterization and 2,525 micron Lasing of Cr(2+):Cd(0.85)Mn(0.15)Te

    NASA Technical Reports Server (NTRS)

    Davis, V. R.; Wu, X.; Hoemmerich, U.; Trivedi, S. B.; Grasza, K.; Yu, Z.

    1997-01-01

    static acentric electric crystal field or the coupling of asymmetric phonons can force electric-dipole transitions by the admixture of wave functions with opposite parity. Tetrahedral sites lack inversion symmetry which provides the odd-parity field necessary to relax the parity selection rule. Therefore, high absorption and emission cross sections are observed. An enhanced radiative emission rate is also expected to reduce the detrimental effect of non-radiative decay. Motivated by the initial results on Cr doped ZnS and ZnSe, we have started a comprehensive effort to study Cr(2+) doped II-VI semiconductors for solid-state laser applications. In this paper we present the optical properties and the demonstration of mid-infrared lasing from Cr doped Cd(0.85)Mn(0.15)Te.

  7. Consistent proportional increments in responses of belowground net primary productivity to long-term warming and clipping at various soil depths in a tallgrass prairie.

    PubMed

    Xu, Xia; Luo, Yiqi; Shi, Zheng; Zhou, Xuhui; Li, Dejun

    2014-03-01

    Root distribution patterns in soil are critical to understanding the interactions between climate and vegetation. However, it is not clear how climate change and land use practices affect belowground net primary productivity (BNPP) at various soil depths. In order to explore the effects of warming and clipping on root-distribution patterns along soil profile (0-15, 15-30, and 30-45 cm), we conducted a field experiment from 2005 to 2010 in a tallgrass prairie. We used infrared heaters to elevate soil temperature by approximately 2 °C and annual clipping to mimic hay harvest. Results showed that roots were not evenly distributed through the soil profile. On average across treatments and years, 53 and 83% of the BNPP to 45 cm was distributed in the top 15- and 30-cm soil layers, respectively. Warming- and clipping-induced increases in BNPP were distributed to different soil depths at the proportions similar to those of BNPP. The proportional distribution of BNPP at various soil depths to total BNPP (0-45 cm) was little affected by warming, clipping, and their interactions, resulting in non-significant changes in the distribution of BNPP through the soil profile. These findings suggest that the proportionally vertical distribution of BNPP may remain stable even when the amount of BNPP changes simultaneously in response to climate change and land use practices. PMID:24241643

  8. Thermoelectric Properties of Cu-Doped n-Type Bi2Te2.85Se0.15 Prepared by Liquid Phase Growth Using a Sliding Boat

    NASA Astrophysics Data System (ADS)

    Kitagawa, Hiroyuki; Matsuura, Tsukasa; Kato, Toshihito; Kamata, Kin-ya

    2015-06-01

    N-type Bi2Te2.85Se0.15 thermoelectric materials were prepared by liquid phase growth (LPG) using a sliding boat, a simple and short fabrication process for Bi2Te3-related materials. Cu was selected as a donor dopant, and its effect on thermoelectric properties was investigated. Thick sheets and bars of Cu x Bi2 Te2.85Se0.15 ( x=0-0.25) of 1-2mm in thickness were obtained using the process. X-ray diffraction patterns and scanning electron micrographs showed that the in-plane direction tended to correspond to the hexagonal c-plane, which is the preferred direction for thermoelectric conversion. Cu-doping was effective in controlling conduction type and carrier (electron) concentration. The conduction type was p-type for undoped Bi2Te2.85Se0.15 and became n-type after Cu-doping. The Hall carrier concentration was increased by Cu-doping. Small resistivity was achieved in Cu0.02Bi2Te2.85Se0.15 owing to an optimized amount of Cu-doping and high crystal orientation. As a result, the maximum power factor near 310K for Cu0.02Bi2Te2.85Se0.15 was approximately 4×10-3W/K2m and had good reproducibility. Furthermore, the thermal stability of Cu0.02Bi2Te2.85Se0.15 was also confirmed by thermal cycling measurements of electrical resistivity. Thus, n-type Bi2Te2.85Se0.15 with a large power factor was prepared using the present LPG process.

  9. Tracing copper derived from pig manure in calcareous soils and soil leachates by 65Cu labeling.

    PubMed

    Ostermann, Anne; He, Yao; Siemens, Jan; Welp, Gerhard; Heuser, Alexander; Wombacher, Frank; Münker, Carsten; Xue, Qiaoyun; Lin, Xianyong; Amelung, Wulf

    2015-04-01

    Copper is used as a growth promoter in animal husbandry, resulting in high Cu concentrations in animal manure. We tested whether Cu would be mobilized in soils receiving excessive loads of manure, both from recently added and from aged fractions. To discriminate between these Cu sources, manure was labeled with (65)Cu. After soil application of 0, 15, and 30 Mg manure ha(-1), leachate was collected in free-draining lysimeters (40 cm depth) under undisturbed soil over a 53 day period. Determining the total amounts of Cu and the fractions of (65)Cu in leachate and the soil profile enabled us to trace the translocation of Cu derived from labeled manure. More than 84% of the applied Cu was retained in the top 2 cm of soil. Less than 0.01% of the applied Cu was detected overall in the leachate. Of this amount, however, 38% (± 8.9 SE) was leached within 8 days after application. The total Cu concentration in leachates (32-164 μg L(-1)) frequently exceeded the Chinese groundwater quality standard of 50 μg L(-1). The added (65)Cu, however, accounted for less than 3.6% of the total Cu leaching load, suggesting that Cu from older sources and/or geological background controls contamination, regardless of current land management. PMID:25742507

  10. Effects of soil depth on the dynamics of selected soil properties among the highlands resources of Northeast Wollega, Ethiopia: are these sign of degradation?

    NASA Astrophysics Data System (ADS)

    Adugna, A.; Abegaz, A.

    2015-07-01

    This study was conducted with an aim to analyze the spatial variability of soil properties with depth under four prominent land use patterns viz., forestland, grazing land, cultivated land and bush land of Northeast Wollega. Soil samples were collected from the land uses at two depths (0-15 and 15-30 cm) in replicates and totally 40 composite soil samples were collected. Statistical analysis revealed significant variation in soil properties with along the selected land uses. Topsoil layer had significantly greater OM, TN, AP, sand, silt, Mg2+, K+ and Mg2+ concentrations than the subsoil layers. However, clay under all land uses and CEC under bush land and grazing land revealed reverse trends. Organic matter and CEC have stronger correlations with most of soil properties in the topsoil than in the subsoil while clay has no significant correlation with selected soil properties except with sand fraction in the sampled depths. Hence, the correlation among the selected soil properties also varies with soil depth. In general, the spatial variability of soil properties indicates that they were strongly affected by external factors (agricultural treatments and soil management practices) and internal factors (soil type and depth).

  11. Dielectric and ferroelectric properties of Ba(Sn{sub 0.15}Ti{sub 0.85})O{sub 3} thin films grown by a sol-gel process

    SciTech Connect

    Zhai Jiwei; Shen Bo; Yao Xi; Zhang Liangying

    2004-09-01

    Ferroelectric Ba(Sn{sub 0.15}Ti{sub 0.85})O{sub 3} (BTS) thin films were deposited on LaNiO{sub 3}-coated silicon substrates via a sol-gel process. Films showed a strong (1 0 0) preferred orientation depending upon annealing temperature and concentration of the precursor solution. The dependence of dielectric and ferroelectric properties on film orientation has been studied. The leakage current density of thin films at 100 kV/cm was 7 x 10{sup -7} A/cm{sup 2} and 5 x 10{sup -5} A/cm{sup 2} and their capacitor tunability was 54 and 25% at an applied field of 200 kV/cm (measurement frequency of 1 MHz) for the thin films deposited with 0.1 and 0.4 M spin-on solution, respectively. This work clearly reveals the highly promising potential of BTS compared with BST films for application in tunable microwave devices.

  12. GaP ring-like nanostructures on GaAs (100) with In{sub 0.15}Ga{sub 0.85}As compensation layers

    SciTech Connect

    Prongjit, Patchareewan Pankaow, Naraporn Boonpeng, Poonyasiri Thainoi, Supachok Panyakeow, Somsak Ratanathammaphan, Somchai

    2013-12-04

    We present the fabrication of GaP ring-like nanostructures on GaAs (100) substrates with inserted In{sub 0.15}Ga{sub 0.85}As compensation layers. The samples are grown by droplet epitaxy using solid-source molecular beam epitaxy. The dependency of nanostructural and optical properties of GaP nanostructures on In{sub 0.15}Ga{sub 0.85}As layer thickness is investigated by ex-situ atomic force microscope (AFM) and photoluminescence (PL). It is found that the characteristics of GaP ring-like structures on GaAs strongly depend on the In{sub 0.15}Ga{sub 0.85}As layer thickness.

  13. Monitoring of soil water storage along elevation transech on morphological diverse study-sites affected by soil erosion

    NASA Astrophysics Data System (ADS)

    Jaksik, Ondrej; Kodesova, Radka; Nikodem, Antonin; Fer, Miroslav; Klement, Ales; Kratina, Josef

    2015-04-01

    Soil water availability is one of the key factors determining plant growth. Spatial distribution of soil water content is influenced by many factors. For the field-scale, one of the most important factors is terrain and its shape. The goal of our study was to characterize soil water storage within the soil profile with respect to terrain attributes. Two morphologically diverse study sites were chosen, in order to monitor soil water storage during vegetation season. The first site Brumovice in located in the Southern Moravian Region. The original soil unit was Haplic Chernozem developed on loess, which was gradually degraded by soil erosion. In the steepest parts, due to substantial loss of soil material, soil is transformed to Regosol. As a result of consequently sedimentation of previously eroded material in toe slopes and terrain depressions colluvial soils are formed. The second site Vidim is placed in the Central Bohemia. Dominant soil unit in wider area is Haplic Luvisol on loess loam. Similar process of progressive soil transformation was identified. On each study site, two elevation transects were delimited, where each consists of 5 monitoring spots. Access tubes were installed in order to measure soil moisture in six different depths (10, 20, 30 40, 60 a 100 cm) using Profile Probe PR2. The monitoring was conducted during vegetation season: April - July 2012 in Brumovice and May - July 2013 in Vidim. The average soil water contents were calculated for following three layers: topsoil A (0-20 cm), subsoil B (20-40cm), and substrate (40-100cm). The soil water storage within the soil profile was also expressed. Sensors TMS3 were also used for continual soil water content monitoring in the depth of 0-15 cm. In addition undisturbed soil samples were taken from topsoil to measure soil hydraulic properties using the multistep outflow experiment. Data were used to assess retention ability of erosion affected soils. The soil water storage and particularly average

  14. Rock fragments induce patchy distribution of soil water repellency in burned soils

    NASA Astrophysics Data System (ADS)

    Gordillo-Rivero, Ángel; García-Moreno, Jorge; Bárcenas-Moreno, Gema; Jiménez-Morillo, Nicasio T.; Mataix-Solera, Jorge; Jordán, Antonio; Zavala, Lorena M.

    2013-04-01

    Forest fires are recurrent phenomena in the Mediterranean area and are one of the main causes of changes in the Mediterranean ecosystems, increasing the risk of soil erosion and desertification. Fire is an important agent which can induce important changes in the chemical and physical characteristics of soils. During wildfires, only a small part of the heat generated is transmitted to the first centimetres of the soil profile. The intensity of the changes produced in the physical and chemical characteristics of the soil depends on the temperatures reached at different soil depths, the time of residence of temperature peaks, and the stability of the different soil components. One of the soil physical properties strongly affected by fire is soil water repellency (WR). Depending on temperature, time of heating, type of soil and fuel, fire can induce, enhance or destroy soil WR. Soil WR is a key factor in controlling soil hydrology and water availability in burnt soils together with other factors as texture or aggregation. Although the occurrence and consequences of fire-induced soil WR have been deeply studied, some gaps still exist, as the influence of rock fragment cover during burning. During combustion of litter and aerial biomass, the soil surface under rock fragments is heated and reachs temperature peaks after a certain delay respect to exposed areas. In contrast, temperature peaks are longer, increasing the time of residence of high temperature. In consequence, rock fragments may change the expected spatial distribution of soil WR. Up to date, very scarce research concerns the effect of rock fragments at the soil surface on the fire-induced pattern of soil water repellency. METHODS Two experiments were carried out in this research. In the first case, an experiment was conducted in an experimental farm in Sevilla (southern Spain). The effect of a low severity prescribed fire was studied in soil plots under different rock fragment covers (0, 15, 30, 45 and 60

  15. Strain-relaxation and critical thickness of epitaxial La1.85Sr0.15CuO4 films

    DOE PAGESBeta

    Meyer, Tricia L; Jiang, Lu; Park, Sungkyun; Egami, Takeshi; Lee, Ho Nyung

    2015-12-08

    We report the thickness-dependent strain-relaxation behavior and the associated impacts upon the superconductivity in epitaxial La1.85Sr0.15CuO4 films grown on different substrates, which provide a range of strain. We have found that the critical thickness for the onset of superconductivity in La1.85Sr0.15CuO4 films is associated with the finite thickness effect and epitaxial strain. In particular, thin films with tensile strain greater than ~0.25% revealed no superconductivity. We attribute this phenomenon to the inherent formation of oxygen vacancies that can be minimized via strain relaxation.

  16. Effects of NiO on the conductivity of Ce0.85Sm0.15O1.925 and on electrochemical properties of the cathode/electrolyte interface

    NASA Astrophysics Data System (ADS)

    Wang, Haopeng; Liu, Xiaomei; Bi, Hailin; Yu, Shenglong; Han, Fei; Sun, Jialing; Zhu, Lili; Yu, Huamin; Pei, Li

    2016-07-01

    Ce0.85Sm0.15O1.925 (SDC) and Ce0.85Sm0.15O1.925-0.5 at.% NiO (SDCN) are investigated as electrolytes for solid oxide fuel cells (SOFCs). Impedance spectroscopy measurements reveal that the grain boundary resistance can be significantly reduced by adding 0.5 at.% NiO to SDC. Symmetric cells of the BaCo0.7Fe0.2Nb0.1O3-δ (BCFN) electrode on SDC and SDCN electrolytes are fabricated and the electrochemical properties of the electrode/electrolyte interface are investigated. The polarization resistance of the BCFN electrode on the SDCN electrolyte is much lower than that of the BCFN electrode on the SDC electrolyte, mainly because of the increase in the electrolyte conductivity and the decrease in the Si content at the electrode/electrolyte interface. NiO is able to restrict the diffusion of the siliceous impurity from the electrolyte to the electrode/electrolyte interface. Single cells based on SDC and SDCN electrolytes are fabricated using Ni0.9Cu0.1Ox-SDC as the anode and BCFN as the cathode. At 800 °C, the maximum power density of the SDCN-based cell is 0.745 W cm-2, which is much higher than that of the SDC-based cell.

  17. Dynamic in situ observations of electrical and structural changes in thin thermoelectric (Bi{sub 0.15}Sb{sub 0.85}){sub 2}Te{sub 3} films

    SciTech Connect

    Bertram, Katrin; Stordeur, Matthias; Heyroth, Frank; Leipner, Hartmut S.

    2009-09-15

    Thin films of (Bi{sub 0.15}Sb{sub 0.85}){sub 2}Te{sub 3} were prepared by dc magnetron sputter deposition on different substrates. It is well known that thermal treatment of as-deposited p-type (Bi{sub 0.15}Sb{sub 0.85}){sub 2}Te{sub 3} films leads to an enhancement of the power factor. Whereas up to now only the initial (as deposited) and the final (after annealing) film stages have been investigated, here, the dynamic changes of sputter-deposited film properties have been observed by in situ measurements. The enhancement of the power factor shows a significant dependence on thermal treatment. The best thermoelectric films have been prepared at a substrate temperature of 170 deg. C, with a power factor of 24.4 muW/(cm K{sup 2}). The changes in the Seebeck and Hall coefficients are caused by the enhancement in the Hall mobility after annealing. In situ x-ray diffractometry shows the generation of additional Te in dependence of the temperature. This is also confirmed by energy-dispersive x-ray microanalysis and the corresponding mapping in a scanning electron microscope. It is supposed that the locally well-defined Te enrichment is the reason for the improvement in the integral film transport properties.

  18. From 20cm to 1.5m: Is Digging Deeper Necessary?

    NASA Astrophysics Data System (ADS)

    Fissore, C.; Nater, E. A.; Dalzell, B. J.; Kolka, R.; Perry, C.

    2011-12-01

    Quantification of belowground carbon (C) currently stored in forest ecosystems is far from complete, especially for deeper soil horizons. Given logistical difficulties of sampling deep soils over large areas, much attention has been given to estimate deep SOC stocks indirectly. It is unknown whether C content in the top 20 cm of the mineral soil is an effective index for deep soil C storage across broad ranges of climate, forest type, and soil characteristics. The US Forest Service has a large record of aboveground and belowground (up to 20 cm depth) C data that could potentially be used to quantify deep SOC stocks if a suitable indirect estimation method can be developed. We followed and extended USDA FS Forest Inventory Analysis protocols to sample forest sites in the Midwest U.S. to determine C content up to 1.5m depth over a range of forest and soil types. Preliminary results show that, at hardwood sites, C percent in the top 20 cm of the mineral soil predicted only 28% of deep soil C in sandy soils and 20% in loamy soils. On a mass basis (mg C/cm3), such relationship was even weaker, suggesting that a number of biophysical variables affect SOC storage along the soil profile. Ongoing analyses will identify whether including additional factors such as forest type and soil chemical-physical characteristics will strengthen this relationship. The use of fractionation techniques and stable and radioactive isotopes will help illustrate SOC stabilization mechanisms.

  19. Interannual variations of soil organic carbon fractions in unmanaged volcanic soils (Canary Islands, Spain).

    PubMed

    Armas-Herrera, Cecilia María; Mora, Juan Luis; Arbelo, Carmen Dolores; Rodríguez-Rodríguez, Antonio

    2012-10-01

    The stability over time of the organic C stocked in soils under undisturbed ecosystems is poorly studied, despite being suitable for detecting changes related to climate fluctuations and global warming. Volcanic soils often show high organic C contents due to the stabilization of organic matter by short-range ordered minerals or Al-humus complexes. We investigated the dynamics of different organic C fractions in volcanic soils of protected natural ecosystems of the Canary Islands (Spain) to evaluate the stability of their C pools. The study was carried out in 10 plots, including both undisturbed and formerly disturbed ecosystems, over two annual periods. C inputs to (litterfall) and outputs from (respiration) the soil, root C stocks (0-30 cm), soil organic C (SOC) fractions belonging to C pools with different degrees of biogeochemical stability -total oxidisable C (TOC), microbial biomass C (MBC), water soluble C (WSC), hot-water extractable C (HWC), humic C (HSC), - and total soil N (TN) (at 0-15 and 15-30 cm) were measured seasonally.A statistically significant interannual increase in CO(2) emissions and a decrease in the SOC, mainly at the expense of the most labile organic forms, were observed, while the root C stocks and litterfall inputs remained relatively constant over the study period. The observed changes may reflect an initial increase in SOC resulting from low soil respiration rates due to drought during the first year of study. The soils of nearly mature ecosystems were more apparently affected by C losses, while those undergoing the process of active natural regeneration exhibited disguised C loss because of the C sequestration trend that is characteristic of progressive ecological succession. PMID:23145325

  20. In situ separation of root hydraulic redistribution of soil water from liquid and vapor transport.

    PubMed

    Warren, Jeffrey M; Brooks, J Renée; Dragila, Maria I; Meinzer, Frederick C

    2011-08-01

    Nocturnal increases in water potential (ψ) and water content (θ) in the upper soil profile are often attributed to root water efflux, a process termed hydraulic redistribution (HR). However, unsaturated liquid or vapor flux of water between soil layers independent of roots also contributes to the daily recovery in θ (Δθ), confounding efforts to determine the actual magnitude of HR. We estimated liquid (J(l)) and vapor (J(v)) soil water fluxes and their impacts on quantifying HR in a seasonally dry ponderosa pine (Pinus ponderosa) forest by applying existing datasets of ψ, θ and temperature (T) to soil water transport equations. As soil drying progressed, unsaturated hydraulic conductivity declined rapidly such that J (l) was irrelevant (<2E-05 mm h(-1) at 0-60 cm depths) to total water flux by early August. Vapor flux was estimated to be the highest in upper soil (0-15 cm), driven by large T fluctuations, and confounded the role of HR, if any, in nocturnal θ dynamics. Within the 15-35 cm layer, J(v) contributed up to 40% of hourly increases in nocturnal soil moisture. While both HR and net soil water flux between adjacent layers contribute to θ in the 15-65 cm soil layer, HR was the dominant process and accounted for at least 80% of the daily recovery in θ. The absolute magnitude of HR is not easily quantified, yet total diurnal fluctuations in upper soil water content can be quantified and modeled, and remain highly applicable for establishing the magnitude and temporal dynamics of total ecosystem water flux. PMID:21400193

  1. Effects of land use changes on the dynamics of selected soil properties in northeast Wellega, Ethiopia

    NASA Astrophysics Data System (ADS)

    Adugna, Alemayehu; Abegaz, Assefa

    2016-02-01

    Land use change can have negative or positive effects on soil quality. Our objective was to assess the effects of land uses changes on the dynamics of selected soil physical and chemical properties. Soil samples were collected from three adjacent soil plots under different land uses, namely forestland, grazing land, and cultivated land at 0-15 cm depth. Changes in soil properties on cultivated and grazing land were computed and compared to forestland, and ANOVA (analysis of variance) was used to test the significance of the changes. Sand and silt proportions, soil organic content, total nitrogen content, acidity, cation exchange capacity, and exchangeable Ca2+ content were higher in forestlands. Exchangeable Mg2+ was highest in grazing land, while clay, available phosphorous, and exchangeable K+ were highest in cultivated land. The percentage changes in sand, clay, soil organic matter, cation exchange capacity, and exchangeable Ca2+ and Mg2+ were higher in cultivated land than in grazing land and forestland. In terms of the relation between soil properties, soil organic matter, total nitrogen, cation exchange capacity, and exchangeable Ca2+ were strongly positively correlated with most of soil properties, while available phosphorous and silt have no significant relationship with any of the other considered soil properties. Clay has a negative correlation with all soil properties. Generally, cultivated land has the least concentration of soil physical and chemical properties except clay and available phosphorous, which suggests an increasing degradation rate in soils of cultivated land. So as to increase soil organic matter and other nutrients in the soil of cultivated land, the integrated implementation of land management through compost, cover crops, manures, minimum tillage, crop rotation, and liming to decrease soil acidity are suggested.

  2. 21 cm Power Spectrum Upper Limits from PAPER-64

    NASA Astrophysics Data System (ADS)

    Shiraz Ali, Zaki; Parsons, Aaron; Pober, Jonathan; Team PAPER

    2016-01-01

    We present power spectrum results from the 64 antenna deployment of the Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER-64). We find an upper limit of Δ2≤(22.4 mK)2 over the range 0.15cm power spectrum constraints to date. In addition, we use these results to place lower limits on the spin temperature at a redshift of 8.4. We find that the spin temperature is at least 10K for a neutral fraction between 15% and 80%. This further suggests that there was heating in the early universe through various sources such as x-ray binaries.

  3. Effects of Soil Solarization on Rotylenchulus reniformis in the Lower Rio Grande Valley of Texas.

    PubMed

    Heald, C M; Robinson, A F

    1987-01-01

    Soil solarization was evaluated for control of Rotylenchulus reniformis in the lower Rio Grande Valley of Texas. In field experiments, solarization significantly reduced soil nematode population densities 0-15 cm deep and increased yields of lettuce and cowpea. The length of time required for 90% mortality of nematodes in soil heated under controlled conditions in the laboratory varied from 25 hours to less than 1 hour between 41 and 47 C. Daily exposures of nematode-infested soil to lethal temperatures for sublethal time periods had a cumulative lethal effect. In water, vermiform stages required up to 10 days to recover from sublethal thermal stress. Eggs were similar to juveniles in their sensitivity to high temperatures. Lethal time-temperatures under controlled conditions were in general agreement with field results. PMID:19290112

  4. Enhancement in optical and structural properties of Zn0.85Mg0.15O nanorods over thin films synthesized by hydrothermal chemical treatment

    NASA Astrophysics Data System (ADS)

    Murkute, P.; Sehara, N.; Ghadi, H.; Pandey, S. K.; Maity, S.; Chakrabarti, S.

    2016-02-01

    We are reporting an enhancement in optical properties by changing the structure of Zn0.85Mg0.15O thin films through formation of crystalline hexagonal nanorods. Zn0.85Mg0.15O thin films were deposited on Si (100) substrate using dielectric sputter followed by annealing in oxygen ambient at temperatures of 700, 800 and 900° C for 10 seconds to reduce oxygen vacancies defects. Deposited thin film annealed at 900 °C (sample A) measured highest peak intensity and it was subjected to controlled the hydrothermal bath conditioning for forming hexagonal nanorods. Four samples were dipped in 2 different solutions with variable molar ratio of zinc nitrate hexahydrate and hexamethylentetramine for 2 and 3 hours, respectively. Samples processed in solution 1 (1:1) ratio for 2 and 3 hours were named B and C and those in solution 2 (2:1) were D and E, respectively. Photoluminescence measurement at 18K demonstrates exciton near-band-edge (NBE) emission peak at 3.61eV from Zn0.85Mg0.15O sample A whereas other samples exhibited slight blue shift along with bimodal peaks. The other peak observed at lower energy 3.43eV corresponds to transitions due to presence of ZnO phase in Zn0.85Mg0.15O. All samples compared to sample A exhibited more than 10 times increment in peak intensities with sample B producing the highest (~ 20 times). Nanorods formation was confirmed using crosssectional SEM imaging. X-ray diffraction measurements revealed that all Zn0.85Mg0.15O samples had (002) preferred crystal orientation with peak position at 34.7°. All nanorods samples measured lower reflectance compared to sample A, indicating high absorption in nanorods due to high scattering of light at the nanorods surface.

  5. Carbon Sequestration in Reclaimed Mined Soils of Ohio

    SciTech Connect

    M.K. Shukla; K. Lorenz; R. Lal

    2005-10-01

    This research project is aimed at assessing the soil organic carbon (SOC) sequestration potential of reclaimed minesoils (RMS). The experimental sites, owned and maintained by the American Electrical Power, are located in Guernsey, Morgan, Noble, and Muskingum Counties of Ohio. These sites, characterized by age chronosequences, were reclaimed with and without topsoil application and are under continuous grass or forest cover. Among the three sites chosen for this study one was reclaimed in 1978 (Cumberland), one in 1987 (Switch Grass) and one site was reclaimed in 1994 (Tilton's Run). All three sites were reclaimed with topsoil application and were under continuous grass cover. Eighteen experimental plots were developed on each site. Five fertilization treatments were applied in triplicate on each experimental site. During this quarter, water infiltration tests were performed on the soil surface in the experimental plots. Soil samples were analyzed for soil moisture characteristics. This report presents the data on infiltration rates, volume of transport and storage pores, and available water capacity (AWC) of soil. The infiltration rates after 5 min (i{sub 5}) showed high statistical variability (CV > 0.62) among the three sites. Both steady state infiltration rate and cumulative infiltration showed moderate to high variability (CV > 0.35). The mean values for the infiltration rate after 5 min, steady state infiltration rate, and cumulative infiltration were higher for Switch Grass (2.93 {+-} 2.05 cm min{sup -1}; 0.63 {+-} 0.34 cm min{sup -1}; 113.07 {+-} 39.37 cm) than for Tilton's Run (1.76 {+-} 1.42 cm min{sup -1}; 0.40 {+-} 0.18 cm min{sup -1}; 73.68 {+-} 25.94 cm), and lowest for Cumberland (0.63 {+-} 0.34 cm min{sup -1}; 0.27 {+-} 0.19 cm min{sup -1}; 57.89 {+-} 31.00 cm). The AWC for 0-15 cm soil was highest at Tilton's Run (4.21 {+-} 1.75 cm) followed by Cumberland (3.83 {+-} 0.77 cm) and Switch Grass (3.31 {+-} 0.10 cm). In 15-30 cm depth Switch Grass had

  6. Application of organic amendments to restore degraded soil: effects on soil microbial properties.

    PubMed

    Carlson, Jennifer; Saxena, Jyotisna; Basta, Nicholas; Hundal, Lakhwinder; Busalacchi, Dawn; Dick, Richard P

    2015-03-01

    Topsoil removal, compaction, and other practices in urban and industrial landscapes can degrade soil and soil ecosystem services. There is growing interest to remediate these for recreational and residential purposes, and urban waste materials offers potential to improve degraded soils. Therefore, the objective of this study was to compare the effects of urban waste products on microbial properties of a degraded industrial soil. The soil amendments were vegetative yard waste compost (VC), biosolids (BioS), and a designer mix (DM) containing BioS, biochar (BC), and drinking water treatment residual (WTR). The experiment had a completely randomized design with following treatments initiated in 2009: control soil, VC, BioS-1 (202 Mg ha(-1)), BioS-2 (403 Mg ha(-1)), and DM (202 Mg BioS ha(-1) plus BC and WTR). Soils (0-15-cm depth) were sampled in 2009, 2010, and 2011 and analyzed for enzyme activities (arylsulfatase, β-glucosaminidase, β-glucosidase, acid phosphatase, fluorescein diacetate, and urease) and soil microbial community structure using phospholipid fatty acid analysis (PLFA). In general, all organic amendments increased enzyme activities in 2009 with BioS treatments having the highest activity. However, this was followed by a decline in enzyme activities by 2011 that were still significantly higher than control. The fungal PLFA biomarkers were highest in the BioS treatments, whereas the control soil had the highest levels of the PLFA stress markers (P < 0.10). In conclusion, one-time addition of VC or BioS was most effective on enzyme activities; the BioS treatment significantly increased fungal biomass over the other treatments; addition of BioS to soils decreased microbial stress levels; and microbial measures showed no statistical differences between BioS and VC treatments after 3 years of treatment. PMID:25673270

  7. Soil Warming and Rhizosphere Effects on Root Litter Decomposition at Two Depths in a Mediterranean Grassland Ecosystem

    NASA Astrophysics Data System (ADS)

    Castanha, C.; Zhu, B.; Hicks Pries, C.; Torn, M. S.

    2015-12-01

    Accurate understanding of soil processes is critical for predicting climate-ecosystem feedbacks. We investigated the effects of soil warming and plant rhizosphere on decomposition of 13C-labeled roots buried at two soil depths at the field lysimeter facilities at Hopland Research and Extension Center, CA. The lysimeters contain soil columns 38-cm in diameter and 48-cm deep (0-15 cm A-horizon and 15-48 cm B-horizon, Laughlin soil) sown with an annual grassland mix. The experimental design includes three treatments: heated, ambient, and unplanted. In February 2014 we added 13C-labeled Avena fatua roots to either 8-12 cm or 38-42 cm. We measured loss of 13C in CO2 from the soil surface and in leachate as dissolved organic carbon (DOC) over two growing seasons. At the end of each growing season we recovered the 13C remaining in the soil. In addition, we monitored plant productivity and soil temperature and moisture. The rates of both soil respiration and DOC losses were greatest in heated and least in unplanted plots, although respiration losses far outweighed leachate losses. Treatment affected timing of decomposition; added root litter was respired earlier in the ambient plots and later in the unplanted plots in both years. The litter addition stimulated native soil respiration in year 1 heated plots. The depth of the litter addition did not have an effect on soil respiration. However, after the first growing season, less added root litter remained in the A than in the B horizon (both in the visible root fraction and in the 2mm soil fraction), indicating lower overall decomposition rates at depth. These results, including 13C recovery following the 2nd growing season and soil microclimate variables, will be used to develop a mechanistic understanding of the impacts of soil warming, the rhizosphere, and soil depth on root decomposition and soil organic matter dynamics, and should improve our predictions of the feedbacks between climate change and carbon cycling

  8. Regional scale assessment of soil predictors of groundwater phosphate (P) levels in acidic sandy agricultural soils

    NASA Astrophysics Data System (ADS)

    Mabilde, Lisa

    2016-04-01

    Possible factors affecting the leaching of P to the groundwater in the Belgian sandy area are examined via regression analysis. The main objective is to investigate the dependency of phreatic groundwater phosphate concentrations (Flemish VMM monitoring net, monitoring period 2010-2013) on soil phosphate saturation degree (PSD) (1994-1997 mapping for Flemish Land Agency) (n = 1032). Additionally explored parameters include: depth distributions of Fe- and Al-oxides, sorbed P and phosphate sorption capacity (PSC) and soil pH. Interpolated data of these soil parameters in 3 depth layers (0-30, 30-60, 60-90 cm) were generated by ordinary kriging. Secondly, we assessed the significance of other edaphic factors potentially controlling the groundwater P: topsoil organic carbon content (OC %), soil clay content and fluctuation of the groundwater table. Overall, the mean PSD halved with each 30 cm depth layer (56 > 24 > 13 %) and was correlated to groundwater PO43‑ level. The statistical significance of the correlation with groundwater PO43‑ concentrations increased with depth layer. The poor correlation (R2 = 0.01) between PSD and groundwater phosphate concentration indicates that many factors, other than soil P status, control the transport of P from soil solution to the groundwater in Belgian sandy soils. A significant (P<0.01) positive non-linear relationship was found between groundwater PO43‑concentration and pHKCl in all three studied depth layers, again increasingly with depth. Within the pH range of the 30-60 cm layer (pHKCl 4.0-5.7) PO4‑ solubility should increase with pH. Elevated soil OC levels surprisingly co-occurred with low groundwater PO43‑ concentrations (r = -0.18, P<0.01, n = 191). Groundwater PO43‑ was furthermore significantly and positively correlated to clay % in both the 0-15 cm (r = 0.15, τ = 0.25, P<0.01, n = 1032) and 60-90 cm (r = 0.13, τ = 0.20, P<0.01, n = 1032) depth increments. These positive correlations were unexpected and

  9. Topsoil and Deep Soil Organic Carbon Concentration and Stability Vary with Aggregate Size and Vegetation Type in Subtropical China.

    PubMed

    Fang, Xiang-Min; Chen, Fu-Sheng; Wan, Song-Ze; Yang, Qing-Pei; Shi, Jian-Min

    2015-01-01

    The impact of reforestation on soil organic carbon (OC), especially in deep layer, is poorly understood and deep soil OC stabilization in relation with aggregation and vegetation type in afforested area is unknown. Here, we collected topsoil (0-15 cm) and deep soil (30-45 cm) from six paired coniferous forests (CF) and broad-leaved forests (BF) reforested in the early 1990s in subtropical China. Soil aggregates were separated by size by dry sieving and OC stability was measured by closed-jar alkali-absorption in 71 incubation days. Soil OC concentration and mean weight diameter were higher in BF than CF. The cumulative carbon mineralization (Cmin, mg CO2-C kg-1 soil) varied with aggregate size in BF and CF topsoils, and in deep soil, it was higher in larger aggregates than in smaller aggregates in BF, but not CF. The percentage of soil OC mineralized (SOCmin, % SOC) was in general higher in larger aggregates than in smaller aggregates. Meanwhile, SOCmin was greater in CF than in BF at topsoil and deep soil aggregates. In comparison to topsoil, deep soil aggregates generally exhibited a lower Cmin, and higher SOCmin. Total nitrogen (N) and the ratio of carbon to phosphorus (C/P) were generally higher in BF than in CF in topsoil and deep soil aggregates, while the same trend of N/P was only found in deep soil aggregates. Moreover, the SOCmin negatively correlated with OC, total N, C/P and N/P. This work suggests that reforested vegetation type might play an important role in soil OC storage through internal nutrient cycling. Soil depth and aggregate size influenced OC stability, and deep soil OC stability could be altered by vegetation reforested about 20 years. PMID:26418563

  10. 77 FR 8877 - ICD-9-CM Coordination and Maintenance (C&M) Committee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-15

    ... HUMAN SERVICES Centers for Disease Control and Prevention ICD-9-CM Coordination and Maintenance (C&M... Standards Staff, announces the following meeting. Name: ICD-9-CM Coordination and Maintenance (C&M... attend the ICD- 9-CM C&M meeting on March 5, 2012, must submit their name and organization by February...

  11. Enhanced refrigeration capacity and magnetic entropy change in La0.55Ce0.15Sr0.3MnO3 manganite

    NASA Astrophysics Data System (ADS)

    Anwar, M. S.; Koo, Bon Heun

    2015-07-01

    The temperature dependent of the isothermal magnetic entropy change, Δ S M ( T), and the field dependence of the refrigeration capacity, RC, have been investigated in La0.7- x Ce x Sr0.30MnO3 ( x = 0.0 and 0.15). An enhanced RC and Δ S M ( T) were observed in La0.55Ce0.15Sr0.30MnO3. Under a magnetic field change of 2 T, the maximum improvement of 20% of Δ S M ( T) and 40% of RC, in comparison with La0.7Sr0.30MnO3, was observed. Moreover, Curie temperature of the La0.7Sr0.30MnO3 can tuned by adjusting the Ce concentration and makes this attractive for magnetic refrigeration at desired temperature. [Figure not available: see fulltext.

  12. Continuous wave and passively Q-switched Nd:Lu0.15Y0.85VO4 laser with 885 nm direct pumping

    NASA Astrophysics Data System (ADS)

    Li, Qi-nan; Zhao, Bin; Zhang, Tao; Li, Rei; Liu, Xiang-mei; Zheng, Ya-hui; Liu, Xiao-jun

    2015-05-01

    The 885 nm direct pumping directly into the 4F3/2 emitting level of Nd3+ is applied on an Nd:Lu0.15Y0.85VO4 crystal. The maximum output power of 2.8 W for continuous wave (CW) operation is obtained. For Q-switched operation, the maximum average output power is 1.2 W with pulse repetition of 23.69 kHz and pulse width of 35 ns at the pump power of 27.9 W. The high-quality fundamental transverse mode can be observed owing to the reduction of thermal effect for Nd:Lu0.15Y0.85VO4 crystal by 885 nm direct pumping.

  13. Chemical Reduction of Nd 1.85 Ce 0.15 CuO 4− δ Powders in Supercritical Sodium Ammonia Solutions

    DOE PAGESBeta

    Dias, Yasmin; Wang, Hui; Zhou, Haiqing; Lin, Feng; Lan, Yucheng

    2015-01-01

    Nd 1.85 Ce 0.15 CuO 4− δ powders are chemically reduced in supercritical sodium ammonia solutions from room temperature to 350°C. The crystallographic structure of the reduced powders is investigated from Rietveld refinement of X-ray powder diffraction. The atomic positions are maintained constant within experimental errors while temperature factors of all atoms increase significantly after the chemical treatments, especially of Nd/Ce atoms. The ammonothermally reduced Nd 1.85 Ce 0.15 CuO 4− δ powders show diamagnetic below 24 K which is contributed to the lower oxygen content and higher temperature factors of atoms in the treated compound.more » The ammonothermal method paves a new way to reduce oxides in supercritical solutions near room temperature.« less

  14. Doping of single crystals of the solid solution Bi/sub 2/Te/Sub 2. 85/Se/sub 0. 15/ with indium

    SciTech Connect

    Svechnikova, T.E.; Chizhevskaya, S.N.; Polikarpova, N.V.

    1987-12-01

    Perfect single crystals of the solid solution Bi/sub 2/Te/sub 2.85/Se/sub 0.15/ doped with In/sub 2/Te/sub 3/ (0.2 up to 5 mole % in the charge) were prepared by Czochralski's method with replenishment from the liquid phase. The indium content in the melts and in the single crystals was determined by the method of atomic-absorption spectroscopy. The effective distribution factor of indium in the solid solution Bi/sub 2/Te/sub 2.85/Se/sub 0.15/ equals /approx/ 0.5. Increasing the indium concentration in the solid solution decreases the electrical and thermal conductivity of the lattice.

  15. NOx emissions retrofit at Reliant Energy, W.A. Parish Generating Station, Unit 7: Achieving 0.15 lb/MBtu

    SciTech Connect

    Gessner, T.M.; Hoh, R.H.; Ray, B.; Dorazio, T.; Jennings, P.; Sikorski, K.

    1999-07-01

    The current Clean Air Act (CAA), Title 1 regulations require States to develop implementation plans (SIPs) which address NO{sub x} emissions as part of the ozone non-attainment requirements. The EPA has recommended NO{sub x} limits of 0.15 lb/MBtu for utility boilers. In this paper, Reliant Energy and ABB C-E Services, Inc. will discuss a project where 0.15 lb NO{sub x}/MBtu can be achieved with the TFS 2000{trademark} R firing system and highly reactive Powder River Basin (PRB) fuels. Reliant Energy will retrofit their W.A. Parish Unit 7 with this system in the first quarter of 1999. This is part of Reliant Energy's drive to lower NO{sub x} emissions and meet future air quality requirements at the W.Q. Parish station.

  16. Crystal structure and electrical properties of Ca {sub x}WO{sub 3} (0.01 {<=} x {<=} 0.15) prepared by hybrid microwave synthesis

    SciTech Connect

    Guo Juan . E-mail: guojuan@ssc.iphy.ac.cn; Dong Cheng; Yang Lihong; Fu Guangcai; Chen Hong

    2006-03-09

    Calcium tungsten bronzes Ca {sub x}WO{sub 3} (0.01 {<=} x {<=} 0.15) were synthesized by hybrid microwave method from mixtures of CaO, WO{sub 3} and tungsten powder. Single-phased samples can be obtained by microwave heating within 40 min. With the increase of calcium content, the crystal structure of Ca {sub x}WO{sub 3} transforms from orthorhombic (0.01 {<=} x {<=} 0.02) to tetragonal (0.03 {<=} x {<=} 0.11) and then to cubic (0.12 {<=} x {<=} 0.15). The average size of crystallites is in the range 1-5 {mu}m. All samples show semiconductor behaviour in their temperature dependence of resistivity. The electrical conduction mechanism changes from variable-range hopping to the thermally activated mechanism when x > 0.12.

  17. Ferroelectric domain structures in <001>-oriented K{sub 0.15}Na{sub 0.85}NbO{sub 3} lead-free single crystal

    SciTech Connect

    Chen, Yan; Wong, Chi-Man; Yau, Hei-Man; Dai, Jiyan; Deng, Hao; Luo, Haosu; Wang, Danyang; Yan, Zhibo; Chan, Helen L. W.

    2015-03-15

    In this work, ferroelectric domain structures of <001 >-oriented K{sub 0.15}Na{sub 0.85}NbO{sub 3} single crystal are characterized. Transmission electron microscopy (TEM) observation revealed high-density of laminate domain structures in the crystal and the lattices of the neighboring domains are found to be twisted in a small angle. Superlattice diffraction spots of 1/2 (eeo) and 1/2 (ooe) in electron diffraction patterns are observed in the crystal, revealing the a{sup +}a{sup +}c{sup −} tilting of oxygen octahedral in the perovskite structure. The piezoresponse of domains and in-situ poling responses of K{sub 0.15}Na{sub 0.85}NbO{sub 3} crystal are observed by piezoresponse force microscopy (PFM), and the results assure its good ferroelectric properties.

  18. Magnetic order in geometrically frustrated Gd2(Ti1-xZrx)2O7 (x=0.02 and 0.15) single crystals

    NASA Astrophysics Data System (ADS)

    Liao, Da-Qian; Lees, M. R.; Baker, D. W.; Paul, D. Mck.; Balakrishnan, G.

    2011-02-01

    Single crystals of Gd2(Ti1-xZrx)2O7 with x=0.02 and 0.15 have been used to investigate the effects of Zr doping on the properties of the geometrically frustrated antiferromagnet Gd2Ti2O7. Powder and single-crystal x-ray data, along with optical birefringence measurements, reveal that the x=0.02 sample retains the cubic Fd3¯m structure of pure Gd2Ti2O7, while the x=0.15 composition adopts a tetragonal I41/amd structure. Low-temperature magnetization and specific heat measurements show that for Gd2(Ti0.98Zr0.02)2O7 there are two magnetic transitions at TN1=1.02 K and TN2=0.70 K, but for Gd2(Ti0.85Zr0.15)2O7 a single transition is observed at TN=1.02 K. Changes in the specific heat with a magnetic field applied along the [110] and the [111] directions are used to construct the H-T phase diagrams for both samples.

  19. Thickness dependent optical properties of PEMA and (PEMA)0.85/(ZnO)0.15 nanocomposite films deposited by spray pyrolysis technique on ITO substrate

    NASA Astrophysics Data System (ADS)

    Thakur, Anjna; Thakur, Priya; Yadav, Kamlesh

    2016-05-01

    In this paper, poly (ethyl methacrylate) (PEMA) and (PEMA)0.85/(ZnO)0.15 nanocomposite films for 2, 3, 4 and 5 minutes have been deposited by spray pyrolysis technique on indium tin oxide (ITO) coated substrate. The effect of thickness of the film on the morphological and optical properties of PEMA and (PEMA)0.85/(ZnO)0.15 nanocomposite films are studied. The morphological and optical properties of pure PEMA and (PEMA)0.85/(ZnO)0.15 nanocomposite films are compared. The field emission scanning electron microscopy (FESEM) shows that as the thickness of film increases, uniformity of films increases. It is found from UV-Visible spectra that the energy band gap decreases with increasing the deposition time and refractive index increases with increasing the thickness of the film. The band gap of the nanocomposites is found less than the pure polymer film and opposite trend is observed for refractive index. The optical absorption of PEMA/ZnO nanocomposite films is higher than pure PEMA film. The thickness of the nanocomposite film plays a significant role in the tunability of the optical properties.

  20. Giant low-field magnetocaloric effect in single-crystalline EuTi0.85Nb0.15O3

    NASA Astrophysics Data System (ADS)

    Roy, S.; Khan, N.; Mandal, P.

    2016-02-01

    The magnetocaloric effect in ferromagnetic single crystal EuTi0.85Nb0.15O3 has been investigated using magnetization and heat capacity measurements. EuTi0.85Nb0.15O3 undergoes a continuous ferromagnetic phase transition at TC = 9.5 K due to the long range ordering of magnetic moments of Eu2+ (4f7). With the application of magnetic field, the spin entropy is strongly suppressed and a giant magnetic entropy change is observed near TC. The values of entropy change ΔSm and adiabatic temperature change ΔTad are as high as 51.3 J kg-1 K-1 and 22 K, respectively, for a field change of 0-9 T. The corresponding magnetic heating/cooling capacity is 700 J kg-1. This compound also shows large magnetocaloric effect even at low magnetic fields. In particular, the values of ΔSm reach 14.7 and 23.8 J kg-1 K-1 for field changes of 0-1 T and 0-2 T, respectively. The low-field giant magnetocaloric effect, together with the absence of thermal and field hysteresis makes EuTi0.85Nb0.15O3 a very promising candidate for low temperature magnetic refrigeration.

  1. Fluoride solid electrolytes: investigation of the tysonite-type solid solutions La1-xBaxF3-x (x < 0.15).

    PubMed

    Chable, Johann; Dieudonné, Belto; Body, Monique; Legein, Christophe; Crosnier-Lopez, Marie-Pierre; Galven, Cyrille; Mauvy, Fabrice; Durand, Etienne; Fourcade, Sébastien; Sheptyakov, Denis; Leblanc, Marc; Maisonneuve, Vincent; Demourgues, Alain

    2015-12-01

    Pure tysonite La1-xBaxF3-x solid solutions for x < 0.15 were prepared by solid state synthesis in a platinum tube under an azote atmosphere with subsequent quenching for 0.07 ≤x < 0.15. The solid solutions were studied by X-ray, electron and neutron diffractions and by (19)F NMR and impedance spectroscopy. The evolution of the cell parameters obeying Vegard's rule was determined for 0 < x≤ 0.15 and atomic position parameters were accurately refined for x = 0.03, 0.07 and 0.10. The chemical pressure induced by large Ba(2+) cations leads to an increase of the unit cell parameters. Fluorine environment and mobilities are discussed on the basis of the results of neutron diffraction and (19)F solid state NMR. The F1 subnetwork is lacunar; fluorine exchange occurs according to the order: F1-F1 and F1-F2,3. 2D EXSY NMR spectra of La0.97Ba0.03F2.97 reveal, for the first time, a chemical exchange between F2 and F3 sites that requires two successive jumps. The ionic conductivity was evaluated from sintered pellets and different shaping methods were compared. The only structural features which could explain the conductivity maximum are a crossover together with a smaller dispersion of F1-F1,2,3 distances at x = 0.05-0.07. PMID:26246328

  2. Preferential orientation and thermoelectric properties of n-type Bi2Te2.85Se0.15 alloys by mechanical alloying and equal channel angular extrusion

    NASA Astrophysics Data System (ADS)

    Fan, X. A.; Yang, J. Y.; Zhu, W.; Bao, S. Q.; Duan, X. K.; Xiao, C. J.; Li, K.

    2007-09-01

    Starting from elemental bismuth, tellurium and selenium powders, n-type Bi2Te2.85Se0.15 solid solution with a fine microstructure was prepared by mechanical alloying and equal channel angular extrusion (ECAE) in the present work. The effect of extrusion temperature on the microstructure and thermoelectric properties of the as-ECAEed samples was investigated. A preferentially oriented microstructure with the basal planes (0 0 l) in the parallel direction to extrusion was formed, and the orientation factors F of the (0 0 l) planes of the 703 K and 753 K ECAEed Bi2Te2.85Se0.15 alloys were 0.26 and 0.28, respectively. The electrical resistivity and the Seebeck coefficient decreased, and the thermal conductivity increased with increasing extrusion temperature. The electrical and thermal transmission performances were strongly affected by the preferentially oriented microstructure and the preferential orientation improved the thermoelectric properties of the ECAEed Bi2Te2.85Se0.15 alloys in the parallel direction to extrusion. The maximum dimensionless figure of merit was obtained when extruded at 753 K at a testing temperature of 343 K, ZT = 0.66.

  3. Deformation Behavior and Microstructure Evolution of the Cu-2Ni-0.5Si-0.15Ag Alloy During Hot Compression

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Volinsky, Alex A.; Xu, Qian-Qian; Chai, Zhe; Tian, Baohong; Liu, Ping; Tran, Hai T.

    2015-12-01

    Hot deformation behavior of the Cu-2Ni-0.5Si-0.15Ag alloy was investigated by hot compression tests using the Gleeble-1500D thermo-simulator in the 873 K to 1073 K (600 °C to 800 °C) temperatures range with the 0.01 to 5 s-1 strain rate. The flow stress strongly depends on the deformation parameters, including temperature and strain rate. The flow stress decreases with the deformation temperature and increases with the strain rate. The constitutive relationship between the peak stress, the strain rate, and the deformation temperature can be described by the Zener-Hollomon Z parameter in the hyperbolic sine function with the hot deformation activation energy of 316 kJ/mol. The dynamic recrystallization (DRX) is one of the important softening mechanisms of the Cu-2Ni-0.5Si-0.15Ag alloy during hot deformation. The DRX behavior of the Cu-2Ni-0.5Si-0.15Ag alloy is strongly affected by the Z parameter. Lower Z parameter leads to more adequate DRX proceeding.

  4. Evaluation of soil moisture sensors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study evaluated the measurement accuracy and repeatability of the EC-5 and 5TM soil volumetric water content (SVWC) sensors, MPS-2 and 200SS soil water potential (SWP) sensors, and 200TS soil temperature sensor. Six 183cm x 183cm x 71cm wooden compartments were built inside a greenhouse, and e...

  5. Energy Transfer in Rare Earth Ion Clusters and Fluorescence from Rare Earth Doped LANTHANUM(1.85)STRONTIUM(0.15)COPPER -OXYGEN(4) Superconductors.

    NASA Astrophysics Data System (ADS)

    Tissue, Brian Max

    1988-12-01

    Laser spectroscopy of rare earth ions in solids was used to study mechanisms of non-resonant energy transfer within rare earth clusters, and to detect insulating, impurity phases in rare earth doped La_{1.85 }Sr_{0.15}CuO _4 superconductors. The mechanisms of phonon-assisted, non-resonant energy transfer were studied in well-defined dimer sites in Er^{3+ }:SrF_2 and Pr ^{3+}:CaF_2. Application of a magnetic field to Er^{3+} :SrF_2 greatly increased the energy transfer rate. The magnetic field dependence in Er^{3+}:SrF _2 indicates that the mechanism of non-resonant energy transfer is a two-phonon, resonant process (Orbach process). Application of a magnetic field to Pr ^{3+}:CaF_2 had no effect on the energy transfer rate because no significant Zeeman splittings occurred. The temperature dependence of the energy transfer rate in Pr^{3+ }:CaF_2 showed the mechanism to be a one-phonon-assisted process at low temperatures and predominantly an Orbach process above 10 K. In the second part of this thesis, laser spectroscopy of a Eu ^{3+} probe ion is developed to detect impurity phases in La_{1.85 }Sr_{0.15}CuO _4 superconductors. Two impurity phases were found in polycrystalline La_ {1.85}Sr_{0.15} CuO_4: unreacted La _2O_3 starting material, and a La-silicate phase, which formed from contamination during sintering. The spectroscopic technique was found to be more than 100 times more sensitive than powder x -ray diffraction to detect minor impurity phases. In preparing the superconductors, several studies were made on the effect of Pr^{3+}, Eu ^{3+}, Bi^{3+ }, and fluorine dopants on the superconducting properties of La_{1.85}Sr _{0.15}CuO_4 and La_2Cuo_4 . Pr^{3+}, Eu ^{3+}, Bi^ {3+}, and F_2 doping all decreased the superconductivity in La_ {1.85}Sr^{0.15} CuO_4. Treating semi-conducting La_2CuO_4 in F_2 gas converted it to a superconductor with an onset T_{rm c} of 30-35 K.

  6. Compositional Homogeneity of CM Parent Bodies

    NASA Astrophysics Data System (ADS)

    Vernazza, P.; Marsset, M.; Beck, P.; Binzel, R. P.; Birlan, M.; Cloutis, E. A.; DeMeo, F. E.; Dumas, C.; Hiroi, T.

    2016-09-01

    CM chondrites are the most common type of hydrated meteorites, making up ∼1.5% of all falls. Whereas most CM chondrites experienced only low-temperature (∼0°C–120°C) aqueous alteration, the existence of a small fraction of CM chondrites that suffered both hydration and heating complicates our understanding of the early thermal evolution of the CM parent body(ies). Here, we provide new constraints on the collisional and thermal history of CM-like bodies from a comparison between newly acquired spectral measurements of main-belt Ch/Cgh-type asteroids (70 objects) and existing laboratory spectral measurements of CM chondrites. It first appears that the spectral variation observed among CM-like bodies is essentially due to variations in the average regolith grain size. Second, the spectral properties of the vast majority (unheated) of CM chondrites resemble both the surfaces and the interiors of CM-like bodies, implying a “low” temperature (<300°C) thermal evolution of the CM parent body(ies). It follows that an impact origin is the likely explanation for the existence of heated CM chondrites. Finally, similarly to S-type asteroids and (2) Pallas, the surfaces of large (D > 100 km)—supposedly primordial—Ch/Cgh-type main-belt asteroids likely expose the interiors of the primordial CM parent bodies, a possible consequence of impacts by small asteroids (D < 10 km) in the early solar system.

  7. Compositional Homogeneity of CM Parent Bodies

    NASA Astrophysics Data System (ADS)

    Vernazza, P.; Marsset, M.; Beck, P.; Binzel, R. P.; Birlan, M.; Cloutis, E. A.; DeMeo, F. E.; Dumas, C.; Hiroi, T.

    2016-09-01

    CM chondrites are the most common type of hydrated meteorites, making up ˜1.5% of all falls. Whereas most CM chondrites experienced only low-temperature (˜0°C–120°C) aqueous alteration, the existence of a small fraction of CM chondrites that suffered both hydration and heating complicates our understanding of the early thermal evolution of the CM parent body(ies). Here, we provide new constraints on the collisional and thermal history of CM-like bodies from a comparison between newly acquired spectral measurements of main-belt Ch/Cgh-type asteroids (70 objects) and existing laboratory spectral measurements of CM chondrites. It first appears that the spectral variation observed among CM-like bodies is essentially due to variations in the average regolith grain size. Second, the spectral properties of the vast majority (unheated) of CM chondrites resemble both the surfaces and the interiors of CM-like bodies, implying a “low” temperature (<300°C) thermal evolution of the CM parent body(ies). It follows that an impact origin is the likely explanation for the existence of heated CM chondrites. Finally, similarly to S-type asteroids and (2) Pallas, the surfaces of large (D > 100 km)—supposedly primordial—Ch/Cgh-type main-belt asteroids likely expose the interiors of the primordial CM parent bodies, a possible consequence of impacts by small asteroids (D < 10 km) in the early solar system.

  8. Trace element analysis of soil type collected from the Manjung and central Perak

    SciTech Connect

    Azman, Muhammad Azfar Hamzah, Suhaimi; Rahman, Shamsiah Abdul; Elias, Md Suhaimi; Abdullah, Nazaratul Ashifa; Hashim, Azian; Shukor, Shakirah Abd; Kamaruddin, Ahmad Hasnulhadi Che

    2015-04-29

    Trace elements in soils primarily originated from their parent materials. Parents’ material is the underlying geological material that has been undergone different types of chemical weathering and leaching processes. Soil trace elements concentrations may be increases as a result of continuous input from various human activities, including power generation, agriculture, mining and manufacturing. This paper describes the Neutron Activation Analysis (NAA) method used for the determination of trace elements concentrations in part per million (ppm) present in the terrestrial environment soil in Perak. The data may indicate any contamination of trace elements contributed from human activities in the area. The enrichment factors were used to check if there any contamination due to the human activities (power plants, agricultural, mining, etc.) otherwise the values would serve as a baseline data for future study. The samples were collected from 27 locations of different soil series in the area at two different depths: the top soil (0-15cm) and the sub soil (15-30cm). The collected soil samples were air dried at 60°C and passed through 2 µm sieve. Instrumental Neutron Activation Analysis (NAA) has been used for the determination of trace elements. Samples were activated in the Nuclear Malaysia TRIGA Mark II reactor followed by gamma spectrometric analysis. By activating the stable elements in the samples, the elements can be determined from the intensities of gamma energies emitted by the respected radionuclides.

  9. Trace element analysis of soil type collected from the Manjung and central Perak

    NASA Astrophysics Data System (ADS)

    Azman, Muhammad Azfar; Hamzah, Suhaimi; Rahman, Shamsiah Abdul; Elias, Md Suhaimi; Abdullah, Nazaratul Ashifa; Hashim, Azian; Shukor, Shakirah Abd; Kamaruddin, Ahmad Hasnulhadi Che

    2015-04-01

    Trace elements in soils primarily originated from their parent materials. Parents' material is the underlying geological material that has been undergone different types of chemical weathering and leaching processes. Soil trace elements concentrations may be increases as a result of continuous input from various human activities, including power generation, agriculture, mining and manufacturing. This paper describes the Neutron Activation Analysis (NAA) method used for the determination of trace elements concentrations in part per million (ppm) present in the terrestrial environment soil in Perak. The data may indicate any contamination of trace elements contributed from human activities in the area. The enrichment factors were used to check if there any contamination due to the human activities (power plants, agricultural, mining, etc.) otherwise the values would serve as a baseline data for future study. The samples were collected from 27 locations of different soil series in the area at two different depths: the top soil (0-15cm) and the sub soil (15-30cm). The collected soil samples were air dried at 60°C and passed through 2 µm sieve. Instrumental Neutron Activation Analysis (NAA) has been used for the determination of trace elements. Samples were activated in the Nuclear Malaysia TRIGA Mark II reactor followed by gamma spectrometric analysis. By activating the stable elements in the samples, the elements can be determined from the intensities of gamma energies emitted by the respected radionuclides.

  10. Optimization of the electrochemical performance of a Ni/Ce0.9Gd0.1O2-δ-impregnated La0.57Sr0.15TiO3 anode in hydrogen

    NASA Astrophysics Data System (ADS)

    Xia, Tian; Brüll, Annelise; Grimaud, Alexis; Fourcade, Sébastien; Mauvy, Fabrice; Zhao, Hui; Grenier, Jean-Claude; Bassat, Jean-Marc

    2014-09-01

    A-site deficient perovskite La0.57Sr0.15TiO3 (LSTO) materials are synthesized by a modified polyacrylamide gel route. X-ray diffraction pattern of LSTO indicates an orthorhombic structure. The thermal expansion coefficient of LSTO is 10.0 × 10-6 K-1 at 600 °C in 5%H2/Ar. LSTO shows an electrical conductivity of 2 S cm-1 at 600 °C in 3%H2O/H2. A new composite material, containing the porous LSTO backbone impregnated with small amounts of Ce0.9Gd0.1O2-δ (CGO) (3.4-8.3 wt.%) and Ni/Cu (2.0-6.3 wt.%), is investigated as an alternative anode for solid oxide fuel cells (SOFCs). Because of the substantial electro-catalytic activity of the fine and well-dispersed Ni particles on the surface of the ceramic framework, the polarization resistance of 6.3%Ni-8.3%CGO-LSTO anode reaches 0.73 Ω cm2 at 800 °C in 3%H2O/H2. In order to further improve the anodic performance, corn starch and carbon black are used as pore-formers to optimize the microstructure of anodes.

  11. Heavy metal contents, distribution, and prediction in a regional soil-wheat system.

    PubMed

    Ran, Jing; Wang, Dejian; Wang, Can; Zhang, Gang; Zhang, Hailin

    2016-02-15

    The entry of heavy metals into the food chain is of concern for potential health risks. To investigate the spatial relationships of heavy metals in a regional soil-wheat system, 99 pairs of surface soil (0-15 cm) and wheat grain samples were collected from Changshu, China, a typical county in the Yangtze Delta region. Both soil and wheat grain samples were analyzed for total Cd, Cu, Ni, Pb, and Zn. DTPA-extractable metals and major physico-chemical properties were also determined for soil samples. Moderate accumulation of heavy metals was found in soils and wheat grains, especially Cd. However, the levels were within the target hazard quotients (THQ) safe values with respect to non-carcinogenic risks, but more attention should be paid to Cd. Spatially, Cd, Cu, Ni, and Zn in wheat grains and soils had similar geographical patterns, whereas Pb showed opposite trends. Cross-correlograms further quantitatively confirmed the spatial relationships of heavy metals in wheat grains and soils. In addition, heavy metals in wheat grains were significantly spatially correlated with most soil physio-chemical properties. Particularly, a set of regression models for Cd in wheat grains were established with a maximum predictive success of 65%. These models can be used to predict Cd in wheat grains, and thus allows farmers to decrease the threat by certain framing practices such as ameliorating soil pH or growing a less metal-accumulating cultivar. PMID:26657387

  12. Gas-Phase Oxidation of Cm+ and Cm2+ -- Thermodynamics of neutral and ionized CmO

    SciTech Connect

    Gibson, John K; Haire, Richard G.; Santos, Marta; Pires de Matos, Antonio; Marcalo, Joaquim

    2008-12-08

    Fourier transform ion cyclotron resonance mass spectrometry was employed to study the products and kinetics of gas-phase reactions of Cm+ and Cm2+; parallel studies were carried out with La+/2+, Gd+/2+ and Lu+/2+. Reactions with oxygen-donor molecules provided estimates for the bond dissociation energies, D[M+-O](M = Cm, Gd, Lu). The first ionization energy, IE[CmO], was obtained from the reactivity of CmO+ with dienes, and the second ionization energies, IE[MO+](M = Cm, La, Gd, Lu), from the rates of electron-transfer reactions from neutrals to the MO2+ ions. The following thermodynamic quantities for curium oxide molecules were obtained: IE[CmO]= 6.4+-0.2 eV; IE[CmO+]= 15.8+-0.4 eV; D[Cm-O]= 710+-45 kJ mol-1; D[Cm+-O]= 670+-40 kJ mol-1; and D[Cm2+-O]= 342+-55 kJ mol-1. Estimates for the M2+-O bond energies for M = Cm, La, Gd and Lu are all intermediate between D[N2-O]and D[OC-O]--i.e., 167 kJ mol-1< D[M2+-O]< 532 kJ mol-1 -- such that the four MO2+ ions fulfill the thermodynamic requirement for catalytic O-atom transport from N2O to CO. It was demonstrated that the kinetics are also favorable and that the CmO2+, LaO2+, GdO2+ and LuO2+ dipositive ions each catalyze the gas-phase oxidation of CO to CO2 by N2O. The CmO2+ ion appeared during the reaction of Cm+ with O2 when the intermediate, CmO+, was not collisionally cooled -- although its formation is kinetically and/or thermodynamically unfavorable, CmO2+ is a stable species.

  13. Carbon Sequestration in Reclaimed Mined Soils of Ohio

    SciTech Connect

    M.K. Shukla; R. Lal

    2004-04-01

    This research project is aimed at assessing the soil organic carbon (SOC) sequestration potential of reclaimed minesoils (RMS). The experimental sites were characterized by distinct age chronosequences of reclaimed minesoil and were located in Guernsey, Morgan, Noble, and Muskingum Counties of Ohio. These sites are owned and maintained by Americal Electrical Power. These sites were reclaimed (1) with topsoil application, and (2) without topsoil application, and were under continuous grass or forest cover. Three core and three bulk soil samples were collected from each of the experimental site and one unmined site (UMS) for 0-15 cm and 15-30 cm depths and soil bulk density ({rho}{sub b}), texture, saturated hydraulic conductivity (Ks), volumes of transport (VTP) and storage (VSP) pores, available water capacity (AWC), pH and electrical conductivity (EC), SOC, total nitrogen (TN) concentrations and stocks were determined. The preliminary results from sites reclaimed with topsoil and grass indicate that sand content was highest (24%) and clay content was lowest (17%) for site reclaimed in 2003 (R03) for 0-15 cm depth. The {rho}{sub b} was highest for R03 (1.24 Mg m{sup -3}) than sites reclaimed in 1987 (R87; 1.02 Mg m{sup -3}), 1978 (R78; 0.98 Mg m{sup -3}) and UMS (0.96 Mg m{sup -3}) for 0-15 cm depth. No significant differences were observed in Ks, VTP, VSP, AWC among these sites (P<0.05). For 15-30 cm depth {rho}{sub b} varied in the order R03 (1.61 Mg m{sup -3})> R87 (1.42 Mg m{sup -3}) = R78 (1.40 Mg m{sup -3}) = UMS (1.34 Mg m{sup -3}). Soil pH was > 5.5 and EC < 4 dS m{sup -1} for all sites and depths and was favorable for grass growth. The SOC and TN stocks were lower in R03 (3.5 Mg ha{sup -1} and 0.6 Mg ha{sup -1}; respectively) than R78 (30.1 Mg ha{sup -1} and 1.6 Mg ha{sup -1}) and UMS (18.7 Mg ha{sup -1} and 1.8 Mg ha{sup -1}) for 0-15 cm depth. The SOC and TN stocks were also lower in R03 (2.9 Mg ha{sup -1}and 0.8 Mg ha{sup -1}; respectively) than R87 (22

  14. Multiferroic properties of nanocrystalline BiFe1-xNixO3 (x=0.0-0.15) perovskite ceramics

    NASA Astrophysics Data System (ADS)

    Chaudhari, Yogesh; Mahajan, Chandrashekhar M.; Singh, Amrita; Jagtap, Prashant; Chatterjee, Ratnamala; Bendre, Subhash

    2015-12-01

    Ni doped BiFeO3 (x=0, 0.05, 0.1 and 0.15) nanocrystalline ceramics were synthesized by the solution combustion method (SCM) to obtain optimal multiferroic properties. The effect of Ni doping on structural, morphological, ferroelectric, magnetic and dielectric properties of BiFeO3 was studied. The structural investigations by using X-ray diffraction (XRD) pattern confirmed that BiFe1-xNixO3 ceramics have rhombhohedral perovskite structure. The ferroelectric hysteresis measurements for BiFe1-xNixO3 (x=0, 0.05, 0.1, 0.15) compound at room temperature found to exhibit unsaturated behavior and presents partial reversal of polarization. The magnetic measurements demonstrated an enhancement of ferromagnetic property due to Ni doping in BiFeO3 when compared with undoped BiFeO3. The variation of dielectric constant with temperature in BiFe0.9Ni0.1O3 and BiFe0.85Ni0.15O3 samples evidenced an apparent dielectric anomaly around 350 °C and 300 °C which corresponds to antiferromagnetic to paramagnetic phase transition of (TN) of BiFeO3. The dependence of room temperature dielectric properties on frequency signifies that both dielectric constant (ε) and dielectric loss (tan δ) are the strong function of frequency. The results show that solution combustion method leads to synthesis of an excellent and reproducible BiFe1-xNixO3 multiferroic ceramics.

  15. Application of antiferromagnetic-Fermi-liquid theory to NMR experiments in La1.85Sr0.15CuO4

    NASA Astrophysics Data System (ADS)

    Monien, H.; Monthoux, P.; Pines, D.

    1991-01-01

    NMR experiments on La1.85Sr0.15CuO4 by Kitaoka et al. and Imai et al. are analyzed using the phenomenological antiferromagnetic (AF) Fermi liquid theory of Millis, Monien, and Pines, and the results are compared with those previously obtained for YBa2Cu3O7 and YBa2Cu3O6.63. A one-component model, with hyperfine couplings that are unchanged from those found previously for YBa2Cu3O7 and YBa2Cu3O6.63, and parameters obtained from experiment, provide a quantitative fit to the data. At all temperatures the antiferromagnetic correlations found in La1.85Sr0.15CuO4 are stronger than those found for the Y-Ba-Cu-O samples with the result that the characteristic energy for the antiferromagnetic paramagnons that describe the AF spin dynamics is quite low (0.15CuO4, YBa2Cu3O7, and YBa2Cu3O6.63, and find that it displays a linear temperature dependence for all three materials. Our results support the proposal that the properties of a nearly antiferromagnetic Fermi liquid are genuinely novel, and suggest that both the spin and charge aspects of the normal-state properties of the cuprate oxide superconductors can be quantitatively explained in terms of quasiparticles coupled to antiferromagnetic paramagnons whose characteristic energy scale is

  16. Sintering of BaCe(0.85)Y(0.15)O3-(Beta) With/Without SrTiO Dopant

    NASA Technical Reports Server (NTRS)

    Dynys, Fred; Sayir, Ali; Heimann, Paula J.

    2004-01-01

    The sintering behavior of BaCe(0.85)Y(0.15)O3-(Beta) doped with SrTiO is described. Complete reaction and crystallization of perovskite phase by solid state was achieved by calcining at 1200 degrees C for 24 hours.Smaples were sintered at 1450 degrees C, 1550 degrees C, and 1650 degrees C. SrTiOsub3 enhanced sintering, while optimal dopant level was different for powders synthesized by solid state and co-precipitation. Both powders exhibit similar grain growth behavior.

  17. Wind-tunnel free-flight investigation of a 0.15-scale model of the F-106B airplane with vortex flaps

    NASA Technical Reports Server (NTRS)

    Yip, Long P.

    1987-01-01

    An investigation to determine the effects of vortex flaps on the flight dynamic characteristics of the F-106B in the area of low-speed, high-angle-of-attack flight was undertaken on a 0.15-scale model of the airplane in the Langley 30- by 60-Foot Tunnel. Static force tests, dynamic forced-oscillation tests, as well as free-flight tests were conducted to obtain a data base on the flight characteristics of the F-106B airplane with vortex flaps. Vortex flap configurations tested included a full-span gothic flap, a full-span constant-chord flap, and a part-span gothic flap.

  18. Critical state and low-field electrodynamics in LaO{sub 0.85}F{sub 0.15}FeAs superconductor polycrystals

    SciTech Connect

    Gerashchenko, O. V.; Kholmetskii, A. L.; Mashlan, M.; Yarman, T.; Aldushchenkov, A. V.; Okunev, I. S.; Lomonosov, V. A.; Makhnach, L. V.

    2015-06-15

    The penetration of a weak magnetic field into LaO{sub 0.85}F{sub 0.15}FeAs polycrystalline superconductors is investigated using two mutually complementing techniques: measurement of the higher harmonics of nonlinear magnetization and the current-voltage characteristics. The dependences of the critical current density and resistivity on the temperature and magnetic field strength are determined. The results confirm the theory of the critical state in the low-field electrodynamics of a Josephson medium. The universality of this theoretical concept is demonstrated for a new class of ceramic superconductors.

  19. Impact of long-term land application of broiler litter on environmentally related soil properties

    SciTech Connect

    Kingery, W.L.; Wood, C.W.; Mullins, G.L.

    1994-01-01

    The largest portion of Alabama`s rapidly growing poultry industry is geographically concentrated in the Sand Mountain region of northern Alabama. The result is that large amounts of waste are applied to relatively small areas of agricultural soils. A study was conducted to determine the effects of long-term broiler waste (litter) application on environmentally related soil conditions in the region. The region has an average annual rainfall of 1325 mm, which is evenly distributed throughout the year, a thermic temperature regime, and soils in the region are of the Ultisol order. In each of four major broiler-producing counties, three pairs of sites consisting of long-term (15-28 yr) littered and nonlittered fields on matching soil series and maintained under perennial tall fescue (Festuca arundinacea Schreb.) were sampled. Soil cores were taken to 3 m or lithic contact and depth-incremented samples (0-15, 15-30, and each subsequent 30-cm interval) were analyzed for organic C, total N, NO{sub 3}-N, pH, electrical conductivity, and acid-extractable P, K, Ca, Mg, Co, and Zn. Litter application increased organic C and total N to depths of 15 and 30 cm, respectively, as compared with nonlittered soils, whereas pH was 0.5 units higher to a depth of 60 cm under littered soils. Significant accumulation of NO{sub 3}N was found in littered soils to or near bedrock. Extractable P concentrations in littered soils were more than six times greater than in nonlittered soils to a depth of 60 cm. Elevated levels of extractable K, Ca, and Mg to depths greater than 60 cm also were found as a result of long-term litter use. Extractable Cu and Zn had accumulated in littered soils to a depth of 45 cm. These findings indicate that long-term land application of broiler litter, at present rates, has altered soil chemical conditions and has created a potential for adverse environmental impacts in the Sand Mountain region of Alabama. 43 refs., 6 figs., 3 tabs.

  20. Nitrogen mineralization and nitrate leaching of a sandy soil amended with different organic wastes.

    PubMed

    Burgos, Pilar; Madejón, Engracia; Cabrera, Francisco

    2006-04-01

    Organic wastes can be recycled as a source of plant nutrients, enhancing crop production by improving soil quality. However, the study of the dynamic of soil nutrient, especially the N dynamic, after soil application of any organic material is vital for assessing a correct and effective use of the material, minimizing the losses of nitrate in leachates and avoiding the negative environmental effects that it may cause in groundwater. To estimate the effect of three organic materials, a municipal solid waste compost (MWC), a non-composted paper mill sludge (PS), and an agroforest compost (AC) on the N dynamic of a sandy soil two experiments were carried out: an incubation experiment and a column experiment. The incubation experiment was conducted to estimate the N mineralization rate of the different soil-amendment mixtures. The soil was mixed with the organic amendments at a rate equivalent to 50,000 kg ha(-1) and incubated during 40 weeks at constant moisture content (70% of its water-holding capacity) and temperature (28 degrees C) under aerobic conditions. Organic amendment-soil samples showed an immobilization of N during the first weeks, which was more noticeable and longer in the case of PS-treated soil compared to the other two amendments due to its high C/N ratio. After this immobilization stage, a positive mineralization was observed for all treatment, especially in MWC treated soil. Contemporaneously a 1-year column (19 cm diameter and 60 cm height) experiment was carried out to estimate the nitrate losses from the soil amended with the same organic materials. Amendments were mixed with the top soil (0-15 cm) at a rate equivalent to 50,000 kg ha(-1). The columns were periodically irrigated simulating rainfall in the area of study, receiving in total 415 mm of water, and the water draining was collected during the experimental period and analysed for NO3-N. At the end of the experimental period NO3-N content in soil columns at three depths (0-20, 20-35 and

  1. Disorder induced superconductor-insulator transition in epitaxial La1.85Sr0.15CuO4 thin films

    NASA Astrophysics Data System (ADS)

    Jang, Han-Byul; Yang, Chan-Ho

    La2-xSrxCuO4is a well-known superconducting system showing various electronic properties as a function of Sr content. Especially, epitaxial thin layers of the compound show enormous increase of superconducting critical temperature (Tc) by a compressive strain. It has been reported that Tc can be controlled by misfit strain, thickness, and oxygen annealing. In this study, we report structural and transport properties of high quality epitaxial La1.85Sr0.15CuO4thin films. According to x-ray diffraction study, c-axis lattice parameter shows no significant change for various film thicknesses and the in-plane lattice parameters of the films are coherently matched with that of substrate. Electronic transport measurements show a clear superconductor-to-insulator transition (SIT), accompanying variation of Tc depending on film thickness. These results are analyzed by using the McMillan equation to find the relation between the Tc and a disorder correlating with film thickness. We have found the disorder exhibits an explicit power-law behavior with respect to film thickness in our La1.85Sr0.15CuO4 thin films.

  2. Raman effect, structural and dielectric properties of sol-gel synthesized polycrystalline GaFe1-xZrxO3 (0≤x≤0.15)

    NASA Astrophysics Data System (ADS)

    Kumar, Rajeev; Mall, Ashish Kumar; Gupta, Rajeev

    2016-05-01

    Polycrystalline ceramic samples of Zirconium (Zr)-doped GaFeO3 (GaFe1-xZrxO3) were studied using powder X-ray diffraction, complex impedance spectroscopy and Raman spectroscopic measurements to understand the effect of Zr doping on the structural and dielectric properties. The samples with varying Zr content were prepared by Sol-Gel method. X-ray data analysis confirmed the formation of single phase material without formation of any secondary phases and all are crystallized in Pc21n orthorhombic symmetry. Rietveld refinement of the X-ray data suggested an increase in the lattice constants due to size effect and decreases on x = 0.15 due to the effect of change in interplanner spacing. Impedance studies on the samples showed that the dielectric constant increases while loss tangent decrease as the Zr content increases. Raman scattering on GaFe1-xZrxO3 (x = 0, 0.05, 0.10, & 0.15) used to understand the composition dependence on phonon modes at room temperature. On Zr doping, Raman modes frequencies shifts to lower energies consistent with the X-ray data.

  3. Effect of granularity and annealing conditions on the magneto-resistance of the electron doped superconductor Nd1.85Ce0.15CuO4

    NASA Astrophysics Data System (ADS)

    Raveendran, N. Radhikesh; Amaladass, E. P.; Janaki, J.; Mani, Awadhesh

    2016-05-01

    A single phase polycrystalline sample of Nd1.85Ce0.15CuO4 has been synthesized and well characterized. Detailed studies on electrical resistivity behavior of this system as a function of temperature and magnetic field reveal interesting features attributable to the granularity effects. These features have been qualitatively understood based on the interplay of Josephson junction coupling and quasi particle tunneling which dictates the evolution of the observed temperature and field dependent resistivity behavior of Nd1.85Ce0.15CuO4 system. The studies also reveal significant changes with respect to annealing conditions, indicating that such compounds are very sensitive to annealing conditions. It has been observed that prolonged annealing in Argon atmosphere leads to a decrease in normal state resistivity. This is associated with a decrease in the S-I-S type Josephson tunnel junctions perhaps due to improved inter-granular coupling, nevertheless they could not be completely eliminated.

  4. Electrical study and dielectric relaxation behavior in nanocrystalline Ce0.85Gd0.15O2- δ material at intermediate temperatures

    NASA Astrophysics Data System (ADS)

    Kumar Baral, Ashok; Sankaranarayanan, V.

    2010-02-01

    The nanocrystalline material of 15 mol% Gd-doped ceria (Ce0.85Gd0.15O2- δ ) was prepared by citrate auto ignition method. The electrical study and dielectric relaxation technique were applied to investigate the ionic transport process in this nanocrystalline material with an average grain size of 13 nm and the dynamic relaxation parameters are deduced in the temperature range of 300-600°C. The ionic transference number in the material is found to be 0.85 at 500°C at ambient conditions. The oxygen ionic conduction in the nanocrystalline Ce0.85Gd0.15O2- δ material follows the hopping mechanism. The grain boundary relaxation is found to be associated with migration of charge carriers. The frequency spectra of modulus M″ exhibited a dielectric relaxation peak corresponding to defect associates (Gd-Vo^{_{_{{blacksquare blacksquare}}}})^{_{_{{blacksquare}}}}. The material exhibits very low values of migration energy and association energy of the oxygen vacancies in the long-range motion, i.e., 0.84 and 0.07 eV, respectively.

  5. Fully reversible hydrogen absorption and desorption reactions with Sc(Al{sub 1-x}Mg{sub x}), x=0.0, 0.15, 0.20

    SciTech Connect

    Sahlberg, Martin; Zlotea, Claudia; Latroche, Michel; Andersson, Yvonne

    2011-01-15

    The hydrogen storage properties of Sc(Al{sub 1-x}Mg{sub x}), x=0.0, 0.15, 0.20, have been studied by X-ray powder diffraction, thermal desorption spectroscopy, pressure-composition-isotherms and scanning electron microscopy techniques. Hydrogen is absorbed from the gas phase at 70 kPa and 400 {sup o}C under the formation of ScH{sub 2} and aluminium with magnesium in solid solution. The reaction is fully reversible in vacuum at 500 {sup o}C and shows the hydrogenation-disproportionation-desorption-recombination (HDDR) behaviour. The activation energy of desorption was determined by the Kissinger method to 185 kJ/mol. The material is stable up to at least six absorption-desorption cycles and there is no change in particle size during cycling. -- Graphical abstract: XRD pattern of Sc(Al{sub 1-x}Mg{sub x}). From the top: x=0, 0.15, 0.20. The hydrogen absorption properties were studied by thermal desorption spectroscopy, pressure-composition-isotherms and scanning electron microscopy techniques. Display Omitted

  6. Alpha self-irradiation effect on the local structure of the U0.85Am0.15O2±x solid solution

    NASA Astrophysics Data System (ADS)

    Prieur, D.; Martin, P. M.; Lebreton, F.; Delahaye, T.; Jankowiak, A.; Laval, J.-P.; Scheinost, A. C.; Dehaudt, P.; Blanchart, P.

    2012-10-01

    Uranium-americium mixed oxides are promising fuels for achieving an efficient Am recycling. Previous studies on U0.85Am0.15O2±x materials showed that the high α activity of 241Am induces pellet swelling which is a major issue for cladding materials design. In this context, X-ray Diffraction and X-ray Absorption Spectroscopy measurements were used to study self-irradiation effects on U0.85Am0.15O2±x local structure and to correlate these results with those obtained at the macroscopic scale. For a cumulative α decay dose equal to 0.28 dpa, it was shown that non-defective fluorite solid solutions were achieved and therefore, that the fluorite structure is stable for the studied doses. In addition, both interatomic distance and lattice parameter expansions were observed, which only partially explains the macroscopic swelling. As expected, an increase of the structural disorder with self-irradiation was also observed.

  7. Enhanced electrochemical performance and storage property of LiNi0.815Co0.15Al0.035O2 via Al gradient doping

    NASA Astrophysics Data System (ADS)

    Duan, Jianguo; Hu, Guorong; Cao, Yanbing; Tan, Chaopu; Wu, Ceng; Du, Ke; Peng, Zhongdong

    2016-09-01

    LiNi1-x-yCoxAlyO2 is a commonly used Ni-rich cathode material because of its relatively low cost, excellent rate capability and high gravimetric energy density. Surface modification is an efficient way to overcome the shortcomings of Ni-rich cathodes such as poor cycling stability and poor thermal stability. A high-powered concentration-gradient cathode material with an average composition of LiNi0.815Co0.15Al0.035O2 (LGNCAO) has been successfully synthesized by using spherical concentration-gradient Ni0.815Co0.15Al0.035(OH)2 (GNCA)as the starting material. An efficient design of the Al3+ precipitation method is developed, which enables obtaining spherical GNCA with ∼10 μm particle size and high tap density. In LGNCAO, the nickel and cobalt concentration decreases gradually whereas the aluminum concentration increases from the centre to the outer layer of each particle. Electrochemical performance and storage properties of LGNCAO have been investigated comparatively. The LGNCAO displays better electrochemical performance and improved storage stability than LNCAO.

  8. Zinc substitution effects on the superconducting properties of Nd sub 1. 85 Ce sub 0. 15 CuO sub 4-. delta

    SciTech Connect

    Garcia-Vazquez, V.; Mazumdar, S.; Falco, C.M.; Barlingay, C.; Risbud, S.H.

    1990-01-01

    With the discovery of the electron superconductors, a new dimension was added to research in the field of high-temperature superconductivity. Studies of these materials should help elucidate the mechanism responsible for high-temperature superconductivity, as well as improve strategies for finding new superconductors. In this paper, we discuss the superconducting structural properties of Nd{sub 1.85}Ce{sub 0.15}(Cu{sub 1-y}Zn{sub y})O{sub 4} as a function of the Zn concentration y. Detailed comparisons with previous results of similar substitution studies in the single-CuO{sub 2}-layer hole superconductor La{sub 1.85}Sr{sub 0.15}CuO{sub 4} also are made. We have found that the non-magnetic element Zn has a detrimental effect on the T{prime}-phase electron superconductor, and that this effect is as strong as in the T-phase hole superconductor. Theoretical implications and the question of electron-hole symmetry are also discussed.

  9. Zinc substitution effects on the superconducting properties of Nd{sub 1.85}Ce{sub 0.15}CuO{sub 4-{delta}}

    SciTech Connect

    Garcia-Vazquez, V.; Mazumdar, S.; Falco, C.M.; Barlingay, C.; Risbud, S.H.

    1990-12-31

    With the discovery of the electron superconductors, a new dimension was added to research in the field of high-temperature superconductivity. Studies of these materials should help elucidate the mechanism responsible for high-temperature superconductivity, as well as improve strategies for finding new superconductors. In this paper, we discuss the superconducting structural properties of Nd{sub 1.85}Ce{sub 0.15}(Cu{sub 1-y}Zn{sub y})O{sub 4} as a function of the Zn concentration y. Detailed comparisons with previous results of similar substitution studies in the single-CuO{sub 2}-layer hole superconductor La{sub 1.85}Sr{sub 0.15}CuO{sub 4} also are made. We have found that the non-magnetic element Zn has a detrimental effect on the T{prime}-phase electron superconductor, and that this effect is as strong as in the T-phase hole superconductor. Theoretical implications and the question of electron-hole symmetry are also discussed.

  10. [Effects of wheat-straw returning into paddy soil on dissolved organic carbon contents and rice grain yield].

    PubMed

    Xu, Ke; Liu, Meng; Chen, Jing-du; Gu, Hai-yan; Dai, Qi-gen; Ma, Ke-qiang; Jiang, Feng; He, Li

    2015-02-01

    A tank experiment using conventional rice cultivar Nanjing 44 as experimental material was conducted at the Experimental Farm of Yangzhou University to investigate the dynamics of wheat straw decomposition rate and the amount of carbon release in clay and sandy soils, as well as its effects on the content of dissolved organic carbon (DOC) and rice yield. The two rates of wheat straw returning were 0 and 6000 kg · hm(-2), and three N application levels were 0, 225, 300 kg · hm(-2). The results showed that, the rate of wheat straw decomposition and the amount of carbon release in clay and sandy soils were highest during the initial 30 days after wheat straw returning, and then slowed down after, which could be promoted by a higher level of nitrogen application. The rate of wheat straw decomposition and the amount of carbon release in clay soil were higher than that in sandy soil. The DOC content in soil increased gradually with wheat straw returning into paddy soil and at the twenty-fifth day, and then decreased gradually to a stable value. The DOC content at the soil depth of 15 cm was significantly increased by wheat straw returning, but not at the soil depth of 30 cm and 45 cm. It was concluded that wheat straw returning increased the DOC content in the soil depth of 0-15 cm mainly. N application decreased the DOC content and there was no difference between the two N application levels. Straw returning decreased the number of tillers in the early growth period, resulted in significantly reduced panicles per unit area, but increased spikelets per panicle, filled-grain percentages, 1000-grain mass, and then enhanced grain yield. PMID:26094457

  11. Influence of Organic Matter on the Iron Oxide Mineralogy of Volcanic Soils

    NASA Astrophysics Data System (ADS)

    Pizarro, C.; Escudey, M.; Fabris, J. D.

    2003-06-01

    Samples of soils developing on volcanic materials that represent about 70% of the agriculture land area in Chile were studied by chemical methods, powder X-ray diffractometry (XRD) and Mössbauer spectroscopy. The soil samples were collected from native areas of Ultisols, Andisols, and Andisols presenting seasonal cycles of poor drainage, at depths between 0-15 cm and 15-30 cm from the top of the profile. The degree of crystallinity of iron oxides was evaluated from the ratio of amounts of Fe extracted with oxalate-oxalic acid (FeOX) and with bicarbonate-citrate-dithionite mixtures (FeDBC), FeOX/FeDBC. Results show that the specific saturation magnetization of soils and crystallinity of iron-rich minerals increase with decreasing organic matter contents of soils. From XRD and Mössbauer data, ferrihydrite (ideal formula, Fe5HO8ṡ4H2O) could be the precursor either of the soil magnetite (Fe3O4) or hematite (αFe2O3). Older soils were found to be in an intermediate stage regarding the transformation of magnetite to maghemite (γFe2O3).

  12. Relationship between the radiocesium interception potential and the transfer of radiocesium from soil to soybean cultivated in 2011 in Fukushima Prefecture, Japan.

    PubMed

    Takeda, Akira; Tsukada, Hirofumi; Yamaguchi, Noriko; Takeuchi, Megumi; Sato, Mutsuto; Nakao, Atsushi; Hisamatsu, Shun'ichi

    2014-11-01

    The concentration of radiocesium ((134)Cs and (137)Cs) in agricultural fields around Fukushima Dai-ichi Nuclear Power Plant (FDNPP) was elevated after the accident in March 2011. Evaluation of soil properties that influence phytoavailability of radiocesium is important for optimal soil management to minimize radiocesium transfer to crops. In this study, soybean grain and soil samples (0-15 cm) were collected from 46 locations in Fukushima Prefecture in 2011, and (137)Cs concentrations were measured. (137)Cs concentration ranges were 11-329 Bq kg(-1)-dry in soybean grain samples, and 0.29-2.49 kBq kg(-1)-dry in soil samples. The radiocesium interception potential (RIP) values in the soil samples ranged from 0.30 to 8.61 mol kg(-1). RIP negatively correlated with total carbon content and oxalate-extractable Si and Al + 1/2 Fe in the soils, suggesting that soils rich in organic matter and poorly crystalline clays tended to have lower RIP in this region. The soil-to-plant transfer factor for (137)Cs, analyzed in relation with various soil characteristics, varied by two orders of magnitude and was significantly negatively correlated with RIP and exchangeable K concentration in soil. The results show that RIP is useful for evaluating the efficiency of radiocesium transfer from soil to plants in this region. PMID:25036920

  13. Precision of farmer-based fertility ratings and soil organic carbon for crop production on a Ferralsol

    NASA Astrophysics Data System (ADS)

    Musinguzi, P.; Ebanyat, P.; Tenywa, J. S.; Basamba, T. A.; Tenywa, M. M.; Mubiru, D.

    2015-09-01

    Simple and affordable soil fertility ratings are essential, particularly for the resource-constrained farmers in sub-Saharan Africa (SSA), in planning and implementing prudent interventions. A study was conducted on Ferralsols in Uganda to evaluate farmer-based soil fertility assessment techniques, hereafter referred to as farmers' field experiences (FFE), for ease of use and precision, against more formal scientific quantitative ratings using soil organic carbon (SQR-SOC). A total of 30 fields were investigated and rated using both techniques, as low, medium and high in terms of soil fertility - with maize as the test crop. Both soil fertility rating techniques were fairly precise in delineating soil fertility classes, though the FFE was inefficient in distinguishing fields > 1.2 % SOC with medium and high fertility. Soil organic carbon, silt and clay were exceptionally influential, accounting for the highest percentage in grain yield of 50 % in the topsoil (0-15 cm) and 67 % for the mean concentrations from 0 to 15 and 15 to 30 cm. Each unit increase in SOC concentration resulted in 966 to 1223 kg ha-1 yield gain. The FFE technique was effective in identifying low-fertility fields, and this was coherent with the fields categorized as low (SOC < 1.2 %). Beyond this level, its precision can be remarkably increased when supplemented with the SQR-SOC technique.

  14. Inflow measurements made with a laser velocimeter on a helicopter model in forward flight. Volume 4: Tapered planform blades at an advance ratio of 0.15

    NASA Technical Reports Server (NTRS)

    Althoff, Susan L.; Elliott, Joe W.; Sailey, Richard H.

    1988-01-01

    An experimental investigation was conducted in the 14- by 22-Foot Subsonic Tunnel at NASA Langley Research Center to measure the inflow into the scale model helicopter rotor in forward flight (mu sub infinity = 0.15). The measurements were made with a two-component Laser Velocimeter (LV) one chord above the plane formed by the path of the rotor tips (tip path plane). A conditional sampling technique was employed to determine the position of the rotor at the time that each velocity measurement was made so that the azimuthal fluctuations in velocity could be determined. Measurements were made at a total of 146 separate locations in order to clearly define the inflow character. This data is presented herein without analysis. In order to increase the availability of the resulting data, both the mean and azimuthally dependent values are included as part of this report on two 5.25 inch floppy disks in MS-DOS format.

  15. (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 Ceramics Synthesized by a Gel-Casting Method

    NASA Astrophysics Data System (ADS)

    Xiong, Wei

    2016-05-01

    (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 (BCZT) powder was synthesized by a solid-state reaction method, then the ceramics were fabricated by gel-casting and die-pressing routes, respectively. Piezoelectric coefficient (d 33 ) was measured by the d 33 m; Planar mode electromechanical coupling coefficient (k p ), dielectric loss (tanδ) and relative permittivity (ɛ r ) were measured by the impedance analyzer. Results of measurements showed that in the range of tested sintering temperature (1300-1500°C), gel-casting samples showed better piezoelectric and electromechanical coupling coefficients (d 33 = 395 pC/N, k p = 0.44) compared with die-pressing samples, and comparable dielectric properties were also observed. (tanδ = 0.037, ɛ r = 3267).

  16. Structure study of BaCe0.85Y0.15O3-Δ as solid state fuel cell material

    NASA Astrophysics Data System (ADS)

    Krezhov, K.; Vladikova, D.; Raikova, G.; Genov, I.; Malakova, T.; Dimitrov, D.; Svab, E.; Fabian, M.

    2016-03-01

    The structural details of powder, dense and porous samples of BaCe0.85Y0.15O3-δ (BCY15) used recently in an innovative monolithic design of SOFC were studied from multiple Rietveld analysis of neutron and x-ray diffraction patterns. The 3-layered monolithic assembly built from BCY15 material works as oxide ion conductor in the oxygen space, as proton conductor in the hydrogen area and as mixed conductor in the central membrane. We find that in all the samples of studied BCY15 based materials there are no indications of difference in crystallographic symmetry and the structure refinements did produce best agreement factors in orthorhombic Pnma space group.

  17. Inflow Measurements Made with a Laser Velocimeter on a Helicopter Model in Forward Flight. Volume 1: Rectangular Planform Blades at an Advance Ration of 0.15

    NASA Technical Reports Server (NTRS)

    Elliott, Joe W.; Althoff, Susan L.; Sailey, Richard H.

    1988-01-01

    An experimental investigation was conducted in the 14- by 22-Foot Subsonic Tunnel at NASA Langley to measure the inflow into a scale model helicopter rotor in forward flight (microinf = 0.15). The measurements were made with a two component Laser Velocimeter (LV) one chord above the plane formed by the path of the rotor tips (tip path plane). A conditional sampling technique was employed to determine the azimuthal position of the rotor at the time each velocity measurement was made so that the azimuthal fluctuations in velocity could be determined. Measurements were made at a total of 147 separate locations in order to clearly define the inflow character. This data is presented without analysis. In order to increase the availability of the resulting data, both the mean and azimuthally dependent values are included as part of this report on two 5.25 inch floppy disks in Microsoft Corporation MS-DOS format.

  18. Debye’s temperature and heat capacity for Sr0.15Ba0.85Bi2Nb2O9 relaxor ferroelectric ceramic

    NASA Astrophysics Data System (ADS)

    Peláiz-Barranco, A.; González-Abreu, Y.; Saint-Grégoire, P.; Guerra, J. D. S.; Calderón-Piñar, F.

    2016-02-01

    A lead-free relaxor ferroelectric, Sr0.15Ba0.85Bi2Nb2O9, was synthesized via solid-state reaction and the temperature-dependence of the heat capacity was measured in a wide temperature range. The dielectric permittivity was also measured between 500Hz and 5MHz in the same temperature range. No anomaly has been detected in the heat capacity curve for the whole temperature range covered in the present experiments, while broad peaks have been observed in the dielectric permittivity with high frequency dispersion. A typical relaxor behavior has been observed from the dielectric analysis. The Debye’s temperature has showed a minimum value near the freezing temperature. The results are discussed considering the spin-glass model and the high frequency dispersion, which has been observed for the studied relaxor system.

  19. Inspection of an end quenched 0.15%-0.2% C, 0.6%-0.9% Mn steel jominy bar with photothermal radiometric techniques

    NASA Astrophysics Data System (ADS)

    Liu, Yue; Baddour, Natalie; Mandelis, Andreas; Wang, Chinhua

    2004-08-01

    The effect of the cooling rate on hardness and thermal conductivity in a metallurgical Jominy bar made of 0.15%-0.2% C, 0.6%-0.9% Mn (AISI 1018) steel, by means of a water end-quenched heat treatment process without diffusion-controlled case depth, is studied with photothermal radiometry (PTR). It is concluded that our two PTR techniques, common-mode rejection demodulation and conventional 50% duty-cycle square-wave frequency scan, are sensitive to low hardness values and gradients, unlike the high values all previous photothermal studies have dealt with to-date. Both PTR methods have yielded an anticorrelation between thermal conductivity and microhardness in this case as in previous cases with heat-treated and diffusion-controlled case depth profiles. It is shown that the cooling rate strongly affects both hardness and thermal conductivity in the Jominy-bar heat-treating process.

  20. Strain Relaxation in Thin Films of La1.85Sr0.15CuO4 Grown by Pulsed Laser Deposition

    NASA Astrophysics Data System (ADS)

    Zaytseva, I.; Cieplak, M. Z.; Abal'Oshev, A.; Berkowski, M.; Domukhovski, V.; Paszkowicz, W.; Shalimov, A.

    2007-01-01

    X-ray diffraction, resistivity, and susceptibility measurements are used to examine the effects of film thickness d (from 17 to 250 nm) on the structural and superconducting properties of La1.85Sr0.15CuO4 films grown by pulsed laser deposition on SrLaAlO4 substrates. For each d the film sgrow with a variable strain, ranging from a large compressive strain in the thinnest films to a negligible or tensile strain in thick films. Our results indicate that the tensile strain is not caused by the off-stoichiometric layer at the substrate-film interface. Instead, it may be caused by the extreme oxygen deficiency in some of the films.

  1. Nonlinear structure-composition relationships in the Ge1-ySny/Si(100) (y<0.15) system

    SciTech Connect

    Beeler, R.; Roucka, R.; Chizmeshya, A. V. G.; Kouvetakis, J.; Menéndez, J.

    2011-07-26

    The compositional dependence of the cubic lattice parameter in Ge1-ySny alloys has been revisited. Large 1000-atom supercell ab initio simulations confirm earlier theoretical predictions that indicate a positive quadratic deviation from Vegard's law, albeit with a somewhat smaller bowing coefficient, θ = 0.047 Å, than found from 64-atom cell simulations (θ = 0.063 Å). On the other hand, measurements from an extensive set of alloy samples with compositions y < 0.15 reveal a negative deviation from Vegard's law. The discrepancy with earlier experimental data, which supported the theoretical results, is traced back to an unexpected compositional dependence of the residual strain after growth on Si substrates. The experimental bowing parameter for the relaxed lattice constant of the alloys is found to be θ = -0.066 Å. Possible reasons for the disagreement between theory and experiment are discussed in detail.

  2. (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 Ceramics Synthesized by a Gel-Casting Method

    NASA Astrophysics Data System (ADS)

    Xiong, Wei

    2016-08-01

    (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 (BCZT) powder was synthesized by a solid-state reaction method, then the ceramics were fabricated by gel-casting and die-pressing routes, respectively. Piezoelectric coefficient ( d 33 ) was measured by the d 33 m; Planar mode electromechanical coupling coefficient ( k p ), dielectric loss ( tanδ) and relative permittivity ( ɛ r ) were measured by the impedance analyzer. Results of measurements showed that in the range of tested sintering temperature (1300-1500°C), gel-casting samples showed better piezoelectric and electromechanical coupling coefficients ( d 33 = 395 pC/N, k p = 0.44) compared with die-pressing samples, and comparable dielectric properties were also observed. ( tanδ = 0.037, ɛ r = 3267).

  3. Metallic Nonsuperconducting Phase and D -Wave Superconductivity in Zn-Substituted La{sub 1.85}Sr{sub 0.15}CuO{sub 4}

    SciTech Connect

    Karpinska, K.; Cieplak, Marta Z.; Guha, S.; Malinowski, A.; Skoskiewicz, T.; Plesiewicz, W.; Berkowski, M.; Boyce, B.; Lemberger, Thomas R.; Lindenfeld, P.

    2000-01-03

    Measurements of the resistivity, magnetoresistance, and penetration depth were made on films of La{sub 1.85} Sr{sub 0.15} CuO{sub 4} , with up to 12 at. % of Zn substituted for the Cu. The results show that the quadratic temperature dependence of the inverse square of the penetration depth, indicative of d -wave superconductivity, is not affected by doping. The suppression of superconductivity leads to a metallic nonsuperconducting phase, as expected for a pairing mechanism related to spin fluctuations. The metal-insulator transition occurs in the vicinity of k{sub F}l{approx_equal}1 , and appears to be disorder driven, with the carrier concentration unaffected by doping. (c) 1999 The American Physical Society.

  4. Condyloma eradication: self-therapy with 0.15-0.5% podophyllotoxin versus 20-25% podophyllin preparations--an integrated safety assessment.

    PubMed

    Longstaff, E; von Krogh, G

    2001-04-01

    Topical application of podophyllin solution, long considered the therapy of first choice against condylomata acuminata, can no longer be recommended due to its low efficacy and gross toxicity. Self-treatment with 0.15-0.5% purified podophyllotoxin preparations, applied twice daily for 3 days, is now advocated as the alternative first-line therapy of choice, when significant improvement is conveniently, and cost-effectively, accomplished within a few weeks. This review provides a summary of the comparative efficacy and utility of podophyllin versus podophyllotoxin as well as a compilation of in vivo and in vitro safety evaluations. In light of overwhelming safety and efficacy data in favor of podophyllotoxin-derived products, it is concluded that podophyllin preparations have no place in the modern treatment portfolio for anogenital warts. PMID:11350195

  5. Characterization of phase transformation during hot compressive deformation in a β-stabilized Ti–45Al–7Nb–0.4W–0.15B alloy

    SciTech Connect

    Liu, Bin; Liu, Yong Huang, Lan; Li, Huizhong; He, Yuehui

    2015-07-15

    A β-stabilized Ti–45Al–7Nb–0.4W–0.15B (at.%) alloy was hot deformed by uniaxial compression and the phase evolution during the compression was characterized with X-ray diffraction, scanning electron microscopy and electron probe microanalysis. The results show that modest deformation stress during hot compression restrains the γ → α transformation and the decomposition of β phase. The restrained γ → α transformation is a result of a modified equilibrium of the γ and α phases due to the applied stress, and the restrained β decomposition is a kinetic effect due to the decelerated diffusion of β-stabilizing elements caused by the compressive stress. - Highlights: • In β-stabilized TiAl alloys, hot deformation has great influence on the equilibrium of the γ, α, and β phases. • Deformation restrains the γ → α transformation. • Deformation inhibits the decomposition of the β phase.

  6. Magnetoelectric properties of (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 - CoFe2O4 particulate composites

    NASA Astrophysics Data System (ADS)

    Paul Praveen, J.; Vinitha Reddy, M.; Das, Dibakar

    2016-05-01

    0.7[(Ba0.85Ca0.15)(Zr0.1Ti0.9)O3)]-0.3[CoFe2O4] multiferroic particulate ceramic composite with (0-3) connectivity has been synthesized by wet chemical methods. BCZT-CFO composite showed both polarization-electric field and magnetic hysteresis loops simultaneously at room temperature. A high dielectric constant of 2160 and tangent loss factor of 0.6 has been obtained. Magnetoelectric (ME) voltage coefficient (αME =dE/dH) of the composite was measured as a function of applied d.c magnetic field at different frequencies. At resonance frequency (365kHz) the composite showed a maximum αME of 102mV/cm.Oe. It was observed that the transverse ME coefficient is 1.8 times higher than the longitudinal ME coefficient. The magnetoelectric properties of this composite has been studied in detail in this work and correlated with its structure.

  7. Progress in Metal-Supported Axial-Injection Plasma Sprayed Solid Oxide Fuel Cells Using Nanostructured NiO-Y0.15Zr0.85O1.925 Dry Powder Anode Feedstock

    NASA Astrophysics Data System (ADS)

    Metcalfe, C.; Harris, J.; Kuhn, J.; Marr, M.; Kesler, O.

    2013-06-01

    A composite NiO-Y0.15Zr0.85O1.925 (YSZ) agglomerated feedstock having nanoscale NiO and YSZ primary particles was used to fabricate anodes having sub-micrometer structure. These anodes were incorporated into two different metal-supported SOFC architectures, which differ in the order of electrode deposition. The composition of the composite Ni-YSZ anodes is controllable by selection of the agglomerate size fraction and standoff distance, while the porosity is controllable by selection of agglomerate size fraction and addition of a sacrificial pore-forming material. A bi-layer anode was fabricated having a total porosity of 33% for the diffusion layer and 23% porosity for the functional layer. A power density of 630 mW/cm2 was obtained at 750 °C in humidified H2 with cells having the bi-layer anode deposited on the metal support. Cells having the cathode deposited on the metal support showed poor performance due to a significant number of vertical cracks through the electrolyte, allowing excessive gas cross-over between the anode and the cathode compartments.

  8. 8-cm mercury ion thruster system technology

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The technology status of 8-cm diameter electron bombardment ion thrusters is presented. Much of the technology resulting from the 5-cm diameter thruster has been adapted and improved upon to increase the reliability, durability, and efficiency of the 8-cm thruster. Technology discussed includes: dependence of neutralizer tip erosion upon neutralizer flow rate; impregnated and rolled-foil insert cathode performance and life testing; neutralizer position studies; thruster ion beam profile measurements; high voltage pulse ignition; high utilization ion machined accelerator grids; deposition internal and external to the thruster; thruster vectoring systems; thruster cycling life testing and thruster system weights for typical mission applications.

  9. Structure and ferroelectric studies of (Ba{sub 0.85}Ca{sub 0.15})(Ti{sub 0.9}Zr{sub 0.1})O{sub 3} piezoelectric ceramics

    SciTech Connect

    Venkata Ramana, E.; Mahajan, A.; Graça, M.P.F.; Mendiratta, S.K.; Monteiro, J.M.; Valente, M.A.

    2013-10-15

    Graphical abstract: - Highlights: • (Ba{sub 0.85}Ca{sub 0.15})(Ti{sub 0.9}Zr{sub 0.1})O{sub 3} (BCTZO) ceramic was synthesized by the ceramic method. • In situ XRD and Raman spectra showed the phase transition of BCTZO around 360 K. • The ceramics showed a tunability of 82% at 40 kV cm{sup −1} electric field. • BCTZO exhibited good quality factor of 111 at microwave frequencies. • Piezoforce microscopy studies indicated the switchability of ferroelectric domains. - Abstract: We have synthesized and studied the structural and ferroelectric properties of lead-free 0.5(Ba{sub 0.7}Ca{sub 0.3})TiO{sub 3}–0.5Ba(Zr{sub 0.2}Ti{sub 0.8})O{sub 3} ceramics in the temperature region of its ferroelectric transition. The synthesized material showed high dielectric constant, low loss and good pyroelectric figure of merit. From the temperature dependent X-ray diffraction measurements, we determined the tricritical point to be in the temperature range of 303–400 K. The dielectric measurements indicate a diffuse ferroelectric phase transition (DPT) around 360 K in agreement with the X-ray measurements. We studied the evolution of Raman spectra with temperature to understand the nature of phase transition in BaTiO{sub 3} (BTO) and the BCTZO. The results indicates that the transition of ferroelectric–paraelectric state is not sharp as in the case of BTO and the polar state persists through the paraelectric state. In general, our study indicates that there are ferroelectric domains of nanometer size beyond the commonly defined transition temperature. The observation of local piezoelectric hysteresis loop indicated the existence of intrinsic ferroelectric property of the ceramic at the nanoscale. The ceramics exhibited electric field tunable dielectric properties with a tunability of 82% at an applied DC field of 40 kV cm{sup −1}, low dielectric loss of 0.001 and room temperature pyroelectric coefficient of 6 × 10{sup −8} C cm{sup −2} K{sup −1} and the

  10. Fluctuation conductivity and possible pseudogap state in FeAs-based superconductor EuFeAsO0.85F0.15

    NASA Astrophysics Data System (ADS)

    Solovjov, A. L.; Omelchenko, L. V.; Terekhov, A. V.; Rogacki, K.; Vovk, R. V.; Khlybov, E. P.; Chroneos, A.

    2016-07-01

    The study of excess conductivity σ \\prime (T) in the textured polycrystalline FeAs-based superconductor EuFeAsO0.85F0.15 ({T}{{c}}=11 {{K}}) prepared by the solid state synthesis is reported for the first time. The σ \\prime (T) analysis has been performed within the local pair (LP) model based on the assumption of the LPs formation in cuprate high-T c superconductors (cuprates) below the pseudogap (PG) temperature {T}* \\gg {T}{{c}}. Similarly to the cuprates, near {T}{{c}} σ \\prime (T) is adequately described by the 3D term of the Aslamasov–Larkin (AL) theory but the range of the 3D-AL fluctuations, {{Δ }}{T}3{{D}}, is relatively short. Above the crossover temperature {T}0≈ 11.7 {{K}} σ \\prime (T) is described by the 2D Maki–Thompson (MT) fluctuation term of the Hikami–Larkin theory. But enhanced 2D-MT fluctuation contribution being typical for the magnetic superconductors is observed. Within the LP model the PG parameter, {{{Δ }}}* (T), was determined for the first time. It is shown that {{{Δ }}}* (T) demonstrates the narrow maximum at {T}s≈ 160 {{K}} followed by the descending linear length down to {T}{SDW}={T}{NFe}≈ 133 {{K}}. Observed small {{Δ }}{T}3{{D}}, enlarged 2D σ \\prime (T) and linear {{{Δ }}}* (T) are considered to be the evidence of the enhanced magnetic interaction in EuFeAsO0.85F0.15. Importantly, the slop of the linear {{{Δ }}}* (T) and its length are found to be the same as it is revealed for SmFeAsO0.85. The results suggest both the similarity of the magnetic interaction processes in different Fe-pnictides and applicability of the LP model to the σ \\prime (T) analysis even in magnetic superconductors.

  11. Suppression of superconductivity in La1.85Sr0.15Cu1-yNiyO4: The relevance of local lattice distortions

    NASA Astrophysics Data System (ADS)

    Haskel, D.; Stern, E. A.; Polinger, V.; Dogan, F.

    2001-02-01

    The effect of Ni substitution upon the local structure of La1.85Sr0.15Cu1-yNiyO4 is commonly neglected when addressing the Ni-induced destruction of the superconducting state at y≈0.03 and a metal-insulator transition at y≈0.05. It is also sometimes assumed that direct substitution of a dopant into the CuO2 planes has a detrimental effect on superconductivity due to in-plane lattice distortions around the dopants. We present here results from angular-dependent x-ray absorption fine structure (XAFS) measurements at the Ni, La and Sr K-edges of oriented powders of La1.85Sr0.15Cu1-yNiyO4 with y=0.01, 0.03, 0.06. A special magnetic alignment geometry allowed us to measure pure ĉ and ab̂ oriented XAFS at the Ni K-edge in identical fluorescence geometries. Both the near-edge absorption spectra (XANES) and the XAFS unequivocally show that the NiO6 octahedra are largely contracted along the c-axis, by ≈ 0.16 Å. Surprisingly, the Ni-O planar bonds and the Ni-O-Cu/Ni planar buckling angle are nearly identical to their Cu counterparts. The NiO6 octahedral contraction drives the macroscopic ĉ-axis contraction observed with Ni-doping. The local ĉ-axis strongly fluctuates, due to the different NiO6 and CuO6 octahedral configurations and the much stronger bonding of a La+3 ion than a Sr+2 ion to the O(2) apical oxygens. We discuss the relevance of these findings to the mechanisms of Tc suppresion and hole-localization by Ni dopants.

  12. Transport of Alachlor, Atrazine, Dicamba, and Bromide through Silt and Loam Soils

    NASA Astrophysics Data System (ADS)

    Tindall, J. A.

    2015-12-01

    The herbicides alachlor, atrazine, and dicamba, as well as bromide were applied to soils overlying the High Plains aquifer in Nebraska, to both macropore and non-macropore sites. Three of 6 study areas (exhibiting a high percentage of macropores) were used for analysis of chemical transport. Twelve intact soil cores (30 cm diameter; 40 cm height), were excavated (two each from 0-40 cm and 40-80 cm depths). The first three study areas and soil cores were used to study preferential flow characteristics using dye staining and to determine hydraulic properties; the remaining cores were treated the same as field macropore sites. Two undisturbed experimental field plots, each with a 1 m2 surface area, were established in each of the three macropore study areas. Each preferential plot was instrumented with suction lysimeters, tensiometers, and neutron access tubes - 10 cm increments to 80 cm - and planted in corn. Three study areas that did not exhibit macropores had alachlor, atrazine, and dicamba and bromide disked into the top 15 cm of soil; concentrations were tracked for 120 days - samples were collected on a grid, distributed within 3 plots measuring 50 m x 50 m each. Core samples were collected prior to and immediately after application, and then at 30, 60, and 120 days after application. Each lab core sample was in 15-cm lengths from 0-15 cm, 15-30 cm, 45-60 cm, and 75-90 cm. For areas exhibiting macropores, herbicides had begun to move between 10-15 days after application with concentrations peaking at various depths after heavy rainfall events. Field lysimeter samples showed increases in concentrations of herbicides at depths where laboratory data indicated greater percentages of preferential flowpaths. Concentrations of atrazine, alachlor and dicamba exceeding 0.30, 0.30, and 0.05 μg m1-1 respectively were observed with depth (10-30 cm and 50-70 cm) after two months following heavy rainfall events indicating that preferential flowpaths were a significant

  13. Effects of Conservation Agriculture on Soil Physical Properties and Yield of Lentil in Northern Syria

    NASA Astrophysics Data System (ADS)

    Wahbi, Ammar; Miwak, Hisham; Singh, Raphy

    2014-05-01

    Conservation agriculture (CA) aims to achieve sustainable and profitable agriculture and subsequently improve livelihoods of farmers based on three main components, i.e. minimum or no tillage, retention of crop residues and use of crop rotation. However, to promote CA in semi-arid areas where precipitation is erratic, low, and falls over short periods in winter, its effects on soil and crop yield have to be investigated. The present study was conducted at the main research station of the International Center for Agricultural Research in the Dry Areas (ICARDA), Syria, during the agricultural season of 2010-2011, in the frame of a long term trial (2003-2011), where two treatments; i.e. conservation versus conventional agriculture (replicated twice), and six varieties of lentil (early, medium and late maturity genotypes; 2 each), selected from 100 varieties, were used. Soil samples were taken (before planting and after harvesting), to determine soil bulk density, particle density and total porosity. Aggregate stability was also determined using dry and wet sieving methods for the 0-15 cm soil depth, and the effective diameter of the aggregate was calculated for both treatments of conservation agriculture (CA) and conventional tillage (CT). Soil moisture was monitored in the top soil layer (0-15 cm) using Time Domain Reflectometry (TDR) on a weekly or two weekly-intervals. Soil moisture release curve was done for disturbed, 2 mm dry sieved soil at 0-15, 15-30, 30-45 and 45-60 cm depth using pressure plate chamber. Dry plant production (oven dry at 70°C) was estimated at the harvesting stage, and then threshed to estimate grain yield. CA showed higher (p = 0.001) soil moisture values than CT. The difference in volumetric soil moisture content between CA and CT during the studied period ranged from 20 to 30 %. Volumetric water content was higher for, CA compared with CT, at a given soil water potential especially at the lower pressure; this observation was consistent

  14. Chilled Mirror Dew Point Hygrometer (CM) Handbook

    SciTech Connect

    Ritsche, MT

    2005-01-01

    The CM systems have been developed for the ARM Program to act as a moisture standard traceable to National Institute of Standards and Technology (NIST). There are three CM systems that are each fully portable, self-contained, and require only 110 V AC power. The systems include a CM sensor, air sampling and filtration system, a secondary reference (Rotronic HP043 temperature and relative humidity sensor) to detect system malfunctions, a data acquisition system, and data storage for more than one month of 1-minute data. The CM sensor directly measures dew point temperature at 1 m, air temperature at 2 m, and relative humidity at 2 m. These measurements are intended to represent self-standing data streams that can be used independently or in combinations.

  15. Astrophysics with the 60-cm telescope

    NASA Astrophysics Data System (ADS)

    Zverko, J.

    2014-03-01

    Observational programs and selection from scientific results with the 60-cm telescope achieved at the Skalnaté Pleso Observatory since its putting into operation is reviewed: novae, eclipsing and interacting binaries, symbiotic stars, cataclysmic variables, chemically peculiar stars, comets. Possible targets among newly detected binaries are proposed for determining orbital parameters using the new spectrograph of the 60-cm telescope at the Stará Lesná Observatory.

  16. Radiocarbon measurements of soil organic matter (SOM) and soil CO2 efflux provide unique insights into the SOM dynamics of managed loblolly pine plantations

    NASA Astrophysics Data System (ADS)

    Vogel, J. G.; Schuur, E. A.; Bracho, R.; Jokela, E. J.

    2011-12-01

    Soil organic matter (SOM) cycling between soils and the atmosphere affects a wide range of important ecosystem functions. However the key processes controlling this cycle, fine root inputs and heterotrophic respiration, are poorly understood primarily because they are difficult to directly measure in the field. Radiocarbon measurements and simple models can be used to evaluate the relative influence of these processes on SOM cycling. Here we used radiocarbon measurements of density separated SOM, and root respiration, microbial respiration, and soil CO2 efflux to examine the relative effect of two forestry practices, fertilization and the genetic control of planted seedlings, on SOM cycling in two loblolly pine plantation forests in north central Florida. Our primary hypothesis was that greater aboveground growth would correspond to increased inputs of C to the soil as root biomass, and a greater efflux of CO2 from roots and soil microbes. For the density separated fractions, the light fraction (LF) (<1.6 g cm-3) was nearly 98% of the SOM in these sandy soils, and the LF decreased significantly (p<0.05) with increasing levels of fertilization for the A horizon (~0-30 cm). Light fraction radiocarbon values ranged from 66-127% and tended to be more enriched in bomb carbon, or older, with increasing levels of fertilization. Based on a significant reduction in fine root biomass with fertilization, we estimate that the smaller mass of the LF and its older age were the result of less fine root contributions of C to the LF pool. The alternative hypothesis, that fertilization increased SOM turnover, was not supported. To determine if changes in root biomass reflected changes in root respiration in soil CO2 efflux, we estimated radiocarbon values for root and microbial respiration, and soil CO2 efflux in order to partition the components in soil CO2 efflux. Radiocarbon estimates of microbial respiration (0-15 cm depth) and root respiration fractions ranged from 55-67% and

  17. Measurements of soil and canopy exchange rates in the Amazon rain forest using sup 222 Rn

    SciTech Connect

    Trumbore, S.E. Lamont-Doherty Geological Observatory, Palisades, NY ); Keller, M. ); Wofsy, S.C. ); Da Costa, J.M. )

    1990-09-20

    Measurements of the emission of {sup 222}Rn from Amazon forest soils, and profiles of {sup 222}Rn in air were used to study the ventilation of the soil atmosphere and the nocturnal forest canopy. The emission of {sup 222}Rn from the yellow clay soils dominant in the study area averaged 0.38 {plus minus} 0.07 atom cm{sup {minus}2} s{sup {minus}1}. Nearby sand soils had similar fluxes, averaging 0.30 {plus minus} 0.07 atom cm{sup {minus}2} s{sup {minus}1}. The effective diffusivity in the clay soil (0.008 {plus minus} 0.004 cm{sup 2} s{sup {minus}1}), was lower than that for the sand soil (0.033 {plus minus} 0.030 cm{sup 2} s{sup {minus}1}). Profiles of {sup 222}Rn and CO{sub 2} in air showed steepest concentration gradients in the layer between 0 and 3 m above the soil surface. Aerodynamic resistances calculated for this layer from {sup 222}Rn and CO{sub 2} varied from 1.6 to 18 s cm{sup {minus}1}, with greater resistance during the afternoon than at night. Time averaged profiles of {sup 222}Rn in the forest canopy measured during the evening and night were combined with the soil flux measurements to compute the resistance of the subcanopy to exchange with overlying air. The integrated nocturnal rate of gas exchange between the canopy layer (0 to 41 m) and overlying atmosphere based on {sup 222}Rn averaged 0.33 {plus minus} 0.15 cm s{sup {minus}1}. An independent estimate of gas exchange, based on 13 nights of CO{sub 2} profiles, averaged 0.21 {plus minus} 0.40 cm s{sup {minus}1}. These exchange rates correspond to flushing times for the 41 m canopy layer of 3.4 and 5.5 hours, respectively. Comparison of {sup 222}Rn and CO{sub 2} profiles show that the nocturnal production of CO{sub 2} by above-ground vegetation was about 20% of the soil emission source, consistent with data from eddy-correlation experiments.

  18. Remediation of saline-sodic soil with flue gas desulfurization gypsum in a reclaimed tidal flat of southeast China.

    PubMed

    Mao, Yumei; Li, Xiaping; Dick, Warren A; Chen, Liming

    2016-07-01

    Salinization and sodicity are obstacles for vegetation reconstruction of coastal tidal flat soils. A study was conducted with flue gas desulfurization (FGD)-gypsum applied at rates of 0, 15, 30, 45 and 60Mg/ha to remediate tidal flat soils of the Yangtze River estuary. Exchangeable sodium percentage (ESP), exchangeable sodium (ExNa), pH, soluble salt concentration, and composition of soluble salts were measured in 10cm increments from the surface to 30cm depth after 6 and 18months. The results indicated that the effect of FGD-gypsum is greatest in the 0-10cm mixing soil layer and 60Mg/ha was the optimal rate that can reduce the ESP to below 6% and decrease soil pH to neutral (7.0). The improvement effect was reached after 6months, and remained after 18months. The composition of soluble salts was transformed from sodic salt ions mainly containing Na(+), HCO3(-)+CO3(2-) and Cl(-) to neutral salt ions mainly containing Ca(2+) and SO4(2-). Non-halophyte plants were survived at 90%. The study demonstrates that the use of FGD-gypsum for remediating tidal flat soils is promising. PMID:27372137

  19. Strain accommodation through facet matching in La{sub 1.85}Sr{sub 0.15}CuO{sub 4}/Nd{sub 1.85}Ce{sub 0.15}CuO{sub 4} ramp-edge junctions

    SciTech Connect

    Hoek, M.; Coneri, F.; Poccia, N.; Renshaw Wang, X.; Hilgenkamp, H.; Ke, X.; Van Tendeloo, G.

    2015-08-01

    Scanning nano-focused X-ray diffraction and high-angle annular dark-field scanning transmission electron microscopy are used to investigate the crystal structure of ramp-edge junctions between superconducting electron-doped Nd{sub 1.85}Ce{sub 0.15}CuO{sub 4} and superconducting hole-doped La{sub 1.85}Sr{sub 0.15}CuO{sub 4} thin films, the latter being the top layer. On the ramp, a new growth mode of La{sub 1.85}Sr{sub 0.15}CuO{sub 4} with a 3.3° tilt of the c-axis is found. We explain the tilt by developing a strain accommodation model that relies on facet matching, dictated by the ramp angle, indicating that a coherent domain boundary is formed at the interface. The possible implications of this growth mode for the creation of artificial domains in morphotropic materials are discussed.

  20. Correlated alteration effects in CM carbonaceous chondrites

    NASA Astrophysics Data System (ADS)

    Browning, Lauren B.; McSween, Harry Y., Jr.; Zolensky, Michael E.

    1996-07-01

    Three parameters are proposed to determine the relative extent of alteration in CM chondrites. The mineralogic alteration index monitors the relative progress of coupled substitutions in the progressive alteration of cronstedtite to Mg-serpentine and increases with increasing alteration. To calculate values of this index, an algorithm has been developed to estimate the average matrix phyllosilicate composition in individual CM chondrites. The second parameter is the volume percent of isolated matrix silicates, which decreases with progressive alteration due to mineral hydration. Finally, the volume percent of chondrule alteration monitors the extent of chondrule phyllosilicate production and increases as alteration proceeds. These parameters define the first CM alteration scale that relies on multiple indicators of progressive alteration. The following relative order of increasing alteration is established by this model: Murchison ≤ Bells < Pollen ≤ Murray < Mighei < Nogoya < Cold Bokkeveld. The relative degree of aqueous processing Cochabamba and Boriskino experienced is less precisely constrained, although both fall near the middle of this sequence. A comparison between the mineralogic alteration index and literature values for the whole-rock chemistry of CM chondrites reveals several correlations. A positive, nearly linear correlation between bulk H content and progressive CM alteration suggests an approximately constant production rate of new phyllosilicates relative to the mineralogical transition from cronstedtite to Mg-serpentine. The abundance of trapped planetary 36Ar decreases systematically in progressively altered CM chondrites, suggesting the wholesale destruction of primary noble gas carrier phase (s) by aqueous reactions. Because low temperature fluid-rock reactions are generally associated with large isotopic mass fractionation factors, we also compared our model predictions with δ18O values for bulk CM samples. Although some of these data are

  1. Correlated Alteration Effects in CM Carbonaceous Chondrites

    NASA Astrophysics Data System (ADS)

    Zolensky, Michael E.; Browning, Lauren B.; McSween, Harry Y., Jr.

    1996-01-01

    Three parameters are proposed to determine the relative extent of alteration in CM chondrites. The mineralogic alteration index monitors the relative progress of coupled substitutions in the progressive alteration of cronstedtite to Mg-serpentine, and increases with increasing alteration. To calculate values of this index, an algorithm has been developed to estimate the average matrix phyllosilicate composition in individual CM chondrites. The second parameter is the volume percent of isolated matrix silicates, which decreases with progressive alteration due to mineral hydration. Finally, the volume percent of chondrule alteration monitors the extent of chondrule phyllosilicate production, and increases as alteration proceeds. These parameters define the first CM alteration scale that-relies on multiple indicators of progressive alteration. The following relative order of increasing alteration is established by this model: Murchison less than or equal to Bells less than Pollen less than or equal to Murray less than Mighei less than Nogoya less than Cold Bokkeveld. Bulk delta18O values generally increase with progressive alteration, providing additional support for this sequence. The relative degree of aqueous processing Cochabamba and Boriskino experienced is less precisely constrained, although both fall near the middle of this sequence. A comparison between the mineralogic alteration index and literature values of the whole-rock chemistry of CM chondrites reveals several correlations. For example, a positive, nearly linear correlation between bulk H content and progressive CM alteration suggests an approximately constant production rate of new phyllosilicates relative to the mineralogical transition from cronstedtite to Mg-serpentine. Furthermore, the abundance of trapped planetary Ar-36 decreases systematically in progressively altered CM chondrites, suggesting the wholesale destruction of primary noble gas carrier phase(s) by aqueous reactions. Multiple

  2. [Effects of biochar amendment on cropland soil bulk density, cation exchange capacity, and particulate organic matter content in the North China Plain].

    PubMed

    Chen, Hong-Xia; Du, Zhang-Liu; Guo, Wei; Zhang, Qing-Zhong

    2011-11-01

    A 3-year field experiment with randomized block design was conducted to study the effects of biochar amendment on the soil bulk density, cation exchange capacity (CEC), and particulate organic matter C (POM-C) and N (POM-N) contents in a high-yielding cropland in the North China Plain. Four treatments were installed, i.e., chemical NPK (CK), chemical NPK plus 2250 kg x hm(-2) of biochar (C1), chemical NPK plus 4500 kg x hm(-2) of biochar (C2), and 750 kg x hm(-2) of biochar-based slow release fertilizer (CN). Comparing with CK, treatments C1 and C2 significantly decreased the bulk density of 0-7.5 cm soil layer by 4.5% and 6.0%, respectively, and the treatments with biochar amendment increased the CEC in 0-15 cm soil layer, with an increment of 24.5% in treatment C2. Biochar amendment also increased the C (POM-C) and N (POM-N) contents in 0-7.5 cm soil layer, e.g., the POM-C and N contents in treatment C1 and C2 were 250% and 85%, and 260% and 120% higher than those of the CK, respectively. After three years of biochar amendment, the soil had obvious improvement in its physical and chemical properties, and played more active roles in soil carbon sequestration and greenhouse gases emission reduction. PMID:22303671

  3. Detection of Thermal 2 cm and 1 cm Formaldehyde Emission in NGC 7538

    NASA Astrophysics Data System (ADS)

    Yuan, Liang; Araya, E. D.; Hofner, P.; Kurtz, S.; Pihlstrom, Y.

    2011-05-01

    Formaldehyde is a tracer of high density gas in massive star forming regions. The K-doublet lines from the three lowest rotational energy levels of ortho-formaldehyde correspond to wavelengths of 6, 2 and 1 cm. Thermal emission of these transitions is rare, and maser emission has only been detected in the 6 cm line. NGC 7538 is an active site of massive star formation in the Galaxy, and one of only a few regions known to harbor 6 cm formaldehyde (H2CO) masers. Using the NRAO 100 m Green Bank Telescope (GBT), we detected 2 cm H2CO emission toward NGC 7538 IRS1. The velocity of the 2 cm H2CO line is very similar to the velocity of one of the 6 cm H2CO masers but the linewidth is greater. To investigate the nature of the 2 cm emission, we conducted observations of the 1 cm H2CO transition, and obtained a cross-scan map of the 2 cm line. We detected 1 cm emission and found that the 2 cm emission is extended (greater than 30"), which implies brightness temperatures of ˜0.2 K. Assuming optically thin emission, LTE, and that the 1 cm and 2 cm lines originate from the same volume of gas, both these detections are consistent with thermal emission of gas at ˜30 K. We conclude that the 1 cm and 2 cm H2CO lines detected with the GBT are thermal, which implies molecular densities above ˜105 cm-3. LY acknowledges support from WIU. PH acknowledges partial support from NSF grant AST-0908901.

  4. The Destabilization of Protected Soil Organic Carbon Following Experimental Drought at the Pore and Core scale

    NASA Astrophysics Data System (ADS)

    Smith, A. P.; Bond-Lamberty, B. P.; Tfaily, M. M.; Todd-Brown, K. E.; Bailey, V. L.

    2015-12-01

    The movement of water and solutes through the pore matrix controls the distribution and transformation of carbon (C) in soils. Thus, a change in the hydrologic connectivity, such as increased saturation, disturbance or drought, may alter C mineralization and greenhouse gas (GHG) fluxes to the atmosphere. While these processes occur at the pore scale, they are often investigated at coarser scale. This project investigates pore- and core-scale soil C dynamics with varying hydrologic factors (simulated precipitation, groundwater-led saturation, and drought) to assess how climate-change induced shifts in hydrologic connectivity influences the destabilization of protected C in soils. Surface soil cores (0-15 cm depth) were collected from the Disney Wilderness Preserve, Florida, USA where water dynamics, particularly water table rise and fall, appear to exert a strong control on the emissions of GHGs and the persistence of soil organic matter in these soils. We measured CO2 and CH4 from soils allowed to freely imbibe water from below to a steady state starting from either field moist conditions or following experimental drought. Parallel treatments included the addition of similar quantities of water from above to simulate precipitation. Overall respiration increased in soil cores subjected to drought compared to field moist cores independent of wetting type. Cumulative CH4 production was higher in drought-induced soils, especially in the soils subjected to experimental groundwater-led saturation. Overall, the more C (from CO2 and CH4) was lost in drought-induced soils compared to field moist cores. Our results indicate that future drought events could have profound effects on the destabilization of protected C, especially in groundwater-fed soils. Our next steps focus on how to accurately capture drought-induced C destabilization mechanisms in earth system models.

  5. Effects of shrub encroachment on soil organic carbon in global grasslands

    NASA Astrophysics Data System (ADS)

    Li, He; Shen, Haihua; Chen, Leiyi; Liu, Taoyu; Hu, Huifeng; Zhao, Xia; Zhou, Luhong; Zhang, Pujin; Fang, Jingyun

    2016-07-01

    This study aimed to evaluate the effect of shrub encroachment on soil organic carbon (SOC) content at broad scales and its controls. We conducted a meta-analysis using paired control data of shrub-encroached grassland (SEG) vs. non-SEG collected from 142 studies worldwide. SOC contents (0–50 cm) were altered by shrub encroachment, with changes ranging from ‑50% to + 300%, with an effect size of 0.15 (p < 0.01). The SOC contents increased in semi-arid and humid regions, and showed a greater rate of increase in grassland encroached by leguminous shrubs than by non-legumes. The SOC content decreased in silty and clay soils but increased in sand, sandy loam and sandy clay loam. The SOC content increment was significantly positively correlated with precipitation and temperature as well as with soil bulk density but significantly negatively correlated with soil total nitrogen. We conclude the main effects of shrub encroachment would be to increase topsoil organic carbon content. As structural equation model revealed, soils properties seem to be the primary factors responsible for the extent of the changes, coarse textured soils having a greater capacity than fine textured soils to increase the SOC content. This increased effect appears to be secondarily enhanced by climate and plant elements.

  6. Precision of farmer based fertility ratings and soil organic carbon for crop production on a Ferralsol

    NASA Astrophysics Data System (ADS)

    Musinguzi, P.; Ebanyat, P.; Tenywa, J. S.; Basamba, T. A.; Tenywa, M. M.; Mubiru, D.

    2015-03-01

    Simple and affordable soil fertility ratings are essential, particularly for the resource-constrained farmers in sub-Saharan Africa (SSA) in planning and implementing prudent interventions. A study was conducted on Ferralsols in Uganda, to evaluate farmer-field-based soil fertility assessment procedures, hereafter referred to as farmer' field experiences (FFE), for ease of use (simplicity) and precision, against more formal scientific quantitative ratings using soil organic carbon (SQR-SOC). A total of 30 fields were investigated and rated using both approaches, as low, medium and high in terms of soil fertility, with maize as the test crop. Based on maize yield, both rating techniques were fairly precise in delineating soil fertility classes, though the FFE approach showed mixed responses. Soil organic carbon in the top soil (0-15 cm) was exceptionally influential, explaining > 70% in yield variance. Each unit rise in SOC concentration resulted in 966-1223 kg ha-1 yield gain. The FFE approach was effective in identifying low fertility fields, which was coherent with the fields categorized as low (SOC < 1.2%). Beyond this level, its precision can be remarkably increased when supplemented with the SOC procedure.

  7. Effects of shrub encroachment on soil organic carbon in global grasslands

    PubMed Central

    Li, He; Shen, Haihua; Chen, Leiyi; Liu, Taoyu; Hu, Huifeng; Zhao, Xia; Zhou, Luhong; Zhang, Pujin; Fang, Jingyun

    2016-01-01

    This study aimed to evaluate the effect of shrub encroachment on soil organic carbon (SOC) content at broad scales and its controls. We conducted a meta-analysis using paired control data of shrub-encroached grassland (SEG) vs. non-SEG collected from 142 studies worldwide. SOC contents (0–50 cm) were altered by shrub encroachment, with changes ranging from −50% to + 300%, with an effect size of 0.15 (p < 0.01). The SOC contents increased in semi-arid and humid regions, and showed a greater rate of increase in grassland encroached by leguminous shrubs than by non-legumes. The SOC content decreased in silty and clay soils but increased in sand, sandy loam and sandy clay loam. The SOC content increment was significantly positively correlated with precipitation and temperature as well as with soil bulk density but significantly negatively correlated with soil total nitrogen. We conclude the main effects of shrub encroachment would be to increase topsoil organic carbon content. As structural equation model revealed, soils properties seem to be the primary factors responsible for the extent of the changes, coarse textured soils having a greater capacity than fine textured soils to increase the SOC content. This increased effect appears to be secondarily enhanced by climate and plant elements. PMID:27388145

  8. Effects of shrub encroachment on soil organic carbon in global grasslands.

    PubMed

    Li, He; Shen, Haihua; Chen, Leiyi; Liu, Taoyu; Hu, Huifeng; Zhao, Xia; Zhou, Luhong; Zhang, Pujin; Fang, Jingyun

    2016-01-01

    This study aimed to evaluate the effect of shrub encroachment on soil organic carbon (SOC) content at broad scales and its controls. We conducted a meta-analysis using paired control data of shrub-encroached grassland (SEG) vs. non-SEG collected from 142 studies worldwide. SOC contents (0-50 cm) were altered by shrub encroachment, with changes ranging from -50% to + 300%, with an effect size of 0.15 (p < 0.01). The SOC contents increased in semi-arid and humid regions, and showed a greater rate of increase in grassland encroached by leguminous shrubs than by non-legumes. The SOC content decreased in silty and clay soils but increased in sand, sandy loam and sandy clay loam. The SOC content increment was significantly positively correlated with precipitation and temperature as well as with soil bulk density but significantly negatively correlated with soil total nitrogen. We conclude the main effects of shrub encroachment would be to increase topsoil organic carbon content. As structural equation model revealed, soils properties seem to be the primary factors responsible for the extent of the changes, coarse textured soils having a greater capacity than fine textured soils to increase the SOC content. This increased effect appears to be secondarily enhanced by climate and plant elements. PMID:27388145

  9. Probing lepton asymmetry with 21 cm fluctuations

    SciTech Connect

    Kohri, Kazunori; Oyama, Yoshihiko; Sekiguchi, Toyokazu; Takahashi, Tomo E-mail: oyamayo@post.kek.jp E-mail: tomot@cc.saga-u.ac.jp

    2014-09-01

    We investigate the issue of how accurately we can constrain the lepton number asymmetry ξ{sub ν}=μ{sub ν}/T{sub ν} in the Universe by using future observations of 21 cm line fluctuations and cosmic microwave background (CMB). We find that combinations of the 21 cm line and the CMB observations can constrain the lepton asymmetry better than big-bang nucleosynthesis (BBN). Additionally, we also discuss constraints on ξ{sub ν} in the presence of some extra radiation, and show that the 21 cm line observations can substantially improve the constraints obtained by CMB alone, and allow us to distinguish the effects of the lepton asymmetry from the ones of extra radiation.

  10. Snowmelt timing alters shallow but not deep soil moisture in the Sierra Nevada

    NASA Astrophysics Data System (ADS)

    Blankinship, Joseph C.; Meadows, Matthew W.; Lucas, Ryan G.; Hart, Stephen C.

    2014-02-01

    Roughly one-third of the Earth's land surface is seasonally covered by snow. In many of these ecosystems, the spring snowpack is melting earlier due to climatic warming and atmospheric dust deposition, which could greatly modify soil water resources during the growing season. Though snowmelt timing is known to influence soil water availability during summer, there is little known about the depth of the effects and how long the effects persist. We therefore manipulated the timing of seasonal snowmelt in a high-elevation mixed-conifer forest in a Mediterranean climate during consecutive wet and dry years. The snow-all-gone (SAG) date was advanced by 6 days in the wet year and 3 days in the dry year using black sand to reduce the snow surface albedo. To maximize variation in snowmelt timing, we also postponed the SAG date by 8 days in the wet year and 16 days in the dry year using white fabric to shade the snowpack from solar radiation. We found that deeper soil water (30-60 cm) did not show a statistically significant response to snowmelt timing. Shallow soil water (0-30 cm), however, responded strongly to snowmelt timing. The drying effect of accelerated snowmelt lasted 2 months in the 0-15 cm depth and at least 4 months in the 15-30 cm depth. Therefore, the legacy of snowmelt timing on soil moisture can persist through dry periods, and continued earlier snowmelt due to climatic warming and windblown dust could reduce near-surface water storage and availability to plants and soil biota.

  11. CV and CM chondrite impact melts

    NASA Astrophysics Data System (ADS)

    Lunning, Nicole G.; Corrigan, Catherine M.; McSween, Harry Y.; Tenner, Travis J.; Kita, Noriko T.; Bodnar, Robert J.

    2016-09-01

    Volatile-rich and typically oxidized carbonaceous chondrites, such as CV and CM chondrites, potentially respond to impacts differently than do other chondritic materials. Understanding impact melting of carbonaceous chondrites has been hampered by the dearth of recognized impact melt samples. In this study we identify five carbonaceous chondrite impact melt clasts in three host meteorites: a CV3red chondrite, a CV3oxA chondrite, and a regolithic howardite. The impact melt clasts in these meteorites respectively formed from CV3red chondrite, CV3oxA chondrite, and CM chondrite protoliths. We identified these impact melt clasts and interpreted their precursors based on their texture, mineral chemistry, silicate bulk elemental composition, and in the case of the CM chondrite impact melt clast, in situ measurement of oxygen three-isotope signatures in olivine. These impact melts typically contain euhedral-subhedral olivine microphenocrysts, sometimes with relict cores, in glassy groundmasses. Based on petrography and Raman spectroscopy, four of the impact melt clasts exhibit evidence for volatile loss: these melt clasts either contain vesicles or are depleted in H2O relative to their precursors. Volatile loss (i.e., H2O) may have reduced the redox state of the CM chondrite impact melt clast. The clasts that formed from the more oxidized precursors (CV3oxA and CM chondrites) exhibit phase and bulk silicate elemental compositions consistent with higher intrinsic oxygen fugacities relative to the clast that formed from a more reduced precursor (CV3red chondrite). The mineral chemistries and assemblages of the CV and CM chondrite impact melt clasts identified here provide a template for recognizing carbonaceous chondrite impact melts on the surfaces of asteroids.

  12. Study of surface cross-hatch and misfit dislocation structure in In(0.15)Ga(0.85)As/GaAs grown by chemical beam epitaxy

    NASA Astrophysics Data System (ADS)

    Beanland, R.; Aindow, M.; Joyce, T. B.; Kidd, P.; Lourenco, M.; Goodhew, P. J.

    1995-04-01

    It is well known that a cross-hatch develops on the surface of low-misfit strained semiconductor layers which undergo relaxation by the introduction of arrays of a/2(101) misfit dislocations in the interface between the strained layer and substrate. Here we present a study of the detailed structure of these surface striations and their development with thickness in a series of In(x)Ga(1-x)As single layers on (001)GaAs, where x is close to 0.15. Using atomic force microscopy, it is found that the striations are in fact almost triangular ridges with rounded tops separated by V-shaped grooves. They are not slip traces. These ridges are found to be asymmetric in distribution, with those parallel to (1(bar)10) far higher than those parallel to (110). The spacing and height of the ridges increases with layer thickness. The structure also becomes more disordered in the case of thicker layers, with ridges running for shorter lengths and having more complex profiles. Using transmission electron microscopy, it is possible to link the ridges to dislocations lying above, and parallel to, the interface which result from repeated operation of multiplication sources.

  13. Microstructures of La 1.85Sr 0.15CuO 4 doped with Ni at high doping level

    NASA Astrophysics Data System (ADS)

    Wu, X. S.; Jiang, S. S.; Pan, F. M.; Lin, J.; Xu, N.; Mao Zhiqiang; Xu Gaoji; Zhang Yuheng

    1996-02-01

    Ceramic superconductors of La 1.85Sr 0.15Cu 1- yNi yO 4 with 0.00 ≤ y ≤ 0.50 were synthesized. There is no impurity phase detected in the entire Ni doped region. The structure of these Ni-doped samples was characterized by X-ray diffraction studies. The atomic structural parameters were obtained by Rietveld refinements for the Ni-doped samples with y ≤ 0.50. Some meaningful bond distances were determined according to the refined results. According to the variations of some bond distances with y, the whole doping range could be divided into two regions: low doping level (LDL) and high doping level (HDL). The bond length between the two apical oxygen atoms in the CuO 6 octahedra for the Ni-doped samples increased with increasing content of Ni in the LDL, and decreased in the HDL. The average bond distance of LaO was not changed in the whole doping region. The metal-insulator transition was also observed in this Ni-doped system.

  14. Experimental investigation of a 0.15 scale model of a conformal variable-ramp inlet for the F-16 airplane

    NASA Technical Reports Server (NTRS)

    Hawkins, J. E.

    1980-01-01

    A 0.15 scale model of a proposed conformal variable-ramp inlet for the Multirole Fighter was tested from Mach 0.8 to 2.2 at a wide range of angles of attack and sideslip. Inlet ramp angle was varied to optimize ramp angle as a function of engine airflow, Mach number, angle of attack, and angle of sideslip. Several inlet configuration options were investigated to study their effects on inlet operation and to establish the final flight configuration. These variations were cowl sidewall cutback, cowl lip bluntness, boundary layer bleed, and first-ramp leading edge shape. Diagnostic and engine face instrumentation were used to evaluate inlet operation at various inlet stations and at the inlet/engine interface. Pressure recovery and stability of the inlet were satisfactory for the proposed application. On the basis of an engine stability audit of the worst-case instantaneous distortion patterns, no inlet/engine compatibility problems are expected for normal operations.

  15. Fatigue Crack Propagation in Intercritically Tempered Fe-9Ni-0.1C and Fe-4Mn-0.15C

    NASA Astrophysics Data System (ADS)

    Choi, H. J.; Schwartz, L. H.

    1983-06-01

    Fatigue crack propagation was studied for two intercritically tempered cryogenic steels, Fe-9Ni-0.1C and Fe-4Mn-0.15C, at both intermediate (stage II) and low (stage I, near threshold) stress intensity ranges. Propagation rates were determined for varying intercritical tempering times corresponding to varying amounts of retained austenite and untempered martensite. The results show that the heat treatments that optimize impact fracture properties in the nickel steel are also beneficial with respect to the fatigue crack propagation rate in stage I, while no beneficial effect beyond that attributable to carbon redistribution was observed for stage II. For the manganese steel, heat treatments leading to increased concentrations of retained austenite also increased the threshold stress even though no improvement in fracture toughness was observed. To clarify the origin of this improved behavior, the fracture surface was analyzed by Mössbauer Spectroscopy and Auger Electron Microprobe. The Mössbauer results indicated that the retained austenite in the crack path is transformed to martensite as was earlier shown in this laboratory for Charpy specimens. Auger composition analysis suggested a tendency for a stage I crack tip to avoid the mechanically induced brittle untempered martensite in the Fe-Mn steel, while no such preference was observed for stage II.

  16. Effect of phosphorus additions on the sintering and transport properties of proton conducting BaZr0.85Y0.15O3-δ

    NASA Astrophysics Data System (ADS)

    Soares, H. S.; Zhang, X.; Antunes, I.; Frade, J. R.; Mather, G. C.; Fagg, D. P.

    2012-07-01

    The influence of phosphorous additions on the sintering and electrical transport properties of the proton-conducting perovskite BaZr0.85Y0.15O3-δ (BZY) has been studied with a view to the use of phosphates as typical dispersants for the formation of stabilised solid suspensions or as possible sintering aids. P2O5 additions, (1-x)BZY·xP2O5, monotonously promote densification in the intermediate compositional range 0.04≤x≤0.08. Nonetheless, BZY reacts with phosphorous forming the phase Ba3(PO4)2 at temperatures as low as 600 °C. The associated loss of Ba from the perovskite, leads to a decrease in the perovskite lattice parameter, the formation of yttria-based impurity phases and impaired grain growth. Such reaction has an extremely detrimental effect on bulk and grain boundary conductivities. It is, therefore, vital that the current results are taken into account by the protonics community when attempting to prepare the stabilised solid suspensions of BZY nanopowders required for thin ceramic applications. Alternative dispersants to phosphate esters must be found.

  17. Damage development during low cycle fatigue of carbon-black loaded SBR. [Styrene butadiene rubber containing 0, 15, 25, and 35 wt % carbon black

    SciTech Connect

    Lesuer, D.; Goldberg, A.; Hiromoto, D.; Patt, J.

    1984-06-18

    Fatigue of elastomers is a subject that has received considerable study over the years. This paper explores the problem of damage accumulation in a series of styrene butadiene rubber (SBR) based compounds containing 0, 15, 25, and 35 wt % carbon-black under conditions in which a limited number of higher stress cycles have been applied to the material (referred to here as low cycle fatigue). Damage development in elastomers can take many forms. Generally speaking, one can classify the degradation as mechanical or chemical in origin. The most obvious form of mechanical damage is flaw or cut growth, while typical examples of chemical damage include chain scission or thermal oxidation. The fatigue crack growth relationship given in Equation 1 obviously only applies to flaw growth. However, it does an excellent job of following the data and exhibits the threshold behavior observed in both SBR and SBR-35 at room temperature. At higher temperatures, the damaged material shows an increasing deviation from threshold behavior. The obvious implication is that some thermally activated damage mechanism is degrading the material. In previous work, carbon-black loaded SBR subjected to a high temperature, high stress environment was shown to undergo a thermal-mechanical oxidation process. Certainly, this process is a candidate for a damage mechanism in these studies. 6 references, 14 figures, 1 table.

  18. Synthesis and Characterization of Ba(Zr0.15Ti0.85)O3 Nano Powders by Oxalate Precipitation Method

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Wang, Xiaohui; Qiao, Bin; Gui, Zhilun; Li, Longtu

    2006-08-01

    Barium zirconate titanate (BZT) is considered to be an important dielectric material for the fabrication of multilayer ceramic capacitors (MLCCs). The synthesis of nanocrystalline powders of high purity is the key to improving the performance of BZT-based ceramics. In this study, we developed Ba(Zr0.15Ti0.85)O3 nano powders with a perovskite structure and a homogeneous granularity through the oxalate precipitation method. The average particle size of the powders can be controlled from 30 to 100 nm at different calcining temperatures. The sintering property of the powders is superior to that of powders prepared by the conventional solid-state method, such that the more compact ceramics with a smaller grain size can be obtained at a sintering temperature of 1250 °C. The dielectric property of the ferroelectric-powder-based ceramics was so excellent for the development of dielectric materials for base-metal electrode multilayer ceramic capacitors (BME MLCCs) with a large capacitance.

  19. Oxygen nonstoichiometry of tetragonal La2-xSr(x)CuO4-δ (x = 0.15-1.2) and in situ XPS studies at elevated temperatures.

    PubMed

    Alyoshin, V A; Romanova, I P; Mikhailova, D; Oswald, S; Senyshyn, A; Ehrenberg, H

    2010-12-30

    The peculiarities of oxygen nonstoichiometry (δ) in tetragonal La(2-x)Sr(x)CuO(4-δ) solid solution with x(Sr) = 0.15-1.2 were studied by XRD, NPD, in situ high-temperature XPS, and chemical analysis. Temperature dependences of oxygen nonstoichiometry, δ = δ(T), were obtained for different Sr contents at 1 bar of O(2). Two types of charge compensation during replacement of lanthanum by strontium are discussed: an increase of the average copper oxidation state and a formation of oxygen vacancies. The average copper oxidation state V(Cu) exhibits a maximum of 2.32 at x(Sr) = 0.6, while δ increases with x(Sr). Oxygen vacancies are unambiguously located on the 4c site ({CuO(2)} plane) for compositions with different strontium contents, which electronic state is described by the O 2p core electron peak at about 531 eV. Thermal stability of the solid solution in a vacuum is associated with the extraction of practically the entire oxygen from CuO(2) layers and the formation of Cu(+) at least in the near-surface region. The higher average copper oxidation state after synthesis in the Sr-rich phases in comparison with the Sr-poor compositions prevents oxygen removal and the formation of Cu(+) and, therefore, stabilizes the structure during heating in a vacuum. PMID:21133400

  20. Anisotropy of the upper critical fields and the paramagnetic Meissner effect in La1.85Sr0.15CuO4 single crystals

    NASA Astrophysics Data System (ADS)

    Felner, I.; Tsindlekht, M. I.; Drachuck, G.; Keren, A.

    2013-02-01

    Optimally doped La1.85Sr0.15CuO4 single crystals have been investigated by dc and ac magnetic measurements. These crystals have rectangular needle-like shapes with the long needle axis parallel to the crystallographic c axis (c-crystal) or parallel to the basal planes (a-crystal). In both crystals, the temperature dependence of the upper critical fields (HC2) and the surface critical field (HC3) were measured. The H-T phase diagram is presented. Close to TC = 35 K, for the c-crystal, {\\boldsymbol{\\gamma}}^{c}={H}_{{C3}}^{c}/{H}_{{C2}}^{c}=1.8 0(2), whereas for the a-crystal the {\\boldsymbol{\\gamma}}^{a}={H}_{{C3}}^{a}/{H}_{{C2}}^{a}=4.0(2) obtained is much higher than 1.69, predicted by the ideal mathematical model. At low applied dc fields, positive field-cooled branches known as the ‘paramagnetic Meissner effect’ (PME) are observed; their magnitude is inversely proportional to H. The anisotropic PME is observed in both a- and c-crystals, only when the applied field is along the basal planes. It is speculated that the high γa and the PME are connected to each other.

  1. Anisotropy of the upper critical fields and the paramagnetic Meissner effect in La1.85Sr0.15CuO4 single crystals.

    PubMed

    Felner, I; Tsindlekht, M I; Drachuck, G; Keren, A

    2013-02-13

    Optimally doped La(1.85)Sr(0.15)CuO(4) single crystals have been investigated by dc and ac magnetic measurements. These crystals have rectangular needle-like shapes with the long needle axis parallel to the crystallographic c axis (c-crystal) or parallel to the basal planes (a-crystal). In both crystals, the temperature dependence of the upper critical fields (H(C2)) and the surface critical field (H(C3)) were measured. The H-T phase diagram is presented. Close to T(C) = 35 K, for the c-crystal, γ(C) = H(C3)(c)/H(C2)(c) = 1.80(2), whereas for the a-crystal the γ(a) = H(C3)(a)/H(C2)(a) = 4.0(2) obtained is much higher than 1.69, predicted by the ideal mathematical model. At low applied dc fields, positive field-cooled branches known as the 'paramagnetic Meissner effect' (PME) are observed; their magnitude is inversely proportional to H. The anisotropic PME is observed in both a- and c-crystals, only when the applied field is along the basal planes. It is speculated that the high γ(a) and the PME are connected to each other. PMID:23315336

  2. Electrical and Structural Real-Time Changes in Thin Thermoelectric (Bi0.15Sb0.85)2Te3 Films by Dynamic Thermal Treatment

    NASA Astrophysics Data System (ADS)

    Rothe, K.; Stordeur, M.; Heyroth, F.; Syrowatka, F.; Leipner, H. S.

    2010-09-01

    A recent trend in thermoelectrics is miniaturization of generators or Peltier coolers using the broad spectrum of thin-film and nanotechnologies. Power supplies for energy self-sufficient micro and sensor systems are a wide application field for such generators. It is well known that thermal treatment of as-deposited p-type (Bi0.15Sb0.85)2Te3 films leads to enhancement of their power factors. Whereas up to now only the start (as-deposited) and the end (after annealing) film stages were investigated, herein for the first time, the dynamical changes of sputter-deposited film properties have been observed by real-time measurements. The electrical conductivity shows a distinct, irreversible increase during a thermal cycle of heating to about 320°C followed by cooling to room temperature. The interpretation of the Seebeck and Hall coefficients points to an enhancement in Hall mobility after annealing. In situ x-ray diffractometry shows the generation of an additional Te phase depending on temperature. This is also confirmed by energy-dispersive x-ray microanalysis and the corresponding mapping by scanning electron microscopy. It is presumed that the Te enrichment in a separate, locally well-defined phase is the reason for the improvement in the integral film transport properties.

  3. Zn0.85Cd0.15Se active layers on graded-composition InxGa1-xAs buffer layers

    NASA Astrophysics Data System (ADS)

    Müller, B. H.; Lantier, R.; Sorba, L.; Heun, S.; Rubini, S.; Lazzarino, M.; Franciosi, A.; Napolitani, E.; Romanato, F.; Drigo, A. V.; Lazzarini, L.; Salviati, G.

    1999-06-01

    We investigated the structural and optical properties of Zn0.85Cd0.15Se epilayers for blue optical emission on lattice-matched InxGa1-xAs buffer layers. Both the II-VI layers and the III-V buffers were grown by molecular beam epitaxy on GaAs(001) wafers. A parabolic In concentration profile within the graded-composition InxGa1-xAs buffers was selected to control strain relaxation and minimize the concentration of threading dislocations. Dislocation-free II-VI growth was readily achieved on the graded buffers, with a Rutherford backscattering yield ratio reduced by a factor of 3 and a deep-level emission intensity reduced by over two orders of magnitude relative to those observed following direct II-VI growth on GaAs. The surface morphology of the materials, however, was found to replicate the crosshatched pattern of the underlying InxGa1-xAs substrates.

  4. Pressure dependence of the electronic structure of a [311] piezoelectric Ga0.85In0.15As/AlAs superlattice

    NASA Astrophysics Data System (ADS)

    Reparaz, J. S.; Muniz, L. R.; Goñi, A. R.; Alonso, M. I.; Rozas, G.; Fainstein, A.; Saravanan, S.; Vaccaro, P. O.

    2010-09-01

    We have studied the electronic subband structure of a piezoelectric [311] Ga0.85In0.15As/AlAs superlattice by means of high-hydrostatic pressure and excitation-power-dependent photoluminescence at 78 K. In particular, we unraveled the origin of two optical transitions at around 1.96 and 2 eV at ambient pressure, which were recently found to give rise to an unexpectedly strong resonant enhancement of the acoustic-phonon Raman scattering for such samples with permanent built-in piezoelectric fields [G. Rozas , Phys. Rev. B 77, 165314 (2008)10.1103/PhysRevB.77.165314]. Here we demonstrate that these transitions are doubly indirect, in real and reciprocal space, corresponding to radiative recombination processes between electrons at the X valleys of the AlAs barriers and heavy holes at the Γ point of the Brillouin zone but confined to the GaInAs quantum wells. In addition, the partial screening of the piezoelectric field induced by carrier photoexcitation under illumination becomes largely suppressed for pressures above 1.1 GPa due to conduction-band Γ-X crossover effects.

  5. Crystal structure, magnetism, and superconductivity of YBa2(Cu1-xFex)3O7+y with x=0.05-0.15

    NASA Astrophysics Data System (ADS)

    Katano, S.; Matsumoto, T.; Matsushita, A.; Hatano, T.; Funahashi, S.

    1990-02-01

    Neutron scattering experiments and magnetic-susceptibility measurements have been performed to investigate the structural and magnetic properties of YBa2(Cu1-xFex)3O7+y with x=0.05, 0.10 (superconductors), and 0.15 (nonsuperconductor). Rietveld refinements of neutron diffraction at room temperature indicate that the Fe atoms occupy both the Cu(1) ``chain'' and Cu(2) ``plane'' sites-the occupation of the Cu(2) sites is about 30% of the total Fe content. Neutron-diffraction measurements down to 5.5 K indicate no evidence of long-range magnetic order; however, neutron small-angle scattering as a function of temperature shows a cusplike anomaly around 20 K. This suggests that the Fe-doped YBa2Cu3O7 system undergoes spin-glass ordering at low temperatures; accordingly, in the superconducting samples superconductivity and spin-glass coexist. Magnetic susceptibility for the nonsuperconducting sample gives further evidence for the spin-glass order. The results obtained are discussed in connection with the superconducting properties of this system.

  6. Pinning mechanism in electron-doped HTS Nd_{1.85}Ce_{0.15}CuO_{4-\\delta } epitaxial films

    NASA Astrophysics Data System (ADS)

    Guarino, A.; Leo, A.; Grimaldi, G.; Martucciello, N.; Dean, C.; Kunchur, M. N.; Pace, S.; Nigro, A.

    2014-12-01

    The electrical transport properties of c-axis oriented Nd1.85Ce0.15CuO4 - δ superconducting films have been investigated to analyze the pinning mechanism in this material. The samples were grown on SrTiO3 substrates using the dc sputtering high-pressure technique, whereas a detailed analysis of the structure and local composition of the films has been achieved using high-resolution electron microscopy and x-ray microanalysis. Magneto-resistance and current-voltage measurements, in the temperature range from 1.6 to 300 K and in magnetic field up to 9 T, have been reported. In particular, the anisotropic coefficient defined as the ratio between the parallel upper critical field, {{H}c2}\\parallel ab, and the perpendicular one, {{H}c2}\\parallel c, has been evaluated, pointing out the high anisotropy of this compound. Furthermore, the vortex activation energy as a function of the applied magnetic field, parallel and perpendicular to the CuO2 planes, has been derived and compared with the flux-pinning forces to enlighten the peculiar nature of pinning centers in this material.

  7. Carrier leakage into the continuum in diagonal GaAs/Al{sub 0.15}GaAs terahertz quantum cascade lasers

    SciTech Connect

    Albo, Asaf Hu, Qing

    2015-12-14

    The maximum operating temperature reported so far for THz-QCLs is ∼200 K. With the well-known degradation mechanism of thermally activated LO-phonon scattering, one straightforward strategy to improve their temperature performances is the use of diagonal structures in which the upper-to-lower state scattering time is lengthened. However, the effectiveness of this method for achieving room temperature operation remains to be demonstrated. Here, we studied the temperature degradation of highly diagonal GaAs/Al{sub 0.15}GaAs THz-QCLs. By analyzing their output power dependence on temperature, we identified the physical mechanism that limits their performance to be thermally activated leakage into the continuum, as evidenced by the large activation energy of ∼80 meV extracted from the Arrhenius plot. This observation is further supported by a careful analysis of current-voltage characteristics, especially in regions of high biases. In order to significantly improve the temperature performances of diagonal THz-QCLs, this leakage should be eliminated.

  8. Low temperature neutron diffraction study of Nd1-xSrxCrO3 (0.05≤x≤0.15)

    NASA Astrophysics Data System (ADS)

    Chakraborty, Keka R.; Mukherjee, S.; Kaushik, S. D.; Rayaprol, S.; Prajapat, C. L.; Singh, M. R.; Siruguri, V.; Tyagi, A. K.; Yusuf, S. M.

    2014-06-01

    Low temperature magnetic structure of Sr substituted NdCrO3 has been investigated using neutron diffraction in the temperature range of 2-300 K. We carried out a low temperature magnetization study in the temperature range 5-300 K. The Rietveld analysis of neutron diffraction patterns led us to conclude that the Cr moments have a Gy type of alignment of spins while the Nd moments align in a -Cz type fashion for all three samples. The weighted average Cr3+/4+ ions moments were 3.19(7), 2.77(3) and 2.57(7) μB close to its theoretical Cr3+ moment value namely 3 μB at 2 K for the x=0.05, 0.1 and 0.15 samples respectively. While the Nd3+ moments for the three samples at 2 K were 3.0(1), 2.39(8) and 2.2(2), respectively.

  9. Measurement of the Proton Spin Function g1(x,Q2) for Q2 from 0.15 to 1.6 GeV with CLAS

    SciTech Connect

    Renee Fatemi; Alexander Skabelin; Volker Burkert; Donald Crabb; Raffaella De Vita; Sebastian Kuhn; Ralph Minehart

    2003-11-01

    Double-polarization asymmetries for inclusive ep scattering were measured at Jefferson Lab using 2.6 and 4.3 GeV longitudinally polarized electrons incident on a longitudinally polarized NH{sub 3} target in the CLAS detector. The polarized structure function g{sub 1}(x,Q{sup 2}) was extracted throughout the nucleon resonance region and into the deep inelastic regime, for Q{sup 2} = 0.15-1.64 GeV{sup 2}. The contributions to the first moment {Gamma}{sub 1}(Q{sup 2}) = g{sub 1}(x,Q{sup 2})dx were determined up to Q{sup 2}=1.2 GeV{sup 2}. Using a parameterization for g{sub 1} in the unmeasured low x regions, the complete first moment was estimated over this Q{sup 2} region. A rapid change in {Gamma}{sub 1} is observed for Q{sup 2} < 1 GeV{sup 2}, with a sign change near Q{sup 2} = 0.3 GeV{sup 2}, indicating dominant contributions from the resonance region. At Q{sup 2}=1.2 GeV{sup 2} our data are below the pQCD evolved scaling value.

  10. Magnetic and magnetocaloric properties of La0.85(Na1-xKx)0.15MnO3 ceramics produced by reactive spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Regaieg, Y.; Sicard, L.; Monnier, J.; Koubaa, M.; Ammar-Merah, S.; Cheikhrouhou, A.

    2014-05-01

    La0.85(Na1-xKx)0.15MnO3 (0 ≤ x ≤ 1) ceramics were synthesized from the raw La(OH)3, NaOH, KOH, and MnO2 powders using Reactive Spark Plasma Sintering. All the compounds were obtained as pure, dense, and ultrafine grained pellets. The Rietveld refinement of the X-Ray powder diffraction shows that all our synthesized samples are single phase and crystallize in the distorted rhombohedral system with R-3c space group. The thermal variation of their magnetization under a magnetic applied field of 50 mT shows a paramagnetic to ferromagnetic transition at a Curie temperature very close to room temperature. The magnetic entropy change, deduced from magnetization measurements versus magnetic applied field up to 5 T at several temperatures exhibits a maximum |ΔSM|max which slightly increases with increasing K content. The relative cooling power values, inferred from the |ΔSM| vs T peak broadening, vary slightly with the potassium content, reaching, values between 316 and 289 Jkg-1, in an applied magnetic field of 5 T, when x increases from 0 to 1. Technically, these large values make the prepared materials very promising for domestic magnetic refrigeration.

  11. Fatigue of LiNi0.8Co0.15Al0.05O2 in commercial Li ion batteries

    NASA Astrophysics Data System (ADS)

    Kleiner, Karin; Dixon, Ditty; Jakes, Peter; Melke, Julia; Yavuz, Murat; Roth, Christina; Nikolowski, Kristian; Liebau, Verena; Ehrenberg, Helmut

    2015-01-01

    The degradation of LiNi0.8Co0.15Al0.05O2 (LNCAO), a cathode material in lithium-ion-batteries, was studied using in situ powder diffraction and in situ Ni K edge X-ray absorption spectroscopy (XAS). The fatigued material was taken from a 7 Ah battery which was cycled for 34 weeks under defined durability conditions. Meanwhile, a cell was stored, as reference, under controlled conditions without electrochemical treatment. The fatigued LNCAO used in this study showed a capacity loss of 26% ± 9% compared to the non-cycled material. During charge and discharge the local and the overall structure of LNCAO was investigated by X-ray near edge structure (XANES) analysis, the extended X-ray absorption fine structure (EXAFS) analysis and by using Rietveld refinement of in situ powder diffraction patterns. Both powder diffraction and XAS revealed additional, rhombohedral phases which do not change with electrochemical cycling. Moreover, a phase with the lattice parameters of fully lithiated LNCAO was still present in the fatigued material at high potentials, while it was absent in the non-fatigued reference material. The coexistence of these phases is described by domains within the LNCAO particles, in correlation with the observed fatigue.

  12. Preparation and conductivity of composite apatite La9.33Si6O26 (LSO) - Zr0.85Y0.15O1.925 (YSZ)

    NASA Astrophysics Data System (ADS)

    Noviyanti, Atiek Rostika; Irwansyah, Ferli S.; Hidayat, Sahrul; Hardian, Arie; Syarif, Dani Gustaman; Yuliyati, Yati B.; Hastiawan, Iwan

    2016-02-01

    A great challenge to reduce high operating temperature of solid oxide fuel cell (SOFC) to intermediate temperature SOFC (IT-SOFC, 500-750 °C), is the development of solid electrolyte materials with high ionic conductivity at intermediate temperature range. In response to this challenge, here we report a novel composite material La9.33Si6O26 (LSO)-Zr0.85Y0.15O1.925 (YSZ). LSO-YSZ composite synthesis was carried out by combining LSO with commercial YSZ (9:1, 8:2, 7:3) using hydrothermal method. In order to get dense pellet, all of the product were sintered at 1450 °C for 3 hours. X-ray diffraction pattern of the entire pellets show typical both of LSO and YSZ pattern which indicate that the composite was succesfully formed. The highest conductivity was detected in YSZ-7LSO (YSZ:LSO = 7: 3), i.e 1.72 × 10-4 Scm-1 at 700 °C and also has low activation energy (0.88 eV). This result suggests that the LSO-YSZ composite materials are good oxide ion conductor and potential to be used as an alternative solid electrolyte in IT-SOFC technology.

  13. Thermoelectric and magnetic properties of Ca{sub 3}Co{sub 4–x}Cu{sub x}O{sub 9+δ} with x = 0.00, 0.05, 0.07, 0.10 and 0.15

    SciTech Connect

    Bhaskar, Ankam; Lin, Z.R.; Liu, Chia-Jyi

    2013-11-15

    Graphical abstract: - Highlights: • Resistivity of all the samples exhibits nonmetallic to metallic behavior in the low temperature region. • Ca{sub 3}Co{sub 3.85}Cu{sub 0.15}O{sub 9+δ} shows the highest dimensionless figure of merit. • The observed effective magnetic moments decrease with increasing Cu content. - Abstract: Ca{sub 3}Co{sub 4–x}Cu{sub x}O{sub 9+δ} (x = 0.00, 0.05, 0.07, 0.10 and 0.15) samples were prepared by conventional solid-state synthesis and their thermoelectric properties were systematically investigated. The thermopower of all the samples was positive, indicating that the predominant carriers are holes over the entire temperature range. Ca{sub 3}Co{sub 3.85}Cu{sub 0.15}O{sub 9+δ} had the highest power factor of 2.17 μW cm{sup −1} K{sup −2} at 141 K, representing an improvement of about 64.4% compared to undoped Ca{sub 3}Co{sub 4}O{sub 9+δ}. Magnetization measurements indicated that all the samples exhibit a low-spin state of cobalt ions. The observed effective magnetic moments decreased with increasing copper content.

  14. Influence of variable topsoil replacement depths on soil chemical parameters within a coal mine in northeastern Wyoming, USA

    SciTech Connect

    Schladweiler, B.K.; Vance, G.F.; Legg, D.E.; Munn, L.C.; Haroian, R.

    2004-10-15

    Uniform topsoil replacement depths on coal mine reclaimed areas have been mandated by USA federal and state regulations; however, soils of the premine landscape are not naturally uniform in depth and vary in physical, chemical, and biological characteristics. In addition, uniform topsoil depths may actually hinder the development of diverse reclaimed plant communities. We studied the effect of varying topsoil replacement depth treatments (15, 30, and 56 cm) on soil and backfill pH, electrolytic conductivity (EC), and sodium adsorption ratio (SAR) within a reclaimed coal mine study area. Backfill material (also known as spoil) at this site did not possess levels of pH, EC, and SAR that were detrimental to plant growth. There was only a slight reduction in pH, EC, and SAR within the upper 15 cm depth in the reclaimed topsoil treatments with a general increase of EC and SAR in the lower portion of the replaced soil profile. Some downward movement of soluble salts within the reclaimed treatments was evident despite low precipitation. For examples, SAR in the 0-15 cm depth over all reclaimed treatments was lower in 2002 than 2000-2001, and the 0-30 cm portion of the reclaimed soil profile had reduced pH and EC, while the 30-60 cm portion had increased EC and SAR. It is anticipated that soil quality differences in terms of pH, EC, and SAR between topsoil depth treatments will be enhanced with time. Comparison of the reclaimed area to the native reference areas suggested numerous depth differences as a result of homogeneity of the replaced topsoil vs. undisturbed soil profiles.

  15. The Multidimensional Curriculum Model (MdCM)

    ERIC Educational Resources Information Center

    Vidergor, Hava E.

    2010-01-01

    The multidimensional Curriculum Model (MdCM) helps teachers to better prepare gifted and able students for our changing world, acquiring much needed skills. It is influenced by general learning theory of constructivism, notions of preparing students for 21st century, Teaching the Future Model, and current comprehensive curriculum models for…

  16. The 150/220 cm Schmidt telescope.

    NASA Astrophysics Data System (ADS)

    Bao, Ke-Ren; Li, De-Pei; Yi, Mei-Liang; Zhu, Li-Qing; Li, Chang-Jin; Xu, Jian-Hua; Zhu, Neng-Hong; Wang, Lang-Juan; Zheng, Yi-Jin

    1990-09-01

    This paper deals with the overall design of the 150/220 cm Schmidt telescope. The optics, main structure, main mirror cell and the focus keeping device, achromatic Schmidt control cell, hydrostatic bearing of polar axis, drive, CCD auto-guider, and multi microcomputer control system are discussed in detail.

  17. Characterization of 8-cm engineering model thruster

    NASA Technical Reports Server (NTRS)

    Williamson, W. S.

    1984-01-01

    Development of 8 cm ion thruster technology which was conducted in support of the Ion Auxiliary Propulsion System (IAPS) flight contract (Contract NAS3-21055) is discussed. The work included characterization of thruster performance, stability, and control; a study of the effects of cathode aging; environmental qualification testing; and cyclic lifetesting of especially critical thruster components.

  18. Effects of land use changes on the dynamics of selected soil properties in the Northeast Wollega, Ethiopia

    NASA Astrophysics Data System (ADS)

    Adugna, A.; Abegaz, A.

    2015-10-01

    Land use change can have negative or positive effects on soil quality. Our objective was to assess the effects of land uses changes on the dynamics of selected soil physical and chemical properties. Soil samples were collected from three adjacent land uses, namely forestland, grazing land and cultivated land at 0-15 cm depth, and tested in National Soil Testing Center, Ministry of Agriculture of Ethiopia. Percentage changes of soil properties on cultivated and grazing land was computed and compared to forestland, and Analysis of variance (ANOVA) was used to test the significance of the changes. The results indicate that sand, silt, SOM, N, pH, CEC and Ca were the highest in forestlands. Mg was the highest in grazing land while clay, P and K were the highest in cultivated land. The percentage changes in sand, clay, SOM, pH, CEC, Ca and Mg were higher in cultivated land than the change in grazing land compared to forestland, except P. In terms of relationship between soil properties; SOM, N, CEC and Ca were strongly positively correlated with most of soil properties while P and silt have no significant relationship with any of other considered soil properties. Clay has negative correlation with all of soil properties. Generally, cultivated land has the least concentration of soil physical and chemical properties except clay and AP which suggest increasing degradation rate in soils of cultivated land. So as to increase SOM and other nutrients in the soil of cultivated land, integrated implementation of land management through compost, cover crops, manures, minimum tillage and crop rotation; and liming to increase soil pH are suggested.

  19. Effects of sandy desertified land rehabilitation on soil carbon sequestration and aggregation in an arid region in China.

    PubMed

    Su, Yong Zhong; Wang, Xue Fen; Yang, Rong; Lee, Jaehoon

    2010-11-01

    The rehabilitation of sandy desertified land in semi-arid and arid regions has a great potential to increase carbon sequestration and improve soil quality. Our objective was to investigate the changes in the soil carbon pool and soil properties of surface soil (0-15 cm) under different types of rehabilitation management. Our study was done in the short-term (7 years) and long-term (32 years) desertification control sites in a marginal oasis of northwest China. The different management treatments were: (1) untreated shifting sand land as control; (2) sand-fixing shrubs with straw checkerboards; (3) poplar (Populus gansuensis) shelter forest; and (4) irrigated cropland after leveling sand dune. The results showed that the rehabilitation of severe sandy desertified land resulted in significant increases in soil organic C (SOC), inorganic C, and total N concentrations, as well as enhanced soil aggregation. Over a 7-year period of revegetation and cultivation, SOC concentration in the recovered shrub land, forest land and irrigated cropland increased by 4.1, 14.6 and 11.9 times compared to the control site (shifting sand land), and increased by 11.2, 17.0 and 23.0 times over the 32-year recovery period. Total N, labile C (KMnO(4)-oxidation C), C management index (CMI) and inorganic C (CaCO(3)-C) showed a similar increasing trend as SOC. The increased soil C and N was positively related to the accumulation of fine particle fractions. The accumulation of silt and clay, soil C and CaCO(3) enhanced the formation of aggregates, which was beneficial to mitigate wind erosion. The percentage of >0.25 mm dry aggregates increased from 18.0% in the control site to 20.0-87.2% in the recovery sites, and the mean weight diameter (MWD) of water-stable aggregates significantly increased, with a range of 0.09-0.30 mm at the recovery sites. Long-term irrigation and fertilization led to a greater soil C and N accumulation in cropland than in shrub and forest lands. The amount of soil C

  20. Synthesis and characterization of La0.75Ca0.15Sr0.05Ba0.05MnO3-Ni0.9Zn0.1Fe2O4 multiferroic composites

    NASA Astrophysics Data System (ADS)

    Rahaman, Md. D.; Setu, S. H.; Saha, S. K.; Akther Hossain, A. K. M.

    2015-07-01

    In the present work, we report on structural, dielectric, impedance spectroscopic studies and magnetoelectric properties of (1-x) La0.75Ca0.15Sr0.05Ba0.05MnO3 (LCSBMO)+(x) Ni0.9Zn0.1Fe2O4 (NZFO) (x=0.0, 0.1, 0.2, 0.4, 0.6, 0.8 and 1.0) composites. The composites were prepared by the solid state reaction route. The coexistence of a cubic spinel NZFO phase and a tetragonal LCSBMO phase in the composites is confirmed by the X-ray diffraction measurement. Scanning electron microscopy images reveal that NZFO particles were distributed non-uniformly with some porosity in the LCSBMO matrix. Frequency dependent dielectric constant shows usual dielectric dispersion behavior, which may be attributed to the Maxwell-Wagner type interfacial polarization. At higher frequencies (≥105 Hz), due to electronic and ionic polarizations only, the dielectric constant is independent of frequency. Complex impedance shows semicircular arc due to the domination of grain boundary resistance and electric modulus confirms the presence of hopping conduction. The AC conductivity (σAC) obeys the power law and the linearity of logω2 versus logσAC plots indicates that the conduction mechanism is due to small polaron hopping. Low frequency dispersion in permeability is due to domain wall motion and the frequency stability of permeability indicates that the arrangement of the magnetic moment in the polarization process can keep up with the external field. The maximum magnetoelectric voltage coefficient of ~40 mV Oe-1 cm-1 for x=0.8.

  1. Pressure dependence of optical transitions in In{sub 0.15}Ga{sub 0.85}N/GaN multiple quantum wells

    SciTech Connect

    Shan, W.; Ager, J.W. III, and; Walukiewicz, W.; Haller, E.E. |; McCluskey, M.D.; Johnson, N.M.; Bour, D.P.

    1998-10-01

    The effects of hydrostatic pressure on optical transitions in In{sub 0.15}Ga{sub 0.85}N/GaN multiple quantum wells (MQW{close_quote}s) have been studied. The optical transition associated with confined electron and hole states in the MQW{close_quote}s was found to shift linearly to higher energy with pressure but exhibit a significantly weaker pressure dependence compared to bulklike thick epitaxial-layer samples. Similar pressure coefficients obtained by both photomodulation and photoluminescence measurements rule out the possibility of the transition involving localized states deep in the band gap. We found that the difference in the compressibility of In{sub x}Ga{sub 1{minus}x}N and GaN induces a tensile strain in the compressively strained In{sub x}Ga{sub 1{minus}x}N well layers, partially compensating the externally applied hydrostatic pressure. This mechanical effect is primarily responsible for the smaller pressure dependence of the optical transitions in the In{sub x}Ga{sub 1{minus}x}N/GaN MQW{close_quote}s. In addition, the pressure-dependent measurements allow us to identify a spectral feature observed at an energy below the GaN band gap. We conclude that this feature is due to transitions from ionized Mg acceptor states to the conduction band in the {ital p}-type GaN cladding layer rather than a confined transition in the MQW{close_quote}s. {copyright} {ital 1998} {ital The American Physical Society}

  2. Water deuterium fractionation in the high-mass star-forming region G34.26+0.15 based on Herschel/HIFI data

    NASA Astrophysics Data System (ADS)

    Coutens, A.; Vastel, C.; Hincelin, U.; Herbst, E.; Lis, D. C.; Chavarría, L.; Gérin, M.; van der Tak, F. F. S.; Persson, C. M.; Goldsmith, P. F.; Caux, E.

    2014-12-01

    Understanding water deuterium fractionation is important for constraining the mechanisms of water formation in interstellar clouds. Observations of HDO and H_2^{18}O transitions were carried out towards the high-mass star-forming region G34.26+0.15 with the Heterodyne Instrument for the Far-Infrared (HIFI) instrument onboard the Herschel Space Observatory, as well as with ground-based single-dish telescopes. 10 HDO lines and three H_2^{18}O lines covering a broad range of upper energy levels (22-204 K) were detected. We used a non-local thermal equilibrium 1D analysis to determine the HDO/H2O ratio as a function of radius in the envelope. Models with different water abundance distributions were considered in order to reproduce the observed line profiles. The HDO/H2O ratio is found to be lower in the hot core (˜3.5 × 10-4-7.5 × 10-4) than in the colder envelope (˜1.0 × 10-3-2.2 × 10-3). This is the first time that a radial variation of the HDO/H2O ratio has been found to occur in a high-mass source. The chemical evolution of this source was modelled as a function of its radius and the observations are relatively well reproduced. The comparison between the chemical model and the observations leads to an age of ˜105 yr after the infrared dark cloud stage.

  3. The transformation behavior of Cu-8.0Ni-1.8Si-0.6Sn-0.15Mg alloy during isothermal heat treatment

    SciTech Connect

    Lei Qian; Li Zhou Zhu Anyin; Qiu Wenting; Liang Shuquan

    2011-09-15

    The transformation behavior of Cu-8.0Ni-1.8Si-0.6Sn-0.15Mg alloy during isothermal heat treatment has been studied by transmission electron microscope observation. On the basis of micro-hardness measurement, time-temperature-property curves of the alloy have been established, and nose-temperatures of curves are about 650 deg. C. Discontinuous precipitates appeared as the samples isothermal heat treated at 550 deg. C, while continuous precipitates appeared as the samples isothermal heat treated at temperatures below 550 deg. C and above 650 deg. C. {beta}-Ni{sub 3}Si, {delta}-Ni{sub 2}Si and {delta}'-Ni{sub 2}Si precipitates were observed in the specimens. The crystal orientation relationships between copper matrix and precipitates were determined as (02-bar 2-bar){sub Cu} || (01-bar 1-bar){sub {beta}} || (010){sub {delta}}, [100]{sub Cu} || [100]{sub {beta}} || [001]{sub {delta}};(02-bar 2-bar){sub Cu} || (01-bar 1-bar){sub {beta}} || (100){sub {delta}} ', [100]{sub Cu} || [100]{sub {beta}} || [001]{sub {delta}} '. - Highlights: {yields} TTP curves have been established and their nose-tip temperatures are about 650 deg. C. {yields} Discontinuous precipitation appeared during isothermal treated at 550 deg. C. {yields} Continuous precipitation appeared when temperature is below 550 deg. C and above 650 deg. C. {yields} Crystal orientations relationships are: (02-bar 2-bar){sub Cu} || (01-bar 1-bar){sub {beta}} || (010){sub {delta}}, [100]{sub Cu} || [100]{sub {beta}} || [001]{sub {delta}};(02-bar 2-bar){sub Cu} || (01-bar 1-bar){sub {beta}} || (100){sub {delta}} ', [100]{sub Cu} || [100]{sub {beta}} || [001]{sub {delta}} '.

  4. Effect of Defects on Decay of Voltage and Capacity for Li[Li0.15Ni0.2Mn0.6]O2 Cathode Material.

    PubMed

    Yan, Wuwei; Liu, Yongning; Guo, Shengwu; Jiang, Tao

    2016-05-18

    Lithium-rich manganese metal layered oxides are very promising cathode materials for high-energy-density lithium-ion batteries, but improvement in voltage decay and capacity fade is a great challenge, which is mainly related to the structural instability or reconstruction of material's surface. Defects, such as part lattice distortions, local cation disordering and atomic ununiformity, often aggravate the further structural changes upon cycling. In this paper, we found that PEG contributed to form better layered structure, well crystallinity, uniform composition and polyhedral nanoparticles for Li[Li0.15Ni0.2Mn0.6]O2 (LNMO). On the basis of the comparative trial, a mechanism of electronegativity difference is proposed to elucidate cation nonuniform distribution. Higher electronegativity of Ni (1.91) than Mn (1.55) show a stronger ability of attraction between Ni and O atoms, and then led to Ni atoms show stronger diffusion driving force toward particle surface to contact the rich O atoms during sintering in air. However, PEG polymer can form a better barrier for more O atoms to attract Ni and Mn atoms on particle surface so that facilitated a uniform distribution. The electrochemical test indicated that the decay of discharge capacity and working voltage was mitigated, which was identified by the result of HRTEM analysis that the initial less defect structure obviously retarded the phase transformation from the layered to spinel after 50 cycles. Therefore, defects are crucial for understanding the voltage fade and capacity decay, and the improvement of performance also demonstrates that designing optimum compositions and ordering atomic arrangements will contribute to stabilize the surface structure and restrain inherent phase transitions. PMID:27116571

  5. Hydrogen-Broadened Water from 50 to 300 cm-1 and 1300 to 4000 cm-1

    NASA Technical Reports Server (NTRS)

    Brown, L.; Peterson, D.; Plymate, C.

    1995-01-01

    To support remote sensing of the outer planets, absorption spectra of H2O broadened by H2 were recorded at room temperature using two Fourier transform spectrometers. The data from 1300 to 4000 cm-1 were obtained at 0.012 cm-1 resolution with the McMath FTS located at Kitt Peak National Observatory/National Solar Observatory. The remainder of the spectral data from 55 to 320 cm-1 were taken at 0.0056 cm-1 with the Bruker FTS.

  6. Implication of Land Use and Belowground Weather on Nitrous Oxide Soil Depth Profiles and Denitrification Potential

    NASA Astrophysics Data System (ADS)

    Phillips, R. L.; Song, B.; Saliendra, N.; Liebig, M. A.

    2013-12-01

    Agricultural soils are the largest single source of anthropogenic nitrous oxide (N2O) to the atmosphere, which is largely attributed to the expansion in the use of synthetic fertilizer nitrogen (N). Alfalfa crops often do not require synthetic N addition because N is fixed symbiotically belowground. Some biologically fixed N leaks into soil, which could affect production and consumption of N2O. While many studies have reported net fluxes of N2O at the soil surface, few have quantified variation in N2O concentration at multiple soil depths under variable climatic conditions without synthetic N inputs. A no-till crop field, seeded to alfalfa (Medicago sativa) in 2009, was compared to neighboring native prairie in North Dakota, U.S.A. to determine if N2O, CO2 and CH4 concentrations varied with depth between fields for 4 years. Both fields (> 15 ha) were harvested for hay without N-fertilizer inputs between 2009 and 2013. Soils and instrumentation were similar. Sensors and soil gas well collection chambers were buried at near-surface (15 and 30 cm) and sub-surface (60 and 90 cm) soil depths. Temperature, moisture, oxygen, relative humidity, and pressure data were collected every 30 minutes, and gas well concentration data were collected twice weekly until spring 2013. Cores were collected for each depth increment in 2012, and potential rates of denitrification and anammox were measured for the 0-15 cm depth using soil slurry incubation experiments with 15N tracer treatments. We evaluated temporal variability in N2O concentration with depth and found N2O spikes beneath alfalfa tended to be an order of magnitude higher and more persistent than N2O peaks beneath prairie. Median N2O concentrations at sub-surface depths were greater than near-surface depths. Alfalfa median N2O concentrations for near-surface (24 nmols N2O L-1) and sub-soils (30 nmols N2O L-1) were higher than N2O concentrations beneath prairie (15 nmols N2O L-1 and 17 nmols N2O L-1, respectively). Soil

  7. 15 cm multipole gas ion thruster

    NASA Technical Reports Server (NTRS)

    Isaacson, G. C.; Kaufman, H. R.

    1976-01-01

    A 15-cm multipole thruster was operated on argon and xenon. The multipole approach used has been shown capable of low discharge losses and flat ion beam profiles with a minimum of redesign. This approach employs low magnetic field strengths and flat or cylindrical sheet-metal parts, hence is suited to rapid optimization and scaling. Only refractory metal cathodes were used in this investigation.

  8. Soil moisture decline across the conterminous United States

    NASA Astrophysics Data System (ADS)

    Guevara, M.; Vargas, R.

    2015-12-01

    Changes in soil moisture (SM) are directly related to food and environmental security around the world. Furthermore, precise information about temporal and spatial patterns of SM is crucial for realistic interpretations of environmental change and policy relevant research. This study shows how data fusion of topography (represented by a digital elevation models and derived terrain attributes) and annual SM (represented by remotely sensed microwave observations from 1978 to 2013) enhance spatial detail and improves the correlation between remotely sensed and ground truth SM observations. On average, topography explains 80% of remotely sensed soil moisture variability using a kernel-based form of regression with a RMSE of 0.026 via cross-validation. Predictions of annual SM were generated across the conterminous United States at 1km pixel size for the 36 years of available data. Previous studies report that SM remote sensing data, derived from microwave observations (~27km pixel size), is representative of the first 2 cm of soil depth. We found that field SM measurements best correlates with our 1 km SM product at 60 cm soil depth (R2= 0.52). Furthermore, by averaging field SM measurements between 25 and 60 cm the correlation improved to R2= 0.62. Our results show a similar negative temporal trend for field SM observations and our predicted SM product at 1km pixel size. For both cases the slope is showing a reduction of -1.87 (-0.64 -3.23) %/year and -0.92 (-0.15, -1.25) %/year, respectively. We found a consistent decline of SM at the national level, and a sharp decay in 2012 and 2013. The temporal variability of SM is partially (~51%) explained by spatial and temporal trends of precipitation and temperature across the United States. These results provide insights of alternative approaches to estimate SM trends across continental-to-global scales.

  9. Constraining dark matter through 21-cm observations

    NASA Astrophysics Data System (ADS)

    Valdés, M.; Ferrara, A.; Mapelli, M.; Ripamonti, E.

    2007-05-01

    Beyond reionization epoch cosmic hydrogen is neutral and can be directly observed through its 21-cm line signal. If dark matter (DM) decays or annihilates, the corresponding energy input affects the hydrogen kinetic temperature and ionized fraction, and contributes to the Lyα background. The changes induced by these processes on the 21-cm signal can then be used to constrain the proposed DM candidates, among which we select the three most popular ones: (i) 25-keV decaying sterile neutrinos, (ii) 10-MeV decaying light dark matter (LDM) and (iii) 10-MeV annihilating LDM. Although we find that the DM effects are considerably smaller than found by previous studies (due to a more physical description of the energy transfer from DM to the gas), we conclude that combined observations of the 21-cm background and of its gradient should be able to put constrains at least on LDM candidates. In fact, LDM decays (annihilations) induce differential brightness temperature variations with respect to the non-decaying/annihilating DM case up to ΔδTb = 8 (22) mK at about 50 (15) MHz. In principle, this signal could be detected both by current single-dish radio telescopes and future facilities as Low Frequency Array; however, this assumes that ionospheric, interference and foreground issues can be properly taken care of.

  10. Mapmaking for precision 21 cm cosmology

    NASA Astrophysics Data System (ADS)

    Dillon, Joshua S.; Tegmark, Max; Liu, Adrian; Ewall-Wice, Aaron; Hewitt, Jacqueline N.; Morales, Miguel F.; Neben, Abraham R.; Parsons, Aaron R.; Zheng, Haoxuan

    2015-01-01

    In order to study the "Cosmic Dawn" and the Epoch of Reionization with 21 cm tomography, we need to statistically separate the cosmological signal from foregrounds known to be orders of magnitude brighter. Over the last few years, we have learned much about the role our telescopes play in creating a putatively foreground-free region called the "EoR window." In this work, we examine how an interferometer's effects can be taken into account in a way that allows for the rigorous estimation of 21 cm power spectra from interferometric maps while mitigating foreground contamination and thus increasing sensitivity. This requires a precise understanding of the statistical relationship between the maps we make and the underlying true sky. While some of these calculations would be computationally infeasible if performed exactly, we explore several well-controlled approximations that make mapmaking and the calculation of map statistics much faster, especially for compact and highly redundant interferometers designed specifically for 21 cm cosmology. We demonstrate the utility of these methods and the parametrized trade-offs between accuracy and speed using one such telescope, the upcoming Hydrogen Epoch of Reionization Array, as a case study.

  11. Polyhedral Serpentine Grains in CM Chondrites

    NASA Technical Reports Server (NTRS)

    Zega, Thomas J.; Garvie, Laurence A. J.; Dodony, Istvan; Stroud, Rhonda M.; Buseck, Peter R.

    2005-01-01

    CM chondrites are primitive rocks that experienced aqueous alteration in the early solar system. Their matrices and fine-grained rims (FGRs) sustained the effects of alteration, and the minerals within them hold clues to the aqueous reactions. Sheet silicates are an important product of alteration, and those of the serpentine group are abundant in the CM2 chondrites. Here we expand on our previous efforts to characterize the structure and chemistry of serpentines in CM chondrites and report results on a polyhedral form that is structurally similar to polygonal serpentine. Polygonal serpentine consists of tetrahedral (T) sheets joined to M(2+)-centered octahedral (O) sheets (where (M2+) is primarily Mg(2+) and Fe(2+)), which give rise to a 1:1 (TO) layered structure with a 0.7-nm layer periodicity. The structure is similar to chrysotile in that it consists of concentric lizardite layers wrapped around the fiber axis. However, unlike the rolled-up chrysotile, the tetrahedral sheets of the lizardite layers are periodically inverted and kinked, producing sectors. The relative angles between sectors result in 15- and 30-sided polygons in terrestrial samples.

  12. Vertical and horizontal soil CO2 transport and its exchanges with the atmosphere

    NASA Astrophysics Data System (ADS)

    Sánchez-Cañete, Enrique P.; Serrano-Ortíz, Penélope; Kowalski, Andrew S.; Curiel Yuste, Jorge; Domingo, Francisco; Oyonarte, Cecilio

    2015-04-01

    The CO2 efflux from soils to the atmosphere constitutes one of the major fluxes of the terrestrial carbon cycle and is a key determinant for sources and sinks of CO2 in land-atmosphere exchanges. Because of their large global magnitude, even small changes in soil CO2 effluxes directly affect the atmospheric CO2 content. Despite much research, models of soil CO2 efflux rates are highly uncertain, with the positive or negative feedbacks between underground carbon pools and fluxes and their temperature sensitivities in future climate scenarios largely unknown. Now it is necessary to change the point of view regarding CO2 exchange studies from an inappropriately conceived static system in which all respired CO2 is directly emitted by molecular processes to the atmosphere, to a dynamic system with gas transport by three different processes: convection, advection and molecular diffusion. Here we study the effects of wind-induced advection on the soil CO2 molar fraction during two years in a shrubland plateau situated in the Southeast of Spain. A borehole and two subterranean profiles (vertical and horizontal) were installed to study CO2 transport in the soil. Exchanges with the atmosphere were measured by an eddy covariance tower. In the vertical profile, two CO2 sensors (GMP-343, Vaisala) were installed at 0.15m and 1.5m along with soil temperature and humidity probes. The horizontal profile was designed to measure horizontal movements in the soil CO2 molar fraction due to down-gradient CO2 from the plant, where the majority CO2 is produced, towards bare soil. Three CO2 sensors (GMM-222, Vaisala) were installed, the first below plant (under-plant), the second in bare soil separated 25 cm from the first sensor (near-plant) and the third in bare soil at 25 cm from the second sensor (bare soil). The results show how the wind induces the movement of subterranean air masses both horizontally and vertically, affecting atmospheric CO2 exchanges. The eddy covariance tower

  13. Evaluation of Plant- Compost -Microorganisms Synergy for the Remediation of Diesel contaminated Soil: Success Stories from the Field Station

    NASA Astrophysics Data System (ADS)

    Hussain, Imran; Wimmer, Bernhard; Soja, Gerhard; Sessitsch, Angela; Reichenauer, Thomas G.

    2016-04-01

    Total petroleum hydrocarbons (TPH) contain a mixture of crude oil, gasoline, creosote and diesel is one of the most common groups of persistent organic pollutants. TPH enters into the ecosystem (soil, water and air) through leakage of underground storage tanks (LUST), accidental oil spills, transportation losses and industrial processes. Pollution associated with diesel oil and its refined products is of great concern worldwide due to its threats/damages for human and ecosystem health, soil structure and ground water quality. Extensive soils pollution with petroleum hydrocarbons results in extreme harsh surroundings, produce hydrophobic conditions and infertile soils that ultimately lead towards less plant and microorganisms growth. Among biological methods, bioremediation and phytoremediation are promising technologies that have both technical and ecological benefits as compared to convention methods. Within phytoremediation, rhizoremediation based on stimulation of degrading microorganism's population influenced by plant rhizospheric effect is known as main mechanism for phytoremediation of petroleum polluted soils. Composting along with rhizodegradtion was used to remediate freshly spilled soils at Lysimeter station Siebersdof, Austria. Experiment was started in July 2013 and will be monitored up to September 2016. Field station has 12 Lysimeter in total; each has length, width and depth of 100 cm respectively. Each Lysimeter was filled with normal agricultural soil from Siebersdof (0-70 cm), sand (70-85 cm) and stones (85-100cm). Sand and stones were added to support the normal leaching and percolation of water as we collected leachate samples after regular intervals. After filling, commercial diesel oil (2% w/w of 0-70 cm soil) was spilled on top of each Lysimeter as accidental spill occurs in filed. Compost was added at 0-15 cm layer (5% w/w of soil) to stimulate plant as well as microorganisms growth. Whole Lysimeter station was divided into three treatments

  14. On the accretion process in a high-mass star forming region. A multitransitional THz Herschel-HIFI study of ammonia toward G34.26+0.15

    NASA Astrophysics Data System (ADS)

    Hajigholi, M.; Persson, C. M.; Wirström, E. S.; Black, J. H.; Bergman, P.; Olofsson, A. O. H.; Olberg, M.; Wyrowski, F.; Coutens, A.; Hjalmarson, Å.; Menten, K. M.

    2016-01-01

    Aims: Our aim is to explore the gas dynamics and the accretion process in the early phase of high-mass star formation. Methods: The inward motion of molecular gas in the massive star forming region G34.26+0.15 is investigated by using high-resolution profiles of seven transitions of ammonia at THz frequencies observed with Herschel-HIFI. The shapes and intensities of these lines are interpreted in terms of radiative transfer models of a spherical, collapsing molecular envelope. An accelerated Lambda Iteration (ALI) method is used to compute the models. Results: The seven ammonia lines show mixed absorption and emission with inverse P-Cygni-type profiles that suggest infall onto the central source. A trend toward absorption at increasingly higher velocities for higher excitation transitions is clearly seen in the line profiles. The J = 3 ← 2 lines show only very weak emission, so these absorption profiles can be used directly to analyze the inward motion of the gas. This is the first time a multitransitional study of spectrally resolved rotational ammonia lines has been used for this purpose. Broad emission is, in addition, mixed with the absorption in the 10-00 ortho-NH3 line, possibly tracing a molecular outflow from the star forming region. The best-fitting ALI model reproduces the continuum fluxes and line profiles, but slightly underpredicts the emission and absorption depth in the ground-state ortho line 10-00. An ammonia abundance on the order of 10-9 relative to H2 is needed to fit the profiles. The derived ortho-to-para ratio is approximately 0.5 throughout the infalling cloud core similar to recent findings for translucent clouds in sight lines toward W31C and W49N. We find evidence of two gas components moving inwards toward the central region with constant velocities: 2.7 and 5.3 km s-1, relative to the source systemic velocity. Attempts to model the inward motion with a single gas cloud in free-fall collapse did not succeed. Herschel is an ESA space

  15. ICD-10-CM/PCS: Transferring Knowledge from ICD-9-CM

    PubMed Central

    Sand, Jaime N.; Elison-Bowers, Patt

    2013-01-01

    The transition to ICD-10-CM/PCS has expanded educational opportunities for educators and trainers who are taking on the responsibility of training coders on the new system. Coding education currently faces multiple challenges in the areas of how to train the new workforce, what might be the most efficient method of providing that training, how much retraining of the current workforce with ICD-9-CM training will be required, and how to meet the national implementation deadline of 2014 in the most efficacious manner. This research sought to identify if there was a difference between a group of participants with no knowledge of ICD-9-CM and those with some knowledge of ICD-9-CM in scores on an ICD-10-CM/PCS quiz. Results indicate a difference, supporting the idea of knowledge transfer between the systems and providing additional insight into coding education. PMID:23861677

  16. Mapping Cosmic Structure Using 21-cm Hydrogen Signal at Green Bank Telescope

    NASA Astrophysics Data System (ADS)

    Voytek, Tabitha; GBT 21-cm Intensity Mapping Group

    2011-05-01

    We are using the Green Bank Telescope to make 21-cm intensity maps of cosmic structure in a 0.15 Gpc^3 box at redshift of z 1. The intensity mapping technique combines the flux from many galaxies in each pixel, allowing much greater mapping speed than the traditional redshift survey. Measurement is being made at z 1 to take advantage of a window in frequency around 700 MHz where terrestrial radio frequency interference (RFI) is currently at a minimum. This minimum is due to a reallocation of this frequency band from analog television to wide area wireless internet and public service usage. We will report progress of our attempt to detect autocorrelation of the 21-cm signal. The ultimate goal of this mapping is to use Baryon Acoustic Oscillations to provide more precise constraints to dark energy models.

  17. Field study: Influence of fly ash on leachate composition in an excessively drained soil

    SciTech Connect

    Gangloff, W.J.; Sims, J.T.; Vasilas, B.L.; Ghodrati, M.

    1997-05-01

    Alternatives to landfilling fly ash may be to use it as a soil amendment since it is fine textured and could alter soil texture and thus improve water retention. However, fly ash contains elevated B, soluble salts, and trace element concentrations that could adversely affect plant and soil quality. Objectives were to characterize leaching of soluble salts, plant nutrients, and trace elements in a sandy soil amended with a high rate of fly ash ({approximately}662 Mg ha{sup -1}). We established Field plots in an Evesboro loamy sand using typical agricultural equipment. Lysimeters were installed to a depth of 120 cm and used to collect leachate over a 9 mo period. We also used microplots; (1.0 by 1.0 m) and similar ash rates to characterize leaching under controlled conditions. Lysimeters were installed at four depths in each microplot (15, 30, 60, and 120 cm) and water applied with a rainfall simulator. Boron and soluble salts were leached from the rooting zone after {approximately}38 cm of natural rainfall or 42 cm of irrigation. Calcium and S were the dominant plant macronutrients in leachates while Cu, Mn, and Zn were the only detectable micronutrients. Peak concentrations of these elements were detected after {approximately}50 cm of rainfall or irrigation and decreased to below or near initial concentrations by the conclusion of the study. Nickel was the only detectable trace element in leachates, however, concentrations were variable and <0.15 mg L{sup -1}. Results suggest that if fly ash incorporation is properly timed to allow for natural leaching, adverse effects will be minimal. 29 refs., 5 figs., 5 tabs.

  18. CARBON SEQUESTRATION IN RECLAIMED MINED SOILS OF OHIO

    SciTech Connect

    M.K. Shukla; R. Lal

    2004-10-01

    This research project is aimed at assessing the soil organic carbon (SOC) sequestration potential of reclaimed minesoils (RMS). The experimental sites, owned and maintained by the American Electrical Power, are located in Guernsey, Morgan, Noble, and Muskingum Counties of Ohio. These sites, characterized by age chronosequences, were reclaimed with and without topsoil application and are under continuous grass or forest cover. During this quarter, water infiltration tests were performed on the soil surface in the experimental sites. Soil samples were analyzed for the soil carbon and nitrogen contents, texture, water stable aggregation, and mean weight and geometric mean diameter of aggregates. This report presents the results from two sites reclaimed during 1978 and managed under grass (Wilds) and forest (Cumberland) cover, respectively. The trees were planted in 1982 in the Cumberland site. The analyses of data on soil bulk density ({rho}{sub b}), SOC and total nitrogen (TN) concentrations and stocks were presented in the third quarter report. This report presents the data on infiltration rates, volume of transport and storage pores, available water capacity (AWC) of soil, particle size distribution, and soil inorganic carbon (SIC) and coal carbon contents. The SIC content ranged from 0.04 to 1.68% in Cumberland tree site and 0.01 to 0.65% in the Wilds. The coal content assumed to be the carbon content after oven drying the sample at 350 C varied between 0.04 and 3.18% for Cumberland and 0.06 and 3.49% for Wilds. The sand, silt and clay contents showed moderate to low variability (CV < 0.16) for 0-15 and 15-30 cm depths. The volume of transmission (VTP) and storage pores (VSP) also showed moderate to high variability (CV ranged from 0.22 to 0.39 for Wilds and 0.17 to 0.36 for Cumberland). The CV for SIC was high (0.7) in Cumberland whereas that for coal content was high (0.4) in the Wilds. The steady state infiltration rates (i{sub c}) also showed high variability

  19. Detailed modelling of the 21-cm forest

    NASA Astrophysics Data System (ADS)

    Semelin, B.

    2016-01-01

    The 21-cm forest is a promising probe of the Epoch of Reionization. The local state of the intergalactic medium (IGM) is encoded in the spectrum of a background source (radio-loud quasars or gamma-ray burst afterglow) by absorption at the local 21-cm wavelength, resulting in a continuous and fluctuating absorption level. Small-scale structures (filaments and minihaloes) in the IGM are responsible for the strongest absorption features. The absorption can also be modulated on large scales by inhomogeneous heating and Wouthuysen-Field coupling. We present the results from a simulation that attempts to preserve the cosmological environment while resolving some of the small-scale structures (a few kpc resolution in a 50 h-1 Mpc box). The simulation couples the dynamics and the ionizing radiative transfer and includes X-ray and Lyman lines radiative transfer for a detailed physical modelling. As a result we find that soft X-ray self-shielding, Ly α self-shielding and shock heating all have an impact on the predicted values of the 21-cm optical depth of moderately overdense structures like filaments. A correct treatment of the peculiar velocities is also critical. Modelling these processes seems necessary for accurate predictions and can be done only at high enough resolution. As a result, based on our fiducial model, we estimate that LOFAR should be able to detect a few (strong) absorptions features in a frequency range of a few tens of MHz for a 20 mJy source located at z = 10, while the SKA would extract a large fraction of the absorption information for the same source.

  20. A 30-cm diameter argon ion source

    NASA Technical Reports Server (NTRS)

    Sovey, J. S.

    1976-01-01

    A 30 cm diameter argon ion source was evaluated. Ion source beam currents up to 4a were extracted with ion energies ranging from 0.2 to 1.5 KeV. An ion optics scaling relation was developed for predicting ion beam extraction capability as a function of total extraction voltage, gas type, and screen grid open area. Ignition and emission characteristics of several hollow cathode geometries were assessed for purposes of defining discharge chamber and neutralizer cathodes. Also presented are ion beam profile characteristics which exhibit broad beam capability well suited for ion beam sputtering applications.

  1. Isotope shifts in methane near 6000/cm

    NASA Technical Reports Server (NTRS)

    Fox, K.; Halsey, G. W.; Jennings, D. E.

    1976-01-01

    Isotope shifts for cleanly resolved vibrational-rotational absorption lines of CH4-12 and CH4-13 were measured by a 5-m focal length Littrow spectrometer in the 6000/cm range. The methane isotopes were held in separate absorption cells: 20 torr of CH4-13 in a 1-m cell, and 5 torr of CH4-12 in a White cell of 4-m optical path length. Measured shifts for the cleanly resolved singlets R(0), R(1), Q(1) and P(1) are summarized in tabular form.

  2. An engineering model 30 cm ion thruster

    NASA Technical Reports Server (NTRS)

    Poeschel, R. L.; King, H. J.; Schnelker, D. E.

    1973-01-01

    Thruster development at Hughes Research Laboratories and NASA Lewis Research Center has brought the 30-cm mercury bombardment ion thruster to the state of an engineering model. This thruster has been designed to have sufficient internal strength for direct mounting on gimbals, to weigh 7.3 kg, to operate with a corrected overall efficiency of 71%, and to have 10,000 hours lifetime. Subassemblies, such as the ion optical system, isolators, etc., have been upgraded to meet launch qualification standards. This paper presents a summary of the design specifications and performance characteristics which define the interface between the thruster module and the remainder of the propulsion system.

  3. The study of metal contamination in urban soils of Hong Kong using a GIS-based approach.

    PubMed

    Li, Xiangdong; Lee, Siu-lan; Wong, Sze-chung; Shi, Wenzhong; Thornton, Iain

    2004-05-01

    The study of regional variations and the anthropogenic contamination by metals of soils is very important for environmental planning and monitoring in urban areas. An extensive survey was conducted in the highly urbanized Kowloon area (46.9 km(2)) of Hong Kong, using a systematic sampling strategy with a sampling density of 3-5 composite soil samples (0-15 cm) per km(2). Geochemical maps of 'total' metals (Cd, Cr, Cu, Ni, Pb and Zn) from strong acid extraction in the surface soils were produced based on geographical information system (GIS) technology. A significant spatial relationship was found for Ni, Cu, Pb and Zn in the soils using a GIS-based analysis, suggesting that these metal contaminants in the soils of the Kowloon area had common sources. Several hot-spot areas of metal contamination were identified from the composite metal geochemical map, mainly in the old industrial and residential areas. A further GIS analysis revealed that road junctions, major roads and industrial buildings were possible sources of heavy metals in the urban soils. The Pb isotope composition of the contaminated soils showed clear anthropogenic origins. PMID:14749075

  4. Fuel elements of research reactor CM

    SciTech Connect

    Kozlov, A.V.; Morozov, A.V.; Vatulin, A.V.; Ershov, S.A.

    2013-07-01

    In 1961 the CM research reactor was commissioned at the Research Institute of Atomic Reactors (Dimitrovgrad, Russia), it was intended to carry on investigations and the production of transuranium nuclides. The reactor is of a tank type. Original fuel assembly contained plate fuels that were spaced with vanes and corrugated bands. Nickel was used as a cladding material, fuel meat was produced from UO{sub 2} + electrolytic nickel composition. Fuel plates have been replaced by self-spacing cross-shaped dispersion fuels clad in stainless steel. In 2005 the reactor was updated. The purpose of this updating was to increase the quantity of irradiation channels in the reactor core and to improve the neutron balance. The updating was implemented at the expense of 20 % reduction in the quantity of fuel elements in the core which released a space for extra channels and decreased the mass of structural materials in the core. The updated reactor is loaded with modified standard fuel elements with 20 % higher uranium masses. At the same time stainless steel in fuel assembly shrouds was substituted by zirconium alloy. Today in progress are investigations and work to promote the second stage of reactor updating that involve developments of cross-shaped fuel elements having low neutron absorption matrix materials. This article gives an historical account of the design and main technical changes that occurred for the CM reactor since its commissioning.

  5. Redundant Array Configurations for 21 cm Cosmology

    NASA Astrophysics Data System (ADS)

    Dillon, Joshua S.; Parsons, Aaron R.

    2016-08-01

    Realizing the potential of 21 cm tomography to statistically probe the intergalactic medium before and during the Epoch of Reionization requires large telescopes and precise control of systematics. Next-generation telescopes are now being designed and built to meet these challenges, drawing lessons from first-generation experiments that showed the benefits of densely packed, highly redundant arrays—in which the same mode on the sky is sampled by many antenna pairs—for achieving high sensitivity, precise calibration, and robust foreground mitigation. In this work, we focus on the Hydrogen Epoch of Reionization Array (HERA) as an interferometer with a dense, redundant core designed following these lessons to be optimized for 21 cm cosmology. We show how modestly supplementing or modifying a compact design like HERA’s can still deliver high sensitivity while enhancing strategies for calibration and foreground mitigation. In particular, we compare the imaging capability of several array configurations, both instantaneously (to address instrumental and ionospheric effects) and with rotation synthesis (for foreground removal). We also examine the effects that configuration has on calibratability using instantaneous redundancy. We find that improved imaging with sub-aperture sampling via “off-grid” antennas and increased angular resolution via far-flung “outrigger” antennas is possible with a redundantly calibratable array configuration.

  6. 30-cm electron cyclotron plasma generator

    NASA Technical Reports Server (NTRS)

    Goede, Hank

    1987-01-01

    Experimental results on the development of a 30-cm-diam electron cyclotron resonance plasma generator are presented. This plasma source utilizes samarium-cobalt magnets and microwave power at a frequency of 4.9 GHz to produce a uniform plasma with densities of up to 3 x 10 to the 11th/cu cm in a continuous fashion. The plasma generator contains no internal structures, and is thus inherently simple in construction and operation and inherently durable. The generator was operated with two different magnetic geometries. One used the rare-earth magnets arranged in an axial line cusp configuration, which directly showed plasma production taking place near the walls of the generator where the electron temperature was highest but with the plasma density peaking in the central low B-field regions. The second configuration had magnets arranged to form azimuthal line cusps with approximately closed electron drift surfaces; this configuration showed an improved electrical efficiency of about 135 eV/ion.

  7. Combining galaxy and 21-cm surveys

    NASA Astrophysics Data System (ADS)

    Cohn, J. D.; White, Martin; Chang, Tzu-Ching; Holder, Gil; Padmanabhan, Nikhil; Doré, Olivier

    2016-04-01

    Acoustic waves travelling through the early Universe imprint a characteristic scale in the clustering of galaxies, QSOs and intergalactic gas. This scale can be used as a standard ruler to map the expansion history of the Universe, a technique known as baryon acoustic oscillations (BAO). BAO offer a high-precision, low-systematics means of constraining our cosmological model. The statistical power of BAO measurements can be improved if the `smearing' of the acoustic feature by non-linear structure formation is undone in a process known as reconstruction. In this paper, we use low-order Lagrangian perturbation theory to study the ability of 21-cm experiments to perform reconstruction and how augmenting these surveys with galaxy redshift surveys at relatively low number densities can improve performance. We find that the critical number density which must be achieved in order to benefit 21-cm surveys is set by the linear theory power spectrum near its peak, and corresponds to densities achievable by upcoming surveys of emission line galaxies such as eBOSS and DESI. As part of this work, we analyse reconstruction within the framework of Lagrangian perturbation theory with local Lagrangian bias, redshift-space distortions, {k}-dependent noise and anisotropic filtering schemes.

  8. THE METALLICITY OF THE CM DRACONIS SYSTEM

    SciTech Connect

    Terrien, Ryan C.; Fleming, Scott W.; Mahadevan, Suvrath; Deshpande, Rohit; Bender, Chad F.; Ramsey, Lawrence W.; Feiden, Gregory A.

    2012-11-20

    The CM Draconis system comprises two eclipsing mid-M dwarfs of nearly equal mass in a 1.27 day orbit. This well-studied eclipsing binary has often been used for benchmark tests of stellar models, since its components are among the lowest mass stars with well-measured masses and radii ({approx}< 1% relative precision). However, as with many other low-mass stars, non-magnetic models have been unable to match the observed radii and effective temperatures for CM Dra at the 5%-10% level. To date, the uncertain metallicity of the system has complicated comparison of theoretical isochrones with observations. In this Letter, we use data from the SpeX instrument on the NASA Infrared Telescope Facility to measure the metallicity of the system during primary and secondary eclipses, as well as out of eclipse, based on an empirical metallicity calibration in the H and K near-infrared (NIR) bands. We derive an [Fe/H] = -0.30 {+-} 0.12 that is consistent across all orbital phases. The determination of [Fe/H] for this system constrains a key dimension of parameter space when attempting to reconcile model isochrone predictions and observations.

  9. Microbial physiology and soil CO2 efflux after 9 years of soil warming in a temperate forest - no indications for thermal adaptations.

    PubMed

    Schindlbacher, Andreas; Schnecker, Jörg; Takriti, Mounir; Borken, Werner; Wanek, Wolfgang

    2015-11-01

    Thermal adaptations of soil microorganisms could mitigate or facilitate global warming effects on soil organic matter (SOM) decomposition and soil CO2 efflux. We incubated soil from warmed and control subplots of a forest soil warming experiment to assess whether 9 years of soil warming affected the rates and the temperature sensitivity of the soil CO2 efflux, extracellular enzyme activities, microbial efficiency, and gross N mineralization. Mineral soil (0-10 cm depth) was incubated at temperatures ranging from 3 to 23 °C. No adaptations to long-term warming were observed regarding the heterotrophic soil CO2 efflux (R10 warmed: 2.31 ± 0.15 μmol m(-2)  s(-1) , control: 2.34 ± 0.29 μmol m(-2)  s(-1) ; Q10 warmed: 2.45 ± 0.06, control: 2.45 ± 0.04). Potential enzyme activities increased with incubation temperature, but the temperature sensitivity of the enzymes did not differ between the warmed and the control soils. The ratio of C : N acquiring enzyme activities was significantly higher in the warmed soil. Microbial biomass-specific respiration rates increased with incubation temperature, but the rates and the temperature sensitivity (Q10 warmed: 2.54 ± 0.23, control 2.75 ± 0.17) did not differ between warmed and control soils. Microbial substrate use efficiency (SUE) declined with increasing incubation temperature in both, warmed and control, soils. SUE and its temperature sensitivity (Q10 warmed: 0.84 ± 0.03, control: 0.88 ± 0.01) did not differ between warmed and control soils either. Gross N mineralization was invariant to incubation temperature and was not affected by long-term soil warming. Our results indicate that thermal adaptations of the microbial decomposer community are unlikely to occur in C-rich calcareous temperate forest soils. PMID:26046333

  10. Characteristics of N2O production and transport within soil profiles subjected to different nitrogen application rates in China.

    PubMed

    Nan, Weige; Yue, Shanchao; Li, Shiqing; Huang, Haizhou; Shen, Yufang

    2016-01-15

    To better understand the effect of N fertilizer on the responses of subsoil N2O to N2O emissions in a high-yield plot, we investigated the subsurface N2O concentrations at seven mineral soil depths and analyzed the subsoil N2O fluxes between soil horizons. This study was conducted from 2012 to 2013 in farmland located in the semi-humid area of the Changwu station, Shaanxi, and the results showed that the application of N fertilizer triggered the highest amount of N2O production and effluxes in the various soil layers. With an increase of N fertilizer, N2O effluxes and production significantly increased; the mean variation of 380 kg N ha(-1) treatment was much greater than that of 250 kg N ha(-1) treatment, particularly after fertilization during the maize growing season (MS). N2O concentrations increased within 30 cm and maintained low and stable values. However, N2O fluxes and production decreased with depth (below 30 cm) and then remained low (approximately zero or even negative) at depths of 30-90 cm. The cumulative N2O fluxes in the 0-15 cm soil layer accounted for 99.0% of the total amount in the soil profile, and high fluxes coincided with periods of relatively high production rates. The cumulative production of N2O also remained in step with the cumulative fluxes. In addition, more N fertilizer was applied, greater production occurred in the topsoil. A significantly positive relationship was found between N2O fluxes and mineral N, and a negative relationship was found between the fluxes and the water-filled pore space (WFPS) in the shallow soil. N2O effluxes increased with increasing amounts of N fertilizer, which was primarily due to nitrification on the Loess Plateau. PMID:26556751

  11. Fission probabilities of 242Am,243Cm , and 244Cm induced by transfer reactions

    NASA Astrophysics Data System (ADS)

    Kessedjian, G.; Jurado, B.; Barreau, G.; Marini, P.; Mathieu, L.; Tsekhanovich, I.; Aiche, M.; Boutoux, G.; Czajkowski, S.; Ducasse, Q.

    2015-04-01

    We have measured the fission probabilities of 242Am,243Cm , and 244Cm induced by the transfer reactions 243Am(3He,4He) ,243Am(3He,t ) , and 243Am(3He,d ) , respectively. The details of the experimental procedure and a rigorous uncertainty analysis, including a correlation matrix, are presented. For 243Cm our data show clear structures well below the fission threshold. To our knowledge, it is the first time that these structures have been observed for this nucleus. We have compared the measured fission probabilities to calculations based on the statistical model to obtain information on the fission barriers of the produced fissioning nuclei.

  12. Aliphatic amines in Antarctic CR2, CM2, and CM1/2 carbonaceous chondrites

    NASA Astrophysics Data System (ADS)

    Aponte, José C.; McLain, Hannah L.; Dworkin, Jason P.; Elsila, Jamie E.

    2016-09-01

    Meteoritic water-soluble organic compounds provide a unique record of the processes that occurred during the formation of the solar system and the chemistry preceding the origins of life on Earth. We have investigated the molecular distribution, compound-specific δ13C isotopic ratios and enantiomeric compositions of aliphatic monoamines present in the hot acid-water extracts of the carbonaceous chondrites LAP 02342 (CR2), GRA 95229 (CR2), LON 94101 (CM2), LEW 90500 (CM2), and ALH 83100 (CM1/2). Analyses of the concentration of monoamines in these meteorites revealed: (a) the CR2 chondrites studied here contain higher concentrations of monoamines relative to the analyzed CM2 chondrites; (b) the concentration of monoamines decreases with increasing carbon number; and (c) isopropylamine is the most abundant monoamine in these CR2 chondrites, while methylamine is the most abundant amine species in these CM2 and CM1/2 chondrites. The δ13C values of monoamines in CR2 chondrite do not correlate with the number of carbon atoms; however, in CM2 and CM1/2 chondrites, the 13C enrichment decreases with increasing monoamine carbon number. The δ13C values of methylamine in CR2 chondrites ranged from -1 to +10‰, while in CM2 and CM1/2 chondrites the δ13C values of methylamine ranged from +41 to +59‰. We also observed racemic compositions of sec-butylamine, 3-methyl-2-butylamine, and sec-pentylamine in the studied carbonaceous chondrites. Additionally, we compared the abundance and δ13C isotopic composition of monoamines to those of their structurally related amino acids. We found that monoamines are less abundant than amino acids in CR2 chondrites, with the opposite being true in CM2 and CM1/2 chondrites. We used these collective data to evaluate different primordial synthetic pathways for monoamines in carbonaceous chondrites and to understand the potential common origins these molecules may share with meteoritic amino acids.

  13. Using isotopic tracers to assess the impact of tillage and straw management on the microbial metabolic network in soil

    NASA Astrophysics Data System (ADS)

    Van Groenigen, K.; Forristal, D.; Jones, M. B.; Schwartz, E.; Hungate, B. A.; Dijkstra, P.

    2013-12-01

    By decomposing soil organic matter, microbes gain energy and building blocks for biosynthesis and release CO2 to the atmosphere. Therefore, insight into the effect of management practices on microbial metabolic pathways and C use efficiency (CUE; microbial C produced per substrate C utilized) may help to predict long term changes in soil C stocks. We studied the effects of reduced (RT) and conventional tillage (CT) on the microbial central C metabolic network, using soil samples from a 12-year-old field experiment in an Irish winter wheat cropping system. Each year after harvest, straw was removed from half of the RT and CT plots or incorporated into the soil in the other half, resulting in four treatment combinations. We added 1-13C and 2,3-13C pyruvate and 1-13C and U-13C glucose as metabolic tracer isotopomers to composite soil samples taken at two depths (0-15 cm and 15-30 cm) from each treatment and used the rate of position-specific respired 13CO2 to parameterize a metabolic model. Model outcomes were then used to calculate CUE of the microbial community. We found that the composite samples differed in CUE, but the changes were small, with values ranging between 0.757-0.783 across treatments and soil depth. Increases in CUE were associated with a decrease in tricarboxylic acid cycle and reductive pentose phosphate pathway activity and increased consumption of metabolic intermediates for biosynthesis. Our results indicate that RT and straw incorporation promote soil C storage without substantially changing CUE or any of the microbial metabolic pathways. This suggests that at our site, RT and straw incorporation promote soil C storage mostly through direct effects such as increased soil C input and physical protection from decomposition, rather than by feedback responses of the microbial community.

  14. Overcoming the Challenges of 21cm Cosmology

    NASA Astrophysics Data System (ADS)

    Pober, Jonathan

    The highly-redshifted 21cm line of neutral hydrogen is one of the most promising and unique probes of cosmology for the next decade and beyond. The past few years have seen a number of dedicated experiments targeting the 21cm signal from the Epoch of Reionization (EoR) begin operation, including the LOw-Frequency ARray (LOFAR), the Murchison Widefield Array (MWA), and the Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER). For these experiments to yield cosmological results, they require new calibration and analysis algorithms which will need to achieve unprecedented levels of separation between the 21cm signal and contaminating foreground emission. Although much work has been spent developing these algorithms over the past decade, their success or failure will ultimately depend on their ability to overcome the complications associated with real-world systems and their inherent complications. The work in this dissertation is closely tied to the late-stage commissioning and early observations with PAPER. The first two chapters focus on developing calibration algorithms to overcome unique problems arising in the PAPER system. To test these algorithms, I rely on not only simulations, but on commissioning observations, ultimately tying the success of the algorithm to its performance on actual, celestial data. The first algorithm works to correct gain-drifts in the PAPER system caused by the heating and cooling of various components (the amplifiers and above ground co-axial cables, in particular). It is shown that a simple measurement of the ambient temperature can remove ˜ 10% gain fluctuations in the observed brightness of calibrator sources. This result is highly encouraging for the ability of PAPER to remove a potentially dominant systematic in its power spectrum and cataloging measurements without resorting to a complicated system overhaul. The second new algorithm developed in this dissertation solves a major calibration challenge not

  15. Designing new biocompatible glass-forming Ti75-x Zr10 Nbx Si15 (x = 0, 15) alloys: corrosion, passivity, and apatite formation.

    PubMed

    Abdi, Somayeh; Oswald, Steffen; Gostin, Petre Flaviu; Helth, Arne; Sort, Jordi; Baró, Maria Dolors; Calin, Mariana; Schultz, Ludwig; Eckert, Jürgen; Gebert, Annett

    2016-01-01

    Glass-forming Ti-based alloys are considered as potential new materials for implant applications. Ti75 Zr10 Si15 and Ti60 Zr10 Nb15 Si15 alloys (free of cytotoxic elements) can be produced as melt-spun ribbons with glassy matrix and embedded single β-type nanocrystals. The corrosion and passivation behavior of these alloys in their homogenized melt-spun states have been investigated in Ringer solution at 37°C in comparison to their cast multiphase crystalline counterparts and to cp-Ti and β-type Ti-40Nb. All tested materials showed very low corrosion rates as expressed in corrosion current densities icorr  < 50 nA/cm(2). Electrochemical and surface analytical studies revealed a high stability of the new alloys passive states in a wide potential range. This corresponds to low passive current densities ipass  = 2 ± 1 µA/cm(2) based on the growth of oxide films with thickness d <10 nm. A homogeneous constituent distribution in the melt-spun alloys is beneficial for stable surface passivity. The addition of Nb does not only improve the glass-forming ability and the mechanical properties but also supports a high pitting resistance even at extreme anodic polarization up to 4V versus SCE were oxide thickness values of d ∼35 nm are reached. With regard to the corrosion properties, the Nb-containing nearly single-phase glassy alloy can compete with the β-type Ti-40Nb alloy. SBF tests confirmed the ability for formation of hydroxyapatite on the melt-spun alloy surfaces. All these properties recommend the new glass-forming alloys for application as wear- and corrosion-resistant coating materials for implants. PMID:25611821

  16. The 30-cm ion thruster power processor

    NASA Technical Reports Server (NTRS)

    Herron, B. G.; Hopper, D. J.

    1978-01-01

    A power processor unit for powering and controlling the 30 cm Mercury Electron-Bombardment Ion Thruster was designed, fabricated, and tested. The unit uses a unique and highly efficient transistor bridge inverter power stage in its implementation. The system operated from a 200 to 400 V dc input power bus, provides 12 independently controllable and closely regulated dc power outputs, and has an overall power conditioning capacity of 3.5 kW. Protective circuitry was incorporated as an integral part of the design to assure failure-free operation during transient and steady-state load faults. The implemented unit demonstrated an electrical efficiency between 91.5 and 91.9 at its nominal rated load over the 200 to 400 V dc input bus range.

  17. 70-cm radar observations of 433 Eros

    NASA Technical Reports Server (NTRS)

    Campbell, D. B.; Pettengill, G. H.; Shapiro, I. I.

    1976-01-01

    Radar observations of 433 Eros were made at the Arecibo Observatory using a wavelength of 70 cm during the close approach of Eros to earth in mid-January, 1975. A peak radar cross section of plus or minus 15 sq km was observed. The spectral broadening obtained was approximately 30 Hz, which is consistent with a value of 16 km for the maximum radius of the asteroid. The surface of Eros appears to be relatively rough at the scale of a wavelength as compared to the surfaces of the terrestrial planets and the moon. The composition of the surface is not well determined, except that it cannot be a highly conducting metal. A single measurement each of round-trip echo times delay and Doppler shift was made.

  18. NASA 30 Cm Ion Thruster Development Status

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Haag, Thomas W.; Rawlin, Vincent K.; Kussmaul, Michael T.

    1995-01-01

    A 30 cm diameter xenon ion thruster is under development at NASA to provide an ion propulsion option for missions of national interest and it is an element of the NASA Solar Electric Propulsion Technology Applications Readiness (NSTAR) program established to validate ion propulsion for space flight applications. The thruster has been developed to an engineering model level and it incorporates innovations in design, materials, and fabrication techniques compared to those employed to conventional ion thrusters. The performance of both functional and engineering model thrusters has been assessed including thrust stand measurements, over an input power range of 0.5-2.3 kW. Attributes of the engineering model thruster include an overall mass of 6.4 kg, and an efficiency of 65 percent and thrust of 93 mN at 2.3 kW input power. This paper discusses the design, performance, and lifetime expectations of the functional and engineering model thrusters under development at NASA.

  19. Evaluation of Argonne 9-cm and 10-cm Annular Centrifugal Contactors for SHINE Solution Processing

    SciTech Connect

    Wardle, Kent E.; Pereira, Candido; Vandegrift, George

    2015-02-01

    Work is in progress to evaluate the SHINE Medical Technologies process for producing Mo-99 for medical use from the fission of dissolved low-enriched uranium (LEU). This report addresses the use of Argonne annular centrifugal contactors for periodic treatment of the process solution. In a letter report from FY 2013, Pereira and Vandegrift compared the throughput and physical footprint for the two contactor options available from CINC Industries: the V-02 and V-05, which have rotor diameters of 5 cm and 12.7 cm, respectively. They suggested that an intermediately sized “Goldilocks” contactor might provide a better balance between throughput and footprint to meet the processing needs for the uranium extraction (UREX) processing of the SHINE solution to remove undesired fission products. Included with the submission of this letter report are the assembly drawings for two Argonne-design contactors that are in this intermediate range—9-cm and 10-cm rotors, respectively. The 9-cm contactor (drawing number CE-D6973A, stamped February 15, 1978) was designed as a single-stage unit and built and tested in the late 1970s along with other size units, both smaller and larger. In subsequent years, a significant effort to developed annular centrifugal contactors was undertaken to support work at Hanford implementing the transuranic extraction (TRUEX) process. These contactors had a 10-cm rotor diameter and were fully designed as multistage units with four stages per assembly (drawing number CMT-E1104, stamped March 14, 1990). From a technology readiness perspective, these 10-cm units are much farther ahead in the design progression and, therefore, would require significantly less re-working to make them ready for UREX deployment. Additionally, the overall maximum throughput of ~12 L/min is similar to that of the 9-cm unit (10 L/min), and the former could be efficiently operated over much of the same range of throughput. As a result, only the 10-cm units are considered here

  20. Effects of land use and land cover on selected soil quality indicators in the headwater area of the Blue Nile basin of Ethiopia.

    PubMed

    Teferi, Ermias; Bewket, Woldeamlak; Simane, Belay

    2016-02-01

    Understanding changes in soil quality resulting from land use and land management changes is important to design sustainable land management plans or interventions. This study evaluated the influence of land use and land cover (LULC) on key soil quality indicators (SQIs) within a small watershed (Jedeb) in the Blue Nile Basin of Ethiopia. Factor analysis based on principal component analysis (PCA) was used to determine different SQIs. Surface (0-15 cm) soil samples with four replications were collected from five main LULC types in the watershed (i.e., natural woody vegetation, plantation forest, grassland, cultivated land, and barren land) and at two elevation classes (upland and midland), and 13 soil properties were measured for each replicate. A factorial (2 × 5) multivariate analysis of variance (MANOVA) showed that LULC and altitude together significantly affected organic matter (OM) levels. However, LULC alone significantly affected bulk density and altitude alone significantly affected bulk density, soil acidity, and silt content. Afforestation of barren land with eucalypt trees can significantly increase the soil OM in the midland part but not in the upland part. Soils under grassland had a significantly higher bulk density than did soils under natural woody vegetation indicating that de-vegetation and conversion to grassland could lead to soil compaction. Thus, the historical LULC change in the Jedeb watershed has resulted in the loss of soil OM and increased soil compaction. The study shows that a land use and management system can be monitored if it degrades or maintains or improves the soil using key soil quality indicators. PMID:26744135

  1. Initial characterization of processes of soil carbon stabilization using forest stand-level radiocarbon enrichment

    SciTech Connect

    Swanston, C W; Torn, M S; Hanson, P J; Southon, J R; Garten, C T; Hanlon, E M; Ganio, L

    2004-01-15

    Although the rates and mechanisms of soil organic matter (SOM) stabilization are difficult to observe directly, radiocarbon has proven an effective tracer of soil C dynamics, particularly when coupled with practical fractionation schemes. To explore the rates of C cycling in temperate forest soils, we took advantage of a unique opportunity in the form of an inadvertent stand-level {sup 14}C-labeling originating from a local industrial release. A simple density fractionation scheme separated SOM into inter-aggregate particulate organic matter (free light fraction, free LF), particulate organic matter occluded within aggregates (occluded LF), and organic matter that is complexed with minerals to form a dense fraction (dense fraction, DF). Minimal agitation and density separation was used to isolate the free LF. The remaining dense sediment was subjected to physical disruption and sonication followed by density separation to separate it into occluded LF and DF. The occluded LF had higher C concentrations and C:N ratios than the free LF, and the C concentration in both light fractions was ten times that of the DF. As a result, the light fractions together accounted for less than 4% of the soil by weight, but contained 40% of the soil C in the 0-15 cm soil increment. Likewise, the light fractions were less than 1% weight of the 15-30 cm increment, but contained more than 35% of the soil C. The degree of SOM protection in the fractions, as indicated by {Delta}{sup 14}C, was different. In all cases the free LF had the shortest mean residence times. A significant depth by fraction interaction for {sup 14}C indicates that the relative importance of aggregation versus organo-mineral interactions for overall C stabilization changes with depth. The rapid incorporation of {sup 14}C label into the otherwise depleted DF shows that this organo-mineral fraction comprises highly stable material as well as more recent inputs.

  2. Initial characterization of processes of soil carbon stabilizaton using forest satnd-level radiocarbon enrichment

    SciTech Connect

    Swanston, Christopher W.; Torn, Margaret S.; Hanson, Paul J; Southon, John R.; Garten Jr, Charles T; Hanlon, Erin M.; Ganio, L.

    2005-01-01

    Although the rates and mechanisms of soil organic matter (SOM) stabilization are difficult to observe directly, radiocarbon has proven an effective tracer of soil C dynamics, particularly when coupled with practical fractionation schemes. To explore the rates of C cycling in temperate forest soils, we took advantage of a unique opportunity in the form of an inadvertent standlevel 14C-labeling originating from a local industrial release. A simple density fractionation scheme separated SOM into interaggregate particulate organic matter (free light fraction, free LF), particulate organic matter occluded within aggregates (occluded LF), and organic matter that is complexed with minerals to form a dense fraction (dense fraction, DF). Minimal agitation and density separation was used to isolate the free LF. The remaining dense sediment was subjected to physical disruption and sonication followed by density separation to separate it into occluded LF and DF. The occluded LF had higher C concentrations and C:N ratios than the free LF, and the C concentration in both light fractions was ten times that of the DF. As a result, the light fractions together accounted for less than 4% of the soil by weight, but contained 40% of the soil C in the 0-15 cm soil increment. Likewise, the light fractions were less than 1% weight of the 15-30 cm increment, but contained more than 35% of the soil C. The degree of SOM protection in the fractions, as indicated by D14C, was different. In all cases the free LF had the shortest mean residence times. A significant depth by fraction interaction for 14C indicates that the relative importance of aggregation versus organo-mineral interactions for overall C stabilization changes with depth. The rapid incorporation of 14C label into the otherwise depleted DF shows that this organo-mineral fraction comprises highly stable material as well as more recent inputs.

  3. Initial characterizaiton of processes of soil carbon stabilization using forest stand-level radiocarbon enrichment

    SciTech Connect

    Swanston, Christopher W.; Torn, Margaret S.; Hanson, Paul J.; Southon, John R.; Garten, Charles T.; Hanlon, Erin M.; Ganio, Lisa

    2003-12-01

    Although the rates and mechanisms of soil organic matter (SOM) stabilization are difficult to observe directly, radiocarbon has proven an effective tracer of soil C dynamics, particularly when coupled with practical fractionation schemes. To explore the rates of C cycling in temperate forest soils, we took advantage of a unique opportunity in the form of an inadvertent stand level 14C-labeling originating from a local industrial release. A simple density fractionation scheme separated SOM into interaggregate particulate organic matter (free light fraction, free LF), particulate organic matter occluded within aggregates (occluded LF), and organic matter that is complexed with minerals to form a dense fraction (dense fraction, DF). Minimal agitation and density separation was used to isolate the free LF. The remaining dense sediment was subjected to physical disruption and sonication followed by density separation to separate it into occluded LF and DF. The occluded LF had higher C concentrations and C:N ratios than the free LF, and the C concentration in both light fractions was ten times that of the DF. As a result, the light fractions together accounted for less than 4 percent of the soil by weight, but contained 40 percent of the soil C in the 0 15 cm soil increment. Likewise, the light fractions were less than 1 percent weight of the 15 30 cm increment, but contained more than 35 percent of the soil C. The degree of SOM protection in the fractions, as indicated by D14C, was different. In all cases the free LF had the shortest mean residence times. A significant depth by fraction interaction for 14C indicates that the relative importance of aggregation versus organo-mineral interactions for overall C stabilization changes with depth. The rapid incorporation of 14C label into the otherwise depleted DF shows that this organo-mineral fraction comprises highly stable material as well as more recent inputs.

  4. Detecting the 21 cm forest in the 21 cm power spectrum

    NASA Astrophysics Data System (ADS)

    Ewall-Wice, Aaron; Dillon, Joshua S.; Mesinger, Andrei; Hewitt, Jacqueline

    2014-07-01

    We describe a new technique for constraining the radio-loud population of active galactic nuclei at high redshift by measuring the imprint of 21 cm spectral absorption features (the 21 cm forest) on the 21 cm power spectrum. Using semi-numerical simulations of the intergalactic medium and a semi-empirical source population, we show that the 21 cm forest dominates a distinctive region of k-space, k ≳ 0.5 Mpc- 1. By simulating foregrounds and noise for current and potential radio arrays, we find that a next-generation instrument with a collecting area of the order of ˜ 0.1 km2 (such as the Hydrogen Epoch of Reionization Array) may separately constrain the X-ray heating history at large spatial scales and radio-loud active galactic nuclei of the model we study at small ones. We extrapolate our detectability predictions for a single radio-loud active galactic nuclei population to arbitrary source scenarios by analytically relating the 21 cm forest power spectrum to the optical depth power spectrum and an integral over the radio luminosity function.

  5. Mercury contamination in agricultural soils from abandoned metal mines classified by geology and mineralization.

    PubMed

    Kim, Han Sik; Jung, Myung Chae

    2012-01-01

    This survey aimed to compare mercury concentrations in soils related to geology and mineralization types of mines. A total of 16,386 surface soils (0~15 cm in depth) were taken from agricultural lands near 343 abandoned mines (within 2 km from each mine) and analyzed for Hg by AAS with a hydride-generation device. To meaningfully compare mercury levels in soils with geology and mineralization types, three subclassification criteria were adapted: (1) five mineralization types, (2) four valuable ore mineral types, and (3) four parent rock types. The average concentration of Hg in all soils was 0.204 mg kg(-1) with a range of 0.002-24.07 mg kg(-1). Based on the mineralization types, average Hg concentrations (mg kg(-1)) in the soils decreased in the order of pegmatite (0.250) > hydrothermal vein (0.208) > hydrothermal replacement (0.166) > skarn (0.121) > sedimentary deposits (0.045). In terms of the valuable ore mineral types, the concentrations decreased in the order of Au-Ag-base metal mines ≈ base metal mines > Au-Ag mines > Sn-W-Mo-Fe-Mn mines. For parent rock types, similar concentrations were found in the soils derived from sedimentary rocks and metamorphic rocks followed by heterogeneous rocks with igneous and metamorphic processes. Furthermore, farmland soils contained relatively higher Hg levels than paddy soils. Therefore, it can be concluded that soils in Au, Ag, and base metal mines derived from a hydrothermal vein type of metamorphic rocks and pegmatite deposits contained relatively higher concentrations of mercury in the surface environment. PMID:21814815

  6. Engineering model 8-cm thruster subsystem

    NASA Technical Reports Server (NTRS)

    Herron, B. G.; Hyman, J.; Hopper, D. J.; Williamson, W. S.; Dulgeroff, C. R.; Collett, C. R.

    1978-01-01

    An Engineering Model (EM) 8 cm Ion Thruster Propulsion Subsystem was developed for operation at a thrust level 5 mN (1.1 mlb) at a specific impulse 1 sub sp = 2667 sec with a total system input power P sub in = 165 W. The system dry mass is 15 kg with a mercury-propellant-reservoir capacity of 8.75 kg permitting uninterrupted operation for about 12,500 hr. The subsystem can be started from a dormant condition in a time less than or equal to 15 min. The thruster has a design lifetime of 20,000 hr with 10,000 startup cycles. A gimbal unit is included to provide a thrust vector deflection capability of + or - 10 degrees in any direction from the zero position. The EM subsystem development program included thruster optimization, power-supply circuit optimization and flight packaging, subsystem integration, and subsystem acceptance testing including a cyclic test of the total propulsion package.

  7. The 15 cm diameter ion thruster research

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1974-01-01

    The startup reliability of a 15 cm diameter mercury bombardment ion thruster which employs a pulsed high voltage tickler electrode on the main and neutralizer cathodes is examined. Startup of the thruster is achieved 100% of the time on the main cathode and 98.7% of the time on the neutralizer cathode over a 3640 cycle test. The thruster was started from a 20 C initial condition and operated for an hour at a 600 mA beam current. An energy efficiency of 75% and a propellant utilization efficiency of 77% was achieved over the complete cycle. The effect of a single cusp magnetic field thruster length on its performance is discussed. Guidelines are formulated for the shaping of magnetic field lines in thrusters. A model describing double ion production in mercury discharges is presented. The production route is shown to occur through the single ionic ground state. Photographs of the interior of an operating-hollow cathode are presented. A cathode spot is shown to be present if the cathode is free of low work-function surfaces. The spot is observed if a low work-function oxide coating is applied to the cathode insert. Results show that low work-function oxide coatings tend to migrate during thruster operation.

  8. Herbaceous vegetation productivity, persistence, and metals uptake on a biosolids-amended mine soil

    SciTech Connect

    Evanylo, G.K.; Abaye, A.O.; Dundas, C.; Zipper, C.E.; Lemus, R.; Sukkariyah, B.; Rockett, J.

    2005-10-01

    The selection of plant species is critical for the successful establishment and long-term maintenance of vegetation on reclaimed surface mined soils. A study was conducted to assess the capability of 16 forage grass and legume species in monocultures and mixes to establish and thrive on a reclaimed Appalachian surface mine amended with biosolids. The 0.15-ha coarse-textured, rocky, non-acid forming mined site was prepared for planting by grading to a 2% slope and amending sandstone overburden materials with a mixture of composted and dewatered, anaerobically digested biosolids at a rate of 368 Mg ha{sup -1} (dry weight). The high rate of biosolids applied provided favorable soil chemical properties but could not overcome physical property limitations due to shallow undeveloped soil perched atop a compacted soil layer at 25 cm depth. The plant species whose persistence and biomass production were the greatest after a decade or more of establishment (i.e., switchgrass, sericea lespedeza, reed canarygrass, tall fescue, and crownvetch) shared the physiological and reproductive characteristics of low fertility requirements, drought and moisture tolerance, and propagation by rhizome and/or stolons. Of these five species, two (tall fescue and sericea lespedeza) are or have been seeded commonly on Appalachian coal surface mines, and often dominate abandoned pasture sites. Despite the high rates of heavy metal-bearing biosolids applied to the soil, plant uptake of Cd, Cu, Ni, and Zn were well within critical concentrations more than a decade after establishment of the vegetation.

  9. Deposition rate and substrate temperature effects on the structure and properties of bulk-sputtered OFHC Cu and Cu-0.15Zr. [Oxygen-Free High-Conductivity

    NASA Technical Reports Server (NTRS)

    Hecht, R. J.; Mullaly, J. R.

    1975-01-01

    Bulk-sputtered OFHC Cu and Cu-0.15 Zr used as inner walls of advanced regeneratively cooled thrust chambers are evaluated as to microstructure, surface topography, and fractography. It is found that under conditions of low substrate temperature, crystallite size and openness of the structure increase with increasing deposition rate for both materials. At elevated temperatures, an equiaxed ductile structure of OFHC Cu is produced only at low deposition rates; at higher deposition rate, open structures are observed with recrystallized equiaxed grains within large poorly bonded crystallites. The Cu-0.15 Zr alloy sputtered from the hollow cathode using a diode discharge shows open-type structures for all conditions evaluated. The use of a triode discharge in generating a dense non-voided structure of Cu-0.15 Zr is discussed.

  10. A sub-cm micromachined electron microscope

    NASA Technical Reports Server (NTRS)

    Feinerman, A. D.; Crewe, D. A.; Perng, D. C.; Shoaf, S. E.; Crewe, A. V.

    1993-01-01

    A new approach for fabricating macroscopic (approximately 10x10x10 mm(exp 3)) structures with micron accuracy has been developed. This approach combines the precision of semiconductor processing and fiber optic technologies. A (100) silicon wafer is anisotropically etched to create four orthogonal v-grooves and an aperture on each 10x12 mm die. Precision 308 micron optical fibers are sandwiched between the die to align the v-grooves. The fiber is then anodically bonded to the die above and below it. This procedure is repeated to create thick structures and a stack of 5 or 6 die will be used to create a miniature scanning electron microscope (MSEM). Two die in the structure will have a segmented electrode to deflect the beam and correct for astigmatism. The entire structure is UHV compatible. The performance of an SEM improves as its length is reduced and a sub-cm 2 keV MSEM with a field emission source should have approximately 1 nm resolution. A low voltage high resolution MSEM would be useful for the examination of biological specimens and semiconductors with a minimum of damage. The first MSEM will be tested with existing 6 micron thermionic sources. In the future a micromachined field emission source will be used. The stacking technology presented in this paper can produce an array of MSEMs 1 to 30 mm in length with a 1 mm or larger period. A key question being addressed by this research is the optimum size for a low voltage MSEM which will be determined by the required spatial resolution, field of view, and working distance.

  11. Transport of atrazine, 2,4-D, and dicamba through preferential flowpaths in an unsaturated claypan soil near Centralia, Missouri

    NASA Astrophysics Data System (ADS)

    Tindall, James A.; Vencill, William K.

    1995-03-01

    samples in the field showed increases in concentrations of herbicides at depths where laboratory data indicated greater percentages of what appeared to be preferential flowpaths. Concentrations of atrazine, 2,4-D, and dicamba exceeding 0.50, 0.1, and 0.15 μg ml -1 were observed with depth (45-135 cm, 60-125 cm and 60-135 cm) after several months following rainfall events. Preferential flowpaths were a major factor in transport of atrazine, 2,4-D, and dicamba at the site.

  12. Spatial and temporal variability of soil moisture on the field with and without plants*

    NASA Astrophysics Data System (ADS)

    Usowicz, B.; Marczewski, W.; Usowicz, J. B.

    2012-04-01

    Spatial and temporal variability of the natural environment is its inherent and unavoidable feature. Every element of the environment is characterized by its own variability. One of the kinds of variability in the natural environment is the variability of the soil environment. To acquire better and deeper knowledge and understanding of the temporal and spatial variability of the physical, chemical and biological features of the soil environment, we should determine the causes that induce a given variability. Relatively stable features of soil include its texture and mineral composition; examples of those variables in time are the soil pH or organic matter content; an example of a feature with strong dynamics is the soil temperature and moisture content. The aim of this study was to identify the variability of soil moisture on the field with and without plants using geostatistical methods. The soil moisture measurements were taken on the object with plant canopy and without plants (as reference). The measurements of soil moisture and meteorological components were taken within the period of April-July. The TDR moisture sensors covered 5 cm soil layers and were installed in the plots in the soil layers of 0-0.05, 0.05-0.1, 0.1-0.15, 0.2-0.25, 0.3-0.35, 0.4-0.45, 0.5-0.55, 0.8-0.85 m. Measurements of soil moisture were taken once a day, in the afternoon hours. For the determination of reciprocal correlation, precipitation data and data from soil moisture measurements with the TDR meter were used. Calculations of reciprocal correlation of precipitation and soil moisture at various depths were made for three objects - spring barley, rye, and bare soil, at the level of significance of p<0.05. No significant reciprocal correlation was found between the precipitation and soil moisture in the soil profile for any of the objects studied. Although the correlation analysis indicates a lack of correlation between the variables under consideration, observation of the soil

  13. Effect of tillage practices on soil properties and crop productivity in wheat-mungbean-rice cropping system under subtropical climatic conditions.

    PubMed

    Alam, Md Khairul; Islam, Md Monirul; Salahin, Nazmus; Hasanuzzaman, Mirza

    2014-01-01

    This study was conducted to know cropping cycles required to improve OM status in soil and to investigate the effects of medium-term tillage practices on soil properties and crop yields in Grey Terrace soil of Bangladesh under wheat-mungbean-T. aman cropping system. Four different tillage practices, namely, zero tillage (ZT), minimum tillage (MT), conventional tillage (CT), and deep tillage (DT), were studied in a randomized complete block (RCB) design with four replications. Tillage practices showed positive effects on soil properties and crop yields. After four cropping cycles, the highest OM accumulation, the maximum root mass density (0-15 cm soil depth), and the improved physical and chemical properties were recorded in the conservational tillage practices. Bulk and particle densities were decreased due to tillage practices, having the highest reduction of these properties and the highest increase of porosity and field capacity in zero tillage. The highest total N, P, K, and S in their available forms were recorded in zero tillage. All tillage practices showed similar yield after four years of cropping cycles. Therefore, we conclude that zero tillage with 20% residue retention was found to be suitable for soil health and achieving optimum yield under the cropping system in Grey Terrace soil (Aeric Albaquept). PMID:25197702

  14. Soil property effects on wind erosion of organic soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Histosols (also known as organic soils, mucks, or peats) are soils that are dominated by organic matter (>20%) in half or more of the upper 80 cm. Forty four states have a total of 21 million ha of histosols in the United States. These soils, when intensively cropped, are subject to wind erosion r...

  15. Soil Property Effects on Wind Erosion of Organic Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Histosols (also known as organic soils, mucks, or peats) are soils that are dominated by organic matter (>20%) in half or more of the upper 80 cm. Forty four states have a total of 21 million ha of histosols in the United States. These soils, when intensively cropped, are subject to wind erosion r...

  16. CARBON SEQUESTRATION IN RECLAIMED MINED SOILS OF OHIO

    SciTech Connect

    M. K. Shukla; R. Lal

    2004-01-01

    This research project is aimed at assessing the soil organic carbon (SOC) sequestration potential of reclaimed mine soils (RMS). Experimental sites characterized by distinct age chronosequences of reclaimed minesoil were identified. These sites are owned by Americal Electrical Power and are located in Guernsey, Morgan, Noble, and Muskingum Counties of Ohio. The sites chosen were: (1) reclaimed without topsoil application (three under forest and three under continuous grass cover), (2) reclaimed with topsoil application (three under forest and three under continuous grass cover) and (3) unmined sites (one under forest and another grass cover). Soil samples were collected from 0 to 15 cm and 15 to 30 cm depths from each of the experimental site under continuous grass and SOC and, total nitrogen (TN) concentration, pH and electrical conductivity (EC) were determined. The results of the study for the quarter (30 September to 31 December, 2003) showed that soil pH was > 5.5 and EC < 4 dS m{sup -1} for all sites and depths and therefore favorable for grass growth. Among the three reclamation treatments, SOC concentration increased from 1.9 g kg{sup -1} for site reclaimed in 2003 (newly reclaimed and at baseline) to 11.64 g kg{sup -1} for site reclaimed in 1987 (a 5-fold increase) to 20.41 g kg{sup -1} for sites reclaimed in 1978 (a 10- fold increase). However, for sites reclaimed without topsoil application, soil pH, EC, SOC and TN concentrations were similar for both depths. The SOC concentrations in reclaimed sites with topsoil application in 0 to 15 cm depth increased from a base value of 0.7 g kg{sup -1} at the rate of 0.76 g kg{sup -1} yr{sup -1}. The high SOC concentration for 0-15 cm layer for site reclaimed in 1978 showed the high carbon sequestration potential upon reclamation and establishment of the grass cover on minesoils.

  17. Investigations on the electronic transport and piezoresistivity properties of Ni{sub 2−X}Mn{sub 1+X}Ga (X = 0 and 0.15) Heusler alloys under hydrostatic pressure

    SciTech Connect

    Devarajan, U.; Kalai Selvan, G.; Sivaprakash, P.; Arumugam, S.; Singh, Sanjay; Esakki Muthu, S.; Roy Barman, S.

    2014-12-22

    The resisitivity of Ni{sub 2−X}Mn{sub 1+X}Ga (X = 0 and 0.15) magnetic shape memory alloys has been investigated as a function of temperature (4–300 K) and hydrostatic pressure up to 30 kilobars. The resistivity is suppressed (X = 0) and enhanced (X = 0.15) with increasing pressure. A change in piezoresistivity with respect to pressure and temperature is observed. The negative and positive piezoresistivity increases with pressure for both the alloys. The residual resistivity and electron-electron scattering factor as a function of pressure reveal that for Ni{sub 2}MnGa the electron-electron scattering is predominant, while the X = 0.15 specimen is dominated by the electron-magnon scattering. The value of electron-electron scattering factor is positive for both the samples, and it is decreasing (negative trend) for Ni{sub 2}MnGa and increasing (positive trend) for X = 0.15 with pressure. The martensite transition temperature is found to be increased with the application of external pressure for both samples.

  18. PROCESS OF PRODUCING Cm$sup 244$ AND Cm$sup 24$$sup 5$

    DOEpatents

    Manning, W.M.; Studier, M.H.; Diamond, H.; Fields, P.R.

    1958-11-01

    A process is presented for producing Cm and Cm/sup 245/. The first step of the process consists in subjecting Pu/sup 2339/ to a high neutron flux and subsequently dissolving the irradiated material in HCl. The plutonium is then oxidized to at least the tetravalent state and the solution is contacted with an anion exchange resin, causing the plutonium values to be absorbed while the fission products and transplutonium elements remain in the effluent solution. The effluent solution is then contacted with a cation exchange resin causing the transplutonium, values to be absorbed while the fission products remain in solution. The cation exchange resin is then contacted with an aqueous citrate solution and tbe transplutonium elements are thereby differentially eluted in order of decreasing atomic weight, allowing collection of the desired fractions.

  19. Phosphatase activity in relation to key litter and soil properties in mature subtropical forests in China.

    PubMed

    Hou, Enqing; Chen, Chengrong; Wen, Dazhi; Liu, Xian

    2015-05-15

    Phosphatase-mediated phosphorus (P) mineralization is one of the critical processes in biogeochemical cycling of P and determines soil P availability in forest ecosystems; however, the regulation of soil phosphatase activity remains elusive. This study investigated the potential extracellular activities of acid phosphomonoesterase (AcPME) and phosphodiesterase (PDE) and how they were related to key edaphic properties in the L horizon (undecomposed litter) and F/H horizon (fermented and humified litter) and the underlying mineral soil at the 0-15cm depth in eight mature subtropical forests in China. AcPME activity decreased significantly in the order of F/H horizon>L horizon>mineral soil horizon, while the order for PDE activity was L horizon=F/H horizon>mineral soil horizon. AcPME (X axis) and PDE (Y axis) activities were positively correlated in all horizons with significantly higher slope in the L and F/H horizons than in the mineral soil horizon. Both AcPME and PDE activities were positively related to microbial biomass C, moisture content and water-holding capacity in the L horizon, and were positively related to soil C:P, N:P and C:N ratios and fine root (diameter≤2mm) biomass in the mineral soil horizon. Both enzyme activities were also interactively affected by forest and horizon, partly due to the interactive effect of forest and horizon on microbial biomass. Our results suggest that modulator(s) of the potential extracellular activity of phosphatases vary with horizon, depending on the relative C, P and water availability of the horizon. PMID:25700362

  20. Dryland soil microbial communities display spatial biogeographic patterns associated with soil depth and soil parent material

    USGS Publications Warehouse

    Steven, Blaire; Gallegos-Graves, La Verne; Belnap, Jayne; Kuske, Cheryl R.

    2013-01-01

    Biological soil crusts (biocrusts) are common to drylands worldwide. We employed replicated, spatially nested sampling and 16S rRNA gene sequencing to describe the soil microbial communities in three soils derived from different parent material (sandstone, shale, and gypsum). For each soil type, two depths (biocrusts, 0–1 cm; below-crust soils, 2–5 cm) and two horizontal spatial scales (15 cm and 5 m) were sampled. In all three soils, Cyanobacteria and Proteobacteria demonstrated significantly higher relative abundance in the biocrusts, while Chloroflexi and Archaea were significantly enriched in the below-crust soils. Biomass and diversity of the communities in biocrusts or below-crust soils did not differ with soil type. However, biocrusts on gypsum soil harbored significantly larger populations of Actinobacteria and Proteobacteria and lower populations of Cyanobacteria. Numerically dominant operational taxonomic units (OTU; 97% sequence identity) in the biocrusts were conserved across the soil types, whereas two dominant OTUs in the below-crust sand and shale soils were not identified in the gypsum soil. The uniformity with which small-scale vertical community differences are maintained across larger horizontal spatial scales and soil types is a feature of dryland ecosystems that should be considered when designing management plans and determining the response of biocrusts to environmental disturbances.

  1. Dryland soil microbial communities display spatial biogeographic patterns associated with soil depth and soil parent material.

    PubMed

    Steven, Blaire; Gallegos-Graves, La Verne; Belnap, Jayne; Kuske, Cheryl R

    2013-10-01

    Biological soil crusts (biocrusts) are common to drylands worldwide. We employed replicated, spatially nested sampling and 16S rRNA gene sequencing to describe the soil microbial communities in three soils derived from different parent material (sandstone, shale, and gypsum). For each soil type, two depths (biocrusts, 0-1 cm; below-crust soils, 2-5 cm) and two horizontal spatial scales (15 cm and 5 m) were sampled. In all three soils, Cyanobacteria and Proteobacteria demonstrated significantly higher relative abundance in the biocrusts, while Chloroflexi and Archaea were significantly enriched in the below-crust soils. Biomass and diversity of the communities in biocrusts or below-crust soils did not differ with soil type. However, biocrusts on gypsum soil harbored significantly larger populations of Actinobacteria and Proteobacteria and lower populations of Cyanobacteria. Numerically dominant operational taxonomic units (OTU; 97% sequence identity) in the biocrusts were conserved across the soil types, whereas two dominant OTUs in the below-crust sand and shale soils were not identified in the gypsum soil. The uniformity with which small-scale vertical community differences are maintained across larger horizontal spatial scales and soil types is a feature of dryland ecosystems that should be considered when designing management plans and determining the response of biocrusts to environmental disturbances. PMID:23621290

  2. Natural 'background' soil water repellency in conifer forests: its prediction and relationship to wildfire occurrence

    NASA Astrophysics Data System (ADS)

    Doerr, Stefan; Woods, Scott; Martin, Deborah; Casimiro, Marta

    2013-04-01

    therefore incorrect. It follows that, where pre-fire water repellency levels are not known or highly variable, post-fire soil water repellency conditions are an unreliable indicator in classifying soil burn severity. The terrain and soil variables examined showed, overall, no convincing relationship with the repellency levels observed (R2 < 0.15) except that repellency was limited in soils (i) developed over meta-sedimen- tary lithology and (ii) with clay contents >4%. This suggests that water repellency levels cannot be pre- dicted with confidence from common terrain or soil variables. This work is presented in the memory of the late Scott Woods, who was instrumental in the success of this study and an inspiration to us all.

  3. Characterizing Soil Organic Carbon Recalcitrance in Longleaf Pine (Pinus palustris Mill) Stands

    NASA Astrophysics Data System (ADS)

    Butnor, J. R.; Samuelson, L. J.; Anderson, P. H.; Gonzalez-Benecke, C. A.; Boot, C. M.; Cotrufo, M. F.; Heckman, K. A.; Jackson, J. A.; Johnsen, K. H.; Stokes, T.; Swanston, C.

    2015-12-01

    Historically, longleaf pine (LLP) stands in the southeastern US experienced frequent fires. Today managed LLP stands are burned at 2-5 year intervals to reduce fuels and hardwood competition and manage for biodiversity. These are not stand replacing fires, though considerable amounts of biomass are burned and the conversion rate to biochemically stabilized black carbon (BC) is unknown. The primary mechanisms for long-term carbon sequestration in soil are mineral association, biochemical transformation (e.g. pyrogenesis) and physical protection. We quantified the recalcitrance of soil organic carbon (SOC) and its oxidation resistant fraction (SOCR; defined as residual SOC following H2O2 treatment and dilute HNO3 digestion) using radiocarbon dating (SOC and SOCR) and benzene polycarboxylic acids (BPCA) as molecular markers for polyaromatic C associated with BC. Mineral stabilized C is largely represented by SOCR contents and BC by total BPCA contents. Soils were collected by depth (0-10, 10-20, 20-50, 50-100 cm) at 14 managed LLP stands in Louisiana (LA), Georgia (GA) and North Carolina (NC) burned every two to five years. Across all sites, SOC and SOCR contents declined with soil depth, though SOCR:SOC increased with depth (0.13, 0.15, 0.22, 0.31). SOCR was more 14C depleted than SOC and Δ14C values became more negative with soil depth (SOCR: -195, -318, -458, -553 vs. SOC 23, -39, -156, -334), indicating that SOCR had a much longer mean residence time. The Δ14C values correspond to mean ages of SOCR ranging from 1777 to 6969 years and of SOC from 84 to 3319 years. We obtained very low BPCA yield from SOCR, and it is unclear whether BC was absent or not accessible with the BPCA method. Preliminary analysis of total BPCA (bulk soil) indicates interactions between soil series and depth. Total BPCA concentration of SOC in the upper 10 cm was 136 g kg-1 C in LA and more than six times the concentration in GA and NC. On deep sands in NC, the highest BPCA concentration

  4. A new atlas of infrared methane spectra between 1120 per cm and 1800 per cm

    NASA Technical Reports Server (NTRS)

    Blatherwick, R. D.; Goldman, A.; Lutz, B. L.; Silvaggio, P. M.; Boese, R. W.

    1979-01-01

    An atlas of 1339 methane absorption lines in the range 1120 to 1800 reciprocal centimeters, including the nu(4) and nu(2) bands, is presented. Laboratory spectra were obtained by a Nicolet Fourier transform Michelson interferometer with a resolution of approximately 0.06 reciprocal cm and a path length of 6.35 m of 0.98, 4.86 and 19.97 torr. Observed spectra are also compared with spectral intensities calculated line-by-line on the basis of tabulated intensities of the observed spectral lines.

  5. Lead removal via soil washing and leaching

    NASA Astrophysics Data System (ADS)

    Lin, H. K.; Man, X. D.; Walsh, D. E.

    2001-12-01

    A soil washing and leaching process was tested for removing lead from soils. A soil-washing circuit, including size and gravity separations, was employed to remove the coarse metallic lead particles, while the leaching was applied to remove fine metallic lead particles and other lead species. The soil-washing tests proved that the metallic lead particles larger than 0.15 mm (100 mesh) could be effectively removed. The sodium-chloride-based leaching solution with ferric chloride or sodium hypochlorite as oxidants was adopted in the leaching. The leaching experimental results indicated that under the pH of 2 and Eh of 1,300 mV, the metallic lead particles smaller than 0.15 mm and other lead species can be dissolved in the leaching solution within 60 minutes.

  6. O-band quantum-confined Stark effect optical modulator from Ge/Si{sub 0.15}Ge{sub 0.85} quantum wells by well thickness tuning

    SciTech Connect

    Chaisakul, Papichaya E-mail: papichaya.chaisakul@u-psud.fr; Marris-Morini, Delphine Vakarin, Vladyslav; Vivien, Laurent; Frigerio, Jacopo; Chrastina, Daniel; Isella, Giovanni

    2014-11-21

    We report an O-band optical modulator from a Ge/Si{sub 0.15}Ge{sub 0.85} multiple quantum well (MQW). Strong O-band optical modulation in devices commonly operating within E-band wavelength range can be achieved by simply decreasing the quantum well thickness. Both spectral photocurrent and optical transmission studies are performed to evaluate material characteristics and device performance from a surface-illuminated diode and a waveguide modulator, respectively. These results demonstrate the potential of using Ge/Si{sub 0.15}Ge{sub 0.85} MQWs for the realization of future on-chip wavelength-division multiplexing systems with optical modulators operating at different wavelengths over a wide spectral range.

  7. Strain-relaxation and critical thickness of epitaxial La1.85Sr0.15CuO4 films

    SciTech Connect

    Meyer, Tricia L; Jiang, Lu; Park, Sungkyun; Egami, Takeshi; Lee, Ho Nyung

    2015-12-08

    We report the thickness-dependent strain-relaxation behavior and the associated impacts upon the superconductivity in epitaxial La1.85Sr0.15CuO4 films grown on different substrates, which provide a range of strain. We have found that the critical thickness for the onset of superconductivity in La1.85Sr0.15CuO4 films is associated with the finite thickness effect and epitaxial strain. In particular, thin films with tensile strain greater than ~0.25% revealed no superconductivity. We attribute this phenomenon to the inherent formation of oxygen vacancies that can be minimized via strain relaxation.

  8. LARGE PIEZOELECTRIC EFFECT IN LOW-TEMPERATURE-SINTERED LEAD-FREE (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 THICK FILMS

    NASA Astrophysics Data System (ADS)

    Feng, Zuyong; Shi, Dongqi; Dou, Shixue; Hu, Yihua; Tang, Xingui

    2012-09-01

    High-quality piezoelectric (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 thick films with dense and homogenous microstructures were fabricated at a low sintering temperature (900°C) using a CuBi2O4 sintering aid. The 10 μm thick film exhibited a high longitudinal piezoelectric constant d33,eff of 210 pC/N with estimated unconstrained d33 value of 560 pC/N very close to that in the corresponding bulks. Such excellent piezoelectric effect in the low-temperature sintered (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 thick films is comparable to the case of lead-based PZT thick films, and may be a promising application in lead-free microdevices such as piezoelectric microelectromechanical systems (MEMS).

  9. Monitoring of Lead (Pb) Pollution in Soils and Plants Irrigated with Untreated Sewage Water in Some Industrialized Cities of Punjab, India.

    PubMed

    Sikka, R; Nayyar, V K

    2016-04-01

    Soil and plant samples were collected from sewage and tubewell irrigated sites from three industrially different cities of Punjab (India) viz. Ludhiana, Jalandhar and Malerkotla. The extent of lead (Pb) pollution was assessed with respect to background concentration of tubewell irrigation. In sewage irrigated surface soil layer (0-15 cm), the extent of Pb accumulation was 4.61, 4.20 and 2.26 times higher than those receiving tubewell irrigation sites in Ludhiana, Jalandhar and Malerkotla, respectively. Multiple regression analysis showed that soil pH, organic carbon, calcium carbonate and clay were significant soil parameters explaining the variation in available soil Pb. The mean Pb content in plants receiving sewage irrigation was 4.56, 5.48 and 2.72 times higher than tubewell irrigation in Ludhiana, Jalandhar and Malerkotla, respectively. The content of Pb in plants receiving sewage irrigation revealed that, assuming a weekly consumption of 500-1000 g of vegetables grown on sewage irrigated soils by an adult of 70 kg body weight, the Pb intake may far exceed the World Health Organization proposed tolerable weekly intake of Pb. PMID:26886426

  10. Maize (Zea mays L.) performance in organically amended mine site soils.

    PubMed

    Oladipo, Oluwatosin Gbemisola; Olayinka, Akinyemi; Awotoye, Olusegun Olufemi

    2016-10-01

    Organic amendments play an important role in the eco-friendly remediation of degraded mine site soils. This study investigated the quality (essential nutrients and heavy metal content) of maize grown on organically amended soils from three active mines in Nigeria. Soil samples were collected randomly at 0-15 cm depth, air-dried and sieved. Five kg of soil were amended with poultry manure and sawdust (poultry manure only, sawdust only, poultry manure-sawdust mixtures in 3:1, 2:1 and 1:1 ratios) at 10 g kg(-1). Maize (Zea mays L.) seeds were planted and watered for two consecutive periods of 8 weeks, with the control and treatment experiments set up in the screenhouse in quadruples. Harvested tissues were weighed, dried, ground and digested. Chemical properties were determined using standard methods while atomic absorption spectrophotometry was used to determine total metal concentrations (Ca, Mg, Fe, Zn, Pb, Cd and Cu). ANOVA was used to test for significant differences among treatment groups in the various parameters. Application of poultry manure-sawdust mixtures significantly (p < 0.05) enhanced tissue dry matter yield, as well as N, P, K, and Na contents while Zn, Cd, Cu and Pb were immobilized to approximately 50-100%. Treatment with sawdust alone reduced tissue nutrient content resulting in depressed plant yield while poultry manure only though enhanced crop yield, contained higher heavy metal contents. Soil amendments comprised of poultry manure-sawdust mixtures can be effective remediation strategy for mine site soils, as these organic materials help replenish soil nutrients, immobilize heavy metals, and enhance food productivity. PMID:27415409

  11. [Distribution of Urban Soil Heavy Metal and Pollution Evaluation in Different Functional Zones of Yinchuan City].

    PubMed

    Wang, You-qi; Bai, Yi-ru; Wang, Jian-yu

    2016-02-15

    Surface soil samples (0-20 cm) from eight different functional areas in Yinchuan city were collected. There were 10 samples respectively in each functional area. The urban soil heavy metals (Zn, Cd, Pb, Mn, Cu and Cr) pollution characteristics and sources in eight different functional areas were evaluated by mathematical statistics and geostatistical analysis method. Meanwhile, the spatial distributions of heavy metals based on the geography information system (GIS) were plotted. The average values of total Zn, Cd, Pb, Mn, Cu and Cr were 74.87, 0.15, 29.02, 553.55, 40.37 and 80.79 mg x kg(-1), respectively. The results showed that the average value of soil heavy metals was higher than the soil background value of Ningxia, which indicated accumulation of the heavy metals in urban soil. The single factor pollution index of soil heavy metals was in the sequence of Cu > Pb > Zn > Cr > Cd > Mn. The average values of total Zn, Cd, Pb and Cr were higher in north east, south west and central city, while the average values of Mn and Cu were higher in north east and central city. There was moderate pollution in road and industrial area of Yinchuan, while the other functional areas showed slight pollution according to Nemoro synthesis index. The pollution degree of different functional areas was as follows: road > industrial area > business district > medical treatment area > residential area > public park > development zone > science and education area. The results indicated that the soil heavy metal pollution condition in Yinchuan City has been affected by human activities with the development of economy. PMID:27363164

  12. Effects of tropical ecosystem engineers on soil quality and crop performance under different tillage and residue management

    NASA Astrophysics Data System (ADS)

    Pulleman, Mirjam; Paul, Birthe; Fredrick, Ayuke; Hoogmoed, Marianne; Hurisso, Tunsisa; Ndabamenye, Telesphore; Saidou, Koala; Terano, Yusuke; Six, Johan; Vanlauwe, Bernard

    2014-05-01

    Feeding a future global population of 9 billion will require a 70-100% increase in food production, resulting in unprecedented challenges for agriculture and natural resources, especially in Sub-saharan Africa (SSA). Agricultural practices that contribute to sustainable intensification build on beneficial biological interactions and ecosystem services. Termites are the dominant soil ecosystem engineers in arid to sub-humid tropical agro-ecosystems. Various studies have demonstrated the potential benefits of termites for rehabilitation of degraded and crusted soils and plant growth in semi-arid and arid natural ecosystems. However, the contribution of termites to agricultural productivity has hardly been experimentally investigated, and their role in Conservation Agriculture (CA) systems remains especially unclear. Therefore, this study aimed to quantify the effects of termites and ants on soil physical quality and crop productivity under different tillage and residue management systems in the medium term. A randomized block trial was set up in sub-humid Western Kenya in 2003. Treatments included a factorial combination of residue retention and removal (+R/-R) and conventional and reduced tillage (+T/-T) under a maize (Zea mays L.) and soybean (Glyxine max. L.) rotation. A macrofauna exclusion experiment was superimposed in 2005 as a split-plot factor (exclusion +ins; inclusion -ins) by regular applications of pesticides (Dursban and Endosulfan) in half of the plots. Macrofauna abundance and diversity, soil aggregate fractions, soil carbon contents and crop yields were measured between 2005 and 2012 at 0-15 cm and 15-30 cm soil depths. Termites were the most important macrofauna species, constituting between 48-63% of all soil biota, while ants were 13-34%, whereas earthworms were present in very low numbers. Insecticide application was effective in reducing termites (85-56% exclusion efficacy) and earthworms (87%), and less so ants (49-81%) at 0-15 cm soil depth

  13. Magnetic correlations in the magnetocaloric materials Mn3GaC and Mn3GaC0.85N0.15 studied by neutron polarization analysis and neutron depolarization

    NASA Astrophysics Data System (ADS)

    Çakr, Ö.; Acet, M.; Farle, M.; Wildes, A.

    2016-04-01

    Partially substituting carbon by nitrogen in the antiperovskite compound Mn3GaC increases the first order antiferromagnetic/ferromagnetic transition temperature and at the same time causes the high-temperature long-range ferromagnetism to weaken. To show that the weakening is related to the diminishing of ferromagnetic domain formation, we undertake neutron depolarization and neutron polarization analysis experiments on Mn3GaC and Mn3GaC0.85N0.15. Polarization analysis experiments show that strong ferromagnetic correlations are present at high temperatures in the paramagnetic states of both Mn3GaC and Mn3GaC0.85N0.15 and that these correlations vanish in the antiferromagnetic state. Neutron depolarization studies show that above the first order transition temperature, ferromagnetic domain formation is present in Mn3GaC but is absent in Mn3GaC0.85N0.15. The relationship between ferromagnetic domain formation and transitional hysteresis is brought forward for these two important magnetocaloric materials.

  14. Influence of nickel doping on oxygen-ionic conductivity of the n = 1 Ruddlesden-Popper Phases La1.85Ca0.15(Cu1-xNix)O4-δ (δ = 0.0905)

    NASA Astrophysics Data System (ADS)

    Midouni, Adnene; Houchati, Mohamed Ikbal; Othman, Walid Belhaj; Chniba-Boudjada, Nassira; Ceretti, Monica; Paulus, Werner; Jaouadi, Mouna; Hamzaoui, Ahmed Hichem

    2016-08-01

    The results of the synthesis and characterization of the optimally doped La1.85Ca0.15(Cu1-xNix)O4-δ solid solution with x = 0, 0.1, 0.2 and 0.3 are reported. The versatility of these La1.85Ca0.15(Cu1-xNix)O4-δ materials is explained on the basis of structural features and the ability to accommodate oxygen nonstoichiometry. According to powder X-ray and neutron diffraction data, La1.85Ca0.15(Cu1-xNix)O4-δ adopts the tetragonal structure with oxygen vacancies occurring preferentially at the Oap sites within the {(La/Ca)O} layers of the perovskite blocks and the oxygen deviation from stoichiometry δ was found to be δ=0.0905(6). The bulk conductivity indicated an Arrhenius-type thermally activated process and oxygen vacancies are the possible ionic charge carriers at T=270 °C. An increase of the conductivity was detected when Ni was introduced. With nickel ratio variation, a strong correlation was observed between the Cu(Ni)-Oap apical bond length variation and the conductivity variation through controlling the O2- ion migration.

  15. Reverse bias voltage testing of 8 cm x 8cm silicon solar cells

    NASA Technical Reports Server (NTRS)

    Woike, T.; Stotlar, S.; Lungu, C.

    1991-01-01

    A study is described of the reverse I-V characteristics of the largest space qualified silicon solar cells currently available (8 x 8 cm) and of reverse bias voltage (RBV) testing performed on these cells. This study includes production grade cells, both with and without cover glass. These cells span the typical output range seen in production. Initial characteristics of these cells are measured at both 28 and 60 C. These measurements show weak correlation between cell output and reverse characteristics. Analysis is presented to determine the proper conditions for RBV stress to simulate shadowing effects on a particular array design. After performing the RBV stress the characteristics of the stressed cells are remeasured. The degradation in cell performance is highly variable which exacerbates cell mismatching over time. The effect of this degradation on array lifetime is also discussed. Generalization of these results to other array configurations is also presented.

  16. New approach to measure soil particulate organic matter in intact samples using X-ray computed micro-tomography

    NASA Astrophysics Data System (ADS)

    Kravchenko, Alexandra; Negassa, Wakene; Guber, Andrey; Schmidt, Sonja

    2014-05-01

    Particulate soil organic matter (POM) is biologically and chemically active fraction of soil organic matter. It is a source of many agricultural and ecological benefits, among which are POM's contribution to C sequestration. Most of conventional research methods for studying organic matter dynamics involve measurements conducted on pre-processed i.e., ground and sieved soil samples. Unfortunately, grinding and sieving completely destroys soil structure, the component crucial for soil functioning and C protection. Importance of a better understanding of the role of soil structure and of the physical protection that it provides to soil C cannot be overstated; and analysis of quantities, characteristics, and decomposition rates of POM in soil samples with intact structure is among the key elements of gaining such understanding. However, a marked difficulty hindering the progress in such analyses is a lack of tools for identification and quantitative analysis of POM in intact soil samples. Recent advancement in applications of X-ray computed micro-tomography (μ-CT) to soil science has given an opportunity to conduct such analyses. The objective of the current study is to develop a procedure for identification and quantitative characterization of POM within intact soil samples using X-ray μ-CT images and to test performance of the proposed procedure on a set of multiple intact soil macro-aggregates. We used 16 4-6 mm soil aggregates collected at 0-15 cm depth from a Typic Hapludalf soil at multiple field sites with diverse agricultural management history. The aggregates have been scanned at SIMBIOS Centre, Dundee, Scotland at 10 micron resolution. POM was determined from the aggregate images using the developed procedure. The procedure was based on combining image pre-processing steps with discriminant analysis classification. The first component of the procedure consisted of image pre-processing steps based on the range of gray values (GV) along with shape and size

  17. Electrochemical properties of the Sm 0.5Sr 0.5CoO 3-La 0.8Sr 0.2Ga 0.8Mg 0.15Co 0.05O 3 (LSGMC5)/LSGMC5 interface modified by an LSGMC5 interlayer synthesized using the citrate method

    NASA Astrophysics Data System (ADS)

    Wang, Shizhong; Zhong, Hao; Zou, Yuman

    A La 0.8Sr 0.2Ga 0.8Mg 0.15Co 0.05O 3 (LSGMC5) interlayer synthesized using the citrate method was added between an Sm 0.5Sr 0.5CoO 3 (SSC)-LSGMC5 electrode and an LSGMC5 electrolyte pellet synthesized using a solid-state reaction, and we found that the electrode activity was improved dramatically. The SEM images of the samples demonstrated that the contact between the electrode and the interlayer was much better than the contact between the electrode and electrolyte without the interlayer. The addition of the interlayer resulted in an increased three-phase boundary length and electrode/electrolyte two-phase interfacial area. An SSC-LSGMC5 electrode sintered at 1123 K deposited onto an interlayer sintered at 1673 K exhibited the highest performance among the samples studied. The electrode resistance was about 0.08 Ω cm 2 at near equilibrium conditions, and the cathodic overpotential at a current density of 1 A cm -2 was only about 70 mV at 973 K in oxygen. The introduction of the interlayer did not change the oxygen reaction mechanism, and the significant increase in electrode performance was due to the increase in the number of active sites for oxygen reduction.

  18. PAPER-64 Constraints on Reionization: The 21 cm Power Spectrum at z = 8.4

    NASA Astrophysics Data System (ADS)

    Ali, Zaki S.; Parsons, Aaron R.; Zheng, Haoxuan; Pober, Jonathan C.; Liu, Adrian; Aguirre, James E.; Bradley, Richard F.; Bernardi, Gianni; Carilli, Chris L.; Cheng, Carina; DeBoer, David R.; Dexter, Matthew R.; Grobbelaar, Jasper; Horrell, Jasper; Jacobs, Daniel C.; Klima, Pat; MacMahon, David H. E.; Maree, Matthys; Moore, David F.; Razavi, Nima; Stefan, Irina I.; Walbrugh, William P.; Walker, Andre

    2015-08-01

    In this paper, we report new limits on 21 cm emission from cosmic reionization based on a 135 day observing campaign with a 64-element deployment of the Donald C. Backer Precision Array for Probing the Epoch of Reionization in South Africa. This work extends the work presented in Parsons et al. with more collecting area, a longer observing period, improved redundancy-based calibration, improved fringe-rate filtering, and updated power-spectral analysis using optimal quadratic estimators. The result is a new 2σ upper limit on Δ2(k) of (22.4 mK)2 in the range 0.15\\lt k\\lt 0.5h {{Mpc}}-1 at z = 8.4. This represents a three-fold improvement over the previous best upper limit. As we discuss in more depth in a forthcoming paper, this upper limit supports and extends previous evidence against extremely cold reionization scenarios. We conclude with a discussion of implications for future 21 cm reionization experiments, including the newly funded Hydrogen Epoch of Reionization Array.

  19. Managing compost stability and amendment to soil to enhance soil heating during soil solarization.

    PubMed

    Simmons, Christopher W; Guo, Hongyun; Claypool, Joshua T; Marshall, Megan N; Perano, Kristen M; Stapleton, James J; Vandergheynst, Jean S

    2013-05-01

    Soil solarization is a method of soil heating used to eradicate plant pathogens and weeds that involves passive solar heating of moist soil mulched (covered) with clear plastic tarp. Various types of organic matter may be incorporated into soil prior to solarization to increase biocidal activity of the treatment process. Microbial activity associated with the decomposition of soil organic matter may increase temperatures during solarization, potentially enhancing solarization efficacy. However, the level of organic matter decomposition (stability) necessary for increasing soil temperature is not well characterized, nor is it known if various amendments render the soil phytotoxic to crops following solarization. Laboratory studies and a field trial were performed to determine heat generation in soil amended with compost during solarization. Respiration was measured in amended soil samples prior to and following solarization as a function of soil depth. Additionally, phytotoxicity was estimated through measurement of germination and early growth of lettuce seedlings in greenhouse assays. Amendment of soil with 10%(g/g) compost containing 16.9 mg CO2/gdry weight organic carbon resulted in soil temperatures that were 2-4 °C higher than soil alone. Approximately 85% of total organic carbon within the amended soil was exhausted during 22 days of solarization. There was no significant difference in residual respiration with soil depth down to 17.4 cm. Although freshly amended soil proved highly inhibitory to lettuce seed germination and seedling growth, phytotoxicity was not detected in solarized amended soil after 22 days of field solarization. PMID:23422041

  20. Physicochemical Characterization of Potential Mobile Organic Matter In Five Typical German Agricultural Soils

    NASA Astrophysics Data System (ADS)

    Séquaris, J.-M.; Lewandowski, H.; Vereecken, H.

    Organic matter (OM) in soils plays an important role, i.e., in maintaining soil structure or as source of nutrients. OM is mainly adsorbed at the surface of clay minerals and oxides and remains mostly immobile. However, mobile OM in dissolved form (DOM) or associated with water dispersible colloids (WDC) in soil water may influence trans- port of pollutants. The goal of this study is to compare 5 typical German agricultural soils in terms of distribution and quality of OM in the top soil (0-15 cm). The present report focuses on the physicochemical characterization of potential mobile OM so- lutions obtained after physical fractionation of soil materials based on sedimentation after a prolonged shaking in water or electrolyte solutions. Three soil fractions dif- fering in particle size were separated in function of sedimentation time: a colloidal fraction: < 2 ţm; a microaggregate fraction: 2-20 ţm and a sediment fraction: > 20 ţm. The soil electrolyte phase containing the DOM fraction was obtained by a high-speed centrifugation of the colloidal phase. After a water or low electrolyte concentration (« 1 mM Ca2+) extraction, it can be shown that the mobile fraction of OM or OC (organic carbon) is distributed between the colloidal and the electrolyte phases in a concentration ratio range of 10-40 to 1. A less mobile OC fraction is associated with the microaggregate fraction while immobile OC remains adsorbed in the sediment fraction. An increasing OC and total-N content with diminishing particle-size of soil (colloidal and microaggregate fractions) has been confirmed. A higher OC input due to special soil management is sensitively detected in fractions with a greater particle size (sediment fraction). Increasing the Ca2+ concentration up to 10 mM during the water extraction diminishes the DOC concentration by an average factor of 3 while the OC associated with the dispersed colloids (OCWDC) vanished almost completely. Thus, a critical coagulation concentration of

  1. SOIL BIN AND FIELD TESTS OF AN ON-THE-GO SOIL STRENGTH PROFILE SENSOR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    n on-the-go soil strength profile sensor (SSPS) was previously developed to measure the within-field spatial variability in soil strength at 5 evenly-spaced depths up to 50 cm. In this paper, performance of the SSPS was evaluated using soil bin and field data. First, the SSPS was tested in a soil bi...

  2. [Characteristics of carbon sequestration and apparent stability of new sequestered carbon in forested torrid red soil at dry-hot valley].

    PubMed

    Tang, Guo-Yong; Li, Kun; Sun, Yong-Yu; Zhang, Chun-Hua

    2012-02-01

    Great concerns about potential for carbon (C) sequestration in forested soil and the stability of the sequestered C have been exerted under the background of global climate change. Organic C density in soil and in soil physical and biochemical fractions at various stages (1991, 1997, 2003 and 2010) in Acacia auriculiformis stand afforested in 1991 were investigated at Dry-Hot Valley via density fractionation and acid hydrolysis. The results showed that organic C density at surface (0-15 cm) and subsurface (15-30 cm) soil layers was 1.40 kg x m(-2) and 0.99 kg x m(-2) after 19 years of afforestation, respectively. The annual C sequestration rates of surface and subsurface soil layers were 37.89 g x (m2 x a)(-1) and 16.84 g x (m2 x a)(-1) during 1991-2010, respectively, and the sequestration was accelerating. The ratio of organic C in heavy fraction to in surface soil was 71.44% in 2003, which was significantly higher than that in 2010 (67.99%). The recalcitrant carbon index (I(RC)) in light fraction was significantly higher than that in heavy fraction at surface or subsurface layers in 2003, but both decreased with aging of plantation, especially I(RC) in light fraction. Approximately 57% - 70% of new sequestered C was protected by physical mechanism and 33-49 percent was biochemical recalcitrant C during the stage from 12 to 19 years after afforestation. The results reveal that forested torrid red soil at Dry-Hot Valley may have a considerable capability of C sequestration. The biochemical stability of physically protected C is lower than the unprotected. Both the stability, however, decreases with the plantation age. PMID:22509596

  3. Morphology and magneto-transport properties of electron doped La{sub 0.85}Te{sub 0.15}MnO{sub 3} thin film deposited on LaAlO{sub 3} substrate

    SciTech Connect

    Bhat, Irshad; Husain, Shahid; Patil, S.I.

    2014-09-15

    Graphical abstract: Resistivity versus temperature plots of La{sub 0.85}Te{sub 0.15}MnO{sub 3} thin film under the applied magnetic field of 0 T, 5 T and 8 T. - Highlights: • La{sub 0.85}Te{sub 0.15}MnO{sub 3} manganite thin film is deposited on LaAlO{sub 3} using PLD technique. • Film is deposited at 750 °C, and is highly crystalline, single phase and c-axis oriented. • The film consists of grains with an average diameter of 60 nm. • Resistivity plots display double insulator-metal transitions. • XPS results confirm the electron doped (n-type) nature of the film. - Abstract: We report the structural, electronic transport and X-ray photoemission spectroscopic study of 100 nm thin film of La{sub 0.85}Te{sub 0.15}MnO{sub 3} grown on (0 0 1) LaAlO{sub 3} single crystal substrate by pulsed laser deposition. XRD results confirm that the film has good crystalline quality, single phase, and has a c-axis orientation. The atomic force microscopic (AFM) results showed that the film consists of grains with an average diameter of 60 nm. The resistivity measurement showed double insulator-metal transitions in absence and as well as in presence of the magnetic field. The resistivity peaks are ascribed to the intrinsic contribution of LTMO film and the tunnelling of spin-polarized electrons at grain boundaries. X-ray photoemission spectroscopy measurements suggest that Te ions are in the Te{sup 4+} state, while the Mn ions are forced to stay in the Mn{sup 2+} and Mn{sup 3+} valence state.

  4. Microwave property improvement of Ca[(Li1/3Nb2/3)0.95Zr0.15]O3+δ perovskite by A-site substitution

    NASA Astrophysics Data System (ADS)

    Hu, Mingzhe; Xiong, Gang; Ding, Zhao

    2016-04-01

    The crystal structure and microwave dielectric properties of Ca[(Li1/3Nb2/3)0.95Zr0.15]O3+δ ceramic (CLNZ) are tuned by A-site substitution of Sr2+ and Ba2+ ions in the present paper. The tuning effect on the crystal structure is investigated by the X-ray diffraction (XRD) pattern and it illustrates that single phase of orthorhombic perovskite structure is formed, however, minor amount of BaNb2O6-type second phase is also detected in (Ca1‑xBax)[(Li1/3Nb2/3)0.95Zr0.15]O3+δ ceramics (CBLNZ) in the range of x ≥ 0.025, while pure perovskite phase is obtained in (Ca1‑xSrx)[(Li1/3Nb2/3)0.95Zr0.15]O3+δ ceramics (CSLNZ) in the whole investigation range of 0 ≤ x ≤ 0.2. With the increase of x value, the unit cell volumes of both CBLNZ and CSLNZ perovskites gradually expand, which results in the degradation of the vibration bond strength between the B-site ions and oxygen in the perovskites. The microscopic structure related thermal parameters in CSLNZ and CBLNZ perovskites are analyzed in terms of Clausius-Mossotti equation to reveal the original contributors in the temperature coefficients. The results show that both Sr2+ and Ba2+ substitution can effectively improve the permittivity and Qf value, especially, improve the temperature coefficient of CLNZ ceramic in a certain range.

  5. Sintering of BaCe(sub 0.85)Y(sub 0.15)O(sub 3-delta) with/without SrTiO3 Dopant

    NASA Technical Reports Server (NTRS)

    Dynys, F.; Sayir, A.; Heimann, P. J.

    2004-01-01

    The perovskite composition, BaCe(sub 0.85)Y(sub 0.15)O(sub 3-delta), displays excellent protonic conduction at high temperatures making it a desirable candidate for hydrogen separation membranes. This paper reports on the sintering behavior of BaCe(sub 0.85)Y(sub 0.15)O(sub 3-delta) powders doped with SrTiO3. Two methods were used to synthesize BaCe(sub 0.85)Y(sub 0.15)O(sub 3-delta) powders: (1) solid state reaction and (2) wet chemical co-precipitation. Co-precipitated powder crystallized into the perovskite phase at 1000 C for 4 hrs. Complete reaction and crystallization of the perovskite phase by solid state was achieved by calcining at 1200 C for 24 hrs. Solid state synthesis produced a coarser powder with an average particle size of 1.3 microns and surface area of 0.74 sq m/g. Co-precipitation produced a finer powder with a average particle size of 65 nm and surface area of 14.9 sq m/g. Powders were doped with 1, 2, 5, and 10 mole % SrTiO3. Samples were sintered at 1450 C, 1550 C and 1650 C. SrTiO3 enhances sintering, optimal dopant level is different for powders synthesized by solid state and co-precipitation. Both powders exhibit similar grain growth behavior. Dopant levels of 5 and 10 mole % SrTiO3 significantly enhances the grain size.

  6. The structure, magnetostriction, and hysteresis of (Tb0.3Dy0.7Fe1.9)1-x(Tb0.15Ho0.85Fe1.9)x alloys

    NASA Astrophysics Data System (ADS)

    Wang, Bowen; Lv, Yan; Li, Guolu; Huang, Wenmei; Weng, Ling; Cui, Baozhi

    2015-05-01

    The (Tb0.3Dy0.7Fe1.9)1-x(Tb0.15Ho0.85Fe1.9)x alloys were prepared in an arc furnace under high purity argon. The as-cast samples wrapped in Mo foil were sealed in a silica tube filled with high purity argon and were homogenized at 1000 °C for 1 day and at 950 °C for 5 days. Then, the homogenized specimens with 5 mm in diameter and 8 mm in length were annealed under the magnetic field of 320 kA/m. The static measurement of magnetostriction (λ//, λ⊥) was made by standard strain gauge, and the magnetization M was measured by a vibrating sample magnetometer. It is found that the main phase of annealed (Tb0.3Dy0.7Fe1.9)1-x(Tb0.15Ho0.85Fe1.9)x alloys is the (Tb,Dy,Ho)Fe2 phase with the MgCu2-type structure. The magnetostriction λ// and magnetization M of (Tb0.3Dy0.7Fe1.9)1-x(Tb0.15Ho0.85Fe1.9)x alloys increases with increasing x from x = 0.1 to x = 0.3 when H < 240 kA/m. The hysteresis becomes small with increasing x when x ≤ 0.3. For magnetically annealed rod alloys, the magnetostriction markedly increases and reaches 1080 × 10-6 for x = 0.3 when H = 240 kA/m.

  7. Synthesis, structural and vibrational properties of Bi{sub 0.8}La{sub 0.15}A{sub 0.05}FeO{sub 3} (A = Ca, Sr)

    SciTech Connect

    Sharma, Poorva E-mail: poorva.aks@gmail.com; Kumar, Ashwini; Varshney, Dinesh E-mail: poorva.aks@gmail.com

    2015-06-24

    The polycrystalline Bi{sub 0.8}La{sub 0.15}A{sub 0.05}FeO{sub 3} (A = Ca, Sr) was synthesized by solid state reaction route to study the structural and vibrational properties. X-ray diffraction patterns confirmed the formation of single-phase perovskite structure. Rietveld–refined crystal structure parameters revealed the existence of rhombohedral R3c symmetry in the prepared sample. The blue shift of phonon modes is attributed to lower atomic mass of La{sup 3+} and A = (Ca, Sr) substitution at Bi site in BiFeO{sub 3}.

  8. Study of the angular-dependence of the L-alpha and L-beta radiation produced by 0-15 kev photons incident on Au targets of various thicknesses

    NASA Astrophysics Data System (ADS)

    Requena, Sebastian; Williams, Scott

    2011-03-01

    We report the results of experiments involving the L-alpha and L-beta x-ray lines produced by 0-15 keV bremsstrahlung incident on gold targets of various thicknesses at forward-scattered angles ranging from 20 to 160 degrees. Previous reports [1, 2] have shown the L-beta peaks to be isotropic and the L-alpha peaks to be anisotropic due to the symmetry/asymmetry associated with the orbital being filled during the transition. The relative intensities are compared to the predictions of the Monte Carlo code, PENELOPE.

  9. Alpha self-irradiation effect on the local structure of the U{sub 0.85}Am{sub 0.15}O{sub 2{+-}x} solid solution

    SciTech Connect

    Prieur, D.; Martin, P.M.; Scheinost, A.C.; Dehaudt, P.

    2012-10-15

    Uranium-americium mixed oxides are promising fuels for achieving an efficient Am recycling. Previous studies on U{sub 0.85}Am{sub 0.15}O{sub 2{+-}x} materials showed that the high {alpha} activity of {sup 241}Am induces pellet swelling which is a major issue for cladding materials design. In this context, X-ray Diffraction and X-ray Absorption Spectroscopy measurements were used to study self-irradiation effects on U{sub 0.85}Am{sub 0.15}O{sub 2{+-}x} local structure and to correlate these results with those obtained at the macroscopic scale. For a cumulative {alpha} decay dose equal to 0.28 dpa, it was shown that non-defective fluorite solid solutions were achieved and therefore, that the fluorite structure is stable for the studied doses. In addition, both interatomic distance and lattice parameter expansions were observed, which only partially explains the macroscopic swelling. As expected, an increase of the structural disorder with self-irradiation was also observed. - Graphical abstract: X-ray Diffraction and X-ray Absorption Spectroscopy measurements were performed on U{sub 0.85}Am{sub 0.15}O{sub 2{+-}x}, exhibiting various cumulative {alpha} decay doses, in order to study self-irradiation effects on local structure and to correlate these results with those obtained at the macroscopic scale. Thus, it was shown that the fluorite structure is stable for the studied doses. In addition, both interatomic distance and lattice parameter expansions were observed, explaining partially the macroscopic swelling. Highlights: Black-Right-Pointing-Pointer Non-defective fluorite U{sub 0.85}Am{sub 0.15}O{sub 2{+-}x} solid solutions were achieved. Black-Right-Pointing-Pointer The fluorite structure is stable for the studied doses. Black-Right-Pointing-Pointer A lattice parameter increase was observed, which partially explains the macroscopic swelling. Black-Right-Pointing-Pointer The increase of the structural disorder can be understood from the ballistic effect associated

  10. Erratum: VLA H92α and H115β Recombination Line Observations of the Galactic Center H II Regions: The Sickle (G0.18-0.04) and the Pistol (G0.15-0.05)

    NASA Astrophysics Data System (ADS)

    Lang, Cornelia C. Lang; Goss, W. M.; Wood, D. O. S.

    1997-06-01

    In the paper ``VLA H92α and H115β Recombination Line Observations of the Galactic Center H II Regions: The Sickle (G0.18-0.04) and the Pistol (G0.15-0.05)'' by Cornelia C. Lang, W. M. Goss, and D. O. S. Wood (ApJ, 474, 275 [1997]), an error occurred in Figure 9. Figure 9a was printed twice, and Figure 9b was omitted. The correct version of Figure 9b is presented here.

  11. Reduced tillage and cover crops as a strategy for mitigating atmospheric CO2 increase through soil organic carbon sequestration in dry Mediterranean agroecosystems.

    NASA Astrophysics Data System (ADS)

    Almagro, María; Garcia-Franco, Noelia; de Vente, Joris; Boix-Fayos, Carolina; Díaz-Pereira, Elvira; Martínez-Mena, María

    2016-04-01

    The implementation of sustainable land management (SLM) practices in semiarid Mediterranean agroecosystems can be beneficial to maintain or enhance levels of soil organic carbon and mitigate current atmospheric CO2 increase. In this study, we assess the effects of different tillage treatments (conventional tillage (CT), reduced tillage (RT), reduced tillage combined with green manure (RTG), and no tillage (NT)) on soil CO2 efflux, aggregation and organic carbon stabilization in two semiarid organic rainfed almond (Prunus dulcis Mill., var. Ferragnes) orchards located in SE Spain Soil CO2 efflux, temperature and moisture were measured monthly between May 2012 and December 2014 (site 1), and between February 2013 and December 2014 (site 2). In site 1, soil CO2 efflux rates were also measured immediately following winter and spring tillage operations. Aboveground biomass inputs were estimated at the end of the growing season in each tillage treatment. Soil samples (0-15 cm) were collected in the rows between the trees (n=4) in October 2012. Four aggregate size classes were distinguished by sieving (large and small macroaggregates, free microaggregates, and free silt plus clay fraction), and the microaggregates occluded within macroaggregates (SMm) were isolated. Soil CO2efflux rates in all tillage treatments varied significantly during the year, following changes during the autumn, winter and early spring, or changes in soil moisture during late spring and summer. Repeated measures analyses of variance revealed that there were no significant differences in soil CO2 efflux between tillage treatments throughout the study period at both sites. Average annual values of C lost by soil respiration were slightly but not significantly higher under RT and RTG treatments (492 g C-CO2 m‑2 yr‑1) than under NT treatment (405 g C-CO2 m‑2 yr‑1) in site 1, while slightly but not significantly lower values were observed under RT and RTG treatments (468 and 439 g C-CO2 m‑2

  12. Effect of DTPA on concentration ratios of /sup 237/Np and /sup 244/Cm in vegetative parts of bush bean and barley

    SciTech Connect

    Romney, E.M.; Wallace, A.; Mueller, R.T.; Cha, J.W.; Wood, R.A.

    1981-07-01

    We grew bush beans, barley, and rice in two different soils in a glasshouse with /sup 237/Np or /sup 244/Cm mixed into separate containers of the soil. The chelating agent DTPA at 100 ..mu..g/g soil was added to half of the containers. The concentration ratio (CR) for /sup 237/Np without DTPA was two orders of magnitude higher than for /sup 244/Cm without DTPA for all three plant species. The DTPA increased the CR of /sup 244/Cm by two to three orders of magnitude, but had no influence on that for /sup 237/Np. In bush beans, both /sup 237/Np and /sup 244/Cm CRs were higher in primary leaves than in trifoliate leaves, which were higher than for stems. The CRs for bush beans were generally higher for both /sup 237/Np and /sup 244/Cm than for either barley or rice, especially without DTPA.

  13. Characteristics, genesis and classification of a basin peat soil under negative human impact in Turkey

    NASA Astrophysics Data System (ADS)

    Dengiz, Orhan; Ozaytekin, H. Huseyin; Cayci, Gokhan; Baran, Abdullah

    2009-01-01

    The objective of this research was to investigate the morphology, genesis and classification of organic soils formed on depression and flat land around Lake Yenicaga, west-central Turkey. Formation of the area has been influenced by tectonic and karst processes. This peatland is important in this area due to its extensive use as a horticultural plant growth medium resulting from positive physical and chemical properties. Organic soils in the study area were formed in nutrient-rich conditions and it is classified as typical basin peat. Four representative pedons were excavated in the study area based on extensive observations performed with random grid method using an auger. Samples were taken from horizons in each profile for laboratory analyses. Organic matter contents ranged from 12.5 to 91.5% across all four pedons. Fiber contents were between 4.3 and 91.5%, and N ranged from 0.56 to 2.19%. Cation exchange capacity ranged from 37 to 222 cmol kg-1, bulk density from 0.09 to 0.78 g cm-3, lime from 0.15 to 2.62%. The pH and ECe values ranged from 5.38 to 7.92 and 0.50 to 3.80 dS m-1, respectively. Sand, silt and clay contents of the organic soils ranged between 0.75-3.92, 40.70-74.77 and 24.15-57.30%, respectively. Differences in organic soils were found to depend on the environment, botanical origins, decomposition degrees, and groundwater composition. The organic soils of the research area were classified in the typic, hemic and hydric subgroups of Medifibrists (Soil Taxonomy 1999).

  14. Residues of DDTs and their spatial distribution characteristics in soils from the Yangtze River Delta, China.

    PubMed

    Li, Qingbo; Zhang, Haibo; Luo, Yongming; Song, Jing; Wu, Longhua; Ma, Jianmin

    2008-01-01

    Organochlorine pesticides were used extensively in the Yangtze River Delta, China. However, knowledge about their residual levels and environmental fates in soils of this area is limited. This paper presents the residue isomers and spatial pattern of dichlorodiphenyltrichloroethane (DDT) in soils across 17 main cities in the Yangtze River Delta. Forty-three soil surface (0-15 cm) samples were collected during a field campaign conducted in October 2003 in the Delta. Six DDT isomers (1-[2-chlorophenyl]-1-[4-chlorophenyl]-2,2-dichloroethane [o,p'-DDD], 1-[2-chlorophenyl]-1-[4-chlorophenyl]-2,2-dichloroethylene [o,p-'DDE], 1,1,1-trichloro-2-[p-chlorophenyl]-2-[o-chlorophenyl]ethane [o,p'-DDT], p,p'-dichlorodiphenyldichloroethane [p,p'-DDD], p,p'-dichlorodiphenyldichloroethylene [p,p'-DDE], p,p'-dichlorodiphenyltrichloroethane [p,p'-DDT]) were detected using gas chromatography. The results show that p,p'-DDE was the dominant isomer in the soil samples. The levels of DDT are generally low in soils of this area and are comparable to DDT levels in other cities in China and in soils from developed countries such as the United States and Germany. The isomer ratios of o,p'-DDT to p,p'-DDT and DDT to (DDD + DDE) were employed to identify the source of DDT. The computed ratios implied that the source of DDT might be related to the application of dicofol, an acaricide manufactured from technical DDTs and mainly used on cotton fields to treat mites. PMID:18092878

  15. Lessons Learned From CM-2 Modal Testing and Analysis

    NASA Technical Reports Server (NTRS)

    McNelis, Mark E.; Goodnight, Thomas W.; Carney, Kelly S.; Otten, Kim D.

    2002-01-01

    The Combustion Module-2 (CM-2) is a space experiment that launches on Shuttle mission STS-107 in the SPACEHAB Double Research Module. The CM-2 flight hardware is installed into SPACEHAB single and double racks. The CM-2 flight hardware was vibration tested in the launch configuration to characterize the structure's modal response. Cross-orthogonality between test and analysis mode shapes were used to assess model correlation. Lessons learned for pre-test planning and model verification are discussed.

  16. Visualization on massively parallel computers using CM/AVS

    SciTech Connect

    Krogh, M.F.; Hansen, C.D.

    1993-09-01

    CM/AVS is a visualization environment for the massively parallel CM-5 from Thinking Machines. It provides a backend to the standard commercially available AVS visualization product. At the Advanced Computing Laboratory at Los Alamos National Laboratory, we have been experimenting and utilizing this software within our visualization environment. This paper describes our experiences with CM/AVS. The conclusions reached are applicable to any implimentation of visualization software within a massively parallel computing environment.

  17. Energy Levels of the Nitrate Radical Below 2000 CM-1

    NASA Astrophysics Data System (ADS)

    Stanton, J. F.; Simmons, C. S.

    2012-06-01

    Highly sophisticated quantum chemistry techniques have been employed to build a three-state diabatic Hamiltonian for the nitrate radical (NO_3). Eigenvalues of this Hamiltonian (which includes effects beyond the Born-Oppenheimer approximation) are consistent with the known ``vibrational'' levels of NO_3 up to ca. 2100 cm-1 above the zero-point level; with a small empirical adjustment of the diabatic coupling strength, calculated levels are within 20 cm-1 of the measured level positions for those that have been observed experimentally. Of the eleven states with e' symmetry calculated below 2000 cm-1, nine of these have been observed either in the gas phase by Hirota and collaborators as well as Neumark and Johnston, or in frozen argon by Jacox. However, the Hamiltonian produces two levels that have not been seen experimentally: one calculated to lie at 1075 cm-1 (which is the third e' state, above ν_4 and 2ν_4) and another at 1640 cm-1 which is best assigned as one of the two e' sublevels of 4ν_4. A significant result is that the state predicted at 1075 cm-1 is not far enough above the predicted 2ν_4 level (777 cm-1 v. ca. 760 cm-1 from experiment) to be plausibly assigned as 3ν_4 (which is at 1155 cm-1: experimental position: 1173 cm-1), nor is its nodal structure consistent with such an idea. Rather, it is quite unambiguously the ν_3 level. Given the fidelity of the results generated by this model Hamiltonian as compared to experiment, it can safely be concluded that the prominent infrared band seen at 1492 cm-1 (corresponding to a calculated level at 1500 cm-1) is not ν_3, but rather a multiquantum state best viewed as a sublevel of the ν_3 + ν_4 combination.

  18. The amino acid composition of the Sutter's Mill CM2 carbonaceous chondrite

    NASA Astrophysics Data System (ADS)

    Burton, Aaron S.; Glavin, Daniel P.; Elsila, Jamie E.; Dworkin, Jason P.; Jenniskens, Peter; Yin, Qing-Zhu

    2014-11-01

    We determined the abundances and enantiomeric compositions of amino acids in Sutter's Mill fragment #2 (designated SM2) recovered prior to heavy rains that fell April 25-26, 2012, and two other meteorite fragments, SM12 and SM51, that were recovered postrain. We also determined the abundance, enantiomeric, and isotopic compositions of amino acids in soil from the recovery site of fragment SM51. The three meteorite stones experienced terrestrial amino acid contamination, as evidenced by the low D/L ratios of several proteinogenic amino acids. The D/L ratios were higher in SM2 than in SM12 and SM51, consistent with rain introducing additional L-amino acid contaminants to SM12 and SM51. Higher percentages of glycine, β-alanine, and γ-amino-n-butyric acid were observed in free form in SM2 and SM51 compared with the soil, suggesting that these free amino acids may be indigenous. Trace levels of D+L-β-aminoisobutyric acid (β-AIB) observed in all three meteorites are not easily explained as terrestrial contamination, as β-AIB is rare on Earth and was not detected in the soil. Bulk carbon and nitrogen and isotopic ratios of the SM samples and the soil also indicate terrestrial contamination, as does compound-specific isotopic analysis of the amino acids in the soil. The amino acid abundances in SM2, the most pristine SM meteorite analyzed here, are approximately 20-fold lower than in the Murchison CM2 carbonaceous chondrite. This may be due to thermal metamorphism in the Sutter's Mill parent body at temperatures greater than observed for other aqueously altered CM2 meteorites.

  19. Fine root dynamics for forests on contrasting soils in the Colombian Amazon

    NASA Astrophysics Data System (ADS)

    Jiménez, E. M.; Moreno, F. H.; Peñuela, M. C.; Patiño, S.; Lloyd, J.

    2009-12-01

    It has been hypothesized that as soil fertility increases, the amount of carbon allocated to below-ground production (fine roots) should decrease. To evaluate this hypothesis, we measured the standing crop fine root mass and the production of fine roots (<2 mm) by two methods: (1) ingrowth cores and, (2) sequential soil coring, during 2.2 years in two lowland forests growing on different soils types in the Colombian Amazon. Differences of soil resources were defined by the type and physical and chemical properties of soil: a forest on clay loam soil (Endostagnic Plinthosol) at the Amacayacu National Natural Park and, the other on white sand (Ortseinc Podzol) at the Zafire Biological Station, located in the Forest Reservation of the Calderón River. We found that the standing crop fine root mass and the production was significantly different between soil depths (0-10 and 10-20 cm) and also between forests. The loamy sand forest allocated more carbon to fine roots than the clay loam forest with the production in loamy sand forest twice (mean±standard error=2.98±0.36 and 3.33±0.69 Mg C ha-1 yr-1, method 1 and 2, respectively) as much as for the more fertile loamy soil forest (1.51±0.14, method 1, and from 1.03±0.31 to 1.36±0.23 Mg C ha-1 yr-1, method 2). Similarly, the average of standing crop fine root mass was higher in the white-sands forest (10.94±0.33 Mg C ha-1) as compared to the forest on the more fertile soil (from 3.04±0.15 to 3.64±0.18 Mg C ha-1). The standing crop fine root mass also showed a temporal pattern related to rainfall, with the production of fine roots decreasing substantially in the dry period of the year 2005. These results suggest that soil resources may play an important role in patterns of carbon allocation to the production of fine roots in these forests as the proportion of carbon allocated to above- and below-ground organs is different between forest types. Thus, a trade-off between above- and below-ground growth seems to exist

  20. [Quantitative determination of the depth of edge influence on soil moisture in pepper-forest boundary of Minjiang River upper reaches].

    PubMed

    Li, Liguang; He, Xingyuan; Li, Xiuzhen; Wen, Qingchun

    2006-11-01

    A typical pepper-forest boundary was selected in the arid valley of Minjiang River upper reaches, and the moisture content in 0-15 cm soil layer was determined by time-domain reflectometry (TDR) during drought, after rain, and different seasons. Moving split-window techniques (MSWT) was employed to detect the depth of edge influence (DEI) on soil moisture and its dynamic variation with time. The results showed that the changes of squared Euclidean distance (SED) curve on the graph tended to become stable when the window width reached 8 - 12, and DEI could be detected. The seasonal variation of soil moisture could be divided into three periods, i.e., rising period (January to April), peak period (May to October), and lessen period (November to December). DEI was smaller during drought, and increased after rain. The DEI on soil moisture ranged from 6 m in pepper field to 2 m in forest during drought and from 12 m in pepper field to 2 m in forest after rain, but ranged from 10 m in pepper field to 2 m in forest field within a year. DEI was different in different seasons, and was dynamic. Under such condition of soil moisture, the forest restoration from pepper land and the seedling planting were not ecologically reasonable. Reducing human disturbance and revegetating with natural shrubs and meadows could be more effective for vegetation conservation in the arid valley of Minjiang River upper reaches. PMID:17269317

  1. Structural and magnetic properties with large reversible magnetocaloric effect in (La1-xPrx)0.85Ag0.15MnO3 (0.0 ≤ x ≤ 0.5) compounds

    NASA Astrophysics Data System (ADS)

    Osman Ayaş, Ali; Akyol, Mustafa; Ekicibil, Ahmet

    2016-04-01

    We report on the effect of Pr doping on structural, magnetic and magnetocaloric properties in (La1-xPrx)0.85Ag0.15MnO3 (0.0 ≤ x ≤ 0.5) compounds. The main crystal structure has been studied by performing X-ray diffraction method and structural analysis based on Rietveld method where it is found that although samples at low concentration level (x ≤ 0.2) have rhombohedral phase ?, others (x ≥ 0.3) have orthorhombic (Pbnm) phase. Scanning electron microscope images show that the average particle size decreases by increasing Pr amount in the main structure. It is observed that the second-order transition temperature from ferromagnetic to paramagnetic phase is dramatically decreased from 262 to 138 K by increasing Pr concentration in (La1-xPrx)0.85Ag0.15MnO3. On the other hand, all samples have also antiferromagnetic coupling observed below TN ~ 50 K. The maximum magnetic entropy change (-ΔSM)max and relative cooling power values were found in the range of 7.90-2.88 J/kg K and 213.32-153.50 J/kg, respectively, under 50 kOe field change in our samples. It can be argued that particularly the compounds LPAM with x = 0.0, 0.1 and 0.2 are expected to be promising candidate for magnetic refrigeration.

  2. Sub-10 μm grain size, Ba1-xCaxTi0.9Zr0.1O3 (x = 0.10 and x = 0.15) piezoceramics processed using a reduced thermal treatment

    NASA Astrophysics Data System (ADS)

    Reyes-Montero, A.; Pardo, L.; López-Juárez, R.; González, A. M.; Rea-López, S. O.; Cruz, M. P.; Villafuerte-Castrejón, M. E.

    2015-06-01

    The solid-state synthesis of Ba1-xCaxTi0.9Zr0.1O3 (x = 0.10, 0.15) (BCTZ) powder and the processing method of ceramics, by the use of reduced synthesis time and temperature (1250 °C for 2 h), are reported. Homogeneous and dense (≥95%) ceramic microstructures with sub-10 μm grain size were obtained under all sintering conditions. A comparative study of their ferro-piezoelectric properties as a function of sintering temperatures is presented. The study shows the role of the grain size effect for improving both piezoelectric and ferroelectric properties of these materials. With an increase of the sintering temperature, grain growth was promoted; therefore, higher ferro-piezoelectric values were obtained (at 1400 °C, for x = 0.10: d33 = 300 pC/N, {{d}31}=-150 pC/N, kp = 48% for x = 0.15: d33 = 410 pC/N, d31 =-154 pC/N, kp = 50%). In addition, a diffuse phase transition is observed in these BCTZ ceramics with a Curie temperature near 100 °C at 1 kHz.

  3. Investigation of the effect of Ag addition on the critical current density of the high-temperature superconductor Nd1.85Ce0.15CuO4

    NASA Astrophysics Data System (ADS)

    Radhikesh Raveendran, N.; Vinod, K.; Amaladass, E. P.; Janaki, J.; Mani, Awadhesh

    2016-07-01

    We have synthesized a Nd1.85Ce0.15CuO4 + Ag composite system with the aim of studying the effect of Ag addition in the electron-doped system Nd1.85Ce0.15CuO4 on its superconducting and magnetic properties. Measurements of magnetization using a vibration sample magnetometer indicate a systematic increase in diamagnetic shielding upon Ag addition. A subsequent analysis of the critical current density using the Bean model indicates a small but significant increase in intra-grain critical current density upon Ag addition. From the study of the dependence of electrical resistivity on the temperature and electrical current, an increase in inter-granular critical current has also been evidenced upon Ag addition. These results correlate well with the earlier reports of a similar improvement in the properties on the hole-doped ceramic superconductor/Ag composites. Possible reasons for the enhancement of JC have been described and discussed. Magnetic characterization by AC susceptibility using a SQUID magnetometer has been presented for a representative composition, which enabled delineation of the inter- and intra-granular transitions.

  4. Magneto-transport properties of La0.75Ca0.15Sr0.1MnO3 with YBa2Cu3O7-δ addition

    NASA Astrophysics Data System (ADS)

    Zghal, E.; Koubaa, M.; Berthet, P.; Sicard, L.; Cheikhrouhou-Koubaa, W.; Decorse-Pascanut, C.; Cheikhrouhou, A.; Ammar-Merah, S.

    2016-09-01

    We report the structural, magnetic, electrical and magentoresistance properties of (La0.75Ca0.15Sr0.1MnO3)1-x(YBa2Cu3O7-δ)x (with x=0, 0.025, 0.05, 0.075, 0.1, 0.2, and 0.3) composites synthesized through sol-gel method. The powder X-ray diffraction patterns indicate no evidence of reaction between La0.75Ca0.15Sr0.1MnO3 (LCSMO) and YBa2Cu3O7-δ (YBCO). The addition of YBCO induces a reduction of the total magnetization while the Curie temperature remains almost constant (∼312 K). The behavior of the electrical resistivity evolves differently depending on the doping level. Above the paramagnetic-insulating transition temperature the resistivity data were best-fitted by using the adiabatic small polaron and variable range hopping models. Ferromagnetic-metallic regime in the composites seems to emanate from the electron-phonon or/and electron-magnon scattering processes. With increasing the YBCO doping content (until x=0.1), the positive magnetoresistance (MR) of YBCO phase dominates the negative MR of LCSMO one, which gives rise to the decreasing of MR of the composites.

  5. Power and capacity fade mechanism of LiNi0.8Co0.15Al0.0502composite cathodes in high-power lithium-ion batteries

    SciTech Connect

    Kostecki, Robert; McLarnon, Frank

    2003-09-01

    High-power Li-ion cells that were tested at elevatedtemperatures showed a significant impedance rise, which was associatedprimarily with the LiNi0.8Co0.15Al0.05O2 cathode. By systematicallycollecting thousands of Raman spectra from 50 x 80 mm areas at 0.9 mmspatial resolution, and integrating the respective bands of the cathodecomponents for each spectrum, we were able to produce color-coded,semi-quantitative composition maps of cathode surfaces. Raman microscopyimages of cathodes from tested cells revealed that cell cycling orstorage at elevated temperatures led to significant changes in theLiNi0.8Co0.15Al0.05O2/elemental-carbon surface concentration ratio. Theloss of conductive carbon correlated with the power and capacity fade ofthe tested cathodes. The cathode surface state of charge (SOC) variedbetween individual grains of active material, and at some locations thespectra indicated the presence of fully charged material, despite thedeep cell discharge at the end of testing.

  6. Rare-earth energy levels in Nd2CuO4, Pr2CuO4, and the electron superconductor Pr1.85Ce0.15CuO4

    NASA Astrophysics Data System (ADS)

    Loong, C.-K.; Soderholm, L.

    1993-11-01

    The magnetic excitation spectra of the electron superconductor Pr1.85Ce0.15CuO4 and related parent compounds Pr2CuO4 and Nd2CuO4 have been determined by inelastic neutron scattering. We observe crystal-field transitions up to about 100 meV within the Pr3+ 3H4 and Nd3+ 4I9/2 Russell-Saunders ground multiplets in these materials. We find that a crystal-field treatment of the Pr3+ and Nd3+ ions can adequately explain the observed excitation spectra for both Pr2CuO4 and Nd2CuO4. The obtained crystal-field parameters are close to values estimated from a superposition-model calculation and Mössbauer data. The Pr3+ and Nd3+ wave functions are found to have significant (~=20%) admixture of some states belonging to higher J multiplets. The calculated contributions to the susceptibility of Pr2CuO4 and Nd2CuO4 from the crystal-field states agree well with experiments. The observed crystal-field transitions in the superconductor Pr1.85Ce0.15CuO4 shift to slightly lower energies and are broadened significantly relative to the present compound due to chemical disorder from Ce doping.

  7. CARBON SEQUESTRATION IN RECLAIMED MINED SOILS OF OHIO

    SciTech Connect

    M.K. Shukla; R. Lal

    2005-04-01

    Assessment of soil organic carbon (SOC) sequestration potential of reclaimed minesoils (RMS) is important for preserving environmental quality and increasing agronomic yields. The mechanism of physical SOC sequestration is achieved by encapsulation of SOM in spaces within macro and microaggregates. The experimental sites, owned and maintained by American Electrical Power, were characterized by distinct age chronosequences of reclaimed minesoils and were located in Guernsey, Morgan, Noble, and Muskingum Counties of Ohio. These sites were reclaimed both with and without topsoil application, and were under continuous grass or forest cover. In this report results are presented from the sites reclaimed in 2003 (R03-G), in 1973 (R73-F), in 1969 (R69-G), in 1962 (R62-G and R62-F) and in 1957 (R57-F). Three sites are under continuous grass cover and the three under forest cover since reclamation. Three bulk soil samples were collected from each site from three landscape positions (upper; middle, and lower) for 0-15 and 15-30 cm depths. The samples were air dried and using wet sieving technique were fractionated into macro (> 2mm), meso (2-0.25 mm) and microaggregate (0.25-0.053 mm). These fractions were weighted separately and water stable aggregation (WSA) and geometric mean (GMD) and mean weight (MWD) diameters of aggregates were obtained. The soil C and N concentrations were also determined on these aggregate fractions. Analysis of mean values showed that in general, WSA and MWD of aggregates increased with increasing duration since reclamation or age of reclaimed soil for all three landscape positions and two depths in sites under continuous grass. The forest sites were relatively older than grass sites and therefore WSA or MWD of aggregates did not show any increases with age since reclamation. The lower WSA in R57-F site than R73-F clearly showed the effect of soil erosion on aggregate stability. Higher aggregation and aggregate diameters in R73-F than R62-F and R57

  8. Factors regulating soil surface CO2 and NOx flux in response to high temperature, pulse water events, and nutrient fertilization

    NASA Astrophysics Data System (ADS)

    Oikawa, P. Y.; Grantz, D. A.; Chatterjee, A.; Eberwein, J. R.; Allsman, L. A.; Jenerette, D.

    2012-12-01

    Trace gas emissions from the soil surface are often underestimated due to poor understanding of the factors regulating fluxes under extreme conditions when moisture can be highly variable. In particular, dynamics of soil surface trace gas emissions from hot agricultural regions can be difficult to predict due to the sporadic use of flood irrigation and nitrogen fertilization. Soil surface CO2 and NOx fluxes are especially difficult to predict due to nonlinear responses to pulse water and fertilization events. Additionally, models such as Lloyd and Taylor (1994) and Yienger and Levy II (1995) are not well parameterized for soil surface CO2 and NOx flux, respectively, under excessively high temperatures. We measured soil surface CO2 and NOx flux in an agricultural field transitioning from fallow to biofuel crop production (Sorghum bicolor). Soil surface CO2 flux was measured using CO2 probes coupled with the flux-gradient method. NOx measurements were made using chambers coupled with a NOx monitor. Our field site is located at the University of California Desert Research and Extension Center in the Imperial Valley of CA. Air temperatures regularly exceed 42°C in the summer. Flood irrigation is used at the site as well as nitrogen fertilizers. Soil respiration ranged from 0-15 μmoles CO2 m-2 s-1, with strong hysteresis observed both with and without plants. Soil CO2 fluxes measured in the fallow field before the biofuel crop was planted were temperature independent and mainly regulated by soil moisture. When plants were introduced, temperature became an important predictor for soil respiration as well as canopy height. NOx fluxes were highest at intermediate soil moisture and varied significantly across an irrigation cycle. NOx emissions were temperature dependent, ranging from 3-113 ng N cm-2 hr-1. Neither CO2 nor NOx emissions showed inhibition at soil temperatures up to 55°C. Models may underestimate fluxes of CO2 and NOx from hot agricultural regions due to

  9. Soil water repellency of Antarctic soils (Elephant Point). First results

    NASA Astrophysics Data System (ADS)

    Pereira, Paulo; Oliva, Marc; Ruiz Fernández, Jesus

    2015-04-01

    Hydrophobicity it is a natural properties of many soils around the world. Despite the large body of research about soil water hydrophobicity (SWR) in many environments, little information it is available about Antarctic soils and their hydro-geomorphological consequences. According to our knowledge, no previous work was carried out on this environment. Soil samples were collected in the top-soil (0-5 cm) and SWR was analysed according to the water drop penetration test. The preliminary results showed that all the soils collected were hydrophilic, however further research should be carried out in order to understand if SWR changes with soil depth and if have implications on soil infiltration during the summer season.

  10. "The 5 cm Rule": Biopower, Sexuality and Schooling

    ERIC Educational Resources Information Center

    Allen, Louisa

    2009-01-01

    This paper explores "the 5 cm rule", a regulation around student contact discovered during an investigation of the sexual culture of schooling with 16-19-year-olds in New Zealand. Implemented to stem "inappropriate and unwanted" touching, it stipulates that students must maintain a physical distance of 5 cm at all times. It is argued this rule…

  11. Design and Performance of 40 cm Ion Optics

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    2001-01-01

    A 40 cm ion thruster is being developed at the NASA Glenn Research Center to obtain input power and propellant throughput capabilities of 10 kW and 550 kg. respectively. The technical approach here is a continuation of the "derating" technique used for the NSTAR ion thruster. The 40 cm ion thruster presently utilizes the NSTAR ion optics aperture geometry to take advantage of the large database of lifetime and performance data already available. Dome-shaped grids were chosen for the design of the 40 cm ion optics because this design is naturally suited for large-area ion optics. Ion extraction capabilities and electron backstreaming limits for the 40 cm ion optics were estimated by utilizing NSTAR 30 cm ion optics data. A preliminary service life assessment showed that the propellant throughput goal of 550 kg of xenon may be possible with molybdenum 40 cm ion optics. One 40 cm ion optics' set has been successfully fabricated to date. Additional ion optics' sets are presently being fabricated. Preliminary performance tests were conducted on a laboratory model 40 cm ion thruster.

  12. Photofraction of a 5 cm x 2 cm BGO scintillator. [bismuth germanate crystal for use in cosmic gamma ray detector

    NASA Technical Reports Server (NTRS)

    Dunphy, P. P.; Forrest, D. J.

    1985-01-01

    The photofraction of a 5.1 cm x 2.0 cm bismuth germanate (BGO) scintillator was measured over a gamma-ray energy range of 0.2 to 6.1 MeV. Several methods, used to minimize the effect of room scattering on the measurement, are discussed. These include a gamma-gamma coincidence technique, a beta-gamma coincidence technique, and the use of sources calibrated with a standard 7.6 cm x 7.6 cm sodium iodide scintillator.

  13. Profiling soil water content sensor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A waveguide-on-access-tube (WOAT) sensor system based on time domain reflectometry (TDR) principles was developed to sense soil water content and bulk electrical conductivity in 20-cm (8 inch) deep layers from the soil surface to depths of 3 m (10 ft) (patent No. 13/404,491 pending). A Cooperative R...

  14. Effect of summer throughfall exclusion, summer drought, and winter snow cover on methane fluxes in a temperate forest soil

    USGS Publications Warehouse

    Borken, W.; Davidson, E.A.; Savage, K.; Sundquist, E.T.; Steudler, P.

    2006-01-01

    Soil moisture strongly controls the uptake of atmospheric methane by limiting the diffusion of methane into the soil, resulting in a negative correlation between soil moisture and methane uptake rates under most non-drought conditions. However, little is known about the effect of water stress on methane uptake in temperate forests during severe droughts. We simulated extreme summer droughts by exclusion of 168 mm (2001) and 344 mm (2002) throughfall using three translucent roofs in a mixed deciduous forest at the Harvard Forest, Massachusetts, USA. The treatment significantly increased CH4 uptake during the first weeks of throughfall exclusion in 2001 and during most of the 2002 treatment period. Low summertime CH4 uptake rates were found only briefly in both control and exclusion plots during a natural late summer drought, when water contents below 0.15 g cm-3 may have caused water stress of methanotrophs in the A horizon. Because these soils are well drained, the exclusion treatment had little effect on A horizon water content between wetting events, and the effect of water stress was smaller and more brief than was the overall treatment effect on methane diffusion. Methane consumption rates were highest in the A horizon and showed a parabolic relationship between gravimetric water content and CH4 consumption, with maximum rate at 0.23 g H2O g-1 soil. On average, about 74% of atmospheric CH4 was consumed in the top 4-5 cm of the mineral soil. By contrast, little or no CH4 consumption occurred in the O horizon. Snow cover significantly reduced the uptake rate from December to March. Removal of snow enhanced CH4 uptake by about 700-1000%, resulting in uptake rates similar to those measured during the growing season. Soil temperatures had little effect on CH4 uptake as long as the mineral soil was not frozen, indicating strong substrate limitation of methanotrophs throughout the year. Our results suggest that the extension of snow periods may affect the annual rate

  15. Rank Stability Analysis of Surface and Profile Soil Moisture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although several studies have examined the spatial and rank stability of soil moisture at the surface layer (0-5cm) with the purpose of estimating large scale mean soil moisture, the integration of the rank stability of profile (0-60cm) soil moisture has not been fully considered. This research comb...

  16. Microwave remote sensing of soil water content

    NASA Technical Reports Server (NTRS)

    Cihlar, J.; Ulaby, F. T.

    1975-01-01

    Microwave remote sensing of soils to determine water content was considered. A layered water balance model was developed for determining soil water content in the upper zone (top 30 cm), while soil moisture at greater depths and near the surface during the diurnal cycle was studied using experimental measurements. Soil temperature was investigated by means of a simulation model. Based on both models, moisture and temperature profiles of a hypothetical soil were generated and used to compute microwave soil parameters for a clear summer day. The results suggest that, (1) soil moisture in the upper zone can be predicted on a daily basis for 1 cm depth increments, (2) soil temperature presents no problem if surface temperature can be measured with infrared radiometers, and (3) the microwave response of a bare soil is determined primarily by the moisture at and near the surface. An algorithm is proposed for monitoring large areas which combines the water balance and microwave methods.

  17. Chemical changes in agricultural soils of Korea: data review and suggested countermeasures.

    PubMed

    Jo, I S; Koh, M H

    2004-01-01

    The monitoring of chemical properties, including heavy metals, in soils is necessary if better management and remediation practices are to be established for polluted soils. The National Institute of Agricultural Science and Technology initiated a monitoring study that investigated fertility and heavy metal contents of the benchmarked soils. The study covered paddy soils, upland soils, and horticultural soils in the plastic film houses, and orchard soils throughout the Korea from 1990 to 1998. Likewise, 4047 samples of paddy and 2534 samples of plastic house in 1999 and 2000 were analyzed through the Soil Environment Conservation Act. Soil chemical properties such as pH, organic matter, available phosphate and extractable calcium, magnesium and potassium contents, and heavy metal contents such as cadmium, copper, lead, zinc, arsenic, mercury, and cobalt contents were analyzed. The study showed that the average contents of organic matter, available phosphate, and extractable potassium rapidly increased in plastic house soils than in upland or paddy soils. Two kinds of fertilizer recommendation systems were established for the study: the standard levels by national soil average data for 77 crops and the recommendation by soil test for 70 crops. Standard nitrogen fertilizer application levels for cereal crops changed from 94 kg/ha in 1960s, 99 kg/ha in 1970s, 110 kg/ha in 1980s to 90 kg/ha in 1990s. The K2O-fertilizer also changed from 67 kg/ha in 1960s, 76 kg/ha in 1970s, 92 kg/ha in 1980s, and only 44 kg/ha in 1990s. In rice paddy fields, the average contents of Cd, Cu, Pb, and Zn in surface soils (0-15 cm depth) were 0.11 mg kg(-1) (ranged from 0 to 1.01), 4.70 mg kg(-1) (0-41.59), 4.84 mg kg(-1) (0-66.44), and 4.47 mg kg(-1) (0-96.70), respectively. In the uplands, the average contents of Cd, Cu, Pb, Zn, and As in surface soils (0-15 cm depth) were 0.135 mg kg(-1) (ranged from 0 to 0.660), 2.77 mg kg(-1) (0.07-78.24), 3.47 mg kg(-1) (0-43.00), 10.70 mg kg(-1) (0

  18. The role of irrigation in the soil-crop system

    NASA Astrophysics Data System (ADS)

    Széles, Adrienn; Ragán, Péter; Nagy, János

    2015-04-01

    Agricultural production is performed in 85.5% of the total area of Hungary. Yearly average precipitation is 550-600 mm. Due to global warming, flooding, inland inundation and drought are frequent within a year. Extreme weather circumstances pose new challenges for crop producers. The results of long-term field experiments provide guidance to how each production technological intervention affects crop production, average yield and yield security. Examinations were performed on mid-heavy calcareous chenozem soil in a multifactorial small plot long-term field experiment under natural precipitation supply and irrigated circumstances to analyse the effect of irrigation and N fertilisation on soil moisture and maize grain yield. Drought and optimal years were involved in the examination. Six fertiliser treatments were used (0, 30, 60, 90, 120, 150 kg N ha-1) each year. Irrigation was performed with a Valmont linear equipment. Changes in soil moisture balance were examined with TDR-based soil moisture probes in the 0-120 cm profile. Evaluation was performed with SPSS. The moisture profiles of the 1.2 m soil profile show contrasting tendencies in different crop years in both irrigation treatments. In drought years, the 0-0.15 m layer showed the lowest moisture values (8.3-9.6 v/v%), increasing towards deeper layers. The significant (p<0.05) moisture content difference of 11-12 v/v% measured at the 12-leaf-stage constantly decreased by the end of the growing season as soil moisture stock decreased. In wet years, the highest moisture content was observed in the 0.15-0.30 m layer (37-39v/v%), decreasing towards deeper layers (13-16 v/v%). At natural precipitation supply, yield linearly increased until 60 kg ha-1 N in both years, but no yield surplus was obtained above this dose. Our results show that increasing N doses do not always cause yield increase if the water needed for nutrient uptake is limited. In irrigated treatments, the highest statistically significant yield was

  19. Fractionating soils so that others do not have to: radiocarbon informs choice of method for scale, ecosystem, or process

    NASA Astrophysics Data System (ADS)

    Crow, S. E.

    2011-12-01

    stock in the top 0-15 cm of mineral soil by 26%; however, sequential density separation into 7 fractions revealed 50-69% increases in C within low density fractions with MRT of less than 5 yr but over 300% losses of soil C within dense fraction with MRT of over 1275 yr. In these Andisols, the sequential density fractionation method was highly sensitive to land use change and the range of densities are hypothesized to be associated with different mechanisms for soil C stabilization acting over different time scales, which was confirmed by the radiocarbon-based MRT estimates. Although soil fractionation methods are powerful, other results from similar Andisols suggest that over geologic time scales MRT estimates for bulk soil profiles can be more informative than soil fractions. Careful consideration of the scientific question, study system, and scale is important when choosing a method for fractionating soil. Radiocarbon measurements can provide confirmation that the actual nature of the recovered fractions matches the theoretical one.

  20. [Pharmacological effects of CM6912 and its main metabolites].

    PubMed

    Morishita, H; Kushiku, K; Furukawa, T; Yamaki, Y; Izawa, M; Shibazaki, Y; Shibata, U

    1985-07-01

    Pharmacodynamic effects of ethyl 7-chloro-2,3-dihydro-5-(2-fluorophenyl)-2-oxo-1H-1,4- benzodiazepine-3-carboxylate (CM6912), a new benzodiazepine derivative, and its main metabolites (CM6913 = M1, CM7116 = M2) on the peripheral systems were investigated in several species of animals. In pentobarbital-anesthetized rabbits, CM6912 and M2 (1 or 5 mg/kg, i.v.) had little effect on blood pressure, heart rate and ECG, but it slightly reduced the respiration rate. M1 decreased the heart rate without affecting respiration, blood pressure and ECG. In conscious rabbits, CM6912 and M2 (1 mg/kg, i.v.) did not affect respiration, blood pressure, heart rate and ECG, but M1 (1 mg/kg, i.v.) increased the heart rate. CM6912 (5 or 30 mg/kg), when administered orally, also increased heart rate. In pentobarbital-anesthetized dogs, CM6912 and its metabolites (5 mg/kg, i.v.) decreased respiration and heart rate without affecting blood pressure and ECG. CM 6912 (5 mg/kg, i.v.) did not affect cardiovascular responses to the carotid occlusion, vagus stimulation, and pre- and post-ganglionic stimulation of cardiac ganglion in anesthetized dogs. CM6912 and its metabolites affected neither the spontaneous contraction nor the heart rate of isolated rabbit atria. These compounds also had no action on isolated aortic strips from rabbits. CM6912 and its metabolites did not affect the muscle tone of isolated guinea pig intestine, and it had no effects on the contractile responses to acetylcholine, histamine, serotonin and barium chloride. In isolated rabbit intestine, CM6912 and M2 slightly reduced the amplitude of contraction, while M1 had no effect. CM6912 and its metabolites did not affect the spontaneous motility of isolated non-pregnant and pregnant rat uteri as well as in situ non-pregnant rat uterus and isolated guinea pig vas deferens, including the contractile response to adrenaline. CM6912 and M2 relaxed isolated guinea pig trachea strips only at high concentrations. CM6912 and its

  1. Modifying broiler diets with phytase and vitamin D metabolite (25-OH D(3)): impact on phosphorus in litter, amended soils, and runoff.

    PubMed

    McGrath, Joshua M; Sims, J Thomas; Maguire, Rory O; Saylor, William W; Angel, Roselina

    2010-01-01

    Adding phytase and 25- hydroxycholecalciferol (25-OH D(3)) to broiler diets has been shown effective at reducing total P concentrations in broiler litter. This study was conducted to determine the impact of field application of broiler litter from modified diets on P solubility in litter-amended soils and P losses in runoff. Five broiler diets and their resulting litters were evaluated: a high P diet, a low P diet, each of those basal diets with phytase added, and a low P diet with phytase and 25-OH D(3) added. A field study was initiated at two sites with each of the five broiler litters and a commercial P fertilizer (triple superphosphate [TSP]) applied at the same total P rate (150 kg P ha(-1)) and a control where no P was applied. Soil P was monitored over time at two depths (0-5 cm and 0-15 cm) soils were collected in the spring and fall to perform rainfall simulation studies. Broiler litter or TSP application increased soil water-soluble P and Mehlich 3-P concentrations relative to the control, however there were no consistent differences detected between litter treatments. Results from the rainfall simulation experiments indicate that diet modification with phytase or 25-OH D(3) does not increase the potential for P losses in runoff from amended soils relative to traditional diets. Moreover, broiler diet modification to reduce excreted P could be a potentially effective method for reducing watershed scale P surpluses in areas of intensive broiler production, without raising concerns over soluble P losses from litter-amended soils. PMID:20048320

  2. Evaluation of CM5 Charges for Condensed-Phase Modeling.

    PubMed

    Vilseck, Jonah Z; Tirado-Rives, Julian; Jorgensen, William L

    2014-07-01

    The recently developed Charge Model 5 (CM5) is tested for its utility in condensed-phase simulations. The CM5 approach, which derives partial atomic charges from Hirshfeld population analyses, provides excellent results for gas-phase dipole moments and is applicable to all elements of the periodic table. Herein, the adequacy of scaled CM5 charges for use in modeling aqueous solutions has been evaluated by computing free energies of hydration (ΔG hyd) for 42 neutral organic molecules via Monte Carlo statistical mechanics. An optimal scaling factor for the CM5 charges was determined to be 1.27, resulting in a mean unsigned error (MUE) of 1.1 kcal/mol for the free energies of hydration. Testing for an additional 20 molecules gave an MUE of 1.3 kcal/mol. The high precision of the results is confirmed by free energy calculations using both sequential perturbations and complete molecular annihilation. Performance for specific functional groups is discussed; sulfur-containing molecules yield the largest errors. In addition, the scaling factor of 1.27 is shown to be appropriate for CM5 charges derived from a variety of density functional methods and basis sets. Though the average errors from the 1.27*CM5 results are only slightly lower than those using 1.14*CM1A charges, the broader applicability and easier access to CM5 charges via the Gaussian program are additional attractive features. The 1.27*CM5 charge model can be used for an enormous variety of applications in conjunction with many fixed-charge force fields and molecular modeling programs. PMID:25061445

  3. Value of the bipolar lead CM5 in electrocardiography.

    PubMed

    Quyyumi, A A; Crake, T; Mockus, L J; Wright, C A; Rickards, A F; Fox, K M

    1986-10-01

    Only bipolar lead recording are available during ambulatory monitoring. Their sensitivity in detecting ST segment changes in relation to standard electrocardiographic leads is not known. The magnitude and direction of ST segment changes in the bipolar lead CM5 were compared with those in standard electrocardiographic leads in patients during exercise testing and percutaneous transluminal coronary angioplasty. Thirty patients with coronary artery disease were studied during exercise tests in which ST segment depression (greater than 0.5 mm) occurred in one or more standard electrocardiographic leads and 13 patients were studied during angioplasty that resulted in ST segment change in one or more leads (I, II, III, V2, V5, and CM5). Lead CM5 was the most sensitive lead (93%) during exercise testing and also showed the greatest magnitude of ST segment change below the isoelectric line in 93% of the patients. Only two patients, one with ST segment elevation in inferior leads and one with changes restricted to septal leads, had no ST segment depression in lead CM5. When ST segment shift from the baseline electrocardiogram was measured the magnitude of depression was greatest in lead CM5 in only 63% of the patients. During angioplasty of the left anterior descending coronary artery, lead CM5 showed ST segment depression in seven patients, ST segment elevation in two, and a biphasic response in one. Two of the three patients with balloon inflation in right coronary artery developed ST segment elevation in lead CM5. Thus lead CM5 is a reliable lead for detecting subendocardial ischaemia experienced during everyday activities in anginal patients. During total occlusion of coronary arteries (as in variant angina or myocardial infarction) lead CM5 commonly shows ST segment depression and changes due to right coronary artery occlusion may not be detected. PMID:3768217

  4. Value of the bipolar lead CM5 in electrocardiography.

    PubMed Central

    Quyyumi, A A; Crake, T; Mockus, L J; Wright, C A; Rickards, A F; Fox, K M

    1986-01-01

    Only bipolar lead recording are available during ambulatory monitoring. Their sensitivity in detecting ST segment changes in relation to standard electrocardiographic leads is not known. The magnitude and direction of ST segment changes in the bipolar lead CM5 were compared with those in standard electrocardiographic leads in patients during exercise testing and percutaneous transluminal coronary angioplasty. Thirty patients with coronary artery disease were studied during exercise tests in which ST segment depression (greater than 0.5 mm) occurred in one or more standard electrocardiographic leads and 13 patients were studied during angioplasty that resulted in ST segment change in one or more leads (I, II, III, V2, V5, and CM5). Lead CM5 was the most sensitive lead (93%) during exercise testing and also showed the greatest magnitude of ST segment change below the isoelectric line in 93% of the patients. Only two patients, one with ST segment elevation in inferior leads and one with changes restricted to septal leads, had no ST segment depression in lead CM5. When ST segment shift from the baseline electrocardiogram was measured the magnitude of depression was greatest in lead CM5 in only 63% of the patients. During angioplasty of the left anterior descending coronary artery, lead CM5 showed ST segment depression in seven patients, ST segment elevation in two, and a biphasic response in one. Two of the three patients with balloon inflation in right coronary artery developed ST segment elevation in lead CM5. Thus lead CM5 is a reliable lead for detecting subendocardial ischaemia experienced during everyday activities in anginal patients. During total occlusion of coronary arteries (as in variant angina or myocardial infarction) lead CM5 commonly shows ST segment depression and changes due to right coronary artery occlusion may not be detected. PMID:3768217

  5. Evaluation of CM5 Charges for Condensed-Phase Modeling

    PubMed Central

    2015-01-01

    The recently developed Charge Model 5 (CM5) is tested for its utility in condensed-phase simulations. The CM5 approach, which derives partial atomic charges from Hirshfeld population analyses, provides excellent results for gas-phase dipole moments and is applicable to all elements of the periodic table. Herein, the adequacy of scaled CM5 charges for use in modeling aqueous solutions has been evaluated by computing free energies of hydration (ΔGhyd) for 42 neutral organic molecules via Monte Carlo statistical mechanics. An optimal scaling factor for the CM5 charges was determined to be 1.27, resulting in a mean unsigned error (MUE) of 1.1 kcal/mol for the free energies of hydration. Testing for an additional 20 molecules gave an MUE of 1.3 kcal/mol. The high precision of the results is confirmed by free energy calculations using both sequential perturbations and complete molecular annihilation. Performance for specific functional groups is discussed; sulfur-containing molecules yield the largest errors. In addition, the scaling factor of 1.27 is shown to be appropriate for CM5 charges derived from a variety of density functional methods and basis sets. Though the average errors from the 1.27*CM5 results are only slightly lower than those using 1.14*CM1A charges, the broader applicability and easier access to CM5 charges via the Gaussian program are additional attractive features. The 1.27*CM5 charge model can be used for an enormous variety of applications in conjunction with many fixed-charge force fields and molecular modeling programs. PMID:25061445

  6. Laboratory Experiment on Electrokinetic Remediation of Soil

    ERIC Educational Resources Information Center

    Elsayed-Ali, Alya H.; Abdel-Fattah, Tarek; Elsayed-Ali, Hani E.

    2011-01-01

    Electrokinetic remediation is a method of decontaminating soil containing heavy metals and polar organic contaminants by passing a direct current through the soil. An undergraduate chemistry laboratory is described to demonstrate electrokinetic remediation of soil contaminated with copper. A 30 cm electrokinetic cell with an applied voltage of 30…

  7. An Infiltration Exercise for Introductory Soil Science

    ERIC Educational Resources Information Center

    Barbarick, K. A.; Ippolito, J. A.; Butters, G.; Sorge, G. M.

    2005-01-01

    One of the largest challenges in teaching introductory soil science is explaining the dynamics of soil infiltration. To aid students in understanding the concept and to further engage them in active learning in the soils laboratory course, we developed an exercise using Decagon Mini-Disk Infiltrometers with a tension head (h[subscript o]) of 2 cm.…

  8. Soil Microbial Community Responses to Short-term Multiple Experimental Climate Change Drivers

    NASA Astrophysics Data System (ADS)

    Li, Guanlin; Lee, Jongyeol; Lee, Sohye; Roh, Yujin; Son, Yowhan

    2016-04-01

    It is agreed that soil microbial communities are responsible for the cycling of carbon and nutrients in ecosystems; however, the response of these microbial communities to climate change has not been clearly understood. In this study, we measured the direct and interactive effects of climate change drivers on soil bacterial and fungal communities (abundance and composition) in an open-field multifactor climate change experiment. The experimental treatment system was established with two-year-old Pinus densiflora seedlings at Korea University in April 2013, and consisted of six different treatments with three replicates: two levels of air temperature warming (control and +3° C) were crossed with three levels of precipitation manipulation (control, -30% and +30%). After 2.5 years of treatments, in August, 2015, soil samples were collected from the topsoil (0-15cm) of all plots (n=18). High-throughput sequencing technology was used to assess the abundance and composition of soil bacterial and fungal community. Analysis of variance for a blocked split-plot design was used to detect the effects of climate change drivers and their interaction on the abundance and composition of soil bacterial and fungal community. Our results showed that 1) only the significant effect of warming on fungal community abundance was observed (P <0.05); 2) on average, warming decreased both bacterial and fungal community abundance by 20.90% and 32.30%, 6.69% and 45.89%, 14.71% and 19.56% in control, decreased, and increased precipitation plots, respectively; 3) however, warming increased the relative bacterium/fungus ratio on average by 14.03%, 37.03% and 14.31% in control, decreased, and increased precipitation plots, respectively; 4) the phylogenetic distribution of bacterial and fungal groups and their relative abundance varied among treatments; 5) treatments altered the relative abundance of Ascomycota and Basidiomycota, where Ascomycota decreased with a concomitant increase in the

  9. The impact of soil compaction and freezing-thawing cycles on soil structure and yield in Mollisol region of China

    NASA Astrophysics Data System (ADS)

    Wang, Enheng; Zhao, Yusen; Chen, Xiangwei

    2015-04-01

    Agricultural machinery tillage and alternating freezing and thawing are two critical factors associated with soil structure change and accelerates soil erosion in the black soil region of Northeast China. Combining practical machinery operation and natural freeze-thaw cycles with artificial machinery compaction in the field and artificial freeze-thaw cycles in the lab, the plus and minus benefits of machinery tillage, characterization of seasonal freeze-thaw cycles, and their effects on soil structure and yield were studied. Firstly,the effects of machinery type and antecedent water content on soil structure and soil available nutrient were investigated by measuring soil bulk density, soil strength, soil porosity, soil aggregate distribution and stability, and three soil phases. The results showed that: Machinery tillage had positive and negative influence on soil structure, soil in top cultivated layer can be loosened and ameliorated however the subsoil accumulation of compaction was resulted. For heavy and medium machinery, subsoil compaction formed in the soil depth of 41~60cm and 31~40cm, respectively; however during the soil depth of 17.5~30cm under medium machinery operation there was a new plow pan produced because of the depth difference between harvesting and subsoiling. Antecedent water content had a significant effect on soil structure under machinery operations. Higher water antecedent resulted in deeper subsoil compaction at 40cm,which was deeper by 10cm than lower water content and soil compaction accumulation occurred at the first pass under higher water content condition. Besides water content and bulk density, soil organic matter is another key factor for affecting compressive-resilient performance of tillage soil. Secondly, based on the soils sampled from fields of the black soil region, the effects of freeze-thaw cycles on soil structure at different soil depths (0 -- 40 cm, 40 -- 80 cm, 120 -- 160 cm) and size scales (field core sampling

  10. Eight-cm mercury ion thruster system technology

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The technology status of 8 cm diameter electron bombardment ion thrusters is presented. Much of the technology resulting from the 5 cm diameter thruster has been adapted and improved upon to increase the reliability, durability, and efficiency of the 8 cm thruster. Technology discussed includes: dependence of neutralizer tip erosion upon neutralizer flow rate; impregnated and rolled-foil insert cathode performance and life testing; neutralizer position studies; thruster ion beam profile measurements; high voltage pulse ignition; high utilization ion machined accelerator grids; deposition internal and external to the thruster; thruster vectoring systems; thruster cycling life testing and thruster system weights for typical mission applications.

  11. Ion accelerator systems for high power 30 cm thruster operation

    NASA Technical Reports Server (NTRS)

    Aston, G.

    1982-01-01

    Two and three-grid accelerator systems for high power ion thruster operation were investigated. Two-grid translation tests show that over compensation of the 30 cm thruster SHAG grid set spacing the 30 cm thruster radial plasma density variation and by incorporating grid compensation only sufficient to maintain grid hole axial alignment, it is shown that beam current gains as large as 50% can be realized. Three-grid translation tests performed with a simulated 30 cm thruster discharge chamber show that substantial beamlet steering can be reliably affected by decelerator grid translation only, at net-to-total voltage ratios as low as 0.05.

  12. Substrate effect on in-plane dielectric and microwave properties of Ba(Sn{sub 0.15}Ti{sub 0.85})O{sub 3} thin films

    SciTech Connect

    Song, S.N.; Zhai, J.W. Yao, X.

    2008-08-04

    The microstructure and in-plane dielectric and microwave properties of Barium tin titanate Ba(Sn{sub 0.15}Ti{sub 0.85})O{sub 3} (BTS) thin films grown on (1 0 0) LaAlO{sub 3} and (1 0 0) MgO single-crystal substrates through sol-gel process were investigated. X-ray diffraction and field emission scanning electron microscopy were used to characterize crystal structure of phases and microstructure of the thin films, respectively. Microwave properties of the films were measured from 1 to 10 GHz by the interdigital capacitor configuration. The obvious differences in the dielectric and microwave properties are attributed to the stress in the films, which result from the lattice mismatch and difference in the thermal expansion coefficients between the film and substrates. This work clearly reveals the highly promising potential of BTS films for application in tunable microwave devices.

  13. The atomic structure and chemistry of Fe-rich steps on antiphase boundaries in Ti-doped Bi{sub 0.9}Nd{sub 0.15}FeO{sub 3}

    SciTech Connect

    MacLaren, Ian Craven, Alan J.; Schaffer, Bernhard; Wang, LiQiu; Ramasse, Quentin M.; Kalantari, Kambiz; Reaney, Ian M.

    2014-06-01

    Stepped antiphase boundaries are frequently observed in Ti-doped Bi{sub 0.85}Nd{sub 0.15}FeO{sub 3}, related to the novel planar antiphase boundaries reported recently. The atomic structure and chemistry of these steps are determined by a combination of high angle annular dark field and bright field scanning transmission electron microscopy imaging, together with electron energy loss spectroscopy. The core of these steps is found to consist of 4 edge-sharing FeO{sub 6} octahedra. The structure is confirmed by image simulations using a frozen phonon multislice approach. The steps are also found to be negatively charged and, like the planar boundaries studied previously, result in polarisation of the surrounding perovskite matrix.

  14. Influence of electrode preparation on the electrochemical performance of LiNi0.8Co0.15Al0.05O2 composite electrodes for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Tran, Hai Yen; Greco, Giorgia; Täubert, Corina; Wohlfahrt-Mehrens, Margret; Haselrieder, Wolfgang; Kwade, Arno

    2012-07-01

    The electrode manufacturing for lithium-ion batteries is based on a complex process chain with several influencing factors. A proper tailoring of the electrodes can greatly improve both the electrochemical performances and the energy density of the battery. In the present work, some significant parameters during the preparation of LiNi0.8Co0.15Al0.05O2-based cathodes were investigated. The active material was mixed with a PVDF-binder and two conductive additives in different ratios. The electrode thickness, the degree of compacting and the conductive agent type and mixing ratio have proven to have a strong impact on the electrochemical performances of the composite electrodes, especially on their behaviour at high C-rates. Further it has been shown that the compacting has an essential influence on the mechanical properties of NCA coatings, according to their total, ductile and elastic deformation behaviour.

  15. Synthesis, magnetic properties and magnetostriction of Pr(Fe0.75Co0.15Cu0.01Nb0.04B0.05)1.93 bulk nanocrystalline synthesized under high pressure

    NASA Astrophysics Data System (ADS)

    Hu, Cheng-Chao; Shi, Yang-Guang; Shi, Da-Ning; Chen, Long-Qing

    2016-05-01

    Bulk nanocrystalline Pr(Fe0.75Co0.15Cu0.01Nb0.04B0.05)1.93 alloys were synthesized by annealing its melt-spinning ribbons under different pressures and temperatures. It was demonstrated that the average grain size decreases with increasing pressure from 3 GPa to 6 GPa under the same annealing temperature of 853 K but increases with increasing temperature from 823 K to 923 K under the same annealing pressure of 6 GPa. A negative correlation between the coercivity and average grain size was found in the present investigated system. Grain refinement without losing the advantage of volume fraction of magnetostrictive phase offers the sample annealed under 6 GPa and 853 K the optimized magnetostrictive property, which might make it potential material for magnetostrictive application.

  16. Superconducting properties of single crystalline FeTe1-xSex (x = 0, 0.15, 0.25, 0.35, 0.40 and 0.50)

    NASA Astrophysics Data System (ADS)

    Sudesh; Kumar, R.; Varma, G. D.

    2015-06-01

    In this paper we have grown single crystalline samples of Se-doped FeTe compound using self-flux technique and studied the structural and electrical transport properties of the as-grown crystals. The samples have been grown with compositions FeTe1-xSex (x = 0, 0.15, 0.25, 0.35, 0.40 and 0.50). The as-grown samples are then investigated for their structural and superconducting properties by means of X-ray diffraction and physical property measurements. The XRD results of powdered samples reveal a single (tetragonal) phase with space group symmetry P4/nmm for all the samples. The lattice parameters are observed to reduce with increase of Se-doping at Te-site. Highest Hc2(0) (˜180 T) value has been observed for FeTe0.5Se0.5 sample.

  17. Superspin glassy behaviour of La{sub 0.7}Ca{sub 0.3}Mn{sub 0.85}Al{sub 0.15}O{sub 3} thin film

    SciTech Connect

    Kumar, Manish; Choudhary, R. J. Shukla, D. K.; Phase, D. M.

    2014-07-21

    Here, we present the low temperature magnetic behaviour of epitaxial La{sub 0.7}Ca{sub 0.3}Mn{sub 0.85}Al{sub 0.15}O{sub 3} (LCMAO) thin film through a series of DC magnetic measurements. Overall behaviour inferred from the magnetization measurements indicate that the magnetic phases created due to Al doping induced inhomogeneous distribution of Mn{sup 3+} and Mn{sup 4+} ions and oxygen vacancies present in the system act like superspins, and the strong interaction among themselves results in the superspin glassy behaviour. Interactions among the superspins are marked by the aging and zero filed memory effects. The glassy magnetic phase in LCMAO is found to follow the hierarchical model of spin glasses.

  18. First laser emission of Yb0.15:(Lu0.5Y0.5)3Al5O12 ceramics.

    PubMed

    Toci, Guido; Pirri, Angela; Li, Jiang; Xie, Tengfei; Pan, Yubai; Babin, Vladimir; Beitlerova, Alena; Nikl, Martin; Vannini, Matteo

    2016-05-01

    We report the first laser oscillation on Yb0.15:(Lu0.5Y0.5)3Al12 ceramics at room temperature. At 1030 nm we measured a maximum output power of 7.3 W with a corresponding slope efficiency of 55.4% by using an output coupler with a transmission of T = 39.2%. The spectroscopic properties are compared with those of the two parent garnets Yb:YAG and Yb:LuAG. To the best of our knowledge these are the first measurements reported in literature achieved with this new host. PMID:27137574

  19. Structural and electrical transport properties of La{sub 0.8}Sm{sub 0.05}K{sub 0.15}MnO{sub 3} manganites

    SciTech Connect

    Shaikh, M. W.; Mansuri, I.; Varshney, Dinesh

    2014-04-24

    Polycrystalline sample of single-phase La{sub 0.8}Sm{sub 0.05}K{sub 0.15}MnO{sub 3} perovskite compound have been synthesized by solid-state reaction route. X-ray diffraction patterns accompanied by Rietveld–refined crystal structure parameters reveal the rhombohedral structure with space group R 3C. Electrical resistivity infers transition from metallic to insulator phase at 537 K. The application of magnetic field of 8 T, suppresses the resistivity. The metallic resistivity is retraced by considering electron–phonon, electron–electron and electron-spin-fluctuation interactions while insulating behaviour is analysed with small polaron conduction model.

  20. Evidence for Retarded Pr ƒ; Hybridization and Tc Suppression in Y 1- xPr xSr 2Cu 2.85Re 0.15O 7

    NASA Astrophysics Data System (ADS)

    Das, A.; Castro, L. F.; Zelenay, I.; Suryanarayanan, R.

    1995-08-01

    We report on the preparation, X-ray diffraction, ac susceptibility, resistivity, and thermopower of Y 1- xPr xSr 2Cu 2.85Re 0.15O 7. We find that superconductivity is sustained up to a Pr concentration of 70%, which is greater than the 55% normally found in the Y 1- xPr xBa 2Cu 3O 7 system. It is proposed that the presence of Sr retards the Pr ƒ hybridization and the Tc suppression. It is pointed out that a better knowledge of structural and defect chemistry of Pr-containing cuprates is essential before applying any definite model to account for the data, as was also proposed earlier by R. Fehrenbacher and T. M. Rice ( Phys. Rev. Lett. 70, 3471, 1993).

  1. Positive magnetoconductance in YBa 2(Cu 0.9Fe 0.1) 3O y and YBa 2(Cu 0.85Fe 0.15) 3O y

    NASA Astrophysics Data System (ADS)

    Matsushita, A.; Aoki, H.; Matsumoto, T.

    1990-03-01

    The magnetoconductance was investigated for the superconductor YBa 2(Cu 0.9Fe 0.1) 3O y (Fe10) at various temperatures above Tc and for the non-superconductor YBa 2(Cu 0.85Fe 0.15) 3O y (Fe15) below 4.2 K. In Fe10 the magnetoconductance is negative above 211 K, while it is positive below 70 K where the temperature coefficient of the resistivity (TCR) is negative. The positive magnetoconductance observed in Fe10 shows a H2 dependence at lower magnetic fields. In Fe15 the magnetoconductance is negative at lower magnetic fields and turns to positive at higher magnetic fields of more than 2-3 T, and a H2 dependence is not observed. These types of behavior can be explained by a two-dimensional Anderson localization occuring at the CuO 2 plane.

  2. Magnetic susceptibility investigation of Bose-glass state in Ni0.85Cd0.15Cl2-4SC(NH2)2 at ultra-low temperatures

    NASA Astrophysics Data System (ADS)

    Yin, L.; Xia, J. S.; Sullivan, N. S.; Zapf, V. S.; Paduan-Filho, A.; Yu, R.; Roscilde, T.

    2012-12-01

    We report measurements of the AC susceptibility of a site-diluted quantum magnet Ni0.85Cd0.15Cl2-4SC(NH2)2 (15% Cd-doped dichloro-tetrakis-thiourea-Nickel, or Cd-DTN) down to 10 mK Below a crossover temperature Tcr ≍ 100 ~ 200mK, we find that the critical fields Hc for Bose-Einstein condensation obey the scaling relation |Hc(T)-Hc(0)| ~ Tα, with a novel and universal scaling exponent α ≍ 0.9, which is in agreement with numerical results from a theoretical model. Our findings provide strong evidence of the existence of a Bose glass phase in Cd-DTN, and they display a quantitative signature of the transition between a Bose glass and a Bose Einstein condensate.

  3. Structural and chemical analysis of pulsed laser deposited Mg xZn 1- xO hexagonal ( x = 0.15, 0.28) and cubic ( x = 0.85) thin films

    NASA Astrophysics Data System (ADS)

    Hullavarad, S. S.; Hullavarad, N. V.; Pugel, D. E.; Dhar, S.; Venkatesan, T.; Vispute, R. D.

    2008-02-01

    Hexagonal and cubic Mg xZn 1- xO thin films corresponding to optical band gaps of 3.52 eV, 4 eV and 6.42 eV for x = 0.15, 0.28 and 0.85 compositions were grown by pulsed laser deposition technique. The crystalline quality of the films was investigated by X-ray diffraction-rocking curve measurements and indicated a high degree of crystallinity with narrow FWHM's of 0.21°-0.59°. Rutherford back scattering-channeling spectroscopy provides channeling yields of 7-14% indicating the good crystalline quality of the thin films. X-Ray photoelectron spectroscopy measurements clearly indicated different level of oxidation states of Mg and Zn.

  4. Where Is Needle- and Root-Derived Soil Organic Matter After 10 Years of Decomposition in a Temperate Forest?

    NASA Astrophysics Data System (ADS)

    Hicks Pries, C.; Hatton, P.; Castanha, C.; Bird, J. A.; Torn, M. S.

    2013-12-01

    the soil than needle litter C (about 25%). Less than 0.15% of the remaining litter C (0.06% of originally applied) was found actively cycling in microbial PLFA's. Needle and root C did not differ in the amount remaining still in the active microbial pool. Preliminary data indicate that unlike after one year, there were no microbial groups with strong preferences for the added root or needle C relative to other microbial groups. The amount of root and needle C and N associated with the different mineral groups will also be presented.

  5. [Change of Bt protein in soil after growing Bt corns and returning corn straws to soil and its effects on soil nutrients].

    PubMed

    Zeng, Ping; Feng, Yuan-Jiao; Zhang, Wan-Chun; Zhang, Yan-Fei; Dong, Wen-Chao; Wang, Jian-Wu

    2014-07-01

    The spatiotemporal dynamics of Bt protein in soil and the change of soil nutrients in rhizosphere soil, root surface soil and soils at 0-20, 20-40 and 40-60 cm were measured in greenhouse experiments. Two Bt corns, 5422Bt1 and 5422CBCL, and their near isogenic non-Bt variety 5422 were grown for 90 days and the crop residues were retained to soil. Results showed that 1.59 and 2.78 ng x g(-1) Bt protein were detected in the rhizosphere soil with Bt corns 5422Bt1 and 5422CBCL immediately after harvest. However, there were only trace amounts of Bt protein (< 0.5 ng x g(-1)) were detected in root surface soil after 90 days and in bulk soil in the two Bt corn treatments after 30, 60 and 90 days. When corn residues returned to soil, Bt protein declined rapidly within 3 days and only trace amounts of Bt protein were measured after 7 days. There were no sig- nificant differences in organic matter, available nutrient (alkaline hydrolytic N, available P, available K) or total nutrient (total N, total P, total K) in root surface soils and soils at 0-20 cm, 20-40 cm and 40-60 cm among the Bt and non-Bt corns after 90 days. Sixty days after returning crop residues of 5422Btl to soil, the contents of organic matter and total N increased and the content of available K reduced significantly in the 0-20 cm soil depth. There were no significant differences in any other parameter at the 0-20 cm depth, neither for any parameter in the 20-40 cm and 40-60 cm soil depths compared to those in the non-Bt corn 5422 treatment. There were no significant differences in soil nutrient contents in Bt corn 5422CBCL treatment compared to those in non-Bt corn 5422 treatment except that available phosphorus content was reduced in root surface soils, and total P content increased at the 0-20 cm soil depth after 90 days. When crop residues of Bt corn 5422 CBCL were returned to soil, only available P content in the 0-20 cm soil layer was evidently higher compared to the soil receiving crop residues of

  6. Magnetism of Fe, Ni, and Zn in Nd{sub 1.85}Ce{sub 0.15}CuO{sub 4}: Comparison of experiment and theory

    SciTech Connect

    Jayaram, B.; Chen, H.; Callaway, J.

    1995-08-01

    We have studied the magnetic and superconducting properties of Fe- , Ni- , and Zn-substituted Nd{sub 1.85}Ce{sub 0.15}CuO{sub 4} bulk materials. The normal-state magnetic susceptibility of all samples is found to follow the Curie-Weiss law between 50 and 300 K. The magnitude of local moments deduced for Fe and Ni are 2.2{mu}{sub {ital B}} and 2{mu}{sub {ital B}}, respectively. The observed moment on Ni is attributed to Ni in a 3+ valency state. A magnetic moment of 0.8{mu}{sub {ital B}} is obtained in Zn-substituted samples. This is ascribed to the localized Cu{sup 2+} spins. The {ital T}{sub {ital c}} vs 3{ital d} ion concentration ({ital x}) curves indicate that Ni inhibits the {ital T}{sub {ital c}} of this system at an anomalously higher rate. In an effort to understand the correlation between the magnitude of the magnetic moment on the 3{ital d} ion and its role in the suppression of superconductivity, we have performed density-functional cluster calculations under local-spin-density approximations. The calculations support the following inferences drawn from the experiments: (i) Ni is in a 3+ state, (ii) the moment of 0.8{mu}{sub {ital B}} observed in Zn-substituted samples is due to localized Cu{sup 2+} spins, and (iii) Zn induces a moment of almost the same magnitude in both the electron-doped and the hole-doped La{sub 1.85}Sr{sub 0.15}CuO{sub 4} systems. We have also attempted to explain qualitatively the observed {ital T}{sub {ital c}} vs {ital x} behavior in the above systems using the effective single-band {ital t}-{ital J} model.

  7. Orion Landing Simulation Eight Soil Model Comparison

    NASA Technical Reports Server (NTRS)

    Mark, Stephen D.

    2009-01-01

    LS-DYNA finite element simulations of a rigid Orion Crew Module (CM) were used to investigate the CM impact behavior on eight different soil models. Ten different landing conditions, characterized by the combination of CM vertical and horizontal velocity, hang angle, and roll angle were simulated on the eight different soils. The CM center of gravity accelerations, pitch angle, kinetic energy, and soil contact forces were the outputs of interest. The simulation results are presented, with comparisons of the CM behavior on the different soils. The soils analyzed in this study can be roughly categorized as soft, medium, or hard, according to the CM accelerations that occur when landing on them. The soft group is comprised of the Carson Sink Wet soil and the Kennedy Space Center (KSC) Low Density Dry Sand. The medium group includes Carson Sink Dry, the KSC High Density In-Situ Moisture Sand and High Density Flooded Sand, and Cuddeback B. The hard soils are Cuddeback A and the Gantry Unwashed Sand. The softer soils were found to produce lower peak accelerations, have more stable pitch behavior, and to be less sensitive to the landing conditions. This investigation found that the Cuddeback A soil produced the highest peak accelerations and worst stability conditions, and that the best landing performance was achieved on the KSC Low Density Dry Sand.

  8. Characterization of Luminescent Minerals in CM2 Chondrite (Jbilet Winselwan)

    NASA Astrophysics Data System (ADS)

    Kiku, Y. K.; Ohgo, S. O.; Nishido, H. N.

    2014-09-01

    We have characterized luminescent minerals of forsterite, diopside and spinel in the CM2 chondrite (Jbilet Winselwan) using SEM-CL and to discuss the formation of the luminescent minerals under aqueous conditions.

  9. Benchmarking and performance analysis of the CM-2. [SIMD computer

    NASA Technical Reports Server (NTRS)

    Myers, David W.; Adams, George B., II

    1988-01-01

    A suite of benchmarking routines testing communication, basic arithmetic operations, and selected kernel algorithms written in LISP and PARIS was developed for the CM-2. Experiment runs are automated via a software framework that sequences individual tests, allowing for unattended overnight operation. Multiple measurements are made and treated statistically to generate well-characterized results from the noisy values given by cm:time. The results obtained provide a comparison with similar, but less extensive, testing done on a CM-1. Tests were chosen to aid the algorithmist in constructing fast, efficient, and correct code on the CM-2, as well as gain insight into what performance criteria are needed when evaluating parallel processing machines.

  10. Carbon Stocks and Soil C Dynamics: an Investigation of C Sequestration Potential in a Eucalyptus grandis Plantation in Hawaii

    NASA Astrophysics Data System (ADS)

    Reeves, M. I.; Crow, S. E.; Yost, R.; Turn, S.

    2011-12-01

    hundreds to thousands of years. Previous data showed that in the surface 0-15 cm mineral soil, land use change from pasture to E. grandis resulted in a ≈ 30% decrease in total soil C stock specifically due to losses of the most labile soil C pools. This was expected, as grasses tend to input larger amounts of root biomass C in the surface soil. Therefore, it is hypothesized that soil under E. grandis is effective at storing C within fractions associated with longer term C sequestration. It is also hypothesized that soil under E. grandis will contain more C than the pasture soil in the deeper soil (30 cm to 1m) due to large differences in rooting depth. The rooting depth of E. grandis may account for a higher degree of organo-mineral association as there is more mineral surface area available for root exudate C to bind to in the rhizosphere. Furthermore, the lack of disturbance in the E. grandis plantation compared to grazed pastureland may lead to greater physical protection within aggregates; again leading to increased C sequestration.

  11. CmWRKY15 Facilitates Alternaria tenuissima Infection of Chrysanthemum.

    PubMed

    Fan, Qingqing; Song, Aiping; Xin, Jingjing; Chen, Sumei; Jiang, Jiafu; Wang, Yinjie; Li, Xiran; Chen, Fadi

    2015-01-01

    Abscisic acid (ABA) has an important role in the responses of plants to pathogens due to its ability to induce stomatal closure and interact with salicylic acid (SA) and jasmonic acid (JA). WRKY transcription factors serve as antagonistic or synergistic regulators in the response of plants to a variety of pathogens. Here, we demonstrated that CmWRKY15, a group IIa WRKY family member, was not transcriptionally activated in yeast cells. Subcellular localization experiments in which onion epidermal cells were transiently transfected with CmWRKY15 indicated that CmWRKY15 localized to the nucleus in vivo. The expression of CmWRKY15 could be markedly induced by the presence of Alternaria tenuissima inoculum in chrysanthemum. Furthermore, the disease severity index (DSI) data of CmWRKY15-overexpressing plants indicated that CmWRKY15 overexpression enhanced the susceptibility of chrysanthemum to A. tenuissima infection compared to controls. To illustrate the mechanisms by which CmWRKY15 regulates the response to A. tenuissima inoculation, the expression levels of ABA-responsive and ABA signaling genes, such as ABF4, ABI4, ABI5, MYB2, RAB18, DREB1A, DREB2A, PYL2, PP2C, RCAR1, SnRK2.2, SnRK2.3, NCED3A, NCED3B, GTG1, AKT1, AKT2, KAT1, KAT2, and KC1were compared between transgenic plants and controls. In summary, our data suggest that CmWRKY15 might facilitate A. tenuissima infection by antagonistically regulating the expression of ABA-responsive genes and genes involved in ABA signaling, either directly or indirectly. PMID:26600125

  12. CmWRKY15 Facilitates Alternaria tenuissima Infection of Chrysanthemum

    PubMed Central

    Fan, Qingqing; Song, Aiping; Xin, Jingjing; Chen, Sumei; Jiang, Jiafu; Wang, Yinjie; Li, Xiran; Chen, Fadi

    2015-01-01

    Abscisic acid (ABA) has an important role in the responses of plants to pathogens due to its ability to induce stomatal closure and interact with salicylic acid (SA) and jasmonic acid (JA). WRKY transcription factors serve as antagonistic or synergistic regulators in the response of plants to a variety of pathogens. Here, we demonstrated that CmWRKY15, a group IIa WRKY family member, was not transcriptionally activated in yeast cells. Subcellular localization experiments in which onion epidermal cells were transiently transfected with CmWRKY15 indicated that CmWRKY15 localized to the nucleus in vivo. The expression of CmWRKY15 could be markedly induced by the presence of Alternaria tenuissima inoculum in chrysanthemum. Furthermore, the disease severity index (DSI) data of CmWRKY15-overexpressing plants indicated that CmWRKY15 overexpression enhanced the susceptibility of chrysanthemum to A. tenuissima infection compared to controls. To illustrate the mechanisms by which CmWRKY15 regulates the response to A. tenuissima inoculation, the expression levels of ABA-responsive and ABA signaling genes, such as ABF4, ABI4, ABI5, MYB2, RAB18, DREB1A, DREB2A, PYL2, PP2C, RCAR1, SnRK2.2, SnRK2.3, NCED3A, NCED3B, GTG1, AKT1, AKT2, KAT1, KAT2, and KC1were compared between transgenic plants and controls. In summary, our data suggest that CmWRKY15 might facilitate A. tenuissima infection by antagonistically regulating the expression of ABA-responsive genes and genes involved in ABA signaling, either directly or indirectly. PMID:26600125

  13. 'Natural background' soil water repellency in conifer forests of the north-western USA: Its prediction and relationship to wildfire occurrence

    USGS Publications Warehouse

    Doerr, S.H.; Woods, S.W.; Martin, D.A.; Casimiro, M.

    2009-01-01

    therefore incorrect. It follows that, where pre-fire water repellency levels are not known or highly variable, post-fire soil water repellency conditions are an unreliable indicator in classifying soil burn severity. The terrain and soil variables examined showed, overall, no convincing relationship with the repellency levels observed (R2 < 0.15) except that repellency was limited in soils (i) developed over meta-sedimentary lithology and (ii) with clay contents >4%. This suggests that water repellency levels cannot be predicted with confidence from common terrain or soil variables. ?? 2009 Elsevier B.V.

  14. [Effect of Biochar Application on Soil Aggregates Distribution and Moisture Retention in Orchard Soil].

    PubMed

    An, Yan; Ji, Qiang; Zhao, Shi-xiang; Wang, Xu-dong

    2016-01-15

    Applying biochar to soil has been considered to be one of the important practices in improving soil properties and increasing carbon sequestration. In order to investigate the effects of biochar application on soil aggregates distribution and its organic matter content and soil moisture constant in different size aggregates, various particle-size fractions of soil aggregates were obtained with the dry-screening method. The results showed that, compared to the treatment without biochar (CK), the application of biochar reduced the mass content of 5-8 mm and < 0.25 mm soil aggregates at 0-10 cm soil horizon, while increased the content of 1-2 mm and 2-5 mm soil aggregates at this horizon, and the content of 1-2 mm aggregates significantly increased along with the rates of biochar application. The mean diameter of soil aggregates was reduced by biochar application at 0-10 cm soil horizon. However, the effect of biochar application on the mean diameter of soil aggregates at 10-20 cm soil horizon was not significant. Compared to CK, biochar application significantly increased soil organic carbon content in aggregates, especially in 1-2 mm aggregates which was increased by > 70% compared to CK. Both the water holding capacity and soil porosity were significantly increased by biochar application. Furthermore, the neutral biochar was more effective than alkaline biochar in increasing soil moisture. PMID:27078970

  15. Temperature sensitivity (Q10), and dynamics of soil organic matter (SOM) decomposition in permafrost soils with different carbon quality and under experimental warming. R. Bracho1, E.A.G Schuur1, E. Pegoraro1, K.G. Crummer1, S. Natali2, J. Zhou, Y Luo3, J. L. Wu3, M. Tiedje4, K. Konstantinidis5 1Department of Biology, University of Florida, Gainesville, FL. 2Woods Hole Research Center, Falmouth, MA. 3Institute for Environmental Genomics and Department of Botany and Microbiology, University of Oklahoma, Norman, OK, 4Center for Microbial Ecology, Michigan State University, East Lansing, MI; 5Center for Bioinformatics and Computational Genomics and School of Biology, Georgia Institute of Technology, Atlanta, GA

    NASA Astrophysics Data System (ADS)

    Bracho, R. G.; Schuur, E. A.; Pegoraro, E.; Crummer, K. G.; Natali, S.; Zhou, J.; Wu, L.; Luo, Y.; Tiedje, J. M.; Konstantinidis, K.

    2013-12-01

    Permafrost soils contain approximately1700 Pg of carbon (C), twice the amount of C in the atmosphere. Temperatures in higher latitudes are increasing, inducing permafrost thaw and subsequent microbial decomposition of previously frozen C. This process is one of the most likely positive feedbacks to climate change. Understanding the temperature sensitivity (Q10) and dynamics of SOM decomposition under warming is essential to predict the future state of the earth - climate system. Alaskan tundra soils were exposed to two winter warming (WW) seasons in the field, which warmed the soils by 4°C to 40 cm depth. Soils were obtained from three depths (0 - 15, 15 - 25 and 45 - 55 cm) and differed in initial amounts of labile and recalcitrant C. Soils were incubated in the lab under aerobic conditions, at 15 and 25°C over 365 days. Q10 was estimated at 14, 100 & 280 days of incubation (DOI); C fluxes were measured periodically and dynamics of SOM decomposition (C pool sizes and decay rates) were estimated by fitting a two pool C model to cumulative respired C (Ccum, mgC/ginitialC). After two WW seasons, initial C content tended to decrease through the soil profile and C:N ratio was significantly decreased in the top 15 cm. After one year of incubation, Ccum was twice as high at 25°C as at 15°C and significantly decreased with depth. No significant WW field treatment was detected, although Ccum tended to be lower in warmed soils. Labile C accounted for up to 5% of initial soil C content in the top 15 cm and decreased with depth. Soils exposed to WW had smaller labile C pools, and higher labile C decay rates in the top 25 cm. Q10 significantly decreased with time and depth as labile pool decreased, especially for WW. This decrease with time indicates a lower temperature sensitivity of the most recalcitrant C pool. The deepest WW soil layer, where warming was more pronounced, had significantly lower Q10 compared to control soils at the same depth. After two seasons, the

  16. Spatial variations of heavy metals in the soils of vegetable-growing land along urban-rural gradient of Nanjing, China.

    PubMed

    Fang, Shi-Bo; Hu, Hao; Sun, Wan-Chun; Pan, Jian-Jun

    2011-06-01

    China has experienced rapid urbanization in recent years. The acceleration of urbanization has created wealth and opportunity as well as intensified ecological and environmental problems, especially soil pollution. Our study concentrated on the variation of heavy metal content due to urbanization in the vegetable-growing soil. Laws and other causes of the spatial-temporal variation in heavy metal content of vegetable-growing soils were analyzed for the period of urbanization in Nanjing (the capital of Jiangsu province in China). The levels of Cu, Zn, Pb, Cd and Hg in samples of vegetable-growing soil were detected. The transverse, vertical spatio-temporal variation of heavy metals in soil was analyzed on the base of field investigations and laboratory analysis. The results show that: (1) in soil used for vegetable production, the levels of heavy metals decreased gradually from urban to rural areas; the levels of the main heavy metals in urban areas are significantly higher than suburban and rural areas; (2) the means of the levels of heavy metals, calculated by subtracting the sublayer (15-30 cm) from the toplayer (0-15 cm), are all above zero and large in absolute value in urban areas, but in suburban and rural areas, the means are all above or below zero and small in absolute value. The causes of spatial and temporal variation were analyzed as follows: one cause was associated with mellowness of the soil and the length of time the soil had been used for vegetable production; the other cause was associated with population density and industrial intensity decreasing along the urban to rural gradient (i.e., urbanization levels can explain the distribution of heavy metals in soil to some extent). Land uses should be planned on the basis of heavy metal pollution in soil, especially in urban and suburban regions. Heavily polluted soils have to be expected from food production. Further investigation should be done to determine whether and what kind of agricultural

  17. Land surface feedbacks and climate change over South America as projected by RegCM4

    NASA Astrophysics Data System (ADS)

    Llopart, Marta; da Rocha, Rosmeri; Coppola, Erika; Giorgi, Filippo; Cuadra, Santiago

    2013-04-01

    soil moisture feedback on precipitation is evaluated too by mean of a statistical approach. The RegCM-CLM simulations have a common feature and they show a similar behavior when the future changes are investigated. The RegCM-BATS shows a different soil moisture feedback picture. Of course this can be explained by the differences in the two land-surface schemes and in the precipitation change signal that comes out from the two sets of simulations.

  18. Chondrules in the Murray CM2 meteorite and compositional differences between CM-CO and ordinary chondrite chondrules

    NASA Astrophysics Data System (ADS)

    Rubin, A. E.; Wasson, J. T.

    1986-02-01

    Thirteen of the least aqueously altered chondrules in Murray (CM2) were analyzed for bulk compositions, by means of a broad beam electron microprobe, to explore the compositional differences between the CM-CO, and the ordinary chondrite OC chondrules. The CO chondrules are richer in refractory lithophiles and poorer in Cr, Mn, and volatile lithophiles than the OC chondrules; much lower refractory lithophile abundances in CM chondrules resulted from aqueous alteration. Evidence is found for two important lithophile precursor components of CM-CO chondrite chondrules: (1) pyroxene- and refractory-rich, FeO-poor, and (2) olivine-rich, refractoryand FeO-poor. It is suggested that the pyroxene- and refractory-rich, FeO-poor lithophile precursor component has formed by an incomplete evaporation of presolar silicates that brought these materials into the enstatite stability field.

  19. Soil CO₂ dynamics in a tree island soil of the Pantanal: the role of soil water potential.

    PubMed

    Johnson, Mark S; Couto, Eduardo Guimarães; Pinto, Osvaldo B; Milesi, Juliana; Santos Amorim, Ricardo S; Messias, Indira A M; Biudes, Marcelo Sacardi

    2013-01-01

    The Pantanal is a biodiversity hotspot comprised of a mosaic of landforms that differ in vegetative assemblages and flooding dynamics. Tree islands provide refuge for terrestrial fauna during the flooding period and are particularly important to the regional ecosystem structure. Little soil CO₂ research has been conducted in this region. We evaluated soil CO₂ dynamics in relation to primary controlling environmental parameters (soil temperature and soil water). Soil respiration was computed using the gradient method using in situ infrared gas analyzers to directly measure CO₂ concentration within the soil profile. Due to the cost of the sensors and associated equipment, this study was unreplicated. Rather, we focus on the temporal relationships between soil CO₂ efflux and related environmental parameters. Soil CO₂ efflux during the study averaged 3.53 µmol CO₂ m⁻² s⁻¹, and was equivalent to an annual soil respiration of 1220 g C m⁻² y⁻¹. This efflux value, integrated over a year, is comparable to soil C stocks for 0-20 cm. Soil water potential was the measured parameter most strongly associated with soil CO₂ concentrations, with high CO₂ values observed only once soil water potential at the 10 cm depth approached zero. This relationship was exhibited across a spectrum of timescales and was found to be significant at a daily timescale across all seasons using conditional nonparametric spectral Granger causality analysis. Hydrology plays a significant role in controlling CO₂ efflux from the tree island soil, with soil CO₂ dynamics differing by wetting mechanism. During the wet-up period, direct precipitation infiltrates soil from above and results in pulses of CO₂ efflux from soil. The annual flood arrives later, and saturates soil from below. While CO₂ concentrations in soil grew very high under both wetting mechanisms, the change in soil CO₂ efflux was only significant when soils were wet from above. PMID:23762259

  20. Soil CO2 Dynamics in a Tree Island Soil of the Pantanal: The Role of Soil Water Potential

    PubMed Central

    Johnson, Mark S.; Couto, Eduardo Guimarães; Pinto Jr, Osvaldo B.; Milesi, Juliana; Santos Amorim, Ricardo S.; Messias, Indira A. M.; Biudes, Marcelo Sacardi

    2013-01-01

    The Pantanal is a biodiversity hotspot comprised of a mosaic of landforms that differ in vegetative assemblages and flooding dynamics. Tree islands provide refuge for terrestrial fauna during the flooding period and are particularly important to the regional ecosystem structure. Little soil CO2 research has been conducted in this region. We evaluated soil CO2 dynamics in relation to primary controlling environmental parameters (soil temperature and soil water). Soil respiration was computed using the gradient method using in situ infrared gas analyzers to directly measure CO2 concentration within the soil profile. Due to the cost of the sensors and associated equipment, this study was unreplicated. Rather, we focus on the temporal relationships between soil CO2 efflux and related environmental parameters. Soil CO2 efflux during the study averaged 3.53 µmol CO2 m−2 s−1, and was equivalent to an annual soil respiration of 1220 g C m−2 y−1. This efflux value, integrated over a year, is comparable to soil C stocks for 0–20 cm. Soil water potential was the measured parameter most strongly associated with soil CO2 concentrations, with high CO2 values observed only once soil water potential at the 10 cm depth approached zero. This relationship was exhibited across a spectrum of timescales and was found to be significant at a daily timescale across all seasons using conditional nonparametric spectral Granger causality analysis. Hydrology plays a significant role in controlling CO2 efflux from the tree island soil, with soil CO2 dynamics differing by wetting mechanism. During the wet-up period, direct precipitation infiltrates soil from above and results in pulses of CO2 efflux from soil. The annual flood arrives later, and saturates soil from below. While CO2 concentrations in soil grew very high under both wetting mechanisms, the change in soil CO2 efflux was only significant when soils were wet from above. PMID:23762259

  1. [Effect of fertilization levels on soil microorganism amount and soil enzyme activities].

    PubMed

    Wang, Wei-Ling; Du, Jun-Bo; Xu, Fu-Li; Zhang, Xiao-Hu

    2013-11-01

    Field experiments were conducted in Shangluo pharmaceutical base in Shaanxi province to study the effect of nitrogen, phosphorus and potassium in different fertilization levels on Platycodon grandiflorum soil microorganism and activities of soil enzyme, using three-factor D-saturation optimal design with random block design. The results showed that N0P2K2, N2P2K0, N3P1K3 and N3P3K1 increased the amount of bacteria in 0-20 cm of soil compared with N0P0K0 by 144.34%, 39.25%, 37.17%, 53.58%, respectively. The amount of bacteria in 2040 cm of soil of N3P1K3 increased by 163.77%, N0P0K3 increased the amount of soil actinomycetes significantly by 192.11%, while other treatments had no significant effect. N2P0K2 and N3P1K3 increased the amounts of fungus significantly in 0-20 cm of soil compared with N0P0K0, increased by 35.27% and 92.21%, respectively. N3P0K0 increased the amounts of fungus significantly in 20-40 cm of soil by 165.35%, while other treatments had no significant effect. All treatments decrease soil catalase activity significantly in 0-20 cm of soil except for N2P0K2, and while N2P2K0 and NPK increased catalase activity significantly in 2040 cm of soil. Fertilization regime increased invertase activity significantly in 2040 cm of soil, and decreased phosphatase activity inordinately in 0-20 cm of soil, while increased phosphatase activity in 2040 cm of soil other than N1P3K3. N3P0K0, N0P0K3, N2P0K2, N2P2K0 and NPK increased soil urease activity significantly in 0-20 cm of soil compared with N0P0K0 by 18.22%, 14.87%,17.84%, 27.88%, 24.54%, respectively. Fertilization regime increased soil urease activity significantly in 2040 cm of soil other than N0P2K2. PMID:24558863

  2. DEEP 21 cm H I OBSERVATIONS AT z {approx} 0.1: THE PRECURSOR TO THE ARECIBO ULTRA DEEP SURVEY

    SciTech Connect

    Freudling, Wolfram; Zwaan, Martin; Staveley-Smith, Lister; Meyer, Martin; Catinella, Barbara; Minchin, Robert; Calabretta, Mark; Momjian, Emmanuel; O'Neil, Karen

    2011-01-20

    The 'ALFA Ultra Deep Survey' (AUDS) is an ongoing 21 cm spectral survey with the Arecibo 305 m telescope. AUDS will be the most sensitive blind survey undertaken with Arecibo's 300 MHz Mock spectrometer. The survey searches for 21 cm H I line emission at redshifts between 0 and 0.16. The main goals of the survey are to investigate the H I content and probe the evolution of H I gas within that redshift region. In this paper, we report on a set of precursor observations with a total integration time of 53 hr. The survey detected a total of eighteen 21 cm emission lines at redshifts between 0.07 and 0.15 in a region centered around {alpha}{sub 2000} {approx} 0{sup h}, {delta} {approx} 15{sup 0}42'. The rate of detection is consistent with the one expected from the local H I mass function. The derived relative H I density at the median redshift of the survey is {rho}{sub H{sub I}}[z = 0.125] = (1.0 {+-} 0.3){rho}{sub 0}, where {rho}{sub 0} is the H I density at zero redshift.

  3. Determining the relative extent of alteration in CM chondrites

    NASA Technical Reports Server (NTRS)

    Browning, Lauren B.; Mcsween, Harry Y., Jr.; Zolensky, Michael

    1993-01-01

    The aqueous alteration of CM chondrites provides a record of the processes attending the earliest stages of parent body evolution. However, resolving the alteration pathways of chondritic evolution requires a means for distinguishing the relative extent of alteration that individual samples have experienced. Three new indices for gauging the relative degree of alteration in CM chondrites based on modal and compositional analyses of 7 CM falls were proposed. The proposed alteration parameters are consistent with the basic tenets of several previous models and correlate with additional indices to produce an integrated method for determining the relative extent of alteration. The model predicts the following order of progressive alteration: Murchison (MC) is less than or equal to Bells (BL) is less than Murray (MY) is less than Cochabamba (CC) is less than Mighei (MI) is less than Nogoya (NG) is less than or equal to Cold Bokkeveld (CB). The broad range of CM phyllosilicate compositions observed within individual meteorites is fundamental to the characterization of the aqueous alteration process. Chemical analyses of CM phyllosilicates suggest that these phases became systematically enriched in Mg and depleted in Fe with increasing alteration.

  4. Determining the relative extent of alteration in CM chondrites

    NASA Astrophysics Data System (ADS)

    Browning, Lauren B.; McSween, Harry Y., Jr.; Zolensky, Michael

    1993-03-01

    The aqueous alteration of CM chondrites provides a record of the processes attending the earliest stages of parent body evolution. However, resolving the alteration pathways of chondritic evolution requires a means for distinguishing the relative extent of alteration that individual samples have experienced. Three new indices for gauging the relative degree of alteration in CM chondrites based on modal and compositional analyses of 7 CM falls were proposed. The proposed alteration parameters are consistent with the basic tenets of several previous models and correlate with additional indices to produce an integrated method for determining the relative extent of alteration. The model predicts the following order of progressive alteration: Murchison (MC) is less than or equal to Bells (BL) is less than Murray (MY) is less than Cochabamba (CC) is less than Mighei (MI) is less than Nogoya (NG) is less than or equal to Cold Bokkeveld (CB). The broad range of CM phyllosilicate compositions observed within individual meteorites is fundamental to the characterization of the aqueous alteration process. Chemical analyses of CM phyllosilicates suggest that these phases became systematically enriched in Mg and depleted in Fe with increasing alteration.

  5. Advancing precision cosmology with 21 cm intensity mapping

    NASA Astrophysics Data System (ADS)

    Masui, Kiyoshi Wesley

    In this thesis we make progress toward establishing the observational method of 21 cm intensity mapping as a sensitive and efficient method for mapping the large-scale structure of the Universe. In Part I we undertake theoretical studies to better understand the potential of intensity mapping. This includes forecasting the ability of intensity mapping experiments to constrain alternative explanations to dark energy for the Universe's accelerated expansion. We also considered how 21 cm observations of the neutral gas in the early Universe (after recombination but before reionization) could be used to detect primordial gravity waves, thus providing a window into cosmological inflation. Finally we showed that scientifically interesting measurements could in principle be performed using intensity mapping in the near term, using existing telescopes in pilot surveys or prototypes for larger dedicated surveys. Part II describes observational efforts to perform some of the first measurements using 21 cm intensity mapping. We develop a general data analysis pipeline for analyzing intensity mapping data from single dish radio telescopes. We then apply the pipeline to observations using the Green Bank Telescope. By cross-correlating the intensity mapping survey with a traditional galaxy redshift survey we put a lower bound on the amplitude of the 21 cm signal. The auto-correlation provides an upper bound on the signal amplitude and we thus constrain the signal from both above and below. This pilot survey represents a pioneering effort in establishing 21 cm intensity mapping as a probe of the Universe.

  6. CM Carbonaceous Chondrite Lithologies and Their Space Exposure Ages

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael; Gregory, Timothy; Takenouchi, Atsushi; Nishiizumi, Kunihiko; Trieman, Alan; Berger, Eve; Le, Loan; Fagan, Amy; Velbel, Michael; Imae, Naoya; Yamaguchi, Akira

    2015-01-01

    The CMs are the most commonly falling C chondrites, and therefore may be a major component of C-class asteroids, the targets of several current and future space missions. Previous work [1] has concluded that CM chondrites fall into at least four distinct cosmic ray space exposure (CRE) age groups (0.1 million years, 0.2 million years, 0.6 million years and greater than 2.0 million years), an unusually large number, but the meaning of these groupings is unclear. It is possible that these meteorites came from different parent bodies which broke up at different times, or instead came from the same parent body which underwent multiple break-up events, or a combination of these scenarios, or something else entirely. The objective of this study is to investigate the diversity of lithologies which make up CM chondrites, in order to determine whether the different exposure ages correspond to specific, different CM lithologies, which permit us to constrain the history of the CM parent body(ies). We have already reported significant petrographic differences among CM chondrites [2-4]. We report here our new results.

  7. Inorganic Nutrients Increase Humification Efficiency and C-Sequestration in an Annually Cropped Soil

    PubMed Central

    Richardson, Alan E.; Wade, Len J.; Conyers, Mark; Kirkegaard, John A.

    2016-01-01

    Removing carbon dioxide (CO2) from the atmosphere and storing the carbon (C) in resistant soil organic matter (SOM) is a global priority to restore soil fertility and help mitigate climate change. Although it is widely assumed that retaining rather than removing or burning crop residues will increase SOM levels, many studies have failed to demonstrate this. We hypothesised that the microbial nature of resistant SOM provides a predictable nutrient stoichiometry (C:nitrogen, C:phosphorus and C:sulphur–C:N:P:S) to target using supplementary nutrients when incorporating C-rich crop residues into soil. An improvement in the humification efficiency of the soil microbiome as a whole, and thereby C-sequestration, was predicted. In a field study over 5 years, soil organic-C (SOC) stocks to 1.6 m soil depth were increased by 5.5 t C ha-1 where supplementary nutrients were applied with incorporated crop residues, but were reduced by 3.2 t C ha-1 without nutrient addition, with 2.9 t C ha-1 being lost from the 0–10 cm layer. A net difference of 8.7 t C ha-1 was thus achieved in a cropping soil over a 5 year period, despite the same level of C addition. Despite shallow incorporation (0.15 m), more than 50% of the SOC increase occurred below 0.3 m, and as predicted by the stoichiometry, increases in resistant SOC were accompanied by increases in soil NPS at all depths. Interestingly the C:N, C:P and C:S ratios decreased significantly with depth possibly as a consequence of differences in fungi to bacteria ratio. Our results demonstrate that irrespective of the C-input, it is essential to balance the nutrient stoichiometry of added C to better match that of resistant SOM to increase SOC sequestration. This has implications for global practices and policies aimed at increasing SOC sequestration and specifically highlight the need to consider the hidden cost and availability of associated nutrients in building soil-C. PMID:27144282

  8. Contrasting radiation and soil heat fluxes in Arctic shrub and wet sedge tundra

    NASA Astrophysics Data System (ADS)

    Juszak, Inge; Eugster, Werner; Heijmans, Monique M. P. D.; Schaepman-Strub, Gabriela

    2016-07-01

    Vegetation changes, such as shrub encroachment and wetland expansion, have been observed in many Arctic tundra regions. These changes feed back to permafrost and climate. Permafrost can be protected by soil shading through vegetation as it reduces the amount of solar energy available for thawing. Regional climate can be affected by a reduction in surface albedo as more energy is available for atmospheric and soil heating. Here, we compared the shortwave radiation budget of two common Arctic tundra vegetation types dominated by dwarf shrubs (Betula nana) and wet sedges (Eriophorum angustifolium) in North-East Siberia. We measured time series of the shortwave and longwave radiation budget above the canopy and transmitted radiation below the canopy. Additionally, we quantified soil temperature and heat flux as well as active layer thickness. The mean growing season albedo of dwarf shrubs was 0.15 ± 0.01, for sedges it was higher (0.17 ± 0.02). Dwarf shrub transmittance was 0.36 ± 0.07 on average, and sedge transmittance was 0.28 ± 0.08. The standing dead leaves contributed strongly to the soil shading of wet sedges. Despite a lower albedo and less soil shading, the soil below dwarf shrubs conducted less heat resulting in a 17 cm shallower active layer as compared to sedges. This result was supported by additional, spatially distributed measurements of both vegetation types. Clouds were a major influencing factor for albedo and transmittance, particularly in sedge vegetation. Cloud cover reduced the albedo by 0.01 in dwarf shrubs and by 0.03 in sedges, while transmittance was increased by 0.08 and 0.10 in dwarf shrubs and sedges, respectively. Our results suggest that the observed deeper active layer below wet sedges is not primarily a result of the summer canopy radiation budget. Soil properties, such as soil albedo, moisture, and thermal conductivity, may be more influential, at least in our comparison between dwarf shrub vegetation on relatively dry patches and

  9. Inorganic Nutrients Increase Humification Efficiency and C-Sequestration in an Annually Cropped Soil.

    PubMed

    Kirkby, Clive A; Richardson, Alan E; Wade, Len J; Conyers, Mark; Kirkegaard, John A

    2016-01-01

    Removing carbon dioxide (CO2) from the atmosphere and storing the carbon (C) in resistant soil organic matter (SOM) is a global priority to restore soil fertility and help mitigate climate change. Although it is widely assumed that retaining rather than removing or burning crop residues will increase SOM levels, many studies have failed to demonstrate this. We hypothesised that the microbial nature of resistant SOM provides a predictable nutrient stoichiometry (C:nitrogen, C:phosphorus and C:sulphur-C:N:P:S) to target using supplementary nutrients when incorporating C-rich crop residues into soil. An improvement in the humification efficiency of the soil microbiome as a whole, and thereby C-sequestration, was predicted. In a field study over 5 years, soil organic-C (SOC) stocks to 1.6 m soil depth were increased by 5.5 t C ha-1 where supplementary nutrients were applied with incorporated crop residues, but were reduced by 3.2 t C ha-1 without nutrient addition, with 2.9 t C ha-1 being lost from the 0-10 cm layer. A net difference of 8.7 t C ha-1 was thus achieved in a cropping soil over a 5 year period, despite the same level of C addition. Despite shallow incorporation (0.15 m), more than 50% of the SOC increase occurred below 0.3 m, and as predicted by the stoichiometry, increases in resistant SOC were accompanied by increases in soil NPS at all depths. Interestingly the C:N, C:P and C:S ratios decreased significantly with depth possibly as a consequence of differences in fungi to bacteria ratio. Our results demonstrate that irrespective of the C-input, it is essential to balance the nutrient stoichiometry of added C to better match that of resistant SOM to increase SOC sequestration. This has implications for global practices and policies aimed at increasing SOC sequestration and specifically highlight the need to consider the hidden cost and availability of associated nutrients in building soil-C. PMID:27144282

  10. Enhancement of critical current density in a Ca0.85La0.15Fe(As0.92Sb0.08)2 superconductor with T c = 47 K through 3 MeV proton irradiation

    NASA Astrophysics Data System (ADS)

    Park, Akiyoshi; Mine, Akinori; Yamada, Tatsuhiro; Ohtake, Fumiaki; Akiyama, Hiroki; Sun, Yue; Pyon, Sunseng; Tamegai, Tsuyoshi; Kitahama, Yutaka; Mizukami, Tasuku; Kudo, Kazutaka; Nohara, Minoru; Kitamura, Hisashi

    2016-05-01

    We examine the critical current density (J c) of Ca{}1-xLa x Fe(As{}1-ySb y )2, a 112-type iron-based superconductor (IBS) with {T}{{c}} = 47 K, via magneto-optical imaging and magnetization measurements. We assert that the large self-field J c of 2.2× {10}6 A cm- 2 at 2 K is a strong indication that it is a bulk superconductor with spatially homogeneous superconductivity. A 2.8-fold enhancement in J c to 6.2× {10}6 A cm- 2 was achieved through artificially engineering pinning centers by irradiating 3 MeV protons with a total dosage of 1.0× {10}16 {{cm}}-2. The results not only demonstrate the potential of 112-type IBSs for application but also enrich the current understanding of the role of artificial defects in IBSs.

  11. Short term recovery of soil physical, chemical, micro- and mesobiological functions in a new vineyard under organic farming

    NASA Astrophysics Data System (ADS)

    Costantini, E. A. C.; Agnelli, A. E.; Fabiani, A.; Gagnarli, E.; Mocali, S.; Priori, S.; Simoni, S.; Valboa, G.

    2014-12-01

    Deep earthwork activities carried out before vineyard plantation can severely upset soil profile properties. As a result, soil features in the root environment are often much more similar to those of the underlying substratum than those of the original profile. The time needed to recover the original soil functions is ecologically relevant and may strongly affect vine phenology and grape yield, particularly under organic viticulture. The general aim of this work was to investigate soil resilience after vineyard pre-planting earthworks. In particular, an old and a new vineyard, established on the same soil type, were compared over a five year period for soil chemical, physical, micro and mesobiological properties. The investigated vineyards (Vitis vinifera L., cv. Sangiovese) were located in the Chianti Classico district (Central Italy), on stony and calcareous soils and were not irrigated. The older vineyard was planted in 2000, after slope reshaping by bulldozing and back hoe ploughing down to about 0.8-1.0 m. The new vineyard was planted in 2011, after equivalent earthwork practices carried out in the summer of 2009. Both vineyards were organically managed and fertilized only with compost every autumn (1000 kg ha-1 per year). The new vineyard was cultivated by periodic tillage, while the old vineyard was managed with alternating grass-covered and tilled inter-rows. Soil samples were collected at 0-15 cm depth from the same plots of the new and old vineyards, during the springtime from 2010 to 2014. The old vineyard was sampled in both the tilled and the grass-covered swaths. According to the results from physical and chemical analyses, the new vineyard, during the whole 2010-2014 period, showed lower TOC, N, C/N and EC values, along with higher silt and total CaCO3 contents than the old vineyard, suggesting still evolving equilibrium conditions. The microarthropod analysis showed significantly different abundances and communities' structures, in relation to both

  12. soil organic matter pools and quality are sensitive to global climate change in tropical forests from India

    NASA Astrophysics Data System (ADS)

    Mani, Shanmugam; Merino, Agustín; García-Oliva, Felipe; Riotte, Jean; Sukumar, Raman

    2016-04-01

    Soil organic carbon (SOC) storage and quality are some of the most important factors determining ecological process in tropical forests, which are especially sensitive to global climate change (GCC). In India, the GCC scenarios expect increasing of drought period and wildfire, which may affect the SOC, and therefore the capacity of forest for C sequestration. The aim of the study was to evaluate the amount of soil C and its quality in the mineral soil across precipitation gradient with different factors (vegetation, pH, soil texture and bedrock composition) for generate SOC predictions under GCC. Six soil samples were collected (top 10 cm depth) from 19 1-ha permanent plots in the Mudumalai Wildlife Sanctuary of southern India, which are characterised by four types of forest vegetation (i.e. dry thorn, dry deciduous, moist deciduous and semi-evergreen forest) distributed along to rainfall gradient. The driest sites are dominated by sandy soils, while the soil clay proportion increased in the wet sites. Total organic C (Leco CN analyser), and the SOM quality was assessed by Differential Scanning Calorimetry (DSC) and Solid-state 13CCP-MAS NMR analyses. Soil organic C was positively correlated with precipitation (R2 = 0.502, p<0.01) and with soil clay content (R2 =0.15, p<0.05), and negatively with soil sand content (R2=0.308, p<0.001) and with pH (R2=0.529, p<0.01); while the C/N was only found positive correlation with clay (R2= 0.350, p<0.01). The driest sites (dry thorn forest) has the lowest proportion of thermal combustion of recalcitrant organic matter (Q2,375-475 °C) than the other sites (p<0.05) and this SOC fraction correlated positively with rainfall (R2=0.27, p=0.01). The Q2 model with best fit included rainfall, pH, sand, clay, C and C/N (R2=0.52, p=0.01). Principal component analysis explains 77% of total variance. The sites on the fist component are distributed along the rainfall gradient. These results suggest that the 50% of variance was explained

  13. Effect of phosphorus additions on the sintering and transport properties of proton conducting BaZr{sub 0.85}Y{sub 0.15}O{sub 3-{delta}}

    SciTech Connect

    Soares, H.S.; Zhang, X.; Antunes, I.; Frade, J.R.; Mather, G.C.; Fagg, D.P.

    2012-07-15

    The influence of phosphorous additions on the sintering and electrical transport properties of the proton-conducting perovskite BaZr{sub 0.85}Y{sub 0.15}O{sub 3-{delta}} (BZY) has been studied with a view to the use of phosphates as typical dispersants for the formation of stabilised solid suspensions or as possible sintering aids. P{sub 2}O{sub 5} additions, (1-x)BZY{center_dot}xP{sub 2}O{sub 5}, monotonously promote densification in the intermediate compositional range 0.04{<=}x{<=}0.08. Nonetheless, BZY reacts with phosphorous forming the phase Ba{sub 3}(PO{sub 4}){sub 2} at temperatures as low as 600 Degree-Sign C. The associated loss of Ba from the perovskite, leads to a decrease in the perovskite lattice parameter, the formation of yttria-based impurity phases and impaired grain growth. Such reaction has an extremely detrimental effect on bulk and grain boundary conductivities. It is, therefore, vital that the current results are taken into account by the protonics community when attempting to prepare the stabilised solid suspensions of BZY nanopowders required for thin ceramic applications. Alternative dispersants to phosphate esters must be found. - Graphical Abstract: Sintering experiments performed at 1500 Degree-Sign C for 5 h and at 1400 Degree-Sign C for 24 h of (1-x)BaZr{sub 0.85}Y{sub 0.15}O{sub 3-{delta}}{center_dot}xP{sub 2}O{sub 5} in the range x=0-0.10. Highlights: Black-Right-Pointing-Pointer P{sub 2}O{sub 5} additions, (1-x)BZY{center_dot}xP{sub 2}O{sub 5}, promote densification in the intermediate compositional range 0.04{<=}x{<=}0.08. Black-Right-Pointing-Pointer BZY reacts with phosphorous forming the phase Ba{sub 3}(PO{sub 4}){sub 2} at temperatures as low as 600 Degree-Sign C. Black-Right-Pointing-Pointer Detrimental effects on bulk and grain boundary conductivities are shown. Black-Right-Pointing-Pointer Alternative dispersants to phosphate esters must be found.

  14. CM-2 Environmental / Modal Testing of Spacehab Racks

    NASA Technical Reports Server (NTRS)

    McNelis, Mark E.; Goodnight, Thomas W.; Farkas, Michael A.

    2001-01-01

    Combined environmental/modal vibration testing has been implemented at the NASA Glenn Research Center's Structural Dynamics Laboratory. The benefits of combined vibration testing are that it facilitates test article modal characterization and vibration qualification testing. The Combustion Module-2 (CM-2) is a space experiment that launches on Shuttle mission STS 107 in the SPACEHAB Research Double Module. The CM-2 flight hardware is integrated into a SPACEHAB single and double rack. CM-2 rack level combined vibration testing was recently completed on a shaker table to characterize the structure's modal response and verify the random vibration response. Control accelerometers and limit force gauges, located between the fixture and rack interface, were used to verify the input excitation. Results of the testing were used to verify the loads and environments for flight on the Shuttle.

  15. CM-2 Environmental/Modal Testing of SPACEHAB Racks

    NASA Technical Reports Server (NTRS)

    McNelis, Mark E.; Goodnight, Thomas W.

    2001-01-01

    Combined environmental/modal vibration testing has been implemented at the NASA Glenn Research Center's Structural Dynamics Laboratory. The benefits of combined vibration testing are that it facilitates test article modal characterization and vibration qualification testing. The Combustion Module-2 (CM-2) is a space experiment that will launch on shuttle mission STS-107 in the SPACEHAB Research Double Module. The CM-2 flight hardware is integrated into a SPACEHAB single and double rack. CM-2 rack-level combined vibration testing was recently completed on a shaker table to characterize the structure's modal response and verify the random vibration response. Control accelerometers and limit force gauges, located between the fixture and rack interface, were used to verify the input excitation. Results of the testing were used to verify the loads and environments for flight on the shuttles.

  16. Differentiating CDM and baryon isocurvature models with 21 cm fluctuations

    SciTech Connect

    Kawasaki, Masahiro; Sekiguchi, Toyokazu; Takahashi, Tomo E-mail: sekiguti@icrr.u-tokyo.ac.jp

    2011-10-01

    We discuss how one can discriminate models with cold dark matter (CDM) and baryon isocurvature fluctuations. Although current observations such as cosmic microwave background (CMB) can severely constrain the fraction of such isocurvature modes in the total density fluctuations, CMB cannot differentiate CDM and baryon ones by the shapes of their power spectra. However, the evolution of CDM and baryon density fluctuations are different for each model, thus it would be possible to discriminate those isocurvature modes by extracting information on the fluctuations of CDM/baryon itself. We discuss that observations of 21 cm fluctuations can in principle differentiate these modes and demonstrate to what extent we can distinguish them with future 21 cm surveys. We show that, when the isocurvature mode has a large blue-tilted initial spectrum, 21 cm surveys can clearly probe the difference.

  17. Ion accelerator systems for high power 30-cm thruster operation

    NASA Technical Reports Server (NTRS)

    Aston, G.

    1982-01-01

    An investigation of two- and three-grid accelerator systems for high power ion thruster operation has been performed. Two-grid translation tests show that overcompensation of the 30-cm thruster SHAG (Small Hole Accelerator Grid) leads to a premature impingement limit. By better matching the SHAG grid set spacing to the 30-cm thruster radial plasma density variation and by incorporating grid compensation only sufficient to maintain grid hole axial alignment, it is shown that beam current gains as large as 50% can be realized. Three-grid translation tests performed with a simulated 30-cm thruster discharge chamber show that substantial beamlet steering can be reliably affected by decelerator grid translation only, at net-to-total voltage ratios as low as 0.05.

  18. A model for sunspot associated emission at 6 cm wavelength

    NASA Technical Reports Server (NTRS)

    Alissandrakis, C. E.; Kundu, M. R.; Lantos, P.

    1980-01-01

    Two-dimensional maps of total intensity and circular polarization of a sunspot region at 6 cm have been calculated using a simple model for the chromosphere-corona transition region and observations of the longitudinal component of the photospheric magnetic field. The calculations are in good agreement with the high resolution observations of the same sunspot region at 6 cm, obtained with the Westerbork Synthesis Radio Telescope. It is shown that the 6 cm radiation is predominantly due to gyroresonance absorption process at the second and third harmonics of the gyrofrequency (H = 900-600 G). Estimates of the conductive flux and the electron density in the transition region above the sunspot are also given.

  19. VLA observations of Uranus at 1. 3-20 cm

    SciTech Connect

    De Pater, I.; Gulkis, S.

    1988-08-01

    Observations of Uranus, obtained with resolution 0.5-1.2 arcsec at wavelengths 1.3, 2, 6, and 20 cm using the A and B configurations of the VLA in June-July 1982, October 1983, and February 1984, are reported. The disk-averaged brightness temperatures (DABTs) are determined by model fitting, and the results are presented in extensive graphs and contour maps and characterized in detail. Findings discussed include: (1) an overall spectrum which is relatively flat above 6 cm, (2) 1.3-6-cm brightness which is concentrated nearer to the pole than to the subsolar point, and (3) small changes in DABT from 1982 to 1983/1984 (consistent with an explanation based on a pole-equator temperature gradient). 16 references.

  20. Characterization of extractable soil organic matter pools from African Dark Earths (AfDE): A case study in historical biochar and organic waste amendments

    NASA Astrophysics Data System (ADS)

    Fujiu, Manna; Plante, Alain; Ohno, Tsutomu; Solomon, Dawit; Lehmann, Johannes; Fraser, James; Leach, Melissa; Fairhead, James

    2014-05-01

    Anthropogenic Dark Earths are soils generated through long-term human inputs of organic and pyrogenic materials. These soils were originally discovered in the Amazon, and have since been found in Australia and in this case in Africa. African Dark Earths (AfDE) are black, highly fertile and carbon-rich soils that were formed from the original highly-weathered infertile yellowish to red Oxisols and Ultisols through an extant but hitherto overlooked climate-smart sustainable soil management system that has long been an important feature of the indigenous West African agricultural repertoire. Studies have demonstrated that ADE soils in general have significantly different organic matter properties compared to adjacent non-DE soils, largely attributable to the presence of high concentrations of ash-derived carbon. Quantification and characterization of bulk soil organic matter of several (n=11) AfDE and non-AfDE pairs of surface (0-15 cm) soils using thermal analysis techniques (TG-DSC-EGA) confirmed substantial differences in SOM composition and the presence of pyrogenic C. Such pyrogenic organic matter is generally considered recalcitrant or relatively stable, but the goal of the current study was to characterize the presumably labile, more rapidly cycling, pools of C in AfDEs through the characterization of hot water- and pyrophosphate-extractable fractions, referred to as HWEOC and PyroC respectively. Extracts were analyzed for carbon content, as well as composition using fluorescence (EEM/PARAFAC) and high resolution mass spectrometry (FTICR-MS). The amount of extractable C as a proportion of total soil C was relatively low: less than ~0.8% for HWEOC and 2.8% for PyroC. The proportion of HWEOC did not differ (P = 0.18, paired t-test) between the AfDE and the non-AfDE soils, while the proportions of PyroC were significantly larger (P = 0.001) in the AfDE soils compared to the non-AfDE soils. Preliminary analysis of the EEM/PARAFAC data suggests that AfDE samples had

  1. Precise measurements of primordial power spectrum with 21 cm fluctuations

    SciTech Connect

    Kohri, Kazunori; Oyama, Yoshihiko; Sekiguchi, Toyokazu; Takahashi, Tomo E-mail: oyamayo@post.kek.jp E-mail: tomot@cc.saga-u.ac.jp

    2013-10-01

    We discuss the issue of how precisely we can measure the primordial power spectrum by using future observations of 21 cm fluctuations and cosmic microwave background (CMB). For this purpose, we investigate projected constraints on the quantities characterizing primordial power spectrum: the spectral index n{sub s}, its running α{sub s} and even its higher order running β{sub s}. We show that future 21 cm observations in combinations with CMB would accurately measure above mentioned observables of primordial power spectrum. We also discuss its implications to some explicit inflationary models.

  2. Evidence for live 247Cm in the early solar system

    USGS Publications Warehouse

    Tatsumoto, M.; Shimamura, T.

    1980-01-01

    Variations of the 238U/235U ratio in the Allende meteorite, ranging from -35% to + 19%, are interpreted as evidence of live 247Cm in the early Solar System. The amounts of these and other r-products in the Solar System indicate values of (9,000??3,000) Myr for the age of the Galaxy and ??? 8 Myr for the time between the end of nucleosynthesis and the formation of meteoritic grains. Three possible explanations are presented for the different values of the latter time period which are indicated by the decay products of 247Cm, 26Al, 244Pu and 129I. ?? 1980 Nature Publishing Group.

  3. Cycle life testing of 8-cm mercury ion thruster cathodes

    NASA Technical Reports Server (NTRS)

    Wintucky, E. G.

    1976-01-01

    Two main cathodes have successfully completed 2800 and 1980 cycles and three neutralizers, 3928, 3050, and 2850 cycles in ongoing cycle life tests of flight-type cathode-isolator-vaporizer and neutralizer-isolator-vaporizer assemblies for the 4.45 mN 8-cm Hg ion thruster system. Each cycle included one hour of cathode operation. Starting and operating conditions simulated those expected in a typical auxiliary propulsion mission duty cycle. The cycle life test results are presented along with results of an insert comparison test which led to the selection of a rolled foil insert type for the 8-cm Engineering Model Thruster cathodes.

  4. Vertical distribution of soil removed by four species of burrowing rodents in disturbed and undisturbed soils

    SciTech Connect

    Reynolds, T.D.; Laundre, J.W.

    1988-04-01

    Burrow volumes were determined in disturbed and undisturbed soils for four species of rodents in southeastern Idaho. Comparisons were made between soil types for the average volume and the proportion of the total volume of soil excavated from 10-cm increments for each species, and the relative number of burrows and proportion of total soil removed from beneath the minimum thickness of soil covers over buried low-level radioactive wastes. Burrows of montane voles (Microtus montanus) and deer mice (Peromyscus maniculatus) rarely extended below 50 cm and neither volumes nor depths were influenced by soil disturbance. Townsend's ground squirrels (Spermophilus townsendii) had the deepest and most voluminous burrows that, along with Ord's kangaroo rat (Dipodomys ordii) burrows, were more prevalent beneath 50 cm in disturbed soils.

  5. Soil and Surface Runoff Phosphorus Relationships for Five Typical USA Midwest Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Excessively high soil P can increase P loss with surface runoff. This study used indoor rainfall simulations to characterize soil and runoff P relationships for five Midwest soils (Argiudoll, Calciaquaoll, Hapludalf, and two Hapludolls). Topsoil (15-cm depth, 241–289 g clay kg–1 and pH 6.0–8.0) was ...

  6. Simultaneous First-Order Valence and Oxygen Vacancy Order/Disorder Transitions in (Pr0.85Y0.15)0.7Ca0.3CoO3-δ via Analytical Transmission Electron Microscopy.

    PubMed

    Gulec, Ahmet; Phelan, Daniel; Leighton, Chris; Klie, Robert F

    2016-01-26

    Perovskite cobaltites have been studied for years as some of the few solids to exhibit thermally driven spin-state crossovers. The unanticipated first-order spin and electronic transitions recently discovered in Pr-based cobaltites are notably different from these conventional crossovers, and are understood in terms of a unique valence transition. In essence, the Pr valence is thought to spontaneously shift from 3+ toward 4+ on cooling, driving subsequent transitions in Co valence and electronic/magnetic properties. Here, we apply temperature-dependent transmission electron microscopy and spectroscopy to study this phenomenon, for the first time with atomic spatial resolution, in the prototypical (Pr0.85Y0.15)0.70 Ca0.30CoO3-δ. In addition to the direct spectroscopic observation of charge transfer between Pr and Co at the 165 K transition (on both the Pr and O edges), we also find a simultaneous order/disorder transition associated with O vacancies. Remarkably, the first-order valence change drives a transition between ordered and random O vacancies, at constant O vacancy density, demonstrating reversible crystallization of such vacancies even at cryogenic temperatures. PMID:26592896

  7. Inhibition of the hemorrhagic and proteolytic activities of Lansberg's hognose pit viper (Porthidium lansbergii hutmanni) venom by opossum (Didelphis marsupialis) serum: isolation of Didelphis marsupialis 0.15Dm fraction on DEAE-cellulose chromatography.

    PubMed

    Pineda, María E; Girón, María E; Estrella, Amalid; Sánchez, Elda E; Aguilar, Irma; Fernandez, Irma; Vargas, Alba M; Scannone, Héctor; Rodríguez-Acosta, Alexis

    2008-01-01

    Earlier studies have revealed the ability of sera from several mammals to neutralize the toxic effects of snake venom. The Venezuelan opossum (Didelphis marsupialis) is one that has been found to inhibit hemorrhagic and proteolytic activities of venoms from many species of snakes. In this article it is shown that the opossum sera and its 0.15DM fraction were able to completely neutralize both hemorrhagic and hydrolysis (proteolysis) of casein effects induced by venom of the Lansberg's hognose pit viper (Porthidium lansbergii hutmanni). We have used DEAE-cellulose ion exchange chromatography to collect protein fractions from D. marsupialis sera which were able to defend mice from the lethal effects of P.l. hutmanni venom. The fractions separated were homogeneous by conventional electrophoresis using SDS-PAGE. The protein bands obtained contained molecular weights of approximately 6 to 220 kDa. These results revealed the presence of proteases inhibitors in the opossum sera fractions and the inhibition of venom activity by opossum sera suggesting a reciprocal adaptation at the molecular level. PMID:18800269

  8. Evidence of glassy ferromagnetic phase and kinetic arrest of electronic phase in Sm0.35Pr0.15Sr0.5MnO3 manganites

    NASA Astrophysics Data System (ADS)

    Giri, S. K.; Nath, T. K.

    2012-07-01

    The effect of doping of rare earth Pr3+ ion as a replacement of Sm3+ in Sm0.5Sr0.5MnO3 is investigated. Temperature dependent dc and ac magnetic susceptibility, resistivity, magnetoresistance measurements on chemically synthesized (Sm0.5-xPrx)Sr0.5MnO3 show various unusual features with doping level x=0.15. The frequency independent ferromagnetic to paramagnetic transition at higher temperature (∼191 K) followed by a frequency dependent reentrant magnetic transition at lower temperature (∼31 K) has been observed. The nature of this frequency dependent reentrant magnetic transition is described by a critical slowing down model of spin glasses. From non-linear ac susceptibility measurements it has been confirmed that the finite size ferromagnetic clusters are formed as a consequence of intrinsic phase separation, and undergo spin glass-like freezing below a certain temperature. There is an unusual observation of a 2nd harmonic peak in the non-linear ac susceptibility around this reentrant magnetic transition at low temperature (∼31 K). Arrott plots at 10 and 30 K confirm the existence of glassy ferromagnetism below this low temperature reentrant transition. Electronic- and magneto-transport measurements show a strong magnetic field-temperature history dependence and strong irreversibility with respect to the sweeping of magnetic field. These results are attributed to the effect of phase separation and kinetic arrest of the electronic phase in this phase separated manganite at low temperatures.

  9. Synthesis and characterization of electron doped La{sub 0.85}Te{sub 0.15}MnO{sub 3} thin film grown on LaAlO{sub 3} substrate by pulsed laser deposition technique

    SciTech Connect

    Bhat, Irshad Husain, Shahid; Patil, S. I.; Khan, Wasi; Ali, S. Asad

    2015-06-24

    We report the structural, morphological and magneto-transport properties of electron doped La{sub 0.85}Te{sub 0.15}MnO{sub 3} (LTMO) thin film grown on (001) LaAlO{sub 3} single crystal substrate by pulsed laser deposition (PLD). X-ray diffraction (XRD) results confirm that the film has good crystalline quality, single phase, and c-axis orientation. The atomic force microscopy (AFM) results have revealed that the film consists of grains with the average size in a range of 20–30 nm and root-mean square (rms) roughness of 0.27nm. The resistivity versus temperature measurement exhibits an insulator to metal transition (MIT). We have noticed a huge value of magnetoresistance (∼93%) close to MIT in presence of 8T field. X-ray photoemission spectroscopy confirms the electron doping and suggests that Te ions could be in the Te{sup 4+} state, while the Mn ions stay in the Mn{sup 2+} and Mn{sup 3+} valence state.

  10. Absence of nematic order in the pressure-induced intermediate phase of the iron-based superconductor B a0.85K0.15F e2A s2

    NASA Astrophysics Data System (ADS)

    Zheng, Yan; Tam, Pok Man; Hou, Jianqiang; Böhmer, Anna E.; Wolf, Thomas; Meingast, Christoph; Lortz, Rolf

    2016-03-01

    The hole doped Fe-based superconductors B a1-xAxF e2A s2 (where A =Na or K) show a particularly rich phase diagram. It was observed that an intermediate reentrant tetragonal phase, in which the C4 fourfold rotational symmetry is restored, forms within the orthorhombic antiferromagnetically ordered stripe-type spin density wave state above the superconducting transition [S. Avci et al., Nat. Commun. 5, 3845 (2014);, 10.1038/ncomms4845 A. E. Böhmer et al., Nat. Commun. 6, 7911 (2015), 10.1038/ncomms8911]. A similar intermediate phase was reported to appear if pressure is applied to underdoped B a1-xKxF e2A s2 [E. Hassinger et al., Phys. Rev. B 86, 140502(R) (2012), 10.1103/PhysRevB.86.140502]. Here we report data of the electric resistivity, Hall effect, specific heat, and the thermoelectric Nernst and Seebeck coefficients measured on a B a0.85K0.15F e2A s2 single crystal under pressure up to 5.5 GPa. The data reveal a coexistence of the intermediate phase with filamentary superconductivity. The Nernst coefficient shows a large signature of nematic order that coincides with the stripe-type spin density wave state up to optimal pressure. In the pressure-induced intermediate phase the nematic order is removed, thus confirming that its nature is a reentrant tetragonal phase.

  11. Structural, magnetic and magnetocaloric properties of polycrystalline La0.67Ba0.33- x Zn x MnO3 (x = 0.15 and 0.2) manganites

    NASA Astrophysics Data System (ADS)

    Zaidi, Asma.; Mohamed, Za.; Dhahri, J.; Hlil, E. K.; Alharbi, T.; Zaidi, M.

    2016-04-01

    We report on the structural, magnetic and magnetocaloric properties of manganite La0.67Ba0.33- x Zn x MnO3 (x = 0.15 and 0.2). X-ray diffraction studies show that all samples crystallize with the rhombohedral symmetry within the space Roverline{3} c. The magnetic and magnetocaloric properties of polycrystalline perovskite were investigated from the measured magnetization data of the samples as a function of the applied magnetic field. The associated magnetic entropy change close to their respective Curie temperature T C and the relative cooling power (RCP) have been determined. It was found that the maximum change in magnetic entropy of La0.67Ba0.33- x Zn x MnO3 samples reached 3.4 J/kg K at T C = 260 K for a magnetic field of 5 T and RCP = 223.77 J/kg. In view of these results, La0.67Ba0.33- x Zn x MnO3 compounds are potential candidates for magnetic refrigeration.

  12. Effect of substrate and orientation on charge ordering behaviors in epitaxial Pr{sub 0.5}Ca{sub 0.35}Sr{sub 0.15}MnO{sub 3} films

    SciTech Connect

    Yang, H. W.; Hu, F. X.; Sun, J. R. E-mail: jrsun@iphy.ac.cn; Wang, C.; Cai, R. S.; Wang, Y. Q. E-mail: jrsun@iphy.ac.cn

    2015-05-07

    The charge ordering (CO) behaviors of Pr{sub 0.5}Ca{sub 0.35}Sr{sub 0.15}MnO{sub 3} films grown on STO(100), STO(110) and LAO(100) are systematically investigated by transport measurements and transmission electron microscopy (TEM) examinations. From the transport measurements, the CO transition temperatures of all the three films are much higher than those of the bulk materials, showing that the film strain could enhance the CO transition. From TEM observations, many superlattice spots appear in the electron diffraction patterns taken from the films, indicating the appearance of the CO modulation structures at room temperature. The modulation vectors are determined to be (1/2, 0, 0) for STO (100), (1/2, 1/2, 1/2) for STO (110), and both (0, 1/2, 0) and (1/2, 1/2, 0) for LAO (100). It is shown that both the substrate orientation and the film strain have a great effect on the CO modulation structures. The CO state is much easier to appear in the compressive strain direction which is due to the Mn-O-Mn angle tilting.

  13. In-situ Electric Field-Induced Modulation of Photoluminescence in Pr-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 Lead-Free Ceramics.

    PubMed

    Sun, Hai Ling; Wu, Xiao; Chung, Tat Hang; Kwok, K W

    2016-01-01

    Luminescent materials with dynamic photoluminescence activity have aroused special interest because of their potential widespread applications. One proposed approach of directly and reversibly modulating the photoluminescence emissions is by means of introducing an external electric field in an in-situ and real-time way, which has only been focused on thin films. In this work, we demonstrate that real-time electric field-induced photoluminescence modulation can be realized in a bulk Ba0.85Ca0.15Ti0.90Zr0.10O3 ferroelectric ceramic doped with 0.2 mol% Pr(3+), owing to its remarkable polarization reversal and phase evolution near the morphotropic phase boundary. Along with in-situ X-ray diffraction analysis, our results reveal that an applied electric field induces not only typical polarization switching and minor crystal deformation, but also tetragonal-to-rhombohedral phase transformation of the ceramic. The electric field-induced phase transformation is irreversible and engenders dominant effect on photoluminescence emissions as a result of an increase in structural symmetry. After it is completed in a few cycles of electric field, the photoluminescence emissions become governed mainly by the polarization switching, and thus vary reversibly with the modulating electric field. Our results open a promising avenue towards the realization of bulk ceramic-based tunable photoluminescence activity with high repeatability, flexible controllability, and environmental-friendly chemical process. PMID:27339815

  14. Dielectric and piezoelectric properties of lead-free Ba0.85Ca0.15Ti0.9-xZr0.1CuxO3 ceramics synthesized by a hydrothermal method

    NASA Astrophysics Data System (ADS)

    Hunpratub, Sitchai; Phokha, Sumalin; Maensiri, Santi; Chindaprasirt, Prinya

    2016-04-01

    Ba0.85Ca0.15Ti0.9Zr0.1-xCuxO3 (BCTZC) nanopowders were synthesized using a hydrothermal method after which they were pressed into discs and sintered in air at 1300 °C for 3 h to form ceramic samples. The phase and microstructure of the powder and ceramic samples were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The XRD results indicated that the ceramic samples exhibited a tetragonal structure and that CuO, BaZrO3 or CaTiO3 impurity phases, which had been present in the powder samples, were not observed. The average grain sizes in the ceramic samples were found to be 17.0, 16.1, 20.0, 18.1 and 19.6 μm for Cu mole fractions x of 0.002, 0.004, 0.006, 0.008 and 0.01, respectively. The dielectric constants, ferroelectric hysteresis loops and piezoelectric charge coefficients of the BCZTC ceramic samples were also investigated. Optimum values for the relative dielectric constant (ɛ‧), tan δ and piezoelectric charge coefficient (d33) of the samples were 3830, 0.03 and 306 pC/N, respectively, in the Cu mole fraction samples with x = 0.002.

  15. AC Impedance Behavior of LaNi3.55Mn0.4Al0.3Co0.6Fe0.15 Hydrogen-Storage Alloy: Effect of Surface Area

    NASA Astrophysics Data System (ADS)

    Tliha, M.; Khaldi, C.; Lamloumi, J.

    2016-04-01

    The decrease of Cobalt content in alloy is very beneficial to reduce the production cost of the alloy, whereas the effect of Co on cycle life of the AB5-type hydrogen-storage alloys is extremely important. Therefore, it is interesting to investigate low-Co and/or Co-free AB5-type alloys in which Co was substituted by other elements. Iron is a key element in the development of low-Co AB5-type alloys. The aim of this work is to systematically investigate the effect of the real surface area on the all kinetic properties of a low-Co LaNi3.55Mn0.4Al0.3Co0.6Fe0.15 alloy under cycling using electrochemical impedance spectroscopy (EIS) technique. All kinetic properties of the electrode, such as exchange density, limiting current density, high-rate charge/discharge ability, cycle life time, electrocatalytic activity, and diffusion rate are related to the real surface area. During the EIS analysis, interestingly, we found that with increasing number of charge/discharge cycles, the metal hydride alloy powders undergo micro-cracking into smaller particles, and thus the real surface area of the alloy increases, which then influences the kinetic properties of the electrode reactions.

  16. In-situ raman microscopy of individual LiNi0.8Co0.15Al0.05O2 particles in the Li-ion battery composite cathode

    SciTech Connect

    Lei, Jinglei; McLarnon, Frank; Kostecki, Robert

    2004-10-01

    Kinetic characteristics of Li{sup +} intercalation/deintercalation into/from individual LiNi{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2} particles in a composite cathode were studied in-situ using Raman microscopy during electrochemical charge-discharge in 1.2 M LiPF{sub 6}, ethylene carbonate (EC): ethyl-methyl carbonate (EMC), 3:7 by volume. Spectroscopic analysis of a cathode that was removed from a tested high-power Li-ion cell, which suffered substantial power and capacity loss, showed that the state of charge (SOC) of oxide particles on the cathode surface was highly non-uniform despite deep discharge of the Li-ion cell at the end of the test. In-situ monitoring of the SOC of selected oxide particles in the composite cathode in a sealed spectro-electrochemical cell revealed that the rate at which particles charge and discharge varied with time and location. The inconsistent kinetic behavior of individual oxide particles was attributed to degradation of the electronically conducting matrix in the composite cathode upon testing. These local micro-phenomena are responsible for the overall impedance rise of the cathode and contribute to the mechanism of lithium-ion cell failure.

  17. A study of surface film formation on LiNi0.8Co0.15Al0.05O2 cathodes u sing attenuated total reflection infrared spectroscopy

    SciTech Connect

    Song, S.-W.; Zhuang, G.V.; Ross Jr., P.N.

    2004-01-19

    The surface films formed on commercial LiNi0.8Co0.15Al0.05O2 cathodes (ATD Gen2) charged from 3.75V to 4.2V vs. Li/Li+ in EC:DEC - 1M LiPF6 were analyzed using ex-situ Fourier transform infrared spectroscopy (FTIR) with the attenuated total reflection (ATR) technique. A surface layer of Li2CO3 is present on the virgin cathode, probably from reaction of the active material with air during the cathode preparation procedure. The Li2CO3 layer disappeared even after soaking in the electrolyte, indicating that the layer dissolved into the electrolyte possibly even before potential cycling of the electrode. IR features only from the binder (PVdF) and a trace of polyamide from the Al current collector were observed on the surfaces of cathodes charged to below 4.2 V, i.e., no surface species from electrolyte oxidation. Some new IR features were, however, found on the cathode charged to 4.2 V and higher. An electrolyte oxidation product was observed that appeared to contain dicarbonyl anhydride and (poly)ester functionalities. The reaction appears to be an indirect electrochemical oxidation with overcharging (removal of > 0.6 Li ions) destabilizing oxygen in the oxide lattice resulting in oxygen transfer to the solvent molecules.

  18. Effect of injected spins with different polarized orientations on the vortex phase transition in La0.7Sr0.3MnO3/La1.85Sr0.15CuO4 heterostructure

    NASA Astrophysics Data System (ADS)

    Zhang, M. J.; Teng, M. L.; Hao, F. X.; Yin, Y. W.; Zeng, Z.; Li, X. G.

    2015-05-01

    The current-voltage (I-V) characteristics with spin injection were investigated for the epitaxial La0.7Sr0.3MnO3/La1.85Sr0.15CuO4 heterostructure rotated from H//c to H//ab in magnetic fields up to 14 T. It is found that all the I-V curves in various magnetic fields can be scaled with a three dimensional (3D) vortex glass model, and the spin injection can induce a better 3D scaling behavior, which is closely related to the decrease of the anisotropy parameter. A vortex phase diagram for the evolution of vortex glass transition field (Hg) and upper critical field (Hc2) indicates that both Hg and Hc2 are suppressed by spin injection, and this effect becomes more obvious in the case of H//ab, which probably originates from the different suppression on the superconducting pairing strength by different injected spins' orientations.

  19. Effect of Cr Addition on Wetting Behavior Between Cu and High-Temperature Zn-25Sn-0.15Al-0.1Ga- xCr Pb-Free Solder

    NASA Astrophysics Data System (ADS)

    Liu, Chin-Wei; Lin, Kwang-Lung

    2014-12-01

    In this study the effect of Cr content (0.02 wt.% to 0.2 wt.%) on the wetting interaction between high-temperature Zn-25Sn-0.15Al-0.1Ga- xCr Pb-free solders and Cu has been investigated using the wetting balance method. Differential scanning calorimetry (DSC) investigation showed that Cr addition reduces the liquidus temperature slightly while raising the solidus temperature. Flux-assisted wetting experiments were carried out at an immersion rate of 15 mm/s at 435°C. The results show that the shortest wetting time of around 0.7 s was achieved when 0.1 wt.% Cr was added, but the wetting force tends to decrease with the Cr content. Cr addition enhances the formation of interfacial Cu5Zn8 intermetallic compound (IMC) during air cooling, but the opposite effect was observed for water cooling. The results suggest that Cr addition depresses the formation of the Cu5Zn8 layer in liquid/solid reaction, but enhances the formation of the Cu5Zn8 layer in solid/solid reaction.

  20. In-situ Electric Field-Induced Modulation of Photoluminescence in Pr-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 Lead-Free Ceramics

    PubMed Central

    Sun, Hai Ling; Wu, Xiao; Chung, Tat Hang; Kwok, K. W.

    2016-01-01

    Luminescent materials with dynamic photoluminescence activity have aroused special interest because of their potential widespread applications. One proposed approach of directly and reversibly modulating the photoluminescence emissions is by means of introducing an external electric field in an in-situ and real-time way, which has only been focused on thin films. In this work, we demonstrate that real-time electric field-induced photoluminescence modulation can be realized in a bulk Ba0.85Ca0.15Ti0.90Zr0.10O3 ferroelectric ceramic doped with 0.2 mol% Pr3+, owing to its remarkable polarization reversal and phase evolution near the morphotropic phase boundary. Along with in-situ X-ray diffraction analysis, our results reveal that an applied electric field induces not only typical polarization switching and minor crystal deformation, but also tetragonal-to-rhombohedral phase transformation of the ceramic. The electric field-induced phase transformation is irreversible and engenders dominant effect on photoluminescence emissions as a result of an increase in structural symmetry. After it is completed in a few cycles of electric field, the photoluminescence emissions become governed mainly by the polarization switching, and thus vary reversibly with the modulating electric field. Our results open a promising avenue towards the realization of bulk ceramic-based tunable photoluminescence activity with high repeatability, flexible controllability, and environmental-friendly chemical process. PMID:27339815

  1. Tailoring Electrical Properties and the Structure Evolution of (Ba0.85Ca0.15)(Ti0.90Zr0.10)1- x Li4 x O3 Ceramics with Low Sintering Temperature

    NASA Astrophysics Data System (ADS)

    Chao, Xiaolian; Wang, Juanjuan; Xie, Xueke; Liang, Pengfei; Yang, Zupei

    2016-01-01

    The objective of this work is to lower the sintering temperature of (Ba0.85Ca0.15)(Ti0.90Zr0.10)O3 (BCZT) ceramics without sacrificing their piezoelectric performance. Li2CO3 was used as sintering aid so that BCZT ceramics with low sintering temperature were fabricated by conventional solid-state sintering. The sintering temperature of the BCZT ceramics was greatly decreased from 1450°C to 1260°C by introducing Li2CO3. The ceramics with a Li2CO3 content of x = 0.02 demonstrated outstanding piezoelectric and dielectric properties: d 33 = 436 pC/N, k p = 56%, Q m = 86, ɛ r = 5185, tan δ = 0.017 and T c = 83°C. We explain the structural evolution in these ceramics through the growth mechanism of liquid-phase sintering, which includes 4 steps: (1) interface reaction in the initial state; (2) diffusion of Li2CO3 into BCZT grains; (3) densification by diffusion of CO2 through BCZT; and (4) improvement of properties by diffusion into the lattice of grain. As a result, Li2CO3 additive can effectively improve the piezoelectric properties of BCZT-based ceramics sintered at low temperatures.

  2. Enhanced piezoelectricity and photoluminescence in Dy-doped Ba0.85Ca0.15Ti0.9Zr0.1O3 lead-free multifunctional ceramics

    NASA Astrophysics Data System (ADS)

    Lei, Fengying; Jiang, Na; Luo, Lingling; Guo, Yongquan; Zheng, Qiaoji; Lin, Dunmin

    2015-12-01

    Lead-free multifunctional ceramics of Ba0.85Ca0.15Ti0.9Zr0.1O3-x mol% Dy have been prepared by an ordinary sintering method and the effects of Dy2O3 doping on structure, piezoelectric, ferroelectric and photoluminescent properties of the ceramics have been studied. The ceramics possess a single phase perovskite structure. The grain growth of the ceramics is prohibited and the ferroelectric-paraelectric phase transition at TC becomes more diffusive after the addition of Dy2O3. Dy2O3 doping improves the piezoelectricity of the ceramics and the optimal piezoelectric properties d33 = 335 pC/N is obtained at x = 0.5. The addition of 2 mol% Dy enhances the photoluminescent properties of the ceramics and strong emissions at ˜ 478 nm and ˜ 575 nm are observed. Our study shows that the ceramics with low Dy2O3 levels exhibit simultaneously the strong piezoelectricity, ferroelectricity and photoluminescence and may have a potential application in mechano-electro-optic integration and coupling device.

  3. Surface degradation of Li1-xNi0.80Co0.15Al0.05O2 cathodes: Correlating charge transfer impedance with surface phase transformations

    NASA Astrophysics Data System (ADS)

    Sallis, S.; Pereira, N.; Mukherjee, P.; Quackenbush, N. F.; Faenza, N.; Schlueter, C.; Lee, T.-L.; Yang, W. L.; Cosandey, F.; Amatucci, G. G.; Piper, L. F. J.

    2016-06-01

    The pronounced capacity fade in Ni-rich layered oxide lithium ion battery cathodes observed when cycling above 4.1 V (versus Li/Li+) is associated with a rise in impedance, which is thought to be due to either bulk structural fatigue or surface reactions with the electrolyte (or combination of both). Here, we examine the surface reactions at electrochemically stressed Li1-xNi0.8Co0.15Al0.05O2 binder-free powder electrodes with a combination of electrochemical impedance spectroscopy, spatially resolving electron microscopy, and spatially averaging X-ray spectroscopy techniques. We circumvent issues associated with cycling by holding our electrodes at high states of charge (4.1 V, 4.5 V, and 4.75 V) for extended periods and correlate charge-transfer impedance rises observed at high voltages with surface modifications retained in the discharged state (2.7 V). The surface modifications involve significant cation migration (and disorder) along with Ni and Co reduction, and can occur even in the absence of significant Li2CO3 and LiF. These data provide evidence that surface oxygen loss at the highest levels of Li+ extraction is driving the rise in impedance.

  4. Magnetocaloric effect and temperature coefficient of resistance of La0.85Ag0.15MnO3 epitaxial thin films obtained by polymer-assisted deposition

    NASA Astrophysics Data System (ADS)

    Cobas Acosta, R.; Muñoz-Pérez, S.; Cadogan, J. M.; Hutchison, W. D.; Ridgway, M. C.

    2014-07-01

    We report the magnetocaloric effects and temperature coefficient of resistance (TCR) of La0.85Ag0.15MnO3 epitaxial thin films grown on single-crystal substrates of LaAlO3 (001) and SrTiO3 (001) using the chemical solution approach of polymer-assisted deposition (PAD). The film thicknesses are in the range 30-35 nm. Magnetocaloric effects, with entropy changes of -2.14 J/kg.K, in the case of the LaAlO3 substrate and -2.72 J/kg.K for the SrTiO3 substrate, (corresponding to a magnetic field variation of 2T) were obtained at room temperature. The refrigeration capacity at this field variation reached large values of 125 J/kg and 216 J/kg, indicating that these films prepared by PAD have the potential for microcooling applications. The temperature coefficient of resistance has been calculated from the resistivity measurements. A maximum TCR value of 3.01 % K-1 was obtained at 309 K, which shows that these films also have potential as uncooled thermometers for bolometric applications.

  5. Transonic-Wind-Tunnel Tests of the Aerodynamic Characteristics of a 0.15-Scale Model of the North American Aviation 255-Inch Fin-Stabilized External Store, Coord No. AF-AM-4

    NASA Technical Reports Server (NTRS)

    Fischetti, Thomas L.

    1958-01-01

    An investigation has been made in the Langley 8-foot transonic tunnels on the aerodynamic characteristics of a 0.15-scale model of the North American Aviation 255-inch fin-stabilized external store over a maximum Mach number range of 0.60 to 1.2 and on the effects of mounting lugs, of fin orientation, of fin aspect ratio, and of fixed-transition. The Reynolds number (based on a body length of 37.50 inches) varied from 9.8 x 10(exp 6) to 13.1 x 10(exp 6). The results indicate that the static margin of the finned store at low lift coefficients was only 9 percent of body length at subsonic Mach numbers and was reduced to zero at a Mach number of 1.0, Increasing the fin aspect ratio from 1.82 to 2.41 increased the subsonic static margin to 18 percent and provided a minimum margin of 9 percent near a Mach number of l.O. Store mounting lugs or fin orientation had only small effects on the aerodynamic characteristics of the basic store.

  6. In-situ Electric Field-Induced Modulation of Photoluminescence in Pr-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 Lead-Free Ceramics

    NASA Astrophysics Data System (ADS)

    Sun, Hai Ling; Wu, Xiao; Chung, Tat Hang; Kwok, K. W.

    2016-06-01

    Luminescent materials with dynamic photoluminescence activity have aroused special interest because of their potential widespread applications. One proposed approach of directly and reversibly modulating the photoluminescence emissions is by means of introducing an external electric field in an in-situ and real-time way, which has only been focused on thin films. In this work, we demonstrate that real-time electric field-induced photoluminescence modulation can be realized in a bulk Ba0.85Ca0.15Ti0.90Zr0.10O3 ferroelectric ceramic doped with 0.2 mol% Pr3+, owing to its remarkable polarization reversal and phase evolution near the morphotropic phase boundary. Along with in-situ X-ray diffraction analysis, our results reveal that an applied electric field induces not only typical polarization switching and minor crystal deformation, but also tetragonal-to-rhombohedral phase transformation of the ceramic. The electric field-induced phase transformation is irreversible and engenders dominant effect on photoluminescence emissions as a result of an increase in structural symmetry. After it is completed in a few cycles of electric field, the photoluminescence emissions become governed mainly by the polarization switching, and thus vary reversibly with the modulating electric field. Our results open a promising avenue towards the realization of bulk ceramic-based tunable photoluminescence activity with high repeatability, flexible controllability, and environmental-friendly chemical process.

  7. Superconducting properties of single crystalline FeTe{sub 1-x}Se{sub x} (x = 0, 0.15, 0.25, 0.35, 0.40 and 0.50)

    SciTech Connect

    Sudesh,; Kumar, R.; Varma, G. D.

    2015-06-24

    In this paper we have grown single crystalline samples of Se-doped FeTe compound using self-flux technique and studied the structural and electrical transport properties of the as-grown crystals. The samples have been grown with compositions FeTe{sub 1-x}Se{sub x} (x = 0, 0.15, 0.25, 0.35, 0.40 and 0.50). The as-grown samples are then investigated for their structural and superconducting properties by means of X-ray diffraction and physical property measurements. The XRD results of powdered samples reveal a single (tetragonal) phase with space group symmetry P4/nmm for all the samples. The lattice parameters are observed to reduce with increase of Se-doping at Te-site. Highest H{sub c2}(0) (∼180 T) value has been observed for FeTe{sub 0.5}Se{sub 0.5} sample.

  8. Insights on the fundamental lithium storage behavior of all-solid-state lithium batteries containing the LiNi0.8Co0.15Al0.05O2 cathode and sulfide electrolyte

    NASA Astrophysics Data System (ADS)

    Peng, Gang; Yao, Xiayin; Wan, Hongli; Huang, Bingxin; Yin, Jingyun; Ding, Fei; Xu, Xiaoxiong

    2016-03-01

    An insightful study on the fundamental lithium storage behavior of all-solid-state lithium battery with a structure of LiNi0.8Co0.15Al0.05O2 (NCA)/Li10GeP2S12/Li-In is carried out in this work. The relationship between electrochemical performances and particle size, surface impurities and defects of the NCA positive material is systematically investigated. It is found that a ball-milling technique can decrease the particle size and remove surface impurities of the NCA cathode while also give rise to surface defects which could be recovered by a post-annealing process. The results indicate that the interfacial resistance between the NCA and Li10GeP2S12 is obviously decreased during the ball-milling followed by a post-annealing. Consequently, the discharge capacity of NCA in the NCA/Li10GeP2S12/Li-In solid-state battery is significantly enhanced, which exhibits a discharge capacity of 146 mAh g-1 at 25 °C.

  9. Magnetic and magnetocaloric properties of La{sub 0.85}(Na{sub 1−x}K{sub x}){sub 0.15}MnO{sub 3} ceramics produced by reactive spark plasma sintering

    SciTech Connect

    Regaieg, Y.; Sicard, L.; Ammar-Merah, S.; Monnier, J.; Koubaa, M.; Cheikhrouhou, A.

    2014-05-07

    La{sub 0.85}(Na{sub 1−x}K{sub x}){sub 0.15}MnO{sub 3} (0 ≤ x ≤ 1) ceramics were synthesized from the raw La(OH){sub 3}, NaOH, KOH, and MnO{sub 2} powders using Reactive Spark Plasma Sintering. All the compounds were obtained as pure, dense, and ultrafine grained pellets. The Rietveld refinement of the X-Ray powder diffraction shows that all our synthesized samples are single phase and crystallize in the distorted rhombohedral system with R-3c space group. The thermal variation of their magnetization under a magnetic applied field of 50 mT shows a paramagnetic to ferromagnetic transition at a Curie temperature very close to room temperature. The magnetic entropy change, deduced from magnetization measurements versus magnetic applied field up to 5 T at several temperatures exhibits a maximum |ΔS{sub M}|{sub max} which slightly increases with increasing K content. The relative cooling power values, inferred from the |ΔS{sub M}| vs T peak broadening, vary slightly with the potassium content, reaching, values between 316 and 289 Jkg{sup −1}, in an applied magnetic field of 5 T, when x increases from 0 to 1. Technically, these large values make the prepared materials very promising for domestic magnetic refrigeration.

  10. Preparation of Superconducting Magnetostatic Wave (MSW) Devices Consisting of High-Tc Superconductor (HTS)/Perovskite-Type Manganite Heterostructures: Application of Pr0.85Ca0.15MnO3 as a MSW Waveguide

    NASA Astrophysics Data System (ADS)

    Hontsu, Shigeki; Sakatani, Tomotaka; Nishikawa, Hiroaki; Nakamori, Masaya; Fujimaki, Akira; Kawai, Tomoji

    2001-10-01

    Electric and magnetic properties of Pr0.85Ca0.15MnO3 (PCMO) have been investigated in order to apply the material to superconducting microwave devices. PCMO films are prepared on (100) surfaces of a (La0.3Sr0.7) (Al0.65Ta0.35)O3 (LSAT) single crystal by a pulsed laser deposition technique. By optimizing the deposition conditions, c-axis oriented PCMO epitaxial films are obtained. The Curie temperature (TC) of these PCMO films is approximately 130 K. The remanent magnetization and the coercive field for the sample measured at 77 K are about 240 G and 250 Oe, respectively. The relative dielectric constant and loss tangent are significantly decreased below TC and are about 13 and 6×10-3 at 30 K, respectively. Furthermore, magnetostatic wave (MSW) excitation is observed in a PCMO film by constructing a band elimination filter based on the MSW mode with YBa2Cu3O7-δ(YBCO)/PCMO heterostructure. These results indicate that PCMO is applicable for magnetic microwave devices including MSW devices with superconducting thin films.

  11. Archimedean solidlike superconducting framework in phase-separated K0.8F e1.6 +xS e2(0 ≤x ≤0.15 )

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Cai, Y.; Wang, Z. W.; Ma, C.; Chen, Z.; Yang, H. X.; Tian, H. F.; Li, J. Q.

    2015-02-01

    The superconducting (SC) phase in phase-separated (PS) K0.8F e1.6 +xS e2(0 ≤x ≤0.15 ) materials is found to crystallize on Archimedean solidlike frameworks, and this structural feature originates from a spinodal phase separation (SPS) at around Ts≈540 K , depending slightly on the Fe concentration, as revealed by in situ heating TEM observations and shown in a phase diagram. Two stable phases in K0.8F e1.6 +xS e2 are demonstrated to be the SC K0.5F e2S e2 and antiferromagnetic (AFM) K0.8F e1.6S e2 . The spinodal waves go along the systematic [113 ] direction and result in notable lamellar structure as illustrated by strain-field theoretical simulations. The three-dimensional SC framework is constructed with hollow truncated octahedron similar to that discussed for Archimedean solids. Based on this structural model, we can efficiently calculate the volume fraction of the SC phase in this type of PS SC material.

  12. Anisotropy of electric resistance and upper critical field in magnetic superconductor Dy0.6Y0.4Rh3.85Ru0.15B4

    NASA Astrophysics Data System (ADS)

    Terekhov, A. V.; Zolochevskii, I. V.; Khristenko, E. V.; Ishchenko, L. A.; Bezuglyi, E. V.; Zaleski, A.; Khlybov, E. P.; Lachenkov, S. A.

    2016-05-01

    We have measured temperature dependencies of the electric resistance R and upper critical magnetic field Hc2 of a magnetic superconductor Dy0.6Y0.4Rh3.85Ru0.15B4. The measurements were made for different angles φ of the magnetic field inclination to the direction of measuring current and revealed strong anisotropy of the behavior of R(T) and the values of Hc2(T). By using the Werthamer-Gelfand-Hohenberg theory, we determined the Maki parameter α and the parameter of the spin-orbital interaction. For φ =0∘ and 90° both parameters are close to zero, thus the magnitude of Hc2(0) ≈ 38 kOe is basically limited by the orbital effect. At φ =45∘ , a large value of α = 4.2 indicates dominating role of the spin-paramagnetic effect in the suppression of Hc2(0) down to 8.8 kOe. We suggest that such behavior of R(T) and Hc2(T) is caused by internal magnetism of the Dy atoms which may strongly depend on the magnetic field orientation.

  13. Temperature evolution of superparamagnetic clusters in single-crystal La0.85Sr0.15CoO3 characterized by nonlinear magnetic ac response and neutron depolarization

    NASA Astrophysics Data System (ADS)

    Lazuta, A. V.; Ryzhov, V. A.; Runov, V. V.; Khavronin, V. P.; Deriglazov, V. V.

    2015-07-01

    The representative measurements of the second harmonic in ac magnetization complemented by neutron depolarization have been performed for single-crystal La0.85Sr0.15CoO3 in the temperature range 97 K

  14. Atomic resolution imaging of oxygen atoms close to heavy atoms by HRTEM and ED, using the superconductor SmFeAsO0.85F0.15 as an example.

    PubMed

    Wang, Yumei; Ge, Binghui; Che, Guangcan

    2015-04-01

    Imaging of light atoms has always been a challenge in high-resolution electron microscopy. Image resolution is mainly limited by lens aberrations, especially the spherical aberration of the objective lens. Image deconvolution could correct for the image distortion by lens aberrations and restore the structure projection, the resolution of which is limited by the information limit of the microscope. Electron diffraction unrestricted by lens aberrations could overcome this resolution limit. Here we show a combination of electron diffraction and image deconvolution to reveal simultaneously the atomic columns of O and considerably heavier Sm at a very close distance (1.17 Å) in iron-based superconductor SmFeAsO0.85F0.15 using a conventional 200 kV electron microscope. The approach used here, starting from an image and an electron diffraction pattern, has an advantage for those radiation-sensitive samples. Besides, it can be applied to simultaneously imaging light and heavy atoms, even though they have a big difference in atomic number and a much smaller atomic distance than the microscope resolution. PMID:25635603

  15. A microwave-assisted sol-gel Pechini method for the synthesis of BaCe{sub 0.65}Zr{sub 0.20}Y{sub 0.15}O{sub 3-{delta}} powders

    SciTech Connect

    Barison, S.; Fabrizio, M.; Fasolin, S.; Montagner, F.; Mortalo, C.

    2010-09-15

    In this work, BaCe{sub 0.65}Zr{sub 0.20}Y{sub 0.15}O{sub 3-{delta}} powders with a perovskite-type structure were successfully synthesized by a microwave-assisted sol-gel Pechini method (SGP). By comparison, powders having the same nominal stoichiometry were also prepared without the microwave assistance. For the syntheses, nitrates were used as metal precursors, and ethylenediaminetetraacetic acid and ethylene glycol were used as complexing and polymerizing agents, respectively. An extensive structural and morphological investigation by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM) has been performed. Moreover, in order to check the phase transitions, simultaneous thermogravimetric and differential thermal analyses were (TG-DTA) performed on gels. With respect to the conventional Pechini method, the microwave-assisted process guaranteed a faster, energy-saving procedure for obtaining single-phase nanopowders of high purity. Moreover, a significant increase in pellet densities was achieved owing to a higher grain coalescence.

  16. Optimized structure stability and electrochemical performance of LiNi0.8Co0.15Al0.05O2 by sputtering nanoscale ZnO film

    NASA Astrophysics Data System (ADS)

    Lai, Yan-Qing; Xu, Ming; Zhang, Zhi-An; Gao, Chun-Hui; Wang, Peng; Yu, Zi-Yang

    2016-03-01

    LiNi0.8Co0.15Al0.05O2 (NCA) is one of the most promising cathode material for lithium-ion batteries (LIBs) in electric vehicles, which is successfully adopted in Tesla. However, the dissolution of the cation into the electrolyte is still a one of the major challenges (fading capacity and poor cyclability, etc.) presented in pristine NCA. Herein, a homogeneous nanoscale ZnO film is directly sputtered on the surface of NCA electrode via the magnetron sputtering (MS). This ZnO film is evidenced by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The results clearly demonstrate that ZnO film is fully and uniformly covered on the NCA electrodes. After 90 cycles at 1.0C, the optimized MS-2min coated NCA electrode delivers much higher discharge capacity with 169 mAh g-1 than that of the pristine NCA electrode with 127 mAh g-1. In addition, the discharge capacity also reaches 166 mAh g-1 at 3.0C, as compared to that of 125 mAh g-1 for the pristine electrode. The improved electrochemical performance can be ascribed to the superiority of the MS ZnO film that reduce charge transfer resistance and protect the NCA electrode from cation dissolution.

  17. Structural, thermal and microstructural studies of the proton conductor BaCe0.7Zr0.1Y0.05Zn0.15O3 for IT-SOFCs

    NASA Astrophysics Data System (ADS)

    Hossain, S.; Radenahmad, N.; Zaini, J. H.; Begum, F.; Azad, A. K.

    2016-03-01

    The specimen of BaCe0.7Zr0.1Y0.05Zn0.15O3, a perovskite-type electrolyte, has been synthesized for application in an anode-supported protonic solid oxide fuel cell by the conventional solid state reaction in air at 1200°C for 12 hours. Structural and thermal characterization has been performed using room temperature X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Thermogravimetric Analysis (TGA) and Differential Thermal Analysis (DTA). Rietveld analysis of the XRD data has been analyzed by FullProf program and confirmed the single phase of the sample with an orthorhombic crystal structure in the Pbnm space group. To understand the temperature dependent behaviour TG/DTA scan of the precursor was recorded. The TG/DTA scan was performed under constant flow of Argon which exhibits a gradual weight loss up to 900oC. The SEM image of the pellet surface of the sample shows that the sample sintered at 1200oC was dense and suitable to use as electrolyte in solid oxide fuel cells (SOFCs).

  18. Measurement of the proton spin structure function g1(x,Q2) for Q2 from 0.15 to 1.6 GeV2 with CLAS.

    PubMed

    Fatemi, R; Skabelin, A V; Burkert, V D; Crabb, D; De Vita, R; Kuhn, S E; Minehart, R; Adams, G; Anciant, E; Anghinolfi, M; Asavapibhop, B; Audit, G; Auger, T; Avakian, H; Bagdasaryan, H; Ball, J P; Barrow, S; Battaglieri, M; Beard, K; Bektasoglu, M; Bellis, M; Bertozzi, W; Bianchi, N; Biselli, A S; Boiarinov, S; Bonner, B E; Bosted, P E; Bouchigny, S; Bradford, R; Branford, D; Brooks, W K; Butuceanu, C; Calarco, J R; Carman, D S; Carnahan, B; Cetina, C; Ciciani, L; Clark, R; Cole, P L; Coleman, A; Connelly, J; Cords, D; Corvisiero, P; Crannell, H; Cummings, J P; De Sanctis, E; Degtyarenko, P V; Denizli, H; Dennis, L; Dharmawardane, K V; Dhuga, K S; Djalali, C; Dodge, G E; Doughty, D; Dragovitsch, P; Dugger, M; Dytman, S; Eckhause, M; Egiyan, H; Egiyan, K S; Elouadrhiri, L; Empl, A; Eugenio, P; Farhi, L; Feuerbach, R J; Freyberger, A; Ficenec, J; Forest, T A; Frolov, V; Funsten, H; Gaff, S J; Garçon, M; Gavalian, G; Gilad, S; Gilfoyle, G P; Giovanetti, K L; Girard, P; Gordon, C I O; Griffioen, K A; Guidal, M; Guillo, M; Guo, L; Gyurjyan, V; Hadjidakis, C; Hancock, D; Hardie, J; Heddle, D; Heimberg, P; Hersman, F W; Hicks, K; Hicks, R S; Holtrop, M; Hu, J; Hyde-Wright, C E; Ilieva, Y; Ito, M M; Jenkins, D; Joo, K; Keith, C; Kelley, J H; Kellie, J D; Khandaker, M; Kim, K Y; Kim, K; Kim, W; Klein, A; Klein, F J; Klimenko, A V; Klusman, M; Kossov, M; Koubarovski, V; Kramer, L H; Kuang, Y; Kuhn, J; Lachniet, J; Laget, J M; Lawrence, D; Li, Ji; Livingston, K; Longhi, A; Lukashin, K; Major, W; Manak, J J; Marchand, C; McAleer, S; McNabb, J W C; Mecking, B A; Mehrabyan, S; Mestayer, M D; Meyer, C A; Mikhailov, K; Mirazita, M; Miskimen, R; Morand, L; Morrow, S A; Muccifora, V; Mueller, J; Mutchler, G S; Napolitano, J; Nasseripour, R; Nelson, S O; Niccolai, S; Niculescu, G; Niculescu, I; Niczyporuk, B B; Niyazov, R A; Nozar, M; O'Brien, J T; O'Rielly, G V; Osipenko, M; Park, K; Pasyuk, E; Peterson, G; Pivnyuk, N; Pocanic, D; Pogorelko, O; Polli, E; Pozdniakov, S; Preedom, B M; Price, J W; Prok, Y; Protopopescu, D; Qin, L M; Raue, B A; Riccardi, G; Ricco, G; Ripani, M; Ritchie, B G; Rock, S E; Ronchetti, F; Rossi, P; Rowntree, D; Rubin, P D; Sabatié, F; Sabourov, K; Salgado, C; Santoro, J P; Sapunenko, V; Sargsyan, M; Schumacher, R A; Seely, M; Serov, V S; Sharabian, Y G; Shaw, J; Simionatto, S; Smith, E S; Smith, T; Smith, L C; Sober, D I; Sorrel, L; Spraker, M; Stavinsky, A; Stepanyan, S; Stoler, P; Strauch, S; Taiuti, M; Taylor, S; Tedeschi, D J; Thoma, U; Thompson, R; Todor, L; Tur, C; Ungaro, M; Vineyard, M F; Vlassov, A V; Wang, K; Weinstein, L B; Weller, H; Weygand, D P; Whisnant, C S; Wolin, E; Wood, M H; Yegneswaran, A; Yun, J; Zhang, B; Zhao, J; Zhou, Z

    2003-11-28

    Double-polarization asymmetries for inclusive ep scattering were measured at Jefferson Lab using 2.6 and 4.3 GeV longitudinally polarized electrons incident on a longitudinally polarized NH3 target in the CLAS detector. The polarized structure function g(1)(x,Q2) was extracted throughout the nucleon resonance region and into the deep inelastic regime, for Q(2)=0.15-1.64 GeV2. The contributions to the first moment Gamma(1)(Q2)= integral g(1)(x,Q2) dx were determined up to Q(2)=1.2 GeV2. Using a parametrization for g(1) in the unmeasured low x regions, the complete first moment was estimated over this Q2 region. A rapid change in Gamma(1) is observed for Q2<1 GeV2, with a sign change near Q(2)=0.3 GeV2, indicating dominant contributions from the resonance region. At Q(2)=1.2 GeV2 our data are below the perturbative QCD evolved scaling value. PMID:14683231

  19. Ni-induced local distortions in La1.85Sr0.15Cu1-yNiyO4 and their relevance to Tc suppression: An angular-resolved XAFS study

    NASA Astrophysics Data System (ADS)

    Haskel, Daniel; Stern, Edward A.; Polinger, Victor; Dogan, Fatih

    2001-09-01

    We present results from angular-resolved x-ray-absorption fine-structure (XAFS) measurements at the Ni, La, and Sr K edges of oriented powders of La1.85Sr0.15Cu1-yNiyO4, with y=0.01, 0.03, 0.06. A special magnetic alignment procedure allowed us to measure pure ĉ- and ab-oriented XAFS at the Ni K edge in identical fluorescence geometries. Both the x-ray-absorption near-edge structure and the XAFS unequivocally show that the NiO6 octahedra are contracted along the c axis by ~0.32 Å relative to CuO6 octahedra while the in-plane distances of NiO6 and CuO6 octahedra are the same within 0.01 Å. The NiO6 octahedral contraction drives the average ĉ axis contraction measured by diffraction with increasing content of Ni. The local ĉ axis shows strong spatial fluctuations, due to the different NiO6 and CuO6 octahedral configurations and the stronger bonding of a La3+ ion than a Sr2+ ion to the O(2) apical oxygens of such octahedra. We discuss the relevance of these findings to the mechanisms of loss of superconductivity at y~0.03 and hole localization above y~0.05 by Ni dopants.

  20. Soil aggregates, organic matter turnover and carbon balance in a Mediterranean eroded vineyard

    NASA Astrophysics Data System (ADS)

    Novara, Agata; Lo Papa, Giuseppe; Dazzi, Carmelo; Gristina, Luciano; Cerdà, Artemi

    2014-05-01

    dispersion, were isolated by mechanical shaking of 100 g, air-dried fine earth on a column with sieves of 250 and 63 μm using a Shaker AS 200 Sieve (RETSCH analytical, Haan, Germany) (200-mm sieves, amplitude of 2 cm, frequency of 1.6 Hz and a water flux of 2 litres minute-1). After the physical fractionation, we discriminate three main aggregate-size fractions: >250, 63-250 and <63 μm. Three replicate samples of 5 g of the soil material that we prepared for the fractionation from three different pedons along the slope gradient were incubated at two different depth intervals (Topsoil: 0-15 cm; Subsoil: 35-50 cm). Respiration was monitored during a period of 50 days keeping moisture and temperature constant. Both in topsoil and subsoil layers, particle size distribution in the depositional area shows a decrease of the finest size (<63 μm) respect to the soil in the detachment area. A SOC increase was observed due to depositional processes. Mean Residence Time of SOC strongly decreased in the subsoil particularly in the depositional area corroborating that erosion processes could be a SOC sink. Anyway we should also stress that, considering the estimated "off farm" erosion processes, the carbon budget resulted highly negative. References Barbera, V., Poma, I., Gristina, L., Novara, A., Egli, M. 2013. Long-term cropping systems and tillage management effects on soil organic carbon stock and steady state level of C sequestration rates in a semiarid environment. Land Degradation & Development, 23: 82- 91. DOI 10.1002/ldr.1055 Cerdà, A., Giménez-Morera, A.G., Bodí, M.B. 2009b. Soil and water losses from new citrus orchards growing on sloped soils in the western Mediterranean basin. Earth Surface Processes and Landforms 34, 1822-1830. Dick, W.A., Gregorich, E.G. 2004. Developing and maintaining soil organic matter levels. In: Schjonning, P., Elmholt,S., Christensen, B.T. (Eds.), Managing Soil Quality: Challenges in Modern Agriculture. CAB International, Wallingford, UK, pp

  1. Operation of a Five-Stage 40,000-CM(2)-Area Insulator Stack at 158 KV/CM

    SciTech Connect

    Anderson R.A.; Clark, Robert E.; Corcoran, P.A.; Douglas, John W.; Gilliland, T.L.; Horry, M.L.; Hughes, Thomas P.; Ives, H.C.; Long, F.W.; Martin, T.H.; McDaniel, D.H.; Milton, Osborne; Mostrom, Michael A.; Seamen, J.F.; Shoup, R.W.; Smith, I.D.; Smith, J.W.; Spielman, R.B.; Struve, K.W.; Stygar, W.A.; Vogtlin, George E.; Wagoner, T.C.; Yamamoto, Osamu

    1999-06-30

    We have demonstrated successful operation of a 3.35- m-diameter insulator stack at 158 kV/cm on five consecutive Z-accelerator shots. The stack consisted of five +45°-profile 5.715-cm-thick cross-linked-polystyrene (Rexolite- 1422) insulator rings, and four anodized- aluminum grading rings shaped to reduce the field at cathode triple junctions. The width of the voltage pulse at 89% of peak was 32 ns. We compare this result to a new empirical flashover relation developed from previous small-insulator experiments conducted with flat unanodized electrodes. The relation predicts a 50% flashover probability for a Rexolite insulator during an applied voltage pulse when Emaxe-0.27/d(teffC)1/10 = 224, where Emax is the peak mean electric field (kV/cm), d is the insulator thickness (cm), teff is the effective pulse width (ps), and C is the insulator circumference (cm). We find the Z stack can be operated at a stress at least 19% higher than predicted. This result, and previous experiments conducted by Vogtlin, suggest anodized electrodes with geometries that reduce the field at both anode and cathode triple junctions would improve the flashover strength of +45° insulators.

  2. The Complexity and Challenges of the ICD-9-CM to ICD-10-CM Transition in Emergency Departments

    PubMed Central

    Krive, Jacob; Patel, Mahatkumar; Gehm, Lisa; Mackey, Mark; Kulstad, Erik; Li, Jianrong ‘John’; Lussier, Yves A.; Boyd, Andrew D.

    2015-01-01

    Beginning October 2015, the Center for Medicare and Medicaid Services (CMS) will require medical providers to utilize the vastly expanded ICD-10-CM system. Despite wide availability of information and mapping tools for the next generation of the ICD classification system, some of the challenges associated with transition from ICD-9-CM to ICD-10-CM are not well understood. To quantify the challenges faced by emergency physicians, we analyzed a subset of a 2010 Illinois Medicaid database of emergency department ICD-9-CM codes, seeking to determine the accuracy of existing mapping tools in order to better prepare emergency physicians for the change to the expanded ICD-10-CM system. We found that 27% of 1,830 codes represented convoluted multidirectional mappings. We then analyzed the convoluted transitions and found 8% of total visit encounters (23% of the convoluted transitions) were clinically incorrect. The ambiguity and inaccuracy of these mappings may impact the work flow associated with the translation process and affect the potential mapping between ICD codes and CPT (Current Procedural Codes) codes, which determine physician reimbursement. PMID:25863652

  3. FURTHER EVALUATIONS OF RADIONUCLIDE PHYTOEXTRACTION FEASIBILITY USING SOILS FROM THE U.S. DEPARTMENT OF ENERGY COMPLEX

    SciTech Connect

    Jay Cornish

    1999-01-01

    Fiscal Year 98 (FY98) radionuclide phytoextraction studies involved resumption of the radiocesium-137 ({sup 137}Cs) investigations at Brookhaven National Laboratory (BNL) and the total uranium (U{sub t}) investigations at the Fernald Environmental Management Project (FEMP) site. This project was a collaborative effort involving scientists and engineers from MSE Technology Applications, Inc.; the US Department of Agriculture (USDA) Plant Growth Laboratory at Cornell University; Phytotech, Inc.; BNL; and FEMP. In both cases, the essential goal was to improve bioavailability, uptake, and transport of these contaminants from soil to leaf-and-stalk biomass (LSB). In particular, the practical goal was to demonstrate that about half the radionuclide contaminant mass present in near surface [{le}30 centimeters (cm) below ground surface (bgs)] soils could be transferred into LSB in approximately 5 years. Based on previous (1996) study results, it would require concentration ratios (CRs) of at 5-to-10 to achieve this goal. In addition, the rate of {sup 137}Cs removal must be {ge} 2.3% per year{sup -1} [i.e., (0.693/30.2) {center_dot} 100] to equal or exceed the loss of this radionuclide through natural decay. This report first presents and discusses the results from greenhouse and field evaluations of {sup 137}Cs uptake from rooting zone soils (0-15 cm bgs) located near the Medical/Biological Research Building (No. 490) at BNL. Contamination of this site resulted from the use of near surface soils originating at the former Hazardous Waste Management Facility (HWMF), which served as a source of landscaping materials for erosion control, etc. Project personnel from USDA evaluated various combinations of nonradioactive solutions of cesium chloride (CsCl) and rubidium chloride, ammonium nitrate solution (NH{sub 4}NO{sub 3}), and humic acid suspensions to enhance and sustain {sup 137}Cs levels in soil solution. Of the plants grown in such amended soils, the highest CRs occurred

  4. Retrofit and acceptance test of 30-cm ion thrusters

    NASA Technical Reports Server (NTRS)

    Poeschel, R. L.

    1981-01-01

    Six 30 cm mercury thrusters were modified to the J-series design and evaluated using standardized test procedures. The thruster performance meets the design objectives (lifetime objective requires verification), and documentation (drawings, etc.) for the design is completed and upgraded. The retrofit modifications are described and the test data for the modifications are presented and discussed.

  5. Search for Cm-248 in the early solar system

    NASA Technical Reports Server (NTRS)

    Lavielle, B.; Marti, K.; Pellas, P.; Perron, C.

    1992-01-01

    Possible evidence for the presence of Cm-248 in the early solar system was reported from fission gas studies (Rao and Gopalan, 1973) and recently from studies of very high nuclear track densities (not less than 5 x 10 exp 8/sq cm) in the merrillite of the H4 chondrite Forest Vale (F.V.) (Pellas et al., 1987). We report here an analysis of the isotopic abundances of xenon in F.V. phosphates and results of track studies in phosphate/pyroxene contacts. The fission xenon isotopic signature clearly identifies Pu-244 as the extinct progenitor. We calculate an upper limit Cm-248/Pu-244 to be less than 0.0015 at the beginning of Xe retention in F.V. phosphates. This corresponds to an upper limit of the ratio Cm-248/U-235 of not greater than 5 x 10 exp -5 further constraining the evidence for any late addition of freshly synthesized actinide elements just prior to solar system formation. The fission track density observed after annealing the phosphates at 290C (1 hr, which essentially erases spallation recoil tracks) is also in agreement with the Pu-244 abundance inferred from fission Xe. The spallation recoil tracks produced during the 76 Ma cosmic-ray exposure account for the very high track density in merrillites.

  6. Adaptation of California Measure of Mental Motivation-CM3

    ERIC Educational Resources Information Center

    Özdemir, Hasan Fehmi; Demirtasli, Nükhet Çikrikçi

    2015-01-01

    Education without doubt, plays a vital role for individuals to gain the essential personal traits of the 21st century, also known as "knowledge age". One of the most important skills among these fundamental qualities which the individuals should be equipped with is critical thinking. California Measure of Mental Motivation-CM3 was…

  7. Cosmological constraints from 21cm surveys after reionization

    SciTech Connect

    Visbal, Eli; Loeb, Abraham; Wyithe, Stuart E-mail: aloeb@cfa.harvard.edu

    2009-10-01

    21cm emission from residual neutral hydrogen after the epoch of reionization can be used to trace the cosmological power spectrum of density fluctuations. Using a Fisher matrix formulation, we provide a detailed forecast of the constraints on cosmological parameters that are achievable with this probe. We consider two designs: a scaled-up version of the MWA observatory as well as a Fast Fourier Transform Telescope. We find that 21cm observations dedicated to post-reionization redshifts may yield significantly better constraints than next generation Cosmic Microwave Background (CMB) experiments. We find the constraints on Ω{sub Λ}, Ω{sub m}h{sup 2}, and Ω{sub ν}h{sup 2} to be the strongest, each improved by at least an order of magnitude over the Planck CMB satellite alone for both designs. Our results do not depend as strongly on uncertainties in the astrophysics associated with the ionization of hydrogen as similar 21cm surveys during the epoch of reionization. However, we find that modulation of the 21cm power spectrum from the ionizing background could potentially degrade constraints on the spectral index of the primordial power spectrum and its running by more than an order of magnitude. Our results also depend strongly on the maximum wavenumber of the power spectrum which can be used due to non-linearities.

  8. The 21 cm signature of a cosmic string loop

    SciTech Connect

    Pagano, Michael; Brandenberger, Robert E-mail: rhb@physics.mcgill.ca

    2012-05-01

    Cosmic string loops lead to nonlinear baryon overdensities at early times, even before the time which in the standard LCDM model corresponds to the time of reionization. These overdense structures lead to signals in 21 cm redshift surveys at large redshifts. In this paper, we calculate the amplitude and shape of the string loop-induced 21 cm brightness temperature. We find that a string loop leads to a roughly elliptical region in redshift space with extra 21 cm emission. The excess brightness temperature for strings with a tension close to the current upper bound can be as high as 1deg K for string loops generated at early cosmological times (times comparable to the time of equal matter and radiation) and observed at a redshift of z+1 = 30. The angular extent of these predicted 'bright spots' is x{sup '}. These signals should be detectable in upcoming high redshift 21 cm surveys. We also discuss the application of our results to global monopoles and primordial black holes.

  9. Calorimetric determination of kQ factors for NE 2561 and NE 2571 ionization chambers in 5 cm × 5 cm and 10 cm × 10 cm radiotherapy beams of 8 MV and 16 MV photons

    NASA Astrophysics Data System (ADS)

    Krauss, Achim; Kapsch, Ralf-Peter

    2007-10-01

    The relative uncertainty of the ionometric determination of the absorbed dose to water, Dw, in the reference dosimetry of high-energy photon beams is in the order of 1.5% and is dominated by the uncertainty of the calculated chamber- and energy-dependent correction factors kQ. In the present investigation, kQ values were determined experimentally in 5 cm × 5 cm and 10 cm × 10 cm radiotherapy beams of 8 MV and 16 MV bremsstrahlung by means of a water calorimeter operated at 4 °C. Ionization chambers of the types NE 2561 and NE 2571 were calibrated directly in the water phantom of the calorimeter. The measurements were carried out at the linear accelerator of the Physikalisch-Technische Bundesanstalt. It is shown that the kQ factor of a single ionization chamber can be measured with a standard uncertainty of less than 0.3%. No significant variations of kQ were found for the different lateral sizes of the radiation fields used in this investigation.

  10. Electronic and magnetic properties of Am and Cm

    SciTech Connect

    Edelstein, N.

    1985-02-01

    A review of the present status of the analyses of the optical spectra of Am and Cm in various oxidation states is given. From these analyses, the magnetic properties of the ground states of these ions can be determined. These predicted values are compared with the various magnetic measurements available.

  11. Maribo—A new CM fall from Denmark

    NASA Astrophysics Data System (ADS)

    Haack, Henning; Grau, Thomas; Bischoff, Addi; Horstmann, Marian; Wasson, John; Sørensen, Anton; Laubenstein, Matthias; Ott, Ulrich; Palme, Herbert; Gellissen, Marko; Greenwood, Richard C.; Pearson, Victoria K.; Franchi, Ian A.; Gabelica, Zelimir; Schmitt-Kopplin, Philippe

    2012-01-01

    Maribo is a new Danish CM chondrite, which fell on January 17, 2009, at 19:08:28 CET. The fall was observed by many eye witnesses and recorded by a surveillance camera, an all sky camera, a few seismic stations, and by meteor radar observatories in Germany. A single fragment of Maribo with a dry weight of 25.8 g was found on March 4, 2009. The coarse-grained components in Maribo include chondrules, fine-grained olivine aggregates, large isolated lithic clasts, metals, and mineral fragments (often olivine), and rare Ca,Al-rich inclusions. The components are typically rimmed by fine-grained dust mantles. The matrix includes abundant dust rimmed fragments of tochilinite with a layered, fishbone-like texture, tochilinite-cronstedtite intergrowths, sulfides, metals, and carbonates often intergrown with tochilinite. The oxygen isotopic composition: (δ17O = -1.27‰; δ18O = 4.96‰; Δ17O = -3.85‰) plots at the edge of the CM field, close to the CCAM line. The very low Δ17O and the presence of unaltered components suggest that Maribo is among the least altered CM chondrites. The bulk chemistry of Maribo is typical of CM chondrites. Trapped noble gases are similar in abundance and isotopic composition to other CM chondrites, stepwise heating data indicating the presence of gas components hosted by presolar diamond and silicon carbide. The organics in Maribo include components also seen in Murchison as well as nitrogen-rich components unique to Maribo.

  12. Soil Evaporation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil evaporation can significantly influence energy flux partitioning of partially vegetated surfaces, ultimately affecting plant transpiration. While important, quantification of soil evaporation, separately from canopy transpiration, is challenging. Techniques for measuring soil evaporation exis...

  13. Soil carbon stock and soil characteristics at Tasik Chini Forest Reserve, Pahang, Malaysia

    NASA Astrophysics Data System (ADS)

    Nur Aqlili Riana, R.; Sahibin A., R.

    2015-09-01

    This study was carried out to determine soil carbon stock and soil characteristic at Tasik Chini Forest Reserve (TCFR), Pahang. A total of 10 (20 m x 25 m) permanent sampling plot was selected randomly within the area of TCFR. Soil samples were taken from all subplots using dutch auger based on soil depth of 0-20cm, 20-40cm, 40-60cm. Soil parameters determined were size distribution, soil water content, bulk density, organic matter, organic carbon content, pH and electrical conductivity. All parameters were determined following their respective standard methods. Results obtained showed that the soil in TCFR was dominated by clay texture (40%), followed by sandy clay loam (30%), loam (20%). Silty clay, clay loam and sandy loam constitutes about 10% of the soil texture. Range of mean percentage of organic matter and bulk density are from 2.42±0.06% to 11.64±0.39% and 1.01 to 1.04 (gcm-ł), respectively. Soil pH are relatively very acidic and mean of electrical conductivity is low. Soil carbon content ranged from 0.83±0.03 to 1.87±0.41%. All soil parameter showed a decreasing trend with depth except electrical conductivity. ANOVA test of mean percentage of organic matter, soil water content, soil pH and electrical conductivity showed a significant difference between plot (p<0.05). However there are no significant difference of mean bulk density between plots (p>0.05). There are no significant difference in mean percentage of soil water content, organic matter and bulk density between three different depth (p>0.05). There were a significant difference on percentage of soil carbon organic between plots and depth. The mean of soil organic carbon stock in soil to a depth of 60 cm calculated was 35.50 t/ha.

  14. Carbon Sequestration in Reclaimed Mined Soils of Ohio

    SciTech Connect

    M.K. Shukla; R. Lal

    2005-01-01

    Assessment of soil organic carbon (SOC) sequestration potential of reclaimed minesoils (RMS) is important for preserving environmental quality and increasing agronomic yields. The experimental sites were characterized by distinct age chronosequences of reclaimed minesoil and were located in Guernsey, Morgan, Noble, and Muskingum Counties of Ohio. These sites are owned and maintained by Americal Electrical Power. These sites were reclaimed (1) with topsoil application, and (2) without topsoil application, and were under continuous grass or forest cover. In this report results are presented from the sites reclaimed without topsoil application between 1956 and 1969. Three sites are under continuous grass cover and the three under forest cover since reclamation. Three core and three bulk soil samples were collected from each site from three slope positions (upper; middle, and lower) for 0-15 cm and 15-30 cm depths, and texture, pH and electrical conductivity (EC), soil bulk density ({rho}{sub b}), SOC, total nitrogen (TN) stocks were determined. No differences in sand and clay contents, bulk density, SOC and TN stocks were observed within different slope positions within each site. However, sand [R56-G (17.1%) < R69-G (29.1%) = R62-G (29.1%)], and silt [R56-G (58.3%) > R69-G (47.7%)] contents, bulk density [R62-G (1.25 Mg ha{sup -1}) > R69-G (0.94 Mg ha{sup -1}) = R62-G (0.90 Mg ha{sup -1})] varied significantly on the upper slope position among sites under continuous grass cover. Smaller but significant differences were also observed for pH [R69-G (8.3) > R56-G (7.7) = R62-G (7.9)] and EC [R56-G (0.66 dS m{sup -1}) > R62-G (0.25 dS m{sup -1}) = R69-G (0.24 dS m{sup -1})] on upper slope positions among sites under grass. Comparing all sites stochastically, sand and clay contents were similar among all sites except R62-F for both depths. Similarly, soil bulk density was also similar among all sites except R62-G for both depths. There were few differences in total

  15. Biochemical activities in soil overlying Paraho processed oil shale

    SciTech Connect

    Sorensen, D.L.

    1982-01-01

    Microbial activity development in soil materials placed over processed oil shale is vital to the plant litter decomposition, cycling of nutrients, and soil organic matter accumulation and maintenance. Samples collected in the summers of 1979, 1980, and 1981 from revegetated soil 30-, 61-, and 91-cm deep overlying spent oil shale in the Piceance Basin of northwestern Colorado were assayed for dehydrogenease activity with glucose and without glucose, for phosphatase activity, and for acetylene reduction activity. Initial ammonium and nitrite nitrogen oxidation rates and potential denitrification rates were determined in 1981. Zymogenous dehydrogenase activity, phosphatase activity, nitrogenase activity, potential denitrification rates, and direct microscopic counts were lower in surface soil 30 cm deep, and were frequently lower in surface soil 61 cm deep over processed shale than in a surface-disturbed control area soil. Apparently, microbial activities are stressed in these more shallow replaced soils. Soil 61 cm deep over a coarse-rock capillary barrier separating the soil from the spent shale, frequently had improved biochemical activity. Initial ammonium and nitrite nitrogen oxidation rates were lower in all replaced soils than in the disturbed control soil. Soil core samples taken in 1981 were assayed for dehydrogenase and phosphatase activities, viable bacteria, and viable fungal propagules. In general, microbial activity decreased quickly below the surface. At depths greater than 45 cm, microbial activities were similar in buried spent shale and surface-disturbed control soil.

  16. The Paris meteorite, the least altered CM chondrite so far

    NASA Astrophysics Data System (ADS)

    Hewins, Roger H.; Bourot-Denise, Michèle; Zanda, Brigitte; Leroux, Hugues; Barrat, Jean-Alix; Humayun, Munir; Göpel, Christa; Greenwood, Richard C.; Franchi, Ian A.; Pont, Sylvain; Lorand, Jean-Pierre; Cournède, Cécile; Gattacceca, Jérôme; Rochette, Pierre; Kuga, Maïa; Marrocchi, Yves; Marty, Bernard

    2014-01-01

    The Paris chondrite provides an excellent opportunity to study CM chondrules and refractory inclusions in a more pristine state than currently possible from other CMs, and to investigate the earliest stages of aqueous alteration captured within a single CM bulk composition. It was found in the effects of a former colonial mining engineer and may have been an observed fall. The texture, mineralogy, petrography, magnetic properties and chemical and isotopic compositions are consistent with classification as a CM2 chondrite. There are ∼45 vol.% high-temperature components mainly Type I chondrules (with olivine mostly Fa0-2, mean Fa0.9) with granular textures because of low mesostasis abundances. Type II chondrules contain olivine Fa7 to Fa76. These are dominantly of Type IIA, but there are IIAB and IIB chondrules, II(A)B chondrules with minor highly ferroan olivine, and IIA(C) with augite as the only pyroxene. The refractory inclusions in Paris are amoeboid olivine aggregates (AOAs) and fine-grained spinel-rich Ca-Al-rich inclusions (CAIs). The CAI phases formed in the sequence hibonite, perovskite, grossite, spinel, gehlenite, anorthite, diopside/fassaite and forsterite. The most refractory phases are embedded in spinel, which also occurs as massive nodules. Refractory metal nuggets are found in many CAI and refractory platinum group element abundances (PGE) decrease following the observed condensation sequences of their host phases. Mn-Cr isotope measurements of mineral separates from Paris define a regression line with a slope of 53Mn/55Mn = (5.76 ± 0.76) × 106. If we interpret Cr isotopic systematics as dating Paris components, particularly the chondrules, the age is 4566.44 ± 0.66 Myr, which is close to the age of CAI and puts new constraints on the early evolution of the solar system. Eleven individual Paris samples define an O isotope mixing line that passes through CM2 and CO3 falls and indicates that Paris is a very fresh sample, with variation explained

  17. The dynamics of soil aggregate breakdown in water in response to landuse as measured with laser diffraction technique

    NASA Astrophysics Data System (ADS)

    Oyedele, D. J.; Pini, R.; Sparvoli, E.; Scatena, M.

    2012-04-01

    The Mastersizer 2000G (Malvern Instruments) Diffraction Instrument was used to assess and quantify the breakdown of soil aggregates and compute wet aggregate stability indices. The study was aimed at evolving a novel rapid method of determining soil aggregate stability. Bulk surface (0-15 cm) soil samples were collected under 5 different land uses in the Teaching and Resrach Farm of Obafemi Awolowo University, Ile-Ife, Nigeria. About 0.5g of the soils aggregates (0.5 -1 mm diameter) were evaluated in the laser diffractometer with the stirrer operated at 500 rpm and the pump at 1800 rpm. The different size aggregates and particles of sand silt and clay were quantified periodically. Water stable aggregates greater than 250 µm (WSA>250), water stable aggregates less than 250 µm (WSA<250), water dispersible clay index (WDI), and mean volume diameter (MVD) among others were computed from the laser diffraction data. The values were compared with the classical Yoder wet sieving technique. The WSA>250 was significantly higher on the soils under Forest (FR), Cacao (CC), Teak (TK) and Oil Palm (OP) plantations, while it was significantly lowest under no-tillage (NT) and continuous cultivation (CT). The pasture (PD) was not significantly different from either the cultivated and the non-cultivated soils. Conversely, the WSA<250 and water dispersible clay index was highest in the cultivated soils (CT and NT) and lowest in the non-cultivated soils (FR, TK, CC and OP) while the PD was in-between. The MVD also followed a similar trend as the WSA>250. The wet sieving water stable aggregates index (WSI>250) was significantly correlated with WSA>250 (r = 0.75), MVD (r = 0.75), WDI (r = -0.68) and WSA<250 (r = - 0.73). All the laser diffraction measured aggregation indices were significantly correlated with the organic matter contents of the soils. Thus the laser diffraction promises a rapid and comprehensive method of evaluation of soil aggregate stability.

  18. Three-dimensional prediction of soil physical, chemical, and hydrological properties in a forested catchment of the Santa Catalina CZO

    NASA Astrophysics Data System (ADS)

    Shepard, C.; Holleran, M.; Lybrand, R. A.; Rasmussen, C.

    2014-12-01

    Understanding critical zone evolution and function requires an accurate assessment of local soil properties. Two-dimensional (2D) digital soil mapping provides a general assessment of soil characteristics across a sampled landscape, but lacks the ability to predict soil properties with depth. The utilization of mass-preserving spline functions enable the extrapolation of soil properties with depth, extending predictive functions to three-dimensions (3D). The present study was completed in the Marshall Gulch (MG) catchment, located in the Santa Catalina Mountains, 30 km northwest of Tucson, Arizona, as part of the Santa Catalina-Jemez Mountains Critical Zone Observatory. Twenty-four soil pits were excavated and described following standard procedures. Mass-preserving splines were used to extrapolate mass carbon (kg C m-2); percent clay, silt, and sand (%); sodium mass flux (kg Na m-2); and pH for 24 sampled soil pits in 1-cm depth increments. Saturated volumetric water content (θs) and volumetric water content at 10 kPa (θ10) were predicted using ROSETTA and established empirical relationships. The described profiles were all sampled to differing depths; to compensate for the unevenness of the profile descriptions, the soil depths were standardized from 0.0 to 1.0 and then split into five equal standard depth sections. A logit-transformation was used to normalize the target variables. Step-wise regressions were calculated using available environmental covariates to predict the properties of each variable across the catchment in each depth section, and interpolated model residuals added back to the predicted layers to generate the final soil maps. Logit-transformed R2 for the predictive functions varied widely, ranging from 0.20 to 0.79, with logit-transformed RMSE ranging from 0.15 to 2.77. The MG catchment was further classified into clusters with similar properties based on the environmental covariates, and representative depth functions for each target variable

  19. Synthesis, magnetic and dielectric characterization of nanocrystalline solid solutions of In{sub 2−x}Ni{sub x}O{sub 3} (x = 0.05, 0.10 and 0.15)

    SciTech Connect

    Ahmad, Tokeer; Khatoon, Sarvari; Coolahan, Kelsey

    2013-09-01

    Graphical abstract: Monophasic and crystalline In{sub 2−x}Ni{sub x}O{sub 3} nanoparticles of size 8–15 nm have been synthesized solvothermally and showed red shift in energy band gap which decreases on increasing Ni{sup 2+} concentration in In{sub 2}O{sub 3} host lattice. - Highlights: • Monophasic Ni-doped In{sub 2}O{sub 3} nanoparticles by solvothermal method for first time. • Plausible reaction mechanism using thermogravimetric analysis. • High surface area with small particle size obtained. • Solid solutions exhibit paramagnetism with very weak antiferromagnetic interactions. - Abstract: In{sub 2−x}Ni{sub x}O{sub 3} (x = 0.05, 0.10 and 0.15) nanoparticles were successfully synthesized by solvothermal method by the thermal decomposition of oxalate precursor at 450 °C for the first time. X-ray diffraction studies showed the formation of highly crystalline and monophasic cubic structure of In{sub 2}O{sub 3} which is attributed to the formation of solid solution. These nanoparticles show good optical transmittance in the visible region. Optical measurements showed an energy band gap which decreases with increasing Ni concentration. The grain size decreases from 15 nm to 8 nm and surface area increases from 90 to 254 m{sup 2} g{sup −1} on increasing the Ni concentration. High dielectric constant and dielectric loss has been obtained which indicates the conducting nature of these solid solutions. Magnetic measurements showed that the samples are strong paramagnetic in nature with very weak antiferromagnetic interactions. No evidence of ferromagnetism is observed for these solid solutions at room temperature.

  20. Atomic-resolution scanning transmission electron microscopy study of the valence state transition in (Pr0.85Y0.15)0.7Ca0.3CoO3

    NASA Astrophysics Data System (ADS)

    Klie, Robert; Gulec, Ahmet; Phelan, Daniel; Leighton, Chris

    2015-03-01

    The observation of a first-order magnetic/electronic transition in certain Pr-based perovskite cobaltites, such as Pr0.5Ca0.5CoO3, has attracted significant attention. A simultaneous metal to insulator transition, a sharp drop in the magnetic moment and a change in the electronic structure has been reported to occur below TMIT. It was suggested that the low-temperature phase is stabilized by a shift of the mixed valence Co3+/Co4+ toward pure Co3+, enabled by a valence change of Pr3+ to Pr4+. We present an atomic-scale study of (Pr1-yYy)0.7Ca0.3CoO3 using atomic-resolution imaging, electron energy-loss spectroscopy and in-situ cooling experiments in a scanning transmission electron microscope. The valence state transition in (Pr1-yYy)0.7Ca0.3CoO3 occurs at a transition temperature TMIT ~ 135K for y = 0.15 and the in-situ cooling experiments are conducted at 90 K. At room temperature, we find oxygen vacancy ordering associated with a Co valence state ordering and we will demonstrate that the electron transfer occurs from Pr to Co below the transition temperature. The oxygen vacancy ordering disappears as a result of the Co valence state transition. The effects of oxygen mobility, sample homogeneity and the impact on the observed transition will be discussed. This work is supported by a grant from the National Science Foundation (NSF-DMR1408427).

  1. Unraveling the Degradation Process of LiNi0.8Co0.15Al0.05O2 Electrodes in Commercial Lithium Ion Batteries by Electronic Structure Investigations.

    PubMed

    Kleiner, Karin; Melke, Julia; Merz, Michael; Jakes, Peter; Nagel, Peter; Schuppler, Stefan; Liebau, Verena; Ehrenberg, Helmut

    2015-09-01

    The degradation of LiNi0.8Co0.15Al0.05O2 (LNCAO) is reflected by the electrochemical performance in the fatigued state and correlated with the redox behavior of these cathodes. The detailed electrochemical performance of these samples is investigated by galvanostatic and voltammetric cycling as well as with the galvanostatic intermittent titration technique (GITT). Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy was used to investigate the oxidation state of all three materials at the Ni L2,3, O K, and Co L2,3 edges at five different states of charge. Surface and more bulklike properties are distinguished by total electron yield (TEY) and fluorescence yield (FY) measurements. The electrochemical investigations revealed that the changes in the cell performance of the differently aged materials can be explained by considering the reaction kinetics of the intercalation/deintercalation process. The failure of the redox process of oxygen and nickel at low voltages leads to a significant decrease of the reaction rates in the fatigued cathodes. The accompanied cyclic voltammogram (CV) peaks appear as two peaks because of the local minimum of the reaction rate, although it is one peak in the CV of the calendarically aged LNCAO. The absence of the oxidation/reduction process at low voltages can be traced back to changes in the surface morphology (formation of a NiO-like structure). Further consequences of these material changes are overpotentials, which lead to capacity losses of up to 30% (cycled with a C/3 rate). PMID:26281920

  2. Internal static electric and magnetic field at the copper cite in a single crystal of the electron-doped high-Tc superconductor Pr1.85Ce0.15CuO4 -y

    NASA Astrophysics Data System (ADS)

    Wu, Guoqing; Zamborszky, F.; Reyes, A. P.; Kuhns, P. L.; Greene, R. L.; Clark, W. G.

    2014-12-01

    We report 63 ,65Cu -NMR spectroscopy and Knight shift measurements on a single crystal of the electron-doped high-Tc superconductor Pr1.85Ce0.15CuO4 -y with an applied magnetic field (H ) up to 26.42 T. A very small NQR frequency is obtained with the observation of the spectrum, which shows an extremely wide continuous distribution of it that becomes significantly narrower below 20 K at H ∥c where the superconductivity is completely suppressed, indicating a significant change in the charge distribution at the Cu site, while the corresponding change at H ⊥c is negligible when the superconductivity is present or not fully suppressed. The Knight shift and central linewidth are proportional to the applied magnetic field with a high anisotropy. We find that the magnitude of the internal static magnetic field at the copper is dominated by the anisotropic Cu2 + 3 d orbital contributions, while its weak temperature dependence is mainly determined by the isotropic contact hyperfine coupling to the paramagnetic Pr3 + spins, which also gives rise to the full distribution of the internal static magnetic field at the copper for H ⊥c . This internal static electric and magnetic field environment at the copper is very different from that in the hole-doped cuprates, and may provide new insight into the understanding of high-Tc superconductivity. Other experimental techniques are needed to verify whether the observed significant narrowing of the charge distribution at the Cu site with H ∥c is caused by the charge ordering [E. H. da Silva Neto et al., Science (to be published, 2014)] or a new type of charge modulation.

  3. Evaluation of the effect of various mechanisms on the magnetoresistance of lanthanum manganites La0.85Sr0.15MnO3 with activation-type conductivity

    NASA Astrophysics Data System (ADS)

    Gudin, S. A.; Kurkin, M. I.; Neifel'd, E. A.; Korolev, A. V.; Gapontseva, N. N.; Ugryumova, N. A.

    2015-11-01

    A method is proposed that allows one to divide the magnetoresistance (MR) observed in manganites into three mechanisms: dimensional, orientational, and magnetic. The first two mechanisms are associated with the stratification of a substance into ferromagnetic and nonferromagnetic phases, which significantly differ in electric resistivity. The dimensional mechanism of MR is attributed to the effect of a magnetic field on the size of magnetic inclusions. The orientational mechanism of MR is determined by the dependence of electric resistivity on the mutual orientation of the magnetizations of magnetic inclusions. The magnetic mechanism of MR is determined by the properties of the magnetization of a ferromagnet, in particular, by the Curie-Weiss singularity on the temperature dependence of magnetic susceptibility at the Curie point. This mechanism exists in homogeneous substances, although its value may depend on the magnetic properties of inhomogeneities. The method is developed for substances with activation-type conductivity and is applied to the analysis of MR of La0.85Sr0.15MnO3 manganite near the Curie point, where the MR attains its maximum. The dimensional mechanism turns out to be dominant in magnetic fields H greater than the saturation field H s ( H > H s ). The orientational, dimensional, and magnetic mechanisms have a comparable effect on the MR for H < H s . The effect of the orientational mechanism on MR is relatively weak (does not exceed the third part of the total MR), although this mechanism determines the giant MR in multilayered metal films. The possibility of application of the method to the analysis of MR near the insulator-metal transition is analyzed.

  4. Evaluation of the effect of various mechanisms on the magnetoresistance of lanthanum manganites La{sub 0.85}Sr{sub 0.15}MnO{sub 3} with activation-type conductivity

    SciTech Connect

    Gudin, S. A. Kurkin, M. I.; Neifel’d, E. A.; Korolev, A. V.; Gapontseva, N. N.; Ugryumova, N. A.

    2015-11-15

    A method is proposed that allows one to divide the magnetoresistance (MR) observed in manganites into three mechanisms: dimensional, orientational, and magnetic. The first two mechanisms are associated with the stratification of a substance into ferromagnetic and nonferromagnetic phases, which significantly differ in electric resistivity. The dimensional mechanism of MR is attributed to the effect of a magnetic field on the size of magnetic inclusions. The orientational mechanism of MR is determined by the dependence of electric resistivity on the mutual orientation of the magnetizations of magnetic inclusions. The magnetic mechanism of MR is determined by the properties of the magnetization of a ferromagnet, in particular, by the Curie–Weiss singularity on the temperature dependence of magnetic susceptibility at the Curie point. This mechanism exists in homogeneous substances, although its value may depend on the magnetic properties of inhomogeneities. The method is developed for substances with activation-type conductivity and is applied to the analysis of MR of La{sub 0.85}Sr{sub 0.15}MnO{sub 3} manganite near the Curie point, where the MR attains its maximum. The dimensional mechanism turns out to be dominant in magnetic fields H greater than the saturation field H{sub s} (H > H{sub s}). The orientational, dimensional, and magnetic mechanisms have a comparable effect on the MR for H < H{sub s}. The effect of the orientational mechanism on MR is relatively weak (does not exceed the third part of the total MR), although this mechanism determines the giant MR in multilayered metal films. The possibility of application of the method to the analysis of MR near the insulator–metal transition is analyzed.

  5. High angular resolution cosmic X-ray astronomy observations in the energy range 0.15-2 keV and XUV observations of nearby stars from an attitude controlled rocket

    NASA Technical Reports Server (NTRS)

    Garmire, G. P.

    1974-01-01

    The construction of a two dimensional focusing Wolter Type I mirror system for X-ray and XUV astronomical observations from an Astrobee F sounding rocket is described. The mirror design goal will have a one degree field, a 20-arc seconds resolution, an effective area of about 50 sq cm at 1 keV and 10 sq cm at 0.25 keV on axis. A star camera provides aspect data to about 15-arc seconds. Two detectors are placed at the focus with an interchange mechanism to allow a detector change during flight. The following specific developments are reported: (1) position sensitive proportional counter development; (2) channel plate multiplier development; (3) telescope mirror development and payload structure; (4) Australian rocket flight results; (5) Comet Kohoutek He I observation; and (6) Vela, Puppis A, and Gem-Mon bright patch observations.

  6. Does strip-tillage could limit the drop of yields on soils of reduced depth of profiles in loess areas?

    NASA Astrophysics Data System (ADS)

    Rejman, Jerzy; Rafalska-Przysucha, Anna; Jadzczyszyn, Jan; Rodzik, Jan

    2016-04-01

    Strip tillage restrict a tillage operation to seed rows and enables a combination of tillage, sowing and application of fertilizers during one pass of agricultural machines. The practice decreases the costs of fuel and limits the risk of water erosion by the increase of infiltration of soil water. In the studies, we put a hypothesis that strip tillage is a tool to increase the yields on soils of reduced profiles. Studies were carried out in the loess area of the Lublin Upland (Poland). The site is cultivated from the beginning of the 18th century, and strip tillage is performed from 2008. All plant residues is left after harvest in the field and mixed with the soil by disc harrow. Measurements of solum depth (Ap-BC), soil properties and parameters of plant growth were carried out in 108 points in the field of the area of 4 ha. Crops included winter wheat (2014) and maize (2015). Studies showed that the profiles of Haplic Luvisol were largely truncated or overbuilt due to erosion and moldboard plow in the past. Solum depth ranged from 0.2 to 3.6 m (mean=1.29 m, CV=64%), and soils with the non-eroded, slightly, moderately, severely, very severely eroded and depositional profiles represented 13, 32, 10, 5, 8 and 32% of total number of cores, respectively. In a result of modification of profiles, clay content ranged from 84 to 222 (145; 16%) in the layer of 0-15 cm, whereas SOC concentration remained on relatively low level and ranged from 4.3 to 16.8 g/kg (9.1; 21.4%). Soil water content (SWC) within depth of 1-m profile was differentiated at the start of measurements in the middle of June 2015. The SWC was the highest in non-eroded and depositional soils and the smallest in severely and very severely eroded soils. The difference of 5% has maintained during the whole growing season and did not affect the growth of plants till the phase of flowering. Then, the plants on shallower soils passed quicker to the next phenological phases in comparison to the plants on deeper

  7. Soil adherence to human skin

    SciTech Connect

    Driver, J.H.; Konz, J.J.; Whitmyre, G.K. )

    1989-12-01

    Dermal exposure to soils contaminated with toxic chemicals represents a potential public health hazard. These soils, contaminated with chemicals such as PCBs and dioxins, may be found at various locations throughout the US. Furthermore, dermal contact with pesticide-containing particles and contaminated soil particles is of importance for exposures to agricultural workers who reenter fields after pesticide application. With respect to dermal exposure to pesticide-contaminated particulate matter, several occurrences of human toxicity to ethyl parathion in citrus groves have been reported. These exposures resulted from dermal contact with high concentrations of the toxic transformation product paraoxon in soil dust contaminated as a result of application of pesticide to the overhead foliage of trees. To assess dermal exposure to chemically-contaminated soil at sites of concern, dermal adherence of soil must be determined prior to the assessment of dermal absorption. The purpose of the experiment reported herein was to determine the amount of soil (mg/cm{sup 2}) that adheres to adult hands under various soil conditions. These conditions include the type of soil, the organic content of the soil, and the particle size of the soil.

  8. GIANT METREWAVE RADIO TELESCOPE DETECTION OF TWO NEW H I 21 cm ABSORBERS AT z ≈ 2

    SciTech Connect

    Kanekar, N.

    2014-12-20

    I report the detection of H I 21 cm absorption in two high column density damped Lyα absorbers (DLAs) at z ≈ 2 using new wide-band 250-500 MHz receivers on board the Giant Metrewave Radio Telescope. The integrated H I 21 cm optical depths are 0.85 ± 0.16 km s{sup –1} (TXS1755+578) and 2.95 ± 0.15 km s{sup –1} (TXS1850+402). For the z = 1.9698 DLA toward TXS1755+578, the difference in H I 21 cm and C I profiles and the weakness of the radio core suggest that the H I 21cm absorption arises toward radio components in the jet, and that the optical and radio sightlines are not the same. This precludes an estimate of the DLA spin temperature. For the z = 1.9888 DLA toward TXS1850+402, the absorber covering factor is likely to be close to unity, as the background source is extremely compact, with the entire 5 GHz emission arising from a region of ≤ 1.4 mas in size. This yields a DLA spin temperature of T{sub s} = (372 ± 18) × (f/1.0) K, lower than typical T{sub s} values in high-z DLAs. This low spin temperature and the relatively high metallicity of the z = 1.9888 DLA ([Zn/H] =(– 0.68 ± 0.04)) are consistent with the anti-correlation between metallicity and spin temperature that has been found earlier in damped Lyα systems.

  9. The emissions and soil concentrations of N2O and CH4 from natural soil temperature gradients in a volcanic area in southwest Iceland

    NASA Astrophysics Data System (ADS)

    Maljanen, Marja; Yli-Moijala, Heli; Leblans, Niki I. W.; De Boeck, Hans J.; Bjarnadóttir, Brynhildur; Sigurdsson, Bjarni D.

    2016-04-01

    We studied nitrous oxide (N2O) and methane (CH4) emissions along three natural geothermal soil temperature (Ts) gradients in a volcanic area in southwest Iceland. Two of the gradients (on a grassland and a forest site, respectively) were recently formed (in May 2008). The third gradient, a grassland site, had been subjected to long-term soil warming (over 30 years, and probably centuries). Nitrous oxide and methane emissions were measured along the temperature gradients using the static chamber method and also soil gas concentrations were studied. With a moderate soil temperature increase (up to +5 °C) there were no significant increase in gas flux rates in any of the sites but an increase of 20 to 45 °C induced an increase in both N2O and CH4 emissions. The measured N2O emissions (up to 2600 μg N2O m-2 h-1) from the warmest plots were about two magnitudes higher compared with the coolest plots (less than 20 μg N2O m-2 h-1). While a net uptake of CH4 was measured in the coolest plots (up to -0.15 mg CH4 m-2 h-1), a net emission of CH4 was measured from the warmest plots (up to 1.3 mg CH4 m-2 h-1). Soil CH4 concentrations decreased first with a moderate (up to +5 °C) increase in Ts, but above that threshold increased significantly. The soil N2O concentration at depths from 5 to 20 cm increased with increasing Ts, indicating enhanced N-turnover. Further, there was a clear decrease in soil organic matter (SOM), C- and N concentration with increasing Ts at all sites. One should note, however, that a part of the N2O emitted from the warmest plots may be partly geothermally derived, as was revealed by 15N2O isotope studies. These natural Ts gradients show that the emission of N2O and CH4 can increase significantly when Ts increases considerably. This implies that these geothermally active sites can act as local hot spots for CH4 and N2O emissions.

  10. POLYSHIFT Communications Software for the Connection Machine System CM-200

    DOE PAGESBeta

    George, William; Brickner, Ralph G.; Johnsson, S. Lennart

    1994-01-01

    We describe the use and implementation of a polyshift function PSHIFT for circular shifts and end-offs shifts. Polyshift is useful in many scientific codes using regular grids, such as finite difference codes in several dimensions, and multigrid codes, molecular dynamics computations, and in lattice gauge physics computations, such as quantum chromodynamics (QCD) calculations. Our implementation of the PSHIFT function on the Connection Machine systems CM-2 and CM-200 offers a speedup of up to a factor of 3–4 compared with CSHIFT when the local data motion within a node is small. The PSHIFT routine is included in the Connection Machine Scientificmore » Software Library (CMSSL).« less

  11. Precision measurement of cosmic magnification from 21 cm emitting galaxies

    SciTech Connect

    Zhang, Pengjie; Pen, Ue-Li; /Canadian Inst. Theor. Astrophys.

    2005-04-01

    We show how precision lensing measurements can be obtained through the lensing magnification effect in high redshift 21cm emission from galaxies. Normally, cosmic magnification measurements have been seriously complicated by galaxy clustering. With precise redshifts obtained from 21cm emission line wavelength, one can correlate galaxies at different source planes, or exclude close pairs to eliminate such contaminations. We provide forecasts for future surveys, specifically the SKA and CLAR. SKA can achieve percent precision on the dark matter power spectrum and the galaxy dark matter cross correlation power spectrum, while CLAR can measure an accurate cross correlation power spectrum. The neutral hydrogen fraction was most likely significantly higher at high redshifts, which improves the number of observed galaxies significantly, such that also CLAR can measure the dark matter lensing power spectrum. SKA can also allow precise measurement of lensing bispectrum.

  12. Intensity Mapping During Reionization: 21 cm and Cross-correlations

    NASA Astrophysics Data System (ADS)

    Aguirre, James E.; HERA Collaboration

    2016-01-01

    The first generation of 21 cm epoch of reionization (EoR) experiments are now reaching the sensitivities necessary for a detection of the power spectrum of plausible reionization models, and with the advent of next-generation capabilities (e.g. the Hydrogen Epoch of Reionization Array (HERA) and the Square Kilometer Array Phase I Low) will move beyond the power spectrum to imaging of the EoR intergalactic medium. Such datasets provide context to galaxy evolution studies for the earliest galaxies on scales of tens of Mpc, but at present wide, deep galaxy surveys are lacking, and attaining the depth to survey the bulk of galaxies responsible for reionization will be challenging even for JWST. Thus we seek useful cross-correlations with other more direct tracers of the galaxy population. I review near-term prospects for cross-correlation studies with 21 cm and CO and CII emission, as well as future far-infrared misions suchas CALISTO.

  13. Performance of the NASA 30 cm Ion Thruster

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Haag, Thomas W.; Hovan, Scot A.

    1993-01-01

    A 30 cm diameter xenon ion thruster is under development at NASA to provide an ion propulsion option for missions of national interest, and is being proposed for use on the USAF/TRW Space Surveillance, Tracking and Autonomous Repositioning (SSTAR) platform to validate ion propulsion. The thruster incorporates innovations in design, materials, and fabrication techniques compared to those employed in conventional ion thrusters. Specific development efforts include thruster design optimizations, component life testing and validation, vibration testing, and performance characterizations. Under this test program, the ion thruster will be brought to engineering model development status. This paper discusses the performance and power throttling test data for the NASA 30 cm diameter xenon ion thruster over an input power envelope of 0.7 to 4.9 kW, and corresponding thruster lifetime expectations.

  14. Lensing of 21-cm fluctuations by primordial gravitational waves.

    PubMed

    Book, Laura; Kamionkowski, Marc; Schmidt, Fabian

    2012-05-25

    Weak-gravitational-lensing distortions to the intensity pattern of 21-cm radiation from the dark ages can be decomposed geometrically into curl and curl-free components. Lensing by primordial gravitational waves induces a curl component, while the contribution from lensing by density fluctuations is strongly suppressed. Angular fluctuations in the 21-cm background extend to very small angular scales, and measurements at different frequencies probe different shells in redshift space. There is thus a huge trove of information with which to reconstruct the curl component of the lensing field, allowing tensor-to-scalar ratios conceivably as small as r~10(-9)-far smaller than those currently accessible-to be probed. PMID:23003237

  15. Lensing of 21-cm Fluctuations by Primordial Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Book, Laura; Kamionkowski, Marc; Schmidt, Fabian

    2012-05-01

    Weak-gravitational-lensing distortions to the intensity pattern of 21-cm radiation from the dark ages can be decomposed geometrically into curl and curl-free components. Lensing by primordial gravitational waves induces a curl component, while the contribution from lensing by density fluctuations is strongly suppressed. Angular fluctuations in the 21-cm background extend to very small angular scales, and measurements at different frequencies probe different shells in redshift space. There is thus a huge trove of information with which to reconstruct the curl component of the lensing field, allowing tensor-to-scalar ratios conceivably as small as r˜10-9—far smaller than those currently accessible—to be probed.

  16. Viscoelastic hydrodynamic interactions and anomalous CM diffusion in polymer melts

    NASA Astrophysics Data System (ADS)

    Meyer, Hendrik; Farago, Jean; Semenov, A. N.

    2014-03-01

    We have recently discovered that anomalous center-of-mass (CM) diffusion occurring on intermediate time scales in polymer melts can be explained by the interplay of viscoelastic and hydrodynamic interactions (VHI). The theory has been solved for unentangled melts in 3D and 2D and excellent agreement between theory and simulation is found. The physical mechanism considers that hydrodynamic interactions are time dependent because of increasing viscosity before the terminal relaxation time; it is generally active in melts of any topology. Surprisingly, the effects are relevant for both, momentum-conserving and Langevin dynamics and this presentation will focus on the differences: The commonly employed Langevin thermostat significantly changes the CM motion on short and intermediate time scales, but approaching the Rouse time, the melt behavior is close to momentum-conserving simulations. On the other hand, if momentum-conserving simulations are run in too small a simulation box, the result looks as if a Langevin thermostat was used.

  17. Development of a 60 cm Magnetic Suspension System

    NASA Astrophysics Data System (ADS)

    Sawada, Hideo; Kunimasu, Tetsuya

    A 60cm Magnetic Suspension Balance System (MSBS), which has been developed in the National Aerospace Laboratory of Japan (NAL), is described in detail. Magnetic field in the MSBS is evaluated analytically and is compared with measured one. Available magnet kinds for the MSBS are selected analytically. The optimum ratio of diameter to length of cylindrical magnet for the MSBS is also evaluated. A model position sensing and the control systems are described with calibration test results. A model holding system is also shown, which is necessary for worker’s safety at suspending a large and massive model. The control system is presented and the measured model position during suspension is examined. The balance accuracy is examined and its error of drag force can be improved by restricting the calibration test to an expected drag range. Flow of the 60cm low-speed wind tunnel equipped with the MSBS is examined to be available for wind tunnel tests.

  18. 21 cm cosmology in the 21st century.

    PubMed

    Pritchard, Jonathan R; Loeb, Abraham

    2012-08-01

    Imaging the Universe during the first hundreds of millions of years remains one of the exciting challenges facing modern cosmology. Observations of the redshifted 21 cm line of atomic hydrogen offer the potential of opening a new window into this epoch. This will transform our understanding of the formation of the first stars and galaxies and of the thermal history of the Universe. A new generation of radio telescopes is being constructed for this purpose with the first results starting to trickle in. In this review, we detail the physics that governs the 21 cm signal and describe what might be learnt from upcoming observations. We also generalize our discussion to intensity mapping of other atomic and molecular lines. PMID:22828208

  19. OH 18 cm Transition as a Thermometer for Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Ebisawa, Yuji; Inokuma, Hiroshi; Sakai, Nami; Menten, Karl M.; Maezawa, Hiroyuki; Yamamoto, Satoshi

    2015-12-01

    We have observed the four hyperfine components of the 18 cm OH transition toward the translucent cloud eastward of Heiles Cloud 2 (HCL2E), the cold dark cloud L134N, and the photodissociation region of the ρ-Ophiuchi molecular cloud with the Effelsberg 100 m telescope. We have found intensity anomalies among the hyperfine components in all three regions. In particular, an absorption feature of the 1612 MHz satellite line against the cosmic microwave background has been detected toward HCL2E and two positions of the ρ-Ophiuchi molecular cloud. On the basis of statistical equilibrium calculations, we find that the hyperfine anomalies originate from the non-LTE population of the hyperfine levels, and can be used to determine the kinetic temperature of the gas over a wide range of H2 densities (102-107 cm-3). Toward the center of HCL2E, the gas kinetic temperature is determined to be 53 ± 1 K, and it increases toward the cloud peripheries (˜60 K). The ortho-to-para ratio of H2 is determined to be 3.5 ± 0.9 from the averaged spectrum for the eight positions. In L134N, a similar increase of the temperature is also seen toward the periphery. In the ρ-Ophiuchi molecular cloud, the gas kinetic temperature decreases as a function of the distance from the exciting star HD 147889. These results demonstrate a new aspect of the OH 18 cm line that can be used as a good thermometer of molecular cloud envelopes. The OH 18 cm line can be used to trace a new class of warm molecular gas surrounding a molecular cloud, which is not well traced by the emission of CO and its isotopologues.

  20. Control of a 30 cm diameter mercury bombardment thruster

    NASA Technical Reports Server (NTRS)

    Terdan, F. F.; Bechtel, R. T.

    1973-01-01

    Control logic functions were established for three automatic modes of operation of a 30-cm thruster using a power conditioner console with flight-like characteristics. The three modes provide: (1) automatic startup to reach thermal stability, (2) steady-state closed-loop control, and (3) the reliable recycling of the high voltages following an arc breakdown to reestablish normal operation. Power supply impedance characteristics necessary for stable operation and the effect of the magnetic baffle on the reliable recycling was studied.

  1. Identifying Ionized Regions in Noisy Redshifted 21 cm Data Sets

    NASA Astrophysics Data System (ADS)

    Malloy, Matthew; Lidz, Adam

    2013-04-01

    One of the most promising approaches for studying reionization is to use the redshifted 21 cm line. Early generations of redshifted 21 cm surveys will not, however, have the sensitivity to make detailed maps of the reionization process, and will instead focus on statistical measurements. Here, we show that it may nonetheless be possible to directly identify ionized regions in upcoming data sets by applying suitable filters to the noisy data. The locations of prominent minima in the filtered data correspond well with the positions of ionized regions. In particular, we corrupt semi-numeric simulations of the redshifted 21 cm signal during reionization with thermal noise at the level expected for a 500 antenna tile version of the Murchison Widefield Array (MWA), and mimic the degrading effects of foreground cleaning. Using a matched filter technique, we find that the MWA should be able to directly identify ionized regions despite the large thermal noise. In a plausible fiducial model in which ~20% of the volume of the universe is neutral at z ~ 7, we find that a 500-tile MWA may directly identify as many as ~150 ionized regions in a 6 MHz portion of its survey volume and roughly determine the size of each of these regions. This may, in turn, allow interesting multi-wavelength follow-up observations, comparing galaxy properties inside and outside of ionized regions. We discuss how the optimal configuration of radio antenna tiles for detecting ionized regions with a matched filter technique differs from the optimal design for measuring power spectra. These considerations have potentially important implications for the design of future redshifted 21 cm surveys.

  2. Power distribution for an Am/Cm bushing melter

    SciTech Connect

    Gong, C.; Hardy, B.J.

    1996-12-31

    Decades of nuclear material production at the Savannah River Site (SRS) has resulted in the generation of large quantities of the isotopes Am{sup 243} and Cm{sup 244}. Currently, the Am and Cm isotopes are stored as a nitric acid solution in a tank. The Am and Cm isotopes have great commercial value but must be transferred to ORNL for processing. The nitric acid solution contains other isotopes and is intensely radioactive, which makes storage a problem and precludes shipment in the liquid form. In order to stabilize the material for onsite storage and to permit transport the material from SRS to ORNL, it has been proposed that the Am and Cm be separated from other isotopes in the solution and vitrified. Vitrification will be effected by depositing a liquid feed stream containing the isotopes in solution, together with a stream of glass frit, onto the top of a molten glass pool in a melter. The glass is non-conducting and the melter is a Platinum/Rhodium alloy vessel which is heated by passing an electric current through it. Because most of the power is required to evaporate the liquid feed at the top of the glass pool, power demands differ for the upper and lower parts of the melter. In addition, the melter is batch fed so that the local power requirements vary with time. In order to design a unique split power supply, which ensures adequate local power delivery, an analysis of the melter power distribution was performed with the ABAQUS finite element code. ABAQUS was used to calculate the electric potential and current density distributions in the melter for a variety of current and potential boundary conditions. The results of the calculation were compared with test data and will be used to compute power densities for input to a computational fluid dynamics model for the melter.

  3. The 21 cm signature of cosmic string wakes

    SciTech Connect

    Brandenberger, Robert H.; Danos, Rebecca J.; Hernández, Oscar F.; Holder, Gilbert P. E-mail: rjdanos@physics.mcgill.ca E-mail: holder@physics.mcgill.ca

    2010-12-01

    We discuss the signature of a cosmic string wake in 21cm redshift surveys. Since 21cm surveys probe higher redshifts than optical large-scale structure surveys, the signatures of cosmic strings are more manifest in 21cm maps than they are in optical galaxy surveys. We find that, provided the tension of the cosmic string exceeds a critical value (which depends on both the redshift when the string wake is created and the redshift of observation), a cosmic string wake will generate an emission signal with a brightness temperature which approaches a limiting value which at a redshift of z+1 = 30 is close to 400 mK in the limit of large string tension. The signal will have a specific signature in position space: the excess 21cm radiation will be confined to a wedge-shaped region whose tip corresponds to the position of the string, whose planar dimensions are set by the planar dimensions of the string wake, and whose thickness (in redshift direction) depends on the string tension. For wakes created at z{sub i}+1 = 10{sup 3}, then at a redshift of z+1 = 30 the critical value of the string tension μ is Gμ = 6 × 10{sup −7}, and it decreases linearly with redshift (for wakes created at the time of equal matter and radiation, the critical value is a factor of two lower at the same redshift). For smaller tensions, cosmic strings lead to an observable absorption signal with the same wedge geometry.

  4. Mineralogy of an unusual CM clast in the Kaidun meteorite

    NASA Technical Reports Server (NTRS)

    Zolensky, M. E.; Ivanov, A. V.; Yang, S. V.; Barrett, R. A.; Browning, L.

    1994-01-01

    Kaidun is breccia of disparate enstatite and carbonaceous chondrite clasts, and continues to provide real surprises. Many Daidun clasts have been intensely altered by an aqueous fluid, as evidenced by the widespread occurrence of ferromagnesian phyllosilicates and presence of carbonate- and phyllosilicate-filled veins. In this report we describe an unusual CM lithology containing beautiful aggregates of jackstraw pyrrhotites, not previously reported from any meteorite.

  5. Long-term effects of deep soil loosening on root distribution and soil physical parameters in compacted lignite mine soils

    NASA Astrophysics Data System (ADS)

    Badorreck, Annika; Krümmelbein, Julia; Raab, Thomas

    2015-04-01

    Soil compaction is a major problem of soils on dumped mining substrates in Lusatia, Germany. Deep ripping and cultivation of deep rooting plant species are considered to be effective ways of agricultural recultivation. Six years after experiment start, we studied the effect of initial deep soil loosening (i.e. down to 65 cm) on root systems of rye (Secale cereale) and alfalfa (Medicago sativa) and on soil physical parameters. We conducted a soil monolith sampling for each treatment (deep loosened and unloosened) and for each plant species (in three replicates, respectively) to determine root diameter, length density and dry mass as well as soil bulk density. Further soil physical analysis comprised water retention, hydraulic conductivity and texture in three depths. The results showed different reactions of the root systems of rye and alfalfa six years after deep ripping. In the loosened soil the root biomass of the rye was lower in depths of 20-40 cm and the root biomass of alfalfa was also decreased in depths of 20-50 cm together with a lower root diameter for both plant species. Moreover, total and fine root length density was higher for alfalfa and vice versa for rye. The soil physical parameters such as bulk density showed fewer differences, despite a higher bulk density in 30-40cm for the deep loosened rye plot which indicates a more pronounced plough pan.

  6. Distinct Distribution of Purines in CM and CR Carbonaceous Chondrites

    NASA Technical Reports Server (NTRS)

    Callahan, Michael P.; Stern, Jennifer C.; Glavin, Daniel P.; Smith, Karen E.; Martin, Mildred G.; Dworkin, Jason P.

    2010-01-01

    Carbonaceous meteorites contain a diverse suite of organic molecules and delivered pre biotic organic compounds, including purines and pyrimidines, to the early Earth (and other planetary bodies), seeding it with the ingredients likely required for the first genetic material. We have investigated the distribution of nucleobases in six different CM and CR type carbonaceous chondrites, including fivc Antarctic meteorites never before analyzed for nucleobases. We employed a traditional formic acid extraction protocol and a recently developed solid phase extraction method to isolate nucleobases. We analyzed these extracts by high performance liquid chromatography with UV absorbance detection and tandem mass spectrometry (HPLC-UV -MS/MS) targeting the five canonical RNAIDNA bases and hypoxanthine and xanthine. We detected parts-per-billion levels of nucleobases in both CM and CR meteorites. The relative abundances of the purines found in Antarctic CM and CR meteorites were clearly distinct from each other suggesting that these compounds are not terrestrial contaminants. One likely source of these purines is formation by HCN oligomerization (with other small molecules) during aqueous alteration inside the meteorite parent body. The detection of the purines adenine (A), guanine (0), hypoxanthine (HX), and xanthine (X) in carbonaceous meteorites indicates that these compounds should have been available on the early Earth prior to the origin of the first genetic material.

  7. The wedge bias in reionization 21-cm power spectrum measurements

    NASA Astrophysics Data System (ADS)

    Jensen, Hannes; Majumdar, Suman; Mellema, Garrelt; Lidz, Adam; Iliev, Ilian T.; Dixon, Keri L.

    2016-02-01

    A proposed method for dealing with foreground emission in upcoming 21-cm observations from the epoch of reionization is to limit observations to an uncontaminated window in Fourier space. Foreground emission can be avoided in this way, since it is limited to a wedge-shaped region in k∥, k⊥ space. However, the power spectrum is anisotropic owing to redshift-space distortions from peculiar velocities. Consequently, the 21-cm power spectrum measured in the foreground avoidance window - which samples only a limited range of angles close to the line-of-sight direction - differs from the full redshift-space spherically averaged power spectrum which requires an average over all angles. In this paper, we calculate the magnitude of this `wedge bias' for the first time. We find that the bias amplifies the difference between the real-space and redshift-space power spectra. The bias is strongest at high redshifts, where measurements using foreground avoidance will overestimate the redshift-space power spectrum by around 100 per cent, possibly obscuring the distinctive rise and fall signature that is anticipated for the spherically averaged 21-cm power spectrum. In the later stages of reionization, the bias becomes negative, and smaller in magnitude (≲20 per cent).

  8. Modeling Soil Pore Oxygen in Restored Wetlands

    NASA Astrophysics Data System (ADS)

    Rubol, S.; Loecke, T.; Burgin, A. J.; Franz, T.

    2015-12-01

    Soil pore oxygen (O2) is usually modeled indirectly as a function of soil moisture. However, using soil moisture to describe the oxic /anoxic status of a soil may not be sufficient accurate, especially when soil pore O2 rapidly changes, as following hydrological forcing. As first step, we use the dataset collected in the constructed wetland near Dayton, OH, by Loecke and Burgin, to reconstruct the environmental functions and re-aeration status of the soil. The dataset consist of 24 Apogee sensors and 24 soil moisture and temperature sensors located at 10 cm depth in upland, transitional and submerged zone (see Figure 1). Data were recorded over two years at temporal interval of 30 minutes. Then, we explore the capability of existing biogeochemical models to predict metabolic activity and the soil pore O2. Figure1: Restored wetland field site with soil O2 sensors (yellow stars) in upland (red), transitional (green) and submerged (blue) zones.

  9. Effects of pumice mining on soil quality

    NASA Astrophysics Data System (ADS)

    Cruz-Ruíz, A.; Cruz-Ruíz, E.; Vaca, R.; Del Aguila, P.; Lugo, J.

    2016-01-01

    Mexico is the world's fourth most important maize producer; hence, there is a need to maintain soil quality for sustainable production in the upcoming years. Pumice mining is a superficial operation that modifies large areas in central Mexico. The main aim was to assess the present state of agricultural soils differing in elapsed time since pumice mining (0-15 years) in a representative area of the Calimaya region in the State of Mexico. The study sites in 0, 1, 4, 10, and 15 year old reclaimed soils were compared with an adjacent undisturbed site. Our results indicate that gravimetric moisture content, water hold capacity, bulk density, available phosphorus, total nitrogen, soil organic carbon, microbial biomass carbon and phosphatase and urease activity were greatly impacted by disturbance. A general trend of recovery towards the undisturbed condition with reclamation age was found after disturbance, the recovery of soil total N being faster than soil organic C. The soil quality indicators were selected using principal component analysis (PCA), correlations and multiple linear regressions. The first three components gathered explain 76.4 % of the total variability. The obtained results revealed that the most appropriate indicators to diagnose the quality of the soils were urease, available phosphorus and bulk density and minor total nitrogen. According to linear score analysis and the additive index, the soils showed a recuperation starting from 4 years of pumice extraction.

  10. Litter production, soil organic matter dynamics and microbial activity in two coeval forest stands on Mount Vesuvius

    NASA Astrophysics Data System (ADS)

    de Marco, Anna; Esposito, Fabrizio; Giordano, Maria; Vittozzi, Paola; Virzo de Santo, Amalia

    2010-05-01

    Forest ecosystems in different climatic zones may accumulate different amounts of soil organic matter (SOM) with different chemical-physical properties. C inputs to SOM are related to net primary production, however C accumulation in the soil largely depends on the balance between net primary production and decomposition. On the other side rates of SOM decomposition are the major control over the supply of mineral nutrients to vegetation and thus over primary production. This study was performed in two coeval (36 years old), adjacent forest stands, a Corsican pine (Pinus nigra Arn.) and a Black locust (Robinia pseudoacacia L.) forest (Atrio del Cavallo, 40° 49'N, 14° 26'E; 810 a.s.l.). The two forests were implanted in 1970 on piroclastic material of the last eruption of Mount Vesuvius (1944). We assessed the quantity and the quality of SOM in a vertical gradient in the continuum of the litter layer, humus layer and mineral soil for the whole soil profile. Moreover we estimated litter production and decomposition, litter and mineral soil (0-5cm) respiration as well as microbial biomass and total and active fungal biomass. Litter fall (measured throughout the years 2006-2008) was higher in the Corsican pine than in the Black locust stand (5234 vs. 2396 g/m2/y). Black locust leaf litter and Corsican pine needle litter reached respectively 60 % and 50% of initial mass after 600 days in situ decomposition. Consistently with the lower litter input and the higher decomposition of black locust, the amount of organic C in the organic soil layers (litter + humus), was significantly higher in the Corsican pine as compared to the Black locust stand (2702 vs. 1636 g/m2). In contrast, in the mineral layers (0-15 cm) the amount of soil organic C was slightly higher in Black locust than in Corsican pine stand (136 vs. 116 g/m2). Litter quality, decomposition dynamics, and SOM quality and activity may help to understand the reason for the uneven distribution of organic carbon

  11. Hg contents in soils and olive-tree (Olea Europea, L.) leaves from an area affected by elemental mercury pollution (Jódar, SE Spain).

    NASA Astrophysics Data System (ADS)

    López-Berdonces, Miguel Angel; María Esbrí, José; Amorós, José Angel; Lorenzo, Saturnino; Fernández-Calderón, Sergio; Higueras, Pablo; Perez-de-los-Reyes, Caridad

    2014-05-01

    Data from soil and olive tree leaves around a decommissioned chlor-alkali plant are presented in this communication. The factory was active in the period 1977-1991, producing during these years a heavily pollution of Guadalquivir River and hydrargyrism in more than local 45 workers. It is located at 7 km South of Jódar, a locality with some 12,120 inhabitants. Mercury usage was general in this type of plants, but at present it is being replaced by other types of technologies, due to the risks of mercury usage in personal and environment. A soil geochemistry survey was carried out in the area, along with the analysis of olive-tree leaves (in the plots with this culture) from the same area. 73 soil samples were taken at two different depths (0-15 cm and 15-30 cm), together with 41 olive tree samples. Mercury content of geologic and biologic samples was determined by means of Atomic Absorption Spectrometry with Zeeman Effect, using a Lumex RA-915+ device with the RP-91C pyrolysis attachment. Air surveys were carried our using a RA-915M Lumex portable analytical device. Soil mercury contents were higher in topsoil than in the deeper soil samples, indicating that incorporation of mercury was due to dry and wet deposition of mercury vapors emitted from the plant. Average content in topsoil is 564.5 ng g-1. Hg contents in olive-tree leaves were in the range 46 - 453 ng g-1, with an average of 160.6 ng g-1. This level is slightly lower than tolerable level for agronomic crops established by Kabata-Pendias (2001) in 200 ng g-1. We have also compared soil and leaf contents for each sampling site, finding a positive and significant correlation (R=0.49), indicating that Hg contents in the leaves are linked to Hg contents in the soils. BAC (Bioaccumulation Absorption Coefficient, calculated as ratio between soil and leaf concentration) is 0.28 (consistent with world references, BAC = 0.7), considered "medium" in comparison with other mineral elements. Main conclusions of this

  12. Tests of the Tully-Fisher relation. 1: Scatter in infrared magnitude versus 21 cm width

    NASA Technical Reports Server (NTRS)

    Bernstein, Gary M.; Guhathakurta, Puragra; Raychaudhury, Somak; Giovanelli, Riccardo; Haynes, Martha P.; Herter, Terry; Vogt, Nicole P.

    1994-01-01

    We examine the precision of the Tully-Fisher relation (TFR) using a sample of galaxies in the Coma region of the sky, and find that it is good to 5% or better in measuring relative distances. Total magnitudes and disk axis ratios are derived from H and I band surface photometry, and Arecibo 21 cm profiles define the rotation speeds of the galaxies. Using 25 galaxies for which the disk inclination and 21 cm width are well defined, we find an rms deviation of 0.10 mag from a linear TFR with dI/d(log W(sub c)) = -5.6. Each galaxy is assumed to be at a distance proportional to its redshift, and an extinction correction of 1.4(1-b/a) mag is applied to the total I magnitude. The measured scatter is less than 0.15 mag using milder extinction laws from the literature. The I band TFR scatter is consistent with measurement error, and the 95% CL limits on the intrinsic scatter are 0-0.10 mag. The rms scatter using H band magnitudes is 0.20 mag (N = 17). The low width galaxies have scatter in H significantly in excess of known measurement error, but the higher width half of the galaxies have scatter consistent with measurement error. The H band TFR slope may be as steep as the I band slope. As the first applications of this tight correlation, we note the following: (1) the data for the particular spirals commonly used to define the TFR distance to the Coma cluster are inconsistent with being at a common distance and are in fact in free Hubble expansion, with an upper limit of 300 km/s on the rms peculiar line-of-sight velocity of these gas-rich spirals; and (2) the gravitational potential in the disks of these galaxies has typical ellipticity less than 5%. The published data for three nearby spiral galaxies with Cepheid distance determinations are inconsistent with our Coma TFR, suggesting that these local calibrators are either ill-measured or peculiar relative to the Coma Supercluster spirals, or that the TFR has a varying form in different locales.

  13. Remediating munitions contaminated soils

    SciTech Connect

    Shea, P.J.; Comfort, S.D.

    1995-10-01

    The former Nebraska Ordnance Plant (NOP) at Mead, NE was a military loading, assembling, and packing facility that produced bombs, boosters and shells during World War II and the Korean War (1942-1945, 1950-1956). Ordnances were loaded with 2,4,6-trinitrotoluene (TNT), amatol (TNT and NH{sub 4}NO{sub 3}), tritonal (TNT and Al) and Composition B (hexahydro-1,3,5-trinitro-1,3,5-triazine [RDX] and TNT). Process waste waters were discharged into wash pits and drainage ditches. Soils within and surrounding these areas are contaminated with TNT, RDX and related compounds. A continuous core to 300 cm depth obtained from an NOP drainage ditch revealed high concentrations of TNT in the soil profile and substantial amounts of monoamino reduction products, 4-amino-2,6-dinitrotoluene (4ADNT) and 2-amino-4,6-dinitrotoluene (2ADNT). Surface soil contained TNT in excess of 5000 mg kg{sup -1} and is believed to contain solid phase TNT. This is supported by measuring soil solution concentrations at various soil to solution ratios (1:2 to 1:9) and obtaining similar TNT concentrations (43 and 80 mg L{sup -1}). Remediating munitions-contaminated soil at the NOP and elsewhere is of vital interest since many of the contaminants are carcinogenic, mutagenic or otherwise toxic to humans and the environment. Incineration, the most demonstrated remediation technology for munitions-containing soils, is costly and often unacceptable to the public. Chemical and biological remediation offer potentially cost-effective and more environmentally acceptable alternatives. Our research objectives are to: (a) characterize the processes affecting the transport and fate of munitions in highly contaminated soil; (b) identify effective chemical and biological treatments to degrade and detoxify residues; and (c) integrate these approaches for effective and practical remediation of soil contaminated with TNT, RDX, and other munitions residues.

  14. Changes in the properties of soils in a solonetz soil complex thirty years after reclamation

    NASA Astrophysics Data System (ADS)

    Kalinichenko, V. P.; Sharshak, V. K.; Mironchenko, S. F.; Chernenko, V. V.; Ladan, E. P.; Genev, E. D.; Illarionov, V. V.; Udalov, A. V.; Udalov, V. V.; Kippel, E. V.

    2014-04-01

    The long-term (30 year) dynamics of a solonetz soil complex composed of solonetzic light chestnut soils and chestnut solonetzes under standard conditions and with the application of agromeliorative measures are considered. When the standard zonal agricultural practice is used, the soils of the solonetzic complex have unfavorable agrophysical, chemical, and physicochemical properties and low productivity. After 30 years of the standard three-level tillage of the soils to a depth of 40-45 cm, the productivity of the biogeocenosis decreased. Thirty years after a single rotary-milling subsoil treatment of the 20- to 45-cm soil layer using a milling tool FS-1.3, there were no morphological features pointing to the restoration of the solonetzic process. The humus content in the 0-to 20-cm and 20-to 40-cm soil layers was 2.3 and 1.7%, respectively; the content of adsorbed Na+ in the 20-to 30-cm layer was 11.6% of the total exchange capacity, or 38% lower than its content in the reference soil. The additional yield reached 30-70% and more of that obtained with the standard agricultural technology used during the whole period under investigation. The method of systems biogeotechnology (systems bio-geo engineering) is proposed as a method for the preventive control of soil evolution and the maintenance of the stability and high productivity of the soil cover.

  15. Soil aggregates, organic matter turnover and carbon balance in a Mediterranean eroded vineyard

    NASA Astrophysics Data System (ADS)

    Novara, Agata; Lo Papa, Giuseppe; Dazzi, Carmelo; Gristina, Luciano; Cerdà, Artemi

    2014-05-01

    dispersion, were isolated by mechanical shaking of 100 g, air-dried fine earth on a column with sieves of 250 and 63 μm using a Shaker AS 200 Sieve (RETSCH analytical, Haan, Germany) (200-mm sieves, amplitude of 2 cm, frequency of 1.6 Hz and a water flux of 2 litres minute-1). After the physical fractionation, we discriminate three main aggregate-size fractions: >250, 63-250 and <63 μm. Three replicate samples of 5 g of the soil material that we prepared for the fractionation from three different pedons along the slope gradient were incubated at two different depth intervals (Topsoil: 0-15 cm; Subsoil: 35-50 cm). Respiration was monitored during a period of 50 days keeping moisture and temperature constant. Both in topsoil and subsoil layers, particle size distribution in the depositional area shows a decrease of the finest size (<63 μm) respect to the soil in the detachment area. A SOC increase was observed due to depositional processes. Mean Residence Time of SOC strongly decreased in the subsoil particularly in the depositional area corroborating that erosion processes could be a SOC sink. Anyway we should also stress that, considering the estimated "off farm" erosion processes, the carbon budget resulted highly negative. References Barbera, V., Poma, I., Gristina, L., Novara, A., Egli, M. 2013. Long-term cropping systems and tillage management effects on soil organic carbon stock and steady state level of C sequestration rates in a semiarid environment. Land Degradation & Development, 23: 82- 91. DOI 10.1002/ldr.1055 Cerdà, A., Giménez-Morera, A.G., Bodí, M.B. 2009b. Soil and water losses from new citrus orchards growing on sloped soils in the western Mediterranean basin. Earth Surface Processes and Landforms 34, 1822-1830. Dick, W.A., Gregorich, E.G. 2004. Developing and maintaining soil organic matter levels. In: Schjonning, P., Elmholt,S., Christensen, B.T. (Eds.), Managing Soil Quality: Challenges in Modern Agriculture. CAB International, Wallingford, UK, pp

  16. Soil warming affects soil organic matter chemistry of all density fractions of a mountain forest soil

    NASA Astrophysics Data System (ADS)

    Schnecker, Jörg; Wanek, Wolfgang; Borken, Werner; Schindlbacher, Andreas

    2016-04-01

    Rising temperatures enhance microbial decomposition of soil organic matter (SOM) and increase thereby the soil CO2 efflux. Elevated microbial activity might differently affect distinct SOM pools, depending on their stability and accessibility. Soil fractions derived from density fractionation have been suggested to represent SOM pools with different turnover times and stability against microbial decomposition. We here investigated the chemical and isotopic composition of bulk soil and three different density fractions of forest soils from a long term warming experiment in the Austrian Alps. At the time of sampling the soils in this experiment had been warmed during the snow-free period for 8 consecutive years. During that time no thermal adaptation of the microbial community could be identified and CO2 release from the soil continued to be elevated by the warming treatment. Our results which included organic C content, total N content, δ13C, δ 14C, δ 15N and the chemical composition, identified by pyrolysis-GC/MS, showed no significant differences in bulk soil between warming treatment and control. The differences in the three individual fractions (free particulate organic matter, occluded particulate organic matter and mineral associated organic matter) were mostly small and the direction of warming induced change was variable with fraction and sampling depth. We did however find statistically significant effects of warming in all density fractions from 0-10 cm depth, 10-20 cm depth or both. Our results also including significant changes in the supposedly more stable mineral associated organic matter fraction where δ 13C values decreased at both sampling depths and the relative proportion of N-bearing compounds decreased at a sampling depth of 10-20 cm. All the observed changes can be attributed to an interplay of enhanced microbial decomposition of SOM and increased root litter input. This study suggests that soil warming destabilizes all density fractions of

  17. Carbon sequestration in two alpine soils on the Tibetan Plateau.

    PubMed

    Tian, Yu-Qiang; Xu, Xing-Liang; Song, Ming-Hua; Zhou, Cai-Ping; Gao, Qiong; Ouyang, Hua

    2009-09-01

    Soil carbon sequestration was estimated in a conifer forest and an alpine meadow on the Tibetan Plateau using a carbon-14 radioactive label provided by thermonuclear weapon tests (known as bomb-(14)C). Soil organic matter was physically separated into light and heavy fractions. The concentration spike of bomb-(14)C occurred at a soil depth of 4 cm in both the forest soil and the alpine meadow soil. Based on the depth of the bomb-(14)C spike, the carbon sequestration rate was determined to be 38.5 g C/m(2) per year for the forest soil and 27.1 g C/m(2) per year for the alpine meadow soil. Considering that more than 60% of soil organic carbon (SOC) is stored in the heavy fraction and the large area of alpine forests and meadows on the Tibetan Plateau, these alpine ecosystems might partially contribute to "the missing carbon sink". PMID:19723249

  18. Conserving Soil.

    ERIC Educational Resources Information Center

    Soil Conservation Service (USDA), Washington, DC.

    Designed as enrichment materials for grades six through nine, this program is an interdisciplinary study of soils. As part of the program students: (1) examine soil organisms; (2) research history of local Native Americans to see how they and others have used the land and its soils; (3) investigate how soils are degraded and how they are conserved…

  19. How to synthesize pure Li2-xFeSi1-xPxO4/C (x = 0.03-0.15) easily from low-cost Fe(3+) as cathode materials for Li-ion batteries.

    PubMed

    Chen, Weihua; Zhu, Dan; Li, Yanyang; Li, Chaopeng; Feng, Xiangming; Guan, Xinxin; Yang, Changchun; Zhang, Jianmin; Mi, Liwei

    2015-09-01

    Li2FeSiO4 is a low-cost, environmentally friendly electrode material with high theoretical capacity. However, obtaining pure-phase Li2FeSiO4 on a large scale is difficult. In this study, pure Li2-xFeSi1-xPxO4/C is prepared easily by using the low cost compound Fe(NO3)3·9H2O, with the help of citric acid and appropriate ratios of NH4H2PO4 (x = 0.03-0.15). The possible mechanism of the system with NH4H2PO4 to synthesize Li2-xFeSi1-xPxO4/C is that there is a catalysis process in the system, which helps to produce H2, providing a reducing environment in every particle of the reactants guaranteeing a complete change from Fe(3+) to Fe(2+). The produced H2 is verified by the gas chromatography of the collected gas produced in the calcination process. The ratios of NH4H2PO4 in this system could adjust the valence of element Fe in the products. Without NH4H2PO4, an Fe2O3 impurity is formed accompanying the Li2FeSiO4. With the addition of 1 at% NH4H2PO4, the Li4SiO4 impurity accords with the objective Li2-xFeSi1-xPxO4/C. Also, Fe with zero-valence could be found as an impurity with the addition of 20 at% NH4H2PO4 due to overreduction in the system. The synthesized pure Li2-xFeSi1-xPxO4/C (x = 0.03) displayed the highest discharge capacity of 179 mA h g(-1) in the first cycle, the best discharge capacity retention and the most reliable redox reversibility of the coulombic efficiency (approximately 100%), compared with the synthesized materials with Fe2O3 or Li4SiO4 impurities. PMID:26221759

  20. Atomic-resolution studies of epitaxial strain release mechanisms in L a1.85S r0.15Cu O4 /L a0.67C a0.33Mn O3 superlattices

    NASA Astrophysics Data System (ADS)

    Biškup, N.; Das, S.; Gonzalez-Calbet, J. M.; Bernhard, C.; Varela, M.

    2015-05-01

    In this paper we present an atomic-resolution electron microscopy study of superlattices (SLs) where the colossal magnetoresistant manganite L a0.67C a0.33Mn O3 (LCMO) and the high critical temperature superconducting cuprate L a1.85S r0.15Cu O4 (LSCO) are combined. Although good quality epitaxial growth can be achieved, both the choice of substrate and the relatively large lattice mismatch between these materials (around 2%) have a significant impact on the system properties [Phys. C 468, 991 (2008), 10.1016/j.physc.2008.05.001; Nature (London) 394, 453 (1998), 10.1038/28810]. Our samples, grown by pulsed laser deposition, are epitaxial and exhibit high structural quality. By means of cutting-edge electron microscopy and spectroscopy techniques we still find that the epitaxial strain is accommodated by a combination of defects, such as interface steps and antiphase boundaries in the manganite. These defects result in inhomogeneous strain fields through the samples. Also, some chemical inhomogeneities are detected, up to the point that novel phases nucleate. For example, at the LCMO/LSCO interface the AB O3 -type manganite adopts a tetragonal LSCO-like structure forming localized layers that locally resemble the composition of L a2 /3C a4 /3Mn O4 . Structural distortions are detected in the cuprate as well, which may extend over lateral distances of several unit cells. Finally, we also analyze the influence of the substrate-induced strain by examining superlattices grown on two different substrates: (LaAlO3) 0.3(Sr2AlTaO6 ) 0.7 (LSAT) and LaSrAl O4 (LSAO). We observe that SLs grown on LSAT, which are nonsuperconducting, present reduced values of the c axis compared to superlattices grown on LSAO (which are fully superconducting). This finding points to the fact that the proper distance between copper planes in LSCO is essential in obtaining superconductivity in cuprates.