Science.gov

Sample records for 0-5 cm depth

  1. Behavioral effects of chronic exposure to 0. 5 mW/cm/sup 2/ of 2450-MHz microwaves

    SciTech Connect

    DeWitt, J.R.; D'Andrea, J.A.; Emmerson, R.Y.; Gandhi, O.P.

    1987-01-01

    Adult male, Long-Evans rats were exposed 7 h a day for 90 days to continuous wave (CW) 2450-MHz microwaves at an average power density of 0.5 mW/cm/sup 2/. Exposures were in a monopole-above-ground radiation chamber with rats in Plexiglas cages. The resulting specific absorption rate (SAR) was 0.14 W/kg (+/- 0.01 SEM). Additional rats served as sham-exposed and home-caged controls. All were evaluated daily for body mass and food and water intakes. Once each 30 days, throughout baseline and exposure phases of the experiment, rats in the sham- and microwave-exposed groups were tested for their sensitivity to footshock. After 90-days of exposure, the rats were evaluated an open field, an active avoidance task and an operant task for food reinforcement. Performance of sham- and microwave-irradiated rats was reliably different on only one measure, the lever-pressing task. The general conclusion reached was that exposure to CW 2450-MHz microwave radiation at 0.5 mW/cm/sup 2/ was below the threshold for behavioral effects over a wide range of variables, but did have an effect on a time-related operant task, although the direction of the effect was unpredictable.

  2. Magnetic penetration-depth measurements of a suppressed superfluid density of superconducting Ca0.5Na0.5Fe2As2 single crystals by proton irradiation

    NASA Astrophysics Data System (ADS)

    Kim, Jeehoon; Haberkorn, N.; Graf, M. J.; Usov, I.; Ronning, F.; Civale, L.; Nazaretski, E.; Chen, G. F.; Yu, W.; Thompson, J. D.; Movshovich, R.

    2012-10-01

    We report on the dramatic effect of random point defects, produced by proton irradiation, on the superfluid density ρs in superconducting Ca0.5Na0.5Fe2As2 single crystals. The magnitude of the suppression is inferred from measurements of the temperature-dependent magnetic penetration depth λ(T) using magnetic force microscopy. Our findings indicate that a radiation dose of 2×1016 cm-2 produced by 3 MeV protons results in a reduction of the superconducting critical temperature Tc by approximately 10%. In contrast, ρs(0) is suppressed by approximately 60%. This breakdown of the Abrikosov-Gorkov theory may be explained by the so-called “Swiss cheese model,” which accounts for the spatial suppression of the order parameter near point defects similar to holes in Swiss cheese. Both the slope of the upper critical field and the penetration depth λ(T/Tc)/λ(0) exhibit similar temperature dependences before and after irradiation. This may be due to a combination of the highly disordered nature of Ca0.5Na0.5Fe2As2 with large intraband and simultaneous interband scattering as well as the s±-wave nature of short coherence length superconductivity.

  3. Behavioral effects of chronic exposure to 0. 5 mW/cm/sup 2/ of 2450-MHz microwaves. Interim report for period ending 1987

    SciTech Connect

    DeWitt, J.R.; D'Andrea, J.A.; Emmerson, R.Y.; Gandhi, O.P.

    1987-01-01

    Adult male, Long-Evans rats were exposed 7 h a day for 90 days to continuous-wave (CW) 2,450-MHz microwaves at an average power density of 0.5 mW/sq cm. Exposures were in a monopole-above-ground radiation chamber with rats in Plexiglas cages. The resulting specific absorption rate (SAR) was 0.14 W/kg (+ or - 0.01 SEM). Additional rats served as sham-exposed and home-caged controls. All were evaluated daily for body mass and food and water intakes. Once each 30 days, throughout baseline and exposure phases of the experiment, rats in the sham- and microwave-exposed groups were tested for their sensitivity to footshock. After 90-days of exposure, the rats were evaluated on an open field, and active avoidance task and an operant task for food reinforcement. Performance of sham- and microwave-irradiated rats were reliably different on only one measure, the lever-pressing task. The general conclusion reached was that exposure to CW 2,450-MHz microwave radiation at 0.5 mW/sq cm was below the threshold for behavioral effects over a wide range of variables, but did have an effect on a time-related operant task, although the direction of the effect was unpredictable.

  4. Seasonal variability of total and easily leachable element contents in topsoils (0-5 cm) from eight catchments in the European Arctic (Finland, Norway and Russia).

    PubMed

    Niskavaara, H; Reimann, C; Chekushin, V; Kashulina, G

    1997-01-01

    Frozen topsoil samples (0-5 cm) were collected during March/April 1994 in eight Arctic catchments in northern Europe (4 in Russia, 3 in Finland, 1 in Norway) at varying distances and wind directions from the emissions of the Russian nickel ore mining, roasting and smelting industry on the Kola Peninsula. Between 14 and 25 sites were sampled in catchment basins ranging in size from 12 to 35 km(2). Sampling was repeated in spring immediately after the snow melted, in summer and in autumn to study seasonal variability and the fate of elements when the snow melts. The <2 mm fraction of air-dried topsoils was analysed for total (aqua regia extraction) and easily leachable (in 1 m ammonium acetate, buffered at pH 4.5) element concentrations using ICP-AES and GFAAS for up to 35 elements. Results for selected elements are presented here. Soil organic matter can be shown to be the controlling factor determining element contents and fate. In catchments close to the Russian nickel industry, the topsoils have low carbon and nitrogen contents. Using both extraction methods most elements reach maximum concentrations in winter; lowest concentrations are observed in midsummer. Soil organic matter and elements associated with it are thus leached out of the soils together with soluble elements when the snow melts. This process continues in summer. Elements will enrich surface waters, the lower layers of podzol profiles, or reach the groundwater. The use of the two extractions described provides a simple method to study the mobilities and pathways of elements in the topsoils during the arctic year. Using the proportions of easily leachable to total concentration, a good estimation of the status of the topsoil in the study area can be given. PMID:15093425

  5. Seasonal variability of total and easily leachable element contents in topsoils (0-5 cm) from eight catchments in the European Arctic (Finland, Norway and Russia).

    PubMed

    Niskavaara, H; Reimann, C; Chekushin, V; Kashulina, G

    1997-01-01

    Frozen topsoil samples (0-5 cm) were collected during March/April 1994 in eight Arctic catchments in northern Europe (4 in Russia, 3 in Finland, 1 in Norway) at varying distances and wind directions from the emissions of the Russian nickel ore mining, roasting and smelting industry on the Kola Peninsula. Between 14 and 25 sites were sampled in catchment basins ranging in size from 12 to 35 km(2). Sampling was repeated in spring immediately after the snow melted, in summer and in autumn to study seasonal variability and the fate of elements when the snow melts. The <2 mm fraction of air-dried topsoils was analysed for total (aqua regia extraction) and easily leachable (in 1 m ammonium acetate, buffered at pH 4.5) element concentrations using ICP-AES and GFAAS for up to 35 elements. Results for selected elements are presented here. Soil organic matter can be shown to be the controlling factor determining element contents and fate. In catchments close to the Russian nickel industry, the topsoils have low carbon and nitrogen contents. Using both extraction methods most elements reach maximum concentrations in winter; lowest concentrations are observed in midsummer. Soil organic matter and elements associated with it are thus leached out of the soils together with soluble elements when the snow melts. This process continues in summer. Elements will enrich surface waters, the lower layers of podzol profiles, or reach the groundwater. The use of the two extractions described provides a simple method to study the mobilities and pathways of elements in the topsoils during the arctic year. Using the proportions of easily leachable to total concentration, a good estimation of the status of the topsoil in the study area can be given.

  6. Muon and neutrino results from KGF experiment at a depth of 7000 hg/square cm

    NASA Technical Reports Server (NTRS)

    Krishnaswamy, M. R.; Menon, M. G. K.; Mondal, N. K.; Narasimham, V. S.; Streekantan, B. V.; Hayashi, Y.; Ito, N.; Kawakami, S.; Miyake, S.

    1985-01-01

    The KGF nucleon decay experiment at a depth of 7000 hg/sq cm has provided valuable data on muons and neutrinos. The detector comprised of 34 crossed layers of proportional counters (cross section 10 x 10 sq cm; lengths 4m and 6m) sandwiched between 1.2 cm thick iron plates can record tracks of charged particles to an accuracy of 1 deg from tracks that traverse the whole of the detector. A special two-fold coincidence system enables the detector to record charged particles that enter at very large zenith angles. In a live time of 3.6 years about 2600 events have been recorded. These events include atmospheric muons, neutrino induced muons from rock, stopping muons, showers and events which have their production vertex inside the detectors. The results on atmospheric muons and neutrino events are presented.

  7. A case study demonstration of the soil temperature extrema recovery rates after precipitation cooling at 10-cm soil depth

    NASA Technical Reports Server (NTRS)

    Welker, Jean Edward

    1991-01-01

    Since the invention of maximum and minimum thermometers in the 18th century, diurnal temperature extrema have been taken for air worldwide. At some stations, these extrema temperatures were collected at various soil depths also, and the behavior of these temperatures at a 10-cm depth at the Tifton Experimental Station in Georgia is presented. After a precipitation cooling event, the diurnal temperature maxima drop to a minimum value and then start a recovery to higher values (similar to thermal inertia). This recovery represents a measure of response to heating as a function of soil moisture and soil property. Eight different curves were fitted to a wide variety of data sets for different stations and years, and both power and exponential curves were fitted to a wide variety of data sets for different stations and years. Both power and exponential curve fits were consistently found to be statistically accurate least-square fit representations of the raw data recovery values. The predictive procedures used here were multivariate regression analyses, which are applicable to soils at a variety of depths besides the 10-cm depth presented.

  8. Precise Measurement of the Reionization Optical Depth from the Global 21 cm Signal Accounting for Cosmic Heating

    NASA Astrophysics Data System (ADS)

    Fialkov, Anastasia; Loeb, Abraham

    2016-04-01

    As a result of our limited data on reionization, the total optical depth for electron scattering, τ, limits precision measurements of cosmological parameters from the Cosmic Microwave Background (CMB). It was recently shown that the predicted 21 cm signal of neutral hydrogen contains enough information to reconstruct τ with sub-percent accuracy, assuming that the neutral gas was much hotter than the CMB throughout the entire epoch of reionization (EoR). Here we relax this assumption and use the global 21 cm signal alone to extract τ for realistic X-ray heating scenarios. We test our model-independent approach using mock data for a wide range of ionization and heating histories and show that an accurate measurement of the reionization optical depth at a sub-percent level is possible in most of the considered scenarios even when heating is not saturated during the EoR, assuming that the foregrounds are mitigated. However, we find that in cases where heating sources had hard X-ray spectra and their luminosity was close to or lower than what is predicted based on low-redshift observations, the global 21 cm signal alone is not a good tracer of the reionization history.

  9. LIME 0.5

    SciTech Connect

    2011-01-14

    LIME 0.5 is an initial version of a Lightweight Integrating Multi-physics Environment for coupling codes. LIME by itself is not a code for doing multiphysics simulations. Instead, LIME provides the key high-level software, a flexible but defined approach, and interface requirements for a collection of (potentially disparate) physics codes to be combined with strong coupling (when needed) though non-linear solution methods (e.g. JFNK, fixed point), thus creating a new multi-physics simulation capability customized for a particular need. ! ! The approach taken is designed to! •! preserve and leverage any important specialized algorithms and/or functionality an existing application may provide,! •! minimize the requirements barrier for an application to participate,! •! work within advanced solver frameworks (e.g. as extensions to the Trilinos/NOX nonlinear solver libraries, PETSc, . . .),! Of note is that components/physics codes that can be coupled within LIME are NOT limited to:! •! components written in one particular language,! •! a particular numerical discretization approach ( e.g. Finite Element), or! •! physical models expressed as PDEʼs.!

  10. LIME 0.5

    2011-01-14

    LIME 0.5 is an initial version of a Lightweight Integrating Multi-physics Environment for coupling codes. LIME by itself is not a code for doing multiphysics simulations. Instead, LIME provides the key high-level software, a flexible but defined approach, and interface requirements for a collection of (potentially disparate) physics codes to be combined with strong coupling (when needed) though non-linear solution methods (e.g. JFNK, fixed point), thus creating a new multi-physics simulation capability customized for amore » particular need. ! ! The approach taken is designed to! •! preserve and leverage any important specialized algorithms and/or functionality an existing application may provide,! •! minimize the requirements barrier for an application to participate,! •! work within advanced solver frameworks (e.g. as extensions to the Trilinos/NOX nonlinear solver libraries, PETSc, . . .),! Of note is that components/physics codes that can be coupled within LIME are NOT limited to:! •! components written in one particular language,! •! a particular numerical discretization approach ( e.g. Finite Element), or! •! physical models expressed as PDEʼs.!« less

  11. Estimation of CO2 diffusion coefficient at 0-10 cm depth in undisturbed and tilled soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diffusion coefficients (D) of CO2 at 0 – 10 cm layers in undisturbed and tilled soil conditions were estimated using Penman, Millington-Quirk, Ridgwell et al. (1999), Troeh et al., and Moldrup et al. models. Soil bulk density and volumetric soil water content ('v) at 0 – 10 cm were measured on April...

  12. Depth

    PubMed Central

    Koenderink, Jan J; van Doorn, Andrea J; Wagemans, Johan

    2011-01-01

    Depth is the feeling of remoteness, or separateness, that accompanies awareness in human modalities like vision and audition. In specific cases depths can be graded on an ordinal scale, or even measured quantitatively on an interval scale. In the case of pictorial vision this is complicated by the fact that human observers often appear to apply mental transformations that involve depths in distinct visual directions. This implies that a comparison of empirically determined depths between observers involves pictorial space as an integral entity, whereas comparing pictorial depths as such is meaningless. We describe the formal structure of pictorial space purely in the phenomenological domain, without taking recourse to the theories of optics which properly apply to physical space—a distinct ontological domain. We introduce a number of general ways to design and implement methods of geodesy in pictorial space, and discuss some basic problems associated with such measurements. We deal mainly with conceptual issues. PMID:23145244

  13. Depth.

    PubMed

    Koenderink, Jan J; van Doorn, Andrea J; Wagemans, Johan

    2011-01-01

    Depth is the feeling of remoteness, or separateness, that accompanies awareness in human modalities like vision and audition. In specific cases depths can be graded on an ordinal scale, or even measured quantitatively on an interval scale. In the case of pictorial vision this is complicated by the fact that human observers often appear to apply mental transformations that involve depths in distinct visual directions. This implies that a comparison of empirically determined depths between observers involves pictorial space as an integral entity, whereas comparing pictorial depths as such is meaningless. We describe the formal structure of pictorial space purely in the phenomenological domain, without taking recourse to the theories of optics which properly apply to physical space-a distinct ontological domain. We introduce a number of general ways to design and implement methods of geodesy in pictorial space, and discuss some basic problems associated with such measurements. We deal mainly with conceptual issues.

  14. Droplet size spectra and water-vapor concentration of laboratory water clouds: inversion of Fourier transform infrared (500-5000 cm(-1)) optical-depth measurement.

    PubMed

    Arnott, W P; Schmitt, C; Liu, Y; Hallett, J

    1997-07-20

    Infrared extinction optical depth (500-5000 cm(-1)) has been measured with a Fourier transform infrared spectrometer for clouds produced with an ultrasonic nebulizer. Direct measurement of the cloud droplet size spectra agree with size spectra retrieved from inversion of the extinction measurements. Both indicate that the range of droplet sizes is 1-14 mum. The retrieval was accomplished with an iterative algorithm that simultaneously obtains water-vapor concentration. The basis set of droplet extinction functions are computed once by using numerical integration of the Lorenz-Mie theory over narrow size bins, and a measured water-vapor extinction curve was used. Extinction and size spectra are measured and computed for both steady-state and dissipating clouds. It is demonstrated that anomalous diffraction theory produces relatively poor droplet size and synthetic extinction spectra and that extinction measurements are helpful in assessing the validity of various theories. Calculations of cloud liquid-water content from retrieved size distributions agree with a parameterization based on optical-depth measurements at a wave number of 906 cm(-1) for clouds that satisfy the size spectral range assumptions of the parameterization. Significance of droplet and vapor contribution to the total optical depth is used to evaluate the reliability of spectral inversions. PMID:18259335

  15. Droplet size spectra and water-vapor concentration of laboratory water clouds: inversion of Fourier transform infrared (500-5000 cm(-1)) optical-depth measurement.

    PubMed

    Arnott, W P; Schmitt, C; Liu, Y; Hallett, J

    1997-07-20

    Infrared extinction optical depth (500-5000 cm(-1)) has been measured with a Fourier transform infrared spectrometer for clouds produced with an ultrasonic nebulizer. Direct measurement of the cloud droplet size spectra agree with size spectra retrieved from inversion of the extinction measurements. Both indicate that the range of droplet sizes is 1-14 mum. The retrieval was accomplished with an iterative algorithm that simultaneously obtains water-vapor concentration. The basis set of droplet extinction functions are computed once by using numerical integration of the Lorenz-Mie theory over narrow size bins, and a measured water-vapor extinction curve was used. Extinction and size spectra are measured and computed for both steady-state and dissipating clouds. It is demonstrated that anomalous diffraction theory produces relatively poor droplet size and synthetic extinction spectra and that extinction measurements are helpful in assessing the validity of various theories. Calculations of cloud liquid-water content from retrieved size distributions agree with a parameterization based on optical-depth measurements at a wave number of 906 cm(-1) for clouds that satisfy the size spectral range assumptions of the parameterization. Significance of droplet and vapor contribution to the total optical depth is used to evaluate the reliability of spectral inversions.

  16. Ga0.5In0.5P Barrier Layer for Wet Oxidation of AlAs

    NASA Astrophysics Data System (ADS)

    Lee, Shih-Chang; Lee, Wei-I

    2000-05-01

    We study the stability of Ga0.5In0.5P and Al0.4Ga0.6As barrier layers for wet thermal oxidation of AlAs on GaAs. Samples with a Ga0.5In0.5P or Al0.4Ga0.6As barrier layer are oxidized in a water vapor environment under various oxidation conditions. The results of photoluminescence and secondary-ion mass spectrometry (SIMS) depth profile measurements indicate that the Ga0.5In0.5P barrier layer is more stable than the Al0.4Ga0.6As layer at higher oxidation temperatures and longer periods of oxidation time.

  17. 28 CFR 0.5 - Attorney General.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 1 2010-07-01 2010-07-01 false Attorney General. 0.5 Section 0.5... Attorney General § 0.5 Attorney General. The Attorney General shall: (a) Supervise and direct the administration and operation of the Department of Justice, including the offices of U.S. Attorneys and...

  18. 28 CFR 0.5 - Attorney General.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 28 Judicial Administration 1 2013-07-01 2013-07-01 false Attorney General. 0.5 Section 0.5 Judicial Administration DEPARTMENT OF JUSTICE ORGANIZATION OF THE DEPARTMENT OF JUSTICE Office of the Attorney General § 0.5 Attorney General. The Attorney General shall: (a) Supervise and direct...

  19. 28 CFR 0.5 - Attorney General.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 28 Judicial Administration 1 2014-07-01 2014-07-01 false Attorney General. 0.5 Section 0.5 Judicial Administration DEPARTMENT OF JUSTICE ORGANIZATION OF THE DEPARTMENT OF JUSTICE Office of the Attorney General § 0.5 Attorney General. The Attorney General shall: (a) Supervise and direct...

  20. 43 CFR 2710.0-5 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Definitions. 2710.0-5 Section 2710.0-5... Sales: General Provisions § 2710.0-5 Definitions. As used in this part, the term (a) Public lands means... and taxes, which will sustain a family sized agribusiness operation above the poverty level for...

  1. 43 CFR 2710.0-5 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Definitions. 2710.0-5 Section 2710.0-5... Sales: General Provisions § 2710.0-5 Definitions. As used in this part, the term (a) Public lands means... and taxes, which will sustain a family sized agribusiness operation above the poverty level for...

  2. 43 CFR 2710.0-5 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Definitions. 2710.0-5 Section 2710.0-5... Sales: General Provisions § 2710.0-5 Definitions. As used in this part, the term (a) Public lands means... and taxes, which will sustain a family sized agribusiness operation above the poverty level for...

  3. 43 CFR 2710.0-5 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Definitions. 2710.0-5 Section 2710.0-5... Sales: General Provisions § 2710.0-5 Definitions. As used in this part, the term (a) Public lands means... and taxes, which will sustain a family sized agribusiness operation above the poverty level for...

  4. 43 CFR 2361.0-5 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Definitions. 2361.0-5 Section 2361.0-5... and Protection of the National Petroleum Reserve in Alaska § 2361.0-5 Definitions. As used in this... described in Public Land Order 2344 (the Naval Arctic Research Laboratory—surface estate only) dated...

  5. Impact of mechanical stress on ferroelectricity in (Hf0.5Zr0.5)O2 thin films

    NASA Astrophysics Data System (ADS)

    Shiraishi, Takahisa; Katayama, Kiliha; Yokouchi, Tatsuhiko; Shimizu, Takao; Oikawa, Takahiro; Sakata, Osami; Uchida, Hiroshi; Imai, Yasuhiko; Kiguchi, Takanori; Konno, Toyohiko J.; Funakubo, Hiroshi

    2016-06-01

    To investigate the impact of mechanical stress on their ferroelectric properties, polycrystalline (Hf0.5Zr0.5)O2 thin films were deposited on (111)Pt-coated SiO2, Si, and CaF2 substrates with thermal expansion coefficients of 0.47, 4.5, and 22 × 10-6/ °C, respectively. In-plane X-ray diffraction measurements revealed that the (Hf0.5Zr0.5)O2 thin films deposited on SiO2 and Si substrates were under in-plane tensile strain and that their volume fraction of monoclinic phase decreased as this strain increased. In contrast, films deposited on CaF2 substrates were under in-plane compressive strain, and their volume fraction of monoclinic phase was the largest among the three kinds of substrates. The maximum remanent polarization of 9.3 μC/cm2 was observed for Pt/(Hf0.5Zr0.5)O2/Pt/TiO2/SiO2, while ferroelectricity was barely observable for Pt/(Hf0.5Zr0.5)O2/Pt/TiO2/SiO2/CaF2. This result suggests that the in-plane tensile strain effectively enhanced the ferroelectricity of the (Hf0.5Zr0.5)O2 thin films.

  6. Giant dielectric permittivity and weak ferromagnetic behavior in Bi0.5La0.5Fe0.5Cr0.5O3 ceramic

    NASA Astrophysics Data System (ADS)

    Tirupathi, Patri; Raju, K.; Peetla, Naresh; Pantangi, Ramakrishna; Pastor, Mukul

    2016-05-01

    A pervoskite (Bi0.5La0.5)(Fe0.5Cr0.5)O3 (BLFC) nanoparticles were synthesized by high energy ball milling. Rietveld refined X-ray diffraction studies revealed that this compound shows orthorhombic structure with Pbnm space group. The dielectric studies were investigated in wide frequency (102-106) range indicating giant dielectric permittivity behavior similar to LaFeO3 ceramic. The noted dielectric loss relaxation frequency dependent is as following the Arrhenius law can be ascribed as polaronic conduction. Further, magnetic transition at around 337 K and coexistence of weak ferromagnetic and antiferromagnetic behavior is observed below magnetic transition.

  7. 43 CFR 3142.0-5 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Definitions. 3142.0-5 Section 3142.0-5 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) LEASING IN SPECIAL TAR SAND AREAS Paying...

  8. 43 CFR 3142.0-5 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Definitions. 3142.0-5 Section 3142.0-5 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) LEASING IN SPECIAL TAR SAND AREAS Paying...

  9. 43 CFR 3142.0-5 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Definitions. 3142.0-5 Section 3142.0-5 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) LEASING IN SPECIAL TAR SAND AREAS Paying...

  10. 43 CFR 3142.0-5 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Definitions. 3142.0-5 Section 3142.0-5 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) LEASING IN SPECIAL TAR SAND AREAS Paying...

  11. 43 CFR 9212.0-5 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Definitions. 9212.0-5 Section 9212.0-5 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR TECHNICAL SERVICES (9000) FIRE MANAGEMENT Wildfire Prevention §...

  12. 43 CFR 2520.0-5 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., DEPARTMENT OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) DESERT-LAND ENTRIES Desert-Land Entries: General § 2520.0-5 Definitions. (a) As used in the desert-land laws and the regulations of this subpart:...

  13. 43 CFR 2520.0-5 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., DEPARTMENT OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) DESERT-LAND ENTRIES Desert-Land Entries: General § 2520.0-5 Definitions. (a) As used in the desert-land laws and the regulations of this subpart:...

  14. 43 CFR 2520.0-5 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., DEPARTMENT OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) DESERT-LAND ENTRIES Desert-Land Entries: General § 2520.0-5 Definitions. (a) As used in the desert-land laws and the regulations of this subpart:...

  15. Growth and structure of In0.5Ga0.5Sb quantum dots on GaP(001)

    NASA Astrophysics Data System (ADS)

    Sala, E. M.; Stracke, G.; Selve, S.; Niermann, T.; Lehmann, M.; Schlichting, S.; Nippert, F.; Callsen, G.; Strittmatter, A.; Bimberg, D.

    2016-09-01

    Stranski-Krastanov (SK) growth of In0.5Ga0.5Sb quantum dots (QDs) on GaP(001) by metalorganic vapor phase epitaxy is demonstrated. A thin GaAs interlayer prior to QD deposition enables QD nucleation. The impact of a short Sb-flush before supplying InGaSb is investigated. QD growth gets partially suppressed for GaAs interlayer thicknesses below 6 monolayers. QD densities vary from 5 × 109 to 2 × 1011 cm-2 depending on material deposition and Sb-flush time. When In0.5Ga0.5Sb growth is carried out without Sb-flush, the QD density is generally decreased, and up to 60% larger QDs are obtained.

  16. 43 CFR 8223.0-5 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., DEPARTMENT OF THE INTERIOR RECREATION PROGRAMS PROCEDURES Research Natural Areas § 8223.0-5 Definitions. (a) Research natural area means an area that is established and maintained for the primary purpose of research... threatened or endangered plant or animal species; (4) A typical representation of common geologic, soil,...

  17. 43 CFR 3140.0-5 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Existing Oil and Gas Leases and Valid Claims Based on Mineral Locations § 3140.0-5 Definitions. As used in... for the removal of gas and nongaseous hydrocarbon substances other than coal, oil shale or gilsonite... the information requirements of 43 CFR 3592 for both exploration plans and mining plans, as well...

  18. 43 CFR 2094.0-5 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...; Shore Space § 2094.0-5 Definitions. The term navigable waters is defined in section 2 of the Act of May 14, 1898 (30 Stat. 409; 48 U.S.C. 411), to include all tidal waters up to the line of ordinary high tide and all nontidal waters navigable in fact up to the line of ordinary highwater mark....

  19. 43 CFR 8224.0-5 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., DEPARTMENT OF THE INTERIOR RECREATION PROGRAMS PROCEDURES Fossil Forest Research Natural Area § 8224.0-5... Land Management designated to perform the duties described in this subpart: (b) Fossil means the..., bitumen, lignite, asphaltum and tar sands, even though they are of biologic origin: (c) Fossil Forest...

  20. 43 CFR 8224.0-5 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., DEPARTMENT OF THE INTERIOR RECREATION PROGRAMS PROCEDURES Fossil Forest Research Natural Area § 8224.0-5... Land Management designated to perform the duties described in this subpart: (b) Fossil means the..., bitumen, lignite, asphaltum and tar sands, even though they are of biologic origin: (c) Fossil Forest...

  1. 43 CFR 8224.0-5 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., DEPARTMENT OF THE INTERIOR RECREATION PROGRAMS PROCEDURES Fossil Forest Research Natural Area § 8224.0-5... Land Management designated to perform the duties described in this subpart: (b) Fossil means the..., bitumen, lignite, asphaltum and tar sands, even though they are of biologic origin: (c) Fossil Forest...

  2. 43 CFR 8224.0-5 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., DEPARTMENT OF THE INTERIOR RECREATION PROGRAMS PROCEDURES Fossil Forest Research Natural Area § 8224.0-5... Land Management designated to perform the duties described in this subpart: (b) Fossil means the..., bitumen, lignite, asphaltum and tar sands, even though they are of biologic origin: (c) Fossil Forest...

  3. 43 CFR 3400.0-5 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...-5 Definitions. As used in this group: (a) Alluvial valley floor has the meaning set forth in 30 CFR... consistent with 40 CFR 1508.9. (k) Exploration has the meaning set forth in § 3480.0-5(a)(17) of this title... approved mining or exploration plan. This is the same as the Federal lease bond referred to in 30 CFR...

  4. 43 CFR 1882.0-5 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., DEPARTMENT OF THE INTERIOR GENERAL MANAGEMENT (1000) FINANCIAL ASSISTANCE, LOCAL GOVERNMENTS Mineral... means the Act of February 25, 1920, as amended (30 U.S.C. 181). ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Definitions. 1882.0-5 Section...

  5. 43 CFR 1815.0-5 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., DEPARTMENT OF THE INTERIOR GENERAL MANAGEMENT (1000) INTRODUCTION AND GENERAL GUIDANCE Disaster Relief § 1815.0-5 Definitions. Major disaster means any hurricane, tornado, storm, flood, high water, winddriven... to warrant disaster assistance by the Federal Government to supplement the efforts and...

  6. 43 CFR 9212.0-5 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... fire occurring out of doors used for cooking, branding, personal warmth, lighting, ceremonial or..., DEPARTMENT OF THE INTERIOR TECHNICAL SERVICES (9000) FIRE MANAGEMENT Wildfire Prevention § 9212.0-5... Outer Continental Shelf; and (2) Lands held for the benefit of Indians, Aleuts, and Eskimos. (d)...

  7. 43 CFR 9212.0-5 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... fire occurring out of doors used for cooking, branding, personal warmth, lighting, ceremonial or..., DEPARTMENT OF THE INTERIOR TECHNICAL SERVICES (9000) FIRE MANAGEMENT Wildfire Prevention § 9212.0-5... Outer Continental Shelf; and (2) Lands held for the benefit of Indians, Aleuts, and Eskimos. (d)...

  8. 43 CFR 9212.0-5 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... fire occurring out of doors used for cooking, branding, personal warmth, lighting, ceremonial or..., DEPARTMENT OF THE INTERIOR TECHNICAL SERVICES (9000) FIRE MANAGEMENT Wildfire Prevention § 9212.0-5... Outer Continental Shelf; and (2) Lands held for the benefit of Indians, Aleuts, and Eskimos. (d)...

  9. 43 CFR 2520.0-5 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., or appropriation in accordance with state law, to use water on the land to be irrigated. ... § 2520.0-5 Definitions. (a) As used in the desert-land laws and the regulations of this subpart: (1) Reclamation requires conducting water in adequate amounts and quality to the land so as to render it...

  10. 43 CFR 3141.0-5 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) LEASING IN SPECIAL TAR SAND AREAS Leasing in Special Tar Sand Areas § 3141.0-5 Definitions. As used in this subpart, the term: (a) Combined hydrocarbon lease means a lease issued in a Special Tar Sand Area for the removal of any gas and...

  11. Dielectric and electrical characteristics of La0.5Na0.5Ga0.5V0.5O3

    NASA Astrophysics Data System (ADS)

    Acharya, Truptimayee; Choudhary, R. N. P.

    2016-07-01

    La0.5Na0.5Ga0.5V0.5O3 (LNGVO) ceramic was prepared using a high-temperature solid-state reaction method. The structural phase, microstructure, dielectric, ferroelectric and optical properties of the material were systematically investigated. The preliminary structural analysis using x-ray diffraction (XRD) data shows the formation of the material in an orthorhombic crystal structure at room temperature. Detailed studies of dielectric and electrical properties have been carried out over a wide range of frequency (1 kHz-1 MHz) and temperature (25-450 °C) in order to elucidate the basic mechanism of the conduction and relaxation process. The dielectric characteristics show that the ceramic is a relaxor with strong diffuse phase transition and frequency dispersion. The nature of the variation of ac conductivity as a function of frequency obeys the universal power law, and confirms the existence of a hopping conduction mechanism in the material. The material also exhibits ferroelectricity at room temperature with a very low value of remnant polarization. The ionic conductivity and transport number of the ferroelectric ionic conductor were obtained with the standard experiment and calculation respectively. The material shows NTCR behavior similar to that of a semi-conductor. Similar behavior has also been observed in the study of I-V characteristics of the material.

  12. 43 CFR 3180.0-5 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) ONSHORE OIL AND GAS UNIT AGREEMENTS: UNPROVEN AREAS Onshore Oil and Gas Unit Agreements: General § 3180.0-5 Definitions. The following terms, as used in this... or plan. Unitized substances. Deposits of oil and gas contained in the unitized land which...

  13. 43 CFR 3180.0-5 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) ONSHORE OIL AND GAS UNIT AGREEMENTS: UNPROVEN AREAS Onshore Oil and Gas Unit Agreements: General § 3180.0-5 Definitions. The following terms, as used in this... or plan. Unitized substances. Deposits of oil and gas contained in the unitized land which...

  14. 43 CFR 3130.0-5 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL AND GAS LEASING: NATIONAL PETROLEUM RESERVE, ALASKA Oil and Gas Leasing, National Petroleum Reserve, Alaska: General § 3130.0-5 Definitions. As used in... exploring, testing, surveying or otherwise investigating the potential of a lease for oil and gas or...

  15. 43 CFR 3130.0-5 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL AND GAS LEASING: NATIONAL PETROLEUM RESERVE, ALASKA Oil and Gas Leasing, National Petroleum Reserve, Alaska: General § 3130.0-5 Definitions. As used in... exploring, testing, surveying or otherwise investigating the potential of a lease for oil and gas or...

  16. 43 CFR 3180.0-5 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) ONSHORE OIL AND GAS UNIT AGREEMENTS: UNPROVEN AREAS Onshore Oil and Gas Unit Agreements: General § 3180.0-5 Definitions. The following terms, as used in this... or plan. Unitized substances. Deposits of oil and gas contained in the unitized land which...

  17. 43 CFR 3130.0-5 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL AND GAS LEASING: NATIONAL PETROLEUM RESERVE, ALASKA Oil and Gas Leasing, National Petroleum Reserve, Alaska: General § 3130.0-5 Definitions. As used in... exploring, testing, surveying or otherwise investigating the potential of a lease for oil and gas or...

  18. 43 CFR 3180.0-5 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) ONSHORE OIL AND GAS UNIT AGREEMENTS: UNPROVEN AREAS Onshore Oil and Gas Unit Agreements: General § 3180.0-5 Definitions. The following terms, as used in this... or plan. Unitized substances. Deposits of oil and gas contained in the unitized land which...

  19. 43 CFR 3400.0-5 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...-5 Definitions. As used in this group: (a) Alluvial valley floor has the meaning set forth in 30 CFR... consistent with 40 CFR 1508.9. (k) Exploration has the meaning set forth in § 3480.0-5(a)(17) of this title... approved mining or exploration plan. This is the same as the Federal lease bond referred to in 30 CFR...

  20. 43 CFR 3400.0-5 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-5 Definitions. As used in this group: (a) Alluvial valley floor has the meaning set forth in 30 CFR... consistent with 40 CFR 1508.9. (k) Exploration has the meaning set forth in § 3480.0-5(a)(17) of this title... approved mining or exploration plan. This is the same as the Federal lease bond referred to in 30 CFR...

  1. 43 CFR 3400.0-5 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...-5 Definitions. As used in this group: (a) Alluvial valley floor has the meaning set forth in 30 CFR... consistent with 40 CFR 1508.9. (k) Exploration has the meaning set forth in § 3480.0-5(a)(17) of this title... approved mining or exploration plan. This is the same as the Federal lease bond referred to in 30 CFR...

  2. Structural, Optical and Electrical Characteristics of a La0.5K0.5Ga0.5V0.5O3 System

    NASA Astrophysics Data System (ADS)

    Acharya, Truptimayee; Choudhary, R. N. P.

    2016-02-01

    The polycrystalline sample of La0.5K0.5Ga0.5V0.5O3 (LKGVO) was prepared using a high-temperature solid-state reaction technique. X-ray structural analysis of the sample confirmed the formation of a single-phase compound in an orthorhombic crystal system. Preliminary molecular structural analysis using infrared (IR) spectroscopy further supports the formation of a single-phase compound. The optical indirect band gaps in LKGVO were obtained from the ultraviolet-visible light (UV-Vis) absorption spectral analysis. The micro-structural study on the LKGVO pellet sample by scanning electron microscopy shows that well-defined grains are distributed uniformly throughout the surface of the sample. Detailed studies of dielectric and impedance parameters as a function of temperature and frequency have shown the significant effect of grains and grain boundaries in the relaxation process. A I- V characteristic of the material shows a negative temperature co-efficient of resistance which is similar to that of a semi-conductor. Based on the appearance of a distinct dielectric anomaly and an unsaturated P- E hysteresis loop, like many other compounds, the existence of ferroelectricity in the compound can be expected in spite of it having moderate ionic conductivity.

  3. 43 CFR 8223.0-5 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., DEPARTMENT OF THE INTERIOR RECREATION PROGRAMS PROCEDURES Research Natural Areas § 8223.0-5 Definitions. (a) Research natural area means an area that is established and maintained for the primary purpose of research... representation of a common plant or animal association; (2) An unusual plant or animal association; (3)...

  4. Infrared absorption spectra of a Nd0.5Ho0.5Fe3(BO3)4 crystal

    NASA Astrophysics Data System (ADS)

    Gerasimova, Yu. V.; Sofronova, S. N.; Gudim, I. A.; Oreshonkov, A. S.; Vtyurin, A. N.; Ivanenko, A. A.

    2016-01-01

    Infrared absorption spectra of a Nd0.5Ho0.5Fe3(BO3)4 crystal in the spectral range of 30-1700 cm-1 have been measured at temperatures from 6 to 300 K. The experimental spectra have been analyzed based on the semiempirical calculation of the lattice dynamics and the analysis of correlation diagrams of borate complexes. No changes associated with structural phase transitions have been detected in the temperature range of measurements; the effect of magnetic ordering on the infrared absorption spectra has not been observed.

  5. Radiation hardness of Ga0.5In0.5 P/GaAs tandem solar cells

    NASA Technical Reports Server (NTRS)

    Kurtz, Sarah R.; Olson, J. M.; Bertness, K. A.; Friedman, D. J.; Kibbler, A.; Cavicchi, B. T.; Krut, D. D.

    1991-01-01

    The radiation hardness of a two-junction monolithic Ga sub 0.5 In sub 0.5 P/GaAs cell with tunnel junction interconnect was investigated. Related single junction cells were also studied to identify the origins of the radiation losses. The optimal design of the cell is discussed. The air mass efficiency of an optimized tandem cell after irradiation with 10(exp 15) cm (-2) 1 MeV electrons is estimated to be 20 percent using currently available technology.

  6. Highly tunable microwave stub resonator on ferroelectric KTa0.5Nb0.5O3 thin film

    NASA Astrophysics Data System (ADS)

    Simon, Q.; Corredores, Y.; Castel, X.; Benzerga, R.; Sauleau, R.; Mahdjoubi, K.; Le Febvrier, A.; Députier, S.; Guilloux-Viry, M.; Zhang, L.; Laurent, P.; Tanné, G.

    2011-08-01

    A coplanar waveguide (CPW) stub resonator has been fabricated on a pulsed-laser deposited KTa0.5Nb0.5O3 (KTN) thin film (600 nm-thick) onto a r-plane sapphire substrate. It was designed to operate at 10 GHz when the applied bias voltage is zero. We show experimentally that the resonance frequency is shifted by 44% under a 70 kV/cm DC applied electric field. In addition, the dielectric characteristics of the KTN film have been assessed through post-processed measurements of CPW 50-Ω transmission lines using the conformal mapping method.

  7. Comparative Dielectric and Ferroelectric Characteristics of Bi0.5Na0.5TiO3, CaCu3Ti4O12, and 0.5Bi0.5Na0.5TiO3-0.5CaCu3Ti4O12 Electroceramics

    NASA Astrophysics Data System (ADS)

    Singh, Laxman; Yadava, Shiva Sundar; Sin, Byung Cheol; Rai, Uma Shanker; Mandal, K. D.; Lee, Youngil

    2016-06-01

    The dielectric and ferroelectric characteristics of Bi0.5Na0.5TiO3 (BNT), CaCu3Ti4O12 (CCTO), and 0.5Bi0.5Na0.5TiO3-0.5CaCu3Ti4O12 (BNT/CCTO) ceramics are compared. X-ray diffraction patterns confirmed the formation of single phase of all the ceramics after sintering at 950°C for 15 h. Scanning electron microscopy images of the sintered ceramics reveal average grain sizes in the range from 200 nm to 2.5 μm. Energy-dispersive x-ray mapping and x-ray photoelectron spectroscopy show the presence of the elements Bi, Na, Ca, Cu, Ti, and O with uniform distribution in the ceramics. BNT/CCTO exhibits high dielectric constant ( ɛ r ˜ 6.9 × 104) compared with BNT ( ɛ r ˜ 0.13 × 104) and CCTO ( ɛ r ˜ 1.68 × 104) ceramics at 1 kHz and 503 K. The high dielectric constant of BNT/CCTO compared with BNT and CCTO is associated with a major contribution from grain boundaries, as confirmed by impedance and modulus analyses. The P- E hysteresis loop of all the ceramics measured at room temperature and 50°C exhibited typical ferroelectric nature. The remanent polarization ( P r) of BNT (1.58 μC/cm2) and CCTO (0.654 μC/cm2) ceramics are higher than that of BNT/CCTO (0.267 μC/cm2) ceramic.

  8. Ultrathin Hf0.5Zr0.5O2 Ferroelectric Films on Si.

    PubMed

    Chernikova, Anna; Kozodaev, Maksim; Markeev, Andrei; Negrov, Dmitrii; Spiridonov, Maksim; Zarubin, Sergei; Bak, Ohheum; Buragohain, Pratyush; Lu, Haidong; Suvorova, Elena; Gruverman, Alexei; Zenkevich, Andrei

    2016-03-23

    Because of their immense scalability and manufacturability potential, the HfO2-based ferroelectric films attract significant attention as strong candidates for application in ferroelectric memories and related electronic devices. Here, we report the ferroelectric behavior of ultrathin Hf0.5Zr0.5O2 films, with the thickness of just 2.5 nm, which makes them suitable for use in ferroelectric tunnel junctions, thereby further expanding the area of their practical application. Transmission electron microscopy and electron diffraction analysis of the films grown on highly doped Si substrates confirms formation of the fully crystalline non-centrosymmetric orthorhombic phase responsible for ferroelectricity in Hf0.5Zr0.5O2. Piezoresponse force microscopy and pulsed switching testing performed on the deposited top TiN electrodes provide further evidence of the ferroelectric behavior of the Hf0.5Zr0.5O2 films. The electronic band lineup at the top TiN/Hf0.5Zr0.5O2 interface and band bending at the adjacent n(+)-Si bottom layer attributed to the polarization charges in Hf0.5Zr0.5O2 have been determined using in situ X-ray photoelectron spectroscopy analysis. The obtained results represent a significant step toward the experimental implementation of Si-based ferroelectric tunnel junctions.

  9. High pressure Raman study of layered Mo0.5W0.5S2 ternary compound

    NASA Astrophysics Data System (ADS)

    Kim, Joon-Seok; Moran, Samuel T.; Nayak, Avinash P.; Pedahzur, Shahar; Ruiz, Itzel; Ponce, Gabriela; Rodriguez, Daniela; Henny, Joanna; Liu, Jin; Lin, Jung-Fu; Akinwande, Deji

    2016-06-01

    Ternary two-dimensional (2D) transition metal dichalcogenide compounds exhibit a tunable electronic structure allowing for control of the interlayer and the intralayer atomic displacement to efficiently tune their physical and electronic properties. Using a diamond anvil cell, hydrostatic pressure was applied to Mo0.5W0.5S2 up to 40 GPa in order to study the optical phonon vibrational modes. Analysis of the high-pressure Raman spectra shows that the two in-plane E2g modes resembling that of pristine MoS2 and WS2, as well as disorder-activated longitudinal acoustic phonon mode, are hardened and suppressed as pressure increases. The two A1g modes of the ternary compound that resemble the A1g modes of pristine MoS2 and WS2, displayed similar Raman shifts to the pristine compounds as pressure increases. A Raman peak at 470 cm-1 that is close to A1g peaks emerges at ˜8 GPa, which represents a disorder-activated pressure-induced out-of-plane Raman mode observed only in the ternary compound under high pressure. At pressures above ˜30 GPa, a Raman peak at approximately 340 cm-1 is observed, signifying additional disorder-activated vibration mode. Our results reveal the enhanced interactions in the structural and vibrational behavior of the MoS2 and WS2 domains in the Mo0.5W0.5S2 compound under hydrostatic pressure. These results could have implications in understanding the electronic, optical, and structural properties of the new 2D ternary compound materials under extreme mechanical conditions.

  10. Magnetic properties of nanocrystalline Fe0.5Ni0.5 permalloy

    NASA Astrophysics Data System (ADS)

    De, D.; Majumdar, S.; Giri, S.

    2012-06-01

    We investigate magnetic properties of nanocrystalline Fe0.5Ni0.5 alloy embedded in the amorphous SiO2 host with volume fractions φ ≈ 10%. The static and dynamic aspects of the magnetic properties are investigated by investigating thermal and time dependence of low-field dc magnetization. Signature of strong interparticle interaction is noted in the magnetization results. The relaxation process at low temperature is fitted with stretched exponential function, displaying coexistence of ferromagnetic and glassy magnetic components.

  11. Magnetization reversal in the orthochromite Y0 . 5 Gd0.5 CrO3

    NASA Astrophysics Data System (ADS)

    Duran, Alejandro; Escudero, Roberto; Escamilla, Raul; Morales, Fransisco; Verdin, Eduardo

    Complex oxide of transition metal with perovskite structure represent fascinating playground for basic solid state research: new electronics and exotic ground states emerge via the competing interplay like spin, orbital, charge as well as lattice degree of freedom. Accordingly, orthochromites are not exception to the rule. In these compounds have been found ferroelectric polarization, spin reorientation transition along with the characteristic behavior known as; magnetization reversal (MR) consisting that a characteristic temperature, T*, the system becomes diamagnetic. In this work, the magnetic behavior of the equimolar Y0.5Gd0.5CrO3 composition was studied. Negative magnetization was observed at T*~70 K in FC mode, and applied field of 100 Oe. The characteristic hysteresis loop in the M-H graph of the pristine sample disappears for a wide range of temperature below of TN, and the characteristic spin reorientation is shifted from 14 K in GdCrO3 to 5 K for Y0.5Gd0.5CrO3. The negative magnetization is explained according the model that take into account the anisotropic and antisymmetric exchange interaction between Gd +3 - Cr +3 sublattice. A.D. and R.E. thanks to grants by DGAPA-PAPIIT, IN103213 and IN 106014 respectively.

  12. Structural and electrical properties of 1 − x(Na{sub 0.5}K{sub 0.5})NbO{sub 3}–x(Sr{sub 0.5}Ca{sub 0.5})TiO{sub 3} ceramics

    SciTech Connect

    Lee, Tae-Ho; Lee, Sung-Gap Yeo, Jin-Ho; Jung, Hye-Rin

    2014-10-15

    Highlights: • We fabricated lead-free (Na{sub 0.5}K{sub 0.5})NbO{sub 3} ceramics. • We studied the structural and electrical properties of 1 − x(Na{sub 0.5}K{sub 0.5})NbO{sub 3}–x(Sr{sub 0.5}Ca{sub 0.5})TiO{sub 3} ceramics. • The structural and electrical properties improved with increasing amount of (Sr{sub 0.5}Ca{sub 0.5})TiO{sub 3}. - Abstract: In this study, 1 − x(Na{sub 0.5}K{sub 0.5})NbO{sub 3}–x(Sr{sub 0.5}Ca{sub 0.5})TiO{sub 3} ceramics were fabricated using the conventional mixed oxide method. The effects of the addition of (Sr{sub 0.5}Ca{sub 0.5})TiO{sub 3} on the structural and electrical properties of the specimens were investigated for their application in piezoelectric devices. As the results of X-ray diffraction analysis show, all specimens display the typical polycrystalline perovskite structure without the presence of the second phase. Sintered densities increased with an increase in the amount of (Sr{sub 0.5}Ca{sub 0.5})TiO{sub 3} added and the specimen with 0.08 mol% of (Sr{sub 0.5}Ca{sub 0.5})TiO{sub 3} added showed the maximum value of 4.54 g/cm{sup 3}. Both average grain size and densification increased with an increase in the amount of (Sr{sub 0.5}Ca{sub 0.5})TiO{sub 3}. The electromechanical coupling factor, dielectric constant ϵ{sub r}, dielectric loss tan δ, d{sub 33} and Curie temperature of the 0.92(Na{sub 0.5}K{sub 0.5})NbO{sub 3}–0.08(Sr{sub 0.5}Ca{sub 0.5})TiO{sub 3} specimens doped with 0.08 mol% of (Sr{sub 0.5}Ca{sub 0.5})TiO{sub 3} were 0.31, 1338, 0.021, 138 and 445 °C, respectively.

  13. Ellipsometric study of Si(0.5)Ge(0.5)/Si strained-layer superlattices

    NASA Technical Reports Server (NTRS)

    Sieg, R. M.; Alterovitz, S. A.; Croke, E. T.; Harrell, M. J.

    1993-01-01

    An ellipsometric study of two Si(0.5)Ge(0.5)/Si strained-layer super lattices grown by MBE at low temperature (500 C) is presented, and results are compared with x ray diffraction (XRD) estimates. Excellent agreement is obtained between target values, XRD, and ellipsometry when one of two available Si(x)Ge(1-x) databases is used. It is shown that ellipsometry can be used to nondestructively determine the number of superlattice periods, layer thicknesses, Si(x)Ge(1-x) composition, and oxide thickness without resorting to additional sources of information. It was also noted that we do not observe any strain effect on the E(sub 1) critical point.

  14. Ellipsometric study of Si(0.5)Ge(0.5)/Si strained-layer superlattices

    NASA Technical Reports Server (NTRS)

    Sieg, R. M.; Alterovitz, S. A.; Croke, E. T.; Harrell, M. J.

    1993-01-01

    We present an ellipsometric study of two Si(0.5)Ge(0.5)/Si strained-layer superlattices grown by MBE at low temperature (500 C), and compare our results with X-ray diffraction (XRD) estimates. Excellent agreement is obtained between target values, XRD, and ellipsometry when one of two available Si(x)Ge(1-x) databases is used. We show that ellipsometry can be used to nondestructively determine the number of superlattice periods, layer thicknesses, Si(x)Ge(1-x) composition, and oxide thickness without resorting to additional sources of information. We also note that we do not observe any strain effect on the E1 critical point.

  15. Structural characteristics of thermally evaporated Cu0.5Ag0.5InSe2 thin films

    NASA Astrophysics Data System (ADS)

    Gullu, H. H.; Parlak, M.

    2016-05-01

    In this work, Cu0.5Ag0.5InSe2 (CAIS) thin film samples were prepared by thermal evaporation of Cu, Ag, InSe and Se evaporants sequentially on glass substrates. Following the deposition, annealing processes were applied at different temperatures. The as-grown and annealed CAIS samples were nearly stoichiometric in the detection limit of the compositional measurement. The x-ray diffraction (XRD) measurements revealed that they were in polycrystalline structure with a preferred orientation along the (112) direction. Moreoever, the crystallinity of the films improved with increasing annealing temperature. According to the results of Raman measurements, the highest Raman intensity was found in the A1 mode which is directly proportional to the crystallinity of the samples. The surface properties of the thin films were analyzed by means of scanning electron microscopy (SEM) and atomic force microscopy (AFM). These results showed that there was a Se agglomeration on the deposited film surfaces and with annealing processes segregation effects were observed on the surface of the annealed samples. X-ray photoelectron spectroscopy (XPS) measurements were carried out to get information about surface and near-surface properties of the films. The results from the surface and depth surface analyses of the films were found to be in agreement with the energy dispersive spectroscopy (EDS) analysis.

  16. Illuminating Australia's conductivity structure at 0.5x0.5° resolution: AusLAMP progress

    NASA Astrophysics Data System (ADS)

    Chopping, R. G.

    2015-12-01

    The Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP) collaborative project is a program designed to deploy long period magnetotelluric (MT) stations across the Australian continent at a nominal resolution of 0.5x0.5° (approximately 50 by 50 km). The program brings together Federal and State government geological surveys with universities to acquire these MT data sites. The aim is to use these data to produce a 3D model of the conductivity of Australia to lithospheric depths. To date, the entire state of Victoria has been imaged, along with a large portion of South Australia, and smaller regions in Queensland and New South Wales. A pool of instruments are used for these data collection tranches, with standards for acquisition parameters, processing and modelling developed to ensure consistent data acquisition. We will provide an update on the program, including current deployments, plus an overview of data collected so far. Finally, we will discuss the future acquisition plans of the AusLAMP project.

  17. Dielectric, Electromechanical and Ferroelectric Properties of (Na0.5Bi0.5)(NdxTi1-2xNbx)O3 Relaxor Ceramics

    NASA Astrophysics Data System (ADS)

    Mahboob, S.; Prasad, G.; Kumar, G. S.

    Polycrystalline (Na0.5Bi0.5)(NdxTi1-2xNbx)O3 ceramics with perovskite structure were prepared through the solid state sintering route. The prepared samples were studied for their dielectric, electromechanical and ferroelectric properties. Dielectric measurements showed relaxor behavior. From electromechanical studies, a relatively high electro-mechanical coupling factor, kt (in the range 0.69-0.73) depending upon composition was observed. Among the samples studied, x = 0.0125 exhibited a higher value of remanant polarization (~ 0.50 μC/cm2 at coercive field (Ec = 6.30 kV/cm)).

  18. Anisotropic superconducting properties of single-crystalline FeSe0.5Te0.5

    NASA Astrophysics Data System (ADS)

    Bendele, M.; Weyeneth, S.; Puzniak, R.; Maisuradze, A.; Pomjakushina, E.; Conder, K.; Pomjakushin, V.; Luetkens, H.; Katrych, S.; Wisniewski, A.; Khasanov, R.; Keller, H.

    2010-06-01

    Iron-chalcogenide single crystals with the nominal composition FeSe0.5Te0.5 and a transition temperature of Tc≃14.6K were synthesized by the Bridgman method. The structural and anisotropic superconducting properties of those crystals were investigated by means of single crystal x-ray and neutron powder diffraction, superconducting quantum interference device and torque magnetometry, and muon-spin rotation (μSR). Room temperature neutron powder diffraction reveals that 95% of the crystal volume is of the same tetragonal structure as PbO. The structure refinement yields a stoichiometry of Fe1.045Se0.406Te0.594 . Additionally, a minor hexagonal Fe7Se8 impurity phase was identified. The magnetic penetration depth λ at zero temperature obtained by means of μSR was found to be λab(0)=491(8)nm in the ab plane and λc(0)=1320(14)nm along the c axis. The zero-temperature value of the superfluid density ρs(0)∝λ-2(0) obeys the empirical Uemura relation observed for various unconventional superconductors, including cuprates and iron pnictides. The temperature dependences of both λab and λc are well described by a two-gap s+s -wave model with the zero-temperature gap values of ΔS(0)=0.51(3)meV and ΔL(0)=2.61(9)meV for the small and the large gap, respectively. The magnetic penetration depth anisotropy parameter γλ(T)=λc(T)/λab(T) increases with decreasing temperature, in agreement with γλ(T) observed in the iron-pnictide superconductors.

  19. BaZr0.5Ti0.5O3 : Lead-free relaxor ferroelectric or dipolar glass

    NASA Astrophysics Data System (ADS)

    Filipič, C.; Kutnjak, Z.; Pirc, R.; Canu, G.; Petzelt, J.

    2016-06-01

    Glassy freezing dynamics was investigated in BaZr0.5Ti0.5O3 (BZT50) ceramic samples by means of dielectric spectroscopy in the frequency range 0.001 Hz-1 MHz at temperatures 10 cm it has been found that a ferroelectric state cannot be induced, in contrast to the case of typical relaxors. This suggests that—at least for the above field amplitudes—BZT50 effectively behaves as a dipolar glass, which can be characterized by a negative value of the static third order nonlinear permittivity. The relaxation spectrum has been analyzed by means of the frequency-temperature plot, which shows that the longest relaxation time obeys the Vogel-Fulcher relation τ =τ0exp [E0/(T -T0) ] with the freezing temperature of 48.1 K, whereas the corresponding value for the shortest relaxation time is ˜0 K, implying an Arrhenius type behavior. By applying a standard expression for the static linear permittivity of dipolar glasses and/or relaxors the value of the Edwards-Anderson order parameter q (T ) has been evaluated. It is further shown that q (T ) can be described by the spherical random bond-random field model of relaxors.

  20. Influence of electron beam irradiation on the structural, electrical and thermal properties of Gd0.5Sr0.5MnO3 and Dy0.5Sr0.5MnO3 manganites

    NASA Astrophysics Data System (ADS)

    Nagaraja, B. S.; Rao, Ashok; Babu, P. D.; Sanjeev, Ganesh; Okram, G. S.

    2016-01-01

    We present systematic studies on the effect of electron beam irradiation on structural, electrical and thermal properties of Gd0.5Sr0.5MnO3 and Dy0.5Sr0.5MnO3 manganites. The XRD patterns and Rietveld analysis show that the samples remain single phased even after they undergo electron beam irradiation. Both the series of the samples Gd0.5Sr0.5MnO3 and Dy0.5Sr0.5MnO3 show insulating trends in their temperature dependent electrical resistivity, ρ(T) behavior. The resistivity data for both the series of samples (pristine as well as irradiated) indicate that the small polaron hopping model is valid in high temperature region; on contrary, variable range hopping model governs the low temperature regime. Magnetic studies demonstrate that the Neel temperatures of pristine and irradiated samples of Gd0.5Sr0.5MnO3 and Dy0.5Sr0.5MnO3 do not change appreciably when they are subjected to irradiation. Thermo-electrical power is observed to increase with irradiation in Gd0.5Sr0.5MnO3 samples, whereas for Dy0.5Sr0.5MnO3 samples a decrease in thermo-electric power is seen when the samples are irradiated.

  1. Synthesis and electrochemical assessment of Ce{sub 0.5}Yb{sub 0.5}O{sub 1.75} ceramics and derived composite electrolytes

    SciTech Connect

    Martins, Natércia C.T.; Rajesh, Surendran; Marques, Fernando M.B.

    2015-10-15

    Highlights: • Ce{sub 0.5}Yb{sub 0.5}O{sub 1.75} prepared for the first time through solid state reaction. • High energy milling needed to assist the ceramic route. • Ce{sub 0.5}Yb{sub 0.5}O{sub 1.75} is oxide-ion conductor in air and n-type conductor at low pO{sub 2}. • Ce{sub 0.5}Yb{sub 0.5}O{sub 1.75} decomposes slightly when exposed to alkaline carbonates. • Composites based on Ce{sub 0.5}Yb{sub 0.5}O{sub 1.75} show standard electrical performance. - Abstract: Ce{sub 0.5}Yb{sub 0.5}O{sub 1.75} was prepared for the first time through high temperature (1600 °C for 5 h) solid state reaction, after high energy milling to enhance the mechano-chemical interaction of precursor oxides (CeO{sub 2} and Yb{sub 2}O{sub 3}). Single phase formation was confirmed by powder X-ray diffraction. Impedance spectroscopy data obtained under wide temperature (300–800 °C) and oxygen partial pressure (0.21 to about 10{sup −25} atm) ranges indicates that this material exhibits predominant oxide-ion conductivity under oxidizing conditions while n-type electronic conductivity prevails at low oxygen partial pressure. The mixed oxide shows modest ionic conductivity (1.1 × 10{sup −3} S cm{sup −1} at 800 °C) with activation energy of 1.3 eV in the 600–800 °C temperature range. When combined with molten carbonates (Li{sub 2}CO{sub 3} + Na{sub 2}CO{sub 3}, 1:1 molar ratio) to produce composite electrolytes, Ce{sub 0.5}Yb{sub 0.5}O{sub 1.75} slightly decomposed. However, the composite electrical performance is still acceptable and closely matches the conductivity of similar materials (>0.1 S cm{sup −1} immediately above 500 °C)

  2. Giant strain and electric-field-induced phase transition in lead-free (Na0.5Bi0.5)TiO3-BaTiO3-(K0.5Na0.5)NbO3 single crystal

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Zhao, Xiangyong; Wang, Yaojin; Zhang, Haiwu; Deng, Hao; Li, Xiaobing; Jiang, Xingan; Jiang, Xiangping; Luo, Haosu

    2016-01-01

    A lead-free single crystal 0.92(Na0.5Bi0.5)TiO3-0.06BaTiO3-0.02(K0.5Na0.5)NbO3 (NBT-6BT-2KNN) with dimension of Φ35 mm × 10 mm is grown by a precisely controlled top seeded solution growth method. The <001> oriented single crystals have excellent piezoelectric properties with a giant strain of 0.83% at 28 kV/cm. Application of an electric-field ≥14 kV/cm leads to a phase transition from pseudocubic to coexistence of tetragonal and pseudocubic. A strong ferroelectric domain texture occurs during the phase transition. Furthermore, the variation of tetragonal phase fraction agrees well with the macroscopic strain curve, demonstrating that the induced tetragonal phase plays a critical role in the high strain property.

  3. Structure and electrical properties of 0.80 Na0.5 Bi0.5 TiO3-0.16 K0.5 Bi0.5 TiO3-0.04 BaTiO3 lead-free piezoelectric ceramics

    NASA Astrophysics Data System (ADS)

    Aravinth, K.; Muneeswaran, M.; Babu, G. Anandha; Giridharan, N. V.; Ramasamy, P.

    2016-05-01

    Lead free pervoskite 0.80 Na0.5 Bi0.5 TiO3-0.16 K0.5 Bi0.5 TiO3-0.04 BaTiO3 (NKBBT) ceramics were fabricated via conventional solid state processing technique sintered at 1200 °C and their crystal structures and electrical properties were systematically studied. Structure of the prepared NKBBT ceramics was confirmed by Powder X-ray diffraction analysis. The dependence of dielectric constant on temperature for various frequencies (100 Hz-100 KHz) has been determined. The diffuse transition is observed in the variation of dielectric constant and it provides evidence for the relaxor characteristics. The ferroelectric response of the NKBBT ceramics with different frequency was studied. Polarisation electric field hysteresis loops revealed that the remnant polarization is 6.88 µC/cm2 and coercive electric field is 66.42 kV/cm.

  4. Ni-doped La0.5Sr0.5TiO3 nanofibers: Fabrication and intrinsic ferromagnetism

    NASA Astrophysics Data System (ADS)

    Ponhan, Wichaid; Amornkitbamrung, Vittaya; Maensiri, Santi

    2016-06-01

    We report room-temperature ferromagnetism in ˜104-133 nm nanofibers of La0.5Sr0.5Ti1- x Ni x O3 (0.02 ≤ x ≤ 0.05). As-spun nanofibers of La0.5Sr0.5Ti1- x Ni x O3 are fabricated by an electrospinning technique. Nanofibers of the as spun and calcined La0.5Sr0.5Ti1- x Ni x O3 samples are characterized using X-ray diffraction (XRD) analysis, transmission electron microscopy (TEM), X-ray photoelectron microscopy (XPS), X-ray absorption near edge structure (XANES) determination, and vibrating sample magnetometry (VSM). The results of XRD analysis and TEM together with selected electron diffraction (SEAD) analysis indicate that La0.5Sr0.5Ti1- x Ni x O3 nanofibers have a cubic perovskite structure with no secondary phase. The as-spun samples are paramagnetic, whereas the La0.5Sr0.5Ti1- x Ni x O3 samples are ferromagnetic having specific magnetizations of 0.098-0.484 emu/g at 10 kOe. The XPS spectra show that there are some oxygen vacancies in the nanofibers, which its may play an important role in inducing room-temperature ferromagnetism in La0.5Sr0.5Ti1- x Ni x O3 nanofibers. XANES spectra show that most of the Ni ions in La0.5Sr0.5Ti1- x Ni x O3 nanofibers are in the Ni2+ state mixed with some Ni metal. The finding of room temperature ferromagnetism in this nanofibrous structure of the La0.5Sr0.5Ti1- x Ni x O3 system is of interest in research on diluted magnetic oxides.

  5. Near-infrared emitting CdTe0.5Se0.5/Cd0.5Zn0.5S quantum dots: synthesis and bright luminescence

    PubMed Central

    2012-01-01

    We present how CdTe0.5Se0.5 cores can be coated with Cd0.5Zn0.5S shells at relatively low temperature (around 200°C) via facile synthesis using organic ammine ligands. The cores were firstly fabricated via a less toxic procedure using CdO, trioctylphosphine (TOP), Se, Te, and trioctylamine. The cores with small sizes (3.2-3.5 nm) revealed green and yellow photoluminescence (PL) and spherical morphologies. Hydrophobic core/shell CdTe0.5Se0.5/Cd0.5Zn0.5S quantum dots (QDs) with tunable PL between green and near-infrared (a maximum PL peak wavelength of 735 nm) were then created through a facile shell coating procedure using trioctylphosphine selenium with cadmium and zinc acetate. The QDs exhibited high PL efficiencies up to 50% because of the formation of a protective Cd0.5Zn0.5S shell on the CdTe0.5Se0.5 core, even though the PL efficiency of the cores is low (≤1%). Namely, the slow growth process of the shell plays an important role for getting high PL efficiencies. The properties of the QDs are largely determined by the properties of CdTe0.5Se0.5 cores and shells preparation conditions such as reaction temperature and time. The core/shell QDs exhibited a small size diameter. For example, the average diameter of the QDs with a PL peak wavelength of 735 nm is 6.1 nm. Small size and tunable bright PL makes the QDs utilizable as bioprobes because the size of QD-based bioprobes is considered as the major limitation for their broad applications in biological imaging. PMID:23130948

  6. Fabrication of highly spin-polarized Co{sub 2}FeAl{sub 0.5}Si{sub 0.5} thin-films

    SciTech Connect

    Vahidi, M.; Zhang, S. K.; Yu, L.; Huang, M.; Newman, N.; Gifford, J. A.; Chen, T. Y.; Krishnamurthy, S.; Yu, Z. G.; Youngbull, C.

    2014-04-01

    Ferromagnetic Heusler Co{sub 2}FeAl{sub 0.5}Si{sub 0.5} epitaxial thin-films have been fabricated in the L2{sub 1} structure with saturation magnetizations over 1200 emu/cm{sup 3}. Andreev reflection measurements show that the spin polarization is as high as 80% in samples sputtered on unheated MgO (100) substrates and annealed at high temperatures. However, the spin polarization is considerably smaller in samples deposited on heated substrates.

  7. Enhanced ferroelectric properties and thermal stability of nonstoichiometric 0.92(Na0.5Bi0.5)TiO3-0.08(K0.5Bi0.5)TiO3 single crystals

    NASA Astrophysics Data System (ADS)

    Zhang, Haiwu; Chen, Chao; Zhao, Xiangyong; Deng, Hao; Li, Long; Lin, Di; Li, Xiaobing; Ren, Bo; Luo, Haosu; Yan, Jun

    2013-11-01

    Bi deficient, Mn doped 0.92(Na0.5Bi0.5)TiO3-0.08(K0.5Bi0.5)TiO3 single crystals were grown by carefully controlled top-seeded solution growth method. Local structures were investigated by transmission electron microscopy. The site occupation and valence state of manganese were characterized by electron paramagnetic resonance spectrum. The leakage current density in the as-grown single crystals is effectively depressed. The introduced defect complexes suppress the temperature induced phase transformation, increasing the depolarization temperature (165 °C) and thermal stability of ferroelectric properties.

  8. Non-random cation distribution in hexagonal Al 0.5Ga 0.5PO 4

    NASA Astrophysics Data System (ADS)

    Kulshreshtha, S. K.; Jayakumar, O. D.; Sudarsan, V.

    2010-05-01

    Based on powder X-ray diffraction and 31P Magic Angle Spinning Nuclear Magnetic Resonance (MAS NMR) investigations of mixed phosphate Al 0.5Ga 0.5PO 4, prepared by co-precipitation method followed by annealing at 900 °C for 24 h, it is shown that Al 0.5Ga 0.5PO 4 phase crystallizes in hexagonal form with lattice parameter a=0.491(2) and c=1.106(4) nm. This hexagonal phase of Al 0.5Ga 0.5PO 4 is similar to that of pure GaPO 4. The 31P MAS NMR spectrum of the mixed phosphate sample consists of five peaks with systematic variation of their chemical shift values and is arising due to existence of P structural units having varying number of the Al 3+/Ga 3+ cations as the next nearest neighbors in the solid solution. Based on the intensity analysis of the component NMR spectra of Al 0.5Ga 0.5PO 4, it is inferred that the distribution of Al 3+ and Ga 3+ cations is non-random for the hexagonal Al 0.5Ga 0.5PO 4 sample although XRD patterns showed a well-defined solid solution formation.

  9. Synthesis and luminescence characterization of Sr(0.5)Ca(0.5)TiO3:Sm(3+) phosphor.

    PubMed

    Vidyadharan, Viji; Remya, Mohan P; Gopi, Subhash; Thomas, Sunil; Joseph, Cyriac; Unnikrishnan, N V; Biju, P R

    2015-11-01

    The spectroscopic properties of trivalent samarium doped Sr0.5Ca0.5TiO3 perovskite phosphor material (Sr0.5Ca0.5TiO3:xSm(3+), x=0.05, 0.1, 0.5, 1, 1.5) synthesized by the solid state method have been studied. The X-Ray Diffraction profile confirms the orthorhombic perovskite Sr0.5Ca0.5TiO3 structure of the prepared samples. The SEM study reveals the surface morphology. The Judd-Ofelt intensity parameters were calculated for 0.5 wt% Sm(3+) doped Sr0.5Ca0.5TiO3. Transition probabilities, branching ratios and radiative lifetime were evaluated by using Judd-Ofelt analysis. The emission spectra under 405 nm excitation shows five emission peaks at 564 nm, 599 nm, 645 nm, 707 nm and 776 nm corresponding to the transitions (4)G5/2→(6)Hj (j=5/2, 7/2, 9/2, 11/2 and 13/2) respectively. The higher values of branching ratio and stimulated emission cross-section for (4)G5/2→(6)H7/2 transition of Sr0.5Ca0.5TiO3:0.5 wt% Sm(3+) shows its suitability in the field of visible lasers and optical fiber amplifiers. The experimental lifetimes of Sm(3+) doped samples were estimated using the decay curves corresponding to (4)G5/2→(6)H7/2 transition upon 405 nm excitation. Concentration dependence on emission intensity and experimental lifetime were also studied. From the CIE diagram we can see that as the concentration of Sm(3+) ions increases from 0.05 wt% to 1.5 wt% the CIE color co-ordinates changes from greenish yellow to yellowish orange.

  10. Epitaxial La0.5Sr0.5CoO3 thin films: Structure, magnetism, and transport

    SciTech Connect

    Torija, Maria; Sharma, M; Fitzsimmons, M. R.; Varela, M; Leighton, chris

    2008-01-01

    La1 xSrxCoO3 has received considerable attention in bulk form. This is due to interest in the fundamental magnetic properties spin-state transitions and magnetic phase separation as well as potential applications in ferroelectric memory and solid-oxide fuel cells. The structure and properties in thin film form are not well understood, and the influence of dimensional confinement on effects such as magnetic phase separation is unknown. Here, we report a comprehensive investigation of structure, magnetism, and transport in strained epitaxial La0.5Sr0.5CoO3 001 films deposited on SrTiO3 001 substrates by reactive dc magnetron sputtering. The crystalline quality, phase purity, strain state, oxygen stoichiometry, morphology, and magnetic and electronic properties of the epilayers are all probed and are found to be particularly sensitive to the total sputtering gas pressure and the ratio of reactive to inert gas PO2 /PAr. The various structure-property relationships are discussed in detail, particularly with respect to the degree of oxygenation and oxygen-induced resputtering. The films are strained and tetragonally distorted due to the 1.9% lattice mismatch with SrTiO3. Significant strain relaxation occurs at thicknesses around 200 , resulting in a crossover from two-dimensional-like to three-dimensional growth. Polarized neutron reflectometry was combined with x-ray reflectometry to obtain chemical and magnetic depth profiles, which are compared with cross-sectional scanning transmission electron microscopy. The results indicate a thin 10 layer at the film/substrate interface with significantly different structural properties to the bulk of the film, as well as a strongly graded magnetic and chemical profile at the film surface due to the significant roughness. The Curie temperature was found to decrease very slowly as the thickness is reduced down to 50 , at which point a rapid decrease occurs, almost coincident with a sharp decrease in saturation magnetization. At

  11. Shear strain in Nd0.5Ca0.5MnO3 at high pressures.

    PubMed

    Arulraj, Anthony; Dinnebier, Robert E; Carlson, Stefan; Hanfland, Michael; van Smaalen, Sander

    2005-04-29

    High-pressure x-ray powder diffraction has been measured on the half doped rare earth manganite Nd0.5Ca0.5MnO3 up to a pressure of 15 GPa. We report the presence of a quantifiable amount of shear distortion of the MnO6 octahedra in Nd0.5Ca0.5MnO3 at high pressures. The lattice strain of Nd0.5Ca0.5MnO3 is minimal at a crossover pressure of p* approximately 7 GPa, with the same lattice strain above and below this pressure achieved by shear and Jahn-Teller-type distortions, respectively. The increase in shear strain with increasing pressure provides a mechanism for the insulating behavior of manganites at high pressures that has not been considered before. PMID:15904242

  12. Inductive crystallization effect of atomic-layer-deposited Hf0.5Zr0.5O2 films for ferroelectric application.

    PubMed

    Zhang, Xun; Chen, Lin; Sun, Qing-Qing; Wang, Lu-Hao; Zhou, Peng; Lu, Hong-Liang; Wang, Peng-Fei; Ding, Shi-Jin; Zhang, David Wei

    2015-01-01

    Ferroelectric Hf x Zr1-x O2 thin films are considered promising candidates for future lead-free CMOS-compatible ferroelectric memory application. The inductive crystallization behaviors and the ferroelectric performance of Hf0.5Zr0.5O2 thin films prepared by atomic layer deposition were investigated. Inductive crystallization can be induced by the film growth condition and appropriate top electrode selection. In this work, a Ni/Hf0.5Zr0.5O2/Ru/Si stack annealed at 550°C for 30 s in N2 ambient after the Ni top electrode has been deposited was manufactured, and it shows the best ferroelectric hysteresis loop in the dielectric thickness of 25 nm, with a remanent polarization value of 6 μC/cm(2) and a coercive field strength of 2.4 MV/cm measured at 10 kHz. Endurance, retention, and domain switching current characteristics were evaluated well for potential application in the field of ferroelectric field effect transistor (FeFET) and nonvolatile ferroelectric memories (FeRAM).

  13. Topochemical reduction of the Ruddlesden-Popper phases Sr2Fe(0.5)Ru(0.5)O4 and Sr3(Fe(0.5)Ru(0.5))2O7.

    PubMed

    Denis Romero, Fabio; Gianolio, Diego; Cibin, Giannantonio; Bingham, Paul A; d'Hollander, Jeanne-Clotilde; Forder, Susan D; Hayward, Michael A

    2013-10-01

    Reaction of the Ruddlesden-Popper phases Sr2Fe(0.5)Ru(0.5)O4 and Sr3(Fe(0.5)Ru(0.5))2O7 with CaH2 results in the topochemical deintercalation of oxide ions from these materials and the formation of samples with average compositions of Sr2Fe(0.5)Ru(0.5)O(3.35) and Sr3(Fe(0.5)Ru(0.5))2O(5.68), respectively. Diffraction data reveal that both the n = 1 and n = 2 samples consist of two-phase mixtures of reduced phases with subtly different oxygen contents. The separation of samples into two phases upon reduction is discussed on the basis of a short-range inhomogeneous distribution of iron and ruthenium in the starting materials. X-ray absorption data and Mössbauer spectra reveal the reduced samples contain an Fe(3+) and Ru(2+/3+) oxidation state combination, which is unexpected considering the Fe(3+)/Fe(2+) and Ru(3+)/Ru(2+) redox potentials, suggesting that the local coordination geometry of the transition metal sites helps to stabilize the Ru(2+) centers. Fitted Mössbauer spectra of both the n = 1 and n = 2 samples are consistent with the presence of Fe(3+) cations in square planar coordination sites. Magnetization data of both materials are consistent with spin glass-like behavior.

  14. Structure, phase evolution, and microwave dielectric properties of (Ag0.5Bi0.5)(Mo0.5W0.5)O4 ceramic with ultralow sintering temperature.

    PubMed

    Zhou, Di; Li, Wen-Bo; Guo, Jing; Pang, Li-Xia; Qi, Ze-Ming; Shao, Tao; Xie, Hui-Dong; Yue, Zhen-Xing; Yao, Xi

    2014-06-01

    In the present work, the microwave dielectric ceramic (Ag0.5Bi0.5)(Mo0.5W0.5)O4 was prepared by using the solid-state reaction method. (Ag0.5Bi0.5)(Mo0.5W0.5)O4 was found to crystallize in the scheelite structure, in which Ag(+) and Bi(3+) occupy the A site randomly with 8-coordination while Mo(6+) and W(6+) occupy the B site with 4-coordination, at a sintering temperature above 500 °C, with lattice parameters a = b = 5.29469(2) Å and c = 11.62114(0) Å, space group I4(1)/a (No. 88), and acceptable Rp = 9.38, Rwp = 11.2, and Rexp = 5.86. High-performance microwave dielectric properties, with permittivity ∼26.3, Qf value ∼10,000 GHz, and temperature coefficient ∼+20 ppm/°C, were obtained in the sample sintered at 580 °C. Its chemical compatibility with aluminum at its sintering temperature was revealed and confirmed by both X-ray and energy dispersive spectrometer analysis. This ceramic could be a good candidate for ultralow-temperature cofired ceramics. PMID:24848200

  15. 16 CFR 0.5 - Laws authorizing monetary claims.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Section 0.5 Commercial Practices FEDERAL TRADE COMMISSION ORGANIZATION, PROCEDURES AND RULES OF PRACTICE ORGANIZATION § 0.5 Laws authorizing monetary claims. The Commission is authorized to entertain monetary claims against it under three statutes. The Federal Tort Claims Act (28 U.S.C. 2671-2680) provides that...

  16. 16 CFR 0.5 - Laws authorizing monetary claims.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Section 0.5 Commercial Practices FEDERAL TRADE COMMISSION ORGANIZATION, PROCEDURES AND RULES OF PRACTICE ORGANIZATION § 0.5 Laws authorizing monetary claims. The Commission is authorized to entertain monetary claims against it under three statutes. The Federal Tort Claims Act (28 U.S.C. 2671-2680) provides that...

  17. 16 CFR 0.5 - Laws authorizing monetary claims.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Section 0.5 Commercial Practices FEDERAL TRADE COMMISSION ORGANIZATION, PROCEDURES AND RULES OF PRACTICE ORGANIZATION § 0.5 Laws authorizing monetary claims. The Commission is authorized to entertain monetary claims against it under three statutes. The Federal Tort Claims Act (28 U.S.C. 2671-2680) provides that...

  18. 16 CFR 0.5 - Laws authorizing monetary claims.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Section 0.5 Commercial Practices FEDERAL TRADE COMMISSION ORGANIZATION, PROCEDURES AND RULES OF PRACTICE ORGANIZATION § 0.5 Laws authorizing monetary claims. The Commission is authorized to entertain monetary claims against it under three statutes. The Federal Tort Claims Act (28 U.S.C. 2671-2680) provides that...

  19. 16 CFR 0.5 - Laws authorizing monetary claims.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Section 0.5 Commercial Practices FEDERAL TRADE COMMISSION ORGANIZATION, PROCEDURES AND RULES OF PRACTICE ORGANIZATION § 0.5 Laws authorizing monetary claims. The Commission is authorized to entertain monetary claims against it under three statutes. The Federal Tort Claims Act (28 U.S.C. 2671-2680) provides that...

  20. Thermochromic effect at room temperature of Sm0.5Ca0.5MnO3 thin films

    NASA Astrophysics Data System (ADS)

    Boileau, A.; Capon, F.; Barrat, S.; Laffez, P.; Pierson, J. F.

    2012-06-01

    Sm0.5Ca0.5MnO3 thermochromic thin films were synthesized using dc reactive magnetron co-sputtering and subsequent annealing in air. The film structure was studied by x-ray diffraction analysis. To validate the thermochromic potentiality of Sm0.5Ca0.5MnO3, electrical resistivity and infrared transmittance spectra were recorded for temperatures ranging from 77 K to 420 K. The temperature dependence of the optical band gap was estimated in the near infrared range. Upon heating, the optical transmission decreases in the infrared domain showing a thermochromic effect over a wide wavelength range at room temperature.

  1. Structural stability, electronic, magnetic and optical properties of zincblende Zn0.5V0.5Te under pressure

    NASA Astrophysics Data System (ADS)

    Yin, Zhu-Hua; Zhang, Jian-Min

    2016-10-01

    The structural stability, electronic, magnetic and optical properties of zincblende Zn0.5V0.5Te under pressures 0-5 GPa are investigated by the spin-polarized first-principles calculation. Under pressure, the Zn0.5V0.5Te is always half-metal with the total magnetic moment μtot of 3μB / cell mainly contributed by V2+ ion, but the spin-down channel opens a band gap. The Zn0.5V0.5Te also behaves in a ductile manner and is mechanical stable until 3.78 GPa pressure. The static dielectric function ε1 (0) and refractive index n (0) increase with pressure. The two absorption peaks located in energy regions 0-20 eV and 35-50 eV not only increase but also shift to the higher energy region (blue shift) with pressure. So the electronic and optical properties of Zn0.5V0.5Te could be tuned through external pressure, which is beneficial to the electronic and optical applications.

  2. Fully gapped superconductivity in In-doped topological crystalline insulator Pb0.5Sn0.5Te

    DOE PAGES

    Du, Guan; Gu, G. D.; Du, Zengyi; Fang, Delong; Yang, Huan; Zhong, R. D.; Schneeloch, J.; Wen, Hai -Hu

    2015-07-27

    In this study, superconductors derived from topological insulators and topological crystalline insulators by chemical doping have long been considered to be candidates as topological superconductors. Pb0.5Sn0.5Te is a topological crystalline insulator with mirror symmetry protected surface states on (001)-, (011)-, and (111)-oriented surfaces. The superconductor (Pb0.5Sn0.5)0.7In0.3Te is produced by In doping in Pb0.5Sn0.5Te, and is thought to be a topological superconductor. Here we report scanning tunneling spectroscopy measurements of the superconducting state as well as the superconducting energy gap in (Pb0.5Sn0.5)0.7In0.3Te on a (001)-oriented surface. The spectrum can be well fitted by an anisotropic s-wave gap function of Δ =more » 0.72 + 0.18cos4θ meV using Dynes model. The results show that the superconductor seems to be a fully gapped one without any in-gap states, in contradiction with the expectation of a topological superconductor.« less

  3. Preparation and Thermoelectric Properties of the Skutterudite-Related Phase Ru(0.5)Pd(0.5)Sb3

    NASA Technical Reports Server (NTRS)

    Caillat, T.; Kulleck, J.; Borshchevsky, A.; Fleurial, J.-P.

    1996-01-01

    A new skutterudite phase Ru(0.5)Pd(0.5)Sb3 was prepared. This new phase adds to a large number of already known materials with the skutterudite structure which have shown good potential for thermoelectric applications. Single phase, polycrystalline samples were prepared and characterized by x-ray analysis, electron probe microanalysis, density, sound velocity, thermal-expansion coefficient, and differential thermal analysis measurements. Ru(0.5)Pd(0.5)Sb3 has a cubic lattice, space group Im3 (T(sup 5, sub h)), with a = 9.298 A and decomposes at about 920 K. The Seebeck coefficient, the electrical resistivity, the Hall effect, and the thermal conductivity were measured on hot-pressed samples over a wide range of temperatures. Preliminary results show that Ru(0.5)Pd(0.5)Sb3 behaves as a heavily doped semiconductor with an estimated band gap of about 0.6 eV. The lattice thermal conductivity of Ru(0.5)Pd(0.5)Sb3 is substantially lower than that of the binary isostructural compounds CoSb3 and IrSb3. The unusually low thermal conductivity might be explained by additional hole and charge transfer phonon scattering in this material. The potential of this material for thermoelectric applications is discussed.

  4. Structure and dielectric dispersion in cubic-like 0.5K0.5Na0.5NbO3-0.5Na1/2Bi1/2TiO3 ceramic

    NASA Astrophysics Data System (ADS)

    Liu, Laijun; Knapp, Michael; Schmitt, Ljubomira Ana; Ehrenberg, Helmut; Fang, Liang; Fuess, Hartmut; Hoelzel, Markus; Hinterstein, Manuel

    2016-05-01

    The nature of the cubic-like state in the lead-free piezoelectric ceramics 0.5K0.5Na0.5NbO3-0.5Na1/2Bi1/2TiO3 (KNN-50BNT) has been examined in detail by synchrotron x-ray diffraction (SD), selected-area electron diffraction (SAED), neutron diffraction (ND), and temperature-dependent dielectric characterization. The SD pattern of KNN-50BNT presents a pure perovskite structure with pseudocubic symmetry. However, superlattice reflections were observed by SAED and completely indexed by tetragonal symmetry with P4bm space group in ND pattern. The relaxor behavior of KNN-50BNT is compared with Pb-based and Ba-based relaxors and discussed in the framework of the Vogel-Fulcher law and the new glass model. The KNN-50BNT ceramic exhibits the strongest dielectric dispersion among them.

  5. Phase diagram of (Na0.5K0.5)NbO3-(Bi0.5Na0.5)ZrO3 solid solution

    NASA Astrophysics Data System (ADS)

    Wang, Ruiping; Itoh, Mitsuru

    2016-06-01

    Phase diagram of (1‑x)Na0.5K0.5NbO3-x(Bi0.5Na0.5)ZrO3 solid solution has been established from dielectric constant measurements and structure analyses. It is found that with increasing x, the C-T phase transition temperature TC‑T and the T-O phase transition temperature TT‑O decrease, while the O‑R phase transition temperature TO‑R increases. TT‑O of NKN-xBNZ is much different from that of NKN-xBZ solid solution. The result could be mainly elucidated by the hybridization between the A-site ion and oxygen.

  6. Observation of selective surface element substitution in FeTe0.5Se0.5 superconductor thin film exposed to ambient air by synchrotron radiation spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Nian; Liu, Chen; Zhao, Jia-Li; Lei, Tao; Wang, Jia-Ou; Qian, Hai-Jie; Wu, Rui; Yan, Lei; Guo, Hai-Zhong; Ibrahim, Kurash

    2016-09-01

    A systematic investigation of oxidation on a superconductive FeTe0.5Se0.5 thin film, which was grown on Nb-doped SrTiO3 (001) by pulsed laser deposition, has been carried out. The sample was exposed to ambient air for one month for oxidation. Macroscopically, the exposed specimen lost its superconductivity due to oxidation. The specimen was subjected to in situ synchrotron radiation photoelectron spectroscopy (PES) and x-ray absorption spectroscopy (XAS) measurements following cycles of annealing and argon ion etching treatments to unravel what happened in the electronic structure and composition after exposure to air. By the spectroscopic measurements, we found that the as-grown FeTe0.5Se0.5 superconductive thin film experienced an element selective substitution reaction. The oxidation preferentially proceeds through pumping out the Te and forming Fe–O bonds by O substitution of Te. In addition, our results certify that in situ vacuum annealing and low-energy argon ion etching methods combined with spectroscopy are suitable for depth element and valence analysis of layered structure superconductor materials. Project supported by the Chinese Academy of Sciences (Grant No. 1G2009312311750101) and the National Natural Science Foundation of China (Grant Nos. 11375228, 11204303, and U1332105).

  7. Observation of selective surface element substitution in FeTe0.5Se0.5 superconductor thin film exposed to ambient air by synchrotron radiation spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Nian; Liu, Chen; Zhao, Jia-Li; Lei, Tao; Wang, Jia-Ou; Qian, Hai-Jie; Wu, Rui; Yan, Lei; Guo, Hai-Zhong; Ibrahim, Kurash

    2016-09-01

    A systematic investigation of oxidation on a superconductive FeTe0.5Se0.5 thin film, which was grown on Nb-doped SrTiO3 (001) by pulsed laser deposition, has been carried out. The sample was exposed to ambient air for one month for oxidation. Macroscopically, the exposed specimen lost its superconductivity due to oxidation. The specimen was subjected to in situ synchrotron radiation photoelectron spectroscopy (PES) and x-ray absorption spectroscopy (XAS) measurements following cycles of annealing and argon ion etching treatments to unravel what happened in the electronic structure and composition after exposure to air. By the spectroscopic measurements, we found that the as-grown FeTe0.5Se0.5 superconductive thin film experienced an element selective substitution reaction. The oxidation preferentially proceeds through pumping out the Te and forming Fe-O bonds by O substitution of Te. In addition, our results certify that in situ vacuum annealing and low-energy argon ion etching methods combined with spectroscopy are suitable for depth element and valence analysis of layered structure superconductor materials. Project supported by the Chinese Academy of Sciences (Grant No. 1G2009312311750101) and the National Natural Science Foundation of China (Grant Nos. 11375228, 11204303, and U1332105).

  8. Superconductivity induced by In substitution into the topological crystalline insulator Pb0.5Sn0.5Te

    NASA Astrophysics Data System (ADS)

    Zhong, R. D.; Schneeloch, J. A.; Liu, T. S.; Camino, F. E.; Tranquada, J. M.; Gu, G. D.

    2014-07-01

    Indium substitution turns the topological crystalline insulator (TCI) Pb0.5Sn0.5Te into a possible topological superconductor. To investigate the effect of the indium concentration on the crystal structure and superconducting properties of (Pb0.5Sn0.5)1-xInxTe, we have grown high-quality single crystals using a modified floating-zone method and have performed systematic studies for indium content in the range 0≤x≤0.35. We find that the single crystals retain the rocksalt structure up to the solubility limit of indium (x ˜0.30). Experimental dependencies of the superconducting transition temperature (Tc) and the upper critical magnetic field (Hc2) on the indium content x have been measured. The maximum Tc is determined to be 4.7 K at x =0.30, with μ0Hc2(T =0)≈5 T.

  9. Large electrostrain and high optical temperature sensitivity in BaTiO3-(Na0.5Ho0.5)TiO3 multifunctional ferroelectric ceramics.

    PubMed

    Li, Jun; Chai, Xiaona; Wang, Xusheng; Xu, Chao-Nan; Gu, Yihao; Zhao, Haifeng; Yao, Xi

    2016-08-01

    Ferroelectric (1 -x)BaTiO3-x(Na0.5Ho0.5)TiO3 ceramics with ferroelectric and up-conversion luminescent multifunctions were designed and fabricated by a solid state reaction process. Their structure, ferroelectric, piezoelectric, up-conversion photoluminescence and relative optical temperature sensing properties were investigated systematically. Crystal structure analysis and Rietveld refinements based on the powder X-ray diffraction data show that the ceramics crystallized in the tetragonal perovskite space group P4mm at room temperature. Enhanced electrical properties and strong green up-conversion luminescence with thermally coupled green emission bands centered at 523 and 553 nm were observed. For a typical sample x equals 0.05, a large electrostrain of 0.279% was obtained under a 70 kV cm(-1) electric field that is comparable to that of the PZT4. Meanwhile, the excellent optical temperature sensitivity (0.0063 K(-1) at 480 K) is higher than that of Er-doped BaTiO3 nanocrystal materials. The results suggest that the BaTiO3-(Na0.5Ho0.5)TiO3 material should be an attractive material for piezoelectric actuator and temperature sensing device applications. PMID:27244098

  10. Structural transitions in the manganite Pr 0.5Sr 0.5MnO 3

    NASA Astrophysics Data System (ADS)

    Damay, F.; Martin, C.; Hervieu, M.; Maignan, A.; Raveau, B.; André, G.; Bourée, F.

    1998-04-01

    The structural transitions in the Pr 0.5Sr 0.5MnO 3 CMR perovskite have been studied, coupling neutron powder diffraction (NPD) and electron microscopy (EM) techniques. Both techniques show the existence of a Fmmm type structure at low temperature ( T<135 K) that corresponds to the antiferromagnetic insulating (AFMI) state. No evidence of charge ordering is observed. At 135 K a transition to a ferromagnetic I4/mcm structure is observed by NPD. Further increasing the temperature ( T⩾265 K), Pr 0.5Sr 0.5MnO 3 becomes paramagnetic but keeps its I4/mcm structure. By EM, the transition occurring around 135 K is also observed, but it corresponds to a change from the Fmmm to an Imam structure, with a simultaneous disappearance of the twinning domains present in the Fmmm structure. This effect is reversible. The EM study also evidences that at high temperature ( T˜430 K) another transition from the Imam to an I4/mcm structure occurs. The divergence between the NPD and EM observations is attributed to the fact that the structure of Pr 0.5Sr 0.5MnO 3 may be sensitive to the magnetic field that exists in the electron microscope (1 or 2 T).

  11. Solid state synthesis and characterization of bulk FeTe0.5Se0.5 superconductors

    NASA Astrophysics Data System (ADS)

    Onar, K.; Yakinci, M. E.

    2016-01-01

    FeTe0.5Se0.5 polycrystalline superconductor samples were synthesized by solid- state reaction method at different heating temperatures. The morphological and structural characterization of FeTe0 5Se0.5 samples were carried out by X-rays Diffraction, Scanning Electron Microscope and Energy Dispersive X-ray Spectroscopy. The electrical, magnetic and thermal transport properties were investigated up to 8 T by using physical property measurement system. The results reveal that the sensitivity of electrical and magnetic properties strongly depends on the heat treatment cycles. The upper critical field, Hc2(0), was determined with the magnetic field parallel to the sample surface. It gives a maximum value of 36.3 T. The lower critical field, Hc1(T), was obtained as 210, 140 and 70 Oe at 5, 8 and 12 K, respectively. The coherence length, ξ, at the zero field, was calculated to be 1.94 nm and suggested a transparent intergrain boundaries peculiarity. The μ0Hc2(0)/kBTc rate shows higher value (3.36 T/K) than the Pauli limit (1.84 T/K) which suggests unconventional nature of superconductivity for the polycrystalline FeTe0.5Se0.5 superconducting samples.

  12. Anomalous reduction of the switching voltage of Bi-doped Ge{sub 0.5}Se{sub 0.5} ovonic threshold switching devices

    SciTech Connect

    Seo, Juhee; Ahn, Hyung-Woo; Shin, Sang-yeol; Cheong, Byung-ki; Lee, Suyoun

    2014-04-14

    Switching devices based on Ovonic Threshold Switching (OTS) have been considered as a solution to overcoming limitations of Si-based electronic devices, but the reduction of switching voltage is a major challenge. Here, we investigated the effect of Bi-doping in Ge{sub 0.5}Se{sub 0.5} thin films on their thermal, optical, electrical properties, as well as on the characteristics of OTS devices. As Bi increased, it was found that both of the optical energy gap (E{sub g}{sup opt}) and the depth of trap states decreased resulting in a drastic reduction of the threshold voltage (V{sub th}) by over 50%. In addition, E{sub g}{sup opt} was found to be about three times of the conduction activation energy for each composition. These results are explained in terms of the Mott delocalization effect by doping Bi.

  13. Magneto-optical spectra and electron structure of Nd0.5Gd0.5Fe3(BO3)4 single crystal

    NASA Astrophysics Data System (ADS)

    Malakhovskii, A. V.; Gnatchenko, S. L.; Kachur, I. S.; Piryatinskaya, V. G.; Sukhachev, A. L.; Temerov, V. L.

    2016-03-01

    Polarized absorption spectra and magnetic circular dichroism (MCD) spectra of Nd0.5Gd0.5Fe3(BO3)4 single crystal were measured in the range of 10000-21000 cm-1 and at temperatures 2-300 K. On the basis of these data, in the paramagnetic state of the crystal, the 4f states of the Nd3+ ion were identified in terms of the irreducible representations and in terms of | J , ± MJ > wave functions of the free atom. The changes of the Landé factor during f-f transitions were found theoretically in the | J , ± MJ > wave functions approximation and were determined experimentally with the help of the measured MCD spectra. In the majority of cases the experimentally found values are close to the theoretically predicted ones.

  14. Application of on-wafer TRL calibration on the measurement of microwave properties of Ba0.5Sr0.5TiO3 thin films.

    PubMed

    Lue, H T; Tseng, T Y

    2001-11-01

    A series of Al/Ba0.5Sr0.5TiO3(BST)/sapphire multi-layered coplanar waveguide (CPW) transmission lines of different geometries and thin-film configurations was fabricated. We employed an accurate on-wafer Through-Line-Reflect (TRL) calibration technique and quasi-TEM analysis to measure the dielectric constant, loss tangent, and tunability of BST thin films using this CPW structure. Experimental results show that the overall insertion loss is less than 3 dB/cm even at frequencies as high as 20 GHz, which is the lowest obtained to date for metal/BST CPW devices. This result indicates that, with optimized impedance matching, normal conductors are also possibly suitable for fabricating low-loss tunable phase-shifter devices.

  15. Optical properties of epitaxial relaxor ferroelectric PbSc0.5Nb0.5O3 films

    NASA Astrophysics Data System (ADS)

    Lynnyk, A.; Chvostova, D.; Pacherova, O.; Kocourek, T.; Jelinek, M.; Dejneka, A.; Tyunina, M.

    2013-09-01

    The optical properties of epitaxial perovskite-structure relaxor ferroelectric PbSc0.5Nb0.5O3 thin films are studied in broad spectral and temperature ranges by variable-angle spectroscopic ellipsometry. The films possess a metrically tetragonal crystal structure with a biaxial in-plane compressive strain of 0.1%-0.8%. The optical constants of the films with thickness of 10-50 nm are determined accurately using the advanced ellipsometry technique. The dramatic changes in the spectra of the dielectric functions and the absorption coefficient are found under various strain conditions. The characteristic energies of the spectra, including the bandgaps, vary by 0.1-0.5 eV. A frustration of the ferroelectric phase transition is evidenced by thermo-optical studies. A complex relationship between strain, polarization, and optical properties is discussed in terms of possible ionic displacements in metrically tetragonal PbSc0.5Nb0.5O3 films.

  16. Charge-ordered ferromagnetic phase in La(0.5)Ca(0.5)MnO3.

    PubMed

    Loudon, James C; Mathur, Neil D; Midgley, Paul A

    Mixed-valent manganites are noted for their unusual magnetic, electronic and structural phase transitions. For example, the La(1-x)Ca(x)MnO(3) phase diagram shows that below transition temperatures in the range 100-260 K, compounds with 0.2 < x < 0.5 are ferromagnetic and metallic, whereas those with 0.5 < x < 0.9 are antiferromagnetic and charge ordered. In a narrow region around x = 0.5, these totally dissimilar ground states are thought to coexist. It has been shown that charge order and charge disorder can coexist in the related compound, La(0.25)Pr(0.375)Ca(0.375)MnO(3). Here we present electron microscopy data for La(0.5)Ca(0.5)MnO(3) that shed light on the distribution of these coexisting phases, and uncover an additional, unexpected phase. Using electron holography and Fresnel imaging, we find micrometre-sized ferromagnetic regions spanning several grains coexisting with similar-sized regions with no local magnetization. Holography shows that the ferromagnetic regions have a local magnetization of 3.4 +/- 0.2 Bohr magnetons per Mn atom (the spin-aligned value is 3.5 micro (B) per Mn). We use electron diffraction and dark-field imaging to show that charge order exists in regions with no net magnetization and, surprisingly, can also occur in ferromagnetic regions.

  17. Synthesis and characterization of (Bi{sub 0.5}Ba{sub 0.5}) (Fe{sub 0.5}Ti{sub 0.5}) O{sub 3} ceramic

    SciTech Connect

    Parida, B.N.; Das, Piyush R.; Padhee, R.; Suara, D.; Mishra, A.; Rout, J.; Choudhary, R.N.P.

    2015-01-15

    Graphical abstract: Temperature variation of (a) dielectric constant (b) dielectric loss of the sample. - Highlights: • The high values of dielectric permittivity and low value of tangent loss. • It used for microwave applications. • The impedance and dielectric relaxation in the material is non exponential and non Debye-type. • Its ac conductivity obeys Jonscher universal power law. - Abstract: The polycrystalline sample of (Bi{sub 0.5}Ba{sub 0.5}) (Fe{sub 0.5}Ti{sub 0.5}) O{sub 3} (BF–BT) was prepared by a standard mixed oxide method. Analysis of room temperature XRD pattern and Raman/FTIR spectra of the compound does not exhibit any change in its crystal structure of BaTiO{sub 3} on addition of BiFeO{sub 3} in equal ratio. The surface morphology of the gold-plated sintered pellet sample recorded by SEM (scanning electron microscope) exhibits a uniform distribution of grains with less porosity. Detailed studies of nature and quantity of variation of dielectric constant, tangent loss, and polarization with temperature and frequency indicate the existence of ferroelectric phase transition at high-temperature. There is a low-temperature anti-ferromagnetic phase transition below 375 °C in the material. Detailed studies of electrical properties (impedance, modulus, etc.) of the material confirmed a strong correlation between micro-structure and properties.

  18. Nanostructured multiferroic PbFe0.5Nb0.5O3 and its physical properties

    NASA Astrophysics Data System (ADS)

    Ubushaeva, E. N.; Abdulvakhidov, K. G.; Mardasova, I. V.; Abdulvakhidov, B. K.; Vitchenko, M. A.; Amirov, A. A.; Batdalov, A. B.; Gamzatov, A. G.

    2010-11-01

    Polycrystalline multiferroic PbFe0.5Nb0.5O3 (PFN) fabricated by a solid-phase method is studied. Before sintering, a synthesized PFN powder is processed in Bridgman anvils via a force action in combination with shear deformation (FASD) at room temperature. The electrophysical properties and structural parameters of processed samples and a reference sample are compared. Point defects are shown to play a key role in the formation of the physical properties beginning from an FASD of 200 MPa.

  19. A CM chondrite cluster and CM streams

    NASA Technical Reports Server (NTRS)

    Dodd, R. T.; Lipschutz, M. E.

    1993-01-01

    An elongate year-day concentration of CM meteoroid falls between 1921 and 1969 is inconsistent with a random flux of CM meteoroids and suggests that most or all such meteorites, and perhaps the Kaidun C-E chondrite breccia, resulted from streams of meteoroids in nearly circular, Earth-like orbits. To establish whether the post-1920 cluster might have arisen from random sampling, we determined the year-day distribution of 14 falls between 1879 and 1969 by treating each as the corner of a cell of specified dimensions (e.g. 30 years x 30 days) and calculated how many falls occurred in that cell. We then compared the CM cell distribution with random distributions over the same range of years. The results show that for 30 x 30 and 45 x 45 cells, fewer than 5 percent of random sets match the CM distribution with respect to maximum cell content and number of one-fall cells.

  20. A new Bi{sub 0.5}Na{sub 0.5}TiO{sub 3} based lead-free piezoelectric system with calculated end-member Bi(Zn{sub 0.5}Hf{sub 0.5})O{sub 3}

    SciTech Connect

    Liu, Feng; Wahyudi, Olivia; Li, Yongxiang

    2014-03-21

    The phase structure, dielectric and piezoelectric properties of a new lead-free piezoelectric system (1 − x)Bi{sub 0.5}Na{sub 0.5}TiO{sub 3}–xBi(Zn{sub 0.5}Hf{sub 0.5})O{sub 3} [(1 − x)BNT–xBZH, x = 0, 0.01, 0.02, 0.03, and 0.04] were investigated. The structure of Bi(Zn{sub 0.5}Hf{sub 0.5})O{sub 3} was calculated using first-principles method and (1 − x)BNT–xBZH ceramics were fabricated by conventional solid-state process. At room temperature, a morphotropic phase boundary (MPB) from rhombohedral to pseudocubic is identified near x = 0.02 by the analysis of X-ray diffraction patterns. The ceramics with MPB near room temperature exhibit excellent electrical properties: the Curie temperature, maximum polarization, remnant polarization, and coercive field are 340 °C, 56.3 μC/cm{sup 2}, 43.5 μC/cm{sup 2}, and 5.4 kV/mm, respectively, while the maximum positive bipolar strain and piezoelectric coefficient are 0.09% and 92 pC/N, respectively. In addition, a linear relationship between the MPB phase boundary composition and the calculated tetragonality of non-BNT end-member was demonstrated. Thus, this study not only shows a new BNT-based lead-free piezoelectric system but also suggest a new way to predict the composition at MPB a priori when designing new lead-free piezoelectric system.

  1. Dielectric Properties in the Microwave Range of K0.5Na0.5NbO3 Ceramics

    NASA Astrophysics Data System (ADS)

    Gao, Lu; Zhou, Wancheng; Luo, Fa; Zhu, Dongmei

    2016-08-01

    Dielectric properties of a potassium sodium niobate (KNN) system in the microwave range up to GHz have rarely been studied. Since K0.5Na0.5NbO3 is the most common and typical type of KNN materials, non-doped K0.5Na0.5 NbO3 ceramics were synthesized at different temperatures (1080°C, 1090°C, 1100°C, and 1110°C) by a traditional solid reaction method for further characterization and analysis. The ceramics were in perovskite phase with orthorhombic symmetry. A small quantity of second phase was found in the 1110°C sintered specimen, which resulted from the volatilization of alkali oxides as the temperature increased. The complex permittivity was measured for the first time in the microwave range (8.2-12.4 GHz) and in the temperature range from 100°C to 220°C, and the effects of annealing on the dielectric properties were studied. The results indicate that the complex permittivity of KNN ceramics over the microwave range increases mainly due to high bulk density and the additional dielectric contributions of oxygen vacancies at high temperature.

  2. Superconductivity and abnormal pressure effect in Sr{}_{0.5}La{}_{0.5}FBiSe2 superconductor

    NASA Astrophysics Data System (ADS)

    Li, Lin; Xiang, Yongliang; Chen, Yihong; Jiao, Wenhe; Zhang, Chuhang; Zhang, Li; Dai, Jianhui; Li, Yuke

    2016-04-01

    Through the solid state reaction method, we synthesized a new BiSe2-based superconductor Sr{}0.5La{}0.5FBiSe2 with superconducting transition temperature T {}c ≈ \\quad 3.8 K. A strong diamagnetic signal below T c in susceptibility χ (T) is observed indicating the bulk nature of superconductivity. Different to most BiS2-based compounds where superconductivity develops from a semiconducting-like normal state, the present compound exhibits a metallic behavior down to T c . Under weak magnetic field or pressure, however, a remarkable crossover from metallic to insulating behaviors takes place around T min where the resistivity picks up a local minimum. With increasing pressure, T {}c decreases monotonously and T min shifts to high temperatures, while the absolute value of the normal state resistivity at low temperatures first decreases and then increases with pressure up to 2.5 GPa. These results imply that the electronic structure of Sr{}0.5La{}0.5FBiSe2 may be different to those in the other BiS2-based systems.

  3. The spin glass delafossite CuFe(0.5)V(0.5)O(2): a dipolar glass?

    PubMed

    Singh, Kiran; Maignan, Antoine; Simon, Charles; Hardy, Vincent; Pachoud, Elise; Martin, Christine

    2011-03-30

    The ferroelectric and spin glass properties of CuFe(0.5)V(0.5)O(2) have been studied. Magnetization, ac magnetic susceptibility and specific heat measurements reveal a spin glass behavior (T(f) = 20.5 K) for this delafossite. In CuFeO(2), substitution of trivalent diamagnetic cations for Fe(3 + ) is known to change the antiferromagnetic state and induce ferroelectricity. But partial occupation of the Fe(3 + ) site by V(3 + ) is responsible for disordered magnetism in CuFe(0.5)V(0.5)O(2). The dielectric permittivity shows a frequency dependence reminiscent of relaxor ferroelectrics in which different cations occupy the same crystallographic site. Polarization measurements show the existence of a ferroelectric state below T(f) with P(5 K)≈1.3 µC m( - 2). These results point towards a relaxor-type ferroelectricity originating from a disordered array of magnetic cations. A clear coupling between electronic charges and spins is evidenced by the magnetodielectric effect.

  4. Specific Heat of Single Crystalline Nd0.5Sr0.5MnO3

    NASA Astrophysics Data System (ADS)

    Sanchez, Carlos; Aguilar, Victor; Bernal, Oscar; Zhao, Guo-Meng

    2014-03-01

    Substantial studies of magnetization and specific heat on Nd0.5Sr0.5MnO3 have demonstrated the existence of a charge ordering (CO), ferromagnetic (FM), antiferromagnetic (AFM) transitions. In this work, the specific heat of two single crystalline Nd0.5Sr0.5MnO3 samples, one containing 16O and the other highly concentrated 18O, was measured as a function of temperature, from 3K to 300K, at both zero and 50 kOe applied field. Measurements were done using a Quantum Design Physical Property Measurement System (PPMS) with Specific Heat option. The FM transition was found to depend on the isotope mass, which seems to agree with previous works. The CO transitions was observed as a sharp peak at the CO temperature (Tco), which seems to depend strongly on field, oxygen isotope mass, and thermal cycling history. Work Supported by NSF-DMR 1105380. CSU-LSAMP is supported by the National Science Foundation under Grant # HRD-1302873 and the CSU Office of the Chancellor.

  5. Li(V0.5Ti0.5)S2 as a 1 V lithium intercalation electrode

    NASA Astrophysics Data System (ADS)

    Clark, Steve J.; Wang, Da; Armstrong, A. Robert; Bruce, Peter G.

    2016-03-01

    Graphite, the dominant anode in rechargeable lithium batteries, operates at ~0.1 V versus Li+/Li and can result in lithium plating on the graphite surface, raising safety concerns. Titanates, for example, Li4Ti5O12, intercalate lithium at~1.6 V versus Li+/Li, avoiding problematic lithium plating at the expense of reduced cell voltage. There is interest in 1 V anodes, as this voltage is sufficiently high to avoid lithium plating while not significantly reducing cell potential. The sulfides, LiVS2 and LiTiS2, have been investigated as possible 1 V intercalation electrodes but suffer from capacity fading, large 1st cycle irreversible capacity or polarization. Here we report that the 50/50 solid solution, Li1+x(V0.5Ti0.5)S2, delivers a reversible capacity to store charge of 220 mAhg-1 (at 0.9 V), 99% of theoretical, at a rate of C/2, retaining 205 mAhg-1 at C-rate (92% of theoretical). Rate capability is excellent with 200 mAhg-1 at 3C. C-rate is discharge in 1 h. Polarization is low, 100 mV at C/2. To the best of our knowledge, the properties/performances of Li(V0.5Ti0.5)S2 exceed all previous 1 V electrodes.

  6. The preparation of high-J c Gd0.5Y0.5Ba2Cu3O7-δ thin films by the MOCVD process

    NASA Astrophysics Data System (ADS)

    Zhao, R. P.; Zhang, F.; Liu, Q.; Xia, Y. D.; Lu, Y. M.; Cai, C. B.; Tao, B. W.; Li, Y. R.

    2016-06-01

    A home-designed metal organic chemical vapor deposition (MOCVD) system has been employed to prepare high critical current density (J c) Gd0.5Y0.5Ba2Cu3O7-δ (GdYBCO) thin films on LaMnO3/epitaxial MgO/ion beam assisted deposition (IBAD)-MgO/solution deposition planarization (SDP)-Y2O3-buffered Hastelloy tapes; the thin films were directly heated by the Joule effect after applying an heating current (I h ) through the Hastelloy tapes. The effect of the mole ratio of the metal organic sources has been systematically investigated. X-ray diffraction (XRD) and scanning electron microscope (SEM) analyses indicated that the GdYBCO films crystallized better and became denser with the increasing of the Cu/Ba ratio from 1.0 to 1.1, yielding a J c at 77 K and 0 T of 200 nm GdYBCO film increasing from 2.5 MA cm-2 to 7 MA cm-2. In addition, SEM and energy dispersive spectrometer (EDS) characterizations revealed that more and more outgrowths appeared and the density of the film was reduced with an increase in the Cu/Ba ratio from 1.1 to 1.2. When the I h was 26.8 A and the mole ratio of Gd(tmhd)3, Y(tmhd)3, Ba(tmhd)2 and Cu(tmhd)2 in the precursor was 0.55:0.55:2:2.2, the critical current (I c) of the deposited 200 nm-thick GdYBCO film reached a 140 A cm-1 width (77 K, 0 T), corresponding to the J c 7 MA cm-2 (77 K, 0 T).

  7. Polarization switching dynamics in BZT-0.5BCT lead free ferroelectric thin films

    NASA Astrophysics Data System (ADS)

    Bhaumik, Anagh; Kolekar, Y.; Shaikh, P.; Ramana, C.; Ghosh, K.

    2014-03-01

    We report polarization switching dynamics in lead (Pb) free BaTi0.8Zr0.2O3-0.5Ba0.7Ca0.3TiO3, (BZT- 0.5 BCT) ferroelectric thin films. High quality thin films of Pb free BZT- 0.5 BCT were grown on Pt/Ti/SiO2/Si and SRO/LAO single crystal substrates using pulsed laser deposition (PLD). Polarization versus electric field data shows a hysteresis loop with a large remnant (35 micro C/cm2) and saturation polarization (40 micro C/cm2) and a small coercive field (1.5 kV/cm) which is essential for practical device applications. The polarization switching dynamics are well correlated with the structural distortion and phonon vibration observed in XRD and Raman spectroscopy. These results may stimulate to develop new Pb free ferroelectric thin films for future non-volatile random access memory and many other high-tech applications.

  8. The mixed glass former effect in 0.5(Sodium Sulfide) + 0.5[x(Germanium Sulfide) + (1-x)PS5/2] glasses

    NASA Astrophysics Data System (ADS)

    Bischoff, Christian Michael

    The rapidly growing global energy demand, especially for energy from renewable sources, requires development of longer-lasting, safer, and smaller batteries. Ion-conducting glasses are of particular interest as candidates for solid electrolyte materials in next-generation batteries. Commercial solid-state electrolytes require an ionic conductivity of at least 10-3 S/cm. In order to meet this design constraint, development of new ion-conducting glasses is required. An increase or decrease in the ionic conductivity of glasses can be achieved by mixing two glass former cations at constant fraction of the mobile cation, known as the mixed glass former effect (MGFE). This enhancement or depression of the ionic conductivity is non-linear and non-additive, and its cause is currently unknown. The 0.5Na2S + 0.5[xGeS 2 + (1-x)PS5/2] glasses exhibit a negative MGFE in Na + ion conductivity. If the cause of this depression in the Na + ion conductivity is better understood, it may enable the design of mixed glass former systems that will exhibit enhancement of the ionic conductivity. We hypothesis that changes in short range order structures occur when the thio-phosphate and thio-germanate glass networks are mixed, causing the negative MGFE. Our comprehensive study of the glass structure and physical properties of the 0.5Na2S + 0.5[xGeS2 + (1-x)PS5/2] glasses shows that structural changes in the ternary glasses strongly correlate with the decrease in the ionic conductivity.

  9. Magnetocaloric and magnetic properties of SmFe0.5Mn0.5O3 complex perovskite

    NASA Astrophysics Data System (ADS)

    Silva-Santana, M. C.; daSilva, C. A.; Barrozo, P.; Plaza, E. J. R.; de los Santos Valladares, L.; Moreno, N. O.

    2016-03-01

    In this paper, we have investigated the physical properties of SmFe0.5Mn0.5O3 complex perovskite samples, synthesized by means of combustion reaction method. X-ray powder diffraction indicates the formation of single phase perovskite with orthorhombic structure. Low magnetic field measurements show remarkable transition at 234 K related to spin reorientation. The magnetocaloric effect shows two peaks related to magnetic behavior changes, at 18 K and at 234 K. The transition about 234 K presents inverse magnetocaloric effect. The entropy variation from magnetocaloric effect shows power law as function of applied magnetic field with maximum entropy change 5.6 J/kg K with field variation of 70 kOe. Critical exponents extracted from ΔS vs. H presents a remarkable sharp peak near antiferromagnetic to weak ferromagnetic transition temperature.

  10. Zr and Sn substituted (Na0.5Bi0.5)TiO3 -based solid solutions

    NASA Astrophysics Data System (ADS)

    Ishchuk, V. M.; Gusakova, L. G.; Kisel, N. G.; Kuzenko, D. V.; Spiridonov, N. A.; Sobolev, V. L.

    2016-02-01

    The paper attempts to investigate the phase formation of a Zr- and Sn-substituted [(Na0.5Bi0.5)0.80Ba0.20](Ti1-yBy)O3 system during its solid state synthesis. The synthesis was found to be a multi-step process associated with the formation of a number of intermediate phases which however depended on the compositions and sintering temperatures. Single phase solid solutions were obtained when the sintering temperature was increased to 1000 °C-1100 °C. Increase in the concentration of substituting ions, on the one hand, tends to linearly increase the crystal cell size whereas the tolerance factor, on the other hand, gets reduced bolstering the stability of anti-ferroelectric phase as compared to that of ferroelectric phase’.

  11. Synthesis of functionalized Co0.5Zn0.5Fe2O4 nanoparticles for biomedical applications

    NASA Astrophysics Data System (ADS)

    Bohara, R. A.; Yadav, H. M.; Thorat, N. D.; Mali, S. S.; Hong, C. K.; Nanaware, S. G.; Pawar, S. H.

    2015-03-01

    In this paper, we report a simple one step method for the synthesis of uniform, water dispersible amine functionalized Co0.5Zn0.5Fe2O4 nanoparticles (AF-CZF) of size about 6 nm. The synthesis process was accomplished by refluxing Fe(acac)3, Co(acac)2 and Zn(acac)2 in diethylene glycol and ethanolamine. The magnetic nanoparticles were characterized by XRD, TGDTA, FTIR, SEM and TEM techniques. Their magnetic properties were also studied by using SQUID. The synthesized particles show superparamagnetism at room temperature. AF-CZF nanoparticles exhibit good cell viability, which is above 95% at a concentration of 80 μg mL-1 on MCF7 cell line. The AF-CZF can be a new versatile platform for many interesting biomedical applications.

  12. Unraveling the magnetic properties of BiFe0.5Cr0.5O3 thin films

    NASA Astrophysics Data System (ADS)

    Vinai, G.; Khare, A.; Rana, D. S.; Di Gennaro, E.; Gobaut, B.; Moroni, R.; Petrov, A. Yu.; Scotti di Uccio, U.; Rossi, G.; Miletto Granozio, F.; Panaccione, G.; Torelli, P.

    2015-11-01

    We investigate the structural, chemical, and magnetic properties on BiFe0.5Cr0.5O3 (BFCO) thin films grown on (001) (110) and (111) oriented SrTiO3 (STO) substrates by x-ray magnetic circular dichroism and x-ray diffraction. We show how highly pure BFCO films, differently from the theoretically expected ferrimagnetic behavior, present a very weak dichroic signal at Cr and Fe edges, with both moments aligned with the external field. Chemically sensitive hysteresis loops show no hysteretic behavior and no saturation up to 6.8 T. The linear responses are induced by the tilting of the Cr and Fe moments along the applied magnetic field.

  13. Ferroelectricity and ferroelectric resistive switching in sputtered Hf0.5Zr0.5O2 thin films

    NASA Astrophysics Data System (ADS)

    Fan, Zhen; Xiao, Juanxiu; Wang, Jingxian; Zhang, Lei; Deng, Jinyu; Liu, Ziyan; Dong, Zhili; Wang, John; Chen, Jingsheng

    2016-06-01

    Ferroelectric properties and ferroelectric resistive switching (FE-RS) of sputtered Hf0.5Zr0.5O2 (HZO) thin films were investigated. The HZO films with the orthorhombic phase were obtained without capping or post-deposition annealing. Ferroelectricity was demonstrated by polarization-voltage (P-V) hysteresis loops measured in a positive-up negative-down manner and piezoresponse force microscopy. However, defects such as oxygen vacancies caused the films to become leaky. The observed ferroelectricity and semiconducting characteristics led to the FE-RS effect. The FE-RS effect may be explained by a polarization modulated trap-assisted tunneling model. Our study not only provides a facile route to develop ferroelectric HfO2-based thin films but also explores their potential applications in FE-RS memories.

  14. Pressure-induced superconductivity in Ba0.5Sr0.5Fe2As2

    NASA Astrophysics Data System (ADS)

    Tsoi, Georgiy M.; Malone, Walter; Uhoya, Walter; Mitchell, Jonathan E.; Vohra, Yogesh K.; Wenger, Lowell E.; Sefat, Athena S.; Weir, S. T.

    2012-12-01

    High-pressure electrical resistance measurements have been performed on single crystal Ba0.5Sr0.5Fe2As2 platelets to pressures of 16 GPa and temperatures down to 10 K using designer diamond anvils under quasi-hydrostatic conditions with an insulating steatite pressure medium. The resistance measurements show evidence of pressure-induced superconductivity with an onset transition temperature at ˜31 K and zero resistance at ˜22 K for a pressure of 3.3 GPa. The transition temperature decreases gradually with increasing pressure before completely disappearing for pressures above 12 GPa. The present results provide experimental evidence that a solid solution of two 122-type materials, i.e., Ba1-xSrxFe2As2 (0 < x < 1), can also exhibit superconductivity under high pressure.

  15. Exchange bias in a mixed metal oxide based magnetocaloric compound YFe0.5Cr0.5O3

    NASA Astrophysics Data System (ADS)

    Sharma, Mohit K.; Singh, Karan; Mukherjee, K.

    2016-09-01

    We report a detailed investigation of magnetization, magnetocaloric effect and exchange bias studies on a mixed metal oxide YFe0.5Cr0.5O3 belonging to perovskite family. Our results reveal that the compound is in canted magnetic state (CMS) where ferromagnetic correlations are present in an antiferromagnetic state. Magnetic entropy change of this compound follows a power law (∆SM∼Hm) dependence of magnetic field. In this compound, inverse magnetocaloric effect (IMCE) is observed below 260 K while conventional magnetocaloric effect (CMCE) above it. The exponent 'm' is found to be independent of temperature and field only in the IMCE region. Investigation of temperature and magnetic field dependence studies of exchange bias, reveal a competition between effective Zeeman energy of the ferromagnetic regions and anisotropic exchange energy at the interface between ferromagnetic and antiferromagnetic regions. Variation of exchange bias due to temperature and field cycling is also investigated.

  16. A 0.5-GHz CMOS digital RF memory chip

    NASA Astrophysics Data System (ADS)

    Schnaitter, W. M.; Lewis, E. T.; Gordon, B. E.

    1986-10-01

    Digital RF memories (DRFM's) are key elements for modern radar jamming. An RF signal is sampled, stored in random access memory (RAM), and later recreated from the stored data. Here the first CMOS DRFM chip, integrating static RAM, control circuitry, and two channels of shift registers, on a single chip is described. The sample rate achieved was 0.5 GHz, VLSI density was made possible by the low-power dissipation of quiescent CMOS circuits. An 8K RAM prototype chip has been built and tested.

  17. Spectral reflectance properties of carbonaceous chondrites: 2. CM chondrites

    NASA Astrophysics Data System (ADS)

    Cloutis, E. A.; Hudon, P.; Hiroi, T.; Gaffey, M. J.; Mann, P.

    2011-11-01

    We have examined the spectral reflectance properties and available modal mineralogies of 39 CM carbonaceous chondrites to determine their range of spectral variability and to diagnose their spectral features. We have also reviewed the published literature on CM mineralogy and subclassification, surveyed the published spectral literature and added new measurements of CM chondrites and relevant end members and mineral mixtures, and measured 11 parameters and searched pair-wise for correlations between all quantities. CM spectra are characterized by overall slopes that can range from modestly blue-sloped to red-sloped, with brighter spectra being generally more red-sloped. Spectral slopes, as measured by the 2.4:0.56 μm and 2.4 μm:visible region peak reflectance ratios, range from 0.90 to 2.32, and 0.81 to 2.24, respectively, with values <1 indicating blue-sloped spectra. Matrix-enriched CM spectra can be even more blue-sloped than bulk samples, with ratios as low as 0.85. There is no apparent correlation between spectral slope and grain size for CM chondrite spectra - both fine-grained powders and chips can exhibit blue-sloped spectra. Maximum reflectance across the 0.3-2.5 μm interval ranges from 2.9% to 20.0%, and from 2.8% to 14.0% at 0.56 μm. Matrix-enriched CM spectra can be darker than bulk samples, with maximum reflectance as low as 2.1%. CM spectra exhibit nearly ubiquitous absorption bands near 0.7, 0.9, and 1.1 μm, with depths up to 12%, and, less commonly, absorption bands in other wavelength regions (e.g., 0.4-0.5, 0.65, 2.2 μm). The depths of the 0.7, 0.9, and 1.1 μm absorption features vary largely in tandem, suggesting a single cause, specifically serpentine-group phyllosilicates. The generally high Fe content, high phyllosilicate abundance relative to mafic silicates, and dual Fe valence state in CM phyllosilicates, all suggest that the phyllosilicates will exhibit strong absorption bands in the 0.7 μm region (due to Fe 3+-Fe 2+ charge

  18. Magnetic properties of the Nd0.5Gd0.5Fe3(BO3)4 single crystal

    NASA Astrophysics Data System (ADS)

    Malakhovskii, A. V.; Eremin, E. V.; Velikanov, D. A.; Kartashev, A. V.; Vasil'Ev, A. D.; Gudim, I. A.

    2011-10-01

    The magnetic properties of the Nd0.5Gd0.5Fe3(BO3)4 single crystal have been studied in principal crystallographic directions in magnetic fields to 90 kG in the temperature range 2-300 K; in addition, the heat capacity has been measured in the range 2-300 K. It has been found that, below the Néel temperature T N = 32 K down to 2 K, the single crystal exhibits an easy-plane antiferromagnetic structure. A hysteresis has been detected during magnetization of the crystal in the easy plane in fields of 1.0-3.5 kG, and a singularity has been found in the temperature dependence of the magnetic susceptibility in the easy plane at a temperature of 11 K in fields B < 1 kG. It has been shown that the singularity is due to appearance of the hysteresis. The origin of the magnetic properties of the crystal near the hysteresis has been discussed.

  19. Compositional inhomogeneityand segregation in (K0.5Na0.5)NbO3 ceramics

    DOE PAGES

    Chen, Kepi; Tang, Jing; Chen, Yan

    2016-03-11

    The effects of the calcination temperature of (K0.5Na0.5)NbO3 (KNN) powder on the sintering and piezoelectric properties of KNN ceramics have been investigated in this report. KNN powders are synthesized via the solid-state approach. Scanning electron microscopy and X-ray diffraction characterizations indicate that the incomplete reaction at 700 °C and 750 °C calcination results in the compositional inhomogeneity of the K-rich and Na-rich phases while the orthorhombic single phase is obtained after calcination at 900 °C. During the sintering, the presence of the liquid K-rich phase due to the lower melting point has a significant impact on the densification, the abnormalmore » grain growth and the deteriorated piezoelectric properties. From the standpoint of piezoelectric properties, the optimal calcination temperature obtained for KNN ceramics calcined at this temperature is determined to be 800 °C, with piezoelectric constant d33=128.3 pC/N, planar electromechanical coupling coefficient kp=32.2%, mechanical quality factor Qm=88, and dielectric loss tan δ=2.1%.« less

  20. Magnetic structure of the kagome mixed compound (Co(0.5)Ni(0.5))(3)V(2)O(8).

    PubMed

    Qureshi, N; Fuess, H; Ehrenberg, H; Ouladdiaf, B; Rodríguez-Carvajal, J; Hansen, T C; Wolf, Th; Meingast, C; Zhang, Q; Knafo, W; Löhneysen, H V

    2008-06-11

    We report the magnetic structure of (Co(0.5)Ni(0.5))(3)V(2)O(8) (CNVO) deduced by single crystal neutron diffraction. This compound exhibits features which differ from that of its parent compounds, which are absolutely collinear along the a axis for Co(3)V(2)O(8) (CVO) or exhibit magnetic moments predominantly in the a-b plane with small components along c in the case of Ni(3)V(2)O(8) (NVO). The averaged magnetic moments of the statistically distributed Ni(2+) and Co(2+) ions in CNVO are oriented in the a-c plane and form loops of quasiferromagnetically coupled spins. These loops are connected along the a axis and separated along the c axis by cross-tie spins forming a quasiferromagnetic wave with the upper part of the respective neighbouring loops. The magnetic moments are sinusoidally modulated by the propagation vector k = (0.49,0,0) with an average amplitude of 1.59(1) μ(B) for a magnetic ion on a cross-tie site and 1.60(1) μ(B) for the spine site. In addition to neutron diffraction, specific heat and magnetization data, which confirm that the only magnetic phase transition above 1.8 K is the onset of antiferromagnetic order at T(N) = 7.4(1) K, are presented.

  1. Colossal elastoresistance, electroresistance and magnetoresistance in Pr0.5Sr0.5MnO3 thin films

    NASA Astrophysics Data System (ADS)

    Chen, Liping; Guo, Xuexiang; Gao, J.

    2016-05-01

    Pr0.5Sr0.5MnO3 thin films on substrates of (001)-oriented LaAlO3 were epitaxially grown by pulsed laser deposition. It was found that a substrate-induced strain of ~1.3% brings a great resistivity change of ~98% at 25 K. We studied the dependence of resistivity on the applied electric current and magnetic field. In the greatly strained films of 60 nm thickness the electroresistance ER=[ρ(I1 μA)-ρ(I1000 μA)]/ρ(I1 μA) reaches ~70% at T=25 K, much higher than ER~7% in the strain-relaxed films of 400 nm thickness, implying the strain effect on ER. Also the magnetoresistance of the film falls with strain-relaxation. Therefore the electric properties of the film could be efficiently modified by strain, electric current and magnetic field. All of them may be explained by the effect on the percolative phase separation and competition in the half-doped manganite material. The manganite films located at phase boundary are expected to be an ideal compound for providing practical colossal effects of elastoresistance, electroresistance and magnetoresistance due to the multiphase coexistence.

  2. Upper critical field and AC-Susceptibility studies on FeTe0.5Se0.5 superconductor

    NASA Astrophysics Data System (ADS)

    Zargar, Rayees A.; Pal, Anand; Hafiz, A. K.; Awana, V. P. S.

    2015-06-01

    In this study we present synthesis and characterization of FeTe0.5Se0.5 sample that has been prepared by solid state reaction route by encapsulation of stoichiometric high purity (5N) ingredients in an evacuated quartz tube at 750 °C. The resultant compound is crystallized in single phase tetragonal structure with space group P4/nmm, having lattice parameters a = 3.792(1) Å and c = 6.0081(3) Å. The studied compound is superconducting at below 13K in both magnetic and transport measurements. Further superconductivity is barely affected by external applied magnetic field, giving rise to upper critical field of above 180 Tesla at 0 K. The sample is studied extensively for AC susceptibility measurements in superconducting state. The AC drive field and frequency are varied from 1-13 Oe and 33-9999 Hz respectively. It is concluded that though the grain boundaries of this superconductor are mainly metallic the minor (undetectable in XRD) foreign phases and the role of porosity cannot be ruled out completely. This is because both frequency and amplitude affects slightly the superconductivity coupling temperature of the grains.

  3. Magnetic structure of the kagome mixed compound (Co0.5Ni0.5)3V2O8

    NASA Astrophysics Data System (ADS)

    Qureshi, N.; Fuess, H.; Ehrenberg, H.; Ouladdiaf, B.; Rodríguez-Carvajal, J.; Hansen, T. C.; Wolf, Th; Meingast, C.; Zhang, Q.; Knafo, W.; Löhneysen, H. v.

    2008-06-01

    We report the magnetic structure of (Co0.5Ni0.5)3V2O8 (CNVO) deduced by single crystal neutron diffraction. This compound exhibits features which differ from that of its parent compounds, which are absolutely collinear along the a axis for Co3V2O8 (CVO) or exhibit magnetic moments predominantly in the a-b plane with small components along c in the case of Ni3V2O8 (NVO). The averaged magnetic moments of the statistically distributed Ni2+ and Co2+ ions in CNVO are oriented in the a-c plane and form loops of quasiferromagnetically coupled spins. These loops are connected along the a axis and separated along the c axis by cross-tie spins forming a quasiferromagnetic wave with the upper part of the respective neighbouring loops. The magnetic moments are sinusoidally modulated by the propagation vector k = (0.49,0,0) with an average amplitude of 1.59(1) μB for a magnetic ion on a cross-tie site and 1.60(1) μB for the spine site. In addition to neutron diffraction, specific heat and magnetization data, which confirm that the only magnetic phase transition above 1.8 K is the onset of antiferromagnetic order at TN = 7.4(1) K, are presented.

  4. Low temperature dielectric and impedance studies on magnetoelectric Pb(Fe0.5Nb0.5)O3 ceramic

    NASA Astrophysics Data System (ADS)

    Matteppanavar, Shidaling; Shivaraja, I.; Rayaprol, Sudhindra; Angadi, Basavaraj

    2016-05-01

    The structural, microstructural, low temperature dielectric and impedance properties of Pb(Fe0.5Nb0.5)O3 (PFN) ceramic prepared by single step solid-state reaction method have been investigated. Processing parameters such as calcination, sintering temperature and sintering durations were optimized to get better dielectric properties. It was found that the above ceramics sintered at 1050 °C for 4 hr exhibited single phase, maximum density and uniform microstructure. X-ray diffraction (XRD) and neutron diffraction (ND) reveals that the system exhibit single phase without any kind of secondary phases at room temperature (RT) with monoclinic crystal structure (Cm). Surface morphology of the compounds was studied by Scanning electron microscope (SEM). Impedance spectroscopy is used to study the electrical behaviour of PFN in the frequency range from 100Hz to 1MHz and in the temperature range from 120 to 293 K. The frequency-dependent electrical data are analyzed by impedance formalisms. The complex impedance shows the relaxation (conduction) mechanism in the sample.

  5. Effect of V(2)O(5) on the sintering behavior, microstructure, and electrical properties of (Na(0.5)K(0.5))NbO(3) ceramics.

    PubMed

    Pan, H; Jin, D; Wu, W; Cheng, J; Meng, Z

    2008-05-01

    Well-sintered (Na(0.5)K(0.5))NbO(3)-x mol% V(2)O(5) ceramics (abbreviated as NKN-V) with fine electrical properties were successfully prepared by conventional solid-state reaction through the careful control of processing conditions. The sintering behavior, phase structure, and electrical properties of the V(2)O(5)-doped NKN ceramics were investigated. Results show that when the V(2)O(5) content is 0.6 mol%, the NKN ceramics attained the maximum density of 4.46 g/cm(3) (about 98.9% of the theoretical density) at 1060 degrees C, and therefore possessed enhanced electrical properties. But when the V(2)O(5) content continued increasing, the density decreased. The secondary phase (Na(2)V (6)O(16)) could be detected by XRD analysis in all samples except x = 0 mol%. The Curie temperature of the NKN-based materials was found to decrease with the increase of V(2)O(5). The dielectric properties of NKN ceramics doped with 0.6 and 0.9 mol% V(2)O(5) were better than that of pure NKN ceramics. In addition, annealing treatment was proved to be an effective technique for improving dielectric properties and reducing the leakage current density.

  6. Structural and magnetic properties of epitaxial Heusler alloy Fe{sub 2}Cr{sub 0.5}Co{sub 0.5}Si

    SciTech Connect

    Wang, Yu-Pu; Han, Gu-Chang; Qiu, Jinjun; Yap, Qi-Jia; Lu, Hui; Teo, Kie-Leong

    2014-05-07

    This paper reports the study of structural and magnetic properties of Heusler alloy Fe{sub 2}Cr{sub 0.5}Co{sub 0.5}Si (FCCS) thin film and its tunnel magnetoresistance (TMR) effect. The smooth quaternary Heusler alloy FCCS film with surface roughness of rms value of 0.25 nm measured by atomic force microscopy and partial L2{sub 1} phase was obtained by magnetron sputtering at room temperature followed by in-situ annealing at 400 °C. The saturation magnetization and coercivity of FCCS are 410 emu/cm{sup 3} and 20 Oe, respectively. The magnetic tunnel junctions (MTJs) using FCCS as free layer were studied in detail as a function of post-annealing temperature. A TMR ratio of 15.6% has been achieved with 300 °C post-annealing. This is about twice the highest TMR ratio obtained in MTJs using Fe{sub 2}CrSi. The enhancement of TMR ratio can be attributed to the successful tuning of the Fermi level of Fe{sub 2}CrSi close to the center of the minority band gap by Co-doping.

  7. A high stability Ni-La0.5Ce0.5O2-δ asymmetrical metal-ceramic membrane for hydrogen separation and generation

    NASA Astrophysics Data System (ADS)

    Zhu, Zhiwen; Sun, Wenping; Wang, Zhongtao; Cao, Jiafeng; Dong, Yingchao; Liu, Wei

    2015-05-01

    In this work, hydrogen permeation properties of Ni-La0.5Ce0.5O2-δ (LDC) asymmetrical cermet membrane are investigated, including hydrogen fluxes (JH2) under different hydrogen partial pressures, the influence of water vapor on JH2 and the long-term stability of the membrane operating under the containing-CO2 atmosphere. Ni-LDC asymmetrical membrane shows the best hydrogen permeability among LDC-based hydrogen separation membranes, inferior to Ni-BaZr0.1Ce0.7Y0.2O3-δ asymmetrical membrane. The water vapor in feed gas is beneficial to hydrogen transport process, which promote an increase of JH2 from 5.64 × 10-8 to 6.83 × 10-8 mol cm-2 s-1 at 900 °C. Stability testing of hydrogen permeation suggests that Ni-LDC membrane remains stable against CO2. A dual function of combining hydrogen separation and generation can be realized by humidifying the sweep gas and enhance the hydrogen output by 1.0-1.5 times. Ni-LDC membrane exhibits desirable performance and durability in dual-function mode. Morphologies and phase structures of the membrane after tests are also characterized by SEM and XRD.

  8. Dielectric properties in lead-free piezoelectric (Bi0.5Na0.5)TiO3-BaTiO3 single crystals and ceramics

    NASA Astrophysics Data System (ADS)

    Chen, C.-S.; Tu, C. S.; Chen, P.-Y.; Ting, Y.; Chiu, S.-J.; Hung, C. M.; Lee, H.-Y.; Wang, S.-F.; Anthoninappen, J.; Schmidt, V. H.; Chien, R. R.

    2014-05-01

    The 0.93(Bi0.5Na0.5)TiO3-0.07BaTiO3 (BNB7T) piezoelectric single crystals and ceramics have been grown respectively by using the self-flux and solid-state-reaction methods. The real (ε‧) and imaginary (ε″) parts of the dielectric permittivity of BNB7T crystals and ceramics were investigated with and without an electric (E) poling as functions of temperature and frequency. The BNB7T crystal shows a stronger dielectric maximum at Tm~240 °C than the ceramic at Tm~300 °C. The dielectric permittivity of BNB7T ceramic shows an extra peak after poling at an electric field E=40 kV/cm in the region of 80-100 °C designated as the depolarization temperature (Td). A wide-range dielectric thermal hysteresis was observed in BNB7T crystal and ceramic, suggesting a first-order-like phase transition. The dielectric permittivity ε‧ obeys the Curie-Weiss equation, ε‧=C/(T-To), above 500 °C, which is considered as the Burns temperature (TB), below which polar nanoregions begin to develop and attenuate dielectric responses.

  9. Conduction mechanism in Eu0.5Sr0.5Mn0.9Cr0.1O3 perovskite

    NASA Astrophysics Data System (ADS)

    Modi, Anchit; Bhat, Masroor Ahmad; Pandey, Devendra K.; Gaur, N. K.

    2016-05-01

    A systematic study of polycrystalline sample with composition Eu0.5Sr0.5Mn0.9Cr0.1O3 has been undertaken and synthesized by conventional solid state reaction techniques. The room temperature XRD study reveals the single phase formation of the reported compound with orthorhombic structure having Pbnm space group. The temperature dependent resistivity study indicates the highly resistive nature of the compound especially in the low temperature region exhibits a semiconductor behavior and favored the variable range hopping conduction model. The obtained experimental data in the temperature range of our study can be described by the equation ρ(T) = ρ0exp[(T*/T)1/4]. The fitting results are used for the calculation of the temperature scale T* ˜ 9.05×106 K and finally the density of state at Fermi level N(EF) is calculated to be ˜ 61.63 × 1018 eV-1 cm-3.

  10. Layed Perovskite PRBA0.5SR0.5CO205 as High Performance Cathode for Solid Oxide Fuels Using Photon Conducting Electrolyte

    SciTech Connect

    Brinkman, K.

    2010-05-05

    The layered perovskite PrBa{sub 0.5}Sr{sub 0.5}Co{sub 2}O{sub 5+{delta}} (PBSC) was investigated as a cathode material for a solid oxide fuel cell using a proton-conducting electrolyte based on BaCe{sub 0.7}Y{sub 0.2}Zr{sub 0.1}O{sub 3-{delta}} (BCYZ). The sintering conditions for the PBSC-BCYZ composite cathode were optimized resulting in the lowest area-specific resistance and apparent activation energy obtained with the cathode sintered at 1200 C for 2h. The maximum power densities of the PBSC-BCYZ/BZCY/NiO-BCYZ cell were 0.179, 0.274, 0.395, and 0.522 Wcm{sup -2} at 550, 600, 650, and 700 C, respectively with a 15{micro}m thick electrolyte. A relatively low cell interfacial polarization resistance of 0.132 {Omega}cm{sup 2} at 700 C indicated that the PBSC-BCYZ could be a good cathode candidate for intermediate temperature SOFCs with proton-conducting electrolyte.

  11. Evidence of superspin-glass behavior in Zn0.5Ni0.5Fe2O4 nanoparticles.

    PubMed

    Botez, Cristian E; Adair, Antony H; Tackett, Ronald J

    2015-02-25

    We have used dc-magnetization and ac-susceptibility to investigate the superspin dynamics in 9 nm average size Zn(0.5)Ni(0.5)Fe(2)O(4) magnetic particles at temperatures (T) between 3 and 300 K. Dc-magnetization M versus T data collected in a H = 50 Oe magnetic field using a field-cooled-zero-field-cooled protocol indicate that the onset of irreversibility occurs in the vicinity of 190 K. This is confirmed by M versus H|(T) hysteresis loops, as well as by frequency- and temperature-resolved ac-susceptibility data. We demonstrate that this magnetic event is not due to the blocking of individual superspins, but can be unequivocally ascribed to their collective freezing in a spin-glass-like fashion. Indeed, the relative variation (per frequency decade) of the in-phase susceptibility peak temperature is ∼0.032, critical dynamics analysis of this peak shift yields an exponent zν = 10.0 and a zero-field freezing temperature T(g) = 190 K, and, in a magnetic field, Tg(H) is excellently described by the de Almeida-Thouless line δT(g) = 1 - T(g)(H)/T(g) ∝ H(2/3). In addition, out-of-phase susceptibility versus temperature datasets collected at different frequencies collapse on a universal dynamic scaling curve. Finally, memory imprinting during a stop-and-wait magnetization protocol confirms the collective freezing nature of the state below 190 K.

  12. Design of Si0.5Ge0.5 based tunnel field effect transistor and its performance evaluation

    NASA Astrophysics Data System (ADS)

    Singh, Gurmeet; Amin, S. Intekhab; Anand, Sunny; Sarin, R. K.

    2016-04-01

    In this work, the performance comparison of two heterojunction PIN TFETs having Si channel and Si0.5Ge0.5 source with high-k (SiGe DGTFET HK) and hetero-gate dielectric (SiGe DGTFET HG) respectively with those of two homojunction Si based PIN (DGTFET HK and DGTFET HG) TFETs is performed. Similarly, by employing the technique of pocketing at source junction in above four PIN TFETs, the performances of resultant four PNPN TFETs (SiGe PNPN DGTFET HK, SiGe PNPN DGTFET HG, PNPN DGTFET HK and PNPN DGTFET HG) are also compared with each other. Due to lower tunnel resistance of SiGe based heterojunction PIN and PNPN TFETs, the DC parameters such as ON current, ON-OFF current ratio, average subthreshold slope are improved significantly as compared to Si based PIN and PNPN TFETs respectively. The output characteristics of HG architectures in Si based homojunction PIN and PNPN TFETs is observed to be identical to with respective Si based HK PIN and PNPN TFET architectures. However, the output characteristics of HG architectures in SiGe based heterojunction PIN and PNPN TFETs degrade as compared to their respective SiGe based HK PIN and PNPN TFET architectures. In ON state, SiGe based HK and HG PIN and PNPN TFETs have lower gate capacitance (Cgg) as compared to their respective Si based HK and HG PIN and PNPN TFETs. Moreover, HG architecture suppresses gate to drain capacitance (Cgd) and ambipolar conduction. Transconductance (gm) and cut off frequency (fT) is also observed to be higher for SiGe based PIN and PNPN TFETs.

  13. Grain size engineering for ferroelectric Hf{sub 0.5}Zr{sub 0.5}O{sub 2} films by an insertion of Al{sub 2}O{sub 3} interlayer

    SciTech Connect

    Kim, Han Joon; Park, Min Hyuk; Kim, Yu Jin; Lee, Young Hwan; Jeon, Woojin; Gwon, Taehong; Moon, Taehwan; Kim, Keum Do; Hwang, Cheol Seong

    2014-11-10

    The degradation of ferroelectric (FE) properties of atomic layer deposited Hf{sub 0.5}Zr{sub 0.5}O{sub 2} films with increasing thickness was mitigated by inserting 1 nm-thick Al{sub 2}O{sub 3} interlayer at middle position of the thickness of the FE film. The large P{sub r} of 10 μC/cm{sup 2}, which is 11 times larger than that of single layer Hf{sub 0.5}Zr{sub 0.5}O{sub 2} film with equivalent thickness, was achieved from the films as thick as 40 nm. The Al{sub 2}O{sub 3} interlayer could interrupt the continual growth of Hf{sub 0.5}Zr{sub 0.5}O{sub 2} films, and the resulting decrease of grain size prevented the formation of non-ferroelectric monoclinic phase. The Al{sub 2}O{sub 3} interlayer also largely decreased the leakage current of the Hf{sub 0.5}Zr{sub 0.5}O{sub 2} films.

  14. Initial oxidation kinetics and energetics of Cu 0.5Au 0.5 (0 0 1) film investigated by in situ ultrahigh vacuum transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Wang, Liang; Zhou, Guang-Wen; Eastman, Jeffrey A.; Yang, Judith C.

    2006-06-01

    The initial oxidation behavior of Cu 0.5Au 0.5 (0 0 1) thin film was investigated by in situ ultrahigh vacuum transmission electron microscopy to model nano-oxidation of alloys with one active component and one noble component. The formation of irregular-shaped octahedron Cu 2O islands with cube-on-cube crystallographic orientation to the substrate film was observed at all temperature studied. The energetics of Cu 2O nucleation for Cu and Cu 0.5Au 0.5 oxidation was compared. Cu 0.5Au 0.5 oxidation has lower nucleation activation energy due to the reduced mismatch strain between Cu 2O and Cu 0.5Au 0.5 films. On the other hand, the reaction kinetics for Cu 0.5Au 0.5 alloy oxidation is slower due to the higher diffusion activation energy of Cu.

  15. Determination of the density of the defect states in Hf{sub 0.5}Zr{sub 0.5}O{sub 2} high-k film Deposited by using rf-magnetron sputtering technique

    SciTech Connect

    Lu, W.; Lu, J. X.; Ou, X.; Liu, X. J.; Cao, Y. Q.; Li, A. D.; Xu, B.; Xia, Y. D.; Yin, J.; Liu, Z. G.

    2014-08-15

    A memory structure Pt/Al{sub 2}O{sub 3}/Hf{sub 0.5}Zr{sub 0.5}O{sub 2}/Al{sub 2}O{sub 3}/p-Si was fabricated by using atomic layer deposition and rf-magnetron sputtering techniques, and its microstructure has been investigated by using the high resolution transmission electron microscopy (HRTEM). By measuring the applied gate voltage dependence of the capacitance for the memory structure, the planar density of the trapped charges in Hf{sub 0.5}Zr{sub 0.5}O{sub 2} high-k film was estimated as 6.63 × 10{sup 12} cm{sup −2}, indicating a body defect density of larger than 2.21 × 10{sup 19} cm{sup −3}. It is observed that the post-annealing in N{sub 2} can reduces the defect density in Hf{sub 0.5}Zr{sub 0.5}O{sub 2} film, which was ascribed to the occupancy of oxygen vacancies by nitrogen atoms.

  16. Giant Dielectric Behavior of BaFe0.5Nb0.5O3 Perovskite Ceramic

    NASA Astrophysics Data System (ADS)

    Intatha, Uraiwan; Eitssayeam, Sukum; Tunkasiri, Tawee

    2009-12-01

    Single-phase cubic Ba(Fe,Nb)0.5O3 (BFN) powder was synthesized by solid-state reaction at 1443 K for 4 hour in air. X-ray diffraction indicated that the BFN oxide mixture calcined at 1200°C crystallizes to the pure cubic perovskite phase. BFN ceramics were produced from this powder by sintering at 1623-1673 K for 4 hrs in air. Samples prepared under these conditions achieved up to 94.7% of the theoretical density. The temperature dependence of their dielectric constant and loss tangent, measured at difference frequencies, shows an increase in the dielectric constant with temperature which is probably due to disorder on the B site ion of the perovskite. Non-Debye type of relaxation phenomena has been observed in the BFN ceramics as confirmed by Cole-Cole plots. The higher value of ɛ' at the lower frequency is explained on the basis of the Maxwell-Wagner (MW) polarization model.

  17. Giant Dielectric Behavior of BaFe0.5Nb0.5O3 Perovskite Ceramic

    NASA Astrophysics Data System (ADS)

    Intatha, Uraiwan; Eitssayeam, Sukum; Tunkasiri, Tawee

    Single-phase cubic Ba(Fe,Nb)0.5O3 (BFN) powder was synthesized by solid-state reaction at 1443 K for 4 hour in air. X-ray diffraction indicated that the BFN oxide mixture calcined at 1200°C crystallizes to the pure cubic perovskite phase. BFN ceramics were produced from this powder by sintering at 1623-1673 K for 4 hrs in air. Samples prepared under these conditions achieved up to 94.7% of the theoretical density. The temperature dependence of their dielectric constant and loss tangent, measured at difference frequencies, shows an increase in the dielectric constant with temperature which is probably due to disorder on the B site ion of the perovskite. Non-Debye type of relaxation phenomena has been observed in the BFN ceramics as confirmed by Cole-Cole plots. The higher value of ɛ‧ at the lower frequency is explained on the basis of the Maxwell-Wagner (MW) polarization model.

  18. Empirical constraints of supergalactic winds at z≳ 0.5

    NASA Astrophysics Data System (ADS)

    Gauthier, Jean-René; Chen, Hsiao-Wen

    2012-08-01

    Under the hypothesis that Mg II absorbers found near the minor axis of a disc galaxy originate in the cool phase of supergalactic winds, we carry out a study to constrain the properties of large-scale galactic outflows at redshift zgal ≳ 0.5 based on the observed relative motions of individual absorbing clouds with respect to the positions and orientations of the absorbing galaxies. We identify in the literature four highly inclined disc galaxies located within 50 kpc and with the minor axis oriented within 45° of a background quasi-stellar object (QSO) sightline. Deep Hubble Space Telescope images of the galaxies are available for accurate characterizations of the optical morphologies of the galaxies. High-quality echelle spectra of the QSO members are also available in public archives for resolving the velocity field of individual absorption clumps. Three galaxies in our sample are located at ρ = 8-34 kpc and exhibit strong associated Mg II absorption feature with Wr(2796)0.8 Å. One galaxy, located at an impact parameters ρ = 48 kpc, dose not show an associated Mg II absorber to a 3σ limit of Wr(2796)=0.01 Å. Combining known morphological parameters of the galaxies such as the inclination and orientation angles of the star-forming discs, and resolved absorption profiles of the associated absorbers at ρ < 35 kpc away, we explore the allowed parameter space for the opening angle θ0 and the velocity field of large-scale galactic outflows as a function of z-height, v(z). We find that the observed absorption profiles of the Mg II doublets and their associated Fe II series are compatible with the absorbing gas being either accelerated or decelerated, depending on θ0, though accelerated outflows are a valid characterization only for a narrow range of θ0. Under an acceleration scenario, we compare the derived v(z) with predictions from Murray et al. and find that if the gas is being accelerated by the radiation and ram pressure

  19. Dielectric and piezoelectric properties of 0.95(Na0.5K0.5)NbO3-0.05CaTiO3 ceramics with Ag2O contents

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Hwan; Baek, Sang-Don; Kim, Hyun-Ju; Kim, Seung-Hyun; Lee, Sung-Gap; Kim, Dae-Young; Lee, Young-Hie; Nam, Sung-Pill; Lee, Ku-Tak

    2012-12-01

    Lead-Free ceramics 0.95(Na0.5K0.5)NbO3-0.05CaTiO3- x mol. % Ag2O have been fabricated as a function of the amount of Ag2O content. NKN-CT ceramics showed the highest piezoelectric properties and ferroelectric properties at the 0.5 mol. %Ag2O content. The NKN-CT-Ag2O0.5 mol. % ceramics show a good performance with piezoelectric constant d 33 = 221 ρC/N, k p = 0.38%, respectively. The corresponding Curie temperature and remnant polarization reached 370°C and 22.5 µC/cm2, respectively. These results appear that NKN-CTAg2O ceramics are promising candidate materials for lead-free piezoelectric application.

  20. Ubiquitous CM and DM

    NASA Technical Reports Server (NTRS)

    Crowley, Sandra L.

    2000-01-01

    Ubiquitous is a real word. I thank a former Total Quality Coach for my first exposure some years ago to its existence. My version of Webster's dictionary defines ubiquitous as "present, or seeming to be present, everywhere at the same time; omnipresent." While I believe that God is omnipresent, I have come to discover that CM and DM are present everywhere. Oh, yes; I define CM as Configuration Management and DM as either Data or Document Management. Ten years ago, I had my first introduction to the CM world. I had an opportunity to do CM for the Space Station effort at the NASA Lewis Research Center. I learned that CM was a discipline that had four areas of focus: identification, control, status accounting, and verification. I was certified as a CMIl graduate and was indoctrinated about clear, concise, and valid. Off I went into a world of entirely new experiences. I was exposed to change requests and change boards first hand. I also learned about implementation of changes, and then of technical and CM requirements.

  1. Formation of solar cells based on Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} (BST) ferroelectric thick film

    SciTech Connect

    Irzaman, Syafutra, H. Arif, A. Alatas, H.; Hilaluddin, M. N.; Kurniawan, A.; Iskandar, J.; Dahrul, M.; Ismangil, A.; Yosman, D.; Aminullah; Prasetyo, L. B.; Yusuf, A.; Kadri, T. M.

    2014-02-24

    Growth of Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} (BST) 1 M thick films are conducted with variation of annealing hold time of 8 hours, 15 hours, 22 hours, and 29 hours at a constant temperature of 850 °C on p-type Si (100) substrate using sol-gel method then followed by spin coating process at 3000 rpm for 30 seconds. The BST thick film electrical conductivity is obtained to be 10{sup −5} to 10{sup −4} S/cm indicate that the BST thick film is classified as semiconductor material. The semiconductor energy band gap value of BST thick film based on annealing hold time of 8 hours, 15 hours, 22 hours, and 29 hours are 2.58 eV, 3.15 eV, 3.2 eV and 2.62 eV, respectively. The I-V photovoltaic characterization shows that the BST thick film is potentially solar cell device, and in accordance to annealing hold time of 8 hours, 15 hours, 22 hours and 29 hours have respective solar cell energy conversion efficiencies of 0.343%, 0.399%, 0.469% and 0.374%, respectively. Optical spectroscopy shows that BST thick film solar cells with annealing hold time of 8 hours, 15 hours, and 22 hours absorb effectively light energy at wavelength of ≥ 700 nm. BST film samples with annealing hold time of 29 hours absorb effectively light energy at wavelength of ≤ 700 nm. The BST thick film refraction index is between 1.1 to 1.8 at light wavelength between ±370 to 870 nm.

  2. Electrostatic versus Electrochemical Doping and Control of Ferromagnetism in Ion-Gel-Gated Ultrathin La0.5Sr0.5CoO3-δ.

    PubMed

    Walter, Jeff; Wang, Helin; Luo, Bing; Frisbie, C Daniel; Leighton, Chris

    2016-08-23

    Recently, electrolyte gating techniques employing ionic liquids/gels in electric double layer transistors have proven remarkably effective in tuning charge carrier density in a variety of materials. The ability to control surface carrier densities at levels above 10(14) cm(-2) has led to widespread use in the study of superconductivity, insulator-metal transitions, etc. In many cases, controversy remains over the doping mechanism, however (i.e., electrostatic vs electrochemical (e.g., redox-based)), and the technique has been less applied to magnetic materials. Here, we discuss ion gel gating of nanoscale 8-unit-cell-thick hole-doped La0.5Sr0.5CoO3-δ (LSCO) films, probing in detail the critical bias windows and doping mechanisms. The LSCO films, which are under compressive stress on LaAlO3(001) substrates, are metallic and ferromagnetic (Curie temperature, TC ∼ 170 K), with strong anomalous Hall effect and perpendicular magnetic anisotropy. Transport measurements reveal that negative gate biases lead to reversible hole accumulation (i.e., predominantly electrostatic operation) up to some threshold, whereas positive bias immediately induces irreversibility. Experiments in inert/O2 atmospheres directly implicate oxygen vacancies in this irreversibility, supported by atomic force microscopy and X-ray photoelectron spectroscopy. The results are thus of general importance, suggesting that hole- and electron-doped oxides may respond very differently to electrolyte gating. Reversible voltage control of electronic/magnetic properties is then demonstrated under hole accumulation, including resistivity, magnetoresistance, and TC. The sizable anomalous Hall coefficient and perpendicular anisotropy in LSCO provide a particularly powerful probe of magnetism, enabling direct extraction of the voltage-dependent order parameter and TC shift. The latter amounts to ∼7%, with potential for much stronger modulation at lower Sr doping. PMID:27479878

  3. Effect of high-pressure annealing on the normal-state transport of LaO0.5F0.5BiS2

    NASA Astrophysics Data System (ADS)

    Pallecchi, I.; Lamura, G.; Putti, M.; Kajitani, J.; Mizuguchi, Y.; Miura, O.; Demura, S.; Deguchi, K.; Takano, Y.

    2014-06-01

    We study normal state electrical, thermoelectrical, and thermal transport in polycrystalline BiS2-based compounds, which become superconducting by F doping on the O site. In particular, we explore undoped LaOBiS2 and doped LaO0.5F0.5BiS2 samples, prepared either with or without high-pressure annealing, in order to evidence the roles of doping and preparation conditions. The high-pressure annealed sample exhibits room temperature values of resistivity ρ around 5 mΩcm, Seebeck coefficient S around -20μV /K, and thermal conductivity κ around 1.5 W/Km, while the Hall resistance RH is negative at all temperatures and its value is -10-8 m3/C at low temperature. The sample prepared at ambient pressure exhibits RH positive in sign and five times larger in magnitude, and S negative in sign and slightly smaller in magnitude. These results reveal a complex multiband evolution brought about by high-pressure annealing. In particular, the sign inversion and magnitude suppression of RH, indicating increased electron-type carrier density in the high-pressure sample, may be closely related to previous findings about change in lattice parameters and enhancement of superconducting Tc by high-pressure annealing. As for the undoped sample, it exhibits 10 times larger resistivity, 10 times larger |S|, and 10 times larger |RH| than its doped counterpart, consistent with its insulating nature. Our results point out the dramatic effect of preparation conditions in affecting charge carrier density as well as structural, band, and electronic parameters in these systems.

  4. Tuning the optical, electrical and magnetic properties of Ba(0.5)Sr(0.5)Ti(x)M(1-x)O3 (BST) nanopowders.

    PubMed

    Turky, Ali Omar; Rashad, Mohamed Mohamed; Kandil, Abd El-Hakim Taha; Bechelany, Mikhael

    2015-05-21

    Metal doped barium strontium titanate (BST; Ba0.5Sr0.5TixM1-xO3) nanopowders have been successfully synthesized through the oxalate precursor route based on low cost starting materials. The effect of metal ion substitution, namely Fe(3+), Mn(2+), Co(2+) and Y(3+), on the crystal structure, microstructure and optical, electrical, dielectric and magnetic properties of BST was studied. The results revealed that a crystalline single cubic BST phase was formed for pure and Mn(2+), Co(2+) and Y(3+) ion-substituted BST samples, whereas a tetragonal BST structure was obtained for the Fe(3+) substituted BST sample at an annealing temperature of 1000 °C for 2 h. Furthermore, addition of the metal ions was found to decrease the crystallite size and unit cell volume of the produced BST phase. The microstructure of the produced pure BST phase was metal ion dependent. Most BST particles appeared as a cubic like structure. The transparency of BST was found to increase with metal substitution. Meanwhile, the band gap energy was increased from 3.4 eV for pure BST to 3.8, 4.1, 4.2 and 4.3 eV as the result of substitution by Fe(3+), Mn(2+) and Co(2+) and Y(3+) ions, respectively. The DC resistivity was metal ion dependent. The highest DC resistivity (ρ = 66.60 × 10(5) Ω cm) was accomplished with the Mn(2+) ion. Moreover, the addition of metal ions decreased the dielectric properties of the expected Mn(2+) ion and increased the magnetic properties.

  5. Optical anisotropy and dielectric parameters of (Ba0.5Sr0.5)Nb2O6 films on a Pt(111)/Si(001) substrate

    NASA Astrophysics Data System (ADS)

    Kovtun, A. P.; Zinchenko, S. P.; Pavlenko, A. V.; Tolmachev, G. N.

    2016-06-01

    (Ba0.5Sr0.5)Nb2O6 films were synthesized on a Pt(111)/Si(001) substrate by RF gas-discharge sputtering in pure oxygen atmosphere. It was found that the films have a dominant crystallographic orientation in the [001] direction and natural unipolarity, which was revealed through analysis of dielectric and piezoelectric parameters. It was demonstrated that the optical parameters of film material in the Ba0.5Sr0.5, Nb2O6/Pt(111)/Si(001) heterostructure match those typical for a (Ba0.5Sr0.5)Nb2O6 single crystal.

  6. Theoretical study of elastic properties and phase stability of M0.5Al0.5N1-xOx (M = Sc, Ti, V, Cr)

    NASA Astrophysics Data System (ADS)

    Jin Rotert, Soo; Music, Denis; to Baben, Moritz; Schneider, Jochen M.

    2013-02-01

    The influence of oxygen content and transition metal valence electron concentration on the phase stability and elastic properties of cubic M0.5Al0.5N1-xOx (M = Sc, Ti, V, Cr; x = 0 - 0.5) was studied using ab initio calculations. The negative value of enthalpy of mixing was observed for all phases indicating full miscibility of M0.5Al0.5N with the hypothetical M0.5Al0.5O. Bulk moduli are decreased as x in M0.5Al0.5N1-xOx is increased. This can be understood based on the electronic structure. As N is substituted by O, there are no noticeable changes in the chemical bonding nature. However, O is more electronegative than N, giving rise to an increase in the ionic character of the overall bonding. In spite of that, the M - O bond in M0.5Al0.5N1-xOx is longer than the corresponding M-N bond, which implies that this bond becomes weaker. Hence, we propose that the decrease of bulk moduli upon O incorporation into M0.5Al0.5N1-xOx is caused by weaker M-O bonds.

  7. Structural stability and depolarization of manganese-doped (Bi0.5Na0.5)1-xBaxTiO3 relaxor ferroelectrics

    NASA Astrophysics Data System (ADS)

    Wang, Sheng-Fen; Tu, Chi-Shun; Chang, Ting-Lun; Chen, Pin-Yi; Chen, Cheng-Sao; Hugo Schmidt, V.; Anthoniappen, J.

    2014-10-01

    This work reveals that 0.5 mol. % manganese (Mn) doping in (Bi0.5Na0.5)1-xBaxTiO3 (x = 0 and 0.075) solid solutions can increase structural thermal stability, depolarization temperature (Td), piezoelectric coefficient (d33), and electromechanical coupling factor (kt). High-resolution X-ray diffraction and transmission electron microscopy reveal coexistence of rhombohedral (R) R3c and tetragonal (T) P4bm phases in (Bi0.5Na0.5)0.925Ba0.075TiO3 (BN7.5BT) and 0.5 mol. % Mn-doped BN7.5BT (BN7.5BT-0.5Mn). (Bi0.5Na0.5)TiO3 (BNT) and BN7.5BT show an R - R + T phase transition, which does not occur in 0.5 mol. % Mn-doped BNT (BNT-0.5Mn) and BN7.5BT-0.5Mn. Dielectric permittivity (ɛ') follows the Curie-Weiss equation, ɛ' = C/(T - To), above the Burns temperature (TB), below which polar nanoregions begin to develop. The direct piezoelectric coefficient (d33) and electromechanical coupling factor (kt) of BN7.5BT-0.5Mn reach 190 pC/N and 47%.

  8. Effect of forming gas annealing on the ferroelectric properties of Hf0.5Zr0.5O2 thin films with and without Pt electrodes

    NASA Astrophysics Data System (ADS)

    Hyuk Park, Min; Joon Kim, Han; Jin Kim, Yu; Lee, Woongkyu; Kyeom Kim, Hyo; Seong Hwang, Cheol

    2013-03-01

    The effects of forming gas annealing (FGA) on the ferroelectric properties of Hf0.5Zr0.5O2 (HZO) films were examined. Although the H-incorporation during FGA degrades the ferroelectric properties of Hf0.5Zr0.5O2 films, the degree of degradation was much lower compared with other ferroelectrics, such as Pb(Zr,Ti)O3. Pt worked as a catalyst for H-incorporation, and maximum 2Pr loss of ˜40% occurred. However, the insertion of a ˜20-nm-thick TiN layer between Pt and Hf0.5Zr0.5O2 decreased the degradation to ˜12%. Hf0.5Zr0.5O2 is more resistant to degradation by FGA compared with the conventional ferroelectrics, which is a highly promising result for next-generation ferroelectric memory.

  9. Topochemical fluorination of Sr3(M(0.5)Ru(0.5))2O7 (M = Ti, Mn, Fe), n = 2, Ruddlesden-Popper phases.

    PubMed

    Romero, Fabio Denis; Bingham, Paul A; Forder, Susan D; Hayward, Michael A

    2013-03-18

    Reaction of the appropriate Sr3(M(0.5)Ru(0.5))2O7 (M = Ti, Mn, Fe), n = 2, Ruddlesden-Popper oxide with CuF2 under flowing oxygen results in formation of the oxide-fluoride phases Sr3(Ti(0.5)Ru(0.5))2O7F2, Sr3(Mn(0.5)Ru(0.5))2O7F2, and Sr3(Fe(0.5)Ru(0.5))2O(5.5)F(3.5) via a topochemical anion insertion/substitution process. Analysis indicates the titanium and manganese phases have Ti(4+), Ru(6+) and Mn(4+), Ru(6+) oxidation state combinations, respectively, while Mössbauer spectra indicate an Fe(3+), Ru(5.5+) combination for the iron phase. Thus, it can be seen that the soft fluorination conditions employed lead to formation of highly oxidized Ru(6+) centers in all three oxide-fluoride phases, while oxidation states of the other transition metal M cations remain unchanged. Fluorination of Sr3(Ti(0.5)Ru(0.5))2O7 to Sr3(Ti(0.5)Ru(0.5))2O7F2 leads to suppression of magnetic order as the fluorinated material approaches metallic behavior. In contrast, fluorination of Sr3(Mn(0.5)Ru(0.5))2O7 and Sr3(Fe(0.5)Ru(0.5))2O7 lifts the magnetic frustration present in the oxide phases, resulting in observation of long-range antiferromagnetic order at low temperature in Sr3(Mn(0.5)Ru(0.5))2O7F2 and Sr3(Fe(0.5)Ru(0.5))2O(5.5)F(3.5). The influence of the topochemical fluorination on the magnetic behavior of the Sr3(M(0.5)Ru(0.5))2O(x)F(y) phases is discussed on the basis of changes to the ruthenium oxidation state and structural distortions.

  10. Lead-free Mn-doped (K0.5,Na0.5)NbO3 piezoelectric thin films for MEMS-based vibrational energy harvester applications

    NASA Astrophysics Data System (ADS)

    Won, Sung Sik; Lee, Joonhee; Venugopal, Vineeth; Kim, Dong-Joo; Lee, Jinkee; Kim, Ill Won; Kingon, Angus I.; Kim, Seung-Hyun

    2016-06-01

    Lead-free Mn-doped (K0.5, Na0.5)NbO3 (KNN) thin films were fabricated by the chemical solution deposition method. The addition of small concentration of Mn dopant effectively reduced the leakage current density and enhanced the piezoelectric properties of the films. The leakage current density of 0.5 mol. % Mn-doped KNN film showed the lowest value of ˜10-7 A/cm2 at 10 V compared to the films with other doping concentrations and the piezoelectric d33 and e31 coefficients of this film were ˜90 pm/V and -8.5 C/m2, respectively. The maximum power and power density of the lead-free thin film-based vibrational energy harvesting device were 3.62 μW and 1800 μW/cm3 at the resonance frequency of 132 Hz and the acceleration of 1.0 G. The results prove that the 0.5 mol. % Mn-doped KNN film is an attractive candidate transducer layer for the piezoelectric MEMS energy harvesting device applications with a small volume and a long-lasting power source.

  11. Development and characterization of high-efficiency Ga{sub 0.5}In{sub 0.5}P/GaAs/Ge dual- and triple-junction solar cells

    SciTech Connect

    Karam, N.H.; King, R.R.; Cavicchi, B.T.

    1999-10-01

    This paper describes recent progress in the characterization, analysis, and development of high-efficiency, radiation-resistant Ga{sub 0.5}In{sub 0.5}P/GaAs/Ge dual-junction (DJ) and triple-junction (TJ) solar cells. DJ cells have rapidly transitioned from the laboratory to full-scale (325 kW/year) production at Spectrolab. Performance data for over 470,000 large-area (26.94 cm{sup 2}), thin (140 {micro}m) DJ solar cells grown on low-cost, high-strength Ge substrates are shown. Advances in next-generation triple-junction Ga{sub 0.5}In{sub 0.5}P/GaAs/Ge cells with an active Ge component cell are discussed, giving efficiencies up to 26.7% (21.65-cm{sup 2} area), AM0, at 28 C. Final-to-final power ratios P/P{sub 0} of 0.83 were measured for these n-on-p DJ and TJ cells after irradiation with 10{sup 15} 1-MeV electrons/cm{sup 2}. Time-resolved photoluminescence measurements are applied to double heterostructures grown with semiconductor layers and interfaces relevant to these multifunction solar cells, to characterize surface and bulk recombination and guide further device improvements. Dual-and triple-junction Ga{sub 0.5}In{sub 0.5}P/GaAs/Ge cells are compared to competing space photovoltaic technologies, and found to offer 60--75% more end-of-life power than high-efficiency Si cells at a nominal array temperature of 60 C.

  12. Cobalt-free Ba0.5Sr0.5Fe0.8Cu0.1Ti0.1O3-δ as a bi-functional electrode material for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Yang, Guangming; Shen, Jian; Chen, Yubo; Tadé, Moses O.; Shao, Zongping

    2015-12-01

    In this study, we investigate a cobalt-free titanium-doped perovskite oxide with the nominal composition of Ba0.5Sr0.5Fe0.8Cu0.1Ti0.1O3-δ (BSFCuTi) as a potential electrode material for intermediate temperature solid oxide fuel cells (IT-SOFCs). In comparison to Ba0.5Sr0.5Fe0.9Cu0.1O3-δ, BSFCuTi exhibits improved phase stability and a reduced thermal expansion coefficient even though the electrical conductivity decreases. A low area specific resistance of 0.088 Ω cm2 is achieved at 600 °C based on a symmetrical cell test, which is comparable to the result for the benchmark Ba0.5Sr0.5Co0.8Fe0.2O3-δ cobalt-based perovskite electrocatalyst. Stable operation for a period of 200 h is also demonstrated. The I-V test shows a very high power output of 1.16 W cm-2 for a single cell using a BSFCuTi cathode at 600 °C. In addition, the BSFCuTi can be partially reduced under a reducing atmosphere to prepare a suitable anode material. A cell with BSFCuTi as the material for both electrodes and a thick Gd0.2Ce0.8O1.9 electrolyte (300 μm) delivers an attractive power density of 480 mW cm-2 at 800 °C. The high activity, favorable stability and bi-functionality make BSFCuTi a promising electrode material for IT-SOFCs.

  13. Halogens in CM Chondrites

    NASA Astrophysics Data System (ADS)

    Menard, J. M.; Caron, B.; Jambon, A.; Michel, A.; Villemant, B.

    2013-09-01

    We set up an extraction line of halogens (fluorine, chlorine) by pyrohydrolysis with 50 mg of rock. We analyzed 7 CM2 chondrites found in Antarctica and found that the Cl content of meteorites with an intact fusion crust is higher than those without.

  14. One-dimensional SrFe12O19/Ni(0.5)Zn(0.5)Fe2O4 composite ferrite nanofibers and enhancement magnetic property.

    PubMed

    Song, Fuzhan; Shen, Xiangqian; Liu, Mingquan; Xiang, Jun

    2011-08-01

    SrFe12O19/Ni(0.5)Zn(0.5)Fe2O4 composite ferrite nanofibers of diameters about 100 nm with mass ratio 1:1 have been prepared by the electrospinning and calcination process. The SrFe12O19/Ni(0.5)Zn(0.5)Fe2O4 composite ferrites are formed after calcined at 700 degrees C for 2 hours. The composite ferrite nanofibers are fabricated from nanosized Ni(0.5)Zn(0.5)Fe2O4 and SrFe12O19 ferrite grains with a uniform phase distribution. The ferrite grain size increases from about 11 to 36 nm for Ni(0.5)Zn(0.5)Fe12O4 and 24 to 56 nm for SrFe12O19 with the calcination temperature increasing from 700 to 1100 degrees C. With the ferrite grain size increasing, the coercivity (Hc) and remanence (Mr) for the SrFe12O19/Ni(0.5)Zn(0.5)Fe2O4 composite ferrite nanofibers initially increase, reaching a maximum value of 118.4 kA/m and 31.5 Am2/kg at the grain size about 40 nm (SrFe12O19) and 24 nm (Ni(0.5)Zn(0.5)Fe2O4) respectively, and then show a reduction tendency with a further increase of the ferrite grain size. The specific saturation magnetization (Msh) of 63.2 Am2/kg for the SrFe12O19/Ni(0.5)Zn(0.5)Fe2O4 composite ferrite nanofibers obtained at 900 degrees C for 2 hours locates between that for the single SrFe12O19 ferrite (48.5 Am2/kg) and the single Ni(0.5)Zn(0.5)Fe2O4 ferrite (69.3 Am2/kg). In particular, the Mr value 31.5 Am2/kg for the SrFe12O19/Ni(0.5)Zn(0.5)Fe2O4 composite ferrite nanofibers is much higher than that for the individual SrFe12O19 (25.9 Am2/kg) and Ni(0.5)Zn(0.5)Fe2O4 ferrite (11.2 Am2/kg). These enhanced magnetic properties for the composite ferrite nanofibers can be attributed to the exchange-coupling interaction in the composite. PMID:22103109

  15. Evolution of Superconductivity in BiS2-Based Superconductor LaO0.5F0.5Bi(S1-xSex)2

    NASA Astrophysics Data System (ADS)

    Hiroi, Takafumi; Kajitani, Joe; Omachi, Atsushi; Miura, Osuke; Mizuguchi, Yoshikazu

    2015-02-01

    We have systematically investigated the crystal structure, magnetic susceptibility, and electrical resistivity of the BiS2-based superconductor LaO0.5F0.5Bi(S1-xSex)2 (x = 0-0.7). With expanding lattice volume by Se substitution, bulk superconductivity was induced for x ≥ 0.2, and the highest Tc of 3.8 K was observed in x = 0.5 (LaO0.5F0.5BiSSe). Metallic conductivity was observed for x ≥ 0.3 in the resistivity measurement, whereas semiconducting-like behavior was observed for x ≤ 0.2. The induction of bulk superconductivity by the partial substitution of S by Se in the LaO0.5F0.5BiS2 superconductor should be positively linked to the enhancement of metallic conductivity.

  16. Structural, thermal and electrical conductivity characteristics of Ln0.5Sr0.5Ti0.5Mn0.5O3±d (Ln: La, Nd and Sm) complex perovskites as anode materials for solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Jeong, Jihoon; Azad, Abul K.; Schlegl, Harald; Kim, Byungjun; Baek, Seung-Wook; Kim, Keunsoo; Kang, Hyunil; Kim, Jung Hyun

    2015-03-01

    The Ti and Mn replaced complex perovskites, Ln0.5Sr0.5Ti0.5Mn0.5O3±d (Ln: La, Nd and Sm), were reported as potential anode materials for high temperature-operating solid oxide fuel cells (HT-SOFCs). For the present research study, synthesis, crystallographic, thermal and electrical conductivity properties of Ln0.5Sr0.5Ti0.5Mn0.5O3±d complex perovskites were investigated using X-ray diffraction (XRD), Rietveld method, thermogravimetric analysis (TGA) and electrical conductivity to apply these oxide materials for the HT-SOFC anode materials. XRD results showed that Ln0.5Sr0.5Ti0.5Mn0.5O3±d oxide systems synthesized as single phases did not react with 8 mol% yttria stabilized zirconia (8YSZ) and 10 mol% Gd-doped cerium oxide (CGO91) up to 1500 °C and did not decompose under dry 3.9% hydrogen at 850 °C. The crystal structures of La0.5Sr0.5Ti0.5Mn0.5O3±d (LSTM), Nd0.5Sr0.5Ti0.5Mn0.5O3±d (NSTM) and Sm0.5Sr0.5Ti0.5Mn0.5O3±d (SSTM) showed orthorhombic symmetry with the space group Pbnm and SSTM showed a more distorted structure. Thermogravimetric analysis (TGA) proved weight gains in these three sample occurred under oxidizing conditions and weight loss under reducing conditions. Electrical conductivity values of NSTM were higher than those of LSTM and SSTM under oxidizing and reducing conditions.

  17. A study of room-temperature LixMn1.5Ni0.5O4 solid solutions

    DOE PAGES

    Saravanan, Kuppan; Jarry, Angelique; Kostecki, Robert; Chen, Guoying

    2015-01-26

    Understanding the kinetic implication of solid-solution vs. biphasic reaction pathways is critical for the development of advanced intercalation electrode materials. Yet this has been a long-standing challenge in materials science due to the elusive metastable nature of solid solution phases. The present study reports the synthesis, isolation, and characterization of room-temperature LixMn1.5Ni0.5O4 solid solutions. In situ XRD studies performed on pristine and chemically-delithiated, micron-sized single crystals reveal the thermal behavior of LixMn1.5Ni0.5O4 (0 ≤ x ≤ 1) cathode material consisting of three cubic phases: LiMn1.5Ni0.5O4 (Phase I), Li0.5Mn1.5Ni0.5O4 (Phase II) and Mn1.5Ni0.5O4 (Phase III). A phase diagram capturing the structuralmore » changes as functions of both temperature and Li content was established. In conclusion, the work not only demonstrates the possibility of synthesizing alternative electrode materials that are metastable in nature, but also enables in-depth evaluation on the physical, electrochemical and kinetic properties of transient intermediate phases and their role in battery electrode performance.« less

  18. A study of room-temperature LixMn1.5Ni0.5O4 solid solutions

    PubMed Central

    Saravanan, Kuppan; Jarry, Angelique; Kostecki, Robert; Chen, Guoying

    2015-01-01

    Understanding the kinetic implication of solid-solution vs. biphasic reaction pathways is critical for the development of advanced intercalation electrode materials. Yet this has been a long-standing challenge in materials science due to the elusive metastable nature of solid solution phases. The present study reports the synthesis, isolation, and characterization of room-temperature LixMn1.5Ni0.5O4 solid solutions. In situ XRD studies performed on pristine and chemically-delithiated, micron-sized single crystals reveal the thermal behavior of LixMn1.5Ni0.5O4 (0 ≤ x ≤ 1) cathode material consisting of three cubic phases: LiMn1.5Ni0.5O4 (Phase I), Li0.5Mn1.5Ni0.5O4 (Phase II) and Mn1.5Ni0.5O4 (Phase III). A phase diagram capturing the structural changes as functions of both temperature and Li content was established. The work not only demonstrates the possibility of synthesizing alternative electrode materials that are metastable in nature, but also enables in-depth evaluation on the physical, electrochemical and kinetic properties of transient intermediate phases and their role in battery electrode performance. PMID:25619504

  19. A neutron source with an effective energy of 0-5 keV.

    PubMed

    Harvey, J R; Bending, R C

    1976-01-01

    Calculations indicate that an assembly consisting of an antimony-beryllium source at the centre of a 4 cm radius water sphere surrounded by a 1 mm thick shell of boron-10 will emit neutrons with a broad spectrum at intermediate energies. A device based on this design was constructed using a water-filled, boron-carbide loaded, plastic shell with an antimony-beryllium source located at the centre. The output spectrum was calculated by Monte Carlo program and the computed total yield agreed well with measurements made with a manganese bath system. The main peak has an effective energy of 0-5 keV and the total yield is 18% of the antimony-beryllium source strength. Experience with this source suggests some possible avenues for future development.

  20. Toxicity and horizontal transfer of 0.5% fipronil dust against Formosan subterranean termites.

    PubMed

    Gautam, Bal K; Henderson, Gregg; Davis, Robert W

    2012-10-01

    The toxicity and horizontal transfer of a new formulation of fipronil, 0.5% fipronil dust, was tested against Coptotermes formosanus Shiraki in the laboratory. The formulation was applied in three different ways: 1) Directly applied to termites (donors) and mixed with untreated termites (recipients) at three ratios, viz., 50 donors: 50 recipients, 20 donors: 80 recipients and 10 donors: 90 recipients. 2) Applied onto the surface of 3 mm thick sand or soil substrate in a petri dish and then topped with another 3 mm thick sand or soil layer whereupon termites were released. 3) Applied to the inner surface of a tube (either 5 cm or 15 cm long) that connected two foraging dishes, one containing dry sand and the other moist sand plus a wood block and termites were released into the dry sand dish. All donors and >93% of the recipients were dead by 42 h after treatment in the direct treatment experiment. Significant mortalities of both donors and recipients were observed at 5 h after treatment at all donor: recipient ratios. During this period, the mortality of the recipients (but not donors) at 10:90 was significantly lower than those at the other two ratios. All termites were dead at 65 h after exposure (HAE) on the sand treatment and at 190 HAE on soil treatment. More than 96% mortality was observed at 40 HAE on the sand treatment as compared with only 6% mortality onsoil treatment during the same time period. In the tube treatment experiment, > 97% mortality was observed at 90 h after release for both tube lengths as compared with < 3% mortality in controls. About half of the termites were dead by 15 h after release regardless of the tube length. Our results showed that 0.5% fipronil dust is nonrepellent and readily transferred from treated to nontreated termites. PMID:23156175

  1. NuSTAR observations of heavily obscured quasars at z ∼ 0.5

    SciTech Connect

    Lansbury, G. B.; Alexander, D. M.; Moro, A. Del; Gandhi, P.; Aird, J.; Assef, R. J.; Stern, D.; Ballantyne, D. R.; Baloković, M.; Grefenstette, B. W.; Harrison, F. A.; Bauer, F. E.; Boggs, S. E.; Brandt, W. N.; Christensen, F. E.; Craig, W. W.; Elvis, M.; Hailey, C. J.; Hickox, R. C.; Koss, M.; and others

    2014-04-10

    We present NuSTAR hard X-ray observations of three Type 2 quasars at z ≈ 0.4-0.5, optically selected from the Sloan Digital Sky Survey. Although the quasars show evidence for being heavily obscured, Compton-thick systems on the basis of the 2-10 keV to [O III] luminosity ratio and multiwavelength diagnostics, their X-ray absorbing column densities (N {sub H}) are poorly known. In this analysis, (1) we study X-ray emission at >10 keV, where X-rays from the central black hole are relatively unabsorbed, in order to better constrain N {sub H}. (2) We further characterize the physical properties of the sources through broad-band near-UV to mid-IR spectral energy distribution analyses. One of the quasars is detected with NuSTAR at >8 keV with a no-source probability of <0.1%, and its X-ray band ratio suggests near Compton-thick absorption with N {sub H} ≳ 5 × 10{sup 23} cm{sup –2}. The other two quasars are undetected, and have low X-ray to mid-IR luminosity ratios in both the low-energy (2-10 keV) and high-energy (10-40 keV) X-ray regimes that are consistent with extreme, Compton-thick absorption (N {sub H} ≳ 10{sup 24} cm{sup –2}). We find that for quasars at z ∼ 0.5, NuSTAR provides a significant improvement compared to lower energy (<10 keV) Chandra and XMM-Newton observations alone, as higher column densities can now be directly constrained.

  2. Toxicity and horizontal transfer of 0.5% fipronil dust against Formosan subterranean termites.

    PubMed

    Gautam, Bal K; Henderson, Gregg; Davis, Robert W

    2012-10-01

    The toxicity and horizontal transfer of a new formulation of fipronil, 0.5% fipronil dust, was tested against Coptotermes formosanus Shiraki in the laboratory. The formulation was applied in three different ways: 1) Directly applied to termites (donors) and mixed with untreated termites (recipients) at three ratios, viz., 50 donors: 50 recipients, 20 donors: 80 recipients and 10 donors: 90 recipients. 2) Applied onto the surface of 3 mm thick sand or soil substrate in a petri dish and then topped with another 3 mm thick sand or soil layer whereupon termites were released. 3) Applied to the inner surface of a tube (either 5 cm or 15 cm long) that connected two foraging dishes, one containing dry sand and the other moist sand plus a wood block and termites were released into the dry sand dish. All donors and >93% of the recipients were dead by 42 h after treatment in the direct treatment experiment. Significant mortalities of both donors and recipients were observed at 5 h after treatment at all donor: recipient ratios. During this period, the mortality of the recipients (but not donors) at 10:90 was significantly lower than those at the other two ratios. All termites were dead at 65 h after exposure (HAE) on the sand treatment and at 190 HAE on soil treatment. More than 96% mortality was observed at 40 HAE on the sand treatment as compared with only 6% mortality onsoil treatment during the same time period. In the tube treatment experiment, > 97% mortality was observed at 90 h after release for both tube lengths as compared with < 3% mortality in controls. About half of the termites were dead by 15 h after release regardless of the tube length. Our results showed that 0.5% fipronil dust is nonrepellent and readily transferred from treated to nontreated termites.

  3. NuSTAR Observations of Heavily Obscured Quasars at z Is Approximately 0.5

    NASA Technical Reports Server (NTRS)

    Lansbury, G. B.; Alexander, D. M.; Del Moro, A.; Gandhi, P.; Assef, R. J.; Stern, D.; Aird, J.; Ballantyne, D. R.; Balokovic, M.; Bauer, F. E.; Boggs, S. E.; Brandt, W. N.; Christensen, F. E.; Craig, W. W.; Elvis, M.; Grefenstette, B. W.; Hailey, C. J.; Harrison, F. A.; Hickox, R. C.; Koss, M.; LaMassa, S. M.; Luo, B.; Mullaney, J. R.; Teng, S. H.; Urry, C. M.; Zhang, W. W.

    2014-01-01

    We present NuSTAR hard X-ray observations of three Type 2 quasars at z approx. = 0.4-0.5, optically selected from the Sloan Digital Sky Survey. Although the quasars show evidence for being heavily obscured, Compton-thick systems on the basis of the 2-10 keV to [O(sub III)] luminosity ratio and multiwavelength diagnostics, their X-ray absorbing column densities (N(sub H)) are poorly known. In this analysis, (1) we study X-ray emission at greater than 10 keV, where X-rays from the central black hole are relatively unabsorbed, in order to better constrain N(sub H). (2) We further characterize the physical properties of the sources through broad-band near-UV to mid-IR spectral energy distribution analyses. One of the quasars is detected with NuSTAR at greater than 8 keV with a no-source probability of less than 0.1%, and its X-ray band ratio suggests near Compton-thick absorption with N(sub H) is approximately greater than 5 × 10(exp 23) cm(exp -2). The other two quasars are undetected, and have low X-ray to mid-IR luminosity ratios in both the low-energy (2-10 keV) and high-energy (10-40 keV) X-ray regimes that are consistent with extreme, Compton-thick absorption (N(sub H) is approximately greater than 10(exp 24) cm(exp -2)). We find that for quasars at z is approximately 0.5, NuSTAR provides a significant improvement compared to lower energy (less than 10 keV) Chandra and XMM-Newton observations alone, as higher column densities can now be directly constrained.

  4. Artificial layered perovskite oxides A(B{sub 0.5}B′{sub 0.5})O{sub 3} as potential solar energy conversion materials

    SciTech Connect

    Chen, Hungru; Umezawa, Naoto

    2015-02-07

    Perovskite oxides with a d{sup 0} electronic configuration are promising photocatalysts and exhibit high electron mobilities. However, their band gaps are too large for efficient solar energy conversion. On the other hand, transition metal cations with partially filled d{sup n} electronic configurations give rise to visible light absorption. In this study, by using hybrid density functional theory calculations, it is demonstrated that the virtues of the two categories of materials can be combined in perovskite oxide A(B{sub 0.5}B′{sub 0.5})O{sub 3} with a layered B-site ordering along the [001] direction. The electronic structures of the four selected perovskite oxide compounds, La(Ti{sub 0.5}Ni{sub 0.5})O{sub 3}, La(Ti{sub 0.5}Zn{sub 0.5})O{sub 3}, Sr(Nb{sub 0.5}Cr{sub 0.5})O{sub 3}, and Sr(Nb{sub 0.5}Fe{sub 0.5})O{sub 3} are calculated and discussed.

  5. Atomic disorder of Li0.5Ni0.5O thin films caused by Li doping: estimation from X-ray Debye–Waller factors

    PubMed Central

    Yang, Anli; Sakata, Osami; Yamauchi, Ryosuke; Kumara, L. S. R.; Song, Chulho; Katsuya, Yoshio; Matsuda, Akifumi; Yoshimoto, Mamoru

    2015-01-01

    Cubic type room-temperature (RT) epitaxial Li0.5Ni0.5O and NiO thin films with [111] orientation grown on ultra-smooth sapphire (0001) substrates were examined using synchrotron-based thin-film X-ray diffraction. The 11 and 22 rocking curves including six respective equivalent reflections of the Li0.5Ni0.5O and NiO thin films were recorded. The RT B 1 factor, which appears in the Debye–Waller factor, of a cubic Li0.5Ni0.5O thin film was estimated to be 1.8 (4) Å2 from its 11 and 22 reflections, even though the Debye model was originally derived on the basis of one cubic element. The corresponding Debye temperature is 281 (39) K. Furthermore, the B 2 factor in the pseudo-Debye–Waller factor is proposed. This parameter, which is evaluated using one reflection, was also determined for the Li0.5Ni0.5O thin film by treating Li0.5Ni0.5O and NiO as ideal NaCl crystal structures. A structural parameter for the atomic disorder is introduced and evaluated. This parameter includes the combined effects of thermal vibration, interstitial atoms and defects caused by Li doping using the two Debye–Waller factors. PMID:26664345

  6. Measurements of Output Factors For Small Photon Fields Up to 10 cm x 10 cm

    NASA Astrophysics Data System (ADS)

    Bacala, Angelina

    Field output factors (OF) for photon beams from a 6 MV medical accelerator were measured using five different detectors in a scanning water phantom. The measurements were taken for square field sizes of integral widths ranging from 1 cm to 10 cm for two reference source-to-surface distances (SSD) and depths in water. For the diode detectors, square field widths as small as 2.5 mm were also studied. The photon beams were collimated by using either the jaws or the multileaf collimators. Measured OFs are found to depend upon the field size, SSD, depth and also upon the type of beam collimation, size and type of detector used. For field sizes larger than 3 cm x 3 cm, the OF measurements agree to within 1% or less. The largest variation in OF occurs for jawsshaped field of size 1 cm x 1cm, where a difference of more than 18% is observed.

  7. Effect of annealing temperature on photoelectrochemical properties of nanocrystalline MoBi2(Se0.5Te0.5)5 thin films

    NASA Astrophysics Data System (ADS)

    Salunkhe, Manauti; Pawar, Nita; Patil, P. S.; Bhosale, P. N.

    2014-10-01

    Nanocrystalline MoBi2(Se0.5Te0.5)5 thermoelectric thin films have been deposited on ultrasonically cleaned glass and FTO-coated glass substrates by Arrested Precipitation Technique. The change in properties of MoBi2(Se0.5Te0.5)5 thin films were examined after annealing at the temperature 473 K for 3 h. The structural, morphological, compositional and electrical properties of thin films were characterized by X-ray Diffraction, Scanning Electron Microscopy, Energy Dispersive Spectroscopy, etc. Thermoelectric properties of the thin films have been evaluated by measurements of electrical conductivity and Seebeck coefficient in the temperature range 300-500 K. Our aim is to investigate the effect of annealing on behaviour of MoBi2(Se0.5Te0.5)5 thin films along with photoelectrochemical properties.

  8. Polarized optical sensing and band-edge transitions in Ag(In0.5Al0.5)S2

    NASA Astrophysics Data System (ADS)

    Ho, Ching-Hwa; Pan, Chia-Chi; Huang, Ying-Sheng

    2015-02-01

    The polarization dependence of band-edge excitonic transitions in Ag(In0.5Al0.5)S2 has been characterized using polarized thermoreflectance (PTR). The polarization-sensitive behavior of the E\\text{A}\\text{ex} and E\\text{B}\\text{ex} band-edge excitons was detected and characterized by angle-dependent PTR measurements from θ = 0 [E\\parallel < 11\\bar{1}> ] to 90° [E \\perp < 11\\bar{1}> ] with respect to the chalcopyrite crystal’s needle axis. The polarized photoconductivity of Ag(In0.5Al0.5)S2 has also been characterized using an array of white light-emitting diodes with the polarization angles ranging from 0 to 360°. The experimental results demonstrate that Ag(In0.5Al0.5)S2 is a suitable material for the fabrication of polarization-sensitive photodetectors applied in the visible region.

  9. Electron-phonon superconductivity in LaO{sub 0.5}F{sub 0.5}BiSe{sub 2}

    SciTech Connect

    Feng, Yanqing; Du, Yongping; Wan, Xiangang Wang, Bogen; Ding, Hang-Chen; Savrasov, Sergey Y.; Duan, Chun-Gang

    2014-06-21

    We report density functional calculations of the electronic structure, Fermi surface, phonon spectrum and electron–phonon coupling for the newly discovered superconductor LaO{sub 0.5}F{sub 0.5}BiSe{sub 2}. It is confirmed that there is a strong Fermi surface nesting at (π,π,0), which results in unstable phonon branches. Combining the frozen phonon total energy calculations and an anharmonic oscillator model, we find that the quantum fluctuation prevents the appearance of static long–range order. The calculation shows that LaO{sub 0.5}F{sub 0.5}BiSe{sub 2} is highly anisotropic, and same as its cousin LaO{sub 0.5}F{sub 0.5}BiS{sub 2}, this compound is also a conventional electron-phonon coupling induced superconductor.

  10. Influence of depth and sampling time on bacterial community structure in an upland grassland soil.

    PubMed

    Griffiths, Robert I; Whiteley, Andrew S; O'Donnell, Anthony G; Bailey, Mark J

    2003-02-01

    Abstract Temporal and spatial variation of soil bacterial communities was evaluated with both molecular and metabolic profiling techniques. Soil cores (20 cm deep) were taken from an upland grassland in the Scottish Borders (UK) over 3 days in July 1999, and on single days in October 1999, April 2000, and August 2000. Cores were separated into four 5-cm depths to examine vertical spatial distribution. The 0-5-, 5-10- and 10-15-cm samples represented organic horizons whilst the 15-20-cm depths were from a mineral horizon. The potential metabolic activities were analysed using BIOLOG-GN plates, whereas genotypic diversity was evaluated using molecular profiling of amplified 16S rRNA and 16S rDNA gene fragments (denaturing gradient gel electrophoresis (DGGE)). BIOLOG-GN analysis revealed decreased substrate utilisation in the lowest depths, which was coupled with changes in the DNA and RNA DGGE profiles. Seasonal variation was pronounced in the 5-10-cm and 10-15-cm organic horizons for the July samplings whilst the 15-20-cm depths appeared more stable. Potential factors influencing the observed changes in bacterial communities resulting from soil depth and sampling time are discussed.

  11. Maxwell-Wagner relaxation and magnetodielectric properties of Bi0.5La0.5MnO3 ceramics

    NASA Astrophysics Data System (ADS)

    Turik, A. V.; Pavlenko, A. V.; Reznichenko, L. A.

    2016-08-01

    The complex permittivity ɛ = ɛ'- iɛ″ of manganite bismuth-lanthanum Bi0.5La0.5MnO3 ceramics has been measured at temperature T = 78 K in the frequency range f = 200-105 Hz and in the magnetic induction range B = 0-5 T. Dielectric relaxation and the pronounced magnetodielectric effect have been detected. The explanation based on the superposition of Maxwell-Wagner relaxation and the magnetoresistance effect has been proposed.

  12. Non-random cation distribution in hexagonal Al{sub 0.5}Ga{sub 0.5}PO{sub 4}

    SciTech Connect

    Kulshreshtha, S.K.; Jayakumar, O.D.; Sudarsan, V.

    2010-05-15

    Based on powder X-ray diffraction and {sup 31}P Magic Angle Spinning Nuclear Magnetic Resonance (MAS NMR) investigations of mixed phosphate Al{sub 0.5}Ga{sub 0.5}PO{sub 4}, prepared by co-precipitation method followed by annealing at 900 deg. C for 24 h, it is shown that Al{sub 0.5}Ga{sub 0.5}PO{sub 4} phase crystallizes in hexagonal form with lattice parameter a=0.491(2) and c=1.106(4) nm. This hexagonal phase of Al{sub 0.5}Ga{sub 0.5}PO{sub 4} is similar to that of pure GaPO{sub 4}. The {sup 31}P MAS NMR spectrum of the mixed phosphate sample consists of five peaks with systematic variation of their chemical shift values and is arising due to existence of P structural units having varying number of the Al{sup 3+}/Ga{sup 3+} cations as the next nearest neighbors in the solid solution. Based on the intensity analysis of the component NMR spectra of Al{sub 0.5}Ga{sub 0.5}PO{sub 4}, it is inferred that the distribution of Al{sup 3+} and Ga{sup 3+} cations is non-random for the hexagonal Al{sub 0.5}Ga{sub 0.5}PO{sub 4} sample although XRD patterns showed a well-defined solid solution formation. - Graphical abstract: {sup 31}P MAS NMR pattern of hexagonal Al{sub 0.5}Ga{sub 0.5}PO{sub 4} solid solution.

  13. Palladium and ceria infiltrated La 0.8Sr 0.2Co 0.5Fe 0.5O 3- δ cathodes of solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Chen, Jing; Liang, Fengli; Chi, Bo; Pu, Jian; Jiang, San Ping; Jian, Li

    La 0.8Sr 0.2Co 0.5Fe 0.5O 3- δ (LSCF) cathodes infiltrated with electrocatalytically active Pd and (Gd,Ce)O 2 (GDC) nanoparticles are investigated as high performance cathodes for the O 2 reduction reaction in intermediate temperature solid oxide fuel cells (IT-SOFCs). Incorporation of nano-sized Pd and GDC particles significantly reduces the electrode area specific resistance (ASR) as compared to the pure LSCF cathode; ASR is 0.1 Ω cm 2 for the reaction on a LSCF cathode infiltrated with 1.2 mg cm -2 Pd and 0.06 Ω cm 2 on a LSCF cathode infiltrated with 1.5 mg cm -2 GDC at 750 °C, which are all significantly smaller than 0.22 Ω cm 2 obtained for the reaction on a conventional LSCF cathode. The activation energy of GDC- and Pd-impregnated LSCF cathodes is 157 and 176 kJ mol -1, respectively. The GDC-infiltrated LSCF cathode has a lower activation energy and higher electrocatalytic activity for the O 2 reduction reaction, showing promising potential for applications in IT-SOFCs.

  14. Electric-field-induced local structural phenomena in relaxor ferroelectric PbSc(0.5)Nb(0.5)O3 near the intermediate temperature T* studied by Raman spectroscopy.

    PubMed

    Steilmann, T; Maier, B J; Gospodinov, M; Bismayer, U; Mihailova, B

    2014-04-30

    Raman spectroscopy at different temperatures and under an external electric field E was applied to PbSc0.5Nb0.5O3 single crystals in order to gain further insights into the mesoscopic-scale coupling processes in perovskite-type (ABO3) relaxor ferroelectrics. Parallel and cross-polarized Raman spectra were collected between 800-80 K with E applied along the cubic [1 0 0], [1 1 0] or [1 1 1] crystallographic directions. The analysis was focused on the field-induced changes in the temperature evolution of three low-energy phonon modes: the Pb-localized mode near 50 cm(-1), the Pb-BO3 translation mode near 150 cm(-1), and the B-cation-localized mode near 250 cm(-1). The results show that competitive ferroelectric (FE) and antiferroelectric (AFE) coupling exists within the system of off-centred Pb(2+) cations, within the system of off-centred B-site cations as well as between off-centred Pb(2+) and B-site cations. The strong AFE-type coupling between Pb(2+) cations along the cubic body diagonal significantly influences the coupling between the B-site cations via the Pb-BO3 mode and results in AFE-type behaviour of the 'microscopic' T* determined from the B-cation-localized mode near 250 cm(-1), which explains the previously reported non-trivial field dependence of the 'macroscopic' characteristic temperatures: the temperature of the dielectric-permittivity maximum Tm, T*, and the Burns temperature TB. The comparative analysis between PbSc0.5Nb0.5O3 and PbSc0.5Ta0.5O3 indicates that two major displacive order parameters couple to form a relaxor state in B-site complex perovskites: the FE order associated with polar shifts of B-site cations and the AFE order associated with polar shifts of A-site cations. The latter penetrates through both polar and non-polar regions, but it is highly frustrated due to the high density of translation-symmetry faults in the chemical NaCl-type B-site order. The frustrated AFE order of off-centred A-site cations might

  15. Fully gapped superconductivity in In-doped topological crystalline insulator Pb0.5Sn0.5Te

    SciTech Connect

    Du, Guan; Gu, G. D.; Du, Zengyi; Fang, Delong; Yang, Huan; Zhong, R. D.; Schneeloch, J.; Wen, Hai -Hu

    2015-07-27

    In this study, superconductors derived from topological insulators and topological crystalline insulators by chemical doping have long been considered to be candidates as topological superconductors. Pb0.5Sn0.5Te is a topological crystalline insulator with mirror symmetry protected surface states on (001)-, (011)-, and (111)-oriented surfaces. The superconductor (Pb0.5Sn0.5)0.7In0.3Te is produced by In doping in Pb0.5Sn0.5Te, and is thought to be a topological superconductor. Here we report scanning tunneling spectroscopy measurements of the superconducting state as well as the superconducting energy gap in (Pb0.5Sn0.5)0.7In0.3Te on a (001)-oriented surface. The spectrum can be well fitted by an anisotropic s-wave gap function of Δ = 0.72 + 0.18cos4θ meV using Dynes model. The results show that the superconductor seems to be a fully gapped one without any in-gap states, in contradiction with the expectation of a topological superconductor.

  16. Effect of rare-earth (Er and Gd) substitution on the magnetic and multiferroic properties of DyFe0.5Cr0.5O3.

    PubMed

    Sharma, Mohit K; Basu, Tathamay; Mukherjee, K; Sampathkumaran, E V

    2016-10-26

    We report the results of our investigations on the influence of partial substitution of Er and Gd for Dy on the magnetic and magnetoelectric properties of DyFe0.5Cr0.5O3, which is known to be a multiferroic system. Magnetic susceptibility and heat capacity data, apart from confirming the occurrence of magnetic transitions at ~121 and 13 K in DyFe0.5Cr0.5O3, bring out that the lower transition temperature only is suppressed by rare-earth substitution. Multiferroic behavior is found to persist in Dy0.4Ln0.6Fe0.5Cr0.5O3 (Ln  =  Er and Gd). There is an evidence for magnetoelectric coupling in all these materials with qualitative differences in its behavior as the temperature is changed across these two transitions. Remnant electric polarization is observed for all the compounds. The most notable observation is that electric polarization is seen to get enhanced as a result of rare-earth substitution with respect to that in DyFe0.5Cr0.5O3. Interestingly, a similar trend is seen in the magnetocaloric effect, consistent with the existence of magnetoelectric coupling. The results thus provide evidence for the tuning of magnetoelectric coupling by rare-earth substitution in this family of oxides. PMID:27588356

  17. Spectroscopic and photoluminescence characterization of Dy(3+) in Sr0.5Ca0.5TiO3 phosphor.

    PubMed

    Vidyadharan, Viji; Sreeja, E; Jose, Saritha K; Joseph, Cyriac; Unnikrishnan, N V; Biju, P R

    2016-02-01

    The spectroscopic and photoluminescence characteristics of trivalent dysprosium (Dy(3+))-doped Sr0.5Ca0.5TiO3 phosphor materials synthesized via solid-state reaction method were studied. The X-ray diffraction profile confirmed the orthorhombic perovskite structure of the prepared samples. Judd-Ofelt analysis was carried out to obtain the intensity parameters and predicted radiative properties of Sr0.5Ca0.5TiO3:2wt%Dy(3+). The photoluminescence spectrum of Dy(3+)-doped Sr0.5Ca0.5TiO3 showed three emission peaks at 481, 574 and 638 nm corresponding to (4)F9/2 →(6)H15/2, (4)F9/2 →(6)H13/2 and (4)F9/2 →(6)H11/2 transitions respectively. The variation of luminescence intensity with different excitation wavelengths and Dy(3+) concentrations is discussed. The decay profiles of (4)F9/2 excited levels of Dy(3+) ions show bi-exponential behaviour and also a decrease in average lifetime with increase in Dy(3+) concentration. Yellow to blue luminescence intensity ratio, CIE chromaticity co-ordinates and correlated color temperature were also calculated for different concentrations of Dy(3+)-doped Sr0.5Ca0.5TiO3 phosphor at different λex. PMID:26032295

  18. Transition metal redox and Mn disproportional reaction in LiMn0.5Fe0.5PO4 electrodes cycled with aqueous electrolyte

    NASA Astrophysics Data System (ADS)

    Zhuo, Zengqing; Hu, Jiangtao; Duan, Yandong; Yang, Wanli; Pan, Feng

    2016-07-01

    We performed soft x-ray absorption spectroscopy (sXAS) and a quantitative analysis of the transition metal redox in the LiMn0.5Fe0.5PO4 electrodes upon electrochemical cycling. In order to circumvent the complication of the surface reactions with organic electrolyte at high potential, the LiMn0.5Fe0.5PO4 electrodes are cycled with aqueous electrolyte. The analysis of the transitional metal L-edge spectra allows a quantitative determination of the redox evolution of Mn and Fe during the electrochemical cycling. The sXAS analysis reveals the evolving Mn oxidation states in LiMn0.5Fe0.5PO4. We found that electrochemically inactive Mn2+ is formed on the electrode surface during cycling. Additionally, the signal indicates about 20% concentration of Mn4+ at the charged state, providing a strong experimental evidence of the disproportional reaction of Mn3+ to Mn2+ and Mn4+ on the surface of the charged LiMn0.5Fe0.5PO4 electrodes.

  19. Epitaxial Strain-Induced Chemical Ordering in La0.5Sr0.5CoO3-delta Films on SrTiO3

    SciTech Connect

    W Donner; C Chen; M Liu; A Jacobson; Y Lee; M Gadre; D Morgan

    2011-12-31

    Fast ion conductors are at the foundation of a number of important technologies, ranging from fuel cells to batteries to gas separators. Recent results suggest that strained interfaces and thin films may offer new mechanisms for achieving enhanced ionic transport. In this work, we investigate strained 40-nm films of perovskite La{sub 0.5}Sr{sub 0.5}CoO{sub 3-{delta}}, which is an important material for solid oxide fuel cell cathodes and oxygen separation membranes. We demonstrate that a strained thin film of La{sub 0.5}Sr{sub 0.5}CoO{sub 3-{delta}} on SrTiO{sub 3} can have dramatically different anion and cation thermodynamics and kinetics than bulk La{sub 0.5}Sr{sub 0.5}CaO{sub 3-{delta}}. We use synchrotron X-ray diffraction to show that La{sub 0.5}Sr{sub 0.5}CoO{sub 3-{delta}} thin films form an ordered phase at 650 K. The ordered phase consists of La and Sr cations in planes parallel to the surface and is associated with coherent expansion in the c-direction of {approx}5%. This chemical ordering is not observed in the bulk material and is ascribed to the interplay between the epitaxial strain imposed by the substrate, changes in oxygen vacancy content and cation mobility, and the ordering of oxygen vacancies.

  20. Spectroscopic and photoluminescence characterization of Dy(3+) in Sr0.5Ca0.5TiO3 phosphor.

    PubMed

    Vidyadharan, Viji; Sreeja, E; Jose, Saritha K; Joseph, Cyriac; Unnikrishnan, N V; Biju, P R

    2016-02-01

    The spectroscopic and photoluminescence characteristics of trivalent dysprosium (Dy(3+))-doped Sr0.5Ca0.5TiO3 phosphor materials synthesized via solid-state reaction method were studied. The X-ray diffraction profile confirmed the orthorhombic perovskite structure of the prepared samples. Judd-Ofelt analysis was carried out to obtain the intensity parameters and predicted radiative properties of Sr0.5Ca0.5TiO3:2wt%Dy(3+). The photoluminescence spectrum of Dy(3+)-doped Sr0.5Ca0.5TiO3 showed three emission peaks at 481, 574 and 638 nm corresponding to (4)F9/2 →(6)H15/2, (4)F9/2 →(6)H13/2 and (4)F9/2 →(6)H11/2 transitions respectively. The variation of luminescence intensity with different excitation wavelengths and Dy(3+) concentrations is discussed. The decay profiles of (4)F9/2 excited levels of Dy(3+) ions show bi-exponential behaviour and also a decrease in average lifetime with increase in Dy(3+) concentration. Yellow to blue luminescence intensity ratio, CIE chromaticity co-ordinates and correlated color temperature were also calculated for different concentrations of Dy(3+)-doped Sr0.5Ca0.5TiO3 phosphor at different λex.

  1. Effect of rare-earth (Er and Gd) substitution on the magnetic and multiferroic properties of DyFe0.5Cr0.5O3

    NASA Astrophysics Data System (ADS)

    Sharma, Mohit K.; Basu, Tathamay; Mukherjee, K.; Sampathkumaran, E. V.

    2016-10-01

    We report the results of our investigations on the influence of partial substitution of Er and Gd for Dy on the magnetic and magnetoelectric properties of DyFe0.5Cr0.5O3, which is known to be a multiferroic system. Magnetic susceptibility and heat capacity data, apart from confirming the occurrence of magnetic transitions at ~121 and 13 K in DyFe0.5Cr0.5O3, bring out that the lower transition temperature only is suppressed by rare-earth substitution. Multiferroic behavior is found to persist in Dy0.4Ln0.6Fe0.5Cr0.5O3 (Ln  =  Er and Gd). There is an evidence for magnetoelectric coupling in all these materials with qualitative differences in its behavior as the temperature is changed across these two transitions. Remnant electric polarization is observed for all the compounds. The most notable observation is that electric polarization is seen to get enhanced as a result of rare-earth substitution with respect to that in DyFe0.5Cr0.5O3. Interestingly, a similar trend is seen in the magnetocaloric effect, consistent with the existence of magnetoelectric coupling. The results thus provide evidence for the tuning of magnetoelectric coupling by rare-earth substitution in this family of oxides.

  2. Temperature Evolution of Physical Properties of BaTi0.9(Nb0.5Yb0.5)0.1O3 Lead-Free Ceramic

    NASA Astrophysics Data System (ADS)

    Abdelkafi, Z.; Abdelmoula, N.; Khemakhem, H.

    2016-11-01

    BaTi0.9(Nb0.5Yb0.5)0.1O3 lead-free ceramic was prepared by a solid-state reaction method. The structure of BaTi0.9(Nb0.5Yb0.5)0.1O3 has been characterized by means of x-ray diffraction, showing the coexistence of cubic (31.1%) and tetragonal (68.9%) phases at room temperature. Dielectric spectroscopy shows that BaTi0.9(Nb0.5Yb0.5)0.1O3 composition sintered at 1380°C exhibits a relaxor behavior with a weak diffuse phase transition obeying a Lorentz-type quadratic relationship. The ferroelectric-paraelectric phase transition T C decreased from 420 K for BaTiO3 to 284 K for BaTi0.9(Nb0.5Yb0.5)0.1O3. The dielectric loss of this ceramic was <0.09 over a wide temperature range (<400 K). The temperature behavior of the main piezoelectric parameters, such as the piezoelectric coefficient d 31 and the electromechanical coupling factor k p, was investigated. d 31 sets a maximum about 32.5 pC/N at temperature of 220 K. Nevertheless, k p undergoes more or less important changes between 120 K and 200 K. Over 200 K, k p degrades very rapidly due to the depoling effect deduced from the hysterisis measurements. Dielectric and structural properties of BaTi0.9(Nb0.5Yb0.5)0.1O3 were confirmed by Raman spectroscopy.

  3. CONDENSED MATTER: STRUCTURE, THERMAL AND MECHANICAL PROPERTIES: Fabrication and magnetic properties of Ni0.5Zn0.5Fe2O4 nanofibres by electrospinning

    NASA Astrophysics Data System (ADS)

    Xiang, Jun; Shen, Xiang-Qian; Song, Fu-Zhan; Liu, Ming-Quan

    2009-11-01

    NiZn ferrite/polyvinylpyrrolidone composite fibres were prepared by sol-gel assisted electrospinning. Ni0.5Zn0.5Fe2O4 nanofibres with a pure cubic spinel structure were obtained subsequently by calcination of the composite fibres at high temperatures. This paper investigates the thermal decomposition process, structures and morphologies of the electrospun composite fibres and the calcined Ni0.5Zn0.5Fe2O4 nanofibres at different temperatures by thermo-gravimetric and differential thermal analysis, x-ray diffraction, Fourier transform infrared spectroscopy and field emission scanning electron microscopy. The magnetic behaviour of the resultant nanofibres was studied by a vibrating sample magnetometer. It is found that the grain sizes of the nanofibres increase significantly and the nanofibre morphology gradually transforms from a porous structure to a necklace-like nanostructure with the increase of calcination temperature. The Ni0.5Zn0.5Fe2O4 nanofibres obtained at 1000 °C for 2 h are characterized by a necklace-like morphology and diameters of 100-200 nm. The saturation magnetization of the random Ni0.5Zn0.5Fe2O4 nanofibres increases from 46.5 to 90.2 emu/g when the calcination temperature increases from 450 to 1000 °C. The coercivity reaches a maximum value of 11.0 kA/m at a calcination temperature of 600 °C. Due to the shape anisotropy, the aligned Ni0.5Zn0.5Fe2O4 nanofibres exhibit an obvious magnetic anisotropy and the ease magnetizing direction is parallel to the nanofibre axis.

  4. Temperature Evolution of Physical Properties of BaTi0.9(Nb0.5Yb0.5)0.1O3 Lead-Free Ceramic

    NASA Astrophysics Data System (ADS)

    Abdelkafi, Z.; Abdelmoula, N.; Khemakhem, H.

    2016-08-01

    BaTi0.9(Nb0.5Yb0.5)0.1O3 lead-free ceramic was prepared by a solid-state reaction method. The structure of BaTi0.9(Nb0.5Yb0.5)0.1O3 has been characterized by means of x-ray diffraction, showing the coexistence of cubic (31.1%) and tetragonal (68.9%) phases at room temperature. Dielectric spectroscopy shows that BaTi0.9(Nb0.5Yb0.5)0.1O3 composition sintered at 1380°C exhibits a relaxor behavior with a weak diffuse phase transition obeying a Lorentz-type quadratic relationship. The ferroelectric-paraelectric phase transition T C decreased from 420 K for BaTiO3 to 284 K for BaTi0.9(Nb0.5Yb0.5)0.1O3. The dielectric loss of this ceramic was <0.09 over a wide temperature range (<400 K). The temperature behavior of the main piezoelectric parameters, such as the piezoelectric coefficient d 31 and the electromechanical coupling factor k p, was investigated. d 31 sets a maximum about 32.5 pC/N at temperature of 220 K. Nevertheless, k p undergoes more or less important changes between 120 K and 200 K. Over 200 K, k p degrades very rapidly due to the depoling effect deduced from the hysterisis measurements. Dielectric and structural properties of BaTi0.9(Nb0.5Yb0.5)0.1O3 were confirmed by Raman spectroscopy.

  5. Structural, thermal and electrical conductivity characteristics of Ln{sub 0.5}Sr{sub 0.5}Ti{sub 0.5}Mn{sub 0.5}O{sub 3±d} (Ln: La, Nd and Sm) complex perovskites as anode materials for solid oxide fuel cell

    SciTech Connect

    Jeong, Jihoon; Azad, Abul K.; Schlegl, Harald; Kim, Byungjun; Baek, Seung-Wook; Kim, Keunsoo; Kang, Hyunil; Kim, Jung Hyun

    2015-03-15

    The Ti and Mn replaced complex perovskites, Ln{sub 0.5}Sr{sub 0.5}Ti{sub 0.5}Mn{sub 0.5}O{sub 3±d} (Ln: La, Nd and Sm), were reported as potential anode materials for high temperature-operating solid oxide fuel cells (HT-SOFCs). For the present research study, synthesis, crystallographic, thermal and electrical conductivity properties of Ln{sub 0.5}Sr{sub 0.5}Ti{sub 0.5}Mn{sub 0.5}O{sub 3±d} complex perovskites were investigated using X-ray diffraction (XRD), Rietveld method, thermogravimetric analysis (TGA) and electrical conductivity to apply these oxide materials for the HT-SOFC anode materials. XRD results showed that Ln{sub 0.5}Sr{sub 0.5}Ti{sub 0.5}Mn{sub 0.5}O{sub 3±d} oxide systems synthesized as single phases did not react with 8 mol% yttria stabilized zirconia (8YSZ) and 10 mol% Gd-doped cerium oxide (CGO91) up to 1500 °C and did not decompose under dry 3.9% hydrogen at 850 °C. The crystal structures of La{sub 0.5}Sr{sub 0.5}Ti{sub 0.5}Mn{sub 0.5}O{sub 3±d} (LSTM), Nd{sub 0.5}Sr{sub 0.5}Ti{sub 0.5}Mn{sub 0.5}O{sub 3±d} (NSTM) and Sm{sub 0.5}Sr{sub 0.5}Ti{sub 0.5}Mn{sub 0.5}O{sub 3±d} (SSTM) showed orthorhombic symmetry with the space group Pbnm and SSTM showed a more distorted structure. Thermogravimetric analysis (TGA) proved weight gains in these three sample occurred under oxidizing conditions and weight loss under reducing conditions. Electrical conductivity values of NSTM were higher than those of LSTM and SSTM under oxidizing and reducing conditions. - Graphical abstract: The B-site cations (Ti/Mn) are surrounded by regular octahedra of oxygen in Nd{sub 0.5}Sr{sub 0.5}Ti{sub 0.5}Mn{sub 0.5}O{sub 3±d}(NSTM). These octahedra are linked together in a corner sharing three dimensional framework, while Nd/Sr ion occupies 12-coordinated A-site between these octahedra. The Ti/Mn–O{sub 6} octahedra are elongated along the c-axis. The crystal structure distortion was due to the smaller ionic radius of the A-site cations, which force the (Ti

  6. Judd-Ofelt analysis of Pr3+ ions in Sr1.5Ca0.5SiO4 and Sr0.5Ca0.5TiO3 host matrices

    NASA Astrophysics Data System (ADS)

    Vidyadharan, Viji; Gopi, Subash; Remya, Mohan P.; Thomas, Vinoy; Joseph, Cyriac; Unnikrishnan, N. V.; Biju, P. R.

    2016-01-01

    The spectroscopic properties of Pr3+ doped Sr1.5Ca0.5SiO4 and Sr0.5Ca0.5TiO3 host matrices have been investigated using optical absorption and emission spectra. The oscillator strengths of observed bands of Pr3+ ions and Judd-Ofelt intensity parameters were calculated by including and excluding the hypersensitive 3H4 → 3P2 transition using standard and modified Judd-Ofelt (JO) theory. In both the host matrices the JO parameters follow the same trend as Ω6 > Ω2 > Ω4. The JO intensity parameters obtained by using the Modified JO theory was used to compute the radiative properties such as radiative transition probability (AR), branching ratio (βR) and radiative lifetime (τR) for the observed fluorescence bands. The photoluminescence spectrum of Pr3+ doped Sr1.5Ca0.5SiO4 upon 444 nm excitation shows three emission peaks at 489, 608 and 733 nm corresponding to the transitions 3P0 → 3H4, 3H6 and 3F4 respectively. But in the case of Sr0.5Ca0.5TiO3 host matrix we observed an emission peak at 611 nm corresponding to the 1D2 → 3H4 transition at λex = 336 nm. The experimental branching ratio (βexp) obtained from the fluorescence spectra was compared with the calculated values. The non radiative relaxation rate was calculated from the experimental (τexp) and predicted (τR) lifetimes. Stimulated emission cross section (σe), gain bandwidth (σe × Δλeff) and optical gain (σe × τR) for 0.5 wt% Pr3+ doped Sr1.5Ca0.5SiO4 and Sr0.5Ca0.5TiO3 phosphor samples were also calculated and their high value suggests its candidature as a good optical material.

  7. Characteristics of metal-ferroelectric-insulator-silicon structures with ferroelectric (Pb{sub 0.8}Ba{sub 0.2})ZrO{sub 3} thin films and (Ba{sub 0.5}Sr{sub 0.5})TiO{sub 3} buffer layer

    SciTech Connect

    Liu, C.-H.; Wu, J.-M.; Wu, L.-J.

    2006-03-20

    The results of the fabrication and characterization of ferroelectric (Pb{sub 0.8}Ba{sub 0.2})ZrO{sub 3} (PBZ) thin films grown on nitrided silicon substrates with a (Ba{sub 0.5}Sr{sub 0.5})TiO{sub 3} (BST) buffer layer by the rf-magnetron sputtering technique are reported. The PBZ thin films were used as the ferroelectric layer in the ferroelectric field effect transistors. The PBZ thin films were grown with highly (100) preferred orientation on BST buffer layers. The Auger electron spectroscopy depth profiles showed no significant interdiffusion between the PBZ and silicon components. The capacitance-voltage properties of Pt/PBZ (360 nm)/BST (30 nm)/Si structures demonstrated ferroelectric switching effect. The memory windows were about 0.6, 1.25, and 1.76 V, respectively, for sweeping bias of {+-}3, {+-}4, and {+-}5 V. The leakage current density was below 1x10{sup -8} A/cm{sup 2} at {+-}4 V.

  8. A Gel-Polymer Sn-C/LiMn0.5Fe0.5PO4 Battery Using a Fluorine-Free Salt.

    PubMed

    Di Lecce, Daniele; Fasciani, Chiara; Scrosati, Bruno; Hassoun, Jusef

    2015-09-30

    Safety and environmental issues, because of the contemporary use of common liquid electrolytes, fluorinated salts, and LiCoO2-based cathodes in commercial Li-ion batteries, might be efficiently mitigated by employing alternative gel-polymer battery configurations and new electrode materials. Herein we study a lithium-ion polymer cell formed by combining a LiMn0.5Fe0.5PO4 olivine cathode, prepared by simple solvothermal pathway, a nanostructured Sn-C anode, and a LiBOB-containing PVdF-based gel electrolyte. The polymer electrolyte, here analyzed in terms of electrochemical stability by impedance spectroscopy (EIS) and voltammetry, reveals full compatibility for cell application. The LiBOB electrolyte salt and the electrochemically delithiaded Mn0.5Fe0.5PO4 have a higher thermal stability compared to conventional LiPF6 and Li0.5CoO2, as confirmed by thermogravimetric analysis (TGA) and by galvanostatic cycling at high temperature. LiMn0.5Fe0.5PO4 and Sn-C, showing in lithium half-cell a capacity of about 120 and 350 mAh g(-1), respectively, within the gelled electrolyte configuration are combined in a full Li-ion polymer battery delivering a stable capacity of about 110 mAh g(-1), with working voltage ranging from 2.8 to 3.6 V. PMID:26348604

  9. Temperature dependent structures and properties of Bi0.5Na0.5TiO3-based lead free piezoelectric composite.

    PubMed

    Zhang, Ji; Sun, Lei; Geng, Xiao-Yu; Zhang, Bin-Bin; Yuan, Guo-Liang; Zhang, Shan-Tao

    2016-07-01

    The thermal depolarization around 100 °C of the Bi0.5Na0.5TiO3-based piezoelectric solid solutions leads to the disappearance of macroscopic ferroelectric/piezoelectric properties and remains a long-standing obstacle for their actual applications. In this communication, we report lead-free piezoelectric composites of 0.94Bi0.5Na0.5TiO3-0.06BaTiO3:0.5ZnO (BNT-6BT:0.5ZnO, where 0.5 is the mole ratio of ZnO to BNT-6BT) with deferred thermal depolarization, which is experimentally confirmed by systematic temperature dependent dielectric, ferroelectric, piezoelectric measurements. Especially, based on temperature dependent X-ray diffraction measurements on unpoled and poled samples, thermal depolarization is confirmed to have no relationship with the structural phase transition, the possible mechanism for the deferred thermal depolarization is correlated with the ZnO-induced local electric field which can suppress the depolarization field. We believe our results may be helpful for understanding the origin of thermal depolarization in BNT-based piezoelectric materials, and thus provide an effective way to overcoming this obstacle.

  10. Temperature dependent structures and properties of Bi0.5Na0.5TiO3-based lead free piezoelectric composite.

    PubMed

    Zhang, Ji; Sun, Lei; Geng, Xiao-Yu; Zhang, Bin-Bin; Yuan, Guo-Liang; Zhang, Shan-Tao

    2016-07-01

    The thermal depolarization around 100 °C of the Bi0.5Na0.5TiO3-based piezoelectric solid solutions leads to the disappearance of macroscopic ferroelectric/piezoelectric properties and remains a long-standing obstacle for their actual applications. In this communication, we report lead-free piezoelectric composites of 0.94Bi0.5Na0.5TiO3-0.06BaTiO3:0.5ZnO (BNT-6BT:0.5ZnO, where 0.5 is the mole ratio of ZnO to BNT-6BT) with deferred thermal depolarization, which is experimentally confirmed by systematic temperature dependent dielectric, ferroelectric, piezoelectric measurements. Especially, based on temperature dependent X-ray diffraction measurements on unpoled and poled samples, thermal depolarization is confirmed to have no relationship with the structural phase transition, the possible mechanism for the deferred thermal depolarization is correlated with the ZnO-induced local electric field which can suppress the depolarization field. We believe our results may be helpful for understanding the origin of thermal depolarization in BNT-based piezoelectric materials, and thus provide an effective way to overcoming this obstacle. PMID:27334673

  11. A Gel-Polymer Sn-C/LiMn0.5Fe0.5PO4 Battery Using a Fluorine-Free Salt.

    PubMed

    Di Lecce, Daniele; Fasciani, Chiara; Scrosati, Bruno; Hassoun, Jusef

    2015-09-30

    Safety and environmental issues, because of the contemporary use of common liquid electrolytes, fluorinated salts, and LiCoO2-based cathodes in commercial Li-ion batteries, might be efficiently mitigated by employing alternative gel-polymer battery configurations and new electrode materials. Herein we study a lithium-ion polymer cell formed by combining a LiMn0.5Fe0.5PO4 olivine cathode, prepared by simple solvothermal pathway, a nanostructured Sn-C anode, and a LiBOB-containing PVdF-based gel electrolyte. The polymer electrolyte, here analyzed in terms of electrochemical stability by impedance spectroscopy (EIS) and voltammetry, reveals full compatibility for cell application. The LiBOB electrolyte salt and the electrochemically delithiaded Mn0.5Fe0.5PO4 have a higher thermal stability compared to conventional LiPF6 and Li0.5CoO2, as confirmed by thermogravimetric analysis (TGA) and by galvanostatic cycling at high temperature. LiMn0.5Fe0.5PO4 and Sn-C, showing in lithium half-cell a capacity of about 120 and 350 mAh g(-1), respectively, within the gelled electrolyte configuration are combined in a full Li-ion polymer battery delivering a stable capacity of about 110 mAh g(-1), with working voltage ranging from 2.8 to 3.6 V.

  12. Invariant Temperature Sensitivity of Soil Respiration with Depth

    NASA Astrophysics Data System (ADS)

    Hicks Pries, C.; Torn, M. S.; Castanha, C.; Porras, R. C.

    2015-12-01

    Over half of global soil organic carbon (SOC) is stored in subsurface soils (>30 cm), but little is known about the vulnerability of this deep SOC to climate change. Most soil warming experiments have only warmed surface soils, so the temperature sensitivity of deeper SOC and its potential to generate a positive feedback to climate change is undetermined. We are currently investigating how SOC down to 1 m deep responds to experimental in situ soil warming (+4°C). Our field site is a coniferous forest in the foothills of the Sierra Nevada in California, USA, whose soils are sandy, mixed, mesic Ultic Haploxeralfs. Our objectives are to understand (1) how the mechanisms controlling SOC turnover differ with depth and (2) how the temperature sensitivity of soil respiration differs by depth. Warming began in October 2013, and we have successfully warmed 1 m of the soil profile to 4°C (±0.5) above ambient temperatures at each depth and maintained this warming throughout different seasons. We have taken monthly surface CO2 flux measurements and monthly gas samples from stainless steel tubes at 15, 30, 50, 70, and 90 cm depths. We have collected soil water from tension lysimeters at 30 and 70 cm after large rain events. Warming has increased CO2 production at all depths of the warmed plots. Warming has also significantly increased soil respiration from the surface by 39% relative to the control and increased concentrations of dissolved organic carbon in soil water at both depths. The apparent Q10 of surface soil respiration and CO2 production at all depths is greater than 2, indicating that decomposition is similarly temperature sensitive at all depths. This study is one of the first to test whole-profile SOC responses to warming and shows that deep soil carbon is equally vulnerable to climate change in these upland mineral soils.

  13. La{sub 0.5}Sr{sub 0.5}TiO{sub 3} nanopowders prepared by the hydrothermal method

    SciTech Connect

    Putjuso, Thanin; Maensiri, Santi; Hunpratub, Sitchai; Swatsitang, Ekaphan

    2012-09-15

    Graphical abstract: LRTEM image of the single-phase La{sub 0.5}Sr{sub 0.5}TiO{sub 3} particles. It is seen from the figure that the product has a plate-like morphology with average particles sizes in the range of 100–300 nm. In addition, the SAED data taken from an individual particle (lower inset) shows the presence of sharp diffraction rings, which are indicative of polycrystalline La{sub 0.5}Sr{sub 0.5}TiO{sub 3} formation. The high-resolution TEM image (upper inset) shows for further confirmation of a crystalline structure of La{sub 0.5}Sr{sub 0.5}TiO{sub 3} powder. This image shows a clearly resolved crystalline domain with uniform interplanar spacing of 0.276 nm. Highlights: ► La{sub 0.5}Sr{sub 0.5}TiO{sub 3} nanopowder is prepared in 2 M KOH solution by hydrothermal method. ► The solution is heat treated at 220 °C for 24 h in air. ► LRTEM reveals a plate-like morphology of particle with average size of 100–300 nm. ► HRTEM image shows a crystalline domain with interplanar spacing of 0.276 nm. -- Abstract: La{sub 0.5}Sr{sub 0.5}TiO{sub 3} nanopowders were prepared by the hydrothermal method. The influence of processing parameters, including KOH concentration, reaction temperature and reaction time on the obtained products were studied. The structure and morphology of the obtained products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The XRD results show that pure phase La{sub 0.5}Sr{sub 0.5}TiO{sub 3} nanopowders can be successfully synthesized with 2 M KOH concentration at a low temperature of 220 °C for 24 h. In addition, the product has a plate-like shape with particle sizes in the range of 25–100 nm as estimated by TEM.

  14. A mixed iron-manganese based pyrophosphate cathode, Na2Fe0.5Mn0.5P2O7, for rechargeable sodium ion batteries.

    PubMed

    Shakoor, Rana A; Park, Chan Sun; Raja, Arsalan A; Shin, Jaeho; Kahraman, Ramazan

    2016-02-01

    The development of secondary batteries based on abundant and cheap elements is vital. Among various alternatives to conventional lithium-ion batteries, sodium-ion batteries (SIBs) are promising due to the abundant resources and low cost of sodium. While there are many challenges associated with the SIB system, cathode is an important factor in determining the electrochemical performance of this battery system. Accordingly, ongoing research in the field of SIBs is inclined towards the development of safe, cost effective cathode materials having improved performance. In particular, pyrophosphate cathodes have recently demonstrated decent electrochemical performance and thermal stability. Herein, we report the synthesis, electrochemical properties, and thermal behavior of a novel Na2Fe0.5Mn0.5P2O7 cathode for SIBs. The material was synthesized through a solid state process. The structural analysis reveals that the mixed substitution of manganese and iron has resulted in a triclinic crystal structure (P1[combining macron] space group). Galvanostatic charge/discharge measurements indicate that Na2Fe0.5Mn0.5P2O7 is electrochemically active with a reversible capacity of ∼80 mA h g(-1) at a C/20 rate with an average redox potential of 3.2 V. (vs. Na/Na(+)). It is noticed that 84% of initial capacity is preserved over 90 cycles showing promising cyclability. It is also noticed that the rate capability of Na2Fe0.5Mn0.5P2O7 is better than Na2MnP2O7. Ex situ and CV analyses indicate that Na2Fe0.5Mn0.5P2O7 undergoes a single phase reaction rather than a biphasic reaction due to different Na coordination environment and different Na site occupancy when compared to other pyrophosphate materials (Na2FeP2O7 and Na2MnP2O7). Thermogravimetric analysis (25-550 °C) confirms good thermal stability of Na2Fe0.5Mn0.5P2O7 with only 2% weight loss. Owing to promising electrochemical properties and decent thermal stability, Na2Fe0.5Mn0.5P2O7, can be an attractive cathode for SIBs.

  15. Robust NdBa0.5Sr0.5Co1.5Fe0.5O5+δ cathode material and its degradation prevention operating logic for intermediate temperature-solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Lee, Tae-Hee; Park, Ka-Young; Kim, Nam-In; Song, Sun-Ju; Hong, Ki-Ha; Ahn, Docheon; Azad, Abul K.; Hwang, Junyeon; Bhattacharjee, Satadeep; Lee, Seung-Cheol; Lim, Hyung-Tae; Park, Jun-Young

    2016-11-01

    We report solutions (durable material and degradation prevention method) to minimize the performance degradation of cell components occurring in the solid oxide fuel cell (SOFC) operation. Reliability testing is carried out with the Nisbnd Nd0.1Ce0.9O2-δ (NDC) anode-supported intermediate temperature-SOFCs. For the cathode materials, single perovskite structured Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) and double perovskite structured NdBa0.5Sr0.5Co1.5Fe0.5O5+δ (NBSCF) are prepared and evaluated under harsh SOFC operating conditions. The double perovskite NBSCF cathode shows excellent stability in harsh SOFC environments of high humidity and low flow rate of air. Furthermore, we propose the concurrent fuel and air starvation mode, in which the cell potential is temporarily reduced due to the formation of both fuel-starvation (in the anode) and air-depletion (in the cathode) concurrently under a constant load. This is carried out in order to minimize the performance decay of the stable NBSCF-cell through the periodic and extra reduction of aH2 O (and aO2) in the anode. The operating-induced degradation of SOFCs, which are ordinarily assumed to be unrecoverable, can be completely circumvented by the proposed periodical operation logic to prevent performance degradation (concurrent fuel-starvation and air-depletion mode).

  16. Influence of Mn/Fe ratio on the magnetic properties of the Mn2-xFexP0.5As0.5, 0.5≤x≤1 alloys

    NASA Astrophysics Data System (ADS)

    Budzyński, M.; Valkov, V. I.; Golovchan, A. V.; Mitsiuk, V. I.; Sivachenko, A. P.; Surowiec, Z.; Tkachenka, T. M.

    2014-11-01

    The analysis of 57Fe Mössbauer spectroscopy results for cation and anion substituted Mn2-xFexP1-yAsy was done in order to find out the influence of the Mn/Fe ratio on the magnetic properties of solid solutions and to compare experimental hyperfine parameters with those calculated from firstprinciples.The correlation between third Mössbauer sextet in Mn2-xFexP0.5As0.5 spectrum at 77K and stabilization of the antiferromagnetic phase for x = 0.5-0.6 was found on the basis of comparison between the magnetic phase diagrams and the "hyperfine field - iron content" dependence. The observed qualitative difference for Mn2-xFexP0.5As0.5 and MnFeAsyP1-y "hyperfine field - concentration" diagrams was interpreted on the basis of different mechanisms of magnetic phase stabilization and the different configurations of tetrahedral anionic environment of iron ions for systems with cation and anion substitutions.

  17. Effects of A-site nonstoichiometry on oxide ion conduction in 0.94Bi0.5Na0.5TiO3-0.06BaTiO3 ceramics

    NASA Astrophysics Data System (ADS)

    Prasertpalichat, Sasiporn; Schmidt, Whitney; Cann, David P.

    2016-06-01

    Lead free 0.94(Bi0.5Na0.5)TiO3-0.06BaTiO3 ceramics were prepared by conventional solid-state mixed oxide route with the A-site stoichiometry modified to incorporate donor-doping (through Bi-excess) and acceptor-doping (through Na-excess). Both stoichiometric and nonstoichiometric ceramics exhibited a single perovskite phase with pseudo-cubic symmetry. A significant improvement in the dielectric properties was observed in Bi-excess compositions and a deterioration in the dielectric properties was observed in Na-excess compositions. Impedance spectroscopy was utilized to analyze the effects of A-site nonstoichiometry on conduction mechanisms. Compositions with Bi-excess resulted in an electrically homogeneous microstructure with an increase in resistivity by ˜3-4 orders of magnitude and an associated activation energy of 1.57eV which was close to half of the optical bandgap. In contrast, an electrically heterogeneous microstructure was observed in both the stoichiometric and Na-excess compositions. In addition, the Na-excess compositions exhibited low resistivities (ρ˜103Ω-cm) with characteristic peaks in the impedance data comparable to the recent observations of oxide ion conduction in (Bi0.5Na0.5)TiO3. Long term annealing studies were also conducted at 800∘C to identify changes in crystal structure and electrical properties. The results of this study demonstrates that the dielectric and electrical properties of 0.94(Bi0.5Na0.5)TiO3-0.06BaTiO3 ceramics are very sensitive to Bi/Na stoichiometry.

  18. Investigation of Coulomb scattering on sSi/Si0.5Ge0.5/sSOI quantum-well p-MOSFETs

    NASA Astrophysics Data System (ADS)

    Jiao, Wen; Qiang, Liu; Chang, Liu; Yize, Wang; Bo, Zhang; Zhongying, Xue; Zengfeng, Di; Wenjie, Yu; Qingtai, Zhao

    2016-09-01

    sSi/Si0.5Ge0.5/sSOI quantum-well (QW) p-MOSFETs with HfO2/TiN gate stack were fabricated and characterized. According to the low temperature experimental results, carrier mobility of the strained Si0.5Ge0.5 QW p-MOSFET was mainly governed by phonon scattering from 300 to 150 K and Coulomb scattering below 150 K, respectively. Coulomb scattering was intensified by the accumulated inversion charges in the Si cap layer of this Si/SiGe heterostructure, which led to a degradation of carrier mobility in the SiGe channel, especially at low temperature. Project supported by the National Natural Science Foundation of China (Nos. 61306126, 61306127, 61106015) and the CAS International Collaboration and Innovation Program on High Mobility Materials Engineering.

  19. Effects of capping on GaN quantum dots deposited on Al{sub 0.5}Ga{sub 0.5}N by molecular beam epitaxy

    SciTech Connect

    Korytov, M.; Benaissa, M.; Huault, T.; Neisius, T.

    2009-04-06

    The impact of the capping process on the structural and morphological properties of GaN quantum dots (QDs) grown on fully relaxed Al{sub 0.5}Ga{sub 0.5}N templates was studied by transmission electron microscopy. A morphological transition between the surface QDs, which have a pyramidal shape, and the buried ones, which have a truncated pyramid shape, is evidenced. This shape evolution is accompanied by a volume change: buried QDs are bigger than surface ones. Furthermore a phase separation into Al{sub 0.5}Ga{sub 0.5}N barriers was observed in the close vicinity of buried QDs. As a result, the buried QDs were found to be connected with the nearest neighbors by thin Ga-rich zones, whereas Al-rich zones are situated above the QDs.

  20. High electrostrictive strain induced by defect dipoles in acceptor-doped (K0.5Na0.5)NbO3 ceramics

    NASA Astrophysics Data System (ADS)

    Dai, Ye-Jing; Zhao, Yong-Jie; Zhao, Zhe; Zhao, Zhi-Hao; Zhou, Qi-Wu; Zhang, Xiao-Wen

    2016-07-01

    Acceptor doping is an efficient method to improve ferroelectric material performance through the formation of defect dipoles. Here, a high electrostrictive strain of 0.16-0.19%, and large d33\\ast of  >300 pm V-1 are obtained in CuO-doped (K0.5Na0.5)NbO3 ceramics. We analyzed the orientation relationship and the interaction between defect dipole polarization (P d) along <0 0 1> orientation and spontaneous polarization (P s) parallel to <1 1 0> in orthorhombic (K0.5Na0.5)NbO3. Thus, a ‘coupling effect’ mechanism was suggested to explain how the P d and P s can work together to contribute to the electrostrictive strains in this lead-free piezoelectric ceramic.

  1. Global and local structural variations near the antiferroelectric regime in Na{sub 0.5}Bi{sub 0.5}TiO{sub 3}

    SciTech Connect

    Thangavelu, Karthik; Rayaprol, S.; Siruguri, V.; Sastry, P. U.; Asthana, Saket

    2015-06-24

    Rietveld refinement of neutron and x-ray diffraction data of Na{sub 0.5}Bi{sub 0.5}TiO{sub 3} shows R3c phase stabilization at room temperature. The intermediate antiferroelectric region between 180°C to 280°C exhibits phase coexistence i.e R3c + Pnma, along with decrease in octahedral tilt angle and increase in unit cell volume. The local structural changes observed from Raman scattering in the A-O, Ti-O and TiO{sub 6} phonon modes favor the global structural variation. A possible antiparallel cation displacement due to Pnma phase formation leads to the origin of antiferroelectric ordering in Na{sub 0.5}Bi{sub 0.5}TiO{sub 3}.

  2. Optimization of exchange bias in Co{sub 2}FeAl{sub 0.5}Si{sub 0.5} Heusler alloy layers

    SciTech Connect

    Hirohata, Atsufumi; Izumida, Keisuke; Ishizawa, Satoshi; Nakayama, Tadachika; Sagar, James

    2014-05-07

    We have fabricated and investigated IrMn{sub 3}/Co{sub 2}FeAl{sub 0.5}Si{sub 0.5} stacks to meet the criteria for future spintronic device applications which requires low-temperature crystallisation (<250 °C) and a large exchange bias H{sub ex} (>500 Oe). Such a system would form the pinned layer in spin-valve or tunnel junction applications. We have demonstrated that annealing at 300 °C which can achieve crystalline ordering in the Co{sub 2}FeAl{sub 0.5}Si{sub 0.5} layer giving ∼80% of the predicted saturation magnetisation. We have also induced an exchange bias of ∼240 Oe at the interface. These values are close to the above criteria and confirm the potential of using antiferromagnet/Heusler-alloy stacks in current Si-based processes.

  3. Thermochromic effect at room temperature of Sm{sub 0.5}Ca{sub 0.5}MnO{sub 3} thin films

    SciTech Connect

    Boileau, A.; Capon, F.; Barrat, S.; Pierson, J. F.; Laffez, P.

    2012-06-01

    Sm{sub 0.5}Ca{sub 0.5}MnO{sub 3} thermochromic thin films were synthesized using dc reactive magnetron co-sputtering and subsequent annealing in air. The film structure was studied by x-ray diffraction analysis. To validate the thermochromic potentiality of Sm{sub 0.5}Ca{sub 0.5}MnO{sub 3}, electrical resistivity and infrared transmittance spectra were recorded for temperatures ranging from 77 K to 420 K. The temperature dependence of the optical band gap was estimated in the near infrared range. Upon heating, the optical transmission decreases in the infrared domain showing a thermochromic effect over a wide wavelength range at room temperature.

  4. Electric field-induced tuning of magnetism in PbFe{sub 0.5}Nb{sub 0.5}O{sub 3} at room temperature

    SciTech Connect

    Rayaprol, S. E-mail: brangadi@gmail.com; Mukherjee, S.; Kaushik, S. D.; Matteppanavar, S.; Angadi, B. E-mail: brangadi@gmail.com

    2015-08-07

    We study the influence of electrical poling, carried out at room temperature, on the structure and magnetism of Pb(Fe{sub 0.5}Nb{sub 0.5})O{sub 3} by analyzing the differences observed in structural and magnetic properties before and after the electrical poling. The changes observed in magnetization of Pb(Fe{sub 0.5}Nb{sub 0.5})O{sub 3} before and after electrical poling exhibit considerably strong converse magnetoelectric effect at room temperature. In addition, the strengthening of Fe/Nb-O bond due to electrical poling is discussed on the basis of Raman spectral studies and analysis of neutron diffraction patterns. The potential tunability of magnetization with electrical poling can be an ideal tool for realization of application potential of this multiferroic material.

  5. Global and local structural variations near the antiferroelectric regime in Na0.5Bi0.5TiO3

    NASA Astrophysics Data System (ADS)

    Thangavelu, Karthik; Rayaprol, S.; Siruguri, V.; Sastry, P. U.; Asthana, Saket

    2015-06-01

    Rietveld refinement of neutron and x-ray diffraction data of Na0.5Bi0.5TiO3 shows R3c phase stabilization at room temperature. The intermediate antiferroelectric region between 180°C to 280°C exhibits phase coexistence i.e R3c + Pnma, along with decrease in octahedral tilt angle and increase in unit cell volume. The local structural changes observed from Raman scattering in the A-O, Ti-O and TiO6 phonon modes favor the global structural variation. A possible antiparallel cation displacement due to Pnma phase formation leads to the origin of antiferroelectric ordering in Na0.5Bi0.5TiO3.

  6. Static and dynamic magnetic characteristics of BaCo 0.5Mn 0.5Ti 1.0Fe 10O 19

    NASA Astrophysics Data System (ADS)

    Choopani, Saeed; Keyhan, Neda; Ghasemi, Ali; Sharbathi, Ali; Maghsoudi, Iman; Eghbali, Mohammad

    2009-07-01

    The effect of Mn 2+Co 2+Ti 4+ substitution on microwave absorption has been studied for BaCo 0.5Mn 0.5Ti 1.0Fe 10O 19 ferrite-acrylic resin composites in frequency range from 12 to 20 GHz. X-ray diffraction (XRD), scanning electron microscope (SEM), vibrating sample magnetometer, AC susceptometer and vector network analyzer were used to analyze the structural, magnetic and microwave absorption properties. The results showed that the magnetoplumbite structures for all samples have been formed. Based on microwave measurement on reflectivity, BaCo 0.5Mn 0.5Ti 1.0Fe 10O 19 may be a good candidate for electromagnetic compatibility and other practical applications at high frequency.

  7. Dielectric characterization of multiferroic magnetoelectric double-perovskite Y(Ni0.5Mn0.5)O3 thin films

    NASA Astrophysics Data System (ADS)

    Coy, L. E.; Fina, I.; Ventura, J.; Yate, L.; Langenberg, E.; Polo, M. C.; Ferrater, C.; Varela, M.

    2016-10-01

    We report on the functional properties of the Y(Ni0.5Mn0.5)O3 epitaxial thin films, growth by pulsed laser deposition, observing the clear features of their ferroelectric and ferromagnetic nature at cryogenic temperature. The characterization of temperature-dependent complex impedance spectroscopy has shown a dielectric anomaly around the ferromagnetic Curie temperature (≈100 K) indicative of coupling between magnetic and electric orders.

  8. Magnetostriction and anisotropy of twin-free single-crystals Tb0.5Dy0.5(Fe0.9Mn0.1)2

    NASA Astrophysics Data System (ADS)

    Wang, Jinghua; Wu, Guangheng; Zhao, Xuegen; Jia, Kechang; Zhan, Wenshan

    1996-04-01

    A study of the effects of substituting a small amount of Mn for Fe in the Terfenol-D system is presented. The twin-free and <111>-oriented single-crystal rods of Tb0.5Dy0.5(Fe0.9Mn0.1)2 were prepared by Czochralski method. The magnetization, lattice constant, Curie temperature, and magnetostriction were examined. From the experimental results, it is possible to determine the effect of Mn substitution on magnetic anisotropy and magnetostriction. Because of Mn substituting for Fe, magnetic moment values of Tb0.5Dy0.5(Fe0.9Mn0.1)2 show two inflections and the easy magnetization directions also show changes from 1.5 to 300 K at an applied field of 1000 Oe. It strongly suggests that Mn substitution remarkably influences magnetocrystalline anisotropy of Tb0.5Dy0.5(Fe0.9Mn0.1)2. Its saturation magnetostrictions are 1.48×10-3 and 1.67×10-3, maximum d33 values are 1 and 1.5 under compressive stress of 0 and 12 MPa, respectively. These magnetostrictive properties are clearly better than those measured from the <112>-oriented twinned samples. This is the first time that the experimental data measured from the single-crystalline samples on the magnetic properties of Tb0.5Dy0.5(Fe0.9Mn0.1)2 are reported.

  9. The energy-down-shift effect of Cd(0.5)Zn(0.5)S-ZnS core-shell quantum dots on power-conversion-efficiency enhancement in silicon solar cells.

    PubMed

    Baek, Seung-Wook; Shim, Jae-Hyoung; Park, Jea-Gun

    2014-09-14

    We found that Cd0.5Zn0.5S-ZnS core (4.2 nm in diameter)-shell (1.2 nm in thickness) quantum dots (QDs) demonstrated a typical energy-down-shift (2.76-4.96 → 2.81 eV), which absorb ultra-violet (UV) light (250-450 nm in wavelength) and emit blue visible light (∼442 nm in wavelength). They showed the quantum yield of ∼80% and their coating on the SiNX film textured p-type silicon solar-cells enhanced the external-quantum-efficiency (EQE) of ∼30% at 300-450 nm in wavelength, thereby enhancing the short-circuit-current-density (JSC) of ∼2.23 mA cm(-2) and the power-conversion-efficiency (PCE) of ∼1.08% (relatively ∼6.04% increase compared with the reference without QDs for p-type silicon solar-cells). In particular, the PCE peaked at a specific coating thickness of the Cd0.5Zn0.5S-ZnS core-shell QD layer; i.e., the 1.08% PCE enhancement at the 8.8 nm thick QD layer.

  10. Structural, ferroelectric, optical properties of A-site-modified Bi0.5(Na0.78K0.22)0.5Ti0.97Zr0.03O3 lead-free piezoceramics

    NASA Astrophysics Data System (ADS)

    Quan, N. D.; Quyet, N. V.; Bac, L. H.; Thiet, D. V.; Hung, V. N.; Dung, D. D.

    2015-02-01

    We reported the role of A-site modification on the structural, ferroelectric, optical and electrical field-induced strain properties of Bi0.5(Na0.78K0.22)0.5Ti0.97Zr0.03O3 lead-free piezoceramics. The Li+ ions with concentration from 0 to 5 mol% were used to substitute at A-site. There was no phase transition when Li+ ions was added up to 5 mol%. The electric field-induced strain (Smax/Emax) values increased from 600 to 643 pm/V for 2 mol% Li+-added which results from distortion both rhombohedral and tetragonal phase structures. The band gap reduced from 2.88 to 2.68 eV and the saturation polarization decreased from 46.2 to 26.1 μC/cm2 when Li+ ions concentration increased from 0 to 5 mol% respectively. We expect that this work could be helpful for further understanding the role of A-site dopants in comparison with B-site modification in lead-free Bi0.5(Na,K)0.5TiO3-based ceramics.

  11. Ergodic Relaxor State with High Energy Storage Performance Induced by Doping Sr0.85Bi0.1TiO3 in Bi0.5Na0.5TiO3 Ceramics

    NASA Astrophysics Data System (ADS)

    Li, Qing-Ning; Zhou, Chong-Rong; Xu, Ji-Wen; Yang, Ling; Zhang, Xin; Zeng, Wei-Dong; Yuan, Chang-Lai; Chen, Guo-Hua; Rao, Guang-Hui

    2016-10-01

    The large maximum polarization P max and low remnant polarization P r in relaxor ferroelectrics are key features for the energy storage density ( W) and energy-storage efficiency ( η) in materials selection. In this study, the ergodic relaxor (ER) state with high energy storage performance associated with low P r and large P max, induced by Sr0.85Bi0.1TiO3(SBT) addition in (1 - x)Bi0.5Na0.5TiO3- xSr0.85Bi0.1TiO3 (BNT-SBT x with x = 0.25-0.45, Bi0.5Na0.5TiO3 abbreviated as BNT) ceramics has been observed. In particular, significantly increased energy storage density ( W = 1.5 J/cm3) and energy-storage efficiency ( η = 73%) are obtained for BNT-SBT ergodic relaxor ceramics. These results suggest a new means of designing lead-free energy-storage materials.

  12. Structural, ferroelectric and magnetic study of lead free (Na0.5Bi0.5)1-xLaxTi0.988Fe0.012O3 (x=0,0.01,0.03,0.05) ceramic

    NASA Astrophysics Data System (ADS)

    Parmar, Kusum; Sharma, Anshu; Sharma, Hakikat; Negi, N. S.

    2015-05-01

    Lead free (Na0.5Bi0.5)1-xLaxTi0.988Fe0.012O3 ceramic having compositions (x=0, 0.01, 0.03, 0.05) has been prepared by sol gel method using citric acid. Structural analysis has been done by X-ray diffraction and FTIR measurements. XRD patterns have been confirmed perovskite structure for all samples. FTIR absorption band at around ˜630 cm-1 is observed for all samples which confirm perovskite phase formation in samples. With increasing La concentration, shifting in XRD peaks and FTIR absorption bands is observed which suggests incorporation of La on A-site in prepared (Na0.5Bi0.5)1-xLaxTi0.988Fe0.012O3 samples. Effect of La substitution on Ferroelectric (Polarization vs. Electric field) and Magnetic (Magnetization vs. Magnetic field) properties have been studied at room temperature. All samples exhibit weak ferromagnetic order and also possess ferroelectric behavior which provides new insight to lead free single phase multiferroic materials.

  13. Upper Critical Field, Critical Current Density and Activation Energy of the New La1-xSmxO0.5F0.5BiS2 (x = 0.2, 0.8) Superconductors

    NASA Astrophysics Data System (ADS)

    Kalai Selvan, Ganesan; Singh Thakur, Gohil; Manikandan, Krishnan; Uwatoko, Yoshia; Haque, Zeba; Gupta, Laxmi Chand; Ganguli, Ashok Kumar; Arumugam, Sonachalam

    2015-12-01

    Critical current density (Jc), thermal activation energy (U0), and upper critical field (Hc2) of La1-xSmxO0.5F0.5BiS2 (x = 0.2, 0.8) superconductors are investigated from magnetic field dependent ρ(T) studies. The estimated upper critical field (Hc2) has low values of 1.04 T for x = 0.2 and 1.41 T for x = 0.8. These values are lower than Sm free LaO0.5F0.5BiS2 superconductor (1.9 T). The critical current density (Jc) is estimated to be 1.35 × 105 and 5.07 × 105 A/cm2 (2 K) for x = 0.2 and 0.8 respectively, using the Bean's model. The thermal activation energy (U0/kB) is 61 K for x = 0.2 and 140 K for x = 0.8 as calculated from Arrhenius plots at low magnetic field (1 T) and indicates a strong flux pinning potential which might be co-existing with applied magnetic field.

  14. 30 CFR 57.22233 - Actions at 0.5 percent methane (I-C mines).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Actions at 0.5 percent methane (I-C mines). 57... MINES Safety Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22233 Actions at 0.5 percent methane (I-C mines). If methane reaches 0.5 percent in the mine atmosphere, ventilation...

  15. 30 CFR 57.22233 - Actions at 0.5 percent methane (I-C mines).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Actions at 0.5 percent methane (I-C mines). 57... MINES Safety Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22233 Actions at 0.5 percent methane (I-C mines). If methane reaches 0.5 percent in the mine atmosphere, ventilation...

  16. 30 CFR 57.22233 - Actions at 0.5 percent methane (I-C mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Actions at 0.5 percent methane (I-C mines). 57... MINES Safety Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22233 Actions at 0.5 percent methane (I-C mines). If methane reaches 0.5 percent in the mine atmosphere, ventilation...

  17. 17 CFR 270.0-5 - Procedure with respect to applications and other matters.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Procedure with respect to applications and other matters. 270.0-5 Section 270.0-5 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) RULES AND REGULATIONS, INVESTMENT COMPANY ACT OF 1940 § 270.0-5...

  18. The hierarchical structure of cubic K0.5La0.5TiO3 layers and enhanced photocatalytic hydrogen evolution after surface acidification.

    PubMed

    Zhao, Wenli; Zhu, Guilian; Zhao, Wei; Lin, Tianquan; Xu, Fangfang; Huang, Fuqiang

    2015-11-14

    Transition-metal perovskite oxides possess rich functionalities in the fields of ferroelectrics, piezoelectrics, superconductors, dielectrics, fuel cells and photocatalysis. Nano-facet control of the cubic ATiO3 (A: a divalent cation) phase, a typical perovskite oxide, may result in new properties or phenomena not observable in the bulk material. Herein, we first report a puzzle-like 3D hierarchical structure constructed with K0.5La0.5TiO3 nanosheets. Surprisingly, K0.5La0.5TiO3 has a cubic symmetry similar to a SrTiO3 perovskite. The unusual phase is synthesized by a simple one-pot hydrothermal strategy without using any structure-directing agent. After modest acidification, the assembled 3D hierarchical structure is etched into a core-shell nanostructure which consists of a crystalline K0.5La0.5TiO3 core and an amorphous TiO2 shell. The acid-treated sample exhibits remarkably enhanced photocatalytic H2 production, which is over 60 times higher than the pristine sample. PMID:26455735

  19. Synthesis, structure and electrochemical properties of LiNaCo0.5Fe0.5PO4F fluoride-phosphate

    NASA Astrophysics Data System (ADS)

    Fedotov, Stanislav S.; Kuzovchikov, Sergey M.; Khasanova, Nellie R.; Drozhzhin, Oleg A.; Filimonov, Dmitriy S.; Karakulina, Olesia M.; Hadermann, Joke; Abakumov, Artem M.; Antipov, Evgeny V.

    2016-10-01

    LiNaCo0.5Fe0.5PO4F fluoride-phosphate was synthesized via conventional solid-state and novel freeze-drying routes. The crystal structure was refined based on neutron powder diffraction (NPD) data and validated by electron diffraction (ED) and high-resolution transmission electron microscopy (HRTEM). The alkali ions are ordered in LiNaCo0.5Fe0.5PO4F and the transition metals jointly occupy the same crystallographic sites. The oxidation state and oxygen coordination environment of the Fe atoms were verified by 57Fe Mössbauer spectroscopy. Electrochemical tests of the LiNaCo0.5Fe0.5PO4F cathode material demonstrated a reversible activity of the Fe3+/Fe2+ redox couple at the electrode potential near 3.4 V and minor activity of the Co3+/Co2+ redox couple over 5 V vs Li/Li+. The material exhibited the discharge capacity of more than 82% (theo.) regarding Fe3+/Fe2+ in the 2.4÷4.6 V vs Li/Li+ potential range.

  20. Effect of Pr Addition on Properties of Sn-0.5Ag-0.7Cu-0.5Ga Lead-Free Solder

    NASA Astrophysics Data System (ADS)

    Xujing, Nan; Songbai, Xue; Peizhuo, Zhai; Dongxue, Luo

    2016-10-01

    In this paper, the effect of Pr addition on the microstructure and properties of Sn-0.5Ag-0.7Cu-0.5Ga lead-free solder was investigated. It was found that the properties of Sn-0.5Ag-0.7Cu-0.5Ga- xPr solder, such as wettability and mechanical properties, could be obviously improved, and the optimal content of Pr was about 0.06 wt.%. The microstructure of Sn-0.5Ag-0.7Cu-0.5Ga-0.06Pr solder showed that the β-Sn matrix and intermetallic compound (IMC) grains were significantly refined, and refinement and homogenization of the microstructure achieved maximum efficiency, which played the role of fine grain strengthening and second phase strengthening. However, as the content of Pr exceeded 0.06 wt.%, some uneven distributed black phases of PrSn3 were found in the β-Sn matrix, which seriously worsened the microstructure and properties of the solders. As a surface-active element, the segregation of Pr at the molten solder interface could give rise to decreasing the interface tension. Consequently, adding a suitable amount of Pr could play a positive role in improving the properties of the solders.

  1. Effect of Pr Addition on Properties of Sn-0.5Ag-0.7Cu-0.5Ga Lead-Free Solder

    NASA Astrophysics Data System (ADS)

    Xujing, Nan; Songbai, Xue; Peizhuo, Zhai; Dongxue, Luo

    2016-07-01

    In this paper, the effect of Pr addition on the microstructure and properties of Sn-0.5Ag-0.7Cu-0.5Ga lead-free solder was investigated. It was found that the properties of Sn-0.5Ag-0.7Cu-0.5Ga-xPr solder, such as wettability and mechanical properties, could be obviously improved, and the optimal content of Pr was about 0.06 wt.%. The microstructure of Sn-0.5Ag-0.7Cu-0.5Ga-0.06Pr solder showed that the β-Sn matrix and intermetallic compound (IMC) grains were significantly refined, and refinement and homogenization of the microstructure achieved maximum efficiency, which played the role of fine grain strengthening and second phase strengthening. However, as the content of Pr exceeded 0.06 wt.%, some uneven distributed black phases of PrSn3 were found in the β-Sn matrix, which seriously worsened the microstructure and properties of the solders. As a surface-active element, the segregation of Pr at the molten solder interface could give rise to decreasing the interface tension. Consequently, adding a suitable amount of Pr could play a positive role in improving the properties of the solders.

  2. Nuclear magnetic resonance study of thin Co2FeAl0.5Si0.5 Heusler films with varying thickness

    NASA Astrophysics Data System (ADS)

    Alfonsov, A.; Peters, B.; Yang, F. Y.; Büchner, B.; Wurmehl, S.

    2015-02-01

    Type, degree, and evolution of structural order are important aspects for understanding and controlling the properties of highly spin-polarized Heusler compounds, in particular, with respect to the optimal film growth procedure. In this work, we compare the structural order and the local magnetic properties revealed by nuclear magnetic resonance (NMR) spectroscopy with the macroscopic properties of thin Co2FeAl 0.5Si 0.5 Heusler films with varying thickness. A detailed analysis of the measured NMR spectra presented in this paper enables us to find a very high degree of L 21 -type ordering up to 81% concomitantly with excess Fe of 8%-13% at the expense of Al and Si. We show that the formation of certain types of order depends not only on the thermodynamic phase diagrams as in bulk samples, but also that the kinetic control may contribute to the phase formation in thin films. It is an exciting finding that Co2FeAl 0.5Si 0.5 can form an almost ideal L 21 structure in films, though with a considerable amount of Fe-Al/Si off stoichiometry. Moreover, the very good quality of the films as demonstrated by our NMR study suggests that the technique of off-axis sputtering used to grow the films sets the stage for the optimized performance of Co2FeAl 0.5Si 0.5 in spintronic devices.

  3. Impacts of annealing temperature on charge trapping performance in Zr0.5Hf0.5O2 for nonvolatile memory

    NASA Astrophysics Data System (ADS)

    Zhao, J. H.; Yan, X. B.; Li, Y. C.; Yang, T.; Jia, X. L.; Zhou, Z. Y.; Zhang, Y. Y.

    2016-10-01

    In this study, Zr0.5Hf0.5O2 films were fabricated on Si substrate and were annealed at different temperatures by rapid thermal annealing (RTA) process. The charge trapping memory devices based on Zr0.5Hf0.5O2/SiO2/Si simple structure were investigated in detail. The memory device annealing at 690 °C shows the best property with a memory window of 5.6 V under ±12 V sweeping voltages in its capacitance-voltage curve and a better retention property. The high resolved transmission electron microscopy shows the generated SiO2 working as tunneling layer after RTA process, whose thickness increases with the rise of temperature. Combined with the TEM results, the photoluminescence spectrum and in situ angle resolved photoemission spectroscopy results further verify that oxygen vacancies and inter-diffusion layer also play a crucial role in charge trapping performance. This work provides direct insights for the charge trapping mechanisms based on high-k Zr0.5Hf0.5O2 films devices.

  4. Grain boundary defect compensation in Ti-doped BaFe0.5Nb0.5O3 ceramics

    NASA Astrophysics Data System (ADS)

    Sun, Xiaojun; Deng, Jianming; Liu, Saisai; Yan, Tianxiang; Peng, Biaolin; Jia, Wenhao; Mei, Zaoming; Su, Hongbo; Fang, Liang; Liu, Laijun

    2016-09-01

    Giant dielectric ceramics Ba(Nb0.5Fe0.5- x Ti x )O3 (BNFT) have been fabricated by a conventional solid-state reaction. According to X-ray diffraction analysis, the crystal structure of these ceramics can be described by the cubic centrosymmetric with Pm- 3m space group. The real part ( ɛ') of dielectric permittivity and dielectric loss (tan δ) of the BNFT ceramics was measured in a frequency range from 40 Hz to 100 MHz at room temperature. The ( ɛ') of all these samples displays a high value (~6500) and a small frequency-dependence from 1 kHz to 1 MHz. We have established a link between conductivity activation energy and defect compensation at grain boundaries. The Ti4+-doped Ba(Nb0.5Fe0.5)O3 as a donor makes a great influence on the grain boundary behavior, which restricts the migration of oxygen vacancy and depresses dielectric loss factor for Ba(Nb0.5Fe0.5)O3 ceramics.

  5. P2-NaCo(0.5)Mn(0.5)O2 as a Positive Electrode Material for Sodium-Ion Batteries.

    PubMed

    Yang, Peilei; Zhang, Chaoyang; Li, Malin; Yang, Xu; Wang, Chunzhong; Bie, Xiaofei; Wei, Yingjin; Chen, Gang; Du, Fei

    2015-11-16

    As a promising positive electrode material for sodium-ion batteries (SIBs), layered sodium oxides have attracted considerable attention in recent years. In this work, stoichiometric P2-phase NaCo(0.5)Mn(0.5)O2 was prepared through the conventional solid-state reaction, and its structural and physical properties were studied in terms of XRD, XPS, and magnetic susceptibility. Furthermore, the P2-NaCo(0.5)Mn(0.5)O2 electrode delivered a discharge capacity of 124.3 mA h g(-1) and almost 100% initial coulombic efficiency over the potential window of 1.5-4.15 V. It also showed good cycle stability, with a reversible capacity and capacity retention reaching approximately 85 mA h g(-1) and 99%, respectively, at the 5 C rate after 100 cycles. Additionally, cyclic voltammetry and ex situ XRD were employed to explain the electrochemical behavior at the different electrochemical stages. Owing to the applicable performances, P2-NaCo(0.5)Mn(0.5)O2 can be considered as a potential positive electrode material for SIBs.

  6. Electronic structure of a new layered bismuth oxyselenide superconductor: LaO0.5F0.5BiSe2.

    PubMed

    Xia, M; Jiang, J; Niu, X H; Liu, J Z; Wen, C H P; Lu, H Y; Lou, X; Pu, Y J; Huang, Z C; Zhu, Xiyu; Wen, H H; Xie, B P; Shen, D W; Feng, D L

    2015-07-22

    LaO(0.5)F(0.5)BiSe(2) is a new layered superconductor discovered recently, which shows the superconducting transition temperature of 3.5 K. With angle-resolved photoemission spectroscopy, we study the electronic structure of LaO(0.5)F(0.5)BiSe(2) comprehensively. Two electron-like bands are located around the X point of the Brillouin zone, and the outer pockets connect with each other and form large Fermi surface around Γ and M. These bands show negligible k(z) dispersion, indicating their two-dimensional nature. Based on the Luttinger theorem, the carrier concentration is about 0.53 e(-) per unit cell, close to its nominal value. Moreover, the photoemission data and the band structure calculations agree very well, and the renormalization factor is nearly 1.0, indicating the electron correlations in this material are rather weak. Our results suggest that LaO(0.5)F(0.5)BiSe(2) is a conventional BCS superconductor without strong electron correlations.

  7. Piezoelectric properties of (K0.5Na0.5)NbO3-BaTiO3 lead-free ceramics prepared by spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Men, Tian-Lu; Yao, Fang-Zhou; Zhu, Zhi-Xiang; Wang, Ke; Li, Jing-Feng

    2016-07-01

    (K,Na)NbO3 (KNN)-based lead-free piezoceramics have been the spotlight in search for practically viable candidates to replace the hazardous but dominating lead-containing counterparts. In this work, BaTiO3 (BT) modified KNN ceramics were fabricated by spark plasma sintering (SPS) and the influence of BT content as well as sintering temperature on the phase structure, microstructure, and electrical properties were investigated. It was found that the 0.96(Na0.5K0.5)NbO3-0.04BaTiO3 (BT4) ceramics sintered at 1000∘C have the optimal performance. Additionally, in-depth analysis of the electrical hysteresis revealed that the internal bias field originating from accumulation of space charges at grain boundaries is responsible for the asymmetry in the hysteresis loops.

  8. Treatment of trichostasis spinulosa with 0.5-millisecond pulsed 755-nm alexandrite laser.

    PubMed

    Badawi, Ashraf; Kashmar, Mouhamad

    2011-11-01

    Trichostasis spinulosa (TS) is a follicular disorder in which multiple hairs in a keratinous sheath project above the skin surface. Current treatments provide temporary relief and side effects are common. We report the successful treatment of TS in 20 patients using a short-pulsed 755-nm alexandrite laser. The 20 patients (skin types II-V) presented with TS lesions on the tip of their nose. All patients received a single treatment (one to three passes) with the laser with cold air cooling but without anaesthesia or analgesia. Treatment parameters were as follows: pulse duration 0.5 ms, fluence 15-17 J/cm(2), and spot size 5 mm. The entire procedure required less than 5 min to perform. The patients were followed up for 3 months for any adverse effects or recurrence. In all patients the lesions disappeared immediately after treatment with minimal or no pain. Erythema was minimal and lasted 5-20 min in all patients. Patients were very satisfied. The treated areas were still clear 4 to 5 weeks later, and a second treatment was not considered necessary. There were adverse effects other than the erythema and there was no recurrence within the follow-up period of 3 months. A single treatment with a short-pulsed 755-nm alexandrite laser appears to be a rapid, minimally painful, and effective treatment for TS in patients of skin types II to V.

  9. Seeded FEL Amplifier-Buncher in the 0.5-9 THz for Advanced Accelerators

    SciTech Connect

    Tochitsky, S. Ya.; Reiche, S.; Sung, C.; Rosenzweig, J. B.; Joshi, C.; Gottschalk, S. C.; Kelly, R.

    2009-01-22

    Longitudinal modulation of a relativistic electron beam in the THz range is important for advanced laser- or beam-driven plasma accelerators operating in the 10{sup 16}-10{sup 18} cm{sup -3} plasma density range. We describe a single-pass FEL amplifier-buncher which is under construction at the UCLA Neptune laboratory. Microbunching on the 0.5-3 THz frequency scale is achieved during the process of a resonant FEL interaction between an electron beam and a THz seed pulse. A narrow-band, low-power THz seed source based on the frequency mixing of CO{sub 2} laser lines in a GaAs nonlinear crystal is built and fully characterized. The THz radiation pulse generated by this source will be guided through a hollow waveguide inside the planar FEL undulator driven by a regular photoinjector. By using a time-dependent FEL code GENESIS 1.3, we optimized the undulator parameters and analyzed the dynamics of the modulated electron beam. At present, the THz FEL microbuncher is being built and we update the status of the project.

  10. Optimization Study of the Ames 0.5 Two-Stage Light Gas Gun

    NASA Technical Reports Server (NTRS)

    Bogdanoff, D. W.

    1996-01-01

    There is a need for more faithful simulation of space debris impacts on various space vehicles. Space debris impact velocities can range up to 14 km/sec and conventional two-stage light gas guns with moderately heavy saboted projectiles are limited to launch velocities of 7-8 km/sec. Any increases obtained in the launch velocities will result in more faithful simulations of debris impacts. It would also be valuable to reduce the maximum gun and projectile base pressures and the gun barrel erosion rate. In this paper, the results of a computational fluid dynamics (CFD) study designed to optimize the performance of the NASA Ames 0.5' gun by systematically varying seven gun operating parameters are reported. Particularly beneficial effects were predicted to occur if (1) the piston mass was decreased together with the powder mass and the hydrogen fill pressure and (2) the pump tube length was decreased. The optimum set of changes in gun operating conditions were predicted to produce an increase in muzzle velocity of 0.7-1.0 km/sec, simultaneously with a substantial decrease in gun erosion. Preliminary experimental data have validated the code predictions. Velocities of up to 8.2 km/sec with a 0.475 cm diameter saboted aluminum sphere have been obtained, along with large reductions in gun erosion rates.

  11. Actikerall™ (5-Fluorouracil 0.5% and Salicylic Acid 10%) Topical Solution for Patient-directed Treatment of Actinic Keratoses.

    PubMed

    Nguyen, H P; Rivers, J K

    2016-05-01

    Actinic keratosis (AK), a common cutaneous lesion with the potential to transform into squamous cell carcinoma, has traditionally been treated with ablative and/or surgical procedures. Recently, a topical formulation combining 0.5% 5-fluorouracil with 10% salicylic acid (5-FU-SA) was introduced in Europe under the trade name Actikerall™ for the treatment of grade I/II AKs. In a single randomized phase III trial, 5-FU-SA was shown to be superior to diclofenac 3% gel in hyaluronic acid, as measured by the histological clearance of one defined lesion (72% vs. 59.1%) and by complete clinical clearance (55.4% vs. 32.0%). 5-FU-SA should be applied once daily to a total area of up to 25 cm(2), which may include the lesion(s) and a small area of surrounding skin (rim of healthy skin should not exceed 0.5 cm), for up to 12 weeks. The most common side effects are local inflammation and pruritus at the application site, and no serious adverse effects have been reported to date. Now commercially available in Canada, 5-FU-SA represents a patientapplied therapeutic option for the treatment of both overt and subclinical AKs.

  12. Studies on structural and electrical properties of Li0.5-0.5xCoxFe2.5-0.5xO4 (0≤x≤0.6) spinel ferrite

    NASA Astrophysics Data System (ADS)

    Sawant, V. S.; Bagade, A. A.; Rajpure, K. Y.

    2015-10-01

    In the present work, nanocrystalline Li0.5-0.5xCoxFe2.5-0.5xO4 (for x=0.0, 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6) ferrite systems were synthesized by solution combustion method. The Rietveld analysis of X-ray result confirms the formation of a single phase spinel cubic crystal structure of the ferrite sample. The lattice constant of the material increases from 8.33 Å to 8.36 Å with increasing cobalt content in lithium ferrite. The cation distribution study reveals that the Co-Li ferrite is in the mixed spinel structure of the composition. The DC electrical resistivity result confirms the semiconducting nature and the Curie temperature decreases with increase in Co2+ content. The dielectric constant, loss tangent and dielectric loss decrease with frequency and remain constant at higher frequencies are observed, showing the usual dielectric dispersion due to space charge polarization. The impedance spectroscopy analysis of samples reveals the grain interior contribution in the conduction process. The AC conductivity as a function of frequency verifies that the small polarons are responsible for conduction process.

  13. Electrical properties of lead-free 0.98(Na0.5K0.5Lix)NbO3-0.02Ba(Zr0.52Ti0.48)O3 ceramics

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Hwan; Kim, Hyun-Ju; Lee, Sung-Gap; Koh, Jung-Hyuk; Baek, Sang-Don; Lee, Young-Hie

    2012-02-01

    Lead-free 0.98(Na0.5K0.5Lix)NbO3-0.02Ba(Zr0.52Ti0.48)O3 piezoelectric ceramics were investigated. The experimental results show that Li content strongly affects the orthorhombic-tetragonal morphotropic phase boundary (MPB) which results in different piezoelectric properties. The phase transition composition shows a range from 0.05 to 0.1. The sample with a composition of x = 0.1 showed the maximum values of piezoelectric coefficient ( d 33= 201 ρC/N), electromechanical coupling coefficient ( k p= 39%), and remnant polarization ( P r= 21 μC/cm2).

  14. Highly efficient and robust cathode materials for low-temperature solid oxide fuel cells: PrBa0.5Sr0.5Co(2-x)Fe(x)O(5+δ).

    PubMed

    Choi, Sihyuk; Yoo, Seonyoung; Kim, Jiyoun; Park, Seonhye; Jun, Areum; Sengodan, Sivaprakash; Kim, Junyoung; Shin, Jeeyoung; Jeong, Hu Young; Choi, YongMan; Kim, Guntae; Liu, Meilin

    2013-01-01

    Solid oxide fuel cells (SOFC) are the cleanest, most efficient, and cost-effective option for direct conversion to electricity of a wide variety of fuels. While significant progress has been made in anode materials with enhanced tolerance to coking and contaminant poisoning, cathodic polarization still contributes considerably to energy loss, more so at lower operating temperatures. Here we report a synergistic effect of co-doping in a cation-ordered double-perovskite material, PrBa0.5Sr0.5Co(2-x)Fe(x)O(5+δ), which has created pore channels that dramatically enhance oxygen ion diffusion and surface oxygen exchange while maintaining excellent compatibility and stability under operating conditions. Test cells based on these cathode materials demonstrate peak power densities ~2.2 W cm(-2) at 600°C, representing an important step toward commercially viable SOFC technologies.

  15. Study of ZrxZn0.5-xNi0.5Fe2O4 0≤x≤0.25: Synthesis, structural, magnetic and electrical properties

    NASA Astrophysics Data System (ADS)

    Saini, Jasmeen; Kumar, Rupesh; Rajput, Jaspreet Kaur; Kumar, Arvind

    2016-03-01

    Zirconium substituted zinc-nickel ferrite nanoparticles with chemical composition of ZrxZn0.5-xNi0.5Fe2O4 (0≤x≤0.25) have been synthesized successfully by solution combustion method using high purity nitrates and fueling agent urea. Powder XRD study confirms the single phase formation of composite ferrite which belongs to cubic spinel structure. TEM further reveals the morphology of well dispersed Zn-Ni ferrite nanoparticles to be spherical. Effect of change of doping concentration of Zirconium is observed using FTIR. The saturation magnetization gradually decreases with the increase in Zr substitution and reaches minimum when x=0.25 whereas the coercivity value reaches minimum when x=0.15. DC electrical resistivity has been found to vary with increasing Zr content. The good electrical resistivity (>107 Ωcm) qualify the ceramic for high frequency transformer applications.

  16. Influence of 2mol% Na/Bi excess on multiferroic properties of (Na0.5Bi0.5) 0.99La0.01Ti0.988 Fe0.012O3 lead free system

    NASA Astrophysics Data System (ADS)

    Parmar, Kusum; Sharma, Hakikat; Kotnala, R. K.; Negi, N. S.

    2016-05-01

    Lead free (Na0.5Bi0.5) 0.99La0.01Ti0.988 Fe0.012O3 (NBLTF) system has been synthesized by sol gel method without and with 2 mol% excess of Na and Bi. X-ray diffraction patterns of NBLTF samples confirm perovskite structure having rhombohedral R3c phase symmetry. Metal oxide band observed at ~ 629 cm-1 wavnumber in FTIR spectra also confirm formation of perovskite phase in samples. Microstructural analysis exhibits dense crystal growth having better grains connectivity for NBLTF sample with 2 mol% excess Na/Bi which is supported by room temperature DC resistivity measurements. Dense crystal growth and low leakage current with 2 mol% excess Na/Bi is reported to improve multiferroic properties of NBLTF sample and provides new insight to explore single phase lead free multiferroic system.

  17. Multiferroism and Magnetoelectric Coupling in Nano-Microscale Lead-Free Composite by 0.3Co-FERRITE and 0.7(K0.5Na0.5)NbO3-BASED Ferroelectric Matrix

    NASA Astrophysics Data System (ADS)

    Zhou, Yun; Wang, Xinyan; Li, Li; Su, Yuling; Zhang, Jincang; Cao, Shixun

    Nontoxic lead-free multiferroic composites are synthesized by incorporating the dispersed 0.3CoFe2O4 (CFO) ferromagnetic nanoparticles into 0.7(K0.5Na0.5) NbO3-LiSbO3 (KNN-LS5.2) ferroelectric micromatrix. The multiferroicity of the composite can be verified by polarization-electric field hysteresis loop and magnetic hysteresis loop. The composite exhibits excellent magnetic properties. A dilution effect is observed in magnetic hysteresis loops. The field dependence of ME voltage coefficient is given as a function of magnetic field from -4 kOe to 4 kOe with a maximum magnetoelectric voltage coefficient of 10.7 mVṡcm-1ṡOe-1 at the frequency of 1 kHz. It is a very high value in the lead-free magnetoelectric composites system for the potential use on multifunctional devices.

  18. Band gap modification and ferroelectric properties of Bi{sub 0.5}(Na,K){sub 0.5}TiO{sub 3}-based by Li substitution

    SciTech Connect

    Quan, Ngo Duc; Hung, Vu Ngoc; Quyet, Nguyen Van; Chung, Hoang Vu; Dung, Dang Duc

    2014-01-15

    We report on the reduction of band gap in Bi{sub 0.5}(Na{sub 0.82-x}Li{sub x}K{sub 0.18}){sub 0.5}(Ti{sub 0.95}Sn{sub 0.05})O{sub 3} from 2.99 eV to 2.84 eV due to the substitutions of Li{sup +} ions to Na{sup +} sites. In addition, the lithium substitution samples exhibit an increasing of the maximal polarizations from 21.8 to 25.7 μC/cm{sup 2}. The polarization enhancement of ferroelectric and reduction of the band gaps are strongly related to the Li substitution concentration as evaluated via the electronegative between A-site and oxygen and tolerance factor. The results are promising for photovoltaic and photocatalytic applications.

  19. Highly efficient and robust cathode materials for low-temperature solid oxide fuel cells: PrBa0.5Sr0.5Co2-xFexO5+δ

    NASA Astrophysics Data System (ADS)

    Choi, Sihyuk; Yoo, Seonyoung; Kim, Jiyoun; Park, Seonhye; Jun, Areum; Sengodan, Sivaprakash; Kim, Junyoung; Shin, Jeeyoung; Jeong, Hu Young; Choi, Yongman; Kim, Guntae; Liu, Meilin

    2013-08-01

    Solid oxide fuel cells (SOFC) are the cleanest, most efficient, and cost-effective option for direct conversion to electricity of a wide variety of fuels. While significant progress has been made in anode materials with enhanced tolerance to coking and contaminant poisoning, cathodic polarization still contributes considerably to energy loss, more so at lower operating temperatures. Here we report a synergistic effect of co-doping in a cation-ordered double-perovskite material, PrBa0.5Sr0.5Co2-xFexO5+δ, which has created pore channels that dramatically enhance oxygen ion diffusion and surface oxygen exchange while maintaining excellent compatibility and stability under operating conditions. Test cells based on these cathode materials demonstrate peak power densities ~2.2 W cm-2 at 600°C, representing an important step toward commercially viable SOFC technologies.

  20. Sub-cm Particles in Saturn's Rings from VIMS, UVIS, and RSS occultations

    NASA Astrophysics Data System (ADS)

    Jerousek, Richard Gregory; Colwell, Josh E.; Hedman, Matthew M.; Marouf, Essam A.; Esposito, Larry W.; Nicholson, Philip D.; French, Richard G.

    2016-10-01

    Particles sizes in Saturn's rings roughly follow a truncated power law. One way to determine the governing parameters of the size distribution is through the analysis of differential optical depths (Zebker et al. 1983). Non-axisymmetric self-gravity wakes complicate this approach when optical depth measurements at different wavelengths are not made at same viewing geometry. Using occultations spanning a wide range of viewing angles and from multiple instruments onboard Cassini (the Ultraviolet Imaging Spectrograph (UVIS), the Visual and Infrared Mapping Spectrometer (VIMS), and the Radio Science Subsystem (RSS)), we forward-model the properties of the self-gravity wakes in Saturn's A and B rings while simultaneously constraining the parameters of the cm – sub-cm particle size distribution. In the absence of wakes, and in regions where particles smaller than ~ 8.86 mm are present, VIMS stellar occultations measure larger optical depths than UVIS stellar occultations due to the diffraction of 2.9 μm light out of the small (0.25 × 0.5 mrad) VIMS field of view compared with UVIS which measures shorter wavelength (0.15 μm) light over a much larger (6.4 × 6.0 mrad) field of view. This excess optical depth combined with RSS X-band (λ = 3.6 cm) optical depths provides a way to probe both the power law slope and the minimum particle size. In the A and B rings where self-gravity wakes are prevalent, we use the wake model of Colwell et al. (2006, 2007) with an additional free parameter representing the excess optical depth which would be measured through the gaps between opaque wakes, by VIMS compared to UVIS. In the B ring and inner A ring we find and absence of sub-cm particles and power law slopes of q ~ 2.8. In the trans-Encke region, where there are a multitude of satellite driven resonances, we find an increasing abundance of sub-cm particles as the outer edge of the A ring is approached. In the C Ring and the Cassini Division, where self-gravity wakes are absent

  1. Investigation of structural and temperature dependent electromagnetic properties of Co0.5Zn0.5CrxFe2-xO4

    NASA Astrophysics Data System (ADS)

    Khan, M. H. R.; Hossain, A. K. M. Akther

    2015-10-01

    Mixed ferrites with nominal chemical compositions Co0.5Zn0.5CrxFe2-xO4 ranging from x=0 to 0.5 in the steps of 0.1 have been prepared by the standard solid state reaction method. XRD patterns confirm single phase and formation of cubic spinel structure. The lattice constant (a0), average grain size (D) and bulk density (ρB) are decreased with increasing Cr content. The ρB decreases with Cr content due to lighter atomic weight. On the other hand, both D and ρB of each composition increase with increasing sintering temperature (Ts). All samples show reentrant spin glass transition at low temperature in zero field cooled magnetization. The saturation magnetization (Ms) and Néel temperature (TN) decrease with Cr substitution due to weakening the super-exchange interaction. The coercivity (Hc) increases with increasing Cr content for various Co0.5Zn0.5CrxFe2-xO4. It may be attributed to the effect of decreasing D. Frequency dependent initial permeability (μ‧i) decreases with increasing Cr content. The Ms and ρB play an important role in changing μ‧i. On the other hand, the μ‧i for each composition increases with increasing Ts. The highest relative quality factor (Q) is observed for various Co0.5Zn0.5CrxFe2-xO4 sintered at 1573 K. The DC electrical resistivity (ρDC) of these samples increases with increasing Cr content due to decreasing Fe3+ ions at B-site.

  2. Structural and Magnetic Properties Evolution of Li-Substituted Co0.5Ni0.5Fe2O4 Ferrite

    NASA Astrophysics Data System (ADS)

    Wu, Xuehang; Chen, Wen; Wu, Wenwei; Li, Hongjiao; Lin, Cuiwu

    2016-08-01

    Four types of Co-Ni based ferrites materials with the general formula Li x Co0.5Ni0.5-x Fe2O4 (0.0 ≤ x≤0.3) were successfully synthesized by thermal decomposition of oxalates in air. The effect of substitution of diamagnetic Li+ ions for partial Ni2+ ions in a spinel lattice on the crystalline structure and the magnetic properties of Co-Ni ferrites was studied. X-ray diffraction examination confirms that a high-crystallized Li x Co0.5Ni0.5-x Fe2O4 with cubic spinel structure is obtained when the precursor is calcined at 900°C in air for 3 h. The substitution of Li+ ions for partial Ni2+ ions does not change the spinel crystalline structure of MFe2O4, but crystallinity of Li x Co0.5Ni0.5-x Fe2O4 can be improved. The incorporation of Li+ ions in place of Ni2+ ions in Co-Ni ferrites decreases the average crystallite size and results in higher specific saturation magnetization as compared to un-substituted Co-Ni ferrites. In this study, Li0.1Co0.5Ni0.4Fe2O4, obtained at 900°C, exhibits the highest specific saturation magnetization of 88 emu/g ± 2 emu/g and magnetic moment (3.60 μ B ± 0.05 μ B).

  3. Fabrication and performance of membrane solid oxide fuel cells with La 0.75Sr 0.25Cr 0.5Mn 0.5O 3- δ impregnated anodes

    NASA Astrophysics Data System (ADS)

    Zhu, Xingbao; Lü, Zhe; Wei, Bo; Chen, Kongfa; Liu, Mingliang; Huang, Xiqiang; Su, Wenhui

    La 0.75Sr 0.25Cr 0.5Mn 0.5O 3- δ (LSCrM)-impregnated anodes have been fabricated by infiltrating 70% porous yttria-stabilized zirconia (YSZ) matrixes with an LSCrM solution. In these anodes, LSCrM is a primary electronic conducive phase while the well-sintered YSZ provides an ionic-conducting pathway throughout the electrode. The maximum power densities of a single cell with YSZ + 35 wt.% LSCrM composite anode reach 567 and 561 mW cm -2 at 850 °C in dry H 2 and CH 4, respectively. Further, Ag and Ni are added via nitrate impregnating method for improving electronic conductivity and catalytic activity. With the addition of 6 wt.% Ni and 2 wt.% Ag to the YSZ + 32 wt.% LSCrM composite anode, the maximum power densities at 850 °C increase to 1302 mW cm -2 in dry H 2 and 769 mW cm -2 in dry CH 4. No carbon deposition is detected in the tested anodes, even with the presence of Ni.

  4. Defect dipole induced large recoverable strain and high energy-storage density in lead-free Na0.5Bi0.5TiO3-based systems

    NASA Astrophysics Data System (ADS)

    Cao, Wenping; Li, Weili; Feng, Yu; Bai, Terigele; Qiao, Yulong; Hou, Yafei; Zhang, Tiandong; Yu, Yang; Fei, Weidong

    2016-05-01

    In this letter, we propose an effective route to obtain large recoverable strain, purely electrostrictive effects and high energy-storage density by inducing defect dipoles into Na0.5Bi0.5TiO3 (NBT)-based relaxor ferroelectrics. It has been found that pinched and double polarization hysteresis loops with high maximum polarization (Pmax) and negligible remanent polarization (Pr) can be observed due to the presence of acceptor-induced defect dipoles. A large recoverable strain of 0.24% with very little hysteresis and high electrostriction coefficient of 0.022 m4 C2 with purely electrostrictive characteristics were acquired when 11 mol. ‰ Mn-doped. Meanwhile, a high recoverable energy density of 1.06 J/cm3 with excellent temperature stability was obtained at the same composition owing to the enlarged value of Pmax-Pr (36.8 μC/cm2) and relatively high electric field (95 kV/cm). Our achievement can open up the exciting opportunities for ferroelectric materials in high-precision positioning devices and high electric power pulse energy storage applications.

  5. Ferroelectric dielectric properties of Ba{sub 0.5}Sr{sub 0.5}(Ti{sub 0.80}Sn{sub 0.20})O{sub 3} thin films grown by the soft chemical method

    SciTech Connect

    Souza, I.A.; Cavalcante, L.S.; Cilense, M.

    2006-10-15

    Polycrystalline Ba{sub 0.5}Sr{sub 0.5}(Ti{sub 0.80}Sn{sub 0.20})O{sub 3} (BST:Sn) thin films with a perovskite structure were prepared by the soft chemical method on a platinum-coated silicon substrate from spin-coating technique. The resulting thin films showed a dense structure with uniforain size distribution. The dielectric constant of the films estimated from C-V curve is around 1134 and can be ascribed to a reduction in the oxygen vacancy concentration. The ferroelectric nature of the film indicated by butterfly-shaped C-V curves and confirmed by the hysteresis curve, showed remnant polarization of 14{mu}C/cm{sup 2} and coercive field of 74kV/cm at frequency of 1MHz. At the same frequency, the leakage current density at 1.0V is equal to 1.5x10{sup -7}A/cm{sup 2}. This work clearly reveals the highly promising potential of BST:Sn for application in memory devices.

  6. Investigation of Sm 0.5Sr 0.5CoO 3- δ/Co 3O 4 composite cathode for intermediate-temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Zhang, Haizhou; Liu, Huanying; Cong, You; Yang, Weishen

    The electrochemical properties of an Sm 0.5Sr 0.5CoO 3- δ/Co 3O 4 (SSC/Co 3O 4) composite cathode were investigated as a function of the cathode-firing temperature, SSC/Co 3O 4 composition, oxygen partial pressure and CO 2 treatment. The results showed that the composite cathodes had an optimal microstructure at a firing temperature of about 1100 °C, while the optimum Co 3O 4 content in the composite cathode was about 40 wt.%. A single cell with this optimized C 40-1100 cathode exhibited a very low polarization resistance of 0.058 Ω cm 2, and yielded a maximum power density of 1092 mW cm -2 with humidified hydrogen fuel and air oxidant at 600 °C. The maximum power density reached 1452 mW cm -2 when pure oxygen was used as the oxidant for a cell with a C 30-1100 cathode operating at 600 °C due to the enhanced open-circuit voltage and accelerated oxygen surface-exchange rate. X-ray diffraction and thermogravimetric analyses, as well as the electrochemical properties of a CO 2-treated cathode, also implied promising applications of such highly efficient SSC/Co 3O 4 composite cathodes in single-chamber fuel cells with direct hydrocarbon fuels operating at temperatures below 500 °C.

  7. Apparent Depth.

    ERIC Educational Resources Information Center

    Nassar, Antonio B.

    1994-01-01

    Discusses a well-known optical refraction problem where the depth of an object in a liquid is determined. Proposes that many texts incorrectly solve the problem. Provides theory, equations, and diagrams. (MVL)

  8. Enhanced performance of solid oxide fuel cells with Ni/CeO 2 modified La 0.75Sr 0.25Cr 0.5Mn 0.5O 3- δ anodes

    NASA Astrophysics Data System (ADS)

    Zhu, Xingbao; Lü, Zhe; Wei, Bo; Chen, Kongfa; Liu, Mingliang; Huang, Xiqiang; Su, Wenhui

    The optimization of electrodes for solid oxide fuel cells (SOFCs) has been achieved via a wet impregnation method. Pure La 0.75Sr 0.25Cr 0.5Mn 0.5O 3- δ (LSCrM) anodes are modified using Ni(NO 3) 2 and/or Ce(NO 3) 3/(Sm,Ce)(NO 3) x solution. Several yttria-stabilized zirconia (YSZ) electrolyte-supported fuel cells are tested to clarify the contribution of Ni and/or CeO 2 to the cell performance. For the cell using pure-LSCrM anodes, the maximum power density (P max) at 850 °C is 198 mW cm -2 when dry H 2 and air are used as the fuel and oxidant, respectively. When H 2 is changed to CH 4, the value of P max is 32 mW cm -2. After 8.9 wt.% Ni and 5.8 wt.% CeO 2 are introduced into the LSCrM anode, the cell exhibits increased values of P max 432, 681, 948 and 1135 mW cm -2 at 700, 750, 800 and 850 °C, respectively, with dry H 2 as fuel and air as oxidant. When O 2 at 50 mL min -1 is used as the oxidant, the value of P max increases to 1450 mW cm -2 at 850 °C. When dry CH 4 is used as fuel and air as oxidant, the values of P max reach 95, 197, 421 and 645 mW cm -2 at 750, 800, 850 and 900 °C, respectively. The introduction of Ni greatly improves the performance of the LSCrM anode but does not cause any carbon deposit.

  9. Dielectric relaxation and magnetodielectric response in DyMn{sub 0.5}Cr{sub 0.5}O{sub 3}

    SciTech Connect

    Yuan, B.; Yang, J. Zuo, X. Z.; Zhu, X. B.; Dai, J. M.; Song, W. H.; Kan, X. C.; Zu, L.; Sun, Y. P.

    2015-09-28

    We investigate the structural, magnetic, and magnetodielectric properties of DyMn{sub 0.5}Cr{sub 0.5}O{sub 3}. The sample can be indexed with an orthorhombic phase with B site disordered space group Pbnm. The valence state of both Mn and Cr ions are suggested to be +3 based on the results of x-ray photoelectron spectroscopy. Two thermally excited dielectric relaxation at temperatures T{sub N2} < T< 300 K and large magnetodielectric effect (MDC = 20%–30%) due to the disordered arrangement of Mn{sup 3+}/Cr{sup 3+} ions associated with electron hopping between them are observed. The absence of any noticeable magnetoresistance effect (MR < 0.5%) demonstrates that the observed magnetodielectric effect is an intrinsic behavior. These results suggest that DyMn{sub 0.5}Cr{sub 0.5}O{sub 3} is a magnetodielectric compound, whose dielectric properties are dependence of the applied magnetic field, which exhibits such effects near room temperature and holds great promise for future device applications.

  10. Synergistic effects of intrinsic cation disorder and electron-deficient substitution on ion and electron conductivity in La1-xSrxCo0.5Mn0.5O3-δ (x = 0, 0.5, and 0.75).

    PubMed

    Meng, Junling; Yuan, Na; Liu, Xiaojuan; Yao, Chuangang; Liang, Qingshuang; Zhou, Defeng; Meng, Fanzhi; Meng, Jian

    2015-03-16

    The effects of intrinsic cation disorder and electron-deficient substitution for La1-xSrxCo0.5Mn0.5O3-δ (LSCM, x = 0, 0.5, and 0.75) on oxygen vacancy formation, and their influence on the electrochemical properties, were revealed through a combination of computer simulation and experimental study. First-principles calculations were first performed and found that the tendency of the oxygen vacancy formation energy was Mn(3+)-O*-Mn(4+) < Co(2+)-O*-Co(3+) < Co(2+)-O*-Mn(4+), meaning that antisite defects not only facilitate the formation of oxygen vacancy but introduce the mixed-valent transition-metal pairs for high electrical conductivity. Detailed partial density of states (PDOS) analysis for Mn on Co sites (MnCo) and Co on Mn sites (CoMn) indicate that Co(2+) is prone to being Co(3+) while Mn(4+) is prone to being Mn(3+) when they are on antisites, respectively. Also it was found that the holes introduced by Sr tend to enter the Co sublattice for x = 0.5 and then the O sublattice when x = 0.75, which further promotes oxygen vacancy formation, and these results are confirmed by both the calculated PDOS results and charge-density difference. On the basis of microscopic predictions, we intentionally synthesized a series of pure LSCM compounds and carried out comprehensive characterization. The crystal structures and their stability were characterized via powder X-ray Rietveld refinements and in situ high-temperature X-ray diffraction. X-ray photoelectron spectroscopy testified to the mixed oxidation states of Co(2+)/Co(3+) and Mn(3+)/Mn(4+). The thermal expansion coefficients were found to match the Ce0.8Sm0.2O2-δ electrolyte well. The electrical conductivities were about 41.4, 140.5, and 204.2 S cm(-1) at doping levels of x = 0, 0.5, and 0.75, and the corresponding impedances were 0.041, 0.027, and 0.022 Ω cm(2) at 850 °C, respectively. All of the measured results testify that Sr-doped LaCo0.5Mn0.5O3 compounds are promising cathode materials for intermediate

  11. Structural, electrochemical and magnetic characterization of the layered-type PrBa{sub 0.5}Sr{sub 0.5}Co{sub 2}O{sub 5+δ} perovskite

    SciTech Connect

    Azad, Abul K.; Kim, Jung H.; Irvine, John T.S.

    2014-05-01

    Structural, electrical and magnetic properties of the layered cobaltite PrBa{sub 0.5}Sr{sub 0.5}Co{sub 2}O{sub 5+δ} have been investigated by means of neutron diffraction, electron diffraction, thermogravimetric analysis and SQUID magnetometry. Rietveld analysis of neutron diffraction data shows the ordered distribution of oxygen vacancies in [PrO{sub δ}] planes which doubles the lattice parameters from the simple perovskite cell parameter as a≈2a{sub p} and c≈2a{sub p} (a{sub p} is the cell parameter of the simple Perovskite) yielding tetragonal symmetry in the P4/mmm space group. On heating, above 573 K in air, structural rearrangement takes place and the structure can be defined as a≈a{sub p} and c≈2a{sub p} in the same space group. Oxygen occupancies have been determined as a function of temperature from neutron diffraction results. Initially (≥373 K), oxygen occupancy was increased and then decreased with increasing temperature. It was found that at 973 K the total oxygen loss is calculated about 0.265 oxygen/formula unit. Oxygen vacancy ordering was observed below 573 K, and the oxygen occupancy decreases as cell volume increases with increasing temperature. Area specific resistance (ASR) measurements show a resistance of 0.153 Ωcm{sup 2} and 0.286 Ωcm{sup 2} at 973 K and 923 K, respectively. On cooling, paramagnetic to ferromagnetic and an incomplete ferromagnetic to antiferromagnetic transition takes place. Different behaviours in field cooled and zero-field-cooled measurements leads to a coexistence of ferromagnetic and antiferromagnetic order. - Graphical abstract: Structural phase changes in PrBa{sub 0.5}Sr{sub 0.5}Co{sub 2}O{sub 5+δ} at elevated temperatures determined by neutron powder diffraction. Depending on oxygen occupancy it form different phases at different temperatures. This pictures show the schematic 3D diagram of PrBa{sub 0.5}Sr{sub 0.5}Co{sub 2}O{sub 5+δ} at 295 K (a), 373 K (b) and 573 K (c). Co atoms are inside the

  12. A 0.5 cm(3) four-channel 1.1 mW wireless biosignal interface with 20 m range.

    PubMed

    Morrison, Tim; Nagaraju, Manohar; Winslow, Brent; Bernard, Amy; Otis, Brian P

    2014-02-01

    This paper presents a self-contained, single-chip biosignal monitoring system with wireless programmability and telemetry interface suitable for mainstream healthcare applications. The system consists of low-noise front end amplifiers, ADC, MICS/ISM transmitter and infrared programming capability to configure the state of the chip. An on-chip packetizer ensures easy pairing with standard off-the-shelf receivers. The chip is realized in the IBM 130 nm CMOS process with an area of 2×2 mm(2). The entire system consumes 1.07 mW from a 1.2 V supply. It weighs 0.6 g including a zinc-air battery. The system has been extensively tested in in vivo biological experiments and requires minimal human interaction or calibration. PMID:24681927

  13. Dispenser printed circular thermoelectric devices using Bi and Bi0.5Sb1.5Te3

    NASA Astrophysics Data System (ADS)

    Madan, Deepa; Wang, Zuoqian; Chen, Alic; Winslow, Rich; Wright, Paul K.; Evans, James W.

    2014-01-01

    This work presents polymer based composite materials used in slurries form to print low cost and scalable micro-scale Thermoelectric Generator (TEG) devices. Bi-epoxy composite is chosen as n-type material and mechanical alloy p-type Bi0.5Sb1.5Te3 with 8 wt. % extra Te-epoxy composite is used as p-type material. Maximum power factor of 0.00008 W/m-K2 is achieved for Bi-epoxy and Bi0.5Sb1.5Te3 with 8 wt. % extra Te-epoxy composite dispenser printed thick films. A 10 couple dispenser printed circular TEG prototype produced 130 μW power at ΔT of 70 K resulting in a device areal power density of 1230 μW/cm2.

  14. Optical Properties of Ferroelectric Epitaxial K0.5Na0.5NbO3 Films in Visible to Ultraviolet Range

    PubMed Central

    Pacherova, O.; Kocourek, T.; Jelinek, M.; Dejneka, A.; Tyunina, M.

    2016-01-01

    The complex index of refraction in the spectral range of 0.74 to 4.5 eV is studied by variable-angle spectroscopic ellipsometry in ferroelectric K0.5Na0.5NbO3 films. The 20-nm-thick cube-on-cube-type epitaxial films are grown on SrTiO3(001) and DyScO3(011) single-crystal substrates. The films are transparent and exhibit a significant difference between refractive indices Δn = 0.5 at photon energies below 3 eV. The energies of optical transitions are in the range of 3.15–4.30 eV and differ by 0.2–0.3 eV in these films. The observed behavior is discussed in terms of lattice strain and strain-induced ferroelectric polarization in epitaxial perovskite oxide films. PMID:27074042

  15. Optical Properties of Ferroelectric Epitaxial K0.5Na0.5NbO3 Films in Visible to Ultraviolet Range.

    PubMed

    Chernova, E; Pacherova, O; Kocourek, T; Jelinek, M; Dejneka, A; Tyunina, M

    2016-01-01

    The complex index of refraction in the spectral range of 0.74 to 4.5 eV is studied by variable-angle spectroscopic ellipsometry in ferroelectric K0.5Na0.5NbO3 films. The 20-nm-thick cube-on-cube-type epitaxial films are grown on SrTiO3(001) and DyScO3(011) single-crystal substrates. The films are transparent and exhibit a significant difference between refractive indices Δn = 0.5 at photon energies below 3 eV. The energies of optical transitions are in the range of 3.15-4.30 eV and differ by 0.2-0.3 eV in these films. The observed behavior is discussed in terms of lattice strain and strain-induced ferroelectric polarization in epitaxial perovskite oxide films. PMID:27074042

  16. Dielectric and Piezoelectric Properties of Mn-Doped Na0.5K0.5NbO3 Single Crystals Grown by Flux Method

    NASA Astrophysics Data System (ADS)

    Inagaki, Yumi; Kakimoto, Ken-ichi

    2008-06-01

    Lead-free piezoelectric Mn-doped Na0.5K0.5NbO3 (NKN) single crystals have been fabricated by self flux method using KF-NaF eutectic composition. The color of the obtained crystals was different depending on the doped Mn-chemicals. The large-sized single crystals with crystal face of orthorhombic (110) were obtained by optimized heat-treatment condition of the holding time at 1050 and 950 °C of 5 h and the cooling rate of 0.25 °C/min, and their piezoelectric properties were successfully measured by a resonance-antiresonance method. The piezoelectric strain constant (d33) of 0.5 mol % Mn-doped NKN single crystal was 161 pC/N, and the longitudinal electro-mechanical coupling factor (k33) showed 0.64.

  17. Dielectric, Ferroelectric, and Piezoelectric Properties of Mn-Doped K0.5Na0.5NbO3 Lead-Free Ceramics

    NASA Astrophysics Data System (ADS)

    Lopez-Juarez, Rigoberto; Gomez-Vidales, Virginia; Cruz, M. P.; Villafuerte-Castrejon, M. E.

    2015-08-01

    In this work, study of manganese-doped potassium-sodium niobate ceramics was performed. It was found that, with increasing Mn2+ content from 1 mol.% to 1.5 mol.%, the Q m changed from 60 to near 500 with no appreciable detriment in piezoelectric properties. These properties first increased with 0.5 mol.%, and remained almost constant with 1 mol.% of manganese. Maximum values for d 33, d 31, and k p were 120 pC N-1, 33 pC N-1, and 36%, respectively. Thus, manganese-doped K0.5Na0.5NbO3 ceramics represent an option for high-power applications.

  18. Influences of phase transition and microstructure on dielectric properties of Bi0.5Na0.5Zr1-xTixO3 ceramics

    PubMed Central

    2012-01-01

    Bismuth sodium zirconate titanate ceramics with the formula Bi0.5Na0.5Zr1-xTixO3 [BNZT], where x = 0.3, 0.4, 0.5, and 0.6, were prepared by a conventional solid-state sintering method. Phase identification was investigated using an X-ray diffraction technique. All compositions exhibited complete solubility of Ti4+ at the Zr4+ site. Both a decrease of unit cell size and phase transition from an orthorhombic Zr-rich composition to a rhombohedral crystal structure in a Ti-rich composition were observed as a result of Ti4+ substitution. These changes caused dielectric properties of BNZT ceramics to enhance. Microstructural observation carried out employing SEM showed that average grain size decreased when addition of Ti increased. Grain size difference of BNZT above 0.4 mole fraction of Ti4+ displayed a significant increase of dielectric constant at room temperature. PMID:22221960

  19. Effect of Annealing on Microstructure and Thermoelectric Properties of Sb-Doped Mg2Si0.5Sn0.5 Solid Solution

    NASA Astrophysics Data System (ADS)

    Liu, Ji-Wei; Song, Minghui; Takeguchi, Masaki; Tsujii, Naohito; Isoda, Yukihiro

    2016-01-01

    A 0.33 mol.% Sb-doped Mg2Si0.5Sn0.5 solid solution was synthesized by combining a liquid-solid reaction and hot-pressing process. The effect of annealing (1068 K, 250 h) on microstructure and thermoelectric properties of the solid solution was studied by x-ray diffraction (XRD), scanning electron microscopy, electron probe microanalysis, transmission electron microscopy, and thermoelectric measurements. The successful synthesis of the solid solution with an antifluorite structure was confirmed by XRD. The as-prepared sample contained Si, Sn, and MgO inclusions tens of nanometers in size. After annealing, Si and Sn inclusions disappeared, while the MgO nanoparticles remained almost unchanged; the charge carrier concentration and electrical conductivity decreased and the lattice thermal conductivity increased. As a result, the thermoelectric figure of merit ZT ˜ 0.34 at 394 K for the as-prepared sample deteriorated to ˜0.24 at 388 K after the annealing. The results suggest the presence of a high density of point defects, such as Mg interstitials in the as-prepared sample. The density of these Mg interstitials was reduced by the annealing, thereby affecting the charge carrier concentration and electrical conductivity. The increase in the lattice thermal conductivity upon annealing is attributed to the disappearance of point defects, grain boundaries (grain growth) and Si and Sn inclusions, which all act as phonon scattering centers. Thus, point defects and nanoinclusions might be important for optimizing the thermoelectric properties of a material. This work provides new insights into the effect of annealing on the microstructure and its relationship with the thermoelectric properties of Sb-doped Mg2Si0.5Sn0.5 solid solutions. It also provides hints for developing Mg2Si0.5Sn0.5-based materials with superior thermoelectric properties.

  20. Coexistence of interacting ferromagnetic clusters and small antiferromagnetic clusters in La0.5Ba0.5CoO3.

    PubMed

    Kumar, Devendra; Banerjee, A

    2013-05-29

    We report detailed dc magnetization and linear and nonlinear ac susceptibility measurements on the hole doped disordered cobaltite La0.5Ba0.5CoO3. Our results show that the magnetically ordered state of the system consists of coexisting non-ferromagnetic phases along with percolating ferromagnetic clusters. The percolating ferromagnetic clusters possibly start a magnetic ordering at the Curie temperature of 201.5(5) K. The non-ferromagnetic phases mainly consist of antiferromagnetic clusters with size smaller than the ferromagnetic clusters. Below the Curie temperature the system exhibits an irreversibility in the field cooled and zero field cooled magnetization and a frequency dependence in the peak of ac susceptibility. These dynamical features indicate the possible coexistence of spin-glass phase along with ferromagnetic clusters similar to La(1-x)Sr(x)CoO3 (x ≥ 0.18), but the absence of field divergence in the third harmonic of ac susceptibility and zero field cooled memory clearly rule out any such possibility. We argue that the spin-glass phase in La(1-x)Sr(x)CoO3 (x ≥ 0.18) is associated with the presence of incommensurate antiferromagnetic ordering in non-ferromagnetic phases, which is absent in La0.5Ba0.5CoO3. Our analysis shows that the observed dynamical features in La0.5Ba0.5CoO3 may be due to progressive thermal blocking of ferromagnetic clusters, which is further confirmed by Wohlfarth's model of superparamagnetism. The frequency dependence of the peak of ac susceptibility obeys the Vogel-Fulcher law with τ0 ≈ 10(-9) s. This together with the existence of an AT-line in H-T space indicates the presence of significant inter-cluster interaction among these ferromagnetic clusters.

  1. Effect of grain size on charge and spin correlations in Bi0.5Ca0.5MnO3 manganite nanoparticles

    NASA Astrophysics Data System (ADS)

    Ade, Ramesh; Singh, Rajender

    2016-11-01

    In this work we report the electron spin resonance (ESR) and magnetization (M) studies to understand the effect of grain size (GS) on the charge ordering and spin correlations in Bi0.5Ca0.5MnO3 manganite synthesized by sol-gel method. The suppression of charge ordering (CO), long-range antiferromagnetic (AFM) state, shifting of ferromagnetic (FM)-cluster glass (CG) transition towards higher temperatures and evolution of different magnetic correlations with decrease in GS are discussed in view of the changes in surface to volume ratio of nano-grains.

  2. Characterization of (Ba(0.5)Sr(0.5)) TiO3 Thin Films for Ku-Band Phase Shifters

    NASA Technical Reports Server (NTRS)

    Mueller, Carl H.; VanKeuls, Fredrick W.; Romanofsky, Robert R.; Miranda, Felix A.; Warner, Joseph D.; Canedy, Chadwick L.; Ramesh, Rammamoorthy

    1999-01-01

    The microstructural properties of (Ba(0.5)Sr(0.5)TiO3) (BSTO) thin films (300, 700, and 1400 nm thick) deposited on LaAlO3 (LAO) substrates were characterized using high-resolution x-ray diffractometry. Film crystallinity was the parameter that most directly influenced tunability, and we observed that a) the crystalline quality was highest in the thinnest film and progressively degraded with increasing film thickness; and b) strain at the film/substrate interface was completely relieved via dislocation formation. Paraelectric films such as BSTO offer an attractive means of incorporating low-cost phase shifter circuitry into beam-steerable reflectarray antennas.

  3. Photoluminescence and electrical properties of Eu-doped (Na0.5Bi0.5)TiO3 ferroelectric single crystals

    NASA Astrophysics Data System (ADS)

    Zhang, Haiwu; Zhao, Xiangyong; Deng, Hao; Chen, Chao; Lin, Di; Li, Xiaobing; Yan, Jun; Luo, Haosu

    2014-02-01

    Eu3+-doped Na0.5Bi0.5TiO3 (Eu:NBT) single crystals were grown by a top-seeded solution growth method. Photoluminescence emission and excitation spectra of Eu:NBT were investigated. The two transitions in 7F0 → 5D0 excitation spectra reveal that Eu3+ ions were incorporated into two adjacent crystallographic sites in NBT, i.e., Bi3+ and Na+ sites. The former has a symmetrical surrounding, while the later has a disordered environment, which was confirmed by decay curve measurements. The dielectric dispersion behavior was depressed and the piezoelectric and ferroelectric properties were improved after Eu doping.

  4. Direct band-gap measurement on epitaxial Co{sub 2}FeAl{sub 0.5}Si{sub 0.5} Heusler-alloy films

    SciTech Connect

    Alhuwaymel, Tariq F.; Carpenter, Robert; Yu, Chris Nga Tung; Kuerbanjiang, Balati; Lazarov, Vlado K.; Abdullah, Ranjdar M.; El-Gomati, Mohamed; Hirohata, Atsufumi

    2015-05-07

    In this study, a newly developed band-gap measurement technique has been used to characterise epitaxial Co{sub 2}FeAl{sub 0.5}Si{sub 0.5} (CFAS) films. The CFAS films were deposited on MgO(001) substrate by ultra high vacuum molecular beam epitaxy. The band-gap for the as deposited films was found to be ∼110 meV when measured at room temperature. This simple technique provides a macroscopic analysis of the half-metallic properties of a thin film. This allows for simple optimisation of growth and annealing conditions.

  5. Chemical potential fluctuations in topological insulator (Bi0.5Sb0.5)2Te3-films visualized by photocurrent spectroscopy

    NASA Astrophysics Data System (ADS)

    Kastl, Christoph; Seifert, Paul; He, Xiaoyue; Wu, Kehui; Li, Yongqing; Holleitner, Alexander

    2015-06-01

    We investigate the photocurrent properties of the topological insulator (Bi0.5Sb0.5)2Te3 on SrTiO3-substrates. We find reproducible, submicron photocurrent patterns generated by long-range chemical potential fluctuations, occurring predominantly at the topological insulator/substrate interface. We fabricate nano-plowed constrictions which comprise single potential fluctuations. Hereby, we can quantify the magnitude of the disorder potential to be in the meV range. The results further suggest a dominating photo-thermoelectric current generated in the surface states in such nanoscale constrictions.

  6. Evolution of structure in Na0.5Bi0.5TiO3 single crystals with BaTiO3

    NASA Astrophysics Data System (ADS)

    Ge, Wenwei; Luo, Chengtao; Zhang, Qinhui; Ren, Yang; Li, Jiefang; Luo, Haosu; Viehland, D.

    2014-10-01

    The structural, dielectric, and piezoelectric properties of Na0.5Bi0.5TiO3-x mol. %BaTiO3 (NBT-x%BT) crystals have been investigated. The dielectric and piezoelectric properties of NBT-x%BT were enhanced near x = 5-7. High resolution synchrotron x-ray powder diffraction studies revealed the presence of a phase boundary between monoclinic (Cc) and tetragonal (P4bm) phases near x = 5-7, where the dielectric and piezoelectric properties were enhanced.

  7. Effect of heat treatment on structural and Mössbauer spectroscopic properties of coprecipitated Mn0.5Ni0.5Fe2O4 ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Srinivas, Ch.; Tirupanyam, B. V.; Meena, S. S.; Babu, Ch. Seshu; Sastry, D. L.

    2015-06-01

    Results obtained in a systamatic study by X-ray diffraction and Mösssbauer spectroscopy on the structural and magnetic properties on Mn0.5Ni0.5Fe2O4 ferrite nanoparticles heat treated at 200 °C, 500 °C and 800 °C are reported. Average crystallite sizes are estimated to be in the range (2.6nm - 12.8nm). It is observed that crystallite sizes increase with increase in sintering temperature and random variation in lattice parameter was observed. At relatively low sintering temperatures the samples exhibit superparamagnetism and complete ferrite phase was observed at higher heat treatment.

  8. Far-infrared conductivity measurements of pair breaking in superconducting Nb 0.5 Ti 0.5 N thin films induced by an external magnetic field.

    PubMed

    Xi, Xiaoxiang; Hwang, J; Martin, C; Tanner, D B; Carr, G L

    2010-12-17

    We report the complex optical conductivity of a superconducting thin film of Nb 0.5 Ti 0.5 N in an external magnetic field. The field was applied parallel to the film surface and the conductivity extracted from far-infrared transmission and reflection measurements. The real part shows the superconducting gap, which we observe to be suppressed by the applied magnetic field. We compare our results with the pair-breaking theory of Abrikosov and Gor'kov and confirm directly the theory's validity for the optical conductivity.

  9. Collective dipole behavior and unusual morphotropic phase boundary in ferroelectric Pb(Zr(0.5)Ti(0.5))O3 nanowires.

    PubMed

    Fu, Xiujun; Naumov, Ivan I; Fu, Huaxiang

    2013-02-13

    Dipole collective behavior and phase transition in ferroelectric (FE) Pb(Zr(0.5)Ti(0.5))O(3) nanowires, caused by modulated electric fields, are reported. Our result also leads to the finding of a rather outstanding electromechanical d(31) response in a 8.4 nm diameter PZT wire, which may potentially outperform bulk PMN-PT and PZN-PT. Moreover, we further demonstrate the existence of a new type of morphotropic phase boundary (MPB) that bridges two dissimilar structure phases of different order parameters. Microscopic insights for understanding the collective behavior and the structural phase within the new MPB are provided. PMID:23256599

  10. Study of the intergranular coupling of Cu0.5Tl0.5Ba2Ca2-yMgyCu3O10-δ (y = 0, 0.5, 1.0 and 1.5) superconductors

    NASA Astrophysics Data System (ADS)

    Khurram, A. A.; Khan, Nawazish A.

    2006-06-01

    The intergranular properties of Cu0.5Tl0.5Ba2Ca2-yMgyCu3O10-δ superconductor have been studied by resistivity and AC magnetic susceptibility measurements. Magnesium substitution has been found to improve the interplane coupling in the unit cell of Cu0.5Tl0.5Ba2Ca2-yMgyCu3O10-δ, which in turn would enhance the intergranular coupling. The main objective of the present studies was to observe any possible role played by Mg doping in developing and enhancing the intergranular coupling and flux pinning properties of this compound. Any improvement to the intergrain coupling may be promoted by a change in the oxygen content in the final compound. Since the loss and/or intake of oxygen occurs at Ta>=350 °C, the post-annealing experiments were carried out at 500 °C for 3 h in air, nitrogen and oxygen atmospheres. It was observed from these studies that the oxygen contents decreased in all the samples after post-annealing in air, nitrogen and oxygen atmospheres. The most prominent effects in terms of enhanced superconductivity in the intergranular regions are observed in Mg-doped samples after post-annealing in air. The Mg-doped samples have shown enhanced granular connectivity, since the intergranular coupling peak observed in χ'' in AC susceptibility measurements is shifted to higher temperatures with the increase of Mg concentration. The enhanced intergranular coupling and flux pinning in magnesium-substituted samples is also observed in AC susceptibility measurements in external magnetic fields. The enhancement of intergranular coupling increases the transport critical current density of the samples.

  11. Scandium induced structural transformation and B′:B″ cationic ordering in Pb(Fe{sub 0.5}Nb{sub 0.5})O{sub 3} multiferroic ceramics

    SciTech Connect

    Mallesham, B.; Ranjith, R.; Manivelraja, M.

    2014-07-21

    The current study explores non-magnetic Sc{sup 3+} induced structural transformation, evolution of local B-site cation ordering and associated effect on ferroelectric phase transition temperature T{sub max} (temperature corresponding to dielectric maxima) on increasing the atom percent of Sc substitution in [Pb(Fe{sub 0.5}Nb{sub 0.5})O{sub 3} (PFN)] ceramics. In this regard, the phase pure Pb[(Fe{sub 0.5−x}Sc{sub x})Nb{sub 0.5}]O{sub 3} ceramics with x varying from 0 to 0.5 were synthesized through solid state reaction route. The detailed structural analysis through Rietveld refinement confirms the room temperature transformation from a monoclinic Cm to rhombohedral R3m structure at x = 0.3 mol. % of Sc. Absorption spectra studies show that there is a considerable increment in the bandgap at higher scandium content. Most interestingly, the T{sub max} exhibited an increment for lower scandium contents (x = 0.1 to 0.25) followed by a drop in T{sub max} (x = 0.3 to 0.5). Such anomalous behavior in T{sub max} is expected to arise due to the onset of B′, B″ local cation ordering beyond Sc content x = 0.25. The B-site cation ordering at and beyond x = 0.3 was also confirmed by the evolution of cation order induced Pb-O coupled vibrational mode in Raman scattering studies. In addition, the Mössbauer spectra of PFN (x = 0) and Pb(Fe{sub 0.4}Sc{sub 0.1}Nb{sub 0.5})O{sub 3} (x = 0.1) are reported to verify the spin state and oxidation state of iron. The lattice distortion due to the radius ratio difference between a Sc{sup 3+} cation and Fe{sup 3+} cation in low spin state is responsible for the structural transformation, which in turn facilitates a B′:B″ cation ordering.

  12. Electrical Characterization Induced by Structural Modulation in (Ca0.28Ba0.72)2.5-0.5 x (Na0.5K0.5) x Nb5O15 Ceramics

    NASA Astrophysics Data System (ADS)

    Yang, Bian; Wei, Lingling; Wang, Zhongming; Kang, Shoucheng; Chao, Xiaolian; Yang, Zupei

    2016-01-01

    (Ca0.28Ba0.72)2.5-0.5 x (Na0.5K0.5) x Nb5O15 ceramics (CBNKN, 0.0 ≤ x ≤ 0.4) with `unfilled' tungsten bronze structure were prepared by the conventional solid-state reaction method. Effects of alkalis-introducing concentration in A-sites on the microstructure, dielectric and ferroelectric properties were investigated in detail. Pure tungsten bronze structure could be obtained in all compositions according to the x-ray diffraction patterns. Raman spectroscopy results showed that co-introducing Na+ and K+ in A sites to decrease the structural vacancy could enhance the dielectric and ferroelectric properties, which was attributed to the stronger interaction inside NbO6 octahedron and large distortion degree of NbO6 polar unit. Traditional temperature dependence of dielectric characteristics and well-saturated ferroelectric hysteresis loops were observed for all CBNKN ceramics. The better comprehensive dielectric and ferroelectric properties were obtained at x = 0.2 due to the bigger distortion degree of NbO6 polar unit and the highest densification. Whereas higher alkalis-introducing concentration would deteriorate the physical and electrical properties due to the poor sintering behavior. In addition, the frequency dependence of ɛ around transition temperature ( T c) and the temperature dependence of ferroelectric properties were discussed to further clarify the relationship between composition and performance.

  13. Effect of La-substitution on structural, dielectric and electrical properties of (Bi0.5Pb0.5) (Fe0.5Zr0.25Ti0.25)O3

    NASA Astrophysics Data System (ADS)

    Panda, Niranjan; Pattanayak, Samita; Choudhary, R. N. P.; Kumar, Ashok

    2016-09-01

    As lead zirconium titanate and bismuth ferrite (BFO), members of perovskite family, have high dielectric constant and ferroelectric/ferromagnetic phase transition temperature, they are used for many potential applications including random access memory, sensors. The present work describes the modifications in the ferroelectric behaviour of PZT doped BFO due to substitution of few molar percent of La on Fe-site. A thorough comparative investigation of the frequency and temperature response of dielectric permittivity, dielectric loss, electric modulus, complex impedance and ferroelectric properties of Bi0.5Pb0.5 [Fe(0.5- x) La x (Zr0.25Ti0.25)] O3, where x = 0.0, 0.1, 0.2, 0.3 (hence forth called as BFPZLTO) compounds were studied in a wide frequency range 10 kHz to 1 MHz at temperature range 25-400 °C using ac impedance spectroscopy and electric modulus analysis. The structural analysis of compound revealed the tetragonal phase with space group P4 mm at room temperature. Cole-Cole plots are used for interpretation of relaxation mechanism in the materials. The materials especially the compound with x = 0.3 found more suitable to be used in transducers, RAMs, flip-flop memories, etc., for electronics applications.

  14. Crystal structure analysis of lead free Ba{sub 1-x}La{sub x}[Ti{sub 0.5}(Fe{sub 0.5}Nb{sub 0.5}){sub 0.5}]{sub 1-x/4}O{sub 3} Ceramics

    SciTech Connect

    Patel, Piyush Kumar; Rani, Jyoti; Yadav, K. L.

    2012-06-05

    Single phase Ba{sub 1-x}La{sub x}[Ti{sub 0.5}(Fe{sub 0.5}Nb{sub 0.5}){sub 0.5}]{sub 1-x/4}O{sub 3} [referred as BT-LFN]; x=0, 0.02, 0.04 and 0.06 ceramics have been synthesized by solid - state reaction process and were characterized by X-ray diffraction technique. The microstructure of the ceramics was examined by field emission-scanning electron microscopy (FE-SEM).

  15. Pressure-induced phase transition in La1–xSmxO0.5F0.5BiS2

    DOE PAGES

    Fang, Y.; Yazici, D.; White, B. D.; Maple, M. B.

    2015-09-15

    Electrical resistivity measurements on La1–xSmxO0.5F0.5BiS2 (x = 0.1, 0.3, 0.6, 0.8) have been performed under applied pressures up to 2.6 GPa from 2 K to room temperature. The superconducting transition temperature Tc of each sample significantly increases at a Sm-concentration dependent pressure Pt, indicating a pressure-induced phase transition from a low-Tc to a high-Tc phase. At ambient pressure, Tc increases dramatically from 2.8 K at x = 0.1 to 5.4 K at x = 0.8; however, the Tc values at P > Pt decrease slightly with x and Pt shifts to higher pressures with Sm substitution. In the normal state,more » semiconducting-like behavior is suppressed and metallic conduction is induced with increasing pressure in all of the samples. Furthermore, these results suggest that the pressure dependence of Tc for the BiS2-based superconductors is related to the lattice parameters at ambient pressure and enable us to estimate the evolution of Tc for SmO0.5F0.5BiS2 under pressure.« less

  16. Epitaxial Ferroelectric Ba(0.5)Sr(0.5)TiO3 Thin Films for Room-Temperature High-Frequency Tunable Element Applications

    NASA Technical Reports Server (NTRS)

    Chen, C. L.; Feng, H. H.; Zhang, Z.; Brazdeikis, A.; Miranda, F. A.; VanKeuls, F. W.; Romanofsky, R. R.; Huang, Z. J.; Liou, Y.; Chu, W. K.; Chu, C. W.

    1999-01-01

    Perovskite Ba(0.5)SR(0.5)TiO3 thin films have been synthesized on (001) LaAl03 substrates by pulsed laser ablation. Extensive X-ray diffraction, rocking curve, and pole-figure studies suggest that the films are c-axis oriented and exhibit good in-plane relationship of <100>(sub BSTO)//<100>(sub LAO). Rutherford Backscattering Spectrometry studies indicate that the epitaxial films have excellent crystalline quality with an ion beam minimum yield chi(sub min) Of only 2.6 %. The dielectric property measurements by the interdigital technique at 1 MHz show room temperature values of the relative dielectric constant, epsilon(sub r), and loss tangent, tan(sub delta), of 1430 and 0.007 with no bias, and 960 and 0.001 with 35 V bias, respectively. The obtained data suggest that the as-grown Ba(0.5)SR(0.5)TiO3 films can be used for development of room-temperature high-frequency tunable elements.

  17. Crystal structure of (Li{sub 0.5}K{sub 0.5}){sub 2}CO{sub 3} by neutron powder diffraction analysis

    SciTech Connect

    Idemoto, Yasushi |; Richardson, J.W. Jr.; Loong, C.K.; Koura, Nobuyuki; Kohara, Shinji

    1997-08-01

    The crystal structure of (Li{sub 0.5}K{sub 0.5}){sub 2}CO{sub 3} was determined by neutron powder diffraction. A final weighted R-factor of 4.54% was obtained for the refinement of 2,373 reflections by the Rietveld method from a sample synthesized using {sup 7}Li{sub 2}CO{sub 3} and K{sub 2}CO{sub 3} (99.9% pure). Slight distortion of the CO{sub 3}{sup 2{minus}} units in the monoclinic cell was observed; the O(1)-C-O(2) angle and C-O(3) length are larger than those for the other C-O bonds and O-C-O angles. These local-structure characteristics can be explained by the difference in the ionic size of Li{sup +} and K{sup +}, and the different electrostatic interactions between the cations and CO{sub 3}{sup 2{minus}} units. (Li{sub 0.5}K{sub 0.5}){sub 2}CO{sub 3} is important as a material for molten carbonate fuel cells.

  18. Octahedral distortion induced magnetic anomalies in LaMn{sub 0.5}Co{sub 0.5}O{sub 3} single crystals

    SciTech Connect

    Manna, Kaustuv Elizabeth, Suja; Anil Kumar, P. S.; Bhadram, Venkata Srinu; Narayana, Chandrabhas

    2014-07-28

    Single crystals of LaMn{sub 0.5}Co{sub 0.5}O{sub 3} belonging to the ferromagnetic-insulator and distorted perovskite class were grown using a four-mirror optical float zone furnace. The as-grown crystal crystallizes into an orthorhombic Pbnm structure. The spatially resolved 2D Raman scan reveals a strain-induced distribution of transition metal (TM)–oxygen (O) octahedral deformation in the as-grown crystal. A rigorous annealing process releases the strain, thereby generating homogeneous octahedral distortion. The octahedra tilt by reducing the bond angle TM-O-TM, resulting in a decline of the exchange energy in the annealed crystal. The critical behavior is investigated from the bulk magnetization. It is found that the ground state magnetic behavior assigned to the strain-free LaMn{sub 0.5}Co{sub 0.5}O{sub 3} crystal is of the 3D Heisenberg kind. Strain induces mean field-like interaction in some sites, and consequently, the critical exponents deviate from the 3D Heisenberg class in the as-grown crystal. The temperature-dependent Raman scattering study reveals strong spin-phonon coupling and the existence of two magnetic ground states in the same crystal.

  19. La0 . 5 - xNa0 . 5 + xFe2As2: electron and hole doping in the spacing layer

    NASA Astrophysics Data System (ADS)

    Yan, Jiaqiang; Nandi, S.; Sales, B.; Mandrus, D.

    2015-03-01

    The electron-hole asymmetry in the phase diagram of iron-based superconductors is well illustrated in doped BaFe2As2 by comparing hole-doped Ba1-xKxFe2As2 and electron doped BaFe2-xCoxAs2, mainly due to the availability of high quality single crystals which enable systematic studies using various probes. In Ba1-xKxFe2As2, K-doping takes place at the spacing layer while FeAs layers remain intact. In contrast, Co substitution in BaFe2-xCoxAs2 disturbs the contiguity of the [FeAs4] tetrahedra and interferes with superconductivity in the FeAs layers. This effect coming from substitution at different crystallographic sites has been suggested to contribute to the electron-hole asymmetry. In this talk, I will present the magnetic and structural transitions of La0 . 5 - xNa0 . 5 + xFe2As2. Our results show that La0 . 5 - xNa0 . 5 + xFe2As2, or even compounds with other rare earth and alkali ions in the spacing layer, provides a new material platform for the study of iron-based superconductors. The material could be tuned from electron-doped to hole-doped by varying the ratio between the alkali metal and rare earth ions.

  20. Poling-Written Ferroelectricity in Bulk Multiferroic Double-Perovskite BiFe0.5Mn0.5O3.

    PubMed

    Delmonte, Davide; Mezzadri, Francesco; Gilioli, Edmondo; Solzi, Massimo; Calestani, Gianluca; Bolzoni, Fulvio; Cabassi, Riccardo

    2016-06-20

    We present a comprehensive study of the electrical properties of bulk polycrystalline BiFe0.5Mn0.5O3, a double perovskite synthesized in high-pressure and high-temperature conditions. BiFe0.5Mn0.5O3 shows an antiferromagnetic character with TN = 288 K overlapped with an intrinsic antiferroelectricity due to the Bi(3+) stereochemical effect. Beyond this, the observation of a semiconductor-insulator transition at TP ≈ 140 K allows one to define three distinct temperature ranges with completely different electrical properties. For T > TN, electric transport follows an ordinary thermally activated Arrhenius behavior; the system behaves as a paramagnetic semiconductor. At intermediate temperatures (TP < T < TN), electric transport is best described by Mott's variable range hopping model with lowered dimensionality D = 1, stabilized by the magnetic ordering process and driven by the inhomogeneity of the sample on the B site of the perovskite. Finally, for T < TP, the material becomes a dielectric insulator, showing very unusual poling-induced soft ferroelectricity with high saturation polarization, similar to the parent compound BiFeO3. Under external electric poling, the system irreversibly evolves from antiferroelectric to polar arrangement. PMID:27247990

  1. Structural, dielectric and magnetic properties of (Pb1-xCax)(Fe0.5Nb0.5)O3 solid solution ceramics

    NASA Astrophysics Data System (ADS)

    Puri, Maalti; Bahel, Shalini; Raevski, I. P.; Narang, Sukhleen Bindra

    2016-06-01

    Ceramic samples of (Pb1-xCax)(Fe0.5Nb0.5)O3 with x=0.0, 0.20, 0.40, 0.45, 0.50, 0.55, 0.60 and 1.0 were fabricated by columbite precursor method. All the synthesized samples have a perovskite structure and unit cell volume decreases with increasing Ca content. The substitution of Ca for Pb has been found to have a pronounced effect on structural, dielectric and magnetic properties. Saturated magnetic loops were observed at room temperature for compositions with x≥0.40. The observed maximal magnetization at room temperature is rather small and varies non-monotonically with increasing Ca contents. It is supposed that room-temperature magnetic properties of (Pb1-xCax)(Fe0.5Nb0.5)O3 ceramics might be due to the presence of ferromagnetic impurity, presumably PbFe12O19 and/or CaFe12O19.

  2. Multiferroicity and magnetoelectric coupling enhanced large magnetocaloric effect in DyFe{sub 0.5}Cr{sub 0.5}O{sub 3}

    SciTech Connect

    Yin, L. H.; Yang, J.; Dai, J. M.; Song, W. H.; Zhang, R. R.; Sun, Y. P.

    2014-01-20

    DyFe{sub 0.5}Cr{sub 0.5}O{sub 3} has been synthesized using a sol-gel method. It exhibits ferroelectricity at the antiferromagnetic ordering temperature T{sub N1}∼261 K. Large magnetocaloric effect (MCE) (11.3 J/kg K at 4.5 T) enhanced by magnetoelectric coupling due to magnetic field and temperature induced magnetic transition was observed. Temperature-dependent Raman study shows an anomalous behavior near T{sub N1} in the phonon modes related to the vibration of Dy atoms and stretching of CrO{sub 6}/FeO{sub 6} octahedra, suggesting the ferroelectricity in DyFe{sub 0.5}Cr{sub 0.5}O{sub 3} is associated with the spin-phonon coupling with respect to both Dy and Cr/Fe ions. These results suggest routes to obtain high-temperature multiferroicity and large MCE for practical applications.

  3. Aurivillius-Popper mixed superconductors in BiO--CuO--(Sr/sub 0. 5/, Ca/sub 0. 5/)O system

    SciTech Connect

    Fukuhara, M.; Bhalla, A.S.; Mulay, L.N.; Newnham, R.E.

    1989-03-01

    We report the effect of inhomogeneities on the electric resistivity and ac magnetic susceptibility in Aurivillius-like bismuth mixed phase oxides of the BiO--Cuo--(Sr/sub 0.5/, Ca/sub 0.5/)O system and propose a crystal structure of the major phase having highest T/sub c/. Nominal Aurivillius compositions with molar ratios of BiO/(Sr/sub 0.5/, Ca/sub 0.5/)O = 1/2 are superconductors with T/sub c/ ranging from 83 to 107 K, and are accompanied by a large expansion during sintering due to the formation of Kirkendall voids. T/sub c/ increases with decreasing of the c lattice parameter. An oxide BiSrCaCu/sub 2/O/sub x/ (n = 2) shows a maximum T/sub c/ value of 107 K and an onset of superconductivity at a much higher temperature. It seems that the structure of Bi/sub 2/Sr/sub 2/CaCu/sub 2/O/sub x/ consists of an Aurivillius-like phase having two perovskite layers and a Popper mixed phase. The ac magnetic susceptibility showed an overall decrease in susceptibility with time up to 220 days. This appears to be related to the relief of intralattice strain.

  4. Peak effect in optimally doped p-type single-crystal Ba0.5K0.5Fe2As2 studied by ac magnetization measurements

    NASA Astrophysics Data System (ADS)

    Ge, J.; Gutierrez, J.; Li, J.; Yuan, J.; Wang, H.-B.; Yamaura, K.; Takayama-Muromachi, E.; Moshchalkov, V. V.

    2013-10-01

    We have used the ac magnetic susceptibility to investigate the vortex state in an optimally doped p-type Ba0.5K0.5Fe2As2 single crystal under various ac and dc fields. A peak effect is observed in the temperature dependence of the in-phase ac susceptibility, indicating an order-disorder transition on the vortex phase diagram. The peak effect displays an anomalous history effect compared with other type-II superconductors, which we ascribe to the strong pinning existing in the material. We observe the development of a small dissipation peak at the temperature Tp2 slightly below the peak effect region. Similar to the peak effect boundary, Tp2 delimits a region in the H-T phase diagram which is independent on the ac field amplitude. We argue that this small peak may arise from the softening of the vortex lattice, leading to a collective pinning of the whole vortex lattice. This effect assists and further enhances the peak effect occurring in the Ba0.5K0.5Fe2As2 superconductor.

  5. The Phase Transition Behaviors of Li1xMn0.5Fe0.5PO4 During Lithium Extraction

    SciTech Connect

    Nam, K.; Yoon, W; Zaghib, K; Chung, K; Yang, X

    2009-01-01

    How the structural changes take place in LiMnyFe1-yPO4-type cathode materials during lithium extraction/insertion is an important issue, especially on if they go through the single-phase reaction (i.e., solid solution reaction) or the two-phase reaction regions. Here we report the studies on the phase transition behaviors of a carbon coated Li1-xMn0.5Fe0.5PO4 (Csingle bondLi1-xMn0.5Fe0.5PO4, 0.0 less-than-or-equals, slant x less-than-or-equals, slant 1.0) sample during the first charge using in situ X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD) techniques. The combination of in situ XAS and XRD results clearly identify two two-phase coexistence regions at two voltage plateaus of 3.6 (Fe2+/Fe3+) and 4.2 V (Mn2+/Mn3+) and a narrow intermediate region which proceeds via single-phase reaction in between two two-phase regions. In addition, simultaneous redox reactions of Fe2+/Fe3+ and Mn2+/Mn3+ in the narrow single-phase region are reported and discussed for the first time.

  6. Synthesis, Structure, and Electrochemical Performance of High Capacity Li2Cu0.5Ni0.5O2 Cathodes

    DOE PAGES

    Ruther, Rose E; Zhou, Hui; Dhital, Chetan; Saravanan, Kuppan; Kercher, Andrew K.; Chen, Guoying; Huq, Ashfia; Delnick, Frank M.; Nanda, Jagjit

    2015-09-08

    Orthorhombic Li2NiO2, Li2CuO2, and solid solutions thereof have been studied as potential cathode materials for lithium-ion batteries due to their high theoretical capacity and relatively low cost. While neither endmember shows good cycling stability, the intermediate composition, Li2Cu0.5Ni0.5O2, yields reasonably high reversible capacities. A new synthetic approach and detailed characterization of this phase and the parent Li2CuO2 are presented. The cycle life of Li2Cu0.5Ni0.5O2 is shown to depend critically on the voltage window. The formation of Cu1+ at low voltage and oxygen evolution at high voltage limit the electrochemical reversibility. In situ X-ray absorption spectroscopy (XAS), in situ Raman spectroscopy,more » and gas evolution measurements are used to follow the chemical and structural changes that occur as a function of cell voltage.« less

  7. 59Co nuclear magnetic resonance study of the local distribution of atoms in the Heusler compound Co2FeAl0.5Si0.5

    NASA Astrophysics Data System (ADS)

    Wurmehl, Sabine; Kohlhepp, Jürgen T.; Swagten, Henk J. M.; Koopmans, Bert

    2012-02-01

    In this work, the spin-echo nuclear magnetic resonance (NMR) technique is used to probe the local structure of Co2FeAl0.5Si0.5 bulk samples. The 59Co NMR spectrum of the Heusler compound Co2FeAl0.5Si0.5 consists of four main resonance lines with an underlying sub-structure. The splitting into the main resonance lines is explained by contributions of the B2 type structure. The sub-lines are attributed to a random distribution of Al and Si. By comparing the experimental results with an appropriate multinomial distribution, the fraction of the Al/Si intermixing and the ratio between the contributing structure types is assigned. The main structural contribution of as-cast bulk samples is of B2 type with 38% of L21 contributions. The L21 contribution can be enhanced to 59% by an appropriate annealing process. However, B2 contributions are still present after annealing. Additional foreign phases such as fcc-Co and Co-Al, with relative contributions of less than one percent, are also found in both as-cast and annealed samples. Resonance lines related to slight amounts of the ternary, parental Heusler compounds Co2FeAl and Co2FeSi are also observed.

  8. Enhanced photocatalytic activity over Cd0.5Zn0.5S with stacking fault structure combined with Cu2+ modified carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Gong, Beini; Lu, Yonghong; Wu, Pingxiao; Huang, Zhujian; Zhu, Yajie; Dang, Zhi; Zhu, Nengwu; Lu, Guining; Huang, Junyi

    2016-03-01

    For enhanced photocatalytic performance of visible light responsive CdZnS, a series of Cd0.5Zn0.5S solid solutions were fabricated by different methods. It was found that the semiconductor obtained through the precipitation-hydrothermal method (CZS-PH) exhibited the highest photocatalytic hydrogen production rate of 2154 μmol h-1 g-1. The enhanced photocatalytic hydrogen production of CZS-PH was probably due to stacking fault formation as well as narrow bandgap, a large surface area and a small crystallite size. Based on this, carbon nanotubes modified with Cu2+ (CNTs (Cu)) were used as a cocatalyst for CZS-PH. The addition of CNTs (Cu) enhanced notably the absorption of the composites for visible light. The highest photocatalytic hydrogen production rate of the Cd0.5Zn0.5S-CNTs (Cu) composite was 2995 μmol h-1 g-1 with 1.0 wt.% of CNTs (Cu). The improvement of the photocatalytic activity by loading of CNTs (Cu) was not due to alteration of bandgap energy or surface area, and was probably attributed to suppression of the electron-hole recombination by the CNTs, with Cu2+ anchored in the interface optimizing the photogenerated electron transfer pathway between the semiconductor and CNTs. We report here the successful combination of homojunction and heterojunction in CdZnS semiconductor, which resulted in promotion of charge separation and enhanced photocatalytic activity.

  9. Enhancement of transition temperature in Fe{sub x}Se{sub 0.5}Te{sub 0.5} film via iron vacancies

    SciTech Connect

    Zhuang, J. C.; Yeoh, W. K. E-mail: zxshi@seu.edu.cn; Cui, X. Y.; Ringer, S. P.; Kim, J. H.; Shi, D. Q.; Wang, X. L.; Dou, S. X.; Shi, Z. X. E-mail: zxshi@seu.edu.cn

    2014-06-30

    The effects of iron deficiency in Fe{sub x}Se{sub 0.5}Te{sub 0.5} thin films (0.8 ≤ x ≤ 1) on superconductivity and electronic properties have been studied. A significant enhancement of the superconducting transition temperature (T{sub C}) up to 21 K was observed in the most Fe deficient film (x = 0.8). Based on the observed and simulated structural variation results, there is a high possibility that Fe vacancies can be formed in the Fe{sub x}Se{sub 0.5}Te{sub 0.5} films. The enhancement of T{sub C} shows a strong relationship with the lattice strain effect induced by Fe vacancies. Importantly, the presence of Fe vacancies alters the charge carrier population by introducing electron charge carriers, with the Fe deficient film showing more metallic behavior than the defect-free film. Our study provides a means to enhance the superconductivity and tune the charge carriers via Fe vacancy, with no reliance on chemical doping.

  10. A study on the wake-up effect of ferroelectric Hf0.5Zr0.5O2 films by pulse-switching measurement.

    PubMed

    Kim, Han Joon; Park, Min Hyuk; Kim, Yu Jin; Lee, Young Hwan; Moon, Taehwan; Kim, Keum Do; Hyun, Seung Dam; Hwang, Cheol Seong

    2016-01-21

    The appearance of ferroelectric (FE) and anti-ferroelectric (AFE) properties in HfO2-based thin films is highly intriguing in terms of both the scientific context and practical application in various electronic and energy-related devices. Interestingly, these materials showed a "wake-up effect", which refers to the increase in remanent polarization with increasing electric field cycling number before the occurrence of the fatigue effect. In this work, the wake-up effect from Hf0.5Zr0.5O2 was carefully examined by the pulse-switching experiment. In the pristine state, the Hf0.5Zr0.5O2 film mostly showed FE-like behavior with a small contribution from AFE-like distortion, which could be ascribed to the involvement of the AFE phase. The field cycling of only 100 cycles almost completely transformed the AFE phase into the FE phase by depinning the pinned domains. The influence of field cycling on the interfacial layer was also examined through the pulse-switching experiments. PMID:26511062

  11. A study on the wake-up effect of ferroelectric Hf0.5Zr0.5O2 films by pulse-switching measurement

    NASA Astrophysics Data System (ADS)

    Kim, Han Joon; Park, Min Hyuk; Kim, Yu Jin; Lee, Young Hwan; Moon, Taehwan; Kim, Keum Do; Hyun, Seung Dam; Hwang, Cheol Seong

    2016-01-01

    The appearance of ferroelectric (FE) and anti-ferroelectric (AFE) properties in HfO2-based thin films is highly intriguing in terms of both the scientific context and practical application in various electronic and energy-related devices. Interestingly, these materials showed a ``wake-up effect'', which refers to the increase in remanent polarization with increasing electric field cycling number before the occurrence of the fatigue effect. In this work, the wake-up effect from Hf0.5Zr0.5O2 was carefully examined by the pulse-switching experiment. In the pristine state, the Hf0.5Zr0.5O2 film mostly showed FE-like behavior with a small contribution from AFE-like distortion, which could be ascribed to the involvement of the AFE phase. The field cycling of only 100 cycles almost completely transformed the AFE phase into the FE phase by depinning the pinned domains. The influence of field cycling on the interfacial layer was also examined through the pulse-switching experiments.

  12. Phase characteristics of 0.92Bi0.5Na0.5TiO3-0.08BiAlO3 ceramics

    NASA Astrophysics Data System (ADS)

    Peng, Wei; Mao, Chaoliang; Liu, Zhen; Dong, Xianlin; Cao, Fei; Wang, Genshui

    2015-03-01

    The phase characteristics of 0.92Bi0.5Na0.5TiO3-0.08BiAlO3 lead-free ceramics were investigated systematically. The loss tangent of poled sample shows a broad peak when heating to about 80 °C, i.e., depolarization temperature Td. The polarization-electric field hysteresis loops at different temperature exhibit the feature of ferroelectric (FE)- antiferroelectric (AFE) phase transition and the co-existence of FE and AFE phase. The pyroelectric coefficients curve confirms its diffusion behaviors. The initial hysteresis loop and switching current curves under Td indicate the co-existence of FE and AFE phase. The domain morphology of transmission electron microscopy supports the co-existence of FE and AFE phase. Our work not only exhibit that the FE and AFE phase characteristics of 0.92Bi0.5Na0.5TiO3-0.08BiAlO3 ceramics but also they may be helpful for further investigation on lead-free ceramics.

  13. Relative Stability of FE and AFE States in (Na0,5Bi0,5) TiO3-based Solid Solutions

    NASA Astrophysics Data System (ADS)

    Sobolev, V. L.; Ishchuk, V. M.; Gusakova, L. G.; Kisel, N. G.; Kuzenko, D. V.; Spiridonov, N. A.

    2015-03-01

    Changes of the relative stability of antiferroelectric (AFE) and ferroelectric (FE) phases in the [(Na0.5Bi0.5)0.80 Ba0.20](Ti1-yBy) O3 system of solid solutions with the B-site ion substitutions have been studied. Ions of zirconium and tin along some ions complexes such as (InNb), (FeNb) and several others were used for substitutions. The increase in the substituent ion content leads to nearly linear variation of the crystal cell size along with changes of the relative stability of the AFE and FE phases according to the tolerance factor variation. Substituent ions with ionic radii larger than the ionic radius of original ion evoke a decrease of the FE-AFE phase transition temperature. The substituent ions with smaller ionic radii have the opposite effect. Our results demonstrate that the size of the substituent ion causes a predominant influence on the relative stability of the FE and AFE states in (Na0.5Bi0.5) TiO3-based solid solutions. Our studies also indicate the way to raise the FE-AFE phase transition temperature.

  14. Superparamagnetic behavior of heat treated Mg0.5Zn0.5Fe2O4 ferrite nanoparticles studied by Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Srinivas, Ch.; Singh, S. B.; Tirupanyam, B. V.; Meena, S. S.; Yusuf, S. M.; Prasad, S. A. V.; Krishna, K. S. Rama; Sastry, D. L.

    2016-05-01

    Nanoparticles of Mg0.5Zn0.5Fe2O4 ferrite have been synthesized by co-precipitation method. XRD and Mössbauer spectroscopic results of Mg0.5Zn0.5Fe2O4 annealed at 200 °C, 500 °C and 800 °C are reported. It was observed that the crystallite size increases and the lattice parameter decreases with increase in annealing temperature. The observed decrease in lattice strain supports the increase in crystallite size. The Mössbauer spectra of the samples annealed at 200 °C and 500 °C exhibits superparamagnetic doublets whereas the Mössbauer spectrum of the sample annealed at 800 °C exhibits paramagnetic doublet along with weak sextet of hyperfine interaction. The values of isomer shift resemble the presence of high spin iron ions. The studied ferrite nanoparticles are suitable for biomedical applications. The results are incorporated employing core-shell model and cation redistribution.

  15. Superparamagnetic state by linear and non-linear AC magnetic susceptibility in Mn0.5Zn0.5Fe2O4 ferrites nanoparticles.

    PubMed

    Suneetha, T; Kundu, S; Kashyap, Subhash C; Gupta, H C; Nath, T K

    2013-01-01

    The Mn0.5Zn0.5Fe2O4 nanoparticles has been synthesized using citrate-gel-precursor method. The direct mixing of nitrates and acetates yields homogeneous nanoparticles. Phase formation and crystal structure of the synthesized powder were examined through the X-ray diffraction (XRD). Fourier transform infrared (FTIR) spectra of the sample confirm the spinel structure. The average particle size was determined by transmission electron microscopy (TEM) and field emission scanning electron microscopy (FESEM). The average particle size is found to be about 13 nm. Superparamagnetic-like nature of the nanoparticles of Mn0.5Zn0.5Fe2O4 has been revealed through various dc and linear and non-linear ac magnetization measurements. However, the nanoparticles do not behave like ideal non-interacting superparamagnets. The magnetic particle size is found to be about 8 nm with saturation magnetization about 18.1 emu/g. The blocking temperature (T(B)) of the nanoparticle assembly is found to be about 150 K as observed from dc and ac magnetization measurements. The frequency dependence of the blocking temperature (T(B)) is found to follow Vogel-Fulcher law. The associated characteristic time tau0 is found to be 10(-5) s. This value is different from that generally found for non-interacting superparamagnetic (SPM) systems (tau0 = 10(-9)-10(-10) s).

  16. Theoretical study of magnetic properties and x-ray magnetic circular dichroism of the ordered Fe{sub 0.5}Pd{sub 0.5} alloy

    SciTech Connect

    Galanakis, I.; Ostanin, S.; Alouani, M.; Dreysse, H.; Wills, J. M.

    2000-01-01

    A detailed theoretical study of magnetic and structural properties of Fe{sub 0.5}Pd{sub 0.5} ordered face-centered tetragonal (fct) alloy, using both the local spin density approximation (LSDA) and the generalized gradient approximation (GGA), is presented. The total energy surface as a function of the lattice parameters a and c shows a long valley where stable structures may exist. Our calculation using the GGA predicts a magnetic phase transition from perpendicular to parallel magnetization as a function of the lattice parameter, whereas LSDA favors always the [001] magnetization axis for all values of the lattice parameters. The spin and orbital magnetic moments and x-ray magnetic circular dichroism spectra are calculated for the easy [001] and the hard [100] magnetization axis and for three sets of experimental lattice parameters, and are compared to the available experimental results on these films. A supercell calculation for a 4 monolayer Fe{sub 0.5}Pd{sub 0.5} thin film produced similar results. While the spin magnetic moments are in fair agreement with experiment, the orbital magnetic moments are considerably underestimated. To improve the agreement with experiment we included an atomic orbital polarization term; however, the computed orbital moments scarcely changed. (c) 2000 The American Physical Society.

  17. Structural, Dielectric, and Electrical Properties of Bi1- x Pb x Fe1- x (Zr0.5Ti0.5) x O3

    NASA Astrophysics Data System (ADS)

    Panda, Niranjan; Pattanayak, Samita; Choudhary, R. N. P.

    2015-12-01

    Polycrystalline samples of Bi1- x Pb x Fe1- x (Zr0.5Ti0.5) x O3 (BPFZTO) with x = 0.0, 0.2, 0.3, and 0.4 were prepared by high-temperature solid-state reaction. Preliminary structural analysis of calcined powders of the materials by use of x-ray powder diffraction confirmed formation of single-phase systems with the tetragonal structure. Room-temperature scanning electron micrographs of the samples revealed uniform distribution of grains of low porosity and different dimensions on the surface of the samples. The frequency-temperature dependence of dielectric and electric properties was studied by use of dielectric and complex impedance spectroscopy over a wide range of frequency (1 kHz to 1 MHz) at different temperatures (25-500°C). The dielectric constant of BiFeO3 (BFO) was enhanced by substitution with Pb(Zr0.5Ti0.5)O3 (PZT) whereas the dielectric loss of the BPFZTO compounds decreased with increasing PZT content. A significant contribution of both grains and grain boundaries to the electrical response of the materials was observed. The frequency-dependence of the ac conductivity of BPFZTO followed Jonscher's power law. Negative temperature coefficient of resistance behavior was observed for all the BPFZTO samples. Conductivity by thermally excited charge carriers and oxygen vacancies in the materials was believed to be of the Arrhenius-type.

  18. Location of trivalent lanthanide dopant energy levels in (Lu{sub 0.5}Gd{sub 0.5}){sub 2}O{sub 3}

    SciTech Connect

    Retot, H.; Viana, B.; Bessiere, A.; Galtayries, A.

    2011-06-15

    The location of Ln{sup 3+} dopant energy levels relative to bands in (Lu{sub 0.5}Gd{sub 0.5}){sub 2}O{sub 3} was studied. A several-steps analysis of XPS measurements on heavy lanthanides sesquioxides Ln{sub 2}O{sub 3} (Ln = Gd, Tb, Dy, Er, Tm, Yb, Lu) and on Sc{sub 2}O{sub 3} and Y{sub 2}O{sub 3} reference materials were used to locate Ln{sup 3+} dopant ground state relative to the top of the valence band in (Lu{sub 0.5}Gd{sub 0.5}){sub 2}O{sub 3} within an error bar of {+-}0.4 eV. The agreement between XPS data and model was found improved relative to previous studies. When compared to XPS analysis, prediction based on optical absorption shows a slight underestimation attributed to the lack of precision in Ce{sup 4+} charge transfer band measurement.

  19. (Tl0.5Pb0.5)(Sr1-xBax)2(Ca1-yGdy)Cu2Oz 1212 Superconductors

    NASA Astrophysics Data System (ADS)

    Gritzner, G.; Sudra, H.; Eder, M.

    2006-06-01

    Thallium-free precursors for bulk superconductors with the overall composition (Tl0.5Pb0.5)(Sr1-xBax)2(Ca1-yGdy)Cu2Oz (x = 0.0, 0.05, 0.1, 0.15, 0.2, 0.25, y = 0.0, 0.05, 0.1, 0.2, 0.3, 0.4) were prepared via wet chemical gel techniques. The respective amounts of Tl2O3, PbO and Gd2O3 were co-milled to the precursor and the mixture was subjected to a heat treatment first at 850 °C followed by sintering at 925 °C in order to optimize the superconducting properties of the bulk material. X-ray diffraction showed that samples with x and y equal to or smaller than 0.2 were nearly phase-pure. While changes in the x value had little effect on the properties of the materials, a Gd stoichiometry of 0.2 yielded the best results in this series. Critical temperatures around 100 K were obtained for samples with the composition (Tl0.5Pb0.5)(Sr1-xBax)2Ca0.8Gd0.2)Cu2Oz.

  20. Chemically stable perovskites as cathode materials for solid oxide fuel cells: La-doped Ba0.5Sr0.5Co0.8Fe0.2O(3-δ).

    PubMed

    Kim, Junyoung; Choi, Sihyuk; Jun, Areum; Jeong, Hu Young; Shin, Jeeyoung; Kim, Guntae

    2014-06-01

    Ba0.5Sr0.5Co0.8Fe0.2O(3-δ) (BSCF) has won tremendous attention as a cathode material for intermediate-temperature solid-oxide fuel cells (IT-SOFC) on the basis of its fast oxygen-ion transport properties. Nevertheless, wide application of BSCF is impeded by its phase instabilities at intermediate temperature. Here we report on a chemically stable SOFC cathode material, La0.5Ba0.25Sr0.25Co0.8Fe0.2O(3-δ) (LBSCF), prepared by strategic approaches using the Goldschmidt tolerance factor. The tolerance factors of LBSCF and BSCF indicate that the structure of the former has a smaller deformation of cubic symmetry than that of the latter. The electrical property and electrochemical performance of LBSCF are improved compared with those of BSCF. LBSCF also shows excellent chemical stability under air, a CO2-containg atmosphere, and low oxygen partial pressure while BSCF decomposed under the same conditions. Together with this excellent stability, LBSCF shows a power density of 0.81 W cm(-2) after 100 h, whereas 25 % degradation for BSCF is observed after 100 h.

  1. Liquid phase sintering of 20Bi(Zn0.5Ti0.5)O 3-80BaTiO3 dielectrics with bismuth-zinc-borate and bismuth borosilicate glasses

    NASA Astrophysics Data System (ADS)

    Shahin, David I.

    Dielectrics in the Bi(Zn0.5Ti0.5)O3-BaTiO 3 system (specifically 20BZT-80BT, in mol%) are promising candidates for high energy density capacitor applications due to broad temperature-dependent dielectric constant maxima and a relatively field-independent permittivity. Bulk samples require sintering temperatures of greater than 1180°C to reach useful densities. Due to incompatibility of Bi with low-pO2 processing, BZT-BT-based multilayer capacitors must utilize noble metal electrodes that resist oxidation during sintering. Sintering temperatures must be reduced to allow use of less expensive electrode materials (Cu, etc.). This work studies the reduced temperature sintering behavior and dielectric properties of BZT-BT sintered with 30Bi2O3-30ZnO-40B 2O3 and 50Bi2O3-25B2O 3-25SiO2 (mol%) liquid phase formers. Dielectrics sintered with 1v% borate additions and 5v% additions of either the borate or borosilicate achieved relative densities greater than 95% after sintering at 1000°C for four hours. All compositions retained the relaxor behavior exhibited by pure 20BZT-80BT. Increased borate additions led to greater dielectric constant reductions, while increased borosilicate additions yielded no clear trend in the dielectric constant reduction. Energy densities were estimated between 0.3-0.5 J/cm3; smaller glass additions typically led to larger energy densities. Dielectrics sintered with 1v% borate additions are of interest due to their high relative densities (approx. 96%) and energy densities of approximately 0.5 J/cm3 under 100kV/cm electric fields. Studies of BZT-BT/glass interfaces revealed the formation of crystalline interfacial layers less than 10 microns thick. The borate formed a bismuth titanate phase (likely Bi4Ti3O12) during heating to 700°C, whereas the borosilicate formed a barium silicate phase (likely BaSiO3) during processing to 800°C. Similar phases are expected to be present in the liquid phase sintered dielectrics and likely affect the BZT

  2. Magnetoelectric coupling study in multiferroic Pb(Fe{sub 0.5}Nb{sub 0.5})O{sub 3} ceramics through small and large electric signal standard measurements

    SciTech Connect

    Raymond, Oscar; Siqueiros, Jesus M.; Font, Reynaldo; Portelles, Jorge

    2011-05-01

    Multifunctional multiferroic materials such as the single phase compound Pb(Fe{sub 0.5}Nb{sub 0.5})O{sub 3} (PFN), where ferroelectric and antiferromagnetic order coexist, are very promising and have great interest from the academic and technological points of view. In this work, coupling of the ferroelectric and magnetic moments is reported. For this study, a combination of the small signal response using the impedance spectroscopy technique and the electromechanical resonance method with the large signal response through standard ferroelectric hysteresis measurement, has been used with and without an applied magnetic field. The measurements to determine the electrical properties of the ceramic were performed as functions of the bias and poling electric fields. A simultaneous analysis of the complex dielectric constant {epsilon}-tilde, impedance Z-tilde, electric modulus M-tilde, admittance Y-tilde, and the electromechanical parameters and coupling factors is presented. The results are correlated with a previous study of structural, morphological, small signal dielectric frequency-temperature response, and the ferroelectric hysteretic, magnetic and magnetodielectric behaviors. The observed shifts of the resonance and antiresonance frequency values can be associated with change of the ferroelectric domain size favored by the readjustment of the oxygen octahedron when the magnetic field is applied. From P-E hysteresis loops obtained without and with an external applied magnetic field, a dc magnetoelectric coupling effect with maximum value of 4 kV/cm T (400 mV/cm Oe) was obtained.

  3. Structure and properties of Bi(Zn0.5Ti0.5)O3- Pb(Zr(1-x)Ti(x))O3 ferroelectric single crystals grown by a top-seeded solution growth technique.

    PubMed

    Wang, Bixia; Wu, Xiaoqing; Ren, Wei; Ye, Zuo-Guang

    2015-06-01

    Bi(Zn0.5Ti0.5)O3 (BZT)-modified Pb(Zr(1-x)Ti(x))O3 (PZT) single crystals have been grown using a top-seeded solution growth technique and characterized by various methods. The crystal structure is found to be rhombohedral by means of X-ray powder diffraction. The composition and homogeneity of the as-grown single crystals are studied by laser ablation inductively coupled plasma mass spectrometry and X-ray photoelectron spectroscopy. The domain structure of a (001)(cub) platelet is investigated by polarized light microscopy (PLM), which confirms the rhombohedral symmetry. The paraelectric-to-ferroelectric phase transition temperature T(C) is found to be 313°C with the absence of rhombohedral-tetragonal phase transition. The ferroelectric properties of the ternary crystals are enhanced by the BZT substitution with a remanent polarization of 28 μC/cm(2) and a coercive field E(C) of 22.1 kV/cm.

  4. Nonlinear optical properties of pulsed laser deposited Gd2O3 and Dy2O3 doped K0.5Na0.5NbO3 thin films

    NASA Astrophysics Data System (ADS)

    Peddigari, Mahesh; Pattipaka, Srinivas; Bharti, Gyan Prakash; Khare, Alika; Dobbidi, Pamu

    2016-08-01

    We report the structural and nonlinear optical properties of Gd2O3 and Dy2O3 doped (K0.5Na0.5)NbO3 (KNN) lead-free thin films fabricated by pulsed laser deposition technique. The crystal structure of the films was analyzed by using Rietveld method. The higher tetragonality and improved surface morphology was observed for the rare-earth oxide doped films. The change in crystal structure and tetragonality with these dopants was explained in terms of change in the internal vibration modes of NbO6 octahedra. The nonlinear optical properties of the films were measured by using single beam Z-scan technique with a continuous wave He-Ne laser (λ = 632.8 nm). All the films have shown a large third-order nonlinear susceptibility and observed to be enhanced for rare-earth doped KNN thin films (|χ(3)| = 2.69 × 10-3 esu). The maximum nonlinear refractive index, n2 = 2.02 × 10-5 cm2/W, and nonlinear absorption coefficient, β = 3.48 cm/W, were obtained for Gd2O3, and Dy2O3 doped films respectively. These results indicate that rare-earth doped KNN thin films are potential candidates for nonlinear photonic applications.

  5. Ethylene production by ODHE in catalytically modified Ba(0.5)Sr(0.5)Co(0.8)Fe(0.2)O(3-δ) membrane reactors.

    PubMed

    Lobera, M Pilar; Escolástico, Sonia; Garcia-Fayos, Julio; Serra, José M

    2012-08-01

    Process intensification by the integration of membranes and high-temperature reactors offers several advantages with regard to conventional process schemes, that is, energy saving, safe operation, reduced plant/unit size, and higher process performance, for example, higher productivity, catalytic activity, selectivity, or stability. We present the study of oxidative dehydrogenation of ethane at 850 °C on a catalytic membrane reactor based on a mixed ionic-electronic conducting membrane. The surface of the membrane made of Ba(0.5)Sr(0.5)Co(0.8)Fe(0.2)O(3-δ) has been activated by using different porous catalytic layers based on perovskites. The layer was deposited by screen printing, and the porosity and thickness was studied for the catalyst composition. The different catalyst formulations are based on partial substitution of A- and B-site atoms of doped strontium ferrite/cobaltites (A(0.6)Sr(0.4)Co(0.5)Fe(0.5)O(3-δ) and Ba(0.6)Sr(0.4)BO(3-δ)) and were synthesized by an ethylenediaminetetraacetic acid-citrate complexation route. The use of a disk-shaped membrane in the reactor enabled the direct contact of gaseous oxygen and hydrocarbons to be avoided, and thus, the ethylene content increased. High ethylene yields (up to ≈81 %) were obtained by using a catalytic coating based on Ba(0.5)Sr(0.5)Co(0.8)Fe(0.2)O(3-δ), which included macropores produced by the addition of graphite platelets into the screen-printing ink. The promising catalytic results obtained with this catalytically modified membrane reactor are attributed to the combination of 1) the high activity, as a result of the high temperature and oxygen species diffusing through the membrane; 2) the control of oxygen dosing and the low concentration of molecules in the gas phase; and 3) suitable fluid dynamics, which enables appropriate feed contact with the membrane and the rapid removal of products.

  6. Ethylene production by ODHE in catalytically modified Ba(0.5)Sr(0.5)Co(0.8)Fe(0.2)O(3-δ) membrane reactors.

    PubMed

    Lobera, M Pilar; Escolástico, Sonia; Garcia-Fayos, Julio; Serra, José M

    2012-08-01

    Process intensification by the integration of membranes and high-temperature reactors offers several advantages with regard to conventional process schemes, that is, energy saving, safe operation, reduced plant/unit size, and higher process performance, for example, higher productivity, catalytic activity, selectivity, or stability. We present the study of oxidative dehydrogenation of ethane at 850 °C on a catalytic membrane reactor based on a mixed ionic-electronic conducting membrane. The surface of the membrane made of Ba(0.5)Sr(0.5)Co(0.8)Fe(0.2)O(3-δ) has been activated by using different porous catalytic layers based on perovskites. The layer was deposited by screen printing, and the porosity and thickness was studied for the catalyst composition. The different catalyst formulations are based on partial substitution of A- and B-site atoms of doped strontium ferrite/cobaltites (A(0.6)Sr(0.4)Co(0.5)Fe(0.5)O(3-δ) and Ba(0.6)Sr(0.4)BO(3-δ)) and were synthesized by an ethylenediaminetetraacetic acid-citrate complexation route. The use of a disk-shaped membrane in the reactor enabled the direct contact of gaseous oxygen and hydrocarbons to be avoided, and thus, the ethylene content increased. High ethylene yields (up to ≈81 %) were obtained by using a catalytic coating based on Ba(0.5)Sr(0.5)Co(0.8)Fe(0.2)O(3-δ), which included macropores produced by the addition of graphite platelets into the screen-printing ink. The promising catalytic results obtained with this catalytically modified membrane reactor are attributed to the combination of 1) the high activity, as a result of the high temperature and oxygen species diffusing through the membrane; 2) the control of oxygen dosing and the low concentration of molecules in the gas phase; and 3) suitable fluid dynamics, which enables appropriate feed contact with the membrane and the rapid removal of products. PMID:22791570

  7. High Piezoelectric Response in (Li0.5Sm0.5)2+-Modified 0.93Bi0.5Na0.5TiO3-0.07BaTiO3 Near the Nonergodic-Ergodic Relaxor Transition

    NASA Astrophysics Data System (ADS)

    Xu, Jiwen; Li, Qinglin; Zhou, Changrong; Zeng, Weidong; Xiao, Jianrong; Ma, Jiafeng; Yuan, Changlai; Chen, Guohua; Rao, Guanghui; Li, Xuqiong

    2016-06-01

    The (Bi0.5Na0.5)TiO3-BaTiO3 system is a promising Pb-free piezoelectric material to substitute for environmentally undesirable Pb-based ferroelectrics. However, understanding the origin of its high piezoelectric response is a fundamental issue that has remained unclear for decades. Here, complex ions (Li0.5Sm0.5)2+ were introduced to dictate the stability of the electrically-induced ferroelectric state in 0.93(Bi0.5Na0.5)1- x (Li0.5Sm0.5) x TiO3-0.07BaTiO3 relaxor ceramics. The applied electric field induces a phase transition from a non-ergodic state to a ferroelectric state as well as the realignment of ferroelectric domains. The non-ergodic relaxor state with x = 0-0.02 is accompanied by relatively high piezoelectric activity and the strongest piezoelectricity is observed near the crossover from the nonergodic to the ergodic state. The stable␣ferroelectric state cannot survive after the removal of the application electric field for the high doping level due to the enhancement of the random field, which is responsible for the rapid decrease of piezoelectric properties for x > 0.02 compositions.

  8. 47 CFR 0.5 - General description of Commission organization and operations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...), 303(r) and 5(c)(i), Communications Act of 1934, as amended; 47 CFR 0.61 and 0.283) Editorial Note: For... and operations. 0.5 Section 0.5 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL COMMISSION... Engineering and Technology. (3) Office of General Counsel. (4) Office of Strategic Planning and...

  9. Phase structure and piezoelectric properties of (1-x)K0.48Na0.52Nb0.95Sb0.05O3-x(Bi0.5Na0.5)0.9(Li0.5Ce0.5)0.1ZrO3 lead-free piezoelectric ceramics

    NASA Astrophysics Data System (ADS)

    Xing, Jie; Tan, Zhi; Jiang, Laiming; Chen, Qiang; Wu, Jiagang; Zhang, Wen; Xiao, Dingquan; Zhu, Jianguo

    2016-01-01

    (1-x)K0.48Na0.52Nb0.95Sb0.05O3-x(Bi0.5Na0.5)0.9(Li0.5Ce0.5)0.1ZrO3 [(1-x)KNNS-xBNLCZ] lead-free piezoceramics were prepared by the conventional solid state sintering method. The effects of BNLCZ contents on their phase structure, microstructure, and piezoelectric properties were investigated. All the samples show a pure perovskite structure, and no secondary phases were formed in the detected range. The rhombohedral and tetragonal phases of (1-x)KNNS-xBNLCZ coexist in the composition range of 0.0325 ≤ x ≤ 0.0425 at room temperature. A remarkably strong piezoelectricity was obtained by the addition of appropriate BNLCZ contents. The excellent piezoelectric properties of the ceramics with x = 0.04 were obtained: d33 ˜ 485 pC/N, kp ˜ 48%, and TC ˜ 227 °C. All the results show that the introduction of (Bi0.5Na0.5)0.9(Li0.5Ce0.5)0.1ZrO3 is a very effective way to form the rhombohedral and tetragonal phase coexistence of potassium-sodium niobate-based ceramics, which can improve its piezoelectric properties.

  10. A study on the extent of exchange coupling between (Ba0.5Sr0.5Fe12O19)1-x(CoFe2O4)x magnetic nanocomposites synthesized by solgel combustion method

    NASA Astrophysics Data System (ADS)

    Harikrishnan, V.; Ezhil Vizhi, R.

    2016-11-01

    One step citrate gel combustion method followed by high temperature annealing was employed for preparing (Ba0.5Sr0.5Fe12O19)1-x(CoFe2O4)x (x=0.1, 0.2, and 0.3) composite ferrite powders. The powders were subjected to annealing at 800 °C in order to decisively study the phase evolution of the combined hard and soft ferrites. Thermogravitry (TGA)/differential scanning calorimetry (DSC) analysis exhibited three stages of decomposition in the precursor gels combined with an exothermic peak at 210 °C. X-ray diffraction (XRD) analysis confirmed that the diffraction peaks were perfectly indexed to the hexagonal magnetoplumbite structure of Ba0.5Sr0.5Fe12O19 and the cubic spinel structure of CoFe2O4. Fourier transform infrared spectroscopy (FT-IR) analysis for the samples showed a Co-O stretching vibration accompanied with Co-O-Co or Fe-O-Fe bands at 1220 cm-1. The morphology of the samples were examined by field emission scanning electron microscope (FE-SEM) and transmission electron microscope (TEM). The crystallinity of a selected sample was evaluated by using the high resolution transmission electron microscope (HR-TEM) and selected area electron diffraction (SAED) pattern. It confirmed the presence of planes comprising the hard and soft phases in the synthesized nanocomposites. The magnetic parameters like saturation magnetization MS, remanent magnetization MR, squareness ratio SR, coercivity HC and magnetic moment μB were evaluated using hysteresis by employing vibrating sample magnetometer (VSM). Maximum HC of 4.7 kOe and MS of 60.4 emu/g were obtained for (Ba0.5Sr0.5Fe12O19)0.9(CoFe2O4)0.1. Switching field distribution curves were analysed by using the demagnetization curve. The exchange coupling between the hard and soft phases were analysed by the dM/dH plots and it indicated the exchange coupling first increased with the increase in the concentration of spinels and then decreased. The possible comparison of exchange coupling between the hard and soft phases

  11. Microstructural evaluation of Sb-adjusted Al{sub 0.5}Ga{sub 0.5}As{sub 1{minus}y}Sb{sub y} buffer layer systems for IR applications

    SciTech Connect

    Chen, E.; Paine, D.C.; Uppal, P.; Ahearn, J.S.; Nichols, K.; Charache, G.W.

    1998-06-01

    The authors report on a transmission electron microscopy (TEM) study of Sb-adjusted quaternary Al{sub 0.5}Ga{sub 0.5}As{sub 1{minus}y}Sb{sub y} buffer-layers grown on <001> GaAs substrates. A series of structures were grown by MBE at 470 C that utilize a multilayer grading scheme in which the Sb content of Al{sub 0.5}Ga{sub 0.5}As{sub 1{minus}y}Sb{sub y} buffer-layers grown on <001> GaAs substrates. A series of structures were grown by MBe at 470 C that utilize a multilayer grading scheme in which the Sb content of Al{sub 0.5}Ga{sub 0.5}As{sub 1{minus}y}Sb{sub y} is successively increased in a series of 125 nm thick layers. Post growth analysis using conventional bright field and weak beam dark field imaging of these buffer layers in cross-section reveals that the interface misfit dislocations are primarily of the 60{degree} type and are distributed through out the interfaces of the buffer layer. When optimized, the authors have shown, using plan view and cross-sectional TEM, that this approach can reduce the threading defect density to below the detectability limit of TEM (< 10{sup 5}/cm{sup 2}) and preserve growth surface planarity. The Sb-graded approach was used to fabricate two 2.2 {micro}m power converter structures fabricated using InGaAs grown on Sb-based buffer layers on GaAs substrates. A microstructural and electrical characterization was performed on these device structures and the results are contrasted with a sample in which InP was selected as the substrate. Microstructure, defect density and device performance in these not-yet-optimized Sb-based buffer layers compares favorably to equivalent devices fabricated using InP substrates.

  12. Dielectric and piezoelectric properties of CeO2-added nonstoichiometric (Na0.5K0.5)0.97(Nb0.96Sb0.04)O3 ceramics for piezoelectric energy harvesting device applications.

    PubMed

    Oh, Youngkwang; Noh, Jungrae; Yoo, Juhyun; Kang, Jinhee; Hwang, Larkhoon; Hong, Jaeil

    2011-09-01

    In this study, nonstoichiometric (Na(0.5)K(0.5))(0.97)(Nb(0.96)Sb(0.04))O(3) ceramics were fabricated and their dielectric and piezoelectric properties were investigated according to the CeO(2) addition. In this ceramic composition, CeO(2) addition improved sinterability, electromechanical coupling factor k(p), mechanical quality factor Q(m), piezoelectric constant d(33), and g(33). At the sintering temperature of 1100°C, for the 0.2wt% CeO(2) added specimen, the optimum values of density = 4.359 g/cm(3), k(p) = 0.443, Q(m) = 588, ε(r) = 444, d(33) = 159 pC/N, and g(33) = 35 × 10(-3) V·m/N, were obtained. A piezoelectric energy harvesting device using 0.2 wt% CeO(2)- added lead-free (K(0.5)Na(0.5))(0.97)(Nb(0.96)Sb(0.04))O(3) ceramics and a rectifying circuit for energy harvesting were fabricated and their electrical characteristics were investigated. Under an external vibration acceleration of 0.7 g, when the mass, the frequency of vibration generator, and matching load resistance were 2.4 g, 70 Hz, and 721 Ω, respectively, output voltage and power of piezoelectric harvesting device indicated the optimum values of 24.6 mV(rms) and 0.839 μW, respectively-suitable for application as the electric power source of a ubiquitous sensor network (USN) sensor node. PMID:21937318

  13. Polarized neutron reflection study of the unidirectional magnetic anisotropy of Permalloy on Ni 0.5Co 0.5O

    NASA Astrophysics Data System (ADS)

    Felcher, G. P.; Huang, Y. Y.; Carey, M.; Berkowitz, A.

    1993-03-01

    Couples of ferromagnetic Permalloy/antiferromagnetic metal oxide exhibit unidirectional magnetic anisotropy along a magnetic field applied during cooling. Polarized neutron reflection has been used to check if the effect is due to a bias of the antiferromagnetic configuration in the oxide, where the layer immediately adjacent to the Permalloy is polarized parallel to the easy direction of magnetization. The measurements were made on a sample consisting of 300ÅPermalloy/500ÅNi 0.5Co 0.5O. Polarized neutron reflectivities were taken at the four corners of the magnetic hysteresis loop at 20 K. A faint magnetic signal consistent with the unidirectional bias of the F / AF structure was observed. This behavior is discussed in the light of the current theories.

  14. Controllable-permittivity and high-tunability of Ba0.5Sr0.5TiO3/MgO based ceramics by composite configuration

    NASA Astrophysics Data System (ADS)

    Tang, Linjiang; Wang, Jinwen; Zhai, Jiwei; Bing Kong, Ling; Yao, Xi

    2013-04-01

    Ba0.5Sr0.5TiO3 (BST50)/MgO composites, with 2-2-type configurations, consisting of BST layers and MgO layers, were fabricated by using tape-casting and laminating technique. Microstructure, dielectric response, and tunable properties of the 2-2-type composites were investigated. An important feature of the 2-2 type composites is that DC fields can be effectively applied to the high-permittivity ferroelectric phase when the fields are applied in parallel direction to the inter-phase boundaries. As a result, with increasing volume fraction (q) of MgO, tunability of the composites remained almost unchanged, whereas their permittivity value could be reduced significantly. This behavior has not been observed in the conventional 3-0 type composites.

  15. Unusual electronic behavior in the polycrystalline metal organic framework [(CH3)2NH2][Na0.5Fe0.5(HCOO)3

    NASA Astrophysics Data System (ADS)

    Sieradzki, Adam; Trzmiel, Justyna; Ptak, Maciej; Mączka, Mirosław

    2015-11-01

    In this study, the dielectric properties of a polycrystalline metal organic framework [(CH3)2NH2][Na0.5Fe0.5(HCOO)3] (DMNaFe) sample were investigated. The DMNaFe sample exhibited a typical relaxor-like relaxation response in addition to a ferroelastic order-disorder phase transition. Analysis of the frequency dependence of the complex permittivity revealed the characteristic two-power-law dipolar glass relaxor behavior of the DMNaFe, indicating complex cluster formation in the material. Moreover, an unusual transformation associated with the ferroelastic phase transition from the generalized Mittag-Leffler relaxation pattern (low-temperature ordered phase) to the Havriliak-Negami one (high-temperature disordered phase) was detected. The relaxation data obtained for the investigated sample were interpreted based on the stochastic approach to relaxation processes. [Figure not available: see fulltext.

  16. Space-charge relaxation and electrical conduction in K0.5Na0.5NbO3 at high temperatures

    NASA Astrophysics Data System (ADS)

    Liu, Laijun; Huang, Yanmin; Su, Congxue; Fang, Liang; Wu, Meixia; Hu, Changzheng; Fan, Huiqing

    2011-09-01

    Sodium potassium niobate K0.5Na0.5NbO3(KNN) ceramic was synthesized by a solid-state technique. The X-ray diffraction of the sample at room temperature showed a monoclinic phase. The real part ( ɛ') and imaginary part ( ɛ″) of dielectric permittivity of the sample were measured in a frequency range from 40 Hz to 1 MHz and in a temperature range from 350 to 850 K. The ɛ' deviated from Curie-Weiss law above 702 K, due to additional dielectric contributions resulting from universal dielectric response and thermally activated space charges at high temperatures. This anomaly arose from a Debye dielectric dispersion that slowed down following an Arrhenius law. We have established a link between the dielectric relaxation and the conductivity.

  17. Half-metallicity at the Heusler alloy Co(2)Cr(0.5)Fe(0.5)Al(001) surface and its interface with GaAs(001).

    PubMed

    Zarei, Sareh; Javad Hashemifar, S; Akbarzadeh, Hadi; Hafari, Zohre

    2009-02-01

    Electronic and magnetic properties of the Heusler alloy Co(2)Cr(0.5)Fe(0.5)Al(001) surfaces and its interfaces with GaAs(001) are studied within the framework of density functional theory by using the plane-wave pseudopotential approach. The phase diagram obtained by ab initio atomistic thermodynamics shows that the CrAl surface is the most stable (001) termination of this Heusler alloy. We discuss that, at the ideal surfaces and interfaces with GaAs, half-metallicity of the alloy is lost, although the CrAl surface keeps high spin polarization. The energy band profile of the stable interface is investigated and a negative p Schottky barrier of -0.78 eV is obtained for this system.

  18. Effect of Oxygen-deficiencies on Resistance Switching in Amorphous YFe0.5Cr0.5O3-d films

    NASA Astrophysics Data System (ADS)

    Wang, Xianjie; Hu, Chang; Song, Yongli; Zhao, Xiaofeng; Zhang, Lingli; Lv, Zhe; Wang, Yang; Liu, Zhiguo; Wang, Yi; Zhang, Yu; Sui, Yu; Song, Bo

    2016-07-01

    Herein, we demonstrate the contribution of the oxygen-deficiencies on the bipolar resistance switching (RS) properties of amorphous-YFe0.5Cr0.5O3-d (a-YFCO) films. The a-YFCO films were prepared under various oxygen pressures to tune the concentration of oxygen-deficiencies in the films. The XPS data verify that the oxygen-deficiencies increase with decreasing oxygen pressure. The RS property becomes more pronounced with more oxygen-deficiencies in a-YFCO films. Based on the Ohmic conduction measurements in the low resistance state, we confirm that the RS mechanism is related to the migration of oxygen-deficiencies. The enhanced RS and long retention in a-YFCO suggest a great potential for applications in nonvolatile memory devices.

  19. Self heating in Si0.5Ge0.5/Si and GaAs/Si thin film device structures

    NASA Astrophysics Data System (ADS)

    Zheng, H.; Jagannadham, K.

    2014-09-01

    Si0.5Ge0.5 and GaAs films grown on Si substrates were used to measure the interface thermal conductance between the films and the substrate. Transient thermoreflectance technique was used with the one-dimensional heat equation to simulate the experimental results. The results showed that the interface thermal conductance of SiGe/Si interface is 100 MW m-2 K-1 and that of GaAs/Si is 20 MW m-2 K-1. These values of interface thermal conductance combined with the thermal conductivity of the films were used to conclude that SiGe films are less susceptible to self heating than GaAs films of same thickness.

  20. Scintillation properties of Li6Y0.5Gd0.5(BO3)3: Ce3+ single crystal

    NASA Astrophysics Data System (ADS)

    Fawad, U.; Rooh, Gul; Kim, H. J.; Park, H.; Kim, Sunghwan; Khan, Sajid

    2015-01-01

    The Ce3+ doped mixed crystals of Li6Y(BO3)3 and Li6Gd(BO3)3 are grown by Czochralski technique with equal mole ratios of both Yttrium and Gadolinium i.e. Li6Y0.5Gd0.5(BO3)3. The grown crystals have the dimensions of ∅10×30 mm2. Powder X-ray diffraction (XRD) analysis confirmed single phase of the grown crystals. X-ray and laser induced luminescence spectra are presented. Scintillation properties such as energy resolution, light yield, decay time and α/β ratio under the excitation of 137Cs γ-ray photons and 241Am α-particles are also reported in this article.

  1. Evolution of photoinduced effects in phase-separated Sm0.5Sr0.5Mn1‑yCryO3 thin films

    NASA Astrophysics Data System (ADS)

    Chai, Xiaojie; Xing, Hui; Jin, Kexin

    2016-03-01

    Systematic study on electrical transport properties has been performed in Sm0.5Sr0.5Mn1‑yCryO3 thin films illuminated by the light. An evolution of persistent and transient photoinduced effects induced by the impurity doping and temperature has been observed, which is closely related to the number of ferromagnetic clusters. The maximum persistent photoinduced effect is observed at y = 0.08 and the corresponding value is about 61.7% at the power density of 13.7 mW/mm2. The underlying mechanism can be understood by the coexistence and competition of the multiphases in phase-separated manganites induced by Cr-doping. These results would pave the way for practical applications in innovative photoelectric devices of all-oxides.

  2. Synthesis and characterization of Mn0.5Zn0.5Fe2O4 and Fe3O4 nanoparticle ferrofluids for thermo-electric conversion

    NASA Astrophysics Data System (ADS)

    Sansom, C. L.; Jones, P.; Dorey, R. A.; Beck, C.; Stanhope-Bosumpim, A.; Peterson, J.

    2013-06-01

    Ferrofluids containing nanoparticles of Mn0.5Zn0.5Fe2O4 (MZ5) and Fe3O4 (magnetite) have been examined as potential thermal transport media and energy harvesting materials. The ferrofluids were synthesized by chemical co-precipitation and characterized by EDX to determine composition and by TEM to determine particle size and agglomeration. A range of particle coatings and carrier fluids were used to complete the fluid preparation. Commercially available ferrofluids were tested in custom built rigs to demonstrate both thermal pumping (for waste heat removal applications) and power induction (for power conversion and energy harvesting applications). The results indicate that simple ferrofluids possess the necessary properties to remove waste heat, either into thermal storage or for conversion to electrical power.

  3. Dielectric Properties of SrMnO3-doped K0.5Na0.5NbO3 Lead-Free Ceramics

    NASA Astrophysics Data System (ADS)

    Deng, Jianming; Sun, Xiaojun; Liu, Laijun; Liu, Saisai; Huang, Yanmin; Fang, Liang; Elouadi, Brahim

    2016-08-01

    (1- x)K0.5Na0.5NbO3- xSrMnO3 (0.02 ≤ x ≤ 0.08) (KNN- xSM) ceramics were fabricated by a conventional solid-state technique. X-ray diffraction of the samples revealed that the crystal structure changes from orthorhombic to tetragonal, and finally to pseudocubic symmetry with increasing x. Temperature dependence of dielectric properties showed that the temperature ( T m) corresponding to the maximum of dielectric permittivity decreased with increasing x. Two dielectric relaxation processes occurred at high temperatures, which were attributed to grain and grain boundary responses, respectively. Polarization hysteresis loops ( P- E) at different electrical fields were displayed. P rmax degenerated with the increase of SM due to the thermally activated leakage current increases. The relationship between electrical properties and defect compensation mechanism is discussed.

  4. Vacancy related defects in La{sub 0.5}Sr{sub 0.5}CoO{sub 3-{delta}} thin films

    SciTech Connect

    Keeble, D.J.; Krishnan, A.; Nielsen, B.

    1996-12-31

    Laser ablated La{sub 0.5}Sr{sub 0.5}CoO{sub 3-{delta}} thin films have been studied by Doppler-broadening-detected positron annihilation using a variable-energy positron beam. The oxygen partial pressure during cooling from the growth temperature was altered through the range 760 torr to 10{sup -5} torr to change the oxygen non-stoichiometry of the films. The measured Doppler broadened lineshape parameter S was found to increase with increasing oxygen nonstoichiometry. For films cooled with an oxygen partial pressure of {le} 10{sup -4} Torr positron trapping to monovacancy type defects is inferred. For the film cooled in 10{sup -5} torr oxygen the magnitude of the increase in S, with respect to that measured from the film cooled in 760 Torr oxygen, showed positron trapping to vacancy cluster defects was occurring.

  5. Pure ferroelectric polarization of lead-free Na0.5K0.5NbO3 thin films by using the double wave method

    NASA Astrophysics Data System (ADS)

    Lee, Hai Joon; Ahn, Chang Won; Won, Sung Sik; Tange, Achiri; Park, Bong Chan; Seog, Hae Jin; Kim, Ill Won

    2015-05-01

    Na0.5K0.5NbO3 (NKN) thin films were grown on Pt(111)/Ti/SiO2/Si substrates by using RFmagnetron sputtering. We investigated the behavior of the ferroelectric polarization. Well-saturated P-V hysteresis loops were observed, but the P-V hysteresis loops were sometimes distorted and consisted of three roughly parallel components, such as ferroelectric, dielectric and conductive components. Correction methods were proposed to identify the undesirable components and the pure ferroelectric polarization components from the observed P-V hysteresis loops. A new polarization hysteresis loop measurement technique, the double wave method (DWM), was applied to NKN thin films to obtain pure ferroelectric polarization and elucidate the behaviors of the polarization components.

  6. A magnetic atomic laminate from thin film synthesis: (Mo{sub 0.5}Mn{sub 0.5}){sub 2}GaC

    SciTech Connect

    Meshkian, R. Ingason, A. S.; Lu, J.; Rosen, J.; Arnalds, U. B.; Magnus, F.

    2015-07-01

    We present synthesis and characterization of a new magnetic atomic laminate: (Mo{sub 0.5}Mn{sub 0.5}){sub 2}GaC. High quality crystalline films were synthesized on MgO(111) substrates at a temperature of ∼530 °C. The films display a magnetic response, evaluated by vibrating sample magnetometry, in a temperature range 3-300 K and in a field up to 5 T. The response ranges from ferromagnetic to paramagnetic with change in temperature, with an acquired 5T-moment and remanent moment at 3 K of 0.66 and 0.35 μ{sub B} per metal atom (Mo and Mn), respectively. The remanent moment and the coercive field (0.06 T) exceed all values reported to date for the family of magnetic laminates based on so called MAX phases.

  7. Infrared reflectivity investigation of the phase transition sequence in Pr0.5Ca0.5MnO3

    NASA Astrophysics Data System (ADS)

    Ribeiro, J. L.; Vieira, L. G.; Gomes, I. T.; Araújo, J. P.; Tavares, P.; Almeida, B. G.

    2016-06-01

    This work reports an infrared reflectivity study of the phase transition sequence observed in Pr0.5Ca0.5MnO3. The need to measure over an extended spectral range in order to properly take into account the effects of the high frequency polaronic absorption is circumvented by adopting a simple approximate method, based on the asymmetry present in the Kramers Kronig inversion of the phonon spectrum. The temperature dependence of the phonon optical conductivity is then investigated by monitoring the behavior of three relevant spectral moments of the optical conductivity. This combined methodology allows us to disclose subtle effects of the orbital, charge and magnetic orders on the lattice dynamics of the compound. The characteristic transition temperatures inferred from the spectroscopic measurements are compared and correlated with those obtained from the temperature dependence of the induced magnetization and electrical resistivity.

  8. Annealing temperature dependence of local atomic and electronic structure of polycrystalline La0.5Sr0.5MnO3

    NASA Astrophysics Data System (ADS)

    Zhang, Hong-Guang; Li, Yong-Tao; Xie, Liang; Dong, Xue-Guang; Li, Qi

    2015-10-01

    The local atomic and electronic structure of La0.5Sr0.5MnO3 was investigated at different annealing temperatures (TA) by X-ray absorption spectroscopy (XAS) and photoemission spectroscopy (XPS). The extended X-ray absorption fine structure indicates that the MnO6 octahedral distortion is reduced by increasing TA. The chemical shift for the sample with TA = 1350°C measured by XPS of Mn 2p core level demonstrates the increasing of Mn3+ ions content. From the deconvolution of valence band photoemission spectra, the number of eg electron is also proved to increase with increasing TA. It is also demonstrated that there is a strongest hybridization between O 2p and surrounding atomic orbital states in sample with TA = 1350°C, which is consistent with valence band photoemission.

  9. Increase of Si0.5Ge0.5 Bulk Single Crystal Size as Substrates for Strained Ge Epitaxial Layers

    NASA Astrophysics Data System (ADS)

    Kinoshita, Kyoichi; Nakatsuka, Osamu; Arai, Yasutomo; Taguchi, Keisuke; Tomioka, Hiroshi; Tanaka, Ryota; Yoda, Shinichi

    2013-04-01

    Compositionally uniform 2 and 10 mm diameter Si0.5Ge0.5 bulk crystals have been grown by the traveling liquidus-zone (TLZ) method. The TLZ method requires diffusion controlled mass transport in a melt and crystal size was limited for suppressing convection in a melt. For substrate use, however, larger diameter crystals are required. Increase of crystal diameter was challenged in spite of the concern that compositional homogeneity of grown crystals might be degraded due to faster convective flow in a larger diameter melt. As a result, however, increase of crystal diameter was possible up to 30 mm although single crystal length was limited to 5 mm. Si0.55Ge0.45 and Si0.6Ge0.4 bulk crystals with 30 mm diameter showed excellent compositional homogeneity and high crystallinity without mosaicity.

  10. Non-180° polarization rotation of ferroelectric (Bi0.5Na0.5)TiO3 single crystals under electric field

    NASA Astrophysics Data System (ADS)

    Kitanaka, Yuuki; Yanai, Ken; Noguchi, Yuji; Miyayama, Masaru; Kagawa, Yutaka; Moriyoshi, Chikako; Kuroiwa, Yoshihiro

    2014-03-01

    The behavior of the polarization switching by applying electric fields (E) along the <100> and <111> directions has been investigated for the single crystals of ferroelectric (Bi0.5Na0.5)TiO3 (BNT) using high-energy synchrotron radiation x-ray diffraction (SR-XRD) and density functional theory (DFT) calculations. Single-crystal SR-XRD analyses reveal that the E-induced switching of spontaneous polarization (Ps) occurs via the non-180° (71° and/or 109°) Ps rotation. The DFT calculations show that the energy barrier for the 71° Ps rotation is much lower than those for the 109° Ps rotation and for the direct 180° Ps reversal. These experimental and DFT calculation results lead to the conclusion that the 71° Ps rotation is the dominant pathway for the E-induced polarization switching in the BNT crystals.

  11. Wavelength dependence of refractive index in lead-free Na0.5Bi0.5TiO3-BaTiO3 single crystals

    NASA Astrophysics Data System (ADS)

    He, Chongjun; Yi, Xiujie; Wu, Tong; Wang, Jiming; Zhu, Kongjun; Liu, Youwen

    2014-10-01

    Refractive indices of (1-x)Na0.5Bi0.5TiO3-xBaTiO3 (NBT-xBT, x = 0, 0.06 and 0.08) single crystals were measured at room temperature after poled along pseudo-cubic crystallographic direction [0 0 1]. The refractive indices decrease dramatically when the wavelength increases for all crystals. At the same wavelength, refractive indices of NBT-xBT single crystals decrease with increasing BT content. Sellmeier dispersion equations were obtained by least square fitting, which can be used to calculate the refractive indices in low absorption wavelength range. Parameters connected to the energy band structure were determined by fitting single-oscillator dispersion equation. Similar to most oxygen-octahedral ferroelectrics, NBT-xBT crystals have the same dispersion behavior described by the refractive-index dispersion parameter. Dispersion energies take on covalent crystal values.

  12. Crystal orientation dependent optical transmittance and band gap of Na0.5Bi0.5TiO3-BaTiO3 single crystals

    NASA Astrophysics Data System (ADS)

    He, Chongjun; Deng, Chenguang; Wang, Jiming; Gu, Xiaorong; Wu, Tong; Zhu, Kongjun; Liu, Youwen

    2016-02-01

    Optical transmittance spectra of lead-free ferroelectric (1-x)Na0.5Bi0.5TiO3-xBaTiO3 (NBT-xBT) single crystals poled along different directions have been studied comprehensively. After poled along [001] direction, the transmittance of tetragonal NBT-8%BT crystal is about 70%, which is much higher than that of NBT-2%BT crystal with rhombohedral structure and NBT-5%BT crystal with morphotropic phase boundary (MPB) composition. However, after poled [111] direction, the transmittance of tetragonal NBT-8%BT crystal is the smallest among them. These properties are manifest in view of the crystal structure. Both direct and indirect optical energy band gaps, as well phonon energies were obtained from absorption coefficient spectra by Tauc equations. The band gaps of [001]-poled NBT-xBT crystals increase with BT content, yet the [111]-poled crystals have opposite trends.

  13. A novel counter electrode material of La0.5Sr0.5CoO3 for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Zhong, Yongfeng; Qin, Tianze; Yang, Bo; Zuo, Xueqin; Li, Guang; Wu, Mingzai; Ma, Yongqing; Jin, Shaowei; Zhu, Kerong

    2016-11-01

    In this work, La0.5Sr0.5CoO3 (LSCO) perovskite oxide with perfect crystallinity was successfully synthesized via a sol-gel method and then used as counter electrodes (CEs) for dye-sensitized solar cells (DSSCs). The DSSCs with LSCO CEs exhibited excellent electrocatalytic activity for the triiodide reduction and yielded a power conversion efficiency of 7.17%, which is greater than that of the Pt electrode (7.06%). Compared with the hydrothermal method and solvothermal method, sol-gel method is more suitable for large scale preparation. This work should open up a new class of CE materials for low-cost and high-efficiency DSSCs.

  14. Diffuse phase transition and high-temperature dielectric relaxation study on (Bi0.5Na0.5)1-xBaxTiO3 ceramics

    NASA Astrophysics Data System (ADS)

    Chen, Feng; Liu, Qiu-Xiang; Tang, Xin-Gui; Jiang, Yan-Ping; Yue, Jing-Long; Li, Jin-Kai

    2016-09-01

    Lead free (Bi0.5Na0.5)1-xBaxTiO3 (x=0.6, 0.7, 0.8, 0.9) ferroelectric ceramics were synthesized by the traditional solid state reaction method. Sintering was carried out at 1200 °C for 2 h in air atmosphere. The structural, microstructure and Ferroelectric of ceramics were investigated. In dielectric studies, a diffuse phase transition was exhibited and a dielectric relaxation behavious was observed at high temperature range. Impedance analysis characterized grain and grain boundaries resistivities of the ceramics and calculated activation energy and the activation energy for conduction. Polaron theory indicates that the relaxation of the samples at high temperatures was associated with the hopping ions caused by oxygen vacancies.

  15. Giant elastocaloric effect in ferroelectric Ba0.5Sr0.5TiO3 alloys from first-principles

    NASA Astrophysics Data System (ADS)

    Lisenkov, S.; Ponomareva, I.

    2012-09-01

    As the need for efficient energy converting devices has been rapidly increasing, the materials that exhibit large or even giant caloric responses have emerged as promising candidates for solid-state refrigeration, which is an energy-efficient and environmentally friendly alternative to the conventional refrigeration technology. However, despite recent ground breaking discoveries of giant caloric responses in some materials, they appear to remain one of nature's rarities. Here we predict the existence of giant elastocaloric effect in ferroelectric Ba0.5Sr0.5TiO3 alloys, which adds one more member to this exclusive collection. Moreover, this computational finding reveals the multicaloric nature of such alloys, which could lead to new paradigms for cooling devices.

  16. Anisotropic magnetoresistance of epitaxial Pr{sub 0.5}Sr{sub 0.5}MnO{sub 3} film

    SciTech Connect

    Chen, X. G.; Yang, Y. B.; Wang, C. S.; Liu, S. Q.; Zhang, Y.; Han, J. Z.; Yang, Y. C.; Yang, J. B.

    2014-01-28

    The magnetic field and temperature dependent anisotropic magnetoresistance (AMR) of the epitaxial grown Pr{sub 0.5}Sr{sub 0.5}MnO{sub 3} thin films was investigated. It was found that the magnetoresistance exhibited the characteristics of magnetic polaron hopping. A two-fold symmetric AMR occurred in the ferromagnetic region (∼220 K < T < ∼150 K), while a four-fold symmetric AMR appeared under a high magnetic field in the antiferromagnetic orbital ordered region (T < ∼150 K). The angular dependence of the resistance showed a hysteresis effect under magnetic field at low temperature. It is believed that these phenomena are attributed to the spin canting effect, which originates from the melting of orbital ordering under the external magnetic field in the antiferromagnetic region.

  17. Effect of Oxygen-deficiencies on Resistance Switching in Amorphous YFe0.5Cr0.5O3−d films

    PubMed Central

    Wang, Xianjie; Hu, Chang; Song, Yongli; Zhao, Xiaofeng; Zhang, Lingli; Lv, Zhe; Wang, Yang; Liu, Zhiguo; Wang, Yi; Zhang, Yu; Sui, Yu; Song, Bo

    2016-01-01

    Herein, we demonstrate the contribution of the oxygen-deficiencies on the bipolar resistance switching (RS) properties of amorphous-YFe0.5Cr0.5O3−d (a-YFCO) films. The a-YFCO films were prepared under various oxygen pressures to tune the concentration of oxygen-deficiencies in the films. The XPS data verify that the oxygen-deficiencies increase with decreasing oxygen pressure. The RS property becomes more pronounced with more oxygen-deficiencies in a-YFCO films. Based on the Ohmic conduction measurements in the low resistance state, we confirm that the RS mechanism is related to the migration of oxygen-deficiencies. The enhanced RS and long retention in a-YFCO suggest a great potential for applications in nonvolatile memory devices. PMID:27452114

  18. Magnetoresistance reversal in antiperovskite compound Mn{sub 3}Cu{sub 0.5}Zn{sub 0.5}N

    SciTech Connect

    Zhang, X. H.; Yin, Y.; Yuan, Q.; Han, J. C.; Zhang, Z. H.; Jian, J. K.; Zhao, J. G. E-mail: songbo@hit.edu.cn; Song, B. E-mail: songbo@hit.edu.cn

    2014-03-28

    We report detailed investigations of the structure, magnetic properties, electronic transport, and specific heat in Mn-based antiperovskite compounds Mn{sub 3}Cu{sub 0.5}Zn{sub 0.5}N. Most strikingly, there are several fascinating features: (i) The magnetoresistance at 30 kOe (40 kOe) exceeds ∼1% (∼2%) over a temperature span of ∼70 K (∼25 K) from 5 to 140 K; (ii) magnetoresistance fluctuates at temperatures of 100–200 K, including an obvious sign reversal from negative to positive at ∼140 K. Analysis of the specific heat reveals that the magnetoresistance reversal may originate from the reconstruction of the Fermi surface accompanying an antiferromagnetic-ferromagnetic transition.

  19. Unexpected ferromagnetic ordering enhancement with crystallite size growth observed in La{sub 0.5}Ca{sub 0.5}MnO₃ nanoparticles

    SciTech Connect

    Iniama, G.; Ita, B. I.; Presa, P. de la Hernando, A.; Alonso, J. M.; Multigner, M.; Cortés-Gil, R.; Ruiz-González, M. L.; Gonzalez-Calbet, J. M.

    2014-09-21

    In this paper, the physical properties of half-doped manganite La{sub 0.5}Ca{sub 0.5}MnO₃ with crystallite sizes ranging from 15 to 40 nm are investigated. As expected, ferromagnetic order strengthens at expense of antiferromagnetic one as crystallite size is reduced to 15 nm. However, contrary to previously reported works, an enhancement of saturation magnetization is observed as crystallite size increases from 15 to 22 nm. This unexpected behavior is accompanied by an unusual cell volume variation that seems to induce ferromagnetic-like behavior at expense of antiferromagnetic one. Besides, field cooled hysteresis loops show exchange bias field and coercivity enhancement for increasing cooling fields, which suggest a kind of core-shell structure with AFM-FM coupling for crystallite sizes as small as 15 nm. It is expected that inner core orders antiferromagnetically, whereas uncompensated surface spins behave as spin glass with ferromagnetic-like ordering.

  20. Unraveling the magnetic properties of BiFe{sub 0.5}Cr{sub 0.5}O{sub 3} thin films

    SciTech Connect

    Vinai, G.; Petrov, A. Yu.; Panaccione, G.; Torelli, P.; Khare, A.; Rana, D. S.; Di Gennaro, E.; Scotti di Uccio, U.; Miletto Granozio, F.; Gobaut, B.; Moroni, R.; Rossi, G.

    2015-11-01

    We investigate the structural, chemical, and magnetic properties on BiFe{sub 0.5}Cr{sub 0.5}O{sub 3} (BFCO) thin films grown on (001) (110) and (111) oriented SrTiO{sub 3} (STO) substrates by x-ray magnetic circular dichroism and x-ray diffraction. We show how highly pure BFCO films, differently from the theoretically expected ferrimagnetic behavior, present a very weak dichroic signal at Cr and Fe edges, with both moments aligned with the external field. Chemically sensitive hysteresis loops show no hysteretic behavior and no saturation up to 6.8 T. The linear responses are induced by the tilting of the Cr and Fe moments along the applied magnetic field.

  1. Broadband-sensitive cooperative upconversion emission of La(Ga0.5Sc0.5)O3:Er,Ni,Nb

    NASA Astrophysics Data System (ADS)

    Takeda, Yasuhiko; Mizuno, Shintaro; Nath Luitel, Hom; Yamanaka, Ken-ichi

    2016-11-01

    We systematically conducted time-resolved photoluminescence measurements on La(Ga0.5Sc0.5)O3:Er,Ni,Nb to elucidate the dominant mechanism of Ni2+-sensitized Er3+ upconversion emission at approximately 0.98 µm under 1.0–1.45-µm excitation, which could significantly improve the conversion efficiency of crystalline silicon solar cells. After detailed analysis using rate equations describing the energy transfer involved in the Ni2+ and Er3+ and upconversion, we concluded that the upconversion emission is dominated by the excitation of two Er3+ emitters due to the resonance energy transfer from two Ni2+ sensitizers, followed by further excitation to the initial state of the upconversion emission caused by another energy transfer between the two first-excited Er3+, i.e., cooperative upconversion.

  2. Up-conversion luminescence and optical temperature-sensing properties of Er3+-doped perovskite Na0.5Bi0.5TiO3 nanocrystals

    NASA Astrophysics Data System (ADS)

    Wang, Shanshan; Zhou, Hong; Wang, Xiaoxia; Pan, Anlian

    2016-11-01

    In this work we demonstrate the preparation of Er3+ doped perovskite ferroelectric Na0.5Bi0.5TiO3 nanocrystals and their application in temperature sensing. The samples were synthesized via a facile hydrothermal method. Upconversion emission at 528 nm and 547 nm from two thermodynamically coupled excited states of Er3+ were recorded in the temperature from 80 K to 480 K under the excitation of a 980 nm diode laser. The emission intensity ratio (I528/I547) as a function of the temperature was investigated. A sensitivity of 0.0053 K-1 is observed at 400 K, suggesting they are promising candidate for nanothermometers.

  3. Fundamental limitation to the magnitude of piezoelectric response of (001)pc textured K0.5Na0.5NbO3 ceramic

    SciTech Connect

    Gupta, Shashaank; Belianinov, Alex; Okatan, Mahmut B; Jesse, Stephen; Kalinin, Sergei V; Priya, Shashaank

    2014-01-01

    (001)pc textured K0.5Na0.5NbO3 (KNN) ceramic was found to exhibit a 65% improvement in the longitudinal piezoelectric response as compared to its random counterpart. Piezoresponse force microscopy study revealed the existence of larger 180 and non-180 domains for textured ceramic as compared to that of the random ceramic. Improvement in piezoresponse by the development of (001)pc texture is discussed in terms of the crystallographic nature of KNN and domain morphology. A comparative analysis performed with a rhombohedral composition suggested that the improvement in longitudinal piezoresponse of polycrystalline ceramics by the development of (001)pc texture is limited by the crystal structure.

  4. Spin-glass behavior and incommensurate modulation in high-pressure perovskite BiCr0.5Ni0.5O3.

    PubMed

    Arévalo-López, Ángel M; Dos Santos-García, Antonio J; Levin, Jessica R; Attfield, J Paul; Alario-Franco, Miguel A

    2015-02-01

    The BiCr(0.5)Ni(0.5)O(3) perovskite has been obtained at high pressure. Neutron and synchrotron diffraction data show a Pnma orthorhombic structure with a = 5.5947(1) Å, b = 7.7613(1) Å, and c = 5.3882(1) Å at 300 K and random B-site Cr/Ni distribution. Electron diffraction reveals an incommensurate modulation parallel to the b axis. The combination of either Cr-O-Ni (J > 0) or Cr-O-Cr/Ni-O-Ni (J < 0) nearest-neighbor spin interactions results in a random-bond spin-glass configuration. Magnetization, neutron diffraction, and muon-spin-relaxation measurements demonstrate that variations in the local bonding and charge states contribute to the magnetic frustration.

  5. Evolution of photoinduced effects in phase-separated Sm0.5Sr0.5Mn1-yCryO3 thin films.

    PubMed

    Chai, Xiaojie; Xing, Hui; Jin, Kexin

    2016-01-01

    Systematic study on electrical transport properties has been performed in Sm0.5Sr0.5Mn1-yCryO3 thin films illuminated by the light. An evolution of persistent and transient photoinduced effects induced by the impurity doping and temperature has been observed, which is closely related to the number of ferromagnetic clusters. The maximum persistent photoinduced effect is observed at y = 0.08 and the corresponding value is about 61.7% at the power density of 13.7 mW/mm(2). The underlying mechanism can be understood by the coexistence and competition of the multiphases in phase-separated manganites induced by Cr-doping. These results would pave the way for practical applications in innovative photoelectric devices of all-oxides. PMID:27001006

  6. High-resolution structure studies and magnetoelectric coupling of relaxor multiferroic Pb (F e0.5N b0.5) O3

    NASA Astrophysics Data System (ADS)

    Sim, Hasung; Peets, Darren C.; Lee, Sanghyun; Lee, Seongsu; Kamiyama, T.; Ikeda, K.; Otomo, T.; Cheong, S.-W.; Park, Je-Geun

    2014-12-01

    Pb (F e0.5N b0.5) O3 (PFN), one of the few relaxor multiferroic systems, has a G -type antiferromagnetic transition at TN=143 K and a ferroelectric transition at TC=385 K . By using high-resolution neutron-diffraction experiments and a total scattering technique, we paint a comprehensive picture of the long- and short-range structures of PFN: (i) a clear sign of short-range structural correlation above TC, (ii) no sign of the negative thermal expansion behavior reported in a previous study, and (iii) clearest evidence thus far of magnetoelectric coupling below TN. We conclude that at the heart of the unusual relaxor multiferroic behavior lies the disorder between Fe3 + and Nb5 + atoms. We argue that this disorder gives rise to short-range structural correlations arising from O disorder in addition to Pb displacement.

  7. Observation of indium ion migration-induced resistive switching in Al/Mg0.5Ca0.5TiO3/ITO

    NASA Astrophysics Data System (ADS)

    Lin, Zong-Han; Wang, Yeong-Her

    2016-08-01

    Understanding switching mechanisms is very important for resistive random access memory (RRAM) applications. This letter reports an investigation of Al/Mg0.5Ca0.5TiO3 (MCTO)/ITO RRAM, which exhibits bipolar resistive switching behavior. The filaments that connect Al electrodes with indium tin oxide electrodes across the MCTO layer at a low-resistance state are identified. The filaments composed of In2O3 crystals are observed through energy-dispersive X-ray spectroscopy, high-resolution transmission electron microscopy, nanobeam diffraction, and comparisons of Joint Committee on Powder Diffraction Standards (JCPDS) cards. Finally, a switching mechanism resulting from an electrical field induced by In3+ ion migration is proposed. In3+ ion migration forms/ruptures the conductive filaments and sets/resets the RRAM device.

  8. Flux Pinning by Cr Nanoparticles in Cu_{0.5}Tl_{0.5}Ba2Ca2Cu3O_{10-δ } Superconductor

    NASA Astrophysics Data System (ADS)

    Waqee-ur-Rehman, M.; Mumtaz, M.; Qasim, Irfan; Nadeem, K.

    2016-09-01

    Increase in flux pinning strength of Cu_{0.5}Tl_{0.5}Ba2Ca2Cu3O_{10-δ }(CuTl-1223) superconductor has been observed after addition of Cr nanoparticles. We have thoroughly investigated the infield response of Cr nanoparticles-added CuTl-1223 superconductor in an external applied magnetic field in the range of 0-7 T. Solid-state reaction technique has been employed to synthesize (Cr)x-CuTl-1223; x = 0-1.00 wt% nanoparticle-superconductor composites. The flux pinning mechanism has been analyzed on the basis of thermally activated flux flow model in the presence of a small current (10 μ A). The increase in activation energy and decrease in transition width of CuTl-1223 superconducting phase show the enhancement in its flux pinning strength upon the addition of Cr nanoparticles.

  9. Effect of long-range order on elastic properties of Pd{sub 0.5}Ag{sub 0.5} alloy from first principles

    SciTech Connect

    Delczeg-Czirjak, E. K.; Nurmi, E.; Kokko, K.; Vitos, L.

    2011-09-01

    The effect of long-range order on single-crystal elastic constants of Pd{sub 0.5}Ag{sub 0.5} alloy has been investigated using first-principles electronic structure calculations. The lowest energy among the considered ordered, partially ordered, and disordered structures is found to be the L1{sub 1} layered structure, which is formed by alternate (111) Pd and Ag layers. The ordering effect is found to follow a clear trend: in contrast to the disordered phase, for which the K{sub a} and K{sub c} compressibilities are equal, the L1{sub 1} structure becomes less compressible along the c axis than along the a axis.

  10. Growth and diode-pumped laser operation of Pr3+:β-(Y0.5,Gd0.5)F3 at various transitions.

    PubMed

    Werner Metz, Philip; Marzahl, Daniel-Timo; Guguschev, Christo; Bertram, Rainer; Kränkel, Christian; Huber, Günter

    2015-06-15

    We report on the crystal growth of the orthorhombic low-temperature β-phase of (Y0.5,Gd0.5)F3 (YGF) single crystals. The crystals were activated with trivalent praseodymium (Pr3+) and characterized with respect to their ground state absorption and stimulated emission properties. Under InGaN-laser-diode pumping, laser oscillation was obtained at more than ten wavelengths in the green, orange, red, and dark red spectral regions. In these initial experiments, output powers exceeding 100 mW and slope efficiencies between 10% and 30% were obtained. To the best of our knowledge, these results represent the first application of YGF crystals as laser host material for any active ion. PMID:26076240

  11. Good Quality Factor in GdMnO3-Doped (K0.5Na0.5)NbO3 Piezoelectric Ceramics

    NASA Astrophysics Data System (ADS)

    Bucur, Raul Alin; Badea, Iuliana; Bucur, Alexandra Ioana; Novaconi, Stefan

    2016-06-01

    (1 - x)(K0.5Na0.5)NbO3 - xGdMnO3 (KNN- xGM) ferroelectric ceramics (0 ≤ x ≤ 5 mol.%) were obtained through a solid state technique. For all the studied compositions, orthorhombic perovskite crystalline structures were obtained at room temperature. GdMnO3 suppresses the grain growth and gives rather homogenous microstructures as the concentration increases. The doped ceramics exhibita good dielectric response, a "hard" ferroelectric behavior and good piezoelectric properties. An improved mechanical quality factor of 1180 and a high Curie temperature T C = 400°C, coupled with k p = 0.426, makes the composition x = 1 mol.% GdMnO3 suitable for lead-free piezoelectric materials for high-power and high-temperature applications.

  12. Manipulation of magnetism in perpendicularly magnetized Heusler alloy Co2FeAl0.5Si0.5 by electric-field at room temperature

    NASA Astrophysics Data System (ADS)

    Wang, H. L.; Wu, Y.; Yu, H. J.; Jiang, Y.; Zhao, J. H.

    2016-09-01

    The electrical manipulation of magnetic properties in perpendicularly magnetized Co2FeAl0.5Si0.5 ultra-thin films has been investigated. An electric-field is applied by utilizing either a solid-state dielectric HfO2 film or an ionic gel film as the gate insulator in the form of a field effect parallel capacitor. Obvious changes of the coercive field and Curie temperature (˜24 K) by gating voltage are observed for a 0.8 nm thick film, while a clear change of the magnetic anisotropy is obtained for the 1.1 nm thick one. The experimental results have been attributed to both the electric-field-induced modulation of carrier density near the interface and the oxidation-reduction effect inside the magnetic films.

  13. Coupling of spin and orbital excitations in the iron-based superconductor FeSe0.5Te0.5

    SciTech Connect

    Lee, S.-H.; Xu, Guangyong; Ku, Wei; Wen, J.S.; Lee, C.C.; Katayama, N.; Xu, Z.J.; Ji, S.; Lin, Z.W.; Gu, G.D.; Yang, H.-B.; Johnson, Peter D.; Pan, Z.-H.; Valla, Tonica; Fujita, M.; Sato, T.J.; Chang, S.; Yamada, K.; Tranquada, John M.

    2010-06-14

    We present a combined analysis of neutron scattering and photoemission measurements on superconducting FeSe{sub 0.5} Te{sub 0.5} . The low-energy magnetic excitations disperse only in the direction transverse to the characteristic wave vector (1/2 ,0,0) whereas the electronic Fermi surface near (1/2 ,0,0) appears to consist of four incommensurate pockets. While the spin resonance occurs at an incommensurate wave vector compatible with nesting, neither spin-wave nor Fermi-surface-nesting models can describe the magnetic dispersion. We propose that a coupling of spin and orbital correlations is key to explaining this behavior. If correct, it follows that these nematic fluctuations are involved in the resonance and could be relevant to the pairing mechanism.

  14. Coupling of Spin and Orbital Excitations in the Iron-based Superconductor FeSe0.5Te0.5

    SciTech Connect

    Lee, S.H.; Xu, G.; Ku, W.; Wen, J.S.; Lee, C.C.: Katayama, N.; Xu, Z.J.; Ji, S.; Lin, Z.W.; Gu, G. D.; Yang, H.-B.; Johnson, P.D.; Pan, Z.-H.; Valla, T.; Fujita, M.; Sato, T.J.; Chang, S.; Yamada, K.; Tranquada, J.M.

    2010-06-14

    We present a combined analysis of neutron scattering and photoemission measurements on superconducting FeSe{sub 0.5}Te{sub 0.5}. The low-energy magnetic excitations disperse only in the direction transverse to the characteristic wave vector (1/2,0,0) whereas the electronic Fermi surface near (1/2,0,0) appears to consist of four incommensurate pockets. While the spin resonance occurs at an incommensurate wave vector compatible with nesting, neither spin-wave nor Fermi-surface-nesting models can describe the magnetic dispersion. We propose that a coupling of spin and orbital correlations is key to explaining this behavior. If correct, it follows that these nematic fluctuations are involved in the resonance and could be relevant to the pairing mechanism.

  15. Analysis of conductivity and dielectric spectra of Mn0.5Zn0.5Fe2O4 with coupled Cole-Cole type anomalous relaxations

    NASA Astrophysics Data System (ADS)

    Kumar, N. S. K.; Shahid, T. S.; Govindaraj, G.

    2016-05-01

    Most of the crystalline materials seldom show a well-defined dielectric loss peak due to domination of dc conductivity contribution, but effects of loss peaks are seen at high frequencies. Ac electrical data of nano-crystalline Mn0.5Zn0.5Fe2O4 synthesised by chemical co-precipitation method show such behaviour. Properly combined and formulated conduction and dielectric relaxation functions are required for such materials. Cole-Cole type relaxation function in the combined conduction and dielectric process is formulated for complex resistivity ρ*(ω), complex permittivity ε*(ω), complex conductivity σ*(ω) and complex electric modulus M*(ω). Conduction and dielectric relaxation are linked to Jonscher's idea of 'pinned dipole' and 'free dipole' to understand the relaxation dynamics. The physical parameters of 'pinned dipole' and 'free dipole' formalism are unique for all representations like ρ*(ω), ε*(ω), σ*(ω) and M*(ω). 'Pinned dipole' relaxation time τc related to conduction process and 'free dipole' relaxation time τd related to dielectric process show Arrhenius behaviour with the same activation energy. Correlation of dc conductivity σc with τc and τd indicates the coupled dynamics of 'pinned dipole' and 'free dipole'. Time-temperature scaling of conduction and dielectric relaxation reveals that the mechanism of coupled dynamics of 'pinned dipole' and 'free dipole' is temperature independent. Hopping of charge carriers with dynamics of disordered cation distribution of host matrix generates a coupled conduction and dielectric relaxation in Mn0.5Zn0.5Fe2O4.

  16. Griffiths phase and colossal magnetoresistance in Nd0.5Sr0.5MnO3 oxygen-deficient thin films

    NASA Astrophysics Data System (ADS)

    Solin, N. I.; Korolyov, A. V.; Medvedev, Yu. V.; Nikolaenko, Yu. M.; Khokhlov, V. A.; Prokhorov, A. Yu.; Levchenko, G. G.

    2013-05-01

    This work is devoted to study the influence of the Griffiths phase in colossal magnetoresistance manganites. Griffiths-phase-like behavior of the paramagnetic susceptibility χ0 is observed in Nd0.5Sr0.5MnO3 oxygen-deficient thin films fabricated by magnetron sputtering deposition. In Nd0.5Sr0.5MnO3-δ films with oxygen deficiency for ТG≈260-280 K>T>TC=138 K (ТG and ТС—Griffiths and Curie temperatures, respectively), paramagnetic matrix consists of a magnetic phase with short-range order (˜1-1.5 nm) (which is responsible for the colossal magnetoresistance (CMR) above ТС), and is embedded in this matrix region with long-range ferromagnetic order (≫10 nm), responsible for the Griffiths phase-like behavior of the paramagnetic susceptibility. Electrical resistivity is caused by carrier tunneling between the localized states and obeys the Efros-Shklovskii law. Magnetic resistivity is caused by change of the localized state sizes under the magnetic field. The temperature and magnetic field dependencies of size of the phase inhomogeneity inclusions, found from measurements of magneto-transport properties, can be satisfactorily described by the model of thermodynamic phase separation into metallic droplets of small radius in a paramagnetic matrix. Intrinsic nanoscale inhomogeneities caused by thermodynamic phase separation, rather than the Griffiths phase, determine the electrical resistivity and colossal magnetoresistance of the films. In half-doped manganites, the nature of long-range ordered magnetic phases may be related, besides the chemical heterogeneity, to proximity to a ferromagnetic-antiferromagnetic boundary at the phase diagram as well. The results are in good agreement with the model of existence of an analog of Griffiths phase temperature in half-doped manganites.

  17. Colossal thermoelectric power in charge ordered lanthanum calcium manganites (La{sub 0.5}Ca{sub 0.5}MnO{sub 3})

    SciTech Connect

    Joy, Lija K.; Anantharaman, M. R.; Shanmukharao Samatham, S.; Ganesan, V.; Thomas, Senoy; Al-Harthi, Salim; Liebig, A.; Albrecht, M.

    2014-12-07

    Lanthanum calcium manganites (La{sub 0.5}Ca{sub 0.5}MnO{sub 3}) with a composition close to charge ordering, synthesized by high energy ball milling, was found to exhibit colossal thermoelectric power. Thermoelectric power (TEP) data was systematically analyzed by dividing the entire temperature range (5 K–300 K) into three different regimes to explore different scattering mechanisms involved. Mandal's model has been applied to explain TEP data in the region below the Curie temperature (T{sub C}). It has been found that the variation of thermoelectric power with temperature is pronounced when the system enters the charge ordered region at T < 200 K. For temperatures lower than 120 K, due to the co-existence of charge ordered state with a spin-glass state, the variation of thermoelectric power is maximum and exhibited a peak value of −80 mV/K at 58 K. This has been explained by incorporating Kondo properties of the spin-glass along with magnon scattering. FC-ZFC magnetization measurements indicate the existence of a glassy state in the region corresponding to a maximum value of thermoelectric power. Phonon drag contribution instead of spin-glass contribution is taken into account to explain TEP in the region 120 K < T < T{sub C}. Mott's polaronic contribution of charge carriers are considered to interpret TEP in the high temperature region (T > T{sub C}). The optimal Mn{sup 4+}-Mn{sup 3+} concentration in charge ordered La{sub 0.5}Ca{sub 0.5}MnO{sub 3} was examined by X-ray Photoelectron Spectroscopy analysis which confirms the charge ordered nature of this compound.

  18. Spin-reorientation and weak ferromagnetism in antiferromagnetic TbMn{sub 0.5}Fe{sub 0.5}O{sub 3}

    SciTech Connect

    Nhalil, Hariharan E-mail: hariharan.nhalil@gmail.com; Sanathkumar, R.; Elizabeth, Suja; Nair, Harikrishnan S.; Strydom, André M.

    2015-05-07

    Orthorhombic single crystals of TbMn{sub 0.5}Fe{sub 0.5}O{sub 3} are found to exhibit spin-reorientation, magnetization reversal, and weak ferromagnetism. Strong anisotropy effects are evident in the temperature dependent magnetization measurements along the three crystallographic axes a, b, and c. A broad magnetic transition is visible at T{sub N}{sup Fe/Mn}=286 K due to paramagnetic to A{sub x}G{sub y}C{sub z} ordering. A sharp transition is observed at T{sub SR}{sup Fe/Mn}=28 K, which is pronounced along c axis in the form of a sharp jump in magnetization where the spins reorient to G{sub x}A{sub y}F{sub z} configuration. The negative magnetization observed below T{sub SR}{sup Fe/Mn} along c axis is explained in terms of domain wall pinning. A component of weak ferromagnetism is observed in field-scans along c-axis but below 28 K. Field-induced steps-like transitions are observed in hysteresis measurement along b axis below 28 K. It is noted that no sign of Tb-order is discernible down to 2 K. TbMn{sub 0.5}Fe{sub 0.5}O{sub 3} could be highlighted as a potential candidate to evaluate its magneto-dielectric effects across the magnetic transitions.

  19. Reactive sintering of (K0.5Bi0.5)TiO3-BiFeO3 lead-free piezoelectric ceramics

    NASA Astrophysics Data System (ADS)

    Fisher, John G.; Kim, Min-Gu; Kim, Daeung; Cha, Su-Jeong; Vu, Hung Van; Nguyen, Dieu; Kim, Young-Hun; Moon, Su-Hyun; Lee, Jong-Sook; Hussain, Ali; Kim, Myong-Ho

    2015-05-01

    Ceramics based on BiFeO3 are potential lead-free replacements for Pb(Zr,Ti)O3 in a variety of applications such as sensors, transducers and actuators. Recently, ceramics in the (K0.5Bi0.5)TiO3-BiFeO3 system were developed which have excellent piezoelectric properties. However, these ceramics are difficult to sinter to high density. The present work studies the use of reactive sintering to prepare 0.4(K0.5Bi0.5)TiO3-0.6BiFeO3 ceramics. Undoped and MnO-doped powders were prepared by ball milling K2CO3, (BiO)2CO3, TiO2, α-FeO(OH) and MnCO3 in ethanol with zirconia milling media. The decomposition and calcination reactions of the starting materials were studied using differential scanning calorimetry/thermogravimetric analysis, X-ray diffraction and Fourier transform infra-red analysis. Samples were sintered in the temperature range from 1000 to 1075°C and their structures and microstructures examined using X-ray diffraction, micro-Raman scattering and scanning electron microscopy. MnO doping reduced the rhombohedral distortion of the unit cell. The dielectric, ferroelectric and piezoelectric properties of selected undoped and MnO-doped samples were measured. Both undoped and MnO-doped samples displayed relaxor-type behavior. MnO doping reduced the conductivity of the samples, which exhibit a well-defined activation energy of 1.21 eV. Undoped samples have strain vs. electric field properties comparable to those reported in the literature.

  20. Li(V0.5Ti0.5)S2 as a 1 V lithium intercalation electrode

    PubMed Central

    Clark, Steve J.; Wang, Da; Armstrong, A. Robert; Bruce, Peter G.

    2016-01-01

    Graphite, the dominant anode in rechargeable lithium batteries, operates at ∼0.1 V versus Li+/Li and can result in lithium plating on the graphite surface, raising safety concerns. Titanates, for example, Li4Ti5O12, intercalate lithium at∼1.6 V versus Li+/Li, avoiding problematic lithium plating at the expense of reduced cell voltage. There is interest in 1 V anodes, as this voltage is sufficiently high to avoid lithium plating while not significantly reducing cell potential. The sulfides, LiVS2 and LiTiS2, have been investigated as possible 1 V intercalation electrodes but suffer from capacity fading, large 1st cycle irreversible capacity or polarization. Here we report that the 50/50 solid solution, Li1+x(V0.5Ti0.5)S2, delivers a reversible capacity to store charge of 220 mAhg−1 (at 0.9 V), 99% of theoretical, at a rate of C/2, retaining 205 mAhg−1 at C-rate (92% of theoretical). Rate capability is excellent with 200 mAhg−1 at 3C. C-rate is discharge in 1 h. Polarization is low, 100 mV at C/2. To the best of our knowledge, the properties/performances of Li(V0.5Ti0.5)S2 exceed all previous 1 V electrodes. PMID:26996753

  1. Organic matter evolution throughout a 100-cm ombrotrophic profile from an Italian floating mire

    NASA Astrophysics Data System (ADS)

    Zaccone, Claudio; D'Orazio, Valeria; Lobianco, Daniela; Miano, Teodoro M.

    2015-04-01

    .1%). Main atomic ratios seem to confirm what found during the visual inspection of the core, i.e., Sphagnum material so well preserved that it is hard to classify it as 'peat'. In fact, the F14C age dating suggests that the first 95 cm of Sphagnum material accumulate in less than 55 yrs, thus resulting in an average growing rate of ca. 1.7-1.8 cm yr-1. At the same time, C/N, H/C and O/C ratios show their lowest values between 20 and 55 cm of depth, corresponding to the section with highest bulk density (0.025-0.059 g cm-3). This seems to suggest a slightly more decomposed material. Consequently, the depth of 55-60 cm could represent the emerged (i.e., less anaerobic) section of this floating mire. Finally, the first 100 cm of the core show a great potential to be used as archive of environmental changes, especially considering their high resolution (1 cm = 0.5 yr ca.), although the short time-space covered could be a limiting factor. The Authors thank the Municipality of Posta Fibreno (FR), Managing Authority of the Regional Natural Reserve of Lake Posta Fibreno, for allowing peat cores sampling. C.Z. is indebted to the Staff of the Regional Natural Reserve for the help during samplings and for their continuous feedbacks.

  2. The cross-plane thermoelectric properties of p-Ge/Si{sub 0.5}Ge{sub 0.5} superlattices

    SciTech Connect

    Ferre Llin, L.; Samarelli, A.; Weaver, J. M. R.; Dobson, P. S.; Paul, D. J.; Cecchi, S.; Chrastina, D.; Isella, G.; Etzelstorfer, T.; Stangl, J.; Müller Gubler, E.

    2013-09-30

    The electrical conductivity, Seebeck coefficients, and thermal conductivities of a range of p-type Ge/Si{sub 0.5}Ge{sub 0.5} superlattices designed for thermoelectric generation and grown by low energy plasma enhanced chemical vapor deposition have been measured using a range of microfabricated test structures. For samples with barriers around 0.5 nm in thickness, the measured Seebeck coefficients were comparable to bulk p-SiGe at similar doping levels suggesting the holes see the material as a random bulk alloy rather than a superlattice. The Seebeck coefficients for Ge quantum wells of 2.85 ± 0.85 nm increased up to 533 ± 25 μV/K as the doping was reduced. The thermal conductivities are between 4.5 to 6.0 Wm{sup −1}K{sup −1} which are lower than comparably doped bulk Si{sub 0.3}Ge{sub 0.7} but higher than undoped Si/Ge superlattices. The highest measured figure of merit ZT was 0.080 ± 0.011 obtained for the widest quantum well studied. Analysis suggests that interface roughness is presently limiting the performance and a reduction in the strain between the quantum wells and barriers has the potential to improve the thermoelectric performance.

  3. Raman Scattering in Tl_0.5Pb_0.5Sr_1.25Ba_0.75 Ca_1Cu_2Ox Thin-Films

    NASA Astrophysics Data System (ADS)

    Subramanyam, G.; Boolchand, P.; Chandrasekhar, M.

    1997-03-01

    RF sputtered c-axis oriented thin-films of the titiled 1212 superconductor have been deposited on LaAlO3 substrates. Films possess a tetragonal structure and a T_c=85K. Raman modes due to A_1g and B_1g vibrations are observed, of which the Cu mode at 124 cm-1, the 0(1) out of phase mode at 294 cm-1 and the 0(2) mode at 543 cm-1 are upshifted in frequency relative to pure T11212.footnote K.F.McCarty, et al. Physica C156, 119 (1988) Two new modes are observed: one at 341 cm-1 corresponding to the 0(1) in-phase vibration calculated( A.D.Kulkarni et al. Phys. Rev. B41, 6409 (1990)) to be at 358 cm-1; and a second at 627 cm-1, which may be due to disallowed 0(3) vibration, observed due to symmetry breaking in the alloyed compound. * Supported by Roy J. Carver Foundation ** Supported by NSF grant DMR-9424556. ***Supported by DOE grant DEFG02-9OER45427 through Midwest Superconductivity Consortium.

  4. Wavelength-dependent penetration depth of near infrared radiation into cartilage.

    PubMed

    Padalkar, M V; Pleshko, N

    2015-04-01

    Articular cartilage is a hyaline cartilage that lines the subchondral bone in the diarthrodial joints. Near infrared (NIR) spectroscopy is emerging as a nondestructive modality for the evaluation of cartilage pathology; however, studies regarding the depth of penetration of NIR radiation into cartilage are lacking. The average thickness of human cartilage is about 1-3 mm, and it becomes even thinner as OA progresses. To ensure that spectral data collected is restricted to the tissue of interest, i.e. cartilage in this case, and not from the underlying subchondral bone, it is necessary to determine the depth of penetration of NIR radiation in different wavelength (frequency) regions. In the current study, we establish how the depth of penetration varies throughout the NIR frequency range (4000-10 000 cm(-1)). NIR spectra were collected from cartilage samples of different thicknesses (0.5 mm to 5 mm) with and without polystyrene placed underneath. A separate NIR spectrum of polystyrene was collected as a reference. It was found that the depth of penetration varied from ∼1 mm to 2 mm in the 4000-5100 cm(-1) range, ∼3 mm in the 5100-7000 cm(-1) range, and ∼5 mm in the 7000-9000 cm(-1) frequency range. These findings suggest that the best NIR region to evaluate cartilage with no subchondral bone contribution is in the range of 4000-7000 cm(-1).

  5. Wavelength-Dependent Penetration Depth of Near Infrared Radiation into Cartilage

    PubMed Central

    Padalkar, M.V.; Pleshko, N.

    2015-01-01

    Articular cartilage is a hyaline cartilage that lines the subchondral bone in a diarthrodial joint. Near infrared (NIR) spectroscopy has been emerging as a nondestructive modality for evaluation of cartilage pathology. However, studies of the depth of penetration of NIR radiation into cartilage are lacking. The average thickness of human cartilage is about 1-3 mm, and it becomes even thinner as OA progresses. To ensure that the spectral data collected is restricted to the tissue of interest i.e. cartilage in this case, and not from the underlying subchondral bone, it is necessary to determine the depth of penetration of NIR radiation in different wavelength (frequency) regions. In the current study we establish how the depth of penetration varies throughout the NIR frequency range (4000-10000 cm-1). NIR spectra were collected from cartilage samples of different thicknesses (0.5 mm to 5 mm) with and without polystyrene placed underneath. A separate NIR spectrum of polystyrene was collected as a reference. It was found that the depth of penetration varied from ∼1 mm to 2 mm in the 4000-5100 cm-1 range, to ∼3 mm in the 5100-7000 cm-1 range, and to ∼5 mm in the 7000-9000 cm-1 frequency range. These findings suggest that the best NIR region to evaluate cartilage only with no subchondral bone contribution is between 4000-7000 cm-1. PMID:25630381

  6. Fabrication and characterization of Sm0.2Ce0.8O2-δ-Sm0.5Sr0.5CoO3-δ composite cathode for anode supported solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Chang, Jen-Chen; Lee, Maw-Chwain; Yang, Rung-Je; Chang, Yang-Chuang; Lin, Tai-Nan; Wang, Chun-Hsiu; Kao, Wei-Xin; Lee, Lin-Song

    2011-03-01

    The Sm0.5Sr0.5CoO3-δ (SSC) with perovskite structure is synthesized by the glycine nitrate process (GNP). The phase evolution of SSC powder with different calcination temperatures is investigated by X-ray diffraction and thermogravimetric analyses. The XRD results show that the single perovskite phase of the SSC is completely formed above 1100 °C. The anode-supported single cell is constructed with a porous Ni-yttria-stabilized zirconia (YSZ) anode substrate, an airtight YSZ electrolyte, a Sm0.2Ce0.8O2-δ (SDC) barrier layer, and a screen-printed SSC-SDC composite cathode. The SEM results show that the dense YSZ electrolyte layer exhibits the good interfacial contact with both the Ni-YSZ and the SDC barrier layer. The porous SSC-SDC cathode shows an excellent adhesion with the SDC barrier layer. For the performance test, the maximum power densities are 464, 351 and 243 mW cm-2 at 800, 750 and 700 °C, respectively. According to the results of the electrochemical impedance spectroscopy (EIS), the charge-transfer resistances of the electrodes are 0.49 and 1.24 Ω cm2, and the non charge-transfer resistances are 0.48 and 0.51 Ω cm2 at 800 and 700 °C, respectively. The cathode material of SSC is compatible with the YSZ electrolyte via a delicate scheme employed in the fabrication process of unit cell.

  7. PrBa0.5Sr0.5Co2O5+δ layered perovskite cathode for intermediate temperature solid oxide fuel cells

    SciTech Connect

    Ding, Hanping; Xue, Xingjian

    2010-02-06

    Layered perovskite oxides have ordered A-cations localizing oxygen vacancies, and may potentially improve oxygen ion diffusivity and surface exchange coefficient. The A-site-ordered layered perovskite PrBa0.5Sr0.5Co2O5+δ (PBSC) was evaluated as new cathode material for intermediate temperature solid oxide fuel cells (IT-SOFCs). The material was characterized using electrochemical impedance spectroscopy in a symmetrical cell system (PBSC/Ce0.9Sm0.1O1.9 (SDC)/PBSC), exhibiting excellent performance in the intermediate temperature range of 500–700 °C. An area-specific-resistance (ASR) of 0.23 Ω cm2 was achieved at 650 °C for cathode polarization. The low activation energy (Ea) 124 kJ mol-1 is comparable to that of La0.8Sr0.2CoO3-δ. A laboratory-scaled SDC-based tri-layer cell of Ni-SDC/SDC/PBSC was tested in intermediate temperature conditions of 550 to 700 °C. A maximum power density of 1045 mW cm-2 was achieved at 700 °C. The interfacial polarization resistance is as low as 0.285, 0.145, 0.09 and 0.05 Ω cm2 at 550, 600, 650 and 700 °C, respectively. Layered perovskite PBSC shows promising performance as cathode material for IT-SOFCs.

  8. SU-E-T-499: Comparison of Measured Tissue Phantom Ratios (TPR) Against Calculated From Percent Depth Doses (PDD) with and Without Peak Scatter Factor (PSF) in 6MV Open Beam

    SciTech Connect

    Narayanasamy, G; Cruz, W; Gutierrez, Alonso; Mavroidis, Panayiotis; Papanikolaou, N; Stathakis, S; Breton, C

    2014-06-01

    Purpose: To examine the accuracy of measured tissue phantom ratios (TPR) values with TPR calculated from percentage depth dose (PDD) with and without peak scatter fraction (PSF) correction. Methods: For 6MV open beam, TPR and PDD values were measured using PTW Semiflex (31010) ionization field and reference chambers (0.125cc volume) in a PTW MP3-M water tank. PDD curves were measured at SSD of 100cm for 7 square fields from 3cm to 30cm. The TPR values were measured up to 22cm depth for the same fields by continuous water draining method with ionization chamber static at 100cm from source. A comparison study was performed between the (a) measured TPR, (b) TPR calculated from PDD without PSF, (c) TPR calculated from PDD with PSF and (d) clinical TPR from RadCalc (ver 6.2, Sun Nuclear Corp). Results: There is a field size, depth dependence on TPR values. For 10cmx10cm, the differences in surface dose (DDs), dose at 10cm depth (DD10) <0.5%; differences in dmax (Ddmax) <2mm for the 4 methods. The corresponding values for 30cmx30cm are DDs, DD10 <0.2% and Ddmax<3mm. Even though for 3cmx3cm field, DDs and DD10 <1% and Ddmax<1mm, the calculated TPR values with and without PSF correction differed by 2% at >20cm depth. In all field sizes at depths>28cm, (d) clinical TPR values are larger than that from (b) and (c) by >3%. Conclusion: Measured TPR in method (a) differ from calculated TPR in methods (b) and (c) to within 1% for depths < 28cm in all 7 fields in open 6MV beam. The dmax values are within 3mm of each other. The largest deviation of >3% was observed in clinical TPR values in method (d) for all fields at depths < 28cm.

  9. Synthesis and thermoelectric properties of the novel A-site deficient Zn{sub 0.5}Rh{sub 2}O{sub 4} compound

    SciTech Connect

    Nakamura, Yuta; Kakemoto, Hirofumi; Nishiyama, Shin; Irie, Hiroshi

    2012-08-15

    A novel thermoelectric material, A-site-deficient spinel Zn{sub 0.5}Rh{sub 2}O{sub 4}, was prepared by subtracting Li ions from Li{sub 0.5}Zn{sub 0.5}Rh{sub 2}O{sub 4} immersed in a K{sub 2}S{sub 2}O{sub 8} aqueous solution. The electric conductivity ({sigma}) increased 6-fold after extracting Li ({sigma}=8.8 S/cm (Li{sub 0.5}Zn{sub 0.5}Rh{sub 2}O{sub 4}), 50 S/cm (Zn{sub 0.5}Rh{sub 2}O{sub 4}) at 600 Degree-Sign C), whereas the Seebeck coefficient (S) only slightly increased (S=203 {mu}V/K (Li{sub 0.5}Zn{sub 0.5}Rh{sub 2}O{sub 4}), 216 {mu}V/K (Zn{sub 0.5}Rh{sub 2}O{sub 4}) at 600 Degree-Sign C). In Zn{sub 0.5}Rh{sub 2}O{sub 4}, a mixed-valence configuration of Rh{sup 3+} and Rh{sup 4+} at a ratio of 1 to 1 and a half-deficient A-site were realized, resulting in high {sigma} and even slightly increased S, which were likely attributed to the rather high power factor of 2.3 Multiplication-Sign 10{sup -4} W/m K{sup 2} at 600 Degree-Sign C. Our findings demonstrate that controlling the Rh{sup 4+}/Rh{sup 3+} ratio is a promising method for enhancing the thermoelectric properties. - Graphical abstract: Temperature dependence of power factor (PF) of Li{sub 0.5}Zn{sub 0.5}Rh{sub 2}O{sub 4}, Li{sub 0.25}Zn{sub 0.5}Rh{sub 2}O{sub 4}, and Zn{sub 0.5}Rh{sub 2}O{sub 4} thin films. Highlights: Black-Right-Pointing-Pointer A-site-deficient Zn{sub 0.5}Rh{sub 2}O{sub 4} was prepared by subtracting Li from Li{sub 0.5}Zn{sub 0.5}Rh{sub 2}O{sub 4}. Black-Right-Pointing-Pointer A mixed-valence configuration with a Rh{sup 4+}/Rh{sup 3+} ratio of 1 was likely realized. Black-Right-Pointing-Pointer Such a configuration lead to an enhanced {sigma} of 50S/cm and S of 216 {mu}V/K at 600 Degree-Sign C. Black-Right-Pointing-Pointer Controlling the Rh{sup 4+}/Rh{sup 3+} ratio is a candidate for enhancing the thermoelectricity.

  10. Crystal structure, phase transitions, and magnetic properties of titanium doped La0.5Sr0.5MnO3 perovskites

    NASA Astrophysics Data System (ADS)

    Hazzez, M.; Ihzaz, N.; Boudard, M.; Oumezzine, M.

    2016-04-01

    The current paper investigates the effect of titanium substitution on the structure as well as the magnetic properties of La0.5Sr0.5Mn1-xTixO3 (0≤x≤0.5) polycrystalline powder. The samples studied crystallize in a distorted perovskite structures of tetragonal (space group I4/mcm) symmetry with octahedral tilting scheme (a0a0c-), leading to the absence of octahedral tilting all along two perovskite main directions and to an out-of-phase along the third direction, or rhombohedral (space group R 3 bar c) symmetry with octahedral tilting scheme (a-a-a-) yielding to out-of-phase along the three perovskite main directions. As the Ti content increases, a better matching of the (Mn/Ti)-O distances and (Mn/Ti)-O-(Mn/Ti) bond angle occurs. This phenomenon is created by an elongation of the (Mn/Ti)-O distance, as Mn4+ is substituted by the larger ion Ti4+. In the whole compositional range, the symmetry-adapted to atomic displacements, responsible for the out-of-phase tilting of the (Mn/Ti)O6 octahedra, stays active, anticipating tetragonal-to-rhombohedral phase transition. Taking in to account what has been explained above, measurements of magnetic properties show a decrease of magnetic ordering temperature when Ti content increases, which in turn leads to the diminution of the exchange interaction caused by reducing the FM coupling and the replacement of neighboring manganese Mn3+-O-Mn4+ by Mn3+-O-Ti4+ bonds. This phenomenon results in broadening of the paramagnetic to ferromagnetic phase transition range. Further changes in magnetic properties with the increase in Ti concentration are studied.

  11. Giant strain with ultra-low hysteresis and high temperature stability in grain oriented lead-free K0.5Bi0.5TiO3-BaTiO3-Na0.5Bi0.5TiO3 piezoelectric materials.

    PubMed

    Maurya, Deepam; Zhou, Yuan; Wang, Yaojin; Yan, Yongke; Li, Jiefang; Viehland, Dwight; Priya, Shashank

    2015-02-26

    We synthesized grain-oriented lead-free piezoelectric materials in (K0.5Bi0.5TiO3-BaTiO3-xNa0.5Bi0.5TiO3 (KBT-BT-NBT) system with high degree of texturing along the [001]c (c-cubic) crystallographic orientation. We demonstrate giant field induced strain (~0.48%) with an ultra-low hysteresis along with enhanced piezoelectric response (d33 ~ 190pC/N) and high temperature stability (~160°C). Transmission electron microscopy (TEM) and piezoresponse force microscopy (PFM) results demonstrate smaller size highly ordered domain structure in grain-oriented specimen relative to the conventional polycrystalline ceramics. The grain oriented specimens exhibited a high degree of non-180° domain switching, in comparison to the randomly axed ones. These results indicate the effective solution to the lead-free piezoelectric materials.

  12. 77 FR 53892 - Determination That ALOXI (Palonosetron Hydrochloride) Capsules, 0.5 Milligram (Base), Were Not...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-04

    ...) Capsules, 0.5 mg (base). In previous instances (see, e.g., 72 FR 9763, March 5, 2007; 61 FR 25497, May 21... indicated for the prevention of acute nausea and vomiting associated with initial and repeat courses...

  13. Coefficient of variation of interspike intervals greater than 0.5. How and when?

    PubMed

    Feng, J F; Brown, D

    1999-05-01

    Using Stein's model with and without reversal potentials, we investigated the mechanism of production of spike trains with a CV (ISI)(standard deviation/mean interspike interval) greater than 0.5, as observed in the visual cortex. When the attractor of the deterministic part of the dynamics is below the firing threshold, spike generation results primarily from random fluctuations. Using computer simulation for a range of membrane decay times and with other model parameters set to values appropriate for the visual cortex, we demonstrate that CV (ISI) is then usually greater than 0.5; if the attractor is above the threshold, spike generation is mainly due to deterministic forces, and CV (ISI) is then usually lower than 0.5. The critical value of the inhibitory postsynaptic potential (IPSP) rate at which CV (ISI) becomes greater than 0.5 is determined, resulting in specifications of how neurones might adjust their synaptic inputs to elicit irregular spike trains.

  14. 43 CFR 3715.0-5 - How are certain terms in this subpart defined?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... applicable law or regulation. As applied to authorized uses, the term is used as defined in 43 CFR 3802.0-5... valuable mineral deposit, using methods, structures, and equipment appropriate to the geological...

  15. Giant strain with ultra-low hysteresis and high temperature stability in grain oriented lead-free K0.5Bi0.5TiO3-BaTiO3-Na0.5Bi0.5TiO3 piezoelectric materials

    PubMed Central

    Maurya, Deepam; Zhou, Yuan; Wang, Yaojin; Yan, Yongke; Li, Jiefang; Viehland, Dwight; Priya, Shashank

    2015-01-01

    We synthesized grain-oriented lead-free piezoelectric materials in (K0.5Bi0.5TiO3-BaTiO3-xNa0.5Bi0.5TiO3 (KBT-BT-NBT) system with high degree of texturing along the [001]c (c-cubic) crystallographic orientation. We demonstrate giant field induced strain (~0.48%) with an ultra-low hysteresis along with enhanced piezoelectric response (d33 ~ 190pC/N) and high temperature stability (~160°C). Transmission electron microscopy (TEM) and piezoresponse force microscopy (PFM) results demonstrate smaller size highly ordered domain structure in grain-oriented specimen relative to the conventional polycrystalline ceramics. The grain oriented specimens exhibited a high degree of non-180° domain switching, in comparison to the randomly axed ones. These results indicate the effective solution to the lead-free piezoelectric materials. PMID:25716551

  16. 17 CFR 275.0-5 - Procedure with respect to applications and other matters.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... EXCHANGE COMMISSION (CONTINUED) RULES AND REGULATIONS, INVESTMENT ADVISERS ACT OF 1940 § 275.0-5 Procedure... the Commission under the Act other than an application for registration as an investment adviser....

  17. MODIFIED EQUIPARTITION CALCULATION FOR SUPERNOVA REMNANTS. CASES α = 0.5 AND α = 1

    SciTech Connect

    Arbutina, B.; Urošević, D.; Vučetić, M. M.; Pavlović, M. Z.; Vukotić, B.

    2013-11-01

    The equipartition or minimum energy calculation is a well-known procedure for estimating the magnetic field strength and the total energy in the magnetic field and cosmic ray particles by using only the radio synchrotron emission. In one of our previous papers, we have offered a modified equipartition calculation for supernova remnants (SNRs) with spectral indices 0.5 < α < 1. Here we extend the analysis to SNRs with α = 0.5 and α = 1.

  18. Effect of chlorhexidine 0.5% on the hand bacterial flora.

    PubMed

    Sia, R L; van der Goot, L; van Saene, H K

    1986-08-01

    The effects of cleaning the dorsal hand with chlorhexidine 0.5% in spirit was evaluated by bacteriological study in 45 adult patients. In the absence of cleaning it was found that the prevalent microorganisms were Staphylococcus epidermidis, Staphylococcus aureus, Streptococcus viridans and Enterobacteriaceae. Cleaning the hand with chlorhexidine 0.5% eliminated all bacteria except S. epidermidis and S. aureus. In both instances, the culture results showed that the microorganisms were present in very low growth density.

  19. Modified Equipartition Calculation for Supernova Remnants. Cases α = 0.5 and α = 1

    NASA Astrophysics Data System (ADS)

    Arbutina, B.; Urošević, D.; Vučetić, M. M.; Pavlović, M. Z.; Vukotić, B.

    2013-11-01

    The equipartition or minimum energy calculation is a well-known procedure for estimating the magnetic field strength and the total energy in the magnetic field and cosmic ray particles by using only the radio synchrotron emission. In one of our previous papers, we have offered a modified equipartition calculation for supernova remnants (SNRs) with spectral indices 0.5 < α < 1. Here we extend the analysis to SNRs with α = 0.5 and α = 1.

  20. Crystal and magnetic study of the disordered perovskites Ca(Mn{sub 0.5}Sb{sub 0.5})O{sub 3} and Ca(Fe{sub 0.5}Sb{sub 0.5})O{sub 3}

    SciTech Connect

    Retuerto, M.; Martinez-Lope, M.J.; Garcia-Hernandez, M.; Munoz, A.; Fernandez-Diaz, M.T.; Alonso, J.A.

    2010-10-15

    We have investigated the double perovskites Ca{sub 2}MSbO{sub 6} (M = Mn, Fe) that have been prepared by solid-state reaction (M = Fe) and wet chemistry procedures (M = Mn). The crystal and magnetic structures have been studied from X-ray (XRD) and neutron powder diffraction (NPD) data. Rietveld refinements show that the crystal structures are orthorhombic (space group Pbnm) with complete disorder of M and Sb cations, so the formula should be rewritten as Ca(M{sub 0.5}Sb{sub 0.5})O{sub 3}. Due to this disorder no evidences of Jahn-Teller distortion can be observed in the MnO{sub 6} octahedra of Ca(Mn{sub 0.5}Sb{sub 0.5})O{sub 3}, in contrast with the ordered double perovskite Sr{sub 2}MnSbO{sub 6}. Ca(Fe{sub 0.5}Sb{sub 0.5})O{sub 3} behaves as an antiferromagnet with an ordered magnetic moment for Fe{sup 3+} of 1.53(4){mu}{sub B} and a propagation vector k = 0, as investigated by low-temperature NPD. The antiferromagnetic ordering is a result of the high degree of Fe/Sb anti-site disorder of the sample, which originates the spontaneous formation of Fe-rich islands, characterized by the presence of strong Fe-O-Fe antiferromagnetic couplings with enough long-range coherence to produce a magnetic contribution perceptible by NPD. By contrast, the magnetic structure of Ca(Mn{sub 0.5}Sb{sub 0.5})O{sub 3} cannot be observed by low-temperature NPD because the magnitude of the ordered magnetic moments is below the detection threshold for neutrons.

  1. High-Resolution Chandra Spectroscopy of γ Cassiopeiae (B0.5e)

    NASA Astrophysics Data System (ADS)

    Smith, Myron A.; Cohen, David H.; Gu, Ming Feng; Robinson, Richard D.; Evans, Nancy Remage; Schran, Prudence G.

    2004-01-01

    γ Cas is the prototypical classical B0.5e star and is now known to be the primary in a wide binary system. It has long been famous for its unique hard X-ray characteristics, among which are variations that correlate with changes in a number of optical light and UV line and continuum properties. These peculiarities have led to a picture in which processes on or near the Be star produce the observed X-ray emission. In this paper we report on a 53 ks Chandra High Energy Transmission Grating Spectrometer observation of this target. An inspection of our spectrum shows that it is quite atypical for a massive star. The emission lines appear weak because of a strong short-wavelength continuum that arises from a hot plasma with kT=11-12 keV. The spectrum exhibits many lines, the strongest of which are Lyα features of H-like species from Fe through the even-Z intermediate elements (S, Si, Mg, and Ne), down to O and N. Line ratios of the ``rif triplet'' for a variety of He-like ions and of Fe XVII are consistent with the dominance of collisional atomic processes. However, the presence of Fe and Si fluorescence K features indicates that photoionization also occurs in nearby cold gas. The line profiles indicate a mean velocity at rest with an rms line broadening of 500 km s-1 and little or no asymmetry. An empirical global-fitting analysis of the line and continuum spectrum suggests that there are actually three or four plasma emission components. The first is the dominant hot (12 keV) component, of which some fraction (10%-30%) is heavily absorbed, while the remainder is affected by a much lower column density of only 3×1021 cm-2. The hot component has a Fe abundance of only 0.22+/-0.05 solar. The other two or three major emission components are ``warm'' and are responsible for most other emission lines. These components are dominated by plasma having temperatures near 0.1, 0.4, and 3 keV. Altogether, the warm components have an emission measure of about 14% of the hot

  2. Depth dose perturbation by a hydrogel fiducial marker in a proton beam.

    PubMed

    Zhang, Miao; Reyhan, Meral; Kim, Leonard H

    2015-01-08

    The purpose of this study was to evaluate proton depth dose perturbation caused by a radio-opaque hydrogel fiducial marker. Electronic proton stopping powers in the hydrogel were calculated for energies 0.5-250 MeV, and Monte Carlo simulations were generated of hydrogel vs. gold markers placed at various water phantom depths in a generic proton beam. Across the studied energy range, the gel/water stopping power ratio was 1.0146 to 1.0160. In the Monte Carlo simulation, the hydrogel marker caused no discernible perturbation of the proton percent depth-dose (PDD) curve. In contrast, the gold marker caused dose reductions of as much as 20% and dose shadowing regions as long as 6.5 cm. In contrast to gold markers, the radio-opaque hydrogel marker causes negligible proton depth dose perturbation. This factor may be taken into consideration for image-guided proton therapy at facilities with suitable imaging modalities.

  3. High thermal stability of piezoelectric properties in (Na{sub 0.5}Bi{sub 0.5}TiO{sub 3}){sub x}-(BaTiO{sub 3}){sub y}-(Na{sub 0.5}K{sub 0.5}NbO{sub 3}){sub 1-x-y} ceramics

    SciTech Connect

    Gupta, Shashaank; Priya, Shashank

    2013-01-07

    We report the piezoelectric and ferroelectric properties of (Na{sub 0.5}Bi{sub 0.5}TiO{sub 3}){sub x}-(BaTiO{sub 3}){sub y}-(Na{sub 0.5}K{sub 0.5}NbO{sub 3}){sub 1-x-y} ceramics for Na{sub 0.5}K{sub 0.5}NbO{sub 3} rich end of composition (x, y {<=} 0.04 mol. %). These compositions were found to exhibit significantly improved thermal stability of piezoresponse. Variation of dielectric constant as a function of temperature revealed that orthorhombic-tetragonal (T{sub o-t}) and tetragonal-cubic (T{sub c}) transition temperatures for these compositions were in the vicinity of 0 Degree-Sign C and 330 Degree-Sign C, respectively. Dynamic scaling and temperature dependent X-ray diffraction analysis were conducted. Results are discussed in terms of intrinsic and extrinsic contributions to the piezoelectric response explaining the temperature dependent behavior.

  4. NASA 30 Cm Ion Thruster Development Status

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Haag, Thomas W.; Rawlin, Vincent K.; Kussmaul, Michael T.

    1995-01-01

    A 30 cm diameter xenon ion thruster is under development at NASA to provide an ion propulsion option for missions of national interest and it is an element of the NASA Solar Electric Propulsion Technology Applications Readiness (NSTAR) program established to validate ion propulsion for space flight applications. The thruster has been developed to an engineering model level and it incorporates innovations in design, materials, and fabrication techniques compared to those employed to conventional ion thrusters. The performance of both functional and engineering model thrusters has been assessed including thrust stand measurements, over an input power range of 0.5-2.3 kW. Attributes of the engineering model thruster include an overall mass of 6.4 kg, and an efficiency of 65 percent and thrust of 93 mN at 2.3 kW input power. This paper discusses the design, performance, and lifetime expectations of the functional and engineering model thrusters under development at NASA.

  5. Dielectric and magnetic studies of BaTi0.5Fe0.5O3 ceramic materials, synthesized by solid state sintering

    NASA Astrophysics Data System (ADS)

    Samuvel, K.; Ramachandran, K.

    2015-02-01

    A comparative study of the surface morphology, dielectric and magnetic properties of the BaTi0.5Fe0.5O3 (BTFO) ceramics materials. This has been carried out by synthesizing the samples in different routes. BTFO samples have shown single phased 12R type hexagonal structure with R 3m ‾ , P4mm space group. Interfacial effects on the dielectric properties of the samples have been understood by Cole-Cole plots in complex impedance and modulus formalism. It has been identified that huge dielectric constant (103-106) at lower frequencies is largely contributed by the heterogeneous electronic microstructure at the interfaces of grains. Modulus formalism has identified the effects of both grain and grain boundary microstructure on the dielectric properties, particularly in chemical routed samples. The order of grain boundary resistivity suggests the semiconductor/insulator class of the material. The grain boundary resistivity of the mechanical alloyed samples is remarkably lower than the solid state and chemical routed samples. Few samples have of the samples have exhibited signature of ferromagnetism at the room temperature.

  6. PEG Coating Reduces NMR Relaxivity of Mn0.5Zn0.5Gd0.02Fe1.98O4 Hyperthermia Nanoparticles

    PubMed Central

    Issa, Bashar; Qadri, Shahnaz; Obaidat, Ihab M.; Bowtell, Richard W.; Haik, Yousef

    2011-01-01

    Purpose To investigate both T1 and T2 MR relaxation enhancement of Gd substituted Zn-Mn ferrite magnetic nanoparticles. Both uncoated and polyethylene glycol (PEG) coated particles were used. Materials and Methods Chemical co-precipitation was used to synthesize particles in the form Mn0.5Zn0.5Gd0.02Fe1.98O4 suitable for hyperthermia applications. Physical characterization of the magnetic nanoparticles included SEM, TEM, ICP, and SQUID. T1 and T2 measurements were performed at 1.5 T. Results The saturation magnetization was 12.86 emu/g while the particle’s magnetic moment was 1.86 × 10−19 J/T. The particle size increased due to coating, while 1/T1 and 1/T2 relaxivities (26 °C) decreased from 2.5 to 0.7 and from 201.3 to 76.6 s−1 mM−1, respectively at a magnetic field 1.5 T. Conclusion The reduction in both 1/T1 and 1/T2 is attributed to increased distance of closest approach between the protons and the magnetic core caused by the shielding provided by the high molecular weight PEG. 1/T2 data is compared to existing theoretical models using a modified radius that takes into account both possible agglomeration of the particles and increased inter-particle separation induced by PEG coating. PMID:21928382

  7. Nonequilibrium hysteresis and spin relaxation in the mixed-anisotropy dipolar-coupled spin-glass LiHo0.5Er0.5F4

    NASA Astrophysics Data System (ADS)

    Piatek, J. O.; Kovacevic, I.; Babkevich, P.; Dalla Piazza, B.; Neithardt, S.; Gavilano, J.; Krämer, K. W.; Rønnow, H. M.

    2014-11-01

    We present a study of the model spin-glass LiHo0.5Er0.5F4 using simultaneous ac susceptibility, magnetization, and magnetocaloric effect measurements along with small angle neutron scattering (SANS) at sub-Kelvin temperatures. All measured bulk quantities reveal hysteretic behavior when the field is applied along the crystallographic c axis. Furthermore, avalanchelike relaxation is observed in a static field after ramping from the zero-field-cooled state up to 200-300 Oe. SANS measurements are employed to track the microscopic spin reconfiguration throughout both the hysteresis loop and the related relaxation. Comparing the SANS data to inhomogeneous mean-field calculations performed on a box of one million unit cells provides a real-space picture of the spin configuration. We discover that the avalanche is being driven by released Zeeman energy, which heats the sample and creates positive feedback, continuing the avalanche. The combination of SANS and mean-field simulations reveal that the conventional distribution of cluster sizes is replaced by one with a depletion of intermediate cluster sizes for much of the hysteresis loop.

  8. Effects of sintering process, pH and temperature on chemical durability of Ce0.5Pr0.5PO4 ceramics

    NASA Astrophysics Data System (ADS)

    Ma, Jiyan; Teng, Yuancheng; Huang, Yi; Wu, Lang; Zhang, Kuibao; Zhao, Xiaofeng

    2015-10-01

    The Ce0.5Pr0.5PO4 ceramics with high relative density of 99% and small average grain size of 0.15 μm were prepared by hot-pressing at 1150 °C for 2 h. The effects of sintering process, pH values and temperature on the chemical durability of the ceramics were investigated. The results show that normalized elemental leaching rates of Pr (LRPr) and Ce (LRCe) of the hot-pressed ceramics are slightly lower than that of the ceramics sintered at 1500 °C for 4 h by normal pressure. The LRPr and LRCe reach the highest values (∼10-3 g m-2 d-1) when pH = 3, while the LRPr and LRCe have the lowest values (∼10-7 g m-2 d-1) when pH = 7. The surface of the ceramic in pH = 3 leachate appears serious corrosion with plenty of pores. The precipitation of low-soluble was formed on sample surface during leaching tests at pH = 9 and 11.

  9. Chemical durability and leaching mechanism of Ce0.5Eu0.5PO4 ceramics: Effects of temperature and pH values

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaofeng; Teng, Yuancheng; Wu, Lang; Huang, Yi; Ma, Jiyan; Wang, Guolong

    2015-11-01

    Ce0.5Eu0.5PO4 ceramics with high relative density were prepared by hot-press (HPS) and pressureless (PLS) sintering. The effects of temperature and pH values on the chemical durability of the ceramics were investigated. The results show that an increase of acidity significantly accelerated the corrosion of the samples. In alkaline leachates, further release elements were prevented by the newborn surface precipitation. The leach rate (Rn) of HPS sample was similar to that of PLS specimen in deionized water, but higher Rn for PLS sample was found in pH = 11 solution. Moreover, apparent activation energy of the dissolution of Eu (40 ± 4 kJ mol-1) is much higher than that of Ce (20 ± 1 kJ mol-1), leading to the higher normalized elemental leach rate of Eu. Both the Eu and Ce elements have low leach rates (10-12-10-9 m d-1) after 42 days in all the leachates studied in this work.

  10. Compound biomimetic structures for efficiency enhancement of Ga(0.5)In(0.5)P/GaAs/Ge triple-junction solar cells.

    PubMed

    Hung, Mu-Min; Han, Hau-Vei; Hong, Chung-Yu; Hong, Kuo-Hsuan; Yang, Tung-Ting; Yu, Peichen; Wu, Yu-Rue; Yeh, Hong-Yih; Huang, Hong-Cheng

    2014-03-10

    Biomimetic nanostructures have shown to enhance the optical absorption of Ga(0.5)In(0.5)P/GaAs/Ge triple junction solar cells due to excellent antireflective (AR) properties that, however, are highly dependent on their geometric dimensions. In practice, it is challenging to control fabrication conditions which produce nanostructures in ideal periodic arrangements and with tapered side-wall profiles, leading to sacrificed AR properties and solar cell performance. In this work, we introduce compound biomimetic nanostructures created by depositing a layer of silicon dioxide (SiO(2)) on top of titanium dioxide (TiO(2)) nanostructures for triple junction solar cells. The device exhibits photogenerated current and power conversion efficiency that are enhanced by ~8.9% and ~6.4%, respectively, after deposition due to their improved antireflection characteristics. We further investigate and verify the optical properties of compound structures via a rigorous coupled wave analysis model. The additional SiO(2) layer not only improves the geometric profile, but also serves as a double-layer dielectric coating. It is concluded that the compound biomimetic nanostructures exhibit superior AR properties that are relatively insensitive to fabrication constraints. Therefore, the compound approach can be widely adopted for versatile optoelectronic devices and applications.

  11. Unravelling the complex nanostructure of La0.5-xLi0.5-xSr2xTiO3 Li ionic conductors.

    PubMed

    García-González, Ester; Urones-Garrote, Esteban; Várez, Alejandro; Sanz, Jesús

    2016-04-28

    The origin of the intricate nanostructure of La0.5-xLi0.5-xSr2xTiO3 (0.0625 ≤ x ≤ 0.25) perovskite-type Li ion conductors has been investigated. Reciprocal space electron diffraction analysis and aberration-corrected STEM by combining annular bright field (ABF) and high angle annular dark field (HAADF) imaging methods have been used to elucidate the complex local atomic arrangements which cannot be adequately described by average crystal structure models. Two different local crystal structures endotaxially-related at the nanoscale without compositional phase separation associated, constituting the crystals. Self-organization of the two different ordered regions arises as a consequence of the competition between two distortive forces in the crystal lattice: octahedral tilting and second-order Jahn-Teller distortion of TiO6 octahedra. Changes in the distribution of A species suggest different Li ion conduction pathways for the two structures and this scenario has difficult long-range Li mobility. The detailed study performed may be helpful in understanding the local structural changes affecting Li and their relation to the conductivity in LLTO-derived ionic conductors.

  12. Electrochemical stability of Sm(0.5)Sr(0.5)CoO(3-δ)-infiltrated YSZ for solid oxide fuel cells/electrolysis cells.

    PubMed

    Fan, Hui; Han, Minfang

    2015-01-01

    Composite SSC (Sm(0.5)Sr(0.5)CoO(3-δ))-YSZ (yttria stabilized zirconia) oxygen electrodes were prepared by an infiltration process. X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM) of the composite electrodes showed the formation of SSC perovskite and a well-connected network of SSC particles in the porous YSZ backbone, respectively. The electrochemical performance of the cell was investigated under both fuel cell and steam electrolysis modes using polarization curves and electrochemical impedance spectroscopy (EIS). The cell experienced a large degradation rate at 700 °C with a constant voltage of 0.7 V for over 100 h under power generation operation. The subsequent post-cell SEM micrograph revealed that agglomeration of the infiltrated SSC particles was possibly the cause for the performance deterioration. Furthermore, the long-term stability of the cell was examined at 700 °C with a constant voltage of 1.3 V under steam electrolysis mode. SEM associated with energy dispersive X-ray spectroscopy (EDS) was employed to characterize the post-test cell after the long-term electrolysis operation and it indicated that besides the agglomeration of SSC particles, the delamination of the SSC-YSZ oxygen electrode from the YSZ electrolyte, as well as segregation of cobalt-enriched particles (particularly cobalt oxides) at the interface, was probably responsible for the cell degradation under the steam electrolysis mode.

  13. Magnetic and dielectric study of R{sub 0.5}Sr{sub 0.5}MnO{sub 3} (R = Gd, Tb and Dy)

    SciTech Connect

    Yoshii, Kenji; Hiramitsu, Yusuke; Okajima, Yuka; Yoneda, Yasuhiro; Nishihata, Yasuo; Mizuki, Jun'ichiro; Nakamura, Akio; Shimojo, Yutaka; Ishii, Yoshinobu; Morii, Yukio; Ikeda, Naoshi

    2010-11-15

    Magnetic and dielectric properties of perovskite manganites R{sub 0.5}Sr{sub 0.5}MnO{sub 3} (R = Gd, Tb and Dy) have been investigated. DC and AC magnetic measurements showed short-range glassy magnetic ordering at T{sub g} {approx} 40 K. Such ordering was observed by neutron diffraction and is ascribable to the size mismatch of R{sup 3+} and Sr{sup 3+} settled randomly at the same crystallographic site. Dielectric constants for each material were {approx}1000-10,000 between {approx}50 and {approx}300 K and showed broad maximums above T{sub g}. Dielectric dispersion showed poor coherency of the motion of polar regions, plausibly because of the size-mismatch effect; both the magnetic and dielectric properties of this system are governed by the randomness at the R/Sr site. The tan {delta} and EXAFS data suggest that the dielectric response is rooted in a transfer of the Mn-3d electrons.

  14. Structural; magnetic and catalytic properties of nanocrystalline Cu0.5Zn0.5Fe2O4 synthesized by microwave combustion and ball milling methods

    NASA Astrophysics Data System (ADS)

    Mahmoud, M. H.; Hassan, Azza M.; Said, Abd El-Aziz A.; Hamdeh, H. H.

    2016-06-01

    Effects of high energy ball-milling on nanosized Cu0.5Zn0.5Fe2O4 powders were studied at 30 and 330 min of milling. The powders were initially synthesized from its stoichiometric metal nitrates and urea mixtures, using a microwave assisted combustion method. Ball-milling induced electromechanical reaction was examined by XRD, TEM, Mössbauer spectroscopy, magnetization, and catalytic performance by exploring potential changes in size, phases and chemical structure. Before Milling, the as-prepared powders were comprised of small grains of poor spinel crystallinity and very small crystallite size, and a minor α-Fe2O3 phase. Progressive milling significantly reduced the grain size, increased chemical disorder, and reduced the hematite phase. These changes are also manifested in the magnetization measurements. The Catalytic activity performance was carried out using dehydrogenation of isopropyl alcohol. The observed activity was correlated to the presence of Cu2+ and Fe3+ catalysts at octahedral sites before and after milling.

  15. Magnetic and natural optical activity of f- f transitions in multiferroic Nd0.5Gd0.5Fe3(BO3)4

    NASA Astrophysics Data System (ADS)

    Malakhovskii, A. V.; Sukhachev, A. L.; Leont'ev, A. A.; Temerov, V. L.

    2016-05-01

    Spectra of absorption, magnetic circular dichroism, and natural circular dichroism of the f-f transitions 4 I 9/2 → 4 F 3/2, 2 H 9/2 + 4 F 5/2, 4 S 3/2 + 4 F 7/2, 2 G 7/2 + 4 G 5/2, 2 K 13/2 + 4 G 7/2, and 4 G 9/2 in the Nd3+ ions in the Nd0.5Gd0.5Fe3(BO3)4 crystal have been measured as a function of the temperature in the interval of 90-300 K. Temperature dependences of the magneto-optical activity (MOA) and natural optical activity (NOA) of the transitions have been obtained. It has been found that, in contrast to allowed transitions, the temperature dependence of the MOA of the f-f transitions does not obey the Curie-Weiss law and the NOA depends on temperature. The NOA of some transitions changes the sign with variation in temperature. These phenomena have been explained by the presence of three contributions to the allowance of the f-f transitions, which lead to three contributions of different signs to the MOA and NOA. The range of the MOA of the f-f transitions in the Nd3+ ion has been predicted theoretically and confirmed experimentally.

  16. Local magnetic properties of multiferroic Nd0.5Gd0.5Fe3(BO3)4 in the excited states of Nd3+ ion

    NASA Astrophysics Data System (ADS)

    Malakhovskii, A. V.; Gnatchenko, S. L.; Kachur, I. S.; Piryatinskaya, V. G.; Sukhachev, A. L.; Temerov, V. L.

    2015-02-01

    Polarized absorption spectra of single-crystal Nd0.5Gd0.5Fe3(BO3)4 were studied in the region of the transition 4I9/2→(4G5/2+2G7/2) in Nd3+ ion as a function of temperature (2-34 K) and magnetic field (0-65 kOe). The spectra of natural circular dichroism were measured in the range of 5-40 K. It was found out that the local magnetic properties in the vicinity of the excited ion substantially depended on its state. In particular, a weak ferromagnetic moment appears in some excited states. It was found out that the selection rules for electron transitions in the magnetically ordered state substantially deviated from those in the paramagnetic state of the crystal. They are different for different transitions and they are very sensitive to the orientation of the sublattice magnetic moment relative to the light polarization. In the spectrum of the natural circular dichroism, the transition is revealed which is not observed in the absorption spectrum.

  17. Piezoelectric and dielectric properties of Sn-doped (Na0.5K0.5)NbO3 ceramics processed under low oxygen partial pressure atmosphere

    NASA Astrophysics Data System (ADS)

    Kobayashi, Keisuke; Doshida, Yutaka; Mizuno, Youichi; Randall, Clive A.

    2014-01-01

    Sn-doped (Na0.5K0.5)NbO3 (Sn-NKN) ceramics fired under various oxygen partial pressure (pO2) conditions have been investigated and discussed in terms of bulk piezoelectric and dielectric properties. X-ray diffraction measurements and Rayleigh analysis indicate that the substitution site of the Sn cations depend on the pO2 atmosphere in the firing process. For pO2 higher than 1.0 × 10-10 atm, Sn cations mainly substitute as Sn4+ at the B-site of perovskite NKN, whereas Sn2+ A-site substitution is favored under a low-pO2 atmosphere. Low-pO2 fired Sn-NKN ceramics exhibit higher relative permittivity, Curie temperature, and piezoelectric coefficient (d33). Sn2+ at A-site acts as a donor and reduces the p-type carrier concentrations that result from an electronic compensation of metal vacancies created through the high volatility of Na and K suboxides. The higher piezoelectricity and resistivity in low-pO2 fired Sn-NKN ceramics make this material suitable for base-metal cofired devices such as Ni-inner-electrode multilayer capacitors and actuators.

  18. Parallel charge sheets of electron liquid and gas in La0.5Sr0.5TiO3/SrTiO3 heterostructures.

    PubMed

    Renshaw Wang, X; Sun, L; Huang, Z; Lü, W M; Motapothula, M; Annadi, A; Liu, Z Q; Zeng, S W; Venkatesan, T; Ariando

    2015-01-01

    We show here a new phenomenon in La0.5Sr0.5TiO3/SrTiO3 (LSTO/STO) heterostructures; that is a coexistence of three-dimensional electron liquid (3DEL) and 2D electron gas (2DEG), separated by an intervening insulating LSTO layer. The two types of carriers were revealed through multi-channel analysis of the evolution of nonlinear Hall effect as a function of film thickness, temperature and back gate voltage. We demonstrate that the 3D electron originates from La doping in LSTO film and the 2D electron at the surface of STO is due to the polar field in the intervening insulating layer. As the film thickness is reduced below a critical thickness of 6 unit cells (uc), an abrupt metal-to-insulator transition (MIT) occurs without an intermediate semiconducting state. The properties of the LSTO layer grown on different substrates suggest that the insulating phase of the intervening layer is a result of interface strain induced by the lattice mismatch between the film and substrate. Further, by fitting the magnetoresistance (MR) curves, the 6 unit cell thick LSTO is shown to exhibit spin-orbital coupling. These observations point to new functionalities, in addition to magnetism and superconductivity in STO-based systems, which could be exploited in a multifunctional context. PMID:26669575

  19. Large magnetic response in (Bi4Nd)Ti3(Fe0.5Co0.5)O15 ceramic at room-temperature

    NASA Astrophysics Data System (ADS)

    Yang, F. J.; Su, P.; Wei, C.; Chen, X. Q.; Yang, C. P.; Cao, W. Q.

    2011-12-01

    Ceramics of Nd/Co co-substituted Bi5Ti3FeO15, i.e., (Bi4Nd)Ti3(Fe0.5Co0.5)O15 were prepared by the conventional solid-state reaction method. The X-ray diffraction pattern demonstrates that the sample of the layered perovskite phase was successfully obtained, even if little Bi-deficient pyrochlore Bi2Ti2O7 also existed. The ferroelectric and magnetic Curie temperatures were determined to be 1077 K and 497 K, respectively. The multiferroic property of the sample at room temperature was demonstrated by ferroelectric and magnetic measurements. Remarkably, by Nd/Co co-substituting, the sample exhibited large magnetic response with 2Mr = 330 memu/g and 2Hc = 562 Oe at applied magnetic field of 8 kOe at room temperature. The present work suggests the possibility of doped Bi5Ti3FeO15 as a potential multiferroic.

  20. Synthesis and dielectric properties of Na0.5Bi0.5Cu3Ti4O12 ceramic by molten salt method

    NASA Astrophysics Data System (ADS)

    Su, Yanli; Wang, Ying

    2016-03-01

    Na0.5Bi0.5Cu3Ti4O12 (NBCTO) powder was prepared by molten salt method at 700, 750, 800, and 850 °C in NaCl-KCl flux salts, respectively. X-ray diffraction data revealed that the main NBCTO phase of powder was synthesized at a low temperature of 700 °C for 2 h in NaCl-KCl flux, which was reduced by about 250 °C compared with the conventional solid-state reaction method. The evolution of the microstructure was observed by scanning electron microscopy, and the dielectric properties of NBCTO ceramics affected by sintering temperature and sintering time were studied in detail in this paper. The complex impedance plots were also employed to analyze the dielectric properties of NBCTO ceramics. The average grain size of the sintered ceramic increased with the increase in sintering temperature, which lead to the increased dielectric constant of the NBCTO ceramic, whereas the sintering time has affected the dielectric constant slightly. A high dielectric constant of more than 104 and a low loss tangent (tan δ) of 0.06 (at 10 kHz) were obtained for the NBCTO ceramic sintered at 1040 °C for 12 h.

  1. Gas sensing properties of coral-like Bi0.5K0.5TiO3 powders synthesized by metal-organic decomposition

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Zheng, Xuejun; Zhang, Tong; Sun, Jing; Bian, Yan; Song, Jie

    2011-11-01

    Coral-like Bi0.5K0.5TiO3 (BKT) powders are synthesized by metal-organic decomposition and characterized by x-ray diffraction and field-emission scanning electron microscopy. The gas sensing properties of coral-like BKT powders are investigated by exposing them to various gases at different temperatures. At 360 °C, the powders exhibit a high response to ethanol (C2H5OH), are less sensitive to acetone (CH3COCH3) and methanol (CH3OH), and totally insensitive to hydrogen (H2), carbon monoxide (CO), ammonium (NH3) and acetylene (C2H2). The coral-like BKT powders are of high response value to 500 ppm C2H5OH, and the corresponding response/recovery times are 8 and 12 s, respectively. The results reveal that the coral-like BKT powders, which are a traditional ferroelectric material, are also sensitive to some reducing gases, and can also be employed to fabricate integrative (piezoelectric-gas) sensors.

  2. Room Temperature Ferrimagnetism and Ferroelectricity in Strained, Thin Films of BiFe0.5Mn0.5O3

    PubMed Central

    Choi, Eun-Mi; Fix, Thomas; Kursumovic, Ahmed; Kinane, Christy J; Arena, Darío; Sahonta, Suman-Lata; Bi, Zhenxing; Xiong, Jie; Yan, Li; Lee, Jun-Sik; Wang, Haiyan; Langridge, Sean; Kim, Young-Min; Borisevich, Albina Y; MacLaren, Ian; Ramasse, Quentin M; Blamire, Mark G; Jia, Quanxi; MacManus-Driscoll, Judith L

    2014-01-01

    Highly strained films of BiFe0.5Mn0.5O3 (BFMO) grown at very low rates by pulsed laser deposition were demonstrated to exhibit both ferrimagnetism and ferroelectricity at room temperature and above. Magnetisation measurements demonstrated ferrimagnetism (TC ∼ 600K), with a room temperature saturation moment (MS) of up to 90 emu/cc (∼ 0.58 μB/f.u) on high quality (001) SrTiO3. X-ray magnetic circular dichroism showed that the ferrimagnetism arose from antiferromagnetically coupled Fe3+ and Mn3+. While scanning transmission electron microscope studies showed there was no long range ordering of Fe and Mn, the magnetic properties were found to be strongly dependent on the strain state in the films. The magnetism is explained to arise from one of three possible mechanisms with Bi polarization playing a key role. A signature of room temperature ferroelectricity in the films was measured by piezoresponse force microscopy and was confirmed using angular dark field scanning transmission electron microscopy. The demonstration of strain induced, high temperature multiferroism is a promising development for future spintronic and memory applications at room temperature and above. PMID:26213531

  3. Effect of A Site and Oxygen Vacancies on the Structural and Electronic Properties of Lead-Free KTa0.5Nb0.5O3 Crystal

    NASA Astrophysics Data System (ADS)

    Yang, Wenlong; Wang, Li; Lin, Jiaqi; Li, Xiaokang; Xiu, Hanjiang; Shen, Yanqing

    2016-07-01

    The structural and electronic properties of lead-free potassium tantalite niobate KTa0.5Nb0.5O3 (KTN) with A site vacancies V_{{K}}0 , V_{{K}}^{1 - } and oxygen vacancies V_{{O}}0 , V_{{O}}^{2 + } , were investigated by first-principles calculations, which indicated that A site vacancies V_{{K}}0 are likely to form in the KTN compared with V_{{K}}^{1 - } , and oxygen vacancies V_{{O}}^{2 + } are likely to form compared with V_{{O}}0 in the KTN according to the investigation of formation energy. The results show that K and O vacancies have significant influence on the atomic interactions of the atoms and the electronic performance of the materials. And Ta atoms are more easily influenced by the K and O vacancies than the Nb atoms from the atomic displacements in KTN with K and O vacancies. The investigation of density of state indicates that the compensation of electrons in KTN with vacancies make the hybridization become stronger among Ta d, Nb d and O p orbitals. Besides, Mulliken population of all the Ta and Nb atoms in KTN with charged vacancies are influenced by complement electrons. The strength of the Nb-O bond is stronger than Ta-O based on the changes of bond lengths and Mulliken population.

  4. Upper critical magnetic field of KxFe2-ySe2 and Eu0.5K0.5Fe2As2 single crystals

    NASA Astrophysics Data System (ADS)

    Gasparov, Vitaly A.; Audouard, A.; Drigo, L.; Rodigin, A. I.; Lin, C. T.; Liu, W. P.; Zhang, M.; Wang, A. F.; Chen, X. H.; Jeevan, H. S.; Maiwald, J.; Gegenwart, P.

    2013-03-01

    The H-T phase diagrams of single crystalline electron-doped K0.83Fe1.83Se2 (KFS1), K0.8Fe2Se2 (KFS2) and hole-doped Eu0.5K0.5Fe2As2 (EKFA) have been deduced from tunnel diode oscillator-based contactless measurements in pulsed magnetic fields up to 57T for the interplane (H∥c) and in-plane (H∥ab) directions. The temperature dependence of the upper critical magnetic field Hc2(T) relevant to EFKA is accounted for by Pauli model including an anisotropic Pauli paramagnetic contribution (μBHp=114T for H∥ab and 86T for H∥c). This is also the case of KFS1 and KFS2 for H∥ab whereas a significant upward curvature, accounted for by a two-gap model, is observed for H∥c. Despite the presence of antiferromagnetic lattice order within the superconducting state of the studied compounds, no influence of magnetic ordering on the temperature dependence of Hc2(T) is observed.

  5. Coherent A1g Phonon in thin Film Superconductor FeSe0.5Te0.5: π/2 Phase Difference over Superconducting Phase Transition

    NASA Astrophysics Data System (ADS)

    Zhao, Jimin; Wu, Yanling; Hu, Minhui; Tian, Yichao; Cao, Lixin; Wang, Rui

    2014-03-01

    Coherent A1 g phonon mode in a thin film superconductor FeSe0.5Te0.5 was generated and detected using ultrafast laser pulses. At below and above the transition temperature Tc, the coherent lattice oscillation we observed exhibited a π/2 phase difference, manifesting a ``displacive limit ~ impulsive limit'' transition upon crossing a phase transition within the same sample. We ascribe this π/2 phase difference to the different lifetimes (τc) of excited charge density components that couples to the fully symmetric A1 g phonon mode, i.e. the different strength of electron-phonon couplings. In the superconducting and paramagnetic metallic states the lifetimes of such carrier excitations are largely different. Our investigation reveals possible correlation of superconducting electrons with zone-center optical phonons. Our 170nm thin film sample contains tension stress, which leads to enhanced Tc and thus facilitated our measurements. Financially supported by the National Basic Research Program of China (2012CB821402), the NSFC (11274372, 10974246) and the External Cooperation Program of Chinese Academy of Sciences (GJHZ1403).

  6. Pulse and quasi-static remagnetization peculiarities and relaxation properties of Nd0.5Sr0.5MnO3 single crystal

    NASA Astrophysics Data System (ADS)

    Dovgii, V. T.; Linnik, A. I.; Kamenev, V. I.; Tarenkov, V. Yu.; Sidorov, S. L.; Todris, B. M.; Mikhailov, V. I.; Davideiko, N. V.; Linnik, T. A.; Popov, Ju. F.; Balbashov, A. M.

    2016-06-01

    Hysteresis features of magnetization and resistance of Nd0.5Sr0.5MnO3 single crystal in quasi-static (up to 9 T) and pulse (up to 14 T) magnetic fields are studied. The relaxation processes of magnetization and resistance after the action of a magnetic field of 9 T are also studied. It is shown that relaxation curves are approximated by two exponents with different time constants. These two constants relate to relaxation of the metastable ferromagnetic phase towards two different crystal structures (Imma and p21/m). Mechanism of phase transitions: antiferromagnetic insulator↔ferromagnetic metal (AFM/I↔FM/M) and existence of a high-conductive state of a sample after removal of magnetizing field in the temperature range below 150 K is proposed. The mechanism is connected with structural transition induced by magnetic field (due to magnetostriction) and slow relaxation of the FM-phase (larger volume) to the equilibrium AFM-phase (smaller volume) after field removal. It is shown that during pulse magnetization at the temperature 18 K time required for the AFM/I→FM/M phase transition is by six-seven orders of magnitude less than for realization of the FM/M→AFM/I phase transition.

  7. Soft magnetic property and enhanced microwave absorption of nanoparticles of Co0.5Zn0.5Fe2O4 incorporated in MWCNT

    NASA Astrophysics Data System (ADS)

    Mallick, A.; Mahapatra, A. S.; Mitra, A.; Chakrabarti, P. K.

    2016-10-01

    Nanoparticles of Co0.5Zn0.5Fe2O4 (CZFO) are prepared by coprecipitation method where CoCl2·H2O, ZnCl2·6H2O and FeCl3 are used as precursor materials. To enhance the microwave absorption, nanoparticles of CZFO are incorporated in the matrix of multiwall carbon nanotubes (MWCNT). X-ray diffractogram (XRD) and its analysis confirmed the formation of the desired crystallographic phase of the sample. The average crystallite size is evaluated by using the Debye-Scherrer formula. Micrographs observed in high resolution transmission electron microscope confirm the successful incorporation of CZFO in the matrix of MWCNT. Results obtained from the high resolution lattice fringe and selected area electron diffraction patterns are in good agreement with the findings extracted from the XRD analysis. Analysis of Raman spectra confirms the presence of CZFO and MWCNT in the nanocomposite sample. Magnetic properties recorded in SQUID magnetometer confirm the presence of mixed state of superparamagnetic and ferrimagnetic nanoparticles. Reflection losses in X (8-12 GHz) and Ku (12-18 GHz) bands of microwave region are significantly high (~-38.2 dB at 16.9 GHz). High magnetization (~36.5 emu/g at 300 K), low coercive field (~30.1 Oe at 300 K) and high reflection loss of CZFO-MWCNT would be suitable for application in microwave devices.

  8. Crystallographic and magnetic identification of secondary phase in orientated Bi5Fe0.5Co0.5Ti3O15 ceramics

    NASA Astrophysics Data System (ADS)

    Palizdar, Meghdad; Comyn, Tim P.; Ward, Michael B.; Brown, Andrew P.; Harrington, John P.; Kulkarni, Santosh; Keeney, Lynette; Roy, Saibal; Pemble, Martyn; Whatmore, Roger; Quinn, Christopher; Kilcoyne, Susan H.; Bell, Andrew J.

    2012-10-01

    The fabrication of highly-oriented polycrystalline ceramics of Bi5Fe0.5Co0.5Ti3O15, prepared via molten salt synthesis and uniaxial pressing of high aspect ratio platelets is reported. Electron backscatter images show a secondary phase within the ceramic which is rich in cobalt and iron. The concentration of the secondary phase obtained from scanning electron microscopy is estimated at less than 2% by volume, below the detection limit of x-ray diffraction (XRD). The samples were characterized by x-ray diffraction, polarization-electric field measurements, superconducting quantum interference device as a function of sample orientation and vibrating sample magnetometry as a function of temperature. It is inferred from the data that the observed ferromagnetic response is dominated by the secondary phase. This work highlights the importance of rigorous materials characterisation in the study of multiferroics as small amounts of secondary phase, below the limit of XRD, can lead to false conclusions.

  9. Structural and electromechanical properties of Na0.5Bi0.5TiO3 ceramics produced by different synthesis routes

    NASA Astrophysics Data System (ADS)

    Hussain, A.; Maqbool, A.; Malik, R. A.; Kim, M. H.; Song, T. K.; Kim, W. J.

    2016-08-01

    Sodium bismuth titanate, Na0.5Bi0.5TiO3 (NBT) ceramics were produced by three different methods; conventional mixed-oxide (CMO) route, molten salt synthesis (MSS) and topochemical microcrystal conversion (TMC) and then sintered at 1150 oC for 2 h in air atmosphere. The crystal structure, dielectric, ferroelectric and field-induced strain properties were investigated for all samples. All samples showed a single phase perovskite structure without any evidences of unwanted secondary phases. The NBT ceramics synthesized by the TMC method show slightly better dielectric, ferroelectric and field induced strain response as compared with CMO and MSS synthesized ceramics. The room temperature dielectric constant measured at 1 kHz increased from 218 for NBT ceramics synthesized by MSS method to 271 and 330 for CMO and TMC synthesized ceramics, respectively. Similarly, the dynamic piezoelectric coefficient (d 33*) enhanced from 91 pm/V for CMO synthesized to 97 pm/V and 107 pm/V for MSS and TMC synthesized ceramics, respectively.

  10. Spin reorientation, magnetization reversal, and negative thermal expansion observed in R F e0.5C r0.5O3 perovskites (R =Lu ,Yb ,Tm )

    NASA Astrophysics Data System (ADS)

    Pomiro, Fernando; Sánchez, Rodolfo D.; Cuello, Gabriel; Maignan, Antoine; Martin, Christine; Carbonio, Raúl E.

    2016-10-01

    Three members of the perovskite family R F e0.5C r0.5O3 (R =Lu ,Yb , and Tm) have been synthesized and characterized. A systematic study of the crystal and magnetic structures was performed by neutron powder diffraction combined with magnetization measurements. All these compounds crystallize in a Pbnm orthorhombic unit cell and they are already antiferromagnetic at room temperature. The study of the magnetic structure vs temperature showed the occurrence of a progressive spin reorientation from Γ4TM to Γ2TM for the transition metal sublattice, and in the Tm-based sample, a long-range magnetic order of the T m3 + sublattice was found (Γ8R) . These results are in excellent agreement with the magnetic susceptibility measurements. No spin reorientation is observed in the Lu-based sample for which a magnetization reversal at a compensation temperature Tcomp= 225 K was detected. A clear magnetostrictive effect was observed in the samples with R =Yb and Tm associated with a negative thermal expansion and was assigned to a magnetoelastic effect produced by repulsion between the magnetic moments of neighboring transition metal ions.

  11. Downscaling at submicrometer scale of the gap width of interdigitated Ba0.5Sr0.5TiO3 capacitors.

    PubMed

    Khalfallaoui, Abderrazek; Burgnies, Ludovic; Blary, Karine; Velu, Gabriel; Lippens, Didier; Carru, Jean-Claude

    2015-02-01

    The goal of this work was to study the influence of shrinking the gap width between the fingers of interdigitated tunable capacitors (IDCs). Voltage control of the capacitance was achieved with a 500-nm-thick Ba0.5Sr0.5TiO3 film which is in paraelectric state at room temperature. Eight devices with finger spacing ranging from 3 μm down to 0.25 μm were fabricated by the sol-gel deposition technique, electron beam patterning, and gold evaporation. The equivalent capacitance, quality factor, and tunability of the devices were measured subsequently by vector network analysis from 40 MHz to 40 GHz and for a dc bias voltage varying from -30 V to +30 V. This experimental study mainly shows that a decrease of the gap below 1 μm 1) introduces a frequency dependence of the capacitance caused by resonance effects with the finger inductance; 2) degrades the quality factor above 20 GHz, and 3) optimizes the tunability of the devices by enhancing the local electric field values. As a consequence, some trade-offs are pointed out related to the goal of ultra-thin ferroelectric film which can be voltage controlled by means of finger-shaped electrodes with deep submicrometer spacing.

  12. Structural investigations and magnetic properties of sol-gel Ni0.5Zn0.5Fe2O4 thin films for microwave heating

    NASA Astrophysics Data System (ADS)

    Gao, Pengzhao; Rebrov, Evgeny V.; Verhoeven, Tiny M. W. G. M.; Schouten, Jaap C.; Kleismit, Richard; Kozlowski, Gregory; Cetnar, John; Turgut, Zafer; Subramanyam, Guru

    2010-02-01

    Nanocrystalline Ni0.5Zn0.5Fe2O4 thin films have been synthesized with various grain sizes by a sol-gel method on polycrystalline silicon substrates. The morphology, magnetic, and microwave absorption properties of the films calcined in the 673-1073 K range were studied with x-ray diffraction, scanning electron microscopy, x-ray photoelectron spectroscopy, atomic force microscopy, vibrating sample magnetometry, and evanescent microwave microscopy. All films were uniform without microcracks. Increasing the calcination temperature from 873 to 1073 K and time from 1 to 3 h resulted in an increase of the grain size from 12 to 27 nm. The saturation and remnant magnetization increased with increasing the grain size, while the coercivity demonstrated a maximum near a critical grain size of 21 nm due to the transition from monodomain to multidomain behavior. The complex permittivity of the Ni-Zn ferrite films was measured in the frequency range of 2-15 GHz. The heating behavior was studied in a multimode microwave cavity at 2.4 GHz. The highest microwave heating rate in the temperature range of 315-355 K was observed in the film close to the critical grain size.

  13. Unravelling the complex nanostructure of La0.5-xLi0.5-xSr2xTiO3 Li ionic conductors.

    PubMed

    García-González, Ester; Urones-Garrote, Esteban; Várez, Alejandro; Sanz, Jesús

    2016-04-28

    The origin of the intricate nanostructure of La0.5-xLi0.5-xSr2xTiO3 (0.0625 ≤ x ≤ 0.25) perovskite-type Li ion conductors has been investigated. Reciprocal space electron diffraction analysis and aberration-corrected STEM by combining annular bright field (ABF) and high angle annular dark field (HAADF) imaging methods have been used to elucidate the complex local atomic arrangements which cannot be adequately described by average crystal structure models. Two different local crystal structures endotaxially-related at the nanoscale without compositional phase separation associated, constituting the crystals. Self-organization of the two different ordered regions arises as a consequence of the competition between two distortive forces in the crystal lattice: octahedral tilting and second-order Jahn-Teller distortion of TiO6 octahedra. Changes in the distribution of A species suggest different Li ion conduction pathways for the two structures and this scenario has difficult long-range Li mobility. The detailed study performed may be helpful in understanding the local structural changes affecting Li and their relation to the conductivity in LLTO-derived ionic conductors. PMID:27009477

  14. Dielectric and magnetic studies of BaTi0.5Fe0.5O3 ceramic materials, synthesized by solid state sintering.

    PubMed

    Samuvel, K; Ramachandran, K

    2015-02-01

    A comparative study of the surface morphology, dielectric and magnetic properties of the BaTi0.5Fe0.5O3 (BTFO) ceramics materials. This has been carried out by synthesizing the samples in different routes. BTFO samples have shown single phased 12R type hexagonal structure with R3m, P4mm space group. Interfacial effects on the dielectric properties of the samples have been understood by Cole-Cole plots in complex impedance and modulus formalism. It has been identified that huge dielectric constant (10(3)-10(6)) at lower frequencies is largely contributed by the heterogeneous electronic microstructure at the interfaces of grains. Modulus formalism has identified the effects of both grain and grain boundary microstructure on the dielectric properties, particularly in chemical routed samples. The order of grain boundary resistivity suggests the semiconductor/insulator class of the material. The grain boundary resistivity of the mechanical alloyed samples is remarkably lower than the solid state and chemical routed samples. Few samples have of the samples have exhibited signature of ferromagnetism at the room temperature.

  15. Giant radio-frequency magnetoabsorption effect in the cobaltite ceramic La0.5Sr0.5CoO3

    NASA Astrophysics Data System (ADS)

    Belevtsev, B. I.; Kirichenko, A. Ya.; Cherpak, N. T.; Golubnichaya, G. V.; Maximchuk, I. G.; Beznosov, A. B.; Krasovitsky, V. B.; Pal-Val, P. P.; Chukanova, I. N.

    2003-08-01

    The DC transport properties of and the radio-frequency (RF) wave absorption (at 1.33 MHz) in a ceramic sample of La0.5Sr0.5CoO3-δ are measured. The Curie temperature Tc of the sample is about 250 K. A giant negative magnetoabsorption effect is found. In the vicinity of Tc, the absolute value of the magnetoabsorption is about 38% in the rather low magnetic field 2.1 kOe. This differs drastically from the measured DC magnetoresistance (MR) δ(H)=[R(0)-R(H)]/R(0) which is a mere 0.26% near Tc in the same field and increases to about 2.15% in H=20 kOe. The phenomenon can be understood taking into account that the magnetoabsorption is determined by influence of magnetic field on the conductivity and the magnetic permeability, while the MR is determined solely by the former. The magnetoabsorption effect can be used to develop RF devices controlled by magnetic field and temperature.

  16. Preferential polarization and its reversal in polycrystalline BiFeO3/La0.5Sr0.5CoO3 heterostructures

    NASA Astrophysics Data System (ADS)

    Roy Choudhury, Palash; Parui, Jayanta; Chiniwar, Santosh; Krupanidhi, S. B.

    2015-04-01

    Polycrystalline BiFeO3 thin films were grown on La0.5Sr0.5CoO3 buffered Pt (200)/TiO2/SiO2/Si substrates under different oxygen partial pressures (10, 25, 50 and 100 mTorr) by pulsed laser ablation. Piezoresponse Force Microscopy and Piezo-Force Spectroscopy have shown that all the films are ferroelectric in nature with locally switchable domains. It has also revealed a preferential downward domain orientation in as-grown films grown under lower oxygen partial pressure (10 and 25 mTorr) with a reversal of preferential domain orientation as the oxygen partial pressure is increased to 100 mTorr during laser ablation. Such phenomena are atypical of multi-grained polycrystalline ferroelectric films and have been discussed on the basis of defect formation with changing growth conditions. For the 50 mTorr grown film, asymmetric domain stability and retention during write-read studies has been observed which is attributed to grain-size-related defect concentration, affecting pinning centres that inhibit domain wall motion.

  17. Spin dynamics, short range order and spin freezing in Y0.5Ca0.5BaCo4O7

    SciTech Connect

    Stewart, John Ross; Ehlers, Georg; Fouquet, Peter; Mutka, Hannu; Payen, Christophe; Lortz, Rolf

    2011-01-01

    Y0.5Ca0.5BaCo4O7 was recently introduced as a possible candidate for capturing some of the predicted classical spin kagome ground-state features. Stimulated by this conjecture, we have taken up a more complete study of the spin correlations in this compound with neutron scattering methods on a powder sample characterized with high-resolution neutron diffraction and the temperature dependence of magnetic susceptibility and specific heat. We have found that the frustrated near-neighbor magnetic correlations involve not only the kagome planes but concern the full Co sublattice, as evidenced by the analysis of the wave-vector dependence of the short-range order. We conclude from our results that the magnetic moments are located on the Co sublattice as a whole and that correlations extend beyond the two-dimensional kagome planes. We identify intriguing dynamical properties, observing high-frequency fluctuations with a Lorentzian linewidth G?20 meV at ambient temperature. On cooling a low-frequency ({approx}1 meV) dynamical component develops alongside the high-frequency fluctuations, which eventually becomes static at temperatures below T {approx} 50 K. The high-frequency response with an overall linewidth of {approx}10 meV prevails at T?2 K, coincident with a fully elastic short-range-ordered contribution.

  18. Room temperature ferrimagnetism and ferroelectricity in strained, thin films of BiFe 0.5 Mn 0.5 O 3

    DOE PAGES

    Choi, Eun -Mi; Fix, Thomas; Kursumovic, Ahmed; Kinane, Christy J.; Arena, Darío; Sahonta, Suman -Lata; Bi, Zhenxing; Xiong, Jie; Yan, Li; Lee, Jun -Sik; et al

    2014-10-14

    Highly strained films of BiFe0.5Mn0.5O₃ (BFMO) grown at very low rates by pulsed laser deposition were demonstrated to exhibit both ferrimagnetism and ferroelectricity at room temperature and above. Magnetisation measurements demonstrated ferrimagnetism (TC ~ 600K), with a room temperature saturation moment (MS) of up to 90 emu/cc (~ 0.58 μB/f.u) on high quality (001) SrTiO₃. X-ray magnetic circular dichroism showed that the ferrimagnetism arose from antiferromagnetically coupled Fe³⁺ and Mn³⁺. While scanning transmission electron microscope studies showed there was no long range ordering of Fe and Mn, the magnetic properties were found to be strongly dependent on the strain statemore » in the films. The magnetism is explained to arise from one of three possible mechanisms with Bi polarization playing a key role. A signature of room temperature ferroelectricity in the films was measured by piezoresponse force microscopy and was confirmed using angular dark field scanning transmission electron microscopy. The demonstration of strain induced, high temperature multiferroism is a promising development for future spintronic and memory applications at room temperature and above.« less

  19. Room temperature ferrimagnetism and ferroelectricity in strained, thin films of BiFe 0.5 Mn 0.5 O 3

    SciTech Connect

    Choi, Eun -Mi; Fix, Thomas; Kursumovic, Ahmed; Kinane, Christy J.; Arena, Darío; Sahonta, Suman -Lata; Bi, Zhenxing; Xiong, Jie; Yan, Li; Lee, Jun -Sik; Wang, Haiyan; Langridge, Sean; Kim, Young -Min; Borisevich, Albina Y.; MacLaren, Ian; Ramasse, Quentin M.; Blamire, Mark G.; Jia, Quanxi; MacManus-Driscoll, Judith L.

    2014-10-14

    Highly strained films of BiFe0.5Mn0.5O₃ (BFMO) grown at very low rates by pulsed laser deposition were demonstrated to exhibit both ferrimagnetism and ferroelectricity at room temperature and above. Magnetisation measurements demonstrated ferrimagnetism (TC ~ 600K), with a room temperature saturation moment (MS) of up to 90 emu/cc (~ 0.58 μB/f.u) on high quality (001) SrTiO₃. X-ray magnetic circular dichroism showed that the ferrimagnetism arose from antiferromagnetically coupled Fe³⁺ and Mn³⁺. While scanning transmission electron microscope studies showed there was no long range ordering of Fe and Mn, the magnetic properties were found to be strongly dependent on the strain state in the films. The magnetism is explained to arise from one of three possible mechanisms with Bi polarization playing a key role. A signature of room temperature ferroelectricity in the films was measured by piezoresponse force microscopy and was confirmed using angular dark field scanning transmission electron microscopy. The demonstration of strain induced, high temperature multiferroism is a promising development for future spintronic and memory applications at room temperature and above.

  20. Effects of strain on the electronic structure and magnetic properties in SrMn0.5Fe0.5O3

    NASA Astrophysics Data System (ADS)

    Mi, Chun-Wei; Chin, Yi-Ying; Hsiao, Yen-Fu; Fang, Hau-Wei; Luo, Chih-Wei; Wu, Kaung-Hsiung; Uen, Tzeng-Ming; Lin, Jiunn-Yuan; Lin, Hong-Ji; Juang, Jenh-Yih

    2016-09-01

    The electronic structure and magnetic properties of SrMn0.5Fe0.5O3 powder and films grown on (1 0 0)-SrTiO3 (STO) and (1 0 0)-LaAlO3 (LAO) substrates by pulsed laser deposition (PLD) were investigated by temperature dependent magnetization and soft x-ray absorption. The results exhibit characteristics of 3d 5 Fe3+, \\text{3}{{d}\\text{5}}L \\text{F}{{\\text{e}}\\text{4+}} , and 3d 3  +  3d 4 L Mn4+ at room temperature in all samples. However, the features of 3d 5 Fe3+ and 3d 3 Mn4+ increased significantly for SMFO/LAO at 35 K, which also displayed substantial competition between antiferromagnetic and ferromagnetic order well-above the Néel temperature of SrFeO3 (T N ~ 134 K). We attributed this to being caused by charge disproportionation resulting from ligand-hole localization, which is more favorable to take place when the sample is under compressive strain.

  1. Effects of bismuth doping on the dielectric properties of Ba(Fe 0.5Nb 0.5)O 3 ceramic

    NASA Astrophysics Data System (ADS)

    Chung, Chao-Yu; Chang, Yee-Shin; Chen, Guo-Ju; Chung, Ching-Chang; Huang, Tzu-Wei

    2008-01-01

    The ferroelectric ceramic Ba 1- xBi x(Fe 0.5Nb 0.5) 1- x/4 O 3 (BBFN) is synthesized by a solid-state reaction. It has a partially disordered perovskite structure and shows a maximum plateau of the dielectric permittivity depending upon the temperature. The X-ray diffraction of the sample (x≦0.06) at room temperature shows a monoclinic phase. When the doped contents of Bi are over 6 mole% the structure changes from monoclinic to tetragonal. The dielectric constant initially remains constant with increasing temperature up to a particular temperature Ta, beyond which it increases rapidly. The temperature variations of the real and imaginary components of the dielectric permittivity show a broad maximum. The frequency dependence of the loss peaks is found to obey an Arrhenius law with activation energy of 0.155 eV. The Cole-Cole plot analysis of BBFN shows that the high dielectric constant is not grain responsive, but is a grain boundary effect as a typical barrier layer capacitor. All these observations show the dielectric relaxation properties of BBFN perovskites.

  2. Raman, dielectric and AC-conductivity behavior of Dy2O3 contained K0.5Na0.5NbO3 ceramics

    NASA Astrophysics Data System (ADS)

    Mahesh, P.; Pamu, D.

    2016-05-01

    Lead-free piezoelectric (K0.5Na0.5)NbO3+ x wt% Dy2O3 (x = 0 - 1.5) (KNND) ceramics have been prepared by solid state reaction method. The effect of Dy2O3 on the dielectric and electrical conductivity responses of KNN ceramics were investigated in a broad temperature (from 133 K to 673 K) and frequency (106 Hz to 108 Hz) range. Temperature dependent dielectric analysis revealed that the polymorphic phase transition orthorhombic to tetragonal transition temperature (TO-T) shifted from 199°C to room temperature with enhanced dielectric permittivity (ɛ' = 994) with the addition of Dy2O3. The effect of Dy2O3 on structural properties of KNND ceramics are analyzed interms of changes in the internal modes of NbO6 octahedra by using Raman spectroscopy. Temperature dependent (133 K - 306 K) AC-conductivity follows the variable range hopping mechanism in different temperature regimes.

  3. Tuning of magnetoelectric coupling in (1-y)Bi0.8Dy0.2FeO3-yNi0.5Zn0.5Fe2O4 multiferroic composites

    NASA Astrophysics Data System (ADS)

    Mazumdar, S. C.; Khan, M. N. I.; Islam, Md. Fakhrul; Hossain, A. K. M. Akther

    2016-03-01

    Magnetoelectric composites (1-y)Bi0.8Dy0.2FeO3 (BDFO)-yNi0.5Zn0.5Fe2O4 (NZFO) with y=0.0, 0.1, 0.2, 0.3, 0.4, 0.5 and 1.0 are synthesized by conventional solid state reaction route. The X-ray diffraction analysis confirms the coexistence of orthorhombic perovskite BDFO and spinel NZFO phases with no third phase. Microstructural and surface morphology are studied by Field Emission Scanning Electron Microscopy. Quantitative elemental analysis of the samples is carried out by Energy Dispersive X-ray Spectroscopy. The real part of the initial permeability increases and relative quality peak broadens with the ferrite content in the composites. Dielectric constant, loss tangent, relative quality factor and ac conductivity are measured as a function of frequency at room temperature. The dielectric constant shows usual dielectric dispersion at lower frequencies due to Maxwell-Wagner type interfacial polarization. The complex impedance spectroscopy is used to distinguish between the grain and grain boundary contribution to the total resistance. The modulus study reveals the ease of polaron hopping and negligibly small contribution of electrode effect. The magnetic hysteresis has been studied to know the response of NZFO phase to the applied magnetic field in the composite. The saturation and remanent magnetization are found to increase with increase in NZFO in the composite. The magnetoelectric voltage coefficient, αME is measured as a function of applied dc magnetic field. The tuning of ferrite percentage and dc magnetic field results in highest αME (~66 mV/cm Oe) for the composite with 40% NZFO at 4.7 kOe which is attributed to the enhanced mechanical coupling between the two phases. The incorporation of BDFO and NZFO enhances the multiferroic properties in the present composite which are quite promising from application point of view.

  4. Experimental and theoretical studies of structural phase transition in a novel polar perovskite-like [C2H5NH3][Na0.5Fe0.5(HCOO)3] formate.

    PubMed

    Ptak, Maciej; Mączka, Mirosław; Gągor, Anna; Sieradzki, Adam; Stroppa, Alessandro; Di Sante, Domenico; Perez-Mato, Juan Manuel; Macalik, Lucyna

    2016-02-14

    We report the synthesis, single crystal X-ray diffraction, and thermal, dielectric, Raman and infrared studies of a novel heterometallic formate [C2H5NH3][Na0.5Fe0.5(HCOO)3] (EtANaFe). The thermal studies show that EtANaFe undergoes a second-order phase transition at about 360 K. X-ray diffraction data revealed that the high-temperature structure is monoclinic, space group P2(1)/n, with dynamically disordered ethylammonium (EtA(+)) cations. EtANaFe possesses a polar low-temperature structure with the space group Pn and, in principle, is ferroelectric below 360 K. Dielectric data show that the reciprocal of the real part of dielectric permittivity above and below the phase transition temperature follows the Curie-Weiss, as expected for a ferroelectric phase transition. Based on theoretical calculations, we estimated the polarization as (0.2, 0, 0.8) μC cm(-2), i.e., lying within the ac plane. The obtained data also indicate that the driving force of the phase transition is ordering of EtA(+) cations. However, this ordering is accompanied by significant distortion of the metal formate framework. PMID:26725595

  5. Lead-free 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 nanowires for energy harvesting

    NASA Astrophysics Data System (ADS)

    Zhou, Zhi; Bowland, Christopher C.; Malakooti, Mohammad H.; Tang, Haixiong; Sodano, Henry A.

    2016-02-01

    Lead-free piezoelectric nanowires (NWs) show strong potential in sensing and energy harvesting applications due to their flexibility and ability to convert mechanical energy to electric energy. Currently, most lead-free piezoelectric NWs are produced through low yield synthesis methods and result in low electromechanical coupling, which limit their efficiency as energy harvesters. In order to alleviate these issues, a scalable method is developed to synthesize perovskite type 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 (BZT-BCT) NWs with high piezoelectric coupling coefficient. The piezoelectric coupling coefficient of the BZT-BCT NWs is measured by a refined piezoresponse force microscopy (PFM) testing method and shows the highest reported coupling coefficient for lead-free piezoelectric nanowires of 90 +/- 5 pm V-1. Flexible nanocomposites utilizing dispersed BZT-BCT NWs are fabricated to demonstrate an energy harvesting application with an open circuit voltage of up to 6.25 V and a power density of up to 2.25 μW cm-3. The high electromechanical coupling coefficient and high power density demonstrated with these lead-free NWs produced via a scalable synthesis method shows the potential for high performance NW-based devices.

  6. Lead-free 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 nanowires for energy harvesting.

    PubMed

    Zhou, Zhi; Bowland, Christopher C; Malakooti, Mohammad H; Tang, Haixiong; Sodano, Henry A

    2016-03-01

    Lead-free piezoelectric nanowires (NWs) show strong potential in sensing and energy harvesting applications due to their flexibility and ability to convert mechanical energy to electric energy. Currently, most lead-free piezoelectric NWs are produced through low yield synthesis methods and result in low electromechanical coupling, which limit their efficiency as energy harvesters. In order to alleviate these issues, a scalable method is developed to synthesize perovskite type 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 (BZT-BCT) NWs with high piezoelectric coupling coefficient. The piezoelectric coupling coefficient of the BZT-BCT NWs is measured by a refined piezoresponse force microscopy (PFM) testing method and shows the highest reported coupling coefficient for lead-free piezoelectric nanowires of 90 ± 5 pm V(-1). Flexible nanocomposites utilizing dispersed BZT-BCT NWs are fabricated to demonstrate an energy harvesting application with an open circuit voltage of up to 6.25 V and a power density of up to 2.25 μW cm(-3). The high electromechanical coupling coefficient and high power density demonstrated with these lead-free NWs produced via a scalable synthesis method shows the potential for high performance NW-based devices. PMID:26868967

  7. Hierarchical Mesoporous/Macroporous Perovskite La0.5Sr0.5CoO3-x Nanotubes: A Bifunctional Catalyst with Enhanced Activity and Cycle Stability for Rechargeable Lithium Oxygen Batteries.

    PubMed

    Liu, Guoxue; Chen, Hongbin; Xia, Lu; Wang, Suqing; Ding, Liang-Xin; Li, Dongdong; Xiao, Kang; Dai, Sheng; Wang, Haihui

    2015-10-14

    Perovskites show excellent specific catalytic activity toward both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in alkaline solutions; however, small surface areas of the perovskites synthesized by traditional sol-gel methods lead to low utilization of catalytic sites, which gives rise to poor Li-O2 batteries performance and restricts their application. Herein, a hierarchical mesporous/macroporous perovskite La0.5Sr0.5CoO3-x (HPN-LSC) nanotube is developed to promote its application in Li-O2 batteries. The HPN-LSC nanotubes were synthesized via electrospinning technique followed by postannealing. The as-prepared HPN-LSC catalyst exhibits outstanding intrinsic ORR and OER catalytic activity. The HPN-LSC/KB electrode displays excellent performance toward both discharge and charge processes for Li-O2 batteries, which enhances the reversibility, the round-trip efficiency, and the capacity of resultant batteries. The synergy of high catalytic activity and hierarchical mesoporous/macroporous nanotubular structure results in the Li-O2 batteries with good rate capability and excellent cycle stability of sustaining 50 cycles at a current density of 0.1 mA cm(-2) with an upper-limit capacity of 500 mAh g(-1). The results will benefit for the future development of high-performance Li-O2 batteries using hierarchical mesoporous/macroporous nanostructured perovskite-type catalysts. PMID:26418118

  8. Core-shell structure and dielectric properties of (K0.5Na0.5)NbO3-SrZrO3 for high-temperature capacitors

    NASA Astrophysics Data System (ADS)

    Aman, Sanshiro; Kubo, Keiko; Akiba, Hiroki; Iwanaga, Daisuke

    2016-10-01

    The microstructure and dielectric properties of (K0.5Na0.5)NbO3-SrZrO3 were investigated. The dielectric constant is high and stable in a wide temperature range. The rate of change in dielectric constant is within ±10% in the temperature range from -55 to 200 °C. This effect is thought to be due to the core-shell structure composed of a K-rich shell and a Na-rich core, which have different Curie temperatures. This core-shell structure can be controlled on the basis of sintering temperature. The width of the K-rich shell of a sample sintered at 1250 °C is larger than that of a sample sintered at 1180 °C. In addition, the insulation resistance of this material is high at high temperatures. The specific resistance of this material is 109 Ω cm at 200 °C. This material can be used for high-temperature multilayer ceramic capacitors, which have stable capacitance and high reliability at high temperatures.

  9. Effect of the symmetric cell preparation temperature on the activity of Ba0.5Sr0.5Fe0.8Cu0.2O3-δ as cathode for intermediate temperature Solid Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    Vázquez, Santiago; Basbus, Juan; Soldati, Analía L.; Napolitano, Federico; Serquis, Adriana; Suescun, Leopoldo

    2015-01-01

    In this work we studied the electrochemical performance of Ba0.5Sr0.5Fe0.8Cu0.2O3-δ (BSFCu) as cathode for Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFC) with Ce0.9Gd0.1O1.95 (CGO) electrolyte and the effect of the symmetric cell preparation temperature on the oxygen reduction reaction (ORR) activity. Symmetrical cells with the configuration BSFCu/CGO/BSFCu were prepared at 900 °C, 950 °C and 1000 °C to perform the electrochemical characterization in the 500-700 °C temperature range. The resultant area specific resistance (ASR) of the cells with different preparation temperatures followed the tendency: ASR900°C < ASR950°C < ASR1000°C. The symmetric cell constructed at 900 °C showed ASR values of 0.18, 0.078 and 0.035 Ω cm2 at 600, 650 and 700 °C respectively, which demonstrated superior electrochemical activities than previous reports. Additional, X-ray diffraction (XRD), scanning and transmission electron microscopies (SEM and TEM) techniques were used to characterize the microstructure of the original and fired BSFCu materials and correlate it with the cell preparation temperature.

  10. EFFECTS OF PRECURSOR SOLUTION MODIFICATION ON THE CRYSTALLINITY AND ELECTRICAL PROPERTIES OF Na0.5Bi0.5TiO3-BiFeO3 BASED THIN FILM

    NASA Astrophysics Data System (ADS)

    Sui, Huiting; Yang, Changhong; Wang, Gaoyun; Feng, Chao

    2014-07-01

    For chemical solution decomposition process, the precursor solution is a basic factor affecting the quality of the deposited-film. In this paper, we choose (l00)-oriented 0.7[(Bi0.95Ce0.05)0.5Na0.5(Ti0.99Fe0.01)O3]-0.3BiFe0.97Mn0.03O3(0.7NBTCeFe-0.3BFOMn) thin films prepared by various precursor solutions for investigation. The roles of precursor solution modification on crystallinity, ferroelectric and dielectric properties are characterized. With the addition of polyethylene glycol into the solution, phase-pure perovskite structure can be obtained. Furthermore, when the volume ratio for the solvents (ethylene glycol to acetic acid) is modified as 2:1, enhanced ferroelectricity can be achieved with a remanent polarization (Pr) of 27.5 μC/cm2, which coincides well with the capacitance-voltage curve with relatively sharp feature. Also, the 0.7NBTCeFe-0.3BFOMn film exhibits a dielectric constant (ɛr) of 576 and dielectric loss (tan δ) of 0.123 at 100 kHz.

  11. Visible Light-Induced Photocatalytic and Antibacterial Activity of Li-Doped Bi0.5Na0.45K0.5TiO3-BaTiO3 Ferroelectric Ceramics

    NASA Astrophysics Data System (ADS)

    Kushwaha, H. S.; Halder, Aditi; Jain, D.; Vaish, Rahul

    2015-11-01

    The visible light-active ferroelectric photocatalyst Bi0.5Na0.45Li0.05K0.5TiO3-BaTiO3 (BNKLBT) was synthesized by a solid-state method and its photocatalytic, photoelectrochemical, and antibacterial properties were investigated. In a chronoamperometric study the current density under visible light was 30 μA/cm2, which is three times more than that observed under dark conditions. The compound's visible light photocatalytic activity was investigated for degradation of an organic dye (methyl orange) and an estrogenic pollutant (estriol).The kinetic rate constants calculated for photocatalytic degradation of methyl orange and estriol were 0.007 and 0.056 min-1, respectively. High photocatalytic and photoelectrochemical activity was a result of effective separation of photo-generated charge carriers, because of the ferroelectric nature of the catalyst. The effect of different charge-trapping agents on photocatalytic degradation was studied to investigate the effect of active species and the degradation pathway. Antimicrobial activity was investigated for Escherichia coli and Aspergillus flavus. The anti-bacterial action of BNKLBT was compared with that of the commercial antibiotic kanamycin (k30).

  12. Lead-free 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 nanowires for energy harvesting.

    PubMed

    Zhou, Zhi; Bowland, Christopher C; Malakooti, Mohammad H; Tang, Haixiong; Sodano, Henry A

    2016-03-01

    Lead-free piezoelectric nanowires (NWs) show strong potential in sensing and energy harvesting applications due to their flexibility and ability to convert mechanical energy to electric energy. Currently, most lead-free piezoelectric NWs are produced through low yield synthesis methods and result in low electromechanical coupling, which limit their efficiency as energy harvesters. In order to alleviate these issues, a scalable method is developed to synthesize perovskite type 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 (BZT-BCT) NWs with high piezoelectric coupling coefficient. The piezoelectric coupling coefficient of the BZT-BCT NWs is measured by a refined piezoresponse force microscopy (PFM) testing method and shows the highest reported coupling coefficient for lead-free piezoelectric nanowires of 90 ± 5 pm V(-1). Flexible nanocomposites utilizing dispersed BZT-BCT NWs are fabricated to demonstrate an energy harvesting application with an open circuit voltage of up to 6.25 V and a power density of up to 2.25 μW cm(-3). The high electromechanical coupling coefficient and high power density demonstrated with these lead-free NWs produced via a scalable synthesis method shows the potential for high performance NW-based devices.

  13. Experimental and theoretical studies of structural phase transition in a novel polar perovskite-like [C2H5NH3][Na0.5Fe0.5(HCOO)3] formate.

    PubMed

    Ptak, Maciej; Mączka, Mirosław; Gągor, Anna; Sieradzki, Adam; Stroppa, Alessandro; Di Sante, Domenico; Perez-Mato, Juan Manuel; Macalik, Lucyna

    2016-02-14

    We report the synthesis, single crystal X-ray diffraction, and thermal, dielectric, Raman and infrared studies of a novel heterometallic formate [C2H5NH3][Na0.5Fe0.5(HCOO)3] (EtANaFe). The thermal studies show that EtANaFe undergoes a second-order phase transition at about 360 K. X-ray diffraction data revealed that the high-temperature structure is monoclinic, space group P2(1)/n, with dynamically disordered ethylammonium (EtA(+)) cations. EtANaFe possesses a polar low-temperature structure with the space group Pn and, in principle, is ferroelectric below 360 K. Dielectric data show that the reciprocal of the real part of dielectric permittivity above and below the phase transition temperature follows the Curie-Weiss, as expected for a ferroelectric phase transition. Based on theoretical calculations, we estimated the polarization as (0.2, 0, 0.8) μC cm(-2), i.e., lying within the ac plane. The obtained data also indicate that the driving force of the phase transition is ordering of EtA(+) cations. However, this ordering is accompanied by significant distortion of the metal formate framework.

  14. Hierarchical Mesoporous/Macroporous Perovskite La0.5Sr0.5CoO3-x Nanotubes: A Bifunctional Catalyst with Enhanced Activity and Cycle Stability for Rechargeable Lithium Oxygen Batteries.

    PubMed

    Liu, Guoxue; Chen, Hongbin; Xia, Lu; Wang, Suqing; Ding, Liang-Xin; Li, Dongdong; Xiao, Kang; Dai, Sheng; Wang, Haihui

    2015-10-14

    Perovskites show excellent specific catalytic activity toward both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in alkaline solutions; however, small surface areas of the perovskites synthesized by traditional sol-gel methods lead to low utilization of catalytic sites, which gives rise to poor Li-O2 batteries performance and restricts their application. Herein, a hierarchical mesporous/macroporous perovskite La0.5Sr0.5CoO3-x (HPN-LSC) nanotube is developed to promote its application in Li-O2 batteries. The HPN-LSC nanotubes were synthesized via electrospinning technique followed by postannealing. The as-prepared HPN-LSC catalyst exhibits outstanding intrinsic ORR and OER catalytic activity. The HPN-LSC/KB electrode displays excellent performance toward both discharge and charge processes for Li-O2 batteries, which enhances the reversibility, the round-trip efficiency, and the capacity of resultant batteries. The synergy of high catalytic activity and hierarchical mesoporous/macroporous nanotubular structure results in the Li-O2 batteries with good rate capability and excellent cycle stability of sustaining 50 cycles at a current density of 0.1 mA cm(-2) with an upper-limit capacity of 500 mAh g(-1). The results will benefit for the future development of high-performance Li-O2 batteries using hierarchical mesoporous/macroporous nanostructured perovskite-type catalysts.

  15. Constraining the redshifted 21-cm signal with the unresolved soft X-ray background

    NASA Astrophysics Data System (ADS)

    Fialkov, Anastasia; Cohen, Aviad; Barkana, Rennan; Silk, Joseph

    2016-10-01

    We use the observed unresolved cosmic X-ray background (CXRB) in the 0.5 - 2 keV band and existing upper limits on the 21-cm power spectrum to constrain the high-redshift population of X-ray sources, focusing on their effect on the thermal history of the Universe and the cosmic 21-cm signal. Because the properties of these sources are poorly constrained, we consider hot gas, X-ray binaries and mini-quasars (i.e., sources with soft or hard X-ray spectra) as possible candidates. We find that (1) the soft-band CXRB sets an upper limit on the X-ray efficiency of sources that existed before the end of reionization, which is one-to-two orders of magnitude higher than typically assumed efficiencies, (2) hard sources are more effective in generating the CXRB than the soft ones, (3) the commonly-assumed limit of saturated heating is not valid during the first half of reionization in the case of hard sources, with any allowed value of X-ray efficiency, (4) the maximal allowed X-ray efficiency sets a lower limit on the depth of the absorption trough in the global 21-cm signal and an upper limit on the height of the emission peak, while in the 21-cm power spectrum it sets a minimum amplitude and frequency for the high-redshift peaks, and (5) the existing upper limit on the 21-cm power spectrum sets a lower limit on the X-ray efficiency for each model. When combined with the 21-cm global signal, the CXRB will be useful for breaking degeneracies and helping constrain the nature of high-redshift heating sources.

  16. A bottom-up building process of nanostructured La0.75Sr0.25Cr0.5Mn0.5O3-δ electrodes for symmetrical-solid oxide fuel cell: Synthesis, characterization and electrocatalytic testing

    NASA Astrophysics Data System (ADS)

    Chanquía, Corina M.; Montenegro-Hernández, Alejandra; Troiani, Horacio E.; Caneiro, Alberto

    2014-01-01

    Pure-phase La0.75Sr0.25Cr0.5Mn0.5O3-δ (LSCM) nanocrystallites have been successfully synthesized by the combustion method, employing glycine as fuel and complexing agent, and ammonium nitrate as combustion trigger. A detailed morphological and structural characterization is performed, by using of X-ray diffraction, N2 physisorption and electron microscopy. The LSCM material consists in interconnected nanocrystallites (∼30 nm) forming a sponge-like structure with meso and macropores, being its specific surface area around 10 m2 g-1. Crystalline structural analyses show that the LSCM nanopowder has trigonal/rhombohedral symmetry in the R-3c space group. By employing the spin coating technique and quick-stuck thermal treatments of the ink-electrolyte, electrodes with different crystallite size (95, 160 and 325 nm) are built onto both sides of the La0.8Sr0.2Ga0.8Mg0.2O3-δ-disk electrolyte. To test the influence of the electrode crystallite size on the electrocatalytic behavior of the symmetrical cells, electrochemical impedance spectroscopy measurements at 800 °C were performed. When the electrode crystallite size becomes smaller, the area specific resistance decreases from 3.6 to 1.31 Ω cm2 under 0.2O2-0.8Ar atmosphere, possibly due to the enlarging of the triple-phase boundary, while this value increases from 7.04 to 13.78 Ω cm2 under 0.17H2-0.03H2O-0.8Ar atmosphere, probably due to thermodynamic instability of the LSCM nanocrystallites.

  17. Enhanced microwave dielectric tunability of Ba0.5Sr0.5TiO3 thin films grown with reduced strain on DyScO3 substrates by three-step technique

    NASA Astrophysics Data System (ADS)

    Liu, Hongrui; Avrutin, Vitaliy; Zhu, Congyong; Özgür, Ümit; Yang, Juan; Lu, Changzhi; Morkoç, Hadis

    2013-01-01

    Tunable dielectric properties of epitaxial ferroelectric Ba0.5Sr0.5TiO3 (BST) thin films deposited on nearly lattice-matched DyScO3 substrates by radio frequency magnetron sputtering have been investigated at microwave frequencies and correlated with residual compressive strain. To reduce the residual strain of the BST films caused by substrate clamping and improve their microwave properties, a three-step deposition method was devised and employed. A high-temperature deposition at 1068 K of the nucleation layer was followed by a relatively low-temperature deposition (varied in the range of 673-873 K) of the BST interlayer and a high-temperature deposition at 1068 K of the top layer. Upon post-growth thermal treatment at 1298 K the films grown by the three-step method with the optimized interlayer deposition temperature of 873 K exhibited lower compressive strain compared to the control layer (-0.002 vs. -0.006). At 10 GHz, a high dielectric tunability of 47.9% at an applied electric field of 60 kV/cm was achieved for the optimized films. A large differential phase shift of 145°/cm and a figure of merit of 23°/dB were obtained using a simple coplanar waveguide phase shifter at 10 GHz. The low residual strain and improved dielectric properties of the films fabricated using the three-step deposition technique were attributed to reduced clamping of the BST films by the nearly lattice-matched substrate.

  18. Performance and sulfur poisoning of Ni/CeO2 impregnated La0.75Sr0.25Cr0.5Mn0.5O3-δ anode in solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Li, Yiqian; Zhang, Yaohui; Zhu, Xingbao; Wang, Zhihong; Lü, Zhe; Huang, Xiqiang; Zhou, Yongjun; Zhu, Lin; Jiang, Wei

    2015-07-01

    In this study, comparison experiments are conducted based on yttria-stabilized zirconia (YSZ) electrolyte supported single solid oxide fuel cells (SOFCs) with pure La0.75Sr0.25Cr0.5Mn0.5O3-δ (LSCrM) or Ni/CeO2 impregnated LSCrM anodes. The single cells are tested in dry H2 and H2/H2S (50 ppm) mixture, respectively. Compared with the pure LSCrM anode, the cell with Ni/CeO2 impregnated LSCrM presents a significant performance improvement when the pure H2 is fueled to the anode, and shows a good stability during a constant-current discharge testing (398 mA cm-2). When the fuel is switched to H2/H2S mixture, the cell with Ni/CeO2 impregnated LSCrM anode still shows a remarkable constant-current discharge (120 mA cm-2) performance compared with pure LSCrM anode. The Ni/CeO2 impregnation can improve the electrochemical performance of the LSCrM anode without any sacrifice of sulfur tolerance ability. The Ni/CeO2 impregnated LSCrM might be a potential anode material for solid oxide fuel cell operating in sulfur-containing fuels. The XRD and XPS results demonstrate that the anode poisoning product is composed of adsorbed sulfur, metal sulfides and sulfate radical. The mass spectrum result confirms that the poisoning mechanism involves the reaction of sulfur with anode rather than the direct reaction between H2S gas and anode.

  19. Investigation on structural, Mössbauer and ferroelectric properties of (1-x)PbFe0.5Nb0.5O3-(x)BiFeO3 solid solution

    NASA Astrophysics Data System (ADS)

    Dadami, Sunanda T.; Matteppanavar, Shidaling; Shivaraja, I.; Rayaprol, Sudhindra; Angadi, Basavaraj; Sahoo, Balaram

    2016-11-01

    In this study, (1-x)PbFe0.5Nb0.5O3(PFN)-(x)BiFeO3(BFO) multiferroic solid solutions with x=0.0, 0.1, 0.2, 0.3 and 0.4 were synthesized through single step solid state reaction method and characterized thoroughly through X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Fourier Transform Infra-Red (FTIR), Raman, Mössbauer spectroscopy and ferroelectric studies. The room temperature (RT) XRD studies confirmed the formation of single phase with negligible amount of secondary phases (x=0.2 and 0.4). The zoomed XRD patterns of (1-x)PFN-(x)BFO solid solutions showed the clear structural phase transition from monoclinic (Cm) to rhombohedral (R3c) at x=0.4. The Raman spectra of the (1-x)PFN-(x)BFO solid solutions showed the composition dependent phase transition from monoclinic (Cm) to rhombohedral (R3c). With increasing x in PFN, the modes related monoclinic symmetry changes to those of rhombohedral symmetry. The RT Mössbauer spectroscopy results evidenced the existence of composition dependent phase transition from paramagnetic to weak antiferromagnetic ordering and weak antiferromagnetic to antiferromagnetic ordering. The Mössbauer spectroscopy showed paramagnetic behavior with a doublet for x=0.0, 0.1 and 0.2 are shows the weak antiferromagnetic with paramagnetic ordering. For x=0.3 and 0.4 shows the sextet pattern and it is a clear evidence of antiferromagnetism. The ferroelectric (P-E) loops at RT indicate the presence of small polarization, as the x concentration increases in PFN, the remnant polarization and coercive field were decreased, which may due to the increase in the conductivity and leaky behavior of the samples.

  20. Short range polar state transitions and deviation from Rayleigh-type behaviour in Bi0.5Na0.5TiO3-based perovskites

    NASA Astrophysics Data System (ADS)

    Viola, Giuseppe; Tan, Yongqiang; McKinnon, Ruth Agnes; Wei, Xiaoyong; Yan, Haixue; Reece, Michael John

    2014-09-01

    The polarization response of 0.95[0.94(Bi0.5Na(0.45)Li0.05)TiO3-0.06BaTiO3]-0.05CaTiO3 ceramics was studied under weak applied cyclic electric fields with different amplitudes and frequency. The analysis of the polarization signals showed that in the ferroelectric phase the non-linearity is dominated by a Rayleigh-type dynamics, while in the ergodic relaxor phase the polarization response deviates from the Rayleigh-type behaviour due to the occurrence of short range electric field-induced transitions, evidenced by the presence of four distinct frequency independent current broad peaks in the current-electric field loops, which gives rise to a characteristic non-linear polarization-electric field loop with reduced hysteresis and weak frequency dependence.

  1. The 0.5 micrometer-2.2 micrometer Scattered Light Spectrum of the Disk Around TW Hya

    NASA Technical Reports Server (NTRS)

    Debes, John H.; Jang-Condell, Hannah; Weinberger, Alycia J.; Roberg, Aki; Schneider, Glenn

    2012-01-01

    We present a 0.5-2.2micron scattered light spectrum of the circumstellar disk around TW Hya from a combination of spatially resolved HST STIS spectroscopy and NICMOS coronagraphic images of the disk. \\Ve investigate the morphology at the disk at distances> 40 AU over this wide range of wavelengths. We measure the surface brightness, azimuthal symmetry, and spectral character of the disk as a function of radius. We find that the scattering efficiency of the dust is largely neutral to blue over the observed wavelengths. We find a good fit to the data over a wide range of distances from the star if we use a model disk with a partial gap of 30% depth at 80 AU and with steep disk truncation exterior to 100 AU. If the gap is caused by a planetary companion in the process of accreting disk gas, it must be less than 20 Solar mass.

  2. Thermoelectric properties of Cu-dispersed bi0.5sb1.5te3

    PubMed Central

    2012-01-01

    A novel and simple approach was used to disperse Cu nanoparticles uniformly in the Bi0.5Sb1.5Te3 matrix, and the thermoelectric properties were evaluated for the Cu-dispersed Bi0.5Sb1.5Te3. Polycrystalline Bi0.5Sb1.5Te3 powder prepared by encapsulated melting and grinding was dry-mixed with Cu(OAc)2 powder. After Cu(OAc)2 decomposition, the Cu-dispersed Bi0.5Sb1.5Te3 was hot-pressed. Cu nanoparticles were well-dispersed in the Bi0.5Sb1.5Te3 matrix and acted as effective phonon scattering centers. The electrical conductivity increased systematically with increasing level of Cu nanoparticle dispersion. All specimens had a positive Seebeck coefficient, which confirmed that the electrical charge was transported mainly by holes. The thermoelectric figure of merit was enhanced remarkably over a wide temperature range of 323-523 K. PACS: 72.15.Jf: 72.20.Pa PMID:22221588

  3. The efficacy of topical ivermectin versus malation 0.5% lotion for the treatment of scabies.

    PubMed

    Goldust, Mohamad; Rezaee, Elham

    2013-05-01

    Objective: There are different medications for the treatment of scabies but the treatment of choice is still controversial. This study aimed at comparing the efficacy of topical ivermectin versus malation 0.5% lotion for the treatment of scabies. Methods: In total, 340 patients with scabies were enrolled, and randomized into two groups: the first group received 1% ivermectin applied topically to the affected skin and the second group received topical malation 0.5% lotion and were told to apply this twice with 1 week interval. Treatment was evaluated at intervals of 2 and 4 weeks, and if there was treatment failure at the 2-week follow-up, treatment was repeated. Results: Two application of topical ivermectin provided a cure rate of 67.6% at the 2-week follow-up, which increased to 85.2% at the 4-week follow-up after repeating the treatment. Treatment with two applications of malation 0.5% lotion was effective in 44.1% of patients at the 2-week follow-up, which increased to 67.6% at the 4-week follow-up after this treatment was repeated. Conclusion:Two application of ivermectin was as effective as single applications of malation 0.5% lotion at the 2-week follow-up. After repeating the treatment, ivermectin was superior to malation 0.5% lotion at the 4-week follow up.

  4. Study of mechanical, physical, and corrosion behavior of 0.5% cobalt alloyed austempered ductile iron

    NASA Astrophysics Data System (ADS)

    Abdullah, Bulan; Jaffar, Ahmed; Alias, Siti Khadijah; Ramli, Abdullah; Izham, Mohd Faizul

    2009-12-01

    Objectives: The purpose of this research was to determine the mechanical properties and corrosion behavior of 0.5% Co-DI before and after heat treatment and compare with commercial ductile iron. Methods: Molten metal of newly developed ductile iron which alloyed with 0.5% Cobalt produced through CO2 sand casting method. The specimens then performed preheat to 500°C in an hour then oil quenched. Specimens then performed annealing to 900°C in half an hour before oil quenched again. 500°C, 600°C and 700°C austempering temperature had been selected subjected to the specimens in half an hour before cooled to room temperature. The tests involved are microstructure analysis which included nodule count and phase analysis, polarization test, spectrometer test, density test, tensile test (ASTM E 8M), hardness test and impact test (ASTM A327) on as cast and austempered specimen. Results: 0.5% Cobalt alloyed austempered ductile iron with 500°C austempered temperature is the optimum temperature for 0.5% Co-ADI. It's not only increase the nodule count in the content, but also improve the mechanical properties such as impact toughness and tensile strength. Corrosion rate of 0.5% Co-DI also improved compare to unalloyed DI.

  5. Study of mechanical, physical, and corrosion behavior of 0.5% cobalt alloyed austempered ductile iron

    NASA Astrophysics Data System (ADS)

    Abdullah, Bulan; Jaffar, Ahmed; Alias, Siti Khadijah; Ramli, Abdullah; Izham, Mohd Faizul

    2010-03-01

    Objectives: The purpose of this research was to determine the mechanical properties and corrosion behavior of 0.5% Co-DI before and after heat treatment and compare with commercial ductile iron. Methods: Molten metal of newly developed ductile iron which alloyed with 0.5% Cobalt produced through CO2 sand casting method. The specimens then performed preheat to 500°C in an hour then oil quenched. Specimens then performed annealing to 900°C in half an hour before oil quenched again. 500°C, 600°C and 700°C austempering temperature had been selected subjected to the specimens in half an hour before cooled to room temperature. The tests involved are microstructure analysis which included nodule count and phase analysis, polarization test, spectrometer test, density test, tensile test (ASTM E 8M), hardness test and impact test (ASTM A327) on as cast and austempered specimen. Results: 0.5% Cobalt alloyed austempered ductile iron with 500°C austempered temperature is the optimum temperature for 0.5% Co-ADI. It's not only increase the nodule count in the content, but also improve the mechanical properties such as impact toughness and tensile strength. Corrosion rate of 0.5% Co-DI also improved compare to unalloyed DI.

  6. Magnetic and magnetocaloric properties of the first-order phase transition in Sm0.5+ x Sr0.5- x MnO3 compounds

    NASA Astrophysics Data System (ADS)

    Thanh, Tran Dang; Linh, Dinh Chi; Manh, Tien Van; Nan, Wen-Zhe; Yu, Seong-Cho; Piao, Hong-Guang; Pan, Liqing

    2016-08-01

    In this work, we present a detailed study on the magnetic and the magnetocaloric properties of Sm0.5+ x Sr0.5- x MnO3 compounds with x = 0 - 0.1, which were prepared by using a solid-state reaction method. The x-dependent magnetic, as well as magnetocaloric, properties, including the magnetic phase transition, have been studied. The increase in Sm/Sr ratio plays an important role in controlling the Curie temperature ( T C ). We point out that all the samples undergo a first-order phase transition and exhibit a giant magnetocaloric effect. The magnetic entropy change (Δ S m ) of samples was calculated based on isothermal M( H, T) data. The maximum value of Δ S m (denoted as |Δ S max|) at around T C is found to be 2.6 - 8.9 J·kg -1·K -1 for Δ H = 30 kOe and depends on the value of x. We have also used the universal master curve method for the temperature dependences of Δ S m curves measured at different Δ H values, Δ S m ( T,Δ H), to distinguish the magnetic order in the samples. Interestingly, none of the Δ S m ( T,Δ H) curves for the samples follow the universal master curve, Δ S m ( T,Δ H)/Δ S max versus θ = ( T -T C )/( T r - T C ). As a consequence, a breakdown in the universal behavior of Δ S m ( T,Δ H)/Δ S max versus θ curve is another feature confirming a first-order phase-transition nature.

  7. Studies on the Dielectric Properties and the Phase Transitions of the BISMUTH(0.5) SODIUM(0.5) Titanium-Lead Titanate System

    NASA Astrophysics Data System (ADS)

    Kuharuangrong, Sutin

    The dielectric properties and the phases present in Bi_{0.5}Na_ {0.5}TiO_3 (BNT) and Pb doped BNT ceramics were investigated. The dielectric properties were studied as a function of temperature, %Pb and microstructure. The electrical phases present were obtained from dc bias effects on the dielectric constant and P-E hysteresis measurement. In addition, the crystal structure and the phase boundary of this system were investigated as a function of temperature with x-ray diffraction. The dielectric properties of BNT were found to be the same in low density ceramics with small grains and high density ceramics with large grains. Compositions modified with Pb showed an increased dielectric constant and a limited grain growth in BNT. Pb also lowered the first transition temperature. The phases of BNT were found to be ferroelectric at room temperature which transformed to antiferroelectric and then paraelectric at 205^circ C and 340^circC, respectively. When BNT was doped with 10% Pb the first transition decreased from 205^circC to 141 ^circC and abruptly disappeared in the composition with 17% Pb. The crystal structure of 17% Pb doped BNT at room temperature is tetragonal which differs from the rhombohedral structure at lower Pb content. Thus, the phase boundary between rhombohedral and tetragonal ferroelectric was determined to be between 15% to %17 Pb. Modifications of 10% Pb doped BNT were also studied for consideration as possible commercial dielectrics. Compositions with K gave a broader dielectric response and a lower temperature of the first transition. Doped with La a temperature stable dielectric constant was obtained. Modified with Ba the dielectric constant increased and also the first transition temperature lowered. However, when doped with 10% Ba the composition ordered and the first transition ceased to exist.

  8. Polarized-thermoreflectance study of the band-edge transitions in Cu(Al 0.5 In 0.5)S2 solar-energy related crystal.

    PubMed

    Ho, Ching-Hwa; Huang, Guan-Tzu

    2010-02-15

    Polarization dependence of band-edge excitonic transitions in Cu(Al(0.5)In(0.5))S(2) [denoted as Cu(AlIn)S(2)] has been characterized using polarized-thermoreflectance (PTR) measurements with E || <111 > and E perpendicular <111 > polarizations in the temperature range between 30 and 320 K. The measurements were done on as-grown {112} surface of the chalcopyrite crystal. The polarization dependence of the band-edge transitions of Cu(AlIn)S(2) clearly showed that the E(A) exciton is present prominently with E || <111 > polarization while the E(B) exciton appears significantly only in the E perpendicular <111 > polarized spectra. For the unpolarized spectra, both E(A) and E(B) features were combined. The E(A) feature is closely related to the E(0) transition, while the E(B) feature is that of E(0) + Delta(0) transition in the chalcopyrite. The crystal-field splitting energy of Delta(0) of Cu(AlIn)S(2) at the valence-band top is determined accurately by PTR experiments. Temperature dependences of transition energies of E(A) and E(B) transitions were analyzed. The band-edge excitons reveal an anomalous temperature-energy shift with increasing the temperatures from 30 to 320 K due to the variation of Cu d electrons' contribution to valence band that affected by the native defects inside Cu(AlIn)S(2). The PTR technique is more effective in studying the band-edge structure of the chalcopyrite crystal.

  9. Brillouin light scattering investigation of the thickness dependence of Dzyaloshinskii-Moriya interaction in C o0.5F e0.5 ultrathin films

    NASA Astrophysics Data System (ADS)

    Belmeguenai, M.; Gabor, M. S.; Roussigné, Y.; Stashkevich, A.; Chérif, S. M.; Zighem, F.; Tiusan, C.

    2016-05-01

    C o0.5F e0.5 (CoFe) ultrathin films of various thicknesses (0.8 nm ≤tCoFe≤1.6 nm ) have been grown by sputtering on (001) MgO single crystal or Si/SiO2 substrates, using Pt as capping or buffer layers, respectively. The x-ray diffraction revealed an in-plane epitaxial (isotropic) growth of Pt on MgO (Si). Their magnetic properties have been studied by vibrating sample magnetometry and Brillouin light scattering (BLS) in the Damon-Eshbach geometry. Vibrating sample magnetometry characterizations show that films grown on MgO are in-plane magnetized, while films deposited on Si are perpendicularly magnetized for CoFe thickness below 1.4 nm. The BLS measurements reveal a pronounced nonreciprocal spin waves propagation, which increases with decreasing CoFe thickness. This nonreciprocity was attributed to an interfacial Dzyaloshinskii-Moriya interaction (DMI) induced by Pt interface with CoFe. Moreover, the DMI sign has been found to depend on the stacks order: it is positive (negative) for CoFe/Pt (Pt/CoFe). The effective thickness dependence of the DMI effective constant shows two regimes due to the degradation of the interfaces as the CoFe thickness decreases. We thus show that the magnetic dead layer should be taken into account to precisely determine the surface DMI constant Ds. Therefore, for the thickest samples, the surface DMI constants are nearly opposite: -1.27 and 1.32 pJ m-1 for Pt/CoFe and its reversed system, respectively.

  10. Preparation Process and Dielectric Properties of Ba(0.5)Sr(0.5)TiO3-P(VDF-CTFE) Nanocomposites

    NASA Technical Reports Server (NTRS)

    Zhang, Lin; Wu, Peixuang; Li, Yongtang; Cheng, Z. -Y.; Brewer, Jeffrey C.

    2014-01-01

    Ceramic-polymer 0-3 nanocomposites, in which nanosized Ba(0.5)Sr(0.5)TiO3 (BST) powders were used as ceramic filler and P(VDF-CTFE) 88/12 mol% [poly(vinylidene fluoridechlorotrifluoroethylene)] copolymer was used as matrix, were studied over a concentration range from 0 to 50 vol.% of BST powders. It is found that the solution cast composites are porous and a hot-press process can eliminate the porosity, which results in a dense composite film. Two different configurations used in the hot-press process are studied. Although there is no clear difference in the uniformity and microstructure of the composites prepared using these two configurations, the composite prepared using one configuration exhibit a higher dielectric constant with a lower loss. For the composite with 40 vol. BST, a dielectric constant of 70 with a loss of 0.07 at 1 kHz is obtained at room temperature. The composites exhibit a lower dielectric loss than the polymer matrix at high frequency. However, at low frequency, the composites exhibit a higher loss than the polymer matrix due to a low frequency relaxation process that appears in the composites. It is believed that this relaxation process is related to the interfacial layer formed between BST particle and the polymer matrix. The temperature dependence of the dielectric property of the composites was studied. It is found that the dielectric constant of these composites is almost independent of the temperature over a temperature range from 20 to 120 C. Key words: A. Polymer-matrix composites (PMCs); B. Electrical Properties; E. Casting; E. Heat treatment; Dielectric properties.

  11. Improved electrochemical properties of LiFe0.5Mn0.5PO4/C composite materials via a surface coating process

    NASA Astrophysics Data System (ADS)

    Yang, Chun-Chen; Hung, Yen-Wei; Lue, Shingjiang Jessie

    2016-09-01

    In this work, a LiFe0.5Mn0.5PO4/C (LFMP/C) material was prepared by a simple solid-state ball-mill method by using LiH2PO4, γ-MnO2, and hollow α-Fe2O3 nano-sized materials. Both γ-MnO2 and hollow α-Fe2O3 were synthesized by a hydrothermal process. LFMP/C composites coated with different amounts (1-3wt%) of Li4Ti5O12 (LTO) were synthesized by a sol-gel method. Their typical properties are studied using X-ray diffraction, micro-Raman spectroscopy, scanning electron microscopy/energy-dispersive X-ray spectroscopy, transmission electron microscopy, the AC impedance method, and the galvanostatic charge-discharge method. The results revealed that a 1 wt%-LTO-coated LFMP/C composite shows the highest performance among all LFMP/C composite samples. The long-term cycling performance of the LFMP/C composite improves considerably when the LTO ionic conductor is applied on it. Moreover, the 1 wt%-LTO-coated LFMP/C composite, which has the lowest fading rate, maintains high cycling stability at 1 C (141 mAh g-1) and 10 C (133 mAh g-1) at 55 °C after 100 cycles; by contrast, a bare LFMP/C sample, which demonstrates the highest fading rate, exhibits an unfavorable life cycle, and its discharge capacity decreases rapidly. The ionic conductor coating thus improves the high-temperature performance of LFMP/C composites. A LFMP/C-KS6/SiO2 full cell is assembled and tested.

  12. Enhanced exchange bias effect in size modulated Sm{sub 0.5}Ca{sub 0.5}MnO{sub 3} phase separated manganite

    SciTech Connect

    Giri, S. K.; Nath, T. K.; Yusuf, S. M.; Mukadam, M. D.

    2014-03-07

    The effect of grain size modulation on exchange bias effect in CE-type antiferromagnetic Sm{sub 0.5}Ca{sub 0.5}MnO{sub 3} phase separated manganite is reported here. With the reduction of particle size, ferromagnetic clusters are found to form in the charge ordered antiferromagnetic matrix and gradually become larger. The horizontal and vertical shifts of the magnetic hysteresis loops in the field cooled magnetization process clearly indicate the size dependent exchange bias effect and it can be tuned with the reduction of particle sizes. The values of exchange bias parameter, i.e., exchange bias field (H{sub E}), coercivity (H{sub C}), remanence asymmetry (M{sub E}), and magnetic coercivity (M{sub C}) are found to depend strongly on the particle size. The variations of H{sub E} follow non-monotonic dependencies with reduction in particle size and show maximum (1205 Oe) at particle size of 150 nm at T = 5 K, which can be ascribed due to the changes in uncompensated surface spins. The values of H{sub E} and M{sub E} are found to decrease exponentially with increasing temperature below the spin- or cluster-glass like freezing temperature. The spin relaxation model has been employed for analysis of large magnetic training effect. The linear relationship between H{sub E} and M{sub E} further confirms the role of uncompensated surface spins. In view of spintronics application of manganites, the present observation of large exchange bias shift in this half-doped manganite may have great technological importance.

  13. Sol-gel synthesis and characterization of nanocrystalline (Bi0.5Na0.5)TiO3 powders from the poly vinyl alcohol evaporation route

    NASA Astrophysics Data System (ADS)

    Haitao, Liu; xiaohui, Wang; Longtu, Li

    2009-09-01

    Nanocrystalline pure perovskite phase bismuth sodium titanate (Bi0.5Na0.5)TiO3(BNT) powders have been prepared by a sol-gel method from the poly vinyl alcohol evaporation route, bismuth nitrate [Bi(NO3)3], tetra-butyl titanate [Ti(OC4H9)4] and sodium acetate(CH3COONa) were used as raw materials and poly vinyl alcohol(PVA) as the sol-gel forming solvent. Stoichiometric amounts of the individual raw materials were thoroughly mixed in accordance with the BNT composition to form the stock solution. The pH of the stock was adjusted to 1-3 by adding acetate. Aqueous solution of PVA[10%(w/v)] was then added to the cationic mixture with thorough stirring. The weight ratio of the cationic mixture to the PVA aqueous solution was maintained at 2:1. The resulting viscous liquid was then heated over a hot crucible up to form a fluffy dry gel. The fluffy dry gels were calcined at different temperatures and times and then cooled to room temperature naturally. The X-ray powder diffraction(XRD) patterns of the heat-treated powders were obtained using a Bruker D8 Advance X-ray diffractometer with Cu Kα radiation and nickel filter. Scanning electron microscope (SEM) studies of the NBT powders were performed using a JSM-6700F electron microscope. Phase-pure BNT powders were obtained at 550°C for 2-2.5h which is relatively lower calcination temperature than other reports. The BNT powders consists of phase-pure perovskite nanocrystals with an average size of 100-200nm.

  14. Conduction phenomenon of Al3+ modified lead free (Na0.5Bi0.5)0.92Ba0.08TiO3 electroceramics

    NASA Astrophysics Data System (ADS)

    Borkar, Hitesh; Kumar, Ashok

    2016-05-01

    Choice of proper dopants at A or B-site of ABO3 perovskite structure can modify the morphotropic phase boundary (MPB), and hence functional properties of polar systems. The chemical nature of donor or acceptor will significantly influence the fundamental properties. Lead-free ferroelectrics have vast potential to replace the lead-based ceramics. The (Na0.5Bi0.5)1-xBaxTiO3 (NBT-BT) (at x=0.08) near MPB with small substitution of trivalent cations (Al3+) has been synthesized by solid state reaction route. The aim to choose the trivalent cations (Al3+) was its relatively smaller radii than that of Bi3+ cations to develop the antipolar phases in the ferroelectric ceramic. Structural, morphological and elemental compositional analyses were studied by X-ray diffraction (XRD), Secondary electron microscope (SEM) and Energy-dispersive X-ray spectroscopy (EDAX), respectively. Ferroelectric studies were carried out on various compositions of (Na0.46Bi0.46-xAlxBa0.08)TiO3 (NBAT-BT) (x=0, 0.05, 0.07, 0.10) electroceramics. It was observed that with increase in concentration of Al the ferroelectricity state changes from soft to hard. Temperature dependent dielectric spectroscopy shows broad dielectric dispersion. The Al doping diminishes the relaxor behavior of NBT-BT ceramics. Impedance spectroscopy shows that electrical resistivity and relaxation frequency decreases with increase in Al-concentration. Modulus spectra indicate that Al significantly change the bulk capacitance of NBT-BT.

  15. Strain induced modulation of the correlated transport in epitaxial Sm0.5Nd0.5NiO3 thin films

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Gardner, H. J.; Chen, X. G.; Singh, V. R.; Hong, X.

    2015-04-01

    We report a study of the effect of epitaxial strain on the correlated transport properties of 2-40 nm Sm0.5Nd0.5NiO3 (SNNO) films grown on different substrates. The metal-insulator transition (MIT) temperature TMI of the SNNO films increases with increasing tensile strain. While films on (0 0 1) LaAlO3 and (1 1 0) NdGaO3 substrates exhibit a sharp MIT and thermal hysteresis in the cooling-heating cycle, signaling a first-order transition, films on (0 0 1) SrTiO3 show a broad, second-order MIT. Hall effect measurements reveal hole-type charge carriers and thermally activated temperature dependence of the carrier density below TMI. The corresponding activation energy is ˜80 meV for films on LaAlO3 and NdGaO3, and is suppressed to 25 meV for films on SrTiO3. The carrier mobility in the metallic state and variable range hopping (VRH) transport at a low temperature point significantly enhanced electron localization in SNNO on STO, which we believe is not simply driven by extrinsic effects such as oxygen vacancies, but rather is an intrinsic characteristic for films subject to tensile strain due to the elongated Ni-O bond and hence enhanced dynamic Jahn-Teller distortion. In ultrathin films above the electrical dead layer thickness (2-3 nm), we observe a more than 100 K increase of TMI for films on LaAlO3, which has been correlated with a crossover from 3D to 2D transport as revealed from VRH. We attribute the distinct transport characteristics to strain induced modulation of various energy scales associated with the Ni-O-Ni bond angle and Ni-O bond length, which collectively determine the delocalization bandwidth of the system.

  16. Evolving microstructure, magnetic properties and phase transition in a mechanically alloyed Ni0.5Zn0.5Fe2O4 single sample

    NASA Astrophysics Data System (ADS)

    Ismail, Ismayadi; Hashim, Mansor; Kanagesan, Samikannu; Ibrahim, Idza Riati; Nazlan, Rodziah; Wan Ab Rahman, Wan Norailiana; Abdullah, Nor Hapishah; Mohd Idris, Fadzidah; Bahmanrokh, Ghazaleh; Shafie, Mohd Shamsul Ezzad; Manap, Masni

    2014-02-01

    We report on an investigation to unravel the dependence of magnetic properties on microstructure while they evolve in parallel under the influence of sintering temperature of a single sample of Ni0.5Zn0.5Fe2O4 synthesized via mechanical alloying. A single sample, instead of the normally practiced approach of using multiple samples, was sintered at various sintering temperatures from 500 °C to 1400 °C. The morphology of the samples was studied by means of scanning electron microscopy (SEM) equipped with EDX; density measurement was conducted using the Archimedes principle; and hysteresis measurement was carried out using a B-H hysteresisgraph system. XRD data showed that the first appearance of a single phase was at 800 °C and an amorphous phase was traced at lower sintering temperatures. We correlated the microstructure and the magnetic properties and showed that the important grain-size threshold for the appearance of significant ordered magnetism (mainly ferromagnetism) was about ≥0.3 µm. We found that there were three stages of magnetic phase evolution produced via the sintering process with increasing temperatures. The first stage was dominated by paramagnetic states with some superparamagnetic behavior; the second stage was influenced by moderately ferromagnetic states and some paramagnetic states; and the third stage consisted of strongly ferromagnetic states with negligible paramagnetic states. We found that three factors sensitively influenced the sample's content of ordered magnetism—the ferrite-phase crystallinity degree, the number of grains above the critical grain size and the number of large enough grains for domain wall accommodation.

  17. Exchange bias and surface effects in bimagnetic CoO -core /Co0.5Ni0.5Fe2O4 -shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Lavorato, Gabriel; Winkler, Elin; Ghirri, Alberto; Lima, Enio; Peddis, Davide; Troiani, Horacio E.; Fiorani, Dino; Agostinelli, Elisabetta; Rinaldi, Daniele; Zysler, Roberto D.

    2016-08-01

    Bimagnetic nanoparticles have been proposed for the design of new materials with controlled properties, which requires a comprehensive investigation of their magnetic behavior due to multiple effects arising from their complex structure. In this work we fabricated bimagnetic core/shell nanoparticles formed by an ˜3 -nm antiferromagnetic (AFM) CoO core encapsulated within an ˜1.5 -nm ferrimagnetic (FiM) Co0.5Ni0.5Fe2O4 shell, aiming at studying the enhancement of the magnetic anisotropy and the surface effects of a ferrimagnetic oxide shell. The magnetic properties of as-synthesized and annealed samples were analyzed by ac and dc magnetization measurements. The results indicate that the magnetic response of the as-synthesized particles is governed by the superparamagnetic behavior of the interacting nanoaggregates of spins that constitute the disordered ferrimagnetic shell, whose total moments block at =49 K and collectively freeze in a superspin-glass-type state at =3 K. On the other hand, annealed nanoparticles are superparamagnetic at room temperature and behave as an exchange-coupled system below the blocking temperature =70 K, with enhanced coercivity HC(10 K) ˜14.6 kOe and exchange bias field HE B(10 K) ˜2.3 kOe, compared with the as-synthesized system where HC(10 K) ˜5.5 kOe and HE B(10 K) ˜0.8 kOe. Our results, interpreted using different models for thermally activated and surface relaxation processes, can help clarify the complex magnetic behavior of many core/shell and hollow nanoparticle systems.

  18. Growth temperature dependence of the hysteretic behavior of Ni 0.5Zn 0.5Fe 2O 4 thin films

    NASA Astrophysics Data System (ADS)

    Prado, J.; Gómez, M. E.; Prieto, P.; Mendoza, A.

    2009-09-01

    Herein, a discussion of the effect of deposition temperature on the magnetic behavior of Ni 0.5Zn 0.5Fe 2O 4 thin films. The thin films were grown by r.f. sputtering technique on (1 0 0) MgO single-crystal substrates at deposition temperatures ranging between 400 and 800 °C. The grain boundary microstructure was analyzed via atomic force microscopy (AFM). AFM images show that grain size ( φ˜70-112 nm) increases with increasing deposition temperature, according to a diffusion growth model. From magneto-optical Kerr effect (MOKE) measurements at room temperature, coercive fields, Hc, between 37and 131 Oe were measured. The coercive field, Hc, as a function of grain size, reaches a maximum value of 131 Oe for φ ˜93 nm, while the relative saturation magnetization exhibits a minimum value at this grain size. The behaviors observed were interpreted as the existence of a critical size for the transition from single- to multi-domain regime. The saturation magnetization (21 emu/g< Ms<60 emu/g) was employed to quantify the critical magnetic intergranular correlation length ( Lc≈166 nm), where a single-grain to coupled-grain behavior transition occurs. Experimental hysteresis loops were fitted by the Jiles-Atherton model (JAM). The value of the k-parameter of the JAM fitted by means of this model ( k/ μo˜50 A m 2) was correlated to the domain size from the behavior of k, we observed a maximum in the density of defects for the sample with φ˜93 nm.

  19. Thermal shock behavior of W-0.5 wt% Y2O3 alloy prepared via a novel chemical method

    NASA Astrophysics Data System (ADS)

    Zhao, Mei-Ling; Luo, Lai-Ma; Lin, Jing-Shan; Zan, Xiang; Zhu, Xiao-Yong; Luo, Guang-Nan; Wu, Yu-Cheng

    2016-10-01

    A wet-chemical method combined with spark plasma sintering was used to prepare W-0.5 wt% Y2O3 alloy. The W-0.5 wt% Y2O3 precursor was reduced at 800 °C for 4 h under different hydrogen flow rates of 300, 400, 500, 600, and 700 ml/min. The reduced powder was analyzed by X-ray diffraction (XRD), laser particle size analyzer (LPSA), and scanning electron microscopy (SEM). An optimized process for reducing precursor was discussed. After sintering, the specimens were exposed to different laser beam irradiation energies (90, 120, 150, and 180 W) to simulate loads as expected for edge localized modes (ELMs). Top surface and cross-sectional morphology were observed by SEM, and the changes in hardness were evaluated. The changes in microstructural properties (i.e., Y2O3-particle distribution, crack propagation direction, depth of thermal shock effect, and grain size of the recrystallization region) after thermal shock were investigated.

  20. Capping and decapping of MBE grown GaAs(001), Al 0.5Ga 0.5As(001), and AlAs(001) investigated with ASP, PES, LEED, and RHEED

    NASA Astrophysics Data System (ADS)

    Bernstein, R. W.; Borg, A.; Husby, H.; Fimland, B.-O.; Grepstad, J. K.

    Arsenic capping and regeneration of MBE-grown GaAs(001), Al 0.5Ga 0.5As(001), and AlAs(001) epilayer surfaces were examined with Auger sputter profiling (ASP), synchrotron radiation and X-ray photoelectron spectroscopy (PES), LEED, and RHEED. It is found that clean, ordered surfaces of different As/Ga(Al) compositions and different surface reconstructions can be prepared in a controlled manner after long-term storage in air, by thermal desorption of the As cap at appropriate annealing temperatures. A protective film of amorphous arsenic was deposited in situ with both As 2 and As 4 molecular beams onto cold substrates. The recorded Auger depth profiles unveil capping layer thicknesses from 0.3 to 3 μm, the thicker for depositions using the As 2 dimer source. The As 3+ surface oxide, formed immediately upon exposure of the passivated wafers to air, remains on the order of 10Åthick, even after storage in atmosphere for several months. Core level photoemission shows selective desorption of this oxide upon annealing in UHV at 250°C. Further heating at 350°C evaporates the protective arsenic cap, and clean, As-terminated Al xGa 1- xAs(001) surfaces with a regular arrayof chemisorbed excess As sbnd As dimers prevail. The recorded LEED and RHEED patterns show a c(4 × 4) surface reconstruction for GaAs(001) and Al 0.5Ga 0.5As(001), whereas this structural phase was observed with RHEED only for the highly reactive AlAs(001) surface. Subsequently annealing in UHV at 450°C causes desorption of the chemisorbed surface arsenic and a concurrent transition from c(4 × 4) to the (2 × 4)/c(2 × 8) surface of As stabilized MBE-grown Al xGa 1- xAs(001). With AlAs(001), surface Al oxidation was observed immediately after annealing at 450°C, in spite of carefully controlled UHV environments

  1. The modified equipartition calculation for supernova remnants with the spectral index α = 0.5

    NASA Astrophysics Data System (ADS)

    Urošević, Dejan; Pavlović, Marko Z.; Arbutina, Bojan; Dobardžić, Aleksandra

    2015-03-01

    Recently, the modified equipartition calculation for supernova remnants (SNRs) has been derived by Arbutina et al. (2012). Their formulae can be used for SNRs with the spectral indices between 0.5 < α < 1. Here, by using approximately the same analytical method, we derive the equipartition formulae useful for SNRs with spectral index α=0.5. These formulae represent next step upgrade of Arbutina et al. (2012) derivation, because among 30 Galactic SNRs with available observational parameters for the equipartition calculation, 16 have spectral index α = 0.5. For these 16 Galactic SNRs we calculated the magnetic field strengths which are approximately 40 per cent higher than those calculated by using Pacholczyk (1970) equipartition and similar to those calculated by using Beck & Krause (2005) calculation.

  2. Photoletter to the editor: Topical 0.5% brimonidine gel to camouflage redness of immature scars.

    PubMed

    Reinholz, Markus; Heppt, Markus; Tietze, Julia K; Ruzicka, Thomas; Gauglitz, Gerd G; Schauber, Jürgen

    2015-09-30

    Cutaneous scars develop as a result of a defective wound healing process. Scars are commonly visible as erythematous, sometimes disfiguring lesions which might be stigmatizing for the affected patient. Only a few therapies to improve the appearance of scars are available. Recently, brimonidine - a selective α2-receptor-agonist which causes vasoconstriction of small cutaneous vessels - was approved for the treatment of erythemato-telangiectatic rosacea. Topical brimonidine might also be helpful to improve redness of immature scars. Here we report on the effect of brimonidine 0.5% gel on a flat, erythematous scar in a 25-year-old female patient. Whitening of the scar could be observed immediately after application of brimonidine 0.5% gel and a good clinical result was observed within one hour. This effect lasted for up to three hours. We conclude that brimonidine 0.5% gel is a suitable topical therapy to reduce erythema in visible cutaneous scars. PMID:26512307

  3. Serpentine Nanotubes in CM Chondrites

    NASA Technical Reports Server (NTRS)

    Zega, Thomas J.; Garvie, Laurence A. J.; Dodony, Istvan; Buseck, Peter R.

    2004-01-01

    The CM chondrites are primitive meteorites that formed during the early solar system. Although they retain much of their original physical character, their matrices and fine-grained rims (FGRs) sustained aqueous alteration early in their histories [1- 3]. Serpentine-group minerals are abundant products of such alteration, and information regarding their structures, compositions, and spatial relationships is important for determining the reactions that produced them and the conditions under which they formed. Our recent work on FGRs and matrices of the CM chondrites has revealed new information on the structures and compositions of serpentine-group minerals [4,5] and has provided insights into the evolution of these primitive meteorites. Here we report on serpentine nanotubes from the Mighei and Murchison CM chondrites [6].

  4. Damping Capacities of Mg-4 Pct Zn-(0-0.5) Pct Ca Biomedical Alloys

    NASA Astrophysics Data System (ADS)

    Jun, Joong-Hwan; Hwang, In-Je

    2016-07-01

    This study is intended to investigate the damping capacities of cast Mg-4 pct Zn-(0-0.5) pct Ca biomedical alloys. The Mg-4 pct Zn-(0-0.5) pct Ca alloys had similar damping levels regardless of Ca content in the strain-amplitude-independent region, but showed a decreasing tendency with an increase in Ca content in the strain-amplitude-dependent region. Almost identical concentration of solutes in the α-(Mg) matrix and the increased number density of the precipitate particles are responsible for the damping behaviors in the strain-amplitude-independent and strain-amplitude-dependent regions, respectively.

  5. Damping Capacities of Mg-4 Pct Zn-(0-0.5) Pct Ca Biomedical Alloys

    NASA Astrophysics Data System (ADS)

    Jun, Joong-Hwan; Hwang, In-Je

    2016-10-01

    This study is intended to investigate the damping capacities of cast Mg-4 pct Zn-(0-0.5) pct Ca biomedical alloys. The Mg-4 pct Zn-(0-0.5) pct Ca alloys had similar damping levels regardless of Ca content in the strain-amplitude-independent region, but showed a decreasing tendency with an increase in Ca content in the strain-amplitude-dependent region. Almost identical concentration of solutes in the α-(Mg) matrix and the increased number density of the precipitate particles are responsible for the damping behaviors in the strain-amplitude-independent and strain-amplitude-dependent regions, respectively.

  6. The APSU 0.5m Telescope: Helping to Transform Undergraduate Education

    NASA Astrophysics Data System (ADS)

    Buckner, Spencer L.; Allyn Smith, J.; Juelfs, Elizabeth; Gaither, Bryan; Wilson, Tyler; Roberts, Fred

    2016-01-01

    We present details of the newly rebuilt APSU 0.5m telescope and discuss its role in the Physics & Astronomy curriculum at Austin Peay State University. This telescope enables advanced astronomical course work, student projects, a small research capability, and a large public outreach effort for the APSU Physics & Astronomy Department.We discuss the basic capabilities of the telescope, the current instrument suite including potential growth options for the 0.5m, our plans for student led and faculty research efforts, and early EPO work. Initial results from the commissioning data are presented to illustrate the research and imaging capabilities of the system.

  7. Variations in the depth distribution of phosphorus in soil profiles and implications for model-based catchment-scale predictions of phosphorus delivery to surface waters

    NASA Astrophysics Data System (ADS)

    Owens, P. N.; Deeks, L. K.; Wood, G. A.; Betson, M. J.; Lord, E. I.; Davison, P. S.

    2008-02-01

    SummaryThe PSYCHIC process-based model for predicting sediment and phosphorus (P) transfer within catchments uses spatial data on soil-P derived from the National Soil Inventory (NSI) data set. These soil-P values are based on bulked 0-15 cm depth and do not account for variations in soil-P with depth. We describe the depth distribution of soil-P (total and Olsen) in grassland and arable soils for the dominant soil types in the two PSYCHIC study catchments: the Avon and the Wye, UK. There were clear variations in soil-P (particularly Olsen-P) concentrations with depth in untilled grassland soils while concentrations of total-P were broadly constant within the plough layer of arable soils. Concentrations of Olsen-P in arable soils, however, exhibited maximum values near the soil surface reflecting surface applications of fertilisers and manures between consecutive ploughing events. When the soil-P concentrations for the surface soil (0-5 cm average) were compared to both the profile-averaged (0-15 cm) and the NSI (0-15 cm) values, those for the surface soil were considerably greater than those for the average 0-15 cm depth. Modelled estimates of P loss using the depth-weighted average soil-P concentrations for the 0-5 cm depth layer were up to 14% greater than those based on the NSI data set due to the preferential accumulation of P at the soil surface. These findings have important implications for the use of soil-P data (and other data) in models to predict P losses from land to water and the interpretation of these predictions for river basin management.

  8. Metal insulator transition and magnetotransport anomalies in perovskite SrIr{sub 0.5}Ru{sub 0.5}O{sub 3} thin films

    SciTech Connect

    Biswas, Abhijit; Lee, Yong Woo; Kim, Sang Woo; Jeong, Yoon Hee

    2015-03-21

    We investigated the nature of transport and magnetic properties in SrIr{sub 0.5}Ru{sub 0.5}O{sub 3} (SIRO), which has characteristics intermediate between a correlated non-Fermi liquid state and an itinerant Fermi liquid state, by growing perovskite thin films on various substrates (e.g., SrTiO{sub 3} (001), (LaAlO{sub 3}){sub 0.3}(Sr{sub 2}TaAlO{sub 6}){sub 0.7} (001), and LaAlO{sub 3} (001)). We observed systematic variation of underlying substrate dependent metal-to-insulator transition temperatures (T{sub MIT} ∼ 80 K on SrTiO{sub 3}, ∼90 K on (LaAlO{sub 3}){sub 0.3}(Sr{sub 2}TaAlO{sub 6}){sub 0.7}, and ∼100 K on LaAlO{sub 3}) in resistivity. At temperature 300 K ≥ T ≥ T{sub MIT}, SIRO is metallic and its resistivity follows a T{sup 3/2} power law, whereas insulating nature at T < T{sub MIT} is due to the localization effect. Magnetoresistance (MR) measurement of SIRO on SrTiO{sub 3} (001) shows negative MR at T < 25 K and positive MR at T > 25 K, with negative MR ∝ B{sup 1/2} and positive MR ∝ B{sup 2}; consistent with the localized-to-normal transport crossover dynamics. Furthermore, observed spin glass like behavior of SIRO on SrTiO{sub 3} (001) at T < 25 K in the localized regime validates the hypothesis that (Anderson) localization favors glassy ordering. These remarkable features provide a promising approach for future applications and of fundamental interest in oxide thin films.

  9. Investigation of scanning tunneling spectra on iron-based superconductor FeSe0.5Te0.5(in Chinese)

    DOE PAGES

    Du, Z. -Y.; Fang, D. -L.; Wang, Z. -Y.; Du, G.; Yang, X.; Yang, H.; Gu, G.; -H, Wen H.

    2015-05-05

    FeSe0.5Te0.5 single crystals with superconducting critical temperature of 13.5 K are investigated by scanning tunneling microscopy/spectroscopy (STM/STS) measureflents in detail. STM image on the top surface shows an atomically resolved square lattice consisted by white and dark spots with a constant of about 3.73± 0.03 Å which is consistent with the lattice constant 3.78 Å. The Se and Te atoms with a height difference of about 0.35 Å are successfully identified since the sizes of the two kinds of atoms are different. The tunneling spectra show very large zero-bias conductance value and asymmetric coherent peaks in the superconducting state. Accordingmore » to the positions of coherence peaks, we determine the superconducting gap 2Δ = 5.5 meV, and the reduced gap 2Δ/kBTc = 4.9 is larger than the value predicted by the weak-coupling BCS theory. The zero-bias conductance at 1.7 K only have a decrease of about 40% compared with the normal state conductance, which may originate from some scattering and broadening mechanism in the material. This broadening effect will also make the superconducting gap determined by the distance between the coherence peaks larger than the exact gap value. The asymmetric structure of the tunneling spectra near the superconducting gap is induced by the hump on the background. This hump appears at temperature more than twice the superconducting critical temperature. This kind of hump has also been observed in other iron pnictides and needs further investigation. A possible bosonic mode outside the coherence peak with a mode energy Ω of about 5.5 meV is observed in some tunneling spectra, and the ratio between the mode energy and superconducting transition temperature Ω/kBTc ≈ 4.7 is roughly consistent with the universal ratio 4.3 in iron-based superconductors. The high-energy background of the spectra beyond the superconducting gaps shows a V-shape feature. The slopes of the differential conductance spectra at high energy are

  10. Investigation of scanning tunneling spectra on iron-based superconductor FeSe0.5Te0.5

    SciTech Connect

    Du, Z. -Y.; Fang, D. -L.; Wang, Z. -Y.; Du, G.; Yang, X.; Yang, H.; Gu, G.; -H, Wen H.

    2015-05-05

    FeSe0.5Te0.5 single crystals with superconducting critical temperature of 13.5 K are investigated by scanning tunneling microscopy/spectroscopy (STM/STS) measureflents in detail. STM image on the top surface shows an atomically resolved square lattice consisted by white and dark spots with a constant of about 3.73± 0.03 Å which is consistent with the lattice constant 3.78 Å. The Se and Te atoms with a height difference of about 0.35 Å are successfully identified since the sizes of the two kinds of atoms are different. The tunneling spectra show very large zero-bias conductance value and asymmetric coherent peaks in the superconducting state. According to the positions of coherence peaks, we determine the superconducting gap 2Δ = 5.5 meV, and the reduced gap 2Δ/kBTc = 4.9 is larger than the value predicted by the weak-coupling BCS theory. The zero-bias conductance at 1.7 K only have a decrease of about 40% compared with the normal state conductance, which may originate from some scattering and broadening mechanism in the material. This broadening effect will also make the superconducting gap determined by the distance between the coherence peaks larger than the exact gap value. The asymmetric structure of the tunneling spectra near the superconducting gap is induced by the hump on the background. This hump appears at temperature more than twice the superconducting critical temperature. This kind of hump has also been observed in other iron pnictides and needs further investigation. A possible bosonic mode outside the coherence peak with a mode energy Ω of about 5.5 meV is observed in some tunneling spectra, and the ratio between the mode energy and superconducting transition temperature Ω/kBTc ≈ 4.7 is roughly consistent with the universal ratio 4.3 in iron-based superconductors. The high-energy background of the spectra beyond the superconducting gaps shows a V-shape feature. The slopes of the differential conductance spectra at high

  11. Strain induced modulation of the correlated transport in epitaxial Sm0.5Nd0.5NiO3 thin films.

    PubMed

    Zhang, L; Gardner, H J; Chen, X G; Singh, V R; Hong, X

    2015-04-10

    We report a study of the effect of epitaxial strain on the correlated transport properties of 2-40 nm Sm0.5Nd0.5NiO3 (SNNO) films grown on different substrates. The metal-insulator transition (MIT) temperature T(MI) of the SNNO films increases with increasing tensile strain. While films on (0 0 1) LaAlO3 and (1 1 0) NdGaO3 substrates exhibit a sharp MIT and thermal hysteresis in the cooling-heating cycle, signaling a first-order transition, films on (0 0 1) SrTiO3 show a broad, second-order MIT. Hall effect measurements reveal hole-type charge carriers and thermally activated temperature dependence of the carrier density below T(MI). The corresponding activation energy is ∼80 meV for films on LaAlO3 and NdGaO3, and is suppressed to 25 meV for films on SrTiO3. The carrier mobility in the metallic state and variable range hopping (VRH) transport at a low temperature point significantly enhanced electron localization in SNNO on STO, which we believe is not simply driven by extrinsic effects such as oxygen vacancies, but rather is an intrinsic characteristic for films subject to tensile strain due to the elongated Ni-O bond and hence enhanced dynamic Jahn-Teller distortion. In ultrathin films above the electrical dead layer thickness (2-3 nm), we observe a more than 100 K increase of T(MI) for films on LaAlO3, which has been correlated with a crossover from 3D to 2D transport as revealed from VRH. We attribute the distinct transport characteristics to strain induced modulation of various energy scales associated with the Ni-O-Ni bond angle and Ni-O bond length, which collectively determine the delocalization bandwidth of the system. PMID:25779981

  12. 344 cm x 86 cm low mass vacuum window

    SciTech Connect

    Reimers, R.M.; Porter, J.; Meneghetti, J.; Wilde, S.; Miller, R.

    1983-08-01

    The LBL Heavy Ion Spectrometer System (HISS) superconducting magnet contains a 1 m x 3.45 m x 2 m vacuum tank in its gap. A full aperture thin window was needed to minimize background as the products of nuclear collisions move from upstream targets to downstream detectors. Six windows were built and tested in the development process. The final window's unsupported area is 3m/sup 2/ with a 25 cm inward deflection. The design consists of a .11 mm Nylon/aluminum/polypropylene laminate as a gas seal and .55 mm woven aramid fiber for strength. Total mass is 80 milligrams per cm/sup 2/. Development depended heavily on past experience and testing. Safety considerations are discussed.

  13. Dielectric, Piezoelectric Properties and Field-Induced Large Strain of Bi(Zn0.5Ti0.5)O3-Modified Morphotropic Phase Boundary Bi0.5(Na0.82K0.18)0.5TiO3 Piezoelectric Ceramics

    NASA Astrophysics Data System (ADS)

    Ullah, Aman; Ahn, Chang Won; Kim, Ill Won

    2012-09-01

    In this study, the effects of Bi(Zn0.5Ti0.5)O3 (BZT) on the structure, dielectric, ferroelectric, and piezoelectric properties of morphotropic phase boundary Bi0.5(Na0.82K0.18)0.5TiO3 (BNKT18) piezoelectric ceramics were investigated. In the composition range studied, X-ray diffraction results revealed the coexistence of rhombohedral and tetragonal phases. It was found that BZT content decreased the depolarization temperature (Td) of BNKT18-BZT ceramics, and the degree of diffuseness of the phase transition became more obvious with increasing BZT content. The addition of a small amount of BZT improved the piezoelectric properties, with the maximum piezoelectric constant (d33=166 pC/N) and electromechanical coupling factor (kp=31.7%) obtained at x=0.03. However, at a high concentration of BZT, the remanent polarization and piezoelectric constant d33 were drastically decreased, and a pronounced enhancement in electric field-induced strain was observed, with a peak of ˜0.27% at x=0.07, which corresponds to a normalized strain, Smax/Emax, of ˜385 pm/V.

  14. 47 CFR 0.5 - General description of Commission organization and operations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) Office of Workplace Diversity (11) Wireline Competition Bureau. (12) Wireless Telecommunications Bureau...), 303(r) and 5(c)(i), Communications Act of 1934, as amended; 47 CFR 0.61 and 0.283) Editorial Note: For Federal Register citations affecting § 0.5, see the List of CFR Sections Affected, which appears in...

  15. 47 CFR 0.5 - General description of Commission organization and operations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) Office of Workplace Diversity (11) Wireline Competition Bureau. (12) Wireless Telecommunications Bureau...), 303(r) and 5(c)(i), Communications Act of 1934, as amended; 47 CFR 0.61 and 0.283) Editorial Note: For Federal Register citations affecting § 0.5, see the List of CFR Sections Affected, which appears in...

  16. 47 CFR 0.5 - General description of Commission organization and operations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) Office of Workplace Diversity (11) Wireline Competition Bureau. (12) Wireless Telecommunications Bureau...), 303(r) and 5(c)(i), Communications Act of 1934, as amended; 47 CFR 0.61 and 0.283) Editorial Note: For Federal Register citations affecting § 0.5, see the List of CFR Sections Affected, which appears in...

  17. 47 CFR 0.5 - General description of Commission organization and operations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) Office of Workplace Diversity (11) Wireline Competition Bureau. (12) Wireless Telecommunications Bureau...), 303(r) and 5(c)(i), Communications Act of 1934, as amended; 47 CFR 0.61 and 0.283) Editorial Note: For Federal Register citations affecting § 0.5, see the List of CFR Sections Affected, which appears in...

  18. An analysis of lead-free (Bi{sub 0.5}Na{sub 0.5}){sub 0.915}-(Bi{sub 0.5}K{sub 0.5}){sub 0.05}Ba{sub 0.02}Sr{sub 0.015}TiO{sub 3} ceramic for efficient refrigeration and thermal energy harvesting

    SciTech Connect

    Vats, Gaurav; Vaish, Rahul; Bowen, Chris R.

    2014-01-07

    This article demonstrates the colossal energy harvesting capability of a lead-free (Bi{sub 0.5}Na{sub 0.5}){sub 0.915}-(Bi{sub 0.5}K{sub 0.5}){sub 0.05}Ba{sub 0.02}Sr{sub 0.015}TiO{sub 3} ceramic using the Olsen cycle. The maximum harvestable energy density estimated for this system is found to be 1523 J/L (1523 kJ/m{sup 3}) where the results are presented for extreme ambient conditions of 20–160 °C and electric fields of 0.1–4 MV/m. This estimated energy density is 1.7 times higher than the maximum reported to date for the lanthanum-doped lead zirconate titanate (thin film) system. Moreover, this study introduces a generalized and effective solid state refrigeration cycle in contrast to the ferroelectric Ericson refrigeration cycle. The cycle is based on a temperature induced polarization change on application of an unipolar electric field to ferroelectric ceramics.

  19. 43 CFR 3715.0-5 - How are certain terms in this subpart defined?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... applicable law or regulation. As applied to authorized uses, the term is used as defined in 43 CFR 3802.0-5...) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) PUBLIC LAW 167; ACT OF... component parts or by techniques commonly used in house moving. The term does not apply to tents or...

  20. 43 CFR 3715.0-5 - How are certain terms in this subpart defined?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... applicable law or regulation. As applied to authorized uses, the term is used as defined in 43 CFR 3802.0-5...) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) PUBLIC LAW 167; ACT OF... component parts or by techniques commonly used in house moving. The term does not apply to tents or...