Science.gov

Sample records for 001-oriented gaas substrates

  1. Effect of intrinsic tensile stress on (001) orientation in L10 FePt thin films on glass substrates

    NASA Astrophysics Data System (ADS)

    Hsiao, S. N.; Liu, S. H.; Chen, S. K.; Yuan, F. T.; Lee, H. Y.

    2012-04-01

    Single-layered FePt thin films were deposited on glass substrates and subsequently annealed at 800 °C for various times in a rapid thermal annealing (RTA) furnace. Near-fully-L10-ordered FePt films were obtained after RTA. The accumulation of the intrinsic tensile stress is mainly contributed by the densification reaction, which leads to the development of (001) preferred orientation. The relief of the tensile stress predominantly stems from the microstructural variation (from continuous to interconnected network state), resulting in a reduction of (001) texture. Enhanced perpendicular magnetic and crystalline anisotropy was obtained for the films annealed for 900 s, confirmed by a high Lotgering orientation factor of 0.99 and differential squareness of 0.5. The results provide direct evidence that intrinsic tensile stress prompts the (001) preferred orientation through suggested strain-induced grain growth.

  2. Highly (001) oriented L1{sub 0}-CoPt/TiN multilayer films on glass substrates with perpendicular magnetic anisotropy

    SciTech Connect

    An, Hongyu; Sannomiya, Takumi; Muraishi, Shinji; Nakamura, Yoshio; Shi, Ji; Xie, Qian; Zhang, Zhengjun; Wang, Jian

    2015-03-15

    To obtain strong perpendicular magnetic anisotropy (PMA) based on L1{sub 0} structure for magnetic storage devices, costly single crystalline substrates are generally required to achieve (001) texture. Recently, various studies also have focused on depositing different kinds of seed layers on glass or other amorphous substrates to promote (001) preferred orientation of L1{sub 0} CoPt and FePt. TiN is a very promising seed layer material because of its cubic crystalline structure (similar to MgO) and excellent diffusion barring property even at high temperatures. In the present work, highly (001) oriented L1{sub 0}-CoPt/TiN multilayer films have been successfully deposited on glass substrates. After annealing at 700 °C, the film exhibits PMA, and a strong (001) peak is detected from the x-ray diffraction profiles, indicating the ordering transformation of CoPt layers from fcc (A1) to L1{sub 0} structure. It also is found that alternate deposition of cubic TiN and CoPt effectively improves the crystallinity and (001) preferred orientation of CoPt layers. This effect is verified by the substantial enhancement of (001) reflection and PMA with increasing the period number of the multilayer films.

  3. Electrical transport and magnetic properties of epitaxial Nd0.7 Sr0.3 MnO3 thin films on (001)-oriented LaAlO3 substrate

    NASA Astrophysics Data System (ADS)

    Gopalarao, T. R.; Ravi, S.; Pamu, D.

    2016-07-01

    Nd0.7 Sr0.3 MnO3 thin films were deposited using RF-magnetron sputtering on (001) oriented LaAlO3 substrate by varying thickness in the range of 12-200 nm. X-ray diffraction patterns of both air annealed and oxygen annealed films show epitaxial growth along (00l) orientation with decrease in lattice strain with increase in film thickness. Raman spectra show the presence of strong peaks corresponding to rotational and stretching modes of MnO6 octahedra and their intensity is found to decrease with increase in film thickness. Both air and oxygen annealed films except for 12 nm thickness exhibit ferromagnetic transition with a maximum TC of 200 K. The magnetic anisotropic constant was estimated from the analysis of M-H curve and its value is found to decrease with increase in film thickness. Metal-insulator transitions have been observed in all films including the 12 nm thick film. The electrical resistivity data in the metallic region, i.e. close to TMI, were analysed by considering electron-magnon scattering mechanism and in the low temperature region far below TMI; the analysis was carried out by considering the combination of electron-electron scattering and charge localisation effect. The resistivity data in the insulating region (T >TMI) were analysed by considering Mott-variable range hopping model.

  4. Microwave GaAs Integrated Circuits On Quartz Substrates

    NASA Technical Reports Server (NTRS)

    Siegel, Peter H.; Mehdi, Imran; Wilson, Barbara

    1994-01-01

    Integrated circuits for use in detecting electromagnetic radiation at millimeter and submillimeter wavelengths constructed by bonding GaAs-based integrated circuits onto quartz-substrate-based stripline circuits. Approach offers combined advantages of high-speed semiconductor active devices made only on epitaxially deposited GaAs substrates with low-dielectric-loss, mechanically rugged quartz substrates. Other potential applications include integration of antenna elements with active devices, using carrier substrates other than quartz to meet particular requirements using lifted-off GaAs layer in membrane configuration with quartz substrate supporting edges only, and using lift-off technique to fabricate ultrathin discrete devices diced separately and inserted into predefined larger circuits. In different device concept, quartz substrate utilized as transparent support for GaAs devices excited from back side by optical radiation.

  5. Au impact on GaAs epitaxial growth on GaAs (111)B substrates in molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Liao, Zhi-Ming; Chen, Zhi-Gang; Lu, Zhen-Yu; Xu, Hong-Yi; Guo, Ya-Nan; Sun, Wen; Zhang, Zhi; Yang, Lei; Chen, Ping-Ping; Lu, Wei; Zou, Jin

    2013-02-01

    GaAs growth behaviour under the presence of Au nanoparticles on GaAs {111}B substrate is investigated using electron microscopy. It has been found that, during annealing, enhanced Ga surface diffusion towards Au nanoparticles leads to the GaAs epitaxial growth into {113}B faceted triangular pyramids under Au nanoparticles, governed by the thermodynamic growth, while during conventional GaAs growth, growth kinetics dominates, resulting in the flatted triangular pyramids at high temperature and the epitaxial nanowires growth at relatively low temperature. This study provides an insight of Au nanoparticle impact on GaAs growth, which is critical for understanding the formation mechanisms of semiconductor nanowires.

  6. GaAs Photovoltaics on Polycrystalline Ge Substrates

    NASA Technical Reports Server (NTRS)

    Wilt, David M.; Pal, AnnaMaria T.; McNatt, Jeremiah S.; Wolford, David S.; Landis, Geoffrey A.; Smith, Mark A.; Scheiman, David; Jenkins, Phillip P.; McElroy Bruce

    2007-01-01

    High efficiency III-V multijunction solar cells deposited on metal foil or even polymer substrates can provide tremendous advantages in mass and stowage, particularly for planetary missions. As a first step towards that goal, poly-crystalline p/i/n GaAs solar cells are under development on polycrystalline Ge substrates. Organo Metallic Vapor Phase Epitaxy (OMVPE) parameters for pre-growth bake, nucleation and deposition have been examined. Single junction p/i/n GaAs photovoltaic devices, incorporating InGaP front and back window layers, have been grown and processed. Device performance has shown a dependence upon the thickness of a GaAs buffer layer deposited between the Ge substrate and the active device structure. A thick (2 m) GaAs buffer provides for both increased average device performance as well as reduced sensitivity to variations in grain size and orientation. Illumination under IR light (lambda > 1 micron), the cells showed a Voc, demonstrating the presence of an unintended photoactive junction at the GaAs/Ge interface. The presence of this junction limited the efficiency to approx.13% (estimated with an anti-refection coating) due to the current mismatch and lack of tunnel junction interconnect.

  7. Phase transitions in [001]-oriented morphotropic PbZr{sub 0.52}Ti{sub 0.48}O{sub 3} thin film deposited onto SrTiO{sub 3}-buffered Si substrate

    SciTech Connect

    Shi, Yin; Cueff, M.; Le Rhun, G.; Defay, E.; Niu, Gang; Vilquin, B.; Saint Girons, G.; Bachelet, R.; Gautier, B.; Robach, Y.; Gemeiner, P.; Guiblin, N.; Dkhil, B.

    2014-06-07

    An 85 nm-thick morphotropic PbZr{sub 0.52}Ti{sub 0.48}O{sub 3} (PZT) film grown epitaxially and [001]-oriented onto a SrTiO{sub 3}-buffered Si-wafer is investigated using temperature dependent X-ray diffraction. Two phase transitions, at T{sub rt} ∼ 500 K and T{sub c} ∼ 685 K, are evidenced and are attributed to structural phase transitions from monoclinic-like to tetragonal-like phase and from tetragonal to paraelectric phase, respectively. The stronger upper shift of T{sub rt} value with respect to the bulk one and the weakly affected T{sub c} (T{sub c} bulk ∼ 665 K) are explained assuming misfit strain changes when crossing T{sub rt}. This finding opens new perspectives for piezoelectric PZT films in harsh applications.

  8. Metalorganic molecular beam epitaxy growth of GaAs on patterned GaAs substrates

    NASA Astrophysics Data System (ADS)

    Marx, D.; Asahi, H.; Liu, X. F.; Okuno, Y.; Inoue, K.; Gonda, S.; Shimomura, S.; Hiyamizu, S.

    1994-03-01

    GaAs layers were grown on etch-patterned (100) GaAs substrates by MOMBE (metalorganic molecular beam epitaxy) using TEGa (triethylgallium) and thermally cracked TEAs (triethylarsine). Morphology and orientation dependencies of the grown facets on the growth temperature (400-630°C) and V/III ratio (2-4) are investigated. Good morphology of grown layers was obtained on (111)A side facets at a low V/III ratio of 3 and low growth temperatures of 450-500°C. We also found strong evidence that the formation of facets is not only governed by the migration of Ga precursors and/or Ga atoms, but also by a preferential catalytic decomposition of Ga precursors on the facet edges.

  9. Au impact on GaAs epitaxial growth on GaAs (111){sub B} substrates in molecular beam epitaxy

    SciTech Connect

    Liao, Zhi-Ming; Chen, Zhi-Gang; Xu, Hong-Yi; Guo, Ya-Nan; Sun, Wen; Zhang, Zhi; Yang, Lei; Lu, Zhen-Yu; Chen, Ping-Ping; Lu, Wei; Zou, Jin

    2013-02-11

    GaAs growth behaviour under the presence of Au nanoparticles on GaAs {l_brace}111{r_brace}{sub B} substrate is investigated using electron microscopy. It has been found that, during annealing, enhanced Ga surface diffusion towards Au nanoparticles leads to the GaAs epitaxial growth into {l_brace}113{r_brace}{sub B} faceted triangular pyramids under Au nanoparticles, governed by the thermodynamic growth, while during conventional GaAs growth, growth kinetics dominates, resulting in the flatted triangular pyramids at high temperature and the epitaxial nanowires growth at relatively low temperature. This study provides an insight of Au nanoparticle impact on GaAs growth, which is critical for understanding the formation mechanisms of semiconductor nanowires.

  10. Studies of molecular-beam epitaxy growth of GaAs on porous Si substrates

    NASA Technical Reports Server (NTRS)

    Mii, Y. J.; Kao, Y. C.; Wu, B. J.; Wang, K. L.; Lin, T. L.; Liu, J. K.

    1988-01-01

    GaAs has been grown on porous Si directly and on Si buffer layer-porous Si substrates by molecular-beam epitaxy. In the case of GaAs growth on porous Si, transmission electron microscopy (TEM) reveals that the dominant defects in GaAs layers grown on porous Si are microtwins and stacking faults, which originate from the GaAs/porous Si interface. GaAs is found to penetrate into the porous Si layers. By using a thin Si buffer layer (50 nm), GaAs penetration diminishes and the density of microtwins and stacking faults is largely reduced and localized at the GaAs/Si buffer interface. However, there is a high density of threading dislocations remaining. Both Si (100) aligned and four degree tilted substrates have been examined in this study. TEM results show no observable effect of the tilted substrates on the quality of the GaAs epitaxial layer.

  11. GaAs nanowires on Si substrates grown by a solid source molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Ihn, Soo-Ghang; Song, Jong-In; Kim, Young-Hun; Lee, Jeong Yong

    2006-07-01

    High-quality Au-catalyzed GaAs nanowires were grown on Si substrates by vapor-liquid-solid growth in a solid source molecular beam epitaxy system. X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy reveal that the GaAs nanowires were epitaxially grown on Si substrates with uniform diameters along the nanowires. While GaAs nanowires on Si(111) and (001) substrates were mainly grown along the ⟨111⟩ direction with zinc-blende and wurtzite structures, unusual GaAs nanowires grown along ⟨001⟩ with a pure zinc-blende structure were also observed. Strong photoluminescence was observed from GaAs nanowires grown on a Si(001) substrate at room temperature.

  12. Ka-band propagation characteristics of microstrip lines on GaAs substrates at cryogenic temperatures

    NASA Technical Reports Server (NTRS)

    Romanofsky, R. R.; Martinez, J. C.; Viergutz, B. J.; Bhasin, K. B.

    1990-01-01

    Effective permitivity and loss characteristics of gold microstrip lines on GaAs substrates were obtained by characterizing GaAs linear resonators at cryogenic temperatures (300 to 20 K) from 30-40 GHz. A slight decrease in effective permittivity and a significant reduction in loss were observed with lower temperatures.

  13. (001) Oriented piezoelectric films prepared by chemical solution deposition on Ni foils

    SciTech Connect

    Yeo, Hong Goo Trolier-McKinstry, Susan

    2014-07-07

    Flexible metal foil substrates are useful in some microelectromechanical systems applications including wearable piezoelectric sensors or energy harvesters based on Pb(Zr,Ti)O₃ (PZT) thin films. Full utilization of the potential of piezoelectrics on metal foils requires control of the film crystallographic texture. In this study, (001) oriented PZT thin films were grown by chemical solution deposition (CSD) on Ni foil and Si substrates. Ni foils were passivated using HfO₂ grown by atomic layer deposition in order to suppress substrate oxidation during subsequent thermal treatment. To obtain the desired orientation of PZT film, strongly (100) oriented LaNiO₃ films were integrated by CSD on the HfO₂ coated substrates. A high level of (001) LaNiO₃ and PZT film orientation were confirmed by X-ray diffraction patterns. Before poling, the low field dielectric permittivity and loss tangents of (001) oriented PZT films on Ni are near 780 and 0.04 at 1 kHz; the permittivity drops significantly on poling due to in-plane to out-of-plane domain switching. (001) oriented PZT film on Ni displayed a well-saturated hysteresis loop with a large remanent polarization ~36 μC/cm², while (100) oriented PZT on Si showed slanted P-E hysteresis loops with much lower remanent polarizations. The |e{sub 31,f}| piezoelectric coefficient was around 10.6 C/m² for hot-poled (001) oriented PZT film on Ni.

  14. Gallium arsenide (GaAs) island growth under SiO(2) nanodisks patterned on GaAs substrates.

    PubMed

    Tjahjana, Liliana; Wang, Benzhong; Tanoto, Hendrix; Chua, Soo-Jin; Yoon, Soon Fatt

    2010-05-14

    We report a growth phenomenon where uniform gallium arsenide (GaAs) islands were found to grow underneath an ordered array of SiO(2) nanodisks on a GaAs(100) substrate. Each island eventually grows into a pyramidal shape resulting in the toppling of the supported SiO(2) nanodisk. This phenomenon occurred consistently for each nanodisk across a large patterned area of approximately 50 x 50 microm(2) (with nanodisks of 210 nm diameter and 280 nm spacing). The growth mechanism is attributed to a combination of 'catalytic' growth and facet formation.

  15. GaAs Substrates for High-Power Diode Lasers

    NASA Astrophysics Data System (ADS)

    Mueller, Georg; Berwian, Patrick; Buhrig, Eberhard; Weinert, Berndt

    GaAs substrate crystals with low dislocation density (Etch-Pit Density (EPD) < 500,^-2) and Si-doping ( ~10^18,^-3) are required for the epitaxial production of high-power diode-lasers. Large-size wafers (= 3 mathrm{in} -> >=3,) are needed for reducing the manufacturing costs. These requirements can be fulfilled by the Vertical Bridgman (VB) and Vertical Gradient Freeze (VGF) techniques. For that purpose we have developed proper VB/VGF furnaces and optimized the thermal as well as the physico-chemical process conditions. This was strongly supported by extensive numerical process simulation. The modeling of the VGF furnaces and processes was made by using a new computer code called CrysVUN++, which was recently developed in the Crystal Growth Laboratory in Erlangen.GaAs crystals with diameters of 2 and 3in were grown in pyrolytic Boron Nitride (pBN) crucibles having a small-diameter seed section and a conical part. Boric oxide was used to fully encapsulate the crystal and the melt. An initial silicon content in the GaAs melt of c (melt) = 3 x10^19,^-3 has to be used in order to achieve a carrier concentration of n = (0.8- 2) x10^18,^-3, which is the substrate specification of the device manufacturer of the diode-laser. The EPD could be reduced to values between 500,^-2 and 50,^-2 with a Si-doping level of 8 x10^17 to 1 x10^18,^-3. Even the 3in wafers have rather large dislocation-free areas. The lowest EPDs ( <100,^-2) are achieved for long seed wells of the crucible.

  16. Self-Assembled Local Artificial Substrates of GaAs on Si Substrate

    PubMed Central

    2010-01-01

    We propose a self-assembling procedure for the fabrication of GaAs islands by Droplet Epitaxy on silicon substrate. Controlling substrate temperature and amount of supplied gallium is possible to tune the base size of the islands from 70 up to 250 nm and the density from 107 to 109 cm−2. The islands show a standard deviation of base size distribution below 10% and their shape evolves changing the aspect ratio from 0.3 to 0.5 as size increases. Due to their characteristics, these islands are suitable to be used as local artificial substrates for the integration of III–V quantum nanostructures directly on silicon substrate. PMID:21170400

  17. Tolerance of GaAs as an original substrate for HVPE growth of free standing GaN

    NASA Astrophysics Data System (ADS)

    Suzuki, Mio; Sato, T.; Suemasu, T.; Hasegawa, F.

    2004-09-01

    In order to investigate possibility of thick GaN growth on a GaAs substrate by halide vapar phase epitaxy (HVPE), GaN was grown on GaAs(111)/Ti wafer with Ti deposited by E-gun. It was found that surface treatment of the GaAs substrate by HF solution deteriorated greatly the tolerence of GaAs and that Ti can protected GaAs from erosion by NH3. By depositing Ti on GaAs(111)A surface, a millor-like GaN layer could be grown at 1000 °C for 1 hour without serious deterioration of the original GaAs substrate. By increasing the growth rate, a thick free standing GaN will be obtained with GaAs as an original substrate in near future.

  18. Inversion-mode GaAs wave-shaped field-effect transistor on GaAs (100) substrate

    SciTech Connect

    Zhang, Jingyun; Si, Mengwei; Wu, Heng; Ye, Peide D.; Lou, Xiabing; Gordon, Roy G.; Shao, Jiayi; Manfra, Michael J.

    2015-02-16

    Inversion-mode GaAs wave-shaped metal-oxide-semiconductor field-effect transistors (WaveFETs) are demonstrated using atomic-layer epitaxy of La{sub 2}O{sub 3} as gate dielectric on (111)A nano-facets formed on a GaAs (100) substrate. The wave-shaped nano-facets, which are desirable for the device on-state and off-state performance, are realized by lithographic patterning and anisotropic wet etching with optimized geometry. A well-behaved 1 μm gate length GaAs WaveFET shows a maximum drain current of 64 mA/mm, a subthreshold swing of 135 mV/dec, and an I{sub ON}/I{sub OFF} ratio of greater than 10{sup 7}.

  19. Preparation of (001)-oriented Pb(Zr,Ti)O3 thin films and their piezoelectric applications.

    PubMed

    Fujii, Eiji; Takayama, Ryoichi; Nomura, Kouji; Murata, Akiko; Hirasawa, Taku; Tomozawa, Atsushi; Fujii, Satoru; Kamada, Takeshi; Torii, Hideo

    2007-12-01

    Preparation of (001)-oriented Pb(Zr,Ti)O(3) (PZT) thin films and their applications to a sensor and actuators were investigated. These thin films, which have a composition close to the morphotropic phase boundary, were epitaxially grown on (100)MgO single-crystal substrates by RF magnetron sputtering. These (001)-oriented PZT thin films could be obtained on various kinds of substrates, such as glass and Si, by introducing (100)-oriented MgO buffer layers. In addition, the (001) oriented PZT thin films could be obtained on Si substrates without buffer layers by optimizing the sputtering conditions. All of these thin films showed excellent piezoelectric properties without the need for poling treatment. The PZT thin films on the MgO substrates had a high piezoelectric coefficient, d(31), of -100 pm/V, and an extremely low relative dielectric constant, epsilon(r), of 240. The PZT thin films on Si substrate had a very high d(31) of -150 pm/V and an epsilon(r) = 700. These PZT thin films were applied to an angular rate sensor with a tuning fork in a car navigation system, to a dual-stage actuator for positioning the magnetic head of a high-density hard disk drive, and to an actuator for an inkjet printer head for industrial on-demand printers.

  20. New photocathode using ZnSe substrates with GaAs active layer

    NASA Astrophysics Data System (ADS)

    Jin, Xiuguang; Takeda, Yoshikazu; Fuchi, Shingo

    2017-03-01

    GaAs active layers were successfully fabricated on ZnSe substrates using a metalorganic vapor phase epitaxy system. As a photocathode, a GaAs active layer shows a high quantum efficiency (QE) of 9% at 532 nm laser light illumination, which is comparable to a QE of 11% from GaAs bulk. In addition, a photoemission current of 10 µA was obtained from this photocathode. One more important point is that this photocathode could realize back-side illumination of 532 nm laser light, and thus its widespread applications are expected in microscopy and accelerator fields.

  1. Investigation of ZnSe-coated silicon substrates for GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Huber, Daniel A.; Olsen, Larry C.; Dunham, Glen; Addis, F. William

    1993-01-01

    Studies are being carried out to determine the feasibility of using ZnSe as a buffer layer for GaAs solar cells grown on silicon. This study was motivated by reports in the literature indicating ZnSe films had been grown by metallorganic chemical vapor deposition (MOCVD) onto silicon with EPD values of 2 x 10(exp 5) cm(sup -2), even though the lattice mismatch between silicon and ZnSe is 4.16 percent. These results combined with the fact that ZnSe and GaAs are lattice matched to within 0.24 percent suggest that the prospects for growing high efficiency GaAs solar cells onto ZnSe-coated silicon are very good. Work to date has emphasized development of procedures for MOCVD growth of (100) ZnSe onto (100) silicon wafers, and subsequent growth of GaAs films on ZnSe/Si substrates. In order to grow high quality single crystal GaAs with a (100) orientation, which is desirable for solar cells, one must grow single crystal (100) ZnSe onto silicon substrates. A process for growth of (100) ZnSe was developed involving a two-step growth procedure at 450 C. Single crystal, (100) GaAs films were grown onto the (100) ZnSe/Si substrates at 610 C that are adherent and specular. Minority carrier diffusion lengths for the GaAs films grown on ZnSe/Si substrates were determined from photoresponse properties of Al/GaAs Schottky barriers. Diffusion lengths for n-type GaAs films are currently on the order of 0.3 microns compared to 2.0 microns for films grown simultaneously by homoepitaxy.

  2. Improvement in GaAs Device Yield and Performance through Substrate Defect Gettering

    DTIC Science & Technology

    1980-06-01

    defects will be retained at tempera- tures aproaching those normally encountered in routine device fabrication or processing procedures. Therefore, we...insulating GaAs wafers or direct ion implantation and annealing of bulk insulating substrates. The latter method would appear to be straight forward process...capsulated Czochralski (LEC) growth methods to reduce the residual donor level and, thereby, produce semi-insulating GaAs without the intentional addition

  3. Influence of substrate orientation on the structural quality of GaAs nanowires in molecular beam epitaxy.

    PubMed

    Zhang, Zhi; Shi, Sui-Xing; Chen, Ping-Ping; Lu, Wei; Zou, Jin

    2015-01-26

    In this study, the effect of substrate orientation on the structural quality of Au-catalyzed epitaxial GaAs nanowires grown by a molecular beam epitaxy reactor has been investigated. It was found that the substrate orientations can be used to manipulate the nanowire catalyst composition and the catalyst surface energy and, therefore, to alter the structural quality of GaAs nanowires grown on different substrates. Defect-free wurtzite-structured GaAs nanowires grown on the GaAs (110) substrate have been achieved under our growth conditions.

  4. Martensite transformations in Mn2NiGa thin films grown on GaAs substrates

    NASA Astrophysics Data System (ADS)

    Schaefer, D. M.; Neckel, I. T.; Mazzaro, I.; Graff, I. L.; Varalda, J.; Schreiner, W. H.; Mosca, D. H.

    2016-11-01

    The purpose of this work is to investigate the correlation between magnetism and crystallographic structures of Mn2NiGa thin films grown by molecular beam epitaxy on GaAs(1 1 1) and GaAs(0 0 1) surfaces. The films present themselves with thermoelastic martensitic transformations upon cooling, and heating with high-temperature leads to austenite structures exhibiting a preferable (1 1 0) texture. X-ray diffraction measurements performed as a function of temperature reveal three different types of domain variants in the films within a large interval of temperatures. The austenite structures with lattice parameters ranging from 0.574 nm to 0.601 nm undergo volume conserving structural transitions to martensite with a c/a ratio of 1.2. The coexistence of variants with different domain configurations is induced on each GaAs substrate. Although the Curie temperatures (~360 K) are similar for films grown on GaAs(1 1 1) and GaAs (0 0 1) substrates, their saturation magnetizations are respectively 18 kA m-1 and 8 kA m-1 at room temperature and exhibit quite different magnetic irreversibility behaviors. Our results indicate that a multiplicity of possible equivalent variant domains on the GaAs surfaces makes it difficult to stabilize epitaxial films on these substrates.

  5. Graphitized carbon on GaAs(100) substrates

    SciTech Connect

    Simon, J.; Simmonds, P. J.; Lee, M. L.; Woodall, J. M.

    2011-02-14

    We report on the formation of graphitized carbon on GaAs(100) surfaces by molecular beam epitaxy. We grew highly carbon-doped GaAs on AlAs, which was then thermally etched in situ leaving behind carbon atoms on the surface. After thermal etching, Raman spectra revealed characteristic phonon modes for sp{sup 2}-bonded carbon, consistent with the formation of graphitic crystallites. We estimate that the graphitic crystallites are 1.5-3 nm in size and demonstrate that crystallite domain size can be increased through the use of higher etch temperatures.

  6. Highly efficient single-junction GaAs thin-film solar cell on flexible substrate

    NASA Astrophysics Data System (ADS)

    Moon, Sunghyun; Kim, Kangho; Kim, Youngjo; Heo, Junseok; Lee, Jaejin

    2016-07-01

    There has been much interest in developing a thin-film solar cell because it is lightweight and flexible. The GaAs thin-film solar cell is a top contender in the thin-film solar cell market in that it has a high power conversion efficiency (PCE) compared to that of other thin-film solar cells. There are two common structures for the GaAs solar cell: n (emitter)-on-p (base) and p-on-n. The former performs better due to its high collection efficiency because the electron diffusion length of the p-type base region is much longer than the hole diffusion length of the n-type base region. However, it has been limited to fabricate highly efficient n-on-p single-junction GaAs thin film solar cell on a flexible substrate due to technical obstacles. We investigated a simple and fast epitaxial lift-off (ELO) method that uses a stress originating from a Cr/Au bilayer on a 125-μm-thick flexible substrate. A metal combination of AuBe/Pt/Au is employed as a new p-type ohmic contact with which an n-on-p single-junction GaAs thin-film solar cell on flexible substrate was successfully fabricated. The PCE of the fabricated single-junction GaAs thin-film solar cells reached 22.08% under air mass 1.5 global illumination.

  7. Highly efficient single-junction GaAs thin-film solar cell on flexible substrate

    PubMed Central

    Moon, Sunghyun; Kim, Kangho; Kim, Youngjo; Heo, Junseok; Lee, Jaejin

    2016-01-01

    There has been much interest in developing a thin-film solar cell because it is lightweight and flexible. The GaAs thin-film solar cell is a top contender in the thin-film solar cell market in that it has a high power conversion efficiency (PCE) compared to that of other thin-film solar cells. There are two common structures for the GaAs solar cell: n (emitter)-on-p (base) and p-on-n. The former performs better due to its high collection efficiency because the electron diffusion length of the p-type base region is much longer than the hole diffusion length of the n-type base region. However, it has been limited to fabricate highly efficient n-on-p single-junction GaAs thin film solar cell on a flexible substrate due to technical obstacles. We investigated a simple and fast epitaxial lift-off (ELO) method that uses a stress originating from a Cr/Au bilayer on a 125-μm-thick flexible substrate. A metal combination of AuBe/Pt/Au is employed as a new p-type ohmic contact with which an n-on-p single-junction GaAs thin-film solar cell on flexible substrate was successfully fabricated. The PCE of the fabricated single-junction GaAs thin-film solar cells reached 22.08% under air mass 1.5 global illumination. PMID:27435899

  8. Highly efficient single-junction GaAs thin-film solar cell on flexible substrate.

    PubMed

    Moon, Sunghyun; Kim, Kangho; Kim, Youngjo; Heo, Junseok; Lee, Jaejin

    2016-07-20

    There has been much interest in developing a thin-film solar cell because it is lightweight and flexible. The GaAs thin-film solar cell is a top contender in the thin-film solar cell market in that it has a high power conversion efficiency (PCE) compared to that of other thin-film solar cells. There are two common structures for the GaAs solar cell: n (emitter)-on-p (base) and p-on-n. The former performs better due to its high collection efficiency because the electron diffusion length of the p-type base region is much longer than the hole diffusion length of the n-type base region. However, it has been limited to fabricate highly efficient n-on-p single-junction GaAs thin film solar cell on a flexible substrate due to technical obstacles. We investigated a simple and fast epitaxial lift-off (ELO) method that uses a stress originating from a Cr/Au bilayer on a 125-μm-thick flexible substrate. A metal combination of AuBe/Pt/Au is employed as a new p-type ohmic contact with which an n-on-p single-junction GaAs thin-film solar cell on flexible substrate was successfully fabricated. The PCE of the fabricated single-junction GaAs thin-film solar cells reached 22.08% under air mass 1.5 global illumination.

  9. Structural, magnetic, and superconducting properties of pulsed-laser-deposition-grown La1.85 Sr0.15 CuO4 / La2/3 Ca1/3 MnO3 superlattices on (001)-oriented LaSrAlO4 substrates

    DOE PAGES

    Das, S.; Sen, K.; Marozau, I.; ...

    2014-03-12

    Epimore » taxial La1.85 Sr0.15 CuO4 / La2/3 Ca1/3 MnO3 (LSCO/LCMO) superlattices (SL) on (001)- oriented LaSrAlO4 substrates have been grown with pulsed laser deposition (PLD) technique. Their structural, magnetic and superconducting properties have been determined with in-situ reflection high energy electron diffraction (RHEED), x-ray diffraction, specular neutron reflectometry, scanning transmission electron microscopy (STEM), electric transport, and magnetization measurements. We find that despite the large mismatch between the in-plane lattice parameters of LSCO (a = 0.3779 nm) and LCMO (a = 0.387 nm) these superlattices can be grown epitaxially and with a high crystalline quality. While the first LSCO layer remains clamped to the LSAO substrate, a sizeable strain relaxation occurs already in the first LCMO layer. The following LSCO and LCMO layers adopt a nearly balanced state in which the tensile and compressive strain effects yield alternating in-plane lattice parameters with an almost constant average value. No major defects are observed in the LSCO layers, while a significant number of vertical antiphase boundaries are found in the LCMO layers. The LSCO layers remain superconducting with a relatively high superconducting onset temperature of Tconset ≈ 36 K. The macroscopic superconducting response is also evident in the magnetization data due to a weak diamagnetic signal below 10 K for H ∥ ab and a sizeable paramagnetic shift for H ∥ c that can be explained in terms of a vortex-pinning-induced flux compression. The LCMO layers maintain a strongly ferromagnetic state with a Curie temperature of TCurie ≈ 190 K and a large low-temperature saturation moment of about 3.5 (1) μB. These results suggest that the LSCO/LCMO superlattices can be used to study the interaction between the antagonistic ferromagnetic and superconducting orders and, in combination with previous studies on YBCO/LCMO superlattices, may allow one to identify the relevant

  10. Structural, magnetic, and superconducting properties of pulsed-laser-deposition-grown La1.85Sr0.15CuO4/La2/3Ca1/3MnO3 superlattices on (001)-oriented LaSrAlO4 substrates

    NASA Astrophysics Data System (ADS)

    Das, S.; Sen, K.; Marozau, I.; Uribe-Laverde, M. A.; Biskup, N.; Varela, M.; Khaydukov, Y.; Soltwedel, O.; Keller, T.; Döbeli, M.; Schneider, C. W.; Bernhard, C.

    2014-03-01

    Epitaxial La1.85Sr0.15CuO4/La2/3Ca1/3MnO3 (LSCO/LCMO) superlattices on (001)-oriented LaSrAlO4 substrates have been grown with pulsed laser deposition technique. Their structural, magnetic, and superconducting properties have been determined with in situ reflection high-energy electron diffraction, x-ray diffraction, specular neutron reflectometry, scanning transmission electron microscopy, electric transport, and magnetization measurements. We find that despite the large mismatch between the in-plane lattice parameters of LSCO (a =0.3779 nm) and LCMO (a =0.387 nm) these superlattices can be grown epitaxially and with a high crystalline quality. While the first LSCO layer remains clamped to the LaSrAlO4 substrate, a sizable strain relaxation occurs already in the first LCMO layer. The following LSCO and LCMO layers adopt a nearly balanced state in which the tensile and compressive strain effects yield alternating in-plane lattice parameters with an almost constant average value. No major defects are observed in the LSCO layers, while a significant number of vertical antiphase boundaries are found in the LCMO layers. The LSCO layers remain superconducting with a relatively high superconducting onset temperature of Tconset≈36 K. The macroscopic superconducting response is also evident in the magnetization data due to a weak diamagnetic signal below 10 K for H ∥ ab and a sizable paramagnetic shift for H ∥ c that can be explained in terms of a vortex-pinning-induced flux compression. The LCMO layers maintain a strongly ferromagnetic state with a Curie temperature of TCurie≈190 K and a large low-temperature saturation moment of about 3.5(1) μB per Mn ion. These results suggest that the LSCO/LCMO superlattices can be used to study the interaction between the antagonistic ferromagnetic and superconducting orders and, in combination with previous studies on YBa2Cu3O7-x/La2/3Ca1/3MnO3 superlattices, may allow one to identify the relevant mechanisms.

  11. ZnTe nanowires grown catalytically on GaAs (001) substrates by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Janik, E.; Sadowski, J.; DłuŻewski, P.; Kret, S.; Presz, A.; Baczewski, L. T.; Łusakowska, E.; Wróbel, J.; Karczewski, G.; Wojtowicz, T.

    2007-04-01

    We report on the first successful growth of ZnTe nanowires and on their basic structural properties. The nanowires were produced by molecular beam epitaxy (MBE) with the use of mechanism of catalytically enhanced growth. A thin layer of gold layer (3 to 20 Å thick) annealed in high vacuum prior to the nanowires growth was used as a source of catalytic nanoparticles. Annealing of GaAs substrate with gold layer, performed prior to the MBE growth, leads to formation of Au-Ga eutectic droplets. The presence of Au-Ga droplets on GaAs substrate surface induce the ZnTe nanowire growth via vapor-liquid-solid mechanism, in growth conditions differing form those used in the molecular beam epitaxial growth of ZnTe layers only in the substrate temperature.

  12. Integrated, Flexible, High-efficiency Solar Cells: Epitaxial Lift-Off GaAs Solar Cells and Enabling Substrate Reuse

    DTIC Science & Technology

    2012-08-01

    Solar   Cells :     Epitaxial  Li>-­‐Off   GaAs   Solar   Cells   and  Enabling...Flexible, High-efficiency Solar Cells : Epitaxial Lift-Off GaAs Solar Cells and Enabling Substrate Reuse 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c...n+- GaAs contact, 0.2 µm n-InGaAlP window, 25 nm p-InGaP BSF, 75 nm n- GaAs emitter, 0.15 µm MBE  Growth  of  Epi-­‐layers Solar

  13. Outdiffusion of recombination centers from the substrate into LPE layers - GaAs

    NASA Technical Reports Server (NTRS)

    Jastrzebski, L.; Lagowski, J.; Gatos, H. C.

    1979-01-01

    Experimental results are presented showing that outdiffusion of recombination centers from the GaAs substrate into the epitaxial layer takes place during growth. Such outdiffusion decreases the carrier lifetime in the epitaxial layer to much lower values than the radiative recombination limit. Furthermore, it introduces a lifetime gradient across the epitaxial layer which depends critically on the growth velocity and thermal treatment. High rates of growth (such as those attainable in electroepitaxy) and high cooling rates can minimize the adverse effects of normally available substrates on the epitaxial layers; however, good quality substrates are essential for the consistent growth of device quality layers.

  14. High quality GaAs single photon emitters on Si substrate

    SciTech Connect

    Bietti, S.; Sanguinetti, S.; Cavigli, L.; Accanto, N.; Vinattieri, A.; Minari, S.; Abbarchi, M.; Isella, G.; Frigeri, C.

    2013-12-04

    We describe a method for the direct epitaxial growth of a single photon emitter, based on GaAs quantum dots fabricated by droplet epitaxy, working at liquid nitrogen temperatures on Si substrates. The achievement of quantum photon statistics up to T=80 K is directly proved by antibunching in the second order correlation function as measured with a H anbury Brown and Twiss interferometer.

  15. Contact properties to CVD-graphene on GaAs substrates for optoelectronic applications.

    PubMed

    Babichev, A V; Gasumyants, V E; Egorov, A Yu; Vitusevich, S; Tchernycheva, M

    2014-08-22

    The optimization of contacts between graphene and metals is important for many optoelectronic applications. In this work, we evaluate the contact resistance and sheet resistance of monolayer and few-layered graphene with different metallizations using the transfer length method (TLM). Graphene was obtained by the chemical vapor deposition technique (CVD-graphene) and transferred onto GaAs and Si/SiO₂ substrates. To account for the quality of large-area contacts used in a number of practical applications, a millimeter-wide TLM pattern was used for transport measurements. Different metals--namely, Ag, Pt, Cr, Au, Ni, and Ti--have been tested. The minimal contact resistance Rc obtained in this work is 11.3 kΩ μm for monolayer CVD-graphene, and 6.3 kΩ μm for a few-layered graphene. Annealing allows us to decrease the contact resistance Rc and achieve 1.7 kΩm μm for few-layered graphene on GaAs substrate with Au contacts. The minimal sheet resistance Rsh of few-layered graphene transferred to GaAs and Si/SiO₂ substrates are 0.28 kΩ/□ and 0.27 kΩ/□. The Rsh value of monolayer graphene on the GaAs substrate is 8 times higher (2.3 kΩ/□), but it reduces for the monolayer graphene on Si/SiO₂ (1.4 kΩ/□). For distances between the contacts below 5 μm, a considerable reduction in the resistance per unit length was observed, which is explained by the changes in doping level caused by graphene suspension at small distances between contact pads.

  16. Static atomic displacements in a CdTe epitaxial layer on a GaAs substrate

    NASA Astrophysics Data System (ADS)

    Horning, R. D.; Staudenmann, J.-L.

    1987-05-01

    A (001)CdTe epitaxial layer on a (001)GaAs substrate was studied by x-ray diffraction between 10 and 360 K. The CdTe growth took place at 380 °C in a vertical gas flow metalorganic chemical vapor deposition reactor. Lattice parameters and integrated intensities of both the substrate and the epitaxial layer using the (00l) and (hhh) Bragg reflections reveal three important features. Firstly, the GaAs substrate does not exhibit severe strain after deposition and it is as perfect as a bulk GaAs. Secondly, the CdTe unit cell distorts tetragonally with a⊥>a∥ below 300 K. The decay of the (00l) reflection intensities as a function of the temperature yields a Debye temperature of 142 K, the same value as for bulk CdTe. Thirdly, a temperature-dependent isotropic static displacement of the Cd and the Te atoms is introduced to account for the anomalous behavior of the (hhh) intensities.

  17. Static atomic displacements in a CdTe epitaxial layer on a GaAs substrate

    SciTech Connect

    Horning, R.D.; Staudenmann, J.

    1987-05-25

    A (001)CdTe epitaxial layer on a (001)GaAs substrate was studied by x-ray diffraction between 10 and 360 K. The CdTe growth took place at 380 /sup 0/C in a vertical gas flow metalorganic chemical vapor deposition reactor. Lattice parameters and integrated intensities of both the substrate and the epitaxial layer using the (00l) and (hhh) Bragg reflections reveal three important features. Firstly, the GaAs substrate does not exhibit severe strain after deposition and it is as perfect as a bulk GaAs. Secondly, the CdTe unit cell distorts tetragonally with a/sub perpendicular/>a/sub parallel/ below 300 K. The decay of the (00l) reflection intensities as a function of the temperature yields a Debye temperature of 142 K, the same value as for bulk CdTe. Thirdly, a temperature-dependent isotropic static displacement of the Cd and the Te atoms is introduced to account for the anomalous behavior of the (hhh) intensities.

  18. Monolithic integration of optical grade GaAs on Si (001) substrates deeply patterned at a micron scale

    SciTech Connect

    Bietti, Sergio; Scaccabarozzi, Andrea; Bonera, Emiliano; Miglio, Leo; Sanguinetti, Stefano; Frigeri, Cesare; Falub, Claudiu V.; Känel, Hans von

    2013-12-23

    Dense arrays of micrometric crystals, with areal filling up to 93%, are obtained by depositing GaAs in a mask-less molecular beam epitaxy process onto Si substrates. The substrates are patterned into tall, micron sized pillars. Faceted high aspect ratio GaAs crystals are achieved by tuning the Ga adatom for short surface diffusion lengths. The crystals exhibit bulk-like optical quality due to defect termination at the sidewalls. Simultaneously, the thermal strain induced by different thermal expansion parameters of GaAs and Si is fully relieved. This opens the route to thick film applications without crack formation and wafer bowing.

  19. Influence of arsenic flow on the crystal structure of epitaxial GaAs grown at low temperatures on GaAs (100) and (111) A substrates

    NASA Astrophysics Data System (ADS)

    Galiev, G. B.; Klimov, E. A.; Vasiliev, A. L.; Imamov, R. M.; Pushkarev, S. S.; Trunkin, I. N.; Maltsev, P. P.

    2017-01-01

    The influence of arsenic flow in a growth chamber on the crystal structure of GaAs grown by molecular-beam epitaxy at a temperature of 240°C on GaAs (100) and (111) A substrates has been investigated. The flow ratio γ of arsenic As4 and gallium was varied in the range from 16 to 50. GaAs films were either undoped, or homogeneously doped with silicon, or contained three equidistantly spaced silicon δ-layers. The structural quality of the annealed samples has been investigated by transmission electron microscopy. It is established for the first time that silicon δ-layers in "low-temperature" GaAs serve as formation centers of arsenic precipitates. Their average size, concentration, and spatial distribution are estimated. The dependence of the film structural quality on γ is analyzed. Regions 100-150 nm in size have been revealed in some samples and identified (by X-ray microanalysis) as pores. It is found that, in the entire range of γ under consideration, GaAs films on (111) A substrates have a poorer structural quality and become polycrystalline beginning with a thickness of 150-200 nm.

  20. Reflection Properties of Metallic Gratings on ZnO Films over GaAs Substrates

    NASA Technical Reports Server (NTRS)

    Hickernell, Fred S.; Kim, Yoonkee; Hunt, William D.

    1994-01-01

    A potential application for piezoelectric film deposited on GaAs substrates is the monolithic integration of surface acoustic wave (SAW) devices with GaAs electronics. Metallic gratings are basic elements required for the construction of such devices, and analyzing the reflectivity and the velocity change due to metallic gratings is often a critical design parameter. In this article, Datta and Hunsinger technique is extended to the case of a multilayered structure, and the developed technique is applied to analyze shorted and open gratings on ZnO films sputtered over (001)-cut (110)-propagating GaAs substrates. The analysis shows that zero reflectivity of shorted gratings can be obtained by a combination of the ZnO film and the metal thickness and the metalization ratio of the grating. Experiments are performed on shorted and an open gratings (with the center frequency of about 180 MHz) for three different metal thicknesses over ZnO films which are 0.8 and 2.6 micrometers thick. From the experiments, zero reflectivity at the resonant frequency of the grating is observed for a reasonable thickness (h/Alpha = 0.5%) of aluminum metalization. The velocity shift between the shorted and the open grating is also measured to be 0.18 MHz and 0.25 MHz for 0.8 and 1.6 micrometers respectively. The measured data show relatively good agreement with theoretical predictions.

  1. A new MOVPE reactor for heteroepitaxial GaAs deposition on large-scale Ge substrates

    NASA Astrophysics Data System (ADS)

    Pelosi, C.; Attolini, G.; Bosi, M.; Moscatelli, D.; Veneroni, A.; Masi, M.

    2006-01-01

    Feasibility of manufacturing a new metalorganic vapor phase epitaxy (MOVPE) reactor for heteroepitaxial GaAs deposition on large-scale Ge substrates for the production of satellite-use solar cells was investigated. The overall deposition mechanism for GaAs growth from trimethylgallium (TMG) and AsH 3 was fully checked and revised through quantum chemistry calculations. Then, the resulting chemical kinetic scheme was used to perform 2D and 3D simulations of the reactor chamber, predicting the GaAs growth rate profile over the whole substrate. Several simulations were performed to optimize reactor shape and geometry to enlarge the so-called "flat area". The chosen reactor geometry, with the goal of avoiding the formation of parasitic flows and back-mixings, was that of a cold wall horizontal reactor, with rotating susceptor and round-shaped outer walls, and with a single jet gas inlet apparatus. The reactor was assembled at IMEM-CNR laboratory (Parma, Italy): it is completely home made and responds to the requirement of a research and development (R and D) process in a research institute, since it is less expensive than commercially available MOVPE reactors; it is modular and expandable as new reagents lines will become necessary for the growth of III-V arsenides and phosphides; it uses a custom made control software developed on a programmable logic computer (PLC). Moreover, it integrates some new technology such as digital-controlled mass flow controllers and pressure controller and a low-consume vent line with a retroactive pressure control. Some tests were made and GaAs on Ge was successfully deposited.

  2. Patterning of GaAs and Si substrates using self-organized Al2O3 templates and epitaxial growth of GaAs nanostructures

    NASA Astrophysics Data System (ADS)

    Kumari, Archana; Hatch, John; Kwon, Jaesuk; Zhang, Xin; Fraser, Everett; Kim, Chae Hyun; Zeng, Hao; Luo, Hong

    2013-03-01

    Reactive ion etching is used with Al2O3 templates to pattern SiO2 films deposited on GaAs and Si substrates. The technique allows nanopatterning of substrates without photo or e-beam lithography. The SiO2 film pattern consists of holes of about 80 nm diameter with a pitch of about 100 nm. GaAs nanostructures are grown on the patterned substrates by molecular beam epitaxy. The observed arrays of nanostructures closely follow the patterns on SiO2. Several types of structures are observed depending on the growth conditions, including pillars with flat hexagonal tops and pyramidal triangular tops. Characterization of the structures will be discussed. This work was supported by NSF DMR1006286. Intelligent Epitaxy Technology, Inc., 1250 E. Collins Blvd., Richardson, TX 75081, USA

  3. Origin and reduction of impurities at GaAs epitaxial layer-substrate interfaces

    NASA Astrophysics Data System (ADS)

    Kanber, H.; Yang, H. T.; Zielinski, T.; Whelan, J. M.

    1988-09-01

    Surface cleaning techniques used for semi-insulating GaAs substrates prior to epitaxial growth can have an important and sometimes detrimental effect on the quality and characteristics of epitaxial layers that are grown on them. We observe that a HF rinse followed by a 5:1:1 H 2SO 4:H 2O 2:H 2O etch and H 2O rinse drastically reduced the maximum concentrations and total amount of both SIMS detected S and Si for MOCVD grown GaAs undoped epitaxial layers. Subsequent final HCl and H 2O reduced the S interfacial residues to the SIMS detection limit. Total amounts of residual Si are estimated to be equivalent to 10 -2 to 10 -3 monolayers. Residual S is less. Alternately the S residue can be comparable reduced by a HF rinse followed by a NH 4OH:H 2O 2:H 2O etch and H 2O rinse. Hot aqueous HCl removes S but not Si residues. The Si residue is not electrically active and most likely exists as islands of SiO 2. The relative significance of the impurity residues is most pronounced for halide VPE, smaller for MBE and least for MOCVD grown GaAs epitaxial layers.

  4. Nanoscale spatial phase modulation of GaAs growth in V-grooved trenches on Si (001) substrate

    NASA Astrophysics Data System (ADS)

    Li, Shi-Yan; Zhou, Xu-Liang; Kong, Xiang-Ting; Li, Meng-Ke; Mi, Jun-Ping; Wang, Meng-Qi; Pan, Jiao-Qing

    2016-12-01

    This letter reports the nanoscale spatial phase modulation of GaAs growth in V-grooved trenches fabricated on a Si (001) substrate by metal-organic vapor-phase epitaxy. Two hexagonal GaAs regions with high density of stacking faults parallel to Si {111} surfaces are observed. A strain-relieved and defect-free cubic phase GaAs was achieved above these highly defective regions. High-resolution transmission electron microscopy and fast Fourier transforms analysis were performed to characterize these regions of GaAs/Si interface. We also discussed the strain relaxation mechanism and phase structure modulation of GaAs selectively grown on this artificially manipulated surface. Project supported by the National Science and Technology Major Project of Science and Technology of China (Grant No. 2011ZX02708) and the National Natural Science Foundation of China (Grant No. 61504137).

  5. Surface kinetics study of metal-organic vapor phase epitaxy of GaAs1-yBiy on offcut and mesa-patterned GaAs substrates

    NASA Astrophysics Data System (ADS)

    Guan, Yingxin; Forghani, Kamran; Kim, Honghyuk; Babcock, Susan E.; Mawst, Luke J.; Kuech, Thomas F.

    2017-04-01

    The influence of the surface step termination on the metal-organic vapor phase epitaxy of GaAs1-yBiy was explored by examining the epitaxial layer growth rate, composition, and morphology characteristics on the offcut and mesa-patterned (001) GaAs substrates. Vicinal surfaces offcut to (111)B with a high density of As-terminated steps ('B-steps') increased the GaAs1-yBiy layer growth rate as well as possessed the fastest lateral growth rate on mesa-patterned substrates at a growth temperature of 420 °C, indicating that B-steps enhanced the Ga incorporation. With Bi accumulation on the surface, the Ga incorporation rate was reduced by the Bi preferential presence at B-steps blocking the Ga incorporation. Vicinal surfaces offcut to (111)A, which generated Ga-terminated steps ('A-steps') enhanced the Bi incorporation rate during growth at 380 °C. This work reveals that the surface step termination plays an important role in the growth of the metastable alloy. Appropriate choices of both the substrate surface-step structure and other growth parameters could lead to an enhanced Bi incorporation.

  6. Tailoring broadband light trapping of GaAs and Si substrates by self-organised nanopatterning

    SciTech Connect

    Martella, C.; Chiappe, D.; Mennucci, C.; Buatier de Mongeot, F.

    2014-05-21

    We report on the formation of high aspect ratio anisotropic nanopatterns on crystalline GaAs (100) and Si (100) substrates exploiting defocused Ion Beam Sputtering assisted by a sacrificial self-organised Au stencil mask. The tailored optical properties of the substrates are characterised in terms of total reflectivity and haze by means of integrating sphere measurements as a function of the morphological modification at increasing ion fluence. Refractive index grading from sub-wavelength surface features induces polarisation dependent anti-reflection behaviour in the visible-near infrared (VIS-NIR) range, while light scattering at off-specular angles from larger structures leads to very high values of the haze functions in reflection. The results, obtained for an important class of technologically relevant materials, are appealing in view of photovoltaic and photonic applications aiming at photon harvesting in ultrathin crystalline solar cells.

  7. Threading dislocations in GaAs epitaxial layers on various thickness Ge buffers on 300 mm Si substrates

    NASA Astrophysics Data System (ADS)

    Bogumilowicz, Y.; Hartmann, J. M.; Rochat, N.; Salaun, A.; Martin, M.; Bassani, F.; Baron, T.; David, S.; Bao, X.-Y.; Sanchez, E.

    2016-11-01

    We have grown GaAs epitaxial layers on Ge buffers, themselves on Si (001) substrates, using an Applied Materials 300 mm metal organic chemical vapor deposition tool. We varied the Ge buffer thickness between 0.36 and 1.38 μm and studied the properties of a 0.27 μm thick GaAs layer on top. We found that increasing the Ge buffer thickness yielded smoother GaAs films with an rms surface roughness as low as 0.5 nm obtained on a 5×5 μm2 area. The bow of the substrate increased following a linear law with the epitaxial stack thickness up to 240 μm for a 1.65 μm stack. We have also characterized the threading dislocations present in the GaAs layers using X-ray diffraction and cathodoluminescence. Increasing the Ge buffer thickness resulted in lower threading dislocation densities, enabling us to obtain anti-phase boundary - free GaAs films with a threading dislocation density as low as 3×107 cm-2. In addition, atomic force microscopy surface topology measurements showed the presence of pits in the GaAs layers whose density agreed well with other threading dislocation density assessments. It thus seems that threading dislocations can in certain cases induce some growth rate variations, making them visible in as-grown GaAs films. Using thicker Ge buffers results in smoother films with less threading dislocations, with the side effect of increasing the bow on the wafer. If bow is not an issue, this is a practical approach to improve the GaAs (on Ge buffer) on silicon quality.

  8. Optical anisotropy in self-assembled InAs nanostructures grown on GaAs high index substrate

    PubMed Central

    Bennour, M.; Saidi, F.; Bouzaïene, L.; Sfaxi, L.; Maaref, H.

    2012-01-01

    We present a study of the optical properties of InAs self-assembled nanostructures grown by molecular beam epitaxy on GaAs(11N)A substrates (N = 3–5). Photoluminescence (PL) measurements revealed good optical properties of InAs quantum dots (QDs) grown on GaAs(115)A compared to those grown on GaAs(113)A and (114)A orientations substrate. An additional peak localized at 1.39 eV has been shown on PL spectra of both GaAs(114)A and (113)A samples. This peak persists even at lower power density. Supporting on the polarized photoluminescence characterization, we have attributed this additional peak to the quantum strings (QSTs) emission. A theoretical study based on the resolution of the three dimensional Schrödinger equation, using the finite element method, including strain and piezoelectric-field effect was adopted to distinguish the observed photoluminescence emission peaks. The mechanism of QDs and QSTs formation on such a high index GaAs substrates was explained in terms of piezoelectric driven atoms and the equilibrium surfaces at edges. PMID:22396623

  9. GaAs buffer layer technique for vertical nanowire growth on Si substrate

    SciTech Connect

    Xu, Xiaoqing Parizi, Kokab B.; Huo, Yijie; Kang, Yangsen; Philip Wong, H.-S.; Li, Yang

    2014-02-24

    Gold catalyzed vapor-liquid-solid method is widely applied to III–V nanowire (NW) growth on Si substrate. However, the easy oxidation of Si, possible Si contamination in the NWs, high defect density in the NWs, and high sensitivity of the NW morphology to growth conditions largely limit its controllability. In this work, we developed a buffer layer technique by introducing a GaAs thin film with predefined polarity as a template. It is found that samples grown on these buffer layers all have high vertical NW yields in general, due to the single-orientation of the buffer layers. Low temperature buffer with smoother surface leads to highest yield of vertical NWs, while high temperature (HT) buffer with better crystallinity results in perfect NW quality. The defect-free property we observed here is very promising for optoelectronic device applications based on GaAs NW. Moreover, the buffer layers can eliminate Si contamination by preventing Si-Au alloy formation and by increasing the thickness of the Si diffusion barrier, thus providing more flexibility to vertical NW growth. The buffer layer technique we demonstrated here could be easily extended to other III-V on Si system for electronic and photonic applications.

  10. Simulation of Three-Dimensional Stress in GaAs Microchannel Epitaxy Layer on Si Substrates

    NASA Astrophysics Data System (ADS)

    Naritsuka, Shigeya; Okada, Masahide; Maruyama, Takahiro

    2004-06-01

    The stress in a GaAs vertical microchannel epitaxy (V-MCE) layer on Si was simulated using the finite element method. The stress in the V-MCE layer decreased with increasing distance from the heterointerface. In a thin V-MCE layer, tensile stress was produced by the difference in thermal contraction between GaAs and Si. The stress at the center of the top surface of the V-MCE layer rapidly decreased with increasing thickness of the layer (H). Also, the sign of the stress changed from tensile to compressive when H exceeded a critical value. As H increased further, the stress decreased, thus forming a peak in the compressive stress. The stress generally decreased whit increasing thickness of the V-MCE layer, but the stress canceled when the V-MCE layer reached a critical thickness in which the tensile stress was equal and opposite to the compressive stress from the bowing of the substrate. The simulation also gives the stress distribution in the V-MCE layer, which is very useful for optimizing V-MCE for device fabrication.

  11. Analysis of defects in GaAsN grown by chemical beam epitaxy on high index GaAs substrates

    SciTech Connect

    Bouzazi, Boussairi; Kojima, Nobuaki; Ohshita, Yoshio; Yamaguchi, Masafumi

    2013-09-27

    The lattice defects in GaAsN grown by chemical beam epitaxy on GaAs 311B and GaAs 10A toward [110] were characterized and discussed by using deep level transient spectroscopy (DLTS) and on the basis of temperature dependence of the junction capacitances (C{sub J}). In one hand, GaAsN films grown on GaAs 311B and GaAs 10A showed n-type and p-type conductivities, respectively although the similar and simultaneous growth conditions. This result is indeed in contrast to the common known effect of N concentration on the type of conductivity, since the surface 311B showed a significant improvement in the incorporation of N. Furthermore, the temperature dependence of C{sub J} has shown that GaAs 311B limits the formation of N-H defects. In the other hand, the energy states in the forbidden gap of GaAsN were obtained. Six electron traps, E1 to E6, were observed in the DLTS spectrum of GaAsN grown on GaAs 311B, with apparent activation energies of 0.02, 0.14, 0.16, 0.33, 0.48, and 0.74 eV below the bottom edge of the conduction band, respectively. In addition, four hole traps, H1 to H4, were observed in the DLTS spectrum of GaAsN grown on GaAs 10A, with energy depths of 0.13, 0.20, 0.39, and 0.52 eV above the valence band maximum of the alloy, respectively. Hence, the surface morphology of the GaAs substrate was found to play a key factor role in clarifying the electrical properties of GaAsN grown by CBE.

  12. Growth of single-crystal Al layers on GaAs and Si substrates for microwave superconducting resonators

    NASA Astrophysics Data System (ADS)

    Tournet, J.; Gosselink, D.; Jaikissoon, M.; Miao, G.-X.; Langenberg, D.; Mariantoni, M.; Wasilewski, Zr

    Thin Al layers on dielectrics are essential building blocks of circuits used in the quest for scalable quantum computing systems. While molecular beam epitaxy (MBE) has been shown to produce the highest quality Al layers, further reduction of losses in superconducting resonators fabricated from them is highly desirable. Defects at the Al-substrate interface are likely the key source of losses. Here we report on the optimization of MBE growth of Al layers on GaAs and Si substrates. Si surfaces were prepared by in-situ high temperature substrate annealing. For GaAs, defects typically remaining on the substrate surfaces after oxide desorption were overgrown with GaAs or GaAs/AlAs superlattice buffer layers. Such surface preparation steps were followed by cooling process to below 0°C, precisely controlled to obtain targeted surface reconstructions. Deposition of 110 nm Al layers was done at subzero temperatures and monitored with RHEED at several azimuths simultaneously. The resulting layers were characterized by HRXRD, AFM and Nomarski. Single crystal, near-atomically smooth layers of Al(110) were demonstrated on GaAs(001)-2x4 surface whereas Al(111) of comparable quality was formed on Si(111)-1x1 and 7x7 surfaces.

  13. Growth and characterization of Czochralski-grown n and p-type GaAs for space solar cell substrates

    NASA Technical Reports Server (NTRS)

    Chen, R. T.

    1983-01-01

    Progress in LEC (liquid encapsulated Czochralski) crystal growth techniques for producing high-quality, 3-inch-diameter, n- and p-type GaAs crystals suitable for solar cell applications is described. The LEC crystals with low dislocation densities and background impurities, high electrical mobilities, good dopant uniformity, and long diffusion lengths were reproducibly grown through control of the material synthesis, growth and doping conditions. The capability for producing these large-area, high-quality substrates should positively impact the manufacturability of highly efficiency, low cost, radiation-hard GaAs solar cells.

  14. Backgating effect in GaAs FETs with a channel—semi-insulating substrate boundary

    NASA Astrophysics Data System (ADS)

    Chaouki Megherbi, Ahmed; Benramache, Said; Guettaf, Abderrazak

    2014-03-01

    This study focuses on modeling the effects of deep hole traps, mainly the effect of the substrate (backgating effect) in a GaAs transistor MESFT. This effect is explained by the existence, at the interface, of a space charge zone. Any modulation in this area leads to response levels trapping the holes therein to the operating temperature. We subsequently developed a model treating the channel substrate interface as an N—P junction, allowing us to deduce the time dependence of the component parameters of the total resistance Rds, the pinch-off voltage VP, channel resistance, fully open Rco and the parasitic series resistance RS to bind the effect trap holes H1 and H0. When compared with the experimental results, the values of the RDS (tS) model for both traps show that there is an agreement between theory and experiment; it has inferred parameter traps, namely the density and the time constant of the trap. This means that a space charge region exists at the channel—substrate interface and that the properties can be approximated to an N—P junction.

  15. AuAg bimetallic nonalloyed nanoparticles on a periodically nanostructured GaAs substrate for enhancing light trapping.

    PubMed

    Lee, Soo Kyung; Tan, Chee Leong; Ju, Gun Wu; Song, Jae Hong; Yeo, Chan Il; Lee, Yong Tak

    2015-12-15

    We present a light trapping structure consisting of AuAg bimetallic nonalloyed nanoparticles (BNNPs) on cone-shaped GaAs subwavelength structures (SWSs), combining the advantages of plasmonic structures and SWSs for GaAs-based solar cell applications. To obtain efficient light trapping in solar cells, the optical properties' dependence on the size and composition of the Ag and Au metal nanoparticles was systematically investigated. Cone-shaped GaAs SWSs with AuAg BNNPs formed from an Au film of 12 nm and an Ag film of 10 nm exhibited the extremely low average reflectance (R(avg)) of 2.43% and the solar-weighted reflectance (SWR) of 2.38%, compared to that of a bare GaAs substrate (R(avg), 37.50%; SWR, 36.72%) in the wavelength range of 300 to 870 nm.

  16. Piezoelectric surface acoustical phonon amplification in graphene on a GaAs substrate

    SciTech Connect

    Nunes, O. A. C.

    2014-06-21

    We study the interaction of Dirac Fermions in monolayer graphene on a GaAs substrate in an applied electric field by the combined action of the extrinsic potential of piezoelectric surface acoustical phonons of GaAs (piezoelectric acoustical (PA)) and of the intrinsic deformation potential of acoustical phonons in graphene (deformation acoustical (DA)). We find that provided the dc field exceeds a threshold value, emission of piezoelectric (PA) and deformation (DA) acoustical phonons can be obtained in a wide frequency range up to terahertz at low and high temperatures. We found that the phonon amplification rate R{sup PA,DA} scales with T{sub BG}{sup S−1} (S=PA,DA), T{sub BG}{sup S} being the Block−Gru{sup ¨}neisen temperature. In the high-T Block−Gru{sup ¨}neisen regime, extrinsic PA phonon scattering is suppressed by intrinsic DA phonon scattering, where the ratio R{sup PA}/R{sup DA} scales with ≈1/√(n), n being the carrier concentration. We found that only for carrier concentration n≤10{sup 10}cm{sup −2}, R{sup PA}/R{sup DA}>1. In the low-T Block−Gru{sup ¨}neisen regime, and for n=10{sup 10}cm{sup −2}, the ratio R{sup PA}/R{sup DA} scales with T{sub BG}{sup DA}/T{sub BG}{sup PA}≈7.5 and R{sup PA}/R{sup DA}>1. In this regime, PA phonon dominates the electron scattering and R{sup PA}/R{sup DA}<1 otherwise. This study is relevant to the exploration of the acoustic properties of graphene and to the application of graphene as an acoustical phonon amplifier and a frequency-tunable acoustical phonon device.

  17. Lithography-free shell-substrate isolation for core-shell GaAs nanowires.

    PubMed

    Haggren, Tuomas; Perros, Alexander Pyymaki; Jiang, Hua; Huhtio, Teppo; Kakko, Joona-Pekko; Dhaka, Veer; Kauppinen, Esko; Lipsanen, Harri

    2016-07-08

    A facile and scalable lithography-free technique(5) for the rapid construction of GaAs core-shell nanowires incorporating shell isolation from the substrate is reported. The process is based on interrupting NW growth and applying a thin spin-on-glass (SOG) layer to the base of the NWs and resuming core-shell NW growth. NW growth occurred in an atmospheric pressure metalorganic vapour phase epitaxy (MOVPE) system with gold nanoparticles used as catalysts for the vapour-liquid-solid growth. It is shown that NW axial core growth and radial shell growth can be resumed after interruption and even exposure to air. The SOG residues and native oxide layer that forms on the NW surface are shown to prevent or perturb resumption of epitaxial NW growth if not removed. Both HF etching and in situ annealing of the air-exposed NWs in the MOVPE were shown to remove the SOG residues and native oxide layer. While both procedures are shown capable of removing the native oxide and enabling resumption of epitaxial NW growth, in situ annealing produced the best results and allowed construction of pristine core-shell NWs. No growth occurred on SOG and it was observed that axial NW growth was more rapid when a SOG layer covered the substrate. The fabricated p-core/n-shell NWs exhibited diode behaviour upon electrical testing. The isolation of the NW shells from the substrate was confirmed by scanning electron microscopy and electrical measurements. The crystal quality of the regrown core-shell NWs was verified with a high resolution transmission electron microscope. The reported technique potentially provides a pathway using MOVPE for scalable and high-throughput production of shell-substrate isolated core-shell NWs on an industrial scale.

  18. Lithography-free shell-substrate isolation for core-shell GaAs nanowires

    NASA Astrophysics Data System (ADS)

    Haggren, Tuomas; Pyymaki Perros, Alexander; Jiang, Hua; Huhtio, Teppo; Kakko, Joona-Pekko; Dhaka, Veer; Kauppinen, Esko; Lipsanen, Harri

    2016-07-01

    A facile and scalable lithography-free technique5 for the rapid construction of GaAs core-shell nanowires incorporating shell isolation from the substrate is reported. The process is based on interrupting NW growth and applying a thin spin-on-glass (SOG) layer to the base of the NWs and resuming core-shell NW growth. NW growth occurred in an atmospheric pressure metalorganic vapour phase epitaxy (MOVPE) system with gold nanoparticles used as catalysts for the vapour-liquid-solid growth. It is shown that NW axial core growth and radial shell growth can be resumed after interruption and even exposure to air. The SOG residues and native oxide layer that forms on the NW surface are shown to prevent or perturb resumption of epitaxial NW growth if not removed. Both HF etching and in situ annealing of the air-exposed NWs in the MOVPE were shown to remove the SOG residues and native oxide layer. While both procedures are shown capable of removing the native oxide and enabling resumption of epitaxial NW growth, in situ annealing produced the best results and allowed construction of pristine core-shell NWs. No growth occurred on SOG and it was observed that axial NW growth was more rapid when a SOG layer covered the substrate. The fabricated p-core/n-shell NWs exhibited diode behaviour upon electrical testing. The isolation of the NW shells from the substrate was confirmed by scanning electron microscopy and electrical measurements. The crystal quality of the regrown core-shell NWs was verified with a high resolution transmission electron microscope. The reported technique potentially provides a pathway using MOVPE for scalable and high-throughput production of shell-substrate isolated core-shell NWs on an industrial scale.

  19. ZnO Films on {001}-Cut <110>-Propagating GaAs Substrates for Surface Acoustic Wave Device Applications

    NASA Technical Reports Server (NTRS)

    Kim, Yoonkee; Hunt, William D.; Hickernell, Frederick S.; Higgins, Robert J.; Jen, Cheng-Kuei

    1995-01-01

    A potential application for piezoelectric films on GaAs substrates is the monolithic integration of surface acoustic wave (SAW) devices with GaAs electronics. Knowledge of the SAW properties of the layered structure is critical for the optimum and accurate design of such devices. The acoustic properties of ZnO films sputtered on {001}-cut <110> -propagating GaAs substrates are investigated in this article, including SAW Velocity effective piezoelectric coupling constant, propagation loss. diffraction, velocity surface, and reflectivity of shorted and open metallic gratings. The measurements of these essential SAW properties for the frequency range between 180 and 360 MHz have been performed using a knife-edge laser probe for film thicknesses over the range of 1.6-4 micron and with films or different grain sizes. The high quality of dc triode sputtered films was observed as evidenced by high K(exp 2) and low attenuation. The measurements of the velocity surface, which directly affects the SAW diffraction, on the bare and metalized ZnO on SiO2, or Si3N4 on {001}-cut GaAs samples are reported using two different techniques: 1) knife-edge laser probe, 2) line-focus-beam scanning acoustic microscope. It was found that near the <110> propagation direction, the focusing SAW property of the bare GaAs changes into a nonfocusing one for the layered structure, but a reversed phenomenon exists near the <100> direction. Furthermore, to some extent the diffraction of the substrate can be controlled with the film thickness. The reflectivity of shorted and open gratings are also analyzed and measured. Zero reflectivity is observed for a shorted grating. There is good agreement between the measured data and theoretical values.

  20. Croissance epitaxiale de GaAs sur substrats de Ge par epitaxie par faisceaux chimiques

    NASA Astrophysics Data System (ADS)

    Belanger, Simon

    La situation energetique et les enjeux environnementaux auxquels la societe est confrontee entrainent un interet grandissant pour la production d'electricite a partir de l'energie solaire. Parmi les technologies actuellement disponibles, la filiere du photovoltaique a concentrateur solaire (CPV pour concentrator photovoltaics) possede un rendement superieur et mi potentiel interessant a condition que ses couts de production soient competitifs. La methode d'epitaxie par faisceaux chimiques (CBE pour chemical beam epitaxy) possede plusieurs caracteristiques qui la rendent interessante pour la production a grande echelle de cellules photovoltaiques a jonctions multiples a base de semi-conducteurs III-V. Ce type de cellule possede la meilleure efficacite atteinte a ce jour et est utilise sur les satellites et les systemes photovoltaiques a concentrateur solaire (CPV) les plus efficaces. Une des principales forces de la technique CBE se trouve dans son potentiel d'efficacite d'utilisation des materiaux source qui est superieur a celui de la technique d'epitaxie qui est couramment utilisee pour la production a grande echelle de ces cellules. Ce memoire de maitrise presente les travaux effectues dans le but d'evaluer le potentiel de la technique CBE pour realiser la croissance de couches de GaAs sur des substrats de Ge. Cette croissance constitue la premiere etape de fabrication de nombreux modeles de cellules solaires a haute performance decrites plus haut. La realisation de ce projet a necessite le developpement d'un procede de preparation de surface pour les substrats de germanium, la realisation de nombreuses sceances de croissance epitaxiale et la caracterisation des materiaux obtenus par microscopie optique, microscopie a force atomique (AFM), diffraction des rayons-X a haute resolution (HRXRD), microscopie electronique a transmission (TEM), photoluminescence a basse temperature (LTPL) et spectrometrie de masse des ions secondaires (SIMS). Les experiences ont permis

  1. Effect of InGaAs interlayer on the properties of GaAs grown on Si (111) substrate by molecular beam epitaxy

    SciTech Connect

    Wen, Lei; Gao, Fangliang; Li, Jingling; Guan, Yunfang; Wang, Wenliang; Zhou, Shizhong; Lin, Zhiting; Zhang, Xiaona; Zhang, Shuguang E-mail: mssgzhang@scut.edu.cn; Li, Guoqiang E-mail: mssgzhang@scut.edu.cn

    2014-11-21

    High-quality GaAs films have been epitaxially grown on Si (111) substrates by inserting an In{sub x}Ga{sub 1−x}As interlayer with proper In composition by molecular beam epitaxy (MBE). The effect of In{sub x}Ga{sub 1−x}As (0 < x < 0.2) interlayers on the properties of GaAs films grown on Si (111) substrates by MBE has been studied in detailed. Due to the high compressive strain between InGaAs and Si, InGaAs undergoes partial strain relaxation. Unstrained InGaAs has a larger lattice constant than GaAs. Therefore, a thin InGaAs layer with proper In composition may adopt a close lattice constant with that of GaAs, which is beneficial to the growth of high-quality GaAs epilayer on top. It is found that the proper In composition in In{sub x}Ga{sub 1−x}As interlayer of 10% is beneficial to obtaining high-quality GaAs films, which, on the one hand, greatly compensates the misfit stress between GaAs film and Si substrate, and on the other hand, suppresses the formation of multiple twin during the heteroepitaxial growth of GaAs film. However, when the In composition does not reach the proper value (∼10%), the In{sub x}Ga{sub 1−x}As adopts a lower strain relaxation and undergoes a lattice constant smaller than unstrained GaAs, and therefore introduces compressive stress to GaAs grown on top. When In composition exceeds the proper value, the In{sub x}Ga{sub 1−x}As will adopt a higher strain relaxation and undergoes a lattice constant larger than unstrained GaAs, and therefore introduces tensile stress to GaAs grown on top. As a result, In{sub x}Ga{sub 1−x}As interlayers with improper In composition introduces enlarged misfit stress to GaAs epilayers grown on top, and deteriorates the quality of GaAs epilayers. This work demonstrates a simple but effective method to grow high-quality GaAs epilayers and brings up a broad prospect for the application of GaAs-based optoelectronic devices on Si substrates.

  2. Silver as Seed-Particle Material for GaAs Nanowires—Dictating Crystal Phase and Growth Direction by Substrate Orientation

    PubMed Central

    2016-01-01

    Here we investigate the feasibility of silver as seed-particle material to synthesize GaAs nanowires and show that both crystal phase and growth direction can be controlled by choice of substrate orientation. A (111)B substrate orientation can be used to form vertically aligned wurtzite GaAs nanowires and a (100) substrate orientation to form vertically aligned zinc blende GaAs nanowires. A 45–50% yield of vertical nanowire growth is achieved on the (100) substrate orientation without employing any type of surface modification or nucleation strategy to promote a vertical growth direction. In addition, photoluminescence measurements reveal that the photon emission from the silver seeded wurtzite GaAs nanowires is characterized by a single and narrow emission peak at 1.52 eV. PMID:26998550

  3. Molecular beam epitaxial growth of high-quality InSb on InP and GaAs substrates

    NASA Technical Reports Server (NTRS)

    Oh, J. E.; Bhattacharya, P. K.; Chen, Y. C.; Tsukamoto, S.

    1989-01-01

    Epitaxial layers of InSb were grown on InP and GaAs substrates by molecular beam epitaxy. The dependence of the epilayer quality on flux ratio, J sub Sb4/J sub In, was studied. Deviation from an optimum value of J sub Sb4/J sub In (approx. 2) during growth led to deterioration in the surface morphology and the electrical and crystalline qualities of the films. Room temperature electron mobilities as high as 70,000 and 53,000 sq cm /V-s were measured in InSb layers grown on InP and GaAs substrates, respectively. Unlike the previous results, the conductivity in these films is n-type even at T = 13 K, and no degradation of the electron mobility due to the high density of dislocations was observed. The measured electron mobilities (and carrier concentrations) at 77 K in InSb layers grown on InP and GaAs substrates are 110,000 sq cm/V-s (3 x 10(15) cm(-3)) and 55,000 sq cm/V-s (4.95 x 10(15) cm(-3)), respectively, suggesting their application to electronic devices at cryogenic temperatures.

  4. ZnO films on /001/-cut (110)-propagating GaAs substrates for surface acoustic wave device applications

    NASA Technical Reports Server (NTRS)

    Hickernell, Frederick S.; Higgins, Robert J.; Jen, Cheng-Kuei; Kim, Yoonkee; Hunt, William D.

    1995-01-01

    A potential application for piezoelectric films substrates is the monolithic integration of surface acoustic wave (SAW) devices with GaAs electronics. Knowledge of the SAW properties of the layered structure is critical for the optimum and accurate design of such devices. The acoustic properties of ZnO films sputtered on /001/-cut group of (110) zone axes-propagating GaAs substrates are investigated in this article, including SAW velocity, effective piezoelectric coupling constant, propagation loss, diffraction, velocity surface, and reflectivity of shorted and open metallic gratings. The measurements of these essential SAW properties for the frequency range between 180 and 360 MHz have been performed using a knife-edge laser probe for film thicknesses over the range of 1.6-4 micron and with films of different grain sizes. The high quality of dc triode sputtered films was observed as evidenced by high K(sup 2) and low attenuation. The measurements of the velocity surface, which directly affects the SAW diffraction, on the bare and metalized ZnO on SiO2 or Si3N4 on /001/-cut GaAs samples are reported using two different techniques: (1) knife-edge laser probe, (2) line-focus-beam scanning acoustic microscope. It was found that near the group of (110) zone axes propagation direction, the focusing SAW property of the bare GaAs changes into a nonfocusing one for the layered structure, but a reversed phenomenon exists near the (100) direction. Furthermore, to some extent the diffraction of the substrate can be controlled with the film thickness. The reflectivity of shorted and open gratings are also analyzed and measured. Zero reflectivity is observed for a shorted grating. There is good agreement between the measured data and theoretical values.

  5. Acoustic resonator with Al electrodes on an AlN layer and using a GaAs substrate

    DOEpatents

    Kline, Gerald R.; Lakin, Kenneth M.

    1985-12-03

    A method of fabricating an acoustic wave resonator wherein all processing steps are accomplished from a single side of said substrate. The method involves deposition of a multi-layered Al/AlN structure on a GaAs substrate followed by a series of fabrication steps to define a resonator from said composite. The resulting resonator comprises an AlN layer between two Al layers and another layer of AlN on an exterior of one of said Al layers.

  6. Experimental and simulation studies of anti-reflection sub-micron conical structures on a GaAs substrate.

    PubMed

    Lee, Yeeu-Chang; Chang, Che-Chun; Chou, Yen-Yu

    2013-01-14

    In order to reduce surface reflection, anti-reflective (AR) coatings are widely used on the surfaces of solar cells to improve the efficiency of photoelectric conversion. This study employed colloidal lithography with a dry etching process to fabricate sub-micron anti-reflection structures on a GaAs substrate. Etching parameters, such as RF power and etching gas were investigated to determine their influence on surface morphology. We fabricated an array of conical structures 550 nm in diameter and 450 nm in height. The average reflectance of a bare GaAs wafer was reduced from 35.0% to 2.3% across a spectral range of 300 nm - 1200 nm. The anti-reflective performance of SWSs was also calculated using Rigorous Coupled Wave Analysis (RCWA) method. Both simulation and experiment results demonstrate a high degree of similarity.

  7. Optical characterization of GaAs pyramid microstructures formed by molecular beam epitaxial regrowth on pre-patterned substrates

    SciTech Connect

    Pritchard, R. E.; Oulton, R. F.; Stavrinou, P. N.; Parry, G.; Williams, R. S.; Ashwin, M. J.; Neave, J. H.; Jones, T. S.

    2001-07-01

    Arrays of GaAs pyramids with square (001) bases of length 1{endash}5 {mu}m have been fabricated by molecular beam epitaxy regrowth on pre-patterned GaAs (001) substrates. The optical properties of the pyramid faces have been studied by microreflection and microtransmission imaging measurements with light ({lambda}=900{endash}1000nm) incident through the pyramid base. Digitized charge coupled device images indicate that total internal reflection occurs at the {l_brace}110{r_brace} pyramid facets and that their reflectivities are greater than 80%, provided overgrowth of the facets does not occur. These properties suggest that such structures may be suitable as the top mirror in novel micron-scale vertical microcavity devices. {copyright} 2001 American Institute of Physics.

  8. Single-Crystalline Aluminum Nanostructures on a Semiconducting GaAs Substrate for Ultraviolet to Near-Infrared Plasmonics.

    PubMed

    Liu, Hsuan-Wei; Lin, Fan-Cheng; Lin, Shi-Wei; Wu, Jau-Yang; Chou, Bo-Tsun; Lai, Kuang-Jen; Lin, Sheng-Di; Huang, Jer-Shing

    2015-04-28

    Aluminum, as a metallic material for plasmonics, is of great interest because it extends the applications of surface plasmon resonance into the ultraviolet (UV) region and is superior to noble metals in natural abundance, cost, and compatibility with modern semiconductor fabrication processes. Ultrasmooth single-crystalline metallic films are beneficial for the fabrication of high-definition plasmonic nanostructures, especially complex integrated nanocircuits. The absence of surface corrugation and crystal boundaries also guarantees superior optical properties and applications in nanolasers. Here, we present UV to near-infrared plasmonic resonance of single-crystalline aluminum nanoslits and nanoholes. The high-definition nanostructures are fabricated with focused ion-beam milling into an ultrasmooth single-crystalline aluminum film grown on a semiconducting GaAs substrate with a molecular beam epitaxy method. The single-crystalline aluminum film shows improved reflectivity and reduced two-photon photoluminescence (TPPL) due to the ultrasmooth surface. Both linear scattering and nonlinear TPPL are studied in detail. The nanoslit arrays show clear Fano-like resonance, and the nanoholes are found to support both photonic modes and localized surface plasmon resonance. We also found that TPPL generation is more efficient when the excitation polarization is parallel rather than perpendicular to the edge of the aluminum film. Such a counterintuitive phenomenon is attributed to the high refractive index of the GaAs substrate. We show that the polarization of TPPL from aluminum preserves the excitation polarization and is independent of the crystal orientation of the film or substrate. Our study gains insight into the optical property of aluminum nanostructures on a high-index semiconducting GaAs substrate and illustrates a practical route to implement plasmonic devices onto semiconductors for future hybrid nanodevices.

  9. Heteroepitaxy of Layered Compound InSe and InSe/GaSe onto GaAs Substrates

    NASA Astrophysics Data System (ADS)

    Budiman, Maman; Yamada, Akira; Konagai, Makoto

    1998-07-01

    The van der Waals epitaxy of InSe films was performed on (111)GaAs surface at the growth temperature of 350°C. A spiral trigonal structure was observed on the surface of the InSe films. To improve crystal quality of the InSe films, their orientation control was investigated. The growth rate decreased rapidly as the growth temperature increased and no InSe films were obtained at growth temperatures higher than 480°C. At growth temperatures of 450°C and higher, a double-domain structure was observed, probably due to the coexistence of In4Se3 phase in the films. Therefore, the InSe film was directly grown on c-axis inclined GaSe, and it was revealed that InSe films were more easily grown on GaSe than on (001)GaAs surface, due to the same crystal structure. Furthermore, for fabrication of the quantum well structure, heteroepitaxial growth of GaSe/InSe/GaSe films on (001)GaAs substrate was investigated.

  10. Epitaxial Fe3Si films on GaAs(100) substrates by means of electron beam evaporation

    NASA Astrophysics Data System (ADS)

    Thomas, J.; Schumann, J.; Vinzelberg, H.; Arushanov, E.; Engelhard, R.; Schmidt, O. G.; Gemming, T.

    2009-06-01

    This paper presents results on the preparation, structural, electrical and magnetic properties of Fe3Si films as a representative for a Heusler alloy-like compound which are known as half-metallic materials with ferromagnetic behaviour. The films have been prepared by means of ultra-high vacuum (UHV) electron beam evaporation with the aim of achieving epitaxial growth on GaAs(100) substrates. The main focus of this work is the structural characterization of the Fe3Si films grown on GaAs by means of high resolution transmission electron microscopy (TEM) to confirm the epitaxial growth. For Fe3Si with a composition in the vicinity of stoichiometry an almost lattice-matched growth on GaAs(001) has been observed characterized by a high crystalline quality and a good interface perfection. Besides the studies on cross-sectional samples by TEM data from reflection high energy electron diffraction (RHEED) and x-ray diffraction (XRD) were also included into the discussion. The electrical and magnetic parameters of the films studied are found to be in good agreement with data reported for the best Fe3Si molecular beam epitaxy (MBE) layers. As evidenced by x-ray diffraction, transmission electron microscopy, resistivity and magnetic measurements, we find an optimum growth temperature of 280-350 °C to obtain ferromagnetic layers with high crystal and interface perfection as well as a high degree of atomic ordering.

  11. Epitaxial Fe3Si films on GaAs(100) substrates by means of electron beam evaporation.

    PubMed

    Thomas, J; Schumann, J; Vinzelberg, H; Arushanov, E; Engelhard, R; Schmidt, O G; Gemming, T

    2009-06-10

    This paper presents results on the preparation, structural, electrical and magnetic properties of Fe(3)Si films as a representative for a Heusler alloy-like compound which are known as half-metallic materials with ferromagnetic behaviour. The films have been prepared by means of ultra-high vacuum (UHV) electron beam evaporation with the aim of achieving epitaxial growth on GaAs(100) substrates. The main focus of this work is the structural characterization of the Fe(3)Si films grown on GaAs by means of high resolution transmission electron microscopy (TEM) to confirm the epitaxial growth. For Fe(3)Si with a composition in the vicinity of stoichiometry an almost lattice-matched growth on GaAs(001) has been observed characterized by a high crystalline quality and a good interface perfection. Besides the studies on cross-sectional samples by TEM data from reflection high energy electron diffraction (RHEED) and x-ray diffraction (XRD) were also included into the discussion. The electrical and magnetic parameters of the films studied are found to be in good agreement with data reported for the best Fe(3)Si molecular beam epitaxy (MBE) layers. As evidenced by x-ray diffraction, transmission electron microscopy, resistivity and magnetic measurements, we find an optimum growth temperature of 280-350 degrees C to obtain ferromagnetic layers with high crystal and interface perfection as well as a high degree of atomic ordering.

  12. Fabrication of [001]-oriented tungsten tips for high resolution scanning tunneling microscopy.

    PubMed

    Chaika, A N; Orlova, N N; Semenov, V N; Postnova, E Yu; Krasnikov, S A; Lazarev, M G; Chekmazov, S V; Aristov, V Yu; Glebovsky, V G; Bozhko, S I; Shvets, I V

    2014-01-17

    The structure of the [001]-oriented single crystalline tungsten probes sharpened in ultra-high vacuum using electron beam heating and ion sputtering has been studied using scanning and transmission electron microscopy. The electron microscopy data prove reproducible fabrication of the single-apex tips with nanoscale pyramids grained by the {011} planes at the apexes. These sharp, [001]-oriented tungsten tips have been successfully utilized in high resolution scanning tunneling microscopy imaging of HOPG(0001), SiC(001) and graphene/SiC(001) surfaces. The electron microscopy characterization performed before and after the high resolution STM experiments provides direct correlation between the tip structure and picoscale spatial resolution achieved in the experiments.

  13. Strong Excitonic Emission from (001)-Oriented Diamond P-N Junction

    NASA Astrophysics Data System (ADS)

    Makino, Toshiharu; Kato, Hiromitsu; Ogura, Masahiko; Watanabe, Hideyuki; Ri, Sung-Gi; Yamasaki, Satoshi; Okushi, Hideyo

    2005-09-01

    We have succeeded in fabricating (001)-oriented diamond p-n junctions with good diode characteristics and realized UV light emission by current-injection at room temperature. As p-n junctions, a phosphorus-doped n-type layer was formed on (001)-oriented boron-doped p-type one by applying an optimized homoepitaxial growth technique based on micro-wave plasma-enhanced chemical vapor deposition. Current-voltage characteristics showed a rectification ratio of 106 at ± 30 V at room temperature. The existence of the space-charge layer through the p-n junction was confirmed from capacitance--voltage characteristics. A strong UV light emission at 235 nm was observed at forward current over 20 mA and is attributed to free exciton recombination.

  14. Magnetic anisotropy in ultrathin Fe films on GaAs, ZnSe, and Ge (001) substrates

    SciTech Connect

    Tivakornsasithorn, K.; Liu, X.; Li, X.; Dobrowolska, M.; Furdyna, J. K.

    2014-07-28

    We discuss magnetic anisotropy parameters of ferromagnetic body-centered cubic (bcc) Fe films grown by molecular beam epitaxy (MBE) on (001) substrates of face-centered cubic (fcc) GaAs, ZnSe, and Ge. High-quality MBE growth of these metal/semiconductor combinations is made possible by the fortuitous atomic relationship between the bcc Fe and the underlying fcc semiconductor surfaces, resulting in excellent lattice match. Magnetization measurements by superconducting quantum interference device (SQUID) indicate that the Fe films grown on (001) GaAs surfaces are characterized by a very strong uniaxial in-plane anisotropy; those grown on (001) Ge surfaces have a fully cubic anisotropy; and Fe films grown on ZnSe represent an intermediate case between the preceding two combinations. Ferromagnetic resonance measurements carried out on these three systems provide a strikingly clear quantitative picture of the anisotropy parameters, in excellent agreement with the SQUID results. Based on these results, we propose that the observed anisotropy of cubic Fe films grown in this way results from the surface reconstruction of the specific semiconductor substrate on which the Fe film is deposited. These results suggest that, by controlling surface reconstruction of the substrate during the MBE growth, one may be able to engineer the magnetic anisotropy in Fe, and possibly also in other MBE-grown ferromagnetic films.

  15. Nucleation, transition, and maturing of the self-assembled Au droplets on various type-A GaAs substrates

    SciTech Connect

    Li, Ming-Yu Sui, Mao; Kim, Eun-Soo; Lee, Jihoon

    2014-08-28

    In this study, the fabrication of self-assembled Au droplets is successfully demonstrated on various type-A GaAs substrates: (711)A, (511)A, (411)A, and (311)A. The nucleation of the self-assembled tiny Au clusters is observed at 300 °C. As an intermediate stage, corrugated Au nanostructures are clearly observed at 350 °C on various type-A GaAs surfaces, rarely witnessed on other substrates. Based on the Volmer-Weber growth mode, the dome-shaped Au droplets with excellent uniformities are successfully fabricated between 500 and 550 °C. As a function of annealing temperature, the self-assembled Au droplets show the increased dimensions including average height and diameter, compensated by the decreased average density. Depending on the substrate indices utilized, the size and density of Au droplets show clear differences throughout the whole temperature range. The results are symmetrically analyzed by using atomic force microscope images, cross-sectional line-profiles, size and density plots, height distribution histograms, and Fourier filter transform power spectra.

  16. Dynamic Curvature and Stress Studies for MBE CdTe on Si and GaAs Substrates

    NASA Astrophysics Data System (ADS)

    Jacobs, R. N.; Jaime Vasquez, M.; Lennon, C. M.; Nozaki, C.; Almeida, L. A.; Pellegrino, J.; Arias, J.; Taylor, C.; Wissman, B.

    2015-09-01

    Infrared focal plane arrays (IRFPA) based on HgCdTe semiconductor alloys have been shown to be ideal for tactical and strategic applications. High density (>1 M pixel), high operability HgCdTe detectors on large area, low-cost composite substrates, such as CdTe-buffered Si or GaAs, are envisioned for next-generation IRFPAs. Thermal expansion mismatch is among various material parameters that govern the structural properties of the final detector layer. It has previously been shown that thermal expansion mismatch plays the dominant role in the residual stress characteristics of these heteroepitaxial structures (Jacobs et al. in J Electron Mater 37:1480, 2008). The wafer curvature (bowing) resulting from residual stress, is a likely source of problems that may occur during subsequent processing. This includes cracking of the film and substrate during post-growth annealing processes or even certain characterization techniques. In this work, we examine dynamic curvature and stress during molecular beam epitaxy (MBE), of CdTe on Si and GaAs substrates. The effect of temperature changes on wafer curvature throughout the growth sequence is documented using a multi-beam optical sensor developed by K-Space Associates. This monitoring technique makes possible the study of growth sequences which employ annealing schemes and/or interlayers to influence the final residual stress state of the heteroepitaxial structures.

  17. The growth of low band-gap InAs on (111)B GaAs substrates

    NASA Technical Reports Server (NTRS)

    Welser, R. E.; Guido, L. J.

    1995-01-01

    The use of low band-gap materials is of interest for a number of photovoltaic and optoelectronic applications, such as bottom cells of optimized multijunction solar cell designs, long wavelength light sources, detectors, and thermophotovoltaics. However, low band-gap materials are generally mismatched with respect to lattice constant, thermal expansion coefficient, and chemical bonding to the most appropriate commercially available substrates (Si, Ge, and GaAs). For the specific case of III-V semiconductor heteroepitaxy, one must contend with the strain induced by both lattice constant mismatch at the growth temperature and differences in the rates of mechanical deformation during the cool down cycle. Several experimental techniques have been developed to minimize the impact of these phenomena (i.e., compositional grading, strained layer superlattices, and high-temperature annealing). However, in highly strained systems such as InAs-on-GaAs, three-dimensional island formation and large defect densities (greater than or equal to 10(exp 8)/ cm(exp -2)) tend to limit their applicability. In these particular cases, the surface morphology and defect density must be controlled during the initial stages of nucleation and growth. At the last SPRAT conference, we reported on a study of the evolution of InAs islands on (100) and (111)B GaAs substrates. Growth on the (111)B orientation exhibits a number of advantageous properties as compared to the (100) during these early stages of strained-layer epitaxy. In accordance with a developing model of nucleation and growth, we have deposited thin (60 A - 2500 A), fully relaxed InAs films on (111)B GaAs substrates. Although thicker InAs films are subject to the formation of twin defects common to epitaxy on the (111)B orientation, appropriate control of the growth parameters can greatly minimize their density. Using this knowledge base, InAs films up to 2 microns in thickness with improved morphology and structural quality have

  18. Background carrier concentration in midwave and longwave InAs/GaSb type II superlattices on GaAs substrate

    NASA Astrophysics Data System (ADS)

    Khoshakhlagh, A.; Jaeckel, F.; Hains, C.; Rodriguez, J. B.; Dawson, L. R.; Malloy, K.; Krishna, S.

    2010-08-01

    We report on the measurement of the background carrier concentration of midwave and long-wave infrared (MWIR and LWIR) type-II InAs/GaSb superlattices (SLs) on GaAs substrates. The transport properties of SLs are characterized using temperature dependent Hall measurements. It is found that the conduction in the MWIR SLs is dominated by holes at low temperatures and by electrons at high temperatures. However, the transport in LWIR SL is dominated by electrons at all temperatures. In-plane transport characteristics of LW SLs grown at different temperatures shows that interface roughness scattering is the dominant scattering mechanism at high temperatures.

  19. Growth and characterization of GaAs layers on Si substrates by migration-enhanced molecular beam epitaxy

    NASA Technical Reports Server (NTRS)

    Kim, Jae-Hoon; Liu, John K.; Radhakrishnan, Gouri; Katz, Joseph; Sakai, Shiro

    1988-01-01

    Migration-enhanced molecular beam epitaxial (MEMBE) growth and characterization of the GaAs layer on Si substrates (GaAs/Si) are reported. The MEMBE growth method is described, and material properties are compared with those of normal two-step MBE-grown or in situ annealed layers. Micrographs of cross-section view transmission electron microscopy and scanning surface electron microscopy of MEMBE-grown GaAs/Si showed dislocation densities of 10 to the 7th/sq cm. AlGaAs/GaAs double heterostructures have been successfully grown on MEMBE GaAs/Si by both metalorganic chemical vapor deposition and liquid phase epitaxy.

  20. Growth and annealing of InAs quantum dots on pre-structured GaAs substrates

    NASA Astrophysics Data System (ADS)

    Helfrich, M.; Hu, D. Z.; Hendrickson, J.; Gehl, M.; Rülke, D.; Gröger, R.; Litvinov, D.; Linden, S.; Wegener, M.; Gerthsen, D.; Schimmel, T.; Hetterich, M.; Kalt, H.; Khitrova, G.; Gibbs, H. M.; Schaadt, D. M.

    2011-05-01

    In this study, we investigated the effect of in situ annealing on InAs quantum dots site-selectively grown on pre-structured GaAs substrates. A morphological transition is observed with original double dots merging into one single dot during annealing. This is accompanied by a reduction of quantum dots originally nucleating between defined sites. The photoluminescence intensity of annealed site-selective quantum dots is compared to annealed self-assembled dots with linewidths of single dot emission of about 170 and 81 μeV, respectively. UV-ozone cleaning is used to optimize the sample cleaning prior to quantum dot growth.

  1. Exciton binding energies in GaAs films on AlxGa1-xAs substrates

    NASA Astrophysics Data System (ADS)

    Wu, Zhenhua; Chen, Lei; Tian, Qiang

    2015-10-01

    We use the fractional-dimensional approach (FDA) to study exciton binding energies in GaAs films on AlxGa1-xAs substrates. In this approach, the Schrödinger equation for a given anisotropic system is solved in a noninteger-dimensional space where the interactions are assumed to occur in an isotropic effective environment. The heavy-hole and light-hole exciton binding energies are calculated as functions of the film thickness and substrate thickness. The numerical results show that both the heavy-hole and light-hole exciton binding energies decrease monotonously as the film thickness increases. When the film thickness and the substrate thickness is relatively small, the change of substrate thickness has comparatively remarkable influence on both heavy-hole and light-hole exciton binding energies. As the substrate thickness increases, both the heavy-hole and light-hole exciton binding energies increase gradually. When the film thickness or the substrate thickness is relatively large, the change of substrate thickness has no significant influence on both heavy-hole and light-hole exciton binding energies.

  2. Charge transfer-induced magnetic exchange bias and electron localization in (111)- and (001)-oriented LaNiO3/LaMnO3 superlattices

    NASA Astrophysics Data System (ADS)

    Wei, Haoming; Barzola-Quiquia, Jose Luis; Yang, Chang; Patzig, Christian; Höche, Thomas; Esquinazi, Pablo; Grundmann, Marius; Lorenz, Michael

    2017-03-01

    High-quality lattice-matched LaNiO3/LaMnO3 superlattices with monolayer terrace structure have been grown on both (111)- and (001)-oriented SrTiO3 substrates by pulsed laser deposition. In contrast to the previously reported experiments, a magnetic exchange bias is observed that reproducibly occurs in both (111)- and (001)-oriented superlattices with the thin single layers of 5 and 7 unit cells, respectively. The exchange bias is theoretically explained by charge transfer-induced magnetic moments at Ni atoms. Furthermore, magnetization data at low temperature suggest two magnetic phases in the superlattices, with Néel temperature around 10 K. Electrical transport measurements reveal a metal-insulator transition with strong localization of electrons in the superlattices with the thin LaNiO3 layers of 4 unit cells, in which the electrical transport is dominated by two-dimensional variable range hopping.

  3. Effect of in-plane tensile strain in (100)/(001)-oriented epitaxial PbTiO3 films on their phase transition temperature and tetragonal distortion

    NASA Astrophysics Data System (ADS)

    Nakashima, Takaaki; Ichinose, Daichi; Ehara, Yoshitaka; Shimizu, Takao; Kobayashi, Takeshi; Yamada, Tomoaki; Funakubo, Hiroshi

    2017-03-01

    (100)/(001)-oriented epitaxial lead titanate (PbTiO3) films with various thicknesses were grown on (100) KTaO3 substrates by pulsed metal-organic chemical vapor deposition. The change of crystal structure with film thickness and deposition temperature was investigated. The paraelectric phase of 50 and 1000 nm-thick films had a tensile strain of 0.5% and almost 0% at 700 °C, respectively. The phase change temperature from the paraelectric phase to the ferroelectric phase, the Curie temperature (Tc), increased with the in-plane strain of the paraelectric phase; that is, Tc increased with decreasing film thickness. In contrast, room-temperature tetragonal distortion decreased as the film became thinner. This study reveals the effect of in-plane tensile strain in (100)/(001)-oriented epitaxial PbTiO3 films with higher Tc and smaller tetragonal distortion at room temperature.

  4. Growth map for Ga-assisted growth of GaAs nanowires on Si(111) substrates by molecular beam epitaxy.

    PubMed

    Bastiman, Faebian; Küpers, Hanno; Somaschini, Claudio; Geelhaar, Lutz

    2016-03-04

    For the Ga-assisted growth of GaAs nanowires on Si(111) substrates by molecular beam epitaxy, growth temperature, As flux, and Ga flux have been systematically varied across the entire window of growth conditions that result in the formation of nanowires. A range of GaAs structures was observed, progressing from pure Ga droplets under negligible As flux through horizontal nanowires, tilted nanowires, vertical nanowires, and nanowires without droplets to crystallites as the As flux was increased. Quantitative analysis of the resulting sample morphology was performed in terms of nanowire number and volume density, number yield and volume yield of vertical nanowires, diameter, length, as well as the number and volume density of parasitic growth. The result is a growth map that comprehensively describes all nanowire and parasitic growth morphologies and hence enables growth of nanowire samples in a predictive manner. Further analysis indicates the combination of global Ga flux and growth temperature determines the total density of all objects, whereas the global As/Ga flux ratio independently determines the resultant sample morphology. Several dependencies observed here imply that all objects present on the substrate surface, i.e. both nanowires and parasitic structures, originate from Ga droplets.

  5. Effect of the Photoquenching of EL2 in GaAs Substrate on the Piezoelectric Photothermal and Surface Photovoltage Spectra of a GaAs Single Quantum Well Confined by GaAs/AlAs Short-Period Superlattices

    NASA Astrophysics Data System (ADS)

    Wang, Ping; Fukuyama, Atsuhiko; Akashi, Yoshito; Ikari, Tetsuo

    2008-01-01

    Two nondestructive techniques, surface photovoltage (SPV) and piezoelectric photothermal (PPT) spectroscopies, were adopted to investigate a GaAs single quantum well (SQW) confined by GaAs/AlAs short-period superlattices (SPSs) fabricated on a semi-insulating (SI) GaAs substrate, whose absorption spectra cannot be obtained easily using conventional techniques. Excitonic absorptions associated with subband transitions in a GaAs SQW and SPSs were clearly observed. We also examined how a SI-GaAs substrate affects the PPT and SPV spectra, particularly the effect of the photoquenching of the deep donor level EL2. It was found that the photoquenching of EL2 causes a significant change in the total built-in potential at the interface between the epitaxial layers and the substrate, and affected the signal intensities observed in the PPT and SPV spectra. The present experimental results have shown that a large amount of carrier leakage occurs from a GaAs SQW and SPSs to the sample surface, even in the presence of Al0.3Ga0.7As buffer layers.

  6. Cleaning chemistry of GaAs(100) and InSb(100) substrates for molecular beam epitaxy

    NASA Technical Reports Server (NTRS)

    Vasquez, R. P.; Lewis, B. F.; Grunthaner, F. J.

    1983-01-01

    Ploog (1980) and Bachrach and Krusor (1981) have pointed out the importance of substrate preparation and surface cleaning for obtaining high quality films with the aid of molecular beam epitaxial growth techniques. In the present investigation, high resolution X-ray photoemission (XPS) is used to determine the oxide removal mechanism for GaAs(100) substrates which have undergone a standardized cleaning procedure. Other objectives of the investigation are related to a comparison of different cleaning procedures in order to minimize carbon contamination, the extension of these cleaning techniques to other III-V compound semiconductors such as InSb, and the evaluation of the sensitivity of the compositional results to electron-induced damage effects.

  7. Impact of dislocation densities on n+/p and p+/n junction GaAs diodes and solar cells on SiGe virtual substrates

    NASA Astrophysics Data System (ADS)

    Andre, C. L.; Wilt, D. M.; Pitera, A. J.; Lee, M. L.; Fitzgerald, E. A.; Ringel, S. A.

    2005-07-01

    Recent experimental measurements have shown that in GaAs with elevated threading dislocation densities (TDDs) the electron lifetime is much lower than the hole lifetime [C. L. Andre, J. J. Boeckl, D. M. Wilt, A. J. Pitera, M. L. Lee, E. A. Fitzgerald, B. M. Keyes, and S. A. Ringel, Appl. Phys. Lett. 84, 3884 (2004)]. This lower electron lifetime suggests an increase in depletion region recombination and thus in the reverse saturation current (J0 for an n+/p diode compared with a p+/n diode at a given TDD. To confirm this, GaAs diodes of both polarities were grown on compositionally graded Ge /Si1-xGex/Si (SiGe) substrates with a TDD of 1×106cm-2. It is shown that the ratio of measured J0 values is consistent with the inverse ratio of the expected lifetimes. Using a TDD-dependent lifetime in solar cell current-voltage models we found that the Voc, for a given short-circuit current, also exhibits a poorer TDD tolerance for GaAs n+/p solar cells compared with GaAs p+/n solar cells. Experimentally, the open-circuit voltage (Voc) for the n+/p GaAs solar cell grown on a SiGe substrate with a TDD of ˜1×106cm-2 was ˜880mV which was significantly lower than the ˜980mV measured for a p+/n GaAs solar cell grown on SiGe at the same TDD and was consistent with the solar cell modeling results reported in this paper. We conclude that p+/n polarity GaAs junctions demonstrate superior dislocation tolerance than n+/p configured GaAs junctions, which is important for optimization of lattice-mismatched III-V devices.

  8. Characterization and Effect of Thermal Annealing on InAs Quantum Dots Grown by Droplet Epitaxy on GaAs(111)A Substrates.

    PubMed

    Bietti, Sergio; Esposito, Luca; Fedorov, Alexey; Ballabio, Andrea; Martinelli, Andrea; Sanguinetti, Stefano

    2015-12-01

    We report the study on formation and thermal annealing of InAs quantum dots grown by droplet epitaxy on GaAs (111)A surface. By following the changes in RHEED pattern, we found that InAs quantum dots arsenized at low temperature are lattice matched with GaAs substrate, becoming almost fully relaxed when substrate temperature is increased. Morphological characterizations performed by atomic force microscopy show that annealing process is able to change density and aspect ratio of InAs quantum dots and also to narrow size distribution.

  9. Molecular-beam epitaxial regrowth on oxygen-implanted GaAs substrates for device integration

    NASA Astrophysics Data System (ADS)

    Chen, C. L.; Mahoney, L. J.; Calawa, S. D.; Molvar, K. M.; Maki, P. A.; Mathews, R. H.; Sage, J. P.; Sollner, T. C. L. G.

    1999-06-01

    Device-quality layers were regrown on GaAs wafers by molecular-beam epitaxy over conductive pregrown areas and on selectively patterned high-resistivity areas formed by oxygen implantation. The regrowth over both areas resulted in comparable device-quality GaAs. The high resistivity of the oxygen-implanted area was maintained after the regrowth and no oxygen incorporation was observed in the regrown layer. The cutoff frequency of a 1.5-μm-gate metal-semiconductor field-effect transistor fabricated on the regrown layer over the high-resistivity areas is 7 GHz. This demonstration shows that planar technology can be used in epitaxial regrowth, simplifying the integration of vastly different devices into monolithic circuits.

  10. Growth and properties of crystalline barium oxide on the GaAs(100) substrate

    SciTech Connect

    Yasir, M.; Dahl, J.; Lång, J.; Tuominen, M.; Punkkinen, M. P. J.; Laukkanen, P. Kokko, K.; Kuzmin, M.; Korpijärvi, V.-M.; Polojärvi, V.; Guina, M.

    2013-11-04

    Growing a crystalline oxide film on III-V semiconductor renders possible approaches to improve operation of electronics and optoelectronics heterostructures such as oxide/semiconductor junctions for transistors and window layers for solar cells. We demonstrate the growth of crystalline barium oxide (BaO) on GaAs(100) at low temperatures, even down to room temperature. Photoluminescence (PL) measurements reveal that the amount of interface defects is reduced for BaO/GaAs, compared to Al{sub 2}O{sub 3}/GaAs, suggesting that BaO is a useful buffer layer to passivate the surface of the III-V device material. PL and photoemission data show that the produced junction tolerates the post heating around 600 °C.

  11. Progress toward thin-film GaAs solar cells using a single-crystal Si substrate with a Ge interlayer

    NASA Technical Reports Server (NTRS)

    Yeh, Y. C. M.; Wang, K. L.; Zwerdling, S.

    1982-01-01

    Development of a technology for fabricating light-weight, high-efficiency, radiation-resistant solar cells for space applications is reported. The approaches currently adopted are to fabricate shallow homojunction n(+)/p as well as p/n AlGaAs-heteroface GaAs solar cells by organometallic chemical vapor deposition (OM-CVD) on single-crystal Si substrates using in each case, a thin Ge epi-interlayer first grown by CVD. This approach maintains the advantages of the low specific gravity of Si as well as the high efficiency and radiation-resistant properties of the GaAs solar cell which can lead to greatly improved specific power for a solar array. The growth of single-crystal GaAs epilayers on Ge epi-interlayers on Si substrates is investigated. Related solar cell fabrication is reviewed.

  12. Laser-driven growth of silver nanoplates on p-Type GaAs substrates and their surface-enhanced raman scattering activity.

    SciTech Connect

    Sun, Y.; Pelton, M.

    2009-03-20

    Contact between aqueous solutions of silver nitrate (AgNO{sub 3}) and pristine surfaces of p-type gallium arsenide (GaAs) wafers results in essentially no reaction at room temperature and in the dark. The galvanic reactions between the GaAs wafers and AgNO{sub 3} can be triggered under illumination of laser beams with power densities higher than a critical value ({approx}15 mW/cm{sup 2} for a 630 nm laser), resulting in the growth of silver (Ag) nanoplates on the GaAs surface. The density and dimensions (including both thickness and edge length) of the resulting nanoplates can be readily tuned by controlling the growth time and laser power density. The as-grown Ag nanoplates on the substrates significantly enhance Raman signals of interesting molecules and serve as a new class of promising surface-enhanced Raman scattering substrates for sensitive chemical detection.

  13. Structure and magnetic properties of electrodeposited, ferromagnetic, group 3-d element films grown onto GaAs (011) substrate

    NASA Astrophysics Data System (ADS)

    Scheck, C.; Evans, P.; Schad, R.; Zangari, G.

    2003-05-01

    Ni, Co, and iron-rich FeNi films were grown onto n-GaAs (011) substrates using electrodeposition from metal sulfate solutions, at room temperature, with a current density of 3.5 mA/cm2 at a pH of 2.5. The structure of Ni film is found to be fcc with a (111) preferred orientation, whereas Co films show a mixed fcc and hcp structure that is confirmed by x-ray diffraction and transmission electron microscopy data. The structure of iron-rich (>90%) FeNi films remains unclear at the moment. The films show a well-defined, in-plane, uniaxial anisotropy with the easy axis along the [011] GaAs direction for Ni, and [011¯] GaAs direction for Co and FeNi films (i.e., anisotropy rotated by 90° compared to Ni). Co films maintain their anisotropy even for large thicknesses (>250 nm) and so does Ni (up to 90 nm). Surprisingly, thin Ni films exhibit a larger HK value (950 Oe) than what would be expected from a purely crystalline anisotropy. This effect is ascribed to internal stresses in the as-deposited films.

  14. First principle calculation in FeCo overlayer on GaAs substrate

    SciTech Connect

    Jain, Vishal Lakshmi, N.; Jain, Vivek Kumar; K, Sijo A.; Venugopalan, K.

    2015-06-24

    In this work the first principle electronic structure calculation is reported for FeCo/GaAs thin film system to investigate the effect of orientation on the electronic structural properties. A unit cell describing FeCo layers and GaAs layers is constructed for (100), (110), (111) orientation with vacuum of 30Å to reduce dimensions. It is found that although the (110) orientation is energetically more favorable than others, the magnetic moment is quite large in (100) and (111) system compared to the (110) and is due to the total DOS variation with orientation.

  15. Nucleation and Growth of GaN on GaAs (001) Substrates

    SciTech Connect

    Drummond, Timothy J.; Hafich, Michael J.; Heller, Edwin J.; Lee, Stephen R.; Liliental-Weber, Zuzanna; Ruvimov, Sergei; Sullivan, John P.

    1999-05-03

    The nucleation of GaN thin films on GaAs is investigated for growth at 620 "C. An rf plasma cell is used to generate chemically active nitrogen from N2. An arsenic flux is used in the first eight monolayer of nitride growth to enhance nucleation of the cubic phase. Subsequent growth does not require an As flux to preserve the cubic phase. The nucleation of smooth interfaces and GaN films with low stacking fault densities is dependent upon relative concentrations of active nitrogen species in the plasma and on the nitrogen to gallium flux ratio.

  16. High mobility single-crystalline-like GaAs thin films on inexpensive flexible metal substrates by metal-organic chemical vapor deposition

    SciTech Connect

    Dutta, P. Rathi, M.; Gao, Y.; Yao, Y.; Selvamanickam, V.; Zheng, N.; Ahrenkiel, P.; Martinez, J.

    2014-09-01

    We demonstrate heteroepitaxial growth of single-crystalline-like n and p-type doped GaAs thin films on inexpensive, flexible, and light-weight metal foils by metal-organic chemical vapor deposition. Single-crystalline-like Ge thin film on biaxially textured templates made by ion beam assisted deposition on metal foil served as the epitaxy enabling substrate for GaAs growth. The GaAs films exhibited strong (004) preferred orientation, sharp in-plane texture, low grain misorientation, strong photoluminescence, and a defect density of ∼10{sup 7 }cm{sup −2}. Furthermore, the GaAs films exhibited hole and electron mobilities as high as 66 and 300 cm{sup 2}/V-s, respectively. High mobility single-crystalline-like GaAs thin films on inexpensive metal substrates can pave the path for roll-to-roll manufacturing of flexible III-V solar cells for the mainstream photovoltaics market.

  17. Measured and computed performance of a microstrip filter composed of semi-insulating GaAs on a fused quartz substrate

    NASA Technical Reports Server (NTRS)

    Siegel, Peter H.; Dengler, Robert J.; Oswald, John E.; Sheen, David M.; Ali, Sami M.

    1991-01-01

    The performance of a microstrip hammerhead filter that has been fabricated on an electrically thin layer of semiinsulating GaAs backed by a fused quartz substrate was measured and compared to results of a three-dimensional finite-difference time-domain (FD-TD) program used to calculate the response of the filter both with and without the GaAs layer. The program, presented by Sheen et al. (1990), discretizes the entire structure and then simulates the propagation of a Gaussian pulse through the filter. The microstrip filter is intended for applications involving ultrathin lifted-off or etched-back GaAs containing both active devices and passive microstrip circuitry backed by a much thicker mechanically rigid low-loss, low-dielectric-constant substrate. The low-pass characteristics of the hammerhead filter with the intermediate GaAs layer are compared with those of the same filter on quartz alone. Both the measured and computed data show a significant shift in cutoff frequency (about 10 percent at the 3 dB points) for a GaAs layer that is 0.007 wavelengths thick at 4 GHz.

  18. Nanoepitaxy of GaAs on a Si(001) substrate using a round-hole nanopatterned SiO2 mask.

    PubMed

    Hsu, Chao-Wei; Chen, Yung-Feng; Su, Yan-Kuin

    2012-12-14

    GaAs is grown by metal-organic vapor-phase epitaxy on a 55 nm round-hole patterned Si substrate with SiO(2) as a mask. The threading dislocations, which are stacked on the lowest energy facet plane, move along the SiO(2) walls, reducing the number of dislocations. The etching pit density of GaAs on the 55 nm round-hole patterned Si substrate is about 3.3 × 10(5) cm(-2). Compared with the full width at half maximum measurement from x-ray diffraction and photoluminescence spectra of GaAs on a planar Si(001) substrate, those of GaAs on the 55 nm round-hole patterned Si substrate are reduced by 39.6 and 31.4%, respectively. The improvement in material quality is verified by transmission electron microscopy, field-emission scanning electron microscopy, Hall measurements, Raman spectroscopy, photoluminescence, and x-ray diffraction studies.

  19. Magnetic anisotropy of crystalline Fe films grown on (001) GaAs substrates using Ge buffer layers

    NASA Astrophysics Data System (ADS)

    Bac, Seul-Ki; Lee, Hakjoon; Lee, Sangyeop; Choi, Seonghoon; Yoo, Taehee; Lee, Sanghoon; Liu, X.; Furdyna, J. K.

    2016-05-01

    Magnetic anisotropy of Fe films grown on (001) GaAs substrates using Ge buffer layers were investigated by planar Hall effect measurements. In addition to phenomena arising from dominant cubic symmetry of the Fe specimen, the study of angular dependence of magnetization reversal revealed breaking of this symmetry in the form of systematic asymmetric shifts of magnetic hysteresis loops around the <110 > crystallographic directions. We ascribe such symmetry breaking to an admixture of uniaxial anisotropy associated with the [100] direction in the Fe film. To determine the parameters associated with this uniaxial anisotropy, we quantitatively analyze the asymmetric shifts of the hysteresis loop centers from the <110 > directions. Even though the value of these parameters turns out to be relatively small compared to that of the cubic anisotropy (by about two orders of magnitude), they survive up to room temperature.

  20. Improved GaSb-based quantum well laser performance through metamorphic growth on GaAs substrates

    SciTech Connect

    Richardson, Christopher J. K. He, Lei; Apiratikul, Paveen; Siwak, Nathan P.; Leavitt, Richard P.

    2015-03-09

    The promise of the metamorphic growth paradigm is to enable design freedom of the substrate selection criteria beyond current choices that are limited by lattice matching requirements. A demonstration of this emerging degree of freedom is reported here by directly comparing identical laser structures grown both pseudomorphically on a GaSb substrate and metamorphically on a GaAs substrate. Improved thermal performance of the metamorphic laser material enables a higher output power before thermal roll-over begins. These performance gains are demonstrated in minimally processed gain-guided broad-area type-I lasers emitting close to 2-μm wavelengths and mounted p-side up. Continuous wave measurements at room temperature yield a T{sub 0} of 145 K and peak output power of 192 mW from metamorphic lasers, compared to a T{sub 0} of 96 K and peak output power of 164 mW from identical lasers grown pseudomorphically on GaSb.

  1. Substrate temperature dependence of ZnTe epilayers grown on GaAs(0 0 1) by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Zhao, Jie; Zeng, Yiping; Liu, Chao; Li, Yanbo

    2010-04-01

    ZnTe thin films have been grown on GaAs(0 0 1) substrates at different temperatures with constant Zn and Te beam equivalent pressures (BEPs) by molecular beam epitaxy (MBE). In situ reflection high-energy electron diffraction (RHEED) observation indicates that two-dimensional (2D) growth mode can be established after around one-minute three-dimensional (3D) nucleation by increasing the substrate temperature to 340 °C. We found that Zn desorption from the ZnTe surface is much greater than that of Te at higher temperatures, and estimated the Zn sticking coefficient by the evolution of growth rate. The Zn sticking coefficient decreases from 0.93 to 0.58 as the temperature is elevated from 320 to 400 °C. The ZnTe epilayer grown at 360 °C displays the narrowest full-width at half-maximum (FWHM) of 660 arcsec from (0 0 4) reflection in double-crystal X-ray rocking curve (DCXRC) measurements. The surface morphology of ZnTe epilayers is strongly dependent on the substrate temperature, and the root-mean-square (RMS) roughness diminishes drastically with the increase in temperature.

  2. Characterization of reclaimed GaAs substrates and investigation of reuse for thin film InGaAlP LED epitaxial growth

    NASA Astrophysics Data System (ADS)

    Englhard, M.; Klemp, C.; Behringer, M.; Rudolph, A.; Skibitzki, O.; Zaumseil, P.; Schroeder, T.

    2016-07-01

    This study reports a method to reuse GaAs substrates with a batch process for thin film light emitting diode (TF-LED) production. The method is based on an epitaxial lift-off technique. With the developed reclaim process, it is possible to get an epi-ready GaAs surface without additional time-consuming and expensive grinding/polishing processes. The reclaim and regrowth process was investigated with a one layer epitaxial test structure. The GaAs surface was characterized by an atomic force microscope directly after the reclaim process. The crystal structure of the regrown In0.5(Ga0.45Al0.55)0.5P (Q55) layer was investigated by high resolution x-ray diffraction and scanning transmission electron microscopy. In addition, a complete TF-LED grown on reclaimed GaAs substrates was electro-optically characterized on wafer level. The crystal structure of the epitaxial layers and the performance of the TF-LED grown on reclaimed substrates are not influenced by the developed reclaim process. This process would result in reducing costs for LEDs and reducing much arsenic waste for the benefit of a green semiconductor production.

  3. Large-scale and uniform preparation of pure-phase wurtzite GaAs NWs on non-crystalline substrates.

    PubMed

    Han, Ning; Hou, Jared J; Wang, Fengyun; Yip, Senpo; Lin, Hao; Fang, Ming; Xiu, Fei; Shi, Xiaoling; Hung, Takfu; Ho, Johnny C

    2012-11-21

    One of the challenges to prepare high-performance and uniform III-V semiconductor nanowires (NWs) is to control the crystal structure in large-scale. A mixed crystal phase is usually observed due to the small surface energy difference between the cubic zincblende (ZB) and hexagonal wurtzite (WZ) structures, especially on non-crystalline substrates. Here, utilizing Au film as thin as 0.1 nm as the catalyst, we successfully demonstrate the large-scale synthesis of pure-phase WZ GaAs NWs on amorphous SiO2/Si substrates. The obtained NWs are smooth, uniform with a high aspect ratio, and have a narrow diameter distribution of 9.5 ± 1.4 nm. The WZ structure is verified by crystallographic investigations, and the corresponding electronic bandgap is also determined to be approximately 1.62 eV by the reflectance measurement. The formation mechanism of WZ NWs is mainly attributed to the ultra-small NW diameter and the very narrow diameter distribution associated, where the WZ phase is more thermodynamically stable compared to the ZB structure. After configured as NW field-effect-transistors, a high ION/IOFF ratio of 104 - 105 is obtained, operating in the enhancement device mode. The preparation technology and good uniform performance here have illustrated a great promise for the large-scale synthesis of pure phase NWs for electronic and optical applications.

  4. Growth mode and defect evaluation of GaSb on GaAs substrate: a transmission electron microscopy study.

    PubMed

    Huang, Shenghong; Balakrishnan, Ganesh; Huffaker, Diana L

    2011-06-01

    We use transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) techniques to confirm and analyze the interfacial misfit (IMF) and non-IMF growth modes for GaSb epilayers on GaAs substrates. Under optimized IMF growth conditions, only pure 90 degrees dislocations are generated along both [110] and [1-10] directions and located exactly at the epi-substrate interface, which leads to very low density of misfit dislocations propagating from the GaSb/GaAs interface along the growth direction, compared to the non-IMF growth condition. The mechanism of defect annihilation indicates that this IMF mergence process happens without formation of threading dislocations into the GaSb epilayer, which is a completely relaxed growth mode with extremely low defect density. Based on scanning several sets of wafer surfaces, plan-view TEM confirms that the misfit defect densities are estimated to be approximately 5 x 10(5) cm(-2) for IMF growth mode and approximately 10(9) cm(-2) for non-IMF growth mode.

  5. Density of dislocations in CdHgTe heteroepitaxial structures on GaAs(013) and Si(013) substrates

    NASA Astrophysics Data System (ADS)

    Sidorov, Yu. G.; Yakushev, M. V.; Varavin, V. S.; Kolesnikov, A. V.; Trukhanov, E. M.; Sabinina, I. V.; Loshkarev, I. D.

    2015-11-01

    Epitaxial layers of Cd x Hg1- x Te (MCT) on GaAs(013) and Si(013) substrates were grown by molecular beam epitaxy. The introduction of ZnTe and CdTe intermediate layers into the structures made it possible to retain the orientation close to that of the substrate in MCT epitaxial layers despite the large mismatch between the lattice parameters. The structures were investigated using X-ray diffraction and transmission electron microscopy. The dislocation families predominantly removing the mismatch between the lattice parameters were found. Transmission electron microscopy revealed Γ-shaped misfit dislocations (MDs), which facilitated the annihilation of threading dislocations. The angles of rotation of the lattice due to the formation of networks of misfit dislocations were measured. It was shown that the density of threading dislocations in the active region of photodiodes is primarily determined by the network of misfit dislocations formed in the MCT/CdTe heterojunction. A decrease in the density of threading dislocations in the MCT film was achieved by cyclic annealing under conditions of the maximally facilitated nonconservative motion of dislocations. The dislocation density was determined from the etch pits.

  6. InGaP/GaAs Dual-Junction Solar Cell with AlGaAs/GaAs Tunnel Diode Grown on 10° off Misoriented GaAs Substrate

    NASA Astrophysics Data System (ADS)

    Yu, Hung Wei; Chung, Chen Chen; Te Wang, Chin; Nguyen, Hong Quan; Tinh Tran, Binh; Lin, Kung Liang; Dee, Chang Fu; Yeop Majlis, Burhanuddin; Chang, Edward Yi

    2012-08-01

    InGaP/GaAs dual-junction solar cells with different tunnel diodes (TDs) grown on misoriented GaAs substrates are investigated. It is demonstrated that the solar cells with P++-AlGaAs/N++-GaAs TDs grown on 10° off GaAs substrates not only show a higher external quantum efficiency (EQE) but also generate a higher peak current density (Jpeak) at higher concentration ratios (185×) than the solar cells with P++-GaAs/N++-InGaP TDs grown on 6° off GaAs substrates. Furthermore, the cell design with P++-AlGaAs/N++-GaAs TDs grown on 10° off GaAs substrates does not generate a disordered InGaP epitaxial layer during material growth, and thus shows superior current-voltage characteristics.

  7. Quantum Dots: Growth of InAs Quantum Dots on GaAs (511)A Substrates: The Competition between Thermal Dynamics and Kinetics (Small 31/2016).

    PubMed

    Wen, Lei; Gao, Fangliang; Zhang, Shuguang; Li, Guoqiang

    2016-08-01

    On page 4277, G. Li and co-workers aim to promote III-V compound semiconductors and devices for a broad range of applications with various technologies. The growth process of InAs quantum dots on GaAs (511)A substrates is systematically studied. By carefully controlling the competition between growth thermal-dynamics and kinetics, InAs quantum dots with high size uniformity are prepared, which are highly desirable for the fabrication of high-efficiency solar cells.

  8. Structural defects in the growth of multiple periods of InAs quantum dots on a GaAs substrate

    NASA Astrophysics Data System (ADS)

    Lee, Hwack Joo; Ryu, Hyun; Leam, Jae Y.; Noh, Sam K.; Lee, Hyung G.; Nahm, Sahn

    1997-02-01

    Microstructural observations on 20 periods of InAs quantum dots on a GaAs substrate grown by molecular beam epitaxy system were carried out by using high resolution transmission electron microscopy. The spherical cap-shaped InAs quantum dots were formed in a self-organized fashion, dot over dot, along the growth direction. However, two types of anomalities were found in the growth of these superlattice structures. One is the stoppage of quantum dot formation after 4 or 5 layers have been deposited. The morphology of the quantum dots was rather flat and faceted and a black and white contrast layer has appeared in the dot structure. The other type was a volcano-like defect which was grown vertically along the growth direction with a size of about 120 nm in diameter and about 400 nm in spacing. Inside the defect, black and white contrast layers have been formed along the [110] direction at the bottom of the epilayer and then changed to the [111] direction as the growth continued to the top layer.

  9. Transient-mode liquid phase epitaxial growth of GaAs on GaAs-coated Si substrates prepared by migration-enhanced molecular beam epitaxy

    NASA Technical Reports Server (NTRS)

    Nakamura, Shuji; Sakai, Shiro; Chang, Shi S.; Ramaswamy, Ramu V.; Kim, Jae-Hoon; Radhakrishnan, Gouri; Liu, John K.; Katz, Joseph

    1989-01-01

    Planar oxide-maskless growth of GaAs was demonstrated by transient-mode liquid phase epitaxy (TMLPE) on GaAs-coated Si substrates that were prepared by migration-enhanced molecular beam epitaxy (MEMBE). In TMLPE, the cool substrate was brought into contact with hot melts for a short time. A GaAs layer as thick as 30 microns was grown in 10 sec. The etch pits observed in TMLPE-grown layers became longer in one direction and decreased in density with increasing the TMLPE epilayer thickness. The density of etch pits in a 20 micron-thick layer was approximately 5 x 10 the 6th/sq cm. Strong bandgap emission elliptically polarized with a major axis perpendicular to the surface was observed at about 910 nm, while deep-level emission from the TMLPE/MEMBE GaAs interface was detected at 980 nm. The photoluminescence intensity divided by the carrier concentration of the TMLPE-grown layer was about 270 times larger than that of the MEMBE-grown layer used as a substrate.

  10. Metamorphic In(0.20)Ga(0.80)As p-i-n photodetectors grown on GaAs substrates for near infrared applications.

    PubMed

    Swaminathan, K; Yang, L-M; Grassman, T J; Tabares, G; Guzman, A; Hierro, A; Mills, M J; Ringel, S A

    2011-04-11

    The growth and performance of top-illuminated metamorphic In(0.20)Ga(0.80)As p-i-n photodetectors grown on GaAs substrates using a step-graded In(x)Ga(1-x)As buffer is reported. The p-i-n photodetectors display a low room-temperature reverse bias dark current density of ~1.4×10(-7) A/cm(2) at -2 V. Responsivity and specific detectivity values of 0.72 A/W, 2.3×10(12) cm·Hz(1/2)/W and 0.69 A/W, 2.2×10(12) cm·Hz(1/2)/W are achieved for Yb:YAG (1030 nm) and Nd:YAG (1064 nm) laser wavelengths at -2 V, respectively. A high theoretical bandwidth-responsivity product of 0.21 GHz·A/W was estimated at 1064 nm. Device performance metrics for these GaAs substrate-based detectors compare favorably with those based on InP technology due to the close tuning of the detector bandgap to the target wavelengths, despite the presence of a residual threading dislocation density. This work demonstrates the great potential for high performance metamorphic near-infrared InGaAs detectors with optimally tuned bandgaps, which can be grown on GaAs substrates, for a wide variety of applications.

  11. Metastable bcc phase formation in 3d ferromagnetic transition metal thin films sputter-deposited on GaAs(100) substrates

    SciTech Connect

    Minakawa, Shigeyuki Ohtake, Mitsuru; Futamoto, Masaaki; Kirino, Fumiyoshi; Inaba, Nobuyuki

    2015-05-07

    Co{sub 100−x}Fe{sub x} and Ni{sub 100−y}Fe{sub y} (at. %, x = 0–30, y = 0–60) films of 10 nm thickness are prepared on GaAs(100) substrates at room temperature by using a radio-frequency magnetron sputtering system. The detailed growth behavior is investigated by in-situ reflection high-energy electron diffraction. (100)-oriented Co and Ni single-crystals with metastable bcc structure are formed in the early stage of film growth, where the metastable structure is stabilized through hetero-epitaxial growth. With increasing the thickness up to 2 nm, the Co and the Ni films start to transform into more stable hcp and fcc structures through atomic displacements parallel to bcc(110) slide planes, respectively. The stability of bcc phase is improved by adding a small volume of Fe atoms into a Co film. The critical thickness of bcc phase formation is thicker than 10 nm for Co{sub 100−x}Fe{sub x} films with x ≥ 10. On the contrary, the stability of bcc phase for Ni-Fe system is less than that for Co-Fe system. The critical thicknesses for Ni{sub 100−y}Fe{sub y} films with y = 20, 40, and 60 are 1, 3, and 5 nm, respectively. The Co{sub 100−x}Fe{sub x} single-crystal films with metastable bcc structure formed on GaAs(100) substrates show in-plane uniaxial magnetic anisotropies with the easy direction along GaAs[011], similar to the case of Fe film epitaxially grown on GaAs(100) substrate. A Co{sub 100−x}Fe{sub x} film with higher Fe content shows a higher saturation magnetization and a lower coercivity.

  12. 2.5-μm InGaAs photodiodes grown on GaAs substrates by interfacial misfit array technique

    NASA Astrophysics Data System (ADS)

    Jurczak, Pamela; Sablon, Kimberly A.; Gutiérrez, Marina; Liu, Huiyun; Wu, Jiang

    2017-03-01

    In0.85Ga0.15As photodetectors grown on GaAs substrates using an interfacial misfit array-based simple buffer are studied. The material quality is assessed with a range of characterization tools showing low surface roughness and low density of threading dislocations. These results indicate a significant improvement on crystal quality compared to structures grown on InP substrates by using metamorphic buffers. Quantum efficiency and responsivity measurements show good performance of the fabricated devices between 1.5 and 2.5 μm, making them highly suitable for short-wavelength infrared applications.

  13. A GaAs metalorganic vapor phase epitaxy growth process to reduce Ge outdiffusion from the Ge substrate

    SciTech Connect

    Galiana, B.; Rey-Stolle, I.; Algora, C.

    2008-04-14

    A barrier based on GaAs for controlling the Ge out diffusion has been developed by metalorganic vapor phase epitaxy. It is based on a thin GaAs layer (50 nm) grown at a low temperature ({approx_equal}500 deg. C) on top of a predeposition layer, showing that GaAs prevents the Ge diffusing when it is grown at a low temperature. Additionally, two different predeposition monolayers have been compared, concluding that when the Ga is deposited first, the diffusions across the GaAs/Ge heterointerface decrease.

  14. 1.59 {mu}m room temperature emission from metamorphic InAs/InGaAs quantum dots grown on GaAs substrates

    SciTech Connect

    Seravalli, L.; Frigeri, P.; Trevisi, G.; Franchi, S.

    2008-05-26

    We present design, preparation by molecular beam epitaxy, and characterization by photoluminescence of long-wavelength emitting, strain-engineered quantum dot nanostructures grown on GaAs, with InGaAs confining layers and additional InAlAs barriers embedding InAs dots. Quantum dot strain induced by metamorphic lower confining layers is instrumental to redshift the emission, while a-few-nanometer thick InAlAs barriers allow to significantly increase the activation energy of carriers' thermal escape. This approach results in room temperature emission at 1.59 {mu}m and, therefore, is a viable method to achieve efficient emission in the 1.55 {mu}m window and beyond from quantum dots grown on GaAs substrates.

  15. Methods of controlling the emission wavelength in InAs/GaAsN/InGaAsN heterostructures on GaAs substrates

    SciTech Connect

    Mamutin, V. V. Egorov, A. Yu.; Kryzhanovskaya, N. V.; Mikhrin, V. S.; Nadtochy, A. M.; Pirogov, E. V.

    2008-07-15

    Studies of the properties of InGaAsN compounds and methods of controlling the emission wavelength in InAs/GaAsN/InGaAsN heterostructures grown by molecular beam epitaxy on GaAs substrates are reviewed. The results for different types of heterostructures with quantum-size InGaAsN layers are presented. Among those are (1) traditional InGaAsN quantum wells in a GaAs matrix, (2) InAs quantum dots embedded in an (In)GaAsN layer, and (3) strain-compensated superlattices InAs/GaAsN/InGaAsN with quantum wells and quantum dots. The methods used in the study allow controllable variations in the emission wavelength over the telecommunication range from 1.3 to 1.76 {mu}m at room temperature.

  16. Characterization of structural defects in SnSe2 thin films grown by molecular beam epitaxy on GaAs (111)B substrates

    NASA Astrophysics Data System (ADS)

    Tracy, Brian D.; Li, Xiang; Liu, Xinyu; Furdyna, Jacek; Dobrowolska, Margaret; Smith, David J.

    2016-11-01

    Tin selenide thin films have been grown by molecular beam epitaxy on GaAs (111)B substrates at a growth temperature of 150 °C, and a microstructural study has been carried out, primarily using the technique of transmission electron microscopy. The Se:Sn flux ratio during growth was systematically varied and found to have a strong impact on the resultant crystal structure and quality. Low flux ratios (Se:Sn=3:1) led to defective films consisting primarily of SnSe, whereas high flux ratios (Se:Sn>10:1) gave higher quality, single-phase SnSe2. The structure of the monoselenide films was found to be consistent with the Space Group Pnma with the epitaxial growth relationship of [011]SnSe// [ 1 1 bar 0 ] GaAs, while the diselenide films were consistent with the Space Group P 3 bar m1 , and had the epitaxial growth relationship [ 2 1 bar 1 bar 0 ]SnSe2// [ 1 1 bar 0 ] GaAs.

  17. A Simple Method for the Growth of Very Smooth and Ultra-Thin GaSb Films on GaAs (111) Substrate by MOCVD

    NASA Astrophysics Data System (ADS)

    Ni, Pei-Nan; Tong, Jin-Chao; Tobing, Landobasa Y. M.; Qiu, Shu-Peng; Xu, Zheng-Ji; Tang, Xiao-Hong; Zhang, Dao-Hua

    2017-02-01

    We present a simple thermal treatment with the antimony source for the metal-organic chemical vapor deposition of thin GaSb films on GaAs (111) substrates for the first time. The properties of the as-grown GaSb films are systematically analyzed by scanning electron microscopy, atomic force microscopy, x-ray diffraction, photo-luminescence (PL) and Hall measurement. It is found that the as-grown GaSb films by the proposed method can be as thin as 35 nm and have a very smooth surface with the root mean square roughness as small as 0.777 nm. Meanwhile, the grown GaSb films also have high crystalline quality, of which the full width at half maximum of the rocking-curve is as small as 218 arcsec. Moreover, the good optical quality of the GaSb films has been demonstrated by the low-temperature PL. This work provides a simple and feasible buffer-free strategy for the growth of high-quality GaSb films directly on GaAs substrates and the strategy may also be applicable to the growth on other substrates and the hetero-growth of other materials.

  18. ELECTROABSORPTION OF UNSTRAINED InGaAs/InAlGaAs MULTIPLE QUANTUM WELL STRUCTURE GROWN ON GaAs SUBSTRATES

    NASA Astrophysics Data System (ADS)

    Lee, Ching-Ting; Nee, Tzer-En

    Large electroabsorption was observed in InGaAs/InAlGaAs multiple quantum well structures grown on GaAs substrates operating near 1.3 μm. The molecular beam epitaxy (MBE) growth of these structures was incorporation of a carefully designed InAlAs multistage strain-relaxed buffer. The optical absorption spectra as a function of the reverse bias at room temperature are shown. The good characteristics of the optical modulators fabricated on this structure have indicated its potential for practical applications of high-speed modulation.

  19. 2 {mu}m laterally coupled distributed-feedback GaSb-based metamorphic laser grown on a GaAs substrate

    SciTech Connect

    Apiratikul, P.; He, L.; Richardson, C. J. K.

    2013-06-10

    We report a type-I GaSb-based laterally coupled distributed-feedback (DFB) laser grown on a GaAs substrate operating continuous wave at room temperature. The laser structure was designed to operate near a wavelength of 2 {mu}m and was grown metamorphically with solid-source molecular beam epitaxy. The device was fabricated using a 6th-order deep etch grating structure as part of the sidewalls of the narrow ridge waveguide. The DFB laser emits total output power of up to 40 mW in a single longitudinal mode operation at a heat-sink temperature of 20 Degree-Sign C.

  20. Large electrocaloric effect in highly (001)-oriented 0.67PbMg1/3Nb2/3O3-0.33PbTiO3 thin films

    NASA Astrophysics Data System (ADS)

    Feng, Zuyong; Shi, Dongqi; Dou, Shixue

    2011-01-01

    (001)-oriented 0.67PbMg1/3Nb2/3O3-0.33PbTiO3 thin films with a pure perovskite crystalline phase were deposited on LaNiO3-coated SiO2/Si substrates by the rf magnetron sputtering technique. We found that the as-grown thin films with (001)-oriented texture possess not only excellent dielectric and ferroelectric properties but also a large electrocaloric effect (14.5 K in 12 V, i.e., 1.21 K/V) which is attributed to the large polarization and entropy change during the ferroelectric-paraelectric phase transition at a high electric field. The discovery of the large electrocaloric effect in highly textured ferroelectric thin films widens their potential applications, such as in solid-state electrical refrigeration.

  1. Two orders of magnitude reduction in the temperature dependent resistivity of Ga1-xMnxAs grown on (6 3 1) GaAs insulating substrates

    NASA Astrophysics Data System (ADS)

    Rangel-Kuopp, Victor-Tapio; Martinez-Velis, Isaac; Gallardo-Hernandez, Salvador; Lopez-Lopez, Maximo

    2013-12-01

    The temperature dependent van der Pauw (T-Pauw) technique was used to investigate the resistivity of three Ga1-xMnxAs layers grown on (6 3 1) GaAs semi-insulating substrates. The samples had Mn concentration of 3.52×l020 cm-3, 5.05×1020 cm-3 and 1.12×l021 cm-3, corresponding to Mn cell effusion temperature TMn of 700 °C, 715 °C and 745 °C, respectively. They were compared to samples grown under the same conditions but on (0 0 1) GaAs semi-insulating substrates. For the sample grown at TMn=700 °C on a (6 3 1) substrate, a two orders of magnitude decrease in the resistivity is observed, when compared with the sample grown on a (0 0 1) substrate. For the sample grown at TMn=715 °C the decrease is approximately four times, while for the sample grown at TMn=745 °C the decrease is approximately forty times. We plotted the resistivities as a function of temperature in Arrhenius plots, where we extracted two activation energies, the smallest one between 6 and 11 meV, and the largest one between 25 and 183 meV. Both activation energies increased as TMn increased. These results are in agreement with SIMS analysis where we observed that manganese concentration in the (6 3 1) orientation growth is around two order of magnitude larger than in the samples grown in the (0 0 1) orientation substrate.

  2. Lattice parameter accommodation between GaAs(111) nanowires and Si(111) substrate after growth via Au-assisted molecular beam epitaxy.

    PubMed

    Davydok, Anton; Breuer, Steffen; Biermanns, Andreas; Geelhaar, Lutz; Pietsch, Ullrich

    2012-02-08

    Using out-of-plane and in-plane X-ray diffraction techniques, we have investigated the structure at the interface between GaAs nanowires [NWs] grown by Au-assisted molecular beam epitaxy and the underlying Si(111) substrate. Comparing the diffraction pattern measured at samples grown for 5, 60, and 1,800 s, we find a plastic strain release of about 75% close to the NW-to-substrate interface even at the initial state of growth, probably caused by the formation of a dislocation network at the Si-to-GaAs interface. In detail, we deduce that during the initial stage, zinc-blende structure GaAs islands grow with a gradually increasing lattice parameter over a transition region of several 10 nm in the growth direction. In contrast, accommodation of the in-plane lattice parameter takes place within a thickness of about 10 nm. As a consequence, the ratio between out-of-plane and in-plane lattice parameters is smaller than the unity in the initial state of growth. Finally the wurtzite-type NWs grow on top of the islands and are free of strain.

  3. Lattice parameter accommodation between GaAs(111) nanowires and Si(111) substrate after growth via Au-assisted molecular beam epitaxy

    PubMed Central

    2012-01-01

    Using out-of-plane and in-plane X-ray diffraction techniques, we have investigated the structure at the interface between GaAs nanowires [NWs] grown by Au-assisted molecular beam epitaxy and the underlying Si(111) substrate. Comparing the diffraction pattern measured at samples grown for 5, 60, and 1,800 s, we find a plastic strain release of about 75% close to the NW-to-substrate interface even at the initial state of growth, probably caused by the formation of a dislocation network at the Si-to-GaAs interface. In detail, we deduce that during the initial stage, zinc-blende structure GaAs islands grow with a gradually increasing lattice parameter over a transition region of several 10 nm in the growth direction. In contrast, accommodation of the in-plane lattice parameter takes place within a thickness of about 10 nm. As a consequence, the ratio between out-of-plane and in-plane lattice parameters is smaller than the unity in the initial state of growth. Finally the wurtzite-type NWs grow on top of the islands and are free of strain. PMID:22315928

  4. Growth of InAs Quantum Dots on GaAs (511)A Substrates: The Competition between Thermal Dynamics and Kinetics.

    PubMed

    Wen, Lei; Gao, Fangliang; Zhang, Shuguang; Li, Guoqiang

    2016-08-01

    The growth process of InAs quantum dots grown on GaAs (511)A substrates has been studied by atomic force microscopy. According to the atomic force microscopy studies for quantum dots grown with varying InAs coverage, a noncoherent nucleation of quantum dots is observed. Moreover, due to the long migration length of In atoms, the Ostwald ripening process is aggravated, resulting in the bad uniformity of InAs quantum dots on GaAs (511)A. In order to improve the uniformity of nucleation, the growth rate is increased. By studying the effects of increased growth rates on the growth of InAs quantum dots, it is found that the uniformity of InAs quantum dots is greatly improved as the growth rates increase to 0.14 ML s(-1) . However, as the growth rates increase further, the uniformity of InAs quantum dots becomes dual-mode, which can be attributed to the competition between Ostwald ripening and strain relaxation processes. The results in this work provide insights regarding the competition between thermal dynamical barriers and the growth kinetics in the growth of InAs quantum dots, and give guidance to improve the size uniformity of InAs quantum dots on (N11)A substrates.

  5. Enhancement-mode Lg = 50 nm metamorphic InAlAs/InGaAs HEMTs on GaAs substrates with fmax surpassing 408 GHz

    NASA Astrophysics Data System (ADS)

    Li, Ming; Tang, Chak Wah; Li, Haiou; Lau, Kei May

    2014-09-01

    A novel self-aligned T-shaped gate enhancement-mode metamorphic In0.50Al0.50As/In0.53Ga0.47As HEMTs on GaAs substrates by MOCVD is proposed and demonstrated, utilizing an optimized multi-stage composite buffer scheme. High 2-D electron gas Hall mobility values of 9100 cm2/V s at 300 K and 38,900 cm2/V s at 77 K have been achieved. The mHEMT had a threshold voltage (Vth) of +0.22 V, a maximum drain current of 786 mA/mm and transconductance up to 1.2 S/mm at VDS = 0.5 V. The fT and fmax of 50-nm T-shaped gate devices were 305 and 408 GHz, respectively. To the knowledge of the authors, these results are the highest reported for MOCVD-grown enhancement-mode mHEMTs on GaAs substrate.

  6. Observation of an Organic-Inorganic Lattice Match during Biomimetic Growth of (001)-Oriented Calcite Crystals under Floating Sulfate Monolayers

    SciTech Connect

    Kewalramani, S.; Kim, K; Stripe, B; Evmenenko, G; Dommett, G; Dutta, P

    2008-01-01

    Macromolecular layers rich in amino acids and with some sulfated polysaccharides appear to control oriented calcite growth in living organisms. Calcite crystals nucleating under floating acid monolayers have been found to be unoriented on average. We have now observed directly, using in situ grazing incidence X-ray diffraction, that there is a 1:1 match between the monolayer unit cell and the unit cell of the (001) plane of calcite. Thus, sulfate head groups appear to act as templates for the growth of (001)-oriented calcite crystals, which is the orientation commonly found in biominerals.

  7. Thermally stable dielectric responses in uniaxially (001)-oriented CaBi4Ti4O15 nanofilms grown on a Ca2Nb3O10− nanosheet seed layer

    PubMed Central

    Kimura, Junichi; Takuwa, Itaru; Matsushima, Masaaki; Shimizu, Takao; Uchida, Hiroshi; Kiguchi, Takanori; Shiraishi, Takahisa; Konno, Toyohiko J.; Shibata, Tatsuo; Osada, Minoru; Sasaki, Takayoshi; Funakubo, Hiroshi

    2016-01-01

    To realize a high-temperature capacitor, uniaxially (001)-oriented CaBi4Ti4O15 films with various film thicknesses were prepared on (100)cSrRuO3/Ca2Nb3O10− nanosheet/glass substrates. As the film thickness decreases to 50 nm, the out-of-plane lattice parameters decrease while the in-plane lattice ones increase due to the in-plane tensile strain. However, the relative dielectric constant (εr) at room temperature exhibits a negligible degradation as the film thickness decreases to 50 nm, suggesting that εr of (001)-oriented CaBi4Ti4O15 is less sensitive to the residual strain. The capacitance density increases monotonously with decreasing film thickness, reaching a value of 4.5 μF/cm2 for a 50-nm-thick nanofilm, and is stable against temperature changes from room temperature to 400 °C irrespective of film thickness. This behaviour differs from that of the widely investigated perovskite-structured dielectrics. These results show that (001)-oriented CaBi4Ti4O15 films derived using Ca2Nb3O10− nanosheets as seed layers can be made candidates for high-temperature capacitor applications by a small change in the dielectric properties against film thickness and temperature variations. PMID:26875929

  8. Possibility of a quasi-liquid layer of As on GaAs substrate grown by MBE as observed by enhancement of Ga desorption at high As pressure

    NASA Astrophysics Data System (ADS)

    Asai, K.; Feng, J. M.; Vaccaro, P. O.; Fujita, K.; Ohachi, T.

    2000-06-01

    The As vapor pressure dependence of the Ga desorption rate during molecular beam epitaxy (MBE) growth on GaAs( n11)A ( n=1-4 hereafter) substrates was studied by photoluminescence (PL) measurements at 12 K for undoped AlGaAs/GaAs asymmetric double quantum wells (ADQWs). Reflection high energy electron diffraction (RHEED) oscillation measurements on a GaAs(100) surface were also used. Two K-cells of As solid sources (corresponding to beam equivalent pressures (BEPs) of 9.0×10 -6 and 4.5×10 -5 Torr) were used to change the As pressure rapidly. The Ga flux and substrate temperature were kept constant at 0.76 ML/s and 12 K, respectively, while the As flux changed from 7.6 (BEP 9.0×10 -6 Torr) to 32 ML/s (4.5×10 -5 Torr). With increasing As pressure, two separated PL peaks for the wide well (WW) of high index substrates were observed. This peak separation is attributed to a reduced well depth from an increasing Ga desorption rate. The energy differences of the PL peak depending on the off-angle from (111)A to (100) plane indicates an orientation-dependent Ga desorption rate. Moreover, amongst all ( n11)A and (100) planes, the Ga desorption rate was smallest from the (111)A surface. The increase of Ga desorption from the surface at high As pressures probably arose from an increasing coverage with a quasi-liquid layer (QLL).

  9. Modified dislocation filter method: toward growth of GaAs on Si by metal organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Hu, Haiyang; Wang, Jun; He, Yunrui; Liu, Kai; Liu, Yuanyuan; Wang, Qi; Duan, Xiaofeng; Huang, Yongqing; Ren, Xiaomin

    2016-06-01

    In this paper, metamorphic growth of GaAs on (001) oriented Si substrate, with a combination method of applying dislocation filter layer (DFL) and three-step growth process, was conducted by metal organic chemical vapor deposition. The effectiveness of the multiple InAs/GaAs self-organized quantum dot (QD) layers acting as a dislocation filter was researched in detail. And the growth conditions of the InAs QDs were optimized by theoretical calculations and experiments. A 2-μm-thick buffer layer was grown on the Si substrate with the three-step growth method according to the optimized growth conditions. Then, a 114-nm-thick DFL and a 1-μm-thick GaAs epilayer were grown. The results we obtained demonstrated that the DFL can effectively bend dislocation direction via the strain field around the QDs. The optimal structure of the DFL is composed of three-layer InAs QDs with a growth time of 55 s. The method could reduce the etch pit density from about 3 × 106 cm-2 to 9 × 105 cm-2 and improve the crystalline quality of the GaAs epilayers on Si.

  10. Epitaxial growth and characterization of Bi1-xSbx spin Hall thin films on GaAs(111)A substrates

    NASA Astrophysics Data System (ADS)

    Ueda, Yugo; Duy Khang, Nguyen Huynh; Yao, Kenichiro; Hai, Pham Nam

    2017-02-01

    We grew and characterized Bi1-xSbx thin films on GaAs(111)A substrates by molecular beam epitaxy. By optimizing the growth condition, we were able to grow Bi1-xSbx thin films epitaxially with the Sb concentration ranging from 0% to 100% and the epitaxial orientation of Bi1-xSbx(001)//GaAs(111). The conductivity of Bi1-xSbx exceeds 105 Ω-1 m-1 and approaches those of bulk values for thick enough thin films, which are higher than those of other Bi-based topological insulators by at least an order of magnitude. From the temperature dependence of their electrical conductivity, we confirmed the existence of metallic surface states of Bi1-xSbx inside and outside of the topological insulating region. Our results demonstrate the potential of Bi1-xSbx as a spin Hall material with high conductivity and possibly large spin Hall angle for spintronic applications.

  11. Experimental investigations of atomic ordering effects in the epitaxial GaxIn1-xP, coherently grown on GaAs (100) substrates

    NASA Astrophysics Data System (ADS)

    Seredin, P. V.; Goloshchapov, D. L.; Khudyakov, Yu. Yu.; Lenshin, A. S.; Lukin, A. N.; Arsentyev, I. N.; Prutskij, Tatiana

    2017-03-01

    A range of structural and spectroscopic techniques were used for the study of the properties of epitaxial GaxIn1-xP alloys with an ordered arrangement of atoms in a crystal lattice grown by MOCVD on single-crystalline substrates of GaAs (100). The appearance of atomic ordering in the coherent growth conditions of the ordered GaxIn1-xP alloy on GaAs (100) resulted in cardinal changes of the structural and optical properties of semiconductor in comparison to disordered alloys, including the change of the crystal lattice parameter and, consequently, reduced crystal symmetry, decreased band gap and formation of two different types of surface nanorelief. This is the first report of the calculation of parameters of the crystal lattice in GaxIn1-xP with ordering taking into account the elastic stresses dependent on long-range ordering. Based on the variance analysis data with regard to the IR-reflection spectra as well as the UV-spectroscopy data obtained in the transmission-reflection mode, the main optical characteristics of the ordered GaxIn1-xP alloys were determined for the first time, namely, refractive index dispersion and high-frequency dielectric constant. All of the experimental results were in good agreement with the previously developed theoretical beliefs.

  12. Growth of CuGaSe2 Layers on Closely Lattice-Matched GaAs Substrates by Migration-Enhanced Epitaxy

    NASA Astrophysics Data System (ADS)

    Fujita, Miki; Kawaharazuka, Atsushi; Nishinaga, Jiro; Ploog, Klaus H.; Horikoshi, Yoshiji

    2011-12-01

    CuGaSe2 single-crystal films are grown on the As-stabilized (2×4) surface of (001) GaAs by migration-enhanced epitaxy (MEE), where Cu+Ga and Se are alternately deposited. The growth process is monitored by refraction high-energy electron diffraction (RHEED) in the [110] azimuth. Under the Cu-enriched growth condition, a deformed 4-fold pattern is observed in both Cu+Ga and Se deposition periods. The deformed 4-fold pattern is found to be related to the segregation of Cu2Se on the CuGaSe2 surface as confirmed by the results of X-ray diffraction (XRD) measurement. By reducing the beam equivalent pressure of Cu (Cu-BEP), clear 4-fold patterns appear in both Cu+Ga and Se deposition periods instead of deformed 4-fold patterns. Further reduction of Cu-BEP results in clear 4- and 2-fold patterns for Cu+Ga and Se deposition periods. Under these growth conditions, Cu2Se-segregation-free CGS growth is achieved. Thus, the CuGaSe2 single-crystal layers without Cu2Se-segregation are successfully grown on GaAs(001) substrates by optimizing the Cu-BEP.

  13. Correlation of electrical and structural properties of single as-grown GaAs nanowires on Si (111) substrates.

    PubMed

    Bussone, Genziana; Schäfer-Eberwein, Heiko; Dimakis, Emmanouil; Biermanns, Andreas; Carbone, Dina; Tahraoui, Abbes; Geelhaar, Lutz; Bolívar, Peter Haring; Schülli, Tobias U; Pietsch, Ullrich

    2015-02-11

    We present the results of the study of the correlation between the electrical and structural properties of individual GaAs nanowires measured in their as-grown geometry. The resistance and the effective charge carrier mobility were extracted for several nanowires, and subsequently, the same nano-objects were investigated using X-ray nanodiffraction. This revealed a number of perfectly stacked zincblende and twinned zincblende units separated by axial interfaces. Our results suggest a correlation between the electrical parameters and the number of intrinsic interfaces.

  14. Optical and electrical studies of arsenic-implanted HgCdTe films grown with molecular beam epitaxy on GaAs and Si substrates

    NASA Astrophysics Data System (ADS)

    Izhnin, I. I.; Voitsekhovsky, A. V.; Korotaev, A. G.; Fitsych, O. I.; Bonchyk, A. Yu.; Savytskyy, H. V.; Mynbaev, K. D.; Varavin, V. S.; Dvoretsky, S. A.; Mikhailov, N. N.; Yakushev, M. V.; Jakiela, R.

    2017-03-01

    A defect study was performed on arsenic-implanted Hg1-xCdxTe (x = 0.23-0.30) films with graded-gap surface layers, grown with molecular-beam epitaxy on GaAs and Si substrates and designed for fabrication of 'p+-n'-type photodiodes. First, formation of n+-p structure was investigated in p-type material, in order to study radiation-induced donor defects. Next, formation of p+-n structure was investigated in the course of implantation in n-type material and arsenic activation annealing. Influence of the graded-gap surface layer was found to be expressed in the degree of saturation of the concentration of radiation-induced defects, with results obtained on arsenic- and boron-implanted material differing due to the difference in the ion masses.

  15. Impurity cyclotron resonance in InGaAs/GaAs superlattice and InGaAs/AlAs superlattice grown on GaAs substrates

    NASA Astrophysics Data System (ADS)

    Momose, H.; Okai, H.; Deguchi, H.; Mori, N.; Takeyama, S.

    2006-05-01

    Various temperature measurements of cyclotron resonance (CR) under pulsed ultra-high magnetic field up to 160 T were carried out in InGaAs/GaAs superlattice (SL) and InGaAs/AlAs SL samples grown by molecular beam epitaxy on GaAs substrates. Clear free-electron CR and impurity CR signals were observed in transmission of CO 2 laser with wavelength of 10.6 μm. A binding energy of impurities in these SLs was roughly estimated based on the experiment as result, and we found it was smaller than the previous experimental result of GaAs/AlAs SLs and theoretical calculation with a simple model.

  16. Miniaturized bandpass filter using a meandered stepped-impedance resonator with a meandered-line stub-load on a GaAs substrate.

    PubMed

    Chuluunbaatar, Z; Wang, C; Kim, N Y

    2014-01-01

    This paper reports a compact bandpass filter with improved skirt selectivity using integrated passive device fabrication technology on a GaAs substrate. The structure of the filter consists of electromagnetically coupled meandered-line symmetric stepped-impedance resonators. The strength of the coupling between the resonators is enhanced by using a meandered-line stub-load inside the resonators to improve the selectivity and miniaturize the size of the filter. In addition, the center frequency of the filter can be flexibly controlled by varying degrees of the capacitive coupling between resonator and stub-load. To verify the proposed concept, a protocol bandpass filter with center frequency of 6.53 GHz was designed, fabricated, and measured, with a return loss and insertion loss of 39.1 dB and 1.63 dB.

  17. On the optimization of asymmetric barrier layers in InAlGaAs/AlGaAs laser heterostructures on GaAs substrates

    SciTech Connect

    Zhukov, A. E.; Asryan, L. V.; Semenova, E. S.; Zubov, F. I.; Kryzhanovskaya, N. V.; Maximov, M. V.

    2015-07-15

    Band offsets at the heterointerface are calculated for various combinations of InAlGaAs/AlGaAs heteropairs that can be synthesized on GaAs substrates in the layer-by-layer pseudomorphic growth mode. Patterns which make it possible to obtain an asymmetric barrier layer providing the almost obstruction-free transport of holes and the highest possible barrier height for electrons are found. The optimal compositions of both compounds (In{sup 0.232}Al{sup 0.594}Ga{sup 0.174}As/Al{sup 0.355}Ga{sup 0.645}As) at which the flux of electrons across the barrier is at a minimum are determined with consideration for the critical thickness of the indium-containing quaternary solid solution.

  18. Growth of lattice-matched GaInAsP grown on vicinal GaAs(001) substrates within the miscibility gap for solar cells

    NASA Astrophysics Data System (ADS)

    Oshima, Ryuji; France, Ryan M.; Geisz, John F.; Norman, Andrew G.; Steiner, Myles A.

    2017-01-01

    The growth of quaternary Ga0.68In0.32As0.35P0.65 by metal-organic vapor phase epitaxy is very sensitive to growth conditions because the composition is within a miscibility gap. In this investigation, we fabricated 1 μm-thick lattice-matched GaInAsP films grown on GaAs(001) for application to solar cells. The growth temperature and substrate miscut are varied in order to characterize the effect of the surface diffusion of adatoms on the material quality of alloys. Transmission electron microscopy and two-dimensional in-situ multi-beam optical stress determine that growth temperatures of 650 °C and below enhance the formation of the CuPtB atomic ordering and suppress material decomposition, which is found to occur at the growth surface. The root-mean-square (RMS) roughness is reduced from 33.6 nm for 750 °C to 1.62 nm for 650 °C, determined by atomic force microscopy. Initial investigations show that the RMS roughness can be further reduced using increased miscut angle, and substrates miscut toward (111)A, leading to an RMS roughness of 0.56 nm for the sample grown at 600 °C on GaAs miscut 6° toward (111)A. Using these conditions, we fabricate an inverted hetero-junction 1.62 eV Ga0.68In0.32As0.35P0.65 solar cell without an anti-reflection coating with a short-circuit current density, open-circuit voltage, fill factor, and efficiency of 12.23 mA/cm2, 1.12 V, 86.18%, and 11.80%, respectively.

  19. InGaAs/GaAsP strain balanced multi-quantum wires grown on misoriented GaAs substrates for high efficiency solar cells

    NASA Astrophysics Data System (ADS)

    Alonso-Álvarez, D.; Thomas, T.; Führer, M.; Hylton, N. P.; Ekins-Daukes, N. J.; Lackner, D.; Philipps, S. P.; Bett, A. W.; Sodabanlu, H.; Fujii, H.; Watanabe, K.; Sugiyama, M.; Nasi, L.; Campanini, M.

    2014-08-01

    Quantum wires (QWRs) form naturally when growing strain balanced InGaAs/GaAsP multi-quantum wells (MQW) on GaAs [100] 6° misoriented substrates under the usual growth conditions. The presence of wires instead of wells could have several unexpected consequences for the performance of the MQW solar cells, both positive and negative, that need to be assessed to achieve high conversion efficiencies. In this letter, we study QWR properties from the point of view of their performance as solar cells by means of transmission electron microscopy, time resolved photoluminescence and external quantum efficiency (EQE) using polarised light. We find that these QWRs have longer lifetimes than nominally identical QWs grown on exact [100] GaAs substrates, of up to 1 μs, at any level of illumination. We attribute this effect to an asymmetric carrier escape from the nanostructures leading to a strong 1D-photo-charging, keeping electrons confined along the wire and holes in the barriers. In principle, these extended lifetimes could be exploited to enhance carrier collection and reduce dark current losses. Light absorption by these QWRs is 1.6 times weaker than QWs, as revealed by EQE measurements, which emphasises the need for more layers of nanostructures or the use light trapping techniques. Contrary to what we expected, QWR show very low absorption anisotropy, only 3.5%, which was the main drawback a priori of this nanostructure. We attribute this to a reduced lateral confinement inside the wires. These results encourage further study and optimization of QWRs for high efficiency solar cells.

  20. Growth of lattice-matched GaInAsP grown on vicinal GaAs(001) substrates within the miscibility gap for solar cells

    SciTech Connect

    Oshima, Ryuji; France, Ryan M.; Geisz, John F.; Norman, Andrew G.; Steiner, Myles A.

    2017-01-01

    The growth of quaternary Ga0.68In0.32As0.35P0.65 by metal-organic vapor phase epitaxy is very sensitive to growth conditions because the composition is within a miscibility gap. In this investigation, we fabricated 1 um-thick lattice-matched GaInAsP films grown on GaAs(001) for application to solar cells. The growth temperature and substrate miscut are varied in order to characterize the effect of the surface diffusion of adatoms on the material quality of alloys. Transmission electron microscopy and two-dimensional in-situ multi-beam optical stress determine that growth temperatures of 650 degrees C and below enhance the formation of the CuPtB atomic ordering and suppress material decomposition, which is found to occur at the growth surface. The root-mean-square (RMS) roughness is reduced from 33.6 nm for 750 degrees C to 1.62 nm for 650 degrees C, determined by atomic force microscopy. Initial investigations show that the RMS roughness can be further reduced using increased miscut angle, and substrates miscut toward (111)A, leading to an RMS roughness of 0.56 nm for the sample grown at 600 degrees C on GaAs miscut 6 degrees toward (111)A. Using these conditions, we fabricate an inverted hetero-junction 1.62 eV Ga0.68In0.32As0.35P0.65 solar cell without an anti-reflection coating with a short-circuit current density, open-circuit voltage, fill factor, and efficiency of 12.23 mA/cm2, 1.12 V, 86.18%, and 11.80%, respectively.

  1. Photoluminescence characteristics of ZnTe bulk crystal and ZnTe epilayer grown on GaAs substrate by MOVPE

    NASA Astrophysics Data System (ADS)

    Lü, Hai-Yan; Mu, Qi; Zhang, Lei; Lü, Yuan-Jie; Ji, Zi-Wu; Feng, Zhi-Hong; Xu, Xian-Gang; Guo, Qi-Xin

    2015-12-01

    Excitation power and temperature-dependent photoluminescence (PL) spectra of the ZnTe epilayer grown on (100) GaAs substrate and ZnTe bulk crystal are investigated. The measurement results show that both the structures are of good structural quality due to their sharp bound excitonic emissions and absence of the deep level structural defect-related emissions. Furthermore, in contrast to the ZnTe bulk crystal, although excitonic emissions for the ZnTe epilayer are somewhat weak, perhaps due to As atoms diffusing from the GaAs substrate into the ZnTe epilayer and/or because of the strain-induced degradation of the crystalline quality of the ZnTe epilayer, neither the donor-acceptor pair (DAP) nor conduction band-acceptor (e-A) emissions are observed in the ZnTe epilayer. This indicates that by further optimizing the growth process it is possible to obtain a high-crystalline quality ZnTe heteroepitaxial layer that is comparable to the ZnTe bulk crystal. Project supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120131110006), the Key Science and Technology Program of Shandong Province, China (Grant No. 2013GGX10221), the Key Laboratory of Functional Crystal Materials and Device (Shandong University, Ministry of Education), China (Grant No. JG1401), the National Natural Science Foundation of China (Grant No. 61306113), the Major Research Plan of the National Natural Science Foundation of China (Grant No. 91433112), and the Partnership Project for Fundamental Technology Researches of the Ministry of Education, Culture, Sports, Science and Technology, Japan.

  2. Cathodoluminescence Characterization of Ion Implanted GaAs.

    DTIC Science & Technology

    1980-03-01

    into GaAs. In their experi- ment, GaAs thin films were grown on MgA12 4 spinel substrates. When the electrons had sufficient energy they caused the...sections. Growing The epi-layers were grown on a chromium doped GaAs substrate using a vapor phase epitaxial growth technique. They were grown by G

  3. Structural and magnetic properties of epitaxial L2{sub 1}-structured Co{sub 2}(Cr,Fe)Al films grown on GaAs(001) substrates

    SciTech Connect

    Hirohata, A.; Kurebayashi, H.; Okamura, S.; Kikuchi, M.; Masaki, T.; Nozaki, T.; Tezuka, N.; Inomata, K.

    2005-05-15

    We have successfully grown both L2{sub 1} polycrystalline Co{sub 2}CrAl and epitaxial L2{sub 1}-structured Co{sub 2}FeAl films onto GaAs(001) substrates under an optimized condition. Both structural and magnetic analyses reveal the detailed growth mechanism of the alloys, and suggest that the Co{sub 2}CrAl film contains atomically disordered phases, which decreases the magnetic moment per f.u., while the Co{sub 2}FeAl film satisfies the generalized Slater-Pauling behavior. By using these films, magnetic tunnel junctions (MTJs) have been fabricated, showing 2% tunnel magnetoresistance (TMR) for the Co{sub 2}CrAl MTJ at 5 K and 9% for the Co{sub 2}FeAl MTJ at room temperature (RT). Even though the TMR ratio still needs to be improved for future device applications, these results explicitly include that the Co{sub 2}(Cr,Fe)Al full Heusler alloy is a promising compound to achieve half-metallicity at RT by controlling both disorder and surface structures in the atomic level by manipulating the Fe concentration.

  4. Photoluminescence spectroscopy and the effective mass theory of strained (In,Ga)As/GaAs heterostructures grown on (112)B GaAs substrates

    NASA Technical Reports Server (NTRS)

    Henderson, R. H.; Sun, D.; Towe, E.

    1995-01-01

    The photoluminescence characteristics of pseudomorphic In(0.19)Ga(0.81)As/GaAs quantum well structures grown on both the conventional (001) and the unconventional (112)B GaAs substrate are investigated. It is found that the emission spectra of the structures grown on the (112)B surface exhibit some spectral characteristics not observed on similar structures grown on the (001) surface. A spectral blue shift of the e yields hh1 transition with increasing optical pump intensity is observed for the quantum wells on the (112) surface. This shift is interpreted to be evidence of a strain-induced piezoelectric field. A second spectral feature located within the band gap of the In(0.19)Ga(0.81)As layer is also observed for the (112) structure; this feature is thought to be an impurity-related emission. The expected transition energies of the quantum well structures are calculated using the effective mass theory based on the 4 x 4 Luttinger valence band Hamiltonian, and related strain Hamiltonian.

  5. Selective MBE growth of hexagonal networks of trapezoidal and triangular GaAs nanowires on patterned (1 1 1)B substrates

    NASA Astrophysics Data System (ADS)

    Tamai, Isao; Hasegawa, Hideki

    2007-04-01

    As a combination of novel hardware architecture and novel system architecture for future ultrahigh-density III-V nanodevice LSIs, the authors' group has recently proposed a hexagonal binary decision diagram (BDD) quantum circuit approach where gate-controlled path switching BDD node devices for a single or few electrons are laid out on a hexagonal nanowire network to realize a logic function. In this paper, attempts are made to establish a method to grow highly dense hexagonal nanowire networks for future BDD circuits by selective molecular beam epitaxy (MBE) on (1 1 1)B substrates. The (1 1 1)B orientation is suitable for BDD architecture because of the basic three-fold symmetry of the BDD node device. The growth experiments showed complex evolution of the cross-sectional structures, and it was explained in terms of kinetics determining facet boundaries. Straight arrays of triangular nanowires with 60 nm base width as well as hexagonal arrays of trapezoidal nanowires with a node density of 7.5×10 6 cm -2 were successfully grown with the aid of computer simulation. The result shows feasibility of growing high-density hexagonal networks of GaAs nanowires with precise control of the shape and size.

  6. Anisotropy of selective epitaxy in nanoscale-patterned growth: GaAs nanowires selectively grown on a SiO2-patterned (001) substrate by molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Lee, S. C.; Dawson, L. R.; Brueck, S. R. J.; Jiang, Y.-B.

    2005-12-01

    Anisotropic selective epitaxy in nanoscale-patterned growth (NPG) by molecular-beam epitaxy is investigated on a 355nm period two-dimensional array of circular holes fabricated in a 30-nm-thick SiO2 film on a GaAs(001) substrate. The hole diameter ranged from 70to150nm. The small hole diameter and the very thin masking layer stimulated lateral growth over the SiO2 surface at an early stage of selective epitaxy on this patterned substrate. Lateral overgrowth associated with selective epitaxy, however, did not proceed isotropically along the circular boundary between the open substrate surface and the SiO2 mask. There was preferential growth direction parallel to ⟨111⟩B. This anisotropy in the selective epitaxy resulted in the formation of a nanoscale, nontapered, straight-wire-type epitaxial layer (GaAs nanowires), which had a length of up to 1.8μm for a nominal 200nm deposition. Every GaAs nanowire had a hexagonal prismatic shape directed along ⟨111⟩B and was surrounded by six (110) sidewalls. The anisotropy of selective epitaxy and faceting in NPG were affected by the profile of the SiO2 mask and are interpreted using a minimization of the total surface energy for equilibrium crystal shape.

  7. Structural, magnetic, and superconducting properties of pulsed-laser-deposition-grown La1.85 Sr0.15 CuO4 / La2/3 Ca1/3 MnO3 superlattices on (001)-oriented LaSrAlO4 substrates

    SciTech Connect

    Das, S.; Sen, K.; Marozau, I.; Uribe-Laverde, M. A.; Biskup, N.; Varela, M.; Khaydukov, Y.; Soltwedel, O.; Keller, T.; Döbeli, M.; Schneider, C. W.; Bernhard, C.

    2014-03-12

    Epitaxial La1.85 Sr0.15 CuO4 / La2/3 Ca1/3 MnO3 (LSCO/LCMO) superlattices (SL) on (001)- oriented LaSrAlO4 substrates have been grown with pulsed laser deposition (PLD) technique. Their structural, magnetic and superconducting properties have been determined with in-situ reflection high energy electron diffraction (RHEED), x-ray diffraction, specular neutron reflectometry, scanning transmission electron microscopy (STEM), electric transport, and magnetization measurements. We find that despite the large mismatch between the in-plane lattice parameters of LSCO (a = 0.3779 nm) and LCMO (a = 0.387 nm) these superlattices can be grown epitaxially and with a high crystalline quality. While the first LSCO layer remains clamped to the LSAO substrate, a sizeable strain relaxation occurs already in the first LCMO layer. The following LSCO and LCMO layers adopt a nearly balanced state in which the tensile and compressive strain effects yield alternating in-plane lattice parameters with an almost constant average value. No major defects are observed in the LSCO layers, while a significant number of vertical antiphase boundaries are found in the LCMO layers. The LSCO layers remain superconducting with a relatively high superconducting onset temperature of Tconset ≈ 36 K. The macroscopic superconducting response is also evident in the magnetization data due to a weak diamagnetic signal below 10 K for H ∥ ab and a sizeable paramagnetic shift for H ∥ c that can be explained in terms of a vortex-pinning-induced flux compression. The LCMO layers maintain a

  8. Effects of substrate nitridation and buffer layer on the crystalline improvements of semi-polar InN(101¯3) crystal on GaAs(110) by MOVPE

    NASA Astrophysics Data System (ADS)

    Cho, H. C.; Togashi, R.; Murakami, H.; Kumagai, Y.; Koukitu, A.

    2013-03-01

    In this report, effects of ammonia nitridation and low temperature InN buffer growth were investigated to improve the crystalline quality of InN(101¯3) grown on GaAs(110) by metalorganic vapor phase epitaxy (MOVPE). InN(101¯3) single crystal including less than 0.1% of differently oriented domains was successfully grown by inserting low temperature InN buffer layer. The full width at half maximum (FWHM) values of InN(101¯3) epitaxial layer were drastically decreased from 89 arcmin to 55 arcmin after processing ammonia nitridation of GaAs(110) substrate surface. Furthermore, the FWHM value was decreased to 38 arcmin by increasing growth time, and the mechanism of dislocation annihilation happened during epitaxial growth was discussed.

  9. High-Resistivity Semi-insulating AlSb on GaAs Substrates Grown by Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Vaughan, E. I.; Addamane, S.; Shima, D. M.; Balakrishnan, G.; Hecht, A. A.

    2016-04-01

    Thin-film structures containing AlSb were grown using solid-source molecular beam epitaxy and characterized for material quality, carrier transport optimization, and room-temperature radiation detection response. Few surface defects were observed, including screw dislocations resulting from shear strain between lattice-mismatched layers. Strain was also indicated by broadening of the AlSb peak in x-ray diffraction measurements. Threading dislocations and interfacial misfit dislocations were seen with transmission electron microscopy imaging. Doping of the AlSb layer was introduced during growth using GaTe and Be to determine the effect on Hall transport properties. Hall mobility and resistivity were largest for undoped AlSb samples, at 3000 cm2/V s and 106 Ω cm, respectively, and increased doping levels progressively degraded these values. To test for radiation response, p-type/intrinsic/ n-type (PIN) diode structures were grown using undoped AlSb on n-GaAs substrates, with p-GaSb cap layers to protect the AlSb from oxidation. Alpha-particle radiation detection was achieved and spectra were produced for 241Am, 252Cf, and 239Pu sources. Reducing the detector surface area increased the pulse height observed, as expected based on voltage-capacitance relationships for diodes.

  10. The Influence of Hydrogen on Shape Memory Effect and Superelasticity in [001]-Oriented FeNiCoAlTi Single Crystals

    NASA Astrophysics Data System (ADS)

    Chumlyakov, Yu. I.; Kireeva, I. V.; Platonova, Yu. N.

    2016-04-01

    Using [001]-oriented single crystals of an iron-based alloy (Fe - 28% Ni - 17% Co - 11.5% Al - 2.5% Ti at.%), which were aged at 973 K for 7 h, the influence of hydrogen on the axial-stress temperature response σ0.1(T), the values of shape-memory effect (SME) and superelasticity (SE) is investigated during thermoelastic γ-α'-martensitic transformation (MT) (γ-FCC - face centered lattice, α'-BCT - body centered tetragonal lattice) under tensile conditions. It is found that saturation of [001]-oriented single crystals of the Fe - 28% Ni - 17% Co - 11.5% Al - 2.5% Ti alloy with hydrogen within 2 h at T = 300 K and current density j = 50 mA/cm2 results in lower starting temperature, Ms, of a forward MT during cooling and Md temperature, increased strength properties of the high-temperature phase at Md temperature and wider temperature range of SE observation compared to hydrogen-free crystals. It is shown that hydrogen affects but only slightly the SME and SE values, the temperature and stress hysteresis under the above saturation mode. In [001]-oriented crystals aged at 973 K for 7 h, which are saturated with hydrogen and hydrogen-free, the SME and SE values are found to be equal to 7.8-8 and 6.5-6.9%, respectively.

  11. Impact of interfacial misfit dislocation growth mode on highly lattice-mismatched InxGa1-xSb epilayer grown on GaAs substrate by metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Huynh, Sa Hoang; Ha, Minh Thien Huu; Do, Huy Binh; Luc, Quang Ho; Yu, Hung Wei; Chang, Edward Yi

    2016-09-01

    Highly lattice-mismatch (over 8%) ternary InxGa1-xSb alloy directly grown on GaAs substrates was demonstrated by metalorganic chemical vapor deposition (MOCVD). The influence of growth parameters, such as growth temperature, indium vapor composition, and V/III ratio, on the film properties was investigated, and it was found that the growth temperature has the strongest effect on the surface morphology and the crystal quality of the InxGa1-xSb epilayer. An optimized growth temperature of ˜590 °C and a V/III ratio of 2.5 were used for the growth of the InxGa1-xSb epilayer on GaAs that displays a lower surface roughness. High-resolution transmission electron microscopy micrographs exhibit that InxGa1-xSb epilayer growth on GaAs was governed by the interfacial misfit dislocation growth mode. Furthermore, the variation of the intermixing layer thickness at the InxGa1-xSb/GaAs heterointerface was observed. These results provide an information of growing highly lattice-mismatched epitaxial material systems by MOCVD growth process.

  12. Structural and band alignment properties of Al{sub 2}O{sub 3} on epitaxial Ge grown on (100), (110), and (111)A GaAs substrates by molecular beam epitaxy

    SciTech Connect

    Hudait, M. K.; Zhu, Y.; Maurya, D.; Priya, S.; Patra, P. K.; Ma, A. W. K.; Aphale, A.; Macwan, I.

    2013-04-07

    Structural and band alignment properties of atomic layer Al{sub 2}O{sub 3} oxide film deposited on crystallographically oriented epitaxial Ge grown in-situ on (100), (110), and (111)A GaAs substrates using two separate molecular beam epitaxy chambers were investigated using cross-sectional transmission microscopy (TEM) and x-ray photoelectron spectroscopy (XPS). High-resolution triple axis x-ray measurement demonstrated pseudomorphic and high-quality Ge epitaxial layer on crystallographically oriented GaAs substrates. The cross-sectional TEM exhibited a sharp interface between the Ge epilayer and each orientation of the GaAs substrate as well as the Al{sub 2}O{sub 3} film and the Ge epilayer. The extracted valence band offset, {Delta}E{sub v}, values of Al{sub 2}O{sub 3} relative to (100), (110), and (111) Ge orientations using XPS measurement were 3.17 eV, 3.34 eV, and 3.10 eV, respectively. Using XPS data, variations in {Delta}E{sub v} related to the crystallographic orientation were {Delta}E{sub V}(110)Ge>{Delta}E{sub V}(100)Ge{>=}{Delta}E{sub V}(111)Ge and the conduction band offset, {Delta}E{sub c}, related to the crystallographic orientation was {Delta}E{sub c}(111)Ge>{Delta}E{sub c}(110)Ge>{Delta}E{sub c}(100)Ge using the measured {Delta}E{sub v}, bandgap of Al{sub 2}O{sub 3} in each orientation, and well-known Ge bandgap of 0.67 eV. These band offset parameters are important for future application of Ge-based p- and n-channel metal-oxide field-effect transistor design.

  13. Surface morphologies and electrical properties of molecular beam epitaxial InSb and InAs(x)Sb(1-x) grown on GaAs and InP substrates

    NASA Technical Reports Server (NTRS)

    Oh, J. E.; Chen, Y. C.; Bhattacharya, P. K.; Tsukamoto, S.

    1989-01-01

    Surface morphologies and electrical properties of molecular beam epitaxial InSb and InAs(x)Sb(1-x) grown on GaAs and InP substrates are discussed. The crystals are all n-type at 300 K and lower temperatures. The surface morphology and electrical characteristics are strongly dependent on Sb(4)/In flux ratio and substrate temperature. The highest mobilities in InSb on InP are 70,000 at 300 K and 110,000 cm(2)/V.s (n=3x10(15) cm(-3)) at 77 K. The mobilities in the alloys also increase monotonically with lowering of temperature. Good quality InAs(x)Sb(1-x) was grown directly on InP substrates by molecular beam epitaxy.

  14. Thickness modulation and strain relaxation in strain-compensated InGaP/InGaP multiple-quantum-well structure grown by metalorganic molecular beam epitaxy on GaAs (100) substrate

    NASA Astrophysics Data System (ADS)

    Mitsuhara, M.; Watanabe, N.; Yokoyama, H.; Iga, R.; Shigekawa, N.

    2016-09-01

    We have investigated the structural features of a strain-compensated InGaP/InGaP multiple-quantum-well (MQW) structure on GaAs (100) substrate with a band-gap energy of around 1.7 eV for solar cell applications. In transmission electron microscopy images, noticeable thickness modulation was observed in the barrier layers for a sample grown at the substrate temperature of 530 °C. Meanwhile, the X-ray diffraction patterns indicated that strain relaxation predominantly occurred in the well layers. Decreasing the substrate temperature from 530 to 510 °C was effective in suppressing both the thickness modulation and strain relaxation. Additionally, increasing the growth rate of the well layer further suppressed the thickness modulation. In room-temperature photoluminescence (PL) emission spectra, the sample grown at 510 °C showed approximately 50 times higher PL peak intensity than the one grown at 530 °C.

  15. Transamidase subunit GAA1/GPAA1 is a M28 family metallo-peptide-synthetase that catalyzes the peptide bond formation between the substrate protein's omega-site and the GPI lipid anchor's phosphoethanolamine.

    PubMed

    Eisenhaber, Birgit; Eisenhaber, Stephan; Kwang, Toh Yew; Grüber, Gerhard; Eisenhaber, Frank

    2014-01-01

    The transamidase subunit GAA1/GPAA1 is predicted to be the enzyme that catalyzes the attachment of the glycosylphosphatidyl (GPI) lipid anchor to the carbonyl intermediate of the substrate protein at the ω-site. Its ~300-amino acid residue lumenal domain is a M28 family metallo-peptide-synthetase with an α/β hydrolase fold, including a central 8-strand β-sheet and a single metal (most likely zinc) ion coordinated by 3 conserved polar residues. Phosphoethanolamine is used as an adaptor to make the non-peptide GPI lipid anchor look chemically similar to the N terminus of a peptide.

  16. Effect of defects due to lattice mismatch between GaAs and InP materials on gate-leakage current and microwave noise of GaAs MESFETS on InP substrates

    NASA Astrophysics Data System (ADS)

    Chertouk, Mourad; Boudiaf, A.; Azoulay, Rozette; Clei, A.

    1993-11-01

    The effect of traps due to lattice mismatch between GaAs and InP materials on the reverse current of Schottky diodes is demonstrated by the temperature dependence of the current, which exhibits a S.R.H. component at low reverse bias (also present in GaAs/GaAs with activation energy 0.125 eV) and a trap assisted tunneling one at high reverse bias (not observed in GaAs/GaAs). A model is developed which takes into account the temperature and channel doping level dependence. Application of this model to 0.25 micrometers gate GaAs MESFETs gives a good agreement with gate leakage current behavior as a function of drain and gate bias, for 6 X 1017 cm-3 and 1018 cm-3 channel doping. The excess gate-drain assisted tunneling current in 1018 cm-3 doped channel does not affect the MESFETs dc and microwave performances. However, the microwave noise (Fmin) is increased.

  17. Ion Implanted GaAs I.C. Process Technology

    DTIC Science & Technology

    1981-07-01

    in ion implantation in GaAs, coupled with better control of the substrate material. 1 Once ion implantation became a reliable processing technology it... Processing Technology for Planar GaAs Integrated Circuits," GaAs IC Symposium, Lake Tahoe, CA., Sept. 1979. 20. R.C. Eden, "GaAs Integrated Circuit Device...1980. 25. B.M. Welch, "Advances in GaAs LSI!VLSI Processing Technology ," Sol. St. Tech., Feb. 1980, pp. 95-101. 27. R. Zucca, B.M. Welch, P.M

  18. The indium content in metamorphic InxAl1-xAs/ InxGa1-xAs HEMTs on GaAs substrate: a new structure parameter

    NASA Astrophysics Data System (ADS)

    Bollaert, S.; Cordier, Y.; Zaknoune, M.; Happy, H.; Hoel, V.; Lepilliet, S.; Théron, D.; Cappy, A.

    2000-06-01

    State-of-the art metamorphic InxAl1-xAs/ InxGa1-xAs HEMTs (MM-HEMTs) on a GaAs substrate with different indium compositions x=0.33, 0.4 and 0.5 have been realized and characterized. The gate lengths Lg are 0.1 and 0.25 μm. These devices have been compared with lattice matched HEMTs on an InP substrate. DC-characteristics of 0.1 μm gate length MM-HEMTs show drain-to-source current Ids of the order of 550-650 mA/mm, and extrinsic transconductance of about 800 mS/mm. Schottky characteristics exhibit a gate reverse breakdown voltage varying from -14 to -7 V for x=0.33-0.5, with an intermediate value of -10.5 V for x=0.4. A small signal equivalent circuit of our 0.1 μm MM-HEMTs give intrinsic transconductance higher than 1100 mS/mm, with similar values of 1350 and 1450 mS/mm for x=0.5 and the lattice matched HEMT, respectively. The MM-HEMTs with a gate length of 0.25 μm present a cutoff frequency fT close to 100 GHz. To achieve the same result with pseudomorphic HEMTs on GaAs, a smaller gate length has to be realized, which requires the use of an electron beam lithography and therefore increases the device costs. For L g=0.1 μm, fT reaches 160, 195 and 180 GHz for x=0.33, 0.4 and 0.5, respectively. These values are close to f T=210 GHz obtained for a lattice matched HEMTs on InP realized with the same technological process. The MM-HEMTs are therefore good alternatives to PM-HEMTs on GaAs and LM-HEMTs on InP in the V bands and W bands while maintaining a GaAs substrate. Moreover, metamorphic In 0.4Al 0.6As/In 0.4Ga 0.6As HEMTs exhibit a comparable microwave performance with large voltage operation than the MM-HEMT with a 0.5 indium content and the lattice matched HEMTs. These results indicate that a device with indium content x=0.4 is particularly attractive for the realization of low-noise and power circuits on the same wafer.

  19. GaAs solar cell development

    NASA Technical Reports Server (NTRS)

    Knechtli, R. C.; Kamath, S.; Loo, R.

    1977-01-01

    The motivation for developing GaAs solar cells is based on their superior efficiency when compared to silicon cells, their lower degradation with increasing temperature, and the expectation for better resistance to space radiation damage. The AMO efficiency of GaAs solar cells was calculated. A key consideration in the HRL technology is the production of GaAs cells of large area (greater than 4 sg cm) at a reasonable cost without sacrificing efficiency. An essential requirement for the successful fabrication of such cells is the ability to grow epitaxially a uniform layer of high quality GaAs (buffer layer) on state-of-the-art GaAs substrates, and to grow on this buffer layer the required than layer of (AlGa)As. A modified infinite melt liquid phase epitaxy (LPE) growth technique is detailed.

  20. LEC GaAs for integrated circuit applications

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, C. G.; Chen, R. T.; Homes, D. E.; Asbeck, P. M.; Elliott, K. R.; Fairman, R. D.; Oliver, J. D.

    1984-01-01

    Recent developments in liquid encapsulated Czochralski techniques for the growth of semiinsulating GaAs for integrated circuit applications have resulted in significant improvements in the quality and quantity of GaAs material suitable for device processing. The emergence of high performance GaAs integrated circuit technologies has accelerated the demand for high quality, large diameter semiinsulating GaAs substrates. The new device technologies, including digital integrated circuits, monolithic microwave integrated circuits and charge coupled devices have largely adopted direct ion implantation for the formation of doped layers. Ion implantation lends itself to good uniformity and reproducibility, high yield and low cost; however, this technique also places stringent demands on the quality of the semiinsulating GaAs substrates. Although significant progress was made in developing a viable planar ion implantation technology, the variability and poor quality of GaAs substrates have hindered progress in process development.

  1. Design of new UV/blue/green light emitters made of hexagonal-phase ZnMgCdOSSe mixed-crystal system fabricated on GaAs- and InP-(1 1 1) substrates

    NASA Astrophysics Data System (ADS)

    Jia, A.; Furushima, T.; Kobayashi, M.; Kato, Y.; Shimotomai, M.; Yoshikawa, A.; Takahashi, K.

    2000-06-01

    A new candidate for long lifetime short-wavelength light emitters made of hexagonal II-VI compounds has been proposed. In this paper, the results of theoretical design of ZnMgCdOSSe-based light emitters fabricated on (1 1 1) plane of GaAs and InP substrates is presented. The band lineups of CdZnS/ZnSSe and CdZnS/ZnMgS structures were estimated with Harrison's LCAO theory. Further, as for the first step of an experimental investigation on the growth of high phase-quality hexagonal II-VI compounds, growth of CdZnS epilayers were examined on GaAs(1 1 1) substrate. The epilayers were characterized by high-resolution X-ray diffraction reciprocal space and pole figure measurements. In this study, the optimum growth temperature was 300°C for hexagonal phase CdZnS, and the inclusion of cubic phase CdZnS drastically decreased with increasing Cd content at 300°C.

  2. Reciprocal space mapping study of CdTe epilayer grown by molecular beam epitaxy on (2  1  1)B GaAs substrate

    NASA Astrophysics Data System (ADS)

    Polat, Mustafa; Arı, Ozan; Öztürk, Orhan; Selamet, Yusuf

    2017-03-01

    We examine high quality, single crystal CdTe epilayer grown by molecular beam epitaxy (MBE) on (2 1 1 )B GaAs substrate using both positions and full width at half maximums (FWHMs) of reciprocal lattice points (RLPs). Our results demonstrate that reciprocal space mapping (RSM) is an effective way to study the structural characteristics of the high-index oriented epitaxial thin films having a large lattice mismatch with the substrate. The measurement method is defined first, and then the influence of shear strain ({εxz} ) on the position of the (5 1 1 ) node of epilayer is clarified. It is concluded that the lattice tilting is likely to be related with the lattice mismatch. Nondestructive measurement of the dislocation density is achieved by applying the mosaic crystal model. The screw dislocation density, estimated to be 7.56× {{10}7} cm‑2, was calculated utilizing the broadened peakwidths of the asymmetric RLP of the epilayer lattice.

  3. Polymer Gelatin Waveguide In Conjuction With Integrated Holographic Optical Elements On GaAs, LiNb03, Glass, And Aluminum Substrates For Optical Interconnects, Signal Processing, And Computing

    NASA Astrophysics Data System (ADS)

    Chen, Ray T.

    1990-02-01

    We have observed waveguiding in thin films of polymer gelatin on GaAs, LiNb03, glass and aluminum substrates. A graded index profile can be induced in the gelatin layer and tuned by wet processing. This makes it possible to form waveguides on any smooth surface. Locally sensitizing the gelatin waveguide with ammonium dichromate allows us to integrate single and multiplexed gratings on the same substrate to perform various functions for optical interconnects and signal processing. A waveguide grating coupler that converts free space TEM00 laser light to a two dimensional spherical guided wave with 50° angle of divergence has also demonstrated. A passive broadcasting network can be formed using this new technology. Further plausible applications such as WD(D)M local area network, optical interconnection, and optical computing are also presented.

  4. GaAs homojunction solar cell development

    NASA Technical Reports Server (NTRS)

    Flood, D. J.; Swartz, C. K.; Hart, R. E., Jr.

    1980-01-01

    The Lincoln Laboratory n(+)/p/p(+) GaAs shallow homojunction cell structure was successfully demonstrated on 2 by 2 cm GaAs substrates. Air mass zero efficiencies of the seven cells produced to date range from 13.6 to 15.6 percent. Current voltage (I-V) characteristics, spectral response, and measurements were made on all seven cells. Preliminary analysis of 1 MeV electron radiation damage data indicate excellent radiation resistance for these cells.

  5. Tuning magnetic anisotropy in (001) oriented L1{sub 0} (Fe{sub 1-x}Cu{sub x}){sub 55}Pt{sub 45} films

    SciTech Connect

    Gilbert, Dustin A.; Liu, Kai; Wang, Liang-Wei; Lai, Chih-Huang; Klemmer, Timothy J.; Thiele, Jan-Ulrich

    2013-04-01

    We have achieved (001) oriented L1{sub 0} (Fe{sub 1-x}Cu{sub x}){sub 55}Pt{sub 45} thin films, with magnetic anisotropy up to 3.6 Multiplication-Sign 10{sup 7} erg/cm{sup 3}, using atomic-scale multilayer sputtering and post annealing at 400 Degree-Sign C for 10 s. By fixing the Pt concentration, structure and magnetic properties are systematically tuned by the Cu addition. Increasing Cu content results in an increase in the tetragonal distortion of the L1{sub 0} phase, significant changes to the film microstructure, and lowering of the saturation magnetization and anisotropy. The relatively convenient synthesis conditions, along with the tunable magnetic properties, make such materials highly desirable for future magnetic recording technologies.

  6. Ferroelectric domain structures in <001>-oriented K{sub 0.15}Na{sub 0.85}NbO{sub 3} lead-free single crystal

    SciTech Connect

    Chen, Yan; Wong, Chi-Man; Yau, Hei-Man; Dai, Jiyan; Deng, Hao; Luo, Haosu; Wang, Danyang; Yan, Zhibo; Chan, Helen L. W.

    2015-03-15

    In this work, ferroelectric domain structures of <001 >-oriented K{sub 0.15}Na{sub 0.85}NbO{sub 3} single crystal are characterized. Transmission electron microscopy (TEM) observation revealed high-density of laminate domain structures in the crystal and the lattices of the neighboring domains are found to be twisted in a small angle. Superlattice diffraction spots of 1/2 (eeo) and 1/2 (ooe) in electron diffraction patterns are observed in the crystal, revealing the a{sup +}a{sup +}c{sup −} tilting of oxygen octahedral in the perovskite structure. The piezoresponse of domains and in-situ poling responses of K{sub 0.15}Na{sub 0.85}NbO{sub 3} crystal are observed by piezoresponse force microscopy (PFM), and the results assure its good ferroelectric properties.

  7. Enhanced inverse spin-Hall voltage in (001) oriented Fe4N/Pt polycrystalline films without contribution of planar-Hall effect

    NASA Astrophysics Data System (ADS)

    Isogami, Shinji; Tsunoda, Masakiyo

    2016-04-01

    In this study, the output DC electric voltage (V out) generated by a Pt-capped Fe4N bilayer film (Fe4N/Pt) under ferromagnetic resonance conditions at room temperature was assessed. The contributions from the inverse spin-Hall effect (ISHE), the planar-Hall effect (PHE) and the anomalous-Hall effect (AHE) were separated from the output voltage by analysis of V out values determined at varying external field polar angles. The results showed that the polarity of the ISHE (V ISHE) component of V out was opposite to that of the PHE (V PHE). As a result, the magnitude of the intrinsic V ISHE was beyond V out by as much as the magnitude of V PHE. The X-ray diffraction structural analysis revealed the polycrystal of the Fe4N/Pt with (001) orientation, which might be one of the possible mechanisms for enhanced intrinsic V ISHE.

  8. Optical properties of multi-stacked InGaAs/GaNAs quantum dot solar cell fabricated on GaAs (311)B substrate

    SciTech Connect

    Shoji, Yasushi; Akimoto, Katsuhiro; Okada, Yoshitaka

    2012-09-15

    Quantum dot solar cells (QDSCs) comprised of 10 stacked pairs of strain-compensated InGaAs/GaNAs QD structure have been fabricated by atomic hydrogen-assisted molecular beam epitaxy. A homogeneous and high-density QD array structure with improved in-plane ordering and total density of {approx}10{sup 12} cm{sup -2} has been achieved on GaAs (311)B grown at 460 Degree-Sign C after stacking. The external quantum efficiency (EQE) of InGaAs/GaNAs QDSC increases in the longer wavelength range due to additive contribution from QD layers inserted in the intrinsic region. The short-circuit current density measured for QDSC is 17.2 mA/cm{sup 2} compared to 14.8 mA/cm{sup 2} of GaAs reference cell. Further, an increase in EQE due to photocurrent production by 2-step photon absorption has been observed at room temperature though it is still small at around 0.1%.

  9. Optical properties of multi-stacked InGaAs/GaNAs quantum dot solar cell fabricated on GaAs (311)B substrate

    NASA Astrophysics Data System (ADS)

    Shoji, Yasushi; Akimoto, Katsuhiro; Okada, Yoshitaka

    2012-09-01

    Quantum dot solar cells (QDSCs) comprised of 10 stacked pairs of strain-compensated InGaAs/GaNAs QD structure have been fabricated by atomic hydrogen-assisted molecular beam epitaxy. A homogeneous and high-density QD array structure with improved in-plane ordering and total density of ˜1012 cm-2 has been achieved on GaAs (311)B grown at 460 °C after stacking. The external quantum efficiency (EQE) of InGaAs/GaNAs QDSC increases in the longer wavelength range due to additive contribution from QD layers inserted in the intrinsic region. The short-circuit current density measured for QDSC is 17.2 mA/cm2 compared to 14.8 mA/cm2 of GaAs reference cell. Further, an increase in EQE due to photocurrent production by 2-step photon absorption has been observed at room temperature though it is still small at around 0.1%.

  10. A review of molecular beam epitaxy of ferroelectric BaTiO3 films on Si, Ge and GaAs substrates and their applications.

    PubMed

    Mazet, Lucie; Yang, Sang Mo; Kalinin, Sergei V; Schamm-Chardon, Sylvie; Dubourdieu, Catherine

    2015-06-01

    SrTiO3 epitaxial growth by molecular beam epitaxy (MBE) on silicon has opened up the route to the monolithic integration of various complex oxides on the complementary metal-oxide-semiconductor silicon platform. Among functional oxides, ferroelectric perovskite oxides offer promising perspectives to improve or add functionalities on-chip. We review the growth by MBE of the ferroelectric compound BaTiO3 on silicon (Si), germanium (Ge) and gallium arsenide (GaAs) and we discuss the film properties in terms of crystalline structure, microstructure and ferroelectricity. Finally, we review the last developments in two areas of interest for the applications of BaTiO3 films on silicon, namely integrated photonics, which benefits from the large Pockels effect of BaTiO3, and low power logic devices, which may benefit from the negative capacitance of the ferroelectric.

  11. A review of molecular beam epitaxy of ferroelectric BaTiO3 films on Si, Ge and GaAs substrates and their applications

    PubMed Central

    Mazet, Lucie; Yang, Sang Mo; Kalinin, Sergei V; Schamm-Chardon, Sylvie; Dubourdieu, Catherine

    2015-01-01

    SrTiO3 epitaxial growth by molecular beam epitaxy (MBE) on silicon has opened up the route to the monolithic integration of various complex oxides on the complementary metal-oxide–semiconductor silicon platform. Among functional oxides, ferroelectric perovskite oxides offer promising perspectives to improve or add functionalities on-chip. We review the growth by MBE of the ferroelectric compound BaTiO3 on silicon (Si), germanium (Ge) and gallium arsenide (GaAs) and we discuss the film properties in terms of crystalline structure, microstructure and ferroelectricity. Finally, we review the last developments in two areas of interest for the applications of BaTiO3 films on silicon, namely integrated photonics, which benefits from the large Pockels effect of BaTiO3, and low power logic devices, which may benefit from the negative capacitance of the ferroelectric. PMID:27877816

  12. A review of molecular beam epitaxy of ferroelectric BaTiO3 films on Si, Ge and GaAs substrates and their applications

    SciTech Connect

    Mazet, Lucie; Yang, Sang Mo; Kalinin, Sergei V.; Schamm-Chardon, Sylvie; Dubourdieu, Catherine

    2015-06-30

    SrTiO3 epitaxial growth by molecular beam epitaxy (MBE) on silicon has opened up the route to the monolithic integration of various complex oxides on the complementary metal-oxide-semiconductor silicon platform. Among functional oxides, ferroelectric perovskite oxides offer promising perspectives to improve or add functionalities on-chip. We review the growth by MBE of the ferroelectric compound BaTiO3 on silicon (Si), germanium (Ge) and gallium arsenide (GaAs) and we discuss the film properties in terms of crystalline structure, microstructure and ferroelectricity. Lastly, we review the last developments in two areas of interest for the applications of BaTiO3 films on silicon, namely integrated photonics, which benefits from the large Pockels effect of BaTiO3, and low power logic devices, which may benefit from the negative capacitance of the ferroelectric.

  13. A review of molecular beam epitaxy of ferroelectric BaTiO3 films on Si, Ge and GaAs substrates and their applications

    DOE PAGES

    Mazet, Lucie; Yang, Sang Mo; Kalinin, Sergei V.; ...

    2015-06-30

    SrTiO3 epitaxial growth by molecular beam epitaxy (MBE) on silicon has opened up the route to the monolithic integration of various complex oxides on the complementary metal-oxide-semiconductor silicon platform. Among functional oxides, ferroelectric perovskite oxides offer promising perspectives to improve or add functionalities on-chip. We review the growth by MBE of the ferroelectric compound BaTiO3 on silicon (Si), germanium (Ge) and gallium arsenide (GaAs) and we discuss the film properties in terms of crystalline structure, microstructure and ferroelectricity. Lastly, we review the last developments in two areas of interest for the applications of BaTiO3 films on silicon, namely integrated photonics,more » which benefits from the large Pockels effect of BaTiO3, and low power logic devices, which may benefit from the negative capacitance of the ferroelectric.« less

  14. GaAs shallow-homojunction solar cells

    NASA Technical Reports Server (NTRS)

    Fan, J. C. C.

    1981-01-01

    The feasibility of fabricating space resistant, high efficiency, light weight, low cost GaAs shallow homojunction solar cells for space application is investigated. The material preparation of ultrathin GaAs single crystal layers, and the fabrication of efficient GaAs solar cells on bulk GaAs substrates are discussed. Considerable progress was made in both areas, and conversion efficiency about 16% AMO was obtained using anodic oxide as a single layer antireflection coating. A computer design shows that even better cells can be obtained with double layer antireflection coating. Ultrathin, high efficiency solar cells were obtained from GaAs films prepared by the CLEFT process, with conversion efficiency as high as 17% at AMI from a 10 micrometers thick GaAs film. A organometallic CVD was designed and constructed.

  15. Study of a MHEMT heterostructure with an In{sub 0.4}Ga{sub 0.6}As channel MBE-grown on a GaAs substrate using reciprocal space mapping

    SciTech Connect

    Aleshin, A. N. Bugaev, A. S.; Ermakova, M. A.; Ruban, O. A.

    2015-08-15

    The crystallographic characteristics of the design elements of a metamorphic high-electron-mobility (MHEMT) heterostructure with an In{sub 0.4}Ga{sub 0.6}As channel are determined based on reciprocal space mapping. The heterostructure is grown by molecular beam epitaxy on the vicinal surface of a GaAs substrate with a deviation angle from the (001) plane of 2° and consists of a stepped metamorphic buffer containing six layers including an inverse step, a high-temperature buffer layer with constant composition, and active HEMT layers. The InAs content in the layers of the metamorphic buffer is varied from 0.1 to 0.48. Reciprocal space maps are constructed for the (004) symmetric reflection and (224)+ asymmetric reflection. It is found that the heterostructure layers are characterized both by a tilt angle relative to the plane of the (001) substrate and a rotation angle around the [001] axis. The tilt angle of the layer increases as the InAs concentration in the layer increases. It is shown that a high-temperature buffer layer of constant composition has the largest degree of relaxation compared with all other layers of the heterostructure.

  16. CBE growth of (001) GaAs: RHEED and RD studies

    NASA Astrophysics Data System (ADS)

    Samuelson, L.; Junno, B.; Paulson, G.; Fornell, J. O.; Ledebo, L.

    1992-11-01

    A novel type of epitaxial growth system has been designed and optimized for studies of surface physics and epitaxial growth during chemical beam epitaxy (CBE). The work presented here deals with the growth of GaAs on (001) oriented GaAs, and is specifically focused on detailed studies of the surface modifications appearing during exposure to triethylgallium (TEG) or tertiarybutylarsine (TBA), as well as during continuous growth. Reflection high-energy electron diffraction (RHEED) is used to characterize surface reconstructions and to monitor monolayer growth oscillations. Optical reflectance-difference (RD) is used as a very sensitive probe to track the chemical admixture and the concentration of dimers on the surface. Examples are given of direct correlations between characteristics RD features and specific surface reconstructions as determined by RHEED. The surface reconstruction phase diagram for CBE growth of (001) GaAs using TBA is presented and compared with the case for MBE growth.

  17. GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Conway, E. J.

    1982-01-01

    The major thrusts proposed for GaAs were increased efficiency and improved radiation damage data. Current laboratory production cells consistently achieve 16 percent AMO one-Sun efficiency. The user community wants 18-percent efficient cells as soon as possible, and such a goal is though to be achievable in 2 years with sufficient research funds. A 20-percent research cell is considered the efficiency limit with current technology, and such a cell seems realizable in approximately 4 years. Future efficiency improvements await improved substrates and materials. For still higher efficiencies, concentrator cells and multijunction cells are proposed as near-term directions.

  18. Electrodeposition of Metal on GaAs Nanowires

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Einabad, Omid; Watkins, Simon; Kavanagh, Karen

    2010-10-01

    Copper (Cu) electrical contacts to freestanding gallium arsenide (GaAs) nanowires have been fabricated via electrodeposition. The nanowires are zincblende (111) oriented grown epitaxially on n-type Si-doped GaAs (111)B substrates by gold-catalyzed Vapor Liquid Solid (VLS) growth in a metal organic vapour phase epitaxy (MOVPE) reactor. The epitaxial electrodeposition process, based on previous work with bulk GaAs substrates, consists of a substrate oxide pre-etch in dilute ammonium-hydroxide carried out prior to galvanostatic electrodeposition in a pure Cu sulphate aqueous electrolyte at 20-60^oC. For GaAs nanowires, we find that Cu or Fe has a preference for growth on the gold catalyst avoiding the sidewalls. After removing gold, both metals still prefer to grow only on top of the nanowire, which has the largest potential field.

  19. Quality-enhanced In{sub 0.3}Ga{sub 0.7}As film grown on GaAs substrate with an ultrathin amorphous In{sub 0.6}Ga{sub 0.4}As buffer layer

    SciTech Connect

    Gao, Fangliang; Li, Guoqiang

    2014-01-27

    Using low-temperature molecular beam epitaxy, amorphous In{sub 0.6}Ga{sub 0.4}As layers have been grown on GaAs substrates to act as buffer layers for the subsequent epitaxial growth of In{sub 0.3}Ga{sub 0.7}As films. It is revealed that the crystallinity of as-grown In{sub 0.3}Ga{sub 0.7}As films is strongly affected by the thickness of the large-mismatched amorphous In{sub 0.6}Ga{sub 0.4}As buffer layer. Given an optimized thickness of 2 nm, this amorphous In{sub 0.6}Ga{sub 0.4}As buffer layer can efficiently release the misfit strain between the In{sub 0.3}Ga{sub 0.7}As epi-layer and the GaAs substrate, trap the threading and misfit dislocations from propagating to the following In{sub 0.3}Ga{sub 0.7}As epi-layer, and reduce the surface fluctuation of the as-grown In{sub 0.3}Ga{sub 0.7}As, leading to a high-quality In{sub 0.3}Ga{sub 0.7}As film with competitive crystallinity to that grown on GaAs substrate using compositionally graded In{sub x}Ga{sub 1-x}As metamorphic buffer layers. Considering the complexity of the application of the conventional In{sub x}Ga{sub 1-x}As graded buffer layers, this work demonstrates a much simpler approach to achieve high-quality In{sub 0.3}Ga{sub 0.7}As film on GaAs substrate and, therefore, is of huge potential for the InGaAs-based high-efficiency photovoltaic industry.

  20. GaAs photoconductive semiconductor switch

    DOEpatents

    Loubriel, G.M.; Baca, A.G.; Zutavern, F.J.

    1998-09-08

    A high gain, optically triggered, photoconductive semiconductor switch (PCSS) implemented in GaAs as a reverse-biased pin structure with a passivation layer above the intrinsic GaAs substrate in the gap between the two electrodes of the device is disclosed. The reverse-biased configuration in combination with the addition of the passivation layer greatly reduces surface current leakage that has been a problem for prior PCSS devices and enables employment of the much less expensive and more reliable DC charging systems instead of the pulsed charging systems that needed to be used with prior PCSS devices. 5 figs.

  1. GaAs photoconductive semiconductor switch

    DOEpatents

    Loubriel, Guillermo M.; Baca, Albert G.; Zutavern, Fred J.

    1998-01-01

    A high gain, optically triggered, photoconductive semiconductor switch (PCSS) implemented in GaAs as a reverse-biased pin structure with a passivation layer above the intrinsic GaAs substrate in the gap between the two electrodes of the device. The reverse-biased configuration in combination with the addition of the passivation layer greatly reduces surface current leakage that has been a problem for prior PCSS devices and enables employment of the much less expensive and more reliable DC charging systems instead of the pulsed charging systems that needed to be used with prior PCSS devices.

  2. Diode lasers emitting at 1220 nm with a highly strained GaInAs quantum well and GaAsP compensating layers MOCVD-grown on a GaAs substrate

    SciTech Connect

    Vinokurov, D. A. Kapitonov, V. A.; Nikolaev, D. N.; Pikhtin, N. A.; Stankevich, A. L.; Shamakhov, V. V.; Bondarev, A. D.; Vavilova, L. S.; Tarasov, I. S.

    2011-10-15

    Heterostructures with an active region containing a Ga{sub 0.59}In{sub 0.41}As quantum well located between GaAs{sub 1-y}P{sub y} compensating layers were studied using photoluminescence spectroscopy. It was shown that an increase in the phosphorus content in compensating layers makes it possible to obtain unrelaxed heterostructures with wider Ga{sub 0.59}In{sub 0.41}As quantum wells. On the basis of photoluminescence studies, the parameters of such a composite active region were chosen with a view to attaining the longest lasing wavelength possible. Laser heterostructures with a composite active region consisting of a highly strained Ga{sub 0.59}In{sub 0.41}As quantum well located between GaAs{sub 0.85}P{sub 0.15} compensating layers were grown on GaAs substrates by metalloorganic chemical vapor deposition. Stripe mesa-structure laser diodes of 100-{mu}m aperture emitting at 1220 nm were fabricated. The highest emission power of these laser diodes in the continuous-wave regime amounted to 2 W per output mirror.

  3. Detailed analysis of carrier transport in InAs(0.3)Sb(0.7) layers grown on GaAs substrates by metalorganic chemical-vapor deposition

    NASA Astrophysics Data System (ADS)

    Besikci, C.; Choi, Y. H.; Labeyrie, G.; Bigan, E.; Razeghi, M.; Cohen, J. B.; Carsello, J.; Dravid, V. P.

    1994-11-01

    InAs(0.3)Sb(0.7) layers with mirrorlike morphology have been grown on GaAs substrates by low-pressure metalorganic chemical vapor deposition. A room-temperature electron Hall mobility of 2 x 10(exp 4) sq cm/(V s) has been obtained for a 2-micrometer-thick layer. Low temperature resistivity of the layers depended on TMIn flow rate and layer thickness. Hall mobility decreased monotonically with decreasing temperature below 300 K. A 77 K conductivity profile has shown an anomalous increase in the sample conductivity with decreasing thickness except in the near vicinity of the heterointerface. Experimental and theoretical results suggest that the combined effects of the dislocations generated by the large lattice mismatch and strong surface inversion may lead to deceptive Hall measurements by reflecting typical n-type behavior for a p-type sample, and the measured carried concentration may considerably be affected by the surface conduction up to near room temperature. A quantitative analysis of dislocation scattering has shown significant degradation in electron mobility for dislocation densities above 10(exp 7)/sq cm. The effects of dislocation scattering on hole mobility have been found to be less severe. It has also been observed that there is a critical epilayer thickness (approximately 1 micrometer) below which the surface electron mobility is limited by dislocation scattering.

  4. Effects of confinements on morphology of In{sub x}Ga{sub 1–x}As thin film grown on sub-micron patterned GaAs substrate: Elastoplastic phase field model

    SciTech Connect

    Arjmand, M.; Deng, J.; Swaminathan, N.; Morgan, D.; Szlufarska, I.

    2014-09-21

    An elastoplastic phase field model is developed to investigate the role of lateral confinement on morphology of thin films grown heteroepitaxially on patterned substrates. Parameters of the model are chosen to represent In{sub x}Ga{sub 1-x}As thin films growing on GaAs patterned with SiO₂. We determined the effect of misfit strain on morphology of thin films grown in 0.5 μm patterns with non-uniform deposition flux. Growth of islands inside patterns can be controlled by non-uniformity of deposition flux, misfit strain between film and the substrate, and also strain energy relaxation due to plastic deformation. Our results show that the evolution of island morphology depends non-monotonically on indium content and associated misfit strain due to coupling between the plastic relaxation and the confinements effects. Low indium concentration (0%–40%) causes formation of instabilities with relatively long wavelengths across the width of the pattern. Low surface diffusion (due to low indium concentration) and fewer islands across the pattern (due to small misfit strain) lead to formation and growth of islands near the walls driven by overflow flux. Further increase in indium concentration (40%–75%) increases the lattice mismatch and surface diffusivity of the film, and also activates plastic deformation mechanism, which leads to coalescence of islands usually away from the edges. By further increasing the indium concentration (up to 100%), plastic deformation relaxes most of the strain energy density of the film, which prevents formation of instabilities in the film. Hence, in this case, islands are only formed near the walls.

  5. Peeled film GaAs solar cell development

    NASA Technical Reports Server (NTRS)

    Wilt, D. M.; Thomas, R. D.; Bailey, S. G.; Brinker, D. J.; Deangelo, F. L.

    1990-01-01

    Thin-film, single-crystal gallium arsenide (GaAs) solar cells could exhibit a specific power approaching 700 W/kg including coverglass. A simple process has been described whereby epitaxial GaAs layers are peeled from a reusable substrate. This process takes advantage of the extreme selectivity of the etching rate of aluminum arsenide (AlAs) over GaAs in dilute hydrofluoric acid. The feasibility of using the peeled film technique to fabricate high-efficiency, low-mass GaAs solar cells is presently demonstrated. A peeled film GaAs solar cell was successfully produced. The device, although fractured and missing the aluminum gallium arsenide window and antireflective coating, had a Voc of 874 mV and a fill factor of 68 percent under AM0 illumination.

  6. Influence of buffer-layer construction and substrate orientation on the electron mobilities in metamorphic In{sup 0.70}Al{sup 0.30}As/In{sup 0.76}Ga{sup 0.24}As/In{sup 0.70}Al{sup 0.30}As structures on GaAs substrates

    SciTech Connect

    Kulbachinskii, V. A.; Oveshnikov, L. N.; Lunin, R. A.; Yuzeeva, N. A.; Galiev, G. B.; Klimov, E. A.; Pushkarev, S. S.; Maltsev, P. P.

    2015-07-15

    The influence of construction of the buffer layer and misorientation of the substrate on the electrical properties of In{sup 0.70}Al{sup 0.30}As/In{sup 0.76}Ga{sup 0.24}As/In{sup 0.70}Al{sup 0.30}As quantum wells on a GaAs substrate is studied. The temperature dependences (in the temperature range of 4.2 K < T < 300 K) and field dependences (in magnetic fields as high as 6 T) of the sample resistances are measured. Anisotropy of the resistances in different crystallographic directions is detected; this anisotropy depends on the substrate orientation and construction of the metamorphic buffer layer. In addition, the Hall effect and the Shubnikov–de Haas effect are studied. The Shubnikov–de Haas effect is used to determine the mobilities of electrons separately in several occupied dimensionally quantized subbands in different crystallographic directions. The calculated anisotropy of mobilities is in agreement with experimental data on the anisotropy of the resistances.

  7. Temperature dependence of the photoluminescence emission from In{sub x}Ga{sub 1-x}As quantum wells on GaAs(311) substrates

    SciTech Connect

    Rojas-Ramirez, J. S.; Hernandez-Rosas, J.; Goldhahn, R.; Moser, P.; Huerta-Ruelas, J.; Lopez-Lopez, M.

    2008-12-15

    We studied the photoluminescence (PL) properties of In{sub 0.2}Ga{sub 0.8}As/GaAs quantum well structures grown by molecular beam epitaxy on (311)-oriented substrates. The structure consists of three quantum wells (QWs) of 100, 50, and 25 A nominal thickness. The temperature dependence of the PL emission from the QWs in the range of 5-250 K is reported. Three models by Varshni, Vina, and Paessler, respectively, were employed to analyze the variation in the excitonic energy transitions as a function of temperature. We compared the excitonic behavior with the band gap temperature dependence of bulk In{sub 0.2}Ga{sub 0.8}As and found a difference, as opposed to the unstrained AlGaAs/GaAs system. We attributed this difference to the modification of the QW energy levels by the quantum confinement Stark effect, which is temperature and well width dependent.

  8. Anomalous diffusion of Ga and As from semi-insulating GaAs substrate into MOCVD grown ZnO films as a function of annealing temperature and its effect on charge compensation

    SciTech Connect

    Biswas, Pranab; Banerji, P.; Halder, Nripendra N.; Kundu, Souvik; Shripathi, T.; Gupta, M.

    2014-05-15

    The diffusion behavior of arsenic (As) and gallium (Ga) atoms from semi-insulating GaAs (SI-GaAs) into ZnO films upon post-growth annealing vis-à-vis the resulting charge compensation was investigated with the help of x-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy. The films, annealed at 600 ºC and 700 ºC showed p-type conductivity with a hole concentration of 1.1 × 10{sup 18} cm{sup −3} and 2.8 × 10{sup 19} cm{sup −3} respectively, whereas those annealed at 800 ºC showed n-type conductivity with a carrier concentration of 6.5 × 10{sup 16} cm{sup −3}. It is observed that at lower temperatures, large fraction of As atoms diffused from the SI-GaAs substrates into ZnO and formed acceptor related complex, (As{sub Zn}–2V{sub Zn}), by substituting Zn atoms (As{sub Zn}) and thereby creating two zinc vacancies (V{sub Zn}). Thus as-grown ZnO which was supposed to be n-type due to nonstoichiometric nature showed p-type behavior. On further increasing the annealing temperature to 800 ºC, Ga atoms diffused more than As atoms and substitute Zn atoms thereby forming shallow donor complex, Ga{sub Zn}. Electrons from donor levels then compensate the p-type carriers and the material reverts back to n-type. Thus the conversion of carrier type took place due to charge compensation between the donors and acceptors in ZnO and this compensation is the possible origin of anomalous conduction in wide band gap materials.

  9. GaSb thermophotovoltaic cells grown on GaAs by molecular beam epitaxy using interfacial misfit arrays

    SciTech Connect

    Juang, Bor-Chau Laghumavarapu, Ramesh B.; Foggo, Brandon J.; Lin, Andrew; Simmonds, Paul J.; Liang, Baolai; Huffaker, Diana L.

    2015-03-16

    There exists a long-term need for foreign substrates on which to grow GaSb-based optoelectronic devices. We address this need by using interfacial misfit arrays to grow GaSb-based thermophotovoltaic cells directly on GaAs (001) substrates and demonstrate promising performance. We compare these cells to control devices grown on GaSb substrates to assess device properties and material quality. The room temperature dark current densities show similar characteristics for both cells on GaAs and on GaSb. Under solar simulation the cells on GaAs exhibit an open-circuit voltage of 0.121 V and a short-circuit current density of 15.5 mA/cm{sup 2}. In addition, the cells on GaAs substrates maintain 10% difference in spectral response to those of the control cells over a large range of wavelengths. While the cells on GaSb substrates in general offer better performance than the cells on GaAs substrates, the cost-savings and scalability offered by GaAs substrates could potentially outweigh the reduction in performance. By further optimizing GaSb buffer growth on GaAs substrates, Sb-based compound semiconductors grown on GaAs substrates with similar performance to devices grown directly on GaSb substrates could be realized.

  10. CLEFT Process for GaAs Solar Cells

    NASA Technical Reports Server (NTRS)

    Fan, J. C. C.; Bozler, C. O.; Mcclelland, R. W.

    1983-01-01

    CLEFT (cleavage of lateral epitaxial films for transfer) process involves growing ultrathin gallium arsenide (GaAs solar cell on much thicker layer of same material). Growth method is completed solar cell easily separated by cleaving from much thicker substrate. Thick substrate is reusable in making additional cells, which reduces cell material cost.

  11. 8-band and 14-band kp modeling of electronic band structure and material gain in Ga(In)AsBi quantum wells grown on GaAs and InP substrates

    NASA Astrophysics Data System (ADS)

    Gladysiewicz, M.; Kudrawiec, R.; Wartak, M. S.

    2015-08-01

    The electronic band structure and material gain have been calculated for GaAsBi/GaAs quantum wells (QWs) with various bismuth concentrations (Bi ≤ 15%) within the 8-band and 14-band kp models. The 14-band kp model was obtained by extending the standard 8-band kp Hamiltonian by the valence band anticrossing (VBAC) Hamiltonian, which is widely used to describe Bi-related changes in the electronic band structure of dilute bismides. It has been shown that in the range of low carrier concentrations n < 5 × 1018 cm-3, material gain spectra calculated within 8- and 14-band kp Hamiltonians are similar. It means that the 8-band kp model can be used to calculate material gain in dilute bismides QWs. Therefore, it can be applied to analyze QWs containing new dilute bismides for which the VBAC parameters are unknown. Thus, the energy gap and electron effective mass for Bi-containing materials are used instead of VBAC parameters. The electronic band structure and material gain have been calculated for 8 nm wide GaInAsBi QWs on GaAs and InP substrates with various compositions. In these QWs, Bi concentration was varied from 0% to 5% and indium concentration was tuned in order to keep the same compressive strain (ɛ = 2%) in QW region. For GaInAsBi/GaAs QW with 5% Bi, gain peak was determined to be at about 1.5 μm. It means that it can be possible to achieve emission at telecommunication windows (i.e., 1.3 μm and 1.55 μm) for GaAs-based lasers containing GaInAsBi/GaAs QWs. For GaInAsBi/Ga0.47In0.53As/InP QWs with 5% Bi, gain peak is predicted to be at about 4.0 μm, i.e., at the wavelengths that are not available in current InP-based lasers.

  12. 8-band and 14-band kp modeling of electronic band structure and material gain in Ga(In)AsBi quantum wells grown on GaAs and InP substrates

    SciTech Connect

    Gladysiewicz, M.; Wartak, M. S.; Kudrawiec, R.

    2015-08-07

    The electronic band structure and material gain have been calculated for GaAsBi/GaAs quantum wells (QWs) with various bismuth concentrations (Bi ≤ 15%) within the 8-band and 14-band kp models. The 14-band kp model was obtained by extending the standard 8-band kp Hamiltonian by the valence band anticrossing (VBAC) Hamiltonian, which is widely used to describe Bi-related changes in the electronic band structure of dilute bismides. It has been shown that in the range of low carrier concentrations n < 5 × 10{sup 18 }cm{sup −3}, material gain spectra calculated within 8- and 14-band kp Hamiltonians are similar. It means that the 8-band kp model can be used to calculate material gain in dilute bismides QWs. Therefore, it can be applied to analyze QWs containing new dilute bismides for which the VBAC parameters are unknown. Thus, the energy gap and electron effective mass for Bi-containing materials are used instead of VBAC parameters. The electronic band structure and material gain have been calculated for 8 nm wide GaInAsBi QWs on GaAs and InP substrates with various compositions. In these QWs, Bi concentration was varied from 0% to 5% and indium concentration was tuned in order to keep the same compressive strain (ε = 2%) in QW region. For GaInAsBi/GaAs QW with 5% Bi, gain peak was determined to be at about 1.5 μm. It means that it can be possible to achieve emission at telecommunication windows (i.e., 1.3 μm and 1.55 μm) for GaAs-based lasers containing GaInAsBi/GaAs QWs. For GaInAsBi/Ga{sub 0.47}In{sub 0.53}As/InP QWs with 5% Bi, gain peak is predicted to be at about 4.0 μm, i.e., at the wavelengths that are not available in current InP-based lasers.

  13. Advances in large-diameter liquid encapsulated Czochralski GaAs

    NASA Technical Reports Server (NTRS)

    Chen, R. T.; Holmes, D. E.; Kirkpatrick, C. G.

    1982-01-01

    The purity, crystalline perfection, and electrical properties of n- and p-type GaAs crystals grown by the liquid encapsulated Czochralski (LEC) technique are evaluated. The determination of the dislocation density, incidence of twinning, microstructure, background purity, mobility, and minority carrier diffusion length is included. The properties of the LEC GaAs crystals are generally comparable to, if not superior to those of small-diameter GaAs material grown by conventional bulk growth techniques. As a result, LEC GaAs is suitable for application to minority carrier devices requiring high-quality and large-area substrates.

  14. On the Correlation Between the Self-Organized Island Pattern and Substrate Elastic Anisotropy

    DTIC Science & Technology

    2007-04-01

    energy field Estr on the surface of substrates Iso 001, GaAs 001, GaAs 111, and GaAs 113 due to a buried island is plotted. Furthermore, Fig. 1...distribution where the height is proportional to the number of adatoms per unit area: on the surface of GaAs with strain energy Estr of Iso 001 a, with...anisotropic strain energy Estr of GaAs 001 b, GaAs 111 c, and GaAs 113 d. Different island orderings and patterns red dashed lines

  15. Fabrication of GaAs subwavelength structure (SWS) for solar cell applications.

    PubMed

    Kim, Byung-Jae; Kim, Jihyun

    2011-05-09

    We developed a novel GaAs subwavelength structure (SWS) as an antireflective layer for solar cell applications. The GaAs SWS patterns were fabricated by a combination of nanosphere lithography (NSL) and reactive ion etching (RIE). The shape and height of the GaAs SWS were controlled by the diameter of the SiO2 nanospheres and the etching time. Various GaAs SWS were characterized by the reflectance spectra. The average reflectance of the polished GaAs substrate from 200nm to 800nm was 35.1%. However, the average reflectance of the tapered GaAs SWS was reduced to 0.6% due to scattering and moth-eye effects.

  16. Epitaxial growth of GaAs and GaN by gas source molecular beam epitaxy using organic group V compounds

    NASA Astrophysics Data System (ADS)

    Okumura, H.; Yoshida, S.; Misawa, S.; Sakuma, E.

    1992-05-01

    GaAs and GaN epilayers were grown on GaAs substrates by gas source molecular beam epitaxy technique using triethylarsine (TEAs) and diethylarsine (DEAsH) as As sources, and dimethylhydrazine (DMHy) as an N source. It was found that GaAs grows layer by layer even when organic arsine molecular sources are used. Cubic GaN was found to grow epitaxially on sufficiently nitrided surfaces of GaAs (001) substrates, in contrast with the growth of hexagonal GaN on GaAs (111) surfaces. It was also found that nitridation of GaAs surfaces does not occur when DEAsH and DMHy beams are supplied onto the GaAs substrates, simultaneously. Thus, GaN/GaAs multilayers were obtained only by intermittent supply of a DEAsH beam.

  17. Biomimetic subwavelength antireflective gratings on GaAs.

    PubMed

    Sun, Chih-Hung; Ho, Brian J; Jiang, Bin; Jiang, Peng

    2008-10-01

    We have developed a simple and scalable bottom-up approach for fabricating moth-eye antireflective coatings on GaAs substrates. Monolayer, non-close-packed silica colloidal crystals are created on crystalline GaAs wafers by a spin-coating-based single-layer reduction technique. These colloidal monolayers can be used as etching masks during a BCl(3) dry-etch process to generate subwavelength-structured antireflective gratings directly on GaAs substrates. The gratings exhibit excellent broadband antireflective properties, and the specular reflection matches with the theoretical prediction using a rigorous coupled-wave analysis model. These bioinspired antireflection coatings have important technological applications ranging from efficient solar cells to IR detectors.

  18. High efficiency thin-film GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Zwerdling, S.; Wang, K. L.; Yeh, Y. C. M.

    1981-01-01

    The paper demonstrates the feasibility of producing high-efficiency GaAs solar cells with high power-to-weight ratios by organic metallic chemical vapor deposition (OM-CVD) growth of thin epi-layers on suitable substrates. An AM1 conversion efficiency of 18% (14% AM0), or 17% (13% AM0) with a 5% grid coverage is achieved for a single-crystal GaAs n(+)/p cell grown by OM-CVD on a Ge wafer. Thin GaAs epi-layers OM-CVD grown can be fabricated with good crystallographic quality using a Si-substrate on which a thin Ge epi-interlayer is first deposited by CVD from GeH4 and processed for improved surface morphology

  19. Structural and electrical properties of high-quality 0.41 μm-thick InSb films grown on GaAs (1 0 0) substrate with In{sub x}Al{sub 1−x}Sb continuously graded buffer

    SciTech Connect

    Shin, Sang Hoon; Song, Jin Dong; Lim, Ju Young; Koo, Hyun Cheol; Kim, Tae Geun

    2012-10-15

    High-quality InSb was grown on a GaAs (1 0 0) substrate with an InAlSb continuously graded buffer (CGB). The temperatures of In, Al K-cells and substrate were modified during the growth of InAlSb CGB. The cross-section TEM image reveals that the defects due to lattice-mismatch disappear near lateral structures in CGB. The measured electron mobility of 0.41 μm-thick InSb was 46,300 cm{sup 2}/Vs at 300 K. These data surpass the electron mobility of state-of-the-art InSb grown by other methods with similar thickness of InSb.

  20. Controlling crystal phases in GaAs nanowires grown by Au-assisted molecular beam epitaxy.

    PubMed

    Dheeraj, D L; Munshi, A M; Scheffler, M; van Helvoort, A T J; Weman, H; Fimland, B O

    2013-01-11

    Control of the crystal phases of GaAs nanowires (NWs) is essential to eliminate the formation of stacking faults which deteriorate the optical and electronic properties of the NWs. In addition, the ability to control the crystal phase of NWs provides an opportunity to engineer the band gap without changing the crystal material. We show that the crystal phase of GaAs NWs grown on GaAs(111)B substrates by molecular beam epitaxy using the Au-assisted vapor-liquid-solid growth mechanism can be tuned between wurtzite (WZ) and zinc blende (ZB) by changing the V/III flux ratio. As an example we demonstrate the realization of WZ GaAs NWs with a ZB GaAs insert that has been grown without changing the substrate temperature.

  1. Perpendicular magnetic properties of CoCr films on GaAs

    NASA Astrophysics Data System (ADS)

    Manago, T.; Kuramochi, H.; Akinaga, H.

    2005-01-01

    CoCr films were deposited on three types of GaAs substrates, GaAs(001), GaAs(111), and Al oxide/GaAs(001). The perpendicular magnetic properties were investigated by magneto-optical Kerr-effect measurements. The direct deposition of the CoCr film on the GaAs substrate did not show any perpendicular magnetic properties. This fact indicates that the lattice distortion influenced by the GaAs lattice suppresses the perpendicular magnetism. The CoCr film on the Al oxide layer showed a tilted squarelike hysteresis loop. The thickness dependence of the hysteresis loop and the magnetic force microscopy showed that the onset thickness of ferromagnetism was 6.5nm. The domain size of the CoCr films monotonously decreases with the increasing thickness (6.5-75nm).

  2. GaAs transistors formed by Be or Mg ion implantation

    NASA Technical Reports Server (NTRS)

    Hunsperger, R. G.; Marsh, O. J.

    1974-01-01

    N-p-n transistor structures have been formed in GaAs by implanting n-type substrates with Be ions to form base regions and then implanting them with 20-keV Si ions to form emitters. P-type layers have been produced in GaAs by implantation of either Mg or Be ions, with substrate at room temperature, followed by annealing at higher temperatures.

  3. ZnSe Films in GaAs Solar Cells

    NASA Technical Reports Server (NTRS)

    Kachare, Ram H.

    1987-01-01

    ZnSe increases efficiency and conserves material. Two proposed uses of zinc selenide films promise to boost performance and reduce cost of gallium arsenide solar cells. Accordingly ZnSe serves as surface-passivation layer and as sacrificial layer enabling repeated use of costly GaAs substrate in fabrication.

  4. Study of strain boundary conditions and GaAs buffer sizes in InGaAs quantum dots

    NASA Technical Reports Server (NTRS)

    Oyafuso, F.; Klimeck, G.; Boykin, T. B.; Bowen, R. C.; Allmen, P. von

    2003-01-01

    NEMO 3-D has been developed for the simulation of electronic structure in self-assembled InGaAs quantum dots on GaAs substrates. Typical self-assembled quantum dots in that material system contain about 0.5 to 1 million atoms. Effects of strain by the surrounding GaAs buffer modify the electronic structure inside the quantum dot significantly and a large GaAs buffer must be included in the strain and electronic structure.

  5. Peeled film GaAs solar cells for space power

    NASA Technical Reports Server (NTRS)

    Wilt, D. M.; Deangelo, F. L.; Thomas, R. D.; Bailey, S. G.; Landis, G. A.; Brinker, D. J.; Fatemi, N. S.

    1990-01-01

    Gallium arsenide (GaAs) peeled film solar cells were fabricated, by Organo-Metallic Vapor Phase Epitaxy (OMVPE), incorporating an aluminum arsenide (AlAs) parting layer between the device structure and the GaAs substrate. This layer was selectively removed by etching in dilute hydrofloric (HF) acid to release the epitaxial film. Test devices exhibit high series resistance due to insufficient back contact area. A new design is presented which uses a coverglass superstrate for structural support and incorporates a coplanar back contact design. Devices based on this design should have a specific power approaching 700 W/Kg.

  6. Electronic contribution to friction on GaAs

    SciTech Connect

    Applied Science and Technology Graduate Group, UC Berkeley; Dept. of Materials Sciences and Engineering, UC Berkeley; Salmeron, Miquel; Qi, Yabing; Park, J.Y.; Hendriksen, B.L.M.; Ogletree, D.F.; Salmeron, Miquel

    2008-04-15

    The electronic contribution to friction at semiconductor surfaces was investigated by using a Pt-coated tip with 50nm radius in an atomic force microscope sliding against an n-type GaAs(100) substrate. The GaAs surface was covered by an approximately 1 nm thick oxide layer. Charge accumulation or depletion was induced by the application of forward or reverse bias voltages. We observed a substantial increase in friction force in accumulation (forward bias) with respect to depletion (reverse bias). We propose a model based on the force exerted by the trapped charges that quantitatively explains the experimental observations of excess friction.

  7. Diffusion length improvements in GaAs associated with Zn diffusion during Ga/1-x/Al/x/As growth

    NASA Technical Reports Server (NTRS)

    Hovel, H. J.; Woodall, J. M.

    1975-01-01

    Relatively good GaAs solar cells can be made from poor quality substrates by making the junction deep (more than 1 micron) instead of shallow and by leaching both the p and n GaAs regions during the growth process. Air-mass-zero efficiencies of 14.7% (19% AM1) have been obtained from substrates with starting substrate thickness of 0.6 micron.

  8. Microscopic determination of stress distribution in GaAs grown at low temperature on GaAs (100)

    NASA Astrophysics Data System (ADS)

    Liliental-Weber, Z.; Tanaka, M.; Ishikawa, A.; Teriauchi, M.

    1991-01-01

    A microscopic strain distribution across commensurate interfaces between GaAs layers grown on semi-insulating GaAs substrates was observed by means of convergent beam electron diffraction (CBED) and large angle convergent beam methods (LACBED). Strain relaxation at a specific distance from the interface was observed in these layers without formation of misfit dislocations. It was proposed that specific point defects distributed close to the interface can explain the asymmetric broadening of high-order Laue zone (HOLZ) lines in the CBED patterns.

  9. Shallow-homojunction GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Fan, J. C. C.

    1979-01-01

    Single-crystal GaAs shallow-homojunction solar cells on GaAs or Ge substrates, without Ga sub 1-x Al sub x As window layers, that have conversion efficiencies exceeding 20% at AM1 (17% at AMO). Using a simple theoretical model, good fits were obtained between computer calculations and experimental data for external quantum efficiency and conversion efficiency of cells with different values of n+ layer thickness. The calculations not only yield values for material properties of the GaAs layers composing the cells but will also permit the optimization of cell designs for space and terrestrial applications. Preliminary measurements indicate that the shallow-homojunction cells are resistant to electron irradiation. In the best test so far, bombardment with 1 x 10 to the 16th power/sq cm fluence of 1 MeV electrons reduced the short-circuit current by only about 6%.

  10. A GaAs phononic crystal with shallow noncylindrical holes.

    PubMed

    Petrus, Joseph A; Mathew, Reuble; Stotz, James A H

    2014-02-01

    A square lattice of shallow, noncylindrical holes in GaAs is shown to act as a phononic crystal (PnC) reflector. The holes are produced by wet-etching a GaAs substrate using a citric acid:H2O2 etching procedure and a photolithographed array pattern. Although nonuniform and asymmetric etch rates limit the depth and shape of the phononic crystal holes, the matrix acts as a PnC, as demonstrated by insertion loss measurements together with interferometric imaging of surface acoustic waves propagating on the GaAs surface. The measured vertical displacement induced by surface phonons compares favorably with finite-difference time-domain simulations of a PnC with rounded-square holes.

  11. The growth of high quality CdTe on GaAs by molecular beam epitaxy

    SciTech Connect

    Reno, J.L.; Carr, M.J.; Gourley, P.L. )

    1990-03-01

    We have grown CdTe (111) on oriented and misoriented GaAs (100) and have characterized the layers by photoluminescence microscopy (PLM) and transmission electron microscopy (TEM). Photoluminescence microscopy showed a totally different type of defect structure for the oriented substrate than for the misoriented substrates. The CdTe grown on the misoriented substrates exhibited only threading dislocations. The CdTe grown on oriented GaAs showed fewer threading dislocations but exhibited a random structure of loops. The loop structure observed by PLM has been identified by TEM as the boundary between twinned crystallites which extend from the CdTe/GaAs interface to the CdTe surface. When viewed along the growth axis, these boundaries between the columnar twins appear as loops and segments. Surface roughness of the GaAs substrate contributes to the initial growth of twinned material. This leads to competitive growth between the twins and the creation of the observed columnar twins. We present for the first time the growth of CdTe on patterned GaAs substrates. By growing on oriented GaAs(100) substrates that had been patterned prior to growth with 12 {mu}m mesas, it is possible to grow material on the mesa top that is twin free and has a low dislocation density.

  12. Electrical and structural characterization of GaAs on InP grown by OMCVD; application to GaAs MESFETs

    NASA Astrophysics Data System (ADS)

    Azoulay, R.; Clei, A.; Dugrand, L.; Draïdia, auN.; Leroux, G.; Biblemont, S.

    1991-01-01

    The growth of GaAs on InP has attracted considerable interest recently because of the possibility of integration of GaAs electronic devices and 1.3 μm optical devices on the same wafer. In this work, we have investigated the growth of GaAs MESFETs and doped channel MIS-like FETs on InP by atmospheric pressure OMCVD. Because of the difference between the thermal expansion coefficient of GaAs and InP, the layers are under biaxial strain. The lowest FWHM of the (004) reflection curve of the double crystal X-ray diffraction spectra is 110 arc sec for a 12 μm thick layer. We have investigated the influence of the substrate temperature and of the arsine molar fraction on the residual carrier concentration of layers grown side by side on GaAs and on InP. The GaAs layers grown on InP are much more compensated than the layers grown on GaAs, indicating a higher incorporation of impurities. On MESFETs grown on InP, gm = 200mS/mm with Fmax higher than 30 GHz. On doped-channel MIS-like FETs on InP, we have measured gm = 145mS/mm.

  13. Growth and characterization of molecular beam epitaxial GaAs layers on porous silicon

    NASA Technical Reports Server (NTRS)

    Lin, T. L.; Liu, J. K.; Sadwick, L.; Wang, K. L.; Kao, Y. C.

    1987-01-01

    GaAs layers have been grown on porous silicon (PS) substrates with good crystallinity by molecular beam epitaxy. In spite of the surface irregularity of PS substrates, no surface morphology deterioration was observed on epitaxial GaAs overlayers. A 10-percent Rutherford backscattering spectroscopy minimum channeling yield for GaAs-on-PS layers as compared to 16 percent for GaAs-on-Si layers grown under the same condition indicates a possible improvement of crystallinity when GaAs is grown on PS. Transmission electron microscopy reveals that the dominant defects in the GaAs-on-PS layers are microtwins and stacking faults, which originate from the GaAs/PS interface. GaAs is found to penetrate into the PS layers. n-type GaAs/p-type PS heterojunction diodes were fabricated with good rectifying characteristics.

  14. High-voltage picosecond photoconductor switch based on low-temperature-grown GaAs

    NASA Technical Reports Server (NTRS)

    Frankel, Michael Y.; Whitaker, John F.; Mourou, Gerard A.; Smith, Frank W.; Calawa, Arthur R.

    1990-01-01

    A GaAs material grown by molecular beam epitaxy at a low substrate temperature was used to fabricate a photoconductor switch that produces 6-V picosecond electrical pulses. The pulses were produced on a microwave coplanar-strip transmission line lithographically patterned on the low-temperature (LT) GaAs. A 150-fs laser pulse was used to generate carriers in the LT GaAs gap between the metal strips, partially shorting a high DC voltage placed across the lines. The 6-V magnitude of the electrical pulses obtained is believed to be limited by the laser pulse power and not by the properties of the LT GaAs. Experiments were also performed on a picosecond photoconductor switch fabricated on a conventional ion-damaged silicon-on-sapphire substrate. Although comparable pulse durations were obtained, the highest pulse voltage achieved with the latter device was 0.6 V.

  15. LPE growth and optical characteristics of GaAs1-xSbx epilayer

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Hu, Shuhong; Zhou, Wei; Sun, Yan; Zhang, Bin; Wang, Chao; Dai, Ning

    2017-04-01

    A series of GaAs1-xSbx epilayers have been successfully grown on GaAs (1 0 0) substrates by liquid phase epitaxy (LPE) technique at about 550 °C. Samples with different antimony (Sb) contents have been analyzed by high-resolution X-ray diffraction (HRXRD) measurement, which confirms the incorporation of Sb in the epilayers. Room temperature optical properties of GaAs1-xSbx epilayers were performed by photoluminescence (PL) and transmission spectra.

  16. Simulation of GaAs cluster formation on GaAs(00-1), AlAs(00-1), Si(001), and As1/Si(001) surfaces

    NASA Technical Reports Server (NTRS)

    Choi, D. K.; Koch, S. M.; Takai, T.; Halicioglu, T.; Tiller, W. A.

    1988-01-01

    Recently developed semiempirical potential energy functions for the Ga-As-Si and Ga-As-Al systems have been applied here to determine the excess formation energy for GaAs clusters on GaAs(00-1), AlAs(00-1), Si(001), and one atomic layer As-covered Si(001) substrates as a function of cluster size and cluster shape by the Monte Carlo technique. Pyramidal type ledges on the GaAs clusters are found to be the favored ledge for the first three layers while an inverted-pyramidal type ledge is also favored in certain cases for the As1/Si(001) substrate. Cluster formation at ledges is compared with cluster formation on a flat terrace for the Si(001) and the As1/Si(001) substrates.

  17. Molecular beam epitaxial growth and structural characterization of ZnS on (001) GaAs

    NASA Technical Reports Server (NTRS)

    Benz, R. G., II; Huang, P. C.; Stock, S. R.; Summers, C. J.

    1988-01-01

    The effect of surface nucleation processes on the quality of ZnS layers grown on (001) GaAs substrates by molecular beam epitaxy is reported. Reflection high energy electron diffraction indicated that nucleation at high temperatures produced more planar surfaces than nucleation at low temperatures, but the crystalline quality as assessed by X-ray double crystal diffractometry is relatively independent of nucleation temperature. A critical factor in layer quality was the initial roughness of the GaAs surfaces.

  18. Molecular enhancement of ferromagnetism in GaAs /GaMnAs heterostructures

    NASA Astrophysics Data System (ADS)

    Carmeli, Itai; Bloom, Francisco; Gwinn, E. G.; Kreutz, T. C.; Scoby, Cheyne; Gossard, A. C.; Ray, S. G.; Naaman, Ron

    2006-09-01

    The authors investigate effects of chemisorption of polar organic molecules onto ferromagnetic GaAs /GaMnAs heterostructures. The chemisorbed heterostructures exhibit striking anisotropic enhancement of the magnetization, while GaAs substrates that are physisorbed with the same molecules show no change in magnetic properties. Thus the enhanced magnetism of the chemisorbed heterostructures reflects changes in spin alignment that arise from surface bonding of the organic monolayer.

  19. Experimental examination of gaas dissolution in in-p melt

    NASA Astrophysics Data System (ADS)

    Bolkhovityanov, Yu. B.; Bolkhovityanova, R. I.; Chikichev, S. I.

    1983-05-01

    The “solubility” of GaAs crystals in quaternary In-Ga-As-P liquids (X{Ga/I} = X{As/I}) has been studied experi-mentally at 770°C using seed-dissolution technique. The location of the true liquidus isotherm has been established independently by means of the direct vi-sual observation technique. Comparison between the two data sets indicates that the first method can be successfully used only for those In-Ga-As-P melt compositions which have the corresponding solid InxGa1-xAsyP1-y alloys nearly lattice-matched to the GaAs substrate. In other cases the results obtained by this method are totally misleading although in-teresting as they are. The phenomenon of “catastro-phic” substrate erosion is investigated. The results of the present study are interpreted within the conceptual framework developed previously.

  20. GaAs VLSI for aerospace electronics

    NASA Technical Reports Server (NTRS)

    Larue, G.; Chan, P.

    1990-01-01

    Advanced aerospace electronics systems require high-speed, low-power, radiation-hard, digital components for signal processing, control, and communication applications. GaAs VLSI devices provide a number of advantages over silicon devices including higher carrier velocities, ability to integrate with high performance optical devices, and high-resistivity substrates that provide very short gate delays, good isolation, and tolerance to many forms of radiation. However, III-V technologies also have disadvantages, such as lower yield compared to silicon MOS technology. Achieving very large scale integration (VLSI) is particularly important for fast complex systems. At very short gate delays (less than 100 ps), chip-to-chip interconnects severely degrade circuit clock rates. Complex systems, therefore, benefit greatly when as many gates as possible are placed on a single chip. To fully exploit the advantages of GaAs circuits, attention must be focused on achieving high integration levels by reducing power dissipation, reducing the number of devices per logic function, and providing circuit designs that are more tolerant to process and environmental variations. In addition, adequate noise margin must be maintained to ensure a practical yield.

  1. Effect of spacer layer thickness on multi-stacked InGaAs quantum dots grown on GaAs (311)B substrate for application to intermediate band solar cells

    NASA Astrophysics Data System (ADS)

    Shoji, Yasushi; Narahara, Kohei; Tanaka, Hideharu; Kita, Takashi; Akimoto, Katsuhiro; Okada, Yoshitaka

    2012-04-01

    We have investigated the properties of multi-stacked layers of self-organized In0.4Ga0.6As quantum dots (QDs) on GaAs (311)B grown by molecular beam epitaxy. We found that a high degree of in-plane ordering of QDs structure with a six-fold symmetry was maintained though the growth has been performed at a higher growth rate than the conventional conditions. The dependence of photoluminescence characteristics on spacer layer thickness showed an increasing degree of electronic coupling between the stacked QDs for thinner spacer layers. The external quantum efficiency for an InGaAs/GaAs quantum dot solar cell (QDSC) with a thin spacer layer thickness increased in the longer wavelength range due to additive contribution from QD layers inserted in the intrinsic region. Furthermore, a photocurrent production by 2-step photon absorption has been observed at room temperature for the InGaAs/GaAs QDSC with a spacer layer thickness of 15 nm.

  2. Droplet-mediated formation of embedded GaAs nanowires in MBE GaAs1-x Bi x films

    NASA Astrophysics Data System (ADS)

    Wood, Adam W.; Collar, Kristen; Li, Jincheng; Brown, April S.; Babcock, Susan E.

    2016-03-01

    We have examined the morphology and composition of embedded nanowires that can be formed during molecular beam epitaxy of GaAs1-x Bi x using high angle annular dark field (‘Z-contrast’) imaging in an aberration-corrected scanning transmission electron microscope. Samples were grown in Ga-rich growth conditions on a stationary GaAs substrate. Ga-rich droplets are observed on the surface with lateral trails extending from the droplet in the [110] direction. Cross-sectional scanning transmission electron microscopy of the film reveals epitaxial nanowire structures of composition ˜GaAs embedded in the GaAs1-x Bi x epitaxial layers. These nanowires extend from a surface droplet to the substrate at a shallow angle of inclination (˜4°). They typically are 4 μm long and have a lens-shaped cross section with major and minor axes dimensions of 800 and 120 nm. The top surface of the nanowires exhibits a linear trace in longitudinal cross-section, across which the composition change from ˜GaAs to GaAs1-x Bi x appears abrupt. The bottom surfaces of the nanowires appear wavy and the composition change appears to be graded over ˜25 nm. The droplets have phase separated into Ga- and Bi-rich components. A qualitative model is proposed in which Bi is gettered into Ga droplets, leaving Bi depleted nanowires in the wakes of the droplets as they migrate in one direction across the surface during GaAs1-x Bi x film growth.

  3. High power cascaded mid-infrared InAs/GaSb light emitting diodes on mismatched GaAs

    SciTech Connect

    Provence, S. R. Ricker, R.; Aytac, Y.; Boggess, T. F.; Prineas, J. P.

    2015-09-28

    InAs/GaSb mid-wave, cascaded superlattice light emitting diodes are found to give higher radiance when epitaxially grown on mismatched GaAs substrates compared to lattice-matched GaSb substrates. Peak radiances of 0.69 W/cm{sup 2}-sr and 1.06 W/cm{sup 2}-sr for the 100 × 100 μm{sup 2} GaSb and GaAs-based devices, respectively, were measured at 77 K. Measurement of the recombination coefficients shows the shorter Shockley-Read-Hall recombination lifetime as misfit dislocations for growth on GaAs degrade the quantum efficiency only at low current injection. The improved performance on GaAs was found to be due to the higher transparency and improved thermal properties of the GaAs substrate.

  4. Enhanced solar energy harvesting using top n-contact GaAs solar cell

    NASA Astrophysics Data System (ADS)

    Das, N. C.

    2015-05-01

    We fabricated single-junction solar cell on molecular beam epitaxially grown p-n junction on n-type gallium arsenide (GaAs) substrate. We used a germanium (Ge)/gold (Au)/nickel (Ni)/Au metal contact from the top side on a highly doped n+ epitaxial layer as well as the bottom side on an n-type GaAs substrate. We observed 10-15% increase in solar cell power when the top contact is used for the n+ GaAs epi layer compared to the bottom side n-type GaAs substrate. Solar cell fill factor, sheet, and shunt resistances are same for both the top and bottom contact type devices. We also observed higher external quantum efficiency (EQE) for top contact devices compared to bottom contact devices. We conclude that to achieve higher power, it is advantageous to use an n-type contact from a highly doped top n+ epitaxial layer rather than a bottom n-type GaAs substrate.

  5. Kinetic growth mode of epitaxial GaAs on Si(001) micro-pillars

    NASA Astrophysics Data System (ADS)

    Bergamaschini, Roberto; Bietti, Sergio; Castellano, Andrea; Frigeri, Cesare; Falub, Claudiu V.; Scaccabarozzi, Andrea; Bollani, Monica; von Känel, Hans; Miglio, Leo; Sanguinetti, Stefano

    2016-12-01

    Three-dimensional, epitaxial GaAs crystals are fabricated on micro-pillars patterned into Si(001) substrates by exploiting kinetically controlled growth conditions in Molecular Beam Epitaxy. The evolution of crystal morphology during growth is assessed by considering samples with increasing GaAs deposit thickness. Experimental results are interpreted by a kinetic growth model, which takes into account the fundamental aspects of the growth and mutual deposition flux shielding between neighboring crystals. Different substrate pattern geometries with dissimilar lateral sizes and periodicities of the Si micro-pillars are considered and self-similar crystal structures are recognized. It is demonstrated that the top faceting of the GaAs crystals is tunable, which can pave the way to locally engineer compound semiconductor quantum structures on Si(001) substrates.

  6. Control of adhesion to the mask of epitaxial laterally overgrown GaAs layers

    NASA Astrophysics Data System (ADS)

    Zytkiewicz, Z. R.; Domagała, J.; Dobosz, D.

    2001-12-01

    Strain commonly observed in layers grown by epitaxial lateral overgrowth (ELO) and arising from interaction of the layers with the mask underneath is studied. We show that GaAs ELO layers grown by liquid-phase epitaxy on SiO2-coated GaAs substrates are strain free if the laterally overgrown parts ("wings") of the layers hang over and have no direct contact with the mask. In other cases, tilting of the wings can be efficiently tailored by controlling the ratio of vertical to lateral growth rates at the beginning of ELO growth. In particular, this has been achieved by growing GaAs ELO layers on SiO2-coated GaAs substrates with increasing density of dislocations. Then, the ratio of vertical to lateral growth rates at the beginning of the growth is increased which in turn leads to reduction of the adhesion-induced bending of the ELO wings, as we observe by high-resolution x-ray diffraction. In the limiting case of heavily dislocated substrates, namely, on GaAs-coated Si, the vertical growth of GaAs ELO is so fast that air-bridged structures without any wing adhesion to the SiO2 mask are obtained. Next, the same model is used to explain our earlier data on negligible bending of GaAs ELO layers on graphite-masked GaAs substrates. In this case, delayed start of lateral growth is caused by the change of the shape of the melt in the corner between the sidewall of the ELO layer and the mask when SiO2 was replaced by graphite film not wetted by the gallium melt.

  7. Near Full-Composition-Range High-Quality GaAs1-xSbx Nanowires Grown by Molecular-Beam Epitaxy.

    PubMed

    Li, Lixia; Pan, Dong; Xue, Yongzhou; Wang, Xiaolei; Lin, Miaoling; Su, Dan; Zhang, Qinglin; Yu, Xuezhe; So, Hyok; Wei, Dahai; Sun, Baoquan; Tan, Pingheng; Pan, Anlian; Zhao, Jianhua

    2017-02-08

    Here we report on the Ga self-catalyzed growth of near full-composition-range energy-gap-tunable GaAs1-xSbx nanowires by molecular-beam epitaxy. GaAs1-xSbx nanowires with different Sb content are systematically grown by tuning the Sb and As fluxes, and the As background. We find that GaAs1-xSbx nanowires with low Sb content can be grown directly on Si(111) substrates (0 ≤ x ≤ 0.60) and GaAs nanowire stems (0 ≤ x ≤ 0.50) by tuning the Sb and As fluxes. To obtain GaAs1-xSbx nanowires with x ranging from 0.60 to 0.93, we grow the GaAs1-xSbx nanowires on GaAs nanowire stems by tuning the As background. Photoluminescence measurements confirm that the emission wavelength of the GaAs1-xSbx nanowires is tunable from 844 nm (GaAs) to 1760 nm (GaAs0.07Sb0.93). High-resolution transmission electron microscopy images show that the grown GaAs1-xSbx nanowires have pure zinc-blende crystal structure. Room-temperature Raman spectra reveal a redshift of the optical phonons in the GaAs1-xSbx nanowires with x increasing from 0 to 0.93. Field-effect transistors based on individual GaAs1-xSbx nanowires are fabricated, and rectifying behavior is observed in devices with low Sb content, which disappears in devices with high Sb content. The successful growth of high-quality GaAs1-xSbx nanowires with near full-range bandgap tuning may speed up the development of high-performance nanowire devices based on such ternaries.

  8. Cathodoluminescence studies of GaAs nano-wires grown on shallow-trench-patterned Si.

    PubMed

    Lee, Ling; Fan, Wen-Chung; Ku, Jui-Tai; Chang, Wen-Hao; Chen, Wei-Kuo; Chou, Wu-Ching; Ko, Chih-Hsin; Wu, Cheng-Hsien; Lin, You-Ru; Wann, Clement H; Hsu, Chao-Wei; Chen, Yung-Feng; Su, Yan-Kuin

    2010-11-19

    The optical properties of GaAs nano-wires grown on shallow-trench-patterned Si(001) substrates were investigated by cathodoluminescence. The results showed that when the trench width ranges from 80 to 100 nm, the emission efficiency of GaAs can be enhanced and is stronger than that of a homogeneously grown epilayer. The suppression of non-radiative centers is attributed to the trapping of both threading dislocations and planar defects at the trench sidewalls. This approach demonstrates the feasibility of growing nano-scaled GaAs-based optoelectronic devices on Si substrates.

  9. Some Aspects of the RHEED Behavior of Low-Temperature GaAs Growth

    SciTech Connect

    Nemcsics, A.

    2005-11-15

    The reflection high-energy electron diffraction (RHEED) behavior manifested during MBE growth on a GaAs(001) surface under low-temperature (LT) growth conditions is examined in this study. RHEED and its intensity oscillations during LT GaAs growth exhibit some particular behavior. The intensity, phase, and decay of the oscillations depend on the beam equivalent pressure (BEP) ratio and substrate temperature, etc. Here, the intensity dependence of RHEED behavior on the BEP ratio, substrate temperature, and excess of As content in the layer are examined. The change in the decay constant of the RHEED oscillations is also discussed.

  10. High-efficiency thin-film GaAs solar cells, phase2

    NASA Technical Reports Server (NTRS)

    Yeh, Y. C. M.

    1981-01-01

    Thin GaAs epi-layers with good crystallographic quality were grown using a (100) Si-substrate on which a thin Ge epi-interlayer was grown by CVD from germane. Both antireflection-coated metal oxide semiconductor (AMOS) and n(+)/p homojunction structures were studied. The AMOS cells were fabricated on undoped-GaAs epi-layers deposited on bulk poly-Ge substrates using organo-metallic CVD film-growth, with the best achieved AM1 conversion efficiency being 9.1%. Both p-type and n(+)-type GaAs growth were optimized using 50 ppm dimethyl zinc and 1% hydrogen sulfide, respectively. A direct GaAs deposition method in fabricating ultra-thin top layer, epitaxial n(+)/p shallow homojunction solar cells on (100) GaAs substrates (without anodic thinning) was developed to produce large area (1 sq/cm) cells, with 19.4% AM1 conversion efficiency achieved. Additionally, an AM1 conversion efficiency of 18.4% (17.5% with 5% grid coverage) was achieved for a single crystal GaAs n(+)/p cell grown by OM-CVD on a Ge wafer.

  11. A V-grooved GaAs solar cell

    NASA Technical Reports Server (NTRS)

    Bailey, S. G.; Fatemi, N. S.; Landis, G. A.; Wilt, D. M.; Thomas, R. D.; Arrison, A.

    1988-01-01

    V-grooved GaAs solar cells promise the benefits of improved optical coupling, higher short-circuit current, and increased tolerance to particle radiation compared to planar cells. A GaAs homojunction cell was fabricated by etching a V-groove pattern into an n epilayer (2.1 x 10 to the 17th power per cu cm) grown by metalorganic chemical vapor deposition (MOCVD) on an n+ substrate (2.8 x 10 to the 18th power per cu cm) and then depositing and MOCVD p epilayer (4.2 x 10 to the 18th power per cu cm). Reflectivity measurements on cells with and without an antireflective coating confirm the expected decrease in reluctance of the microgrooved cell compared to the planar structure. The short circuit current of the V-grooved solar cell was 13 percent higher than that of the planar control.

  12. A V-grooved GaAs solar cell

    NASA Technical Reports Server (NTRS)

    Bailey, S. G.; Fatemi, N.; Landis, G. A.; Wilt, D. M.; Thomas, R. D.; Arrison, A.

    1988-01-01

    V-grooved GaAs solar cells promise the benefits of improved optical coupling, higher short-circuit current, and incrased tolerance to particle radiation compared to planar cells. A GaAs homojunction cell was fabricated by etching a V-groove pattern into an n-epilayer (2.1 x 10 to the 17th power per cu cm) grown by metalorganic chemical vapor deposition (MOCVD) on an n+ substrate (2.8 x 10 to the 18th power per cu cm) and then depositing an MOCVD p epilayer (4.2 x 10 to the 18th power per cu cm). Reflectivity measurements on cells with and without an antireflective coating confirm the expected decrease in reflectance of the microgrooved cell compared to the planar structure. The short-circuit current of the V-grooved solar cell was 13 percent higher than that of the planar control.

  13. Selective-area growth of heavily n-doped GaAs nanostubs on Si(001) by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Chang, Yoon Jung; Simmonds, Paul J.; Beekley, Brett; Goorsky, Mark S.; Woo, Jason C. S.

    2016-04-01

    Using an aspect ratio trapping technique, we demonstrate molecular beam epitaxy of GaAs nanostubs on Si(001) substrates. Nanoholes in a SiO2 mask act as a template for GaAs-on-Si selective-area growth (SAG) of nanostubs 120 nm tall and ≤100 nm in diameter. We investigate the influence of growth parameters including substrate temperature and growth rate on SAG. Optimizing these parameters results in complete selectivity with GaAs growth only on the exposed Si(001). Due to the confined-geometry, strain and defects in the GaAs nanostubs are restricted in lateral dimensions, and surface energy is further minimized. We assess the electrical properties of the selectively grown GaAs nanostubs by fabricating heterogeneous p+-Si/n+-GaAs p-n diodes.

  14. Gallium loading of gold seed for high yield of patterned GaAs nanowires

    SciTech Connect

    Boulanger, J. P.; Chia, A. C. E.; LaPierre, R. R.

    2014-08-25

    A method is presented for maximizing the yield and crystal phase purity of vertically aligned Au-assisted GaAs nanowires grown with an SiO{sub x} selective area epitaxy mask on GaAs (111)B substrates. The nanowires were grown by the vapor-liquid-solid (VLS) method in a gas source molecular beam epitaxy system. During annealing, Au VLS seeds will alloy with the underlying GaAs substrate and collect beneath the SiO{sub x} mask layer. This behavior is detrimental to obtaining vertically aligned, epitaxial nanowire growth. To circumvent this issue, Au droplets were pre-filled with Ga assuring vertical yields in excess of 99%.

  15. Reduction of native oxides on GaAs during atomic layer growth of Al2O3

    NASA Astrophysics Data System (ADS)

    Lee, Hang Dong; Feng, Tian; Yu, Lei; Mastrogiovanni, Daniel; Wan, Alan; Gustafsson, Torgny; Garfunkel, Eric

    2009-06-01

    The reduction of surface "native" oxides from GaAs substrates following reactions with trimethylaluminum (TMA) precursor is studied using medium energy ion scattering spectroscopy (MEIS) and x-ray photoelectron spectroscopy (XPS). MEIS measurements after one single TMA pulse show that ˜65% of the native oxide is reduced, confirmed by XPS measurement, and a 5 Å thick oxygen-rich aluminum oxide layer is formed. This reduction occurs upon TMA exposure to as-received GaAs wafers.

  16. Antireflective disordered subwavelength structure on GaAs using spin-coated Ag ink mask.

    PubMed

    Yeo, Chan Il; Kwon, Ji Hye; Jang, Sung Jun; Lee, Yong Tak

    2012-08-13

    We present a simple, cost-effective, large scale fabrication technique for antireflective disordered subwavelength structures (d-SWSs) on GaAs substrate by Ag etch masks formed using spin-coated Ag ink and subsequent inductively coupled plasma (ICP) etching process. The antireflection characteristics of GaAs d-SWSs rely on their geometric profiles, which were controlled by adjusting the distribution of Ag etch masks via changing the concentration of Ag atoms and the sintering temperature of Ag ink as well as the ICP etching conditions. The fabricated GaAs d-SWSs drastically reduced the reflection loss compared to that of bulk GaAs (>30%) in the wavelength range of 300-870 nm. The most desirable GaAs d-SWSs for practical solar cell applications exhibited a solar-weighted reflectance (SWR) of 2.12%, which is much lower than that of bulk GaAs (38.6%), and its incident angle-dependent SWR was also investigated.

  17. Spectroscopic constants and potential energy curves of GaAs, GaAs +, and GaAs -

    NASA Astrophysics Data System (ADS)

    Balasubramanian, K.

    1990-02-01

    Twenty electronic states of GaAs, 12 electronic states of GaAs +, and 13 electronic states of GaAs - are investigated using relativistic ab initio complete active space MCSCF (CASSCF) followed by large-scale configuration interaction calculations which included up to 700 000 configurations. Potential energy curves and spectroscopic constants of all these states of three radicals are obtained. Spectroscopic constants of low-lying states of GaAs are in very good agreement with both experiment and all-electron results. Two nearly-degenerate states of 2Σ +, 2Π ( 2Σ + lower) symmetries are found as candidates for the ground state of GaAs -. The GaAs - negative ion is found to be more stable compared to the neutral GaAs ( De(GaAs -) = 3 eV). The electron affinity of GaAs is computed as 0.89 and 1.3 eV at the FOCI and SOCI levels of theory, respectively. Calculated potential energy curves of GaAs are in accord with the experimentally observed predissociation in the 3Π( III) - X3Σ- system.

  18. Involvement of Agrobacterium tumefaciens Galacturonate Tripartite ATP-Independent Periplasmic (TRAP) Transporter GaaPQM in Virulence Gene Expression

    PubMed Central

    Zhao, Jinlei

    2015-01-01

    Monosaccharides capable of serving as nutrients for the soil bacterium Agrobacterium tumefaciens are also inducers of the vir regulon present in the tumor-inducing (Ti) plasmid of this plant pathogen. One such monosaccharide is galacturonate, the predominant monomer of pectin found in plant cell walls. This ligand is recognized by the periplasmic sugar binding protein ChvE, which interacts with the VirA histidine kinase that controls vir gene expression. Although ChvE is also a member of the ChvE-MmsAB ABC transporter involved in the utilization of many neutral sugars, it is not involved in galacturonate utilization. In this study, a putative tripartite ATP-independent periplasmic (TRAP) transporter, GaaPQM, is shown to be essential for the utilization of galacturonic acid; we show that residue R169 in the predicted sugar binding site of the GaaP is required for activity. The gene upstream of gaaPQM (gaaR) encodes a member of the GntR family of regulators. GaaR is shown to repress the expression of gaaPQM, and the repression is relieved in the presence of the substrate for GaaPQM. Moreover, GaaR is shown to bind putative promoter regions in the sequences required for galacturonic acid utilization. Finally, A. tumefaciens strains carrying a deletion of gaaPQM are more sensitive to galacturonate as an inducer of vir gene expression, while the overexpression of gaaPQM results in strains being less sensitive to this vir inducer. This supports a model in which transporter activity is crucial in ensuring that vir gene expression occurs only at sites of high ligand concentration, such as those at a plant wound site. PMID:26637603

  19. GaAs nanowire growth on polycrystalline silicon thin films using selective-area MOVPE.

    PubMed

    Ikejiri, Keitaro; Ishizaka, Fumiya; Tomioka, Katsuhiro; Fukui, Takashi

    2013-03-22

    The growth mechanism of GaAs nanowires (NWs) grown on polycrystalline silicon (poly-Si) thin films using selective-area metalorganic vapor-phase epitaxy was investigated. Wire structures were selectively grown in the mask openings on a poly-Si substrate. The appearance ratio of wire structures strongly depended on the growth conditions and deposition temperature of the poly-Si substrate. Evaluation of the grown shapes and growth characteristics revealed that GaAs NWs grown on a poly-Si substrate have the same growth mechanism as conventional GaAs NWs grown on a single-crystalline GaAs or Si substrate. Experiments showed that the wire structure yield can be improved by increasing the Si grain size and/or increasing the Si deposition temperature. The growth model proposed for understanding NW growth on poly-Si is based on the mask opening size, the Si grain size, and the growth conditions. The ability to control the growth mode is promising for the formation of NWs with complex structures on poly-Si thin layers.

  20. Fabrication of 80-nm T-gate high indium In0.7Ga0.3As/In0.6Ga0.4As composite channels mHEMT on GaAs substrate with simple technological process

    NASA Astrophysics Data System (ADS)

    Xian, Ji; Xiaodong, Zhang; Weihua, Kang; Zhili, Zhang; Jiahui, Zhou; Wenjun, Xu; Qi, Li; Gongli, Xiao; Zhijun, Yin; Yong, Cai; Baoshun, Zhang; Haiou, Li

    2016-02-01

    An 80-nm gate length metamorphic high electron mobility transistor (mHEMT) on a GaAs substrate with high indium composite compound-channels In0.7Ga0.3 As/In0.6Ga0.4 As and an optimized grade buffer scheme is presented. High 2-DEG Hall mobility values of 10200 cm2/(V·s) and a sheet density of 3.5 × 1012 cm-2 at 300 K have been achieved. The device's T-shaped gate was made by utilizing a simple three layers electron beam resist, instead of employing a passivation layer for the T-share gate, which is beneficial to decreasing parasitic capacitance and parasitic resistance of the gate and simplifying the device manufacturing process. The ohmic contact resistance Rc is 0.2 ω·mm when using the same metal system with the gate (Pt/Ti/Pt/Au), which reduces the manufacturing cycle of the device. The mHEMT device demonstrates excellent DC and RF characteristics. The peak extrinsic transconductance of 1.1 S/mm and the maximum drain current density of 0.86 A/mm are obtained. The unity current gain cut-off frequency (fT) and the maximum oscillation frequency (fmax) are 246 and 301 GHz, respectively. Project supported by the Key Laboratory of Nano-Devices and Applications, Nano-Fabrication Facility of SINANO, Chinese Academy of Sciences, the National Natural Science Foundation of China (Nos. 61274077, 61474031, 61464003), the Guangxi Natural Science Foundation (Nos. 2013GXNSFGA019003, 2013GXNSFAA019335), the National Basic Research Program of China (Nos. 2011CBA00605, 2010CB327501), the Project (No. 9140C140101140C14069), and the Innovation Project of GUET Graduate Education (Nos. GDYCSZ201448, GDYCSZ201449, YJCXS201529).

  1. Substrate structures for InP-based devices

    DOEpatents

    Wanlass, Mark W.; Sheldon, Peter

    1990-01-01

    A substrate structure for an InP-based semiconductor device having an InP based film is disclosed. The substrate structure includes a substrate region having a lightweight bulk substrate and an upper GaAs layer. An interconnecting region is disposed between the substrate region and the InP-based device. The interconnecting region includes a compositionally graded intermediate layer substantially lattice-matched at one end to the GaAs layer and substantially lattice-matched at the opposite end to the InP-based film. The interconnecting region further includes a dislocation mechanism disposed between the GaAs layer and the InP-based film in cooperation with the graded intermediate layer, the buffer mechanism blocking and inhibiting propagation of threading dislocations between the substrate region, and the InP-based device.

  2. SEMICONDUCTOR TECHNOLOGY: GaAs surface wet cleaning by a novel treatment in revolving ultrasonic atomization solution

    NASA Astrophysics Data System (ADS)

    Zaijin, Li; Liming, Hu; Ye, Wang; Ye, Yang; Hangyu, Peng; Jinlong, Zhang; Li, Qin; Yun, Liu; Lijun, Wang

    2010-03-01

    A novel process for the wet cleaning of GaAs surface is presented. It is designed for technological simplicity and minimum damage generated within the GaAs surface. It combines GaAs cleaning with three conditions consisting of (1) removal of thermodynamically unstable species and (2) surface oxide layers must be completely removed after thermal cleaning, and (3) a smooth surface must be provided. Revolving ultrasonic atomization technology is adopted in the cleaning process. At first impurity removal is achieved by organic solvents; second NH4OH:H2O2:H2O = 1:1:10 solution and HCl: H2O2:H2O = 1:1:20 solution in succession to etch a very thin GaAs layer, the goal of the step is removing metallic contaminants and forming a very thin oxidation layer on the GaAs wafer surface; NH4OH:H2O = 1:5 solution is used as the removed oxide layers in the end. The effectiveness of the process is demonstrated by the operation of the GaAs wafer. Characterization of the oxide composition was carried out by X-ray photoelectron spectroscopy. Metal-contamination and surface morphology was observed by a total reflection X-ray fluorescence spectroscopy and atomic force microscope. The research results show that the cleaned surface is without contamination or metal contamination. Also, the GaAs substrates surface is very smooth for epitaxial growth using the rotary ultrasonic atomization technology.

  3. High Quality GaAs Growth by MBE on Si Using GeSi Buffers and Prospects for Space Photovoltaics

    NASA Technical Reports Server (NTRS)

    Carlin, J. A.; Ringel, S. A.; Fitzgerald, E. A.; Bulsara, M.

    2005-01-01

    III-V solar cells on Si substrates are of interest for space photovoltaics since this would combine high performance space cells with a strong, lightweight and inexpensive substrate. However, the primary obstacles blocking III-V/Si cells from achieving high performance to date have been fundamental materials incompatabilities, namely the 4% lattice mismatch between GaAs and Si, and the large mismatch in thermal expansion coefficient. In this paper, we report on the molecular beam epitaxial (MBE) growth and properties of GaAs layers and single junction GaAs cells on Si wafers which utilize compositionally graded GeSi Intermediate buffers grown by ultra-high vacuum chemical vapor deposition (UHVCVD) to mitigate the large lattice mismatch between GaAs and Si. Ga As cell structures were found to incorporate a threading dislocation density of 0.9-1.5 x 10 (exp 6) per square centimeter, identical to the underlying relaxed Ge cap of the graded buffer, via a combination of transmission electron microscopy, electron beam induced current, and etch pit density measurements. AlGaAs/GaAs double heterostructures wre grown on the GeSi/Si substrates for time-resolved photoluminescence measurements, which revealed a bulk GaAs minority carrier lifetime in excess of 10 ns, the highest lifetime ever reported for GaAs on Si. A series of growth were performed to ass3ss the impact of a GaAs buffer to a thickness of only 0.1 micrometer. Secondary ion mass spectroscopy studies revealed that there is negligible cross diffusion of Ga, As and Ge at he III-V/Ge interface, identical to our earlier findings for GaAs grown on Ge wafers using MBE. This indicates that there is no need for a buffer to "bury" regions of high autodopjing,a nd that either pn or np configuration cells are easily accomodated by these substrates. Preliminary diodes and single junction Al Ga As heteroface cells were grown and fabricated on the Ge/GeSi/Si substrates for the first time. Diodes fabricated on GaAs, Ge and Ge

  4. Pseudo-Rhombus-Shaped Subwavelength Crossed Gratings of GaAs for Broadband Antireflection

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Fan, Zhong-Chao; Zhang, Jing; Song, Guo-Feng; Chen, Liang-Hui

    2010-12-01

    Holographic lithography coupled with the nonlinear response of photoresist to the exposure is adopted to fabricate porous photoresist (PR) mask. Conventional dot PR mask is also generated, and both patterns are transferred into a underlying GaAs substrate by the optimal dry etching process to obtain tapered subwavelength crossed gratings (SWCGs) to mimic the moth-eye structure. In comparison of the experiment and simulation, the closely-packed pseudo-rhombus-shaped GaAs SWCGs resulting from the porous mask outperforms the conical counterpart which comes from the dot mask, and achieves a reported lowest mean spectral reflectance of 1.1%.

  5. Formation and coarsening of Ga droplets on focused-ion-beam irradiated GaAs surfaces

    SciTech Connect

    Wu, J. H.; Ye, W.; Cardozo, B. L.; Saltzman, D.; Sun, K.; Sun, H.; Mansfield, J. F.; Goldman, R. S.

    2009-10-12

    We have investigated the formation and coarsening of Ga droplets on focused-ion-beam (FIB) irradiated GaAs surfaces. To separately examine formation and coarsening, Ga droplets were fabricated by Ga{sup +} FIB irradiation of GaAs substrates with and without pre-patterned holes. We determined the droplet growth rate and size distribution as a function of FIB energy following irradiation. The data suggest a droplet formation mechanism that involves Ga precipitation from a Ga-rich layer, followed by droplet coarsening via a combination of diffusion and Ostwald ripening or coalescence via droplet migration (dynamic coalescence)

  6. GaAs Core/SrTiO3 Shell Nanowires Grown by Molecular Beam Epitaxy.

    PubMed

    Guan, X; Becdelievre, J; Meunier, B; Benali, A; Saint-Girons, G; Bachelet, R; Regreny, P; Botella, C; Grenet, G; Blanchard, N P; Jaurand, X; Silly, M G; Sirotti, F; Chauvin, N; Gendry, M; Penuelas, J

    2016-04-13

    We have studied the growth of a SrTiO3 shell on self-catalyzed GaAs nanowires grown by vapor-liquid-solid assisted molecular beam epitaxy on Si(111) substrates. To control the growth of the SrTiO3 shell, the GaAs nanowires were protected using an arsenic capping/decapping procedure in order to prevent uncontrolled oxidation and/or contamination of the nanowire facets. Reflection high energy electron diffraction, scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy were performed to determine the structural, chemical, and morphological properties of the heterostructured nanowires. Using adapted oxide growth conditions, it is shown that most of the perovskite structure SrTiO3 shell appears to be oriented with respect to the GaAs lattice. These results are promising for achieving one-dimensional epitaxial semiconductor core/functional oxide shell nanostructures.

  7. Frequency-tunable continuous-wave terahertz sources based on GaAs plasmonic photomixers

    SciTech Connect

    Yang, Shang-Hua; Jarrahi, Mona

    2015-09-28

    We present frequency-tunable, continuous-wave terahertz sources based on GaAs plasmonic photomixers, which offer high terahertz radiation power levels at 50% radiation duty cycle. The use of plasmonic contact electrodes enhances photomixer quantum efficiency while maintaining its ultrafast operation by concentrating a large number of photocarriers in close proximity to the device contact electrodes. Additionally, the relatively high thermal conductivity and high resistivity of GaAs allow operation under high optical pump power levels and long duty cycles without reaching the thermal breakdown limit of the photomixer. We experimentally demonstrate continuous-wave terahertz radiation with a radiation frequency tuning range of more than 2 THz and a record-high radiation power of 17 μW at 1 THz through plasmonic photomixers fabricated on a low temperature grown GaAs substrate at 50% radiation duty cycle.

  8. Deep levels in semi-insulating LEC GaAs before and after silicon implantation

    SciTech Connect

    Dindo, S.; Abdel-Motaleb, I.; Lowe, K.; Tang, W.; Young, L.

    1985-11-01

    The deep trapping levels present before ion implantation of silicon into the semi-insulating LEC GaAs starting material were investigated using optical transient current spectroscopy (OTCS). MESFET channel current deep level transient spectroscopy (DLTS) was used for the implanted material. With a silicon nitride layer used t encapsulate the GaAs for postimplantation annealing and with implantation directly into the GaAs, it was found tha of seven or more deep levels seen in the semi-insulating substrate prior to silicon implantation only the level believed to be EL12 remained. On implanting through a thin Si/sub 3/N/sub 4/ encapsulating layer and annealing under Si/sub 3/N/sub 4/, only EL2 was found. With a silicon dioxide layer as an encapsulant, two traps remained and two apparently unreported levels appeared.

  9. Monolithic optical integrated control circuitry for GaAs MMIC-based phased arrays

    NASA Technical Reports Server (NTRS)

    Bhasin, K. B.; Ponchak, G. E.; Kascak, T. J.

    1985-01-01

    Gallium arsenide (GaAs) monolithic microwave integrated circuits (MMIC's) show promise in phased-array antenna applications for future space communications systems. Their efficient usage will depend on the control of amplitude and phase signals for each MMIC element in the phased array and in the low-loss radiofrequency feed. For a phased array contining several MMIC elements a complex system is required to control and feed each element. The characteristics of GaAs MMIC's for 20/30-GHz phased-array systems are discussed. The optical/MMIC interface and the desired characteristics of optical integrated circuits (OIC's) for such an interface are described. Anticipated fabrication considerations for eventual full monolithic integration of optical integrated circuits with MMIC's on a GaAs substrate are presented.

  10. Morphology- and orientation-controlled gallium arsenide nanowires on silicon substrates.

    PubMed

    Ihn, Soo-Ghang; Song, Jong-In; Kim, Tae-Wook; Leem, Dong-Seok; Lee, Takhee; Lee, Sang-Geul; Koh, Eui Kwan; Song, Kyung

    2007-01-01

    GaAs nanowires were epitaxially grown on Si(001) and Si(111) substrates by using Au-catalyzed vapor-liquid-solid (VLS) growth in a solid source molecular beam epitaxy system. Scanning electron microscopy analysis revealed that almost all the GaAs nanowires were grown along <111> directions on both Si substrates for growth conditions investigated. The GaAs nanowires had a very uniform diameter along the growth direction. X-ray diffraction data and transmission electron microscopy analysis revealed that the GaAs<111> nanowires had a mixed crystal structure of the hexagonal wurtzite and the cubic zinc-blende. Current-voltage characteristics of junctions formed by the epitaxially grown GaAs nanowires and the Si substrate were investigated by using a current-sensing atomic force microscopy.

  11. n-Type Doping of Vapor-Liquid-Solid Grown GaAs Nanowires.

    PubMed

    Gutsche, Christoph; Lysov, Andrey; Regolin, Ingo; Blekker, Kai; Prost, Werner; Tegude, Franz-Josef

    2011-12-01

    In this letter, n-type doping of GaAs nanowires grown by metal-organic vapor phase epitaxy in the vapor-liquid-solid growth mode on (111)B GaAs substrates is reported. A low growth temperature of 400°C is adjusted in order to exclude shell growth. The impact of doping precursors on the morphology of GaAs nanowires was investigated. Tetraethyl tin as doping precursor enables heavily n-type doped GaAs nanowires in a relatively small process window while no doping effect could be found for ditertiarybutylsilane. Electrical measurements carried out on single nanowires reveal an axially non-uniform doping profile. Within a number of wires from the same run, the donor concentrations ND of GaAs nanowires are found to vary from 7 × 10(17) cm(-3) to 2 × 10(18) cm(-3). The n-type conductivity is proven by the transfer characteristics of fabricated nanowire metal-insulator-semiconductor field-effect transistor devices.

  12. Near infrared broadband emission of In0.35Ga0.65As quantum dots on high index GaAs surfaces.

    PubMed

    Wu, Jiang; Wang, Zhiming M; Dorogan, Vitaliy G; Li, Shibin; Mazur, Yuriy I; Salamo, Gregory J

    2011-04-01

    The morphology and optical properties of In(0.35)Ga(0.65)As/GaAs quantum dots (QDs) grown on (210), (311)A, (711)A, (731) and (100) substrates are investigated. QDs formed on (210) and (731) oriented substrates are grown by molecular beam epitaxy. Regular QDs are observed on (100), (311)A, and (711)A. Randomly distributed QDs and comet-shaped QDs form on (210) and (731) substrates, respectively. A high density of QDs on the order of 10(11) cm(-2) are obtained from (711)A. The optical measurement shows a spectrum linewidth (FWHM = 74.3 nm) of QDs on GaAs (210) three times wider than GaAs (100) substrate. Long exciton decay times, over 1 ns, are also measured by time-resolved photoluminescence technique for all samples. Our results demonstrate the potential for QDs on GaAs high index substrates for wideband applications.

  13. Ellipsometric measurements of epitaxial GaAs layers on a GaAs substrate

    NASA Technical Reports Server (NTRS)

    Desmet, D. J.

    1974-01-01

    An extensive examination of ellipsometric equations for anisotropic surfaces and films is reported. It is shown that the reflection matrix can be calculated by writing Maxwell's equations in 6 x 6 matrix form and by applying appropriate boundary conditions at proper points in the development of the formalism, reducing the equation for the propagation of light to an eigenvalue problem using a 4 x 4 matrix.

  14. Droplet-mediated formation of embedded GaAs nanowires in MBE GaAs(1-x)Bi(x) films.

    PubMed

    Wood, Adam W; Collar, Kristen; Li, Jincheng; Brown, April S; Babcock, Susan E

    2016-03-18

    We have examined the morphology and composition of embedded nanowires that can be formed during molecular beam epitaxy of GaAs(1-x)Bi(x) using high angle annular dark field ('Z-contrast') imaging in an aberration-corrected scanning transmission electron microscope. Samples were grown in Ga-rich growth conditions on a stationary GaAs substrate. Ga-rich droplets are observed on the surface with lateral trails extending from the droplet in the [110] direction. Cross-sectional scanning transmission electron microscopy of the film reveals epitaxial nanowire structures of composition ∼GaAs embedded in the GaAs(1-x)Bi(x) epitaxial layers. These nanowires extend from a surface droplet to the substrate at a shallow angle of inclination (∼4°). They typically are 4 μm long and have a lens-shaped cross section with major and minor axes dimensions of 800 and 120 nm. The top surface of the nanowires exhibits a linear trace in longitudinal cross-section, across which the composition change from ∼GaAs to GaAs(1-x)Bi(x) appears abrupt. The bottom surfaces of the nanowires appear wavy and the composition change appears to be graded over ∼25 nm. The droplets have phase separated into Ga- and Bi-rich components. A qualitative model is proposed in which Bi is gettered into Ga droplets, leaving Bi depleted nanowires in the wakes of the droplets as they migrate in one direction across the surface during GaAs(1-x)Bi(x) film growth.

  15. Multiple Applications of GaAs semiconductors

    NASA Astrophysics Data System (ADS)

    Martel, Jenrené; Wonka, Willy

    2003-03-01

    The object of this discussion will be to explore the many facets of Gallium Arsenide(GaAs) semiconductors. The session will begin with a brief overview of the basic properties of semiconductors in general(band gap, doping, charge mobility etc.). It will then follow with a closer look at the properties of GaAs and how these properties could potentially translate into some very exciting applications. Furthermore, current applications of GaAs semiconductors will be dicussed and analyzed. Finally, physical limits and advantages/disadvantages of GaAs will be considered.

  16. Preamplified planar microcoil on GaAs substrates for microspectroscopy

    NASA Astrophysics Data System (ADS)

    Dechow, Jörn; Lanz, Titus; Stumber, Michael; Forchel, Alfred; Haase, Axel

    2003-11-01

    In the course of the publication the design, fabrication, and experimental evaluation of a planar microcoil for nuclear magnetic resonance (NMR) spectroscopy with a 360 μm inner diameter integrated to a low-noise metal-semiconductor field-effect transistor is presented. The impedance matching of the coil and transistor was achieved by adjusted coil geometry, while an appropriate microfabrication process including air bridge contacts and a multilayer metal stack was developed for the necessary susceptibility matching of the coil metallization. The NMR spectra of experiments in an 11.75 T magnet (corresponding to 500 MHz) show the amplification of the signal by the integrated transistor. Due to previous experiments, we wanted to ensure that the whole signal emerged from the sensitive volume of the microcoil.

  17. Growth of n-doped GaAs nanowires by Au-assisted metalorganic chemical vapor deposition: effect of flux rates of n-type dopants

    NASA Astrophysics Data System (ADS)

    Guo, Jingwei; Huang, Hui; Liu, Minjia; Ren, Xiaomin; Cai, Shiwei; Wang, Wei; Wang, Qi; Huang, Yongqing; Zhang, Xia

    2010-12-01

    N-doped GaAs nanowires (NWs) were grown on GaAs (111) B substrate by means of vapor-liquid-solid (VLS) mechanism in a metalorganic chemical vapor deposition (MOCVD) system. Two flux rates of n-type dopants used for GaAs NWs growth were researched. For comparison, undoped GaAs NWs were grown at the same conditions. It is found that all NWs are vertical to the substrate and no lateral growth occurs. The growth rate is proportional the flux rates of n dopant. It is observed that there is Gibbs-Thomson effect in doped NWs. Pure zinc blende structures without any stacking faults from bottom to top for all three samples were achieved.

  18. Self-catalyzed GaAs nanowires on silicon by hydride vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Dong, Zhenning; André, Yamina; Dubrovskii, Vladimir G.; Bougerol, Catherine; Leroux, Christine; Ramdani, Mohammed R.; Monier, Guillaume; Trassoudaine, Agnès; Castelluci, Dominique; Gil, Evelyne

    2017-03-01

    Gold-free GaAs nanowires on silicon substrates can pave the way for monolithic integration of photonic nanodevices with silicon electronic platforms. It is extensively documented that the self-catalyzed approach works well in molecular beam epitaxy but is much more difficult to implement in vapor phase epitaxies. Here, we report the first gallium-catalyzed hydride vapor phase epitaxy growth of long (more than 10 μm) GaAs nanowires on Si(111) substrates with a high integrated growth rate up to 60 μm h‑1 and pure zincblende crystal structure. The growth is achieved by combining a low temperature of 600 °C with high gaseous GaCl/As flow ratios to enable dechlorination and formation of gallium droplets. GaAs nanowires exhibit an interesting bottle-like shape with strongly tapered bases, followed by straight tops with radii as small as 5 nm. We present a model that explains the peculiar growth mechanism in which the gallium droplets nucleate and rapidly swell on the silicon surface but then are gradually consumed to reach a stationary size. Our results unravel the necessary conditions for obtaining gallium-catalyzed GaAs nanowires by vapor phase epitaxy techniques.

  19. Self-catalyzed GaAs nanowires on silicon by hydride vapor phase epitaxy.

    PubMed

    Dong, Zhenning; André, Yamina; Dubrovskii, Vladimir G; Bougerol, Catherine; Leroux, Christine; Ramdani, Mohammed R; Monier, Guillaume; Trassoudaine, Agnès; Castelluci, Dominique; Gil, Evelyne

    2017-03-24

    Gold-free GaAs nanowires on silicon substrates can pave the way for monolithic integration of photonic nanodevices with silicon electronic platforms. It is extensively documented that the self-catalyzed approach works well in molecular beam epitaxy but is much more difficult to implement in vapor phase epitaxies. Here, we report the first gallium-catalyzed hydride vapor phase epitaxy growth of long (more than 10 μm) GaAs nanowires on Si(111) substrates with a high integrated growth rate up to 60 μm h(-1) and pure zincblende crystal structure. The growth is achieved by combining a low temperature of 600 °C with high gaseous GaCl/As flow ratios to enable dechlorination and formation of gallium droplets. GaAs nanowires exhibit an interesting bottle-like shape with strongly tapered bases, followed by straight tops with radii as small as 5 nm. We present a model that explains the peculiar growth mechanism in which the gallium droplets nucleate and rapidly swell on the silicon surface but then are gradually consumed to reach a stationary size. Our results unravel the necessary conditions for obtaining gallium-catalyzed GaAs nanowires by vapor phase epitaxy techniques.

  20. Novel anti-reflection technology for GaAs single-junction solar cells using surface patterning and Au nanoparticles.

    PubMed

    Kim, Youngjo; Lam, Nguyen Dinh; Kim, Kangho; Kim, Sangin; Rotermund, Fabian; Lim, Hanjo; Lee, Jaejin

    2012-07-01

    Single-junction GaAs solar cell structures were grown by low-pressure MOCVD on GaAs (100) substrates. Micro-rod arrays with diameters of 2 microm, 5 microm, and 10 microm were fabricated on the surfaces of the GaAs solar cells via photolithography and wet chemical etching. The patterned surfaces were coated with Au nanoparticles using an Au colloidal solution. Characteristics of the GaAs solar cells with and without the micro-rod arrays and Au nanoparticles were investigated. The short-circuit current density of the GaAs solar cell with 2 microm rod arrays and Au nanoparticles increased up to 34.9% compared to that of the reference cell without micro-rod arrays and Au nanoparticles. The conversion efficiency of the GaAs solar cell that was coated with Au nanoparticles on the patterned surface with micro-rod arrays can be improved from 14.1% to 19.9% under 1 sun AM 1.5G illumination. These results show that micro-rod arrays and Au nanoparticle coating can be applied together in surface patterning to achieve a novel cost-effective anti-reflection technology.

  1. Pulse transformer for GaAs laser

    NASA Technical Reports Server (NTRS)

    Rutz, E. M.

    1976-01-01

    High-radiance gallium arsenide (GaAs) laser operating at room temperature is utilized in optical navigation system. For efficient transformer-to-laser impedance match, laser should be connected directly to pulse transformer secondary winding.

  2. Structure of GaSb layers grown on (111) GaAs surfaces

    NASA Astrophysics Data System (ADS)

    Babkevich, A. Yu.; Cowley, R. A.; Mason, N. J.; Shields, P. A.; Stadelman, T.; Brown, S.; Mannix, D.; Paul, D.

    2004-09-01

    The structure of GaSb layers with thicknesses of 70Å, 160Å, and 1260Å grown on GaAs (111) substrates by metal-organic vapor phase epitaxy has been studied by high-resolution x-ray diffraction. The lattice mismatch between the layer and the substrate is large and most of the misfit strain is taken up by a regular network of dislocations localized at the interface between the GaSb and the GaAs. The spacing between the dislocations is about 49Å along the [1¯1¯2] direction. We observe that the layers have both the ABC … and ACB … face-centered-cubic (fcc) domains with a domain size of about 1500Å. The presence of approximately the same volume of both the domains in the overall layer suggests that the particular domain is chosen largely randomly and independent of the orientation of the substrate. In contrast, the results show that the structure of the GaAs substrate was a single fcc domain. The widths of the off-axis Bragg reflections along the [111] direction for the thinnest sample was within error the same as those for the (hhh ) Bragg reflections showing that each fcc domain penetrated through the entire layer.

  3. Ohmic contact to GaAs semiconductor

    NASA Technical Reports Server (NTRS)

    Hovel, H. J.; Woodall, J. M.

    1980-01-01

    Multimetallic layers produce stable, low-resistance contacts for p-type GaAs and p-type GaAlAs devices. Contacts present no leakage problems, and their series resistance is too small to measure at 1 Sun intensity. Ohmic contacts are stable and should meet 20-year-life requirement at 150 C for GaAs combined photothermal/photovoltaic concentrators.

  4. Laser Annealing of GaAs

    DTIC Science & Technology

    1978-12-01

    annealing implanted layers. Sheet resistance measurements made on the irradiated semi- insulating GaAs samples indicate no significant change in the... sheet resistance after laser irradiation (typical decrease in the sheet resistance after laser irradiation was found to be less than a factor of two...OF THE SHEET - RESISTANCE (P ) THE EFFECTIVE SHEET ELECTRON CONCENTRATION (N ), AND THE EFFECTIVE MOBILITY _u)FOR SEMIb- INSULATING GaAs IMPLANTED WITH

  5. Replicated CdTe Substrates.

    DTIC Science & Technology

    1983-09-01

    2423/01/72 Watertown, MA 02172 11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE Materials Lab (AFWAL/I4LPO) Sept. 1983 Wright Patterson APB...unsuccessful. Using the same technique utilized at Lincoln Labs i.e., baking the resist coated substrates in air at elevated temperatures, carbonization was...the effect of substrate orientation on the lateral to vertical growth rate of the films. Previous work at Lincoln Labs using GaAs and InP had shown a

  6. Multi-spectral optical absorption in substrate-free nanowire arrays

    SciTech Connect

    Zhang, Junpeng; Chia, Andrew; Boulanger, Jonathan; LaPierre, Ray; Dhindsa, Navneet; Khodadad, Iman; Saini, Simarjeet

    2014-09-22

    A method is presented of fabricating gallium arsenide (GaAs) nanowire arrays of controlled diameter and period by reactive ion etching of a GaAs substrate containing an indium gallium arsenide (InGaP) etch stop layer, allowing the precise nanowire length to be controlled. The substrate is subsequently removed by selective etching, using the same InGaP etch stop layer, to create a substrate-free GaAs nanowire array. The optical absorptance of the nanowire array was then directly measured without absorption from a substrate. We directly observe absorptance spectra that can be tuned by the nanowire diameter, as explained with rigorous coupled wave analysis. These results illustrate strong optical absorption suitable for nanowire-based solar cells and multi-spectral absorption for wavelength discriminating photodetectors. The solar-weighted absorptance above the bandgap of GaAs was 94% for a nanowire surface coverage of only 15%.

  7. Comparison of Intersubband GaAs/AlGaAs Multiple Quantum Well Infrared Photodetectors on GaAs and GaAs-on-Si Subtrates

    NASA Technical Reports Server (NTRS)

    Sengupta, D.; Gunapala, S.; George, T.; Bandara, S.; Chang-Chien, C. N.; Leon, R.; Kayali, S.; Kuo, H.; Fang, W.; Liu, H.; Stillman, G.

    1998-01-01

    We have successfully fabricated intersubband GaAs/AlGaAs quantum well infrared photodetectors grown on GaAs-on-Si substrate and evaluated their structural, electrical, and optical characteristics. We have found that the performance is comparable to a similar detector structure grown on a semi-insulating GaAs substrate.

  8. Electron gas quality at various (110)-GaAs interfaces as benchmark for cleaved edge overgrowth

    NASA Astrophysics Data System (ADS)

    Riedi, S.; Reichl, C.; Berl, M.; Alt, L.; Maier, A.; Wegscheider, W.

    2016-12-01

    We study molecular beam epitaxial growth on the unusual (110) surface of GaAs substrates as prerequisite for cleaved edge overgrown structures. We present the first systematic comparison of the quality of two dimensional electron systems on simultaneously overgrown (110) GaAs monitor wafers with ex situ as well as in situ cleaved (110) facets. Our study confirms that characterization of the monitor wafer is a valid benchmark for the magnetotransport characteristics of structures grown on cleaved facets. We show that deviating results can be traced back to (110) substrates of lower quality. We also demonstrate that the roughness of the in situ cleaved facets is decisive for the quality of the induced electron gas.

  9. Fabrication of n(+)/p InP solar cells on silicon substrates

    NASA Technical Reports Server (NTRS)

    Keavney, C. J.; Vernon, S. M.; Haven, V. E.; Wojtczuk, S. J.; Al-Jassim, M. M.

    1989-01-01

    InP films were grown by MOCVD on Si GaAs substrates (as well as on InP substrates, included as controls), and were used to fabricate solar cells, using the Spitzer et al. (1987) technique. Contact to the substrate was made with Al-Ti-Pd-Ag to the Si wafers and with Au-Zn alloy to the GaAs wafers, while contract to the front was made with Cr-Au-Ag. Air mass zero efficiencies were found to be 7.1 percent for Si-substrate cells and 9.4 percent for GaAs-substrate cells.

  10. Coupling reactions of trifluoroethyl iodide on GaAs(100)

    NASA Astrophysics Data System (ADS)

    Singh, N. K.; Kemp, N. T.; Paris, N.; Balan, V.

    2004-07-01

    We report on the reactions of 2-iodo-1,1,1-trifluoroethane (CF3CH2I) on gallium-rich GaAs(100)-(4×1), studied using the techniques of temperature programmed desorption and x-ray photoelectron spectroscopy. The study is to provide evidence for the formation of a higher fluorinated alkene, 1,1,4,4,4-pentafluoro-1-butene (CF2=CHCH2CF3) and alkane, 1,1,1,4,4,4-hexafluorobutane (CF3CH2CH2CF3) from the coupling reactions of covalently bonded surface alkyl (CF3CH2•) moieties. CF3CH2I adsorbs nondissociatively at 150 K. Thermal dissociation of this weakly chemisorbed state occurs below room temperature to form adsorbed CF3CH2• and I• species. The surface CF3CH2• species undergoes β-fluoride elimination to form gaseous CF2=CH2 and this represents the major pathway for the removal of CF3CH2• species from the surface. In competition with the β-fluoride elimination process the adsorbed CF3CH2• species also undergoes, recombination with surface iodine atoms to form recombinative molecular CF3CH2I, olefin insertion reaction with CF2=CH2 to form gaseous CF2=CHCH2CF3, and last self-coupling reaction to form CF3CH2CH2CF3. The adsorbed surface iodine atoms, formed by the dissociation of the molecularly chemisorbed CF3CH2I, and fluorine atoms formed during the β-fluoride elimination reaction, both form etch products (GaI, GaF, AsI, AsF, and As2) by their reactions with the surface layer Ga atoms, subsurface As atoms, and GaAs substrate. In this article we discuss the mechanisms by which these products form from the adsorbed CF3CH2• and I• species, and the role that the GaAs surface plays in the proposed reaction pathways. We compare the reactivity of the GaAs surface with transition metals in its ability to facilitate dehydrogenation and coupling reactions in adsorbed alkyl species. .

  11. Faraday rotator based on TSAG crystal with <001> orientation.

    PubMed

    Yasuhara, Ryo; Snetkov, Ilya; Starobor, Aleksey; Mironov, Evgeniy; Palashov, Oleg

    2016-07-11

    A Faraday isolator (FI) for high-power lasers with kilowatt-level average power and 1-µm wavelength was demonstrated using a terbium scandium aluminum garnet (TSAG) with its crystal axis aligned in the <001> direction. Furthermore, no compensation scheme for thermally induced depolarization in a magnetic field was used. An isolation ratio of 35.4 dB (depolarization ratio γ of 2.9 × 10-4) was experimentally observed at a maximum laser power of 1470 W. This result for room-temperature FIs is the best reported, and provides a simple, practical solution for achieving optical isolation in high-power laser systems.

  12. GaAs/Ge/Si epitaxial substrates: Development and characteristics

    NASA Astrophysics Data System (ADS)

    Buzynin, Yury; Shengurov, Vladimir; Zvonkov, Boris; Buzynin, Alexander; Denisov, Sergey; Baidus, Nikolay; Drozdov, Michail; Pavlov, Dmitry; Yunin, Pavel

    2017-01-01

    We developed high quality 2-inch GaAs/Ge/Si (100) epitaxial substrates, which may be used instead of GaAs monolithic substrates for fabrication of solar cells, photodetectors, LEDs, lasers, etc. A 200-300 nm Ge buffer layer was grown on Si substrates using the HW-CVD technique at 300°C, a tantalum strip heated to 1400°C was used as the "hotwire". The MOCVD method was used to grow a 1 μ GaAs layer on a Ge buffer. The TDD in the GaAs layers did not exceed (1-2)•105 cm-2 and the surface RMS roughness value was under 1 nm.

  13. Growing antiphase-domain-free GaAs thin films out of highly ordered planar nanowire arrays on exact (001) silicon

    SciTech Connect

    Li, Qiang; Ng, Kar Wei; Lau, Kei May

    2015-02-16

    We report the use of highly ordered, dense, and regular arrays of in-plane GaAs nanowires as building blocks to produce antiphase-domain-free GaAs thin films on exact (001) silicon. High quality GaAs nanowires were grown on V-grooved Si (001) substrates using the selective aspect ratio trapping concept. The 4.1% lattice mismatch has been accommodated by the initial GaAs, a few nanometer-thick with high density stacking faults. The bulk of the GaAs wires exhibited smooth facets and a low defect density. An unusual defect trapping mechanism by a “tiara”-like structure formed by Si undercuts was discovered. As a result, we were able to grow large-area antiphase-domain-free GaAs thin films out of the nanowires without using SiO{sub 2} sidewalls for defect termination. Analysis from XRD ω-rocking curves yielded full-width-at-half-maximum values of 238 and 154 arc sec from 900 to 2000 nm GaAs thin films, respectively, indicating high crystalline quality. The growth scheme in this work offers a promising path towards integrated III-V electronic, photonic, or photovoltaic devices on large scale silicon platform.

  14. Interfacial microstructure of tungsten silicide Schottky contacts to n-type GaAs

    SciTech Connect

    Shih, Y.; Callegari, A.; Murakami, M.; Wilkie, E.L.; Hovel, H.J.; Parks, C.C.; Childs, K.D.

    1988-08-15

    To investigate the effects of microstructure of the Schottky characteristics of WSi/sub x/ contacts to n-type GaAs, cross-sectional transmission electron microscopy, x-ray diffraction, and secondary-ion mass spectrometry have been used to study the interfacial and bulk film microstructures. The barrier heights and ideality factors of WSi/sub 0.1/ and WSi/sub 0.6/ contacts were obtained by forward current-voltage and capacitance-voltage measurements. These Schottky characteristics were found to be unrelated to the bulk film microstructure, but closely related to the interfacial microstructure at the WSi/sub x//GaAs interfaces. Both the WSi/sub 0.1//GaAs and WSi/sub 0.6//GaAs interface morphologies were observed to be stable and remain smooth during annealing at 800 /sup 0/C for 10 min, while a rough interface with W protrusions and Ga and As out-diffusion was observed in two-layer W/WSi/sub 0.6/ contacts. The stability of the WSi/sub x/ interfacial microstructure is suggested to depend on both the chemical stability of the WSi/sub x/ films with GaAs and the intervening oxides between WSi/sub x/ and GaAs. Nontrivial amounts of W and Si were observed to diffuse from the WSi/sub 0.1/ film into the GaAs substrate during annealing at 800 /sup 0/C for 10 min. Although these in-diffused impurities in the GaAs substrate do not seem to affect the Schottky characteristics after the 800 /sup 0/C annealing, they could be a potential problem in long-term stability. Of the three WSi/sub x/ film compositions, the single-layer WSi/sub 0.6/ films were found to have the least W and Si in-diffusion and thus the best thermal stability.

  15. High-Performance GaAs Nanowire Solar Cells for Flexible and Transparent Photovoltaics.

    PubMed

    Han, Ning; Yang, Zai-xing; Wang, Fengyun; Dong, Guofa; Yip, SenPo; Liang, Xiaoguang; Hung, Tak Fu; Chen, Yunfa; Ho, Johnny C

    2015-09-16

    Among many available photovoltaic technologies at present, gallium arsenide (GaAs) is one of the recognized leaders for performance and reliability; however, it is still a great challenge to achieve cost-effective GaAs solar cells for smart systems such as transparent and flexible photovoltaics. In this study, highly crystalline long GaAs nanowires (NWs) with minimal crystal defects are synthesized economically by chemical vapor deposition and configured into novel Schottky photovoltaic structures by simply using asymmetric Au-Al contacts. Without any doping profiles such as p-n junction and complicated coaxial junction structures, the single NW Schottky device shows a record high apparent energy conversion efficiency of 16% under air mass 1.5 global illumination by normalizing to the projection area of the NW. The corresponding photovoltaic output can be further enhanced by connecting individual cells in series and in parallel as well as by fabricating NW array solar cells via contact printing showing an overall efficiency of 1.6%. Importantly, these Schottky cells can be easily integrated on the glass and plastic substrates for transparent and flexible photovoltaics, which explicitly demonstrate the outstanding versatility and promising perspective of these GaAs NW Schottky photovoltaics for next-generation smart solar energy harvesting devices.

  16. Effects of surface passivation on twin-free GaAs nanosheets.

    PubMed

    Arab, Shermin; Chi, Chun-Yung; Shi, Teng; Wang, Yuda; Dapkus, Daniel P; Jackson, Howard E; Smith, Leigh M; Cronin, Stephen B

    2015-02-24

    Unlike nanowires, GaAs nanosheets exhibit no twin defects, stacking faults, or dislocations even when grown on lattice mismatched substrates. As such, they are excellent candidates for optoelectronic applications, including LEDs and solar cells. We report substantial enhancements in the photoluminescence efficiency and the lifetime of passivated GaAs nanosheets produced using the selected area growth (SAG) method with metal organic chemical vapor deposition (MOCVD). Measurements are performed on individual GaAs nanosheets with and without an AlGaAs passivation layer. Both steady-state photoluminescence and time-resolved photoluminescence spectroscopy are performed to study the optoelectronic performance of these nanostructures. Our results show that AlGaAs passivation of GaAs nanosheets leads to a 30- to 40-fold enhancement in the photoluminescence intensity. The photoluminescence lifetime increases from less than 30 to 300 ps with passivation, indicating an order of magnitude improvement in the minority carrier lifetime. We attribute these enhancements to the reduction of nonradiative recombination due to the compensation of surface states after passivation. The surface recombination velocity decreases from an initial value of 2.5 × 10(5) to 2.7 × 10(4) cm/s with passivation.

  17. Bi-modal nanoheteroepitaxy of GaAs on Si by metal organic vapor phase epitaxy.

    PubMed

    Prieto, Ivan; Kozak, Roksolana; Skibitzki, Oliver; Rossell, Marta D; Zaumseil, Peter; Capellini, Giovanni; Gini, Emilio; Kunze, Karsten; Rojas Dasilva, Yadira Arroyo; Erni, Rolf; Schroeder, Thomas; Känel, Hans von

    2017-03-01

    Nano-heteroepitaxial growth of GaAs on Si(001) by metal organic vapor phase epitaxy was investigated to study emerging materials phenomena on the nano-scale of III-V/Si interaction. Arrays of Si nano-tips (NTs) embedded in a SiO2 matrix were used as substrates. The NTs had top Si openings of 50-90 nm serving as seeds for the selective growth of GaAs nano-crystals (NCs). The structural and morphological properties were investigated by high resolution scanning electron microscopy, atomic force microscopy, electron backscatter diffraction, x-ray diffraction, and high resolution scanning transmission electron microscopy. The GaAs growth led to epitaxial NCs featuring a bi-modal distribution of size and morphology. NCs of small size exhibited high structural quality and well-defined {111}-{100} faceting. Larger clusters had less regular shapes and contained twins. The present work shows that the growth of high quality GaAs NCs on Si NTs is feasible and can provide an alternate way to the integration of compound semiconductors with Si micro- and opto-electronics technology.

  18. Structural studies of sulfur passivated GaAs(001) surfaces with LEED and AFM

    NASA Astrophysics Data System (ADS)

    Wang, Xuewen; Ke, Yenjin; Milano, Steve; Tao, Nongjian; Darici, Yesim

    1997-03-01

    We present the results of auger electron spectroscopy (AES), low-energy electron diffraction (LEED) and atomic force microscopy (AFM) analysis of sulfur passivating layers on the GaAs(001) surface. The GaAs surfaces were passivated with both inorganic ((NH_4)_2S) and organic (ODT) S-based compounds. We prepared the inorganic sulfur-passivated GaAs(001) surfaces with a wet chemical treatment using (NH_4)_2S solution. This was followed by thermal annealing of the treated sample in ultra high vacuum. After ex-situ and in-situ treatments the surface resulted in a (2X1) LEED pattern. The LEED data (I-V curves) was recorded and compared with dynamical LEED calculations for different structural models for the sulfur passivated GaAs(110) surface. The results showed that sulfur passivated (2X1) surface structure is an arsenic-sulfur dimer on gallium terminated substrate. The ex-situ AFM results also showed a (2X1) structure for the inorganic passivation and a very smooth surface for the organic ODT in ethanal treated sample.

  19. Bi-modal nanoheteroepitaxy of GaAs on Si by metal organic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Prieto, Ivan; Kozak, Roksolana; Skibitzki, Oliver; Rossell, Marta D.; Zaumseil, Peter; Capellini, Giovanni; Gini, Emilio; Kunze, Karsten; Arroyo Rojas Dasilva, Yadira; Erni, Rolf; Schroeder, Thomas; von Känel, Hans

    2017-03-01

    Nano-heteroepitaxial growth of GaAs on Si(001) by metal organic vapor phase epitaxy was investigated to study emerging materials phenomena on the nano-scale of III–V/Si interaction. Arrays of Si nano-tips (NTs) embedded in a SiO2 matrix were used as substrates. The NTs had top Si openings of 50–90 nm serving as seeds for the selective growth of GaAs nano-crystals (NCs). The structural and morphological properties were investigated by high resolution scanning electron microscopy, atomic force microscopy, electron backscatter diffraction, x-ray diffraction, and high resolution scanning transmission electron microscopy. The GaAs growth led to epitaxial NCs featuring a bi-modal distribution of size and morphology. NCs of small size exhibited high structural quality and well-defined {111}–{100} faceting. Larger clusters had less regular shapes and contained twins. The present work shows that the growth of high quality GaAs NCs on Si NTs is feasible and can provide an alternate way to the integration of compound semiconductors with Si micro- and opto-electronics technology.

  20. Femtosecond probe-probe transmission studies of LT-grown GaAs near the band edge

    SciTech Connect

    Radousky, H.B.; Bello, A.F.; Erskine, D.J.; Dinh, L.N.; Bennahmias, M.J.; Perry, M.D.; Ditmire, T.R.; Mariella, R.P. Jr.

    1993-12-01

    We have studied the near-edge optical response of a LT-grown GaAs sample which was deposited at 300{degrees}C on a Si substrate, and then annealed at 600{degrees}C. The Si was etched away to leave a 1 micron free standing GaAs film. Femtosecond transmission measurements were made using an equal pulse technique at four wavelengths between 825 and 870 nm. For each wavelength we observe both a multipicosecond relaxation time, as well as a shorter relaxation time which is less than 100 femtoseconds.

  1. Imaging of strain in laterally overgrown GaAs layers by spatially resolved x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Domagala, J. Z.; Czyzak, A.; Zytkiewicz, Z. R.

    2007-06-01

    Spatially resolved x-ray diffraction is used to analyze the strain in GaAs layers grown by liquid phase epitaxial lateral overgrowth (ELO) on SiO2-masked GaAs substrates. A downward tilt of ELO wings caused by their interaction with the mask is observed. The distribution of the tilt magnitude across the wings width is determined with micrometer-scale spatial resolution. A residual upward tilt originating from inhomogeneous Si dopant distribution in the ELO wing is found after mask removal. If a large area of the sample is studied, the technique provides precise information on the tilt of an individual wing and its distribution.

  2. Growth, strain relaxation properties and high-κ dielectric integration of mixed-anion GaAs1-ySby metamorphic materials

    NASA Astrophysics Data System (ADS)

    Zhu, Y.; Clavel, M.; Goley, P.; Hudait, M. K.

    2014-10-01

    Mixed-anion, GaAs1-ySby metamorphic materials with a wide range of antimony (Sb) compositions extending from 15% to 62%, were grown by solid source molecular beam epitaxy (MBE) on GaAs substrates. The impact of different growth parameters on the Sb composition in GaAs1-ySby materials was systemically investigated. The Sb composition was well-controlled by carefully optimizing the As/Ga ratio, the Sb/Ga ratio, and the substrate temperature during the MBE growth process. High-resolution x-ray diffraction demonstrated a quasi-complete strain relaxation within each composition of GaAs1-ySby. Atomic force microscopy exhibited smooth surface morphologies across the wide range of Sb compositions in the GaAs1-ySby structures. Selected high-κ dielectric materials, Al2O3, HfO2, and Ta2O5 were deposited using atomic layer deposition on the GaAs0.38Sb0.62 material, and their respective band alignment properties were investigated by x-ray photoelectron spectroscopy (XPS). Detailed XPS analysis revealed a valence band offset of >2 eV for all three dielectric materials on GaAs0.38Sb0.62, indicating the potential of utilizing these dielectrics on GaAs0.38Sb0.62 for p-type metal-oxide-semiconductor (MOS) applications. Moreover, both Al2O3 and HfO2 showed a conduction band offset of >2 eV on GaAs0.38Sb0.62, suggesting these two dielectrics can also be used for n-type MOS applications. The well-controlled Sb composition in several GaAs1-ySby material systems and the detailed band alignment analysis of multiple high-κ dielectric materials on a fixed Sb composition, GaAs0.38Sb0.62, provides a pathway to utilize GaAs1-ySby materials in future microelectronic and optoelectronic applications.

  3. Simulated optimum gate and encapsulant properties for a refractory gate GaAs metal-semiconductor field effect transistor during annealing

    SciTech Connect

    Kitajo, S.; Kanamori, M.

    1993-03-01

    The stress distribution in a refractory gate GaAs substrate during annealing was calculated by computer simulation, using the finite element method. Simulations were used to investigate the correlation between the thermal expansion coefficient of the gate and the encapsulant internal stress. The condition in which minimum or no dislocations were induced into the GaAs substrate were studied. It was demonstrate that the best thermal expansion coefficient value of the gate was close to the value that was reported for tungsten. It was concluded that, by controlling the encapsulant thermal stress of SiO{sub 2} or SiN encapsulant, during high temperature annealing, a dislocation-free GaAs substrate could be obtained. 6 refs., 6 figs., 1 tab.

  4. Crystal growth of device quality GaAs in space

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Lagowski, J.

    1979-01-01

    The optimization of space processing of GaAs is described. The detailed compositional, structural, and electronic characterization of GaAs on a macro- and microscale and the relationships between growth parameters and the properties of GaAs are among the factors discussed. The key parameters limiting device performance are assessed.

  5. GaAs Solar Cell Radiation Handbook

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.

    1996-01-01

    The handbook discusses the history of GaAs solar cell development, presents equations useful for working with GaAs solar cells, describes commonly used instrumentation techniques for assessing radiation effects in solar cells and fundamental processes occurring in solar cells exposed to ionizing radiation, and explains why radiation decreases the electrical performance of solar cells. Three basic elements required to perform solar array degradation calculations: degradation data for GaAs solar cells after irradiation with 1 MeV electrons at normal incidence; relative damage coefficients for omnidirectional electron and proton exposure; and the definition of the space radiation environment for the orbit of interest, are developed and used to perform a solar array degradation calculation.

  6. Photoluminescence of Mn+ doped GaAs

    NASA Astrophysics Data System (ADS)

    Zhou, Huiying; Qu, Shengchun; Liao, Shuzhi; Zhang, Fasheng; Liu, Junpeng; Wang, Zhanguo

    2010-10-01

    Photoluminescence is one of the most useful techniques to obtain information about optoelectronic properties and defect structures of materials. In this work, the room-temperature and low temperature photoluminescence of Mn-doped GaAs were investigated, respectively. Mn-doped GaAs structure materials were prepared by Mn+ ion implantation at room temperature into GaAs. The implanted samples were subsequently annealed at various temperatures under N2 atmosphere to recrystallize the samples and remove implant damage. A strong peak was found for the sample annealed at 950 °C for 5 s. Transitions near 0.989 eV (1254 nm), 1.155 eV (1074 nm) and 1.329 eV (933 nm) were identified and formation of these emissions was analyzed for all prepared samples. This structure material could have myriad applications, including information storage, magnet-optical properties and energy level engineering.

  7. GaAs solar cell test facility

    NASA Astrophysics Data System (ADS)

    Kawashima, M.; Hosoda, Y.; Suzawa, C.; Shimada, T.; Motoyoshi, K.; Sasatani, Y.

    1982-01-01

    A hybrid type (electricity and heat) GaAs solar cell test facility has been made to evaluate total characteristics of GaAs cell and to study the energy conversion system. The size of a solar collector is 3.4 m x 2.1 m and 60 GaAs cells with Fresnel lenses are attached on it. The solar collector is controlled by a microcomputer to track the sun. Electric energy produced by the cells is stored in a lead-acid battery and then supplied to the load through a DC-AC inverter. The microcomputer also controls the data acquisition in parallel with tracking. This paper presents an overview of the facility and the experimental results of power generation obtained to date.

  8. Buckling-Based Method for Measuring the Strain-Photonic Coupling Effect of GaAs Nanoribbons.

    PubMed

    Wang, Yuxuan; Chen, Ying; Li, Haicheng; Li, Xiaomin; Chen, Hang; Su, Honghong; Lin, Yuan; Xu, Yun; Song, Guofeng; Feng, Xue

    2016-09-27

    The ability to continuously and reversibly tune the band gap and the strain-photonic coupling effect in optoelectronic materials is highly desirable for fundamentally understanding the mechanism of strain engineering and its applications in semiconductors. However, optoelectronic materials (i.e., GaAs) with their natural brittleness cannot be subject to direct mechanical loading processes, such as tension or compression. Here, we report a strategy to induce continuous strain distribution in GaAs nanoribbons by applying structural buckling. Wavy GaAs nanoribbons are fabricated by transfer printing onto a prestrained soft substrate, and then the corresponding photoluminescence is measured to investigate the strain-photonic coupling effect. Theoretical analysis shows the evolution of the band gap due to strain and it is consistent with the experiments. The results demonstrate the potential application of a buckling configuration to delicately measure and tune the band gap and optoelectronic performance.

  9. Carbon doping of GaAs NWs

    NASA Astrophysics Data System (ADS)

    Salehzadeh Einabad, Omid

    Nanowires (NWs) have been proposed and demonstrated as the building blocks for nanoscale electronic and photonic devices such as NW field effect transistors and NW solar cells which rely on doping and trap-free carrier transport. Controlled doping of NWs and a high degree of structure and morphology control are required for device applications. However, doping of III-V nanowires such as GaAs nanowires has not been reported extensively in the literature. Carbon is a well known p-type dopant in planar GaAs due to its low diffusivity and high solubility in bulk GaAs; however its use as an intentional dopant in NW growth has not yet been investigated. In this work we studied the carbon doping of GaAs nanowires using CBr4 as the dopant source. Gold nanoparticles (NP) at the tip ofthe NWs have been used to drive the NW growth. We show that carbon doping suppresses the migration ofthe gold NPs from the tip of the NWs. In addition, we show that the carbon doping of GaAs NWs is accompanied by an increase of the axial growth rate and decrease of the lateral growth rate ofthe NWs. Carbon-doped GaAs NWs, unlike the undoped ones which are highly tapered, are rod-like. The origin of the observed morphological changes is attributed to the carbon adsorbates on the sidewalls ofthe nanowires which suppress the lateral growth of the nanowires and increase the diffusion length of the gallium adatoms on the sidewalls. Stacking fault formation consisting of alternating regIOns of zincblende and wurtzite structures has been commonly observed in NWs grown along the (111) direction. In this work, based on transmission electron microscopy (TEM) analysis, we show that carbon doping ofGaAs NWs eliminates the stacking fault formation. Raman spectroscopy was used to investigate the effects of carbon doping on the vibrational properties of the carbon-doped GaAs nanowires. Carbon doping shows a strong impact on the intrinsic longitudinal and transverse optical (La and TO) modes of the GaAs

  10. Effect of Sb composition on the conduction type and photoluminescence of heavily Sn-doped GaAs1-xSbx

    NASA Astrophysics Data System (ADS)

    Sasaki, T.; Jinbo, Y.; Uchitomi, N.

    2006-09-01

    Heavily Sn-doped GaAs1-xSbx epitaxial films were grown on SI-GaAs (001) substrates by solid source molecular beam epitaxy. A 5 nm-thick AlSb buffer layer was employed to relax the lattice mismatch between the epilayer and the substrate. X-ray diffraction (XRD), Hall effect measurements and photoluminescence measurements were performed to characterize the epitaxial films. The heavily Sn-doped GaAs1-xSbx / AlSb films with x 0.24 indicated n-type conduction while the epitaxial films with x 0.43 indicated p-type conduction.

  11. Coalescence of planar GaAs nanowires into strain-free three-dimensional crystals on exact (001) silicon

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Jiang, Huaxing; Lau, Kei May

    2016-11-01

    We report three dimensional (3D) disk-shaped GaAs crystals on V-groove patterned (001) Si substrates by metalorganic chemical vapor deposition. Planar GaAs nanowires with triangular cross-sections were grown inside Si V-grooves by nano-scale selective heteroepitaxy. These nanowires were then partially confined in micro-sized SiO2 cavities and coalesced into uniform arrays of 3D crystals. Scanning electron microscope and atomic force microscopy inspection showed the absence of antiphase-domains and smooth top surface morphology. Superior structural and optical properties over GaAs thin films on planar Si were also demonstrated. More remarkably, by growing the 3D crystals on V-grooved Si, we were able to overcome the residual tensile stress induced by the thermal mismatch between GaAs and Si. Strain-free GaAs was uncovered in the crystals with a dimension of 3×3 μm2.

  12. ZnSe Window Layers for GaAs and GaInP2 Solar Cells

    NASA Technical Reports Server (NTRS)

    Olsen, Larry C.

    1997-01-01

    This report concerns studies of the use of n-type ZnSe as a window layer for n/p GaAs and GaInP2 solar cells. Emphasis was placed in this phase of the project on characterizing the interface between n-type ZnSe films grown on epi-GaAs films grown onto single crystal GaAs. Epi-GaAs and heteroepitaxial ZnSe films were grown by MOCVD with a Spire 50OXT Reactor. After growing epitaxial GaAs films on single crystal GaAs wafers, well-oriented crystalline ZnSe films were grown by MOCVD. ZnSe films were grown with substrate temperatures ranging from 250 C to 450 C. Photoluminescence studies carried out by researchers at NASA Lewis determined that the surface recombination velocity at a GaAs surface was significantly reduced after the deposition of a heteroepitaxial layer of ZnSe. The optimum temperature for ZnSe deposition appears to be on the order of 350 C.

  13. Structural and optical characterization of GaAs nano-crystals selectively grown on Si nano-tips by MOVPE

    NASA Astrophysics Data System (ADS)

    Skibitzki, Oliver; Prieto, Ivan; Kozak, Roksolana; Capellini, Giovanni; Zaumseil, Peter; Arroyo Rojas Dasilva, Yadira; Rossell, Marta D.; Erni, Rolf; von Känel, Hans; Schroeder, Thomas

    2017-03-01

    We present the nanoheteroepitaxial growth of gallium arsenide (GaAs) on nano-patterned silicon (Si) (001) substrates fabricated using a CMOS technology compatible process. The selective growth of GaAs nano-crystals (NCs) was achieved at 570 °C by MOVPE. A detailed structure and defect characterization study of the grown nano-heterostructures was performed using scanning transmission electron microscopy, x-ray diffraction, micro-Raman, and micro-photoluminescence (μ-PL) spectroscopy. The results show single-crystalline, nearly relaxed GaAs NCs on top of slightly, by the SiO2-mask compressively strained Si nano-tips (NTs). Given the limited contact area, GaAs/Si nanostructures benefit from limited intermixing in contrast to planar GaAs films on Si. Even though a few growth defects (e.g. stacking faults, micro/nano-twins, etc) especially located at the GaAs/Si interface region were detected, the nanoheterostructures show intensive light emission, as investigated by μ-PL spectroscopy. Achieving well-ordered high quality GaAs NCs on Si NTs may provide opportunities for superior electronic, photonic, or photovoltaic device performances integrated on the silicon technology platform.

  14. Structural and optical characterization of GaAs nano-crystals selectively grown on Si nano-tips by MOVPE.

    PubMed

    Skibitzki, Oliver; Prieto, Ivan; Kozak, Roksolana; Capellini, Giovanni; Zaumseil, Peter; Arroyo Rojas Dasilva, Yadira; Rossell, Marta D; Erni, Rolf; von Känel, Hans; Schroeder, Thomas

    2017-03-01

    We present the nanoheteroepitaxial growth of gallium arsenide (GaAs) on nano-patterned silicon (Si) (001) substrates fabricated using a CMOS technology compatible process. The selective growth of GaAs nano-crystals (NCs) was achieved at 570 °C by MOVPE. A detailed structure and defect characterization study of the grown nano-heterostructures was performed using scanning transmission electron microscopy, x-ray diffraction, micro-Raman, and micro-photoluminescence (μ-PL) spectroscopy. The results show single-crystalline, nearly relaxed GaAs NCs on top of slightly, by the SiO2-mask compressively strained Si nano-tips (NTs). Given the limited contact area, GaAs/Si nanostructures benefit from limited intermixing in contrast to planar GaAs films on Si. Even though a few growth defects (e.g. stacking faults, micro/nano-twins, etc) especially located at the GaAs/Si interface region were detected, the nanoheterostructures show intensive light emission, as investigated by μ-PL spectroscopy. Achieving well-ordered high quality GaAs NCs on Si NTs may provide opportunities for superior electronic, photonic, or photovoltaic device performances integrated on the silicon technology platform.

  15. Photoelectron and Auger electron diffraction studies of a sulfur-terminated GaAs(001)-(2×6) surface

    NASA Astrophysics Data System (ADS)

    Shimoda, M.; Tsukamoto, S.; Koguchi, N.

    1998-01-01

    Core-level X-ray photoelectron diffraction (XPD) and Auger electron diffraction (AED) have been applied to investigate the sulfur-terminated GaAs(001)-(2×6) surface. No forward scattering peaks were found in the XPD pattern of S 2s emission, indicating that adsorbed S atoms form a single layer on the GaAs substrate. In accordance with the zincblende structure of GaAs, the AED patterns of Ga L 3M 45M 45 and As L 3M 45M 45 emission almost coincide with each other, if one of the emissions is rotated by 90° around the [001] direction. This fact suggests that the diffraction patterns mainly reflect the structure of the bulk GaAs crystal. In order to investigate the surface structure, AED patterns in large polar angles were analyzed with single scattering cluster (SSC) calculations. The best result was obtained with a model cluster where the S-S bond length was set at 0.28 nm, 30% shorter than the corresponding length of the ideal (1×1) structure, and the adsorption height was set at 0.12-0.13 nm, 10% shorter than the ideal interlayer distance of GaAs(001) planes. These values are in good agreement with the results of STM measurements. A modulation of the inter-dimer distance was also found, suggesting the existence of missing dimers.

  16. Doubly charged state of EL2 defect in MOCVD-grown GaAs

    NASA Astrophysics Data System (ADS)

    Naz, Nazir A.; Qurashi, Umar S.; Majid, Abdul; Zafar Iqbal, M.

    2007-12-01

    EL2 is the ubiquitous native defect in crystalline GaAs grown by a variety of different techniques. It has been proposed to be a doubly charged deep-level center with two states having distinct energy levels in the band gap. While the singly charged state has been the subject of many experimental studies and is, therefore, well established, the doubly charged state has only been occasionally alluded to in the literature. This paper provides evidence for a dominant inadvertent deep level in p-type GaAs most likely to be the doubly charged state of the EL2 center. Deep-level transient spectroscopy (DLTS) has been applied to characterize epitaxial layers of p-type GaAs grown on p + GaAs substrates by low-pressure metal organic chemical vapor deposition (LP-MOCVD). A pronounced peak is observed in the majority carrier (hole) emission deep-level spectra. Thermal emission rate of holes from the corresponding deep level is found to exhibit a strong electric field dependence, showing an increase of more than two orders of magnitude with an increase of the electric field by a factor of ∼2. The thermal activation energy for this level is found to vary from 0.29 to 0.61 eV as the electric field is varied from 2.8×10 5 to 1.4×10 5 V/cm. Direct pulse-filling measurements point to a temperature-dependent behavior of the hole capture cross section of this level. We identify this inadvertent deep-level defect, commonly observed in p-type GaAs grown by a variety of different methods, with the doubly charged state of the well-known As Ga antisite related defect, EL2.

  17. Continuous wave terahertz radiation from antennas fabricated on C¹²-irradiated semi-insulating GaAs.

    PubMed

    Deshmukh, Prathmesh; Mendez-Aller, M; Singh, Abhishek; Pal, Sanjoy; Prabhu, S S; Nanal, Vandana; Pillay, R G; Döhler, G H; Preu, S

    2015-10-01

    We demonstrate continuous wave (CW) terahertz generation from antennas fabricated on C12-irradiated semi-insulating (SI) GaAs substrates. The dark current drawn by the antennas fabricated on irradiated substrates is ∼3 to 4 orders of magnitude lower compared to antennas fabricated on un-irradiated substrates, while the photocurrents decrease by only ∼1.5 orders of magnitude. This can be attributed to the strong reduction of the carrier lifetime that is 2.5 orders of magnitude, with values around τ(rec)=0.2  ps. Reduced thermal heating allows for higher bias voltages to the irradiated antenna devices resulting in higher CW terahertz power, just slightly lower than that of low-temperature grown GaAs (LT GaAs)at similar excitation conditions.

  18. Grazing-incidence X-ray diffraction of single GaAs nanowires at locations defined by focused ion beams.

    PubMed

    Bussone, Genziana; Schott, Rüdiger; Biermanns, Andreas; Davydok, Anton; Reuter, Dirk; Carbone, Gerardina; Schülli, Tobias U; Wieck, Andreas D; Pietsch, Ullrich

    2013-08-01

    Grazing-incidence X-ray diffraction measurements on single GaAs nanowires (NWs) grown on a (111)-oriented GaAs substrate by molecular beam epitaxy are reported. The positions of the NWs are intentionally determined by a direct implantation of Au with focused ion beams. This controlled arrangement in combination with a nanofocused X-ray beam allows the in-plane lattice parameter of single NWs to be probed, which is not possible for randomly grown NWs. Reciprocal space maps were collected at different heights along the NW to investigate the crystal structure. Simultaneously, substrate areas with different distances from the Au-implantation spots below the NWs were probed. Around the NWs, the data revealed a 0.4% decrease in the lattice spacing in the substrate compared with the expected unstrained value. This suggests the presence of a compressed region due to Au implantation.

  19. Epitaxial lift-off technology of GaAs multijunction solar cells

    NASA Astrophysics Data System (ADS)

    Knyps, P.; Dumiszewska, E.; Kaszub, W.; Przewłoka, A.; Strupinski, W.

    2016-12-01

    Epitaxial lift-off (ELO) is a process which enables the removal of solar cell structures (one junction GaAs, two junction GaAs/InGaP or three junction GaAs/InGaAs/InGaP) from the substrate on which they are grown and their transfer onto lightweight carriers such as metal or polymeric insulator films. The said solar cells exhibit superior power conversion efficiency compared with alternative single-junction photovoltaic cell designs such as those based on crystalline Si, copper indium gallium sulfide (CIGS) or CdTe. The major advantage of ELO solar cells is the potential for wafer reuse, which can enable significant manufacturing cost reduction by minimizing the consumption of expensive wafers. Here in this work we have grown one junction GaAs solar cells on GaAs (100) substrates. A 10 nm thick AlAs layer has been used as a release layer, which has been selectively etched in HF solution. We have investigated different methods of transferring thin films onto polymer and copper foils, including the usage of temporary mounting adhesives and electro-conductive pastes. Lift-off has been demonstrated to be a very promising technique for producing affordable solar cells with a very high efficiency of up to 30%.

  20. Optical properties of heavily doped GaAs nanowires and electroluminescent nanowire structures.

    PubMed

    Lysov, A; Offer, M; Gutsche, C; Regolin, I; Topaloglu, S; Geller, M; Prost, W; Tegude, F-J

    2011-02-25

    We present GaAs electroluminescent nanowire structures fabricated by metal organic vapor phase epitaxy. Electroluminescent structures were realized in both axial pn-junctions in single GaAs nanowires and free-standing nanowire arrays with a pn-junction formed between nanowires and substrate, respectively. The electroluminescence emission peak from single nanowire pn-junctions at 10 K was registered at an energy of around 1.32 eV and shifted to 1.4 eV with an increasing current. The line is attributed to the recombination in the compensated region present in the nanowire due to the memory effect of the vapor-liquid-solid growth mechanism. Arrayed nanowire electroluminescent structures with a pn-junction formed between nanowires and substrate demonstrated at 5 K a strong electroluminescence peak at 1.488 eV and two shoulder peaks at 1.455 and 1.519 eV. The main emission line was attributed to the recombination in the p-doped GaAs. The other two lines correspond to the tunneling-assisted photon emission and band-edge recombination in the abrupt junction, respectively. Electroluminescence spectra are compared with the micro-photoluminescence spectra taken along the single p-, n- and single nanowire pn-junctions to find the origin of the electroluminescence peaks, the distribution of doping species and the sharpness of the junctions.

  1. Critical layer thickness enhancement of InAs overgrowth on porous GaAs

    NASA Astrophysics Data System (ADS)

    Beji, L.; Ismaı̈l, B.; Sfaxi, L.; Hassen, F.; Maaref, H.; Ben Ouada, H.

    2003-10-01

    In the present work we have investigated the initial stage of InAs layer grown on porous GaAs (π-GaAs) substrate by using reflection high-energy electron diffraction (RHEED) and low temperature photoluminescence (PL). RHEED measurements show that the 2D-3D growth mode transition appears after a deposition of 4.2 atomic monolayer (ML) of InAs, which is higher than that deposited on nominal GaAs (1.7 ML). PL investigations show two luminescence bands at 1.24 and 1.38 eV. The 1.24 eV PL peak emission is associated to the radiative transitions in InAs quantum dots (QDs), whereas the 1.38 eV PL peak emission is attributed to the InAs wetting layer (WL). The results show that π-GaAs is a promising candidate to obtain a reduced QDs size distribution, and to grow pseudomorphic epitaxial layer on GaAs substrate with higher indium concentration.

  2. ECR plasma synthesis of silicon nitride films on GaAs and InSb

    SciTech Connect

    Barbour, J.C.; Lovejoy, M.L.; Ashby, C.I.H.; Howard, A.J.; Custer, J.S.; Shul, R.J.

    1993-12-31

    Growth of high-quality dielectric films from Electron Cyclotron Resonance (ECR) plasmas provides for low-temperature surface passivation of compound semiconductors. Silicon nitride (SiN{sub x}) films were grown at temperatures from 30 to 250 C on GaAs substrates. Stress in films was measured as a function of bias applied during growth (varied from 0 to 200 V), and of sample annealing treatments. Composition profiles of the samples were measured using ion beam analysis. The GaAs photoluminescence (PL) signal after SiN{sub x} growth without an applied bias (ion energy {congruent}30 eV) was twice as large as the PL signal from the cleaned GaAs substrate. The PL signal from samples biased at -50 and -100 V indicated that damage degraded the passivation quality, while atomic force microscopy of these samples showed a three fold increase in rms surface roughness relative to unbiased samples. The sample grown with a bias of -200 V showed the largest reduction in film stress but also the smallest PL signal.

  3. GaAs Solar Cell Radiation Handbook

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.

    1996-01-01

    History of GaAs solar cell development is provided. Photovoltaic equations are described along with instrumentation techniques for measuring solar cells. Radiation effects in solar cells, electrical performance, and spacecraft flight data for solar cells are discussed. The space radiation environment and solar array degradation calculations are addressed.

  4. GaAs optoelectronic neuron arrays

    NASA Technical Reports Server (NTRS)

    Lin, Steven; Grot, Annette; Luo, Jiafu; Psaltis, Demetri

    1993-01-01

    A simple optoelectronic circuit integrated monolithically in GaAs to implement sigmoidal neuron responses is presented. The circuit integrates a light-emitting diode with one or two transistors and one or two photodetectors. The design considerations for building arrays with densities of up to 10,000/sq cm are discussed.

  5. Image transfer in photorefractive GaAs

    NASA Technical Reports Server (NTRS)

    Cheng, Li-Jen; Gheen, Gregory; Rau, Mann-Fu; Wang, Faa-Ching

    1987-01-01

    Image transfer from one beam to the other using counterpropagation beam coupling in GaAs was demonstrated. Good image quality was achieved. The results also reveal that local birefringence due to the residual stress/strain field in the crystal can degrade the image quality.

  6. Chemical Composition of Nanoporous Layer Formed by Electrochemical Etching of p-Type GaAs.

    PubMed

    Bioud, Youcef A; Boucherif, Abderraouf; Belarouci, Ali; Paradis, Etienne; Drouin, Dominique; Arès, Richard

    2016-12-01

    We have performed a detailed characterization study of electrochemically etched p-type GaAs in a hydrofluoric acid-based electrolyte. The samples were investigated and characterized through cathodoluminescence (CL), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS). It was found that after electrochemical etching, the porous layer showed a major decrease in the CL intensity and a change in chemical composition and in the crystalline phase. Contrary to previous reports on p-GaAs porosification, which stated that the formed layer is composed of porous GaAs, we report evidence that the porous layer is in fact mainly constituted of porous As2O3. Finally, a qualitative model is proposed to explain the porous As2O3 layer formation on p-GaAs substrate.

  7. High-efficiency thin-film GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Stirn, R. J.

    1979-01-01

    GaAs chemical vapor deposition (CVD) growth on single-crystal GaAs substrates was investigated over a temperature range of 600 to 750 C, As/GA mole-ratio range of 3 to 11, and gas molefraction range 5 x 10 to the minus 9th power to 7x 10 to the minus 7th power for H2S doping. GasAs CVD growth on recrystallized Ge films was investigated for a temperature range of 550 to 700 C, an As/GA mole ratio of 5, and for various H2S mole fraction. The highest efficiency cell observed on these films with 2 mm dots was 4.8% (8% when AR-coated). Improvements in fill factor and opencircuit voltage by about 40% each are required in order to obtain efficiencies of 15% or greater.

  8. Gallium surface diffusion on GaAs (001) surfaces measured by crystallization dynamics of Ga droplets

    SciTech Connect

    Bietti, Sergio Somaschini, Claudio; Esposito, Luca; Sanguinetti, Stefano; Fedorov, Alexey

    2014-09-21

    We present accurate measurements of Ga cation surface diffusion on GaAs surfaces. The measurement method relies on atomic force microscopy measurement of the morphology of nano–disks that evolve, under group V supply, from nanoscale group III droplets, earlier deposited on the substrate surface. The dependence of the radius of such nano-droplets on crystallization conditions gives direct access to Ga diffusion length. We found an activation energy for Ga on GaAs(001) diffusion E{sub A}=1.31±0.15 eV, a diffusivity prefactor of D₀=0.53(×2.1±1) cm² s⁻¹ that we compare with the values present in literature. The obtained results permit to better understand the fundamental physics governing the motion of group III ad–atoms on III–V crystal surfaces and the fabrication of designable nanostructures.

  9. Relaxation dynamics and residual strain in metamorphic AlSb on GaAs

    SciTech Connect

    Ripalda, J. M.; Rivera, A.; Alen, B.; Gonzalez, Y.; Gonzalez, L.; Briones, F.; Sanchez, A. M.; Taboada, A. G.; Rotter, T. J.; Balakrishnan, G.

    2012-01-02

    We have observed the evolution of the accumulated stress during heteroepitaxial growth of highly lattice mismatched AlSb on GaAs by measuring the deformation of the substrate as a function of time. High resolution transmission electron microscopy images show almost all of the plastic relaxation is accommodated by an array of 90 deg. misfit dislocations at the interface. The in-plane lattice parameter of the resulting metamorphic AlSb is slightly smaller (0.3%) than the bulk value and perfectly matches the lattice parameter of bulk GaSb. It is, therefore, possible to grow nearly stress-free GaSb on GaAs using a metamorphic AlSb buffer layer.

  10. Ion Implanted Gaas Integrated Optics Fabrication Technology

    NASA Astrophysics Data System (ADS)

    Mentzer, M. A.; Hunsperger, R. G.; Bartko, J.; Zavada, J. M.; Jenkinson, H. A.

    1985-01-01

    Ion implantation of semiconductor materials is a fabrication technique that offers a number of distinct advantages for the formation of guided-wave components and microelectronic devices. Implanted damage and dopants produce optical and electronic changes that can be utilized for sensing and signal processing applications. GaAs is a very attractive material for optical fabrication since it is transparent out to the far infrared. It can be used to fabricate optical waveguides, directional couplers, EO modulators, and detectors, as well as other guided wave structures. The presence of free carriers in GaAs lowers the refractive index from that of the pure semiconductor material. This depression of the refractive index is primarily due to the negative contribution of the free carrier plasma to the dielectric constant of the semiconductor. Bombardment of n-type GaAs by protons creates damage sites near the surface of the crystal structure where free carriers are trapped. This "free carrier compensated" region in the GaAs has a higher refractive index than the bulk region. If the compensated region is sufficiently thick and has a refractive index which is sufficiently larger than that of the bulk n-type region, an optical waveguide is formed. In this paper, a description of ion implantation techniques for the fabrication of both planar and channel integrated optical structures in GaAs is presented, and is related to the selection of ion species, implant energy and fluence, and to the physical processes involved. Lithographic technology and masking techniques are discussed for achieving a particular desired implant profile. Finally, the results of a set of ion implantation experiments are presented.

  11. ZnSe Window Layers for GaAs and GaInP2 Solar Cells

    NASA Technical Reports Server (NTRS)

    Olsen, Larry C.

    1995-01-01

    This report concerns studies of the use of ZnSe as a window layer for GaAs solar cells. Well-oriented crystalline ZnSe films on (100) single crystal GaAs substrates were grown by MOCVD. In particular, ZnSe films were grown by reacting a zinc adduct with hydrogen selenide at temperatures in the range of 200 C to 400 C. X-ray diffraction studies and images obtained with an atomic force microscope determined that the films were highly oriented but were polycrystalline. Particular emphasis was placed on the use of a substrate temperature of 350 C. Using iodine as a dopant, n-type ZnSe films with resistivities in the range of .01 to .05 ohm-cm were grown on semi-insulating GaAs. Thus procedures have been developed for investigating the utility of n-type ZnSe window layers on n/p GaAs structures. Studies of recombination at n-ZnSe/n-GaAs interfaces in n-ZnSe/n-GaAs/p-GaAs cell structures are planned for future work.

  12. Strain accommodation in Ga-assisted GaAs nanowires grown on silicon (111).

    PubMed

    Biermanns, A; Breuer, S; Trampert, A; Davydok, A; Geelhaar, L; Pietsch, U

    2012-08-03

    We study the mechanism of lattice parameter accommodation and the structure of GaAs nanowires (NWs) grown on Si(111) substrates using the Ga-assisted growth mode in molecular beam epitaxy. These nanowires grow preferentially in the zincblende structure, but contain inclusions of wurtzite at the base. By means of grazing incidence x-ray diffraction and high-resolution transmission electron microscopy of the NW-substrate interface, we show that the lattice mismatch between the NW and the substrate is released immediately after the beginning of NW growth through the inclusion of misfit dislocations, and no pseudomorphic growth is obtained for NW diameters down to 10 nm. NWs with a diameter above 100 nm exhibit a rough interface towards the substrate, preventing complete plastic relaxation. Consequently, these NWs exhibit a residual compressive strain at their bottom. In contrast, NWs with a diameter of 50 nm and below are completely relaxed because the interface is smooth.

  13. Comparison of n-type and p-type GaAs oxide growth and its effects on frequency dispersion characteristics

    SciTech Connect

    Hinkle, C. L.; Sonnet, A. M.; Milojevic, M.; Aguirre-Tostado, F. S.; Kim, H. C.; Kim, J.; Wallace, R. M.; Vogel, E. M.

    2008-09-15

    The electrical characteristics of n- and p-type gallium arsenide (GaAs) capacitors show a striking difference in the ''accumulation'' capacitance frequency dispersion. This difference has been attributed by some to a variation in the oxide growth, possibly due to photoelectrochemical properties of the two substrates. We show that the oxide growth on n- and p-type GaAs substrates is identical when exposed to identical environmental and chemical conditions while still maintaining the diverse electrical characteristics. The difference in electron and hole trap time constants is suggested as the source of the disparity of the frequency dispersion for n-type versus p-type GaAs devices.

  14. Nitride chemical passivation of a GaAs (100) Surface: Effect on the electrical characteristics of Au/GaAs surface-barrier structures

    SciTech Connect

    Berkovits, V. L. L'vova, T. V.; Ulin, V. P.

    2011-12-15

    The effect of chemical nitridation of GaAs substrates in a hydrazine-sulfide solution on the electrical characteristics of Au/GaAs Schottky structures has been studied. In nitridation of this kind, a solid passivating gallium nitride film with a monolayer thickness is formed on the surface of GaAs, providing almost direct contact between the semiconductor and the metal deposited on its surface. Au/GaAs structures fabricated on nitride substrates have ideality factors close to unity and are characterized by a narrow scatter of potential barrier heights. Prolonged heating of these structures at 350 Degree-Sign C does not change these parameters. The data obtained show that the nitride monolayer formed on the GaAs surface upon treatment in hydrazidesulfide solutions effectively hinders atomic migration across the metal-semiconductor phase boundary.

  15. Physical property analysis of C-doped GaAs as function of the carrier concentration grown by MOCVD using elemental arsenic as precursor

    NASA Astrophysics Data System (ADS)

    Díaz-Reyes, J.; Avendaño, M. A.; Galván-Arellano, M.; Peña-Sierra, R.

    2006-03-01

    This work presents the characterization of GaAs layers grown in a metallic-arsenic-based-MOCVD system. The gallium precursor was the compound trimethylgallium (TMG) and elemental arsenic as precursor of arsenic. The most important parameters of the growth process include the substrate temperature and the composition of the carrier gas; an N2+H2 gas mixture. The influence of carbon doping on the optical and electrical properties of GaAs layers have been studied by photoluminescence (PL) spectroscopy, Photoreflectance (PR) and Hall Effect measurements. To carry out doping with carbon in the range of around 1016 to 1020 cm-3, it was necessary to modifying the hydrogen activity in the reacting atmosphere with the control of the N{2}+H{2}, mixture which was used as carrier gas. The PL response of the samples is strongly dependent on the growth temperature and showed mainly two radiative transitions, band-to-band and band-to C-acceptor. PR spectra present transitions associated to GaAs. Besides, short period oscillations near the GaAs band-gap energy are observed, interpreted as Franz-Keldysh oscillations associated to the hole-ionized acceptor (h-A-) pair modulations. For investigating the chemical bonds of impurity-related species in the GaAs layers optical absorption was measured using a FT-IR spectrometer. Device quality GaAs layers have been grown in a broad range of growth temperatures.

  16. Transfer printing of thin-film microscale GaAs lasers on silicon

    NASA Astrophysics Data System (ADS)

    Sheng, Xing

    2016-10-01

    We exploit microscale, thin-film gallium arsenide (GaAs) lasers integrated onto silicon (Si) substrates via transfer printing, with a thermally conductive interface material for continuous wave (CW) operation at room temperature. Concepts that bypass existing challenges for III-V/Si integration are presented, and we demonstrate them in strategies for releasing and transfer printing fully formed, functional thin-film microscale GaAs based lasers onto Si substrates where a metallic thin film serves as an adhesive and a thermally conductive interface. Numerical simulations reveal the key considerations in thermal management, with an emphasis on the role of this interface layer. Electrically pumped devices printed on Si exhibit continuous-wave (CW) lasing in the near-infrared range (around 820 nm) at room temperature, with performance comparable to unreleased devices on their native substrates. The spectral shift is consistent with thermal modeling. In addition, preliminary experiments show that the laser devices are possible to be integrated with Si waveguide arrays as well as flexible substrates. The results presented here have promise as generalized routes for advanced heterogeneous integration in next-generation electronic and photonic circuits.

  17. Growth mechanisms for GaAs nanowires grown in CBE

    NASA Astrophysics Data System (ADS)

    Persson, A. I.; Ohlsson, B. J.; Jeppesen, S.; Samuelson, L.

    2004-12-01

    We have investigated the growth of GaAs nanowires as a function of temperatures and source pressures on (1 1 1) B-oriented substrates in chemical beam epitaxy (CBE), to establish the mechanisms that govern wire growth and to optimize growth conditions. The grown nanowires were characterized with a scanning electron microscope (SEM). We found two mechanisms to be of importance for wire growth: (i) sufficiently long diffusion length of the group-III material on the 2D substrate surface and on the side facets of the nanowire to obtain rod-shaped nanowires and (ii) growth conditions that suppress growth rate on adjacent surfaces to enhance the wire growth. Favorable conditions for these mechanisms are growth temperatures between 515 and 535 °C, and As-rich growth conditions. Furthermore, we suggest that the growth mechanism of nanowires in CBE is based on surface-selective-growth (SSG) with a solid seed particle rather than conventional vapor-liquid-solid (VLS) growth.

  18. Selective-area growth of GaAs and InAs nanowires—homo- and heteroepitaxy using SiNx templates

    NASA Astrophysics Data System (ADS)

    Paetzelt, H.; Gottschalch, V.; Bauer, J.; Benndorf, G.; Wagner, G.

    2008-11-01

    We report on the catalyst-free growth of GaAs and InAs nanowires using the selective-area metal organic vapor phase epitaxy (SA-MOVPE). The nanowires were grown from small circular openings defined by electron-beam lithography and wet chemical etching of a thin SiNx layer. This layer was deposited on a (1 1 1)B-oriented GaAs substrate using plasma enhanced chemical vapor deposition. We optimized the growth conditions for realizing extremely uniform arrays in a triangular lattice of GaAs and InAs nanowires with diameters down to 100 nm and a length of a few microns. During the growth the nanowires are formed by {1¯ 1 0} side facets and a growth direction perpendicular to the substrate surface. We investigated the growth behavior of GaAs nanowires with different diameters varying from 100 to 500 nm at different growth parameters, changing the temperature and the V/III ratio of TMG and AsH3. With a combination of GaAs and InAs SA-MOVPE growth radial heterostructures were grown. The structures were characterized by scanning electron microscopy, photoluminescence spectroscopy and transmission electron microscopy.

  19. Eight-Bit-Slice GaAs General Processor Circuit

    NASA Technical Reports Server (NTRS)

    Weissman, John; Gauthier, Robert V.

    1989-01-01

    Novel GaAs 8-bit slice enables quick and efficient implementation of variety of fast GaAs digital systems ranging from central processing units of computers to special-purpose processors for communications and signal-processing applications. With GaAs 8-bit slice, designers quickly configure and test hearts of many digital systems that demand fast complex arithmetic, fast and sufficient register storage, efficient multiplexing and routing of data words, and ease of control.

  20. LSI/VLSI Ion Implanted GaAs IC Processing

    DTIC Science & Technology

    1982-02-10

    insulating High Speed Logic Ion Implantation GaAs IC FET Integrated Circuits MESFET 20. ABSTRACT (Coalki. on.. roersie if oookay and IdoeI by WOOe tw**, This...The goal of this program is to realize the full potential of GaAs digital integrated circuits employing depletion mode MESFETs by developing the...Processing. The main objective of this program is to realize the full potential of GaAs digital integrated circuits by expanding and improving

  1. Passivation of GaAs Surfaces.

    DTIC Science & Technology

    1980-08-15

    hour at indicated temperatures. Each symbol indicates one of four pieces of the same starting crystal . Three of the pieces were treated four times. The...Each symbol indicates one of four pieces of the same starting crystal . Three of the pieces were treated three times ................................ 9... crystal 11 11. Luminescence intensity of GaAs treated in ammonia plasma at 575*C as a function of treatment time. Each symbol represents one of five

  2. Properties of CsI, CsBr and GaAs thin films grown by pulsed laser deposition

    SciTech Connect

    Brendel, V M; Garnov, S V; Yagafarov, T F; Iskhakova, L D; Ermakov, R P

    2014-09-30

    CsI, CsBr and GaAs thin films have been grown by pulsed laser deposition on glass substrates. The morphology and structure of the films have been studied using X-ray diffraction and scanning electron microscopy. The CsI and CsBr films were identical in stoichiometry to the respective targets and had a polycrystalline structure. Increasing the substrate temperature led to an increase in the density of the films. All the GaAs films differed in stoichiometry from the target. An explanation was proposed for this fact. The present results demonstrate that, when the congruent transport condition is not fulfilled, films identical in stoichiometry to targets can be grown by pulsed laser deposition in the case of materials with a low melting point and thermal conductivity. (interaction of laser radiation with matter)

  3. High efficiency, low cost thin GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Fan, J. C. C.

    1982-01-01

    The feasibility of fabricating space-resistant, high efficiency, light-weight, low-cost GaAs shallow-homojunction solar cells for space application is demonstrated. This program addressed the optimal preparation of ultrathin GaAs single-crystal layers by AsCl3-GaAs-H2 and OMCVD process. Considerable progress has been made in both areas. Detailed studies on the AsCl3 process showed high-quality GaAs thin layers can be routinely grown. Later overgrowth of GaAs by OMCVD has been also observed and thin FaAs films were obtained from this process.

  4. Crystal growth of device quality GaAs in space

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Lagowski, J.

    1984-01-01

    The crystal growth, device processing and device related properties and phenomena of GaAs are investigated. Our GaAs research evolves about these key thrust areas. The overall program combines: (1) studies of crystal growth on novel approaches to engineering of semiconductor materials (i.e., GaAs and related compounds); (2) investigation and correlation of materials properties and electronic characteristics on a macro- and microscale; (3) investigation of electronic properties and phenomena controlling device applications and device performance. The ground based program is developed which would insure successful experimentation with and eventually processing of GaAs in a near zero gravity environment.

  5. Ga migration process in Au film on (100) GaAs under temperature treatment in vacuum

    NASA Astrophysics Data System (ADS)

    Bryantseva, T. A.; Lioubtchenko, D. V.; Lopatin, V. V.

    1996-07-01

    The investigated structures look like patterns with separated circular windows, opened in SiO 2 covering GaAs surface with thin metal film (Au) deposited above (honey-comb structures). The method of precise chemical analysis developed and used in this work allowed to determine the total quantity of Ga in Au layer rubbed off the substrate. It was found that at the initial stage of heating (up to 400°C) Ga migration from windows (Au on GaAs) into Au on SiO 2 had not been observed but physical and chemical reactions with forming of Au-Ga eutectic compound were found in Au layer on GaAs. The melting temperatures and specific melting heat were calculated from experimental data ( T0 = 340°C; Q0 = 3.5kcal/mol). After temperature increasing Ga migration in Au on SiO 2 was noticed and identified as a result of diffusion process with Au-GaAs windows as 'sources' and Au on SiO 2 as 'drains'. The process of Ga migration manifests itself for 500A˚Au and 0.2-0.3 μm SiO 2 thickness as the grain boundary diffusion with activation energy ˜ 7.3 kcal/mol.

  6. Degradation mechanism(s) of GaAs solar cells with Cu contacts.

    PubMed

    van Leest, R H; de Kleijne, K; Bauhuis, G J; Mulder, P; Cheun, H; Lee, H; Yoon, W; van der Heijden, R; Bongers, E; Vlieg, E; Schermer, J J

    2016-04-21

    Substrate-based GaAs solar cells having a dense Au/Cu front contact grid with 45% surface coverage were exposed to accelerated life testing at temperatures between 200 and 300 °C. TEM analysis of the front contacts was used to gain a better understanding of the degradation process. During accelerated life testing at 200 °C only intermixing of the Au and Cu in the front contact occurs, without any significant influence on the J-V curve of the cells, even after 1320 h (55 days) of accelerated life testing. At temperatures ≥250 °C a recrystallization process occurs in which the metals of the contact and the GaAs front contact layer interact. Once the grainy recrystallized layer starts to approach the window, diffusion via grain boundaries to the window and into the active region of the solar cells occurs, causing a decrease in Voc due to enhanced non-radiative recombination via Cu trap levels introduced in the active region of the solar cell. To be a valid simulation of space conditions the accelerated life testing temperature should be <250 °C in future experiments, in order to avoid recrystallization of the metals with the GaAs contact layer.

  7. LEO Flight Testing of GaAs on Si Solar Cells Aboard MISSES

    NASA Technical Reports Server (NTRS)

    Wilt, David M.; Clark, Eric B.; Ringel, Steven A.; Andre, Carrie L.; Smith, Mark A.; Scheiman, David A.; Jenkins, Phillip P.; Maurer, William F.; Fitzgerald, Eugene A.; Walters, R. J.

    2004-01-01

    Previous research efforts have demonstrated small area (0.04 cm) GaAs on Si (GaAs/Si) solar cells with AM0 efficiencies in excess of 17%. These results were achieved on Si substrates coated with a step graded buffer of Si(x),Ge(1-x) alloys graded to 100% Ge. Recently, a 100-fold increase in device area was accomplished for these devices in preparation for on-orbit testing of this technology aboard Materials International Space Station Experiment number 5 (MISSE5). The GaAs/Si MISSE5 experiment contains five (5) GaAs/Si test devices with areas of lcm(exp 2) and 4cm(exp 4) as well as two (2) GaAs on GaAs control devices. Electrical performance data, measured on-orbit for three (3) of the test devices and one (1) of the control devices, will be telemetered to ground stations daily. After approximately one year on orbit, the MISSE5 payload will be returned to Earth for post flight evaluation. This paper will discuss the development of the GaAs/Si devices for the MISSE5 flight experiment and will present recent ground and on-orbit performance data.

  8. Regeneration of a thiolated and antibody functionalized GaAs (001) surface using wet chemical processes.

    PubMed

    Lacour, Vivien; Elie-Caille, Céline; Leblois, Thérèse; Dubowski, Jan J

    2016-03-02

    Wet chemical processes were investigated to remove alkanethiol self-assembled monolayers (SAMs) and regenerate GaAs (001) samples studied in the context of the development of reusable devices for biosensing applications. The authors focused on 16-mercaptohexadecanoic acid (MHDA) SAMs that are commonly used to produce an interface between antibodies or others proteins and metallic or semiconductor substrates. As determined by Fourier transform infrared absorption spectroscopy, among the investigated solutions of HCl, H2O2, and NH4OH, the highest efficiency in removing alkanethiol SAM from GaAs was shown by NH4OH:H2O2 (3:1 volume ratio) diluted in H2O. The authors observed that this result was related to chemical etching of GaAs that even in a weak solution of NH4OH:H2O2:H2O (3:1:100) proceeded at a rate of 130 nm/min. The surface revealed by a 2-min etching under these conditions allowed depositing successfully a new MHDA SAM with comparable quality and density to the initial coating. This work provides an important view on the perspective of the development of a family of cost-effective GaAs-based biosensors designed for repetitive detection of a variety of biomolecules immobilized with dedicated antibody architectures.

  9. Engineering Controlled Spalling in (100)-Oriented GaAs for Wafer Reuse

    SciTech Connect

    Sweet, Cassi A.; McNeely, Joshua E.; Gorman, Brian; Young, David L.; Ptak, Aaron J.; Packard, Corinne E.

    2015-06-14

    Controlled spalling offers a way to cleave thin, single-crystal films or devices from wafers, particularly if the fracture planes in the material are oriented parallel to the wafer surface. Unfortunately, misalignment between the favored fracture planes and the wafer surface preferred for photovoltaic growth in (100)-oriented GaAs produces a highly faceted surface when subject to controlled spalling. This highly faceted cleavage surface is problematic in several ways: (1) it can result in large variations of spall depth due to unstable crack propagation; (2) it may introduce defects into the device zone or underlying substrate; and (3) it consumes many microns of material outside of the device zone. We present the ways in which we have engineered controlled spalling for (100)-oriented GaAs to minimize these effects. We expand the operational window for controlled spalling to avoid spontaneous spalling, find no evidence of dislocation activity in the spalled film or the parent wafer, and reduce facet height and facet height irregularity. Resolving these issues provides a viable path forward for reducing III-V device cost through the controlled spalling of (100)-oriented GaAs devices and subsequent wafer reuse when these processes are combined with a high-throughput growth method such as Hydride Vapor Phase Epitaxy.

  10. A technique for large-area position-controlled growth of GaAs nanowire arrays

    NASA Astrophysics Data System (ADS)

    Kauppinen, Christoffer; Haggren, Tuomas; Kravchenko, Aleksandr; Jiang, Hua; Huhtio, Teppo; Kauppinen, Esko; Dhaka, Veer; Suihkonen, Sami; Kaivola, Matti; Lipsanen, Harri; Sopanen, Markku

    2016-04-01

    We demonstrate a technique for fabricating position-controlled, large-area arrays of vertical semiconductor nanowires (NWs) with adjustable periods and NW diameters. In our approach, a Au-covered GaAs substrate is first coated with a thin film of photoresponsive azopolymer, which is exposed twice to a laser interference pattern forming a 2D surface relief grating. After dry etching, an array of polymer islands is formed, which is used as a mask to fabricate a matrix of gold particles. The Au particles are then used as seeds in vapour-liquid-solid growth to create arrays of vertical GaAs NWs using metalorganic vapour phase epitaxy. The presented technique enables producing NWs of uniform size distribution with high throughput and potentially on large wafer sizes without relying on expensive lithography techniques. The feasibility of the technique is demonstrated by arrays of vertical NWs with periods of 255-1000 nm and diameters of 50-80 nm on a 2 × 2 cm area. The grown NWs exhibit high long range order and good crystalline quality. Although only GaAs NWs were grown in this study, in principle, the presented technique is suitable for any material available for Au seeded NW growth.

  11. Nanometre-sized GaAs wires grown by organo-metallic vapour-phase epitaxy

    NASA Astrophysics Data System (ADS)

    Hiruma, Kenji; Haraguchi, Keiichi; Yazawa, Masamitsu; Madokoro, Yuuichi; Katsuyama, Toshio

    2006-06-01

    We grew GaAs wires as thin as 20 nm on a GaAs(111)B substrate using organo-metallic vapour-phase epitaxy (OMVPE), with Au as a growth catalyst. To investigate the growth characteristics, we compared two methods of depositing Au. In the first, Au was deposited by vacuum evaporation, and the deposition thickness was varied to form a planar Au layer. We found that an Au layer thickness of 1 nm was best for forming cylindrical shaped wires. Next, a new method of injecting Au onto an area of a few micrometres was tested using a focused ion beam (FIB), and this method was found to be effective for growing wires as thin as 30-80 nm. However, the wire width did not depend on the injected density of Au. We based our analysis of the results on an ion implantation model. GaAs wires with a p-n junction along the \\langle 111\\rangle \\mathrm {B} direction were formed by changing dopants from silicon to carbon during growth. We observed an optical emission with a peak intensity at the wavelength of 910-920 nm during continuous current injection into the wires at 300 K. A spectral blue-shift in the light emission and a polarization along the wire growth direction were also revealed at 77 K.

  12. Self-assembly of triangular quantum dots on (111)A substrates by droplet epitaxy

    SciTech Connect

    Jo, M.; Mano, T.; Abbarchi, M.; Kuroda, T.; Sakoda, K.

    2014-05-15

    We report the self-assembly of triangular GaAs quantum dots (QDs) on (111)A substrates using droplet epitaxy. Shape transition from hexagonal to triangular QDs is observed with increasing crystallizing temperature. The mechanism of the morphological change is discussed in terms of different growth rates of step edges on a (111)A substrate.

  13. Comparison of the microstructure and magnetic properties of strontium hexaferrite films deposited on Al2O3(0001), Si(100)/Pt(111) and Si(100) substrates by pulsed laser technique

    NASA Astrophysics Data System (ADS)

    Masoudpanah, S. M.; Seyyed Ebrahimi, S. A.; Ong, C. K.

    2014-01-01

    Strontium hexaferrite SrFe12O19 (SrM) films have been deposited on Al2O3(0001), Si(100)/Pt(111) and Si(100) substrates. The (001) oriented SrFe12O19 films deposited on the Al2O3(0001) and Si(100)/Pt(111) substrates have been confirmed by X-ray diffraction patterns. Higher coercivity in perpendicular direction rather than in-plane direction of the SrM/Al2O3(0001) and SrM/Pt(111) films showed that the films had perpendicular magnetic anisotropy. The (001) orientation and similar microstructure and magnetic properties of the SrM/Al2O3(0001) and SrM/Pt(111) films show the Al2O3(0001) substrate can be replaced by the Si(100)/Pt(111) substrate.

  14. Velocity surface measurements for ZnO films over /001/-cut GaAs

    NASA Technical Reports Server (NTRS)

    Kim, Yoonkee; Hunt, William D.; Liu, Yongsheng; Jen, Cheng-Kuei

    1994-01-01

    A potential application for a piezoelectic film deposited on a GaAs substrate is the monolithic integration of surface acoustic wave (SAW) devices with GaAs electronics. Knowledge of the SAW properties of the filmed structure is critical for the optimum design of such devices. In this article, the measurements of the velocity surface, which directly affects the SAW diffraction, on the bare and metallized ZnO/SiO2 or Si3N4/GaAs /001/-cut samples are reported using two different techniques: (1) knife-edge laser probe, (2) line-focus-beam scanning acoustic microscope. Comparisons, such as measurement accuracy and tradeoffs, between the former (dry) and the latter (wet) method are given. It is found that near the group of zone axes (110) propagation direction the autocollimating SAW property of the bare GaAs changes into a noncollimating one for the layered structure, but a reversed phenomenon exists near the group of zone axes (100) direction. The passivation layer of SiO2 or Si3N4 (less than 0.2 micrometer thick) and the metallization layer change the relative velocity but do not significantly affect the velocity surface. On the other hand, the passivation layer reduces the propagation loss by 0.5-1.3 dB/microseconds at 240 MHz depending upon the ZnO film thickness. Our SAW propagation measurements agree well with theorectical calculations. We have also obtained the anisotropy factors for samples with ZnO films of 1.6, 2.8, and 4.0 micrometer thickness. Comparisons concerning the piezoelectric coupling and acoustic loss between dc triode and rf magnetron sputtered ZnO films are provided.

  15. Towards low-dimensional hole systems in Be-doped GaAs nanowires.

    PubMed

    Ullah, A R; Gluschke, J G; Krogstrup, P; Sørensen, C B; Nygård, J; Micolich, A P

    2017-03-01

    GaAs was central to the development of quantum devices but is rarely used for nanowire-based quantum devices with InAs, InSb and SiGe instead taking the leading role. p-type GaAs nanowires offer a path to studying strongly confined 0D and 1D hole systems with strong spin-orbit effects, motivating our development of nanowire transistors featuring Be-doped p-type GaAs nanowires, AuBe alloy contacts and patterned local gate electrodes towards making nanowire-based quantum hole devices. We report on nanowire transistors with traditional substrate back-gates and EBL-defined metal/oxide top-gates produced using GaAs nanowires with three different Be-doping densities and various AuBe contact processing recipes. We show that contact annealing only brings small improvements for the moderately doped devices under conditions of lower anneal temperature and short anneal time. We only obtain good transistor performance for moderate doping, with conduction freezing out at low temperature for lowly doped nanowires and inability to reach a clear off-state under gating for the highly doped nanowires. Our best devices give on-state conductivity 95 nS, off-state conductivity 2 pS, on-off ratio [Formula: see text], and sub-threshold slope 50 mV/dec at [Formula: see text] K. Lastly, we made a device featuring a moderately doped nanowire with annealed contacts and multiple top-gates. Top-gate sweeps show a plateau in the sub-threshold region that is reproducible in separate cool-downs and indicative of possible conductance quantisation highlighting the potential for future quantum device studies in this material system.

  16. Towards low-dimensional hole systems in Be-doped GaAs nanowires

    NASA Astrophysics Data System (ADS)

    Ullah, A. R.; Gluschke, J. G.; Krogstrup, P.; Sørensen, C. B.; Nygård, J.; Micolich, A. P.

    2017-03-01

    GaAs was central to the development of quantum devices but is rarely used for nanowire-based quantum devices with InAs, InSb and SiGe instead taking the leading role. p-type GaAs nanowires offer a path to studying strongly confined 0D and 1D hole systems with strong spin–orbit effects, motivating our development of nanowire transistors featuring Be-doped p-type GaAs nanowires, AuBe alloy contacts and patterned local gate electrodes towards making nanowire-based quantum hole devices. We report on nanowire transistors with traditional substrate back-gates and EBL-defined metal/oxide top-gates produced using GaAs nanowires with three different Be-doping densities and various AuBe contact processing recipes. We show that contact annealing only brings small improvements for the moderately doped devices under conditions of lower anneal temperature and short anneal time. We only obtain good transistor performance for moderate doping, with conduction freezing out at low temperature for lowly doped nanowires and inability to reach a clear off-state under gating for the highly doped nanowires. Our best devices give on-state conductivity 95 nS, off-state conductivity 2 pS, on-off ratio ∼ {10}4, and sub-threshold slope 50 mV/dec at T=4 K. Lastly, we made a device featuring a moderately doped nanowire with annealed contacts and multiple top-gates. Top-gate sweeps show a plateau in the sub-threshold region that is reproducible in separate cool-downs and indicative of possible conductance quantisation highlighting the potential for future quantum device studies in this material system.

  17. InAs quantum dots on GaAs(112)B

    SciTech Connect

    Suzuki, T.; Temko, Y.; Xu, M.C.; Jacobi, K.

    2004-12-01

    InAs quantum dots (QDs) were prepared by molecular beam epitaxy on GaAs(112)B substrates. Shape and size distribution of the QDs were investigated using in situ scanning tunneling microscopy as function of preparation temperature between 435 and 550 deg. C. The wetting layer is not flat but undulated in submicrometer scale in a similar way as the bare substrate. The atomic structure of the wetting layer is the same as found for the flat base of InAs QDs grown on GaAs(113)B substrates. The shape of the QDs is given by {l_brace}110{r_brace}, (111)B, and {l_brace}143{r_brace}B bounding facets and a round vicinal (001) region. Unexpectedly, the number density increases and the size distribution sharpens, when the growth temperature is increased from 435 to 470 deg. C, which is attributed to lattice defects incorporated into the QDs during growth at 435 deg. C.

  18. Study of temperature-dependent Raman spectroscopy and electrical properties in [001]-oriented 0.35Pb(In1/2Nb1/2)O3-0.35Pb(Mg1/3Nb2/3)O3-0.30PbTiO3-Mn single crystals

    NASA Astrophysics Data System (ADS)

    Liu, Xing; Fang, Bijun; Deng, Ji; Yan, Hong; Deng, Hao; Yue, Qingwen; Ding, Jianning; Zhao, Xiangyong; Luo, Haosu

    2016-01-01

    In this work, the temperature-dependent Raman spectra and electrical properties of the [001]-oriented 0.5 mol. % Mn-doped 0.35Pb(In1/2Nb1/2)O3-0.35Pb(Mg1/3Nb2/3)O3-0.30PbTiO3-Mn (PIMNT-Mn) single crystals were investigated. All the unpoled and poled PIMNT-Mn single crystals experience a ferroelectric tetragonal phase to paraelectric cubic phase transition (FET-PC) around 183 °C (TC), which exhibits a second-order transition behavior. Whereas, the poled PIMNT-Mn single crystals exhibit another two dielectric anomalies around 130 °C (TRM) and 148 °C (TMT), in which the ferroelectric rhombohedral phase to ferroelectric monoclinic phase (FER-FEM) and the ferroelectric monoclinic phase to ferroelectric tetragonal phase (FEM-FET) transitions take place, respectively. Both the two ferroelectric phase transitions exhibit a first-order transition behavior. The discontinuous change of the phase degree (θ) and frequencies (fr and fa) around TRM suggest the occurrence of the FER-FEM phase transition in the poled PIMNT-Mn single crystals. The narrowing of the 510 cm-1 and 582 cm-1 Raman modes around the TRM, TMT, and TC temperatures shown in the temperature-dependent Raman spectra suggests their increased ordering of the local structure. The intensity ratio of I272 cm-1/I801 cm-1 increases obviously around the phase transition temperatures (TRM, TMT, and TC), indicating the reduction of the long-range order. The anomalous broadening of the 272 cm-1 Raman mode around the TRM, TMT, and TC temperatures indicates the occurrence of the successive ferroelectric phase transitions (FER-FEM, FEM-FET, and FET-PC) with increasing temperature in the poled PIMNT-Mn single crystals.

  19. GaAs nanowires with oxidation-proof arsenic capping for the growth of an epitaxial shell.

    PubMed

    Guan, X; Becdelievre, J; Benali, A; Botella, C; Grenet, G; Regreny, P; Chauvin, N; Blanchard, N P; Jaurand, X; Saint-Girons, G; Bachelet, R; Gendry, M; Penuelas, J

    2016-08-25

    We propose an arsenic-capping/decapping method, allowing the growth of an epitaxial shell around the GaAs nanowire (NW) core which is exposed to an ambient atmosphere, and without the introduction of impurities. Self-catalyzed GaAs NW arrays were firstly grown on Si(111) substrates by solid-source molecular beam epitaxy. Aiming for protecting the active surface of the GaAs NW core, the arsenic-capping/decapping method has been applied. To validate the effect of this method, different core/shell NWs have been fabricated. Analyses highlight the benefit of the As capping-decapping method for further epitaxial shell growth: an epitaxial shell with a smooth surface is achieved in the case of As-capped-decapped GaAs NWs, comparable to the in situ grown GaAs/AlGaAs NWs. This As capping method opens a way for the epitaxial growth of heterogeneous material shells such as functional oxides using different reactors.

  20. Vertically aligned GaAs nanowires on graphite and few-layer graphene: generic model and epitaxial growth.

    PubMed

    Munshi, A Mazid; Dheeraj, Dasa L; Fauske, Vidar T; Kim, Dong-Chul; van Helvoort, Antonius T J; Fimland, Bjørn-Ove; Weman, Helge

    2012-09-12

    By utilizing the reduced contact area of nanowires, we show that epitaxial growth of a broad range of semiconductors on graphene can in principle be achieved. A generic atomic model is presented which describes the epitaxial growth configurations applicable to all conventional semiconductor materials. The model is experimentally verified by demonstrating the growth of vertically aligned GaAs nanowires on graphite and few-layer graphene by the self-catalyzed vapor-liquid-solid technique using molecular beam epitaxy. A two-temperature growth strategy was used to increase the nanowire density. Due to the self-catalyzed growth technique used, the nanowires were found to have a regular hexagonal cross-sectional shape, and are uniform in length and diameter. Electron microscopy studies reveal an epitaxial relationship of the grown nanowires with the underlying graphitic substrates. Two relative orientations of the nanowire side-facets were observed, which is well explained by the proposed atomic model. A prototype of a single GaAs nanowire photodetector demonstrates a high-quality material. With GaAs being a model system, as well as a very useful material for various optoelectronic applications, we anticipate this particular GaAs nanowire/graphene hybrid to be promising for flexible and low-cost solar cells.

  1. High Yield of GaAs Nanowire Arrays on Si Mediated by the Pinning and Contact Angle of Ga.

    PubMed

    Russo-Averchi, Eleonora; Vukajlovic Plestina, Jelena; Tütüncüoglu, Gözde; Matteini, Federico; Dalmau-Mallorquí, Anna; de la Mata, Maria; Rüffer, Daniel; Potts, Heidi A; Arbiol, Jordi; Conesa-Boj, Sonia; Fontcuberta i Morral, Anna

    2015-05-13

    GaAs nanowire arrays on silicon offer great perspectives in the optoelectronics and solar cell industry. To fulfill this potential, gold-free growth in predetermined positions should be achieved. Ga-assisted growth of GaAs nanowires in the form of array has been shown to be challenging and difficult to reproduce. In this work, we provide some of the key elements for obtaining a high yield of GaAs nanowires on patterned Si in a reproducible way: contact angle and pinning of the Ga droplet inside the apertures achieved by the modification of the surface properties of the nanoscale areas exposed to growth. As an example, an amorphous silicon layer between the crystalline substrate and the oxide mask results in a contact angle around 90°, leading to a high yield of vertical nanowires. Another example for tuning the contact angle is anticipated, native oxide with controlled thickness. This work opens new perspectives for the rational and reproducible growth of GaAs nanowire arrays on silicon.

  2. Growth of GaAs “nano ice cream cones” by dual wavelength pulsed laser ablation

    NASA Astrophysics Data System (ADS)

    Schamp, C. T.; Jesser, W. A.; Shivaram, B. S.

    2007-05-01

    Harmonic generation crystals inherently offer the possibility of using multiple wavelengths of light in a single laser pulse. In the present experiment, the fundamental (1064 nm) and second harmonic (532 nm) wavelengths from an Nd:YAG laser are focused together on GaAs and GaSb targets for ablation. Incident energy densities up to about 45 J/cm 2 at 10 Hz with substrate temperatures between 25 and 600 °C for durations of about 60 s have been used in an ambient gas pressure of about 10 -6 Torr. The ablated material was collected on electron-transparent amorphous carbon films for TEM analysis. Apart from a high density of isolated nanocrystals, the most common morphology observed consists of a crystalline GaAs cone-like structure in contact with a sphere of liquid Ga, resembling an "ice cream cone", typically 50-100 nm in length. For all of the heterostuctures of this type, the liquid/solid/vacuum triple junction is found to correspond to the widest point on the cone. These heterostructures likely form by preferential evaporation of As from molten GaAs drops ablated from the target. The resulting morphology minimizes the interfacial and surface energies of the liquid Ga and solid GaAs.

  3. Efficient thermophotovoltaic solar cells on bent substrates

    NASA Astrophysics Data System (ADS)

    Shmavonyan, Gagik; Zadoyan, Ovsanna

    2013-04-01

    Thermophotovoltaic devices show promise as a method of reclaiming waste industrial heat and may provide a competitive and quiet low output heat conversion power supply for remote rural areas. GaSb based devices are well matched to a 1500-2000^oC blackbody emission temperature as well as to the solar spectrum when paired with GaAs. The growth of GaSb on GaAs proceeds via the Stranski-Krastanow mechanism, resulting in rectangular islands of GaSb with their edges orientated along the 110directions. The size of the islands is dependent on the growth temperature with smaller islands being produced for lower temperatures. The rectification behavior of p-GaSb/n-GaAs heterojunctions is also strongly dependent on the growth temperature. Possible mechanisms for the rectification at low temperature include more rapid turnover of interface dislocations and a corresponding reduction in carrier generation/recombination processes or passivation of defect centres by greater incorporation of impurities such as hydrogen. By optimizing the growth conditions, efficient p-GaSb/n-GaAs thermophotovoltaic devices have been produced. A series of GaSb and GaAs epilayers grown onto substrates has been used to investigate the effect of bent substrate on external quantum efficiency and spectral response.

  4. Impacts of crystal orientation of GaAs on the interfacial structures and electrical properties of Hf{sub 0.6}La{sub 0.4}O{sub x} films

    SciTech Connect

    Jia, Tingting; Kimura, Hideo; Zhao, Hongyang; Yao, Qiwen; Cheng, Zhenxiang; Cheng, Xinghong; Yu, Yuehui

    2014-04-07

    One of the major challenges in realizing the GaAs channel in the metal oxide semiconductor field effect transistor is the degrading in electron transport properties at the interface between GaAs and the gate oxide. In this study, Hf{sub 0.6}La{sub 0.4}O{sub x} gate oxide films were deposited at a low temperature (200 °C) on GaAs(111)A and GaAs(100) substrates by plasma enhanced atomic layer deposition. Microstructure analysis indicates that residuals of gallium oxide, arsenic oxide, and As element remained at the interface of Hf{sub 0.6}La{sub 0.4}O{sub x}/GaAs(100). On contrast, a smoother interface is observed between Hf{sub 0.6}La{sub 0.4}O{sub x} thin film and GaAs(111)A substrate. Furthermore, a reduction of interfacial layer is observed in Hf{sub 0.6}La{sub 0.4}O{sub x}/GaAs(111)A. Electrical characterization of the metal-insulator-semiconductor Pt/Hf{sub 0.6}La{sub 0.4}O{sub x}/n-GaAs(111)A capacitor indicated a reduction of D{sub it} and leakage current compared with the capacitor fabricated on GaAs(100)

  5. GaAs IMPATT diodes for microstrip circuit applications.

    NASA Technical Reports Server (NTRS)

    Wisseman, W. R.; Tserng, H. Q.; Shaw, D. W.; Mcquiddy, D. N.

    1972-01-01

    GaAs IMPATT diodes with plated heat sinks are shown to be particularly well suited for microstrip circuit applications. Details of materials growth and device fabrication procedures are given, and experimental results are presented for a GaAs IMPATT microstrip oscillator operating at X band.

  6. Panel fabrication utilizing GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Mardesich, N.

    1984-01-01

    The development of the GaAs solar cells for space applications is described. The activities in the fabrication of GaAs solar panels are outlined. Panels were fabricated while introducing improved quality control, soldering laydown and testing procedures. These panels include LIPS II, San Marco Satellite, and a low concentration panel for Rockwells' evaluation. The panels and their present status are discussed.

  7. Temperature dependence of oriented growth of Pb[Yb1/2Nb1/2]O3–PbTiO3 thin films deposited on LNO/Si substrates

    PubMed Central

    Zhou, Q.F.; Shung, K.K.; Zhang, Q.Q.; Djuth, F.T.

    2009-01-01

    (1−x)Pb[Yb1/2Nb1/2]O3−xPbTiO3 (PYbN–PT, x=0.5)(001) oriented thin films were deposited onto LaNiO3 (LNO)/Si(001) substrates by sol–gel processing. The crystallographic texture of the films was controlled by the annealing temperature and heating rate. Highly (001) oriented LNO thin films were prepared by a simple metal organic decomposition technique, and the samples were annealed at 700 °C and 750 °C using a rapid thermal annealing process and furnace, respectively. X-ray diffraction analysis revealed that the films of PYbN-PT were highly (001) oriented along LNO/Si substrates. The degree of PYbN-PT orientation is dependent on the heating rate and annealing temperature. Annealing heating rate of 10 °C/s and high annealing temperature near 750 °C produce the greatest degree of (001) orientation, which gives rise to improved dielectric properties. PMID:20890456

  8. Parameters study on the growth of GaAs nanowires on indium tin oxide by metal-organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Wu, Dan; Tang, Xiaohong; Wang, Kai; Olivier, Aurelien; Li, Xianqiang

    2016-03-01

    After successful demonstration of GaAs nanowire (NW) epitaxial growth on indium tin oxide (ITO) by metal organic chemical vapor deposition, we systematically investigate the effect of growth parameters' effect on the GaAs NW, including temperature, precursor molar flow rates, growth time, and Au catalyst size. 40 nm induced GaAs NWs are observed with zinc-blende structure. Based on vapor-liquid-solid mechanism, a kinetic model is used to deepen our understanding of the incorporation of growth species and the role of various growth parameters in tuning the GaAs NW growth rate. Thermally activated behavior has been investigated by variation of growth temperature. Activation energies of 40 nm Au catalyst induced NWs are calculated at different trimethylgallium (TMGa) molar flow rates about 65 kJ/mol. The GaAs NWs growth rates increase with TMGa molar flow rates whereas the growth rates are almost independent of growth time. Due to Gibbs-Thomson effect, the GaAs NW growth rates increase with Au nanoparticle size at different temperatures. Critical radius is calculated as 2.14 nm at the growth condition of 430 °C and 1.36 μmol/s TMGa flow rate. It is also proved experimentally that Au nanoparticle below the critical radius such as 2 nm cannot initiate the growth of NWs on ITO. This theoretical and experimental growth parameters investigation enables great controllability over GaAs NWs grown on transparent conductive substrate where the methodology can be expanded to other III-V material NWs and is critical for potential hybrid solar cell application.

  9. Some optical and electron microscope comparative studies of excimer laser-assisted and nonassisted molecular-beam epitaxically grown thin GaAs films on Si

    NASA Technical Reports Server (NTRS)

    Lao, Pudong; Tang, Wade C.; Rajkumar, K. C.; Guha, S.; Madhukar, A.; Liu, J. K.; Grunthaner, F. J.

    1990-01-01

    The quality of GaAs thin films grown via MBE under pulsed excimer laser irradiation on Si substrates is examined in both laser-irradiated and nonirradiated areas using Raman scattering, Rayleigh scattering, and by photoluminescence (PL), as a function of temperature, and by TEM. The temperature dependence of the PL and Raman peak positions indicates the presence of compressive stress in the thin GaAs films in both laser-irradiated and nonirradiated areas. This indicates incomplete homogeneous strain relaxation by dislocations at the growth temperature. The residual compressive strain at the growth temperature is large enough such that even with the introduction of tensile strain arising from the difference in thermal expansion coefficients of GaAs and Si, a compressive strain is still present at room temperature for these thin GaAs/Si films.

  10. Heteroepitaxy of single-crystal LaLuO{sub 3} on GaAs(111)A by atomic layer deposition

    SciTech Connect

    Liu Yiqun; Heo, Jaeyeong; Gordon, Roy G.; Xu Min; Ye, Peide D.

    2010-10-18

    We demonstrate that LaLuO{sub 3} films can be grown epitaxially on sulfur-passivated GaAs(111)A substrates by atomic layer deposition (ALD). Transmission electron microscopy and x-ray diffraction analyses reveal that the oxide film exhibits a cubic structure with a lattice mismatch of -3.8% relative to GaAs. The epitaxial layer has a high degree of crystalline perfection and is relaxed. Electrical characterizations performed on this structure show interfaces with a low interface state density of {approx}7x10{sup 11} cm{sup -2} eV{sup -1}. The measured dielectric constant is around 30, which is close to its bulk crystalline value. In contrast, ALD LaLuO{sub 3} is polycrystalline on GaAs(100) and amorphous on Si(111).

  11. S passivation of GaAs and band bending reduction upon atomic layer deposition of HfO2/Al2O3 nanolaminates

    NASA Astrophysics Data System (ADS)

    Aguirre-Tostado, F. S.; Milojevic, M.; Choi, K. J.; Kim, H. C.; Hinkle, C. L.; Vogel, E. M.; Kim, J.; Yang, T.; Xuan, Y.; Ye, P. D.; Wallace, R. M.

    2008-08-01

    A systematic study of the interface engineering and dielectric properties of nanolaminated hafnium aluminate on GaAs is presented. The dielectrics were deposited using atomic layer deposition of alternating cycles of HfO2 and Al2O3 on GaAs substrates. High resolution x-ray photoelectron spectroscopy (XPS) showed differences in space charge amounts at the interface for the two surface treatments [NH4OH or (NH4)2S]. In-situ XPS analysis shows that chemical bonding to oxygen across the nanolaminate film is independent of the interface formation conditions. In addition, the GaAs surface treated with (NH4)2S shows a decreased band bending and slightly thinner films with respect to NH4OH.

  12. Effect of interaction in the Ga-As-O system on the morphology of a GaAs surface during molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Ageev, O. A.; Balakirev, S. V.; Solodovnik, M. S.; Eremenko, M. M.

    2016-05-01

    A thermodynamic analysis of processes of interphase interaction in the Ga-As-O system has been performed and their theoretical laws have been determined, taking into account nonlinear thermal physical properties of the compounds, the oxide film compositions, and modes of molecular-beam epitaxy of GaAs. The processes of interaction of the native oxide of GaAs with the substrate material and also with Ga and As4 from a vapor gaseous phase have been studied experimentally. The experimental results correlate with the results of the thermodynamic analysis. The laws of influence of the removal of the proper oxide on the evolution of the GaAs surface morphology under conditions of the molecular-beam epitaxy have been proposed.

  13. X-Ray Photoelectron Spectroscopy Study of GaAs (001) and InP (001) Cleaning Procedures Prior to Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Contour, J. P.; Massies, J.; Saletes, A.

    1985-07-01

    The effect of chemical etching by H2S04/H202/H20 (5/1/1) mixtures and of mechanopolishing by bromine-methanol diluted solution on GaAs (001) and InP (001) substrates for molecular beam epitaxy (MBE) has been studied using X-ray photoelectron spectroscopy (XPS). The final rinse in running deionized water does not produce any passivating oxide layer on the substrate surface. Oxidation observed on GaAs and InP after these cleaning procedures occurs during substrate handling in air. The H2S04/H202/H20 mixture produces arsenic rich surface layers having an atomic ratio As/Ga of 1.15, whereas the bromine-methanol mechanopolishing leads to an arsenic or phosphorus depleted surface with atomic ratios As/Ga=0.7 and P/In=0.65.

  14. Absorption and photocurrent properties of low-temperature laser deposited thin-film GaAs on glass

    NASA Astrophysics Data System (ADS)

    Erlacher, A.; Ambrico, M.; Perna, G.; Schiavulli, L.; Ligonzo, T.; Jaeger, H.; Ullrich, B.

    2005-06-01

    The absorption edge of thin-film GaAs on glass has been investigated with the standard constant photocurrent method (s-CPM) method and photocurrent analysis. The films have been formed by pulsed-laser deposition (PLD) employing the 532 nm emission of a YAG:Nd laser (6 ns, 10 Hz). Notably, the films have been deposited without heating the substrate. Fitting the measured absorption data with the crystalline density of states and the Urbach tail a very good agreement has been found. X-ray analysis showed that the films are predominately oriented towards the (111) plane. The function used to fit the absorption data describes the photocurrent data at different biases as well. Annealing of the samples up to 400 K did not cause notable changes in the absorption edge and overall photocurrent spectra. The presented results reveal that "cold" PLD, i.e., without substrate heating, forms high-quality oriented photosensitive thin-film GaAs on glass, which hardly alters its optoelectronic features under thermal treatment. Under this prospect and due to the relative ease to form the films, PLD GaAs might be of interest for applications in optoelectronics and photovoltaics.

  15. Growth and characterization of GaAs, AlGaAs and their heterostructures by organometallic vapor phase epitaxy

    SciTech Connect

    Shealy, J.R.

    1983-01-01

    Organometallic Vapor Phase Epitaxy (OMVPE) is a cold wall vapor desposition technique using organometallic and/or hydride sources for the fabrication of a variety of epitaxial compound semiconductor alloys on suitable substrates. The use of the OMVPE process to produce high quality GaAs, AlGaAs, and their heterostructures on GaAs substrates using trimethygalium (TMG), trimethylalumium (TMA), and arsine is described. For GaAs epitaxial films, the unintentional residual donor sand acceptors have been identified using far-infrared photo-ionization data, and low temperature photoluminescence, respectively, and their concentrations have been evaluated using Hall data. For the growth of AlGaAs films, it was observed that poor quality films were obtained due to oxygen contamination of the layer during growth. A series of graded bandgap heterostructures and abrupt quantum well heterostructures were grown over a variety of growth conditions. Composition gradings were controlled over a full range of alloy compositions on distances as small as 500 - 1000 A, and a 40 A quantum well heterostructure was obtained at low growth temperatures (550/sup 0/C). Finally, results are presented on a few devices which incorporate metallurgical junctions and heterojunctions with the GaAs/AlGaAs system. These devices include a microwave vertical FET structure, graded bandgap solar cells, and light emitting diodes.

  16. Role of GaAs surface clearing in plasma deposition of silicon nitride films for encapsulated annealing

    NASA Technical Reports Server (NTRS)

    Valco, G. J.; Kapoor, V. J.

    1985-01-01

    The role of GaAs surface cleaning and plasma reactor cleaning prior to deposition of silicon nitride films for encapsulated annealing has been investigated. X-ray photoelectron spectroscopy was employed to determine the surface characteristics of GaAs treated with HCl, HF, and NH4OH solutions preceded by a degreasing procedure. The HCl clean left the least amount of oxygen on the surface. Fluorine contamination resulting from the CF4 plasma used to clean the reactor was found to be located at the film-substrate interface by Auger electron spectroscopy with argon-ion sputtering. A modified deposition procedure was developed to eliminate the fluorine contamination. Plasma deposition of silicon nitride encapsulating films was found to modify the I-V characteristics of Schottky diodes subsequently formed on GaAs surface. The reverse current of the diodes was slightly reduced. Substrates implanted with Si at 100 keV and a dose of 5 x 10 to the 12th/sq cm showed a peak electron concentration of 1.7 x 10 to the 17th/cu cm at a depth of 0.1-micron with 60 percent activation after encapsulation and annealing at 800 C for 7 min.

  17. Heteroepitaxial InP, and ultrathin, directly glassed, GaAs 3-5 solar cells

    NASA Technical Reports Server (NTRS)

    Hardingham, C. M.; Cross, T. A.

    1993-01-01

    The commercial application of Indium Phosphide solar cells in practical space missions is crucially dependent upon achieving a major cost reduction which could be offered by heteroepitaxy on cheaper, more rugged substrates. Furthermore, significant mass reduction, compatibility with mechanically stacked multijunction cells, and elimination of the current loss through glue discoloration, is possible in III-V solar cells by the development of ultrathin, directly glassed cells. The progress of a UK collaborative program to develop high efficiency, homojunction InP solar cells, grown by MOCVD on Si substrates, is described. Results of homoepitaxial cells (is greater than 17 percent 1 Sun AM0) are presented, together with progress in achieving low dislocation density heteroepitaxy. Also, progress in a UK program to develop ultrathin directly-glassed GaAs cells is described. Ultrathin (5 micron) GaAs cells, with 1 Sun AM0 efficiencies up to 19.1 percent, are presented, together with progress in achieving a direct (adhesive-less) bond between the cell and coverglass. Consequential development to, for example, cell grids, are also discussed.

  18. Selective Area Growth of GaAs on Si Patterned Using Nanoimprint Lithography

    SciTech Connect

    Warren, Emily L.; Makoutz, Emily A.; Horowitz, Kelsey A. W.; Dameron, Arrelaine; Norman, Andrew G.; Stradins, Paul; Zimmerman, Jeramy D.; Tamboli, Adele C.

    2016-11-21

    Heteroepitaxial selective area growth (SAG) of GaAs on patterned Si substrates is a potential low-cost approach to integrate III-V and Si materials for tandem or multijunction solar cells. The use of nanoscale openings in a dielectric material can minimize nucleation-related defects and allow thinner buffer layers to be used to accommodate lattice mismatch between Si and an epitaxial III-V layer. For photovoltaic applications, the cost of patterning and growth, as well as the impact on the performance of the Si bottom cell must be considered. We present preliminary results on the use of soft nanoimprint lithography (SNIL) to create patterned nucleation templates for the heteroepitaxial SAG of GaAs on Si. We demonstrate that SNIL patterning of passivating layers on the Si substrate improves measured minority carrier properties relative to unprotected Si. Cost modeling of the SNIL process shows that adding a patterning step only adds a minor contribution to the overall cost of a tandem III-V/Si solar cell, and can enable significant savings if it enables thinner buffer layers.

  19. Heteroepitaxial growth and characterization of BiFeO3 thin films on GaAs

    NASA Astrophysics Data System (ADS)

    Shafiqur Rahman, Md; Ghose, Susmita; Gatabi, Javad R.; Rojas-Ramirez, Juan S.; Pandey, R. K.; Droopad, Ravi

    2016-10-01

    The paper deals with the integration of well-known bismuth ferrite (BiFeO3) multiferroic oxide with GaAs semiconductor. First 5 nm ultrathin SrTiO3 films were grown on GaAs (001) substrates as an intermediate buffer layer by molecular beam epitaxy. Then, room temperature multiferroic BiFeO3 (BFO) thin films were deposited by pulsed laser deposition. X-ray diffraction measurement showed high quality epitaxial BFO films with pure (00l) orientation. The dielectric loss has been effectively suppressed and the saturated polarization-voltage (P-V) hysteresis loops were obtained. The ferroelectric domains switching was affirmed by piezo-response force microscopic studies. A large remnant polarization P r (˜80 μC cm-2) combined with the enhanced magnetization (72 emu cm-3) at 300 K was achieved for the optimal growth conditions. The optical properties were measured using the ellipsometry technique for the BFO thin films. The thickness and optical constants of the BFO films were obtained by taking into consideration the dielectric parameters as described by the Tauc-Lorentz model. Finally, direct bandgap was estimated at 2.70 eV which is highly comparable to BFO films grown on different substrates.

  20. Growth of GaAs in a rotating disk MOCVD reactor

    NASA Astrophysics Data System (ADS)

    Thompson, A. G.; Sundaram, V. S.; Girard, G. R.; Fraas, L. M.

    1989-04-01

    We report the growth of GaAs homoepitaxial films from trimethylgallium and arsine in a multi-wafer rotating disk reactor. In this configuration the substrates are mounted on a disk that is spun at high speed (> 1000 rpm) in a sub-atmospheric (<100 Torr) environment. The spinning disk pumps the reactant and carrier gases radially outwards; under optimum conditions, convective recirculating cells are avoided, thus facilitating rapid transitions in doping and composition in the grown layers. In this paper we look at the morphology, growth rate and electrical properties of the GaAs epitaxial layers as a function of substrate temperature, V/III ratio, dopant type, spin speed and hydrogen carrier flow conditions. These results are compared with those obtained in conventional MOCVD reactors. Silicon and tellurium doping over a wide range of carrier concentrations has been achieved with excellent mobilities and uniformity across the wafers. Preliminary results on MESFET's fabricated from n +/n/buffer structures show good device characteristics.

  1. Theoretical consideration of the growth kinetics for GaAs and GaSb

    NASA Astrophysics Data System (ADS)

    Kaneko, T.; Asahi, H.; Gonda, S.

    1992-05-01

    An extended MOMBE growth kinetics model is proposed, based on the Robertson model, to explain both the GaAs growth rate variation and modulated beam mass spectroscopy data reported by Martin and Whitehouse. In this model, we assume that (1) MEGa molecules react with ethyl-radicals to form DEGa, (2) excessive group-V molecules on the surface suppress the decomposition of DEGa and enhance the desorption of DEGa, (3) reaction of DEGa with ethyl-radicals to form TEGa is negligible, and (4) effective surface coverage of excessive group-V atoms during growth is determined by the double layer adsorption model including desorption parameters for group-V molecules. The first assumption (1) is found to be a dominant process to explain the behaviour of DEGa desorption at high temperatures. This model can reproduce the dependences of both growth rate and desorbing rate of Ga alkyls on substrate temperature during GaAs MOMBE growth. The use of Sb instead of As produces a significant change in the growth rate variation with substrate temperature and group-V flux for the growth of GaSb, in spite of the use of the same TEGa flow rate. This can be rationalized by the difference in the desorption parameters for Sb and As.

  2. Growth mechanisms of GaAs nanowires by gas source molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Plante, M. C.; LaPierre, R. R.

    2006-01-01

    GaAs nanowires were grown on GaAs (1 1 1)B substrates in a gas source molecular beam epitaxy system, using self-assembled Au particles with diameters between 20 and 800 nm as catalytic agents. The growth kinetics of the wires was investigated for substrate temperatures between 500 and 600 °C, and V/III flux ratios of 1.5 and 2.3. The broad distribution of Au particles enabled the first observation of two distinct growth regimes related to the size of the catalyst. The origins of this transition are discussed in terms of the various mass transport mechanisms that drive the wire growth. Diffusion of the growth species on the 2-D surface and up the wire sidewalls dominates for catalyst diameters smaller than ˜130 nm on average, while direct impingement on the catalyst followed by bulk diffusion through the Au particle appears to sustain the wire growth for larger catalyst diameters. A change in wire sidewall facets, indicating a probable transition in the crystal structure, is found to be primarily dependent on the V/III flux ratio.

  3. Ga crystallization dynamics during annealing of self-assisted GaAs nanowires.

    PubMed

    Scarpellini, David; Fedorov, Alexey; Somaschini, Claudio; Frigeri, Cesare; Bollani, Monica; Bietti, Sergio; Nöetzel, Richard; Sanguinetti, Stefano

    2017-01-27

    In As atmosphere, we analyzed the crystallization dynamics during post-growth annealing of Ga droplets residing at the top of self-assisted GaAs nanowires grown by molecular beam epitaxy. The final crystallization steps, fundamental to determining the top facet nanowire morphology, proceeded via a balance of Ga crystallization via vapor-liquid-solid and layer-by-layer growth around the droplet, promoted by Ga diffusion out of the droplet perimeter, As desorption, and diffusion dynamics. By controlling As flux and substrate temperature the transformation of Ga droplets into nanowire segments with a top surface flat and parallel to the substrate was achieved, thus opening the possibility to realize atomically sharp vertical heterostructures in III-As self-assisted nanowires through group III exchange.

  4. Homojunction GaAs solar cells grown by close space vapor transport

    SciTech Connect

    Boucher, Jason W.; Ritenour, Andrew J.; Greenaway, Ann L.; Aloni, Shaul; Boettcher, Shannon W.

    2014-06-08

    We report on the first pn junction solar cells grown by homoepitaxy of GaAs using close space vapor transport (CSVT). Cells were grown both on commercial wafer substrates and on a CSVT absorber film, and had efficiencies reaching 8.1%, open circuit voltages reaching 909 mV, and internal quantum efficiency of 90%. The performance of these cells is partly limited by the electron diffusion lengths in the wafer substrates, as evidenced by the improved peak internal quantum efficiency in devices fabricated on a CSVT absorber film. Unoptimized highly-doped n-type emitters also limit the photocurrent, indicating that thinner emitters with reduced doping, and ultimately wider band gap window or surface passivation layers, are required to increase the efficiency.

  5. Hole Injection from Schottky Gate in Ion-Implanted GaAs Integrated Circuits

    NASA Astrophysics Data System (ADS)

    Shulman, Dima D.; Young, Lawrence

    1992-05-01

    Measurements of currents for a GaAs metal-semiconductor field-effect transistor (MESFET) when a negative bias was applied to a nearby ohmic contact (sidegate) showed that significant hole injection from the gate occurs for large negative sidegate voltages. This is in agreement with a proposed model, in which the presence of an inversion layer under the Schottky gate due to the pinning of the Fermi level at the channel surface causes hole injection into the channel when the gate is positively biased with respect to the sidegate. Upon increasing negative sidegate voltage the substrate-channel depletion region is expanded, and consequently, the neutral region of the channel is shrunk. This results in more holes being injected into the substrate from the gate.

  6. Ga crystallization dynamics during annealing of self-assisted GaAs nanowires

    NASA Astrophysics Data System (ADS)

    Scarpellini, David; Fedorov, Alexey; Somaschini, Claudio; Frigeri, Cesare; Bollani, Monica; Bietti, Sergio; Nöetzel, Richard; Sanguinetti, Stefano

    2017-01-01

    In As atmosphere, we analyzed the crystallization dynamics during post-growth annealing of Ga droplets residing at the top of self-assisted GaAs nanowires grown by molecular beam epitaxy. The final crystallization steps, fundamental to determining the top facet nanowire morphology, proceeded via a balance of Ga crystallization via vapor-liquid-solid and layer-by-layer growth around the droplet, promoted by Ga diffusion out of the droplet perimeter, As desorption, and diffusion dynamics. By controlling As flux and substrate temperature the transformation of Ga droplets into nanowire segments with a top surface flat and parallel to the substrate was achieved, thus opening the possibility to realize atomically sharp vertical heterostructures in III-As self-assisted nanowires through group III exchange.

  7. Surface-morphology evolution during growth-interrupt in situ annealing on GaAs(110) epitaxial layers

    NASA Astrophysics Data System (ADS)

    Yoshita, Masahiro; Akiyama, Hidefumi; Pfeiffer, Loren N.; West, Ken W.

    2007-05-01

    Temperature and surface-coverage dependence of the evolution of surface morphology during growth-interrupt in situ annealing on GaAs epitaxial layers grown on the singular (110) cleaved edges by the cleaved-edge overgrowth method with molecular-beam epitaxy has been studied by means of atomic force microscopy. Annealing at substrate temperatures below 630 °C produced atomically flat surfaces with characteristic islands or pits, depending on the surface coverage. The atomic flatness of the surfaces is enhanced with increasing annealing temperature owing to the enhanced adatom migration. At a higher annealing temperature of about 650 °C, however, 2-monolayer-deep triangular pits with well-defined step edges due to Ga-atom desorption from the crystal appeared in the atomically flat surface. The growth-interrupt annealing temperature optimal for the formation of atomically flat GaAs(110) surfaces is therefore about 630 °C.

  8. Molecular-dynamics-based model for the formation of arsenic interstitials during low-temperature growth of GaAs

    SciTech Connect

    Kunsagi-Mate, Sandor; Vegh, Eszter; Schuer, Carsten; Marek, Tamas; Strunk, Horst P.

    2005-08-15

    The formation of interstitial arsenic defects in low-temperature grown (LT) GaAs layers is examined by temperature dependent, direct trajectory molecular dynamics calculations at semiempirical level. In agreement with earlier ab initio calculations, a metastable interstitial position of an As{sub 2} molecule just below the As-rich c(4x4){beta} reconstructed GaAs(001) surface (characterized by As-As dimers) is obtained. We model this conformation as a precursor state for excess interstitial As in the LT-GaAs layers. Furthermore, a migration layer was found above the surface, where As{sub 2} molecules can move practically freely. We identify the hopping of As{sub 2} molecules from the interstitial position into this migration layer as the process that controls the experimentally observed dependencies of the excess arsenic content on substrate temperature and arsenic overpressure during growth of LT-GaAs layers.

  9. Deep level defects in n-type GaAsBi and GaAs grown at low temperatures

    SciTech Connect

    Mooney, P. M.; Watkins, K. P.; Jiang, Zenan; Basile, A. F.; Lewis, R. B.; Bahrami-Yekta, V.; Masnadi-Shirazi, M.; Beaton, D. A.; Tiedje, T.

    2013-04-07

    Deep level defects in n-type GaAs{sub 1-x}Bi{sub x} having 0 < x < 0.012 and GaAs grown by molecular beam epitaxy (MBE) at substrate temperatures between 300 and 400 Degree-Sign C have been investigated by Deep Level Capacitance Spectroscopy. Incorporating Bi suppresses the formation of an electron trap with activation energy 0.40 eV, thus reducing the total trap concentration in dilute GaAsBi layers by more than a factor of 20 compared to GaAs grown under the same conditions. We find that the dominant traps in dilute GaAsBi layers are defect complexes involving As{sub Ga}, as expected for MBE growth at these temperatures.

  10. GaAs Surface Passivation for Device Applications.

    DTIC Science & Technology

    1982-07-01

    Protective Layers AlAs GaAs InAs As III-V AlSb GaSb InSb Sb AIP GaP InP P ZnS CdS HgS S II-Vi ZnSe CdSe HgSe Se ZnTe CdTe HgTe Te Ternaries and Quaternaries...D 4- 4- C 0331 IUMe ’xO. C .- 0. Z 00 919 . 23 3. Bulk GaAs Samples Several Bridgman grown bulk GaAs (100) samples were utilized for MIS and XPS

  11. GaAs core--shell nanowires for photovoltaic applications.

    PubMed

    Czaban, Josef A; Thompson, David A; LaPierre, Ray R

    2009-01-01

    We report the use of Te as an n-type dopant in GaAs core-shell p-n junction nanowires for use in photovoltaic devices. Te produced significant change in the morphology of GaAs nanowires grown by the vapor-liquid-solid process in a molecular beam epitaxy system. The increase in radial growth of nanowires due to the surfactant effect of Te had a significant impact on the operating characteristics of photovoltaic devices. A decrease in solar cell efficiency occurred when the Te-doped GaAs growth duration was increased.

  12. Localized corrosion of GaAs surfaces and formation of porous GaAs

    SciTech Connect

    Schmuki, P.; Vitus, C.M.; Isaacs, H.S.; Fraser, J.; Graham, M.J.

    1995-12-01

    The present work deals with pitting corrosion of p- and n-type GaAs (100). Pit growth can be electrochemically initiated on both conduction types in chloride-containing solutions and leads after extended periods of time to the formation of a porous GaAs structure. In the case of p-type material, localized corrosion is only observed if a passivating film is present on the surface, otherwise -- e.g. in acidic solutions -- the material suffers from a uniform attack (electropolishing) which is independent of the anion present. In contrast, pitting corrosion of n-type material can be triggered independent of the presence of an oxide film. This is explained in terms of the different current limiting factor for the differently doped materials (oxide film in the case of the p- and a space charge layer in the case of the n-GaAs). The porous structure was characterized by SEM, EDX and AES, and consists mainly of GaAs. From scratch experiments it is clear that the pit initiation process is strongly influenced by surface defects. For n-type material, AFM investigations show that light induced roughening of the order of several hundred nm occurs under non-passivating conditions. This nm- scale roughening however does not affect the pitting process.

  13. Adding GaAs Monolayers to InAs Quantum-Dot Lasers on (001) InP

    NASA Technical Reports Server (NTRS)

    Qiu, Yueming; Chacon, Rebecca; Uhl, David; Yang, Rui

    2005-01-01

    In a modification of the basic configuration of InAs quantum-dot semiconductor lasers on (001)lnP substrate, a thin layer (typically 1 to 2 monolayer thick) of GaAs is incorporated into the active region. This modification enhances laser performance: In particular, whereas it has been necessary to cool the unmodified devices to temperatures of about 80 K in order to obtain lasing at long wavelengths, the modified devices can lase at wavelengths of about 1.7 microns or more near room temperature. InAs quantum dots self-assemble, as a consequence of the lattice mismatch, during epitaxial deposition of InAs on ln0.53Ga0.47As/lnP. In the unmodified devices, the quantum dots as thus formed are typically nonuniform in size. Strainenergy relaxation in very large quantum dots can lead to poor laser performance, especially at wavelengths near 2 microns, for which large quantum dots are needed. In the modified devices, the thin layers of GaAs added to the active regions constitute potential-energy barriers that electrons can only penetrate by quantum tunneling and thus reduce the hot carrier effects. Also, the insertion of thin GaAs layer is shown to reduce the degree of nonuniformity of sizes of the quantum dots. In the fabrication of a batch of modified InAs quantum-dot lasers, the thin additional layer of GaAs is deposited as an interfacial layer in an InGaAs quantum well on (001) InP substrate. The device as described thus far is sandwiched between InGaAsPy waveguide layers, then further sandwiched between InP cladding layers, then further sandwiched between heavily Zn-doped (p-type) InGaAs contact layer.

  14. Growth and characterization of epitaxial aluminum layers on gallium-arsenide substrates for superconducting quantum bits

    NASA Astrophysics Data System (ADS)

    Tournet, J.; Gosselink, D.; Miao, G.-X.; Jaikissoon, M.; Langenberg, D.; McConkey, T. G.; Mariantoni, M.; Wasilewski, Z. R.

    2016-06-01

    The quest for a universal quantum computer has renewed interest in the growth of superconducting materials on semiconductor substrates. High-quality superconducting thin films will make it possible to improve the coherence time of superconducting quantum bits (qubits), i.e., to extend the time a qubit can store the amplitude and phase of a quantum state. The electrical losses in superconducting qubits highly depend on the quality of the metal layers the qubits are made from. Here, we report on the epitaxy of single-crystal Al (011) layers on GaAs (001) substrates. Layers with 110 nm thickness were deposited by means of molecular beam epitaxy at low temperature and monitored by in situ reflection high-energy electron diffraction performed simultaneously at four azimuths. The single-crystal nature of the layers was confirmed by ex situ high-resolution x-ray diffraction. Differential interference contrast and atomic force microscopy analysis of the sample’s surface revealed a featureless surface with root mean square roughness of 0.55 nm. A detailed in situ study allowed us to gain insight into the nucleation mechanisms of Al layers on GaAs, highlighting the importance of GaAs surface reconstruction in determining the final Al layer crystallographic orientation and quality. A highly uniform and stable GaAs (001)-(2× 4) reconstruction reproducibly led to a pure Al (011) phase, while an arsenic-rich GaAs (001)-(4× 4) reconstruction yielded polycrystalline films with an Al (111) dominant orientation. The near-atomic smoothness and single-crystal character of Al films on GaAs, in combination with the ability to trench GaAs substrates, could set a new standard for the fabrication of superconducting qubits.

  15. Development of GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Mcnally, P. J.

    1972-01-01

    Calculations of GaAs solar cell output parameters were refined and a computer model was developed for parameter optimization. The results were analyzed to determine the material characteristics required for a high efficiency solar cell. Calculated efficiencies for a P/N cell polarity are higher than an N/P cell. Both cell polarities show efficiency to have a larger dependence on short circuit current than an open circuit voltage under nearly all conditions considered. The tolerances and requirements of a cell fabrication process are more critical for an N/P type than for a P/N type cell. Several solar cell fabrication considerations relative to junction formation using ion implantation are also discussed.

  16. Lateral solid-phase epitaxy of oxide thin films on glass substrate seeded with oxide nanosheets.

    PubMed

    Taira, Kenji; Hirose, Yasushi; Nakao, Shoichiro; Yamada, Naoomi; Kogure, Toshihiro; Shibata, Tatsuo; Sasaki, Takayoshi; Hasegawa, Tetsuya

    2014-06-24

    We developed a technique to fabricate oxide thin films with uniaxially controlled crystallographic orientation and lateral size of more than micrometers on amorphous substrates. This technique is lateral solid-phase epitaxy, where epitaxial crystallization of amorphous precursor is seeded with ultrathin oxide nanosheets sparsely (≈10% coverage) deposited on the substrate. Transparent conducting Nb-doped anatase TiO2 thin films were fabricated on glass substrates by this technique. Perfect (001) orientation and large grains with lateral sizes up to 10 μm were confirmed by X-ray diffraction, atomic force microscopy, and electron beam backscattering diffraction measurements. As a consequence of these features, the obtained film exhibited excellent electrical transport properties comparable to those of epitaxial thin films on single-crystalline substrates. This technique is a versatile method for fabricating high-quality oxide thin films other than anatase TiO2 and would increase the possible applications of oxide-based thin film devices.

  17. GaAs monolithic RF modules for SARSAT distress beacons

    NASA Technical Reports Server (NTRS)

    Cauley, Michael A.

    1991-01-01

    Monolithic GaAs UHF components for use in SARSAT Emergency Distress beacons are under development by Microwave Monolithics, Inc., Simi Valley, CA. The components include a bi-phase modulator, driver amplifier, and a 5 watt power amplifier.

  18. More About V-Grooved GaAs Solar Cells

    NASA Technical Reports Server (NTRS)

    Bailey, S. G.; Wilt, D. M.; Landis, G. A.; Thomas, R. D.; Fatemi, N.

    1993-01-01

    NASA technical memorandum presents additional information about experimental devices described in "V-Grooved GaAs Solar Cell" (LEW-14954). Experimental V-groove cells exhibited improved optical coupling and greater short-circuit current.

  19. Interfacial Ga-As suboxide: Structural and electronic properties

    SciTech Connect

    Colleoni, Davide Pasquarello, Alfredo

    2015-07-20

    The structural and electronic properties of Ga-As suboxide representative of the transition region at the GaAs/oxide interface are studied through density functional calculations. Two amorphous models generated by quenches from the melt are taken under consideration. The absence of As–O bonds indicates that the structure is a mixture of GaAs and Ga-oxide, in accordance with photoemission experiments. The band edges of the models are found to be closely aligned to those of GaAs. The simulation of charging and discharging processes leads to the identification of an As-related defect with an energy level at ∼0.7 eV above the GaAs valence band maximum, in good agreement with the experimental density of interface states.

  20. Enhanced annealing of GaAs solar cell radiation damage

    NASA Technical Reports Server (NTRS)

    Loo, R.; Knechtli, R. C.; Kamath, G. S.

    1981-01-01

    Solar cells are degraded by radiation damage in space. Investigations have been conducted concerning possibilities for annealing this radiation damage in GaAs solar cells, taking into account the conditions favoring such annealing. It has been found that continuous annealing as well as the combination of injection annealing with thermal annealing can lead to recovery from radiation damage under particularly favorable conditions in GaAs solar cells. The damage caused by both electrons and protons in GaAs solar cells can be substantially reduced by annealing at temperatures as low as 150 C, under appropriate conditions. This possibility makes the GaAs solar cells especially attractive for long space missions, or for missions in severe radiation environments. Attention is given to results concerning periodic thermal annealing, continuous annealing, and injection annealing combined with thermal annealing.

  1. GaAs Films Prepared by RF-Magnetron Sputtering

    SciTech Connect

    L.H. Ouyang; D.L. Rode; T. Zulkifli; B. Abraham-Shrauner; N. Lewis; M.R. Freeman

    2001-08-01

    The authors reported on the optical absorption, adhesion, and microstructure of RF-magnetron sputtered films of hydrogenated amorphous and microcrystalline GaAs films for the 1 to 25 {micro}m infrared wavelength rate. Sputtering parameters which were varied include sputtering power, temperature and pressure, and hydrogen sputtering-gas concentration. TEM results show a sharp transition from purely amorphous GaAs to a mixture of microcrystalline GaAs in an amorphous matrix at 34 {+-} 2 C. By optimizing the sputtering parameters, the optical absorption coefficient can be decreased below 100 cm{sup -1} for wavelengths greater than about 1.25 {micro}m. These results represent the lowest reported values of optical absorption for sputtered films of GaAs directly measured by spectrophotometry for the near-infrared wavelength region.

  2. Characteristics of GaAs with inverted thermal conversion

    NASA Technical Reports Server (NTRS)

    Kang, C. H.; Lagowski, J.; Gatos, H. C.

    1987-01-01

    GaAs crystals exhibiting inverted thermal conversion (ITC) of resistivity were investigated in conjunction with standard semiinsulating (SI) GaAs regarding characteristics important in device processing. It was established that dislocation density and Si implant activation are unaffected by transformation to the ITC state. However, in ITC GaAs the controlled increase of the EL2 (native midgap donor) concentration during annealing makes it possible to attain resistivities one order of magnitude greater (e.g., about 10 to the 9th ohm cm of 300 K) than those attained in standard SI GaAs (e.g., 10 to the 7th-10 to the 8th ohm cm).

  3. Crystal growth of device quality GaAs in space

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Lagowski, J.

    1983-01-01

    GaAs device technology has recently reached a new phase of rapid advancement, made possible by the improvement of the quality of GaAs bulk crystals. At the same time, the transition to the next generation of GaAs integrated circuits and optoelectronic systems for commercial and government applications hinges on new quantum steps in three interrelated areas: crystal growth, device processing and device-related properties and phenomena. Special emphasis is placed on the establishment of quantitative relationships among crystal growth parameters-material properties-electronic properties and device applications. The overall program combines studies of crystal growth on novel approaches to engineering of semiconductor material (i.e., GaAs and related compounds); investigation and correlation of materials properties and electronic characteristics on a macro- and microscale; and investigation of electronic properties and phenomena controlling device applications and device performance.

  4. Crystal Growth of Device Quality Gaas in Space

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.

    1985-01-01

    The GaAs research evolves about these key thrust areas. The overall program combines: (1) studies of crystal growth on novel approaches to engineering of semiconductor material (i.e., GaAs and related compounds); (2) investigation and correlation of materials properties and electronic characteristics on a macro- and microscale; and (3) investigation of electronic properties and phenomena controlling device applications and device performance. This effort is aimed at the essential ground-based program which would insure successful experimentation with and eventually processing of GaAs in near zero gravity environment. It is believed that this program addresses in a unique way materials engineering aspects which bear directly on the future exploitation of the potential of GaAs and related materials in device and systems applications.

  5. Preparation of GaAs photocathodes at low temperature

    SciTech Connect

    Mulhollan, G.; Clendenin, J.; Tang, H.

    1996-10-01

    The preparation of an atomically clean surface is a necessary step in the formation of negative electron affinity (NEA) GaAs. Traditional methods to this end include cleaving, heat cleaning and epitaxial growth. Cleaving has the advantage of yielding a fresh surface after each cleave, but is limited to small areas and is not suitable for specialized structures. Heat cleaning is both simple and highly successful, so it is used as a preparation method in virtually all laboratories employing a NEA source on a regular basis. Due to its high cost and complexity, epitaxial growth of GaAs with subsequent in vacuo transfer is not a practical solution for most end users of GaAs as a NEA electron source. While simple, the heating cleaning process has a number of disadvantages. Here, a variety of cleaning techniques related to preparation of an atomically clean GaAs surface without heating to 600 C are discussed and evaluated.

  6. Spatial Modulation Of Light In GaAs

    NASA Technical Reports Server (NTRS)

    Cheng, Li-Jen; Gheen, Gregory; Partovi, Afshin

    1989-01-01

    Spatial modulation of light in gallium arsenide demonstrated by transferring image from one of two coherent, crossing beams of light to other one. Technique relies on cross-polarization beam coupling, product of photorefractive effect in GaAs crystal.

  7. Deep level transient spectroscopy study of electron traps in n-type GaAs after pulsed electron beam irradiation

    SciTech Connect

    Marrakchi, G.; Barbier, D.; Guillot, G.; Nouailhat, A.

    1987-10-01

    Electrical and deep level transient spectroscopy measurements on Schottky barriers were performed in order to characterize electrically active defects in n-type GaAs (Bridgman substrates or liquid-phase epitaxial layers) after pulsed electron beam annealing. Both surface damage and bulk defects were observed in the Bridgman substrates depending on the pulse energy density. No electron traps were detected in the liquid-phase epitaxial layers before and after annealing for an energy density of 0.4 J/cm/sup 2/. The existence of an interfacial insulating layer at the metal-semiconductor interface, associated with As out-diffusion during the pulsed electron irradiation, was revealed by the abnormally high values of the Schottky barrier diffusion potential. Moreover, two new electron traps with activation energy of 0.35 and 0.43 eV, called EP1 and EP2, were introduced in the Bridgman substrates after pulsed electron beam annealing. The presence of these traps, related to the As evaporation, was tentatively attributed to the decrease of the EL2 electron trap signal after 0.4-J/cm/sup 2/ annealing. It is proposed that these new defects states are due to the decomposition of the As/sub Ga/-As/sub i/ complex recently considered as the most probable defect configuration for the dominant EL2 electron trap usually detected in as-grown GaAs substrates.

  8. Air Force development of thin GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Masloski, K.

    1982-01-01

    The advantages of gallium arsenide (GaAs) over silicon (Si) type solar cells are well documented. However, two major disadvantages are weight and cost. Several ideas have recently surfaced that, if successful, will diminish these disadvantages. The CLEFT peeled film technique and the galicon cell are two of the more promising approaches. Low weight, low cost, high efficiency GaAs solar cell research is summarized.

  9. Preparation of Large-Diameter GaAs Crystals.

    DTIC Science & Technology

    1981-09-18

    implantation as a reliable, cost-effective fabrication technology for high-performance GaAs MESFET and integrated circuits . To address these problems, the...have been prepared by in-situ synthesis and pulled from pyrolytic boron nitride (PBN) crucibles, and improved FET channels by direct ion-implantation of...viii SUMMARY Significant progress has been made toward developing large- diai.3ter, semi-insulating GaAs crystals of improved quality by LEC growth for

  10. Characterisation of semi-insulating GaAs

    NASA Technical Reports Server (NTRS)

    Walukiewicz, W.; Pawlowicz, L.; Lagowski, J.; Gatos, H. C.

    1982-01-01

    Hole and electron mobilities as functions of temperature and ionised impurity concentration are calculated for GaAs. It is shown that these calculations, when used to analyse electrical properties of semi-insulating GaAs, enable an assessment of the Fermi energy position and ionised impurity concentration to be made. In contrast to previous work, the analysis does not require any phenomenological assumptions.

  11. Modulating the morphology and electrical properties of GaAs nanowires via catalyst stabilization by oxygen.

    PubMed

    Han, Ning; Yang, Zaixing; Wang, Fengyun; Yip, SenPo; Dong, Guofa; Liang, Xiaoguang; Hung, TakFu; Chen, Yunfa; Ho, Johnny C

    2015-03-11

    Nowadays, III-V compound semiconductor nanowires (NWs) have attracted extensive research interest because of their high carrier mobility favorable for next-generation electronics. However, it is still a great challenge for the large-scale synthesis of III-V NWs with well-controlled and uniform morphology as well as reliable electrical properties, especially on the low-cost noncrystalline substrates for practical utilization. In this study, high-density GaAs NWs with lengths >10 μm and uniform diameter distribution (relative standard deviation σ ∼ 20%) have been successfully prepared by annealing the Au catalyst films (4-12 nm) in air right before GaAs NW growth, which is in distinct contrast to the ones of 2-3 μm length and widely distributed of σ ∼ 20-60% of the conventional NWs grown by the H2-annealed film. This air-annealing process is found to stabilize the Au nanoparticle seeds and to minimize Ostwald ripening during NW growth. Importantly, the obtained GaAs NWs exhibit uniform p-type conductivity when fabricated into NW-arrayed thin-film field-effect transistors (FETs). Moreover, they can be integrated with an n-type InP NW FET into effective complementary metal oxide semiconductor inverters, capable of working at low voltages of 0.5-1.5 V. All of these results explicitly demonstrate the promise of these NW morphology and electrical property controls through the catalyst engineering for next-generation electronics.

  12. Arsenic antisite and oxygen incorporation trends in GaAs grown by water-mediated close-spaced vapor transport

    NASA Astrophysics Data System (ADS)

    Boucher, Jason; Boettcher, Shannon

    2017-03-01

    Close-spaced vapor transport (CSVT) provides a plausible path to lower the costs of GaAs deposition as it uses only solid precursors and provides precursor utilization in principle approaching 100%. However, the use of H2O as a transport agent causes O to be incorporated in CSVT films, and O has been associated with a number of electrically active defect centers in GaAs, which decrease minority carrier lifetimes. Using deep-level transient spectroscopy, we study the effect of H2O concentration and substrate temperature on electron trap concentrations in n-type GaAs. We find that the most-prominent O-related center (ELO) typically has a much higher concentration than the center usually associated with As antisites (EL2), but that overall defect concentrations can be as low as those in films deposited by common vapor phase techniques. The trends with increasing H2O concentration suggest that ELO is most likely a defect complex with two As antisites. We also consider the optimal conditions for achieving high growth rates and low defect concentrations using CSVT. The results of this study have implications for the future CSVT growth using halide transport agents, where the ELO defect would be eliminated but EL2 might have a higher concentration.

  13. Growth and Photovoltaic Properties of High-Quality GaAs Nanowires Prepared by the Two-Source CVD Method

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Yang, Zaixing; Wu, Xiaofeng; Han, Ning; Liu, Hanyu; Wang, Shuobo; Li, Jun; Tse, WaiMan; Yip, SenPo; Chen, Yunfa; Ho, Johnny C.

    2016-04-01

    Growing high-quality and low-cost GaAs nanowires (NWs) as well as fabricating high-performance NW solar cells by facile means is an important development towards the cost-effective next-generation photovoltaics. In this work, highly crystalline, dense, and long GaAs NWs are successfully synthesized using a two-source method on non-crystalline SiO2 substrates by a simple solid-source chemical vapor deposition method. The high V/III ratio and precursor concentration enabled by this two-source configuration can significantly benefit the NW growth and suppress the crystal defect formation as compared with the conventional one-source system. Since less NW crystal defects would contribute fewer electrons being trapped by the surface oxides, the p-type conductivity is then greatly enhanced as revealed by the electrical characterization of fabricated NW devices. Furthermore, the individual single NW and high-density NW parallel arrays achieved by contact printing can be effectively fabricated into Schottky barrier solar cells simply by employing asymmetric Ni-Al contacts, along with an open circuit voltage of ~0.3 V. All these results indicate the technological promise of these high-quality two-source grown GaAs NWs, especially for the realization of facile Schottky solar cells utilizing the asymmetric Ni-Al contact.

  14. Growth and Photovoltaic Properties of High-Quality GaAs Nanowires Prepared by the Two-Source CVD Method.

    PubMed

    Wang, Ying; Yang, Zaixing; Wu, Xiaofeng; Han, Ning; Liu, Hanyu; Wang, Shuobo; Li, Jun; Tse, WaiMan; Yip, SenPo; Chen, Yunfa; Ho, Johnny C

    2016-12-01

    Growing high-quality and low-cost GaAs nanowires (NWs) as well as fabricating high-performance NW solar cells by facile means is an important development towards the cost-effective next-generation photovoltaics. In this work, highly crystalline, dense, and long GaAs NWs are successfully synthesized using a two-source method on non-crystalline SiO2 substrates by a simple solid-source chemical vapor deposition method. The high V/III ratio and precursor concentration enabled by this two-source configuration can significantly benefit the NW growth and suppress the crystal defect formation as compared with the conventional one-source system. Since less NW crystal defects would contribute fewer electrons being trapped by the surface oxides, the p-type conductivity is then greatly enhanced as revealed by the electrical characterization of fabricated NW devices. Furthermore, the individual single NW and high-density NW parallel arrays achieved by contact printing can be effectively fabricated into Schottky barrier solar cells simply by employing asymmetric Ni-Al contacts, along with an open circuit voltage of ~0.3 V. All these results indicate the technological promise of these high-quality two-source grown GaAs NWs, especially for the realization of facile Schottky solar cells utilizing the asymmetric Ni-Al contact.

  15. Tandem Solar Cells Using GaAs Nanowires on Si: Design, Fabrication, and Observation of Voltage Addition.

    PubMed

    Yao, Maoqing; Cong, Sen; Arab, Shermin; Huang, Ningfeng; Povinelli, Michelle L; Cronin, Stephen B; Dapkus, P Daniel; Zhou, Chongwu

    2015-11-11

    Multijunction solar cells provide us a viable approach to achieve efficiencies higher than the Shockley-Queisser limit. Due to their unique optical, electrical, and crystallographic features, semiconductor nanowires are good candidates to achieve monolithic integration of solar cell materials that are not lattice-matched. Here, we report the first realization of nanowire-on-Si tandem cells with the observation of voltage addition of the GaAs nanowire top cell and the Si bottom cell with an open circuit voltage of 0.956 V and an efficiency of 11.4%. Our simulation showed that the current-matching condition plays an important role in the overall efficiency. Furthermore, we characterized GaAs nanowire arrays grown on lattice-mismatched Si substrates and estimated the carrier density using photoluminescence. A low-resistance connecting junction was obtained using n(+)-GaAs/p(+)-Si heterojunction. Finally, we demonstrated tandem solar cells based on top GaAs nanowire array solar cells grown on bottom planar Si solar cells. The reported nanowire-on-Si tandem cell opens up great opportunities for high-efficiency, low-cost multijunction solar cells.

  16. Te incorporation in GaAs1-xSbx nanowires and p-i-n axial structure

    NASA Astrophysics Data System (ADS)

    Ahmad, Estiak; Kasanaboina, P. K.; Karim, M. R.; Sharma, M.; Reynolds, C. L.; Liu, Y.; Iyer, S.

    2016-12-01

    We report on in situ Te-doping in GaAs1-xSbx nanowires (NWs) grown via self-assisted molecular beam epitaxy. Enhanced Te incorporation in the NW at higher Te cell temperature was attested by the broadening of the x-ray diffraction peak and the presence of a strong coupled-LO phonon mode in the Raman spectra. Te-doping was estimated from the shift in the coupled-LO phonon mode to be ˜2.0 × 1018/cm3. The surfactant nature of the Te modulated the growth kinetics, which was manifested in an enhanced radial growth rate with improved photoluminescence (PL) characteristics at both room temperature (RT) and 4 K. No noticeable planar defects were observed as ascertained from the high-resolution transmission electron microscopy images and selected-area electron diffraction patterns. Finally, we demonstrate the experimental realization of a GaAs1-xSbx axial p-type/intrinsic/n-type (p-i-n) structure on a Si substrate with Te as the n-type dopant. The GaAs1-xSbx p-i-n NW structures exhibited rectifying current-voltage (I-V) behavior. The dopant concentration and the transport parameters estimated from the PL spectra and I-V curve were found to be in good agreement.

  17. Effects of surface reconstruction on the epitaxial growth of III-Sb on GaAs using interfacial misfit array

    NASA Astrophysics Data System (ADS)

    Jia, Bo Wen; Tan, Kian Hua; Loke, Wan Khai; Wicaksono, Satrio; Yoon, Soon Fatt

    2017-03-01

    The effects of pre-growth Sb reconstruction on a GaAs surface on the epitaxial growth of III-Sb (GaSb and InSb) on a (100) GaAs substrate using interfacial misfit array were investigated. All samples exhibited smooth surface with a root mean square (r.m.s.) roughness below 1.5 nm and nearly 100% relaxation. Modeling indicated that the distribution and types of misfit dislocations can be evaluated using a reciprocal space map (RSM) of the x-ray measurements. The interfacial misfit (IMF) arrays in III-Sb/GaAs samples were characterized by RSMs of high-resolution x-ray diffraction (XRD) and transmission electron microscopy (TEM). The RSM results suggest that all samples exhibited highly uniformly distributed misfit dislocations, and pre-growth (2 × 8) Sb surface reconstruction promoted the formation of 90° dislocations in an IMF array. Hall measurements of unintentionally doped GaSb and InSb layers also suggested that the highest motilities at both 77 K and 300 K were achieved at the samples grown on GaAs with pre-growth (2 × 8) Sb reconstruction.

  18. Effect of rapid thermal annealing on the noise properties of InAs /GaAs quantum dot structures

    NASA Astrophysics Data System (ADS)

    Arpatzanis, N.; Tsormpatzoglou, A.; Dimitriadis, C. A.; Song, J. D.; Choi, W. J.; Lee, J. I.; Charitidis, C.

    2007-09-01

    Self-assembled InAs quantum dots (QDs) were grown by molecular beam epitaxy (MBE) on n+-GaAs substrates, capped between 0.4μm thick n-type GaAs layers with electron concentration of 1×1016cm-3. The effect of rapid thermal annealing at 700°C for 60s on the noise properties of the structure has been investigated using Au /n-GaAs Schottky diodes as test devices. In the reference sample without containing QDs, the noise spectra show a generation-recombination (g-r) noise behavior due to a discrete energy level located about 0.51eV below the conduction band edge. This trap is ascribed to the M4 (or EL3) trap in GaAs MBE layers, related to a chemical impurity-native defect complex. In the structure with embedded QDs, the observed g-r noise spectra are due to a midgap trap level ascribed to the EL2 trap in GaAs, which is related to the InAs QDs dissolution due to the thermal treatment.

  19. Effect of catalyst diameter on vapour-liquid-solid growth of GaAs nanowires

    SciTech Connect

    O'Dowd, B. J. Shvets, I. V.; Wojtowicz, T.; Kolkovsky, V.; Wojciechowski, T.; Zgirski, M.; Rouvimov, S.; Liu, X.; Pimpinella, R.; Dobrowolska, M.; Furdyna, J.

    2014-08-14

    GaAs nanowires were grown on (111)B GaAs substrates using the vapour-liquid-solid mechanism. The Au/Pt nanodots used to catalyse wire growth were defined lithographically and had varying diameter and separation. An in-depth statistical analysis of the resulting nanowires, which had a cone-like shape, was carried out. This revealed that there were two categories of nanowire present, with differing height and tapering angle. The bimodal nature of wire shape was found to depend critically on the diameter of the Au-Ga droplet atop the nanowire. Transmission electron microscopy analysis also revealed that the density of stacking faults in the wires varied considerably between the two categories of wire. It is believed that the cause of the distinction in terms of shape and crystal structure is related to the contact angle between the droplet and the solid-liquid interface. The dependency of droplet diameter on contact angle is likely related to line-tension, which is a correction to Young's equation for the contact angle of a droplet upon a surface. The fact that contact angle may influence resulting wire structure and shape has important implications for the planning of growth conditions and the preparation of wires for use in proposed devices.

  20. Tailoring the diameter and density of self-catalyzed GaAs nanowires on silicon.

    PubMed

    Matteini, Federico; Dubrovskii, Vladimir G; Rüffer, Daniel; Tütüncüoğlu, Gözde; Fontana, Yannik; Morral, Anna Fontcuberta I

    2015-03-13

    Nanowire diameter has a dramatic effect on the absorption cross-section in the optical domain. The maximum absorption is reached for ideal nanowire morphology within a solar cell device. As a consequence, understanding how to tailor the nanowire diameter and density is extremely important for high-efficient nanowire-based solar cells. In this work, we investigate mastering the diameter and density of self-catalyzed GaAs nanowires on Si(111) substrates by growth conditions using the self-assembly of Ga droplets. We introduce a new paradigm of the characteristic nucleation time controlled by group III flux and temperature that determine diameter and length distributions of GaAs nanowires. This insight into the growth mechanism is then used to grow nanowire forests with a completely tailored diameter-density distribution. We also show how the reflectivity of nanowire arrays can be minimized in this way. In general, this work opens new possibilities for the cost-effective and controlled fabrication of the ensembles of self-catalyzed III-V nanowires for different applications, in particular in next-generation photovoltaic devices.

  1. Tailoring the diameter and density of self-catalyzed GaAs nanowires on silicon

    NASA Astrophysics Data System (ADS)

    Matteini, Federico; Dubrovskii, Vladimir G.; Rüffer, Daniel; Tütüncüoğlu, Gözde; Fontana, Yannik; Morral, Anna Fontcuberta I.

    2015-03-01

    Nanowire diameter has a dramatic effect on the absorption cross-section in the optical domain. The maximum absorption is reached for ideal nanowire morphology within a solar cell device. As a consequence, understanding how to tailor the nanowire diameter and density is extremely important for high-efficient nanowire-based solar cells. In this work, we investigate mastering the diameter and density of self-catalyzed GaAs nanowires on Si(111) substrates by growth conditions using the self-assembly of Ga droplets. We introduce a new paradigm of the characteristic nucleation time controlled by group III flux and temperature that determine diameter and length distributions of GaAs nanowires. This insight into the growth mechanism is then used to grow nanowire forests with a completely tailored diameter-density distribution. We also show how the reflectivity of nanowire arrays can be minimized in this way. In general, this work opens new possibilities for the cost-effective and controlled fabrication of the ensembles of self-catalyzed III-V nanowires for different applications, in particular in next-generation photovoltaic devices.

  2. A 1.2 THz Planar Tripler Using GaAs Membrane Based Chips

    NASA Technical Reports Server (NTRS)

    Bruston, J.; Maestrini, A.; Pukala, D.; Martin, S.; Nakamura, B.; Mehdi, I.

    2001-01-01

    Fabrication technology for submillimeter-wave monolithic circuits has made tremendous progress in recent years and it is now possible to fabricate sub-micron GaAs Schottky devices on a number of substrate types, such as membranes, frame-less membranes or substrateless circuits. These new technologies allow designers to implement very high frequency circuits, either Schottky mixers or multipliers, in a radically new manner. This paper will address the design, fabrication, and preliminary results of a 1.2 THz planar tripler fabricated on a GaAs frame-less membrane, the concept of which was described previously. The tripler uses a diode pair in an antiparallel configuration similar to designs used at lower frequency. To date, this tripler has produced a peak output power of 80 microW with 0.9% efficiency at room temperature (at 1126 GHz). The measured fix-tuned 3 dB bandwidth is about 3.5%. When cooled, the output power reached a peak of 195 microW at 120 K and 250 microW at 50 K. The ease with which this circuit was implemented along with the superb achieved performance indicates that properly designed planar devices such as this tripler can now usher in a new era of practical very high frequency multipliers.

  3. Thermodynamic stability and band alignment at Sr-TiO3 /GaAs(001) interface

    NASA Astrophysics Data System (ADS)

    Cott, Joelson; Droopad, Ravi; Lee, Byounghak

    2015-03-01

    The successful epitaxial growth of SrTiO3 on Si showed that it is possible to integrate the functional oxides with semiconductors incorporating unique multifunctional properties of oxides into various existing semiconductor technologies. While SrTiO3 has been also deposited on GaAs without amorphous interfacial layers, the exact interface structure has been controversial; On one hand, scanning Transmission Electron Microscopy (STEM) shows As atoms at the interface. X-ray photoelectron spectroscopy (XPS) measurements, on the other hand, do not show peaks associated with As-O bonding, indicating that the GaAs/STO interface does not involve an As/oxide layer, contradicting to STEM observations. Using ab initio calculations, we determine the interfacial structure of a SrTiO3 film on a GaAs substrate to help clarify the apparently discrepancy between the XPS and the STEM measurements. The calculations reveal that, under the condition that allows atomically abrupt interfaces, the energetically most stable interface is As/Sr/TiO2 structure, in accordance with both XPS and STEM measurements. We discuss the band offsets and the possibility of in-gap states of various interface structures. This work was supported by the Air Force Office of Scientific Research, Contract FA9950-10-1-0133.

  4. IN-SITU Monitoring Of OMVPE Of GaAs And Ga1-xAlxAs (x = 0.17) By Contactless Photoreflectance

    NASA Astrophysics Data System (ADS)

    Shen, Hongen; Hang, Z.; Pollak, Fred H.; Capuder, Kenneth; Norris, Peter E.

    1990-02-01

    We have successfully applied the contactless, non-invasive electromodulation method of photoreflectance as an in-situ sensor of the OMVPE process. The direct gaps of GaAs and Ga1-xAlxAs(x = 0.17) have been measured as a function of temperature up to 690°C, in-situ, under actual OMVPE growth conditions, including a rotating substrate holder (~ 500 rev/min) and flowing gases.

  5. GaAs/Ge crystals grown on Si substrates patterned down to the micron scale

    SciTech Connect

    Taboada, A. G. Kreiliger, T.; Falub, C. V.; Känel, H. von; Meduňa, M.; Salvalaglio, M.; Miglio, L.; Isa, F.; Barthazy Meier, E.; Müller, E.; Isella, G.

    2016-02-07

    Monolithic integration of III-V compounds into high density Si integrated circuits is a key technological challenge for the next generation of optoelectronic devices. In this work, we report on the metal organic vapor phase epitaxy growth of strain-free GaAs crystals on Si substrates patterned down to the micron scale. The differences in thermal expansion coefficient and lattice parameter are adapted by a 2-μm-thick intermediate Ge layer grown by low-energy plasma enhanced chemical vapor deposition. The GaAs crystals evolve during growth towards a pyramidal shape, with lateral facets composed of (111) planes and an apex formed by (137) and (001) surfaces. The influence of the anisotropic GaAs growth kinetics on the final morphology is highlighted by means of scanning and transmission electron microscopy measurements. The effect of the Si pattern geometry, substrate orientation, and crystal aspect ratio on the GaAs structural properties was investigated by means of high resolution X-ray diffraction. The thermal strain relaxation process of GaAs crystals with different aspect ratio is discussed within the framework of linear elasticity theory by Finite Element Method simulations based on realistic geometries extracted from cross-sectional scanning electron microscopy images.

  6. Recovery Act : Near-Single-Crystalline Photovoltaic Thin Films on Polycrystalline, Flexible Substrates

    SciTech Connect

    Venkat Selvamanickam; Alex Freundlich

    2010-11-29

    III-V photovoltaics have exhibited efficiencies above 40%, but have found only a limited use because of the high cost of single crystal substrates. At the other end of the spectrum, polycrystalline and amorphous thin film solar cells offer the advantage of low-cost fabrication, but have not yielded high efficiencies. Our program is based on single-crystalline-like thin film photovoltaics on polycrystalline substrates using biaxially-textured templates made by Ion Beam-Assisted Deposition (IBAD). MgO templates made by IBAD on flexible metal substrate have been successfully used for epitaxial growth of germanium films. In spite of a 4.5% lattice mismatch, heteroepitaxial growth of Ge was achieved on CeO2 that was grown on IBAD MgO template. Room temperature optical bandgap of the Ge films was identified at 0.67 eV indicating minimal residual strain. Refraction index and extinction coefficient values of the Ge films were found to match well with that measured from a reference Ge single crystal. GaAs has been successfully grown epitaxially on Ge on metal substrate by molecular beam epitaxy. RHEED patterns indicate self annihilation of antiphase boundaries and the growth of a single domain GaAs. The GaAs is found to exhibit strong photoluminescence signal and, an existence of a relatively narrow (FWHM~20 meV) band-edge excitons measured in this film indicates a good optoelectronic quality of deposited GaAs. While excellent epitaxial growth has been achieved in GaAs on flexible metal substrates, the defect density of the films as measured by High Resolution X-ray Diffraction and etch pit experiments showed a high value of 5 * 10^8 per cm^2. Cross sectional transmission electron microscopy of the multilayer architecture showed concentration of threading dislocations near the germanium-ceria interface. The defect density was found decrease as the Ge films were made thicker. The defects appear to originate from the MgO layer presumably because of large lattice mismatches

  7. Spectroscopy of GaAs quantum wells

    SciTech Connect

    West, L.C.

    1985-07-01

    A new type of optical dipole transition in GaAs quantum wells has been observed. The dipole occurs between two envelope states of the conduction band electron wavefunction, and is called a quantum well envelope state transition (QWEST). The QWEST is observed by infrared absorption in three different samples with quantum well thicknesses 65, 82, and 92 A and resonant energies of 152, 121, and 108 MeV, respectively. The oscillator strength is found to have values of over 12, in good agreement with prediction. The linewidths are seen as narrow as 10 MeV at room temperature and 7 MeV at low temperature, thus proving a narrow line resonance can indeed occur between transitions of free electrons. Techniques for the proper growth of these quantum well samples to enable observation of the QWEST have also been found using (AlGa)As compounds. This QWEST is considered to be an ideal material for an all optical digital computer. The QWEST can be made frequency matched to the inexpensive Carbon Dioxide laser with an infrared wavelength of 10 microns. The nonlinearity and fast relaxation time of the QWEST indicate a logic element with a subpicosecond switch time can be built in the near future, with a power level which will eventually be limited only by the noise from a lack of quanta to above approximately 10 microwatts. 64 refs., 35 figs., 6 tabs.

  8. The Investigation of Ion Implantation as a Technique for Manufacturing GaAs Magneto-Sensitive Detectors

    NASA Astrophysics Data System (ADS)

    Karlova, G. F.; Avdochenko, B. I.

    2017-01-01

    This paper studies thin active layers of n-n i and n +-n-n i -types produced by means of silicon ion implantation into a semi-insulating GaAs substrate. The results of these structures’ physical parameters investigation are presented. Based on the structures the Hall-effect sensors are designed that have the linearity of Hall voltage dependency on magnetic density UH(B) of at least 1% in the range of up to B<1.2 T.

  9. Fabrication of single-crystalline plasmonic nanostructures on transparent and flexible amorphous substrates

    PubMed Central

    Mori, Tomohiro; Mori, Takeshi; Tanaka, Yasuhiro; Suzaki, Yoshifumi; Yamaguchi, Kenzo

    2017-01-01

    A new experimental technique is developed for producing a high-performance single-crystalline Ag nanostructure on transparent and flexible amorphous substrates for use in plasmonic sensors and circuit components. This technique is based on the epitaxial growth of Ag on a (001)-oriented single-crystalline NaCl substrate, which is subsequently dissolved in ultrapure water to allow the Ag film to be transferred onto a wide range of different substrates. Focused ion beam milling is then used to create an Ag nanoarray structure consisting of 200 cuboid nanoparticles with a side length of 160 nm and sharp, precise edges. This array exhibits a strong signal and a sharp peak in plasmonic properties and Raman intensity when compared with a polycrystalline Ag nanoarray. PMID:28216626

  10. Fabrication of single-crystalline plasmonic nanostructures on transparent and flexible amorphous substrates

    NASA Astrophysics Data System (ADS)

    Mori, Tomohiro; Mori, Takeshi; Tanaka, Yasuhiro; Suzaki, Yoshifumi; Yamaguchi, Kenzo

    2017-02-01

    A new experimental technique is developed for producing a high-performance single-crystalline Ag nanostructure on transparent and flexible amorphous substrates for use in plasmonic sensors and circuit components. This technique is based on the epitaxial growth of Ag on a (001)-oriented single-crystalline NaCl substrate, which is subsequently dissolved in ultrapure water to allow the Ag film to be transferred onto a wide range of different substrates. Focused ion beam milling is then used to create an Ag nanoarray structure consisting of 200 cuboid nanoparticles with a side length of 160 nm and sharp, precise edges. This array exhibits a strong signal and a sharp peak in plasmonic properties and Raman intensity when compared with a polycrystalline Ag nanoarray.

  11. Towards low-cost high-efficiency GaAs photovoltaics and photoelectrodes grown via vapor transport from a solid source

    SciTech Connect

    Boucher, Jason; Ritenour, Andrew; Boettcher, Shannon W.

    2013-04-29

    Towards low-cost high-efficiency GaAs photovoltaics and photoelectrodes grown via vapor transport from a solid source GaAs is an attractive material for thin-film photovoltaic applications, but is not widely used for terrestrial power generation due to the high cost of metal-organic chemical vapor deposition (MOCVD) techniques typically used for growth. Close space vapor transport is an alternative that allows for rapid growth rates of III-V materials, and does not rely on the toxic and pyrophoric precursors used in MOCVD. We characterize CSVT films of GaAs using photoelectrochemical current-voltage and quantum efficiency measurements. Hole diffusion lengths which exceed 1.5 um are extracted from internal quantum efficiency measurements using the Gartner model. Device physics simulations suggest that solar cells based on these films could reach efficiencies exceeding 24 %. To reach this goal, a more complete understanding of the electrical properties and characterization of defects will be necessary, including measurements on complete solid-state devices. Doping of films is achieved by using source material containing the desired impurity (e.g., Te or Zn). We discuss strategies for growing III-V materials on inexpensive substrates that are not lattice-matched to GaAs.

  12. MOCVD Growth of High-Quality and Density-Tunable GaAs Nanowires on ITO Catalyzed by Au Nanoparticles Deposited by Centrifugation.

    PubMed

    Wu, Dan; Tang, Xiaohong; Yoon, Ho Sup; Wang, Kai; Olivier, Aurelien; Li, Xianqiang

    2015-12-01

    High-quality and density-tunable GaAs nanowires (NWs) are directly grown on indium tin oxide (ITO) using Au nanoparticles (NPs) as catalysts by metal organic chemical vapor deposition (MOCVD). Au catalysts were deposited on ITO glass substrate using a centrifugal method. Compared with the droplet-only method, high-area density Au NPs were uniformly distributed on ITO. Tunable area density was realized through variation of the centrifugation time, and the highest area densities were obtained as high as 490 and 120 NP/μm(2) for 10- and 20-nm diameters of Au NPs, respectively. Based on the vapor-liquid-solid growth mechanism, the growth rates of GaAs NWs at 430 °C were 18.2 and 21.5 nm/s for the highest area density obtained of 10- and 20-nm Au NP-catalyzed NWs. The growth rate of the GaAs NWs was reduced with the increase of the NW density due to the competition of precursor materials. High crystal quality of the NWs was also obtained with no observable planar defects. 10-nm Au NP-induced NWs exhibit wurtzite structure whereas zinc-blende is observed for 20-nm NW samples. Controllable density and high crystal quality of the GaAs NWs on ITO demonstrate their potential application in hybrid a solar cell.

  13. High-k gate dielectric GaAs MOS device with LaON as interlayer and NH3-plasma surface pretreatment

    NASA Astrophysics Data System (ADS)

    Liu, Chao-Wen; Xu, Jing-Ping; Liu, Lu; Lu, Han-Han

    2015-12-01

    High-k gate dielectric HfTiON GaAs metal-oxide-semiconductor (MOS) capacitors with LaON as interfacial passivation layer (IPL) and NH3- or N2-plasma surface pretreatment are fabricated, and their interfacial and electrical properties are investigated and compared with their counterparts that have neither LaON IPL nor surface treatment. It is found that good interface quality and excellent electrical properties can be achieved for a NH3-plasma pretreated GaAs MOS device with a stacked gate dielectric of HfTiON/LaON. These improvements should be ascribed to the fact that the NH3-plasma can provide H atoms and NH radicals that can effectively remove defective Ga/As oxides. In addition, LaON IPL can further block oxygen atoms from being in-diffused, and Ga and As atoms from being out-diffused from the substrate to the high-k dielectric. This greatly suppresses the formation of Ga/As native oxides and gives rise to an excellent high-k/GaAs interface. Project supported by the National Natural Science Foundation of China (Grant Nos. 61176100 and 61274112).

  14. Vertical zone melt growth of GaAs

    SciTech Connect

    Henry, R.L.; Nordquist, P.E.R.; Gorman, R.J.

    1993-12-31

    A Vertical Zone Melt (VZM) technique has been applied to the single crystal growth of GaAs. A pyrolytic boron nitride crucible and a (100) oriented seed were used along with liquid encapsulation by boric oxide. In the case of GaAs, the ampoule was pressurized with either argon or argensic vapor from elemental arsenic at pressures ranging from 1 to 2 atmospheres. A molten zone length of 22 mm gave a growth interface which is nearly flat and resulted in routine single crystal growth. Temperature gradients of 4{degrees}C/cm. and 9{degrees}C/cm. have produced dislocation densities of <1000/cm{sup 2} and 2000-5000/cm{sup 2} respectively for 34 mm diameter crystals of GaAs. Post growth cooling rates for GaAs have been 35, 160 and 500{degrees}C/hr. The cooling rate has been found to affect the number and size of arsenic precipitates and the EL2 concentration in the GaAs crystal. The effects of these and other growth parameters on the crystalline perfection and electrical properties of the crystals will be discussed.

  15. Plasma deposited diamondlike carbon on GaAs and InP

    NASA Technical Reports Server (NTRS)

    Warner, J. D.; Pouch, J. J.; Alterovitz, S. A.; Liu, D. C.; Lanford, W. A.

    1984-01-01

    The properties of diamond like carbon films grown by RF flow discharge 30 kHz plasma using methane are reported. The Cls XPS line shape of films showed localized hybrid carbon bonds as low as 40 to as high as 95 percent. Infrared spectroscopy and N(15) nuclear reaction profiling data indicated 35 to 42 percent hydrogen, depending inversely on deposition temperature. The deposition rate of films on Si falls off exponentially with substrate temperature, and nucleation does not occur above 200 C on GaAs and InP. Optical data of the films showed bandgap values of 2.0 to 2.4 eV increasing monotonically with CH4 flow rate.

  16. A Cryogenic GaAs PHEMT/ Ferroelectric Ku-Band Tunable Oscillator

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R.; Miranda, Felix A.; VanKeuls, Fred W.

    1998-01-01

    A Ku-band tunable oscillator operated at and below 77 K is described. The oscillator is based on two separate technologies: a 0.25 mm GaAs pseudomorphic high electron mobility transistor (PHEMT) circuit optimized for cryogenic operation, and a gold microstrip ring resonator patterned on a thin ferroelectric (SrTiO3) film which was laser ablated onto a LaAlO3 substrate. A tuning range of up to 3% of the center frequency was achieved by applying dc bias between the ring resonator and ground plane. To the best of our knowledge, this is the first tunable oscillator based on a thin film ferroelectric structure demonstrated in the microwave frequency range. The design methodology of the oscillator and the performance characteristics of the tunable resonator are described.

  17. Plasma deposited hydrogenated carbon on GaAs and InP

    NASA Technical Reports Server (NTRS)

    Warner, J. D.; Pouch, J. J.; Alterovitz, S. A.; Liu, D. C.; Lanford, W. A.

    1985-01-01

    The properties of diamond like carbon films grown by RF flow discharge 30 kHz plasma using methane are reported. The Cis XPS line shape of films showed localized hybrid carbon bonds as low as 40 to as high as 95 percent. Infrared spectroscopy and N(15) nuclear reaction profiling data indicated 35 to 42 percent hydrogen, depending inversely on deposition temperature. The deposition rate of films on Si falls off exponentially with substrate temperature, and nucleation does not occur above 200 C on GaAs and InP. Optical data of the films showed bandgap values of 2.0 to 2.4 eV increasing monotonically with CH4 flow rate.

  18. Narrow-line self-assembled GaAs quantum dots for plasmonics

    SciTech Connect

    Zhang, Hongyi; Huo, Yongheng; Schmidt, Oliver G.; Lindfors, Klas; Chen, Yonghai; Rastelli, Armando; Lippitz, Markus

    2015-03-09

    We demonstrate efficient coupling of excitons in near-surface GaAs quantum dots (QDs) to surface-plasmon polaritons. We observe distinct changes in the photoluminescence of the emitters as the distance between the QDs and the gold interface decreases. Based on an electric point-dipole model, we identify the surface plasmon launching rates for different QD-surface distances. While in conventional far-field experiments only a few percent of the emitted photons can be collected due to the high refractive index semiconductor substrate, already for distances around 30 nm the plasmon launching-rate becomes comparable to the emission rate into bulk photon modes, thus much larger than the photon collection rate. For even smaller distances, the degrading optical properties of the emitter counterweight the increasing coupling efficiency to plasmonic modes.

  19. Charge tuning in [111] grown GaAs droplet quantum dots

    SciTech Connect

    Bouet, L.; Vidal, M.; Marie, X.; Amand, T.; Wang, G.; Urbaszek, B.; Mano, T.; Ha, N.; Kuroda, T.; Sakoda, K.; Durnev, M. V.; Glazov, M. M.; Ivchenko, E. L.

    2014-08-25

    We demonstrate charge tuning in strain free GaAs/AlGaAs quantum dots (QDs) grown by droplet epitaxy on a GaAs(111)A substrate. Application of a bias voltage allows the controlled charging of the QDs from −3|e| to +2|e|. The resulting changes in QD emission energy and exciton fine-structure are recorded in micro-photoluminescence experiments at T = 4 K. We uncover the existence of excited valence and conduction states, in addition to the s-shell-like ground state. We record a second series of emission lines about 25 meV above the charged exciton emission coming from excited charged excitons. For these excited interband transitions, a negative diamagnetic shift of large amplitude is uncovered in longitudinal magnetic fields.

  20. Impact of nucleation conditions on diameter modulation of GaAs nanowires

    NASA Astrophysics Data System (ADS)

    Crawford, Samuel C.; Ermez, Sema; Haberfehlner, Georg; Jones, Eric J.; Gradečak, Silvija

    2015-06-01

    Diameter-modulated nanowires can be used to impart unique properties to nanowire-based devices. Here, diameter modulation along Au-seeded GaAs nanowires was achieved by varying the flux of the III and V precursors during growth. Furthermore, three different types of [111]B-oriented nanowires were observed to display distinct differences in diameter modulation, growth rate, and cross-sectional shape. These differences are attributed to the presence of multiple distinct Au-Ga seed particle phases at the growth temperature of 420 °C. We show that the diameter modulation behavior can be modified by the growth conditions during nanowire nucleation, including temperature, V/III ratio, substrate orientation, and seed particle size. These results demonstrate the general viability of flow-controlled diameter modulation for compound semiconductors and highlight both opportunities and challenges that can arise from using compound-forming alloys to seed nanowire growth.

  1. Modelling and fabrication of GaAs photonic-crystal cavities for cavity quantum electrodynamics.

    PubMed

    Khankhoje, U K; Kim, S-H; Richards, B C; Hendrickson, J; Sweet, J; Olitzky, J D; Khitrova, G; Gibbs, H M; Scherer, A

    2010-02-10

    In this paper, we present recent progress in the growth, modelling, fabrication and characterization of gallium arsenide (GaAs) two-dimensional (2D) photonic-crystal slab cavities with embedded indium arsenide (InAs) quantum dots (QDs) that are designed for cavity quantum electrodynamics (cQED) experiments. Photonic-crystal modelling and device fabrication are discussed, followed by a detailed discussion of different failure modes that lead to photon loss. It is found that, along with errors introduced during fabrication, other significant factors such as the presence of a bottom substrate and cavity axis orientation with respect to the crystal axis, can influence the cavity quality factor (Q). A useful diagnostic tool in the form of contour finite-difference time domain (FDTD) is employed to analyse device performance.

  2. Highly ordered self-assembled nanoscale periodic faceting in GaAs(631) homoepitaxial growth

    NASA Astrophysics Data System (ADS)

    Cruz-Hernández, E.; Shimomura, S.; Méndez-García, V. H.

    2012-08-01

    We report on the self-assembly of large-order-correlated nanoscale faceting on GaAs(631)A substrates grown by molecular beam epitaxy. The surface morphology of the grown samples as a function of the growth temperature and the As-beam equivalent pressure was studied using atomic force microscopy. A two-dimensional autocorrelation function analysis was performed in order to quantitatively determine the uniformity of the surface corrugation. By optimizing the growth conditions, correlated faceted areas as large as 1.7 × 1.7 μm2 are obtained. The highly ordered surface corrugation discussed here provides useful insights to prepare highly ordered facet planes for the self organized growth of quantum wires.

  3. In-situ x-ray characterization of wurtzite formation in GaAs nanowires

    NASA Astrophysics Data System (ADS)

    Krogstrup, Peter; Hannibal Madsen, Morten; Hu, Wen; Kozu, Miwa; Nakata, Yuka; Nygârd, Jesper; Takahasi, Masamitu; Feidenhans'l, Robert

    2012-02-01

    In-situ monitoring of the crystal structure formation during Ga-assisted GaAs nanowire growth on Si(111) substrates has been performed in a combined molecular beam epitaxy growth and x-ray characterization experiment. Under Ga rich conditions, we show that an increase in the V/III ratio increases the formation rate of the wurtzite structure. Moreover, the response time for changes in the structural phase formation to changes in the beam fluxes is observed to be much longer than predicted time scales of adatom kinetics and liquid diffusion. This suggests that the morphology of the growth interface plays the key role for the relative growth structure formation rates.

  4. Structural and magnetic properties of epitaxially grown MnAs films on GaAs(110)

    NASA Astrophysics Data System (ADS)

    Kolovos-Vellianitis, D.; Herrmann, C.; Däweritz, L.; Ploog, K. H.

    2005-08-01

    MnAs films were grown by molecular beam epitaxy (MBE) on GaAs(110) substrates, since this orientation was recently identified as promising for the increase of spin lifetimes in semiconductor heterojunctions, which is of interest in spin injection experiments. A single epitaxial orientation was revealed for the MnAs films which consist of both the ferromagnetic, hexagonal α-MnAs and the paramagnetic, orthorhombic β-MnAs phase at room temperature. This phase coexistence could be imaged as a well ordered stripe pattern, whose periodicity depends on the film thickness. The study of the ferromagnetic properties shows a strong influence of the film thickness on the measured coercive fields and saturation magnetizations.

  5. Structural and magnetic properties of epitaxially grown MnAs films on GaAs(110)

    SciTech Connect

    Kolovos-Vellianitis, D.; Herrmann, C.; Daeweritz, L.; Ploog, K.H.

    2005-08-29

    MnAs films were grown by molecular beam epitaxy (MBE) on GaAs(110) substrates, since this orientation was recently identified as promising for the increase of spin lifetimes in semiconductor heterojunctions, which is of interest in spin injection experiments. A single epitaxial orientation was revealed for the MnAs films which consist of both the ferromagnetic, hexagonal {alpha}-MnAs and the paramagnetic, orthorhombic {beta}-MnAs phase at room temperature. This phase coexistence could be imaged as a well ordered stripe pattern, whose periodicity depends on the film thickness. The study of the ferromagnetic properties shows a strong influence of the film thickness on the measured coercive fields and saturation magnetizations.

  6. Pulsed laser annealing of ion-implanted semiconducting GaAs for homojunction solar cells

    NASA Astrophysics Data System (ADS)

    Lowndes, D. H.; Cleland, J. W.; Fletcher, J.; Narayan, J.; Westbrook, R. D.; Wood, R. F.; Christie, W. H.; Eby, R. E.

    The results of a study whose purpose was to evaluate the combination of ion implantation followed by pulsed ruby laser annealing (II/PLA), as a method for shallow p-n junction formation in semiconducting GaAs substrates, are reported. High dose Zn, Mg, Si and Se implants were used. PLA was carried out in air without encapsulation, and with thin sputtered SiO2 encapsulation layers. The combination of I-V, C-V, SEM, TEM and SIMS measurements that were carried out have important implications for photovoltaic applications including the possibility of forming planar junctions, the choice of implanted ions to obtain high electrical activation, the optimum pulsed laser energy density range, the resultant junction depth and electrical characteristics, and the presence of laser- and implantation-induced residual defects

  7. 46 CFR Sec. 7 - Operation under current GAA/MSTS Southeast Asia Program.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Operation under current GAA/MSTS Southeast Asia Program... AUTHORITY VOYAGE DATA Sec. 7 Operation under current GAA/MSTS Southeast Asia Program. In order to adapt the provisions of NSA Order 35 (OPR-2) to the particular circumstances of the present GAA/MSTS Southeast...

  8. 46 CFR Sec. 7 - Operation under current GAA/MSTS Southeast Asia Program.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 8 2011-10-01 2011-10-01 false Operation under current GAA/MSTS Southeast Asia Program... AUTHORITY VOYAGE DATA Sec. 7 Operation under current GAA/MSTS Southeast Asia Program. In order to adapt the provisions of NSA Order 35 (OPR-2) to the particular circumstances of the present GAA/MSTS Southeast...

  9. Mechanics of precisely controlled thin film buckling on Elastomeric substrate.

    SciTech Connect

    Sun, Y.; Jiang, H.; Rogers, J.; Huang, Y.; Arizone State Univ.; Beckman Inst.; University of Illinois Urbana-Champaign

    2007-01-01

    Stretchable electronics has many important and emerging applications. Sun et al. [Nature Nanotech. 1, 201 (2006)] recently demonstrated stretchable electronics based on precisely controlled buckle geometries in GaAs and Si nanoribbons on elastomeric substrates. A nonlinear buckling model is presented in this letter to study the mechanics of this type of thin film/substrate system. An analytical solution is obtained for the buckling geometry (wavelength and amplitude) and the maximum strain in buckled thin film. This solution agrees very well with the experiments, and shows explicitly how buckling can significantly reduce the thin film strain to achieve the system stretchability.

  10. Transient GaAs plasmonic metasurfaces at terahertz frequencies

    SciTech Connect

    Yang, Yuanmu; Kamaraju, N.; Campione, Salvatore; Liu, Sheng; Reno, John L.; Sinclair, Michael B.; Prasankumar, Rohit P.; Brener, Igal

    2016-12-09

    Here we demonstrate the ultrafast formation of terahertz (THz) metasurfaces through all-optical creation of spatially modulated carrier density profiles in a deep-subwavelength GaAs film. The switch-on of the transient plasmon mode, governed by the GaAs effective electron mass and electron–phonon interactions, is revealed by structured-optical pump THz probe spectroscopy, on a time scale of 500 fs. By modulating the carrier density using different pump fluences, we observe a wide tuning of the electric dipole resonance of the transient GaAs metasurface from 0.5 THz to 1.7 THz. Furthermore, we numerically demonstrate that the metasurface presented here can be generalized to more complex architectures for realizing functionalities such as perfect absorption, leading to a 30 dB modulation depth. In conclusion, the platform also provides a pathway to achieve ultrafast manipulation of infrared beams in the linear and, potentially, nonlinear regime.

  11. Heterojunction photovoltaics using GaAs nanowires and conjugated polymers.

    PubMed

    Ren, Shenqiang; Zhao, Ni; Crawford, Samuel C; Tambe, Michael; Bulović, Vladimir; Gradecak, Silvija

    2011-02-09

    We demonstrate an organic/inorganic solar cell architecture based on a blend of poly(3-hexylthiophene) (P3HT) and narrow bandgap GaAs nanowires. The measured increase of device photocurrent with increased nanowire loading is correlated with structural ordering within the active layer that enhances charge transport. Coating the GaAs nanowires with TiO(x) shells passivates nanowire surface states and further improves the photovoltaic performance. We find that the P3HT/nanowire cells yield power conversion efficiencies of 2.36% under white LED illumination for devices containing 50 wt % of TiO(x)-coated GaAs nanowires. Our results constitute important progress for the use of nanowires in large area solution processed hybrid photovoltaic cells and provide insight into the role of structural ordering in the device performance.

  12. Growth of silver nanowires on GaAs wafers.

    PubMed

    Sun, Yugang

    2011-05-01

    Silver (Ag) nanowires with chemically clean surfaces have been directly grown on semi-insulating gallium arsenide (GaAs) wafers through a simple solution/solid interfacial reaction (SSIR) between the GaAs wafers themselves and aqueous solutions of silver nitrate (AgNO(3)) at room temperature. The success in synthesis of Ag nanowires mainly benefits from the low concentration of surface electrons in the semi-insulating GaAs wafers that can lead to the formation of a low-density of nuclei that facilitate their anisotropic growth into nanowires. The resulting Ag nanowires exhibit rough surfaces and reasonably good electric conductivity. These characteristics are beneficial to sensing applications based on single-nanowire surface-enhanced Raman scattering (SERS) and possible surface-adsorption-induced conductivity variation.

  13. Characterization of production GaAs solar cells for space

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.

    1988-01-01

    The electrical performance of GaAs solar cells was characterized as a function of irradiation with protons and electrons with the underlying goal of producing solar cells suitable for use in space. Proton energies used varied between 50 keV and 10 MeV, and damage coefficients were derived for liquid phase epitaxy GaAs solar cells. Electron energies varied between 0.7 and 2.4 MeV. Cells from recent production runs were characterized as a function of electron and proton irradiation. These same cells were also characterized as a function of solar intensity and operating temperature, both before and after the electron irradiations. The long term stability of GaAs cells during photon exposure was examined. Some cells were found to degrade with photon exposure and some did not. Calibration standards were made for GaAs/Ge solar cells by flight on a high altitude balloon.

  14. Oxygen in GaAs - Direct and indirect effects

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Skowronski, M.; Pawlowicz, L.; Lagowski, J.

    1984-01-01

    Oxygen has profound effects on the key electronic properties and point defects of GaAs crystals. Thus, when added in the growth system, it decreases the free electron concentration and enhances the concentration of deep donors in the resulting crystals. Both of these effects are highly beneficial for achieving semi-insulating material and have been utilized for that purpose. They have been attributed to the tendency of oxygen to getter silicon impurities during crystal growth. Only recently, it has been found that oxygen in GaAs introduces also a midgap level, ELO, with essentially the same activation energy as EL2 but with four times greater electron capture cross section. The present report reassesses the electrical and optical properties of the midgap levels in GaAs crystals grown by the horizontal Bridgman (HB) and the Czochralski-LEC techniques. Emphasis is placed on the identification of the specific effects of ELO.

  15. Studies of electron spin in GaAs quantum dots

    NASA Astrophysics Data System (ADS)

    Craft, Daniel; Colton, John; Park, Tyler; White, Phil

    2013-03-01

    We have studied electron spins in GaAs quantum dots with a pump-probe technique that normally yields the T1 spin lifetime, the time required for initially polarized electrons to relax and randomize. Using a circularly polarized laser tuned to the wavelength response of the quantum dot we can ``pump'' the spins into alignment. After aligning the spins we can detect them using a second, linearly polarized ``probe'' laser. By changing the delay between the two lasers we can trace out the spin response over time. In contrast with other samples (bulk GaAs and a GaAs quantum well), where the spin response decayed exponentially with time, initial data on the quantum dots has shown an unexpected, oscillating behavior which dies out on the order of 700 ns, independent of both temperature and magnetic field.

  16. Crystal growth of device quality GaAs in space

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Lagowski, J.

    1985-01-01

    The present program has been aimed at solving the fundamental and technological problems associated with Crystal Growth of Device Quality in Space. The initial stage of the program was devoted strictly to ground-based research. The unsolved problems associated with the growth of bulk GaAs in the presence of gravitational forces were explored. Reliable chemical, structural and electronic characterization methods were developed which would permit the direct relation of the salient materials parameters (particularly those affected by zero gravity conditions) to the electronic characteristics of single crystal GaAs, in turn to device performance. These relationships are essential for the development of optimum approaches and techniques. It was concluded that the findings on elemental semiconductors Ge and Si regarding crystal growth, segregation, chemical composition, defect interactions, and materials properties-electronic properties relationships are not necessarily applicable to GaAs (and to other semiconductor compounds). In many instances totally unexpected relationships were found to prevail.

  17. Interface demarcation in GaAs by current pulsing

    NASA Technical Reports Server (NTRS)

    Matthiesen, D. H.; Kafalas, J. A.; Duchene, G. A.; Bellows, A. H.

    1990-01-01

    GTE Laboratories is currently conducting a program to investigate the effect of convection in the melt on the properties of bulk grown gallium arsenide (GaAs). In addition to extensive ground based experimentation, a Get Away Special growth system has been developed to grow two GaAs crystals aboard the Space Shuttle, each with a one inch diameter. In order to perform a complete segregation analysis of the crystals grown in space, it is necessary to measure the interface shape and growth rate as well as the spatial distribution of the selenium dopant. The techniques for interface demarcation in selenium doped GaAs by current pulsing have been developed at GTE Laboratories and successful interface demarcation has been achieved for current pulses ranging from 20 to 90 amps, in both single crystal and polycrystalline regions.

  18. Atomic Structure of the Stoichiometric GaAs(114) Surface.

    PubMed

    Márquez; Kratzer; Geelhaar; Jacobi; Scheffler

    2001-01-01

    The stoichiometric GaAs(114) surface has been prepared using molecular beam epitaxy followed by annealing in ultrahigh vacuum. Based on in situ scanning tunneling microscopy measurements and first-principles electronic-structure calculations, we determine the surface reconstruction which we call alpha2(2x1). Contrary to what is expected for a high-index surface, it is surprisingly elementary. The (2x1) unit cell contains two As dimers and two rebonded Ga atoms. The surface energy is calculated as 53 meV/Å(2), which falls well within the range of low-index GaAs surface energies.

  19. Modelling of interband transitions in GaAs tunnel diode

    NASA Astrophysics Data System (ADS)

    Louarn, K.; Fontaine, C.; Arnoult, A.; Olivié, F.; Lacoste, G.; Piquemal, F.; Bounouh, A.; Almuneau, G.

    2016-06-01

    In this paper, an improved model for non-local band-to-band tunneling carrier transport is presented and compared to experimental measurement from GaAs tunnel junctions devices. By carefully taking into account the coupling between the conduction band and the light holes valence band, the model is able to predict, with realistic material parameters, the amplitude of the current density throughout the whole tunneling regime. The model suggests that elastic band-to-band tunneling instead of trap-assisted-tunneling is the predominant mechanism in GaAs tunnel junctions, which is of great interest for better understanding and improving III-V multi-junction solar cells.

  20. GaAs solar cells with V-grooved emitters

    NASA Technical Reports Server (NTRS)

    Bailey, S. G.; Fatemi, N.; Wilt, D. M.; Landis, G. A.; Thomas, R. D.

    1989-01-01

    A GaAs solar cell with a V-grooved front surface is described. It shows improved optical coupling and higher short-circuit current compared to planar cells. The GaAs homojunction cells, manufactured by OrganoMetallic Chemical Vapor Deposition (OMCVD), are described. The V-grooves were formed by anisotropic etching. Reflectivity measurements show significantly lower reflectance for the microgrooved cell compared to the planar structure. The short circuit current of the V-grooved solar cell is consistently higher than that of the planar controls.

  1. Experience with OMCVD production of GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Yeh, Y. C. M.; Iles, P. A.; Ho, P.; Ling, K. S.

    1985-01-01

    The projected promise of the OMCVD approach, i.e., to make high efficiency GaAs space cells, has been demonstrated. The properties and control of the deposited GaAs and AlGaAs layers and the uniformity of the post layer processing have been most satisfactory. In particular the control of the critical thin layers (p-GaAs, p-AlGaAs) has been impressive. Experience has also been gained in routine areas, connected with continuous operation at high capacity. There are still a few areas for improvement, to further increase capacity, and to anticipate and prevent mechanical equipment problems.

  2. Investigation of high efficiency GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Olsen, Larry C.; Dunham, Glen; Addis, F. W.; Huber, Dan; Linden, Kurt

    1989-01-01

    Investigations of basic mechanisms which limit the performance of high efficiency GaAs solar cells are discussed. P/N heteroface structures have been fabricated from MOCVD epiwafers. Typical AM1 efficiencies are in the 21 to 22 percent range, with a SERI measurement for one cell being 21.5 percent. The cells are nominally 1.5 x 1.5 cm in size. Studies have involved photoresponse, T-I-V analyses, and interpretation of data in terms of appropriate models to determine key cell parameters. Results of these studies are utilized to determine future approaches for increasing GaAs solar cell efficiencies.

  3. Simple intrinsic defects in GaAs : numerical supplement.

    SciTech Connect

    Schultz, Peter Andrew

    2012-04-01

    This Report presents numerical tables summarizing properties of intrinsic defects in gallium arsenide, GaAs, as computed by density functional theory. This Report serves as a numerical supplement to the results published in: P.A. Schultz and O.A. von Lilienfeld, 'Simple intrinsic defects in GaAs', Modelling Simul. Mater. Sci Eng., Vol. 17, 084007 (2009), and intended for use as reference tables for a defect physics package in device models. The numerical results for density functional theory calculations of properties of simple intrinsic defects in gallium arsenide are presented.

  4. High efficiency thin-film GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Stirn, R. J.

    1977-01-01

    Several oxidation techniques are discussed which have been found to increase the open circuit (V sub oc) of metal-GaAs Schottky barrier solar cells, the oxide chemistry, attempts to measure surface state parameters, the evolving characteristics of the solar cell as background contamination (has been decreased, but not eliminated), results of focused Nd/YAG laser beam recrystallization of Ge films evaporated onto tungsten, and studies of AMOS solar cells fabricated on sliced polycrystalline GaAs wafers. Also discussed are projected materials availability and costs for GaAs thin-film solar cells.

  5. Development of bulk GaAs room temperature radiation detectors

    SciTech Connect

    McGregor, D.S.; Knoll, G.F. . Dept. of Nuclear Engineering); Eisen, Y. . Soreq Nuclear Research Center); Brake, R. )

    1992-10-01

    This paper reports on GaAs, a wide band gap semiconductor with potential use as a room temperature radiation detector. Various configurations of Schottky diode detectors were fabricated with bulk crystals of liquid encapsulated Czochralski (LEC) semi-insulating undoped GaAs material. Basic detector construction utilized one Ti/Au Schottky contact and one Au/Ge/Ni alloyed ohmic contact. Pulsed X-ray analysis indicated pulse decay times dependent on bias voltage. Pulse height analysis disclosed non-uniform electric field distributions across the detectors tentatively explained as a consequence of native deep level donors (EL2) in the crystal.

  6. Defect interactions in GaAs single crystals

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Lagowski, J.

    1984-01-01

    The two-sublattice structural configuration of GaAs and deviations from stoichiometry render the generation and interaction of electrically active point defects (and point defect complexes) critically important for device applications and very complex. Of the defect-induced energy levels, those lying deep into the energy band are very effective lifetime ""killers". The level 0.82 eV below the condition band, commonly referred to as EL2, is a major deep level, particularly in melt-grown GaAs. This level is associated with an antisite defect complex (AsGa - VAS). Possible mechanisms of its formation and its annihilation were further developed.

  7. Crystal growth of GaAs in space

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Lagowski, J.; Pawlowicz, L. M.; Dabkowski, F.; Li, C. J.

    1984-01-01

    It is shown that stoichiometry variations in the GaAs melt during growth constitute the most critical parameter regarding defect formations and their interactions; this defect structure determines all relevant characteristics of GaAs. Convection in the melt leads to stoichiometric variations. Growth in axial magnetic fields reduces convection and permits the study of defect structure. In order to control stoichiometry in space and to accommodate expansion during solidification, a partially confined configuration was developed. A triangular prism is employed to contain the growth melt. This configuration permits the presence of the desired vapor phase in contact with the melt for controlling the melt stoichiometry.

  8. MBE Growth of GaAs Whiskers on Si Nanowires

    NASA Astrophysics Data System (ADS)

    Maxwell Andrews, Aaron; Klang, Pavel; Detz, Hermann; Lugstein, Alois; Schramböck, Matthias; Steinmair, Mathias; Hyun, Youn-Joo; Bertagnolli, Emmerich; Müller, Thomas; Unterrainer, Karl; Schrenk, Werner; Strasser, Gottfried

    2010-01-01

    We present the growth of GaAs nanowhiskers by molecular beam epitaxy on Si (111) nanowires grown by low-pressure chemical vapor deposition. The whiskers grow in the wurtzite phase, along the [0001] direction, on the {112} facets of the Si nanowire, forming a star-like six-fold radial symmetry. The photoluminescence shows a 30 meV blue shift with respect to bulk GaAs, additionally a GaAs/AlAs core-shell heterostructure shows increased luminescence.

  9. Giant energy harvesting potential in (100)-oriented 0.68PbMg1/3Nb2/3O3-0.32PbTiO3 with Pb(Zr0.3Ti0.7)O3/PbOx buffer layer and (001)-oriented 0.67PbMg1/3Nb2/3O3-0.33PbTiO3 thin films

    NASA Astrophysics Data System (ADS)

    Vats, Gaurav; Kushwaha, Himmat Singh; Vaish, Rahul; Madhar, Niyaz Ahamad; Shahabuddin, Mohammed; Parakkandy, Jafar M.; Batoo, Khalid Mujasam

    2014-11-01

    This work emphasis on the competence of (100)-oriented PMN-PT buffer layered (0.68PbMg1/3Nb2/3O3-0.32PbTiO3 with Pb(Zr0.3Ti0.7)O3/PbOx buffer layer) and (001)-oriented PMN-PT (0.67PbMg1/3Nb2/3O3-0.33PbTiO3) for low grade thermal energy harvesting using Olsen cycle. Our analysis (based on well-reported experiments in literature) reveals that these films show colossal energy harnessing possibility. Both the films are found to have maximum harnessable energy densities (PMN-PT buffer layered: 8 MJ/m3; PMN-PT: 6.5 MJ/m3) in identical ambient conditions of 30-150°C and 0-600 kV/cm. This energy harnessing plausibility is found to be nearly five times higher than the previously reported values to date.

  10. Structure of high-index GaAs surfaces - the discovery of the stable GaAs(2511) surface

    NASA Astrophysics Data System (ADS)

    Jacobi, K.; Geelhaar, L.; Márquez, J.

    We present a brief overview of surface structures of high-index GaAs surfaces, putting emphasis on recent progress in our own laboratory. By adapting a commercial scanning tunneling microscope (STM) to our molecular beam epitaxy and ultra high vacuum analysis chamber system, we have been able to atomically resolve the GaAs( {1} {1} {3})B(8 ×1), (114)Aα2(2×1), (137), (3715), and (2511) surface structures. In cooperation with P. Kratzer and M. Scheffler from the Theory Department of the Fritz-Haber Institute we determined the structure of some of these surfaces by comparing total-energy calculations and STM image simulations with the atomically resolved STM images. We present the results for the {112}, {113}, and {114} surfaces. Then we describe what led us to proceed into the inner parts of the stereographic triangle and to discover the hitherto unknown stable GaAs(2511) surface.

  11. Multi-junction, monolithic solar cell using low-band-gap materials lattice matched to GaAs or Ge

    DOEpatents

    Olson, Jerry M.; Kurtz, Sarah R.; Friedman, Daniel J.

    2001-01-01

    A multi-junction, monolithic, photovoltaic solar cell device is provided for converting solar radiation to photocurrent and photovoltage with improved efficiency. The solar cell device comprises a plurality of semiconductor cells, i.e., active p/n junctions, connected in tandem and deposited on a substrate fabricated from GaAs or Ge. To increase efficiency, each semiconductor cell is fabricated from a crystalline material with a lattice constant substantially equivalent to the lattice constant of the substrate material. Additionally, the semiconductor cells are selected with appropriate band gaps to efficiently create photovoltage from a larger portion of the solar spectrum. In this regard, one semiconductor cell in each embodiment of the solar cell device has a band gap between that of Ge and GaAs. To achieve desired band gaps and lattice constants, the semiconductor cells may be fabricated from a number of materials including Ge, GaInP, GaAs, GaInAsP, GaInAsN, GaAsGe, BGaInAs, (GaAs)Ge, CuInSSe, CuAsSSe, and GaInAsNP. To further increase efficiency, the thickness of each semiconductor cell is controlled to match the photocurrent generated in each cell. To facilitate photocurrent flow, a plurality of tunnel junctions of low-resistivity material are included between each adjacent semiconductor cell. The conductivity or direction of photocurrent in the solar cell device may be selected by controlling the specific p-type or n-type characteristics for each active junction.

  12. Photoelectrical characteristics of as-grown highresistance GaAs single crystals

    NASA Astrophysics Data System (ADS)

    Budnitskii, D. L.; Koretskaya, O. B.; Tolbanov, O. P.; Tyazhev, A. V.

    2010-06-01

    The electrophysical and photoelectrical properties of high-resistance GaAs produced by single crystal growth are studied and analyzed. The electron (τ n ) and hole (τ p ) lifetimes are estimated. The charge-carrier lifetimes are compared in as-grown and diffusion high-resistance GaAs. The conclusion is made that in high-resistance GaAs produced by chromium diffusion, the charge-carrier recombination mechanism qualitatively differs from that in as-grown GaAs. The charge-carrier recombination in diffusion GaAs is determined by the occurrence of recombination barriers due to chromium diffusion.

  13. Au-Seeded Growth of Vertical and in-Plane III–V Nanowires on Graphite Substrates

    PubMed Central

    2014-01-01

    Graphene is promising as a transparent, flexible, and possibly cost-effective substrate for nanowire-based devices. We have investigated Au-seeded III–V nanowire growth with graphite as a model substrate. The highest yield of undoped vertical nanowires was found for InAs, but we also observed vertical nanowires for the InP, GaP, and GaAs materials. The yield of vertical nanowires for GaP and GaAs was strongly improved by supplying the p-dopant DEZn before nanowire growth but not by supplying H2S or HCl. In-plane GaAs and GaP nanowire growth exhibited an unexpected behavior, where the seed particles seemingly reflected on the side facets of other nanowires. These results pave the way for vertical and in-plane hybrid graphene- nanowire devices. PMID:24592968

  14. Strain relaxation of GaAs/Ge crystals on patterned Si substrates

    SciTech Connect

    Taboada, A. G. Kreiliger, T.; Falub, C. V.; Känel, H. von; Isa, F.; Isella, G.; Salvalaglio, M.; Miglio, L.; Wewior, L.; Fuster, D.; Alén, B.; Niedermann, P.; Neels, A.; Dommann, A.; Mancarella, F.

    2014-01-13

    We report on the mask-less integration of GaAs crystals several microns in size on patterned Si substrates by metal organic vapor phase epitaxy. The lattice parameter mismatch is bridged by first growing 2-μm-tall intermediate Ge mesas on 8-μm-tall Si pillars by low-energy plasma enhanced chemical vapor deposition. We investigate the morphological evolution of the GaAs crystals towards full pyramids exhibiting energetically stable (111) facets with decreasing Si pillar size. The release of the strain induced by the mismatch of thermal expansion coefficients in the GaAs crystals has been studied by X-ray diffraction and photoluminescence measurements. The strain release mechanism is discussed within the framework of linear elasticity theory by Finite Element Method simulations, based on realistic geometries extracted from scanning electron microscopy images.

  15. Etching and Growth of GaAs

    NASA Technical Reports Server (NTRS)

    Seabaugh, A. C.; Mattauch, R., J.

    1983-01-01

    In-place process for etching and growth of gallium arsenide calls for presaturation of etch and growth melts by arsenic source crystal. Procedure allows precise control of thickness of etch and newly grown layer on substrate. Etching and deposition setup is expected to simplify processing and improve characteristics of gallium arsenide lasers, high-frequency amplifiers, and advanced integrated circuits.

  16. Present status of GaAs. [including space processing and solid state applications

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Lagowski, J.; Jastrzebski, L.

    1979-01-01

    An extensive literature survey on GaAs was carried out for the period December 31, 1970, to December 31, 1977. The increasing interest in GaAs device structures increased steadily during that period. The leading research and development centers and the specific areas of interest were identified. A workshop on GaAs was held in November 1977 to assess the present status of melt-grown GaAs and the existing needs for reliable chemical, structural, and electronic characterization methods. It was concluded that the present available bulk GaAs crystals are of poor quality and that GaAs technology is lagging demonstrated or potentially feasible GaAs devices and systems.

  17. Low resistance tungsten films on GaAs deposited by means of rapid thermal low pressure chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Katz, A.; Feingold, A.; Nakahara, S.; Pearton, S. J.; Lane, E.

    1992-08-01

    Low resistance tungsten (W) films were deposited onto GaAs substrates by means of rapid thermal low pressure chemical vapor deposition (RT-LPCVD), using tungsten hexafluoride (WF6) gas reduced by hydrogen (H2). Deposition temperatures up to 550 °C for durations of up to 30 s were explored, resulting in deposition of relatively pure W films (containing less than 2% O2 and C). Post-deposition sintering of the layers led to significant reduction of the resistivity to values as low as 50 μΩ cm. The efficiency of the deposition improved upon increasing the H2 flow rate up to 1250 sccm resulting in a deposition rate of about 10 nm/s at a total chamber pressure of 3.5 Torr and temperature of 500 °C. The films appeared to be polycrystalline with a very fine grain structure, regardless of the deposition temperature with good morphology and underwent a limited reaction with the underlying GaAs substrates.

  18. First-principles studies on molecular beam epitaxy growth of GaAs1-xBix

    DOE PAGES

    Luo, Guangfu; Yang, Shujiang; Li, Jincheng; ...

    2015-07-14

    We investigate the molecular beam epitaxy (MBE) growth of GaAs1-xBix film using density functional theory with spin-orbit coupling to understand the growth of this film, especially the mechanisms of Bi incorporation. We study the stable adsorption structures and kinetics of the incident molecules (As₂ molecule, Ga atom, Bi atom, and Bi₂ molecule) on the (2 x 1)-Gasub||Bi surface and a proposed q(1 x 1)-Gasub||AsAs surface has a quasi-(1 x 1) As layer above the Ga-terminated GaAs substrate and a randomly oriented As dimer layer on top. We obtain the desorption and diffusion barriers of the adsorbed molecules and also themore » reaction barriers of three key processes related to Bi evolution, namely, Bi incorporation, As/Bi exchange, and Bi clustering. The results help explain the experimentally observed dependence of Bi incorporation on the As/Ga ratio and growth temperature. Furthermore, we find that As₂ exchange with Bi of the (2 x 1)-Gasub||Bi surface is a key step controlling the kinetics of the Bi incorporation. Finally, we explore two possible methods to enhance the Bi incorporation, namely, replacing the MBE growth mode from codeposition of all fluxes with a sequential deposition of fluxes and applying asymmetric in-plane strain to the substrate.« less

  19. Measuring Carrier Lifetime in GaAs by Luminescence

    NASA Technical Reports Server (NTRS)

    Von Roos, O.

    1986-01-01

    Luminescence proposed as nondestructive technique for measuring Shockley-Read-Hall (SRH) recombination lifetime GaAs. Sample irradiated, and luminescence escapes through surface. Measurement requires no mechanical or electrical contact with sample. No ohmic contacts or p/n junctions needed. Sample not scrapped after tested.

  20. The 20 GHz power GaAs FET development

    NASA Technical Reports Server (NTRS)

    Crandell, M.

    1986-01-01

    The development of power Field Effect Transistors (FET) operating in the 20 GHz frequency band is described. The major efforts include GaAs FET device development (both 1 W and 2 W devices), and the development of an amplifier module using these devices.

  1. V-Grooved GaAs Solar Cell

    NASA Technical Reports Server (NTRS)

    Bailey, S. G.; Landis, G. R.; Wilt, D. M.; Thomas, R. D.; Arrison, A.; Fatemi, N. S.

    1991-01-01

    V-grooved GaAs solar photovoltaic cells increase optical coupling and greater conversion of light into electricity. Increases both trapping of incident light and lengths of optical paths in cell material. Net effect increases in total absorptivity, tolerance to damage by energetic particles, and short-circuit current. These improvements expected to follow from similar improvements obtained in silicon solar cells.

  2. Status of GaAs solar cell production

    NASA Technical Reports Server (NTRS)

    Yeh, Milton; Ho, Frank; Iles, Peter A.

    1989-01-01

    Recent experience in producing GaAs solar cells, to meet the full requirements of space-array manufacturers is reviewed. The main problems have been in extending MOCVD technology to provide high throughput of high quality epitaxial layers, and to integrate the other important factors needed to meet the full range of user requirements. Some discussion of evolutionary changes is also given.

  3. Gallium arsenide (GaAs) power conversion concept

    NASA Technical Reports Server (NTRS)

    Nussberger, A. A.

    1980-01-01

    A summary design analysis of a GaAs power conversion system for the solar power satellite (SPS) is presented. Eight different satellite configuration options for the solar arrays are compared. Solar cell annealing effects after proton irradiation are considered. Mass estimates for the SPS and the effect of solar cell parameters on SPS array design are discussed.

  4. Ballistic thermal point contacts made of GaAs nanopillars

    SciTech Connect

    Bartsch, Th.; Wetzel, A.; Sonnenberg, D.; Schmidt, M.; Heyn, Ch.; Hansen, W.

    2013-12-04

    We measure the thermal conductance of GaAs pillars that are only a few nanometers long. Our observations can be understood with a simple model, in which the pillars constitute thermal point contacts between 3D phonon reservoirs. Moreover, first measurements of the electronic transport through these pillars are presented.

  5. High purity, low dislocation GaAs single crystals

    NASA Technical Reports Server (NTRS)

    Chen, R. T.; Holmes, D. E.; Kirkpatrick, C. G.

    1983-01-01

    Liquid encapsulated Czochralski crystal growth techniques for producing undoped, high resistivity, low dislocation material suitable for device applications is described. Technique development resulted in reduction of dislocation densities in 3 inch GaAs crystals. Control over the melt stoichiometry was determined to be of critical importance for the reduction of twinning and polycrystallinity during growth.

  6. GaAs MESFET with lateral non-uniform doping

    NASA Technical Reports Server (NTRS)

    Wang, Y. C.; Bahrami, M.

    1983-01-01

    An analytical model of the GaAs MESFET with arbitrary non-uniform doping is presented. Numerical results for linear lateral doping profile are given as a special case. Theoretical considerations predict that better device linearity and improved F(T) can be obtained by using linear lateral doping when doping density increases from source to drain.

  7. Conductive atomic force microscopy study of InAs growth kinetics on vicinal GaAs (110)

    NASA Astrophysics Data System (ADS)

    Tejedor, Paloma; Díez-Merino, Laura; Beinik, Igor; Teichert, Christian

    2009-09-01

    Conductive atomic force microscopy has been used to investigate the effect of atomic hydrogen and step orientation on the growth behavior of InAs on GaAs (110) misoriented substrates. Samples grown by conventional molecular beam epitaxy exhibit higher conductivity on [11¯0]-multiatomic step edges, where preferential nucleation of InAs nanowires takes place by step decoration. On H-terminated substrates with triangular terraces bounded by [11¯5]-type steps, three-dimensional InAs clusters grow selectively at the terrace apices as a result of a kinetically driven enhancement in upward mass transport via AsHx intermediate species and a reduction in the surface free energy.

  8. Use of ultraviolet/ozone cleaning to remove C and O from GaAs prior to metalorganic molecular beam epitaxy and metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Pearton, S. J.; Ren, F.; Abernathy, C. R.; Hobson, W. S.; Luftman, H. S.

    1991-04-01

    Ultraviolet/ozone cleaning of GaAs substrates prior to metalorganic molecular beam epitaxy at 500 °C is shown to reduce the interfacial C and O concentrations by more than two orders of magnitude. Metal-semiconductor field-effect transistors (MESFETs) utilizing this cleaning prior to growth of the component epitaxial layers display superior current voltage (I-V) saturation characteristics compared to identical devices grown without the cleaning step. By contrast, provided the GaAs surface is not contaminated with silicates, the atomic hydrogen generated at the growth surface during growth by metalorganic chemical vapor deposition (MOCVD) leads to lower O and C interfacial concentrations, thereby circumventing the need for ozone cleaning. MESFETs grown by MOCVD with or without this cleaning have excellent I-V characteristics.

  9. GaP ring-like nanostructures on GaAs (100) with In{sub 0.15}Ga{sub 0.85}As compensation layers

    SciTech Connect

    Prongjit, Patchareewan Pankaow, Naraporn Boonpeng, Poonyasiri Thainoi, Supachok Panyakeow, Somsak Ratanathammaphan, Somchai

    2013-12-04

    We present the fabrication of GaP ring-like nanostructures on GaAs (100) substrates with inserted In{sub 0.15}Ga{sub 0.85}As compensation layers. The samples are grown by droplet epitaxy using solid-source molecular beam epitaxy. The dependency of nanostructural and optical properties of GaP nanostructures on In{sub 0.15}Ga{sub 0.85}As layer thickness is investigated by ex-situ atomic force microscope (AFM) and photoluminescence (PL). It is found that the characteristics of GaP ring-like structures on GaAs strongly depend on the In{sub 0.15}Ga{sub 0.85}As layer thickness.

  10. Growth and characterization of α and β-phase tungsten films on various substrates

    SciTech Connect

    Lee, Jeong-Seop; Cho, Jaehun; You, Chun-Yeol

    2016-03-15

    The growth conditions of tungsten thin films were investigated using various substrates including Si, Si/SiO{sub 2}, GaAs, MgO, and Al{sub 2}O{sub 3}, and recipes were discovered for the optimal growth conditions of thick metastable β-phase tungsten films on Si, GaAs, and Al{sub 2}O{sub 3} substrates, which is an important material in spin orbit torque studies. For the Si/SiO{sub 2} substrate, the crystal phase of the tungsten films was different depending upon the tungsten film thickness, and the transport properties were found to dramatically change with the thickness owing to a change in phase from the α + β phase to the α-phase. It is shown that the crystal phase changes are associated with residual stress in the tungsten films and that the resistivity is closely related to the grain sizes.

  11. Heteroepitaxial Growth of Ferromagnetic MnSb(0001) Films on Ge/Si(111) Virtual Substrates

    PubMed Central

    2013-01-01

    Molecular beam epitaxial growth of ferromagnetic MnSb(0001) has been achieved on high quality, fully relaxed Ge(111)/Si(111) virtual substrates grown by reduced pressure chemical vapor deposition. The epilayers were characterized using reflection high energy electron diffraction, synchrotron hard X-ray diffraction, X-ray photoemission spectroscopy, and magnetometry. The surface reconstructions, magnetic properties, crystalline quality, and strain relaxation behavior of the MnSb films are similar to those of MnSb grown on GaAs(111). In contrast to GaAs substrates, segregation of substrate atoms through the MnSb film does not occur, and alternative polymorphs of MnSb are absent. PMID:24409091

  12. Electrical properties of GaAs metal-oxide-semiconductor structure comprising Al2O3 gate oxide and AlN passivation layer fabricated in situ using a metal-organic vapor deposition/atomic layer deposition hybrid system

    NASA Astrophysics Data System (ADS)

    Aoki, Takeshi; Fukuhara, Noboru; Osada, Takenori; Sazawa, Hiroyuki; Hata, Masahiko; Inoue, Takayuki

    2015-08-01

    This paper presents a compressive study on the fabrication and optimization of GaAs metal-oxide-semiconductor (MOS) structures comprising a Al2O3 gate oxide, deposited via atomic layer deposition (ALD), with an AlN interfacial passivation layer prepared in situ via metal-organic chemical vapor deposition (MOCVD). The established protocol afforded self-limiting growth of Al2O3 in the atmospheric MOCVD reactor. Consequently, this enabled successive growth of MOCVD-formed AlN and ALD-formed Al2O3 layers on the GaAs substrate. The effects of AlN thickness, post-deposition anneal (PDA) conditions, and crystal orientation of the GaAs substrate on the electrical properties of the resulting MOS capacitors were investigated. Thin AlN passivation layers afforded incorporation of optimum amounts of nitrogen, leading to good capacitance-voltage (C-V) characteristics with reduced frequency dispersion. In contrast, excessively thick AlN passivation layers degraded the interface, thereby increasing the interfacial density of states (Dit) near the midgap and reducing the conduction band offset. To further improve the interface with the thin AlN passivation layers, the PDA conditions were optimized. Using wet nitrogen at 600 °C was effective to reduce Dit to below 2 × 1012 cm-2 eV-1. Using a (111)A substrate was also effective in reducing the frequency dispersion of accumulation capacitance, thus suggesting the suppression of traps in GaAs located near the dielectric/GaAs interface. The current findings suggest that using an atmosphere ALD process with in situ AlN passivation using the current MOCVD system could be an efficient solution to improving GaAs MOS interfaces.

  13. Design and Analysis of Low Vπ High-Speed Substrate Removed GaAs-AlGaAs Semiconductor Electrooptic Modulator

    NASA Astrophysics Data System (ADS)

    Abedi, Kambiz; Vahidi, Habib

    2011-12-01

    In this paper, a bulk GaAs substrate removed electrooptic modulators has been analyzed and designed. This structure has been optimized by using the finite element method to achieve a maximum matching between microwave and optical waves, half-wave voltage length product, VπL as low as 5 V-cm and electrical bandwidth as high as 50 GHz.

  14. First principle analyses of direct bandgap solar cells with absorbing substrates versus mirrors

    SciTech Connect

    Kirk, Alexander P.; Kirk, Wiley P.

    2013-11-07

    Direct bandgap InP, GaAs, CdTe, and Ga{sub 0.5}In{sub 0.5}P solar cells containing backside mirrors as well as parasitically absorbing substrates are analyzed for their limiting open circuit voltage and power conversion efficiency with comparison to record solar cells. From the principle of detailed balance, it is shown quantitatively that mirror solar cells have greater voltage and power conversion efficiency than their substrate counterparts. Next, the radiative recombination coefficient and maximum radiative lifetime of GaAs mirror and substrate solar cells are calculated and compared to the nonradiative Auger and Shockley-Read-Hall (SRH) lifetimes. Mirror solar cells have greater radiative lifetime than their substrate variants. Auger lifetime exceeds radiative lifetime for both substrate and mirror cells while SRH lifetime may be less or greater than radiative lifetime depending on trap concentration and capture cross section. Finally, the change in free energy of the photogenerated carriers is analyzed in a comparison between InP, GaAs, CdTe, and Ga{sub 0.5}In{sub 0.5}P mirror and substrate solar cells in order to characterize the relationship between solar photon quality and free energy management in solar cells with differing bandgaps. Wider bandgap visible threshold Ga{sub 0.5}In{sub 0.5}P solar cells make better use of the available change in free energy of the photogenerated charge carriers, even when normalized to the bandgap energy, than narrower bandgap near-IR threshold InP, GaAs, and CdTe solar cells.

  15. First principle analyses of direct bandgap solar cells with absorbing substrates versus mirrors

    NASA Astrophysics Data System (ADS)

    Kirk, Alexander P.; Kirk, Wiley P.

    2013-11-01

    Direct bandgap InP, GaAs, CdTe, and Ga0.5In0.5P solar cells containing backside mirrors as well as parasitically absorbing substrates are analyzed for their limiting open circuit voltage and power conversion efficiency with comparison to record solar cells. From the principle of detailed balance, it is shown quantitatively that mirror solar cells have greater voltage and power conversion efficiency than their substrate counterparts. Next, the radiative recombination coefficient and maximum radiative lifetime of GaAs mirror and substrate solar cells are calculated and compared to the nonradiative Auger and Shockley-Read-Hall (SRH) lifetimes. Mirror solar cells have greater radiative lifetime than their substrate variants. Auger lifetime exceeds radiative lifetime for both substrate and mirror cells while SRH lifetime may be less or greater than radiative lifetime depending on trap concentration and capture cross section. Finally, the change in free energy of the photogenerated carriers is analyzed in a comparison between InP, GaAs, CdTe, and Ga0.5In0.5P mirror and substrate solar cells in order to characterize the relationship between solar photon quality and free energy management in solar cells with differing bandgaps. Wider bandgap visible threshold Ga0.5In0.5P solar cells make better use of the available change in free energy of the photogenerated charge carriers, even when normalized to the bandgap energy, than narrower bandgap near-IR threshold InP, GaAs, and CdTe solar cells.

  16. OMVPE of GaAsSbN for long wavelength emission on GaAs.

    SciTech Connect

    Waldrip, Karen Elizabeth; Peake, Gregory Merwin; Modine, Normand Arthur; Hargett, Terry W.; Serkland, Darwin Keith

    2003-09-01

    GaAsSbN was grown by organometallic vapor phase epitaxy (OMVPE) as an alternative material to InGaAsN for long wavelength emission on GaAs substrates. OMVPE of GaAsSbN using trimethylgallium, 100% arsine, trimethylantimony, and 1,1-dimethylhydrazine was found to be kinetically limited at growth temperatures ranging from 520 C to 600 C, with an activation energy of 10.4 kcal/mol. The growth rate was linearly dependent on the group III flow and has a complex dependence on the group V constituents. A room temperature photoluminescence wavelength of >1.3 {micro}m was observed for unannealed GaAs{sub 0.69}Sb{sub 0.3}N{sub 0.01}. Low temperature (4 K) photoluminescence of GaAs{sub 0.69}Sb{sub 0.3}N{sub 0.01} shows an increase in FWHM of 2.4-3.4 times the FWHM of GaAs{sub 0.7}Sb{sub 0.3}, a red shift of 55-77 meV, and a decrease in intensity of one to two orders of magnitude. Hall measurements indicate a behavior similar to that of InGaAsN, a 300 K hole mobility of 350 cm{sup 2}/V-s with a 1.0 x 10{sup 17}/cm{sup 3} background hole concentration, and a 77 K mobility of 1220 cm{sup 2}/V-s with a background hole concentration of 4.8 x 10{sup 16}/cm{sup 3}. The hole mass of GaAs{sub 0.7}Sb{sub 0.3}/GaAs heterostructures was estimated at 0.37-0.40m{sub o}, and we estimate an electron mass of 0.2-0.3m{sub o} for the GaAs{sub 0.69}Sb{sub 0.3}N{sub 0.01}/GaAs system. The reduced exciton mass for GaAsSbN was estimated at about twice that found for GaAsSb by a comparison of diamagnetic shift vs. magnetic field.

  17. Oxidation of the GaAs semiconductor at the Al2O3/GaAs junction.

    PubMed

    Tuominen, Marjukka; Yasir, Muhammad; Lång, Jouko; Dahl, Johnny; Kuzmin, Mikhail; Mäkelä, Jaakko; Punkkinen, Marko; Laukkanen, Pekka; Kokko, Kalevi; Schulte, Karina; Punkkinen, Risto; Korpijärvi, Ville-Markus; Polojärvi, Ville; Guina, Mircea

    2015-03-14

    Atomic-scale understanding and processing of the oxidation of III-V compound-semiconductor surfaces are essential for developing materials for various devices (e.g., transistors, solar cells, and light emitting diodes). The oxidation-induced defect-rich phases at the interfaces of oxide/III-V junctions significantly affect the electrical performance of devices. In this study, a method to control the GaAs oxidation and interfacial defect density at the prototypical Al2O3/GaAs junction grown via atomic layer deposition (ALD) is demonstrated. Namely, pre-oxidation of GaAs(100) with an In-induced c(8 × 2) surface reconstruction, leading to a crystalline c(4 × 2)-O interface oxide before ALD of Al2O3, decreases band-gap defect density at the Al2O3/GaAs interface. Concomitantly, X-ray photoelectron spectroscopy (XPS) from these Al2O3/GaAs interfaces shows that the high oxidation state of Ga (Ga2O3 type) decreases, and the corresponding In2O3 type phase forms when employing the c(4 × 2)-O interface layer. Detailed synchrotron-radiation XPS of the counterpart c(4 × 2)-O oxide of InAs(100) has been utilized to elucidate the atomic structure of the useful c(4 × 2)-O interface layer and its oxidation process. The spectral analysis reveals that three different oxygen sites, five oxidation-induced group-III atomic sites with core-level shifts between -0.2 eV and +1.0 eV, and hardly any oxygen-induced changes at the As sites form during the oxidation. These results, discussed within the current atomic model of the c(4 × 2)-O interface, provide insight into the atomic structures of oxide/III-V interfaces and a way to control the semiconductor oxidation.

  18. Ultra-thin GaAs single-junction solar cells integrated with a reflective back scattering layer

    SciTech Connect

    Yang, Weiquan; Becker, Jacob; Liu, Shi; Kuo, Ying-Shen; Li, Jing-Jing; Zhang, Yong-Hang; Landini, Barbara; Campman, Ken

    2014-05-28

    This paper reports the proposal, design, and demonstration of ultra-thin GaAs single-junction solar cells integrated with a reflective back scattering layer to optimize light management and minimize non-radiative recombination. According to our recently developed semi-analytical model, this design offers one of the highest potential achievable efficiencies for GaAs solar cells possessing typical non-radiative recombination rates found among commercially available III-V arsenide and phosphide materials. The structure of the demonstrated solar cells consists of an In{sub 0.49}Ga{sub 0.51}P/GaAs/In{sub 0.49}Ga{sub 0.51}P double-heterostructure PN junction with an ultra-thin 300 nm thick GaAs absorber, combined with a 5 μm thick Al{sub 0.52}In{sub 0.48}P layer with a textured as-grown surface coated with Au used as a reflective back scattering layer. The final devices were fabricated using a substrate-removal and flip-chip bonding process. Solar cells with a top metal contact coverage of 9.7%, and a MgF{sub 2}/ZnS anti-reflective coating demonstrated open-circuit voltages (V{sub oc}) up to 1.00 V, short-circuit current densities (J{sub sc}) up to 24.5 mA/cm{sup 2}, and power conversion efficiencies up to 19.1%; demonstrating the feasibility of this design approach. If a commonly used 2% metal grid coverage is assumed, the anticipated J{sub sc} and conversion efficiency of these devices are expected to reach 26.6 mA/cm{sup 2} and 20.7%, respectively.

  19. Products of thermal decomposition of triethylgallium and trimethylgallium adsorbed on Ga-stabilized GaAs(100)

    NASA Astrophysics Data System (ADS)

    Donnelly, V. M.; McCaulley, J. A.

    1990-11-01

    We report mass spectrometric studies of the products of thermal decomposition of triethylgallium (TEGa), and trimethylgallium (TMGa) adsorbed on Ga-stabilized GaAs(100) in ultrahigh vacuum. Adsorbed layers were prepared by dosing clean GaAs, near room temperature, to either saturated coverage or coverages below saturation. Subsequent heating leads to desorption of products, detected by a differentially pumped quadrupole mass spectrometer. Total carbon coverage was monitored by X-ray photoelectron spectroscopy (XPS). The substrate temperature was measured by infrared laser interferometric thermometry. At saturated coverage, TEGa decomposes upon heating (1-2°C/s) to yield one third Ga-alkyl product (Ga(C 2H 5) 2) between 0 and 300°C, and two thirds hydrocarbon products (mostly C 2H 4 and some C 2H 5) between 250 and 390°C. About 25% of the Ga deposited from TEGa remains on the surface after all products desorb. Below 40% of saturated coverage, only the higher temperature hydrocarbon products desorb, and all adsorbed Ga remains on the surface. TMGa behaves similarly; starting at saturated coverage, Ga-alkyl product (either Ga(CH 3) 2 or a mixture of Ga(CH 3) 2 and TMGa) desorbs at low temperature (50-380°C) and hydrocarbon product (CH 3) desorbs at higher temperature (250-425°C). However, for TMGa the yield of the Ga-alkyl is about twice the CH 3 yield. No ethane, or butane was detected in TEGa decomposition, nor was any ethane found for TMGa decomposition, indicating that association and disproportionation reactions are unimportant. Also no As-alkyl products were detected. The slower rate of desorption of CH 3 for TMGa decomposition, compared to C 2H 4 and C 2H 5 desorption from TEGa decomposition, qualitatively explains higher carbon levels in GaAs films grown with TMGa versus TEGa.

  20. Testing a GaAs cathode in SRF gun

    SciTech Connect

    Wang, E.; Kewisch, J.; Ben-Zvi, I.; Burrill, A.; Rao, T.; Wu, Q.; Holmes, D.

    2011-03-28

    RF electron guns with a strained superlattice GaAs cathode are expected to generate polarized electron beams of higher brightness and lower emittance than do DC guns, due to their higher field gradient at the cathode's surface and lower cathode temperature. We plan to install a bulk GaAs:Cs in a SRF gun to evaluate the performance of both the gun and the cathode in this environment. The status of this project is: In our 1.3 GHz 1/2 cell SRF gun, the vacuum can be maintained at nearly 10{sup -12} Torr because of cryo-pumping at 2K. With conventional activation of bulk GaAs, we obtained a QE of 10% at 532 nm, with lifetime of more than 3 days in the preparation chamber and have shown that it can survive in transport from the preparation chamber to the gun. The beam line has been assembled and we are exploring the best conditions for baking the cathode under vacuum. We report here the progress of our test of the GaAs cathode in the SRF gun. Future particle accelerators, such as eRHIC and the ILC require high-brightness, high-current polarized electrons. Strained superlattice GaAs:Cs has been shown to be an efficient cathode for producing polarized electrons. Activation of GaAs with Cs,O(F) lowers the electron affinity and makes it energetically possible for all the electrons, excited into the conduction band that drift or diffuse to the emission surface, to escape into the vacuum. Presently, all operating polarized electron sources, such as the CEBAF, are DC guns. In these devices, the excellent ultra-high vacuum extends the lifetime of the cathode. However, the low field gradient on the photocathode's emission surface of the DC guns limits the beam quality. The higher accelerating gradients, possible in the RF guns, generate a far better beam. Until recently, most RF guns operated at room temperature, limiting the vacuum to {approx}10{sup -9} Torr. This destroys the GaAs's NEA surface. The SRF guns combine the excellent vacuum conditions of DC guns and the high

  1. Cryogenic measurements of aerojet GaAs n-JFETs

    NASA Technical Reports Server (NTRS)

    Goebel, John H.; Weber, Theodore T.

    1993-01-01

    The spectral noise characteristics of Aerojet gallium arsenide (GaAs) junction field effect transistors (JFET's) have been investigated down to liquid-helium temperatures. Noise characterization was performed with the field effect transistor (FET) in the floating-gate mode, in the grounded-gate mode to determine the lowest noise readings possible, and with an extrinsic silicon photodetector at various detector bias voltages to determine optimum operating conditions. The measurements indicate that the Aerojet GaAs JFET is a quiet and stable device at liquid helium temperatures. Hence, it can be considered a readout line driver or infrared detector preamplifier as well as a host of other cryogenic applications. Its noise performance is superior to silicon (Si) metal oxide semiconductor field effect transistor (MOSFET's) operating at liquid helium temperatures, and is equal to the best Si n channel junction field effect transistor (n-JFET's) operating at 300 K.

  2. GaAs solar cells for laser power beaming

    NASA Technical Reports Server (NTRS)

    Olsen, Larry C.; Dunham, Glen; Huber, Daniel A.; Addis, F. William; Anheier, Norman; Coomes, E. P.

    1991-01-01

    Efforts to develop GaAs solar cells for coupling to laser beams in the wavelength range of 800 to 840 nm are described. This work was motivated primarily by interests in space-tp-space power beaming applications. In particular, the Battelle Pacific Northwest Laboratories is conducting studies of the utilization of power beaming for several future space missions. Modeling calculations of GaAs cell performance were carried out using PC-1D to determine an appropriate design for a p/n cell structure. Epitaxial wafers were grown by MOCVD and cells fabricated at WSU Tri-Cities. Under simulated conditions, an efficiency of 53 percent was achieved for a cell coupled to 806 nm light at 400 mW/sq cm.

  3. Structure and diffusion in simulated liquid GaAs

    NASA Astrophysics Data System (ADS)

    Hanh, T. T. T.; Hoang, V. V.

    2010-03-01

    Structure and diffusion of Ga and As ions in simulated liquid GaAs have been studied in a model containing 3000 ions under periodic boundary conditions via molecular dynamics simulation (MD). The microstructure of systems has been analyzed through partial radial distribution functions (PRDFs), coordination number distributions, bond-angle distributions and interatomic distances. We found that calculated data agree well with the experimental ones. Temperature dependence of these distributions was obtained. Caculations show that liquid GaAs model with a real density at 5.3176 g cm-3 has a distorted tetrahedral network structure with the mean coordination number ZAs-Ga ≈ 4. Diffusion constant D in system has been calculated over temperatures ranged from 5000 K down to 1500 K. Calculations show that the temperature dependence of the diffusion constant D shows an Arrhenius law at relatively low temperatures above the melting point and it shows a power law, D˜ (T - Tc)γ, at higher temperatures.

  4. Optical detectors for GaAs MMIC integration: Technology assessment

    NASA Technical Reports Server (NTRS)

    Claspy, P. C.; Bhasin, K. B.

    1989-01-01

    Fiber optic links are being considered to transmit digital and analog signals in phased array antenna feed networks in space communications systems. The radiating elements in these arrays will be GaAs monolithic microwave integrated circuits (MMIC's) in numbers ranging from a few hundred to several thousand. If such optical interconnects are to be practical it appears essential that the associated components, including detectors, be monolithically integrated on the same chip as the microwave circuitry. The general issue of monolithic integration of microwave and optoelectronic components is addressed from the point of view of fabrication technology and compatibility. Particular attention is given to the fabrication technology of various types of GaAs optical detectors that are designed to operate at a wavelength of 830 nm.

  5. Slow domains in semi-insulating GaAs

    SciTech Connect

    Neumann, A.

    2001-07-01

    Semi-insulating GaAs shows current oscillations if a high dc voltage is applied to a sample. These oscillations are caused by traveling high-electric-field domains that are formed as a result of electric-field-enhanced electron trapping. This article describes the various types of experiments that have been carried out with this system, including recent ones that use the electro-optic Pockels effect in order to measure the local electric fields in the sample in a highly accurate manner. An historical overview of the theoretical developments is given and shows that no satisfying theory is currently available. A list of all the required ingredients for a successful theory is provided and the experimental data are explained in a qualitative manner. Furthermore, the main electron trap in semi-insulating GaAs is the native defect EL2, the main properties of which are described. {copyright} 2001 American Institute of Physics.

  6. Crystal growth of device quality GaAs in space

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Lagowski, J.

    1986-01-01

    It was established that the findings on elemental semiconductors Ge and Si regarding crystal growth, segregation, chemical composition, defect interactions, and materials properties-electronic properties relationships are not necessarily applicable to GaAs (and to other semiconductor compounds). In many instances totally unexpected relationships were found to prevail. It was further established that in compound semiconductors with a volatile constituent, control of stoichiometry is far more critical than any other crystal growth parameter. It was also shown that, due to suppression of nonstoichiometric fluctuations, the advantages of space for growth of semiconductor compounds extend far beyond those observed in elemental semiconductors. A novel configuration was discovered for partial confinement of GaAs melt in space which overcomes the two major problems associated with growth of semiconductors in total confinement. They are volume expansion during solidification and control of pressure of the volatile constituent. These problems are discussed in detail.

  7. Crystal growth of device quality GaAs in space

    NASA Technical Reports Server (NTRS)

    Gatos, Harry C.; Lagowski, Jacek

    1989-01-01

    The program on Crystal Growth of Device Quality GaAs in Space was initiated in 1977. The initial stage covering 1977 to 1984 was devoted strictly to ground-based research. By 1985 the program had evolved into its next logical stage aimed at space growth experiments; however, since the Challenger disaster, the program has been maintained as a ground-based program awaiting activation of experimentation in space. The overall prgram has produced some 80 original scientific publications on GaAs crystal growth, crystal characterization, and new approaches to space processing. Publication completed in the last three years are listed. Their key results are outlined and discussed in the twelve publications included as part of the report.

  8. Single Material Band Gap Engineering in GaAs Nanowires

    SciTech Connect

    Spirkoska, D.; Abstreiter, G.; Efros, A.; Conesa-Boj, S.; Morante, J. R.; Arbiol, J.; Fontcuberta i Morral, A.

    2011-12-23

    The structural and optical properties of GaAs nanowire with mixed zinc-blende/wurtzite structure are presented. High resolution transmission electron microscopy indicates the presence of a variety of shorter and longer segments of zinc-blende or wurtzite crystal phases. Sharp photoluminescence lines are observed with emission energies tuned from 1.515 eV down to 1.43 eV. The downward shift of the emission peaks can be understood by carrier confinement at the wurtzite/zinc-blende heterojunction, in quantum wells and in random short period superlattices existent in these nanowires, assuming the theoretical staggered band-offset between wurtzite and zinc-blende GaAs.

  9. Optical detectors for GaAs MMIC integration - Technology assessment

    NASA Technical Reports Server (NTRS)

    Claspy, P. C.; Bhasin, K. B.

    1989-01-01

    Fiber optic links are being considered to transmit digital and analog signals in phased array antenna feed networks in space communications systems. The radiating elements in these arrays will be GaAs monolithic microwave integrated circuits (MMIC's) in numbers ranging from a few hundred to several thousand. If such optical interconnects are to be practical it appears essential that the associated components, including detectors, be monolithically integrated on the same chip as the microwave circuitry. The general issue of monolithic integration of microwave and optoelectronic components is addressed from the point of view of fabrication technology and compatibility. Particular attention is given to the fabrication technology of various types of GaAs optical detectors that are designed to operate at a wavelength of 830 nm.

  10. High purity low dislocation GaAs single crystals

    NASA Technical Reports Server (NTRS)

    Chen, R. T.; Holmes, D. E.; Kirkpatrick, C. G.

    1982-01-01

    Recent advances in GaAs bulk crystal growth using the LEC (liquid encapsulated Czochralski) technique are described. The dependence of the background impurity concentration and the dislocation density distribution on the materials synthesis and growth conditions were investigated. Background impurity concentrations as low as 4 x 10 to the 15th power were observed in undoped LEC GaAs. The dislocation density in selected regions of individual ingots was very low, below the 3000 cm .3000/sq cm threshold. The average dislocation density over a large annular ring on the wafers fell below the 10000/sq cm level for 3 inch diameter ingots. The diameter control during the program advanced to a diameter variation along a 3 inch ingot less than 2 mm.

  11. The GaAs solar cell research and development programs of the Air Force

    NASA Technical Reports Server (NTRS)

    Masloski, K. T.

    1980-01-01

    The compound GaAs is of interest for space application photovoltaics due to its inherent advantages over silicon. Higher efficiencies, superior radiation hardness, and a greater temperature resistance are the major advantages of GaAs over Si. Air Force programs look for ways of maximizing these advantages while minimizing disadvantages such as higher costs and weights. Four programs in GaAs photovoltaics are described and each program is discussed in terms of its objective, approach and status.

  12. Performance Comparison of Top and Bottom Contact Gallium Arsenide (GaAs) Solar Cell

    DTIC Science & Technology

    2014-09-01

    Performance Comparison of Top and Bottom Contact Gallium Arsenide (GaAs) Solar Cell by Naresh C Das ARL-TR-7054 September 2014...September 2014 Performance Comparison of Top and Bottom Contact Gallium Arsenide (GaAs) Solar Cell Naresh C Das Sensors and Electron...From - To) 01/02/2014–07/15/2014 4. TITLE AND SUBTITLE Performance Comparison of Top and Bottom Contact Gallium Arsenide (GaAs) Solar Cell 5a

  13. Raman-scattering probe of anharmonic effects in GaAs

    NASA Astrophysics Data System (ADS)

    Verma, Prabhat; Abbi, S. C.; Jain, K. P.

    1995-06-01

    A comparative study of anharmonic effects in various structural forms of GaAs, namely crystalline, disordered and ion-implanted, and pulse laser annealed (PLA), using temperature-dependent Raman scattering, is reported for various phonon modes over the temperature range 10-300 K. The disordered and PLA samples are found to have greater anharmonicity than crystalline GaAs. The localized vibrational mode in PLA GaAs shows shorter relaxation time than the LO-phonon mode.

  14. Improved GaAs solar cells with very thin junctions

    NASA Technical Reports Server (NTRS)

    Hovel, H. J.; Woodall, J. M.

    1976-01-01

    Violet cells with 500-1000 A junction depths have been made in GaAs by narrow junction diffusion followed by anodization. The best AM0 efficiencies obtained by this technique have been 10.5% (14% at AM1). GaAlAs-GaAs structures with very thin GaAlAs layers are much more promising, and efficiencies of over 18% at AM0 have been measured (21.9% at AM1).

  15. On the dissolution properties of GaAs in Ga

    NASA Technical Reports Server (NTRS)

    Davidson, M. C.; Moynahan, A. H.

    1977-01-01

    The dissolution of GaAs in Ga was studied to determine the nature and cause of faceting effects. Ga was allowed to dissolve single crystalline faces under isothermal conditions. Of the crystalline planes with low number indices, only the (100) surface showed a direct correlation of dissolution sites to dislocations. The type of dissolution experienced depended on temperature, and there were three distinct types of behavior.

  16. Solar heating of GaAs nanowire solar cells.

    PubMed

    Wu, Shao-Hua; Povinelli, Michelle L

    2015-11-30

    We use a coupled thermal-optical approach to model the operating temperature rise in GaAs nanowire solar cells. We find that despite more highly concentrated light absorption and lower thermal conductivity, the overall temperature rise in a nanowire structure is no higher than in a planar structure. Moreover, coating the nanowires with a transparent polymer can increase the radiative cooling power by 2.2 times, lowering the operating temperature by nearly 7 K.

  17. Gallium arsenide (GaAs) solar cell modeling studies

    NASA Technical Reports Server (NTRS)

    Heinbockel, J. H.

    1980-01-01

    Various models were constructed which will allow for the variation of system components. Computer studies were then performed using the models constructed in order to study the effects of various system changes. In particular, GaAs and Si flat plate solar power arrays were studied and compared. Series and shunt resistance models were constructed. Models for the chemical kinetics of the annealing process were prepared. For all models constructed, various parametric studies were performed.

  18. Radiation damage in GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Conway, E. J.; Walker, G. H.

    1979-01-01

    Recent results of electron and proton irradiation and annealing of GaAs solar cells are presented along with some implications of these results. A comparison between the energy-levels produced by protons and by electrons which are not stopped in the material indicate that the damage produced by protons and electrons may be qualitatively different. Thus, annealing of proton damage may be very different from the annealing of electron damage.

  19. Monolithic GaAs surface acoustic wave chemical microsensor array

    SciTech Connect

    HIETALA,VINCENT M.; CASALNUOVO,STEPHEN A.; HELLER,EDWIN J.; WENDT,JOEL R.; FRYE-MASON,GREGORY CHARLES; BACA,ALBERT G.

    2000-03-09

    A four-channel surface acoustic wave (SAW) chemical sensor array with associated RF electronics is monolithically integrated onto one GaAs IC. The sensor operates at 690 MHz from an on-chip SAW based oscillator and provides simple DC voltage outputs by using integrated phase detectors. This sensor array represents a significant advance in microsensor technology offering miniaturization, increased chemical selectivity, simplified system assembly, improved sensitivity, and inherent temperature compensation.

  20. GaAs Concentrator Photovoltaic Power System Feasibility Investigation.

    DTIC Science & Technology

    1977-12-01

    cells at high intensity levels by permitting testing in a controlled thermal environment without the thermal problems ( heat flux) inherent with...multisun steady state simulation; i.e., the bulk cell temperature is constant and controlled by the backs de- heating /cooling block of the test fixture...determine the efficiency of the GaAs cells at various temperatures. Thus, the cells will be mounted on a small, thermocouple-equipped heat sink block