Science.gov

Sample records for 1 middle dot

  1. para-Nitrophenyl sulfate activation of human sulfotransferase 1A1 is consistent with intercepting the E[middle dot]PAP complex and reformation of E[middle dot]PAPS.

    PubMed

    Tyapochkin, Eduard; Cook, Paul F; Chen, Guangping

    2009-10-23

    Cytosolic sulfotransferase (SULT)-catalyzed sulfation regulates biological activities of various biosignaling molecules and metabolizes hydroxyl-containing drugs and xenobiotics. The universal sulfuryl group donor for SULT-catalyzed sulfation is adenosine 3'-phosphate 5'-phosphosulfate (PAPS), whereas the reaction products are a sulfated product and adenosine 3',5'-diphosphate (PAP). Although SULT-catalyzed kinetic mechanisms have been studied since the 1980s, they remain unclear. Human SULT1A1 is an important phase II drug-metabolizing enzyme. Previously, isotope exchange at equilibrium indicated steady-state ordered mechanism with PAPS and PAP binding to the free SULT1A1 (Tyapochkin, E., Cook, P. F., and Chen, G. (2008) Biochemistry 47, 11894-11899). On the basis of activation of SULT1A1 by para-nitrophenyl sulfate (pNPS), an ordered bypass mechanism has been proposed where pNPS sulfates PAP prior to its release from the E.PAP complex regenerating E.PAPS. Data are consistent with uncompetitive substrate inhibition by naphthol as a result of formation of the E.PAP.naphthol dead-end complex; formation of the complex is corroborated by naphthol/PAP double inhibition experiments. pNPS activation data demonstrate an apparent ping-pong behavior with pNPS adding to E.PAP, and competitive inhibition by naphthol consistent with formation of the E.PAP.naphthol complex. Exchange against forward reaction flux (PAPS plus naphthol) beginning with [35S]PAPS and generating [35S]naphthyl sulfate is also consistent with pNPS intercepting the E.PAP complex. Overall, data are consistent with the proposed ordered bypass mechanism.

  2. The histone methyltransferase Dot1/DOT1L as a critical regulator of the cell cycle

    PubMed Central

    Kim, Wootae; Choi, Minji; Kim, Ja-Eun

    2014-01-01

    Dot1/DOT1L catalyzes the methylation of histone H3 lysine 79 (H3K79), which regulates diverse cellular processes, such as development, reprogramming, differentiation, and proliferation. In regards to these processes, studies of Dot1/DOT1L-dependent H3K79 methylation have mainly focused on the transcriptional regulation of specific genes. Although the gene transcription mediated by Dot1/DOT1L during the cell cycle is not fully understood, H3K79 methylation plays a critical role in the progression of G1 phase, S phase, mitosis, and meiosis. This modification may contribute to the chromatin structure that controls gene expression, replication initiation, DNA damage response, microtubule reorganization, chromosome segregation, and heterochromatin formation. Overall, Dot1/DOT1L is required to maintain genomic and chromosomal stability. This review summarizes the several functions of Dot1/DOT1L and highlights its role in cell cycle regulation. PMID:24526115

  3. Identities (Academic + Private) = Subjectivities[superscript (desire)]: Re:Collecting Art[middle dot]I/f/acts

    ERIC Educational Resources Information Center

    Brogden, Lace Marie

    2010-01-01

    Expanding upon previous theorizing of Art[middle dot]I/f/act[middle dot]ology published in "Qualitative Inquiry" in 2008, this article offers autoethnographic re:collections of a performance/paper presented at the international "Academic Identities in Crisis?" conference at the University of Central Lancashire, held in…

  4. The V[Combining Dot Above]O2 Kinetics of Maximal and Supramaximal Running Exercises in Sprinters and Middle-Distance Runners.

    PubMed

    do Nascimento Salvador, Paulo C; Dal Pupo, Juliano; De Lucas, Ricardo D; de Aguiar, Rafael A; Arins, Francimara B; Guglielmo, Luiz G A

    2016-10-01

    do Nascimento Salvador, PC, Dal Pupo, J, De Lucas, RD, de Aguiar, RA, Arins, FB, and Guglielmo, LGA. The V[Combining Dot Above]O2 kinetics of maximal and supramaximal running exercises in sprinters and middle-distance runners. J Strength Cond Res 30(10): 2857-2863, 2016-The aim of this study was to compare the V[Combining Dot Above]O2 kinetics parameters during maximal and supramaximal running exercises in sprinters (SPR) and middle-distance runners (MDR). Twelve SPR (age 20.6 ± 3.4 years; and body mass 74.9 ± 6.2 kg) and 10 MDR (age 17.6 ± 1.4 years; and body mass 70.1 ± 11.8 kg) performed, on different days, a maximal incremental running test for determination of the velocity at maximum oxygen uptake (vV[Combining Dot Above]O2max) and 2 constant-speed tests for analysis of V[Combining Dot Above]O2 kinetics at 100 and 120% of vV[Combining Dot Above]O2max. The MDR presented significantly higher values for the critical speed (18.0 ± 1.0 vs. 14.2 ± 1.0 km·h), vV[Combining Dot Above]O2max (19.4 ± 0.7 vs. 17.2 ± 0.8 km·h), and time to exhaustion at 100% (437 ± 53 vs. 366 ± 49 seconds) than the SPR (p ≤ 0.05). However, the SPR demonstrated greater values for the anaerobic distance capacity (281.3 ± 66.1 vs. 208.0 ± 43.4 m). Although the mean response time and the time to attain the V[Combining Dot Above]O2max of the V[Combining Dot Above]O2 kinetics was higher in the maximal than supramaximal running speed (p ≤ 0.05), no difference was found in these parameters as well for V[Combining Dot Above]O2 slow component (p > 0.05) between the groups. This study showed that different aerobic and anaerobic characteristics in MDR and SPR did not affect the V[Combining Dot Above]O2 kinetics in maximal and supramaximal intensities within the severe-intensity domain. From a practical perspective, parameters of V[Combining Dot Above]O2 response may provide helpful information for training control as the duration of stimulus close to V[Combining Dot Above]O2max.

  5. Photoluminescent carbon dots from 1,4-addition polymers.

    PubMed

    Jiang, Zhiqiang; Nolan, Andrew; Walton, Jeffrey G A; Lilienkampf, Annamaria; Zhang, Rong; Bradley, Mark

    2014-08-25

    Photoluminescent carbon dots were synthesised directly by thermopyrolysis of 1,4-addition polymers, allowing precise control of their properties. The effect of polymer composition on the properties of the carbon dots was investigated by TEM, IR, XPS, elemental analysis and fluorescence analysis, with carbon dots synthesised from nitrogen-containing polymers showing the highest fluorescence. The carbon dots with high nitrogen content were observed to have strong fluorescence in the visible region, and culture with cells showed that the carbon dots were non-cytotoxic and readily taken up by three different cell lines.

  6. Targeting recruitment of disruptor of telomeric silencing 1-like (DOT1L): characterizing the interactions between DOT1L and mixed lineage leukemia (MLL) fusion proteins.

    PubMed

    Shen, Chenxi; Jo, Stephanie Y; Liao, Chenzhong; Hess, Jay L; Nikolovska-Coleska, Zaneta

    2013-10-18

    The MLL fusion proteins, AF9 and ENL, activate target genes in part via recruitment of the histone methyltransferase DOT1L (disruptor of telomeric silencing 1-like). Here we report biochemical, biophysical, and functional characterization of the interaction between DOT1L and MLL fusion proteins, AF9/ENL. The AF9/ENL-binding site in human DOT1L was mapped, and the interaction site was identified to a 10-amino acid region (DOT1L865-874). This region is highly conserved in DOT1L from a variety of species. Alanine scanning mutagenesis analysis shows that four conserved hydrophobic residues from the identified binding motif are essential for the interactions with AF9/ENL. Binding studies demonstrate that the entire intact C-terminal domain of AF9/ENL is required for optimal interaction with DOT1L. Functional studies show that the mapped AF9/ENL interacting site is essential for immortalization by MLL-AF9, indicating that DOT1L interaction with MLL-AF9 and its recruitment are required for transformation by MLL-AF9. These results strongly suggest that disruption of interaction between DOT1L and AF9/ENL is a promising therapeutic strategy with potentially fewer adverse effects than enzymatic inhibition of DOT1L for MLL fusion protein-associated leukemia.

  7. MLL1 and DOT1L cooperate with meningioma-1 to induce acute myeloid leukemia

    PubMed Central

    Riedel, Simone S.; Haladyna, Jessica N.; Bezzant, Matthew; Stevens, Brett; Pollyea, Daniel A.; Sinha, Amit U.; Armstrong, Scott A.; Wei, Qi; Pollock, Roy M.; Daigle, Scott R.; Jordan, Craig T.; Ernst, Patricia; Bernt, Kathrin M.

    2016-01-01

    Meningioma-1 (MN1) overexpression is frequently observed in patients with acute myeloid leukemia (AML) and is predictive of poor prognosis. In murine models, forced expression of MN1 in hematopoietic progenitors induces an aggressive myeloid leukemia that is strictly dependent on a defined gene expression program in the cell of origin, which includes the homeobox genes Hoxa9 and Meis1 as key components. Here, we have shown that this program is controlled by two histone methyltransferases, MLL1 and DOT1L, as deletion of either Mll1 or Dot1l in MN1-expressing cells abrogated the cell of origin–derived gene expression program, including the expression of Hoxa cluster genes. In murine models, genetic inactivation of either Mll1 or Dot1l impaired MN1-mediated leukemogenesis. We determined that HOXA9 and MEIS1 are coexpressed with MN1 in a subset of clinical MN1hi leukemia, and human MN1hi/HOXA9hi leukemias were sensitive to pharmacologic inhibition of DOT1L. Together, these data point to DOT1L as a potential therapeutic target in MN1hi AML. In addition, our findings suggest that epigenetic modulation of the interplay between an oncogenic lesion and its cooperating developmental program has therapeutic potential in AML. PMID:26927674

  8. The histone methyltransferase DOT1L promotes neuroblastoma by regulating gene transcription.

    PubMed

    Wong, Matthew; Tee, Andrew El; Milazzo, Giorgio; Bell, Jessica L; Poulos, Rebecca C; Atmadibrata, Bernard; Sun, Yuting; Jing, Duohui; Ho, Nicholas; Ling, Dora; Liu, Pei Yan; Zhang, Xu Dong; Hüttelmaier, Stefan; Wong, Jason W H; Wang, Jenny; Polly, Patsie; Perini, Giovanni; Scarlett, Christopher J; Liu, Tao

    2017-02-16

    Myc oncoproteins exert tumorigenic effects by regulating expression of target oncogenes. Histone H3 lysine 79 (H3K79) methylation at Myc-responsive elements of target gene promoters is a strict prerequisite for Myc-induced transcriptional activation, and DOT1L is the only known histone methyltransferase that catalyses H3K79 methylation. Here we show that N-Myc upregulatsd DOT1L mRNA and protein expression by binding to the DOT1L gene promoter. shRNA-mediated depletion of DOT1L reduced mRNA and protein expression of N-Myc target genes ODC1 and E2F2. DOT1L bound to the Myc Box II domain of N-Myc protein, and knockdown of DOT1L reduced histone H3K79 methylation and N-Myc protein binding at the ODC1 and E2F2 gene promoters and reduced neuroblastoma cell proliferation. Treatment with the small molecule DOT1L inhibitor SGC0946 reduced H3K79 methylation and proliferation of MYCN gene-amplified neuroblastoma cells. In mice xenografts of neuroblastoma cells stably expressing doxycycline-inducible DOT1L shRNA, ablating DOT1L expression with doxycycline significantly reduced ODC1 and E2F2 expression, reduced tumor progression, and improved overall survival. Additionally, high levels of DOT1L gene expression in human neuroblastoma tissues correlated with high levels of MYCN, ODC1, and E2F2 gene expression and independently correlated with poor patient survival. Taken together, our results identify DOT1L as a novel co-factor in N-Myc-mediated transcriptional activation of target genes and neuroblastoma oncogenesis. Furthermore, they characterize DOT1L inhibitors as novel anticancer agents against MYCN-amplified neuroblastoma.

  9. Discovery of Potent, Selective, and Structurally Novel Dot1L Inhibitors by a Fragment Linking Approach.

    PubMed

    Möbitz, Henrik; Machauer, Rainer; Holzer, Philipp; Vaupel, Andrea; Stauffer, Frédéric; Ragot, Christian; Caravatti, Giorgio; Scheufler, Clemens; Fernandez, Cesar; Hommel, Ulrich; Tiedt, Ralph; Beyer, Kim S; Chen, Chao; Zhu, Hugh; Gaul, Christoph

    2017-03-09

    Misdirected catalytic activity of histone methyltransferase Dot1L is believed to be causative for a subset of highly aggressive acute leukemias. Targeting the catalytic domain of Dot1L represents a potential therapeutic approach for these leukemias. In the context of a comprehensive Dot1L hit finding strategy, a knowledge-based virtual screen of the Dot1L SAM binding pocket led to the discovery of 2, a non-nucleoside fragment mimicking key interactions of SAM bound to Dot1L. Fragment linking of 2 and 3, an induced back pocket binder identified in earlier studies, followed by careful ligand optimization led to the identification of 7, a highly potent, selective and structurally novel Dot1L inhibitor.

  10. Screened spin-1 and -1/2 Kondo effect in a triangular quantum dot system with interdot Coulomb repulsion

    NASA Astrophysics Data System (ADS)

    Xiong, Yong-Chen; Wang, Wei-Zhong; Luo, Shi-Jun; Yang, Jun-Tao; Huang, Hai-Ming

    2017-03-01

    By means of the numerical renormalization group (NRG) technique, we study the low temperature transport property and the phase transition for a triangular triple quantum dot system, including two centered dots (dot 1 and 2) and one side dot (dot 3). We focus on the effect of interdot repulsion V between two centered dots in a wide range of the interdot hopping tij (i,j = 1,2,3). When the hoppings between the centered dot and the side dot are symmetric, i.e., t13 = t23, and that between two centered dots t12 is small, two centered dots form a spin triplet when V is absent, and a totally screened spin-1 Kondo effect is observed. In this case, one has a spin 1 that is partially screened by the leads as in the usual spin-1 Kondo model, and the remaining spin 1/2 degree of freedom forms a singlet with the side dot. As V is large enough, one of the centered dots is singly occupied, while the other one is empty. The spin-1/2 Kondo effect is found when t13 is small. For large t12, two centered dots form a spin singlet when V = 0, leading to zero conductance. As V is large enough, the spin-1/2 Kondo effect is recovered in the case of small t13. For asymmetric t13≠t23 and small t12, a crossover is found as V increases in comparison with a first order quantum phase transition for the symmetric case. In the regime of large V, the spin-1/2 Kondo effect could also be found when both t13 and t23 are small. We demonstrate the present model is similar to the side-coupled double dot system in some appropriate regimes, and it appears as a possible realization of side-controllable molecular electronics and spintronics devices.

  11. Growth and characterization of InAs quantum dots on Si(0 0 1) substrates

    NASA Astrophysics Data System (ADS)

    Zhao, Z. M.; Hul'ko, O.; Kim, H. J.; Liu, J.; Sugahari, T.; Shi, B.; Xie, Y. H.

    2004-11-01

    Self-assembled InAs quantum dots were grown on (0 0 1) orientated Si substrates by molecular beam epitaxy. Growth condition dependence of dot formation was studied. The evolution of size and shape of quantum dots with InAs coverage was examined using plan-view and cross-section transmission electron microscopy. Dot formation started at below 1 monolayer (ML) of InAs coverage, indicating Volmer-Weber growth mode. Dot size and density grew with increasing InAs coverage up to 0.7 ML. Dot density was observed to be strongly dependent on arsenic (As) beam equivalent pressure (BEP). A decrease of As BEP from 9.2×10 -6 to 1.2×10 -7 torr resulted in an increase in dot density from 4.3×10 9 to 1.8×10 11 cm -2 at a constant InAs coverage of 0.7 ML. Further increase in InAs coverage led to a clear broadening of dot size distribution and a slight decrease in dot density, presumably due to coarsening.

  12. Optical fiber temperature sensor utilizing alloyed Zn(x)Cd(1-x)S quantum dots.

    PubMed

    Zhao, Fei; Kim, Jongsung

    2014-08-01

    In this paper, optical fiber temperature sensors have been prepared by using alloyed Zn(x)Cd(1-x)S quantum dots as sensing media. The surface of the optical fiber was silanized to enhance covalent bond between quantum dots and optical fiber. The quantum dots were bonded to the surface of optical fiber and further encapsulated via sol-gel coating using 3-glycidoxypropyl trimethoxysilane (GPTMS) and 3-aminopropyl trimethoxysilane (APTMS) in ethyl alcohol in acidic condition. Quantum dots with green, yellow, and red fluorescence were used. The dependence of photoluminescence (PL) intensity from quantum dots on ambient temperature has been studied. Linear relation between the fluorescent intensity and temperature was obtained from alloyed quantum dots immobilized on the surface of optical fiber. The PL intensity, sensitivity, and thermal stability were increased by the silica encapsulation.

  13. 1. MIDDLE FORGE DISPLAY, ACROSS FROM BUILDING NO. 114 on ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. MIDDLE FORGE DISPLAY, ACROSS FROM BUILDING NO. 114 on FARLEY AVE. MARKER ON DISPLAY ITSELF READS: FORGE AND TOOLS, USED AT MIDDLE FORGE LOCATED AT PICATINNY LAKE OUTLETS 1749 TO 1880. NEARBY MARKER READS: THE MIDDLE FORGE. THE MT. HOPE IRONWORKS INCLUDING A TRACT CALLED THE MIDDLE FORGE, SUPPLIED ORDNANCE MATERIAL TO THE CONTINENTAL ARMY IN THE AMERICAN REVOLUTION. GENERAL WASHINGTON INSPECTED THE FACILITY. THE WAR DEPARTMENT PURCHASED THE MIDDLE FORGE PORPERTY FOR AN ARMY POWDER DEPOT IN 1879-80. THE FORGE AND TOOLS WERE RECOVERED AT THE ACTUAL SITE NEAR PICATINNY PEAK. THROUGH THE YEARS, THE MIDDLE FORGE DISPLAY CAME TO BE THE UNOFFICIAL SYMBOL OF PICATINNY ARSENAL. -- HISTORICAL OFFICE NO DATE - Picatinny Arsenal, State Route 15 near I-80, Dover, Morris County, NJ

  14. Quantum-Dots Based Electrochemical Immunoassay of Interleukin-1α

    SciTech Connect

    Wu, Hong; Liu, Guodong; Wang, Jun; Lin, Yuehe

    2007-07-01

    We describe a quantum-dot (QD, CdSe@ZnS)-based electrochemical immunoassay to detect a protein biomarker, interleukin-1α (IL-1α). QD conjugated with anti-IL-1α antibody was used as a label in an immunorecognition event. After a complete sandwich immunoreaction among the primary IL-1α antibody (immobilized on the avidin-modified magnetic beads), IL-1α, and the QD-labeled secondary antibody, QD labels were attached to the magnetic-bead surface through the antibody-antigen immunocomplex. Electrochemical stripping analysis of the captured QDs was used to quantify the concentration of IL-1α after an acid-dissolution step. The streptavidin-modified magnetic beads and the magnetic separation platform were used to integrate a facile antibody immobilization (through a biotin/streptavidin interaction) with immunoreactions and the isolation of immunocomplexes from reaction solutions in the assay. The voltammetric response is highly linear over the range of 0.5 to 50 ng mL-1 IL 1α, and the limit of detection is estimated to be 0.3 ng mL-1 (18 pM). This QD-based electrochemical immunoassay shows great promise for rapid, simple, and cost-effective analysis of protein biomarkers.

  15. 1. VIEW OF GEORGIA DOT BRIDGE NO. 05100025D01986N (JAMES P. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW OF GEORGIA DOT BRIDGE NO. 051-00025D-01986N (JAMES P. HOULIHAN BRIDGE) FACING EAST - Georgia DOT Bridge No. 051-00025D-01986N, US 17 & State Route 25 Spanning Savannah River, Port Wentworth, Chatham County, GA

  16. Structure and regulation of the mDot1 gene, a mouse histone H3 methyltransferase.

    PubMed Central

    Zhang, Wenzheng; Hayashizaki, Yoshihide; Kone, Bruce C

    2004-01-01

    The nucleotide sequence data reported have been deposited in the DDBJ, EMBL, GenBank(R) and GSDB Nucleotide Sequence Databases under accession numbers AY196089, AY196090, AY376663, AY377920 and AY376664. Recently, a new class of histone methyltransferases that plays an indirect role in chromatin silencing by targeting a conserved lysine residue in the nucleosome core was described, namely the Dot1 (disruptor of telomeric silencing) family [Feng, Wang, Ng, Erdjument-Bromage, Tempst, Struhl and Zhang (2002) Curr. Biol. 12, 1052-1058; van Leeuwen, Gafken and Gottschling (2002) Cell (Cambridge, Mass.) 109, 745-756; Ng, Feng, Wang, Erdjument-Bromage, Tempst, Zhang and Struhl (2002) Genes Dev. 16, 1518-1527]. In the present study, we report the isolation, genomic organization and in vivo expression of a mouse Dot1 homologue (mDot1). Expressed sequence tag analysis identified five mDot1 mRNAs (mDot1a-mDot1e) derived from alternative splicing. mDot1a and mDot1b encode 1540 and 1114 amino acids respectively, whereas mDot1c-mDot1e are incomplete at the 5'-end. mDot1a is closest to its human counterpart (hDot1L), sharing 84% amino acid identity. mDot1b is truncated at its N- and C-termini and contains an internal deletion. The five mDot1 isoforms are encoded by 28 exons on chromosome 10qC1, with exons 24 and 28 further divided into two and four sections respectively. Alternative splicing occurs in exons 3, 4, 12, 24, 27 and 28. Northern-blot analysis with probes corresponding to the methyltransferase domain or the mDot1a-coding region detected 7.6 and 9.5 kb transcripts in multiple tissues, but only the 7.6 kb transcript was evident in mIMCD3-collecting duct cells. Transfection of mDot1a-EGFP constructs (where EGFP stands for enhanced green fluorescent protein) into human embryonic kidney (HEK)-293T or mIMCD3 cells increased the methylation of H3-K79 but not H3-K4, -K9 or -K36. Furthermore, DMSO induced mDot1 gene expression and methylation specifically at H3-K79 in mIMCD3

  17. 78 FR 48868 - Proposed Cercla Administrative Cost Recovery Settlement; MassDOT, MassDOT Route 1 Right-of-Way...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-12

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY Proposed Cercla Administrative Cost Recovery Settlement; MassDOT, MassDOT Route 1 Right-of-Way... Environmental Response Compensation, and Liability Act, as amended (``CERCLA''), 42 U.S.C....

  18. Metal enhanced photoluminescence of near-infrared CdTexSe1-x quantum dots

    NASA Astrophysics Data System (ADS)

    Liu, Ling; Xu, Xiaoliang; Luo, Tian; Liu, Yansong; Yang, Zhou; Lei, Jiemei

    2012-07-01

    High-quality alloyed near-infrared CdTexSe1-x quantum dots were synthesized by a modified organometallic method. The emission wavelength of the alloyed quantum dots were turned from visible to near-infrared range by changing the composition of the precursor. The photoluminescence intensity of the alloyed quantum dots was further enhanced by coupling through localized surface plasmons from Au nanoparticles. The alloyed CdTeSe quantum dots coupled with Au nanoparticles exhibited a 4 times photoluminescence enhancement than that of bare CdTeSe quantum dots by turning the localized surface plasmons resonant absorption of Au nanoparticles consistent to the excitation wavelength. This method will be beneficial for the potential applications in the biological imaging and detection.

  19. Quantum Dots

    NASA Astrophysics Data System (ADS)

    Tartakovskii, Alexander

    2012-07-01

    Part I. Nanostructure Design and Structural Properties of Epitaxially Grown Quantum Dots and Nanowires: 1. Growth of III/V semiconductor quantum dots C. Schneider, S. Hofling and A. Forchel; 2. Single semiconductor quantum dots in nanowires: growth, optics, and devices M. E. Reimer, N. Akopian, M. Barkelid, G. Bulgarini, R. Heeres, M. Hocevar, B. J. Witek, E. Bakkers and V. Zwiller; 3. Atomic scale analysis of self-assembled quantum dots by cross-sectional scanning tunneling microscopy and atom probe tomography J. G. Keizer and P. M. Koenraad; Part II. Manipulation of Individual Quantum States in Quantum Dots Using Optical Techniques: 4. Studies of the hole spin in self-assembled quantum dots using optical techniques B. D. Gerardot and R. J. Warburton; 5. Resonance fluorescence from a single quantum dot A. N. Vamivakas, C. Matthiesen, Y. Zhao, C.-Y. Lu and M. Atature; 6. Coherent control of quantum dot excitons using ultra-fast optical techniques A. J. Ramsay and A. M. Fox; 7. Optical probing of holes in quantum dot molecules: structure, symmetry, and spin M. F. Doty and J. I. Climente; Part III. Optical Properties of Quantum Dots in Photonic Cavities and Plasmon-Coupled Dots: 8. Deterministic light-matter coupling using single quantum dots P. Senellart; 9. Quantum dots in photonic crystal cavities A. Faraon, D. Englund, I. Fushman, A. Majumdar and J. Vukovic; 10. Photon statistics in quantum dot micropillar emission M. Asmann and M. Bayer; 11. Nanoplasmonics with colloidal quantum dots V. Temnov and U. Woggon; Part IV. Quantum Dot Nano-Laboratory: Magnetic Ions and Nuclear Spins in a Dot: 12. Dynamics and optical control of an individual Mn spin in a quantum dot L. Besombes, C. Le Gall, H. Boukari and H. Mariette; 13. Optical spectroscopy of InAs/GaAs quantum dots doped with a single Mn atom O. Krebs and A. Lemaitre; 14. Nuclear spin effects in quantum dot optics B. Urbaszek, B. Eble, T. Amand and X. Marie; Part V. Electron Transport in Quantum Dots Fabricated by

  20. Catalytic site remodelling of the DOT1L methyltransferase by selective inhibitors

    SciTech Connect

    Yu, Wenyu; Chory, Emma J.; Wernimont, Amy K.; Tempel, Wolfram; Scopton, Alex; Federation, Alexander; Marineau, Jason J.; Qi, Jun; Barsyte-Lovejoy, Dalia; Yi, Joanna; Marcellus, Richard; Iacob, Roxana E.; Engen, John R.; Griffin, Carly; Aman, Ahmed; Wienholds, Erno; Li, Fengling; Pineda, Javier; Estiu, Guillermina; Shatseva, Tatiana; Hajian, Taraneh; Al-awar, Rima; Dick, John E.; Vedadi, Masoud; Brown, Peter J.; Arrowsmith, Cheryl H.; Bradner, James E.; Schapira, Matthieu

    2012-12-18

    Selective inhibition of protein methyltransferases is a promising new approach to drug discovery. An attractive strategy towards this goal is the development of compounds that selectively inhibit binding of the cofactor, S-adenosylmethionine, within specific protein methyltransferases. Here we report the three-dimensional structure of the protein methyltransferase DOT1L bound toEPZ004777, the first S-adenosylmethionine-competitive inhibitor of a protein methyltransferase with in vivo efficacy. This structure and those of four new analogues reveal remodelling of the catalytic site. EPZ004777 and a brominated analogue, SGC0946, inhibit DOT1L in vitro and selectively kill mixed lineage leukaemia cells, in which DOT1L is aberrantly localized via interaction with an oncogenic MLL fusion protein. These data provide important new insight into mechanisms of cell-active S-adenosylmethionine-competitive protein methyltransferase inhibitors, and establish a foundation for the further development of drug-like inhibitors of DOT1L for cancer therapy.

  1. T1 spin lifetimes in n-doped quantum wells and dots

    NASA Astrophysics Data System (ADS)

    Colton, John; Clark, Ken; Craft, Daniel; Cutler, Jane; Meyer, David; Park, Tyler

    2012-02-01

    We have used a pump probe technique to measure T1 spin lifetimes in n-type GaAs quantum wells and InAs self-assembled quantum dots. The circularly polarized pump laser pulse aligns the spins; the linearly polarized probe laser pulse probes the spin states of the selected well (or dots) via the Kerr (or Faraday) effect at some later time. Results for the quantum well sample include a spin-filling effect that depends on the direction from which the probe laser wavelength approaches that of the well, and spin lifetimes ranging from 50 to 2000 ns (depending on temperature and field conditions). The InAs quantum dots, doped such that each dot has approximately one extra electron, display T1 lifetimes longer than 5 ms at 1 T and 1.5 K.

  2. Bromo-deaza-SAH: a potent and selective DOT1L inhibitor

    PubMed Central

    Tempel, Wolfram; Fedorov, Oleg; Nguyen, Kong T.; Bolshan, Yuri; Al-Awar, Rima; Knapp, Stefan; Arrowsmith, Cheryl H.; Vedadi, Masoud; Brown, Peter J.; Schapira, Matthieu

    2016-01-01

    Chemical inhibition of proteins involved in chromatin-mediated signaling is an emerging strategy to control chromatin compaction with the aim to reprogram expression networks to alter disease states. Protein methyltransferases constitute one of the protein families that participate in epigenetic control of gene expression, and represent a novel therapeutic target class. Recruitment of the protein lysine methyltransferase DOT1L at aberrant loci is a frequent mechanism driving acute lymphoid and myeloid leukemias, particularly in infants, and pharmacological inhibition of DOT1L extends survival in a mouse model of mixed lineage leukemia. A better understanding of the structural chemistry of DOT1L inhibition would accelerate the development of improved compounds. Here, we report that the addition of a single halogen atom at a critical position in the cofactor product S-adenosylhomocysteine (SAH, an inhibitor of SAM-dependent methyltransferases) results in an 8-fold increase in potency against DOT1L, and reduced activities against other protein and non-protein methyltransferases. We solved the crystal structure of DOT1L in complex with Bromo-deaza-SAH and rationalized the observed effects. This discovery reveals a simple strategy to engineer selectivity and potency towards DOT1L into the adenosine scaffold of the cofactor shared by all methyltransferases, and can be exploited towards the development of clinical candidates against mixed lineage leukemia. PMID:23433670

  3. Bromo-deaza-SAH: a potent and selective DOT1L inhibitor.

    PubMed

    Yu, Wenyu; Smil, David; Li, Fengling; Tempel, Wolfram; Fedorov, Oleg; Nguyen, Kong T; Bolshan, Yuri; Al-Awar, Rima; Knapp, Stefan; Arrowsmith, Cheryl H; Vedadi, Masoud; Brown, Peter J; Schapira, Matthieu

    2013-04-01

    Chemical inhibition of proteins involved in chromatin-mediated signaling is an emerging strategy to control chromatin compaction with the aim to reprogram expression networks to alter disease states. Protein methyltransferases constitute one of the protein families that participate in epigenetic control of gene expression, and represent a novel therapeutic target class. Recruitment of the protein lysine methyltransferase DOT1L at aberrant loci is a frequent mechanism driving acute lymphoid and myeloid leukemias, particularly in infants, and pharmacological inhibition of DOT1L extends survival in a mouse model of mixed lineage leukemia. A better understanding of the structural chemistry of DOT1L inhibition would accelerate the development of improved compounds. Here, we report that the addition of a single halogen atom at a critical position in the cofactor product S-adenosylhomocysteine (SAH, an inhibitor of SAM-dependent methyltransferases) results in an 8-fold increase in potency against DOT1L, and reduced activities against other protein and non-protein methyltransferases. We solved the crystal structure of DOT1L in complex with Bromo-deaza-SAH and rationalized the observed effects. This discovery reveals a simple strategy to engineer selectivity and potency towards DOT1L into the adenosine scaffold of the cofactor shared by all methyltransferases, and can be exploited towards the development of clinical candidates against mixed lineage leukemia.

  4. The Intersection between 1:1 Laptop Implementation and the Characteristics of Effective Middle Level Schools

    ERIC Educational Resources Information Center

    Downes, John M.; Bishop, Penny A.

    2015-01-01

    The number of middle level schools adopting 1:1 laptop programs has increased considerably during the past decade (e.g., Lowther, Strahl, Inan, & Bates, 2007; Storz & Hoffman, 2013; Texas Center for Educational Research, 2009). The cornerstone practices of the middle school concept (National Middle School Association, 2010), therefore,…

  5. Fabrication and characterization of an undoped GaAs/AlGaAs quantum dot device

    SciTech Connect

    Li, Hai-Ou; Cao, Gang; Xiao, Ming You, Jie; Wei, Da; Tu, Tao; Guo, Guang-Can; Guo, Guo-Ping; Jiang, Hong-Wen

    2014-11-07

    We demonstrate the development of a double quantum dot with an integrated charge sensor fabricated in undoped GaAs/AlGaAs heterostructures using a double top-gated design. Based on the evaluation of the integrated charge sensor, the double quantum dot can be tuned to a few-electron region. Additionally, the inter-dot coupling of the double quantum dot can be tuned to a large extent according to the voltage on the middle gate. The quantum dot is shown to be tunable from a single dot to a well-isolated double dot. To assess the stability of such design, the potential fluctuation induced by 1/f noise was measured. Based on the findings herein, the quantum dot design developed in the undoped GaAs/AlGaAs semiconductor shows potential for the future exploitation of nano-devices.

  6. SW U. S. diabase province: A 1. 1-Ga intrusion event of middle Grenville and middle Keweenawan age

    SciTech Connect

    Conway, C.M.; Elston, D.P. ); Wrucke, C.T. )

    1993-02-01

    Diabase in the southwestern US intrudes Middle Proterozoic stratified rocks as sills and Early and Middle Proterozoic crystalline rocks as subhorizontal sheets and subvertical dikes. It is discontinuous in a broad belt extending from western Texas to southeastern California. The best known intrusions are sills in Middle Proterozoic strata in Death Valley, Grand Canyon, and central Arizona. Sparse to rare dikes in some of these strata trend mostly north but range from north-northeast to west-northwest. Diabase dikes widespread in crystalline rocks in western Arizona and adjacent parts of southeastern California strike from north to west-northwest, but are predominantly northwesterly. Dikes and sheets are also present in crystalline rocks in the southern Pinaleno Mountains, southeastern Arizona, where dikes strike west-northwest. The northwest trend of the diabase province and prevalent northwesterly trend of dikes in crystalline rocks suggest that intrusion was controlled by an approximately horizontal least compressive stress field roughly parallel to the Grenville Front. Radiometric ages of Arizona and California diabase indicate emplacement at [approximately]1,100 Ma. Paleomagnetic poles from diabase sills and enclosing stratified rocks in Arizona correlate with poles reported from middle and early-late Keweenawan rocks of Lake Superior. Emplacement of the diabase coincides with: (1) the middle Keweenawan eruptive and intrusive episode of the Midcontinent Rift System; (2) a major episode of (middle) Grenville thrusting and deformation documented in the Van Horn area; and (3) a time of abrupt reversal in North American apparent polar wander. These interrelated manifestations presumably arose in response to a major episode of plate interaction and collision between North American and a plate that encroached from the southeast.

  7. DOT++: the Dutch Open Telescope with 1.4-m aperture

    NASA Astrophysics Data System (ADS)

    Bettonvil, Felix C.; Hammerschlag, Robert H.; Sütterlin, Peter; Rutten, Robert J.; Jägers, Aswin P.; Snik, Frans

    2004-10-01

    The Dutch Open Telescope (DOT; http://dot.astro.uu.nl) on La Palma is a revolutionary open solar telescope, on an excellent site, on top of a transparent steel tower, and uses natural air flow to minimize local seeing. The aim is long-duration high-resolution imaging with a multi-wavelength camera system. In order to achieve this, the DOT is equipped with a diffraction limited imaging system and uses the speckle reconstruction technique for removing the remaining atmospheric turbulence. The DOT optical system is simple and consists currently of a 0.45m/F4.44 parabolic mirror and a 10x enlargement lens system. We present our plans to increase the aperture of the DOT from 0.45m to 1.4m. The mirror support and telescope top shall be redesigned, but telescope, tower, multi-wavelength camera system and speckle system remain intact. The new optical design permits user selectable choice between angular resolution and field size, as well as transversal pupil shift introducing the possibility to use obstruction free apertures up to 65cm. The design will include a low order AO system, which improves the speckle S/N substantially during moderate seeing conditions.

  8. The HIV-1 Epidemic: Low- to Middle-Income Countries

    PubMed Central

    Shao, Yiming; Williamson, Carolyn

    2012-01-01

    Low- to middle-income countries bear the overwhelming burden of the human immunodeficiency virus type 1 (HIV-1) epidemic in terms of the numbers of their citizens living with HIV/AIDS (acquired immunodeficiency syndrome), the high degrees of viral diversity often involving multiple HIV-1 clades circulating within their populations, and the social and economic factors that compromise current control measures. Distinct epidemics have emerged in different geographical areas. These epidemics differ in their severity, the population groups they affect, their associated risk behaviors, and the viral strains that drive them. In addition to inflicting great human cost, the high burden of HIV infection has a major impact on the social and economic development of many low- to middle-income countries. Furthermore, the high degrees of viral diversity associated with multiclade HIV epidemics impacts viral diagnosis and pathogenicity and treatment and poses daunting challenges for effective vaccine development. PMID:22393534

  9. 5. View of middle DR 2 antenna with DR 1 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. View of middle DR 2 antenna with DR 1 antenna in background. Photograph shows on left side at bottom foundation berm and along right side bottom stanchion concrete foundations at bottom structural steel assembly. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  10. Time-resolved X-, K-, and W-band EPR of the radical pair state P{sub 700}{sup {center_dot}-}A{sub 1}{sup {center_dot}-} of photosystem I in comparison with P{sub 865}{sup {center_dot}+}Q{sub A}{sup {center_dot}-} in bacterial reaction centers

    SciTech Connect

    Est, A. van der; Prisner, T.; Moebius, K.; Stehlik, D.; Bittl, R.; Fromme, P.; Lubitz, W.

    1997-02-20

    The spin-polarized EPR spectra at 95 GHz (W-band), 24 GHz (K-band), and 9 GHz (X-band) of the radical pair P{sub 700}{sup {center_dot}+}A{sub 1}{sup {center_dot}-} in highly purified photosystem I particles are presented. The spectra are analyzed to obtain both the magnetic parameters of the radical pair as well as the relative orientation of the two species. From the analysis, the g-tensor of A{sub 1}{sup {center_dot}-} is found to be g{sub xx} = 2.0062, g{sub yy} = 2.0051, and g{sub zz} = 2.0022, and it is shown that A{sub 1} is oriented such that the carbonyl bonds are parallel to the vector joining the centers of P{sub 700}{sup {center_dot}+} and A{sub 1}{sup {center_dot}-}. The anisotropy of the g-tensor is considerably larger than that obtained for chemically reduced phylloquinone in frozen 2-propanol solution. Possible reasons for this difference and their implications for the A{sub 1} binding site are discussed. The relative orientation of P{sub 700}{sup {center_dot}+} and A{sub 1}{sup {center_dot}-} is compared with earlier estimates obtained using less accurate g-values for A{sub 1}{sup {center_dot}-}. A comparison with the spectra of P{sub 865}{sup {center_dot}+}Q{sub A}{sup {center_dot}-} in bacterial reaction centers (bRCs) of Rhodobacter sphaeroides R-26 in which the nonheme iron has been replaced by zinc (Zn-bRCs) allows the structural and magnetic properties of the charge-separated state in the two systems to be compared. 52 refs., 5 figs., 7 tabs.

  11. Two-photon absorption and efficient encapsulation of near-infrared-emitting CdSexTe1-x quantum dots

    NASA Astrophysics Data System (ADS)

    Szeremeta, Janusz; Lamch, Lukasz; Wawrzynczyk, Dominika; Wilk, Kazimiera A.; Samoc, Marek; Nyk, Marcin

    2015-07-01

    Hydrophobic CdSexTe1-x quantum dots with near infrared emission in the 700-750 nm range were synthesized by a wet chemistry technique. Their nonlinear optical properties were studied using Z-scan technique with a tunable femtosecond laser system. The peak value of the two-photon absorption cross section was found to be ∼2400 GM at 1400 nm. To demonstrate a possible way of utilizing the CdSexTe1-x quantum dots in aqueous environment we describe here a convenient method of preparation of Brij 58® micellar systems loaded with the quantum dots. The obtained nanoconstructs were characterized using optical spectroscopy, TEM and DLS. The micelles colloidal stability, and the influence of the encapsulation process on the spectroscopic properties of the quantum dots are discussed. In particular, we have observed a 60 nm blue-shift of the emission maxima upon loading quantum dots inside the micelles.

  12. Quantum-Dot Laser for Wavelengths of 1.8 to 2.3 micron

    NASA Technical Reports Server (NTRS)

    Qiu, Yueming

    2006-01-01

    The figure depicts a proposed semiconductor laser, based on In(As)Sb quantum dots on a (001) InP substrate, that would operate in the wavelength range between 1.8 and 2.3 m. InSb and InAsSb are the smallest-bandgap conventional III-V semiconductor materials, and the present proposal is an attempt to exploit the small bandgaps by using InSb and InAsSb nanostructures as midinfrared emitters. The most closely related prior III-V semiconductor lasers are based, variously, on strained InGaAs quantum wells and InAs quantum dots on InP substrates. The emission wavelengths of these prior devices are limited to about 2.1 m because of critical quantum-well thickness limitations for these lattice mismatched material systems. The major obstacle to realizing the proposed laser is the difficulty of fabricating InSb quantum dots in sufficient density on an InP substrate. This difficulty arises partly because of the weakness of the bond between In and Sb and partly because of the high temperature needed to crack metalorganic precursor compounds during the vapor-phase epitaxy used to grow quantum dots: The mobility of the weakly bound In at the high growth temperature is so high that In adatoms migrate easily on the growth surface, resulting in the formation of large InSb islands at a density, usually less than 5 x 10(exp 9) cm(exp -2), that is too low for laser operation. The mobility of the In adatoms could be reduced by introducing As atoms to the growth surface because the In-As bond is about 30 percent stronger than is the In-Sb bond. The fabrication of the proposed laser would include a recently demonstrated process that involves the use of alternative supplies of precursors to separate group-III and group-V species to establish local non-equilibrium process conditions, so that In(As)Sb quantum dots assemble themselves on a (001) InP substrate at a density as high as 4 x 10(exp 10) cm(exp -2). Room-temperature photoluminescence spectra of quantum dots formed by this process

  13. DOT1L as a therapeutic target for the treatment of DNMT3A-mutant acute myeloid leukemia

    PubMed Central

    Rau, Rachel E.; Rodriguez, Benjamin A.; Luo, Min; Jeong, Mira; Rosen, Allison; Rogers, Jason H.; Campbell, Carly T.; Daigle, Scott R.; Deng, Lishing; Song, Yongcheng; Sweet, Steve; Chevassut, Timothy; Andreeff, Michael; Kornblau, Steven M.; Li, Wei

    2016-01-01

    Mutations in DNA methyltransferase 3A (DNMT3A) are common in acute myeloid leukemia and portend a poor prognosis; thus, new therapeutic strategies are needed. The likely mechanism by which DNMT3A loss contributes to leukemogenesis is altered DNA methylation and the attendant gene expression changes; however, our current understanding is incomplete. We observed that murine hematopoietic stem cells (HSCs) in which Dnmt3a had been conditionally deleted markedly overexpress the histone 3 lysine 79 (H3K79) methyltransferase, Dot1l. We demonstrate that Dnmt3a−/− HSCs have increased H3K79 methylation relative to wild-type (WT) HSCs, with the greatest increases noted at DNA methylation canyons, which are regions highly enriched for genes dysregulated in leukemia and prone to DNA methylation loss with Dnmt3a deletion. These findings led us to explore DOT1L as a therapeutic target for the treatment of DNMT3A-mutant AML. We show that pharmacologic inhibition of DOT1L resulted in decreased expression of oncogenic canyon–associated genes and led to dose- and time-dependent inhibition of proliferation, induction of apoptosis, cell-cycle arrest, and terminal differentiation in DNMT3A-mutant cell lines in vitro. We show in vivo efficacy of the DOT1L inhibitor EPZ5676 in a nude rat xenograft model of DNMT3A-mutant AML. DOT1L inhibition was also effective against primary patient DNMT3A-mutant AML samples, reducing colony-forming capacity (CFC) and inducing terminal differentiation in vitro. These studies suggest that DOT1L may play a critical role in DNMT3A-mutant leukemia. With pharmacologic inhibitors of DOT1L already in clinical trials, DOT1L could be an immediately actionable therapeutic target for the treatment of this poor prognosis disease. PMID:27335278

  14. Response of the middle atmosphere to Sco X-1

    NASA Technical Reports Server (NTRS)

    Goldberg, R. A.; Barcus, J. R.; Mitchell, J. D.

    1985-01-01

    On the night of Mar. 9, 1983 (UT) at Punta Lobos Launch Site, Peru (12.5 deg S, 76.8 deg W, magnetic dip -0.7 deg), a sequence of sounding rockets was flown to study the electrical structure of the equatorial middle atmosphere and to evaluate perturbations on this environment induced by the X-ray star Sco X-1. The rocket series was anchored by two Nike Orion payloads (31.032 and 31.033) which were launched at 0327 and 0857 UT, near Sco X-1 star-rise and after it had attained an elevation angle of 70 deg E. An enhanced flux of X-rays was observed on the second Nike Orion flight (31.033). This increase is directly attributed to Sco X-1, both from the spectral properties of the measured X-ray distribution and by spatial information acquired from a spinning X-ray detector during the upleg portion of the 31.033 flight. Simultaneously, a growth in ion conductivity and density was seen to occur in the lower mesosphere between 60 and 80 km on the second flight, specifically in the region of maximum energy deposition by the Sco X-1 X-rays. The results imply the presence of a significant number of ionized heavy constituents within the lower mesosphere, with masses possibly in the submacroscopoic range.

  15. Regulation of the DNA Damage Response and Gene Expression by the Dot1L Histone Methyltransferase and the 53Bp1 Tumour Suppressor

    PubMed Central

    FitzGerald, Jennifer; Moureau, Sylvie; Drogaris, Paul; O'Connell, Enda; Abshiru, Nebiyu; Verreault, Alain; Thibault, Pierre; Grenon, Muriel; Lowndes, Noel F.

    2011-01-01

    Background Dot1L, a histone methyltransferase that targets histone H3 lysine 79 (H3K79), has been implicated in gene regulation and the DNA damage response although its functions in these processes remain poorly defined. Methodology/Principal Findings Using the chicken DT40 model system, we generated cells in which the Dot1L gene is disrupted to examine the function and focal recruitment of the 53Bp1 DNA damage response protein. Detailed kinetic and dose response assays demonstrate that, despite the absence of H3K79 methylation demonstrated by mass spectrometry, 53Bp1 focal recruitment is not compromised in these cells. We also describe, for the first time, the phenotypes of a cell line lacking both Dot1L and 53Bp1. Dot1L−/− and wild type cells are equally resistant to ionising radiation, whereas 53Bp1−/−/Dot1L−/− cells display a striking DNA damage resistance phenotype. Dot1L and 53Bp1 also affect the expression of many genes. Loss of Dot1L activity dramatically alters the mRNA levels of over 1200 genes involved in diverse biological functions. These results, combined with the previously reported list of differentially expressed genes in mouse ES cells knocked down for Dot1L, demonstrates surprising cell type and species conservation of Dot1L-dependent gene expression. In 53Bp1−/− cells, over 300 genes, many with functions in immune responses and apoptosis, were differentially expressed. To date, this is the first global analysis of gene expression in a 53Bp1-deficient cell line. Conclusions/Significance Taken together, our results uncover a negative role for Dot1L and H3K79 methylation in the DNA damage response in the absence of 53Bp1. They also enlighten the roles of Dot1L and 53Bp1 in gene expression and the control of DNA double-strand repair pathways in the context of chromatin. PMID:21383990

  16. The Low-Metallicity Galaxy, I Zw 18 (Z=1/50 Z(circle dot))

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.

    2003-01-01

    Both observations and evolutionary models indicate that rotation becomes a more important factor at lower metallicities. Some important effects of rotation include: increasing the rate of mass-loss; lowering the effective gravity; altering the evolutionary track on the Hertzsprung-Russell Diagram (HRD); extending the main-sequence phase (both on the HR diagram and in time); and mixing of CNO-processed elements up to the stellar surface. We discuss these effects for massive stars in the low-metallicity galaxy, I Zw 18 (Z=1/50 Z(circle dot)) and their implications for the first stars.

  17. High performance continuous wave 1.3 μm quantum dot lasers on silicon

    SciTech Connect

    Liu, Alan Y. Norman, Justin; Zhang, Chong; Snyder, Andrew; Lubyshev, Dmitri; Fastenau, Joel M.; Liu, Amy W. K.; Gossard, Arthur C.; Bowers, John E.

    2014-01-27

    We demonstrate record performance 1.3 μm InAs quantum dot lasers grown on silicon by molecular beam epitaxy. Ridge waveguide lasers fabricated from the as-grown material achieve room temperature continuous wave thresholds as low as 16 mA, output powers exceeding 176 mW, and lasing up to 119 °C. P-modulation doping of the active region improves T{sub 0} to the range of 100–200 K while maintaining low thresholds and high output powers. Device yield is presented showing repeatable performance across different dies and wafers.

  18. Global Regulation of Food Supply by Pseudomonas putida DOT-T1E▿ †

    PubMed Central

    Daniels, Craig; Godoy, Patricia; Duque, Estrella; Molina-Henares, M. Antonia; de la Torre, Jesús; del Arco, José María; Herrera, Carmen; Segura, Ana; Guazzaroni, M. Eugenia; Ferrer, Manuel; Ramos, Juan Luis

    2010-01-01

    Pseudomonas putida DOT-T1E was used as a model to develop a “phenomics” platform to investigate the ability of P. putida to grow using different carbon, nitrogen, and sulfur sources and in the presence of stress molecules. Results for growth of wild-type DOT-T1E on 90 different carbon sources revealed the existence of a number of previously uncharted catabolic pathways for compounds such as salicylate, quinate, phenylethanol, gallate, and hexanoate, among others. Subsequent screening on the subset of compounds on which wild-type DOT-TIE could grow with four knockout strains in the global regulatory genes Δcrc, Δcrp, ΔcyoB, and ΔptsN allowed analysis of the global response to nutrient supply and stress. The data revealed that most global regulator mutants could grow in a wide variety of substrates, indicating that metabolic fluxes are physiologically balanced. It was found that the Crc mutant did not differ much from the wild-type regarding the use of carbon sources. However, certain pathways are under the preferential control of one global regulator, i.e., metabolism of succinate and d-fructose is influenced by CyoB, and l-arginine is influenced by PtsN. Other pathways can be influenced by more than one global regulator; i.e., l-valine catabolism can be influenced by CyoB and Crp (cyclic AMP receptor protein) while phenylethylamine is affected by Crp, CyoB, and PtsN. These results emphasize the cross talk required in order to ensure proper growth and survival. With respect to N sources, DOT-T1E can use a wide variety of inorganic and organic nitrogen sources. As with the carbon sources, more than one global regulator affected growth with some nitrogen sources; for instance, growth with nucleotides, dipeptides, d-amino acids, and ethanolamine is influenced by Crp, CyoB, and PtsN. A surprising finding was that the Crp mutant was unable to flourish on ammonium. Results for assayed sulfur sources revealed that CyoB controls multiple points in methionine

  19. Ge Quantum Dot Formation on Si (100)-2x1 with Surface Electronic Excitation

    NASA Astrophysics Data System (ADS)

    Oguzer, Ali

    2009-03-01

    The effect of laser-induced electronic excitations on the self-assembly of Ge quantum dots on Si (100)-2x1 grown by pulsed laser deposition is studied. The samples were first cleaned by using modified Shiraki method and then transferred into the deposition chamber. The vacuum system was then pumped down, baked for at least 12 hours, and the sample was then flashed to 1100 C in order for the 2x1 reconstruction to form. The experiment was conducted under a pressure ˜1x10-10 Torr. A Q-switched Nd:YAG laser (wavelength λ = 1064 nm, 10 Hz repetition rate) was used to ablate a Ge target. In-situ RHEED and STM and ex-situ AFM were used to study the morphology of the grown QD. The dependence of the QD morphology on substrate temperature and ablation and excitation laser energy density was studied. Electronic excitation is shown to affect the surface morphology. Laser irradiation of the Si substrate is shown to decrease the roughness of films grown at a substrate temperature of ˜450 ^oC. Electronic excitation also affected surface coverage ratio and cluster density and decreased the temperature required to form 3-dimensional quantum dots. Possible mechanisms involved will be discussed.

  20. Improving the Photocurrent in Quantum-Dot-Sensitized Solar Cells by Employing Alloy PbxCd1−xS Quantum Dots as Photosensitizers

    PubMed Central

    Yuan, Chunze; Li, Lin; Huang, Jing; Ning, Zhijun; Sun, Licheng; Ågren, Hans

    2016-01-01

    Ternary alloy PbxCd1−xS quantum dots (QDs) were explored as photosensitizers for quantum-dot-sensitized solar cells (QDSCs). Alloy PbxCd1−xS QDs (Pb0.54Cd0.46S, Pb0.31Cd0.69S, and Pb0.24Cd0.76S) were found to substantially improve the photocurrent of the solar cells compared to the single CdS or PbS QDs. Moreover, it was found that the photocurrent increases and the photovoltage decreases when the ratio of Pb in PbxCd1−xS is increased. Without surface protecting layer deposition, the highest short-circuit current density reaches 20 mA/cm2 under simulated AM 1.5 illumination (100 mW/cm2). After an additional CdS coating layer was deposited onto the PbxCd1−xS electrode, the photovoltaic performance further improved, with a photocurrent of 22.6 mA/cm2 and an efficiency of 3.2%. PMID:28335226

  1. Electronic structure of (1e,1h) states of carbon nanotube quantum dots

    NASA Astrophysics Data System (ADS)

    Osika, E. N.; Szafran, B.

    2016-04-01

    We provide an atomistic tight-binding description of a few carriers confined in ambipolar (n -p ) double quantum dots defined in a semiconducting carbon nanotube. We focus our attention on the charge configuration in which Pauli blockade of the current flow is observed [F. Pei et al., Nat. Nanotechnol. 7, 630 (2012), 10.1038/nnano.2012.160; E. A. Laird et al., Nat. Nanotechnol. 8, 565 (2013), 10.1038/nnano.2013.140] with a single excess electron in the n dot and a single hole in the p dot. We use the configuration interaction approach to determine the spin-valley structure of the states near the neutrality point and discuss its consequences for the interdot exchange interaction, the degeneracy of the energy spectrum, and the symmetry of the confined states. We calculate the transition energies lifting the Pauli blockade and analyze their dependence on the magnetic field vector. Furthermore, we introduce bending of the nanotube and demonstrate its influence on the transition energy spectra. The best qualitative agreement with the experimental data is observed for nanotubes deflected in the gated areas in which the carrier confinement is induced.

  2. 1.55 µm InAs/GaAs quantum dots and high repetition rate quantum dot SESAM mode-locked laser.

    PubMed

    Zhang, Z Y; Oehler, A E H; Resan, B; Kurmulis, S; Zhou, K J; Wang, Q; Mangold, M; Süedmeyer, T; Keller, U; Weingarten, K J; Hogg, R A

    2012-01-01

    High pulse repetition rate (≥ 10 GHz) diode-pumped solid-state lasers, modelocked using semiconductor saturable absorber mirrors (SESAMs) are emerging as an enabling technology for high data rate coherent communication systems owing to their low noise and pulse-to-pulse optical phase-coherence. Quantum dot (QD) based SESAMs offer potential advantages to such laser systems in terms of reduced saturation fluence, broader bandwidth, and wavelength flexibility. Here, we describe the development of an epitaxial process for the realization of high optical quality 1.55 µm In(Ga)As QDs on GaAs substrates, their incorporation into a SESAM, and the realization of the first 10 GHz repetition rate QD-SESAM modelocked laser at 1.55 µm, exhibiting ∼2 ps pulse width from an Er-doped glass oscillator (ERGO). With a high areal dot density and strong light emission, this QD structure is a very promising candidate for many other applications, such as laser diodes, optical amplifiers, non-linear and photonic crystal based devices.

  3. Investigations on Landé factor in a strained Ga{sub x}In{sub 1−x}As/GaAs quantum dot

    SciTech Connect

    Kumar, N. R. Senthil; Peter, A. John

    2014-04-24

    The effective excitonic g-factor as functions of dot radius and the Ga alloy content, in a strained Ga{sub x}In{sub 1−x}As/GaAs quantum dot, is numerically measured. The heavy hole excitonic states are studied for various Ga alloy content taking into account the anisotropy, non-parabolicity of the conduction band and the geometrical confinement effects. The quantum dot is considered as spherical dot of InAs surrounded by a GaAs barrier material.

  4. Attosecond nanotechnology: Quantum dots of nanoelectromechanical systems of CuInxGa1-xSe2 compounds

    NASA Astrophysics Data System (ADS)

    Beznosyuk, Sergey A.; Terentyeva, Yulia V.; Maslova, Olga A.; Zhukovsky, Mark S.; Volkov, Dmitrii A.

    2016-11-01

    In this paper the problem of stability of Cu(In,Ga)Se2 (CIGS) compounds as the continuous solid solution composition CuInxGa1-xSe2 with the structure of chalcopyrite in the state of quantum dots of nanoelectromechanical systems (NEMS) is studied. Variations of energy, geometry, and paired radial distribution functions of atoms of stable NEMS quantum dots of CIGS at the three temperatures 0, 77, and 293 K are investigated. It is revealed that the relative change in parameters of sustainable CIGS nanolayers in the state of NEMS quantum dots is nonlinearly dependent on the concentration of indium atoms in the system. We show that this behavior is a result of the significant difference of energy and lengths of In-Se and Ga-Se bonds of NEMSs in the first coordination sphere of selenium atoms.

  5. Scattering rates due to electron-phonon interaction in CdS1-xSex quantum dots

    NASA Astrophysics Data System (ADS)

    Alcalde, Augusto M.; Weber, Gerald

    2000-11-01

    We calculate electron-LO-confined and surface phonon scattering rates in CdS1-xSex spherical quantum dots. The phonon modes are described in the frame of the two-mode dielectric continuum model, and the standard k.p formalism is used for treating the electronic band structure. We include the effects of inhomogeneous broadening due to statistical dot size distribution, which can create a wide channel of efficient relaxation. We demonstrate that changes in the concentration can generate variations of more than one order of magnitude in the relaxation rates.

  6. Utilizing a cranial window to visualize the middle cerebral artery during endothelin-1 induced middle cerebral artery occlusion.

    PubMed

    Regenhardt, Robert W; Ansari, Saeed; Azari, Hassan; Caldwell, Kenneth J; Mecca, Adam P

    2013-02-22

    Creation of a cranial window is a method that allows direct visualization of structures on the cortical surface of the brain(1-3). This technique can be performed in many locations overlying the rat cerebrum, but is most easily carried out by creating a craniectomy over the readily accessible frontal or parietal bones. Most frequently, we have used this technique in combination with the endothelin-1 middle cerebral artery occlusion model of ischemic stroke to quantify the changes in middle cerebral artery vessel diameter that occur with injection of endothelin-1 into the brain parenchyma adjacent to the proximal MCA(4, 5). In order to visualize the proximal portion of the MCA during endothelin -1 induced MCAO, we use a technique to create a cranial window through the temporal bone on the lateral aspect of the rat skull (Figure 1). Cerebral arteries can be visualized either with the dura intact or with the dura incised and retracted. Most commonly, we leave the dura intact during visualization since endothelin-1 induced MCAO involves delivery of the vasoconstricting peptide into the brain parenchyma. This bypasses the need to incise the dura directly over the visualized vessels for drug delivery. This protocol will describe how to create a cranial window to visualize cerebral arteries in a step-wise fashion, as well as how to avoid many of the potential pitfalls pertaining to this method.

  7. Optical and Phonon Characterization of Ternary CdSe x S1- x Alloy Quantum Dots

    NASA Astrophysics Data System (ADS)

    Thi, L. A.; Cong, N. D.; Dang, N. T.; Nghia, N. X.; Quang, V. X.

    2016-05-01

    Ternary CdSe x S1- x alloy quantum dots (QDs) were synthesized using a wet chemical method. Their morphology, particle size, structural, optical, and vibrational properties were investigated using transmission electron microscopy, x-ray diffraction, UV-Vis, fluorescence and Raman spectroscopy, respectively. The optical and vibrational properties of the QDs can be controlled by adjusting the Se/S molar ratio. The absorption and emission peaks shift to a longer wavelength range when increasing the Se content. The presence of two CdSe-like and CdS-like longitudinal optical phonon modes was observed. The dependencies of the optical and phonon modes on the Se content are discussed in detail.

  8. High-speed directly modulated 1.5μm quantum dot lasers

    NASA Astrophysics Data System (ADS)

    Banyoudeh, Saddam; Abdollahinia, Alireza; Eyal, Ori; Schnabel, Florian; Sichkovskyi, Vitalii; Eisenstein, Gadi; Reithmaier, Johann P.

    2016-03-01

    Due to the discrete density of states distribution and spatial localization of carriers in quantum dot (QD) material, the dynamics should be strongly enhanced in comparison to quantum well material. Based on improved 1.5 μm InAs/InGaAlAs/InP QD gain material short cavity ridge waveguide lasers were fabricated. Devices with cavity, lengths of 230 to 338 μm with high reflection coatings on the backside exhibit record value for any QD laser in small and large signal modulation performance with up to 15 GHz and 36 GBit/s, respectively, obtained at 14 °C. Due to the high temperature stability of threshold current and external differential efficiency, the lasers exhibit also nearly constant modulation bandwidth between 14-60 °C.

  9. Linear and nonlinear optical studies of CdS1- x Se x quantum dots

    NASA Astrophysics Data System (ADS)

    Uhrig, A.; Banyai, L.; Gaponenko, S.; Wörner, A.; Neuroth, N.; Klingshirn, C.

    1991-03-01

    In this contribution we present and discuss our measurements on CdS1- x Se x quantum dots in a glass matrix. In linear absorption measurements we find the typical blue shift of the transitions with decreasing crystallite radius due to quantization. The luminescence shows a significant Stokes shift with respect to absorption, which is interpreted in terms of strong exciton-phonon coupling and allows to deduce the Huang-Rhys factor S. Under high excitation we find an additional emission band on the high energy side, which can be attributed to the recombination of an excited two electron-hole pair state to a one electron-hole pair state in agreement with theory. Pump and probe beam experiments give a bleaching but no hole burning. Finally we discuss some open questions especially concerning the high energy structures in the absorption spectrum.

  10. A sandwich immunoassay for detection of Aβ(1-42) based on quantum dots.

    PubMed

    Pi, Jiangli; Long, Yijuan; Huang, Ning; Cheng, Yuan; Zheng, Huzhi

    2016-01-01

    Alzheimer's disease (AD) is the primary cause of dementia over the age of 60, affecting more than 35 million people worldwide. Methods for early diagnosis of AD are critical for the development of effective treatments to combat this debilitating disease. It was confirmed that amyloid-beta peptide 1-42 (Aβ(1-42)) is the biomarker of its early diagnosis. In this work, we present a new sandwich immunoassay method for the detection of Aβ(1-42) based on quantum dot (QDs) nanolabels and magnetic separation. In the presence of Aβ(1-42), QDs linked to magnetic beads (MB) via the formation of immune-sandwich complex and can be removed by a magnetic field. And as a result, fluorescence intensity from QDs in the supernatant decreased. Under the optimized conditions, there is a linear relationship between the fluorescence intensity of supernatant solution and the concentration of Aβ(1-42) from 0.50 to 8.0 nM with a limit detection of 0.2 nM (3σ). This immunoassay was applied to detect Aβ(1-42) in human cerebrospinal fluid (CSF) successfully.

  11. Miniband-related 1.4-1.8 μm luminescence of Ge/Si quantum dot superlattices

    NASA Astrophysics Data System (ADS)

    Talalaev, V. G.; Cirlin, G. E.; Tonkikh, A. A.; Zakharov, N. D.; Werner, P.; Gösele, U.; Tomm, J. W.; Elsaesser, T.

    2006-12-01

    The luminescence properties of highly strained, Sb-doped Ge/Si multi-layer heterostructures with incorporated Ge quantum dots (QDs) are studied. Calculations of the electronic band structure and luminescence measurements prove the existence of an electron miniband within the columns of the QDs. Miniband formation results in a conversion of the indirect to a quasi-direct excitons takes place. The optical transitions between electron states within the miniband and hole states within QDs are responsible for an intense luminescence in the 1.4-1.8 µm range, which is maintained up to room temperature. At 300 K, a light emitting diode based on such Ge/Si QD superlattices demonstrates an external quantum efficiency of 0.04% at a wavelength of 1.55 µm.

  12. [Dot1 and Set2 Histone Methylases Control the Spontaneous and UV-Induced Mutagenesis Levels in the Saccharomyces cerevisiae Yeasts].

    PubMed

    Kozhina, T N; Evstiukhina, T A; Peshekhonov, V T; Chernenkov, A Yu; Korolev, V G

    2016-03-01

    In the Saccharomyces cerevisiae yeasts, the DOT1 gene product provides methylation of lysine 79 (K79) of hi- stone H3 and the SET2 gene product provides the methylation of lysine 36 (K36) of the same histone. We determined that the dot1 and set2 mutants suppress the UV-induced mutagenesis to an equally high degree. The dot1 mutation demonstrated statistically higher sensitivity to the low doses of MMC than the wild type strain. The analysis of the interaction between the dot1 and rad52 mutations revealed a considerable level of spontaneous cell death in the double dot1 rad52 mutant. We observed strong suppression of the gamma-in- duced mutagenesis in the set2 mutant. We determined that the dot1 and set2 mutations decrease the sponta- neous mutagenesis rate in both single and d ouble mutants. The epistatic interaction between the dot1 and set2 mutations and almost similar sensitivity of the corresponding mutants to the different types of DNA damage allow one to conclude that both genes are involved in the control of the same DNA repair pathways, the ho- mologous-recombination-based and the postreplicative DNA repair.

  13. Non-polar In x Ga1-x N/GaN quantum dots: impact of dot size and shape anisotropies on excitonic and biexcitonic properties

    NASA Astrophysics Data System (ADS)

    Kanta Patra, Saroj; Schulz, Stefan

    2017-01-01

    In this work, we present a theoretical analysis of the built-in potential, the excitonic and biexcitonic properties of non-polar InGaN/GaN quantum dots by means of self-consistent Hartree calculations using \\mathbf{k}\\centerdot \\mathbf{p} theory. Special attention is paid to the impact of dot size and shape anisotropies on the results. Our calculations reveal that even though non-polar InGaN/GaN quantum dots exhibit strongly reduced built-in fields when compared to c-plane dots, the excitonic and biexcitonic properties are significantly affected by these residual fields. Furthermore, changes in the built-in field when the geometrical dot features are modified, result in an unusual variation of the exciton binding energy. All these findings highlight that the dot geometry significantly affects electronic and optical properties of non-polar InGaN/GaN systems. This is further supported by comparing our theoretical data with experimental literature results. Here, we analyze also trends in exciton and biexciton binding energies and discuss the potential use of non-polar InGaN/GaN dots for entangled photon emission via the time reordering scheme.

  14. Formation of 3-mercaptopropionic acid-ZnxCd1-xSe quantum dots with tunable band gap

    NASA Astrophysics Data System (ADS)

    Geng, Yue; Chen, Qian; Zhou, Chunyan; Song, Jiahui; Wang, Rongfang; Zhou, Liya

    2015-08-01

    Alloyed ZnxCd1-xSe quantum dots (QDs) covering the UV-visible spectral region are successfully synthesized using 3-mercaptopropionic acid (MPA) as a capping agent. The optical properties of the alloyed QDs are determined on the basis of different ligands, reaction times, pH, Se/Zn molar ratios, and Zn/Cd molar ratios. The band gaps of the as-prepared QDs can be tuned by adjusting the compositions of the dots, and the quantum yield of ZnxCd1-xSe QDs is 33%. All results indicate that ZnxCd1-xSe QDs can be potentially applied in photochemical devices.

  15. Expression of the Tpanxb1 gene from Taenia pisiformis and its potential diagnostic value by dot-ELISA.

    PubMed

    Yang, Deying; Chen, Lin; Wu, Xuhang; Zhou, Xuan; Li, Mei; Chen, Zuqin; Nong, Xiang; Gu, Xiaobin; Peng, Xuerong; Yang, Guangyou

    2014-04-01

    Cysticercosis, caused by the larvae of Taenia pisiformis, is a common disease in rabbits that results in economic losses. To date, there has been limited information available on the early detection of infection by this parasite. This study describes a dot-ELISA method based on an autologous antigen annexin B1 (Tpanxb1). Its potential for serodiagnosis of rabbit cysticercosis was also evaluated. Western blot analysis revealed that the recombinant Tpanxb1 (rTpanxb1) protein could be specifically recognized by rabbit anti-sera. In serum trials, the antibodies could be detected by dot-ELISA using rTpanxb1 at 14 days post-infection. The positive response was present for up to 49 days post-infection. Based on the necropsy results of 169 rabbit samples, the relative sensitivity and specificity of the dot-ELISA were 94.55% and 92.86%, respectively. This study provides a foundation for studying the immunological function of annexin and its application to control Taenia cestodes.

  16. Test and evaluation document for DOT Specification 7A type A packaging. Volume 1

    SciTech Connect

    Kelly, D L

    1997-08-04

    The US Department of Energy (DOE) has been conducting, through several of its operating contractors, an evaluation and testing program to qualify Type A radioactive material packagings per US Department of Transportation (DOT) Specification 7A (DOT-7A) of the Code of Federal Regulations (CFR), Title 49, Part 178 (49 CFR 178). This document summarizes the evaluation and testing performed for all of the packagings successfully qualified in this program. This document supersedes DOE Evaluation Document for DOT-7A Type A Packaging (Edling 1987), originally issued in 1987 by Monsanto Research Corporation Mound Laboratory (MLM), Miamisburg, Ohio, for the Department of Energy, Security Evaluation Program (I)P-4. Mound Laboratory issued four revisions to the document between November 1988 and December 1989. In September 1989, the program was transferred to Westinghouse Hanford Company (Westinghouse Hanford) in Richland, Washington. One additional revision was issued in March 1990 by Westinghouse Hanford. This revision reflects the earlier material and incorporates a number of changes. Evaluation and testing activities on 1208 three DOT-7A Program Dockets resulted in the qualification of three new packaging configurations, which are incorporated herein and summarized. This document presents approximately 300 different packagings that have been determined to meet the requirements for a DOT-7A, type A packaging per 49 CFR 178.350.

  17. Defense mechanisms of Pseudomonas aeruginosa PAO1 against quantum dots and their released heavy metals.

    PubMed

    Yang, Yu; Mathieu, Jacques M; Chattopadhyay, Soma; Miller, Jeffrey T; Wu, Tianpin; Shibata, Tomohiro; Guo, Wenhua; Alvarez, Pedro J J

    2012-07-24

    The growing use of quantum dots (QDs) in numerous applications increases the possibility of their release to the environment. Bacteria provide critical ecosystem services, and understanding their response to QDs is important to assess the potential environmental impacts of such releases. Here, we analyze the microbial response to sublethal exposure to commercial QDs, and investigate potential defense and adaptation mechanisms in the model bacterium Pseudomonas aeruginosa PAO1. Both intact and weathered QDs, as well as dissolved metal constituents, up-regulated czcABC metal efflux transporters. Weathered QDs also induced superoxide dismutase gene sodM, which likely served as a defense against oxidative stress. Interestingly, QDs also induced antibiotic resistance (ABR) genes and increased antibiotic minimum inhibitory concentrations by 50 to 100%, which suggests up-regulation of global stress defense mechanisms. Extracellular synthesis of nanoparticles (NPs) was observed after exposure to dissolved Cd(NO(3))(2) and SeO(2). With extended X-ray absorption fine structure (EXAFS), we discerned biogenic NPs such as CdO, CdS, CdSe, and selenium sulfides. These results show that bacteria can mitigate QD toxicity by turning on energy-dependent heavy-metal ion efflux systems and by mediating the precipitation of dissolved metal ions as less toxic and less bioavailable insoluble NPs.

  18. Keldysh effective action theory for universal physics in spin-(1)/(2) Kondo dots

    NASA Astrophysics Data System (ADS)

    Smirnov, Sergey; Grifoni, Milena

    2013-03-01

    We present a theory for the Kondo spin-(1)/(2) effect in strongly correlated quantum dots. The theory is applicable at any temperature and voltage. It is based on a quadratic Keldysh effective action parametrized by a universal function. We provide a general analytical form for the tunneling density of states through this universal function for which we propose a simple microscopic model. We apply our theory to the highly asymmetric Anderson model with U=∞ and describe its strong-coupling limit, weak-coupling limit, and crossover region within a single analytical expression. We compare our results with a numerical renormalization group in equilibrium and with a real-time renormalization group out of equilibrium and show that the universal shapes of the linear and differential conductance obtained in our theory and in these theories are very close to each other in a wide range of temperatures and voltages. In particular, as in the real-time renormalization group, we predict that at the Kondo voltage the differential conductance is equal to 2/3 of its maximum.

  19. InN/InGaN dot-in-a-wire nanostructures emitting at 1.55 µm

    NASA Astrophysics Data System (ADS)

    Chen, Qiming; Yan, Changling; Qu, Yi

    2017-03-01

    The room temperature photoluminescence emission at 1.55 µm from InN/In0.7Ga0.3N dot-in-nanowire heterostructures, which was grown on self-assembled GaN nanowires on Si (111) under N-rich condition by plasma assisted molecular beam epitaxy, has been clarified in this paper. The morphology of the nanowires was uniform along the c-axis as proved by scanning electron microscope, each of the nanowires was grown individually and homogeneously without any coalescence phenomenon respectively. The nanowires dispersed on a silicon substrate showed very clear InN dot-in-nanowire structure by high resolution transmission electron microscopy. The structural properties of the individual InGaN nanocolumn were further investigated by high-angle annular dark field image analysis and energy dispersive x-ray spectrum, which confirmed the successful growth of InN quantum dot embedded in InGaN nanowire.

  20. MENA 1.1 - An Updated Geophysical Regionalization of the Middle East and North Africa

    SciTech Connect

    Walters, B.; Pasyanos, M.E.; Bhattacharyya, J.; O'Boyle, J.

    2000-03-01

    This short report provides an update to the earlier LLNL paper entitled ''Preliminary Definition of Geophysical Regions for the Middle East and North Africa'' (Sweeney and Walter, 1998). This report is designed to be used in combination with that earlier paper. The reader is referred to Sweeney and Walter (1998) for all details, including definitions, references, uses, shortcomings, etc., of the regionalization process. In this report we will discuss only those regions in which we have changed the boundaries or velocity structure from that given by the original paper. The paper by Sweeney and Walter (1998) drew on a variety of sources to estimate a preliminary, first-order regionalization of the Middle East and North Africa (MENA), providing regional boundaries and velocity models within each region. The model attempts to properly account for major structural discontinuities and significant crustal thickness and velocity variations on a gross scale. The model can be used to extrapolate sparse calibration data within a distinct geophysical region. This model can also serve as a background model in the process of forming station calibration maps using intelligent interpolation techniques such as kriging, extending the calibration into aseismic areas. Such station maps can greatly improve the ability to locate and identify seismic events, which in turn improves the ability to seismically monitor for underground nuclear testing. The original model from Sweeney and Walter (1998) was digitized to a 1{sup o} resolution, for simplicity we will hereafter refer to this model as MENA 1.0. The new model described here has also been digitized to a 1{sup o} resolution and will be referred to as MENA1.1 throughout this report.

  1. Structure of the conserved core of the yeast Dot1p, a nucleosomal histone H3 lysine 79 methyltransferase

    SciTech Connect

    Sawada,K.; Yang, Z.; Horton, J.; Collins, R.; Zhang, X.; Cheng, X.

    2004-01-01

    Methylation of Lys{sup 79} on histone H3 by Dot1p is important for gene silencing. The elongated structure of the conserved core of yeast Dot1p contains an N-terminal helical domain and a seven-stranded catalytic domain that harbors the binding site for the methyl-donor and an active site pocket sided with conserved hydrophobic residues. The S-adenosyl-L-homocysteine exhibits an extended conformation distinct from the folded conformation observed in structures of SET domain histone lysine methyltransferases. A catalytic asparagine (Asn{sup 479}), located at the bottom of the active site pocket, suggests a mechanism similar to that employed for amino methylation in DNA and protein glutamine methylation. The acidic, concave cleft between the two domains contains two basic residue binding pockets that could accommodate the outwardly protruding basic side chains around Lys{sup 79} of histone H3 on the disk-like nucleosome surface. Biochemical studies suggest that recombinant Dot1 proteins are active on recombinant nucleosomes, free of any modifications.

  2. Dependence of the Redshifted and Blueshifted Photoluminescence Spectra of Single InxGa1-xAs/GaAs Quantum Dots on the Applied Uniaxial Stress

    NASA Astrophysics Data System (ADS)

    Jöns, K. D.; Hafenbrak, R.; Singh, R.; Ding, F.; Plumhof, J. D.; Rastelli, A.; Schmidt, O. G.; Bester, G.; Michler, P.

    2011-11-01

    We apply external uniaxial stress to tailor the optical properties of InxGa1-xAs/GaAs quantum dots. Unexpectedly, the emission energy of single quantum dots controllably shifts to both higher and lower energies under tensile strain. Theoretical calculations using a million atom empirical pseudopotential many-body method indicate that the shifting direction and magnitude depend on the lateral extension and more interestingly on the gallium content of the quantum dots. Our experimental results are in good agreement with the underlying theory.

  3. Generic fixed point model for pseudo-spin-1/2 quantum dots in nonequilibrium: Spin-valve systems with compensating spin polarizations

    NASA Astrophysics Data System (ADS)

    Göttel, Stefan; Reininghaus, Frank; Schoeller, Herbert

    2015-07-01

    We study a pseudo-spin-1/2 quantum dot in the cotunneling regime close to the particle-hole symmetric point. For a generic tunneling matrix we find a fixed point with interesting nonequilibrium properties, characterized by effective reservoirs with compensating spin orientation vectors weighted by the polarizations and the tunneling rates. At large bias voltage we study the magnetic field dependence of the dot magnetization and the current. The fixed point can be clearly identified by analyzing the magnetization of the dot. We characterize the universal properties for the case of two reservoirs and discuss deviations from the fixed point model in experimentally realistic situations.

  4. Microwave assisted aqueous synthesis of core-shell CdSe(x)Te(1-x)-CdS quantum dots for high performance sensitized solar cells.

    PubMed

    Luo, Jianheng; Wei, Huiyun; Li, Fan; Huang, Qingli; Li, Dongmei; Luo, Yanhong; Meng, Qingbo

    2014-04-04

    A facile microwave assisted aqueous method has been developed to rapidly prepare stable CdSe(x)Te(1-x)-CdS quantum dots. Based on this material, core-shell type II CdSe(x)Te(1-x)-CdS quantum dot sensitized solar cells have been assembled and a power conversion efficiency as high as 5.04% has been obtained.

  5. Gerbil middle-ear sound transmission from 100 Hz to 60 kHz1

    PubMed Central

    Ravicz, Michael E.; Cooper, Nigel P.; Rosowski, John J.

    2008-01-01

    Middle-ear sound transmission was evaluated as the middle-ear transfer admittance HMY (the ratio of stapes velocity to ear-canal sound pressure near the umbo) in gerbils during closed-field sound stimulation at frequencies from 0.1 to 60 kHz, a range that spans the gerbil’s audiometric range. Similar measurements were performed in two laboratories. The HMY magnitude (a) increased with frequency below 1 kHz, (b) remained approximately constant with frequency from 5 to 35 kHz, and (c) decreased substantially from 35 to 50 kHz. The HMY phase increased linearly with frequency from 5 to 35 kHz, consistent with a 20–29 μs delay, and flattened at higher frequencies. Measurements from different directions showed that stapes motion is predominantly pistonlike except in a narrow frequency band around 10 kHz. Cochlear input impedance was estimated from HMY and previously-measured cochlear sound pressure. Results do not support the idea that the middle ear is a lossless matched transmission line. Results support the ideas that (1) middle-ear transmission is consistent with a mechanical transmission line or multiresonant network between 5 and 35 kHz and decreases at higher frequencies, (2) stapes motion is pistonlike over most of the gerbil auditory range, and (3) middle-ear transmission properties are a determinant of the audiogram. PMID:18646983

  6. 1.59 {mu}m room temperature emission from metamorphic InAs/InGaAs quantum dots grown on GaAs substrates

    SciTech Connect

    Seravalli, L.; Frigeri, P.; Trevisi, G.; Franchi, S.

    2008-05-26

    We present design, preparation by molecular beam epitaxy, and characterization by photoluminescence of long-wavelength emitting, strain-engineered quantum dot nanostructures grown on GaAs, with InGaAs confining layers and additional InAlAs barriers embedding InAs dots. Quantum dot strain induced by metamorphic lower confining layers is instrumental to redshift the emission, while a-few-nanometer thick InAlAs barriers allow to significantly increase the activation energy of carriers' thermal escape. This approach results in room temperature emission at 1.59 {mu}m and, therefore, is a viable method to achieve efficient emission in the 1.55 {mu}m window and beyond from quantum dots grown on GaAs substrates.

  7. Enhancement of luminescence intensity induced by 1.06 µm excitation in InAs/GaAs quantum dots

    NASA Astrophysics Data System (ADS)

    Mazurenko, D. A.; Scherbakov, A. V.; Akimov, A. V.; Kent, A. J.; Henini, M.

    1999-12-01

    We study the effect of additional below bandgap optical excitation icons/Journals/Common/hbar" ALT="hbar" ALIGN="TOP"/>icons/Journals/Common/omega" ALT="omega" ALIGN="TOP"/>1 = 1.17 eV (icons/Journals/Common/lambda" ALT="lambda" ALIGN="TOP"/> = 1.06 µm) on the photoluminescence of self-assembled InAs/GaAs quantum dots. We observe a relative increase of the photoluminescence intensity by up to 40%. The analysis of the experimental results is based on a model where a carrier is released from a deep trap as a result of a photoionization process.

  8. 1. View from middle adit Wawona Tunnel (CA105) of junction ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. View from middle adit Wawona Tunnel (CA-105) of junction of Highway 120, the Big Oak Flat Road, and Highway 140 showing retaining wall on Hwy.120 at lower left of image. - Big Oak Flat Road, Between Big Oak Flat Entrance & Merced River, Yosemite Village, Mariposa County, CA

  9. DotU expression is highly induced during in vivo infection and responsible for virulence and Hcp1 secretion in avian pathogenic Escherichia coli

    PubMed Central

    Wang, Shaohui; Dai, Jianjun; Meng, Qingmei; Han, Xiangan; Han, Yue; Zhao, Yichao; Yang, Denghui; Ding, Chan; Yu, Shengqing

    2014-01-01

    Type VI secretion systems (T6SSs) contribute to pathogenicity in many pathogenic bacteria. Three distinguishable T6SS loci have been discovered in avian pathogenic Escherichia coli (APEC). The sequence of APEC T6SS2 locus is highly similar to the sequence of the newborn meningitis Escherichia coli (NMEC) RS218 T6SS locus, which might contribute to meningitis pathogenesis. However, little is known about the function of APEC T6SS2. We showed that the APEC T6SS2 component organelle trafficking protein (DotU) could elicit antibodies in infected ducks, suggesting that DotU might be involved in APEC pathogenicity. To investigate DotU in APEC pathogenesis, mutant and complemented strains were constructed and characterized. Inactivation of the APEC dotU gene attenuated virulence in ducks, diminished resistance to normal duck serum, and reduced survival in macrophage cells and ducks. Furthermore, deletion of the dotU gene abolished hemolysin-coregulated protein (Hcp) 1 secretion, leading to decreased interleukin (IL)-6 and IL-8 gene expression in HD-11 chicken macrophages. These functions were restored for the complementation strain. Our results demonstrated that DotU plays key roles in the APEC pathogenesis, Hcp1 secretion, and intracellular host response modulation. PMID:25426107

  10. 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates.

    PubMed

    Wang, Ting; Liu, Huiyun; Lee, Andrew; Pozzi, Francesca; Seeds, Alwyn

    2011-06-06

    We report the first operation of an electrically pumped 1.3-μm InAs/GaAs quantum-dot laser epitaxially grown on a Si (100) substrate. The laser structure was grown directly on the Si substrate by molecular beam epitaxy. Lasing at 1.302 μm has been demonstrated with threshold current density of 725 A/cm2 and output power of ~26 mW for broad-area lasers with as-cleaved facets at room temperature. These results are directly attributable to the optimized growth temperature of the initial GaAs nucleation layer.

  11. Ordering mechanism of stacked CdSe/ZnS{sub x}Se{sub 1-x} quantum dots: A combined reciprocal-space and real-space approach

    SciTech Connect

    Schmidt, Th.; Roventa, E.; Clausen, T.; Flege, J. I.; Alexe, G.; Rosenauer, A.; Hommel, D.; Falta, J.; Bernstorff, S.; Kuebel, C.

    2005-11-15

    The vertical and lateral ordering of stacked CdSe quantum dot layers embedded in ZnS{sub x}Se{sub 1-x} has been investigated by means of grazing incidence small angle x-ray scattering and transmission electron microscopy. Different growth parameters have been varied in order to elucidate the mechanisms leading to quantum dot correlation. From the results obtained for different numbers of quantum dot layers, we conclude on a self-organized process which leads to increasing ordering for progressive stacking. The dependence on the spacer layer thickness indicates that strain induced by lattice mismatch drives the ordering process, which starts to break down for too thick spacer layers in a thickness range from 45 to 80 A. Typical quantum dot distances in a range from about 110 to 160 A have been found. A pronounced anisotropy of the quantum dot correlation has been observed, with the strongest ordering along the [110] direction. Since an increased ordering is found with increasing growth temperature, the formation of stacking faults as an additional mechanism for quantum dot alignment can be ruled out.

  12. Human mandibular incisors from the late Middle Pleistocene locality of Hoedjiespunt 1, South Africa.

    PubMed

    Stynder, D D; Moggi-Cecchi, J; Berger, L R; Parkington, J E

    2001-11-01

    The Hoedjiespunt 1 locality is an archaeological and palaeontological site located on the Hoedjiespunt Peninsula at Saldanha Bay, South Africa. In 1996 two human teeth, a left central mandibular incisor and a left lateral mandibular incisor, were discovered during excavations in the late Middle Pleistocene palaeontological layers. These teeth are described and are found to belong to a single subadult individual. Despite their developmental stage, these incisors already display early signs of wear. Their crown diameters are larger than modern and archaeological African comparative material and are most closely comparable with crown diameters of an early Middle Pleistocene and late Middle Pleistocene dental sample from Africa, Europe and Asia. In the light of this metrical evidence, data on two previously excavated maxillary molars, most probably belonging to the same individual, were re-examined. It was found that the Hoedjiespunt 1 hominid possessed dental metrical features (large anterior teeth and small molars) comparable with other African and European hominids referred to the Middle Pleistocene.

  13. Performance improvement of the one-dot lateral flow immunoassay for aflatoxin B1 by using a smartphone-based reading system.

    PubMed

    Lee, Sangdae; Kim, Giyoung; Moon, Jihea

    2013-04-18

    This study was conducted to develop a simple, rapid, and accurate lateral flow immunoassay (LFIA) detection method for point-of-care diagnosis. The one-dot LFIA for aflatoxin B1 (AFB1) was based on the modified competitive binding format using competition between AFB1 and colloidal gold-AFB1-BSA conjugate for antibody binding sites in the test zone. A Smartphone-based reading system consisting of a Samsung Galaxy S2 Smartphone, a LFIA reader, and a Smartphone application for the image acquisition and data analysis. The detection limit of one-dot LFIA for AFB1 is 5 μg/kg. This method provided semi-quantitative analysis of AFB1 samples in the range of 5 to 1,000 μg/kg. Using combination of the one-dot LFIA and the Smartphone-based reading system, it is possible to conduct a more fast and accurate point-of-care diagnosis.

  14. Excitation-induced germanium quantum dot growth on silicon(100)-2X1 by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Er, Ali Oguz

    2011-12-01

    Self-assembled Ge quantum dots (QD) are grown on Si(100)-(2x1) with laser excitation during growth processes by pulsed laser deposition (PLD). In situ reflection-high energy electron diffraction (RHEED) and post-deposition atomic force microscopy (AFM) are used to study the growth dynamics and morphology of the QDs. A Q-switched Nd:YAG laser (lambda = 1064 nm, 40 ns pulse width, 5 J/cm2 fluence, and 10 Hz repetition rate) were used to ablate germanium and irradiate the silicon substrate. Ge QD formation on Si(100)-(2x1) with different substrate temperatures and excitation laser energy densities was studied. The excitation laser reduces the epitaxial growth temperature to 250 °C for a 22 ML film. In addition, applying the excitation laser to the substrate during the growth changes the QD morphology and density and improves the uniformity of quantum dots fabricated at 390 °C. At room temperature, applying the excitation laser during growth decreases the surface roughness although epitaxial growth could not be achieved. We have also studied the surface diffusion coefficient of Ge during pulsed laser deposition of Ge on Si(100)-(2x1) with different excitation laser energy densities. Applying the excitation laser to the substrate during the growth increases the surface diffusion coefficient, changes the QD morphology and density, and improves the size uniformity of the grown quantum dots. To study the effect of high intensity ultralast laser pulses, Ge quantum dots on Si(I00) were grown in an ultrahigh vacuum (UHV) chamber (base pressure ˜7.0x10 -10 Torr) by femtosecond pulsed laser deposition. The results show that excitation laser reduces the epitaxial growth temperature to ˜70 °C. This result could lead to nonthermal method to achieve low temperature epitaxy which limits the redistribution of impurities, reduces intermixing in heteroepitaxy, and restricts the generation of defects by thermal stress. We have ruled out thermal effects and some of the desorption

  15. CdSe/ZnS Quantum Dots-Labeled Mesenchymal Stem Cells for Targeted Fluorescence Imaging of Pancreas Tissues and Therapy of Type 1 Diabetic Rats.

    PubMed

    Liu, Haoqi; Tang, Wei; Li, Chao; Lv, Pinlei; Wang, Zheng; Liu, Yanlei; Zhang, Cunlei; Bao, Yi; Chen, Haiyan; Meng, Xiangying; Song, Yan; Xia, Xiaoling; Pan, Fei; Cui, Daxiang; Shi, Yongquan

    2015-12-01

    Mesenchymal stem cells (MSCs) have been used for therapy of type 1 diabetes mellitus. However, the in vivo distribution and therapeutic effects of transplanted MSCs are not clarified well. Herein, we reported that CdSe/ZnS quantum dots-labeled MSCs were prepared for targeted fluorescence imaging and therapy of pancreas tissues in rat models with type 1 diabetes. CdSe/ZnS quantum dots were synthesized, their biocompatibility was evaluated, and then, the appropriate concentration of quantum dots was selected to label MSCs. CdSe/ZnS quantum dots-labeled MSCs were injected into mouse models with type 1 diabetes via tail vessel and then were observed by using the Bruker In-Vivo F PRO system, and the blood glucose levels were monitored for 8 weeks. Results showed that prepared CdSe/ZnS quantum dots owned good biocompatibility. Significant differences existed in distribution of quantum dots-labeled MSCs between normal control rats and diabetic rats (p < 0.05). The ratios of the fluorescence intensity (RFI) analysis showed an accumulation rate of MSCs in the pancreas of rats in the diabetes group which was about 32 %, while that in the normal control group rats was about 18 %. The blood glucose levels were also monitored for 8 weeks after quantum dots-labeled MSC injection. Statistical differences existed between the blood glucose levels of the diabetic rat control group and MSC-injected diabetic rat group (p < 0.01), and the MSC-injected diabetic rat group displayed lower blood glucose levels. In conclusion, CdSe/ZnS-labeled MSCs can target in vivo pancreas tissues in diabetic rats, and significantly reduce the blood glucose levels in diabetic rats, and own potential application in therapy of diabetic patients in the near future.

  16. CdSe/ZnS Quantum Dots-Labeled Mesenchymal Stem Cells for Targeted Fluorescence Imaging of Pancreas Tissues and Therapy of Type 1 Diabetic Rats

    NASA Astrophysics Data System (ADS)

    Liu, Haoqi; Tang, Wei; Li, Chao; Lv, Pinlei; Wang, Zheng; Liu, Yanlei; Zhang, Cunlei; Bao, Yi; Chen, Haiyan; Meng, Xiangying; Song, Yan; Xia, Xiaoling; Pan, Fei; Cui, Daxiang; Shi, Yongquan

    2015-06-01

    Mesenchymal stem cells (MSCs) have been used for therapy of type 1 diabetes mellitus. However, the in vivo distribution and therapeutic effects of transplanted MSCs are not clarified well. Herein, we reported that CdSe/ZnS quantum dots-labeled MSCs were prepared for targeted fluorescence imaging and therapy of pancreas tissues in rat models with type 1 diabetes. CdSe/ZnS quantum dots were synthesized, their biocompatibility was evaluated, and then, the appropriate concentration of quantum dots was selected to label MSCs. CdSe/ZnS quantum dots-labeled MSCs were injected into mouse models with type 1 diabetes via tail vessel and then were observed by using the Bruker In-Vivo F PRO system, and the blood glucose levels were monitored for 8 weeks. Results showed that prepared CdSe/ZnS quantum dots owned good biocompatibility. Significant differences existed in distribution of quantum dots-labeled MSCs between normal control rats and diabetic rats ( p < 0.05). The ratios of the fluorescence intensity (RFI) analysis showed an accumulation rate of MSCs in the pancreas of rats in the diabetes group, and was about 32 %, while that in the normal control group rats was about 18 %. The blood glucose levels were also monitored for 8 weeks after quantum dots-labeled MSC injection. Statistical differences existed between the blood glucose levels of the diabetic rat control group and MSC-injected diabetic rat group ( p < 0.01), and the MSC-injected diabetic rat group displayed lower blood glucose levels. In conclusion, CdSe/ZnS-labeled MSCs can target in vivo pancreas tissues in diabetic rats, and significantly reduce the blood glucose levels in diabetic rats, and own potential application in therapy of diabetic patients in the near future.

  17. The IGF1 small dog haplotype is derived from Middle Eastern grey wolves: a closer look at statistics, sampling, and the alleged Middle Eastern origin of small dogs.

    PubMed

    Klütsch, Cornelya F C; de Caprona, M Dominique Crapon

    2010-09-08

    This paper is a response to Gray MM, Sutter NB, Ostrander EA, Wayne RK: The IGF1 small dog haplotype is derived from Middle Eastern grey wolves. BMC Biology 2010, 8:16. See research article at http://www.biomedcentral.com/1741-7007/8/16.

  18. Chemical synthesis and optical characterization of regular and magic-sized CdS quantum dot nanocrystals using 1-dodecanethiol

    SciTech Connect

    Dickson, Rachel E.; Hu, Michael Z.

    2015-03-23

    In this study, cadmium sulfide (CdS) quantum dot (QD) nanoparticles have been synthesized using a one-pot noninjection reaction procedure in solvent medium 1-octadecene. This approach used a cadmium salt and 1-dodecanethiol, an organic sulfur, as the cadmium and sulfur sources, respectively, along with a long-chain organic acid (myristic acid, lauric acid, or stearic acid). The acid has dual effects as a surface capping ligand and a solubility controlling agent as well. UV–Vis and photoluminescence (PL) spectrometry techniques were used to characterize the optical properties, along with transmission electron microscopy (TEM) to identify the structure and size. Our newly developed synthesis procedure allowed for investigation of both regular and “magic-sized” CdS QDs by systematically controlling reaction parameters such as reactant type, reactant concentration, and reaction temperature. The organic sulfur (1-dodecanethiol) proved to be a useful sulfur source for synthesizing magic-sized CdS QDs, previously unreported. Several distinctive size regimes of magic-sized quantum dots (MSQDs), including Families 378 and 407, were successfully produced by controlling a small number of factors. Finally, the understanding of controlled Cd release in a MSQD formation mechanism is developed.

  19. Chemical synthesis and optical characterization of regular and magic-sized CdS quantum dot nanocrystals using 1-dodecanethiol

    DOE PAGES

    Dickson, Rachel E.; Hu, Michael Z.

    2015-03-23

    In this study, cadmium sulfide (CdS) quantum dot (QD) nanoparticles have been synthesized using a one-pot noninjection reaction procedure in solvent medium 1-octadecene. This approach used a cadmium salt and 1-dodecanethiol, an organic sulfur, as the cadmium and sulfur sources, respectively, along with a long-chain organic acid (myristic acid, lauric acid, or stearic acid). The acid has dual effects as a surface capping ligand and a solubility controlling agent as well. UV–Vis and photoluminescence (PL) spectrometry techniques were used to characterize the optical properties, along with transmission electron microscopy (TEM) to identify the structure and size. Our newly developed synthesismore » procedure allowed for investigation of both regular and “magic-sized” CdS QDs by systematically controlling reaction parameters such as reactant type, reactant concentration, and reaction temperature. The organic sulfur (1-dodecanethiol) proved to be a useful sulfur source for synthesizing magic-sized CdS QDs, previously unreported. Several distinctive size regimes of magic-sized quantum dots (MSQDs), including Families 378 and 407, were successfully produced by controlling a small number of factors. Finally, the understanding of controlled Cd release in a MSQD formation mechanism is developed.« less

  20. Electronic properties of Hg1-xCdxSe lens-shaped quantum dots under external fields

    NASA Astrophysics Data System (ADS)

    Herrera, J. R.; Gutierrez, W.; Miranda, D. A.

    2016-02-01

    Hg1-xCdxSe are II-VI semiconductors alloys with optoelectronic properties that depend upon the molar fraction x, which can be further controlled by nanostructuring. In this work one electron confined in a zero-dimensional lens-shaped nanostructure of Hg1-xCdxSe surrounded by a matrix of different molar fraction is analyzed and its electronic properties are studied under external magnetic and electric fields. Our system was modeled by means of the 3D Schrodinger equation in the framework of the effective mass approximation, which was solved using a finite element method. The model is described by a discontinuous space with Ben Daniel-Duke boundary conditions. We calculated the energy spectrum and the corresponding probability density of the electron for some low-lying energy levels as a function of: electric field strength on plane and magnetic field strength applied along the growth direction. Also, the effect of finite confinement potential was studied in presence of a uniform magnetic field. Our results shown that the electronic properties of Hg1-xCdxSe quantum dots are highly sensitive to a threading magnetic field because the degenerate energy levels are split. On the other hand, the effect of electric and magnetic fields applied simultaneously on a quantum dot can increase the system stability against external perturbation, e.g. thermal interactions.

  1. The effect of dielectric constant on binding energy and impurity self-polarization in a GaAs-Ga1- x Al x As spherical quantum dot

    NASA Astrophysics Data System (ADS)

    Mese, A. I.; Cicek, E.; Erdogan, I.; Akankan, O.; Akbas, H.

    2017-03-01

    The ground state, 1s, and the excited state, 2p, energies of a hydrogenic impurity in a GaAs-Ga1- x Al x As spherical quantum dot, are computed as a function of the donor positions. We study how the impurity self-polarization depends on the location of the impurity and the dielectric constant. The excited state anomalous impurity self-polarization in the quantum dot is found to be present in the absence of any external influence and strongly depends on the impurity position and the radius of the dot. Therefore, the excited state anomalous impurity self-polarization can give information about the impurity position in the system. Also, the variation of E_{b1s} and E_{b2p} with the dielectric constant can be utilized as a tool for finding out the correct dielectric constant of the dot material by measuring the 1s or 2p state binding energy for a fixed dot radius and a fixed impurity position.

  2. Energy levels of magneto-optical polaron in spherical quantum dot — Part 1: Strong coupling

    NASA Astrophysics Data System (ADS)

    Fotue, A. J.; Kenfack, S. C.; Issofa, N.; Tiotsop, M.; Fotsin, H.; Mainimo, E.; Fai, L. C.

    2015-09-01

    We investigate the influence of a magnetic field on the ground state energy of a polaron in a spherical semiconductor quantum dot (QD) using the modified LLP method. The ground state energy is split into sub-energy levels and there is a degeneracy of energy levels. It is also observed that the degenerate energy increase with the electron-phonon coupling constant and decrease with the magnetic field. The numerical results show that, under the influence of magnetic field and the interaction with the total momentum along the z-direction, the split energy increases and decreases with the longitudinal and the transverse confinement length, respectively.

  3. Characterization of Wavelength-Tunable Quantum Dot External Cavity Laser for 1.3-µm-Waveband Coherent Light Sources

    NASA Astrophysics Data System (ADS)

    Yamamoto, Naokatsu; Akahane, Kouichi; Kawanishi, Tetsuya; Sotobayashi, Hideyuki; Yoshioka, Yuki; Takai, Hiroshi

    2012-02-01

    A sandwiched sub-nano separator (SSNS) growth technique of producing high-density, high-quality InAs/InGaAs quantum dot (QD) structures on GaAs substrates is proposed. The SSNS technique achieved a density of 8.2 ×1010/cm2 by suppressing giant dot formation. The QD structures fabricated by the SSNS technique were used to form a ridge-type waveguide QD optical gain chip for O-band optical gain. With this chip, we successfully demonstrated the generation of a wavelength-tunable fine-tooth optical frequency comb in the O-band from a QD optical frequency comb laser (QD-CML), and synchronized short-optical-pulse generation (˜14 ps) with gigahertz-order repetition from a hybrid mode-locked QD-CML. We also successfully demonstrated a wavelength tunable QD-ECL with a wide wavelength tuning range (1265-1320 nm) and a narrow linewidth (210 kHz) in the O-band. It is expected that these QD coherent light sources will become attractive photonic devices for many scientific applications in the 1.0-1.3 µm waveband.

  4. Metabolic potential of the organic-solvent tolerant Pseudomonas putida DOT-T1E deduced from its annotated genome

    PubMed Central

    Udaondo, Zulema; Molina, Lazaro; Daniels, Craig; Gómez, Manuel J; Molina-Henares, María A; Matilla, Miguel A; Roca, Amalia; Fernández, Matilde; Duque, Estrella; Segura, Ana; Ramos, Juan Luis

    2013-01-01

    Summary Pseudomonas putida DOT-T1E is an organic solvent tolerant strain capable of degrading aromatic hydrocarbons. Here we report the DOT-T1E genomic sequence (6 394 153 bp) and its metabolic atlas based on the classification of enzyme activities. The genome encodes for at least 1751 enzymatic reactions that account for the known pattern of C, N, P and S utilization by this strain. Based on the potential of this strain to thrive in the presence of organic solvents and the subclasses of enzymes encoded in the genome, its metabolic map can be drawn and a number of potential biotransformation reactions can be deduced. This information may prove useful for adapting desired reactions to create value-added products. This bioengineering potential may be realized via direct transformation of substrates, or may require genetic engineering to block an existing pathway, or to re-organize operons and genes, as well as possibly requiring the recruitment of enzymes from other sources to achieve the desired transformation. Funding Information Work in our laboratory was supported by Fondo Social Europeo and Fondos FEDER from the European Union, through several projects (BIO2010-17227, Consolider-Ingenio CSD2007-00005, Excelencia 2007 CVI-3010, Excelencia 2011 CVI-7391 and EXPLORA BIO2011-12776-E). PMID:23815283

  5. Molecular beam epitaxial growth and characteristics of ultra-low threshold 1.45 μm metamorphic InAs quantum dot lasers on GaAs

    NASA Astrophysics Data System (ADS)

    Mi, Z.; Yang, J.; Bhattacharya, P.

    2007-04-01

    We report the molecular beam epitaxial growth and characteristics of 1.45 μm metamorphic InAs quantum dot lasers grown on GaAs. By detailed investigation of the growth kinetics of the metamorphic quantum dot heterostructures, we have achieved high-quality 1.45 μm metamorphic quantum dot layers that exhibit intense and narrow photoluminescence linewidths (˜30 meV) at room temperature. Utilizing the techniques of p-doping and tunnel injection, we have also realized high-performance 1.45 μm lasers that exhibit ultra-low threshold current density (⩽70 A/cm 2), very high temperature stability ( T0=556 K) in the temperature range of 263-305 K, and large frequency response ( f-3dB=8 GHz).

  6. Fluorescence biosensor based on CdTe quantum dots for specific detection of H5N1 avian influenza virus

    NASA Astrophysics Data System (ADS)

    Hoa Nguyen, Thi; Dieu Thuy Ung, Thi; Hien Vu, Thi; Tran, Thi Kim Chi; Quyen Dong, Van; Khang Dinh, Duy; Liem Nguyen, Quang

    2012-09-01

    This report highlights the fabrication of fluorescence biosensors based on CdTe quantum dots (QDs) for specific detection of H5N1 avian influenza virus. The core biosensor was composed of (i) the highly luminescent CdTe/CdS QDs, (ii) chromatophores extracted from bacteria Rhodospirillum rubrum, and (iii) the antibody of β-subunit. This core part was linked to the peripheral part of the biosensor via a biotin-streptavidin-biotin bridge and finally connected to the H5N1 antibody to make it ready for detecting H5N1 avian influenza virus. Detailed studies of each constituent were performed showing the image of QDs-labeled chromatophores under optical microscope, proper photoluminescence (PL) spectra of CdTe/CdS QDs, chromatophores and the H5N1 avian influenza viruses.

  7. Intracellular bimodal nanoparticles based on quantum dots for high-field MRI at 21.1 T.

    PubMed

    Rosenberg, Jens T; Kogot, Joshua M; Lovingood, Derek D; Strouse, Geoffrey F; Grant, Samuel C

    2010-09-01

    Multimodal, biocompatible contrast agents for high magnetic field applications represent a new class of nanomaterials with significant potential for tracking of fluorescence and MR in vitro and vivo. Optimized for high-field MR applications-including biomedical imaging at 21.1 T, the highest magnetic field available for MRI-these nanoparticles capitalize on the improved performance of chelated Dy(3+) with increasing magnetic field coupled to a noncytotoxic Indium Phosphide/Zinc Sulfide (InP/ZnS) quantum dot that provides fluorescence detection, MR responsiveness, and payload delivery. By surface modifying the quantum dot with a cell-penetrating peptide sequence coupled to an MR contrast agent, the bimodal nanomaterial functions as a self-transfecting high-field MR/optical contrast agent for nonspecific intracellular labeling. Fluorescent images confirm sequestration in perinuclear vesicles of labeled cells, with no apparent cytotoxicity. These techniques can be extended to impart cell selectivity or act as a delivery vehicle for genetic or pharmaceutical interventions.

  8. Discovery of Novel Disruptor of Silencing Telomeric 1-Like (DOT1L) Inhibitors using a Target-Specific Scoring Function for the (S)-Adenosyl-l-methionine (SAM)-Dependent Methyltransferase Family.

    PubMed

    Wang, Yulan; Li, Linjuan; Zhang, Bidong; Xing, Jing; Chen, Shijie; Wan, Wei; Song, Yakai; Jiang, Hao; Jiang, Hualiang; Luo, Cheng; Zheng, Mingyue

    2017-02-21

    The disruptor of telomeric silencing 1-like (DOT1L) protein is a histone H3K79 methyltransferase that plays a key role in transcriptional elongation and cell cycle regulation and is required for the development and maintenance of MLL-rearranged mixed lineage leukemia. Much effort has been dedicated toward discovering novel scaffold DOT1L inhibitors using different strategies. Here, we report the development and application of a target-specific scoring function, the SAM score, for (S)-adenosyl-l-methionine (SAM)-dependent methyltransferases, for the discovery of novel DOT1L inhibitors. On the basis of the SAM score, we successfully identified a novel class of DOT1L inhibitors with a scaffold of [1,2,4]-triazolo-[3,4-b][1,3,4]-thiadiazole, in which compound 6 exhibits an IC50 value of 8.3 μM with selectivity versus other tested SAM-dependent methyltransferases. In cellular studies, 6 selectively targets DOT1L, blocks the proliferation of mixed lineage leukemia cell lines, and causes cell cycle arrest and apoptosis. Moreover, we analyzed the putative binding modes of 6 and its analogues obtained by molecular docking, which may assist with the future development of DOT1L inhibitors with improved potency and selectivity profiles.

  9. Optical, magnetic and electronic properties of graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Guclu, A. Devrim

    2011-03-01

    We present a theory of optical, magnetic and electronic properties of graphene quantum dots. We demonstrate that there exists a class of triangular graphene quantum dots with zigzag edges [1-8] which combines magnetic, optical and transport properties in a single-material structure. These dots exhibit robust magnetic moment and optical transitions simultaneously in the THz, visible and UV spectral ranges due to the existence of a band of degenerate states lying at the Fermi level in the middle of the energy gap [1-6]. The magnetic and optical properties[5,7] are determined by strong electron-electron and excitonic interactions in the degenerate band, treated exactly using numerical techniques combining tight-binding, DFT, Hartree-Fock and configuration interactions methods. We show that the spin polarized degenerate band leads to quenching of the absorption spectrum at half-filling, while addition of a single electron fully depolarizes all electron spins and turns the absorption on. It is thus possible to design gate and size tunable graphene quantum dots with desired optical and magnetic properties for optoelectronic and photo-voltaic applications. Collaborators: P. Potasz, O. Voznyy, M. Korkusinski, and P. Hawrylak. The author thanks NRC-CNRS CRP, Canadian Institute for Advanced Research, Institute for Microstructural Sciences, and QuantumWorks for support.

  10. Palynology, paleoclimatology and correlation of middle Miocene beds from Porcupine River (locality 90-1), Alaska

    USGS Publications Warehouse

    White, J.M.; Ager, T.A.

    1994-01-01

    Beds in the Upper Ramparts Canyon of the Porcupine River, Alaska (67?? 20' N, 141?? 20' W), yielded a flora rich in pollen of hardwood genera now found in the temperate climates of North America and Asia. The beds are overlain or enclosed by two basalt flows which were dated to 15.2 ?? 0.1 Ma by the 40Ar 39Ar method, fixing the period of the greatest abundance of warm-loving genera to the early part of the middle Miocene. The assemblage is the most northern middle Miocene flora known in Alaska. Organic bed 1 underlies the basalt and is older than 15.2 Ma, but is of early to middle Miocene age. The pollen assemblage from organic bed 1 is dominated by conifer pollen from the pine and redwood-cypress-yew families with rare occurrences of temperate hardwoods. Organic bed 2 is a forest floor containing redwood trees in life position, engulfed by the lowest basalt flow. A pine log has growth rings up to 1 cm thick. Organic beds 3 and 4 comprise lacustrine sediment and peat between the two basalt flows. Their palynoflora contain conifers and hardwood genera, of which about 40% have modern temperate climatic affinities. Hickory, katsura, walnut, sweet gum, wingnut, basswood and elm pollen are consistently present, and beech and oak alone make up about 20% of the pollen assemblage. A warm high latitude climate is indicated for all of the organic beds, but organic bed 3 was deposited under a time of peak warmth. Climate data derived by comparison with modern east Asian vegetation suggest that, at the time of deposition of organic bed 3, the Mean Annual Temperature (MAT) was ca. 9??C, the Warm Month Mean Temperature (WMMT) was ??? 20??C and the Cold Month Mean Temperature (CMMT) was ca. -2??C. In contrast, the modern MAT for the region is -8.6??C, WMMT is 12.6??C and CMMT is -28??C. Organic beds 3 and 4 correlate to rocks of the middle Miocene-late Seldovian Stage of Cook Inlet and also probably correlate to, and more precisely date, the lower third of the Suntrana Formation

  11. Mice Haploinsufficient for Ets1 and Fli1 Display Middle Ear Abnormalities and Model Aspects of Jacobsen Syndrome.

    PubMed

    Carpinelli, Marina R; Kruse, Elizabeth A; Arhatari, Benedicta D; Debrincat, Marlyse A; Ogier, Jacqueline M; Bories, Jean-Christophe; Kile, Benjamin T; Burt, Rachel A

    2015-07-01

    E26 transformation-specific 1 (ETS1) and friend leukemia integration 1 (FLI1) are members of the ETS family of transcription factors, of which there are 28 in humans. Both genes are hemizygous in Jacobsen syndrome, an 11q contiguous gene deletion disorder involving thrombocytopenia, facial dysmorphism, growth and mental retardation, malformation of the heart and other organs, and hearing impairment associated with recurrent ear infections. To determine whether any of these defects are because of hemizygosity for ETS1 and FLI1, we characterized the phenotype of mice heterozygous for mutant alleles of Ets1 and Fli1. Fli1(+/-) mice displayed mild thrombocytopenia, as did Ets1(+/-)Fli1(+/-) animals. Fli1(+/-) and Ets1(+/-)Fli1(+/-) mice also displayed craniofacial abnormalities, including a small middle ear cavity, short nasal bone, and malformed interface between the nasal bone process and cartilaginous nasal septum. They exhibited hearing impairment, otitis media, fusions of ossicles to the middle ear wall, and deformed stapes. Hearing impairment was more penetrant and stapes malformations were more severe in Ets1(+/-)Fli1(+/-) mice than in Fli1(+/-) mice, indicating partial functional redundancy of these transcription factors during auditory development. Our findings indicate that the short nose, otitis media, and hearing impairment in Jacobsen syndrome are likely because of hemizygosity for ETS1 and FLI1.

  12. Cost-effectiveness analysis of TxDOT CNG fleet conversion, volume 1

    NASA Astrophysics Data System (ADS)

    Euritt, M. A.; Taylor, D. B.; Mahmassani, H.

    1992-08-01

    Increased emphasis on energy efficiency and air quality has resulted in a number of state and federal initiatives examining the use of alternative fuels for motor vehicles. A Texas program for alternate fuels includes compressed natural gas (CNG). Based on analysis of 30-year life-cycle costs, development of a natural gas vehicle (NGV) program for the Texas Department of Transportation (TxDOT) would cost about $47 million (in 1991 dollars). These costs include savings from lower-priced natural gas, infrastructure costs for a fast-fueling station, vehicle costs, and operating costs. The 30-year life-cycle costs translate into an average annual vehicle cost increase of $596, or about 4.9 cents more per vehicle mile of travel.

  13. Significant Increase in Band Gap and Emission Efficiency of In2O3 Quantum Dots by Size-Tuning around 1 nm in Supermicroporous Silicas.

    PubMed

    Suzuki, Takafumi; Watanabe, Hiroto; Ueno, Taiki; Oaki, Yuya; Imai, Hiroaki

    2017-03-28

    The size of In2O3 quantum dots (QDs) is tuned from 0.57 to 1.80 nm by using supermicroporous silicas (SMPSs) as a template. The band gap energy and photoluminescence quantum yields of In2O3-QDs increase remarkably when their size is decreased below 1 nm.

  14. Electronic structure and optical gain saturation of InAs1-xNx/GaAs quantum dots

    NASA Astrophysics Data System (ADS)

    Chen, J.; Fan, W. J.; Xu, Q.; Zhang, X. W.; Li, S. S.; Xia, J. B.

    2009-06-01

    The electronic band structures and optical gains of InAs1-xNx/GaAs pyramid quantum dots (QDs) are calculated using the ten-band k ṡp model and the valence force field method. The optical gains are calculated using the zero-dimensional optical gain formula with taking into consideration of both homogeneous and inhomogeneous broadenings due to the size fluctuation of quantum dots which follows a normal distribution. With the variation of QD sizes and nitrogen composition, it can be shown that the nitrogen composition and the strains can significantly affect the energy levels especially the conduction band which has repulsion interaction with nitrogen resonant state due to the band anticrossing interaction. It facilitates to achieve emission of longer wavelength (1.33 or 1.55 μm) lasers for optical fiber communication system. For QD with higher nitrogen composition, it has longer emission wavelength and less detrimental effect of higher excited state transition, but nitrogen composition can affect the maximum gain depending on the factors of transition matrix element and the Fermi-Dirac distributions for electrons in the conduction bands and holes in the valence bands respectively. For larger QD, its maximum optical gain is greater at lower carrier density, but it is slowly surpassed by smaller QD as carrier concentration increases. Larger QD can reach its saturation gain faster, but this saturation gain is smaller than that of smaller QD. So the trade-off between longer wavelength, maximum optical, saturation gain, and differential gain must be considered to select the appropriate QD size according to the specific application requirement.

  15. Exploring drug delivery for the DOT1L inhibitor pinometostat (EPZ-5676): Subcutaneous administration as an alternative to continuous IV infusion, in the pursuit of an epigenetic target.

    PubMed

    Waters, Nigel J; Daigle, Scott R; Rehlaender, Bruce N; Basavapathruni, Aravind; Campbell, Carly T; Jensen, Tyler B; Truitt, Brett F; Olhava, Edward J; Pollock, Roy M; Stickland, Kim A; Dovletoglou, Angelos

    2015-12-28

    Protein methyltransferases are emerging as promising drug targets for therapeutic intervention in human cancers. Pinometostat (EPZ-5676) is a small molecule inhibitor of the DOT1L enzyme, a histone methyltransferase that methylates lysine 79 of histone H3. DOT1L activity is dysregulated in the pathophysiology of rearranged mixed lineage leukemia (MLL-r). Pinometostat is currently in Phase 1 clinical trials in relapsed refractory acute leukemia patients and is administered as a continuous IV infusion (CIV). The studies herein investigated alternatives to CIV administration of pinometostat to improve patient convenience. Various sustained release technologies were considered, and based on the required dose size as well as practical considerations, subcutaneous (SC) bolus administration of a solution formulation was selected for further evaluation in preclinical studies. SC administration offered improved exposure and complete bioavailability of pinometostat relative to CIV and oral administration. These findings warranted further evaluation in rat xenograft models of MLL-r leukemia. SC dosing in xenograft models demonstrated inhibition of MLL-r tumor growth and inhibition of pharmacodynamic markers of DOT1L activity. However, a dosing frequency of thrice daily (t.i.d) was required in these studies to elicit optimal inhibition of DOT1L target genes and tumor growth inhibition. Development of an extended release formulation may prove useful in the further optimization of the SC delivery of pinometostat, moving towards a more convenient dosing paradigm for patients.

  16. Magnetic polaron formation and exciton spin relaxation in single Cd1-xMnxTe quantum dots

    NASA Astrophysics Data System (ADS)

    Kłopotowski, Ł.; Cywiński, Ł.; Wojnar, P.; Voliotis, V.; Fronc, K.; Kazimierczuk, T.; Golnik, A.; Ravaro, M.; Grousson, R.; Karczewski, G.; Wojtowicz, T.

    2011-02-01

    We study the formation dynamics of a spontaneous ferromagnetic order in single self-assembled Cd1-xMnxTe quantum dots (QDs). By measuring time-resolved photoluminescence, we determine the formation times for QDs with Mn ion contents x varying from 0.01 to 0.2. At low x these times are orders of magnitude longer than exciton spin relaxation times evaluated from the decay of photoluminescence circular polarization. This allows us to conclude that the direction of the spontaneous magnetization is determined by a momentary Mn spin fluctuation rather than resulting from an optical orientation. At higher x, the formation times are of the same order of magnitude as found in previous studies on higher-dimensional systems. We also find that the exciton spin relaxation accelerates with increasing Mn concentration.

  17. Modulation of carrier dynamics and threshold characteristics in 1.3-μm quantum dot photonic crystal nanocavity lasers

    NASA Astrophysics Data System (ADS)

    Xing, Enbo; Tong, Cunzhu; Rong, Jiamin; Shu, Shili; Wu, Hao; Wang, Lijie; Tian, Sicong; Wang, Lijun

    2016-08-01

    A self-consistent all-pathway quantum dot (QD) rate equation model, in which all possible relaxation pathways are considered, is used to investigate the influence of quality (Q) factor on the carrier dynamics of 1.3-μm InAs/GaAs QD photonic crystal (PhC) nanolasers. It is found that Q factor not only affects the photon lifetime, but also modulates the carrier occupation in QDs. About three times increases of carrier injection efficiency in QD ground state can be realized in nanocavity with high Q factor. However, it also reveals that over 90% improvement of threshold current happens when Q factor increases from 2000 to 7000, which means it might be not necessary to pursuit for ultrahigh Q factor for the purpose of low threshold current.

  18. Development of a New Limiting-Antigen Avidity Dot Immuno-Gold Filtration Assay for HIV-1 Incidence

    PubMed Central

    Feng, Xia; Wu, Lijin; Qiu, Maofeng; Xing, Wenge; Zhang, Guiyun; Zhang, Zhi; Jiang, Yan

    2016-01-01

    Several laboratory assays on cross-sectional specimens for detecting recent HIV infections were developed, but these assays could not be applied in resource-limited and high HIV-incidence areas. This study describes the development of a rapid assay that can simultaneously detect the presence of HIV-1 antibodies of current and/or recent infection. The dot immuno-gold filtration assay (DIGFA) was used to detect recent infection on the principle of antibody avidity changes between recent and long-term infections. The dot immuno-gold silver staining filtration assay (DIGSSA) increases the sensitivity and accuracy of antibody detection by adding a silver staining step to the DIGFA. In the meantime the digital results were produced by the scanner for ambiguous specimens. Further, HIV-1 routine diagnostic antibody was detected simultaneously for improving practicability. The performance of the assays was then assessed through five serum panels with known serological statuses and seroconversion dates. The proportion of false recent infection (PFR) of the DIGSSA was obtained. Through the optimization of basic parameters for DIGSSA, six specimens were all classified correctly. DIGSSA demonstrated good repeatability and high sensitivity. The agreement of DIGSSA with the BED assay was 92.10% (κ = 0.65) and 95.36% with the LAg-Avidity assay (κ = 0.75). Moreover, the gray values of DIGSSA correlated well with BED ODn (R2 = 0.9397) and LAg-Avidity ODn (R2 = 0.9549). The PFR of DIGSSA was 2.73%, which was lower than that of the BED assay but higher than that of the LAg-Avidity assay. The DIGSSA can feasibly be applied to detect HIV infection and estimate HIV incidence. PMID:27513563

  19. Refurbishment and modification of existing protective shipping packages (for 30-inch UF{sub 6} cylinders) per USDOT specification No. USA-DOT-21PF-1A

    SciTech Connect

    Housholder, W.R.

    1991-12-31

    This paper addresses the refurbishment procedures for existing shipping containers for 30-inch diameter UF{sub 6} cylinders in accordance with DOT Specification 21PF-1 and the criteria used to determine rejection when such packages are unsuitable for refurbishment.

  20. Evidence that ubiquitylated H2B corrals hDot1L on the nucleosomal surface to induce H3K79 methylation

    PubMed Central

    Zhou, Linjiao; Holt, Matthew T.; Ohashi, Nami; Zhao, Aishan; Müller, Manuel M.; Wang, Boyuan; Muir, Tom W.

    2016-01-01

    Ubiquitylation of histone H2B at lysine 120 (H2B-Ub), a post-translational modification first discovered in 1980, plays a critical role in diverse nuclear processes including the regulation of transcription and DNA damage repair. Herein, we use a suite of protein chemistry methods to explore how H2B-Ub stimulates hDot1L-mediated methylation of histone H3 on lysine 79 (H3K79me). By using semisynthetic ‘designer' chromatin containing H2B-Ub bearing a site-specifically installed photocrosslinker, here we report an interaction between a functional hotspot on ubiquitin and the N-terminus of histone H2A. Our biochemical studies indicate that this interaction is required for stimulation of hDot1L activity and leads to a repositioning of hDot1L on the nucleosomal surface, which likely places the active site of the enzyme proximal to H3K79. Collectively, our data converge on a possible mechanism for hDot1L stimulation in which H2B-Ub physically ‘corrals' the enzyme into a productive binding orientation. PMID:26830124

  1. Variability in heart rate recovery measurements over 1 year in healthy, middle-aged adults.

    PubMed

    Mellis, M G; Ingle, L; Carroll, S

    2014-02-01

    This study assessed the longer-term (12-month) variability in post-exercise heart rate recovery following a submaximal exercise test. Longitudinal data was analysed for 97 healthy middle-aged adults (74 male, 23 female) from 2 occasions, 12 months apart. Participants were retrospectively selected if they had stable physical activity habits, submaximal treadmill fitness and anthropometric measurements between the 2 assessment visits. A submaximal Bruce treadmill test was performed to at least 85% age-predicted maximum heart rate. Absolute heart rate and Δ heart rate recovery (change from peak exercise heart rate) were recorded for 1 and 2 min post-exercise in an immediate supine position. Heart rate recovery at both time-points was shown to be reliable with intra-class correlation coefficient values ≥ 0.714. Absolute heart rate 1-min post-exercise showed the strongest agreement between repeat tests (r = 0.867, P < 0.001). Lower coefficient of variation (≤ 10.2%) and narrower limits of agreement were found for actual heart rate values rather than Δ heart rate recovery, and for 1-min rather than 2-min post-exercise recovery time points. Log-transformed values generated better variability with acceptable coefficient of variation for all measures (2.2-10%). Overall, 1 min post-exercise heart rate recovery data had least variability over the 12-month period in apparently healthy middle-aged adults.

  2. Single-photon and photon pair emission from MOVPE-grown In(Ga)As quantum dots: shifting the emission wavelength from 1.0 to 1.3 μm

    NASA Astrophysics Data System (ADS)

    Kettler, Jan; Paul, Matthias; Olbrich, Fabian; Zeuner, Katharina; Jetter, Michael; Michler, Peter

    2016-03-01

    InAs quantum dots grown on a GaAs substrate have been one of the most successful semiconductor material systems to demonstrate single-photon-based quantum optical phenomena. In this context, we present the feasibility to extend the low-temperature photoluminescence emission range of In(Ga)As/GaAs quantum dots grown by metal-organic vapor-phase epitaxy from the typical window between 880 and 960 nm to wavelengths above 1.3 μm. A low quantum dot density can be obtained throughout this range, enabling the demonstration of single- and cascaded photon emission. We further analyze polarization-resolved micro-photoluminescence from a large number of individual quantum dots with respect to anisotropy and size of the underlying fine-structure splittings in the emission spectra. For samples with elevated emission wavelengths, we observe an increasing tendency of the emitted photons to be polarized along the main crystal axes.

  3. Thermally enhanced Wigner oscillations in two-electron 1D quantum dots.

    PubMed

    Cavaliere, F; Ziani, N Traverso; Negro, F; Sassetti, M

    2014-12-17

    Motivated by a recent experiment (Pecker et al 2013 Nat. Phys. 9 576), we study the stability, with respect to thermal effects, of Friedel and Wigner density fluctuations for two electrons trapped in a one-dimensional quantum dot. Diagonalizing the system exactly, the finite-temperature average electron density is computed. While the weak and strong interaction regimes display a Friedel oscillation or a Wigner molecule state at zero temperature, which as expected smear and melt as the temperature increases, a peculiar thermal enhancement of Wigner correlations in the intermediate interaction regime is found. We demonstrate that this effect is due to the presence of two different characteristic temperature scales: T(F), dictating the smearing of Friedel oscillations, and T(W), smoothing Wigner oscillations. In the early Wigner molecule regime, for intermediate interactions, T(F) < T(W) leading to the enhancement of the visibility of Wigner oscillations. These results complement those obtained within the Luttinger liquid picture, valid for larger numbers of particles.

  4. DOT1L Activity Promotes Proliferation and Protects Cortical Neural Stem Cells from Activation of ATF4-DDIT3-Mediated ER Stress In Vitro.

    PubMed

    Roidl, Deborah; Hellbach, Nicole; Bovio, Patrick P; Villarreal, Alejandro; Heidrich, Stefanie; Nestel, Sigrun; Grüning, Björn A; Boenisch, Ulrike; Vogel, Tanja

    2016-01-01

    Growing evidence suggests that the lysine methyltransferase DOT1L/KMT4 has important roles in proliferation, survival, and differentiation of stem cells in development and in disease. We investigated the function of DOT1L in neural stem cells (NSCs) of the cerebral cortex. The pharmacological inhibition and shRNA-mediated knockdown of DOT1L impaired proliferation and survival of NSCs. DOT1L inhibition specifically induced genes that are activated during the unfolded protein response (UPR) in the endoplasmic reticulum (ER). Chromatin-immunoprecipitation analyses revealed that two genes encoding for central molecules involved in the ER stress response, Atf4 and Ddit3 (Chop), are marked with H3K79 methylation. Interference with DOT1L activity resulted in transcriptional activation of both genes accompanied by decreased levels of H3K79 dimethylation. Although downstream effectors of the UPR, such as Ppp1r15a/Gadd34, Atf3, and Tnfrsf10b/Dr5 were also transcriptionally activated, this most likely occurred in response to increased ATF4 expression rather than as a direct consequence of altered H3K79 methylation. While stem cells are particularly vulnerable to stress, the UPR and ER stress have not been extensively studied in these cells yet. Since activation of the ER stress program is also implicated in directing stem cells into differentiation or to maintain a proliferative status, the UPR must be tightly regulated. Our and published data suggest that histone modifications, including H3K4me3, H3K14ac, and H3K79me2, are implicated in the control of transcriptional activation of ER stress genes. In this context, the loss of H3K79me2 at the Atf4- and Ddit3-promoters appears to mark a point-of-no-return that activates the death program in NSCs.

  5. Bandwidth enhancement in an injection-locked quantum dot laser operating at 1.31-μm

    NASA Astrophysics Data System (ADS)

    Naderi, N. A.; Pochet, M.; Kovanis, V.; Lester, L. F.

    2010-02-01

    The high-speed modulation characteristics of an injection-locked quantum dot Fabry-Perot (FP) semiconductor laser operating at 1310-nm under strong injection are investigated experimentally with a focus on the enhancement of the modulation bandwidth. The coupled system consists of a directly-modulated Quantum Dot (QD) slave injected-locked by a distributed feedback (DFB) laser as the master. At particular injection strengths and zero detuning cases, a unique modulation response is observed that differs from the typical modulation response observed in injection-locked systems. This unique response is characterized by a rapid low-frequency rise along with a slow high-frequency roll-off that enhances the 3-dB bandwidth of the injection-locked system at the expense of losing modulation efficiency of about 20 dB at frequencies below 1 GHz. Such behavior has been previously observed both experimentally and theoretically in the high-frequency response characteristic of an injection-locked system using an externally-modulated master; however, the results shown here differ in that the slave laser is directly-modulated. The benefit of the observed response is that it takes advantage of the enhancement of the resonance frequency achieved through injection-locking without experiencing the low frequency dip that significantly limits the useful bandwidth in the conventional injection-locked response. The second benefit of this unique response is the improvement in the high frequency roll-off that extends the bandwidth. Finally a 3-dB bandwidth improvement of greater than 8 times compared to the free-running slave laser has been achieved.

  6. The impact of quantum dot filling on dual-band optical transitions via intermediate quantum states

    SciTech Connect

    Wu, Jiang; Passmore, Brandon; Manasreh, M. O.

    2015-08-28

    InAs/GaAs quantum dot infrared photodetectors with different doping levels were investigated to understand the effect of quantum dot filling on both intraband and interband optical transitions. The electron filling of self-assembled InAs quantum dots was varied by direct doping of quantum dots with different concentrations. Photoresponse in the near infrared and middle wavelength infrared spectral region was observed from samples with low quantum dot filling. Although undoped quantum dots were favored for interband transitions with the absence of a second optical excitation in the near infrared region, doped quantum dots were preferred to improve intraband transitions in the middle wavelength infrared region. As a result, partial filling of quantum dot was required, to the extent of maintaining a low dark current, to enhance the dual-band photoresponse through the confined electron states.

  7. Middle Palaeolithic toolstone procurement behaviors at Lusakert Cave 1, Hrazdan valley, Armenia.

    PubMed

    Frahm, Ellery; Feinberg, Joshua M; Schmidt-Magee, Beverly A; Wilkinson, Keith N; Gasparyan, Boris; Yeritsyan, Benik; Adler, Daniel S

    2016-02-01

    Strategies employed by Middle Palaeolithic hominins to acquire lithic raw materials often play key roles in assessing their movements through the landscape, relationships with neighboring groups, and cognitive abilities. It has been argued that a dependence on local resources is a widespread characteristic of the Middle Palaeolithic, but how such behaviors were manifested on the landscape remains unclear. Does an abundance of local toolstone reflect frequent encounters with different outcrops while foraging, or was a particular outcrop favored and preferentially quarried? This study examines such behaviors at a finer geospatial scale than is usually possible, allowing us to investigate hominin movements through the landscape surrounding Lusakert Cave 1 in Armenia. Using our newly developed approach to obsidian magnetic characterization, we test a series of hypotheses regarding the locations where hominins procured toolstone from a volcanic complex adjacent to the site. Our goal is to establish whether the cave's occupants procured local obsidian from preferred outcrops or quarries, secondary deposits of obsidian nodules along a river, or a variety of exposures as encountered while moving through the river valley or across the wider volcanic landscape during the course of foraging activities. As we demonstrate here, it is not the case that one particular outcrop or deposit attracted the cave occupants during the studied time intervals. Nor did they acquire obsidian at random across the landscape. Instead, our analyses support the hypothesis that these hominins collected obsidian from outcrops and exposures throughout the adjacent river valley, reflecting the spatial scale of their day-to-day foraging activities. The coincidence of such behaviors within the resource-rich river valley suggests efficient exploitation of a diverse biome during a time interval immediately preceding the Middle to Upper Palaeolithic "transition," the nature and timing of which has yet to

  8. Hippocampal Neuron Number Is Unchanged 1 Year After Fractionated Whole-Brain Irradiation at Middle Age

    SciTech Connect

    Shi Lei Molina, Doris P.; Robbins, Michael E.; Wheeler, Kenneth T.; Brunso-Bechtold, Judy K.

    2008-06-01

    Purpose: To determine whether hippocampal neurons are lost 12 months after middle-aged rats received a fractionated course of whole-brain irradiation (WBI) that is expected to be biologically equivalent to the regimens used clinically in the treatment of brain tumors. Methods and Materials: Twelve-month-old Fischer 344 X Brown Norway male rats were divided into WBI and control (CON) groups (n = 6 per group). Anesthetized WBI rats received 45 Gy of {sup 137}Cs {gamma} rays delivered as 9 5-Gy fractions twice per week for 4.5 weeks. Control rats were anesthetized but not irradiated. Twelve months after WBI completion, all rats were anesthetized and perfused with paraformaldehyde, and hippocampal sections were immunostained with the neuron-specific antibody NeuN. Using unbiased stereology, total neuron number and the volume of the neuronal and neuropil layers were determined in the dentate gyrus, CA3, and CA1 subregions of hippocampus. Results: No differences in tissue integrity or neuron distribution were observed between the WBI and CON groups. Moreover, quantitative analysis demonstrated that neither total neuron number nor the volume of neuronal or neuropil layers differed between the two groups for any subregion. Conclusions: Impairment on a hippocampal-dependent learning and memory test occurs 1 year after fractionated WBI at middle age. The same WBI regimen, however, does not lead to a loss of neurons or a reduction in the volume of hippocampus.

  9. Quantification of (1→4)-β-d-Galactans in Compression Wood Using an Immuno-Dot Assay

    PubMed Central

    Chavan, Ramesh R.; Fahey, Leona M.; Harris, Philip J.

    2015-01-01

    Compression wood is a type of reaction wood formed on the underside of softwood stems when they are tilted from the vertical and on the underside of branches. Its quantification is still a matter of some scientific debate. We developed a new technique that has the potential to do this based on the higher proportions of (1→4)-β-d-galactans that occur in tracheid cell walls of compression wood. Wood was milled, partially delignified, and the non-cellulosic polysaccharides, including the (1→4)-β-d-galactans, extracted with 6 M sodium hydroxide. After neutralizing, the solution was serially diluted, and the (1→4)-β-d-galactans determined by an immuno-dot assay using the monoclonal antibody LM5, which specifically recognizes this polysaccharide. Spots were quantified using a dilution series of a commercially available (1→4)-β-d-galactan from lupin seeds. Using this method, compression and opposite woods from radiata pine (Pinus radiata) were easily distinguished based on the amounts of (1→4)-β-d-galactans extracted. The non-cellulosic polysaccharides in the milled wood samples were also hydrolysed using 2 M trifluoroacetic acid followed by the separation and quantification of the released neutral monosaccharides by high performance anion exchange chromatography. This confirmed that the compression woods contained higher proportions of galactose-containing polysaccharides than the opposite woods. PMID:27135316

  10. Absorption and Magnetic Circular Dichroism Analyses of Giant Zeeman Splittings in Diffusion-Doped Colloidal Cd(1-x)Mn(x)Se Quantum Dots.

    PubMed

    Barrows, Charles J; Vlaskin, Vladimir A; Gamelin, Daniel R

    2015-08-06

    Impurity ions can transform the electronic, magnetic, or optical properties of colloidal quantum dots. Magnetic impurities introduce strong dopant-carrier exchange coupling that generates giant Zeeman splittings (ΔEZ) of excitonic excited states. To date, ΔEZ in colloidal doped quantum dots has primarily been quantified by analysis of magnetic circular dichroism (MCD) intensities and absorption line widths (σ). Here, we report ΔEZ values detected directly by absorption spectroscopy for the first time in such materials, using colloidal Cd(1-x)Mn(x)Se quantum dots prepared by diffusion doping. A convenient method for decomposing MCD and absorption data into circularly polarized absorption spectra is presented. These data confirm the widely applied MCD analysis in the low-field, high-temperature regime, but also reveal a breakdown at low temperatures and high fields when ΔEZ/σ approaches unity, a situation not previously encountered in doped quantum dots. This breakdown is apparent for the first time here because of the extraordinarily large ΔEZ and small σ achieved by nanocrystal diffusion doping.

  11. PREFACE: Quantum Dot 2010

    NASA Astrophysics Data System (ADS)

    Taylor, Robert A.

    2010-09-01

    These conference proceedings contain the written papers of the contributions presented at Quantum Dot 2010 (QD2010). The conference was held in Nottingham, UK, on 26-30 April 2010. The conference addressed topics in research on: 1. Epitaxial quantum dots (including self-assembled and interface structures, dots defined by electrostatic gates etc): optical properties and electron transport quantum coherence effects spin phenomena optics of dots in cavities interaction with surface plasmons in metal/semiconductor structures opto-electronics applications 2. Novel QD structures: fabrication and physics of graphene dots, dots in nano-wires etc 3. Colloidal quantum dots: growth (shape control and hybrid nanocrystals such as metal/semiconductor, magnetic/semiconductor) assembly and surface functionalisation optical properties and spin dynamics electrical and magnetic properties applications (light emitting devices and solar cells, biological and medical applications, data storage, assemblers) The Editors Acknowledgements Conference Organising Committee: Maurice Skolnick (Chair) Alexander Tartakovskii (Programme Chair) Pavlos Lagoudakis (Programme Chair) Max Migliorato (Conference Secretary) Paola Borri (Publicity) Robert Taylor (Proceedings) Manus Hayne (Treasurer) Ray Murray (Sponsorship) Mohamed Henini (Local Organiser) International Advisory Committee: Yasuhiko Arakawa (Tokyo University, Japan) Manfred Bayer (Dortmund University, Germany) Sergey Gaponenko (Stepanov Institute of Physics, Minsk, Belarus) Pawel Hawrylak (NRC, Ottawa, Canada) Fritz Henneberger (Institute for Physics, Berlin, Germany) Atac Imamoglu (ETH, Zurich, Switzerland) Paul Koenraad (TU Eindhoven, Nethehrlands) Guglielmo Lanzani (Politecnico di Milano, Italy) Jungil Lee (Korea Institute of Science and Technology, Korea) Henri Mariette (CNRS-CEA, Grenoble, France) Lu Jeu Sham (San Diego, USA) Andrew Shields (Toshiba Research Europe, Cambridge, UK) Yoshihisa Yamamoto (Stanford University, USA) Artur

  12. Clinically Relevant Cognitive Impairment in Middle-Aged Adults With Childhood-Onset Type 1 Diabetes

    PubMed Central

    Nunley, Karen A.; Ryan, Christopher M.; Jennings, J. Richard; Aizenstein, Howard J.; Zgibor, Janice C.; Costacou, Tina; Boudreau, Robert M.; Miller, Rachel; Orchard, Trevor J.; Saxton, Judith A.

    2015-01-01

    OBJECTIVE The aim of this study was to investigate the presence and correlates of clinically relevant cognitive impairment in middle-aged adults with childhood-onset type 1 diabetes (T1D). RESEARCH DESIGN AND METHODS During 2010–2013, 97 adults diagnosed with T1D and aged <18 years (age and duration 49 ± 7 and 41 ± 6 years, respectively; 51% female) and 138 similarly aged adults without T1D (age 49 ± 7 years; 55% female) completed extensive neuropsychological testing. Biomedical data on participants with T1D were collected periodically since 1986–1988. Cognitive impairment status was based on the number of test scores ≥1.5 SD worse than demographically appropriate published norms: none, mild (only one test), or clinically relevant (two or more tests). RESULTS The prevalence of clinically relevant cognitive impairment was five times higher among participants with than without T1D (28% vs. 5%; P < 0.0001), independent of education, age, or blood pressure. Effect sizes were large (Cohen d 0.6–0.9; P < 0.0001) for psychomotor speed and visuoconstruction tasks and were modest (d 0.3–0.6; P < 0.05) for measures of executive function. Among participants with T1D, prevalent cognitive impairment was related to 14-year average A1c >7.5% (58 mmol/mol) (odds ratio [OR] 3.0; P = 0.009), proliferative retinopathy (OR 2.8; P = 0.01), and distal symmetric polyneuropathy (OR 2.6; P = 0.03) measured 5 years earlier; higher BMI (OR 1.1; P = 0.03); and ankle-brachial index ≥1.3 (OR 4.2; P = 0.01) measured 20 years earlier, independent of education. CONCLUSIONS Clinically relevant cognitive impairment is highly prevalent among these middle-aged adults with childhood-onset T1D. In this aging cohort, chronic hyperglycemia and prevalent microvascular disease were associated with cognitive impairment, relationships shown previously in younger populations with T1D. Two additional potentially modifiable risk factors for T1D-related cognitive impairment, vascular health and BMI

  13. Human insulin/IGF-1 and familial longevity at middle age

    PubMed Central

    Rozing, Maarten P.; Westendorp, Rudi G.J.; Frölich, Marijke; de Craen, Anton J.M.; Beekman, Marian; Heijmans, Bastiaan T.; Mooijaart, Simon P.; Blauw, Gerard-Jan; Slagboom, P. Eline; van Heemst, Diana; Group, on behalf of the Leiden Longevity Study (LLS)

    2009-01-01

    Recently, we have shown that compared to controls, long-lived familial nonagenarians (mean age: 93.4 years) from the Leiden Longevity Study displayed a lower mortality rate, and their middle-aged offspring displayed a lower prevalence of cardio-metabolic diseases, including diabetes mellitus. The evolutionarily conserved insulin/IGF-1 signaling (IIS) pathway has been implicated in longevity in model organisms, but its relevance for human longevity has generated much controversy. Here, we show that compared to their partners, the offspring of familial nonagenarians displayed similar non-fasted serum levels of IGF-1, IGFBP3 and insulin but lower non-fasted serum levels of glucose, indicating that familial longevity is associated with differences in insulin sensitivity. PMID:20157552

  14. Study of Dislocation-Ordered In(x)Ga(1-x)As/GaAs Quantum Dots

    NASA Technical Reports Server (NTRS)

    Leon, Rose

    2003-01-01

    A report describes an experimental study of dislocation-induced spatial ordering of quantum dots (QDs) comprising nanometer-sized In(x)Ga(1-x)As islands surrounded by GaAs. Metastable heteroepitaxial structures were grown by molecular-beam epitaxy of In(x)Ga(1-x)As onto n+ GaAs and semi-insulating GaAs substrates. Then the structures were relaxed during a post-growth annealing/self-organizing process leading to the formation of surface undulations that acted as preferential sites for the nucleation of QDs. Structural effects of annealing times and temperatures on the strain-relaxed In(x)Ga(1-x)As/GaAs and the subsequent spatial ordering of the QDs were analyzed by atomic-force microscopy and transmission electron microscopy. Continuous-wave spectral and time-resolved photoluminescence (PL) measurements were performed to study the effects, upon optical properties, of increased QD positional ordering, increased QD uniformity, and proximity of QDs to arrays of dislocations. PL spectral peaks of ordered QD structures formed on strain-relaxed In(x)Ga(1-x)As/GaAs layers were found to be narrower than those of structures not so formed and ordered. Rise and decay times of time-resolved PL were found to be lower at lower temperatures -- apparently as a consequence of decreased carrier-transport times within the barriers surrounding the QDs.

  15. Hypothalamic S1P/S1PR1 axis controls energy homeostasis in Middle-Aged Rodents: the reversal effects of physical exercise

    PubMed Central

    Silva, Vagner Ramon Rodrigues; Katashima, Carlos Kiyoshi; Bueno Silva, Carla G.; Lenhare, Luciene; Micheletti, Thayana Oliveira; Camargo, Rafael Ludemann; Ghezzi, Ana Carolina; Camargo, Juliana Alves; Assis, Alexandre Moura; Tobar, Natalia; Morari, Joseane; Razolli, Daniela S.; Moura, Leandro Pereira; Pauli, José Rodrigo; Cintra, Dennys Esper; Velloso, Lício Augusto; Saad, Mario J.A; Ropelle, Eduardo Rochete

    2017-01-01

    Recently, we demonstrated that the hypothalamic S1PR1/STAT3 axis plays a critical role in the control of food consumption and energy expenditure in rodents. Here, we found that reduction of hypothalamic S1PR1 expression occurs in an age-dependent manner, and was associated with defective thermogenic signaling and weight gain. To address the physiological relevance of these findings, we investigated the effects of chronic and acute exercise on the hypothalamic S1PR1/STAT3 axis. Chronic exercise increased S1PR1 expression and STAT3 phosphorylation in the hypothalamus, restoring the anorexigenic and thermogenic signals in middle-aged mice. Acutely, exercise increased sphingosine-1-phosphate (S1P) levels in the cerebrospinal fluid (CSF) of young rats, whereas the administration of CSF from exercised young rats into the hypothalamus of middle-aged rats at rest was sufficient to reduce the food intake. Finally, the intracerebroventricular (ICV) administration of S1PR1 activators, including the bioactive lipid molecule S1P, and pharmacological S1PR1 activator, SEW2871, induced a potent STAT3 phosphorylation and anorexigenic response in middle-aged rats. Overall, these results suggest that hypothalamic S1PR1 is important for the maintenance of energy balance and provide new insights into the mechanism by which exercise controls the anorexigenic and thermogenic signals in the central nervous system during the aging process. PMID:28039439

  16. Nonthermal Laser Assisted Ge Quantum Dot Formation on Si(100)-2x1 by Pulsed Laser Deposition

    NASA Astrophysics Data System (ADS)

    Er, Ali; Elsayed-Ali, Hani

    2009-11-01

    The effect of laser-induced electronic excitations on the self-assembly of Ge quantum dots (QDs) on Si(100)-2x1 grown by pulsed laser deposition is studied. The samples were cleaned by using modified Shiraki method and then transferred into the deposition chamber. The vacuum system was then pumped down, baked for at least 24 hours, and the sample was then flashed to 1200 C in order for the 2x1 reconstruction to form. The experiment was conducted under a pressure ˜1x10-10 Torr. A Q-switched Nd:YAG laser was used to ablate a Ge target. In-situ RHEED and STM and ex-situ AFM were used to study the morphology of the grown QD. The dependence of the QD morphology on substrate temperature and ablation and excitation laser energy density was studied. Electronic excitation is shown to affect the surface morphology. Laser irradiation of the Si substrate is shown to decrease the roughness of films grown at a substrate temperature of ˜400 ^oC. Electronic excitation also affected the surface coverage, cluster density, uniformity and decreased the temperature required to form 3-dimensional QDs to ˜250 C at which no crystalline film formation is possible without excitation laser. Possible mechanisms such as two hole localization following the phonon kick will be discussed.

  17. Nonthermal Laser Assisted Ge Quantum Dot Formation on Si(100)-2x1 by Pulsed Laser Deposition

    NASA Astrophysics Data System (ADS)

    Er, Ali; Elsayed-Ali, Hani

    2009-11-01

    The effect of laser-induced electronic excitations on the self-assembly of Ge quantum dots (QDs) on Si(100)-2x1 grown by pulsed laser deposition is studied. The samples were first cleaned by using modified Shiraki method and then transferred into the deposition chamber. The vacuum system was then pumped down, baked for at least 24 hours, and the sample was then flashed to 1200 C in order for the 2x1 reconstruction to form. The experiment was conducted under a pressure ˜1x10-10 Torr. A Q-switched Nd:YAG laser was used to ablate a Ge target. In-situ RHEED and STM and ex-situ AFM were used to study the morphology of the grown QD. The dependence of the QD morphology on substrate temperature and ablation and excitation laser energy density was studied. Electronic excitation is shown to affect the surface morphology. Laser irradiation of the Si substrate is shown to decrease the roughness of films grown at a substrate temperature of ˜400 ^oC. Electronic excitation also affected the surface coverage, cluster density, uniformity and decreased the temperature required to form 3-dimensional QDs to ˜250 C at which no crystalline film formation is possible without excitation laser. Possible mechanisms such as two hole localization following the phonon kick will be discussed.

  18. Energetics and surface properties of Pseudomonas putida DOT-T1E in a two-phase fermentation system with 1-decanol as second phase.

    PubMed

    Neumann, Grit; Cornelissen, Sjef; van Breukelen, Frank; Hunger, Steffi; Lippold, Holger; Loffhagen, Norbert; Wick, Lukas Y; Heipieper, Hermann J

    2006-06-01

    The solvent-tolerant strain Pseudomonas putida DOT-T1E was grown in batch fermentations in a 5-liter bioreactor in the presence and absence of 10% (vol/vol) of the organic solvent 1-decanol. The growth behavior and cellular energetics, such as the cellular ATP content and the energy charge, as well as the cell surface hydrophobicity and charge, were measured in cells growing in the presence and absence of 1-decanol. Although the cells growing in the presence of 1-decanol showed an about 10% reduced growth rate and a 48% reduced growth yield, no significant differences were measured either in the ATP and potassium contents or in the energy charge, indicating that the cells adapted completely at the levels of membrane permeability and energetics. Although the bacteria needed additional energy for adaptation to the presence of the solvent, they were able to maintain or activate electron transport phosphorylation, allowing homeostasis of the ATP level and energy charge in the presence of the solvent, at the price of a reduced growth yield. On the other hand, significantly enhanced cell hydrophobicities and more negative cell surface charges were observed in cells grown in the presence of 1-decanol. Both reactions occurred within about 10 min after the addition of the solvent and were significantly different after killing of the cells with toxic concentrations of HgCl2. This adaptation of the surface properties of the bacterium to the presence of solvents seems to be very similar to previously observed reactions on the level of lipopolysaccharides, with which bacteria adapt to environmental stresses, such as heat shock, antibiotics, or low oxygen content. The results give clear physiological indications that the process with P. putida DOT-T1E as the biocatalyst and 1-decanol as the solvent is a stable system for two-phase biotransformations that will allow the production of fine chemicals in economically sound amounts.

  19. CsPbxMn1-xCl3 Perovskite Quantum Dots with High Mn Substitution Ratio.

    PubMed

    Liu, Huiwen; Wu, Zhennan; Shao, Jieren; Yao, Dong; Gao, Hang; Liu, Yi; Yu, Weili; Zhang, Hao; Yang, Bai

    2017-02-28

    CsPbX3 (X = Cl, Br, I) perovskite quantum dots (QDs) are potential emitting materials for illumination and display applications, but toxic Pb is not environment- and user-friendly. In this work, we demonstrate the partial replacement of Pb with Mn through phosphine-free hot-injection preparation of CsPbxMn1-xCl3 QDs in colloidal solution. The Mn substitution ratio is up to 46%, and the as-prepared QDs maintain the tetragonal crystalline structure of the CsPbCl3 host. Meaningfully, Mn substitution greatly enhances the photoluminescence quantum yields of CsPbCl3 from 5 to 54%. The enhanced emission is attributed to the energy transfer of photoinduced excitons from the CsPbCl3 host to the doped Mn, which facilitates exciton recombination via a radiative pathway. The intensity and position of this Mn-related emission are also tunable by altering the experimental parameters, such as reaction temperature and the Pb-to-Mn feed ratio. A light-emitting diode (LED) prototype is further fabricated by employing the as-prepared CsPbxMn1-xCl3 QDs as color conversion materials on a commercially available 365 nm GaN LED chip.

  20. InAs quantum dots in a GaAs1-xSbx matrix for intermediate band solar cell

    NASA Astrophysics Data System (ADS)

    Cheng, Yang; Debnath, Mukul; Whiteside, Vincent R.; Mishima, Tetsuya; Santos, Michael B.; Sellers, Ian R.; Phinney, Lucas; Hossain, Khalid

    2014-03-01

    Self-assembled InAs quantum dots (QDs) were grown by the migration-enhanced epitaxy (MEE) technique in a GaAs1-xSbx matrix material on a GaAs substrate for application as intermediate band single junction solar cells. Initially, a series of InAs QDs structures were studied with a nominal deposition of 1.75 - 3.5 ML and Sb concentration of x = 0 . 13 . The areal density measured by atomic force microscopy was observed to increase with total deposition to a maximum of ~ 4.0x1011/cm2 after ~ 3 MLs. A high QD density is required to facilitate the formation of an intermediate band (IB) within the band gap of the matrix material. With increasing QD density a simultaneous increase in the optical emission is also observed. The promise in this system is the potential to form a degenerate valence band offset, while forming an IB in the conduction band. As such, a second series of QDs was investigated in which the concentration of Sb in the matrix varied from x = 0 . 10 to x = 0 . 18 . The transition from type-I band alignment to type-II is observed. Temperature and power dependent photoluminescence, along with 8 band k . p calculations of the band structure will also be presented. Research supported by the OCAST OARS program.

  1. Strain engineering of quantum dots for long wavelength emission: Photoluminescence from self-assembled InAs quantum dots grown on GaAs(001) at wavelengths over 1.55 μm

    SciTech Connect

    Shimomura, K. Kamiya, I.

    2015-02-23

    Photoluminescence (PL) at wavelengths over 1.55 μm from self-assembled InAs quantum dots (QDs) grown on GaAs(001) is observed at room temperature (RT) and 4 K using a bilayer structure with thin cap. The PL peak has been known to redshift with decreasing cap layer thickness, although accompanying intensity decrease and peak broadening. With our strain-controlled bilayer structure, the PL intensity can be comparable to the ordinary QDs while realizing peak emission wavelength of 1.61 μm at 4 K and 1.73 μm at RT. The key issue lies in the control of strain not only in the QDs but also in the cap layer. By combining with underlying seed QD layer, we realize strain-driven bandgap engineering through control of strain in the QD and cap layers.

  2. Quantum Dot Detectors with Plasmonic Structures

    DTIC Science & Technology

    2015-05-15

    AFRL-RV-PS- AFRL-RV-PS- TR-2015-0102 TR-2015-0102 QUANTUM DOT DETECTORS WITH PLASMONIC STRUCTURES Sanjay Krishna University of...SUBTITLE Quantum Dot Detectors with Plasmonic Structures 5a. CONTRACT NUMBER FA9453-12-1-0131 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 63401F 6...characterization, of multi-spectral quantum dots-in-a-double well (DDWELL) infrared detectors, by the integration of a surface Plasmon (SP) assisted resonant

  3. Barrier Engineered Quantum Dot Infrared Photodetectors

    DTIC Science & Technology

    2015-06-01

    AFRL-RV-PS- AFRL-RV-PS- TR-2015-0111 TR-2015-0111 BARRIER ENGINEERED QUANTUM DOT INFRARED PHOTODETECTORS Sanjay Krishna Center for High Technology...2011 – 22 May 2012 4. TITLE AND SUBTITLE Barrier Engineered Quantum Dot Infrared Photodetectors 5a. CONTRACT NUMBER FA9453-12-1-0336 5b. GRANT...is Unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT To investigate barrier engineered designs to reduce the dark current in quantum dot infrared

  4. Relationship between structural and optical properties of colloidal CdxZn1-xS quantum dots in gelatin

    NASA Astrophysics Data System (ADS)

    Klyuev, Viktor G.; Volykhin, Denis V.; Ovchinnikov, Oleg V.; Pokutnyi, Sergey I.

    2016-07-01

    Aqueous synthesis of mixed cadmium and zinc sulfides colloidal quantum dots (QDs) has been successfully realized. Colloidal CdxZn1-xS QDs are formed in a cubic crystal lattice with particle size of ˜2 nm. The blueshift of optical absorption spectra from 420 to 295 nm and recombination photoluminescence from 646 to 483 nm with increasing zinc content in QDs was observed. Optimum photoluminescence intensity occurs for QDs with Cd0.3Zn0.7S composition. With increasing zinc content up to Cd0.3Zn0.7S, luminescence intensity increases and decreases when zinc content is larger than 0.7. The increase in photoluminescence intensity is explained by the increase in the number of point defects, such as complexes of interstitial metal atoms-metal vacancies [Mei-VMe]. Such complexes occur due to displacement of the metal atom at the center of the elementary tetrahedron due to substitution of one of the four sulfur atoms by an impurity atom, such as an oxygen atom.

  5. Direct modulation of 1.3 μm quantum dot lasers on silicon at 60 °C.

    PubMed

    Jhang, Yuan-Hsuan; Mochida, Reio; Tanabe, Katsuaki; Takemasa, Keizo; Sugawara, Mitsuru; Iwamoto, Satoshi; Arakawa, Yasuhiko

    2016-08-08

    We demonstrate direct modulation of an InAs/GaAs quantum dot (QD) laser on Si. A Fabry-Pérot QD laser was integrated on Si by an ultraviolet-activated direct bonding method, and a cavity was formed using cleaved facets without HR/AR coatings. The bonded laser was operated under continuous-wave pumping at room temperature with a threshold current of 41 mA and a maximum output power of 30 mW (single facet). Even with such a simple device structure and fabrication process, our bonded laser is directly modulated using a 10 Gbps non-return-to-zero signal with an extinction ratio of 1.9 dB at room temperature. Furthermore, 6 Gbps modulation with an extinction ratio of 4.5 dB is achieved at temperatures up to 60 °C without any current or voltage adjustment. These results of device performances indicate an encouraging demonstration on III-V QD lasers on Si for the applications of the photonic integrated circuits.

  6. IL-22(+)CD4(+) T cells promote colorectal cancer stemness via STAT3 transcription factor activation and induction of the methyltransferase DOT1L.

    PubMed

    Kryczek, Ilona; Lin, Yanwei; Nagarsheth, Nisha; Peng, Dongjun; Zhao, Lili; Zhao, Ende; Vatan, Linda; Szeliga, Wojciech; Dou, Yali; Owens, Scott; Zgodzinski, Witold; Majewski, Marek; Wallner, Grzegorz; Fang, Jingyuan; Huang, Emina; Zou, Weiping

    2014-05-15

    Little is known about how the immune system impacts human colorectal cancer invasiveness and stemness. Here we detected interleukin-22 (IL-22) in patient colorectal cancer tissues that was produced predominantly by CD4(+) T cells. In a mouse model, migration of these cells into the colon cancer microenvironment required the chemokine receptor CCR6 and its ligand CCL20. IL-22 acted on cancer cells to promote activation of the transcription factor STAT3 and expression of the histone 3 lysine 79 (H3K79) methytransferase DOT1L. The DOT1L complex induced the core stem cell genes NANOG, SOX2, and Pou5F1, resulting in increased cancer stemness and tumorigenic potential. Furthermore, high DOT1L expression and H3K79me2 in colorectal cancer tissues was a predictor of poor patient survival. Thus, IL-22(+) cells promote colon cancer stemness via regulation of stemness genes that negatively affects patient outcome. Efforts to target this network might be a strategy in treating colorectal cancer patients.

  7. Coulomb interaction of acceptors in Cd{sub 1−x}Mn{sub x}Te/CdTe quantum dot

    SciTech Connect

    Kalpana, P.; Nithiananthi, P. Jayakumar, K.; Reuben, A. Merwyn Jasper D.

    2014-04-24

    The investigation on the effect of confining potential like isotropic harmonic oscillator type potential on the binding and the Coulomb interaction energy of the double acceptors in the presence of magnetic field in a Cd{sub 1−x}Mn{sub x}Te/CdTe Spherical Quantum Dot has been made for the Mn ion composition x=0.3 and compared with the results obtained from the square well type potential using variational procedure in the effective mass approximation.

  8. High-brightness 1.3 μm InAs/GaAs quantum dot tapered laser with high temperature stability.

    PubMed

    Cao, Yulian; Ji, Haiming; Xu, Pengfei; Gu, Yongxian; Ma, Wenquan; Yang, Tao

    2012-10-01

    We demonstrate high-brightness 1.3 μm tapered lasers with high temperature stability by using p-doped InAs/GaAs quantum dots (QDs) as the active region. It is found that the beam quality factor M(2) for the devices is almost unchanged as the light power and temperature increase. The almost constant M(2) results from the p-doped QD active region.

  9. Quantum transport in ballistic quantum dots

    NASA Astrophysics Data System (ADS)

    Ferry, D. K.; Akis, R. A.; Pivin, D. P., Jr.; Bird, J. P.; Holmberg, N.; Badrieh, F.; Vasileska, D.

    1998-10-01

    Carriers in small 3D quantum boxes take us from unintentional qquantum dots in MOSFETs (arising from the doping fluctuations) tto single-electron quantum dots in semiconductor hheterostructures. In between these two extremes are the realm of oopen, ballistic quantum dots, in which the transport can be quite regular. Several issues must be considered in treating the transport in these dots, among which are: (1) phase coherence within the dot; (2) the transition between semi-classical and fully quantum transport, (3) the role of the contacts, vis-à-vis the fabricated boundaries, and (4) the actual versus internal boundaries. In this paper, we discuss these issues, including the primary observables in experiment, the intrinsic nature of oscillatory behavior in magnetic field and dot size, and the connection to semi-classical transport emphasizing the importance of the filtering by the input (and output) quantum point contacts.

  10. Hydrochemical tracers in the middle Rio Grande Basin, USA: 1. Conceptualization of groundwater flow

    USGS Publications Warehouse

    Plummer, L.N.; Bexfield, L.M.; Anderholm, S.K.; Sanford, W.E.; Busenberg, E.

    2004-01-01

    Chemical and isotopic data for groundwater from throughout the Middle Rio Grande Basin, central New Mexico, USA, were used to identify and map groundwater flow from 12 sources of water to the basin,evaluate radiocarbon ages, and refine the conceptual model of the Santa Fe Group aquifer system. Hydrochemical zones, representing groundwater flow over thousands to tens of thousands of years, can be traced over large distances through the primarily siliciclastic aquifer system. The locations of the hydrochemical zones mostly reflect the "modern" predevelopment hydraulic-head distribution, but are inconsistent with a trough in predevelopment water levels in the west-central part of the basin, indicating that this trough is a transient rather than a long-term feature of the aquifer system. Radiocarbon ages adjusted for geochemical reactions, mixing, and evapotranspiration/dilution processes in the aquifer system were nearly identical to the unadjusted radiocarbon ages, and ranged from modern to more than 30 ka. Age gradients from piezometer nests ranged from 0.1 to 2 year cm-1 and indicate a recharge rate of about 3 cm year-1 for recharge along the eastern mountain front and infiltration from the Rio Grande near Albuquerque. There has been appreciably less recharge along the eastern mountain front north and south of Albuquerque. ?? Springer-Verlag 2004.

  11. Multi-shell spherical GaAs /AlxGa1-x As quantum dot shells-size distribution as a mechanism to generate intermediate band energy levels

    NASA Astrophysics Data System (ADS)

    Rodríguez-Magdaleno, K. A.; Pérez-Álvarez, R.; Martínez-Orozco, J. C.; Pernas-Salomón, R.

    2017-04-01

    In this work the generation of an intermediate band of energy levels from multi-shell spherical GaAs /AlxGa1-x As quantum dot shells-size distribution is reported. Within the effective mass approximation the electronic structure of a GaAs spherical quantum-dot surrounded by one, two and three shells is studied in detail using a numerically stable transfer matrix method. We found that a shells-size distribution characterized by continuously wider GaAs domains is a suitable mechanism to generate the intermediate band whose width is also dependent on the Aluminium concentration x. Our results suggest that this effective mechanism can be used for the design of wider intermediate band than reported in other quantum systems with possible solar cells enhanced performance.

  12. Thermal activation of excitons in asymmetric InAs dots-in-a-well InxGa1-xAs/GaAs structures

    NASA Astrophysics Data System (ADS)

    Torchynska, T. V.; Casas Espinola, J. L.; Borkovska, L. V.; Ostapenko, S.; Dybiec, M.; Polupan, O.; Korsunska, N. O.; Stintz, A.; Eliseev, P. G.; Malloy, K. J.

    2007-01-01

    Photoluminescence, its temperature dependence, and photoluminescence excitation spectra of InAs quantum dots embedded in asymmetric InxGa1-xAs/GaAs quantum wells [dots in a well (DWELL)] have been investigated as a function of the indium content x (x=0.10-0.25) in the capping InxGa1-xAs layer. The asymmetric DWELL structures were created with the aim to investigate the influence of different barrier values at the quantum dot (QD)/quantum well interface on the photoluminescence thermal quenching process. The set of rate equations for the two stage model for the capture and thermal escape of excitons in QDs are solved to analyze the nature of thermal activation energies for the QD photoluminescence quenching process. The two stage model for exciton thermal activation was confirmed experimentally in the investigated QD structures as well. The localization of nonradiative defects in InAs /InGaAs DWELL structures is discussed on the base of comparison of theoretical and numerically calculated (fitting) results.

  13. Temperature Variability Associated with the Middle Atmosphere Electrodynamics (MAE-1) Campaign

    NASA Technical Reports Server (NTRS)

    Schmidlin, F. J.

    1999-01-01

    Meteorological rockets launched during the Middle Atmosphere Electrodynamics (MAE-1) Campaign in October 1980 from Andoya Rocket Range (ARR), Norway, exhibited large and unexpected temperature variability. Temperatures were found to vary as much as 20 C within a few hours and demonstrated a similar type of variability from one day to the next. Following examination of the reduced rocketsonde profiles the question was raised whether the observed variability was due to natural atmospheric variability or instrument malfunction. Small-scale variability, as observed, may result from one or multiple sources, e.g., intense storms upstream from the observing site, orography such as mountain waves off of the Greenland Plateau, convective activity, gravity waves, etc. Arranging the observations spaced over time showed that the perturbations moved downward. Prior to MAE-1 very few small rocketsonde measurements had been launched from ARR, thus the quality of the initial measurements in early October caused concern when the large variability was noted. We discuss the errors of the rocketsonde measurements, graphically review the nature of the variability observed, compare the data with other measurements, and postulate a possible cause for the variability.

  14. Picosecond Dynamics of Excitonic Magnetic Polarons in Colloidal Diffusion-Doped Cd(1-x)Mn(x)Se Quantum Dots.

    PubMed

    Nelson, Heidi D; Bradshaw, Liam R; Barrows, Charles J; Vlaskin, Vladimir A; Gamelin, Daniel R

    2015-11-24

    Spontaneous magnetization is observed at zero magnetic field in photoexcited colloidal Cd(1-x)Mn(x)Se (x = 0.13) quantum dots (QDs) prepared by diffusion doping, reflecting strong Mn(2+)-exciton exchange coupling. The picosecond dynamics of this phenomenon, known as an excitonic magnetic polaron (EMP), are examined using a combination of time-resolved photoluminescence, magneto-photoluminescence, and Faraday rotation (TRFR) spectroscopies, in conjunction with continuous-wave absorption, magnetic circular dichroism (MCD), and magnetic circularly polarized photoluminescence (MCPL) spectroscopies. The data indicate that EMPs form with random magnetization orientations at zero external field, but their formation can be directed by an external magnetic field. After formation, however, external magnetic fields are unable to reorient the EMPs within the luminescence lifetime, implicating anisotropy in the EMP potential-energy surfaces. TRFR measurements in a transverse magnetic field reveal rapid (<5 ps) spin transfer from excitons to Mn(2+) followed by coherent EMP precession at the Mn(2+) Larmor frequency for over a nanosecond. A dynamical TRFR phase inversion is observed during EMP formation attributed to the large shifts in excitonic absorption energies during spontaneous magnetization. Partial optical orientation of the EMPs by resonant circularly polarized photoexcitation is also demonstrated. Collectively, these results highlight the extraordinary physical properties of colloidal diffusion-doped Cd(1-x)Mn(x)Se QDs that result from their unique combination of strong quantum confinement, large Mn(2+) concentrations, and relatively narrow size distributions. The insights gained from these measurements advance our understanding of spin dynamics and magnetic exchange in colloidal doped semiconductor nanostructures, with potential ramifications for future spin-based information technologies.

  15. Comparison of quantum dot technology with conventional immunohistochemistry in examining aldehyde dehydrogenase 1A1 as a potential biomarker for lymph node metastasis of head and neck cancer.

    PubMed

    Xu, Jing; Müller, Susan; Nannapaneni, Sreenivas; Pan, Lin; Wang, Yuxiang; Peng, Xianghong; Wang, Dongsheng; Tighiouart, Mourad; Chen, Zhengjia; Saba, Nabil F; Beitler, Jonathan J; Shin, Dong M; Chen, Zhuo Georgia

    2012-07-01

    This study explored whether the expression of aldehyde dehydrogenase 1 (ALDH1A1) in the primary tumour correlated with lymph node metastasis (LNM) of squamous cell carcinoma of the head and neck (HNSCC). We used both quantum dot (QD)-based immunohistofluorescence (IHF) and conventional immunohistochemistry (IHC) to quantify ALDH1A1 expression in primary tumour samples taken from 96 HNSCC patients, 50 with disease in the lymph nodes and 46 without. The correlation between the quantified level of ALDH1A1 expression and LNM in HNSCC patients was evaluated with univariate and multivariate analysis. The prognostic value of ALDH1A1 was examined by Kaplan-Meier analysis and Wald test. ALDH1A1 was highly correlated with LNM in HNSCC patients (p<0.0001 by QD-based IHF and 0.039 by IHC). The two methods (QD-based IHF and conventional IHC) for quantification of ALDH1A1 were found to be comparable (R=0.75, p<0.0001), but QD-IHF was more sensitive and objective than IHC. The HNSCC patients with low ALDH1A1 expression had a higher 5-year survival rate than those with high ALDH1A1 level (p=0.025). Our study suggests that ALDH1A1 is a potential biomarker for predicting LNM in HNSCC patients, though it is not an independent prognostic factor for survival of HNSCC patients. Furthermore, QD-IHF has advantages over IHC in quantification of ALDH1A1 expression in HNSCC tissues.

  16. Evaluation of Green Dot's Locke Transformation Project: Findings for Cohort 1 and 2 Students. CRESST Report 815

    ERIC Educational Resources Information Center

    Herman, Joan L.; Wang, Jia; Rickles, Jordan; Hsu, Vivian; Monroe, Scott; Leon, Seth; Straubhaar, Rolf

    2012-01-01

    With funding from the Bill and Melinda Gates Foundation, CRESST conducted a multi-year evaluation of a major school reform project at Alain Leroy Locke High School, historically one of California's lowest performing secondary schools. Beginning in 2007, Locke High School transitioned into a set of smaller, Green Dot Charter High Schools,…

  17. Algebra Matters: An Ethnographic Study of Successful African American Male Algebra 1 Students in a Suburban Middle School

    ERIC Educational Resources Information Center

    Kirkwood, Kirk

    2012-01-01

    Alarming statistics reveal that African American male students are encountering long-standing challenges in K-12 mathematics. However, few studies have explored the phenomena associated with African American males and K-12 mathematics education, particularly at the middle school level in the context of an Algebra 1 course of study. The purpose of…

  18. Newsletter for Asian and Middle Eastern Languages on Computer, Volume 1, Numbers 1 and 2.

    ERIC Educational Resources Information Center

    Meadow, Anthony, Ed.

    1985-01-01

    Numbers 1 and 2 of the first volume of the newsletter contains an editor's page and the following articles: "Diacritics on Wordstar: South Asian Language Transliteration without Customized Software" by Tony Stewart; "The Universal Typewriter" by David K. Wyatt and Douglas S. Wyatt; "Multi-Lingual Word-Processing Systems:…

  19. Committee on Work and Personality in the Middle Years. Progress Report: June 1, 1974 to October 1, 1976.

    ERIC Educational Resources Information Center

    Social Science Research Council, New York, NY.

    The Social Science Research Council's committee report on personality change in the middle years of the human life cycle and a bibliographic listing of papers relating to the middle years comprise this document. The committee's interest and activity focus on the chronological age period from 40 to 60 years and are directed toward information…

  20. Thick-shell nanocrystal quantum dots

    DOEpatents

    Hollingsworth, Jennifer A.; Chen, Yongfen; Klimov, Victor I.; Htoon, Han; Vela, Javier

    2011-05-03

    Colloidal nanocrystal quantum dots comprising an inner core having an average diameter of at least 1.5 nm and an outer shell, where said outer shell comprises multiple monolayers, wherein at least 30% of the quantum dots have an on-time fraction of 0.80 or greater under continuous excitation conditions for a period of time of at least 10 minutes.

  1. Titanium Structures Technical Summary, DOT/SST Phase 1 and Phase 2

    DTIC Science & Technology

    1974-10-01

    effect of residual stress on the fatigue properties of 6AI- 4V titanium. • Extensive tensile property data exist for Ti-6A1- 4V weldments in a wide...Titanium Structure. The section on i i- 6Al - 4V mill products discusses the effect of texture, mien,structure. chemistry, and interstitial level on...development effort was confined to theTi- 6Al - 4V alloy . The investigation of Ti-()AI- 4V alloy was directed toward lour major areas: •

  2. DOT/NASA comparative assessment of Brayton engines for guideway vehicle and buses. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The Department of Transportation requested that the NASA Office of Aeronautics and Space Technology evaluate and assess the potential of several types of gas turbine engines and fuels for the on-board power and propulsion of a future heavy-duty ground transportation system. The purpose of the investigation was threefold: (1) to provide a definition of the potential for turbine engines to minimize pollution, energy consumption, and noise; (2) to provide a useful means of comparison of the types of engine based on consistent assumptions and a common analytical approach; and (3) to provide a compendium of comparative performance data that would serve as the technical basis for future planning. Emphasis was on establishing comparison trends rather than on absolute values and a definitive engine selection. The primary value of this study is intended to be usefulness of the results to provide a quantitative basis for future judgement.

  3. Shell thickness modulation in ultrasmall CdSe/CdS(x)Se(1-x)/CdS core/shell quantum dots via 1-thioglycerol.

    PubMed

    Silva, Anielle Christine A; da Silva, Sebastião W; Morais, Paulo C; Dantas, Noelio O

    2014-02-25

    In this study, we report on the synthesis of CdSe/CdS core-shell ultrasmall quantum dots (CS-USQDs) using an aqueous-based wet chemistry protocol. The proposed chemical route uses increasing concentration of 1-thioglycerol to grow the CdS shell on top of the as-precipitated CdSe core in a controllable way. We found that lower concentration of 1-thioglycerol (3 mmol) added into the reaction medium limits the growth of the CdSe core, and higher and increasing concentration (5-11 mmol) of 1-thioglycerol promotes the growth of CdS shell on top of the CdSe core in a very controllable way, with an increase from 0.50 to 1.25 nm in shell thickness. The growth of CS-USQDs of CdSe/CdS was confirmed by using different experimental techniques, such as optical absorption (OA) spectroscopy, fluorescence spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and Raman spectroscopy. Data collected from OA were used to obtain the average values of the CdSe core diameter, whereas Raman data were used to assess the average values of the CdSe core diameter and CdS shell thicknesses.

  4. 1,2-Ethanedithiol Treatment for AgIn5S8/ZnS Quantum Dot Light-Emitting Diodes with High Brightness.

    PubMed

    Ji, Changyin; Lu, Min; Wu, Hua; Zhang, Xiaoyu; Shen, Xinyu; Wang, Xiao; Zhang, Yu; Wang, Yiding; Yu, William W

    2017-03-08

    The surface organic ligands of the quantum dots (QDs) play important roles in the performance of QD electronic devices. Here, we fabricated low toxic AgIn5S8/ZnS QDs light-emitting diodes (QD-LEDs) and greatly enhanced the device efficiency through surface ligand exchange treatments. The oleic acid-capped QDs were replaced with a shorter ligand 1,2-ethanedithiol, which was proved by the Fourier transform infrared spectrum measurement. The treated QD films became more compact with higher film mobility and shorter film photoluminescence lifetime. The more conductive QD films fabricated LEDs showed an external quantum efficiency over 1.52%.

  5. Pyramidal GaAs/AlzGa1-zAs quantum wire/dot systems with controlled heterostructure potential

    NASA Astrophysics Data System (ADS)

    Zhu, Q.; Ganière, J. D.; He, Z. B.; Karlsson, K. F.; Byszewski, M.; Pelucchi, E.; Rudra, A.; Kapon, E.

    2010-10-01

    The structural and optical properties of controlled-heterostructure-potential, low-dimensional GaAs/AlGaAs nanostructures self-formed during organometallic chemical vapor deposition in tetrahedral pyramids etched in (111)B-GaAs substrates, are investigated using electron microscopy, cathodoluminescence, photoluminescence (PL), photon correlation spectroscopy, and theoretical modeling. Quantum wires/dots with AlGaAs cores with growth-controlled dimensions are formed, with a system of well-defined, low-dimensional nanostructure barriers around them. Transitions between carrier states confined in the AlGaAs quantum wires and dots are identified in the PL spectra, with features in good agreement with model calculations. Emission of single-photons and bunched-photon pairs is observed using temporal photon correlation spectroscopy. This self-formed nanostructure system provides new ways for shaping low-dimensional quantum structures and their heterostructure environment.

  6. Loss of myocardial protection against myocardial infarction in middle-aged transgenic mice overexpressing cardiac thioredoxin-1

    PubMed Central

    Mazo, Tamara; Muñoz, Marina C.; Dominici, Fernando P.; Carreras, María C.; Poderoso, Juan José; Sadoshima, Junichi; Gelpi, Ricardo J.

    2016-01-01

    Thioredoxin-1 (Trx1) protects the heart from ischemia/reperfusion (I/R) injury. Given that the age at which the first episode of coronary disease takes place has considerably decreased, life at middle-aged (MA) emerges as a new field of study. The aim was determine whether infarct size, Trx1 expression and activity, Akt and GSK-3β were altered in young (Y) and MA mice overexpressing cardiac Trx1, and in a dominant negative (DN-Trx1) mutant of Trx1. Langendorff-perfused hearts were subjected to 30 minutes of ischemia and 120 minutes of reperfusion (R). We used 3 and 12 month-old male of wild type (WT), Trx1, and DN-Trx1. Trx1 overexpression reduced infarct size in young mice (WT-Y: 46.8±4.1% vs. Trx1-Y: 27.6±3.5%, p < 0.05). Trx1 activity was reduced by 52.3±3.2% (p < 0.05) in Trx1-MA, accompanied by an increase in nitration by 17.5±0.9%, although Trx1 expression in transgenic mice was similar between young and middle-aged. The expression of p-Akt and p-GSK-3β increased during reperfusion in Trx1-Y. DN-Trx1 mice showed neither reduction in infarct size nor Akt and GSK-3β phosphorylation. Our data suggest that the lack of protection in Trx1 middle-aged mice even with normal Trx1 expression may be associated to decreased Trx1 activity, increased nitration and inhibition of p-Akt and p-GSK-3β. PMID:26933812

  7. Metabolomics Analysis Reveals the Participation of Efflux Pumps and Ornithine in the Response of Pseudomonas putida DOT-T1E Cells to Challenge with Propranolol

    PubMed Central

    Sayqal, Ali; Xu, Yun; Trivedi, Drupad K.; AlMasoud, Najla; Ellis, David I.; Rattray, Nicholas J. W.; Goodacre, Royston

    2016-01-01

    Efflux pumps are critically important membrane components that play a crucial role in strain tolerance in Pseudomonas putida to antibiotics and aromatic hydrocarbons that result in these toxicants being expelled from the bacteria. Here, the effect of propranolol on P. putida was examined by sudden addition of 0.2, 0.4 and 0.6 mg mL-1 of this β-blocker to several strains of P. putida, including the wild type DOT-T1E and the efflux pump knockout mutants DOT-T1E-PS28 and DOT-T1E-18. Bacterial viability measurements reveal that the efflux pump TtgABC plays a more important role than the TtgGHI pump in strain tolerance to propranolol. Mid-infrared (MIR) spectroscopy was then used as a rapid, high-throughput screening tool to investigate any phenotypic changes resulting from exposure to varying levels of propranolol. Multivariate statistical analysis of these MIR data revealed gradient trends in resultant ordination scores plots, which were related to the concentration of propranolol. MIR illustrated phenotypic changes associated with the presence of this drug within the cell that could be assigned to significant changes that occurred within the bacterial protein components. To complement this phenotypic fingerprinting approach metabolic profiling was performed using gas chromatography mass spectrometry (GC-MS) to identify metabolites of interest during the growth of bacteria following toxic perturbation with the same concentration levels of propranolol. Metabolic profiling revealed that ornithine, which was only produced by P. putida cells in the presence of propranolol, presents itself as a major metabolic feature that has important functions in propranolol stress tolerance mechanisms within this highly significant and environmentally relevant species of bacteria. PMID:27331395

  8. Dot arrays of L1{sub 0}-type FePt ordered alloy perpendicular films fabricated using low-temperature sputter film deposition

    SciTech Connect

    Shimatsu, T.; Aoi, H.; Inaba, Y.; Kataoka, H.; Sayama, J.; Okamoto, S.; Kitakami, O.

    2011-04-01

    Using ultrahigh vacuum sputter film deposition, we fabricated L1{sub 0}-type Fe{sub 50}Pt{sub 50} ordered alloy perpendicular films on MgO(001) single-crystal substrates and 2.5 in. glass disks at low substrate temperatures of 200-350 deg. C. Then we examined the magnetic properties of the dot arrays made from these films. The uniaxial magnetic anisotropy K{sub u} for L1{sub 0}-type FePt films (10 nm in thickness) deposited with a Pd underlayer on MgO(001) substrates reached about 2 x 10{sup 7} erg/cm{sup 3} at the substrate temperature T{sub s} of 200 deg. C, and 3 x 10{sup 7} erg/cm{sup 3} at T{sub s} = 250 deg. C. The order parameter S was about 0.46 at T{sub s} = 300 deg. C. Moreover, K{sub u} for L1{sub 0}-FePt films fabricated on glass disks using MgO/Cr underlayers shows 3.4 x 10{sup 7} erg/cm{sup 3} at T{sub s} = 300 deg. C, which was almost equal to that for FePt single-crystal films deposited on Pd/MgO(001). The switching field distribution {sigma}/H{sub c} for dot arrays made from L1{sub 0}-FePt film [5 nm in thickness, on Pd/MgO(001) at T{sub s} = 250 deg. C] was small; {sigma}/H{sub c}= 0.11 for a dot diameter of 15 nm. This value was smaller than that of hcp-Co{sub 75}Pt{sub 25} dot arrays ({sigma}/H{sub c} = 0.18). The difference was mainly attributable to the degree of the easy axis distribution. This result demonstrates the homogeneous formation of a L1{sub 0}-type ordered structure in the FePt layers.

  9. The Ssr protein (T1E_1405) from Pseudomonas putida DOT-T1E enables oligonucleotide-based recombineering in platform strain P. putida EM42.

    PubMed

    Aparicio, Tomás; Jensen, Sheila I; Nielsen, Alex T; de Lorenzo, Victor; Martínez-García, Esteban

    2016-10-01

    Some strains of the soil bacterium Pseudomonas putida have become in recent years platforms of choice for hosting biotransformations of industrial interest. Despite availability of many genetic tools for this microorganism, genomic editing of the cell factory P. putida EM42 (a derivative of reference strain KT2440) is still a time-consuming endeavor. In this work we have investigated the in vivo activity of the Ssr protein encoded by the open reading frame T1E_1405 from Pseudomonas putida DOT-T1E, a plausible functional homologue of the β protein of the Red recombination system of λ phage of Escherichia coli. A test based on the phenotypes of pyrF mutants of P. putida (the yeast's URA3 ortholog) was developed for quantifying the ability of Ssr to promote invasion of the genomic DNA replication fork by synthetic oligonucleotides. The efficiency of the process was measured by monitoring the inheritance of the changes entered into pyrF by oligonucleotides bearing mutated sequences. Ssr fostered short and long genomic deletions/insertions at considerable frequencies as well as single-base swaps not affected by mismatch repair. These results not only demonstrate the feasibility of recombineering in P. putida, but they also enable a suite of multiplexed genomic manipulations in this biotechnologically important bacterium.

  10. STED nanoscopy with fluorescent quantum dots

    NASA Astrophysics Data System (ADS)

    Hanne, Janina; Falk, Henning J.; Görlitz, Frederik; Hoyer, Patrick; Engelhardt, Johann; Sahl, Steffen J.; Hell, Stefan W.

    2015-05-01

    The widely popular class of quantum-dot molecular labels could so far not be utilized as standard fluorescent probes in STED (stimulated emission depletion) nanoscopy. This is because broad quantum-dot excitation spectra extend deeply into the spectral bands used for STED, thus compromising the transient fluorescence silencing required for attaining super-resolution. Here we report the discovery that STED nanoscopy of several red-emitting commercially available quantum dots is in fact successfully realized by the increasingly popular 775 nm STED laser light. A resolution of presently ~50 nm is demonstrated for single quantum dots, and sub-diffraction resolution is further shown for imaging of quantum-dot-labelled vimentin filaments in fibroblasts. The high quantum-dot photostability enables repeated STED recordings with >1,000 frames. In addition, we have evidence that the tendency of quantum-dot labels to blink is largely suppressed by combined action of excitation and STED beams. Quantum-dot STED significantly expands the realm of application of STED nanoscopy, and, given the high stability of these probes, holds promise for extended time-lapse imaging.

  11. Si{sub 1-y}C{sub y} surface alloys used as self-patterned templates for the growth of Ge dots

    SciTech Connect

    Simon, L.; Aubel, D.; Kubler, L.

    2006-11-13

    The authors report on epitaxial growth and surface morphology of low C content Si{sub 1-y}C{sub y} alloys deposited on Si(001) (molecular beam epitaxy method). In specific kinetic conditions these alloys grow by formation and propagation of step bunches (7-10 nm high). The authors demonstrate that electromigration plays a crucial role in the spatial organization of the step bunches formed on vicinal surfaces. Compared with standard electron bombardment heating for which no order is observed, direct current heating can spatially organize giant step bunches separated by 100 nm wide terraces. Such patterned substrates have been used in order to organize Ge dots.

  12. The superfluid diffusion equation S(T)(@T/@t) = nabla ter dot (K(T)( nabla T) sup 1/3 )

    SciTech Connect

    Dresner, L.

    1990-06-01

    This report deals with the superfluid diffusion equation, S(T)({partial derivative}T/{partial derivative}t) = {nabla}{center dot}(K(T)({nabla}T){sup 1/3}), which describes heat transport in turbulent helium-II (superfluid helium). Three methods of solution -- the method of similarity, the variational method, and the method of maximum/minimum principles -- are applied to this equation. The solutions discovered are helpful in addressing the use of helium-II in superconducting magnets and other applications. 22 refs., 23 figs., 3 tabs.

  13. Laser generation at 1.3 μm in vertical microcavities containing InAs/InGaAs quantum dot arrays under optical pumping

    NASA Astrophysics Data System (ADS)

    Blokhin, S. A.; Kryzhanovskaya, N. V.; Moiseev, E. I.; Bobrov, M. A.; Kuz'menkov, A. G.; Blokhin, A. A.; Vasil'ev, A. P.; Karpovskii, I. O.; Zadiranov, Yu. M.; Troshkov, S. I.; Nevedomskii, V. N.; Nikitina, E. V.; Maleev, N. A.; Ustinov, V. M.

    2016-10-01

    The fundamental possibility of achieving temperature stability of laser emitters of 1.3-μm spectral range exhibiting a vertical microcavity and an active region based on InAs/InGaAs quantum dots (QDs) is investigated. It is demonstrated that using an undoped hybrid vertical optical microcavity formed by a lower undoped semiconductor and an upper distributed dielectric Bragg reflectors allows obtaining laser oscillation up to a temperature of 100°C at nearly constant threshold optical pump power for an active region consisting of QD layers under optimal spectral mismatch between the position of maximum gain of the QD ground state and the resonance wavelength.

  14. Analysis of the relationship between ultrasound of breast cancer DOT-SDI and the expression of MVD, VEGF and HIF-1α.

    PubMed

    Wang, Hai-long; Zhang, Zhou-long

    2014-09-01

    Ultrasonic light scattering tomography system is a new imaging technique for breast function, which associates with diffused optical tomography (DOT) with ultrasonic examination. It locates breast neoplasm with ultrasonic examination and measures the total hemoglobin concentration inside the tumor with DOT photon emission to reflect the metabolic state of tumors and then comes to synthesis diagnostic index to judge benign and malignant tumors. This diagnosis method has significant affection on diagnosis of benign and malignant tumors at home and abroad. In the development of breast cancer, local tissue hypoxia leads to a large number of new blood vessels when the tumor grows faster than the rate of angiogenesis. A recent study found microvessel density (MVD), vascular endothelial growth factor (VEGF) and hypoxia-inducible factor-1 alpha (HIF-1α) play a major role in angiogenesis of breast cancer. This study analyses the relationship between breast cancer ultrasound synthesis diagnostic index (SDI) and the expression of MVD, VEGF and HIF-1α by testing the expression level of the breast cancer gene MVD, VEGF and HIF-1α.

  15. A simple, inexpensive, robust and sensitive dot-blot assay for equal detection of the nonstructural-1 glycoprotein of all dengue virus serotypes

    PubMed Central

    2013-01-01

    Background Detection of dengue virus (DENV) soluble/excreted (s/e) form of the nonstructural-1 (NS1) glycoprotein in patient acute-phase sera is ideal for diagnosis. The commercially-available detection assays are, however, too expensive for routine use and have low specificity, particularly for the s/e NS1 glycoprotein of DENV-2 and DENV-4, which are important causes of lethal human disease worldwide. Methods Mouse monoclonal antibodies (MAbs) were generated and screened against s/e NS1 glycoprotein purified from each DENV serotype to obtain those that reacted equally with each serotype, but not with yellow fever virus (YFV) s/e NS1 glycoprotein or human serum proteins. One MAb, MAb 2C4.6, was further tested against these DENV glycoproteins in human sera using simple, peroxidase-labelled secondary antibody/substrate-developed dot-blot assays. Results Optimal quenching of endogenous human serum peroxidases was attained using 3% H2O2 in H20 for 5 min. MAb 2C4.6 showed an acceptable detection sensitivity of < 32 ng/ml for the s/e NS1 glycoprotein of each DENV serotype but did not cross-react with the YFV s/e NS1 glycoprotein or human serum proteins. By contrast, the LX1 epitope-specific MAb, 3D1.4, showed similar detection sensitivity against only the DENV-1 NS1 glycoprotein, consistent with results from commercial DENV s/e NS1 glycoprotein detection assays. DENV s/e NS1 glycoproteins were stable in human sera after drying on the nitrocellulose membranes and storage for one month at ambient temperature (28°C) before being processed. The total assay time was reduced to 3 h without any loss of detection sensitivity. This dot-blot format was ideal for the circulating immune complex disruption step, which is required for increased DENV s/e NS1 glycoprotein detection. Conclusions This is the first study to determine the detection sensitivity of MAbs against known concentrations of s/e NS1 glycoprotein from each DENV serotype. The preparation of patient serum samples for

  16. Alkanols and chlorophenols cause different physiological adaptive responses on the level of cell surface properties and membrane vesicle formation in Pseudomonas putida DOT-T1E.

    PubMed

    Baumgarten, Thomas; Vazquez, José; Bastisch, Christian; Veron, Wilfried; Feuilloley, Marc G J; Nietzsche, Sandor; Wick, Lukas Y; Heipieper, Hermann J

    2012-01-01

    In order to cope with the toxicity imposed by the exposure to environmental hydrocarbons, many bacteria have developed specific adaptive responses such as modifications in the cell envelope. Here we compared the influence of n-alkanols and chlorophenols on the surface properties of the solvent-tolerant bacterium Pseudomonas putida DOT-T1E. In the presence of toxic concentrations of n-alkanols, this strain significantly increased its cell surface charge and hydrophobicity with changes depending on the chain length of the added n-alkanols. The adaptive response occurred within 10 min after the addition of the solvent and was demonstrated to be of physiological nature. Contrary to that, chlorophenols of similar hydrophobicity and potential toxicity as the corresponding alkanols caused only minor effects in the surface properties. To our knowledge, this is the first observation of differences in the cellular adaptive response of bacteria to compound classes of quasi equal hydrophobicity and toxicity. The observed adaptation of the physico-chemical surface properties of strain DOT-T1E to the presence of alkanols was reversible and correlated with changes in the composition of the lipopolysaccharide content of the cells. The reaction is explained by previously described reactions allowing the release of membrane vesicles that was demonstrated for cells affected by 1-octanol and heat shock, whereas no membrane vesicles were released after the addition of chlorophenols.

  17. Blood Compatibility Evaluations of Fluorescent Carbon Dots.

    PubMed

    Li, Sha; Guo, Zhong; Zhang, Yi; Xue, Wei; Liu, Zonghua

    2015-09-02

    Because of their unique advantages, fluorescent carbon dots are gaining popularity in various biomedical applications. For these applications, good biosafety is a prerequisite for their use in vivo. Studies have reported the preliminary biocompatibility evaluations of fluorescent carbon dots (mainly cytotoxicity); however, to date, little information is available about their hemocompatibility, which could impede their development from laboratory to bedside. In this work, we evaluated the hemocompatibility of fluorescent carbon dots, which we prepared by hydrothermal carbonization of α-cyclodextrin. The effects of the carbon dots on the structure and function of key blood components were investigated at cellular and molecular levels. In particular, we considered the morphology and lysis of human red blood cells, the structure and conformation of the plasma protein fibrinogen, the complement activation, platelet activation, and in vitro and in vivo blood coagulation. We found that the carbon dots have obvious concentration-dependent effects on the blood components. Overall, concentrations of the fluorescent carbon dots at ≤0.1 mg/mL had few adverse effects on the blood components, but at higher doses, the carbon dots impair the structure and function of the blood components, causing morphological disruptions and lysis of red blood cells, interference in the local microenvironments of fibrinogen, activation of the complement system, and disturbances in the plasma and whole blood coagulation function in vitro. However, the carbon dots tend to activate platelets only at low concentrations. Intravenous administration of the carbon dots at doses up to 50 mg/kg did not impair the blood coagulation function. These results provide valuable information for the clinical application of fluorescent carbon dots.

  18. Analysis of hybrid mode-locking of two-section quantum dot lasers operating at 1.5 microm.

    PubMed

    Heck, Martijn J R; Salumbides, Edcel J; Renault, Amandine; Bente, Erwin A J M; Oei, Yok-Siang; Smit, Meint K; van Veldhoven, René; Nötzel, Richard; Eikema, Kjeld S E; Ubachs, Wim

    2009-09-28

    For the first time a detailed study of hybrid mode-locking in two-section InAs/InP quantum dot Fabry-Pérot-type lasers is presented. The output pulses have a typical upchirp of approximately 8 ps/nm, leading to very elongated pulses. The mechanism leading to this typical pulse shape and the phase noise is investigated by detailed radio-frequency and optical spectral studies as well as time-domain studies. The pulse shaping mechanism in these lasers is found to be fundamentally different than the mechanism observed in conventional mode-locked laser diodes, based on quantum well gain or bulk material.

  19. 1.1-μm InAs/GaAs quantum-dot light-emitting transistors grown by molecular beam epitaxy.

    PubMed

    Wu, Cheng-Han; Chen, Hsuan-An; Lin, Shih-Yen; Wu, Chao-Hsin

    2015-08-15

    In this Letter, we report the enhanced radiative recombination output from an AlGaAs/GaAs heterojunction bipolar transistor with InAs quantum dots embedded in the base region to form a quantum-dot light-emitting transistor (QDLET) grown by molecular beam epitaxy systems. For the device with a 100  μm×100  μm emitter area, we demonstrate the dual output characteristics with an electrical output and an optical output when the device is operating in the common-emitter configuration. The quantum-dot light-emitting transistor exhibits a base recombination radiation in the near-infrared spectral range with a dominant peak at λ of 1100 nm.

  20. Surface Passivation of CdSe Quantum Dots in All Inorganic Amorphous Solid by Forming Cd1−xZnxSe Shell

    PubMed Central

    Xia, Mengling; Liu, Chao; Zhao, Zhiyong; Wang, Jing; Lin, Changgui; Xu, Yinsheng; Heo, Jong; Dai, Shixun; Han, Jianjun; Zhao, Xiujian

    2017-01-01

    CdSe quantum dots (QDs) doped glasses have been widely investigated for optical filters, LED color converter and other optical emitters. Unlike CdSe QDs in solution, it is difficult to passivate the surface defects of CdSe QDs in glass matrix, which strongly suppress its intrinsic emission. In this study, surface passivation of CdSe quantum dots (QDs) by Cd1−xZnxSe shell in silicate glass was reported. An increase in the Se/Cd ratio can lead to the partial passivation of the surface states and appearance of the intrinsic emission of CdSe QDs. Optimizing the heat-treatment condition promotes the incorporation of Zn into CdSe QDs and results in the quenching of the defect emission. Formation of CdSe/Cd1−xZnxSe core/graded shell QDs is evidenced by the experimental results of TEM and Raman spectroscopy. Realization of the surface passivation and intrinsic emission of II-VI QDs may facilitate the wide applications of QDs doped all inorganic amorphous materials. PMID:28169376

  1. Surface Passivation of CdSe Quantum Dots in All Inorganic Amorphous Solid by Forming Cd1‑xZnxSe Shell

    NASA Astrophysics Data System (ADS)

    Xia, Mengling; Liu, Chao; Zhao, Zhiyong; Wang, Jing; Lin, Changgui; Xu, Yinsheng; Heo, Jong; Dai, Shixun; Han, Jianjun; Zhao, Xiujian

    2017-02-01

    CdSe quantum dots (QDs) doped glasses have been widely investigated for optical filters, LED color converter and other optical emitters. Unlike CdSe QDs in solution, it is difficult to passivate the surface defects of CdSe QDs in glass matrix, which strongly suppress its intrinsic emission. In this study, surface passivation of CdSe quantum dots (QDs) by Cd1‑xZnxSe shell in silicate glass was reported. An increase in the Se/Cd ratio can lead to the partial passivation of the surface states and appearance of the intrinsic emission of CdSe QDs. Optimizing the heat-treatment condition promotes the incorporation of Zn into CdSe QDs and results in the quenching of the defect emission. Formation of CdSe/Cd1‑xZnxSe core/graded shell QDs is evidenced by the experimental results of TEM and Raman spectroscopy. Realization of the surface passivation and intrinsic emission of II-VI QDs may facilitate the wide applications of QDs doped all inorganic amorphous materials.

  2. Tailoring the composition of self-assembled Si(1-x)C(x) quantum dots: simulation of plasma/ion-related controls.

    PubMed

    Rider, A E; Ostrikov, K; Levchenko, I

    2008-09-03

    Precise control of composition and internal structure is essential for a variety of novel technological applications which require highly tailored binary quantum dots (QDs) with predictable optoelectronic and mechanical properties. The delicate balancing act between incoming flux and substrate temperature required for the growth of compositionally graded (Si(1-x)C(x); x varies throughout the internal structure), core-multishell (discrete shells of Si and C or combinations thereof) and selected composition (x set) QDs on low-temperature plasma/ion-flux-exposed Si(100) surfaces is investigated via a hybrid numerical simulation. Incident Si and C ions lead to localized substrate heating and a reduction in surface diffusion activation energy. It is shown that by incorporating ions in the influx, a steady-state composition is reached more quickly (for selected composition QDs) and the composition gradient of a Si(1-x)C(x) QD may be fine tuned; additionally (with other deposition conditions remaining the same), larger QDs are obtained on average. It is suggested that ionizing a portion of the influx is another way to control the average size of the QDs, and ultimately, their internal structure. Advantages that can be gained by utilizing plasma/ion-related controls to facilitate the growth of highly tailored, compositionally controlled quantum dots are discussed as well.

  3. Oestradiol and insulin-like growth factor-1 reduce cell loss after global ischaemia in middle-aged female rats.

    PubMed

    Traub, M L; De Butte-Smith, M; Zukin, R S; Etgen, A M

    2009-12-01

    Whereas the ability of oestradiol and insulin-like growth factor (IGF)-1 to afford neuroprotection against ischaemia-induced neuronal death in young female and male rodents is well established, the impact of IGF-1 in middle-aged animals is largely unknown. The present study assessed the efficacy of oestradiol and IGF-1 with respect to reducing neuronal death after transient global ischaemia in middle-aged female rats after 8 weeks of hormone withdrawal. Rats were ovariohysterectomised and implanted 8 weeks later with an osmotic mini-pump delivering IGF-1 or saline into the lateral ventricle. Some rats also received physiological levels of oestradiol by subcutaneous pellet. Two weeks later, rats were subjected to global ischaemia or sham operation. Surviving hippocampal CA1 neurones were quantified. Ischaemia produced massive CA1 cell death compared to sham-operated animals, which was evident at 14 days. Significantly more neurones survived in animals treated with either oestradiol or IGF-1, but simultaneous treatment produced no additive effect. IGF-1, an endogenous growth factor, may be a clinically useful therapy in preventing human brain injury, with neuroprotective equivalence to oestradiol but without the harmful side-effects.

  4. Carotid Intima Media Thickness Is Independently Associated with Male Gender, Middle Age, and IGF-1 in Metabolically Healthy Obese Individuals.

    PubMed

    Abd El-Hafez, Hala; Elrakhawy, Mohamed M; El-Baiomy, Azza A; El-Eshmawy, Mervat M

    2014-01-01

    Background/Aims. The effect of benign obesity on subclinical cardiovascular disease is still questionable. The purpose of this study was to assess carotid intima media thickness (CIMT), as a marker of subclinical atherosclerosis, and to evaluate its relation to age, sex, and IGF-1 in metabolically healthy obese (MHO) subjects. Methods. A total of 75 MHO subjects and 80 age, and sex matched healthy nonobese control subjects were included in the study. Body mass index (BMI), waist circumference (WC), blood pressure, fasting plasma glucose, fasting insulin, HOMA-IR, lipid profile, insulin like growth factor-1 (IGF-1), and CIMT were assessed in all subjects. Results. MHO subjects had significantly higher CIMT and lower IGF-1 than healthy nonobese controls. Mean CIMT was significantly higher in MHO men age subgroup range from 30 to 50 years than in their age range matched (premenopausal) MHO women subgroup. In MHO subjects, CIMT was positively correlated with age, BMI, WC, SBP, HOMA-IR, TG, and LDL-C, and negatively correlated with IGF-1. Regression analysis revealed that middle age, male sex and IGF-1 remained independently associated with CIMT in MHO subjects. Conclusion. CIMT is elevated and IGF-1 is reduced in MHO subjects, and CIMT is independently associated with male gender, middle age, and IGF-1. Definition of healthy obesity may be broadened to include IMT measurement.

  5. Carotid Intima Media Thickness Is Independently Associated with Male Gender, Middle Age, and IGF-1 in Metabolically Healthy Obese Individuals

    PubMed Central

    Abd El-Hafez, Hala; Elrakhawy, Mohamed M.; El-Baiomy, Azza A.; El-Eshmawy, Mervat M.

    2014-01-01

    Background/Aims. The effect of benign obesity on subclinical cardiovascular disease is still questionable. The purpose of this study was to assess carotid intima media thickness (CIMT), as a marker of subclinical atherosclerosis, and to evaluate its relation to age, sex, and IGF-1 in metabolically healthy obese (MHO) subjects. Methods. A total of 75 MHO subjects and 80 age, and sex matched healthy nonobese control subjects were included in the study. Body mass index (BMI), waist circumference (WC), blood pressure, fasting plasma glucose, fasting insulin, HOMA-IR, lipid profile, insulin like growth factor-1 (IGF-1), and CIMT were assessed in all subjects. Results. MHO subjects had significantly higher CIMT and lower IGF-1 than healthy nonobese controls. Mean CIMT was significantly higher in MHO men age subgroup range from 30 to 50 years than in their age range matched (premenopausal) MHO women subgroup. In MHO subjects, CIMT was positively correlated with age, BMI, WC, SBP, HOMA-IR, TG, and LDL-C, and negatively correlated with IGF-1. Regression analysis revealed that middle age, male sex and IGF-1 remained independently associated with CIMT in MHO subjects. Conclusion. CIMT is elevated and IGF-1 is reduced in MHO subjects, and CIMT is independently associated with male gender, middle age, and IGF-1. Definition of healthy obesity may be broadened to include IMT measurement. PMID:24616825

  6. Blockade of hippocampal bradykinin B1 receptors improves spatial learning and memory deficits in middle-aged rats.

    PubMed

    Bitencourt, Rafael M; Guerra de Souza, Ana C; Bicca, Maíra A; Pamplona, Fabrício A; de Mello, Nelson; Passos, Giselle F; Medeiros, Rodrigo; Takahashi, Reinaldo N; Calixto, João B; Prediger, Rui D

    2017-01-01

    Previous studies have demonstrated that targeting bradykinin receptors is a promising strategy to counteract the cognitive impairment related with aging and Alzheimer's disease (AD). The hippocampus is critical for cognition, and abnormalities in this brain region are linked to the decline in mental ability. Nevertheless, the impact of bradykinin signaling on hippocampal function is unknown. Therefore, we sought to determine the role of hippocampal bradykinin receptors B1R and B2R on the cognitive decline of middle-aged rats. Twelve-month-old rats exhibited impaired ability to acquire and retrieve spatial information in the Morris water maze task. A single intra-hippocampal injection of the selective B1R antagonist des-Arg(9)-[Leu(8)]-bradykinin (DALBK, 3 nmol), but not the selective B2R antagonist D-Arg-[Hyp(3),Thi(5),D-Tic(7),Oic(8)]-BK (Hoe 140, 3 nmol), reversed the spatial learning and memory deficits on these animals. However, both drugs did not affect the cognitive function in 3-month-old rats, suggesting absence of nootropic properties. Molecular biology analysis revealed an up-regulation of B1R expression in the hippocampal CA1 sub-region and in the pre-frontal cortex of 12-month-old rats, whereas no changes in the B2R expression were observed in middle-aged rats. These findings provide new evidence that inappropriate hippocampal B1R expression and activation exert a critical role on the spatial learning and memory deficits in middle-aged rats. Therefore, selective B1R antagonists, especially orally active non-peptide antagonists, may represent drugs of potential interest to counteract the age-related cognitive decline.

  7. Hydrochemical tracers in the middle Rio Grande Basin, USA: 1. Conceptualization of groundwater flow

    NASA Astrophysics Data System (ADS)

    Plummer, L. Niel; Bexfield, Laura M.; Anderholm, Scott K.; Sanford, Ward E.; Busenberg, Eurybiades

    Chemical and isotopic data for groundwater from throughout the Middle Rio Grande Basin, central New Mexico, USA, were used to identify and map groundwater flow from 12 sources of water to the basin, evaluate radiocarbon ages, and refine the conceptual model of the Santa Fe Group aquifer system. Hydrochemical zones, representing groundwater flow over thousands to tens of thousands of years, can be traced over large distances through the primarily siliciclastic aquifer system. The locations of the hydrochemical zones mostly reflect the ``modern'' predevelopment hydraulic-head distribution, but are inconsistent with a trough in predevelopment water levels in the west-central part of the basin, indicating that this trough is a transient rather than a long-term feature of the aquifer system. Radiocarbon ages adjusted for geochemical reactions, mixing, and evapotranspiration/dilution processes in the aquifer system were nearly identical to the unadjusted radiocarbon ages, and ranged from modern to more than 30 ka. Age gradients from piezometer nests ranged from 0.1 to 2 year cm-1 and indicate a recharge rate of about 3 cm year-1 for recharge along the eastern mountain front and infiltration from the Rio Grande near Albuquerque. There has been appreciably less recharge along the eastern mountain front north and south of Albuquerque. Des données sur les éléments chimiques et les isotopes présents dans l'eau souterraine prélevée à divers endroits dans le bassin moyen du Rio Grande, au centre du Nouveau-Mexique (É-U), ont permis de déterminer l'existence et l'étendue de douze sources d'eau régionales dans le bassin, d'évaluer les âges radiocarbones et de raffiner le modèle conceptuel du système aquifère du groupe de Santa Fe. Des zones hydro-chimiques qui représentent l'écoulement de l'eau souterraine depuis des dizaines de milliers d'années peuvent être suivies sur de longues distances à travers l'aquifère principalement siliclastique. La position des

  8. Controllable transmission photonic band gap and all-optical switching behaviors of 1-D InAs/GaAs quantum-dot photonic crystal

    NASA Astrophysics Data System (ADS)

    Hu, Zhenhua; Xiang, Bowen; Xing, Yunsheng

    2016-12-01

    Transmission optical properties of one-dimensional (1-D) InAs/GaAs quantum-dot photonic crystal (QD-PC), composed of 400 elementary cells, were analyzed by using transfer matrix method. In our calculations, a homogeneous broadening with temperature and other inhomogeneous broadening with quantum dot (QD) size fluctuations are introduced. Our results show that a large optical Stark shift occurs at the high energy edge of the transmission photonic band-gap (TPBG) when, which exhibits the function of light with light, an external laser field acts resonantly on the excitons in the InAs QDs. Utilized this TPBG based on the pump-probe geometry, an all-optical switch can be constructed and the on-off switching extinction ratio (SER) is varied with both the temperature and the inhomogeneity of QDs. Significantly, it still maintains switching behavior and can process the data sequence of return-to-zero codes of 250 Gb/s even if the QD standard deviation of relative size fluctuations (SD-RSF) is up to 3% and the temperature is at 100 K.

  9. "Green" synthesis of cadmium selenide nanocrystals: the scope of 1,2,3-selendiazoles in the synthesis of magic-size nanocrystals and quantum dots.

    PubMed

    Beri, Rupinder K; Khanna, Pawan K

    2011-06-01

    A range of cadmium selenide nano-particles (the quantum dots (QDs), the magic-size nano-crystals (MSNCs) or the mixture of two) have been synthesized by the use of organoselenium reagents viz. 1,2,3-selenadiazole and metal salts in an appropriate choice of long chain fatty acids e.g., oleic acid with or without a solvent. These different types of nanocrystals can be easily obtained simply by variation in reaction temperature. The employed approach does not use any hazardous reagents and is typically non-aqueous and can be considered "green." The temperature at which the reaction is carried out along with the ratio of reactants and surfactant affect the nature of products and have led to understanding of some parameters affecting the formation of either "thermodynamic" or "kinetically" stabilized products. We have obtained sub-nanosized particles (magic-sized nanocrystals), zero-dimensional quantum dots and self-assembled structures by these methods. The materials have been studied by UV-Visible spectroscopy (UV-Vis), Photoluminescence spectroscopy (PL), X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersion X-ray analysis (EDAX), and Transmission electron microscopy (TEM).

  10. Optical rectification in a strained GaAs{sub 0.9}P{sub 0.1}/GaAs{sub 0.6}P{sub 0.4} quantum dot: Simultaneous effects of electric and magnetic fields

    SciTech Connect

    Vinolin, Ada; Peter, A. John

    2014-04-24

    Simultaneous effects of electric field and magnetic field on exciton binding energy as a function of dot radius in a cylindrical GaAs{sub 0.9}P{sub 0.1}/GaAs{sub 0.6}P{sub 0.4} strained quantum dot are investigated. The strain contribution includes the strong built-in electric field induced by the spontaneous and piezoelectric polarizations. Numerical calculations are performed using variational procedure within the single band effective mass approximation. Optical rectification in the GaAs{sub 0.9}P{sub 0.1}/GaAs{sub 0.6}P{sub 0.4} quantum dot is computed in the presence of electric and magnetic fields.

  11. Teaching Middle Grades Science.

    ERIC Educational Resources Information Center

    Georgia State Dept. of Education, Atlanta. Office of Instructional Services.

    Background information and exemplary units for teaching science in Georgia's middle school grades are provided. Discussed in the first section are: (1) the rationale for including science in middle school grades, focusing on science/society/technology, science/social issues, scientific reasoning, and scientific literacy; (2) role of science…

  12. The Middle East.

    ERIC Educational Resources Information Center

    Blouin, Virginia; And Others

    This sixth grade resource unit focuses on Middle East culture as seen through five areas of the social sciences: anthropology-sociology, geography, history, economics, and political science. Among objectives that the student is expected to achieve are the following: 1) given general information on the Middle East through the use of film, visuals,…

  13. Thermal Effects and Small Signal Modulation of 1.3-μm InAs/GaAs Self-Assembled Quantum-Dot Lasers.

    PubMed

    Zhao, H X; Yoon, S F; Tong, C Z; Liu, C Y; Wang, R; Cao, Q

    2011-12-01

    We investigate the influence of thermal effects on the high-speed performance of 1.3-μm InAs/GaAs quantum-dot lasers in a wide temperature range (5-50°C). Ridge waveguide devices with 1.1 mm cavity length exhibit small signal modulation bandwidths of 7.51 GHz at 5°C and 3.98 GHz at 50°C. Temperature-dependent K-factor, differential gain, and gain compression factor are studied. While the intrinsic damping-limited modulation bandwidth is as high as 23 GHz, the actual modulation bandwidth is limited by carrier thermalization under continuous wave operation. Saturation of the resonance frequency was found to be the result of thermal reduction in the differential gain, which may originate from carrier thermalization.

  14. Middle Atmosphere Program. Handbook for MAP. Volume 12: Coordinated Study of the Behavior of the Middle Atmosphere in Winter (PMP-1) Workshops

    NASA Technical Reports Server (NTRS)

    Rodgers, C. D. (Editor)

    1984-01-01

    Intercomparison of middle atmosphere meteorological data from a variety of sources is discussed. The primary aim was to intercompare data on stratospheric and mesospheric temperatures from a variety of sounding systems in order to characterize the differences, to understand the reasons for them, and to help users of the data to understand how these differences will affect derived quantities such as heat and momentum fluxes which are significant in studies of stratospheric dynamics.

  15. Spontaneous emission study on 1.3 µm InAs/InGaAs/GaAs quantum dot lasers.

    PubMed

    Liu, C Y; Stubenrauch, M; Bimberg, D

    2011-06-10

    True spontaneous emission (TSE) measurements on InAs/InGaAs/GaAs quantum dot (QD) lasers have been performed as a function of injection current and cavity length. For each laser, TSE from both the ground state (GS) transition and the excited state (ES) transition has been analyzed. It is found that Auger processes are the major nonradiative recombination (NR) processes for both the GS and ES transitions. In particular, for the first time, the existence of Auger like NR features in ES transitions has been experimentally demonstrated. In addition, obvious competition for carriers between the ES transition and the GS transition has been observed in TSE analysis. Furthermore, the QD laser's cavity length has a strong effect on the NR process in GS transitions, due to GS gain saturation. Therefore, when analyzing the NR processes in operating QD lasers, gain saturation due to cavity length limits should be properly considered.

  16. Hemodynamic changes in a rat parietal cortex after endothelin-1-induced middle cerebral artery occlusion monitored by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Liu, Jian; Ma, Yushu; Dou, Shidan; Wang, Yi; La, Dongsheng; Liu, Jianghong; Ma, Zhenhe

    2016-07-01

    A blockage of the middle cerebral artery (MCA) on the cortical branch will seriously affect the blood supply of the cerebral cortex. Real-time monitoring of MCA hemodynamic parameters is critical for therapy and rehabilitation. Optical coherence tomography (OCT) is a powerful imaging modality that can produce not only structural images but also functional information on the tissue. We use OCT to detect hemodynamic changes after MCA branch occlusion. We injected a selected dose of endothelin-1 (ET-1) at a depth of 1 mm near the MCA and let the blood vessels follow a process first of occlusion and then of slow reperfusion as realistically as possible to simulate local cerebral ischemia. During this period, we used optical microangiography and Doppler OCT to obtain multiple hemodynamic MCA parameters. The change trend of these parameters from before to after ET-1 injection clearly reflects the dynamic regularity of the MCA. These results show the mechanism of the cerebral ischemia-reperfusion process after a transient middle cerebral artery occlusion and confirm that OCT can be used to monitor hemodynamic parameters.

  17. Structural and emission properties of InGaAs/GaAs quantum dots emitting at 1.3 μm

    SciTech Connect

    Goldmann, Elias Jahnke, Frank; Paul, Matthias; Kettler, Jan; Jetter, Michael; Michler, Peter; Krause, Florian F.; Müller, Knut; Mehrtens, Thorsten; Rosenauer, Andreas

    2014-10-13

    A combined experimental and theoretical study of InGaAs/GaAs quantum dots (QDs) emitting at 1.3 μm under the influence of a strain-reducing InGaAs quantum well is presented. We demonstrate a red shift of 20–40 nm observed in photoluminescence spectra due to the quantum well. The InGaAs/GaAs QDs grown by metal organic vapor phase epitaxy show a bimodal height distribution (1 nm and 5 nm) and indium concentrations up to 90%. The emission properties are explained with combined tight-binding and configuration-interaction calculations of the emission wavelengths in conjunction with high-resolution scanning transmission electron microscopy investigations of QD geometry and indium concentrations in the QDs, which directly enter the calculations. QD geometries and concentration gradients representative for the ensemble are identified.

  18. Self-assembled InAs/GaAs quantum dot molecules with InxGa1-xAs strain-reducing layer

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Huang, L. R.; Tian, P.; Huang, D. X.

    2010-12-01

    Self-assembled lateral aligned InAs quantum dot molecules (QDMs) with InxGa1-xAs strain-reducing layer are grown on GaAs substrate by metal-organic chemical vapor deposition. The effects of growth temperature and In content of InxGa1-xAs on the structural and optical properties of QDMs are investigated by using atomic force microscopy and photoluminescence. It is found that through appropriately selecting growth parameters, QDMs composed of two closely spaced InAs QDs are formed, and a redshift of emission wavelength and wideband photoluminescence spectra of QDMs are observed, which make QDM a potential candidate for broadband optical devices.

  19. Chemically grown vertically aligned 1D ZnO nanorods with CdS coating for efficient quantum dot sensitized solar cells (QDSSC): a controlled synthesis route.

    PubMed

    Mali, Sawanta S; Kim, Hyungjin; Patil, Pramod S; Hong, Chang Kook

    2013-12-28

    In the present article, vertically aligned ZnO nanorod arrays were synthesized by an aqueous chemical growth (ACG) route on a fluoride doped tin oxide (FTO) coated glass substrate. These nanorods were further sensitized with cadmium sulfide (CdS) quantum dots (QDs) by a successive ionic layer adsorption and reaction (SILAR) technique. The synthesized CdS coated ZnO nanorods were characterized for their structural and morphological properties with X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) and field emission scanning electron microscopy (FESEM). Finally, prepared CdS coated 1D ZnO photoelectrodes were tested for their photoelectrochemical performance. Our results show that the sample deposited after 40 SILAR cycles shows 5.61 mA cm(-2) short current density (JSC) with η = 1.61% power conversion efficiency.

  20. Single-photon property characterization of 1.3 μm emissions from InAs/GaAs quantum dots using silicon avalanche photodiodes

    PubMed Central

    Zhou, P. Y.; Dou, X. M.; Wu, X. F.; Ding, K.; Li, M. F.; Ni, H. Q.; Niu, Z. C.; Jiang, D. S.; Sun, B. Q.

    2014-01-01

    We developed a new approach to test the single-photon emissions of semiconductor quantum dots (QDs) in the optical communication band. A diamond-anvil cell pressure device was used for blue-shifting the 1.3 μm emissions of InAs/GaAs QDs to 0.9 μm for detection by silicon avalanche photodiodes. The obtained g(2)(0) values from the second-order autocorrelation function measurements of several QD emissions at 6.58 GPa were less than 0.3, indicating that this approach provides a convenient and efficient method of characterizing 1.3 μm single-photon source based on semiconductor materials. PMID:24407193

  1. Improved ground-state modulation characteristics in 1.3 μm InAs/GaAs quantum dot lasers by rapid thermal annealing.

    PubMed

    Zhao, Hanxue; Yoon, Soon Fatt; Ngo, Chun Yong; Wang, Rui

    2011-05-16

    We investigated the ground-state (GS) modulation characteristics of 1.3 μm InAs/GaAs quantum dot (QD) lasers that consist of either as-grown or annealed QDs. The choice of annealing conditions was determined from our recently reported results. With reference to the as-grown QD lasers, one obtains approximately 18% improvement in the modulation bandwidth from the annealed QD lasers. In addition, the modulation efficiency of the annealed QD lasers improves by approximately 45% as compared to the as-grown ones. The observed improvements are due to (1) the removal of defects which act as nonradiative recombination centers in the QD structure and (2) the reduction in the Auger-related recombination processes upon annealing.

  2. Metal-organic vapor-phase epitaxy-grown ultra-low density InGaAs/GaAs quantum dots exhibiting cascaded single-photon emission at 1.3 μm

    SciTech Connect

    Paul, Matthias Kettler, Jan; Zeuner, Katharina; Clausen, Caterina; Jetter, Michael; Michler, Peter

    2015-03-23

    By metal-organic vapor-phase epitaxy, we have fabricated InGaAs quantum dots on GaAs substrate with an ultra-low lateral density (<10{sup 7} cm{sup −2}). The photoluminescence emission from the quantum dots is shifted to the telecom O-band at 1.31 μm by an InGaAs strain reducing layer. In time-resolved measurements, we find fast decay times for exciton (∼600 ps) and biexciton (∼300 ps). We demonstrate triggered single-photon emission (g{sup (2)}(0)=0.08) as well as cascaded emission from the biexciton decay. Our results suggest that these quantum dots can compete with their counterparts grown by state-of-the-art molecular beam epitaxy.

  3. InAs quantum dot growth on Al{sub x}Ga{sub 1−x}As by metalorganic vapor phase epitaxy for intermediate band solar cells

    SciTech Connect

    Jakomin, R.; Kawabata, R. M. S.; Souza, P. L.; Mourão, R. T.; Pires, M. P.; Micha, D. N.

    2014-09-07

    InAs quantum dot multilayers have been grown using Al{sub x}Ga{sub 1−x}As spacers with dimensions and compositions near the theoretical values for optimized efficiencies in intermediate band photovoltaic cells. Using an aluminium composition of x = 0.3 and InAs dot vertical dimensions of 5 nm, transitions to an intermediate band with energy close to the ideal theoretical value have been obtained. Optimum size uniformity and density have been achieved by capping the quantum dots with GaAs following the indium-flush method. This approach has also resulted in minimization of crystalline defects in the epilayer structure.

  4. Crystallization and preliminary X-ray diffraction studies of a surface mutant of the middle domain of PB2 from human influenza A (H1N1) virus.

    PubMed

    Tsurumura, Toshiharu; Qiu, Hao; Yoshida, Toru; Tsumori, Yayoi; Tsuge, Hideaki

    2014-01-01

    In the last hundred years, four influenza pandemics have been experienced, beginning with that in Spain in 1918. Influenza A virus causes severe pneumonia and its RNA polymerase is an important target for drug design. The influenza A (H1N1) virus has eight ribonucleoprotein complexes, which are composed of viral RNA, RNA polymerases and nucleoproteins. PB2 forms part of the RNA polymerase complex and plays an important role in binding to the cap structure of host mRNA. The middle domain of PB2 includes a cap-binding site. The structure of PB2 from H1N1 complexed with m(7)GTP has not been reported. Plate-like crystals of the middle domain of PB2 from H1N1 were obtained, but the quality of these crystals was not good. An attempt was made to crystallize the middle domain of PB2 complexed with m(7)GTP using a soaking method; however, electron density for m(7)GTP was not observed on preliminary X-ray diffraction analysis. This protein has hydrophobic residues on its surface and is stable in the presence of high salt concentrations. To improve the solubility, a surface double mutant (P453H and I471T) was prepared. These mutations change the surface electrostatic potential drastically. The protein was successfully prepared at a lower salt concentration and good cube-shaped crystals were obtained using this protein. Here, the crystallization and preliminary X-ray diffraction analysis of this mutant of the middle domain of PB2 are reported.

  5. Emotional responses and memory performance of middle-aged CD1 mice in a 3D maze: effects of low infrared light.

    PubMed

    Michalikova, S; Ennaceur, A; van Rensburg, R; Chazot, P L

    2008-05-01

    Non-thermal near infra-red (IR) has been shown to have many beneficial photobiological effects on a range of cell types, including neurons. In the present study, a pretreatment with a daily 6 min exposure to IR1072 for 10 days yielded a number of significant behavioral effects on middle-aged female CD-1 mice (12-months) tested in a 3D-maze. Middle-aged mice show significant deficits in a working memory test and IR treatment reversed this deficit. Interestingly, the IR treated middle-aged group despite making less memory errors than sham middle-aged group spent longer time in different parts of the maze than both the young group (3-months) and sham-middle-aged group (12-months). Young mice appeared more anxious than middle-aged mice in the first sessions of the test. Exposure to IR appeared to have no significant effects upon exploratory activity or anxiety responses. However, it elicited significant effects on working memory, with the IR middle-aged mice being more considerate in their decision making, which results in an overall improved cognitive performance which is comparable to that of young CD-1 mice. The present study describes a novel method for assessing emotional responses and memory performance in a 3D spatial navigation task and demonstrates the validity of our new all-in-one test and its sensitivity to ageing and non-invasive beneficial IR treatment.

  6. Quantum Dots: Theory

    SciTech Connect

    Vukmirovic, Nenad; Wang, Lin-Wang

    2009-11-10

    This review covers the description of the methodologies typically used for the calculation of the electronic structure of self-assembled and colloidal quantum dots. These are illustrated by the results of their application to a selected set of physical effects in quantum dots.

  7. Optical transition energy of magneto-polaron in a GaAs{sub 0.9}P{sub 0.1}/GaAs{sub 0.6}P{sub 0.4} quantum dot

    SciTech Connect

    Vinolin, Ada; Peter, A. John

    2015-06-24

    Magneto-LO-polaron in a cylindrical GaAs{sub 0.9} P{sub 0.1} / GaAs{sub 0.6} P{sub 0.4} quantum dot is investigated taking into consideration of geometrical confinement effect. The effects of phonon on the exciton binding energy and the interband emission energy as a function of dot radius are found. The calculations are performed within the single band effective mass approximation using the variational method based on the Lee-Low-Pine LLP transformation.

  8. Optical transition energy of magneto-polaron in a GaAs0.9P0.1/GaAs0.6P0.4 quantum dot

    NASA Astrophysics Data System (ADS)

    Vinolin, Ada; Peter, A. John

    2015-06-01

    Magneto-LO-polaron in a cylindrical GaAs0.9 P0.1 / GaAs0.6 P0.4 quantum dot is investigated taking into consideration of geometrical confinement effect. The effects of phonon on the exciton binding energy and the interband emission energy as a function of dot radius are found. The calculations are performed within the single band effective mass approximation using the variational method based on the Lee-Low-Pine LLP transformation.

  9. Electrically pumped 1.3 microm room-temperature InAs/GaAs quantum dot lasers on Si substrates by metal-mediated wafer bonding and layer transfer.

    PubMed

    Tanabe, Katsuaki; Guimard, Denis; Bordel, Damien; Iwamoto, Satoshi; Arakawa, Yasuhiko

    2010-05-10

    An electrically pumped InAs/GaAs quantum dot laser on a Si substrate has been demonstrated. The double-hetero laser structure was grown on a GaAs substrate by metal-organic chemical vapor deposition and layer-transferred onto a Si substrate by GaAs/Si wafer bonding mediated by a 380-nm-thick Au-Ge-Ni alloy layer. This broad-area Fabry-Perot laser exhibits InAs quantum dot ground state lasing at 1.31 microm at room temperature with a threshold current density of 600 A/cm(2).

  10. 1.3 μm InAs/GaAs quantum dot lasers on Si rib structures with current injection across direct-bonded GaAs/Si heterointerfaces.

    PubMed

    Tanabe, Katsuaki; Watanabe, Katsuyuki; Arakawa, Yasuhiko

    2012-12-10

    An InAs/GaAs quantum dot laser on a Si rib structure has been demonstrated. The double heterostructure laser structure grown on a GaAs substrate is layer-transferred onto a patterned Si substrate by GaAs/Si direct wafer bonding without oxide or metal mediation. This Fabry-Perot laser operates with current injection through the GaAs/Si rib interface and exhibits InAs quantum dot ground state lasing at 1.28 μm at room temperature, with a threshold current density of 480 A cm(-2).

  11. Linear increase of the modal gain in 1.3 µm InAs/GaAs quantum dot lasers containing up to seven-stacked QD layers.

    PubMed

    Salhi, A; Rainò, G; Fortunato, L; Tasco, V; Martiradonna, L; Todaro, M T; De Giorgi, M; Cingolani, R; Passaseo, A; Luna, E; Trampert, A; De Vittorio, M

    2008-07-09

    The authors have recently demonstrated the enhancement of the quantum dot laser modal gain, linearly scaling with the number of stacked QD layers. These results allowed the achievement of multi-quantum dot (MQD) lasers, the zero-dimensional counterpart of MQW lasers, with a modal gain as high as 42 cm(-1), in a seven-layer structure. A detailed investigation of the structural and optical properties was performed on laser structures with three, five and seven QD layers. Such an investigation clearly shows that the high uniformity of QD layer features is responsible for the linear increase of the modal gain and its high value.

  12. Quantum Dot Solar Cells

    NASA Technical Reports Server (NTRS)

    Raffaelle, Ryne P.; Castro, Stephanie L.; Hepp, Aloysius; Bailey, Sheila G.

    2002-01-01

    We have been investigating the synthesis of quantum dots of CdSe, CuInS2, and CuInSe2 for use in an intermediate bandgap solar cell. We have prepared a variety of quantum dots using the typical organometallic synthesis routes pioneered by Bawendi, et. al., in the early 1990's. However, unlike previous work in this area we have also utilized single-source precursor molecules in the synthesis process. We will present XRD, TEM, SEM and EDS characterization of our initial attempts at fabricating these quantum dots. Investigation of the size distributions of these nanoparticles via laser light scattering and scanning electron microscopy will be presented. Theoretical estimates on appropriate quantum dot composition, size, and inter-dot spacing along with potential scenarios for solar cell fabrication will be discussed.

  13. Exploring Extragalactic Emission: The Hα Dot Survey

    NASA Astrophysics Data System (ADS)

    Rampalli, Rayna; Salzer, John Joseph

    2016-01-01

    The Hα Dot Survey was established as a result of finding point sources of strong line emission in the data obtained for the ALFALFA Hα Survey (Van Sistine et al. 2015). In the latter survey, broad-band R and narrow-band Hα filters were used to examine target galaxies from the ALFALFA blind HI survey (Giovanelli et al. 2005, Haynes et al. 2011). In the process of reducing the ALFALFA Hα Survey data the "Hα Dots" were discovered (Kellar et al. 2008, 2012). Using specialized image analysis tools, a large population of dots has already been detected in the more than 1500 ALFALFA Hα narrow-band images taken with the 0.9m WIYN and 2.1m KPNO telescopes. Follow-up spectra of over 200 Hα Dots discovered from the 0.9m images reveal that these objects are a mix of nearby low-luminosity star-forming galaxies, compact starbursts and Seyfert 2 galaxies at intermediate redshifts, and high-redshift QSOs. Here we present the first list of Hα Dots detected using 2.1m telescope data. The 2.1m images yield a sample of Dots that average almost two magnitudes fainter than those detected with the 0.9m. The current REU project is designed to characterize the set of Hα Dots detected in the deeper 2.1m telescope images, while the broad goals of the Hα Dot Survey include the desire to understand better the chemical evolution of galaxies over cosmic time. This project was supported in part by the NSF REU grant 1358980, by the Maria Mitchell Association (Nantucket, MA), and by the Massachusetts Space Grant Consortium.

  14. Proposal for a 1 × 3 Goos-Hänchen shift-assisted de/multiplexer based on a multilayer structure containing quantum dots

    NASA Astrophysics Data System (ADS)

    Sattari, H.; Ebadollahi-Bakhtevar, S.; Sahrai, M.

    2016-10-01

    A multilayer structure with the wavelength selective features based on Goos-Hänchen (GH) shift is proposed and investigated. We present a layered media containing quantum dots for active control of the GH shift for the reflected light. This configuration includes a distributed Bragg reflector to have minimum optical power transmission to the substrate. In addition, a passive cladding layer is used to enhance the total lateral shift for the reflected beams. For a fixed structure and incident angle, our results demonstrate that by proper manipulation of the optical properties and susceptibility of the active layer, de/multiplexing capabilities of such a device could be controlled. This type of grating-less device can be used as a compact wavelength division multiplexing system with actively controllable channel spacing. We demonstrate possibility of a 1 × 3 de/multiplexer with channel spacing of 2 nm .

  15. Leucine partially protects muscle mass and function during bed rest in middle-aged adults1,2

    PubMed Central

    English, Kirk L; Mettler, Joni A; Ellison, Jennifer B; Mamerow, Madonna M; Arentson-Lantz, Emily; Pattarini, James M; Ploutz-Snyder, Robert; Sheffield-Moore, Melinda; Paddon-Jones, Douglas

    2016-01-01

    Background: Physical inactivity triggers a rapid loss of muscle mass and function in older adults. Middle-aged adults show few phenotypic signs of aging yet may be more susceptible to inactivity than younger adults. Objective: The aim was to determine whether leucine, a stimulator of translation initiation and skeletal muscle protein synthesis (MPS), can protect skeletal muscle health during bed rest. Design: We used a randomized, double-blind, placebo-controlled trial to assess changes in skeletal MPS, cellular signaling, body composition, and skeletal muscle function in middle-aged adults (n = 19; age ± SEM: 52 ± 1 y) in response to leucine supplementation (LEU group: 0.06 g ∙ kg−1 ∙ meal−1) or an alanine control (CON group) during 14 d of bed rest. Results: Bed rest decreased postabsorptive MPS by 30% ± 9% (CON group) and by 10% ± 10% (LEU group) (main effect for time, P < 0.05), but no differences between groups with respect to pre-post changes (group × time interactions) were detected for MPS or cell signaling. Leucine protected knee extensor peak torque (CON compared with LEU group: −15% ± 2% and −7% ± 3%; group × time interaction, P < 0.05) and endurance (CON compared with LEU: −14% ± 3% and −2% ± 4%; group × time interaction, P < 0.05), prevented an increase in body fat percentage (group × time interaction, P < 0.05), and reduced whole-body lean mass loss after 7 d (CON compared with LEU: −1.5 ± 0.3 and −0.8 ± 0.3 kg; group × time interaction, P < 0.05) but not 14 d (CON compared with LEU: −1.5 ± 0.3 and −1.0 ± 0.3 kg) of bed rest. Leucine also maintained muscle quality (peak torque/kg leg lean mass) after 14 d of bed-rest inactivity (CON compared with LEU: −9% ± 2% and +1% ± 3%; group × time interaction, P < 0.05). Conclusions: Bed rest has a profoundly negative effect on muscle metabolism, mass, and function in middle-aged adults. Leucine supplementation may partially protect muscle health during relatively

  16. Middle segment pancreatectomy can be safely incorporated into a pancreatic surgeon's clinical practice1

    PubMed Central

    Lavu, Harish; Knuth, Jamie L.; Baker, Marshall S.; Shen, Changyu; Zyromski, Nicholas J.; Schmidt, Max; Nakeeb, Atilla

    2008-01-01

    Middle segment pancreatectomy (MSP) is a new operation where the advantages of parenchymal preservation are counterbalanced by a high postoperative complication rate and unease among surgeons with adopting a new technique. This study reviews our experience incorporating MSP into our clinical practice focusing on the initial 34 consecutive patients operated on by one surgeon at a single institution between 1998 and 2007. Patients were divided into early (initial 17 operations) and late (subsequent 17 operations) groups for analysis. Thirty-one reconstructions were by Roux-en-y pancreaticojejunostomy and three were by pancreaticogastrostomy. Using multiple linear regression and logistic regression, we found no significant differences in performance outcomes (operative time, blood loss, tumor size, margin negative resection rate, pancreatic fistula rate, hospital length of stay, postoperative complications, and hospital readmission rate) between our early and late experience even after adjusting for potential confounding variables (patient demographics, co-morbidities, neoplasm, pancreatitis). The pancreatic fistula rate in this series was 29.4% (10/34) and they were all International Study Group on Pancreatic Fistula (ISGPF) Grade A (60%) or B (40%). In summary, MSP is an operation with a flat learning curve and acceptable morbidity rate that can be safely incorporated as a parenchymal preserving option by pancreatic surgeons in their clinical practice. PMID:19088938

  17. Electron Spin Dephasing and Decoherence by Interaction with Nuclear Spins in Self-Assembled Quantum Dots

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon; vonAllmen, Paul; Oyafuso, Fabiano; Klimeck, Gerhard; Whale, K. Birgitta

    2004-01-01

    Electron spin dephasing and decoherence by its interaction with nuclear spins in self-assembled quantum dots are investigated in the framework of the empirical tight-binding model. Electron spin dephasing in an ensemble of dots is induced by the inhomogeneous precession frequencies of the electron among dots, while electron spin decoherence in a single dot arises from the inhomogeneous precession frequencies of nuclear spins in the dot. For In(x)Ga(1-x) As self-assembled dots containing 30000 nuclei, the dephasing and decoherence times are predicted to be on the order of 100 ps and 1 (micro)s.

  18. Ultrathin (<1 μm) Substrate-Free Flexible Photodetector on Quantum Dot-Nanocellulose Paper

    PubMed Central

    Wu, Jingda; Lin, Lih Y.

    2017-01-01

    Conventional approaches to flexible optoelectronic devices typically require depositing the active materials on external substrates. This is mostly due to the weak bonding between individual molecules or nanocrystals in the active materials, which prevents sustaining a freestanding thin film. Herein we demonstrate an ultrathin freestanding ZnO quantum dot (QD) active layer with nanocellulose structuring, and its corresponding device fabrication method to achieve substrate-free flexible optoelectronic devices. The ultrathin ZnO QD-nanocellulose composite is obtained by hydrogel transfer printing and solvent-exchange processes to overcome the water capillary force which is detrimental to achieving freestanding thin films. We achieved an active nanocellulose paper with ~550 nm thickness, and >91% transparency in the visible wavelength range. The film retains the photoconductive and photoluminescent properties of ZnO QDs and is applied towards substrate-free Schottky photodetector applications. The device has an overall thickness of ~670 nm, which is the thinnest freestanding optoelectronic device to date, to the best of our knowledge, and functions as a self-powered visible-blind ultraviolet photodetector. This platform can be readily applied to other nano materials as well as other optoelectronic device applications. PMID:28266651

  19. Ultrathin (<1 μm) Substrate-Free Flexible Photodetector on Quantum Dot-Nanocellulose Paper

    NASA Astrophysics Data System (ADS)

    Wu, Jingda; Lin, Lih Y.

    2017-03-01

    Conventional approaches to flexible optoelectronic devices typically require depositing the active materials on external substrates. This is mostly due to the weak bonding between individual molecules or nanocrystals in the active materials, which prevents sustaining a freestanding thin film. Herein we demonstrate an ultrathin freestanding ZnO quantum dot (QD) active layer with nanocellulose structuring, and its corresponding device fabrication method to achieve substrate-free flexible optoelectronic devices. The ultrathin ZnO QD-nanocellulose composite is obtained by hydrogel transfer printing and solvent-exchange processes to overcome the water capillary force which is detrimental to achieving freestanding thin films. We achieved an active nanocellulose paper with ~550 nm thickness, and >91% transparency in the visible wavelength range. The film retains the photoconductive and photoluminescent properties of ZnO QDs and is applied towards substrate-free Schottky photodetector applications. The device has an overall thickness of ~670 nm, which is the thinnest freestanding optoelectronic device to date, to the best of our knowledge, and functions as a self-powered visible-blind ultraviolet photodetector. This platform can be readily applied to other nano materials as well as other optoelectronic device applications.

  20. Ultrathin (<1 μm) Substrate-Free Flexible Photodetector on Quantum Dot-Nanocellulose Paper.

    PubMed

    Wu, Jingda; Lin, Lih Y

    2017-03-07

    Conventional approaches to flexible optoelectronic devices typically require depositing the active materials on external substrates. This is mostly due to the weak bonding between individual molecules or nanocrystals in the active materials, which prevents sustaining a freestanding thin film. Herein we demonstrate an ultrathin freestanding ZnO quantum dot (QD) active layer with nanocellulose structuring, and its corresponding device fabrication method to achieve substrate-free flexible optoelectronic devices. The ultrathin ZnO QD-nanocellulose composite is obtained by hydrogel transfer printing and solvent-exchange processes to overcome the water capillary force which is detrimental to achieving freestanding thin films. We achieved an active nanocellulose paper with ~550 nm thickness, and >91% transparency in the visible wavelength range. The film retains the photoconductive and photoluminescent properties of ZnO QDs and is applied towards substrate-free Schottky photodetector applications. The device has an overall thickness of ~670 nm, which is the thinnest freestanding optoelectronic device to date, to the best of our knowledge, and functions as a self-powered visible-blind ultraviolet photodetector. This platform can be readily applied to other nano materials as well as other optoelectronic device applications.

  1. 49 CFR 40.41 - Where does a urine collection for a DOT drug test take place?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 1 2011-10-01 2011-10-01 false Where does a urine collection for a DOT drug test... in DOT Urine Collections § 40.41 Where does a urine collection for a DOT drug test take place? (a) A urine collection for a DOT drug test must take place in a collection site meeting the requirements...

  2. 49 CFR 40.41 - Where does a urine collection for a DOT drug test take place?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Where does a urine collection for a DOT drug test... in DOT Urine Collections § 40.41 Where does a urine collection for a DOT drug test take place? (a) A urine collection for a DOT drug test must take place in a collection site meeting the requirements...

  3. 49 CFR 40.41 - Where does a urine collection for a DOT drug test take place?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 1 2012-10-01 2012-10-01 false Where does a urine collection for a DOT drug test... in DOT Urine Collections § 40.41 Where does a urine collection for a DOT drug test take place? (a) A urine collection for a DOT drug test must take place in a collection site meeting the requirements...

  4. 49 CFR 40.41 - Where does a urine collection for a DOT drug test take place?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 1 2014-10-01 2014-10-01 false Where does a urine collection for a DOT drug test... in DOT Urine Collections § 40.41 Where does a urine collection for a DOT drug test take place? (a) A urine collection for a DOT drug test must take place in a collection site meeting the requirements...

  5. InxGa1-xAs/AlyGa1-yAs/AlzGa1-zAs asymmetric step quantum-well middle wavelength infrared detectors

    NASA Astrophysics Data System (ADS)

    Wu, W. G.; Chang, K.; Jiang, D. S.; Li, Y. X.; Zheng, H. Z.; Liu, H. C.

    2001-10-01

    InxGa1-xAs/AlyGa1-yAs/AlzGa1-zAs asymmetric step quantum-well middle wavelength (3-5 μm) infrared detectors are fabricated. The components display photovoltaic-type photocurrent response as well as the bias-controlled modulation of the peak wavelength of the main response, which is ascribed to the Stark shifts of the intersubband transitions from the local ground states to the extended first excited states in the quantum wells, at the 3-5.3 μm infrared atmospheric transmission window. The blackbody detectivity (Dbb*) of the detectors reaches to about 1.0×1010cm Hz1/2/W at 77 K under bias of ±7 V. By expanding the electron wave function in terms of normalized plane wave basis within the framework of the effective-mass envelope-function theory, the linear Stark effects of the intersubband transitions between the ground and first excited states in the asymmetric step well are calculated. The obtained results agree well with the corresponding experimental measurements.

  6. Middle Schools.

    ERIC Educational Resources Information Center

    Educational Facility Planner, 2002

    2002-01-01

    Describes the building designs of 10 middle schools, including their educational contexts and design goals. Includes information on size, construction costs, architects, and contractors. Also includes floor plans and photographs. (EV)

  7. UV Nano-Lights: Nonlinear Quantum Dot-Plasmon Coupling

    DTIC Science & Technology

    2014-08-01

    Final 3. DATES COVERED (From - To) 11-Mar-2013 to 10-Mar-2014 4. TITLE AND SUBTITLE UV Nano-Lights: Nonlinear Quantum Dot- Plasmon ...Nonlinear Quantum Dot- Plasmon Coupling 5a. CONTRACT NUMBER FA2386-13-1-4016 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) Eric...nonlinear emission from Quantum Dots through Plasmon Coupling PERIOD OF PERFORMANCE 11 March 2013 - 11 March 2014 RECIPIENT PRINCIPAL

  8. Molecular Profiling of Prostate Cancer Specimens Using Multicolor Quantum Dots

    DTIC Science & Technology

    2009-02-01

    0117 TITLE: Molecular profiling of prostate cancer specimens using Multicolor Quantum Dots PRINCIPAL INVESTIGATOR: Xiaohu Gao...profiling of prostate cancer specimens using Multicolor Quantum Dots 5a. CONTRACT NUMBER W81XWH-07-1-0117 5b. GRANT NUMBER PC061345 5c...based on the biology of their tumors. We proposed to develop oligonucleotide tagged quantum dots and antibodies for multiplexed imaging of prostate

  9. Cell Penetrable Human scFv Specific to Middle Domain of Matrix Protein-1 Protects Mice from Lethal Influenza

    PubMed Central

    Dong-din-on, Fonthip; Songserm, Thaweesak; Pissawong, Tippawan; Srimanote, Potjanee; Thanongsaksrikul, Jeeraphong; Thueng-in, Kanyarat; Moonjit, Pattra; Lertwatcharasarakul, Preeda; Seesuay, Watee; Chaicumpa, Wanpen

    2015-01-01

    A new anti-influenza remedy that can tolerate the virus antigenic variation is needed. Influenza virus matrix protein-1 (M1) is highly conserved and pivotal for the virus replication cycle: virus uncoating, assembly and budding. An agent that blocks the M1 functions should be an effective anti-influenza agent. In this study, human scFv that bound to recombinant M1 middle domain (MD) and native M1 of A/H5N1 was produced. Phage mimotope search and computerized molecular docking revealed that the scFv bound to the MD conformational epitope formed by juxtaposed helices 7 and 9 of the M1. The scFv was linked molecularly to a cell penetrable peptide, penetratin (PEN). The PEN-scFv (transbody), when used to treat the cells pre-infected with the heterologous clade/subclade A/H5N1 reduced the viral mRNA intracellularly and in the cell culture fluids. The transbody mitigated symptom severity and lung histopathology of the H5N1 infected mice and caused reduction of virus antigen in the tissues as well as extricated the animals from the lethal challenge in a dose dependent manner. The transbody specific to the M1 MD, either alone or in combination with the cognate human scFvs specific to other influenza virus proteins, should be an effective, safe and mutation tolerable anti-influenza agent. PMID:25594836

  10. Red Light-Emitting Diode Based on Blue InGaN Chip with CdTe x S(1 - x) Quantum Dots

    NASA Astrophysics Data System (ADS)

    Wang, Rongfang; Wei, Xingming; Qin, Liqin; Luo, Zhihui; Liang, Chunjie; Tan, Guohang

    2017-01-01

    Thioglycolic acid-capped CdTe x S(1 - x) quantum dots (QDs) were synthesized through a one-step approach in an aqueous medium. The CdTe x S(1 - x) QDs played the role of a color conversion center. The structural and luminescent properties of the obtained CdTe x S(1 - x) QDs were investigated. The fabricated red light-emitting hybrid device with the CdTe x S(1 - x) QDs as the phosphor and a blue InGaN chip as the excitation source showed a good luminance. The Commission Internationale de L'Eclairage coordinates of the light-emitting diode (LED) at (0.66, 0.29) demonstrated a red LED. Results showed that CdTe x S(1 - x) QDs can be excited by blue or near-UV regions. This feature presents CdTe x S(1 - x) QDs with an advantage over wavelength converters for LEDs.

  11. Dots for Dummies

    NASA Astrophysics Data System (ADS)

    Shankar, R.

    2006-12-01

    Quantum dots pose an interesting problem in which three complications- disorder, interaction and finite size- come together. I describe progress that can be made by combining Random Matrix Theory (RMT) and the Renormalization Group (RG) to attack the problem.

  12. Optimization and Characterization of Indium Arsenide Quantum Dots for Application in III-V Material Solar Cells

    NASA Astrophysics Data System (ADS)

    Podell, Adam P.

    In this work, InAs quantum dots grown by organometallic vapor-phase epitaxy (OMVPE) are investigated for application in III - V material solar cells. The first focus is on the opti- mization of growth parameters to produce high densities of uniform defect-free quantum dots via growth on 2" vicinal GaAs substrates. Parameters studied are InAs coverage, V/III ratio and growth rate. QDs are grown by the Stranski-Krastanov (SK) growth mode on (100) GaAs substrates misoriented toward (110) or (111) planes with various degrees of misorientation from 0° to 6°. Atomic force microscopy results indicated that as misorientation angle increased toward(110),critical thickness for quantum dot formation increased with theta c =1.8ML,1.9ML and 2.0 ML corresponding to 0°, 2° and 6°, respectively. Results for quantum dots grown on (111) misoriented substrates indicated, on average, that higher densities of quantum dots were achieved, compared with similar growths on substrates misoriented toward (110). Most notably, a stable average number density of 8 x 1010cm -2 was observed over a range of growth rates of 0.1ML/s - 0.4ML/s on (111) misoriented substrates compared with a decreasing number density as low as 2.85 x 1010cm -2 corresponding to a growth rate of 0.4ML/s grown on (110) misoriented substrates. p-i-n solar cell devices with a 10-layer quantum dot super- lattice imbedded in the i-region were also grown on (100) GaAs substrates misoriented 0°, 2° and 6° toward (110) as well as a set of devices grown on substrates misoriented toward (111). Device results showed a 1.0mA/cm2 enhancement to the short-circuit current for a v 2° misoriented device with 2.2 ML InAs coverage per quantum dot layer. Spectral response measurements were performed and integrated spectral response showed sub-GaAs bandgap short-circuit contribution which increased with increasing InAs coverage in the quantum dot layers from 0.04mA/cm2/ML, 0.28mA/cm2/ ML and 0.19mA/cm2/ML corresponding to 0°, 2

  13. Clues to the mechanism of cholesterol transfer from the structure of NPC1 middle lumenal domain bound to NPC2

    PubMed Central

    Li, Xiaochun; Saha, Piyali; Li, Jian; Blobel, Günter; Pfeffer, Suzanne R.

    2016-01-01

    Export of LDL-derived cholesterol from lysosomes requires the cooperation of the integral membrane protein Niemann–Pick C1 (NPC1) and a soluble protein, Niemann–Pick C2 (NPC2). Mutations in the genes encoding these proteins lead to Niemann–Pick disease type C (NPC). NPC2 binds to NPC1’s second (middle), lumenally oriented domain (MLD) and transfers cholesterol to NPC1’s N-terminal domain (NTD). Here, we report the 2.4-Å resolution crystal structure of a complex of human NPC1–MLD and NPC2 bearing bound cholesterol-3-O-sulfate. NPC1–MLD uses two protruding loops to bind NPC2, analogous to its interaction with the primed Ebola virus glycoprotein. Docking of the NPC1–NPC2 complex onto the full-length NPC1 structure reveals a direct cholesterol transfer tunnel between NPC2 and NTD cholesterol binding pockets, supporting the “hydrophobic hand-off” cholesterol transfer model. PMID:27551080

  14. Terahertz transmission through rings of quantum dots-nanogap

    NASA Astrophysics Data System (ADS)

    Tripathi, Laxmi-Narayan; Bahk, Young-Mi; Choi, Geunchang; Han, Sanghoon; Park, Namkyoo; Kim, Dai-Sik

    2016-03-01

    We report resonant funneling of terahertz (THz) waves through (9 ± 1) nm wide quantum dots-nanogap of cadmium selenide quantum dots silver nanogap metamaterials. We observed a giant THz intensity enhancement (∼104) through the quantum dots-nanogap at the resonant frequency. We, further report the experimentally measured effective mode indices for these metamaterials. A finite difference time domain simulation of the nanogap enabled by the quantum dots supports the experimentally measured THz intensity enhancement across the nanogap. We propose that these low effective mode index terahertz resonators will be useful as bio/chemical sensors, gain-enhanced antennas, and wave guides.

  15. Photoluminescence studies on self-organized 1.55-μm InAs/InGaAsP/InP quantum dots under hydrostatic pressure

    SciTech Connect

    Zhou, P. Y.; Dou, X. M.; Wu, X. F.; Ding, K.; Jiang, D. S.; Sun, B. Q.; Luo, S.; Yang, T.; Zhu, H. J.

    2014-07-14

    We report an experimental study on the optical properties of the self-organized 1.55-μm InAs/InGaAsP/InP quantum dots (QDs) under hydrostatic pressure up to 9.5 GPa at 10 K. The obtained pressure coefficients of emissions from InGaAsP to InAs QDs are 92 meV/GPa and 76 meV/GPa, respectively. Their photoluminescence intensities are found to decrease significantly with increasing pressure due to the pressure-induced Γ-X mixing of InGaAsP at about 8.5 GPa. The lifetime of excitonic emission from QDs decreases from about 1.15 at zero pressure to about 1.05 ns at 7.41 GPa. The wavelength of QD emission was tuned from 1.55 to 0.9 μm by applying a pressure of 8 GPa, displaying the feasibility for indirectly characterizing the individual InAs/InGaAsP/InP QDs of 1.55-μm emission (at zero pressure) under high-pressure using silicon avalanche photodiode.

  16. Mosquitoes of Middle America.

    DTIC Science & Technology

    1976-09-30

    survey of mosquitoes in Costa Rica, 197 1. Walsh , Robert D., Aedes aegypti Eradication Program, Public Health Service.—Collections in St. Croix...At least a start has been made in nearly every major group of medical importance in Middle America: Aedes , Anopheles, Culex. Deinocerites, Haemago~us...fauna in the area covered by the project. At least a start has been made in nearl y every major group of medical importance in Middle America: Aedes

  17. Cd{sub 1−x}Mn{sub x}Te ultrasmall quantum dots growth in a silicate glass matrix by the fusion method

    SciTech Connect

    Dantas, Noelio Oliveira; Lima Fernandes, Guilherme de; Almeida Silva, Anielle Christine; Baffa, Oswaldo; Gómez, Jorge Antônio

    2014-09-29

    In this study, we synthesized Cd{sub 1−x}Mn{sub x}Te ultrasmall quantum dots (USQDs) in SiO{sub 2}-Na{sub 2}CO{sub 3}-Al{sub 2}O{sub 3}-B{sub 2}O{sub 3} glass system using the fusion method. Growth of these Cd{sub 1−x}Mn{sub x}Te USQDs was confirmed by optical absorption, atomic force microscopy (AFM), magnetic force microscopy (MFM), scanning transmission electron microscopy (TEM), and electron paramagnetic resonance (EPR) measurements. The blueshift of absorption transition with increasing manganese concentration gives evidence of incorporation of manganese ions (Mn{sup 2+}) in CdTe USQDs. AFM, TEM, and MFM confirmed, respectively, the formation of high quality Cd{sub 1−x}Mn{sub x}Te USQDs with uniformly distributed size and magnetic phases. Furthermore, EPR spectra showed six lines associated to the S = 5/2 spin half-filled d-state, characteristic of Mn{sup 2+}, and confirmed that Mn{sup 2+} are located in the sites core and surface of the CdTe USQD. Therefore, synthesis of high quality Cd{sub 1−x}Mn{sub x}Te USQDs may allow the control of optical and magnetic properties.

  18. BRCAA1 antibody- and Her2 antibody-conjugated amphiphilic polymer engineered CdSe/ZnS quantum dots for targeted imaging of gastric cancer

    NASA Astrophysics Data System (ADS)

    Li, Chao; Ji, Yang; Wang, Can; Liang, Shujing; Pan, Fei; Zhang, Chunlei; Chen, Feng; Fu, Hualin; Wang, Kan; Cui, Daxiang

    2014-05-01

    Successful development of safe and highly effective nanoprobes for targeted imaging of in vivo early gastric cancer is a great challenge. Herein, we choose the CdSe/ZnS (core-shell) quantum dots (QDs) as prototypical materials, synthesized one kind of a new amphiphilic polymer including dentate-like alkyl chains and multiple carboxyl groups, and then used the prepared amphiphilic polymer to modify QDs. The resultant amphiphilic polymer engineered QDs (PQDs) were conjugated with BRCAA1 and Her2 monoclonal antibody, and prepared BRCAA1 antibody- and Her2 antibody-conjugated QDs were used for in vitro MGC803 cell labeling and in vivo targeted imaging of gastric cancer cells. Results showed that the PQDs exhibited good water solubility, strong photoluminescence (PL) intensity, and good biocompatibility. BRCAA1 antibody- and Her2 antibody-conjugated QD nanoprobes successfully realized targeted imaging of in vivo gastric cancer MGC803 cells. In conclusion, BRCAA1 antibody- and Her2 antibody-conjugated PQDs have great potential in applications such as single cell labeling and in vivo tracking, and targeted imaging and therapeutic effects' evaluation of in vivo early gastric cancer cells in the near future.

  19. Stacked Cu1.8S nanoplatelets as Counter Electrode for Quantum Dot-Sensitized Solar Cell

    SciTech Connect

    Savariraj, Dennyson A.; Rajendrakumar, G.; Selvam, Samayanan; Karthick, S. N.; Balamuralitharan, B.; Kim, Hee-Je; Viswanathan, Kodakkal K.; Vijayakumar, M.; Prabakar, Kandasamy

    2015-11-09

    It is found that electrocatalytic activity of Cu2-xS thin films used in quantum dots sensitized solar cells (QDSSC) as countner electrode (CE) for the reduction of polysulfide electrolyte depends on the the surface active sulfur species and defficiency of Cu. The preferential bonding between Cu2+ and S2- leading to the selective formation of Cu1.8S stacked platelets like morphology is determined by Cetyl Trimethyl Ammonium Bromide surfactant with temperature and crab like Cu-S coordination bond formed dictates the surface area to volume ratio of the Cu1.8S thin films and the electrocatalytic activity. The Cu deficiency enhances the conductivity of the Cu1.8S thin films and exhibits near- infrared localized surface plasmon resonanc due to free carrier intraband absorption and UV-VIS absorption spectra shows excitonic effect due to quantum size effect. When these Cu1.8S thin films were employed as CE in QDSSC, robust photoconversion efficiency of 5.2 % is yielded by the film deposited at 60°C by a sinlge step chemical bath deposition method.

  20. 2H-WS2 Quantum Dots Produced by Modulating the Dimension and Phase of 1T-Nanosheets for Antibody-Free Optical Sensing of Neurotransmitters.

    PubMed

    Kim, Man-Jin; Jeon, Su-Ji; Kang, Tae Woog; Ju, Jong-Min; Yim, DaBin; Kim, Hye-In; Park, Jung Hyun; Kim, Jong-Ho

    2017-03-28

    Modulating the dimensions and phases of transition metal dichalcogenides is of great interest to enhance their intrinsic properties or to create new physicochemical properties. Herein, we report an effective approach to synthesize 2H-WS2 quantum dots (QDs) via the dimension and phase engineering of 1T-WS2 nanosheets. The solvothermal reaction of chemically exfoliated 1T-WS2 nanosheets in N-methyl-2-pyrrolidone (NMP) under an N2 atmosphere induced their chopping and phase transition at lower temperature to produce 2H-WS2 QDs with a high quantum yield (5.5 ± 0.3%). Interestingly, this chopping and phase transition process showed strong dependency on solvent; WS2 QDs were not produced in other solvents such as 1,4-dioxane and dimethyl sulfoxide. Mechanistic investigations suggested that NMP radicals played a crucial role in the effective production of 2H-WS2 QDs from 1T-WS2 nanosheets. WS2 QDs were successfully applied for the selective, sensitive, and rapid detection of dopamine in human serum (4 min, as low as 23.8 nM). The intense fluorescence of WS2 QDs was selectively quenched upon the addition of dopamine and Au(3+) ions due to fluorescence resonance energy transfer between WS2 QDs and the quickly formed Au nanoparticles. This new sensing principle enabled us to discriminate dopamine from dopamine-derivative neurotransmitters including epinephrine and norepinephrine, as well as other interference compounds.

  1. An optimized sericin-1 expression system for mass-producing recombinant proteins in the middle silk glands of transgenic silkworms.

    PubMed

    Wang, Feng; Xu, Hanfu; Yuan, Lin; Ma, Sanyuan; Wang, Yuancheng; Duan, Xiaoli; Duan, Jianping; Xiang, Zhonghuai; Xia, Qingyou

    2013-10-01

    The middle silk gland (MSG) of silkworm is thought to be a potential host for mass-producing valuable recombinant proteins. Transgenic MSG expression systems based on the usage of promoter of sericin1 gene (sericin-1 expression system) have been established to produce various recombinant proteins in MSG. However, further modifying the activity of the sericin-1 expression system to yield higher amounts of recombinant proteins is still necessary. In this study, we provide an alternative modification strategy to construct an efficient sericin-1 expression system by using the hr3 enhancer (hr3 CQ) from a Chongqing strain of the Bombyx mori nuclear polyhedrosis virus (BmNPV) and the 3'UTRs of the fibroin heavy chain (Fib-HPA), the fibroin light chain (Fib-LPA), and Sericin1 (Ser1PA) genes. We first analyzed the effects of these DNA elements on expression of luciferase, and found that the combination of hr3 CQ and Ser1PA was most effective to increase the activity of luciferase. Then, hr3 CQ and Ser1PA were used to modify the sericin1 expression system. Transgenic silkworms bearing these modified sericin1 expression vectors were generated by a piggyBac transposon mediated genetic transformation method. Our results showed that mRNA level of DsRed reporter gene in transgenic silkworms containing hr3 CQ and Ser1PA significantly increased by 9 fold to approximately 83 % of that of endogenous sericin1. As the results of that, the production of recombinant RFP increased by 16 fold to 9.5 % (w/w) of cocoon shell weight. We conclude that this modified sericin-1 expression system is efficient and will contribute to the MSG as host to mass produce valuable recombinant proteins.

  2. Middle Schools. ACSA School Management Digest, Series 1, Number 4. ERIC/CEM Research Analysis Series, Number 31.

    ERIC Educational Resources Information Center

    Coppock, Nan; Hale, Norman

    Inherent in the middle school philosophy is the recognition that students vary widely in their stages of physical, cognitive, and affective development. A special school is needed to meet the unique requirements of these transitional youth. The history and present trends of the middle school reflect dissatisfaction with the junior high school. A…

  3. Experiences of Adolescents with Type 1 Diabetes as They Transition from Middle School to High School

    ERIC Educational Resources Information Center

    Fleischman, Katie; Smothers, Melissa K.; Christianson, Heidi F.; Carter, Laura; Hains, Anthony A.; Davies, W. Hobart

    2011-01-01

    The purpose of this study was to explore the experiences of adolescents with Type 1 Diabetes Mellitus (T1DM) as they transitioned into high school in order to understand the contextual factors that impact diabetic health-related behaviors and self-identity. A qualitative interviewing methodology called consensual qualitative research (CQR) was…

  4. Electronic band structure and optical gain of GaNxBiyAs1-x-y/GaAs pyramidal quantum dots

    NASA Astrophysics Data System (ADS)

    Song, Zhi-Gang; Bose, Sumanta; Fan, Wei-Jun; Li, Shu-Shen

    2016-04-01

    The electronic band structure and optical gain of GaNxBiyAs1-x-y/GaAs pyramidal quantum dots (QDs) are investigated using the 16-band k ṡ p model with constant strain. The optical gain is calculated taking both homogeneous and inhomogeneous broadenings into consideration. The effective band gap falls as we increase the composition of nitrogen (N) and bismuth (Bi) and with an appropriate choice of composition we can tune the emission wavelength to span within 1.3 μm-1.55 μm, for device application in fiber technology. The extent of this red shift is more profound in QDs compared with bulk material due to quantum confinement. Other factors affecting the emission characteristics include virtual crystal, strain profile, band anticrossing (BAC), and valence band anticrossing (VBAC). The strain profile has a profound impact on the electronic structure, specially the valence band of QDs, which can be determined using the composition distribution of wave functions. All these factors eventually affect the optical gain spectrum. With an increase in QD size, we observe a red shift in the emission energy and emergence of secondary peaks owing to transitions or greater energy compared with the fundamental transition.

  5. MOCVD growth and characterization of multi-stacked InAs/GaAs quantum dots on misoriented Si(100) emitting near 1.3 μm

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Wang, Qi; Chen, Jia; Liu, Kai; Ren, Xiaomin

    2016-12-01

    We report near 1.3 μm strong photoluminescence (PL) emission from 5-stacked InAs/GaAs quantum dots (QDs) monolithically grown on Si (1 0 0) substrates with 4° miscut towards [110] direction by metal organic chemical vapor deposition (MOCVD). The metamorphic QD samples on Si were grown by three-step method, in which bottom Al0.8Ga0.2As cladding and GaAs waveguide layers were simultaneously incorporated in order to fabricate Si-based QD light emitting devices later. In particular, the GaAs waveguide layer grown with low and high temperature alternated significantly suppresses the upwards propagating of threading dislocations (TDs) into QD region and flattens the surface for latter adjacent nucleation of QDs. As a result, room-temperature photoluminescence intensity of as-grown Si-based InAs/GaAs QD sample attains 87% of that on GaAs and its PL peak as long as 1280 nm with the full width at half maximum value up to 78 nm (i.e., 60 meV). Our study shows the great opportunity of using MOCVD grown Si-based metamorphic QDs for 1.3 μm band light emitting devices.

  6. Quantum Dots-Based Immunofluorescent Imaging of Stromal Fibroblasts Caveolin-1 and Light Chain 3B Expression and Identification of Their Clinical Significance in Human Gastric Cancer

    PubMed Central

    He, Yuyu; Zhao, Xianda; Gao, Jun; Fan, Lifang; Yang, Guifang; Cho, William Chi-shing; Chen, Honglei

    2012-01-01

    Caveolin-1 (Cav-1) expression deficiency and autophagy in tumor stromal fibroblasts (hereafter fibroblasts) are involved in tumor proliferation and progression, particularly in breast and prostate cancer. The aim of this study was to detect the expression of fibroblastic Cav-1 and LC3B, markers of autophagy, in gastric cancer (GC) and to analyze their clinical significances. Furthermore, because Epstein-Barr virus (EBV)-associated GC (EBVaGC) is a unique subtype of GC; we compared the differential expression of fibroblastic Cav-1 and LC3B in EBVaGC and non-EBVaGC. Quantum dots (QDs)-based immunofluorescence histochemistry was used to examine the expression of fibroblastic Cav-1 and LC3B in 118 cases of GC with adequate stroma. QDs-based double immunofluorescence labeling was performed to detect the coexpression of Cav-1 and LC3B proteins. EBV-encoded small RNA was detected by QDs-based fluorescence in situ hybridization to identify EBVaGC. Multivariate analysis indicated that low fibroblastic Cav-1 level was an independent prognosticator (p = 0.029) that predicted poorer survival of GC patients. Positive fibroblastic LC3B was correlated with lower invasion (p = 0.032) and was positively associated with Cav-1 expression (r = 0.432, p < 0.001). EBV infection did not affect fibroblastic Cav-1 and LC3B expression. In conclusion, positive fibroblastic LC3B correlates with lower invasion, and low expression of fibroblastic Cav-1 is a novel predictor of poor GC prognosis. PMID:23203033

  7. Synthesis of CdSe quantum dots for quantum dot sensitized solar cell

    SciTech Connect

    Singh, Neetu Kapoor, Avinashi; Kumar, Vinod; Mehra, R. M.

    2014-04-24

    CdSe Quantum Dots (QDs) of size 0.85 nm were synthesized using chemical route. ZnO based Quantum Dot Sensitized Solar Cell (QDSSC) was fabricated using CdSe QDs as sensitizer. The Pre-synthesized QDs were found to be successfully adsorbed on front ZnO electrode and had potential to replace organic dyes in Dye Sensitized Solar Cells (DSSCs). The efficiency of QDSSC was obtained to be 2.06 % at AM 1.5.

  8. Intercalation of aflatoxin B sub 1 in two oligodeoxynucleotide adducts: Comparative sup 1 H NMR analysis of d(ATC sup AFB GAT)ter dot d(ATCGAT) and d(AT sup ATB GCAT) sub 2

    SciTech Connect

    Gopalakrishnan, S.; Harris, T.M.; Stone, M.P. )

    1990-11-01

    8,9-Dihydro-8-(N7-guanyl-(d(ATCGAT)))-9-hydroxyaflatoxin B{sub 1}{center dot}d(ATCGAT) and 8,9-dihydro-8-(N7-guanyl-(d(ATGCAT)))-9-hydroxyafltoxin B{sub 1}{center dot}8,9-dihydro-8-(N7-guanyl-(d(ATGCAT)))-9-hydroxyaflatoxin B{sub 1} were prepared by direct addition of aflatoxin B{sub 1} 8,9-expoxide to d(ATCGAT){sub 2} and d(ATGCAT){sub 2}, respectively. {sup 1}H NOE experiments, nonselective {sup 1}H T{sub 1} relaxation measurements, and {sup 1}H chemical shift perturbations demonstrate that in both modified oligodeoxynucleotides the aflatoxin moiety is intercalated above the 5{prime}-face of the modified guanine. The oligodeoxynucleotides remain right-handed, and perturbation of the B-DNA structure is localized adjacent to the adducted guanine. Aflatoxin-oligodeoxynucleotide {sup 1}H NOEs are observed between aflatoxin and the 5{prime}-neighbor base pair and include both the major groove and the minor groove. The protons at C8 and C9 of the aflatoxin terminal furan ring exhibit slower spin-lattice relaxation as compared to other oligodeoxynucleotide protons, which supports the conclusion that they face into the major groove. Increased shielding is observed for aflatoxin protons. The difference in reaction stoichiometry is consistent with an intercalated transition-state complex between aflatoxin B{sub 1} 8,9-epoxide and B-DNA. Intercalation provides excellent positioning for nucleophilic attack by guanine N7 on aflatoxin B{sub 1} 8,9-epoxide, which probably accounts for the observed efficiency of adduct formation despite the relatively low DNA binding affinity observed for aflatoxin B{sub 1}.

  9. Depicting Binding-Mediated Translocation of HIV-1 Tat Peptides in Living Cells with Nanoscale Pens of Tat-Conjugated Quantum Dots

    PubMed Central

    Lin, Chien Y.; Huang, Jung Y.; Lo, Leu-Wei

    2017-01-01

    Cell-penetrating peptides (CPPs) can translocate across cell membranes, and thus have great potential for the cellular delivery of macromolecular cargoes. However, the mechanism of this cellular uptake process is not yet fully understood. In this study, a time-lapse single-particle light-sheet microscopy technique was implemented to obtain a parallel visualization of the translocating process of individual human immunodeficiency virus 1 (HIV-1) transactivator of transcription (Tat) peptide conjugated quantum dots (TatP-QDs) in complex cellular terrains. Here, TatP-QDs served as nanoscale dynamic pens, which depict remarkable trajectory aggregates of TatP-QDs on the cell surface. Spectral-embedding analysis of the trajectory aggregates revealed a manifold formed by isotropic diffusion and a fraction of directed movement, possibly caused by interaction between the Tat peptides and heparan sulfate groups on the plasma membrane. Further analysis indicated that the membrane deformation induced by Tat-peptide attachment increased with the disruption of the actin framework in cytochalasin D (cyto D)-treated cells, yielding higher interactions on the TatP-QDs. In native cells, the Tat peptides can remodel the actin framework to reduce their interaction with the local membrane environment. Characteristic hot spots for interaction were detected on the membrane, suggesting that a funnel passage may have formed for the Tat-coated particles. This finding offers valuable insight into the cellular delivery of nanoscale cargo, suggesting an avenue for direct therapeutic delivery. PMID:28208588

  10. Ground state lasing at 1.30 microm from InAs/GaAs quantum dot lasers grown by metal-organic chemical vapor deposition.

    PubMed

    Guimard, Denis; Ishida, Mitsuru; Bordel, Damien; Li, Lin; Nishioka, Masao; Tanaka, Yu; Ekawa, Mitsuru; Sudo, Hisao; Yamamoto, Tsuyoshi; Kondo, Hayato; Sugawara, Mitsuru; Arakawa, Yasuhiko

    2010-03-12

    We investigated the effects of post-growth annealing on the photoluminescence (PL) characteristics of InAs/GaAs quantum dots (QDs) grown by metal-organic chemical vapor deposition (MOCVD). The onset temperature at which both the peak linewidth and the PL intensity degraded and the blueshift of the ground state emission wavelength occurred was found to depend on both the QD density and the In composition of the capping layer. This behavior is particularly important in view of QD integration in photonic devices. From the knowledge of the dependences of the PL characteristics after annealing on the QD and capping growth conditions, ground state lasing at 1.30 microm could be demonstrated from InAs/GaAs QDs grown by MOCVD. Finally, we compared the laser characteristics of InAs/GaAs QDs with those of InAs/Sb:GaAs QDs, grown according to the antimony-mediated growth technique, and showed that InAs/Sb:GaAs QDs are more appropriate for laser fabrication at 1.3 microm by MOCVD.

  11. The Comparative Structural Study of Vitreous Matrices P{sub 2}O{sub 5}centre dotMeO [MeO ident to Li{sub 2}O (M{sub 1}) or CaO (M{sub 2})] Systems and {sub x}Fe{sub 2}O{sub 3}(100-x)[P{sub 2}O{sub 5}centre dotMeO] Glasses by Raman Spectroscopy

    SciTech Connect

    Andronache, C.

    2010-01-21

    For getting information about the way in which the structural units presented in glass matrices P{sub 2}O{sub 5}centre dotLi{sub 2}O (M{sub 1}) and P{sub 2}O{sub 5}centre dotCaO (M{sub 2}) are modifying with the substitutions Li{sub 2}O with CaO, these glasses where investigated by Raman spectroscopies. The absorption bands obtained and their assignments for each those two matrices are summarized. The influence of Fe{sub 2}O{sub 3} content on the structure of M1 and M2 matrices was followed.

  12. High peak-power picosecond pulse generation at 1.26 µm using a quantum-dot-based external-cavity mode-locked laser and tapered optical amplifier.

    PubMed

    Ding, Y; Aviles-Espinosa, R; Cataluna, M A; Nikitichev, D; Ruiz, M; Tran, M; Robert, Y; Kapsalis, A; Simos, H; Mesaritakis, C; Xu, T; Bardella, P; Rossetti, M; Krestnikov, I; Livshits, D; Montrosset, Ivo; Syvridis, D; Krakowski, M; Loza-Alvarez, P; Rafailov, E

    2012-06-18

    In this paper, we present the generation of high peak-power picosecond optical pulses in the 1.26 μm spectral band from a repetition-rate-tunable quantum-dot external-cavity passively mode-locked laser (QD-ECMLL), amplified by a tapered quantum-dot semiconductor optical amplifier (QD-SOA). The laser emission wavelength was controlled through a chirped volume Bragg grating which was used as an external cavity output coupler. An average power of 208.2 mW, pulse energy of 321 pJ, and peak power of 30.3 W were achieved. Preliminary nonlinear imaging investigations indicate that this system is promising as a high peak-power pulsed light source for nonlinear bio-imaging applications across the 1.0 μm - 1.3 μm spectral range.

  13. Newsletter for Asian and Middle Eastern Languages on Computer, Volume 1, Numbers 3 & 4.

    ERIC Educational Resources Information Center

    Meadow, Anthony, Ed.

    1986-01-01

    Volume 1, numbers 3 and 4, of the newsletter on the use of non-Western languages with computers contains the following articles: "Reversing the Screen under MS/PC-DOS" (Dan Brink); "Comments on Diacritics Using Wordstar, etc. and CP/M Software for Non-Western Languages" (Michael Broschat); "Carving Tibetan in Silicon: A…

  14. Let's Resolve Conflicts Together: Middle School Classroom Activities. Conflict Management Week, May 1-7, 2000.

    ERIC Educational Resources Information Center

    Ohio Commission on Dispute Resolution and Conflict Management, Columbus.

    Conflict is a natural and inevitable part of living, but managing conflict is difficult for many people because they have not been taught how to resolve differences in cooperative, nonviolent ways. Communication problems can lead to misunderstanding and make conflicts more difficult to resolve. The Governor of Ohio has designated May 1-7, 2000 as…

  15. 49 CFR 40.211 - Who conducts DOT alcohol tests?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 1 2012-10-01 2012-10-01 false Who conducts DOT alcohol tests? 40.211 Section 40... DRUG AND ALCOHOL TESTING PROGRAMS Alcohol Testing Personnel § 40.211 Who conducts DOT alcohol tests? (a) Screening test technicians (STTs) and breath alcohol technicians (BATs) meeting their...

  16. 49 CFR 40.211 - Who conducts DOT alcohol tests?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Who conducts DOT alcohol tests? 40.211 Section 40... DRUG AND ALCOHOL TESTING PROGRAMS Alcohol Testing Personnel § 40.211 Who conducts DOT alcohol tests? (a) Screening test technicians (STTs) and breath alcohol technicians (BATs) meeting their...

  17. 49 CFR 40.211 - Who conducts DOT alcohol tests?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 1 2013-10-01 2013-10-01 false Who conducts DOT alcohol tests? 40.211 Section 40... DRUG AND ALCOHOL TESTING PROGRAMS Alcohol Testing Personnel § 40.211 Who conducts DOT alcohol tests? (a) Screening test technicians (STTs) and breath alcohol technicians (BATs) meeting their...

  18. 49 CFR 40.211 - Who conducts DOT alcohol tests?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 1 2011-10-01 2011-10-01 false Who conducts DOT alcohol tests? 40.211 Section 40... DRUG AND ALCOHOL TESTING PROGRAMS Alcohol Testing Personnel § 40.211 Who conducts DOT alcohol tests? (a) Screening test technicians (STTs) and breath alcohol technicians (BATs) meeting their...

  19. 49 CFR 40.211 - Who conducts DOT alcohol tests?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 1 2014-10-01 2014-10-01 false Who conducts DOT alcohol tests? 40.211 Section 40... DRUG AND ALCOHOL TESTING PROGRAMS Alcohol Testing Personnel § 40.211 Who conducts DOT alcohol tests? (a) Screening test technicians (STTs) and breath alcohol technicians (BATs) meeting their...

  20. Fluorescence energy transfer in quantum dot/azo dye complexes in polymer track membranes

    NASA Astrophysics Data System (ADS)

    Gromova, Yulia A.; Orlova, Anna O.; Maslov, Vladimir G.; Fedorov, Anatoly V.; Baranov, Alexander V.

    2013-10-01

    Fluorescence resonance energy transfer in complexes of semiconductor CdSe/ZnS quantum dots with molecules of heterocyclic azo dyes, 1-(2-pyridylazo)-2-naphthol and 4-(2-pyridylazo) resorcinol, formed at high quantum dot concentration in the polymer pore track membranes were studied by steady-state and transient PL spectroscopy. The effect of interaction between the complexes and free quantum dots on the efficiency of the fluorescence energy transfer and quantum dot luminescence quenching was found and discussed.

  1. Fluorescence energy transfer in quantum dot/azo dye complexes in polymer track membranes.

    PubMed

    Gromova, Yulia A; Orlova, Anna O; Maslov, Vladimir G; Fedorov, Anatoly V; Baranov, Alexander V

    2013-10-31

    Fluorescence resonance energy transfer in complexes of semiconductor CdSe/ZnS quantum dots with molecules of heterocyclic azo dyes, 1-(2-pyridylazo)-2-naphthol and 4-(2-pyridylazo) resorcinol, formed at high quantum dot concentration in the polymer pore track membranes were studied by steady-state and transient PL spectroscopy. The effect of interaction between the complexes and free quantum dots on the efficiency of the fluorescence energy transfer and quantum dot luminescence quenching was found and discussed.

  2. Correlation of Acute M1 Middle Cerebral Artery Thrombus Location with Endovascular Treatment Success and Clinical Outcome

    PubMed Central

    Pavabvash, Seyedmehdi; Taleb, Shayandokht; Majidi, Shahram; Qureshi, Adnan I.

    2017-01-01

    Purpose The location of the arterial occlusion can help with prognostication and treatment triage of acute stroke patients. We aimed to determine the effects of M1 distance-to-thrombus on angiographic recanalization success rate and clinical outcome following endovascular treatment of acute M1 occlusion. Methods All acute ischemic stroke patients with M1 segment middle cerebral artery (MCA) occlusion on admission CT angiography (CTA) who underwent endovascular treatment were analyzed. The distance between thrombus origin and internal carotid artery (ICA) bifurcation was measured on admission CTA. The modified thrombolysis in cerebral infarction (mTICI) grades 2b (>50% of distal branch filling) and 3 (complete) were considered as successful recanalization. Favorable outcome was defined by 3-month follow-up modified Rankin scale (mRs) score ≤2. Results Successful recanalization was achieved in 24 (71%) of 34 consecutive patients included in this study. The M1 distance-to-thrombus was shorter among patients with successful recanalization (5.4 ± 5.4 mm) versus those without (11.3 ± 7.6 mm, p = 0.015). The successful recanalization rate was higher among patients with M1 distance-to-thrombus ≤6 mm (odds ratio: 8, 95% confidence interval: 1.37–46.81, p = 0.023) compared with those with distance-to-thrombus >6 mm. There was no significant correlation between M1 distance-to-thrombus and 3-month mRs (rho: 0.131, p = 0.461); however, the distance-to-thrombus negatively correlated with admission National Institutes of Health Stroke Scale (NIHSS) scores (rho: −0.350, p=0.043). On the other hand, successful recanalization and admission NIHSS score were the only independent predictors of favorable outcome. Conclusion Shorter distance of M1 thrombus from ICA bifurcation is associated with higher rate of successful recanalization following endovascular treatment. PMID:28243346

  3. The 12.1 ka Middle Toluca Pumice: A dacitic Plinian subplinian eruption of Nevado de Toluca in Central Mexico

    NASA Astrophysics Data System (ADS)

    Arce, J. L.; Cervantes, K. E.; Macías, J. L.; Mora, J. C.

    2005-10-01

    The Nevado de Toluca volcano erupted explosively approximately 12.1 ka ago, producing a Plinian-subplinian eruption that deposited the Middle Toluca Pumice (MTP). The MTP consists of white and gray juvenile pumice, gray dense juvenile lapilli, and red altered lithic lapilli. The pumice is dacitic (63.54-65.06 wt.% SiO 2) with phenocrysts of plagioclase > orthopyroxene > hornblende ± ilmenite and titanomagnetite, and biotite xenocrysts set in a groundmass of rhyolitic glass (70-71 wt.% SiO 2). The MTP has a dispersal axis to the ESE covering an area of 92 km 2, with a minimum volume of 1.8 km 3 (DRE). Stratigraphic relations, grain size, componentry, and vesicularity analyses suggest that the eruption occurred in five major phases: (1) an opening magmatic phase that generated a 20-km-high Plinian column dispersed to the SE; (2) a hydromagmatic explosion followed with the establishment of a subplinian eruptive column (18-19 km high) dispersed tephra to the SE and gradually waned; (3) hydromagmatic explosions emplaced dilute pyroclastic density currents followed by the formation of an eruptive column of unknown height; (4) immediately after, a new magmatic explosion established another eruptive column; and (5) the collapse of the latter column generated two pumiceous pyroclastic density currents that were fully dilute proximally, but transformed into two granular-fluid pyroclastic currents that traveled 19 km from the source.

  4. Manifested luminescence and magnetic responses of stoichiometry dependent Cd{sub 1− x}Mn{sub x}Se quantum dots

    SciTech Connect

    Sarma, Runjun; Deka, Geetamoni; Mohanta, Dambarudhar

    2015-02-15

    Highlights: • Thio-glycolic acid (TGA) coated Cd{sub 1−x}Mn{sub x}Se quantum dots have been prepared with varying x • Formation of QD heterostructure can be expected at a nonzero, but higher value of x. • The deep defect related emission can be attributed to V{sub Cd}–V{sub Se} di-vacancies, which is dominant for smaller values of x. • An appreciable charge transfer between Mn{sup 2+} ions and capping agent TGA is anticipated. - Abstract: We report on stoichiometry dependent manifested physical properties of thioglycolic acid (TGA) coated Cd{sub 1− x}Mn{sub x}Se QDs. While possessing a wurtzite phase, with increasing x, the QDs exhibited a notable blue-shifting of the onset of absorption. Attributed to V{sub Cd}–V{sub Se} di-vacancies, the QDs describe an intense deep-defect related emission response at smaller values of x (=0 to 0.3). Due to the facilitation of magnetic Mn{sup 2+} ion migration from the core to the QD surfaces, {sup 4}T{sub 1}–{sup 6}A{sub 1} transition based Mn{sup 2+} orange emission get suppressed at a higher x (=0.6 to 1). While the FT-IR spectra of the alloyed QDs display characteristic Mn–OH stretching mode at ∼644 cm{sup −1}, the peak located at ∼703 cm{sup −1} is assigned to Cd-Se bending. Furthermore, the QDs with a low x (=0.3), exhibit paramagnetic characteristics owing to the presence of uncorrelated, isolated Mn{sup 2+} spins. The collective luminescence and magnetic features would find immense scope in bio-labeling and imaging applications, apart from solid state luminescent components.

  5. The middle region of an HP1-binding protein, HP1-BP74, associates with linker DNA at the entry/exit site of nucleosomal DNA.

    PubMed

    Hayashihara, Kayoko; Uchiyama, Susumu; Shimamoto, Shigeru; Kobayashi, Shouhei; Tomschik, Miroslav; Wakamatsu, Hidekazu; No, Daisuke; Sugahara, Hiroki; Hori, Naoto; Noda, Masanori; Ohkubo, Tadayasu; Zlatanova, Jordanka; Matsunaga, Sachihiro; Fukui, Kiichi

    2010-02-26

    In higher eukaryotic cells, DNA molecules are present as chromatin fibers, complexes of DNA with various types of proteins; chromatin fibers are highly condensed in metaphase chromosomes during mitosis. Although the formation of the metaphase chromosome structure is essential for the equal segregation of replicated chromosomal DNA into the daughter cells, the mechanism involved in the organization of metaphase chromosomes is poorly understood. To identify proteins involved in the formation and/or maintenance of metaphase chromosomes, we examined proteins that dissociated from isolated human metaphase chromosomes by 0.4 m NaCl treatment; this treatment led to significant chromosome decondensation, but the structure retained the core histones. One of the proteins identified, HP1-BP74 (heterochromatin protein 1-binding protein 74), composed of 553 amino acid residues, was further characterized. HP1-BP74 middle region (BP74Md), composed of 178 amino acid residues (Lys(97)-Lys(274)), formed a chromatosome-like structure with reconstituted mononucleosomes and protected the linker DNA from micrococcal nuclease digestion by approximately 25 bp. The solution structure determined by NMR revealed that the globular domain (Met(153)-Thr(237)) located within BP74Md possesses a structure similar to that of the globular domain of linker histones, which underlies its nucleosome binding properties. Moreover, we confirmed that BP74Md and full-length HP1-BP74 directly binds to HP1 (heterochromatin protein 1) and identified the exact sites responsible for this interaction. Thus, we discovered that HP1-BP74 directly binds to HP1, and its middle region associates with linker DNA at the entry/exit site of nucleosomal DNA in vitro.

  6. 49 CFR 41.115 - New buildings to be leased for DOT occupancy.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false New buildings to be leased for DOT occupancy. 41.115 Section 41.115 Transportation Office of the Secretary of Transportation SEISMIC SAFETY § 41.115 New buildings to be leased for DOT occupancy. (a) DOT Operating Administrations responsible for the design and construction of new buildings to...

  7. Electroluminescence Studies on Longwavelength Indium Arsenide Quantum Dot Microcavities Grown on Gallium Arsenide

    DTIC Science & Technology

    2011-12-01

    ELECTROLUMINESCENCE STUDIES ON LONG WAVELENGTH INDIUM ARSENIDE QUANTUM DOT MICROCAVITIES GROWN ON GALLIUM ARSENIDE THESIS John C...11-46 ELECTROLUMINESCENCE STUDIES ON LONGWAVELENGTH INDIUM ARSENIDE QUANTUM DOT MICROCAVITIES GROWN ON GALLIUM ARSENIDE THESIS...58 1 ELECTROLUMINESCENCE STUDIES ON LONGWAVELENGTH INDIUM ARSENIDE QUANTUM DOT MICROCAVITIES GROWN ON GALLIUM ARSENIDE I

  8. 49 CFR 40.45 - What form is used to document a DOT urine collection?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 1 2012-10-01 2012-10-01 false What form is used to document a DOT urine... in DOT Urine Collections § 40.45 What form is used to document a DOT urine collection? (a) The Federal Drug Testing Custody and Control Form (CCF) must be used to document every urine...

  9. 49 CFR 40.45 - What form is used to document a DOT urine collection?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 1 2014-10-01 2014-10-01 false What form is used to document a DOT urine... in DOT Urine Collections § 40.45 What form is used to document a DOT urine collection? (a) The Federal Drug Testing Custody and Control Form (CCF) must be used to document every urine...

  10. Middle Palaeolithic human occupation of the high altitude region of Hovk-1, Armenia

    NASA Astrophysics Data System (ADS)

    Pinhasi, R.; Gasparian, B.; Nahapetyan, S.; Bar-Oz, G.; Weissbrod, L.; Bruch, A. A.; Hovsepyan, R.; Wilkinson, K.

    2011-12-01

    Charting the timing of human occupation in the mountainous regions of the Caucasus during the Last Interglacial/Glacial periods is of particular interest to the understanding of past human adaptive and behavioural plasticity and capacity. In this paper we analyse palaeoenvironmental, faunal, and archaeological data gathered during 2006-2009 excavations of the Palaeolithic cave site of Hovk-1, Armenia, in order to address whether human presence in this cave correlates with episodes of mild climate and certain environmental and ecological conditions that were favourable to huminin occupation in such a region. In the second part of the paper we evaluate the implications of our results in understanding the nature of human presence in other mountainous regions such as the Alps and its potential implications for Palaeolithic research. Our analysis demonstrates that hominins occupied Hovk-1 Cave during milder climatic phases of the Last Interglacial sensu lato (MIS 5d-c) and Last Glacial (late MIS 4/early MIS 3) periods when the area surrounding the cave was an open meadow environment. The stratigraphic Units with noticeable traces of hominin occupation (Units 4, 5 & 8) contrast with others in the lack of cave bear fauna and suggest an inverse correlation between human and cave bear occupational phases in Hovk-1. We speculate that human groups visited this region to hunt specific prey species that prevailed in this habitat (such as the bezoar goat). However, the assemblages of large mammals from Hovk-1 do not provide any clear anthropogenic signal and therefore highlight the difficulty of teasing apart natural and cultural formation processes.

  11. 49 CFR Appendix C to Part 40 - DOT Drug Testing Semi-Annual Laboratory Report to DOT

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) Uncorrected Flaw (number) 4. Positive Results Reported (total number) By Drug (a) Marijuana Metabolite (number... 49 Transportation 1 2011-10-01 2011-10-01 false DOT Drug Testing Semi-Annual Laboratory Report to... TRANSPORTATION WORKPLACE DRUG AND ALCOHOL TESTING PROGRAMS Pt. 40, App. C Appendix C to Part 40—DOT Drug...

  12. The Ysterfontein 1 Middle Stone Age site, South Africa, and early human exploitation of coastal resources

    PubMed Central

    Klein, Richard G.; Avery, Graham; Cruz-Uribe, Kathryn; Halkett, David; Parkington, John E.; Steele, Teresa; Volman, Thomas P.; Yates, Royden

    2004-01-01

    Human fossils and the genetics of extant human populations indicate that living people derive primarily from an African population that lived within the last 200,000 years. Yet it was only ≈50,000 years ago that the descendants of this population spread to Eurasia, where they swamped or replaced the Neanderthals and other nonmodern Eurasians. Based on archaeological observations, the most plausible hypothesis for the delay is that Africans and Eurasians were behaviorally similar until 50,000 years ago, and it was only at this time that Africans developed a behavioral advantage. The archaeological findings come primarily from South Africa, where they suggest that the advantage involved much more effective use of coastal resources. Until now, the evidence has come mostly from deeply stratified caves on the south (Indian Ocean) coast. Here, we summarize results from recent excavations at Ysterfontein 1, a deeply stratified shelter in a contrasting environment on the west (Atlantic) coast. The Ysterfontein 1 samples of human food debris must be enlarged for a full comparison to samples from other relevant sites, but they already corroborate two inferences drawn from south coast sites: (i) coastal foragers before 50,000 years ago did not fish routinely, probably for lack of appropriate technology, and (ii) they collected tortoises and shellfish less intensively than later people, probably because their populations were smaller. PMID:15007171

  13. Characterizing mineral dusts and other aerosols from the Middle East--Part 1: ambient sampling.

    PubMed

    Engelbrecht, Johann P; McDonald, Eric V; Gillies, John A; Jayanty, R K M; Casuccio, Gary; Gertler, Alan W

    2009-02-01

    The purpose of the Enhanced Particulate Matter Surveillance Program was to provide scientifically founded information on the chemical and physical properties of dust collected over a period of approximately 1 year in Djibouti, Afghanistan (Bagram, Khowst), Qatar, United Arab Emirates, Iraq (Balad, Baghdad, Tallil, Tikrit, Taji, Al Asad), and Kuwait (northern, central, coastal, and southern regions). Three collocated low-volume particulate samplers, one each for the total suspended particulate matter, < 10 micro m in aerodynamic diameter (PM(10)) particulate matter, and < 2.5 micro m in aerodynamic diameter (PM(2.5)) particulate matter, were deployed at each of the 15 sites, operating on a '1 in 6' day sampling schedule. Trace-element analysis was performed to measure levels of potentially harmful metals, while major-element and ion-chemistry analyses provided an estimate of mineral components. Scanning electron microscopy with energy dispersive spectroscopy was used to analyze the chemical composition of small individual particles. Secondary electron images provided information on particle size and shape. This study shows the three main air pollutant types to be geological dust, smoke from burn pits, and heavy metal condensates (possibly from metals smelting and battery manufacturing facilities). Non-dust storm events resulted in elevated trace metal concentrations in Baghdad, Balad, and Taji in Iraq. Scanning-electron-microscopy secondary electron images of individual particles revealed no evidence of freshly fractured quartz grains. In all instances, quartz grains had rounded edges and mineral grains were generally coated by clay minerals and iron oxides.

  14. Dot junction solar cells

    NASA Technical Reports Server (NTRS)

    Daud, T.; Crotty, G. T.

    1986-01-01

    A design of solar cells with reduced junction area on the cell surface is investigated for reduction of saturation current and increase in open-circuit voltage. Equidiameter dot junctions distributed across the surface of the cell offer an efficient alternative, with variations in dot diameter and in the spacing between dots giving the required variations in the ratio of junction area to total surface area. A simplified analysis for short-circuit current and other cell parameters, which enables cell design optimization, is presented. Experimental solar-cell performance results, as functions of different area ratios, are presented and compared with the model. It is shown that saturation current reduction is possible for achieving efficiencies as high as 18 percent in flat-plate terrestrial applications.

  15. Size-dependent activation energy and carrier dynamics in Cd(x)Zn(1-x)Te/ZnTe quantum dots on Si substrates.

    PubMed

    Lee, Hong Seok

    2014-11-01

    We investigate the size-dependent activation energy and carrier dynamics in Cd(x)Zn(1-x)Te/ZnTe quantum dots (QDs) grown on Si substrates. The excitonic peak corresponding to transitions from the ground electronic subband to the ground heavy-hole band in Cd0.6Zn0.4Te/ZnTe QDs shifts to a lower energy with increasing Cd0.6Zn0.4Te thickness owing to an increase in the size of the QDs. The activation energy of the electrons confined in the Cd0.6Zn0.4Te/ZnTe QDs, as obtained from the temperature-dependent photoluminescence (PL) spectra, increases with increasing Cd0.6Zn0.4Te thickness owing to an enhancement of the quantum confinement effect resulting from an increase in the energy difference between the electronic state and the conduction band edge. The carrier dynamics of Cd0.6Zn0.4Te/ZnTe QDs is studied using time-resolved PL measurements, which shows a longer exciton lifetime for Cd0.6Zn0.4Te/ZnTe QDs with increasing Cd0.6Zn0.4Te thickness. This behavior is attributed to the reduction of the exciton oscillator strength resulting from a strong built-in electric field in the larger QDs.

  16. In(1-x)Ga(x)N@ZnO: a rationally designed and quantum dot integrated material for water splitting and solar harvesting applications.

    PubMed

    Rajaambal, Sivaraman; Mapa, Maitri; Gopinath, Chinnakonda S

    2014-09-07

    The highly desirable combination of the visible light absorption properties of In1-xGaxN Quantum dots (QD) along with the multifunctionality of ZnO into a single integrated material was prepared for solar harvesting. This is the first report on InGaN QD integrated with ZnO (InGaN@ZnO), synthesized by a highly reproducible, simple combustion method in 15 min. Structural, microstructural and electronic integration of the nitride and oxide components of InGaN@ZnO was demonstrated by appropriate characterization methods. Self-assembly of InGaN QD is induced in growing nascent zinc oxo nanoclusters taking advantage of the common wurtzite structure and nitrogen incorporation at the expense of oxygen vacancies. Direct integration brings about a single phase structure exhibiting extensive visible light absorption and high photostability. InGaN@ZnO suggests synergistic operation of light harvesting and charge conducting components for solar H2 generation without using any co-catalyst or sacrificial agent, and a promising photocurrent generation at 0 V under visible light illumination. The present study suggests a direct integration of QD with the host matrix and is a potential method to realize the advantages of QDs.

  17. Antibiotic-dependent induction of Pseudomonas putida DOT-T1E TtgABC efflux pump is mediated by the drug binding repressor TtgR.

    PubMed

    Terán, Wilson; Felipe, Antonia; Segura, Ana; Rojas, Antonia; Ramos, Juan-Luis; Gallegos, María-Trinidad

    2003-10-01

    Pseudomonas putida is well known for its metabolic capabilities, but recently, it has been shown to exhibit resistance to a wide range of antibiotics. In P. putida DOT-T1E, the TtgABC efflux pump, which has a broad substrate specificity, extrudes antibiotics such as ampicillin, carbenicillin, tetracycline, nalidixic acid, and chloramphenicol. We have analyzed the expression of the ttgABC efflux pump operon and its regulatory gene, ttgR, in response to several structurally unrelated antibiotics at the transcriptional level and investigated the role of the TtgR protein in this process. ttgABC and ttgR are expressed in vivo at a moderate basal level, which increases in the presence of hydrophobic antibiotics like chloramphenicol and tetracycline. In vitro experiments show that, in the absence of inducers, TtgR binds to a palindromic operator site which overlaps both ttgABC and ttgR promoters and dissociates from it in the presence of chloramphenicol and tetracycline. These results suggest that the TtgR repressor is able to bind to structurally different antibiotics, which allows induction of TtgABC multidrug efflux pump expression in response to these antimicrobial agents. This is the first case in which the expression of a drug transporter of the resistance-nodulation-division family has been shown to be regulated directly by antibiotics.

  18. Direct screening for chromatin status on DNA barcodes in yeast delineates the regulome of H3K79 methylation by Dot1

    PubMed Central

    Vlaming, Hanneke; Molenaar, Thom M; van Welsem, Tibor; Poramba-Liyanage, Deepani W; Smith, Desiree E; Velds, Arno; Hoekman, Liesbeth; Korthout, Tessy; Hendriks, Sjoerd; Maarten Altelaar, AF; van Leeuwen, Fred

    2016-01-01

    Given the frequent misregulation of chromatin in cancer, it is important to understand the cellular mechanisms that regulate chromatin structure. However, systematic screening for epigenetic regulators is challenging and often relies on laborious assays or indirect reporter read-outs. Here we describe a strategy, Epi-ID, to directly assess chromatin status in thousands of mutants. In Epi-ID, chromatin status on DNA barcodes is interrogated by chromatin immunoprecipitation followed by deep sequencing, allowing for quantitative comparison of many mutants in parallel. Screening of a barcoded yeast knock-out collection for regulators of histone H3K79 methylation by Dot1 identified all known regulators as well as novel players and processes. These include histone deposition, homologous recombination, and adenosine kinase, which influences the methionine cycle. Gcn5, the acetyltransferase within the SAGA complex, was found to regulate histone methylation and H2B ubiquitination. The concept of Epi-ID is widely applicable and can be readily applied to other chromatin features. DOI: http://dx.doi.org/10.7554/eLife.18919.001 PMID:27922451

  19. Fluorescence quenching of CdS quantum dots by 4-azetidinyl-7-nitrobenz-2-oxa-1,3-diazole: a mechanistic study.

    PubMed

    Santhosh, Kotni; Patra, Satyajit; Soumya, S; Khara, Dinesh Chandra; Samanta, Anunay

    2011-10-24

    Fluorescence quenching of CdS quantum dots (QDs) by 4-azetidinyl-7-nitrobenz-2-oxa-1,3-diazole (NBD), where the two quenching partners satisfy the spectral overlap criterion necessary for Förster resonance energy transfer (FRET), is studied by steady-state and time-resolved fluorescence techniques. The fluorescence quenching of the QDs is accompanied by an enhancement of the acceptor fluorescence and a reduction of the average fluorescence lifetime of the donor. Even though these observations are suggestive of a dynamic energy transfer process, it is shown that the quenching actually proceeds through a static interaction between the quenching partners and is probably mediated by charge-transfer interactions. The bimolecular quenching rate constant estimated from the Stern-Volmer plot of the fluorescence intensities, is found to be exceptionally high and unrealistic for the dynamic quenching process. Hence, a kinetic model is employed for the estimation of actual quencher/QD ratio dependent exciton quenching rate constants of the fluorescence quenching of CdS by NBD. The present results point to the need for a deeper analysis of the experimental quenching data to avoid erroneous conclusions.

  20. Optically pumped 1.3  μm room-temperature InAs quantum-dot micro-disk lasers directly grown on (001) silicon.

    PubMed

    Wan, Yating; Li, Qiang; Liu, Alan Y; Gossard, Arthur C; Bowers, John E; Hu, Evelyn L; Lau, Kei May

    2016-04-01

    Direct integration of high-performance laser diodes on silicon will dramatically transform the world of photonics, expediting the progress toward low-cost and compact photonic integrated circuits (PICs) on the mainstream silicon platform. Here, we report, to the best of our knowledge, the first 1.3 μm room-temperature continuous-wave InAs quantum-dot micro-disk lasers epitaxially grown on industrial-compatible Si (001) substrates without offcut. The lasing threshold is as low as hundreds of microwatts, similar to the thresholds of identical lasers grown on a GaAs substrate. The heteroepitaxial structure employed here does not require the use of an absorptive germanium buffer and/or dislocation filter layers, both of which impede the efficient coupling of light from the laser active regions to silicon waveguides. This allows for full compatibility with the extensive silicon-on-insulator (SOI) technology. The large-area virtual GaAs (on Si) substrates can be directly adopted in various mature in-plane laser configurations, both optically and electrically. Thus, this demonstration represents a major advancement toward the commercial success of fully integrated silicon photonics.

  1. Assessment of Dietary Isoflavone Intake among Middle-Aged Chinese Men1

    PubMed Central

    Lee, Sang-Ah; Wen, Wanqing; Xiang, Yong-Bing; Barnes, Stephen; Liu, Dake; Cai, Qiuyin; Zheng, Wei; Shu, Xiao Ou

    2007-01-01

    We evaluated the reproducibility and validity of the FFQ used in the Shanghai Men's Health Study (SMHS) for assessing dietary isoflavone intake, using multiple 24-h dietary recalls (24-HDR) and urinary isoflavones as the reference criteria, with data from the dietary validation study of the SMHS. A total of 196 study subjects completed the 24-HDR and 2 FFQ and donated a quarterly spot urine sample during the 1-y study period. Levels of urinary isoflavones were measured in a random sample of 48 study participants. The correlation coefficient between the 2 FFQ administered 1 y apart was 0.50 for soy protein intake and ranged from 0.50 to 0.51 for isoflavone intake. The correlations of isoflavone intake from the second FFQ with those from the multiple 24-HDR ranged from 0.38 (genistein) to 0.44 (glycitein), and the correlations with urinary isoflavone levels were 0.48 for total isoflavones, 0.44 for daidzein, 0.42 for genistein, and 0.54 for glycitein. The intraclass correlation coefficients for the 4 spot urine samples were 0.36, 0.42, and 0.40 for daidzein, genistein, and glycitein, respectively, and 0.62, 0.68, and 0.55 for their metabolic products equol, dihydrodaidzein, and O-desmethylangolensin, respectively. These results suggest that the SMHS FFQ can reliably and accurately measure usual intake of isoflavones, and that the levels of isoflavones in urine samples are relatively stable among men in Shanghai. PMID:17374669

  2. Interleukin-1 receptor antagonist decreases the number of necrotic neurons in rats with middle cerebral artery occlusion.

    PubMed Central

    Garcia, J. H.; Liu, K. F.; Relton, J. K.

    1995-01-01

    Marked increases in the brain expression of interleukin (IL)-1 have been reported in rats after permanent occlusion of a large cerebral artery. Interactions between endothelial cells and leukocytes have been implicated in the pathogenesis of several types of ischemic injury to the myocardium and other organs. In this study we asked whether inhibiting the effects of IL-1 would affect the outcome of an experimental brain infarct. Adult male Wistar rats (n = 13) with permanent occlusion of the middle cerebral artery were given IL-1 receptor antagonist. A second group (n = 13) with the same type of brain injury was given a placebo. A third group, subjected to a sham operation, was given either IL-1 receptor antagonist (n = 2) or a placebo (n = 2). Experiments were terminated after either 24 hours or 7 days. Compared with the control group, animals treated with IL-1 receptor antagonist improved their neurological score (P < 0.05), experienced less pronounced changes in body weight (P < 0.05), and had fewer necrotic neurons (P < 0.001) and fewer leukocytes in the ischemic hemisphere (P < 0.001) as well as a smaller area of pallor (P < 0.05) in the ischemis hemisphere. The results suggest that inhibiting the proinflammatory effects of IL-1 with a receptor antagonist is an effective way of influencing the leukocyte responses elicited by an arterial occlusion. Such leukocyte inhibition seemingly attenuates the number of necrotic neurons resulting from the occlusion of a large brain artery. Images Figure 4 Figure 6 Figure 8 PMID:7485410

  3. Evidence for Magnetoconvection in Sunspot Umbral Dots

    NASA Astrophysics Data System (ADS)

    Bharti, Lokesh; Jain, Rajmal; Jaaffrey, S. N. A.

    2007-08-01

    An analysis of high-resolution Dopplergrams and continuum images of NOAA AR 8350 is presented. The observations were recorded with the universal birefringent filter attached to the Dunn Solar Telescope at the National Solar Observatory, Sunspot, New Mexico. We find upward velocity of the order of 400 m s-1 within umbral dots, surrounded by downward velocity of the order of 300 m s-1. This observation is compatible with the simulations of three-dimensional radiative magnetoconvection with gray radiative transfer in sunspot umbra by Schüssler & Vögler, which support the idea that umbral dots appear as a result of magnetoconvection.

  4. Management and 1-year outcomes of patients with atrial fibrillation in the Middle East: Gulf survey of atrial fibrillation events.

    PubMed

    Zubaid, Mohammad; Rashed, Wafa A; Alsheikh-Ali, Alawi A; Al-Zakwani, Ibrahim; AlMahmeed, Wael; Shehab, Abdullah; Sulaiman, Kadhim; Qudaimi, Ahmed Al; Asaad, Nidal; Amin, Haitham

    2015-05-01

    We describe management and outcomes of patients with nonvalvular atrial fibrillation (AF) in the Middle East. Consecutive patients with AF presenting to emergency departments (EDs) were prospectively enrolled. Among 1721 patients with nonvalvular AF, mean age was 59 ± 16 years and 44% were women. Comorbidities were common such as hypertension (59%), diabetes (33%), and coronary artery disease (33%). Warfarin was not prescribed to 40% of patients with Congestive heart failure, Hypertension, Age, Diabetes mellitus, Stroke/TIA2 score of ≥2. One-year rates of stroke/transient ischemic attack (TIA) and all-cause mortality were 4.2% and 15.3%, respectively. Warfarin use at hospital-ED discharge was independently associated with lower 1-year rate of stroke/TIA (odds ratio [OR], 0.38; 95% confidence interval [CI], 0.17-0.85; P = .015) and all-cause mortality (OR, 0.51; 95% CI, 0.32-0.83; P = .006). Prior history of heart failure and peripheral vascular disease was independent mortality predictors. Our patients are relatively young with significant cardiovascular risk. Their anticoagulation treatment is suboptimal, and 1-year all-cause mortality and stroke/TIA event rates are relatively high.

  5. Correlates of 2009 Pandemic H1N1 Influenza Vaccine Acceptance among Middle and High School Teachers in Rural Georgia

    ERIC Educational Resources Information Center

    Gargano, Lisa M.; Painter, Julia E.; Sales, Jessica M.; Morfaw, Christopher; Jones, LaDawna M.; Weiss, Paul; Murray, Dennis; DiClemente, Ralph J.; Hughes, James M.

    2011-01-01

    Background: Teachers play an essential role in the school community, and H1N1 vaccination of teachers is critical to protect not only themselves but also adolescents they come in contact within the classroom through herd immunity. School-aged children have a greater risk of developing H1N1 disease than seasonal influenza. The goal of this study…

  6. Long-distance coherent coupling in a quantum dot array.

    PubMed

    Braakman, F R; Barthelemy, P; Reichl, C; Wegscheider, W; Vandersypen, L M K

    2013-06-01

    Controlling long-distance quantum correlations is central to quantum computation and simulation. In quantum dot arrays, experiments so far rely on nearest-neighbour couplings only, and inducing long-distance correlations requires sequential local operations. Here, we show that two distant sites can be tunnel-coupled directly. The coupling is mediated by virtual occupation of an intermediate site, with a strength that is controlled via the energy detuning of this site. It permits a single charge to oscillate coherently between the outer sites of a triple dot array without passing through the middle, as demonstrated through the observation of Landau-Zener-Stückelberg interference. The long-distance coupling significantly improves the prospects of fault-tolerant quantum computation using quantum dot arrays, and opens up new avenues for performing quantum simulations in nanoscale devices.

  7. DOT Transmit Module

    NASA Technical Reports Server (NTRS)

    Quirk, Kevin J.; Gin, Jonathan W.; Sahasrabudhe, Adit; Patawaran, Ferze D.; Nguyen, Danh H.; Nguyen, Huy

    2013-01-01

    The Deep Space Optical Terminal (DOT) transmit module demonstrates the DOT downlink signaling in a flight electronics assembly that can be qualified for deep space. The assembly has the capability to generate an electronic pulse-position modulation (PPM) waveform suitable for driving a laser assembly to produce the optical downlink signal. The downlink data enters the assembly through a serializer/ deserializer (SERDES) interface, and is encoded using a serially concatenated PPM (SCPPM) forward error correction code. The encoded data is modulated using PPM with an inter-symbol guard time to aid in receiver synchronization. Monitor and control of the assembly is via a low-voltage differential signal (LVDS) interface

  8. Phase behavior and physicochemical properties of sodium octyl sulfate/n-decane/1-hexanol/aqueous AlCl[sub 3] middle-phase microemulsion

    SciTech Connect

    Abe, Masahiko; Yamazaki, Tadao; Ogino, Keizo )

    1992-03-01

    The phase behavior and physicochemical properties of sodium octyl sulfate/n-decane/1-hexanol/aqueous AlCl[sub 3] middle-phase microemulsion have been studied as a function of salinity to develop an experimental investigation for better understanding of the microstructure of a middle-phase microemulsion. The system exhibits a Winsor-type phase transition (Winsor I [leftrightarrow] Winsor III [leftrightarrow] Winsor II) with increasing salinity. Over an appreciable salinity (from 0.50% to 9.2%), the formation of Winsor III, composed of a middle-phase microemulsion in equilibrium with the excess water and oil phases, was observed. It has been observed that as the salinity is increased, the phase volume of the middle-phase microemulsion undergoes a drastic decrease at a specific brine concentration (3.8%). Furthermore, the physicochemical properties such as water content, electrical conductivity, diffusion coefficient, and solubilization of 1-hexanol in the AlCl[sub 3] middle-phase microemulsion all show abrupt changes at this salinity. The drastic change in the phase volume and physicochemical properties at the specific salinity of 3.8% may be attributed to a phase inversion of the AlCl[sub 3] middle-phase microemulsion from oil-rich to water-rich continuous phase with increasing AlCl[sub 3] concentration, which is quite a different behavior from that observed for monovalent and divalent salt systems. Specifically, it may be assumed that a fluctuating structure of bicontinuous type and a liquid crystal structure overcome the droplet structure in the phase equilibrium at a certain salinity during the increase in the trivalent salt concentration. 25 refs., 10 figs.

  9. Buried in the Middle but Guilty: Intronic Mutations in the TCIRG1 Gene Cause Human Autosomal Recessive Osteopetrosis.

    PubMed

    Palagano, Eleonora; Blair, Harry C; Pangrazio, Alessandra; Tourkova, Irina; Strina, Dario; Angius, Andrea; Cuccuru, Gianmauro; Oppo, Manuela; Uva, Paolo; Van Hul, Wim; Boudin, Eveline; Superti-Furga, Andrea; Faletra, Flavio; Nocerino, Agostino; Ferrari, Matteo C; Grappiolo, Guido; Monari, Marta; Montanelli, Alessandro; Vezzoni, Paolo; Villa, Anna; Sobacchi, Cristina

    2015-10-01

    Autosomal recessive osteopetrosis (ARO) is a rare genetic bone disease with genotypic and phenotypic heterogeneity, sometimes translating into delayed diagnosis and treatment. In particular, cases of intermediate severity often constitute a diagnostic challenge and represent good candidates for exome sequencing. Here, we describe the tortuous path to identification of the molecular defect in two siblings, in which osteopetrosis diagnosed in early childhood followed a milder course, allowing them to reach the adult age in relatively good conditions with no specific therapy. No clearly pathogenic mutation was identified either with standard amplification and resequencing protocols or with exome sequencing analysis. While evaluating the possible impact of a 3'UTR variant on the TCIRG1 expression, we found a novel single nucleotide change buried in the middle of intron 15 of the TCIRG1 gene, about 150 nucleotides away from the closest canonical splice site. By sequencing a number of independent cDNA clones covering exons 14 to 17, we demonstrated that this mutation reduced splicing efficiency but did not completely abrogate the production of the normal transcript. Prompted by this finding, we sequenced the same genomic region in 33 patients from our unresolved ARO cohort and found three additional novel single nucleotide changes in a similar location and with a predicted disruptive effect on splicing, further confirmed in one of them at the transcript level. Overall, we identified an intronic region in TCIRG1 that seems to be particularly prone to splicing mutations, allowing the production of a small amount of protein sufficient to reduce the severity of the phenotype usually associated with TCIRG1 defects. On this basis, we would recommend including TCIRG1 not only in the molecular work-up of severe infantile osteopetrosis but also in intermediate cases and carefully evaluating the possible effects of intronic changes.

  10. Detailed analysis of the behavior and memory performance of middle-aged male and female CD-1 mice in a 3D maze.

    PubMed

    Ennaceur, A; Michalikova, S; van Rensburg, R; Chazot, P L

    2008-03-05

    Fifty percent of CD-1 mice from both sex die by the end of 2 years. The survival rate is higher in females than in males. This high mortality rate is associated to the high susceptibility of this strain of mice to some immuno-pathologies and the high incidence of systemic amyloidosis. It is therefore possible that premature cognitive deficits can be observed in CD-1 mice. In the present study, we describe a novel method for assessing emotional responses and memory performance of young (4 months) and middle-aged (12 months) CD-1 mice of both sexes in a 3D spatial navigation task. Animals are introduced to the maze without preliminary habituation and trained in a working memory test. As expected CD-1 mice have a low number of entries to arms on their first exposure to the maze which confirm our previous report on the anxious trait of this strain compared to C57/BL6 mice. The measure of arm/bridge ratio suggests that anxiety induced by exposure to the maze persists much longer in middle-aged male mice compared to middle-aged female mice and compared to both young male and female mice. The measure of memory revealed that young female mice made significantly less arm repeats and more unique arm visits before first arm repeat than middle-aged female and male mice. There are also significant differences between young female and young male mice with the former committing fewer errors than the latter.

  11. Middle East

    SciTech Connect

    Hemer, D.O.; Mason, J.F.; Hatch, G.C.

    1981-10-01

    Petroleum production in Middle East countries during 1980 totaled 6,747,719,000 bbl or an average rate of 18,436,390,000 bbl/d, down 13.9% from 1979. Increases were in Saudi Arabia and Syria. Significant decreases occurred in Iraq, Iran, Kuwait, and Turkey. New discoveries were made in Abu Dhabi, Iran, Saudi Arabia, Sharjah, and Oman. New areas were explored in Bahrain, Oman, Syria, and Yemen. 9 figures, 16 tables.

  12. Highly luminescent CdSe/Cd(x)Zn(1-x)S quantum dots coated with thickness-controlled SiO2 shell through silanization.

    PubMed

    Yang, Ping; Ando, Masanori; Murase, Norio

    2011-08-02

    A silanization technique of hydrophobic quantum dots (QDs) was applied to SiO(2)-coated CdSe/Cd(x)Zn(1-x)S QDs to precisely control the SiO(2) shell thickness and retain the original high photoluminescence (PL) properties of the QDs. Hydrophobic CdSe/Cd(x)Zn(1-x)S core-shell QDs with PL peak wavelengths of 600 and 652 nm were prepared by a facile organic route by using oleic acid (OA) as a capping agent. The QDs were silanized by using partially hydrolyzed tetraethyl orthosilicate by replacing surface OA. These silanized QDs were subsequently encapsulated in a SiO(2) shell by a reverse micelles synthesis. The silanization plays an important role for the QDs to be coated with a homogeneous SiO(2) shell and retain a high PL efficiency in water. Transmission electron microscopy observation shows that the shells are 1-9 nm with final particle sizes of 10-25 nm, depending on the initial QD size. In the case of short reaction time (6 h), the QDs were coated with a very thin SiO(2) layer because no visible SiO(2) shell was observed but transferred into the water phase. The silica coating does not change the PL peak wavelength of the QDs. The full width at half-maximum of PL was decreased 4 nm after coating for QDs emitting at both 600 and 652 nm. The PL efficiency of the SiO(2)-coated is up to 40%, mainly determined by the initial PL efficiency of the underlying CdSe/Cd(x)Zn(1-x)S QDs.

  13. Synthesis and characterization of xTiO{sub 2}{center_dot}(1 - x){alpha}-Fe{sub 2}O{sub 3} magnetic ceramic nanostructure system

    SciTech Connect

    Sorescu, Monica; Xu, Tianhong; Diamandescu, Lucian

    2010-11-15

    Rutile-doped hematite xTiO{sub 2}{center_dot}(1 - x){alpha}-Fe{sub 2}O{sub 3} (x = 0.0-1.0) nanostructures were synthesized using mechanochemical activation by ball milling. Their complex structural, magnetic and thermal properties were characterized by X-ray diffraction, Moessbauer spectroscopy and simultaneous DSC-TGA. XRD patterns yielded the dependence of lattice parameters and grain size as a function of ball milling time. For the molar concentrations x = 0.1 and 0.3, the Moessbauer spectra were fitted with one, two, three or four sextets, corresponding to the degree of Ti ion substitution of Fe ions in hematite lattice. After 12 h of ball milling, the completion of Ti ion substitution of Fe ions in hematite lattice occurs for x = 0.1 and 0.3. For x = 0.5 and 0.7, Moessbauer spectra fitting required sextets and a quadrupole-split doublet, representing Fe ions substituting Ti ions in the rutile lattice. The completion of Fe ion substitution of Ti ions in rutile lattice was not observed, as indicated by XRD patterns and Moessbauer spectra for these two molar concentrations. Simultaneous DSC-TGA measurements revealed that the mechanochemical activation by ball milling has a strong effect on the thermal behavior of this nanostructure system. The enthalpy dropped dramatically after 2 h of milling time, indicating the strong solid-solid interactions between TiO{sub 2} and {alpha}-Fe{sub 2}O{sub 3} after ball milling. The change in weight loss of hematite was caused by the decrease of grain size and ion substitutions between Fe and Ti after mechanochemical activation.

  14. Middle- and low-latitude emissions from energetic neutral atom precipitation seen from ATLAS 1 under quiet magnetic conditions

    NASA Technical Reports Server (NTRS)

    Tinsley, B. A.; Rohrbaugh, R. P.; Ishimoto, M.; Torr, M. R.; Torr, D. G.

    1994-01-01

    During the ATLAS 1 mission spectral observations were made at middle and low latitudes of features expected from the precipitation of energetic neutral atoms. The Imaging Spectrometric Observatory was used at night in the UV and visible with maximum gain. The tangent ray heights of the look directions ranged from near 100 km to near 200 km, and the geomagnetic conditions were quiet during the observations, which were made March 28 to April 3, 1992. The N2(+) 1N 391.4-nm and O I 130.4 and 135.6-nm emissions were observed at all latitudes, with lower emission rates at lower magnetic dip latitudes, except that enhancements in the O I lines were seen within 30 deg of the dip equator to radiative recombination of ionospheric plasma. The latitude profile observed for the N2(+) 1N emission did not show an equatorial or midlatitude peak. This implies that the source of energetic neutrals is more consistent with prompt charge exchange loss of freshly injected trapped ions with relatively low mirror heights (i.e., ions on higher L shells with equatorial pitch angle distributions nearly isotropic to the loss cone) than loss of highly eroded populations of particles with high mirror heights (i.e., ions on lower L shells with pancake equatorial pitch angle distributions). The N2(+) 1N emission rates have been compared with models of atmospheric emission due to fluxes of O/O(+) and H/H(+) in the thermosphere, as produced by energetic neutral oxygen or hydrogen atom precipitation. Energy deposition rates are inferred.

  15. Middle and Later Stone Age large mammal and tortoise remains from Die Kelders Cave 1, Western Cape Province, South Africa.

    PubMed

    Klein, R G; Cruz-Uribe, K

    2000-01-01

    Die Kelders Cave 1, South Africa, has provided more than 150,000 taxonomically identifiable mammal and tortoise bones from Middle Stone Age (MSA) and Later Stone Age (LSA) deposits. Cape dune mole-rats dominate the mammal sample, and they appear to have been accumulated mainly by people during the LSA occupation and mainly by eagle owls in the MSA. In sharp contrast to the LSA fauna, the MSA sample contains extralimital ungulates that imply relatively moist, grassy conditions. The large mean size of the MSA mole-rats also points to greater humidity, while the large size of the gray mongooses implies cooler temperatures. The sum supports luminescence and ESR dates that place the MSA occupation within the early part of the Last Glaciation (global isotope stage 4). The Die Kelders ungulate bones support those from Klasies River Mouth in suggesting that MSA people obtained dangerous terrestrial prey much less frequently than their LSA successors, probably because MSA people lacked the bow and arrow and other projectile weapons. The Die Kelders tortoise bones constrain the extent of climatic change, since their abundance indicates that warm, dry days remained common, at least seasonally. The tortoises tend to be much larger in the MSA layers than in the LSA ones, suggesting that MSA people collected tortoises less intensively, probably because MSA populations were relatively sparse.

  16. Rapid genetic turnover in populations of the insect pest Bemisia tabaci Middle East: Asia Minor 1 in an agricultural landscape.

    PubMed

    Dinsdale, A; Schellhorn, N A; De Barro, P; Buckley, Y M; Riginos, C

    2012-10-01

    Organisms differ greatly in dispersal ability, and landscapes differ in amenability to an organism's movement. Thus, landscape structure and heterogeneity can affect genetic composition of populations. While many agricultural pests are known for their ability to disperse rapidly, it is unclear how fast and over what spatial scale insect pests might respond to the temporally dynamic agricultural landscapes they inhabit. We used population genetic analyses of a severe crop pest, a member of the Bemisia tabaci (Hemiptera: Sternorrhyncha: Aleyrodoidea: Aleyrodidea) cryptic species complex known as Middle East-Asia Minor 1 (commonly known as biotype B), to estimate spatial and temporal genetic diversity over four months of the 2006-2007 summer growing season. We examined 559 individuals from eight sites, which were scored for eight microsatellite loci. Temporal genetic structure greatly exceeded spatial structure. There was significant temporal change in local genetic composition from the beginning to the end of the season accompanied by heterozygote deficits and inbreeding. This temporal structure suggests entire cohorts of pests can occupy a large and variable agricultural landscape but are rapidly replaced. These rapid genetic fluctuations reinforce the concept that agricultural landscapes are dynamic mosaics in time and space and may contribute to better decisions for pest and insecticide resistance management.

  17. Transient receptor potential is essential for high temperature tolerance in invasive Bemisia tabaci Middle East Asia minor 1 cryptic species.

    PubMed

    Lü, Zhi-Chuang; Li, Qian; Liu, Wan-Xue; Wan, Fang-Hao

    2014-01-01

    Temperature is an important factor in affecting population dynamics and diffusion distribution of organisms. Alien species can successfully invade and colonize to various temperature environments, and one of important reasons is that alien species have a strong resistance to stress temperature. Recently, researchers have focused on the mechanisms of temperature sensing to determine the sensing and regulation mechanisms of temperature adaptation. The transient receptor potential (TRP) is one of the key components of an organism's temperature perception system. TRP plays important roles in perceiving temperature, such as avoiding high temperature, low temperature and choosing the optimum temperature. To assess high temperature sensation and the heat resistance role of the TRP gene, we used 3' and 5' rapid-amplification of cDNA ends to isolate the full-length cDNA sequence of the TRP gene from Bemisia tabaci (Gennadius) MEAM1 (Middle East Asia Minor 1), examined the mRNA expression profile under various temperature conditions, and identified the heat tolerance function. This is the first study to characterize the TRP gene of invasive B. tabaci MEAM1 (MEAM1 BtTRP). The full-length cDNA of MEAM1 BtTRP was 3871 bp, and the open reading frames of BtTRP was 3501 bp, encoding 1166 amino acids. Additionally, the BtTRP mRNA expression level was significantly increased at 35°C. Furthermore, compared with control treatments, the survival rate of B. tabaci MEAM1 adults was significantly decreased under high temperature stress conditions after feeding with dsRNA BtTRP. Collectively, these results showed that MEAM1 BtTRP is a key element in sensing high temperature and plays an essential role in B. tabaci MEAM1 heat tolerance ability. Our data improved our understanding of the mechanism of temperature sensation in B. tabaci MEAM1 at the molecular level and could contribute to the understanding of the thermal biology of B. tabaci MEAM1 within the context of global climate change.

  18. Metal selenides as a new class of electrocatalysts for quantum dot-sensitized solar cells: a tale of Cu(1.8)Se and PbSe.

    PubMed

    Choi, Hye Mi; Ji, In Ae; Bang, Jin Ho

    2014-02-26

    The development of a Pt-free, highly active electrocatalyst for a counter electrode (CE) is vital to the construction of highly efficient quantum dot-sensitized solar cells (QDSSCs). As an alternative to Pt, the use of various metal sulfides, such as Cu2S, CoS, and PbS, has been successfully demonstrated; however, the studies on the utilization of non-sulfide materials have been scarcely reported. In this regard, we examined eight different types of binary metal selenides as new candidate materials, and found that the electrocatalytic activity of Cu1.8Se and PbSe toward polysulfide reduction was superior to that of Pt. In depth investigation into these two materials further revealed that, while the electrocatalytic activity of both metal selenides surpasses that of Pt, the long-term utilization of the PbSe CE is hindered by the formation of PbO on the surface of PbSe, which is attributed to the instability of PbSe under air. Unlike PbSe, Cu1.8Se was found to be chemically stable with a polysulfide electrolyte and was even better than Cu2S, a commonly used CE material for QDSSCs. Using the Cu1.8Se CE, we obtained a power conversion efficiency of 5.0% for CdS/CdSe-sensitized solar cells, which was an efficiency almost twice that obtained from Pt CE. This work provides a new application for metal selenides, which have been traditionally utilized as sensitizers for QDSSCs.

  19. Slow Electron Cooling in Colloidal Quantum Dots

    NASA Astrophysics Data System (ADS)

    Pandey, Anshu; Guyot-Sionnest, Philippe

    2008-11-01

    Hot electrons in semiconductors lose their energy very quickly (within picoseconds) to lattice vibrations. Slowing this energy loss could prove useful for more efficient photovoltaic or infrared devices. With their well-separated electronic states, quantum dots should display slow relaxation, but other mechanisms have made it difficult to observe. We report slow intraband relaxation (>1 nanosecond) in colloidal quantum dots. The small cadmium selenide (CdSe) dots, with an intraband energy separation of ~0.25 electron volts, are capped by an epitaxial zinc selenide (ZnSe) shell. The shell is terminated by a CdSe passivating layer to remove electron traps and is covered by ligands of low infrared absorbance (alkane thiols) at the intraband energy. We found that relaxation is markedly slowed with increasing ZnSe shell thickness.

  20. InAsP quantum dot lasers grown by MOVPE.

    PubMed

    Karomi, Ivan; Smowton, Peter M; Shutts, Samuel; Krysa, Andrey B; Beanland, Richard

    2015-10-19

    We report on InAsP quantum dot lasers grown by MOVPE for 730-780 nm wavelength emission and compare performance with InP dot samples grown under similar conditions and with similar structures. 1-4 mm long, uncoated facet InAsP dot lasers emit between 760 and 775 nm and 2 mm long lasers with uncoated facets have threshold current density of 260 Acm(-2), compared with 150 Acm(-2) for InP quantum dot samples, which emit at shorter wavelengths, 715-725 nm. Pulsed lasing is demonstrated for InAsP dots up to 380 K with up to 200 mW output power. Measured absorption spectra indicate the addition of Arsenic to the dots has shifted the available transitions to longer wavelengths but also results in a much larger degree of spectral broadening. These spectra and transmission electron microscopy images indicate that the InAsP dots have a much larger degree of inhomogeneous broadening due to dot size variation, both from layer to layer and within a layer.

  1. Linear and nonlinear optical properties of GaAs/Al{sub x}Ga{sub 1−x}As/GaAs/Al{sub y}Ga{sub 1−y}As multi-shell spherical quantum dot

    SciTech Connect

    Emre Kavruk, Ahmet E-mail: aekavruk@gmail.com; Koc, Fatih; Sahin, Mehmet E-mail: mehsahin@gmail.com

    2013-11-14

    In this work, the optical properties of GaAs/Al{sub x}Ga{sub 1−x}As/GaAs/Al{sub y}Ga{sub 1−y}As multi-shell quantum dot heterostructure have been studied as a function of Al doping concentrations for cases with and without a hydrogenic donor atom. It has been observed that the absorption coefficient strength and/or resonant absorption wavelength can be adjusted by changing the Al content of inner-barrier and/or outer-barrier regions. Besides, it has been shown that the donor atom has an important effect on the control of the electronic and optical properties of the structure. The results have been presented as a function of the Al contents of the inner-barrier x and outer-barrier y regions and probable physical reasons have been discussed.

  2. Colloidal Double Quantum Dots

    PubMed Central

    2016-01-01

    Conspectus Pairs of coupled quantum dots with controlled coupling between the two potential wells serve as an extremely rich system, exhibiting a plethora of optical phenomena that do not exist in each of the isolated constituent dots. Over the past decade, coupled quantum systems have been under extensive study in the context of epitaxially grown quantum dots (QDs), but only a handful of examples have been reported with colloidal QDs. This is mostly due to the difficulties in controllably growing nanoparticles that encapsulate within them two dots separated by an energetic barrier via colloidal synthesis methods. Recent advances in colloidal synthesis methods have enabled the first clear demonstrations of colloidal double quantum dots and allowed for the first exploratory studies into their optical properties. Nevertheless, colloidal double QDs can offer an extended level of structural manipulation that allows not only for a broader range of materials to be used as compared with epitaxially grown counterparts but also for more complex control over the coupling mechanisms and coupling strength between two spatially separated quantum dots. The photophysics of these nanostructures is governed by the balance between two coupling mechanisms. The first is via dipole–dipole interactions between the two constituent components, leading to energy transfer between them. The second is associated with overlap of excited carrier wave functions, leading to charge transfer and multicarrier interactions between the two components. The magnitude of the coupling between the two subcomponents is determined by the detailed potential landscape within the nanocrystals (NCs). One of the hallmarks of double QDs is the observation of dual-color emission from a single nanoparticle, which allows for detailed spectroscopy of their properties down to the single particle level. Furthermore, rational design of the two coupled subsystems enables one to tune the emission statistics from single

  3. Colloidal Double Quantum Dots.

    PubMed

    Teitelboim, Ayelet; Meir, Noga; Kazes, Miri; Oron, Dan

    2016-05-17

    Pairs of coupled quantum dots with controlled coupling between the two potential wells serve as an extremely rich system, exhibiting a plethora of optical phenomena that do not exist in each of the isolated constituent dots. Over the past decade, coupled quantum systems have been under extensive study in the context of epitaxially grown quantum dots (QDs), but only a handful of examples have been reported with colloidal QDs. This is mostly due to the difficulties in controllably growing nanoparticles that encapsulate within them two dots separated by an energetic barrier via colloidal synthesis methods. Recent advances in colloidal synthesis methods have enabled the first clear demonstrations of colloidal double quantum dots and allowed for the first exploratory studies into their optical properties. Nevertheless, colloidal double QDs can offer an extended level of structural manipulation that allows not only for a broader range of materials to be used as compared with epitaxially grown counterparts but also for more complex control over the coupling mechanisms and coupling strength between two spatially separated quantum dots. The photophysics of these nanostructures is governed by the balance between two coupling mechanisms. The first is via dipole-dipole interactions between the two constituent components, leading to energy transfer between them. The second is associated with overlap of excited carrier wave functions, leading to charge transfer and multicarrier interactions between the two components. The magnitude of the coupling between the two subcomponents is determined by the detailed potential landscape within the nanocrystals (NCs). One of the hallmarks of double QDs is the observation of dual-color emission from a single nanoparticle, which allows for detailed spectroscopy of their properties down to the single particle level. Furthermore, rational design of the two coupled subsystems enables one to tune the emission statistics from single photon

  4. dot-app: a Graphviz-Cytoscape conversion plug-in

    PubMed Central

    Fitts, Braxton; Zhang, Ziran; Maher, Massoud; Demchak, Barry

    2016-01-01

    dot-app is a Cytoscape 3 app that allows Cytoscape to import and export Graphviz (*.dot, *.gv) files, also known as DOT files due to the *.dot extension and their conformance to the DOT language syntax. The DOT format was originally created in the early 2000s to represent graph topologies, layouts and formatting. DOT-encoded files are produced and consumed by a number of open-source graph applications, including GraphViz, Gephi, neato, smyrna, and others. While DOT-based graph applications are popular, they emphasize general graph layout and styling over the topological and semantic analysis functions available in domain-focused applications such as Cytoscape. While domain-focused applications have easy access to large networks (10,000 to 100,000 nodes) and advanced analysis and formatting, they do not offer all of the styling options that DOT-based applications (particularly GraphViz) do. dot-app enables the interchange of networks between Cytoscape and DOT-based applications so that users can benefit from the features of both. dot-app was first deployed to the Cytoscape App Store in August 2015, has since registered more than 1,200 downloads, and has been highly rated by more than 20 users. PMID:27853520

  5. Formation polarity dependent improved resistive switching memory characteristics using nanoscale (1.3 nm) core-shell IrOx nano-dots

    PubMed Central

    2012-01-01

    Improved resistive switching memory characteristics by controlling the formation polarity in an IrOx/Al2O3/IrOx-ND/Al2O3/WOx/W structure have been investigated. High density of 1 × 1013/cm2 and small size of 1.3 nm in diameter of the IrOx nano-dots (NDs) have been observed by high-resolution transmission electron microscopy. The IrOx-NDs, Al2O3, and WOx layers are confirmed by X-ray photo-electron spectroscopy. Capacitance-voltage hysteresis characteristics show higher charge-trapping density in the IrOx-ND memory as compared to the pure Al2O3 devices. This suggests that the IrOx-ND device has more defect sites than that of the pure Al2O3 devices. Stable resistive switching characteristics under positive formation polarity on the IrOx electrode are observed, and the conducting filament is controlled by oxygen ion migration toward the Al2O3/IrOx top electrode interface. The switching mechanism is explained schematically based on our resistive switching parameters. The resistive switching random access memory (ReRAM) devices under positive formation polarity have an applicable resistance ratio of > 10 after extrapolation of 10 years data retention at 85°C and a long read endurance of 105 cycles. A large memory size of > 60 Tbit/sq in. can be realized in future for ReRAM device application. This study is not only important for improving the resistive switching memory performance but also help design other nanoscale high-density nonvolatile memory in future. PMID:22439604

  6. Synthesis and Optical Properties of CdTe(x)Se(1-x)-Based Red to Near-Infrared Emitting Quantum Dots.

    PubMed

    Ma, Qian; Yue, Hanxiao; Zhu, Yuanna; Wang, Junpeng; Che, Quande; Shi, Ruixia; Yang, Ping

    2015-06-01

    A series of red to near-infrared (NIR) emitting quantum dots (QDs) with spherical morphologies and tunable photoluminescence (PL) properties have been synthesized by a facile organic route using octadecene (ODE) as solvent and oleic acid (OA) as single capping agent. CdSe cores with the average size of 4.5 nm display the typical optical behaviors with the PL emission peak around 610 nm. The coating CdZnS shells are introduced on the surface of CdSe cores for improving the photostability and PL efficiency of the initial QDs. As the thickness of CdZnS shells increasing, the gradual red-shift of emission wavelength varying from 617 to 634 nm of the resulting QDs can be observed, along with the remarkable increase of PL quantum yield (QY). The composition-dependent CdTe(x)Se(1-x) (CdTeSe) cores with the emission in NIR region are easily carried out by adjusting the molar ratio of Se/Te. The abnormal variation of optical bowling effect is mainly ascribed to the composition effect of alloyed QDs. Compared with CdTe0.1Se0.9/CdZnS core/shell QDs, the introducing of CdZnS shells on CdTe0.05Se0.95 cores can exhibit better passivation effect on surface status, consequently leading to the red-shifted emission peaks in the range of 739-752 nm with the maximum PL QY reaching up to 45.09%. The unique PL properties of CdTeSe-based QDs in the red to NIR range make these core/shell QDs attractive for future biological sensing and labeling applications.

  7. Air-stable PbSe/PbS and PbSe/PbSexS1-x core-shell nanocrystal quantum dots and their applications.

    PubMed

    Lifshitz, E; Brumer, M; Kigel, A; Sashchiuk, A; Bashouti, M; Sirota, M; Galun, E; Burshtein, Z; Le Quang, A Q; Ledoux-Rak, I; Zyss, J

    2006-12-21

    The optical properties and functionality of air-stable PbSe/PbS core-shell and PbSe/PbSexS1-x core-alloyed shell nanocrystal quantum dots (NQDs) are presented. These NQDs showed chemical robustness over months and years and band-gap tunability in the near infrared spectral regime, with a reliance on the NQD size and composition. Furthermore, these NQDs exhibit high emission quantum efficiencies of up to 65% and an exciton emission band that is narrower than that of the corresponding PbSe NQDs. In addition, the emission bands showed a peculiar energy shift with respect to the relevant absorption band, changing from a Stokes shift to an anti-Stokes shift, with an increase of the NQD diameter. The described core-shell structures and the corresponding PbSe core NQDs were used as passive Q-switches in eye-safe lasers of Er:glass, where they act as saturable absorbers. The absorber saturation investigations revealed a relatively large ground-state cross-section of absorption (sigma gs = 10(-16) - 10(-15) cm2) and a behavior of a "fast" absorber with an effective lifetime of tau eff approximately 4.0 ps is proposed. This lifetime is associated with the formation of multiple excitons at the measured pumping power. The product of sigma gs and tau eff enables sufficient Q-switching performance and tunability in the near infrared spectral regime. The amplified spontaneous emission properties of PbSe NQDs were examined under continuous illumination by a diode laser at room temperature, suitable for standard device conditions. The results revealed a relatively large gain parameter (g = 2.63 - 6.67 cm-1). The conductivity properties of PbSe NQD self-assembled solids, annealed at 200 degrees C, showed an Ohmic behavior at the measured voltages (up to 30 V), which is governed by a variable-range-hopping charge transport mechanism.

  8. Synthesis and spectroscopic characterization of water-soluble Mn-doped ZnO(x)S(1-x) quantum dots.

    PubMed

    Xue, Fangfang; Liang, Jiangong; Han, Heyou

    2011-12-01

    A non-cadmium and water-soluble Mn-doped ZnO(x)S(1-x) QDs was synthesized with denatured bovine serum albumin (dBSA) as stabilizer under nitrogen atmosphere, and the as-prepared products were characterized by X-ray powder diffraction (XRD), UV-vis absorption spectroscopy, fluorescence (FL) emission spectroscopy, high resolution transmission electronmicroscopy (HRTEM) and Raman spectrum. XRD patterns indicate that the Mn-doped ZnO(x)S(1-x) QDs have a zinc-blende structure, and that manganese emerges in the form of divalent manganese (Mn(2+)) and trivalent manganese (Mn(3+)) (the intermediate of the reaction). The size of Mn-doped ZnO(x)S(1-x) QDs is about 3.2±0.7 nm according to HRTEM imaging. The FL spectra reveal that the Mn-doped ZnO(x)S(1-x) QDs have two distinct emission bands: the defect-related emission and the Mn(2+)-related emission, which exhibit a competing process. A good FL signal of the transition of Mn(2+) ((4)T(1)-(6)A(1)) is observed when the doping amounts are 1.0% and 20% respectively, and the as-prepared solutions are stable for more than 6 months at 4°C. This method has the advantages of good stability and environment-friendly stabilizer, for involving no heavy metal ions or toxic reagents.

  9. Rapid DOTS expansion in India.

    PubMed Central

    Khatri, G. R.; Frieden, Thomas R.

    2002-01-01

    Since late 1998 the coverage of the DOTS strategy in India has been expanded rapidly. In both 2000 and 2001 the country probably accounted for more than half the global increase in the number of patients treated under DOTS and by early 2002 more than a million patients were being treated in this way in India. As a result, nearly 200 000 lives were saved. The lessons learnt relate to the importance of the following elements of the programme: (1) getting the science right and ensuring technical excellence; (2) building commitment and ensuring the provision of funds and flexibility in their utilization; (3) maintaining focus and priorities; (4) systematically appraising each area before starting service delivery; (5) ensuring an uninterrupted drug supply; (6) strengthening the established infrastructure and providing support for staff; (7) supporting the infrastructure required in urban areas; (8) ensuring full-time independent technical support and supervision, particularly during the initial phases of implementation; (9) monitoring intensively and giving timely feedback; and (10) continuous supervision. Tuberculosis (TB) control still faces major challenges in India. To reach its potential, the control programme needs to: continue to expand so as to cover the remaining half of the country, much of which has a weaker health infrastructure than the areas already covered; increase its reach in the areas already covered so that a greater proportion of patients is treated; ensure sustainability; improve the patient-friendliness of services; confront TB associated with human immunodeficiency virus (HIV) infection. It is expected that HIV will increase the number of TB cases by at least 10% and by a considerably higher percentage if HIV becomes much more widespread. India's experience shows that DOTS can achieve high case-detection and cure rates even with imperfect technology and often with an inadequate public health infrastructure. However, this can only happen if the

  10. Regular physical activity is associated with improved small artery distensibility in young to middle-age stage 1 hypertensives.

    PubMed

    Saladini, Francesca; Benetti, Elisabetta; Mos, Lucio; Mazzer, Adriano; Casiglia, Edoardo; Palatini, Paolo

    2014-12-01

    The aim of the present study was to investigate the association of physical activity with small artery elasticity in the early stage of hypertension. We examined 366 young-to-middle-age stage 1 hypertensives (mean blood pressure 145.6±10.3/92.5±5.8 mmHg), divided into two categories of physical activity, sedentary (n=264) and non-sedentary (n=102) subjects. The augmentation index was measured using the Specaway DAT System. Small artery compliance (C2) was measured by applanation tonometry, at the radial artery, with an HDI CR2000 device. After 6 years of follow-up, arterial distensibility assessment was repeated in 151 subjects. Heart rate was lower in active than in sedentary subjects (71.2±8.9 vs 76.6±9.7 bpm, p<0.001). After adjusting for age, sex, heart rate, smoking, and blood pressure, C2 was higher (8.0±2.6 vs 6.4±3.0 ml/mmHg × 100, p=0.008) in non-sedentary than in sedentary patients. The augmentation index was smaller in the former (8.8±20.1 vs 16.8±26.5%, p=0.044) but the difference lost statistical significance after further adjustment for blood pressure. After 6 years, C2 was still higher in the non-sedentary than sedentary subjects. In addition, an improvement in the augmentation index accompanied by a decline in total peripheral resistance was found in the former. These data show that regular physical activity is associated with improved small artery elasticity in the early phase of hypertension. This association persists over time and is independent of blood pressure and heart rate.

  11. Prevalence of Diabetes in the 2009 Influenza A (H1N1) and the Middle East Respiratory Syndrome Coronavirus: A Systematic Review and Meta-Analysis

    PubMed Central

    Badawi, Alaa; Ryoo, Seung Gwan

    2016-01-01

    Over the past two decades a number of severe acute respiratory infection outbreaks such as the 2009 influenza A (H1N1) and the Middle East respiratory syndrome coronavirus (MERS-CoV) have emerged and presented a considerable global public health threat. Epidemiologic evidence suggests that diabetic subjects are more susceptible to these conditions. However, the prevalence of diabetes in H1N1 and MERS-CoV has not been systematically described. The aim of this study is to conduct a systematic review and meta-analysis of published reports documenting the prevalence of diabetes in H1N1 and MERS-CoV and compare its frequency in the two viral conditions. Meta-analysis for the proportions of subjects with diabetes was carried out in 29 studies for H1N1 (n=92,948) and 9 for MERS-CoV (n=308). Average age of H1N1 patients (36.2±6.0 years) was significantly younger than that of subjects with MERS-CoV (54.3±7.4 years, P<0.05). Compared to MERS-CoV patients, subjects with H1N1 exhibited 3-fold lower frequency of cardiovascular diseases and 2- and 4-fold higher prevalence of obesity and immunosuppression, respectively. The overall prevalence of diabetes in H1N1 was 14.6% (95% CI: 12.3-17.0%; P<0.001), a 3.6-fold lower than in MERS-CoV (54.4%; 95% CI: 29.4-79.5; P<0.001). The prevalence of diabetes among H1N1 cases from Asia and North America was ~two-fold higher than those from South America and Europe. The prevalence of diabetes in MERS-CoV cases is higher than in H1N1. Regional comparisons suggest that an etiologic role of diabetes in MERS-CoV may exist distinctive from that in H1N1. Significance for public health Outbreaks of the 2009 influenza A (H1N1) and the Middle East respiratory syndrome coronavirus (MERS-CoV) have presented a considerable global public health threat over the past few years. Evidence suggest that infected subjects who are also diabetic are more likely to be susceptible to severe outcome of H1N1 and MERS-CoV. Systematic analysis of ~93,000 H1N1 cases

  12. Middle Atmosphere Program. Handbook for MAP, volume 29. Part 1: Extended Abstracts, International Symposium on Solar Activity Forcing of the Middle Atmosphere. Part 2: MASH Workshop

    NASA Technical Reports Server (NTRS)

    Lastovicka, Jan (Editor); Miles, Thomas (Editor); Oneill, Alan (Editor)

    1989-01-01

    The proceedings of the symposium is presented. Eight different sessions were presented: (1) Papers generally related to the subject; (2) Papers on the influence of the Quasi Biennial Oscillation; (3) Papers on the influence of the solar electromagnetic radiation variability; (4) Papers on the solar wind and high energy particle influence; (5) Papers on atmospheric circulation; (6) Papers on atmospheric electricity; (7) Papers on lower ionospheric variability; and (8) Solar posters, which are not included in this compilation.

  13. Blood-derived small Dot cells reduce scar in wound healing

    SciTech Connect

    Kong, Wuyi Li Shaowei; Longaker, Michael T.; Lorenz, H. Peter

    2008-04-15

    Wounds in fetal skin heal without scar, however the mechanism is unknown. We identified a novel group of E-cadherin positive cells in the blood of fetal and adult mice and named them 'Dot cells'. The percentage of Dot cells in E16.5 fetal mice blood is more than twenty times higher compared to adult blood. Dot cells also express integrin {beta}1, CD184, CD34, CD13{sup low} and Sca1{sup low}, but not CD45, CD44, and CD117. Dot cells have a tiny dot shape between 1 and 7 {mu}m diameters with fast proliferation in vitro. Most of the Dot cells remain positive for E-cadherin and integrin {beta}1 after one month in culture. Transplantation of Dot cells to adult mice heals skin wounds with less scar due to reduced smooth muscle actin and collagen expression in the repair tissue. Tracking GFP-positive Dot cells demonstrates that Dot cells migrate to wounds and differentiate into dermal cells, which also express strongly to FGF-2, and later lose their GFP expression. Our results indicate that Dot cells are a group of previously unidentified cells that have strong wound healing effect. The mechanism of scarless wound healing in fetal skin is due to the presence of a large number of Dot cells.

  14. Synergistic effect of interleukin 1 alpha on nontypeable Haemophilus influenzae-induced up-regulation of human beta-defensin 2 in middle ear epithelial cells

    PubMed Central

    Moon, Sung-Kyun; Lee, Haa-Yung; Pan, Huiqi; Takeshita, Tamotsu; Park, Raekil; Cha, Kiweon; Andalibi, Ali; Lim, David J

    2006-01-01

    Background We recently showed that beta-defensins have antimicrobial activity against nontypeable Haemophilus influenzae (NTHi) and that interleukin 1 alpha (IL-1 alpha) up-regulates the transcription of beta-defensin 2 (DEFB4 according to new nomenclature of the Human Genome Organization) in human middle ear epithelial cells via a Src-dependent Raf-MEK1/2-ERK signaling pathway. Based on these observations, we investigated if human middle ear epithelial cells could release IL-1 alpha upon exposure to a lysate of NTHi and if this cytokine could have a synergistic effect on beta-defensin 2 up-regulation by the bacterial components. Methods The studies described herein were carried out using epithelial cell lines as well as a murine model of acute otitis media (OM). Human cytokine macroarray analysis was performed to detect the released cytokines in response to NTHi exposure. Real time quantitative PCR was done to compare the induction of IL-1 alpha or beta-defensin 2 mRNAs and to identify the signaling pathways involved. Direct activation of the beta-defensin 2 promoter was monitored using a beta-defensin 2 promoter-Luciferase construct. An IL-1 alpha blocking antibody was used to demonstrate the direct involvement of this cytokine on DEFB4 induction. Results Middle ear epithelial cells released IL-1 alpha when stimulated by NTHi components and this cytokine acted in an autocrine/paracrine synergistic manner with NTHi to up-regulate beta-defensin 2. This synergistic effect of IL-1 alpha on NTHi-induced beta-defensin 2 up-regulation appeared to be mediated by the p38 MAP kinase pathway. Conclusion We demonstrate that IL-1 alpha is secreted by middle ear epithelial cells upon exposure to NTHi components and that it can synergistically act with certain of these molecules to up-regulate beta-defensin 2 via the p38 MAP kinase pathway. PMID:16433908

  15. Compensatory role of the cis-trans-isomerase and cardiolipin synthase in the membrane fluidity of Pseudomonas putida DOT-T1E.

    PubMed

    Bernal, Patricia; Segura, Ana; Ramos, Juan-Luis

    2007-07-01

    In Gram-negative bacteria, cell membrane fluidity is influenced by phospholipid head group composition and linked fatty acids. Exposure of Pseudomonas putida to stressing agents results in short- and long-term modifications in membrane lipids. The main adaptive change observed in response to organic solvents in the short term is the cis- to trans-isomerization of unsaturated fatty acids in a reaction mediated by cis/trans-isomerase (CTI); whereas in the long term an increase in cardiolipin content takes place. Despite the interest of these genes in the context of stress responses, the transcriptional regulation of the cti and cls genes has not been studied before. The cti and cls (cardiolipin synthase) genes in the solvent-tolerant P. putida DOT-T1E strain form monocistronic units and are expressed from sigma-70 promoters. Expression from the cls promoter is sixfold higher in the stationary phase than in the log phase, and expression of the cls gene is not influenced by solvents. The cti gene is expressed at fairly constant levels in the log and stationary phase, but its level of expression is moderately upregulated in response to toluene. We used fluorescence polarization assays to show that mutants deficient in the cti gene exhibit less rigid membranes than the wild-type strain, whereas mutants with a knockout in the cls gene exhibit increased membrane rigidity. A double cti/cls mutant has similar membrane rigidity as the wild-type strain, which points towards a compensatory effect of the mutations with regard to membrane fluidity. However, the cls and cls/cti mutants were more sensitive to solvents than the wild-type and the cti mutant because of the impaired functioning of efflux drug transporters.

  16. Brain networks involved in tactile speed classification of moving dot patterns: the effects of speed and dot periodicity

    PubMed Central

    Yang, Jiajia; Kitada, Ryo; Kochiyama, Takanori; Yu, Yinghua; Makita, Kai; Araki, Yuta; Wu, Jinglong; Sadato, Norihiro

    2017-01-01

    Humans are able to judge the speed of an object’s motion by touch. Research has suggested that tactile judgment of speed is influenced by physical properties of the moving object, though the neural mechanisms underlying this process remain poorly understood. In the present study, functional magnetic resonance imaging was used to investigate brain networks that may be involved in tactile speed classification and how such networks may be affected by an object’s texture. Participants were asked to classify the speed of 2-D raised dot patterns passing under their right middle finger. Activity in the parietal operculum, insula, and inferior and superior frontal gyri was positively related to the motion speed of dot patterns. Activity in the postcentral gyrus and superior parietal lobule was sensitive to dot periodicity. Psycho-physiological interaction (PPI) analysis revealed that dot periodicity modulated functional connectivity between the parietal operculum (related to speed) and postcentral gyrus (related to dot periodicity). These results suggest that texture-sensitive activity in the primary somatosensory cortex and superior parietal lobule influences brain networks associated with tactually-extracted motion speed. Such effects may be related to the influence of surface texture on tactile speed judgment. PMID:28145505

  17. Preparation of carbon quantum dots based high photostability luminescent membranes.

    PubMed

    Zhao, Jinxing; Liu, Cui; Li, Yunchuan; Liang, Jiyuan; Liu, Jiyan; Qian, Tonghui; Ding, Jianjun; Cao, Yuan-Cheng

    2016-11-21

    Urethane acrylate (UA) was used to prepare carbon quantum dots (C-dots) luminescent membranes and the resultants were examined with FT-IR, mechanical strength, scanning electron microscope (SEM) and quantum yields (QYs). FT-IR results showed the polyurethane acrylate (PUA) prepolymer -C = C-vibration at 1101 cm(-1) disappeared but there was strong vibration at1687cm(-1) which was contributed from the-C = O groups in cross-linking PUA. Mechanical strength results showed that the different quantity of C-dots loadings and UV-curing time affect the strength. SEM observations on the cross-sections of the membranes are uniform and have no structural defects, which prove that the C-dots are compatible with the water-soluble PUA resin. The C-dot loading was increased from 0 to 1 g, the maximum tensile stress was nearly 2.67 MPa, but the tensile strain was decreased from 23.4% to 15.1% and 7.2% respectively. QYs results showed that the C-dots in the membrane were stable after 120 h continuous irradiation. Therefore, the C-dots photoluminescent film is the promising material for the flexible devices in the future applications.

  18. Middle School Organization and Scheduling.

    ERIC Educational Resources Information Center

    McGinley, Nancy J.

    The major purpose of this report is to present information about the organization of middle schools in the school district of Philadelphia. The report includes: (1) summary information on rostering/scheduling practices; and (2) comparisons of promotion/retention rates, average daily attendance, and suspension rates in middle schools with different…

  19. Ultrahigh-Speed Electrically Injected 1.55 micrometer Quantum Dot Microtube and Nanowire Lasers on Si

    DTIC Science & Technology

    2015-08-30

    Standard Form 298 (Rev 8/98) Prescribed by ANSI Std. Z39.18 514-398-7114 W911NF-12-1-0477 62606-EL.13 Final Report a. REPORT 14. ABSTRACT 16...PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 5c. PROGRAM ELEMENT NUMBER 5b. GRANT NUMBER 5a. CONTRACT NUMBER Form Approved OMB NO. 0704...failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE

  20. New radiometric ages for the BH-1 hominin from Balanica (Serbia): implications for understanding the role of the Balkans in Middle Pleistocene human evolution.

    PubMed

    Rink, William J; Mercier, Norbert; Mihailović, Dušan; Morley, Mike W; Thompson, Jeroen W; Roksandic, Mirjana

    2013-01-01

    Newly obtained ages, based on electron spin resonance combined with uranium series isotopic analysis, and infrared/post-infrared luminescence dating, provide a minimum age that lies between 397 and 525 ka for the hominin mandible BH-1 from Mala Balanica cave, Serbia. This confirms it as the easternmost hominin specimen in Europe dated to the Middle Pleistocene. Inferences drawn from the morphology of the mandible BH-1 place it outside currently observed variation of European Homo heidelbergensis. The lack of derived Neandertal traits in BH-1 and its contemporary specimens in Southeast Europe, such as Kocabaş, Vasogliano and Ceprano, coupled with Middle Pleistocene synapomorphies, suggests different evolutionary forces acting in the east of the continent where isolation did not play such an important role during glaciations.

  1. A New Middle East? A Report of FPRI's History Institute for Teachers. Footnotes. Volume 10, Number 1

    ERIC Educational Resources Information Center

    Kuehner, Trudy J.

    2005-01-01

    Understanding the current conflicts and political changes in the Middle East us important for American educators if American students are to understand the dynamics of the region. To discuss these issues, FPRI held its 12th History Institute for Teachers on October 16-17, 2004. Forty teachers from 15 states attended the weekend program at the…

  2. Spectral response of the intrinsic region of a GaAs-InAs quantum dot solar cell considering the absorption spectra of ideal cubic dots

    NASA Astrophysics Data System (ADS)

    Biswas, Sayantan; Chatterjee, Avigyan; Biswas, Ashim Kumar; Sinha, Amitabha

    2016-10-01

    Recently, attempts have been made by some researchers to improve the efficiency of quantum dot solar cells by incorporating different types of quantum dots. In this paper, the photocurrent density has been obtained considering the absorption spectra of ideal cubic dots. The effects of quantum dot size dispersion on the spectral response of the intrinsic region of a GaAs-InAs quantum dot solar cell have been studied. The dependence of the spectral response of this region on the size of quantum dots of such solar cell has also been investigated. The investigation shows that for smaller quantum dot size dispersion, the spectral response of the intrinsic region of the cell increases significantly. It is further observed that by enlarging the quantum dot size it is possible to enhance the spectral response of such solar cells as it causes better match between absorption spectra of the quantum dots and the solar spectrum. These facts indicate the significant role of quantum dot size and size dispersion on the performance of such devices. Also, the power conversion efficiency of such solar cell has been studied under 1 sun, AM 1.5 condition.

  3. Quantum Dot Sensitized Photoelectrodes

    PubMed Central

    Macdonald, Thomas J.; Nann, Thomas

    2011-01-01

    Quantum Dots (QDs) are promising alternatives to organic dyes as sensitisers for photocatalytic electrodes. This review article provides an overview of the current state of the art in this area. More specifically, different types of QDs with a special focus on heavy-metal free QDs and the methods for preparation and adsorption onto metal oxide electrodes (especially titania and zinc oxide) are discussed. Eventually, the key areas of necessary improvements are identified and assessed.

  4. Multinuclear magnetic resonance studies of the 2Feter dot 2S sup * ferredoxin from Anabaena species strain PCC 7120. 1. Sequence-specific hydrogen-1 resonance assignments and secondary structure in solution of the oxidized form

    SciTech Connect

    Oh, Byung-Ha; Markley, J.L. )

    1990-04-24

    Complete sequence-specific assignments were determined for the diamagnetic {sup 1}H resonances from Anabaena 7120 ferredoxin. A novel assignment procedure was followed whose first step was the identification of the {sup 13}C spin systems of the amino acids by a {sup 13}C({sup 13}C) double quantum correlation experiment. Then, the {sup 1}H spin systems of the amino acids were identified from the {sup 13}C spin systems by means of direct and relayed {sup 1}H({sup 13}C) single-bond correlations. The sequential resonance assignments were based mainly on conventional interresidue {sup 1}H{sup {alpha}}{sub i}-{sup 1}H{sup N}{sub i+1} NOE connectivities. Resonances from 18 residues were not resolved in two-dimensional {sup 1}H NMR spectra. When these residues were mapped onto the X-ray crystal structure of the homologous ferredoxin from Spirulina platensis, it was found that they correspond to amino acids close to the paramagnetic 2Fe{center dot}2S cluster. Cross peaks in two-dimensional homonuclear {sup 1}H NMR spectra were not observed for any protons closer than about 7.8 {angstrom} to both iron atoms. Secondary structural features identified in solution include two antiparallel {beta}-sheets, one parallel {beta}-sheet, and one {alpha}-helix.

  5. Amphoteric CdSe nanocrystalline quantum dots.

    PubMed

    Islam, Mohammad A

    2008-06-25

    The nanocrystal quantum dot (NQD) charge states strongly influence their electrical transport properties in photovoltaic and electroluminescent devices, optical gains in NQD lasers, and the stability of the dots in thin films. We report a unique electrostatic nature of CdSe NQDs, studied by electrophoretic methods. When we submerged a pair of metal electrodes, in a parallel plate capacitor configuration, into a dilute solution of CdSe NQDs in hexane, and applied a DC voltage across the pair, thin films of CdSe NQDs were deposited on both the positive and the negative electrodes. Extensive characterizations including scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier transform infrared (FTIR) and Raman studies revealed that the films on both the positive and the negative electrodes were identical in every respect, clearly indicating that: (1) a fraction (<1%) of the CdSe NQDs in free form in hexane solution are charged and, more importantly, (2) there are equal numbers of positive and negative CdSe NQDs in the hexane solution. Experiments also show that the number of deposited dots is at least an order of magnitude higher than the number of initially charged dots, indicating regeneration. We used simple thermodynamics to explain such amphoteric nature and the charging/regeneration of the CdSe NQDs.

  6. Evaluation of the Interleukin-1 Receptor Antagonist and Immunoregulatory Interleukin-10 in the Middle Ear in Chronic Otitis Media With Effusion in Children With and Without Atopy

    PubMed Central

    Zielnik-Jurkiewicz, Beata; Stankiewicz-Szymczak, Wanda

    2016-01-01

    Objectives The role of pro-inflammatory cytokines in the course of chronic otitis media with effusion (COME) has been documented. However, there are fewer studies on the action of anti-inflammatory cytokines in the middle ear. We sought determine whether there is an association between COME and anti-inflammatory cytokines and whether there are any differences in the cytokine profile in COME children with and without atopy. Methods Eighty-four children were divided into 3 groups: 32 nonatopic children with COME (group NA), 31 atopic children with COME (group A), and 21 children without COME and without atopy (control group C). Specimens from the middle ear were collected and evaluated by enzyme-linked immunosorbent assay for the cytokines interleukin-1 receptor antagonist (IL-1Ra) and immunoregulatory IL-10. Results Significantly higher IL-10 concentrations were found in both nonatopic and atopic children with COME compared to controls. No significant differences in IL-1Ra levels were found between atopic and nonatopic children with COME and the control group. Conclusion We found no differences in the levels of IL-1Ra in atopic and nonatopic children with COME compared to controls. However, we found elevated IL-10 levels in the middle ear effusions from children with COME, with or without atopy. These elevated immunoregulatory cytokine levels suggest a role for new immunomodulatory treatments to prevent disease progression in COME, regardless of atopy. PMID:27090281

  7. Suppression of low-frequency charge noise in gates-defined GaAs quantum dots

    SciTech Connect

    You, Jie; Li, Hai-Ou E-mail: gpguo@ustc.edu.cn; Wang, Ke; Cao, Gang; Song, Xiang-Xiang; Xiao, Ming; Guo, Guo-Ping E-mail: gpguo@ustc.edu.cn

    2015-12-07

    To reduce the charge noise of a modulation-doped GaAs/AlGaAs quantum dot, we have fabricated shallow-etched GaAs/AlGaAs quantum dots using the wet-etching method to study the effects of two-dimensional electron gas (2DEG) underneath the metallic gates. The low-frequency 1/f noise in the Coulomb blockade region of the shallow-etched quantum dot is compared with a non-etched quantum dot on the same wafer. The average values of the gate noise are approximately 0.5 μeV in the shallow-etched quantum dot and 3 μeV in the regular quantum dot. Our results show the quantum dot low-frequency charge noise can be suppressed by the removal of the 2DEG underneath the metallic gates, which provides an architecture for noise reduction.

  8. Synthesis, properties, and crystal structure of barium 1-oxyethylidenediphosphonatohydroxogermanate(IV) polyhydrate Ba{sub 3}[Ge({mu}-OH)({mu}-Oedph)]{sub 6} {center_dot} 25H{sub 2}O

    SciTech Connect

    Sergienko, V. S.; Seifullina, I. I.; Martsinko, E. E.; Ilyukhin, A. B.

    2013-03-15

    The barium salt of 1-oxyethylidenediphosphonatohydroxogermanium acid Ba{sub 3}[Ge({mu}-OH)({mu}-Oedph)]{sub 6} {center_dot} 25H{sub 2}O (I) (H{sub 4}Oedph is 1-oxyethylidenediphosphonic acid) was synthesized and studied by X-ray diffraction. The complex was characterized by elemental analysis, thermogravimetry, and IR spectroscopy. The hexanuclear cyclic complex anions [Ge({mu}-OH)({mu}-Oedph)]{sub 6}{sup 6-t-}] cations, and water molecules of crystallization are the structural units of the crystal of I.

  9. Reliability of 1-Repetition Maximum Estimation for Upper and Lower Body Muscular Strength Measurement in Untrained Middle Aged Type 2 Diabetic Patients

    PubMed Central

    Abdul-Hameed, Unaise; Rangra, Prateek; Shareef, Mohd. Yakub; Hussain, Mohd. Ejaz

    2012-01-01

    Purpose The 1-repetition maximum (1-RM) test is the gold standard test for evaluating maximal dynamic strength of groups of muscles. However, safety of actual 1-RM testing is questionable in clinical situations such as type 2 diabetes (T2D), where an estimated 1-RM test is preferred. It is unclear if acceptable test retest reliability exists for the estimated 1-RM test in middle aged T2D patients. This study examined the reliability of the estimated 1-RM strength test in untrained middle aged T2D subjects. Methods Twenty five untrained diabetic males (n=19) and females (n=6) aged 40.7+0.4 years participated in the study. Participants undertook the first estimated 1-RM test for five exercises namely supine bench press, leg press, lateral pull, leg extension and seated biceps curls. A familiarisation session was provided three to five days before the first test. 1-RM was estimated for all participants by Brzycki 1-RM prediction equation. Another identical 1-RM estimation procedure occurred one week after first test. Intraclass correlation coefficients (ICC), paired t-test, standard error of measurement (SEM), Bland-Altman plots, and estimation of 95% CI were used to assess reliability. Results Test-retest reliability was excellent (ICC2,1=0.98-0.99) for all measurements with the highest for leg extension (ICC2,1=0.99). The SEM was lowest for lateral pull and leg extension exercises. Paired t-tests showed non-significant differences between the means of 2 sessions across three of five exercises. Conclusions The study findings suggest that estimation of 1-RM is reliable for upper and lower body muscular strength measurement in untrained middle aged T2D patients. PMID:23342225

  10. 15 Gb/s index-coupled distributed-feedback lasers based on 1.3 μm InGaAs quantum dots

    SciTech Connect

    Stubenrauch, M. Stracke, G.; Arsenijević, D.; Bimberg, D.; Strittmatter, A.

    2014-07-07

    The static properties and large-signal modulation capabilities of directly modulated p-doped quantum-dot distributed-feedback lasers are presented. Based on pure index gratings the devices exhibit a side-mode-suppression ratio of 58 dB and optical output powers up to 34 mW. Assisted by a broad gain spectrum, which is typical for quantum-dot material, emission wavelengths from 1290 nm to 1310 nm are covered by the transversal and longitudinal single-mode lasers fabricated from the same single wafer. Thus, these lasers are ideal devices for on-chip wavelength division multiplexing within the original-band according to the IEEE802.3ba standard. 10 Gb/s data transmission across 30 km of single mode fiber is demonstrated. The maximum error-free data rate is found to be 15 Gb/s.

  11. Synthesis, characterization and solid state electrical properties of 1-D coordination polymer of the type [Cu{sub x}Ni{sub 1-x}(dadb){center_dot}yH{sub 2}O]{sub n}

    SciTech Connect

    Prasad, R.L.; Kushwaha, A.; Shrivastava, O.N.

    2012-12-15

    New heterobimetallic complexes [Cu{sub x}Ni{sub 1-x}(dadb){center_dot}yH{sub 2}O]{sub n} {l_brace}where dadb=2,5-Diamino-3,6-dichloro-1,4-benzoquinone (1); x=1 (2), 0.5 (4), 0.25 (5), 0.125 (6), 0.0625 (7) and 0 (3); y=2; n=degree of polymerization{r_brace} were synthesized and characterized. Heterobimetallic complexes show normal magnetic moments, whereas, monometallic complexes exhibit magnetic moments less than the value due to spin only. Thermo-gravimetric analysis shows that degradation of the ligand dadb moiety is being controlled by the electronic environment of the Cu(II) ions in preference over Ni(II) in heterobimetallic complexes. Existence of the mixed valency/non-integral oxidation states of copper and nickel metal ions in the complex 4 has been attributed from magnetic moment and ESR spectral results. Solid state dc electrical conductivity of all the complexes was investigated. Monometallic complexes were found to be semiconductors, whereas heterobimetallic coordination polymer 4 was found to exhibit metallic behaviour. Existence of mixed valency/ non-integral oxidation state of metal ions seems to be responsible for the metallic behaviour. - Graphical abstract: Contrast to the semiconductor monometallic complexes 2 and 3, the heterobimetallic complex 4 exhibits metallic behaviour attributed to the mixed valency/non-integral oxidation state of the metal ions concluded from magnetic and ESR spectral studies. Highlights: Black-Right-Pointing-Pointer 1-D coordination compounds of the type Cu{sub x}Ni{sub 1-x}(dadb){center_dot}yH{sub 2}O were synthesized and characterized. Black-Right-Pointing-Pointer Thermal degradation of the complexes provides an indication of long range electronic communication between metal to ligand. Black-Right-Pointing-Pointer On inclusion of Ni(II) into 1-D coordination polymer of Cu(II). (a) Cu(II) and Ni(II) ions exhibit non-integral oxidation state. (b) resulting heterobimetallic complex 4 exhibits metallic behaviour at all

  12. Spin degeneracy and conductance fluctuations in open quantum dots.

    PubMed

    Folk, J A; Patel, S R; Birnbaum, K M; Marcus, C M; Duruöz, C I; Harris, J S

    2001-03-05

    The dependence of conductance fluctuations on parallel magnetic field is used as a probe of spin degeneracy in open GaAs quantum dots. The variance of fluctuations at high parallel field is reduced from the low-field variance (with broken time-reversal symmetry) by factors ranging from roughly 2 in a 1 microm (2) dot to greater than 4 in 8 microm (2) dots. The factor of 2 is expected for Zeeman splitting of spin-degenerate channels. A possible explanation for the larger suppression based on field-dependent spin-orbit scattering is proposed.

  13. Dielectrophoretic Manipulation and Separation of Microparticles Using Microarray Dot Electrodes

    PubMed Central

    Yafouz, Bashar; Kadri, Nahrizul Adib; Ibrahim, Fatimah

    2014-01-01

    This paper introduces a dielectrophoretic system for the manipulation and separation of microparticles. The system is composed of five layers and utilizes microarray dot electrodes. We validated our system by conducting size-dependent manipulation and separation experiments on 1, 5 and 15 μm polystyrene particles. Our findings confirm the capability of the proposed device to rapidly and efficiently manipulate and separate microparticles of various dimensions, utilizing positive and negative dielectrophoresis (DEP) effects. Larger size particles were repelled and concentrated in the center of the dot by negative DEP, while the smaller sizes were attracted and collected by the edge of the dot by positive DEP. PMID:24705632

  14. Secondary error analysis: The evaluation of analyst dot labeling

    NASA Technical Reports Server (NTRS)

    Havens, K. A. (Principal Investigator)

    1978-01-01

    The author has identified the following significant results. From this examination of 25 test segments using Al labeling and ground truth labeling, the PCC on type 1 dots was found to be signficantly better for both types of ground truth labeled procedures than the PCC obtained using Al labeling. No significant difference in the PCC was found for type 2 dots. However, in all three treatments, the type 2 dots included pixels which fell on boundaries or were mixed pixels. This accounted for all PCC2 values being equally low. The proportion estimates achieved in these classifications showed no significant differences between procedures.

  15. Optical properties of ionized donor-bound excitons confined in strained wurtzite ZnO/MgxZn1-xO quantum dots

    NASA Astrophysics Data System (ADS)

    Dongmei, Zheng; Zongchi, Wang; Boqi, Xiao

    2015-03-01

    Within the framework of the effective-mass approximation and the dipole approximation, considering the three-dimensional confinement of the electron and hole and the strong built-in electric field (BEF) in strained wurtzite ZnO/Mg0.25Zn0.75O quantum dots (QDs), the optical properties of ionized donor-bound excitons (D+, X) are investigated theoretically using a variational method. The computations are performed in the case of finite band offset. Numerical results indicate that the optical properties of (D+, X) complexes sensitively depend on the donor position, the QD size and the BEF. The binding energy of (D+, X) complexes is larger when the donor is located in the vicinity of the left interface of the QDs, and it decreases with increasing QD size. The oscillator strength reduces with an increase in the dot height and increases with an increase in the dot radius. Furthermore, when the QD size decreases, the absorption peak intensity shows a marked increment, and the absorption coefficient peak has a blueshift. The strong BEF causes a redshift of the absorption coefficient peak and causes the absorption peak intensity to decrease remarkably. The physical reasons for these relationships have been analyzed in depth. Project supported by the National Natural Science Foundation for Young Scientists of China (No. 11102100), the Program for New Century Excellent Talents in Fujian Province University (No. JA14285) and the Program for Young Top-Notch Innovative Talents of Fujian Province of China.

  16. [Trematodes of birds (Aves) from the Middle Volga region. 1. Orders Brachylaimidae, Cyclocoelida, Echinostomatida, Notocotylida, and Opisthorchiida].

    PubMed

    Kirillov, A A; Kitillova, N Iu

    2013-01-01

    The data on trematodes of the orders Brachylaimidae, Cyclocoelida, Echinostomatida, Notocotylida, and Opisthorchiida from the Middle Volga region are given. Records of different authors are supplemented with the results of our own research. Reliable records are confirmed for 61 trematode species. The following characteristics for each parasite species are given: the systematic position, the host spectrum, locality, collecting sites, biology, degree of host specificity, and the geographical range. Morphological descriptions and original figures of 3 trematodes species are given.

  17. Theoretical issues in silicon quantum dot qubits

    NASA Astrophysics Data System (ADS)

    Koh, Teck Seng

    Electrically-gated quantum dots in semiconductors is an excellent architecture on which to make qubits for quantum information processing. Silicon is attractive because of the potential for excellent manipulability, scalability, and for integration with classical electronics. This thesis describes several aspects of the theoretical issues related to quantum dot qubits in silicon. It may be broadly divided into three parts — (1) the hybrid qubit and quantum gates, (2) decoherence and (3) charge transport. In the first part, we present a novel architecture for a double quantum dot spin qubit, which we term the hybrid qubit, and demonstrate that implementing this qubit in silicon is feasible. Next, we consider both AC and DC quantum gating protocols and compare the optimal fidelities for these protocols that can be achieved for both the hybrid qubit and the more traditional singlet-triplet qubit. In the second part, we present evidence that silicon offers superior coherence properties by analyzing experimental data from which charge dephasing and spin relaxation times are extracted. We show that the internal degrees of freedom of the hybrid qubit enhance charge coherence, and demonstrate tunable spin loading of a quantum dot. In the last part, we explain three key features of spin-dependent transport — spin blockade, lifetime-enhanced transport and spin-flip cotunneling. We explain how these features arise in the conventional two-electron as well as the unconventional three-electron regimes, using a theoretical model that captures the key characteristics observed in the data.

  18. Natural carbon-based dots from humic substances

    NASA Astrophysics Data System (ADS)

    Dong, Yongqiang; Wan, Lisi; Cai, Jianhua; Fang, Qingqing; Chi, Yuwu; Chen, Guonan

    2015-05-01

    For the first time, abundant natural carbon-based dots were found and studied in humic substances (HS). Four soluble HS including three humic acids (HA) from different sources and one fulvic acids (FA) were synthetically studied. Investigation results indicate that all the four HS contain large quantities of Carbon-based dots. Carbon-based dots are mainly small-sized graphene oxide nano-sheets or oxygen-containing functional group-modified graphene nano-sheets with heights less than 1 nm and lateral sizes less than 100 nm. Carbon-based nanomaterials not only contain abundant sp2-clusters but also a large quantity of surface states, exhibiting unique optical and electric properties, such as excitation-dependent fluorescence, surface states-originated electrochemiluminescence, and strong electron paramagnetic resonance. Optical and electric properties of these natural carbon-based dots have no obvious relationship to their morphologies, but affected greatly by their surface states. Carbon-based dots in the three HS have relative high densities of surface states whereas the FA has the lowest density of surface states, resulting in their different fluorescence properties. The finding of carbon-based dots in HS provides us new insight into HS, and the unique optical properties of these natural carbon-based dots may give HS potential applications in areas such as bio-imaging, bio-medicine, sensing and optoelectronics.

  19. Art[middle dot]I/f/act[middle dot]ology: Curricular Artifacts in Autoethnographic Research

    ERIC Educational Resources Information Center

    Brogden, Lace Marie

    2008-01-01

    Contemporary curriculum theorists conceptualize curriculum, schooling, and the teacher as sites of discursive production and as dwelling places for theory. Drawing on memory work around childhood report cards, this article uses commonplace artifacts to reassemble autoethnographic memory. In sifting through memories and artifacts, the author…

  20. Artificial photosynthesis of C1-C3 hydrocarbons from water and CO2 on titanate nanotubes decorated with nanoparticle elemental copper and CdS quantum dots.

    PubMed

    Park, Hyunwoong; Ou, Hsin-Hung; Colussi, Agustín J; Hoffmann, Michael R

    2015-05-14

    The conversion of CO2 and water into value-added fuels with visible light is difficult to achieve in inorganic photocatalytic systems. However, we synthesized a ternary catalyst, CdS/(Cu-TNTs), which is assembled on a core of sodium trititanate nanotubes (TNTs; NaxH2-xTi3O7) decorated with elemental copper deposits followed by an overcoat of CdS quantum dot deposits. This ternary photocatalyst is capable of catalyzing the conversion of CO2 and water into C1-C3 hydrocarbons (e.g., CH4, C2H6, C3H8, C2H4, C3H6) upon irradiation with visible light above 420 nm. With this composite photocatalyst, sacrificial electron donors are not required for the photoreduction of CO2. We have shown that water is the principal photoexcited-state electron donor, while CO2 bound to the composite surface serves as the corresponding electron acceptor. If the photochemical reaction is carried out under an atmosphere of 99.9% (13)CO2, then the product hydrocarbons are built upon a (13)C backbone. However, free molecular H2 is not observed over 5 h of visible light irradiation even though proton reduction in aqueous solution is thermodynamically favored over CO2 reduction. In terms of photocatalytic efficiency, the stoichiometric fraction of Na(+) in TNTs appears to be an important factor that influences the formation of the observed hydrocarbons. The coordination of CO2 to surface exchange sites on the ternary catalyst leads to the formation of surface-bound CO2 and related carbonate species. It appears that the bidentate binding of O═C═O to certain reactive surface sites reduces the energy barrier for conduction band electron transfer to CO2. The methyl radical (CH3(•)), an observed intermediate in the reaction, was positively identified using an ESR spin trapping probe molecule. The copper deposits on the surface of TNTs appear to play a major role in the transient trapping of methyl radical, which in turn self-reacts to produce ethane.

  1. Middle Level Education: An Annotated Bibliography.

    ERIC Educational Resources Information Center

    Totten, Samuel; And Others

    Developed as a reference tool for teachers, administrators, researchers, parents, and others interested in middle level education, this annotated bibliography of 1,757 entries focuses on practical aspects of middle level education and on research related to adolescence and middle level practices. Following an introduction and discussion of…

  2. Carbon nanotube quantum dots as highly sensitive THz spectrometers

    NASA Astrophysics Data System (ADS)

    Rinzan, Mohamed; Jenkins, Greg; Drew, Dennis; Shafranjuk, Serhii; Barbara, Paola

    2012-02-01

    We show that carbon nanotube quantum dots (CNT-Dots) coupled to antennas are extremely sensitive, broad-band, terahertz quantum detectors. Their response is due to photon-assisted single-electron tunneling (PASET)[1], but cannot be fully understood with orthodox PASET models[2]. We consider intra-dot excitations and non-equilibrium cooling to explain the anomalous response. REFERENCES: [1] Y. Kawano, S. Toyokawa, T. Uchida and K. Ishibashi, THz photon assisted tunneling in carbon-nanotube quantum dots, Journal of Applied Physics 103, 034307 (2008). [2] P. K. Tien and J. P. Gordon, Multiphoton Process Observed in the Interaction of Microwave Fields with the Tunneling between Superconductor Films, Phys. Rev. 129, 647 (1963).

  3. Fabrication of Protein Dot Arrays via Particle Lithography

    PubMed Central

    Taylor, Zachary R.; Patel, Krupa; Spain, Travis; Keay, Joel C.; Jernigen, Jeremy D.; Sanchez, Ernest S.; Grady, Brian P.; Johnson, Matthew B.; Schmidtke, David W.

    2009-01-01

    The ability to pattern a surface with proteins on both the nanometer and micrometer scale has attracted considerable interest due to its applications in the fields of biomaterials, biosensors, and cell adhesion. Here we describe a simple particle lithography technique to fabricate substrates with hexagonally patterned dots of protein surrounded by a protein-repellant layer of poly(ethylene glycol) (PEG). Using this bottom-up approach, dot arrays of three different proteins (fibrinogen, P-selectin, and human serum albumin) were fabricated. The size of the protein dots (450 nm - 1.1 μm) was independent of the protein immobilized, but could be varied by changing the size of the latex spheres (diameter = 2 - 10 μm) utilized in assembling the lithographic bead monolayer. These results suggest that this technique can be extended to other biomolecules and will be useful in applications where arrays of protein dots are desired. PMID:19670836

  4. Frontal Gray Matter Atrophy in Middle Aged Adults with Type 1 Diabetes is Independent of Cardiovascular Risk Factors and Diabetes Complications

    PubMed Central

    Hughes, Timothy M.; Ryan, Christopher M.; Aizenstein, Howard J.; Nunley, Karen; Gianaros, Peter J.; Miller, Rachel; Costacou, Tina; Strotmeyer, Elsa S.; Orchard, Trevor J.; Rosano, Caterina

    2013-01-01

    Aims To determine if regional gray matter volume (GMV) differences in middle-aged adults with and without type-1 diabetes (T1D) are localized in areas most vulnerable to aging, e.g. fronto-subcortical networks; and if these differences are explained by cardiovascular risk factors and diabetes complications. Methods Regional GMV was computed using 3 Tesla MRI of 104 adults with a childhood onset of T1D (mean age: 49+7 and duration: 41±6 years) and 151 adults without diabetes (mean age: 40+6). A Bonferroni threshold (n=45, p≤0.001) was applied to account for multiple between-group comparisons and analyses were repeated in an age- and gender-matched subset of participants with T1D and controls (n=44 in each group, mean age [SD] and range: 44.0, [4.3], 17.4 and 44.6 [4.3], 17.0, respectively). Results Compared to controls, T1D patients had smaller GMV in the frontal lobe (6 to 19% smaller) and adjacent supramarginal and postcentral gyri (8 to 13% smaller). Between-group differences were independent of age, waist circumference, systolic blood pressure, fasting total cholesterol and smoking status and were similar in sensitivity analyses restricted to age- and gender-matched participants. Associations between GMV and diabetes complications were not significant. Conclusions These findings extend the notion of accelerated brain aging in T1D to middle-aged adults. The pathophysiology of frontal gray matter atrophy and its impact on future development of disability and dementia need further study, especially as middle-aged T1D patients progress to older age. PMID:23994432

  5. A strategy to boost the cell performance of CdSexTe1-x quantum dot sensitized solar cells over 8% by introducing Mn modified CdSe coating layer

    NASA Astrophysics Data System (ADS)

    Wang, Guoshuai; Wei, Huiyun; Luo, Yanhong; Wu, Huijue; Li, Dongmei; Zhong, Xinhua; Meng, Qingbo

    2016-01-01

    CdSexTe1-x alloyed colloidal quantum dots show great potential application on quantum dot-sensitized solar cells (QDSCs) due to its relatively wide light absorption range and high chemical stability. In this respect, a thin Mn modified CdSe layer is introduced into TiO2/CdSexTe1-x alloyed QDs surface via a simple chemical bath deposition method (CBD) in order to further improve the cell performance. The power conversion efficiency of CdSexTe1-x QDSCs has been improved to 8.14%. Detailed investigation on the influence of this modification toward the TiO2/CdSexTe1-x interface on the cell performance reveals that introduction of Mn into CdSe QDs is found to facilitate the Mn-doped CdSe deposition and improve the light absorption of the device. In the meantime, the existence of the (Mn-)CdSe layer can also work as a passivation layer to reduce charge recombination.

  6. Scanning Quantum Dot Microscopy

    NASA Astrophysics Data System (ADS)

    Wagner, Christian; Green, Matthew F. B.; Leinen, Philipp; Deilmann, Thorsten; Krüger, Peter; Rohlfing, Michael; Temirov, Ruslan; Tautz, F. Stefan

    2015-07-01

    We introduce a scanning probe technique that enables three-dimensional imaging of local electrostatic potential fields with subnanometer resolution. Registering single electron charging events of a molecular quantum dot attached to the tip of an atomic force microscope operated at 5 K, equipped with a qPlus tuning fork, we image the quadrupole field of a single molecule. To demonstrate quantitative measurements, we investigate the dipole field of a single metal adatom adsorbed on a metal surface. We show that because of its high sensitivity the technique can probe electrostatic potentials at large distances from their sources, which should allow for the imaging of samples with increased surface roughness.

  7. Tailoring Magnetism in Quantum Dots

    NASA Astrophysics Data System (ADS)

    Zutic, Igor; Abolfath, Ramin; Hawrylak, Pawel

    2007-03-01

    We study magnetism in magnetically doped quantum dots as a function of particle numbers, temperature, confining potential, and the strength of Coulomb interaction screening. We show that magnetism can be tailored by controlling the electron-electron Coulomb interaction, even without changing the number of particles. The interplay of strong Coulomb interactions and quantum confinement leads to enhanced inhomogeneous magnetization which persists at substantially higher temperatures than in the non-interacting case or in the bulk-like dilute magnetic semiconductors. We predict a series of electronic spin transitions which arise from the competition between the many-body gap and magnetic thermal fluctuations. Cond-mat/0612489. [1] R. Abolfath, P. Hawrylak, I. Zuti'c, preprint.

  8. Silicon/silicon-germanium quantum dot spin qubits

    NASA Astrophysics Data System (ADS)

    Simmons, Christine B.

    Gate-defined quantum dots are tunable devices that are capable of trapping individual electrons. This thesis presents measurements of gate-defined quantum dots formed in Si/SiGe semiconductor heterostuctures. The motivation for this work is the development of a solid state electron spin qubit for quantum information processing. The fundamental properties of silicon make it an attractive option for spin qubit development, because electron spins are weakly coupled to the material. In particular, the coherence time for electron spins in silicon is expected to be long because of relatively weak spin-orbit coupling and the natural abundance of 28Si, a spin-zero nuclear isotope. The results presented in this thesis demonstrate significant advances in the manipulation and measurement of electrons in Si/SiGe quantum dots, including the first demonstration of a single electron quantum dot. An integrated quantum point contact is utilized as a local sensor to detect charge transitions on the neighboring quantum dot and to determine the absolute number of electrons on the dot. Gated control of the dot tunnel barriers enables tuning of the tunnel coupling to the leads and to other dots. Careful tuning of the tunnel rate to the leads in combination with fast, pulsed-gate manipulation of individual electrons enables a spectroscopy technique to identify electronic excited states. Using this technique, the Zeeman split spin qubit levels were observed. A 3-level voltage pulse sequence was utilized to perform single-shot readout of the spin state of individual electrons, to demonstrate tunable spin-selective loading, and to measure the spin relaxation time T1 . Double quantum dots are important for achieving two-qubit operations. Here, charge sensing measurements on a double dot are demonstrated. Analysis of the interdot transfer of a single electron is used to measure the tunnel coupling between the dots, and control of a single gate voltage is used to tune this coupling by over an

  9. Feasibility of the Pharmacy DOTS System in Nagasaki Prefecture.

    PubMed

    Hamada, Yukari; Nakao, Rieko; Ohnishi, Mayumi

    2016-01-01

    Objective This study aimed to investigate the preparedness of pharmacies to provide DOTS in Nagasaki Prefecture, Japan, and to analyze the feasibility of this system with a view toward providing a basis for future administrative studies to consider its adoption.Methods A self-administered mail questionnaire survey was conducted, involving the owners (mostly pharmacists) of 533 pharmacies belonging to designated medical institutions for tuberculosis treatment in Nagasaki Prefecture, seeking information on the following: 1) respondent attributes, 2) pharmacy-related information, 3) experience of participating in tuberculosis-related academic meetings, 4) recognition of DOTS and desire to cooperate with the pharmacy DOTS system and participate in related workshops, and 5) challenges and requirements of the provision of DOTS at pharmacies. Responses were analyzed using the chi-square test, focusing on factors related to the respondents' desire to cooperate with the pharmacy DOTS system and participate in related workshops. The significance level was set at P<0.05.Results On analyzing 212 valid responses (valid response rate: 39.8%), "participating in academic meetings or related workshops", "supporting patients with tuberculosis", "recognizing DOTS", "recognizing the pharmacy DOTS system", "calculating additional medical fees for standard dispensing", and "establishing community liaison systems" were significantly correlated with "wishing to cooperate with the pharmacy DOTS system". Furthermore, age under 50, in addition to "participating in academic meetings or related workshops", "supporting patients with tuberculosis", "recognizing DOTS", "recognizing the pharmacy DOTS system", "calculating additional medical fees for standard dispensing", and "establishing community liaison systems" were significantly correlated with "wishing to participate in related workshops". More than 60% and 50% of the respondents mentioned "tuberculosis-related knowledge and

  10. Enhanced photoluminescence and characterization of multicolor carbon dots using plant soot as a carbon source.

    PubMed

    Tan, Mingqian; Zhang, Lingxin; Tang, Rong; Song, Xiaojie; Li, Yimin; Wu, Hao; Wang, Yanfang; Lv, Guojun; Liu, Wanfa; Ma, Xiaojun

    2013-10-15

    Carbon dots (C-dots) are a class of novel fluorescent nanomaterials, which have drawn great attention for their potential applications in bio-nanotechnology. Multicolor C-dots have been synthesized by chemical nitric acid oxidation using the reproducible plant soot as raw material. TEM analysis reveals that the prepared C-dots have an average size of 3.1 nm. The C-dots are well dispersed in aqueous solution and are strongly fluorescent under the irradiation of ultra-violet light. X-ray photoelectron spectroscopy characterization demonstrates that the O/C atomic ratio for C-dots change to from 0.207 to 0.436 due to the chemical oxidation process. The photo bleaching experiment reveals that the C-dots show excellent photostability as compared with the conventional organic dyes, fluorescein and rhodamine B. The fluorescence intensity of the C-dots did not change significantly in the pH range of 3-10. To further enhance the fluorescence quantum yield, the C-dots were surface modified with four types of passivation ligands, 4,7,10-trioxa-1,13-tridecanediamine (TTDDA), poly-L-lysine (PLL), cysteine and chitosan and the fluorescence quantum yields of the TTDDA, PLL, cysteine and chitosan passivated C-dots were improved 1.53-, 5.94-, 2.00- and 3.68-fold, respectively. Fourier-transform infrared (FTIR) spectra were employed to characterize the surface groups of the C-dots. The bio-application of the C-dots as fluorescent bio-probes was evaluated in cell imaging and ex vivo fish imaging, which suggests that the C-dots may have potential applications in biolabeling and bioimaging.

  11. Photoluminescence of patterned CdSe quantum dot for anti-counterfeiting label on paper

    NASA Astrophysics Data System (ADS)

    Isnaeni, Yulianto, Nursidik; Suliyanti, Maria Margaretha

    2016-03-01

    We successfully developed a method utilizing colloidal CdSe nanocrystalline quantum dot for anti-counterfeiting label on a piece of glossy paper. We deposited numbers and lines patterns of toluene soluble CdSe quantum dot using rubber stamper on a glossy paper. The width of line pattern was about 1-2 mm with 1-2 mm separation between lines. It required less than one minute for deposited CdSe quantum dot on glossy paper to dry and become invisible by naked eyes. However, patterned quantum dot become visible using long-pass filter glasses upon excitation of UV lamp or blue laser. We characterized photoluminescence of line patterns of quantum dot, and we found that emission boundaries of line patterns were clearly observed. The error of line size and shape were mainly due to defect of the original stamper. The emission peak wavelength of CdSe quantum dot was 629 nm. The emission spectrum of deposited quantum dot has full width at half maximum (FWHM) of 30-40 nm. The spectra similarity between deposited quantum dot and the original quantum dot in solution proved that our stamping method can be simply applied on glossy paper without changing basic optical property of the quantum dot. Further development of this technique is potential for anti-counterfeiting label on very important documents or objects.

  12. Ultrafast optical properties of lithographically defined quantum dot amplifiers

    SciTech Connect

    Miaja-Avila, L.; Verma, V. B.; Mirin, R. P.; Silverman, K. L.; Coleman, J. J.

    2014-02-10

    We measure the ultrafast optical response of lithographically defined quantum dot amplifiers at 40 K. Recovery of the gain mostly occurs in less than 1 picosecond, with some longer-term transients attributable to carrier heating. Recovery of the absorption proceeds on a much longer timescale, representative of relaxation between quantum dot levels and carrier recombination. We also measure transparency current-density in these devices.

  13. Resonant Scattering of Surface Plasmon Polaritons by Dressed Quantum Dots

    DTIC Science & Technology

    2014-06-23

    Resonant scattering of surface plasmon polaritons by dressed quantum dots Danhong Huang,1 Michelle Easter,2 Godfrey Gumbs,3 A. A. Maradudin,4 Shawn... polariton waves (SPP) by embedded semiconductor quantum dots above the dielectric/metal interface is explored in the strong-coupling regime. In con- trast to...induced polarization field, treated as a source term9 arising from photo-excited electrons, allows for a resonant scattering of surface plasmon- polariton

  14. Impact of rapid thermal annealing on dilute nitride (GaAsN)-capped InAs/GaAs quantum dots exhibiting optical emission beyond 1.5 μm

    NASA Astrophysics Data System (ADS)

    Biswas, M.; Balgarkashi, A.; Singh, S.; Shinde, N.; Makkar, R. L.; Bhatnagar, A.; Chakrabarti, Subhananda

    2016-09-01

    We report here self-assembled 2.6 ML InAs QDs capped with GaAsN0.021 on GaAs (001) substrate grown under high arsenic overpressure and high power by solid source molecular beam epitaxy. With variation in GaAsN0.021 layer thickness, InAs/GaAs QDs were studied by photoluminescence (PL) spectroscopy. It was found that with InAs dot density of 3 ×1010 cm-2 and 4 nm GaAsN capping layer, emission wavelength was possible to extend beyond 1.5 μm at 300K. Rapid thermal annealing was carried out in nitrogen ambient for 30 sec at temperatures ranging from 700°C to 800°C and a continuous blue-shift for the nitride-capped QDs was observed at 19 K PL spectra, and the sample annealed at 800°C exhibited highest intensity with narrowest full width at half maximum (FWHM). Both the as-grown and annealed samples exhibited asymmetric PL behavior in low energy region at low temperature, associated to the N-related states or cluster of N atoms. The peak emission wavelength at the annealing temperature domain of 750-800°C was remained constant, attributed to no In/Ga diffusion at the interface between the dot and the barrier. Hence, the InAs/GaAs dots capped with 4-nm GaAsN0.021 layer could be implemented in lasers in the temporal range of 750-800°C.

  15. Efficient quantum dot-quantum dot and quantum dot-dye energy transfer in biotemplated assemblies.

    PubMed

    Achermann, Marc; Jeong, Sohee; Balet, Laurent; Montano, Gabriel A; Hollingsworth, Jennifer A

    2011-03-22

    CdSe semiconductor nanocrystal quantum dots are assembled into nanowire-like arrays employing microtubule fibers as nanoscale molecular "scaffolds." Spectrally and time-resolved energy-transfer analysis is used to assess the assembly of the nanoparticles into the hybrid inorganic biomolecular structure. Specifically, we demonstrate that a comprehensive study of energy transfer between quantum dot pairs on the biotemplate and, alternatively, between quantum dots and molecular dyes embedded in the microtubule scaffold comprises a powerful spectroscopic tool for evaluating the assembly process. In addition to revealing the extent to which assembly has occurred, the approach allows determination of particle-to-particle (and particle-to-dye) distances within the biomediated array. Significantly, the characterization is realized in situ, without need for further sample workup or risk of disturbing the solution-phase constructs. Furthermore, we find that the assemblies prepared in this way exhibit efficient quantum dot-quantum dot and quantum dot-dye energy transfer that affords faster energy-transfer rates compared to densely packed quantum dot arrays on planar substrates and to small-molecule-mediated quantum dot-dye couples, respectively.

  16. New quantum dot sensors

    NASA Astrophysics Data System (ADS)

    Gun'ko, Y. K.; Moloney, M. M.; Gallagher, S.; Govan, J.; Hanley, C.

    2010-04-01

    Quantum dots (QDs) are fluorescent semiconductor (e.g. II-VI) nanocrystals, which have a strong characteristic spectral emission. This emission is tunable to a desired energy by selecting variable particle size, size distribution and composition of the nanocrystals. QDs have recently attracted enormous interest due to their unique photophysical properties and range of potential applications in photonics and biochemistry. The main aim of our work is develop new chiral quantum dots (QDs) and establish fundamental principles influencing their structure, properties and biosensing behaviour. Here we present the synthesis and characterisation of chiral CdSe semiconductor nanoparticles and their utilisation as new chiral biosensors. Penicillamine stabilised CdSe nanoparticles have shown both very strong and very broad luminescence spectra. Circular dichroism (CD) spectroscopy studies have revealed that the D- and Lpenicillamine stabilised CdSe QDs demonstrate circular dichroism and possess almost identical mirror images of CD signals. Studies of photoluminescence and CD spectra have shown that there is a clear relationship between defect emission and CD activity. We have also demonstrated that these new QDs can serve as fluorescent nanosensors for various chiral biomolecules including nucleic acids. These novel nanosensors can be potentially utilized for detection of various chiral biological and chemical species with the broad range of potential applications.

  17. Charge-extraction strategies for colloidal quantum dot photovoltaics

    NASA Astrophysics Data System (ADS)

    Lan, Xinzheng; Masala, Silvia; Sargent, Edward H.

    2014-03-01

    The solar-power conversion efficiencies of colloidal quantum dot solar cells have advanced from sub-1% reported in 2005 to a record value of 8.5% in 2013. Much focus has deservedly been placed on densifying, passivating and crosslinking the colloidal quantum dot solid. Here we review progress in improving charge extraction, achieved by engineering the composition and structure of the electrode materials that contact the colloidal quantum dot film. New classes of structured electrodes have been developed and integrated to form bulk heterojunction devices that enhance photocharge extraction. Control over band offsets, doping and interfacial trap state densities have been essential for achieving improved electrical communication with colloidal quantum dot solids. Quantum junction devices that not only tune the optical absorption spectrum, but also provide inherently matched bands across the interface between p- and n-materials, have proven that charge separation can occur efficiently across an all-quantum-tuned rectifying junction.

  18. Fabrication and optical properties of multishell InAs quantum dots on GaAs nanowires

    SciTech Connect

    Yan, Xin; Zhang, Xia Li, Junshuai; Cui, Jiangong; Ren, Xiaomin

    2015-02-07

    Hybrid nanostructures combining nanowires with quantum dots promote the development of nanoelectronic and nanophotonic devices with integrated functionalities. In this work, we present a complex nanostructure with multishell quantum dots grown on nanowires. 1–4 shells of Stranski-Krastanov InAs quantum dots are grown on the sidewalls of GaAs nanowires by metal organic chemical vapor deposition. Different dot shells are separated by 8 nm GaAs spacer shells. With increasing the number of shells, the quantum dots become sparser and tend to align in one array, which is caused by the shrinkage of facets on which dots prefer to grow as well as the strain fields produced by the lower set of dots which influences the migration of In adatoms. The size of quantum dots increases with the increase of shell number due to enhanced strain fields coupling. The spectra of multishell dots exhibit multiwavelength emission, and each peak corresponds to a dot shell. This hybrid structure may serve as a promising element in nanowire intermediate band solar cells, infrared nanolasers, and photodetectors.

  19. A self-assembled quantum dot probe for detecting {beta}-lactamase activity

    SciTech Connect

    Xu Chenjie; Xing Bengang; Rao Jianghong . E-mail: jrao@stanford.edu

    2006-06-09

    This communication describes a quantum dot probe that can be activated by a reporter enzyme, {beta}-lactamase. Our design is based on the principle of fluorescence resonance energy transfer (FRET). A biotinylated {beta}-lactamase substrate was labeled with a carbocyanine dye, Cy5, and immobilized on the surface of quantum dots through the binding of biotin to streptavidin pre-coated on the quantum dots. In assembling this nanoprobe, we have found that both the distance between substrates and the quantum dot surface, and the density of substrates are important for its function. The fluorescence emission from quantum dots can be efficiently quenched (up to 95%) by Cy5 due to FRET. Our final quantum dot probe, assembled with QD605 and 1:1 mixture of biotin and a Cy5-labeled lactam, can be activated by 32 {mu}g/mL of {beta}-lactamase with 4-fold increase in the fluorescence emission.

  20. A reconfigurable gate architecture for Si/SiGe quantum dots

    SciTech Connect

    Zajac, D. M.; Hazard, T. M.; Mi, X.; Wang, K.; Petta, J. R.

    2015-06-01

    We demonstrate a reconfigurable quantum dot gate architecture that incorporates two interchangeable transport channels. One channel is used to form quantum dots, and the other is used for charge sensing. The quantum dot transport channel can support either a single or a double quantum dot. We demonstrate few-electron occupation in a single quantum dot and extract charging energies as large as 6.6 meV. Magnetospectroscopy is used to measure valley splittings in the range of 35–70 μeV. By energizing two additional gates, we form a few-electron double quantum dot and demonstrate tunable tunnel coupling at the (1,0) to (0,1) interdot charge transition.

  1. 1.55-μm mode-locked quantum-dot lasers with 300 MHz frequency tuning range

    SciTech Connect

    Sadeev, T. Arsenijević, D.; Bimberg, D.; Franke, D.; Kreissl, J.; Künzel, H.

    2015-01-19

    Passive mode-locking of two-section quantum-dot mode-locked lasers grown by metalorganic vapor phase epitaxy on InP is reported. 1250-μm long lasers exhibit a wide tuning range of 300 MHz around the fundamental mode-locking frequency of 33.48 GHz. The frequency tuning is achieved by varying the reverse bias of the saturable absorber from 0 to −2.2 V and the gain section current from 90 to 280 mA. 3 dB optical spectra width of 6–7 nm leads to ex-facet optical pulses with full-width half-maximum down to 3.7 ps. Single-section quantum-dot mode-locked lasers show 0.8 ps broad optical pulses after external fiber-based compression. Injection current tuning from 70 to 300 mA leads to 30 MHz frequency tuning.

  2. Multi-excitonic (N=1,2 and 3) quantum dots in magnetic field: Analytical mapping of correlations (exchange) by multipole expansion

    NASA Astrophysics Data System (ADS)

    Singh, Sunny; Kaur, Harsimran; Sharma, Shivalika; Aggarwal, Priyanka; Hazra, Ram Kuntal

    2017-04-01

    The understanding of the physics of exciton, bi-exciton, tri-exciton and the subsequent insight into controlling the properties of mesoscopic systems holds the key to various exotic optical, electrical and magnetic phenomena like superconductivity, Mott insulation, Quantum Hall effect etc. Many of exciton properties are similar to atomic hydrogen that attracts researchers to explore electronic structure of exciton in quantum dots, but nontriviality arises due to coulombic interactions among electrons and holes. We propose an exact integral of coulomb (exchange) correlation in terms of finitely summed Lauricella functions to examine 3-D exciton of harmonic dots confined in zero and non-zero arbitrary magnetic field. The highlight of our work is the use of exact variational solution for coloumbic interaction between the hole and the electron and evaluation of the cross terms arising out of the coupling among centre-of-mass and relative coordinates. We also have extended the size of the system to generalized N-body problem with N=3,4 for tri-exciton (e-e-h/e-h-h)

  3. 1.55 μm room-temperature lasing from subwavelength quantum-dot microdisks directly grown on (001) Si

    NASA Astrophysics Data System (ADS)

    Shi, Bei; Zhu, Si; Li, Qiang; Tang, Chak Wah; Wan, Yating; Hu, Evelyn L.; Lau, Kei May

    2017-03-01

    Miniaturized laser sources can benefit a wide variety of applications ranging from on-chip optical communications and data processing, to biological sensing. There is a tremendous interest in integrating these lasers with rapidly advancing silicon photonics, aiming to provide the combined strength of the optoelectronic integrated circuits and existing large-volume, low-cost silicon-based manufacturing foundries. Using III-V quantum dots as the active medium has been proven to lower power consumption and improve device temperature stability. Here, we demonstrate room-temperature InAs/InAlGaAs quantum-dot subwavelength microdisk lasers epitaxially grown on (001) Si, with a lasing wavelength of 1563 nm, an ultralow-threshold of 2.73 μW, and lasing up to 60 °C under pulsed optical pumping. This result unambiguously offers a promising path towards large-scale integration of cost-effective and energy-efficient silicon-based long-wavelength lasers.

  4. Electronic shell structure and carrier dynamics of high aspect ratio InP single quantum dots

    NASA Astrophysics Data System (ADS)

    Beirne, Gareth J.; Reischle, Matthias; Roßbach, Robert; Schulz, Wolfgang-Michael; Jetter, Michael; Seebeck, Jan; Gartner, Paul; Gies, Christopher; Jahnke, Frank; Michler, Peter

    2007-05-01

    Systematic excitation-power-density dependent and time-resolved single-dot photoluminescence studies have been performed on type-I InP/Ga0.51In0.49P quantum dots. These dots are rather flat and therefore exhibit larger than normal single-dot ground-state transition energies ranging from 1.791 to 1.873eV . As a result of their low height, the dots have a very high aspect ratio (ratio of width to height) of approximately 27:1 . In general, even at high excitation power densities, the dots with ground-state transition energies above 1.82eV exhibit only s -shell emission, while the larger dots exhibiting ground-state emission below 1.82eV tend to exhibit emission from several (in some cases up to eight) shells. Calculations indicate that this change is due to the smaller dots having only one confined election level while the larger dots have two or more. Time-resolved investigations indicate the presence of fast carrier relaxation and recombination processes for both dot types, however, only the larger dots display clear interlevel relaxation effects as expected. The temporal behavior has been qualitatively simulated using a rate equation model. Also, in a more detailed analysis, the fast carrier relaxation is described on the basis of a quantum kinetic treatment of the carrier-phonon interaction. Finally, the dots display a clear single-photon emission signature in photon statistics measurements.

  5. Presence of photoluminescent carbon dots in Nescafe® original instant coffee: applications to bioimaging.

    PubMed

    Jiang, Chengkun; Wu, Hao; Song, Xiaojie; Ma, Xiaojun; Wang, Jihui; Tan, Mingqian

    2014-09-01

    The presence of the carbon dots (C-dots) in food is a hotly debated topic and our knowledge about the presence and the use of carbon dots (C-dots) in food is still in its infancy. We report the finding of the presence of photoluminescent (PL) C-dots in commercial Nescafe instant coffee. TEM analysis reveals that the extracted C-dots have an average size of 4.4 nm. They were well-dispersed in water and strongly photoluminescent under the excitation of ultra-violet light with a quantum yield (QY) about 5.5%, which were also found to possess clear upconversion PL properties. X-ray photoelectron spectroscopy characterization demonstrates that the C-dots contain C, O and N three elements with the relative contents ca. 30.1, 62.2 and 7.8%. The X-ray diffraction (XRD) analysis indicates that the C-dots are amorphous. Fourier-transform infrared (FTIR) spectra were employed to characterize the surface groups of the C-dots. The C-dots show a pH independent behavior by varying the pH value from 2 to 11. The cytotoxicity study revealed that the C-dots did not cause any toxicity to cells at a concentration as high as 20 mg/mL. The C-dots have been directly applied in cells and fish imaging, which suggested that the C-dots present in commercial coffee may have more potential biological applications.

  6. Ischemic brain injury decreases dynamin-like protein 1 expression in a middle cerebral artery occlusion animal model and glutamate-exposed HT22 cells

    PubMed Central

    Jang, Ah-Ram

    2016-01-01

    Dynamin-like protein I (DLP-1) is an important mitochondrial fission and fusion protein that is associated with apoptotic cell death in neurodegenerative diseases. In this study, we investigated DLP-1 expression in a focal cerebral ischemia animal model and glutamate-exposed hippocampal-derived cell line. Middle cerebral artery occlusion (MCAO) was surgically induced in adult male rats to induce focal cerebral ischemic injury. Brain tissues were collected 24 hours after the onset of MCAO. MCAO induces an increase in infarct volume and histopathological changes in the cerebral cortex. We identified a decrease in DLP-1 in the cerebral cortices of MCAO-injured animals using a proteomic approach and Western blot analysis. Moreover, glutamate treatment significantly decreased DLP-1 expression in a hippocampal-derived cell line. The decrease in DLP-1 indicates mitochondrial dysfunction. Thus, these results suggest that neuronal cell injury induces a decrease in DLP-1 levels and consequently leads to neuronal cell death. PMID:28053612

  7. Image Halftoning Using Optimized Dot Diffusion

    DTIC Science & Technology

    1998-01-01

    ppvnath@sys.caltech.edu ABSTRACT The dot diffusion method for digital halftoning has the advantage of parallelism unlike the error diffusion ...digital halftoning : ordered dither [1], error diffusion [2], neural-net based methods [8], and more recently direct binary search (DBS) [7]. Ordered...from periodic patterns. On the other hand error diffused halftones do not suffer from periodicity and offer blue noise characteristic [3] which is

  8. World War II Mobilization in Men’s Work Lives: Continuity or Disruption for the Middle Class?1

    PubMed Central

    Dechter, Aimée R.; Elder, Glen H.

    2016-01-01

    The labor needs of World War II fueled a growing demand for both military and war industry personnel. This longitudinal study investigates mobilization into these competing activities and their work life effects among men from the middle class. Hazard estimates show significant differences in wartime activities across occupations, apart from other deferment criteria. By war’s end, critical employment, in contrast to military service, is positively associated with supervisory responsibility for younger men and with occupation change. This empoloyment does not predict postwar career advancement up to the 1970s. By comparison, men who were officers had a “pipeline” to advancement after the war, whereas other service men fared worse than nonveterans. PMID:27656001

  9. Low Threshold Quantum Dot Lasers.

    PubMed

    Iyer, Veena Hariharan; Mahadevu, Rekha; Pandey, Anshu

    2016-04-07

    Semiconductor quantum dots have replaced conventional inorganic phosphors in numerous applications. Despite their overall successes as emitters, their impact as laser materials has been severely limited. Eliciting stimulated emission from quantum dots requires excitation by intense short pulses of light typically generated using other lasers. In this Letter, we develop a new class of quantum dots that exhibit gain under conditions of extremely low levels of continuous wave illumination. We observe thresholds as low as 74 mW/cm(2) in lasers made from these materials. Due to their strong optical absorption as well as low lasing threshold, these materials could possibly convert light from diffuse, polychromatic sources into a laser beam.

  10. Direct observation of electron-to-hole energy transfer in CdSe quantum dots.

    PubMed

    Hendry, E; Koeberg, M; Wang, F; Zhang, H; de Mello Donegá, C; Vanmaekelbergh, D; Bonn, M

    2006-02-10

    We independently determine the subpicosecond cooling rates for holes and electrons in CdSe quantum dots. Time-resolved luminescence and terahertz spectroscopy reveal that the rate of hole cooling, following photoexcitation of the quantum dots, depends critically on the electron excess energy. This constitutes the first direct, quantitative measurement of electron-to-hole energy transfer, the hypothesis behind the Auger cooling mechanism proposed in quantum dots, which is found to occur on a 1 +/- 0.15 ps time scale.

  11. Initial stage growth of GexSi1−x layers and Ge quantum dot formation on GexSi1−x surface by MBE

    PubMed Central

    2012-01-01

    Critical thicknesses of two-dimensional to three-dimensional growth in GexSi1−x layers were measured as a function of composition for different growth temperatures. In addition to the (2 × 1) superstructure for a Ge film grown on Si(100), the GexSi1−x layers are characterized by the formation of (2 × n) reconstruction. We measured n for all layers of Ge/GexSi1−x/Ge heterosystem using our software with respect to the video recording of reflection high-energy electron diffraction (RHEED) pattern during growth. The n reaches a minimum value of about 8 for clear Ge layer, whereas for GexSi1−x films, n is increased from 8 to 14. The presence of a thin strained film of the GexSi1−x caused not only the changes in critical thicknesses of the transitions, but also affected the properties of the germanium nanocluster array for the top Ge layer. Based on the RHEED data, the hut-like island form, which has not been previously observed by us between the hut and dome islands, has been detected. Data on the growth of Ge/GexSi1−x/Ge heterostructures with the uniform array of islands in the second layer of the Ge film have been received. PMID:23043796

  12. Antimony mediated growth of high-density InAs quantum dots for photovoltaic cells

    SciTech Connect

    Tutu, F. K.; Wu, J.; Lam, P.; Tang, M.; Liu, H.; Miyashita, N.; Okada, Y.; Wilson, J.; Allison, R.

    2013-07-22

    We report enhanced solar cell performance using high-density InAs quantum dots. The high-density quantum dot was grown by antimony mediated molecular beam epitaxy. In-plane quantum dot density over 1 × 10{sup 11} cm{sup −2} was achieved by applying a few monolayers of antimony on the GaAs surface prior to quantum dot growth. The formation of defective large clusters was reduced by optimization of the growth temperature and InAs coverage. Comparing with a standard quantum dot solar cell without the incorporation of antimony, the high-density quantum dot solar cell demonstrates a distinct improvement in short-circuit current from 7.4 mA/cm{sup 2} to 8.3 mA/cm{sup 2}.

  13. Density functional calculation of the structural and electronic properties of germanium quantum dots

    SciTech Connect

    Anas, M. M.; Gopir, G.

    2015-04-24

    We apply first principles density functional computational methods to study the structures, densities of states (DOS), and higher occupied molecular orbital (HOMO) – lowest unoccupied molecular orbital (LUMO) gaps of selected free-standing Ge semiconductor quantum dots up to 1.8nm. Our calculations are performed using numerical atomic orbital approach where linear combination of atomic orbital was applied. The surfaces of the quantum dots was passivized by hydrogen atoms. We find that surface passivation does affect the electronic properties associated with the changes of surface state, electron localization, and the energy gaps of germanium nanocrystals as well as the confinement of electrons inside the quantum dots (QDs). Our study shows that the energy gaps of germanium quantum dots decreases with the increasing dot diameter. The size-dependent variations of the computed HOMO-LUMO gaps in our quantum dots model were found to be consistent with the effects of quantum confinement reported in others theoretical and experimental calculation.

  14. Density functional calculation of the structural and electronic properties of germanium quantum dots

    NASA Astrophysics Data System (ADS)

    Anas, M. M.; Gopir, G.

    2015-04-01

    We apply first principles density functional computational methods to study the structures, densities of states (DOS), and higher occupied molecular orbital (HOMO) - lowest unoccupied molecular orbital (LUMO) gaps of selected free-standing Ge semiconductor quantum dots up to 1.8nm. Our calculations are performed using numerical atomic orbital approach where linear combination of atomic orbital was applied. The surfaces of the quantum dots was passivized by hydrogen atoms. We find that surface passivation does affect the electronic properties associated with the changes of surface state, electron localization, and the energy gaps of germanium nanocrystals as well as the confinement of electrons inside the quantum dots (QDs). Our study shows that the energy gaps of germanium quantum dots decreases with the increasing dot diameter. The size-dependent variations of the computed HOMO-LUMO gaps in our quantum dots model were found to be consistent with the effects of quantum confinement reported in others theoretical and experimental calculation.

  15. Templated self-assembly of quantum dots from aqueous solution using protein scaffolds

    NASA Astrophysics Data System (ADS)

    Szuchmacher Blum, Amy; Soto, Carissa M.; Wilson, Charmaine D.; Whitley, Jessica L.; Moore, Martin H.; Sapsford, Kim E.; Lin, Tianwei; Chatterji, Anju; Johnson, John E.; Ratna, Banahalli R.

    2006-10-01

    Short, histidine-containing peptides can be conjugated to lysine-containing protein scaffolds to controllably attach quantum dots (QDs) to the scaffold, allowing for generic attachment of quantum dots to any protein without the use of specially engineered domains. This technique was used to bind quantum dots from aqueous solution to both chicken IgG and cowpea mosaic virus (CPMV), a 30 nm viral particle. These quantum dot protein assemblies were studied in detail. The IgG QD complexes were shown to retain binding specificity to their antigen after modification. The CPMV QD complexes have a local concentration of quantum dots greater than 3000 nmol ml-1, and show a 15% increase in fluorescence quantum yield over free quantum dots in solution.

  16. Quantum Dot Spins and Photons

    NASA Astrophysics Data System (ADS)

    Atature, Mete

    2012-02-01

    Self-assembled semiconductor quantum dots are interesting and rich physical systems. Their inherently mesoscopic nature leads to a multitude of interesting interaction mechanisms of confined spins with the solid state environment of spins, charges and phonons. In parallel, the relatively clean spin-dependent optical transitions make quantum dots strong candidates for stationary and flying qubits within the context of spin-based quantum information science. The recently observed quantum dot resonance fluorescence has become a key enabler for further progress in this context. I will first discuss the real-time optical detection (or single-shot readout) of quantum dot spins, and then I will discuss how resonance fluorescence allows coherent generation of single photons suitable (and tailored) for linear-optics quantum computation and for establishing a high-efficiency spin-photon quantum interface within a distributed quantum network.

  17. Inulin-Type β2-1 Fructans have Some Effect on the Antibody Response to Seasonal Influenza Vaccination in Healthy Middle-Aged Humans.

    PubMed

    Lomax, Amy R; Cheung, Lydia V Y; Noakes, Paul S; Miles, Elizabeth A; Calder, Philip C

    2015-01-01

    β2-1 fructans are prebiotics and, as such, may modulate some aspects of immune function. Improved immune function could enhance the host's ability to respond to infections. There is limited information on the effects of β2-1 fructans on immune responses in humans. The objective of the study was to determine the effect of a specific combination of long-chain inulin and oligofructose (Orafti(®) Synergy1) on immune function in middle-aged humans, with the primary outcome being response to seasonal influenza vaccination. Healthy middle-aged humans (45-63 years of age) were randomly allocated to consume β2-1 fructans in the form of Orafti(®) Synergy1 (8 g/day; n = 22) or maltodextrin as control (8 g/day; n = 21) for 8 weeks. After 4 weeks, participants received the 2008/2009 seasonal influenza vaccine. Blood and saliva samples were collected prior to vaccination and 2 and 4 weeks after vaccination. They were used to measure various immune parameters. The primary outcome was the serum concentration of anti-vaccine antibodies. Serum antibody titers against the vaccine and vaccine-specific immunoglobulin concentrations increased post-vaccination. Antibodies to the H3N2-like hemagglutinin type 3, neuraminidase type 2-like strain were higher in the Synergy1 group (P = 0.020 for overall effect of treatment group), as was serum vaccine-specific IgG1 2 weeks post-vaccination (P = 0.028 versus control). There were no other differences between groups in antibody titers or anti-vaccine immunoglobulin concentrations, in blood immune cell phenotypes, or in a range of immune parameters. It is concluded that Orafti(®) Synergy1, a combination of β2-1 fructans, can enhance some aspects of the immune response in healthy middle-aged adults, but that this is not a global effect.

  18. Hydrophobin-Encapsulated Quantum Dots.

    PubMed

    Taniguchi, Shohei; Sandiford, Lydia; Cooper, Maggie; Rosca, Elena V; Ahmad Khanbeigi, Raha; Fairclough, Simon M; Thanou, Maya; Dailey, Lea Ann; Wohlleben, Wendel; von Vacano, Bernhard; de Rosales, Rafael T M; Dobson, Peter J; Owen, Dylan M; Green, Mark

    2016-02-01

    The phase transfer of quantum dots to water is an important aspect of preparing nanomaterials that are suitable for biological applications, and although numerous reports describe ligand exchange, very few describe efficient ligand encapsulation techniques. In this report, we not only report a new method of phase transferring quantum dots (QDs) using an amphiphilic protein (hydrophobin) but also describe the advantages of using a biological molecule with available functional groups and their use in imaging cancer cells in vivo and other imaging applications.

  19. 3.5-μm radius race-track microlasers operating at room temperature with 1.3-μm quantum dot active region

    NASA Astrophysics Data System (ADS)

    Kryzhanovskaya, N. V.; Polubavkina, Yu. S.; Scherbak, S. A.; Moiseev, E. I.; Zhurikhina, V. V.; Zubov, F. I.; Lipovskii, A. A.; Kulagina, M. M.; Troshkov, S. I.; Zadiranov, Yu. M.; Maximov, M. V.; Zhukov, A. E.

    2017-01-01

    We present detailed studies of optically pumped InAs/InGaAs quantum dot based racetrack microlasers with 3.5-μm bend radius operating at room temperature. Q factor over 8000 and room temperature threshold power in the mW-range were achieved in the racetrack microlasers with straight section length ranging from 0 to 4 μm. A systematic investigation of the influence of the racetrack straight section length on spatial distribution of optical modes is presented. The microcavity eigenmodes and electromagnetic field distribution calculated by means of three-dimensional numerical simulation demonstrate a good agreement with the experimental results obtained by micro-photoluminescence and scanning near-field optical microscopy. The racetracks demonstrate zigzagging behavior of the modes inside the cavity and the energy switching between the radial maxima in second-order modes. Higher-order modes are found to be suppressed in micro-photoluminescence spectra.

  20. 1.3-μm InAs quantum-dot micro-disk lasers on V-groove patterned and unpatterned (001) silicon.

    PubMed

    Li, Qiang; Wan, Yating; Liu, Alan Y; Gossard, Arthur C; Bowers, John E; Hu, Evelyn L; Lau, Kei May

    2016-09-05

    We report comparison of lasing dynamics in InAs quantum dot (QD) micro-disk lasers (MDLs) monolithically grown on V-groove patterned and planar Si (001) substrates. TEM characterizations reveal abrupt interfaces and reduced threading dislocations in the QD active regions when using the GaAs-on-V-grooved-Si template. The improved crystalline quality translates into lower threshold power in the optically pumped continuous-wave MDLs. Concurrent evaluations were also made with devices fabricated simultaneously on lattice-matched GaAs substrates. Lasing behaviors from 10 K up to room temperature have been studied systematically. The analyses spotlight insights into the optimal epitaxial scheme to achieve low-threshold lasing in telecommunication wavelengths on exact Si (001) substrates.

  1. Mid South Middle Start: Studies of Three Middle Start Schools in the Mid South Delta

    ERIC Educational Resources Information Center

    Rose, Lea Williams; Cheney, Nancy

    2005-01-01

    These three case studies highlight the implementation and impact of Mid South Middle Start by: (1) contributing toward an in-depth understanding of what it means to be a school implementing Middle Start; (2) describing a holistic portrait of the schools' participation in Mid South Middle Start; and (3) assisting the Academy for Educational…

  2. Fluorescence energy transfer in quantum dot/azo dye complexes in polymer track membranes

    PubMed Central

    2013-01-01

    Fluorescence resonance energy transfer in complexes of semiconductor CdSe/ZnS quantum dots with molecules of heterocyclic azo dyes, 1-(2-pyridylazo)-2-naphthol and 4-(2-pyridylazo) resorcinol, formed at high quantum dot concentration in the polymer pore track membranes were studied by steady-state and transient PL spectroscopy. The effect of interaction between the complexes and free quantum dots on the efficiency of the fluorescence energy transfer and quantum dot luminescence quenching was found and discussed. PMID:24172215

  3. Tunable double quantum dots in InAs nanowires defined by local gate electrodes.

    NASA Astrophysics Data System (ADS)

    Fasth, Carina; Fuhrer, Andreas; Samuelson, Lars

    2006-03-01

    We present low-temperature transport measurements on quantum dots induced in homogeneous InAs quantum wires 50 nm in diameter. Quantum dots are induced by electrical depletion of the wire using local gate electrodes with down to 30 nm electrode spacing. This scheme has permitted the realization of fully gate-defined multiple quantum dots along the nanowire [1]. Tunability in double quantum dots is a prerequisite for the system to be operated as a quantum gate. We demonstrate control over the lead tunnel barrier transparencies and, in the case of double quantum dots, the interdot coupling. Using the local gate electrodes also as plunger gates we measure double dot honeycomb stability diagrams which show the transition from a single large dot to two weakly coupled dots at 4.2K. The induced quantum dots can be tuned into the few-electron regime which is shown from Coulomb blockade measurements. We extract values of orbital energy-level spacings, capacitances and capacitive and tunnel interdot coupling for this system. [1] C. Fasth et al., NanoLett 5, 1487 (2005).

  4. Internalization of targeted quantum dots by brain capillary endothelial cells in vivo.

    PubMed

    Paris-Robidas, Sarah; Brouard, Danny; Emond, Vincent; Parent, Martin; Calon, Frédéric

    2016-04-01

    Receptors located on brain capillary endothelial cells forming the blood-brain barrier are the target of most brain drug delivery approaches. Yet, direct subcellular evidence of vectorized transport of nanoformulations into the brain is lacking. To resolve this question, quantum dots were conjugated to monoclonal antibodies (Ri7) targeting the murine transferrin receptor. Specific transferrin receptor-mediated endocytosis of Ri7-quantum dots was first confirmed in N2A and bEnd5 cells. After intravenous injection in mice, Ri7-quantum dots exhibited a fourfold higher volume of distribution in brain tissues, compared to controls. Immunofluorescence analysis showed that Ri7-quantum dots were sequestered throughout the cerebral vasculature 30 min, 1 h, and 4 h post injection, with a decline of signal intensity after 24 h. Transmission electron microscopic studies confirmed that Ri7-quantum dots were massively internalized by brain capillary endothelial cells, averaging 37 ± 4 Ri7-quantum dots/cell 1 h after injection. Most quantum dots within brain capillary endothelial cells were observed in small vesicles (58%), with a smaller proportion detected in tubular structures or in multivesicular bodies. Parenchymal penetration of Ri7-quantum dots was extremely low and comparable to control IgG. Our results show that systemically administered Ri7-quantum dots complexes undergo extensive endocytosis by brain capillary endothelial cells and open the door for novel therapeutic approaches based on brain endothelial cell drug delivery.

  5. 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers.

    PubMed

    Tang, Mingchu; Chen, Siming; Wu, Jiang; Jiang, Qi; Dorogan, Vitaliy G; Benamara, Mourad; Mazur, Yuriy I; Salamo, Gregory J; Seeds, Alwyn; Liu, Huiyun

    2014-05-19

    We compare InAlAs/GaAs and InGaAs/GaAs strained-layer superlattices (SLSs) as dislocation filter layers for 1.3-μm InAs/GaAs quantum-dot laser structures directly grown on Si substrates. InAlAs/GaAs SLSs are found to be more effective than InGaAs/GaAs SLSs in blocking the propagation of threading dislocations generated at the interface between the GaAs buffer layer and the Si substrate. Room-temperature lasing at ~1.27 μm with a threshold current density of 194 A/cm(2) and output power of ~77 mW has been demonstrated for broad-area lasers grown on Si substrates using InAlAs/GaAs dislocation filter layers.

  6. Thermoelectrics with Coulomb-coupled quantum dots

    NASA Astrophysics Data System (ADS)

    Thierschmann, Holger; Sánchez, Rafael; Sothmann, Björn; Buhmann, Hartmut; Molenkamp, Laurens W.

    2016-12-01

    In this article we review the thermoelectric properties of three terminal devices with Coulomb-coupled quantum dots (QDs) as observed in recent experiments [1,2]. The system we consider consists of two Coulomb-blockade QDs, one of which can exchange electrons with only a single reservoir (heat reservoir), while the other dot is tunnel coupled with two reservoirs at a lower temperature (conductor). The heat reservoir and the conductor interact only via the Coulomb coupling of the quantum dots. It has been found that two regimes have to be considered. In the first one, the heat flow between the two systems is small. In this regime, thermally driven occupation fluctuations of the hot QD modify the transport properties of the conductor system. This leads to an effect called thermal gating. Experiments have shown how this can be used to control charge flow in the conductor by means of temperature in a remote reservoir. We further substantiate the observations with model calculations, and implications for the realisation of an all-thermal transistor are discussed. In the second regime, the heat flow between the two systems is relevant. Here the system works as a nanoscale heat engine, as proposed recently (Sánchez and Büttiker [3]). We review the conceptual idea, its experimental realisation and the novel features arising in this new kind of thermoelectric device such as decoupling of heat and charge flow. xml:lang="fr"

  7. Single to quadruple quantum dots with tunable tunnel couplings

    SciTech Connect

    Takakura, T.; Noiri, A.; Obata, T.; Yoneda, J.; Yoshida, K.; Otsuka, T.; Tarucha, S.

    2014-03-17

    We prepare a gate-defined quadruple quantum dot to study the gate-tunability of single to quadruple quantum dots with finite inter-dot tunnel couplings. The measured charging energies of various double dots suggest that the dot size is governed by the gate geometry. For the triple and quadruple dots, we study the gate-tunable inter-dot tunnel couplings. For the triple dot, we find that the effective tunnel coupling between side dots significantly depends on the alignment of the center dot potential. These results imply that the present quadruple dot has a gate performance relevant for implementing spin-based four-qubits with controllable exchange couplings.

  8. Million Atom Pseudopotential Manybody Theory of Electronic Structure and Spectroscopy of Semiconductor Quantum Dots

    NASA Astrophysics Data System (ADS)

    Zunger, Alex

    2003-03-01

    Semiconductor Quantum Dots that are of sufficient structural quality (good crystallinity, surface passivation, size uniformity) to produce ultra sharp spectroscopic lines worthy of a detailed theoretical effort tend to be rather BIG, containing thousands to million atoms. Yet, in this size regime, the only theoretical methods available are effective-mass based, particle-in-a-box approaches, that neglect multi-band and inter-valley coupling, leading to significant qualitative errors.(A. Zunger,Phys. Stat. Sol. (a) 190), 467 (2002). While LDA-based methods are capable of solving the Single-Particle problem even for ˜1,000 atom dots, the all important many-body problem can be currently addressed only for considerably smaller dots. I will present here a computational alternative which addresses both the single-particle and the Manybody parts of the problem for 10^3 to 10^6 atom dots .The method is applicable both to ``free Standing" (e.g. colloidal) dots of CdSe, InP, InAs and Si, as well as to the strained, ``self-assembled" epitaxial dots of, e.g., InGaAs/GaAs. It is based on a ``Linear Combination of Bulk Bands" (LCBB) approach that expands the dot states in terms of plane wave based (pseudopotential) Bloch states throughout the Brillouin zone. The manybody part is treated via Configuration Interaction. I will illustrate how this method addresses some of the recent striking experimental observations on semiconductor quantum dots:(i) Scaling laws for band gaps and exchange interactions (ii) Rapid Auger transitions in colloidal dots (iii) Coulomb Blocade and Spin Blockade in colloidal dots (iv) Charged Excitons (e.g. Trions) in Self-assembled dots, and (v) excitonic Fine-Structure in self assembled dots.

  9. Multi-million atom electronic structure calculations for quantum dots

    NASA Astrophysics Data System (ADS)

    Usman, Muhammad

    Quantum dots grown by self-assembly process are typically constructed by 50,000 to 5,000,000 structural atoms which confine a small, countable number of extra electrons or holes in a space that is comparable in size to the electron wavelength. Under such conditions quantum dots can be interpreted as artificial atoms with the potential to be custom tailored to new functionality. In the past decade or so, these nanostructures have attracted significant experimental and theoretical attention in the field of nanoscience. The new and tunable optical and electrical properties of these artificial atoms have been proposed in a variety of different fields, for example in communication and computing systems, medical and quantum computing applications. Predictive and quantitative modeling and simulation of these structures can help to narrow down the vast design space to a range that is experimentally affordable and move this part of nanoscience to nano-Technology. Modeling of such quantum dots pose a formidable challenge to theoretical physicists because: (1) Strain originating from the lattice mismatch of the materials penetrates deep inside the buffer surrounding the quantum dots and require large scale (multi-million atom) simulations to correctly capture its effect on the electronic structure, (2) The interface roughness, the alloy randomness, and the atomistic granularity require the calculation of electronic structure at the atomistic scale. Most of the current or past theoretical calculations are based on continuum approach such as effective mass approximation or k.p modeling capturing either no or one of the above mentioned effects, thus missing some of the essential physics. The Objectives of this thesis are: (1) to model and simulate the experimental quantum dot topologies at the atomistic scale; (2) to theoretically explore the essential physics i.e. long range strain, linear and quadratic piezoelectricity, interband optical transition strengths, quantum confined

  10. Endothelin-1 overexpression leads to further water accumulation and brain edema after middle cerebral artery occlusion via aquaporin 4 expression in astrocytic end-feet.

    PubMed

    Lo, Amy C Y; Chen, Ann Y S; Hung, Victor K L; Yaw, Lai Ping; Fung, Maggie K L; Ho, Maggie C Y; Tsang, Margaret C S; Chung, Stephen S M; Chung, Sookja K

    2005-08-01

    Stroke patients have increased levels of endothelin-1 (ET-1), a strong vasoconstrictor, in their plasma or cerebrospinal fluid. Previously, we showed high level of ET-1 mRNA expression in astrocytes after hypoxia/ischemia. It is unclear whether the contribution of ET-1 induction in astrocytes is protective or destructive in cerebral ischemia. Here, we generated a transgenic mouse model that overexpress ET-1 in astrocytes (GET-1) using the glial fibrillary acidic protein promoter to examine the role of astrocytic ET-1 in ischemic stroke by challenging these mice with transient middle cerebral artery occlusion (MCAO). Under normal condition, GET-1 mice showed no abnormality in brain morphology, cerebrovasculature, absolute cerebral blood flow, blood-brain barrier (BBB) integrity, and mean arterial blood pressure. Yet, GET-1 mice subjected to transient MCAO showed more severe neurologic deficits and increased infarct, which were partially normalized by administration of ABT-627 (ET(A) antagonist) 5 mins after MCAO. In addition, GET-1 brains exhibited more Evans blue extravasation and showed decreased endothelial occludin expression after MCAO, correlating with higher brain water content and increased cerebral edema. Aquaporin 4 expression was also more pronounced in astrocytic end-feet on blood vessels in GET-1 ipsilateral brains. Our current data suggest that astrocytic ET-1 has deleterious effects on water homeostasis, cerebral edema and BBB integrity, which contribute to more severe ischemic brain injury.

  11. Middle and long-term prediction of UT1-UTC based on combination of Gray Model and Autoregressive Integrated Moving Average

    NASA Astrophysics Data System (ADS)

    Jia, Song; Xu, Tian-he; Sun, Zhang-zhen; Li, Jia-jing

    2017-02-01

    UT1-UTC is an important part of the Earth Orientation Parameters (EOP). The high-precision predictions of UT1-UTC play a key role in practical applications of deep space exploration, spacecraft tracking and satellite navigation and positioning. In this paper, a new prediction method with combination of Gray Model (GM(1, 1)) and Autoregressive Integrated Moving Average (ARIMA) is developed. The main idea is as following. Firstly, the UT1-UTC data are preprocessed by removing the leap second and Earth's zonal harmonic tidal to get UT1R-TAI data. Periodic terms are estimated and removed by the least square to get UT2R-TAI. Then the linear terms of UT2R-TAI data are modeled by the GM(1, 1), and the residual terms are modeled by the ARIMA. Finally, the UT2R-TAI prediction can be performed based on the combined model of GM(1, 1) and ARIMA, and the UT1-UTC predictions are obtained by adding the corresponding periodic terms, leap second correction and the Earth's zonal harmonic tidal correction. The results show that the proposed model can be used to predict UT1-UTC effectively with higher middle and long-term (from 32 to 360 days) accuracy than those of LS + AR, LS + MAR and WLS + MAR.

  12. Middle ear infection (image)

    MedlinePlus

    A middle ear infection is also known as otitis media. It is one of the most common of childhood infections. With this illness, the middle ear becomes red, swollen, and inflamed because of bacteria ...

  13. Ear Infection (Middle Ear)

    MedlinePlus

    Ear infection (middle ear) Overview By Mayo Clinic Staff An ear infection (acute otitis media) is most often a bacterial or viral infection that affects the middle ear, the air-filled space behind the eardrum that ...

  14. Trion decay in colloidal quantum dots.

    PubMed

    Jha, Praket P; Guyot-Sionnest, Philippe

    2009-04-28

    Using charged films of colloidal CdSe/CdS core/shell quantum dots of approximately 3.5 to 4.5 nm core diameters and 0.6 to 1.2 nm thick CdS shells, the radiative and nonradiative decay of the negatively charged exciton, the trion T-, are measured. The T- radiative rate is faster than the exciton by a factor of 2.2 +/- 0.4 and estimated at approximately 10 ns. The T- lifetime is approximately 0.7-1.5 ns for the samples measured and is longer than the biexciton lifetime by a factor or 7.5 +/- 1.7.

  15. Controlling Polarization of 1.55-μm Columnar InAs Quantum Dots with Highly Tensile-Strained InGaAsP Barriers on InP(001)

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Kenichi; Yasuoka, Nami; Ekawa, Mitsuru; Ebe, Hiroji; Akiyama, Tomoyuki; Sugawara, Mitsuru; Arakawa, Yasuhiko

    2006-12-01

    The optical polarization properties of columnar InAs quantum dots (QDs) on InP substrate grown by metalorganic vapor-phase epitaxy were investigated. The polarization of photoluminescence was found to strongly depend on the strain in QDs as well as the shape of QDs. We successfully changed the polarization properties from a transverse-electric-dominant to a transverse-magnetic-dominant regime by controlling the height of coupled QDs based on the stacking number and by controlling strain within QDs based on the thickness of 3.7%-tensile-strained barriers. Highly strained side barriers were required to change the polarization of QDs, which is considered to be due to wetting layers acting in maintaining biaxial-compressive strain in QDs. Polarization-insensitive QDs with the 1.55-μm telecom region were obtained, which promises to provide polarization-insensitive semiconductor optical amplifiers.

  16. Synthesis and characterisation of multifunctional alginate microspheres via the in situ formation of ZnO quantum dots and the graft of 4-(1-pyrenyl) butyric acid to sodium alginate.

    PubMed

    Luo, Guilin; Wang, Jianxin; Wang, Yingying; Feng, Bo; Weng, Jie

    2015-01-01

    Growth factor-loaded fluorescent alginate microspheres, which can realise sustained growth factor release and fluorescence imaging, were synthesised by in situ formation of ZnO quantum dots (QDs) and covalent graft of 4-(1-pyrenyl) butyric acid (PBA). BSA was chosen as a growth factor model protein to study the release kinetic of growth factors from alginate microspheres. The microsphere size and fluorescent properties were also investigated. Investigations of cell culture were used for evaluating biocompatibility of BSA-loaded fluorescent microspheres and fluorescence imaging property of ZnO QDs and PBA-grafted sodium alginate from the microspheres. The results show that they have good fluorescent property either to microspheres or to cells and fluorescent microspheres have good biocompatibility and property in sustained release of growth factors. The obtained microspheres will be expected to realise the imaging of cells and materials and also the release of growth factor in tissue engineering or in cell culture.

  17. Long wavelength (>1.55 {mu}m) room temperature emission and anomalous structural properties of InAs/GaAs quantum dots obtained by conversion of In nanocrystals

    SciTech Connect

    Urbanczyk, A.; Keizer, J. G.; Koenraad, P. M.; Noetzel, R.

    2013-02-18

    We demonstrate that molecular beam epitaxy-grown InAs quantum dots (QDs) on (100) GaAs obtained by conversion of In nanocrystals enable long wavelength emission in the InAs/GaAs material system. At room temperature they exhibit a broad photoluminescence band that extends well beyond 1.55 {mu}m. We correlate this finding with cross-sectional scanning tunneling microscopy measurements. They reveal that the QDs are composed of pure InAs which is in agreement with their long-wavelength emission. Additionally, the measurements reveal that the QDs have an anomalously undulated top surface which is very different to that observed for Stranski-Krastanow grown QDs.

  18. Optical spectroscopy reveals transition of CuInS2/ZnS to CuxZn1-xInS2/ZnS:Cu alloyed quantum dots with resultant double-defect luminescence

    NASA Astrophysics Data System (ADS)

    Yan, Ruolin; Zhang, Wenxia; Wu, Wenhui; Dong, Xingmin; Wang, Qiqi; Fan, Jiyang

    2016-12-01

    The structure and luminescence mechanisms of the CuInS2 quantum dots (QDs) after epitaxial growth of ZnS shell are in debate. The light absorption/emission spectroscopy reveals that after ZnS shell growth the cation diffusion at the CuInS2/ZnS interface results in formation of the alloyed CuxZn1- xInS2/ZnS:Cu QDs. These core/shell QDs exhibit dual-color photoluminescence with abnormal blue shift with decreasing excitation photon energy. The results show that the green and orange emissions originate separately from defects in the core and the shell. The absorption tail of the ZnS QDs turns from Urbach to Halperin-Lax type after Cu doping.

  19. Optically active quantum dots

    NASA Astrophysics Data System (ADS)

    Gerard, Valerie; Govan, Joseph; Loudon, Alexander; Baranov, Alexander V.; Fedorov, Anatoly V.; Gun'ko, Yurii K.

    2015-10-01

    The main goal of our research is to develop new types of technologically important optically active quantum dot (QD) based materials, study their properties and explore their biological applications. For the first time chiral II-VI QDs have been prepared by us using microwave induced heating with the racemic (Rac), D- and L-enantiomeric forms of penicillamine as stabilisers. Circular dichroism (CD) studies of these QDs have shown that D- and L-penicillamine stabilised particles produced mirror image CD spectra, while the particles prepared with a Rac mixture showed only a weak signal. It was also demonstrated that these QDs show very broad emission bands between 400 and 700 nm due to defects or trap states on the surfaces of the nanocrystals. These QDs have demonstrated highly specific chiral recognition of various biological species including aminoacids. The utilisation of chiral stabilisers also allowed the preparation of new water soluble white emitting CdS nano-tetrapods, which demonstrated circular dichroism in the band-edge region of the spectrum. Biological testing of chiral CdS nanotetrapods displayed a chiral bias for an uptake of the D- penicillamine stabilised nano-tetrapods by cancer cells. It is expected that this research will open new horizons in the chemistry of chiral nanomaterials and their application in nanobiotechnology, medicine and optical chemo- and bio-sensing.

  20. Theory of spin blockade in a triple quantum dots

    NASA Astrophysics Data System (ADS)

    Hsieh, Chang-Yu; Shim, Yun-Pil; Hawrylak, Pawel

    2011-03-01

    We present a theory of electronic properties and spin blockade in a linear triple quantum dots. We use micoroscopic LCHO-CI and double-band Hubbard model to analyze the electronic and spin properties of a triple quantum dots near a symmetrical quadruple point involving the (1,1,1) configuration which is essential for implementing quantum information processing with electron spin. We calculate spectral functions and relate them via the rate equation, including coupling with a phonon bath, to current as a function of applied bias. We show that the spin blockade in a triple quantum dots can serve as a spectroscopic tool to distinguish spin polarized states from spin depolarized states. We also show that a spin blockade is developed only at high bias when an onsite triplet state on the edge quantum dot connected to the source lead becomes accessible in the transport window. In contradiction to the case of double quantum dot molecule, the onsite triplet is not only essential for lifting spin blockade but also important for building up spin polarisation and spin blockade in the system. The authors would like to acknowledge financial support from NSERC, OGS, and QuantumWorks.

  1. 49 CFR Appendix A to Part 40 - DOT Standards for Urine Collection Kits

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 1 2013-10-01 2013-10-01 false DOT Standards for Urine Collection Kits A Appendix A to Part 40 Transportation Office of the Secretary of Transportation PROCEDURES FOR TRANSPORTATION WORKPLACE DRUG AND ALCOHOL TESTING PROGRAMS Pt. 40, App. A Appendix A to Part 40—DOT Standards for...

  2. 49 CFR 40.123 - What are the MRO's responsibilities in the DOT drug testing program?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 1 2013-10-01 2013-10-01 false What are the MRO's responsibilities in the DOT... Verification Process § 40.123 What are the MRO's responsibilities in the DOT drug testing program? As an MRO, you have the following basic responsibilities: (a) Acting as an independent and impartial...

  3. 49 CFR 41.110 - New DOT owned buildings and additions to buildings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... for the design and construction of new DOT Federally owned buildings will ensure that each building is... of this part. (b) This section pertains to all building projects for which development of detailed... 49 Transportation 1 2010-10-01 2010-10-01 false New DOT owned buildings and additions to...

  4. 49 CFR 40.31 - Who may collect urine specimens for DOT drug testing?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 1 2014-10-01 2014-10-01 false Who may collect urine specimens for DOT drug... TRANSPORTATION WORKPLACE DRUG AND ALCOHOL TESTING PROGRAMS Urine Collection Personnel § 40.31 Who may collect urine specimens for DOT drug testing? (a) Collectors meeting the requirements of this subpart are...

  5. 49 CFR 40.31 - Who may collect urine specimens for DOT drug testing?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 1 2011-10-01 2011-10-01 false Who may collect urine specimens for DOT drug... TRANSPORTATION WORKPLACE DRUG AND ALCOHOL TESTING PROGRAMS Urine Collection Personnel § 40.31 Who may collect urine specimens for DOT drug testing? (a) Collectors meeting the requirements of this subpart are...

  6. 49 CFR 40.31 - Who may collect urine specimens for DOT drug testing?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 1 2013-10-01 2013-10-01 false Who may collect urine specimens for DOT drug... TRANSPORTATION WORKPLACE DRUG AND ALCOHOL TESTING PROGRAMS Urine Collection Personnel § 40.31 Who may collect urine specimens for DOT drug testing? (a) Collectors meeting the requirements of this subpart are...

  7. 49 CFR 40.31 - Who may collect urine specimens for DOT drug testing?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 1 2012-10-01 2012-10-01 false Who may collect urine specimens for DOT drug... TRANSPORTATION WORKPLACE DRUG AND ALCOHOL TESTING PROGRAMS Urine Collection Personnel § 40.31 Who may collect urine specimens for DOT drug testing? (a) Collectors meeting the requirements of this subpart are...

  8. 49 CFR 40.31 - Who may collect urine specimens for DOT drug testing?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Who may collect urine specimens for DOT drug... TRANSPORTATION WORKPLACE DRUG AND ALCOHOL TESTING PROGRAMS Urine Collection Personnel § 40.31 Who may collect urine specimens for DOT drug testing? (a) Collectors meeting the requirements of this subpart are...

  9. Enhancing Perovskite Solar Cell Performance by Interface Engineering Using CH3NH3PbBr0.9I2.1 Quantum Dots.

    PubMed

    Cha, Mingyang; Da, Peimei; Wang, Jun; Wang, Weiyi; Chen, Zhanghai; Xiu, Faxian; Zheng, Gengfeng; Wang, Zhong-Sheng

    2016-07-13

    To improve the interfacial charge transfer that is crucial to the performance of perovskite solar cells, the interface engineering in a device should be rationally designed. Here we have developed an interface engineering method to tune the photovoltaic performance of planar-heterojunction perovskite solar cells by incorporating MAPbBr3-xIx (MA = CH3NH3) quantum dots (QDs) between the MAPbI3 perovskite film and the hole-transporting material (HTM) layer. By adjustment of the Br:I ratio, the as-synthesized MAPbBr3-xIx QDs show tunable fluorescence and band edge positions. When the valence band (VB) edge of MAPbBr3-xIx QDs is located below that of the MAPbI3 perovskite, the hole transfer from the MAPbI3 perovskite film to the HTM layer is hindered, and hence, the power conversion efficiency decreases. In contrast, when the VB edge of MAPbBr3-xIx QDs is located between the VB edge of the MAPbI3 perovskite film and the highest occupied molecular orbital of the HTM layer, the hole transfer from the MAPbI3 perovskite film to the HTM layer is well-facilitated, resulting in significant improvements in the fill factor, short-circuit photocurrent, and power conversion efficiency.

  10. Scaling of conductance through quantum dots with magnetic field

    NASA Astrophysics Data System (ADS)

    Hamad, I. J.; Gazza, C.; Andrade, J. A.; Aligia, A. A.; Cornaglia, P. S.; Roura-Bas, P.

    2015-11-01

    Using different techniques, and Fermi-liquid relationships, we calculate the variation with the applied magnetic field (up to second order) of the zero-temperature equilibrium conductance through a quantum dot described by the impurity Anderson model. We focus on the strong-coupling limit U ≫Δ , where U is the Coulomb repulsion and Δ is half the resonant-level width, and consider several values of the dot level energy Ed, ranging from the Kondo regime ɛF-Ed≫Δ to the intermediate-valence regime ɛF-Ed˜Δ , where ɛF is the Fermi energy. We have mainly used the density-matrix renormalization group (DMRG) and the numerical renormalization group (NRG) combined with renormalized perturbation theory (RPT). Results for the dot occupancy and magnetic susceptibility from the DMRG and NRG +RPT are compared with the corresponding Bethe ansatz results for U →∞ , showing an excellent agreement once Ed is renormalized by a constant Haldane shift. For U <3 Δ a simple perturbative approach in U agrees very well with the other methods. The conductance decreases with the applied magnetic field for dot occupancies nd˜1 and increases for nd˜0.5 or nd˜1.5 regardless of the value of U . We also relate the energy scale for the magnetic-field dependence of the conductance with the width of the low-energy peak in the spectral density of the dot.

  11. Optical Fiber Sensing Using Quantum Dots

    PubMed Central

    Jorge, Pedro; Martins, Manuel António; Trindade, Tito; Santos, José Luís; Farahi, Faramarz

    2007-01-01

    Recent advances in the application of semiconductor nanocrystals, or quantum dots, as biochemical sensors are reviewed. Quantum dots have unique optical properties that make them promising alternatives to traditional dyes in many luminescence based bioanalytical techniques. An overview of the more relevant progresses in the application of quantum dots as biochemical probes is addressed. Special focus will be given to configurations where the sensing dots are incorporated in solid membranes and immobilized in optical fibers or planar waveguide platforms.

  12. Quantum dot behavior in graphene nanoconstrictions.

    PubMed

    Todd, Kathryn; Chou, Hung-Tao; Amasha, Sami; Goldhaber-Gordon, David

    2009-01-01

    Graphene nanoribbons display an imperfectly understood transport gap. We measure transport through nanoribbon devices of several lengths. In long (>/=250 nm) nanoribbons we observe transport through multiple quantum dots in series, while shorter (dots. New measurements indicate that dot size may scale with constriction width. We propose a model where transport occurs through quantum dots that are nucleated by background disorder potential in the presence of a confinement gap.

  13. Increased survival and prolonged longevity mainly contribute to the temperature-adaptive evolutionary strategy in invasive Bemisia tabaci (Hemiptera: Aleyrodidae) Middle East Asia Minor 1.

    PubMed

    Lü, Zhi-Chuang; Gao, Qing-Lei; Wan, Fang-Hao; Yu, Hao; Guo, Jian-Ying

    2014-10-15

    With increasing global climate change, analyses of stress-inducing conditions have important significance in ecological adaptation and the biological distribution of species. To reveal the difference in temperature-adaptive strategy between Turpan and Beijing populations of Bemisia tabaci (Gennadius) Middle East Asia Minor 1 (MEAM1) under high-temperature stress conditions, we compared thermal tolerance and life history traits between Beijing and Turpan populations of MEAM1 after exposure to different heat shock treatments for different times. The experimental design reflected the nature of heat stress conditions suffered by MEAM1. The results showed that eggs, red-eyed pupae, and adults of the Turpan population were more heat tolerant than those of the Beijing population under the same stress conditions. Additionally, it was found that longevity and F1 adult survival rate were significantly higher in the Turpan population than in the Beijing population after heat shock stress, but egg number and F1 female ratio were not significantly different between Turpan population and Beijing population. Overall, it was suggested that heat tolerance and longevity traits were the most relevant for climate characteristics and not reproductive traits, and improved heat tolerance and prolonged longevity were important adaptive strategies that helped MEAM1 to survive in harsh high-temperature conditions such as Turpan arid desert climate. The present results provided further insight into the modes of heat tolerance and the ways in which survival and longevity traits respond to environmental selection pressures.

  14. Photostable epoxy polymerized carbon quantum dots luminescent thin films and the performance study

    NASA Astrophysics Data System (ADS)

    Zhang, Chang; Du, Lei; Liu, Cui; Li, Yunchuan; Yang, ZhenZhen; Cao, Yuan-Cheng

    High photostable epoxy polymerized carbon quantum dots (C-dots) luminescent thin films were prepared and their performances were compared with the CdTe quantum dots (QDs). First, water soluble C-dots (λem = 543.60 nm) were synthesized. Poly (ethylene glycol) diglycidyl ether (PEG) and diaminooctane were used as the polymer matrix to make the epoxy resin films. FT-IR spectra showed that there were vibration at 3448 cm-1 and 1644 cm-1 which contributed to -OH and -NH respectively. SEM observations showed that the polymerizations of the films were uniform and there were no structure defects. Mechanical tests showed the tensile modulus of C-dots composite films were 4.6, 4.9, 6.4 and 7.8 MPa respectively with corresponding 0%, 1%, 2% and 5% mass fraction of C-dots, while the tensile modulus of CdTe QDs films were 4.6 MPa under the same mass fraction of CdTe QDs. Compared with semiconductor QDs, the decay of quantum yield were 5% and 10% for the C-dots and CdTe QDs, respectively. The pictures in the continuous irradiation of 48 h showed that the C-dots film was more photostable. This study provides much helpful and profound towards the fluorescent enhancement films in the field of flexible displays.

  15. Chiral Graphene Quantum Dots.

    PubMed

    Suzuki, Nozomu; Wang, Yichun; Elvati, Paolo; Qu, Zhi-Bei; Kim, Kyoungwon; Jiang, Shuang; Baumeister, Elizabeth; Lee, Jaewook; Yeom, Bongjun; Bahng, Joong Hwan; Lee, Jaebeom; Violi, Angela; Kotov, Nicholas A

    2016-02-23

    Chiral nanostructures from metals and semiconductors attract wide interest as components for polarization-enabled optoelectronic devices. Similarly to other fields of nanotechnology, graphene-based materials can greatly enrich physical and chemical phenomena associated with optical and electronic properties of chiral nanostructures and facilitate their applications in biology as well as other areas. Here, we report that covalent attachment of l/d-cysteine moieties to the edges of graphene quantum dots (GQDs) leads to their helical buckling due to chiral interactions at the "crowded" edges. Circular dichroism (CD) spectra of the GQDs revealed bands at ca. 210-220 and 250-265 nm that changed their signs for different chirality of the cysteine edge ligands. The high-energy chiroptical peaks at 210-220 nm correspond to the hybridized molecular orbitals involving the chiral center of amino acids and atoms of graphene edges. Diverse experimental and modeling data, including density functional theory calculations of CD spectra with probabilistic distribution of GQD isomers, indicate that the band at 250-265 nm originates from the three-dimensional twisting of the graphene sheet and can be attributed to the chiral excitonic transitions. The positive and negative low-energy CD bands correspond to the left and right helicity of GQDs, respectively. Exposure of liver HepG2 cells to L/D-GQDs reveals their general biocompatibility and a noticeable difference in the toxicity of the stereoisomers. Molecular dynamics simulations demonstrated that d-GQDs have a stronger tendency to accumulate within the cellular membrane than L-GQDs. Emergence of nanoscale chirality in GQDs decorated with biomolecules is expected to be a general stereochemical phenomenon for flexible sheets of nanomaterials.

  16. Thermopower and thermal conductance through parallel coupled quantum dots

    NASA Astrophysics Data System (ADS)

    Franco, R.; Silva-Valencia, J.; Figueira, M. S.

    2008-04-01

    We study the thermoelectric transport properties through two parallel coupled, gate-defined quantum dots (QDs), in the framework of the X-boson treatment for the impurity Anderson model. We compute the thermopower S, the thermal conductance κ, the electrical conductance G, and the product of the thermoelectric figure of merit and the temperature ZT, as function of the dot energy. We concentrate the calculations on ZT, that is, a measure of the usefulness of materials or devices as thermopower generators or cooling systems. If the coupling between the QDs is weak, ZT is greater than 1 when T ≃Δ (Δ is the mixing width between the QD and the leads) but when the system is coupled, the second dot can tune the temperature region where ZT >1. This result increases the possibilities of practical application of the system in mesoscopic cooling process.

  17. A colloidal quantum dot spectrometer

    NASA Astrophysics Data System (ADS)

    Bao, Jie; Bawendi, Moungi G.

    2015-07-01

    Spectroscopy is carried out in almost every field of science, whenever light interacts with matter. Although sophisticated instruments with impressive performance characteristics are available, much effort continues to be invested in the development of miniaturized, cheap and easy-to-use systems. Current microspectrometer designs mostly use interference filters and interferometric optics that limit their photon efficiency, resolution and spectral range. Here we show that many of these limitations can be overcome by replacing interferometric optics with a two-dimensional absorptive filter array composed of colloidal quantum dots. Instead of measuring different bands of a spectrum individually after introducing temporal or spatial separations with gratings or interference-based narrowband filters, a colloidal quantum dot spectrometer measures a light spectrum based on the wavelength multiplexing principle: multiple spectral bands are encoded and detected simultaneously with one filter and one detector, respectively, with the array format allowing the process to be efficiently repeated many times using different filters with different encoding so that sufficient information is obtained to enable computational reconstruction of the target spectrum. We illustrate the performance of such a quantum dot microspectrometer, made from 195 different types of quantum dots with absorption features that cover a spectral range of 300 nanometres, by measuring shifts in spectral peak positions as small as one nanometre. Given this performance, demonstrable avenues for further improvement, the ease with which quantum dots can be processed and integrated, and their numerous finely tuneable bandgaps that cover a broad spectral range, we expect that quantum dot microspectrometers will be useful in applications where minimizing size, weight, cost and complexity of the spectrometer are critical.

  18. Syndecan-1 alterations during the tumorigenic progression of human colonic Caco-2 cells induced by human Ha-ras or polyoma middle T oncogenes.

    PubMed Central

    Levy, P.; Munier, A.; Baron-Delage, S.; Di Gioia, Y.; Gespach, C.; Capeau, J.; Cherqui, G.

    1996-01-01

    The products of ras and src proto-oncogenes are frequently activated in a constitutive state in human colorectal cancer. In this study we attempted to establish whether the tumorigenic progression induced by oncogenic activation of p21ras and pp60c-src in human colonic Caco-2 cells is associated with specific alterations of syndecan-1, a membrane-anchored proteoglycan playing a role in cell-matrix interaction and neoplastic growth control. To this end, we used Caco-2 cells made highly tumorigenic by transfection with an activated (Val 12) human Ha-ras gene or with the polyoma middle T (Py-MT) oncogene, a constitutive activator of pp60c-src tyrosine kinase activity. Compared with control vector-transfected Caco-2 cells, both oncogene-transfected cell lines (1) contained smaller amounts of membrane-anchored PGs; (2) exhibited decreased syndecan-1 expression at the protein but not the mRNA level; (3) synthesized 35S-labelled syndecan-1 with decreased specific activity; (4) produced a syndecan-1 ectodomain with a lower molecular mass and reduced GAG chain size and sulphation; and (5) expressed heparanase degradative activity. These results show that the dramatic activation of the tumorigenic potential induced by oncogenic p21ras or Py-MT/pp60c-src in Caco-2 cells is associated with marked alterations of syndecan-1 expression at the translational and post-translational levels. Images Figure 2 PMID:8695359

  19. Reversible Photoswitching of Carbon Dots

    PubMed Central

    Khan, Syamantak; Verma, Navneet Chandra; Gupta, Abhishek; Nandi, Chayan Kanti

    2015-01-01

    We present a method of reversible photoswitching in carbon nanodots with red emission. A mechanism of electron transfer is proposed. The cationic dark state, formed by the exposure of red light, is revived back to the bright state with the very short exposure of blue light. Additionally, the natural on-off state of carbon dot fluorescence was tuned using an electron acceptor molecule. Our observation can make the carbon dots as an excellent candidate for the super-resolution imaging of nanoscale biomolecules within the cell. PMID:26078266

  20. Nanoscale quantum-dot supercrystals

    NASA Astrophysics Data System (ADS)

    Baimuratov, Anvar S.; Turkov, Vadim K.; Rukhlenko, Ivan D.; Baranov, Alexander V.; Fedorov, Anatoly V.

    2013-09-01

    We develop a theory allowing one to calculate the energy spectra and wave functions of collective excitations in twoand three-dimensional quantum-dot supercrystals. We derive analytical expressions for the energy spectra of twodimensional supercrystals with different Bravias lattices, and use them to analyze the possibility of engineering the supercrystals' band structure. We demonstrate that the variation of the supercrystal's parameters (such as the symmetry of the periodic lattice and the properties of the quantum dots or their environment) enables an unprecedented control over its optical properties, thus paving a way towards the development of new nanophotonics materials.

  1. Optical absorption and refraction index change of a confined exciton in a spherical quantum dot nanostructure

    NASA Astrophysics Data System (ADS)

    Mathan Kumar, K.; John Peter, A.; Lee, C. W.

    2011-12-01

    Electronic energies of an exciton confined in a strained Zn1- x Cd x Se/ZnSe quantum dot have been computed as a function of dot radius with various Cd content. Calculations have been performed using Bessel function as an orthonormal basis for different confinement potentials of barrier height considering the internal electric field induced by the spontaneous and piezoelectric polarizations. The optical absorption coefficients and the refractive index changes between the ground state ( L = 0) and the first excited state ( L = 1) are investigated. It is found that the optical properties in the strained ZnCdSe/ZnSe quantum dot are strongly affected by the confinement potentials and the dot radii. The intensity of the total absorption spectra increases for the transition between higher levels. The obtained optical nonlinearity brings out the fact that it should be considered in calculating the optical properties in low dimensional semiconductors especially in quantum dots.

  2. Sunlight assisted photodegradation by tin oxide quantum dots

    NASA Astrophysics Data System (ADS)

    Shajira, P. S.; Prabhu, V. Ganeshchandra; Bushiri, M. Junaid

    2015-12-01

    Rutile phase of SnO2 quantum dots of average size of 2.5 nm were synthesized at a growth temperature of 70 °C and characterized with XRD, TEM, FTIR and Raman analysis. The effective strain within the lattice of SnO2 quantum dots was calculated by Williamson-Hall method. The broad peaks in XRD as well as Raman spectra and the presence of Raman bands at 569 and 432 cm-1 are due to lower crystallinity of nanoparticles. The optical band gap of SnO2 quantum dots was increased to 3.75 eV attributed to the quantum size effect. SnO2 quantum dots were annealed in air atmosphere and the crystallite size of the particles increased with annealing temperature. Sunlight assisted photodegration property of SnO2 quantum dots was investigated with vanillin as a model system and it shows the photodegradation efficiency of 87%. The photoluminescence and photodegradation efficiency of nanocrystallite SnO2 decreases with increase of crystallite size contributed to the reduction in population of defects and surface area.

  3. Three Quantum Dots Embedded in Aharonov-Bohm Rings

    NASA Astrophysics Data System (ADS)

    Toonen, Ryan; Hãttel, Andreas; Goswami, Srijit; Eberl, Karl; Eriksson, Mark; van der Weide, Daniel; Blick, Robert

    2004-03-01

    Coherent coupling of two quantum dots embedded in a ring-geometry has been demonstrated by Holleitner et al.(A.W. Holleitner, H. Qin, C.R. Decker, K. Eberl, and R.H. Blick, phCoherent Coupling of Two Quantum Dots Embedded in an Aharonov-Bohm Ring), Phys. Rev. Lett. 87, 256802 (2001) Recording of the Aharonov-Bohm oscillations in such a circuit has proven that the phases of electron wave functions can be manipulated directly. We have since enhanced the complexity of this system by embedding three quantum dots in such a ring-geometry. As before, our quantum dots are formed by laterally constricting a two-dimensional electron gas (2DEG) in an Al_xGa_1-xAs/GaAs heterostructure. The new, essential ingredient of this experiment is an additional third port--added to the ring for individually addressing the third quantum dot. This circuit allows us to investigate phenomena associated with phase-switching between separate ports. We will discuss first results and give a simple model of circuit operation.

  4. Charge noise mitigation in triple-dot encoded spin qubits

    NASA Astrophysics Data System (ADS)

    Pritchett, Emily

    The immediate scalability of electrons confined to semiconductor quantum dots makes them one of the most attractive platforms for quantum information processing; however, 1/f charge noise associated with electrical confinement has been a leading source of noise in quantum dot systems. Recently, there has been a surge of experimental and theoretical work aimed at charge noise mitigation in quantum dot systems implementing AC- or DC- control of triple dots at ''sweet spots''. In this talk, we compare the symmetric operation point (SOP) DC control technique implemented in Reed, et al. [arXiv:1508.01223] to the resonant exchange (RX) AC control technique [Medford, et al., PRL 111, 050501 (2013), Taylor, et al., PRL 111, 050502 (2013), Russ, et al., Phys. Rev. B 91, 235411 (2015)] . Numerical results suggest that both DC and AC triple-dot control can offer a comparably substantial reduction in charge noise however, the validity of the rotating wave approximation forces a trade-off between speed and accuracy for RX qubits, while the performance of SOP qubits actually improves at shorter gate times.

  5. Calculation of exchange interaction for modified Gaussian coupled quantum dots

    NASA Astrophysics Data System (ADS)

    Khordad, R.

    2017-03-01

    A system of two laterally coupled quantum dots with modified Gaussian potential has been considered. Each quantum dot has an electron under electric and magnetic field. The quantum dots have been considered as hydrogen-like atoms. The physical picture has translated into the Heisenberg spin Hamiltonian. The Schrödinger equation using finite element method has been numerically solved. The exchange energy factor has been calculated as a functions of electric field, magnetic field, and the separation distance between the centers of the dots (d). According to the results, it is found that there is the transition from anti-ferromagnetic to ferromagnetic for constant electric field. Also, the transition occurs from ferromagnetic to anti-ferromagnetic for constant magnetic field (B>1 T). With decreasing the distance between the centers of the dots and increasing magnetic field, the transition occurs from anti-ferromagnetic to ferromagnetic. It is found that a switching of exchange energy factor is presented without canceling the interactions of the electric and magnetic fields on the system.

  6. Spin-valley Kondo effect in silicon quantum dots

    NASA Astrophysics Data System (ADS)

    Shiau, Shiue Yuan

    Recent progress in the fabrication of silicon-based quantum dots opens the prospect of observing the Kondo effect associated with the valley degree of freedom. We compute the dot density of states using an Anderson impurity model, whose structure mimics the nonlinear conductance through a dot. The density of states is obtained as a function of temperature and applied magnetic field in the Kondo regime using an equation-of-motion approach. We show that there is a very complex peak structure near the Fermi energy in the N =1,2,3 Coulomb blockade regimes, but not in the N =4, with several signatures that distinguish this spin-valley Kondo effect from the usual spin Kondo effect seen in GaAs dots. We also show that the valley index is generally not conserved when electrons tunnel into a silicon dot, though the extent of this non-conservation is expected to be sample-dependent. This valley index non-conservation can be detected in principle from the valley Kondo effect. We identify features of the conductance that should enable experimenters to understand the interplay of Zeeman splitting and valley splitting, as well as the dependence of tunneling on the valley degree of freedom.

  7. Tryptophan Residue Located at the Middle of Putative Transmembrane Domain 11 Is Critical for the Function of Organic Anion Transporting Polypeptide 2B1.

    PubMed

    Bian, Jialin; Jin, Meng; Yue, Mei; Wang, Meiyu; Zhang, Hongjian; Gui, Chunshan

    2016-10-03

    Organic anion transporting polypeptide 2B1 (OATP2B1), which is highly expressed in enterocytes and hepatocytes could be a key determinant for the intestinal absorption and hepatic uptake of its substrates, most of which are amphipathic organic anions. Tryptophan residues may possess a multitude of functions for a transport protein through aromatic interactions, such as maintaining the proper protein structure, guiding the depth of membrane insertion, or interacting directly with substrates. There are totally six tryptophan residues in OATP2B1. However, little is known about their role in the function and expression of OATP2B1. Our results show that, while W272, W276, and W277 located at the border of extracellular loop 3 and transmembrane domain 6 exhibit a moderate effect on the surface expression of OATP2B1, W611 located at the middle of transmembrane domain 11 plays a critical role in the function of OATP2B1. The tryptophan-to-alanine mutation of W611 changes the kinetic characteristics of OATP2B1-mediated estrone-3-sulfate (E3S) transport radically, from a monophasic saturation curve (with Km and Vmax values being of 7.1 ± 1.1 μM and 182 ± 7 pmol/normalized mg/min, respectively) to a linear curve. Replacing alanine with a phenylalanine will rescue most of OATP2B1's function, suggesting that the aromatic side chain of residue 611 is very important. However, hydrogen-bond forming and positively charged groups at this position are not favorable. The important role of W611 is not substrate-dependent. Molecular modeling indicates that the side chain of W611 faces toward the substrate translocation pathway and might interact with substrates directly. Taken together, our findings reveal that W611 is critical for the function of OATP2B1.

  8. An Ultrasensitive Electrochemiluminescent Immunoassay for Aflatoxin M1 in Milk, Based on Extraction by Magnetic Graphene and Detection by Antibody-Labeled CdTe Quantumn Dots-Carbon Nanotubes Nanocomposite

    PubMed Central

    Gan, Ning; Zhou, Jing; Xiong, Ping; Hu, Futao; Cao, Yuting; Li, Tianhua; Jiang, Qianli

    2013-01-01

    An ultrasensitive electrochemiluminescent immunoassay (ECLIA) for aflatoxins M1 (ATM1) in milk using magnetic Fe3O4-graphene oxides (Fe-GO) as the absorbent and antibody-labeled cadmium telluride quantum dots (CdTe QDs) as the signal tag is presented. Firstly, Fe3O4 nanoparticles were immobilized on GO to fabricate the magnetic nanocomposites, which were used as absorbent to ATM1. Secondly, aflatoxin M1 antibody (primary antibody, ATM1 Ab1), was attached to the surface of the CdTe QDs-carbon nanotubes nanocomposite to form the signal tag (ATM1 Ab1/CdTe-CNT). The above materials were characterized. The optimal experimental conditions were obtained. Thirdly, Fe-GO was employed for extraction of ATM1 in milk. Results indicated that it can adsorb ATM1 efficiently and selectively within a large extent of pH from 3.0 to 8.0. Adsorption processes reached 95% of the equilibrium within 10 min. Lastly, the ATM1 with a serial of concentrations absorbed on Fe-GO was conjugated with ATM1 Ab1/CdTe-CNT signal tag based on sandwich immunoassay. The immunocomplex can emit a strong ECL signal whose intensity depended linearly on the logarithm of ATM1 concentration from 1.0 to 1.0 × 105 pg/mL, with the detection limit (LOD) of 0.3 pg/mL (S/N = 3). The method was more sensitive for ATM1 detection compared to the ELISA method. Finally, ten samples of milk were tested based on the immunoassay. The method is fast and requires very little sample preparation, which was suitable for high-throughput screening of mycotoxins in food. PMID:23628784

  9. Dispersion of the electron g factor anisotropy in InAs/InP self-assembled quantum dots

    NASA Astrophysics Data System (ADS)

    Belykh, V. V.; Yakovlev, D. R.; Schindler, J. J.; van Bree, J.; Koenraad, P. M.; Averkiev, N. S.; Bayer, M.; Silov, A. Yu.

    2016-08-01

    The electron g factor in an ensemble of InAs/InP quantum dots with emission wavelengths around 1.4 μm is measured using time-resolved pump-probe Faraday rotation spectroscopy in different magnetic field orientations. Thereby, we can extend recent single dot photoluminescence measurements significantly towards lower optical transition energies through 0.86 eV. This allows us to obtain detailed insight into the dispersion of the recently discovered g factor anisotropy in these infrared emitting quantum dots. We find with decreasing transition energy over a range of 50 meV a strong enhancement of the g factor difference between magnetic field normal and along the dot growth axis, namely, from 1 to 1.7. We argue that the g factor cannot be solely determined by the confinement energy, but the dot asymmetry underlying this anisotropy therefore has to increase with increasing dot size.

  10. The Effects of Collaborative Strategic Reading Instruction on the Reading Comprehension of Middle School Students: Year 1

    ERIC Educational Resources Information Center

    Mohammed, Sarojani S.; Swanson, Elizabeth; Roberts, Greg; Vaughn, Sharon; Klingner, Janette K.; Boardman, Alison Gould

    2010-01-01

    This project is a multi-site, multi-year study designed to test the efficacy of a fully developed intervention, Collaborative Strategic Reading (CSR), with adolescent readers. In year 1, the research questions were: (1) "Does CSR improve reading comprehension for adolescent readers attending relatively low SES schools?"; and (2)…

  11. Third place--Resident Basic Science Award 1990. Interleukin 1 causing bone destruction in middle ear cholesteatoma.

    PubMed

    Ahn, J M; Huang, C C; Abramson, M

    1990-10-01

    We previously reported the localization of interleukin 1 in the epithelial layer of human cholesteatomas. On the basis of other studies that showed interleukin 1 can stimulate fibroblasts and macrophages to produce collagenases and prostaglandins, we then proposed that interleukin 1 may play an important role in cholesteatoma-related bone resorption, also. Our immunocytochemical study involving more human cholesteatoma samples revealed the presence of interleukin 1 in bone cells and monocytes in the region of active bone destruction. In the present study, the effect of interleukin 1 on these cells found at the bone resorption site was examined. By radioimmunoassay, interleukin 1 was shown to stimulate the production of prostaglandin E2 by osteoblasts in vitro. Interleukin 1 also promoted the migration and multinucleation of bone marrow-derived monocytes. These osteoclast-like cells formed from monocytes contained tartrate-resistant acid phosphatase, and caused the resorption of the devitalized bone in vitro. Above findings suggest that interleukin 1 could cause the bone destruction in cholesteatomas, not only by stimulating the local bone cells, but also by recruiting monocytes for osteoclastic bone resorption.

  12. Role of ZnO photoanode nanostructures and sensitizer deposition approaches on the photovoltaic properties of CdS/CdSe and CdS1-xSex quantum dot-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Şişman, İlkay; Tekir, Oktay; Karaca, Hüseyin

    2017-02-01

    Hierarchical bundle-like ZnO nanorod arrays (BNRs) were synthesized by a one-pot hydrothermal method based on two consecutive temperature steps for cascade CdS/CdSe and ternary CdS1-xSex alloy quantum dot-sensitized solar cells (QDSSCs) as photoanode. The CdS/CdSe and CdS1-xSex QDs were deposited on the surface of the ZnO BNRs by conventional and modified successive ionic-layer adsorption and reaction (SILAR) methods, respectively. Using the ZnO BNRs/CdS/CdSe photoanode, the power conversion efficiency reaches 2.08%, which is 1.8 times higher than that of pristine ZnO nanorods/CdS/CdSe photoanode, while by applying ZnO BNRs/CdS1-xSex, the power conversion efficiency improves 2.52%. The remarkably improved photovoltaic performance is mainly derived from the bundle-like nanorod arrays structure, which increases the QDs loading amount and the scattering effect for light absorption, and the appropriate conduction band energy, sufficient Se amount and well coverage of the ternary CdS1-xSex QDs result in enhanced photogenerated electron injection, high light absorption and reduced recombination, respectively. As a result, ZnO BNRs/CdS1-xSex combination can significantly improve performance of QDSSCs.

  13. Charge Carrier Hopping Dynamics in Homogeneously Broadened PbS Quantum Dot Solids.

    PubMed

    Gilmore, Rachel H; Lee, Elizabeth M Y; Weidman, Mark C; Willard, Adam P; Tisdale, William A

    2017-02-08

    Energetic disorder in quantum dot solids adversely impacts charge carrier transport in quantum dot solar cells and electronic devices. Here, we use ultrafast transient absorption spectroscopy to show that homogeneously broadened PbS quantum dot arrays (σhom(2):σinh(2) > 19:1, σinh/kBT < 0.4) can be realized if quantum dot batches are sufficiently monodisperse (δ ≲ 3.3%). The homogeneous line width is found to be an inverse function of quantum dot size, monotonically increasing from ∼25 meV for the largest quantum dots (5.8 nm diameter/0.92 eV energy) to ∼55 meV for the smallest (4.1 nm/1.3 eV energy). Furthermore, we show that intrinsic charge carrier hopping rates are faster for smaller quantum dots. This finding is the opposite of the mobility trend commonly observed in device measurements but is consistent with theoretical predictions. Fitting our data to a kinetic Monte Carlo model, we extract charge carrier hopping times ranging from 80 ps for the smallest quantum dots to over 1 ns for the largest, with the same ethanethiol ligand treatment. Additionally, we make the surprising observation that, in slightly polydisperse (δ ≲ 4%) quantum dot solids, structural disorder has a greater impact than energetic disorder in inhibiting charge carrier transport. These findings emphasize how small improvements in batch size dispersity can have a dramatic impact on intrinsic charge carrier hopping behavior and will stimulate further improvements in quantum dot device performance.

  14. Extracting inter-dot tunnel couplings between few donor quantum dots in silicon

    NASA Astrophysics Data System (ADS)

    Gorman, S. K.; Broome, M. A.; Keizer, J. G.; Watson, T. F.; Hile, S. J.; Baker, W. J.; Simmons, M. Y.

    2016-05-01

    The long term scaling prospects for solid-state quantum computing architectures relies heavily on the ability to simply and reliably measure and control the coherent electron interaction strength, known as the tunnel coupling, t c. Here, we describe a method to extract the t c between two quantum dots (QDs) utilising their different tunnel rates to a reservoir. We demonstrate the technique on a few donor triple QD tunnel coupled to a nearby single-electron transistor (SET) in silicon. The device was patterned using scanning tunneling microscopy-hydrogen lithography allowing for a direct measurement of the tunnel coupling for a given inter-dot distance. We extract {t}{{c}}=5.5+/- 1.8 {{GHz}} and {t}{{c}}=2.2+/- 1.3 {{GHz}} between each of the nearest-neighbour QDs which are separated by 14.5 nm and 14.0 nm, respectively. The technique allows for an accurate measurement of t c for nanoscale devices even when it is smaller than the electron temperature and is an ideal characterisation tool for multi-dot systems with a charge sensor.

  15. Gradient-Doped Thermophotovoltaic Devices based on Colloidal Quantum Dots

    NASA Astrophysics Data System (ADS)

    Fayaz Movahed, Hamidreza

    Electromagnetic radiation emitted from hot objects represents a sizeable supply of energy; however, even for relatively hot bodies, its flux peaks in the short-wavelength infrared between 1 and 3 mum, standing in the way of its photovoltaic harvest using the most widely-available optoelectronic materials such as Si and CdTe. Colloidal quantum dots combine low-cost solution-processing with bandgap tunability in this spectral region, thereby offering a route to harnessing thermal power photovoltaically. Here we report thermophotovoltaic devices constructed using colloidal quantum dots that harvest infrared radiation from an 800°C blackbody source. Only by constructing a gradient-doped colloidal quantum dot thermophotovoltaic device were we able to achieve thermophotovoltaic power generation with a power conversion efficiency of 0.39%. The device showed stable operation at ambient temperatures above 100°C.

  16. Studies of electron spin in GaAs quantum dots

    NASA Astrophysics Data System (ADS)

    Craft, Daniel; Colton, John; Park, Tyler; White, Phil

    2013-03-01

    We have studied electron spins in GaAs quantum dots with a pump-probe technique that normally yields the T1 spin lifetime, the time required for initially polarized electrons to relax and randomize. Using a circularly polarized laser tuned to the wavelength response of the quantum dot we can ``pump'' the spins into alignment. After aligning the spins we can detect them using a second, linearly polarized ``probe'' laser. By changing the delay between the two lasers we can trace out the spin response over time. In contrast with other samples (bulk GaAs and a GaAs quantum well), where the spin response decayed exponentially with time, initial data on the quantum dots has shown an unexpected, oscillating behavior which dies out on the order of 700 ns, independent of both temperature and magnetic field.

  17. Bioconjugate recognition molecules to quantum dots as tumor probes.

    PubMed

    Liu, Tian-Cai; Wang, Jian-Hao; Wang, Hai-Qiao; Zhang, Hai-Li; Zhang, Zhi-Hong; Hua, Xiao-Feng; Cao, Yuan-Cheng; Zhao, Yuan-Di; Luo, Qing-Ming

    2007-12-15

    Transferrin and mouse anti-human CD71 monoclonal antibody were respectively conjugated covalently to the core/shell CdSe/ZnS quantum dots with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride and N-hydrocylsulfo-succinimide (Sulfo-NHS). The conjugation worked well and the bioactivities of these macromolecules still remained, which was verified by column filtration, sodium dodecyl sulfate polyacrylamide gel electrophoresis, absorption spectra, fluorescence spectra, and circular dichroism spectrometry. Thus, these two kinds of quantum dot conjugates were used to recognize the tumor cells involved. In case of pseudo positivity, FITC-labeling secondary antibody IgG was used, and the results showed that as-prepared fluorescent quantum dot bioprobes were highly specific to tumor cells.

  18. Quantum-confined Stark effects in semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Wen, G. W.; Lin, J. Y.; Jiang, H. X.; Chen, Z.

    1995-08-01

    Quantum-confined Stark effects (QCSE) on excitons, i.e., the influence of a uniform electric field on the confined excitons in semiconductor quantum dots (QD's), have been studied by using a numerical matrix-diagonalization scheme. The energy levels and the wave functions of the ground and several excited states of excitons in CdS and CdS1-xSex quantum dots as functions of the size of the quantum dot and the applied electric field have been obtained. The electron and hole distributions and wave function overlap inside the QD's have also been calculated for different QD sizes and electric fields. It is found that the electron and hole wave function overlap decreases under an electric field, which implies an increased exciton recombination lifetime due to QCSE. The energy level redshift and the enhancement of the exciton recombination lifetime are due to the polarization of the electron-hole pair under the applied electric field.

  19. Pauli spin blockade in CMOS double quantum dot devices

    NASA Astrophysics Data System (ADS)

    Kotekar-Patil, D.; Corna, A.; Maurand, R.; Crippa, A.; Orlov, A.; Barraud, S.; Hutin, L.; Vinet, M.; Jehl, X.; De Franceschi, S.; Sanquer, M.

    2017-03-01

    Silicon quantum dots are attractive candidates for the development of scalable, spin-based qubits. Pauli spin blockade in double quantum dots provides an efficient, temperature independent mechanism for qubit readout. Here we report on transport experiments in double gate nanowire transistors issued from a CMOS process on 300 mm silicon-on-insulator wafers. At low temperature the devices behave as two few-electron quantum dots in series. We observe signatures of Pauli spin blockade with a singlet-triplet splitting ranging from 0.3 to 1.3 meV. Magneto-transport measurements show that transitions which conserve spin are shown to be magnetic-field independent up to B = 6 T.

  20. The statistical theory of quantum dots

    NASA Astrophysics Data System (ADS)

    Alhassid, Y.

    2000-10-01

    A quantum dot is a sub-micron-scale conducting device containing up to several thousand electrons. Transport through a quantum dot at low temperatures is a quantum-coherent process. This review focuses on dots in which the electron's dynamics are chaotic or diffusive, giving rise to statistical properties that reflect the interplay between one-body chaos, quantum interference, and electron-electron interactions. The conductance through such dots displays mesoscopic fluctuations as a function of gate voltage, magnetic field, and shape deformation. The techniques used to describe these fluctuations include semiclassical methods, random-matrix theory, and the supersymmetric nonlinear σ model. In open dots, the approximation of noninteracting quasiparticles is justified, and electron-electron interactions contribute indirectly through their effect on the dephasing time at finite temperature. In almost-closed dots, where conductance occurs by tunneling, the charge on the dot is quantized, and electron-electron interactions play an important role. Transport is dominated by Coulomb blockade, leading to peaks in the conductance that at low temperatures provide information on the dot's ground-state properties. Several statistical signatures of electron-electron interactions have been identified, most notably in the dot's addition spectrum. The dot's spin, determined partly by exchange interactions, can also influence the fluctuation properties of the conductance. Other mesoscopic phenomena in quantum dots that are affected by the charging energy include the fluctuations of the cotunneling conductance and mesoscopic Coulomb blockade.

  1. Structural, functional, and molecular alterations produced by aldosterone plus salt in rat heart: association with enhanced serum and glucocorticoid-regulated kinase-1 expression.

    PubMed

    Martín-Fernández, Beatriz; de las Heras, Natalia; Miana, María; Ballesteros, Sandra; Delgado, Carmen; Song, Su; Hintze, Thomas; Cachofeiro, Victoria; Lahera, Vicente

    2011-01-01

    We aimed to evaluate the structural, functional, inflammatory, and oxidative alterations, as well as serum and glucocorticoid-regulated kinase-1 (SGK-1) expression, produced in rat heart by aldosterone + salt administration. Fibrosis mediators such as connective tissue growth factor, matrix metalloproteinase 2, and tissue inhibitor of metalloproteinases 2 were also evaluated. Treatment with spironolactone was evaluated to prove mineralocorticoid mediation. Male Wistar rats received aldosterone (1 mg[middle dot]kg-1[middle dot]d-1) + 1% NaCl for 3 weeks. Half of the animals were treated with spironolactone (200 mg[middle dot]kg-1[middle dot]d-1). Systolic and diastolic blood pressures, left ventricle (LV) systolic pressure, and LV end-diastolic pressure were elevated (P < 0.05) in aldosterone + salt-treated rats. In aldosterone + salt-treated rats, -dP/dt decreased (P < 0.05), but +dP/dt was similar in all groups. Spironolactone normalized (P < 0.05) systolic blood pressure, diastolic blood pressure, LV systolic pressure, LV end-diastolic pressure, and -dP/dt. Relative heart weight, collagen content, messenger RNA expression of transforming growth factor beta, connective tissue growth factor, matrix metalloproteinase 2, tissue inhibitor of metalloproteinases 2, tumor necrosis factor alpha, interleukin-1[beta], p22phox, endothelial nitric oxide synhtase, and SGK-1 were increased (P < 0.05) in aldosterone + salt-treated rats, being reduced by spironolactone (P < 0.05). SGK-1 might be a key mediator in the structural, functional, and molecular cardiac alterations induced by aldosterone + salt in rats. All the observed changes and mediators are related with the activation of mineralocorticoid receptors.

  2. Systematic safety evaluation on photoluminescent carbon dots

    NASA Astrophysics Data System (ADS)

    Wang, Kan; Gao, Zhongcai; Gao, Guo; Wo, Yan; Wang, Yuxia; Shen, Guangxia; Cui, Daxiang

    2013-03-01

    Photoluminescent carbon dots (C-dots) were prepared using the improved nitric acid oxidation method. The C-dots were characterized by tapping-mode atomic force microscopy, and UV-vis absorption spectroscopy. The C-dots were subjected to systematic safety evaluation via acute toxicity, subacute toxicity, and genotoxicity experiments (including mouse bone marrow micronuclear test and Salmonella typhimurium mutagenicity test). The results showed that the C-dots were successfully prepared with good stability, high dispersibility, and water solubility. At all studied C-dot dosages, no significant toxic effect, i.e., no abnormality or lesion, was observed in the organs of the animals. Therefore, the C-dots are non-toxic to mice under any dose and have potential use in fluorescence imaging in vivo, tumor cell tracking, and others.

  3. A single gene for juvenile and middle-age onset open-angle glaucomas confined within a small interval on chromosome 1q

    SciTech Connect

    Raymond, V.; Dumont, M.; Plante, M.

    1994-09-01

    Primary open-angle glaucoma (POAG) encompasses a complex of ocular disease entities characterized by an optic neuropathy causing progressive loss of the visual fields and usually associated with elevated intraocular pressure. POAG can be subdivided into two groups according to age of onset: (1) the more prevalent middle to late-age onset chronic open-angle glaucoma (COAG) diagnosed after age 40 and (2) the less common form, juvenile open-angle glaucoma (JOAG), which occurs between 3 years of age and early adulthood. Susceptibility to either COAG or JOAG has been found to be inherited. We studied 141 members of a huge multigeneration French Canadian family affected with an autosomal dominant form of POAG. Both JOAG and COAG were diagnosed in 43 patients. To first position the disease gene, AFM microsatellites markers specific to chromosome 1q21-q31 were selected since linkage of JOAG to this region was recently demonstrated in two Caucasian families. Tight linkage was observed between the JOAG/COAG phenotype and 7 microsatellite markers on chromosome 1q23-q25; a maximum lod score of 6.62 at {theta}=0 was obtained with AFM278ye5. Using a recombination mapping strategy based on a unique founder effect, a characteristic JOAG/COAG haplotype spanning 12 cM was next recognized between loci D1S196 and D1S212. Two key recombination events in affected patients further confined the disease locus within a 5 cM interval between loci D1S445 and D1S452/D1S210. These results are the first to demonstrate that JOAG and one adult form of POAG map at a single locus on chromosome 1q23-q25. They also provide members of this family with a new diagnostic tool to identify the at-risk individuals.

  4. Intravenous ascorbate improves spatial memory in middle-aged APP/PSEN1 and wild type mice

    PubMed Central

    Kennard, John A.; Harrison, Fiona E.

    2014-01-01

    The present study investigated the effects of a single intravenous (i.v.) dose of Vitamin C (ascorbate, ASC) on spatial memory in APP/PSEN1 mice, an Alzheimer's disease model. First, we confirmed the uptake time course in ASC-depleted gulo (−/−) mice, which cannot synthesize ASC. Differential tissue uptake was seen based on ASC transporter distribution. Liver (SVCT1 & SVCT2) ASC was elevated at 30, 60 and 120 min post-treatment (125 mg/kg, i.v.), whereas spleen (SVCT2) ASC increased at 60 and 120 min. There was no detectable change in cortical (SVCT2 at choroid plexus, and neurons) ASC within the 2-hour interval, although the cortex preferentially retained ASC. APP/PSEN1 and wild type (WT) mice at three ages (3, 9, or 20 months) were treated with ASC (125 mg/kg, i.v.) or saline 45 min before testing on the Modified Y-maze, a two-trial task of spatial memory. Memory declined with age and ASC treatment improved performance in 9 month-old APP/PSEN1 and WT mice. APP/PSEN1 mice displayed no behavioral impairment relative to WT controls. Although dopamine and metabolite DOPAC decreased in the nucleus accumbens with age, and improved spatial memory was correlated with increased dopamine in saline treated mice, acute ASC treatment did not alter monoamine levels in the nucleus accumbens. These data show that the Modified Y-maze is sensitive to age-related deficits, but not additional memory deficits due to amyloid pathology in APP/PSEN1 mice. They also suggest improvements in short-term spatial memory were not due to changes in the neuropathological features of AD or monoamine signaling. PMID:24508240

  5. [Testing for BTV, BVDV and BHV-1 in blood samples of new world camelids kept in middle Germany].

    PubMed

    Locher, Lena; Nieper, Hermann; Volkery, Janine; Fürll, Manfred; Wittek, Thomas

    2010-01-01

    The susceptibility of camelids for infectious agents which may result in severe economic losses or which are strictly regulated for epidemiological reasons in farm animals potentially causes a mutual risk of transmission. This study aimed to investigate the presence of antibodies against bovine herpesvirus 1 (BHV-1), bluetongue virus (BTV) and bovine viral diarrhoea virus (BVDV) as well as the presence of pestivirus antigen in new world camelids in Central Germany. Therefore 107 serum samples from 93 alpacas and lamas from this region which had been obtained from 2007 to 2009 were examined using ELISA, serum neutralisation test, RT-PCR and a pestivirus specific gene probe. All sample were negative for BHV-1 antibodies. Antibodies against BVDV-1 could be detected in four animals, titres reaching from 1:64 to > 1:256. One animal was positive for BTV antibodies in the year 2008. This animal had been tested negative for BTV antibodies in 2007. It can be concluded that up to now, these viruses seem to be of minor importance as pathogens in new world camelids in Central Germany. Therefore the risk of infection originating from new world camelids for production animals could be considered to be rather low in this region at the moment. However, it must be taken into consideration that these animals due to lack of antibodies are fully susceptible in case of occurrence of one of these viruses. For maintenance and improvement of the present status, general hygienic precautions should be applied; direct and indirect contact between animals from different herds must be avoided and virological diagnostic and quarantine should be required trading these animals.

  6. Fluorescent of C-dot composite thin films and its properties

    SciTech Connect

    Mahen, Ea Cahya Septia Nuryadin, Bebeh W. Iskandar, Ferry Abdullah, Mikrajuddin Khairurrijal

    2014-02-24

    In the present work, we report the preparation of a fluorescent carbon nanodots (C-dots) epoxy composite thin films on a glass substrate. C-dots were prepared directly by a simple hydrothermal method using citric acid as a carbon source. The C-dots solutions were mixed with a transparent epoxy resin to form C-dot epoxy composite. Furthermore, the composite precursor was deposited on the glass substrate using a spin coating method in order to fabricate C-dot epoxy composite thin film. The transmittance intensity of C-dot composite film reached up to 90% in the visible light spectra. Using Swanopoel method, the film thickness of fabricated C-dot composite film was determined at about 1.45 μm, a value lies in a typical range needed for a wide range application. Thus, the C-dot composite film is promising in broadening applications in various fields such as energy conversion, optoelectronics, and display technology.

  7. Cadmium sulfide quantum dots induce oxidative stress and behavioral impairments in the marine clam Scrobicularia plana.

    PubMed

    Buffet, Pierre-Emmanuel; Zalouk-Vergnoux, Aurore; Poirier, Laurence; Lopes, Christelle; Risso-de-Faverney, Christine; Guibbolini, Marielle; Gilliland, Douglas; Perrein-Ettajani, Hanane; Valsami-Jones, Eugenia; Mouneyrac, Catherine

    2015-07-01

    Cadmium sulfide (CdS) quantum dots have a number of current applications in electronics and solar cells and significant future potential in medicine. The aim of the present study was to examine the toxic effects of CdS quantum dots on the marine clam Scrobicularia plana exposed for 14 d to these nanomaterials (10 µg Cd L(-1) ) in natural seawater and to compare them with soluble Cd. Measurement of labile Cd released from CdS quantum dots showed that 52% of CdS quantum dots remained in the nanoparticulate form. Clams accumulated the same levels of Cd regardless of the form in which it was delivered (soluble Cd vs CdS quantum dots). However, significant changes in biochemical responses were observed in clams exposed to CdS quantum dots compared with soluble Cd. Increased activities of catalase and glutathione-S-transferase were significantly higher in clams exposed in seawater to Cd as the nanoparticulate versus the soluble form, suggesting a specific nano effect. The behavior of S. plana in sediment showed impairments of foot movements only in the case of exposure to CdS quantum dots. The results show that oxidative stress and behavior biomarkers are sensitive predictors of CdS quantum dots toxicity in S. plana. Such responses, appearing well before changes might occur at the population level, demonstrate the usefulness of this model species and type of biomarker in the assessment of nanoparticle contamination in estuarine ecosystems.

  8. What dot clusters and bar graphs reveal: subitizing is fast counting and subtraction.

    PubMed

    Boles, David B; Phillips, Jeffrey B; Givens, Somer M

    2007-08-01

    In two studies, we found that dot enumeration tasks resulted in shallow-sloped response time (RT) functions for displays of 1-4 dots and steep-sloped functions for displays of 5-8 dots, replicating results implicating subitizing and counting processes for low and high ranges of dots, respectively. Extracting number from a specific type of bar graph within the same numerical range produced a shallow-sloped but scallop-shaped RT function. Factor analysis confirmed two independent subranges for dots, but all bar graph values defined a unitary factor. Significantly, factor scores and asymmetries both showed correlations of bar graph recognition to dot subitizing but not to dot counting, strongly suggesting that subitizing was used in both enumeration of low numbers of dots and bar graph recognition. According to these results, subitizing appears to be a nonverbal process operating flexibly in either additive or subtractive fashion on analog quantities having spatial extent, a conclusion consistent with a fast-counting model of subitizing but not with other models of the subitizing process.

  9. Quantum Hall ferrimagnetism in lateral quantum dot molecules.

    PubMed

    Abolfath, Ramin M; Hawrylak, Pawel

    2006-11-03

    We demonstrate the existence of ferrimagnetic and ferromagnetic phases in a spin phase diagram of coupled lateral quantum dot molecules in the quantum Hall regime. The spin phase diagram is determined from the Hartree-Fock configuration interaction method as a function of electron number N and magnetic field B. The quantum Hall ferrimagnetic phase corresponds to spatially imbalanced spin droplets resulting from strong interdot coupling of identical dots. The quantum Hall ferromagnetic phases correspond to ferromagnetic coupling of spin polarization at filling factors between nu=2 and nu=1.

  10. Excitation spectra of circular, few-electron quantum dots

    PubMed

    Kouwenhoven; Oosterkamp; Danoesastro; Eto; Austing; Honda; Tarucha

    1997-12-05

    Studies of the ground and excited states in semiconductor quantum dots containing 1 to 12 electrons showed that the quantum numbers of the states in the excitation spectra can be identified and compared with exact calculations. A magnetic field induces transitions between the ground and excited states. These transitions were analyzed in terms of crossings between single-particle states, singlet-triplet transitions, spin polarization, and Hund's rule. These impurity-free quantum dots allow "atomic physics" experiments to be performed in magnetic field regimes not accessible for atoms.

  11. Ultrafast electron trapping in ligand-exchanged quantum dot assemblies.

    PubMed

    Turk, Michael E; Vora, Patrick M; Fafarman, Aaron T; Diroll, Benjamin T; Murray, Christopher B; Kagan, Cherie R; Kikkawa, James M

    2015-02-24

    We use time-integrated and time-resolved photoluminescence and absorption to characterize the low-temperature optical properties of CdSe quantum dot solids after exchanging native aliphatic ligands for thiocyanate and subsequent thermal annealing. In contrast to trends established at room temperature, our data show that at low temperature the band-edge absorptive bleach is dominated by 1S3/2h hole occupation in the quantum dot interior. We find that our ligand treatments, which bring enhanced interparticle coupling, lead to faster surface state electron trapping, a greater proportion of surface-related photoluminescence, and decreased band-edge photoluminescence lifetimes.

  12. Reading Comprehension Strategy: Rainbow Dots

    ERIC Educational Resources Information Center

    Moore, Claire; Lo, Lusa

    2008-01-01

    An action research study was conducted using the Rainbow Dots strategy to evaluate its effectiveness on reading comprehension skills in a third-grade class with students both with and without a specific learning disability. Results of the study indicated that students' overall performances in reading comprehension have increased. Students also…

  13. Inhibition in Dot Comparison Tasks

    ERIC Educational Resources Information Center

    Clayton, Sarah; Gilmore, Camilla

    2015-01-01

    Dot comparison tasks are commonly used to index an individual's Approximate Number System (ANS) acuity, but the cognitive processes involved in completing these tasks are poorly understood. Here, we investigated how factors including numerosity ratio, set size and visual cues influence task performance. Forty-four children aged 7-9 years completed…

  14. Designing quantum dots for solotronics

    PubMed Central

    Kobak, J.; Smoleński, T.; Goryca, M.; Papaj, M.; Gietka, K.; Bogucki, A.; Koperski, M.; Rousset, J.-G.; Suffczyński, J.; Janik, E.; Nawrocki, M.; Golnik, A.; Kossacki, P.; Pacuski, W.

    2014-01-01

    Solotronics, optoelectronics based on solitary dopants, is an emerging field of research and technology reaching the ultimate limit of miniaturization. It aims at exploiting quantum properties of individual ions or defects embedded in a semiconductor matrix. It has already been shown that optical control of a magnetic ion spin is feasible using the carriers confined in a quantum dot. However, a serious obstacle was the quenching of the exciton luminescence by magnetic impurities. Here we show, by photoluminescence studies on thus-far-unexplored individual CdTe dots with a single cobalt ion and CdSe dots with a single manganese ion, that even if energetically allowed, nonradiative exciton recombination through single-magnetic-ion intra-ionic transitions is negligible in such zero-dimensional structures. This opens solotronics for a wide range of as yet unconsidered systems. On the basis of results of our single-spin relaxation experiments and on the material trends, we identify optimal magnetic-ion quantum dot systems for implementation of a single-ion-based spin memory. PMID:24463946

  15. AED in the Middle East

    ERIC Educational Resources Information Center

    Academy for Educational Development, 2004

    2004-01-01

    Founded in 1961, the Academy for Educational Development (AED) is an independent, nonprofit, charitable organization that operates development programs in the United States and throughout the world. This directory presents an overview of the varied activities undertaken by AED throughout the Middle East. Current AED Programs include: (1) Behavior…

  16. Tuning the emission of CdSe quantum dots by controlled trap enhancement.

    PubMed

    Baker, David R; Kamat, Prashant V

    2010-07-06

    Ligand exchange with 3-mercaptopropionic acid (MPA) has been successfully used to tune the emission intensity of trioctylphosphineoxide/dodecylamine-capped CdSe quantum dots. Addition of 3-mercaptopropionic acid (MPA) to CdSe quantum dot suspension enhances the deep trap emission with concurrent quenching of the band edge emission. The smaller sized quantum dots, because of larger surface/volume ratio, create a brighter trap emission and are more easily tuned. An important observation is that the deep trap emission which is minimal after synthesis is brightened to have a quantum yield of 1-5% and can be tuned based on the concentration of MPA in solution with the quantum dots. Photoluminescence decay and transient absorption measurements reveal the role of surface bound MPA in altering the photophysical properties of CdSe quantum dots.

  17. Nanocrystalline TiO2 solar cells sensitized with InAs quantum dots.

    PubMed

    Yu, Pingrong; Zhu, Kai; Norman, Andrew G; Ferrere, Suzanne; Frank, Arthur J; Nozik, Arthur J

    2006-12-21

    We report nanocrystalline TiO2 solar cells sensitized with InAs quantum dots. InAs quantum dots of different sizes were synthesized and incorporated in solar cell devices. Efficient charge transfer from InAs quantum dots to TiO2 particles was achieved without deliberate modification of the quantum dot capping layer. A power conversion efficiency of about 1.7% under 5 mW/cm2 was achieved; this is relatively high for a nanocrystalline metal oxide solar cell sensitized with presynthesized quantum dots, but this efficiency could only be achieved at low light intensity. At one sun, the efficiency decreased to 0.3%. The devices are stable for at least weeks under room light in air.

  18. Multi-stacks of epitaxial GeSn self-assembled dots in Si: Structural analysis

    SciTech Connect

    Oliveira, F.; Fischer, I. A.; Schulze, J.; Benedetti, A.; Cerqueira, M. F.; Vasilevskiy, M. I.; Stefanov, S.; Chiussi, S.

    2015-03-28

    We report on the growth and structural and morphologic characterization of stacked layers of self-assembled GeSn dots grown on Si (100) substrates by molecular beam epitaxy at low substrate temperature T = 350 °C. Samples consist of layers (from 1 up to 10) of Ge{sub 0.96}Sn{sub 0.04} self-assembled dots separated by Si spacer layers, 10 nm thick. Their structural analysis was performed based on transmission electron microscopy, atomic force microscopy, and Raman scattering. We found that up to 4 stacks of dots could be grown with good dot layer homogeneity, making the GeSn dots interesting candidates for optoelectronic device applications.

  19. Coverage-mediated suppression of blinking in solid state quantum dot conjugated organic composite nanostructures.

    PubMed

    Hammer, Nathan I; Early, Kevin T; Sill, Kevin; Odoi, Michael Y; Emrick, Todd; Barnes, Michael D

    2006-07-27

    Size-correlated single-molecule fluorescence measurements on CdSe quantum dots functionalized with oligo(phenylene vinylene) (OPV) ligands exhibit modified fluorescence intermittency (blinking) statistics that are highly sensitive to the degree of ligand coverage on the quantum dot surface. As evidenced by a distinct surface height signature, fully covered CdSe-OPV nanostructures (approximately 25 ligands) show complete suppression of blinking in the solid state on an integration time scale of 1 s. Some access to dark states is observed on finer time scales (100 ms) with average persistence times significantly shorter than those from ZnS-capped CdSe quantum dots. This effect is interpreted as resulting from charge transport from photoexcited OPV into vacant trap sites on the quantum dot surface. These results suggest exciting new applications of composite quantum dot/organic systems in optoelectronic systems.

  20. Magnetic field dependence of a charge-frustrated state in a triangular triple quantum dot

    NASA Astrophysics Data System (ADS)

    Seo, M.; Chung, Y.

    2013-11-01

    We studied the magnetic field dependence of a charge-frustrated state formed in a triangular triple quantum dot. Stability diagrams at various magnetic fields were measured by using two-terminal and three-terminal conductance measurement schemes. We found that the frustrated state broke down at an external magnetic field of around 0.1 T. This result is due to the confinement energy shifts in quantum dots under external magnetic fields. A similar breakdown of the frustrated state was observed when the confinement energy of a quantum dot was intentionally shifted by the plunger gate of the dot, which confirm the reason for the breakdown of the frustrated state under on applied magnetic field. Our measured stability diagrams differed depending on the measurement schemes, which could not be explained by the capacitive interaction model based on an independent particle picture. We believe that the discrepancy is related to the closed electron and hole trajectories inside a triple quantum dot.

  1. What are the reasons for low use of graphene quantum dots in immunosensing of cancer biomarkers?

    PubMed

    Hasanzadeh, Mohammad; Shadjou, Nasrin

    2017-02-01

    Graphene quantum dots-based immunosensors have recently gained importance for detecting antigens and biomarkers responsible for cancer diagnosis. This paper reports a literature survey of the applications of graphene quantum dots for sensing cancer biomarkers. The survey sought to explore three questions: (1) Do graphene quantum dots improve immunosensing technology? (2) If so, can graphene quantum dots have a critical, positive impact on construction of immuno-devices? And (3) What is the reason for some troubles in the application of this technology? The number of published papers in the field seems positively answer the first two questions. However additional efforts must be made to move from the bench to the real diagnosis. Some approaches to improve the analytical performance of graphene quantum dots-based immunosensors through their figures of merit have been also discussed.

  2. Anodic, cathodic, and annihilation electrochemiluminescence emissions from hydrophilic conjugated polymer dots in aqueous medium.

    PubMed

    Dai, Ruiping; Wu, Fanmin; Xu, Huifeng; Chi, Yuwu

    2015-07-22

    Hydrophilic poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) conjugated polymer dots (CP-dots) capped by Triton X-100 were synthesized. For the first time, the electrochemiluminescence (ECL) emission of CP-dots was investigated in aqueous solution. At the glassy carbon/water interface, the CP-dots have excellent and multichannel ECL properties, such as having annihilation ECL activity in the absence of coreactants, and give bright anodic and cathodic ECL emission (590 nm) in the presence of tri-n-propylamine (TPrA) and peroxydisulfate (S2O8(2-)), respectively. The versatile ECL properties of the hydrophilic CP-dots combined with their low cytotoxicity, good biocompatibility, and easy bioconjugation may suggest promising applications of this new type of ECL nanomaterial in novel biosensing and bioimaging, and new types of light-emitting devices.

  3. Teaching the Literature of Today's Middle East

    ERIC Educational Resources Information Center

    Webb, Allen

    2011-01-01

    Providing a gateway into the real literature emerging from the Middle East, this book shows teachers how to make the topic authentic, powerful, and relevant. "Teaching the Literature of Today's Middle East": (1) Introduces teachers to this literature and how to teach it; (2) Brings to the reader a tremendous diversity of teachable texts…

  4. Graphene quantum dots induce apoptosis, autophagy, and inflammatory response via p38 mitogen-activated protein kinase and nuclear factor-κB mediated signaling pathways in activated THP-1 macrophages.

    PubMed

    Qin, Yiru; Zhou, Zhi-Wei; Pan, Shu-Ting; He, Zhi-Xu; Zhang, Xueji; Qiu, Jia-Xuan; Duan, Wei; Yang, Tianxin; Zhou, Shu-Feng

    2015-01-02

    The biomedical application of graphene quantum dots (GQDs) is a new emerging area. However, their safety data are still in scarcity to date. Particularly, the effect of GQDs on the immune system remains unknown. This study aimed to elucidate the interaction of GQDs with macrophages and the underlying mechanisms. Our results showed that GQDs slightly affected the cell viability and membrane integrity of macrophages, whereas GQDs significantly increased reactive oxygen species (ROS) generation and apoptotic and autophagic cell death with an increase in the expression level of Bax, Bad, caspase 3, caspase 9, beclin 1, and LC3-I/II and a decrease in that of Bcl-2. Furthermore, low concentrations of GQDs significantly increased the expression of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-8, whereas high concentrations of GQDs elicited opposite effects on the cytokines production. SB202190, a selective inhibitor of p38 mitogen-activated protein kinase (MAPK), abolished the cytokine-inducing effect of GQDs in macrophages. Moreover, GQDs significantly increased the phosphorylation of p38 MAPK and p65, and promoted the nuclear translocation of nuclear factor-κB (NF-κB). Taken together, these results show that GQDs induce ROS generation, apoptosis, autophagy, and inflammatory response via p38MAPK and NF-κB mediated signaling pathways in THP-1 activated macrophages.

  5. The Use of Spatial and Spatiotemporal Modeling for Surveillance of H5N1 Highly Pathogenic Avian Influenza in Poultry in the Middle East.

    PubMed

    Alkhamis, Mohammad; Hijmans, Robert J; Al-Enezi, Abdullah; Martínez-López, Beatriz; Perea, Andres M

    2016-05-01

    Since 2005, H5N1 highly pathogenic avian influenza virus (HPAIV) has severely impacted the economy and public health in the Middle East (ME) with Egypt as the most affected country. Understanding the high-risk areas and spatiotemporal distribution of the H5N1 HPAIV in poultry is prerequisite for establishing risk-based surveillance activities at a regional level in the ME. Here, we aimed to predict the geographic range of H5N1 HPAIV outbreaks in poultry in the ME using a set of environmental variables and to investigate the spatiotemporal clustering of outbreaks in the region. Data from the ME for the period 2005-14 were analyzed using maximum entropy ecological niche modeling and the permutation model of the scan statistics. The predicted range of high-risk areas (P > 0.60) for H5N1 HPAIV in poultry included parts of the ME northeastern countries, whereas the Egyptian Nile delta and valley were estimated to be the most suitable locations for occurrence of H5N1 HPAIV outbreaks. The most important environmental predictor that contributed to risk for H5N1 HPAIV was the precipitation of the warmest quarter (47.2%), followed by the type of global livestock production system (18.1%). Most significant spatiotemporal clusters (P < 0.001) were detected in Egypt, Turkey, Kuwait, Saudi Arabia, and Sudan. Results suggest that more information related to poultry holding demographics is needed to further improve prediction of risk for H5N1 HPAIV in the ME, whereas the methodology presented here may be useful in guiding the design of surveillance programs and in identifying areas in which underreporting may have occurred.

  6. Physical and optical dot gain: characterization and relation to dot shape and paper properties

    NASA Astrophysics Data System (ADS)

    Namedanian, Mahziar; Nyström, Daniel; Zitinski Elias, Paula; Gooran, Sasan

    2014-01-01

    The tone value increase in halftone printing commonly referred to as dot gain actually encompasses two fundamentally different phenomena. Physical dot gain refers to the fact that the size of the printed halftone dots differs from their nominal size, and is related to the printing process. Optical dot gain originates from light scattering inside the substrate, causing light exchanges between different chromatic areas. Due to their different intrinsic nature, physical and optical dot gains need to be treated separately. In this study, we characterize and compare the dot gain properties for offset prints on coated and uncoated paper, using AM and first and second generation FM halftoning. Spectral measurements are used to compute the total dot gain. Microscopic images are used to separate the physical and optical dot gain, to study ink spreading and ink penetration, and to compute the Modulation Transfer Function (MTF) for the different substrates. The experimental results show that the physical dot gain depends on ink penetration and ink spreading properties. Microscopic images of the prints reveal that the ink penetrates into the pores and cavities of the uncoated paper, resulting in inhomogeneous dot shapes. For the coated paper, the ink spread on top of the surface, giving a more homogenous dot shape, but also covering a larger area, and hence larger physical dot gain. The experimental results further show that the total dot gain is larger for the uncoated paper, because of larger optical dot gain. The effect of optical dot gain depends on the lateral light scattering within the substrate, the size of the halftone dots, and on the halftone dot shape, especially the dot perimeter.

  7. Color-switchable, emission-enhanced fluorescence realized by engineering C-dot@C-dot nanoparticles.

    PubMed

    Guo, Zhen; Zhang, Zhiqiang; Zhang, Wei; Zhou, Lianqun; Li, Haiwen; Wang, Hongmei; Andreazza-Vignolle, Caroline; Andreazza, Pascal; Zhao, Dongxu; Wu, Yihui; Wang, Quanlong; Zhang, Tao; Jiang, Keming

    2014-12-10

    This paper reports the preparation and properties of color-switchable fluorescent carbon nanodots (C-dots). C-dots that emit dark turquoise and green-yellow fluorescence under 365 nm UV illumination were obtained from the hydrothermal decomposition of citric acid. Dark green fluorescent C-dots were obtained by conjugating prepared C-dots to form C-dot@C-dot nanoparticles. After successful conjugation of the C-dots, the fluorescence emission undergoes a blue-shift of nearly 20 nm (∼0.15 eV) under UV excitation at 370 nm. The C-dots emit goldenrod, green-yellow, and gold light under excitation at 455 nm, which shows that the prepared C-dots are color-switchable. Furthermore, conjugation of the C-dots results in enhanced, red-shifted absorption of the π-π* transition of the aromatic sp(2) domains due to the conjugated π-electron system. N incorporation in the carbon structure leads to a degree of dipoles for all the aromatic sp(2) bonds. The enhanced absorption in a wide range from 226 to 601 nm indicates extended conjugation in the C-dot@C-dot structure. The time-resolved average lifetimes for the three different types of C-dots prepared in this study are 7.10, 7.65, and 4.07 ns. The radiative rate (reduced decay lifetime) increases when the C-dots are conjugated in the C-dot@C-dot nanoparticles, leading to the enhanced fluorescence emission. The fluorescence emission of the C-dot@C-dot nanoparticles can be used in applications such as flow cytometry and cell imaging.

  8. Altered middle lamella homogalacturonan and disrupted deposition of (1-->5)-alpha-L-arabinan in the pericarp of Cnr, a ripening mutant of tomato.

    PubMed

    Orfila, C; Seymour, G B; Willats, W G; Huxham, I M; Jarvis, M C; Dover, C J; Thompson, A J; Knox, J P

    2001-05-01

    Cnr (colorless non-ripening) is a pleiotropic tomato (Lycopersicon esculentum) fruit ripening mutant with altered tissue properties including weaker cell-to-cell contacts in the pericarp (A.J. Thompson, M. Tor, C.S. Barry, J. Vrebalov, C. Orfila, M.C. Jarvis, J.J. Giovannoni, D. Grierson, G.B. Seymour [1999] Plant Physiol 120: 383-390). Whereas the genetic basis of the Cnr mutation is being identified by molecular analyses, here we report the identification of cell biological factors underlying the Cnr texture phenotype. In comparison with wild type, ripe-stage Cnr fruits have stronger, non-swollen cell walls (CW) throughout the pericarp and extensive intercellular space in the inner pericarp. Using electron energy loss spectroscopy imaging of calcium-binding capacity and anti-homogalacturonan (HG) antibody probes (PAM1 and JIM5) we demonstrate that maturation processes involving middle lamella HG are altered in Cnr fruit, resulting in the absence or a low level of HG-/calcium-based cell adhesion. We also demonstrate that the deposition of (1-->5)-alpha-L-arabinan is disrupted in Cnr pericarp CW and that this disruption occurs prior to fruit ripening. The relationship between the disruption of (1-->5)-alpha-L-arabinan deposition in pericarp CW and the Cnr phenotype is discussed.

  9. Confirmation of a late middle Pleistocene age for the Omo Kibish 1 cranium by direct uranium-series dating.

    PubMed

    Aubert, Maxime; Pike, Alistair W G; Stringer, Chris; Bartsiokas, Antonis; Kinsley, Les; Eggins, Stephen; Day, Michael; Grün, Rainer

    2012-11-01

    While it is generally accepted that modern humans evolved in Africa, the specific physical evidence for that origin remains disputed. The modern-looking Omo 1 skeleton, discovered in the Kibish region of Ethiopia in 1967, was controversially dated at ~130 ka (thousands of years ago) by U-series dating on associated Mollusca, and it was not until 2005 that Ar-Ar dating on associated feldspar crystals in pumice clasts provided evidence for an even older age of ~195 ka. However, questions continue to be raised about the age and stratigraphic position of this crucial fossil specimen. Here we present direct U-series determinations on the Omo 1 cranium. In spite of significant methodological complications, which are discussed in detail, the results indicate that the human remains do not belong to a later intrusive burial and are the earliest representative of anatomically modern humans. Given the more archaic morphology shown by the apparently contemporaneous Omo 2 calvaria, we suggest that direct U-series dating is applied to this fossil as well, to confirm its age in relation to Omo 1.

  10. Structures of HLA-A*1101 complexed with immunodominant nonamer and decamer HIV-1 epitopes clearly reveal the presence of a middle, secondary anchor residue.

    PubMed

    Li, Lenong; Bouvier, Marlene

    2004-05-15

    HLA-A*1101 is one of the most common human class I alleles worldwide. An increased frequency of HLA-A*1101 has been observed in cohorts of female sex workers from Northern Thailand who are highly exposed to HIV-1 and yet have remained persistently seronegative. In view of this apparent association of HLA-A*1101 with resistance to acquisition of HIV-1 infection, and given the importance of eliciting strong CTL responses to control and eliminate HIV-1, we have determined the crystal structure of HLA-A*1101 complexed with two immunodominant HIV-1 CTL epitopes: the nonamer reverse transcriptase(313-321) (AIFQSSMTK) and decamer Nef(73-82) (QVPLRPMTYK) peptides. The structures confirm the presence of primary anchor residues P2-Ile/-Val and P9-/P10-Lys, and also clearly reveal the presence of secondary anchor residues P6-Ser for reverse transcriptase and P7-Met for Nef. The overall backbone conformation of both peptides is defined as two bulges that are separated by a more buried middle residue. In this study, we discuss how this topology may offer functional advantages in the selection and presentation of HIV-1 CTL epitopes by HLA-A*1101. Overall, this structural analysis permits a more accurate definition of the peptide-binding motif of HLA-A*1101, the characterization of its antigenic surface, and the correlation of molecular determinants with resistance to HIV-1 infection. These studies are relevant for the rational design of HLA-A*1101-restricted CTL epitopes with improved binding and immunological properties for the development of HIV-1 vaccines.

  11. Study of strain boundary conditions and GaAs buffer sizes in InGaAs quantum dots

    NASA Technical Reports Server (NTRS)

    Oyafuso, F.; Klimeck, G.; Boykin, T. B.; Bowen, R. C.; Allmen, P. von

    2003-01-01

    NEMO 3-D has been developed for the simulation of electronic structure in self-assembled InGaAs quantum dots on GaAs substrates. Typical self-assembled quantum dots in that material system contain about 0.5 to 1 million atoms. Effects of strain by the surrounding GaAs buffer modify the electronic structure inside the quantum dot significantly and a large GaAs buffer must be included in the strain and electronic structure.

  12. One-step preparation and assembly of aqueous colloidal CdS(x)Se(1-x) nanocrystals within mesoporous TiO2 films for quantum dot-sensitized solar cells.

    PubMed

    Song, Xiaohui; Wang, Minqiang; Deng, Jianping; Yang, Zhi; Ran, Chenxin; Zhang, Xiangyu; Yao, Xi

    2013-06-12

    In the field of quantum dots (QDs)-sensitized solar cells, semiconductor QDs sensitizer with a moderate band gap is required in order to sufficiently match the solar spectrum and achieve efficient charge separation. At present, changing the size of QDs is the main method used for adjusting their band gap through quantum size effect, however, the pore sizes of mesoporous TiO2 film set a limit on the allowed size of QDs. Therefore, the tuning of electronic and optical properties by changing the particle size could be limited under some circumstances. In this paper, high-quality aqueous CdS(x)Se(1-x) QDs sensitizer is successfully synthesized and effectively deposited on a mesoporous TiO2 film by a one-step hydrothermal method. In addition to size, alloy QDs provide composition as an additional dimension for tailoring their electronic properties. The alloy composition and band gap can be precisely controlled by tuning the precursor (Se/Na2S·9H2O) ratio while maintaining the similar particle size. By using such CdS(x)Se(1-x) sensitized TiO2 films as photoanodes for solar cell, a maximum power conversion efficiency of 2.23% is achieved under one sun illumination (AM 1.5 G, 100 mW cm(-2)).

  13. Urban remote sensing in areas of conflict: TerraSAR-X and Sentinel-1 change detection in the Middle East

    NASA Astrophysics Data System (ADS)

    Tapete, Deodato; Cigna, Francesca

    2016-08-01

    Timely availability of images of suitable spatial resolution, temporal frequency and coverage is currently one of the major technical constraints on the application of satellite SAR remote sensing for the conservation of heritage assets in urban environments that are impacted by human-induced transformation. TerraSAR-X and Sentinel-1A, in this regard, are two different models of SAR data provision: very high resolution on-demand imagery with end user-selected acquisition parameters, on one side, and freely accessible GIS-ready products with intended regular temporal coverage, on the other. What this means for change detection analyses in urban areas is demonstrated in this paper via the experiment over Homs, the third largest city of Syria with an history of settlement since 2300 BCE, where the impacts of the recent civil war combine with pre- and post-conflict urban transformation . The potential performance of Sentinel-1A StripMap scenes acquired in an emergency context is simulated via the matching StripMap beam mode offered by TerraSAR-X. Benefits and limitations of the different radar frequency band, spatial resolution and single/multi-channel polarization are discussed, as a proof-of-concept of regular monitoring currently achievable with space-borne SAR in historic urban settings. Urban transformation observed across Homs in 2009, 2014 and 2015 shows the impact of the Syrian conflict on the cityscape and proves that operator-driven interpretation is required to understand the complexity of multiple and overlapping urban changes.

  14. Quantum Dots: Proteomics characterization of the impact on biological systems

    NASA Astrophysics Data System (ADS)

    Pozzi-Mucelli, Stefano; Boschi, F.; Calderan, L.; Sbarbati, A.; Osculati, F.

    2009-05-01

    Over the past few years, Quantum Dots have been tested in most biotechnological applications that use fluorescence, including DNA array technology, immunofluorescence assays, cell and animal biology. Quantum Dots tend to be brighter than conventional dyes, because of the compounded effects of extinction coefficients that are an order of magnitude larger than those of most dyes. Their main advantage resides in their resistance to bleaching over long periods of time (minutes to hours), allowing the acquisition of images that are crisp and well contrasted. This increased photostability is especially useful for three-dimensional (3D) optical sectioning, where a major issue is bleaching of fluorophores during acquisition of successive z-sections, which compromises the correct reconstruction of 3D structures. The long-term stability and brightness of Quantum Dots make them ideal candidates also for live animal targeting and imaging. The vast majority of the papers published to date have shown no relevant effects on cells viability at the concentration used for imaging applications; higher concentrations, however, caused some issues on embryonic development. Adverse effects are due to be caused by the release of cadmium, as surface PEGylation of the Quantum Dots reduces these issues. A recently published paper shows evidences of an epigenetic effect of Quantum Dots treatment, with general histones hypoacetylation, and a translocation to the nucleus of p53. In this study, mice treated with Quantum Dots for imaging purposes were analyzed to investigate the impact on protein expression and networking. Differential mono-and bidimensional electrophoresis assays were performed, with the individuation of differentially expressed proteins after intravenous injection and imaging analysis; further, as several authors indicate an increase in reactive oxygen species as a possible mean of damage due to the Quantum Dots treatment, we investigated the signalling pathway of APE1/Ref1, a

  15. Optical Pulse Control of Electron and Nuclear Spins in Quantum Dots

    DTIC Science & Technology

    2009-01-01

    2 T. Kennedy,1 A. Bracker,1 and T. Reinecke1 1Electronics Science and Technology Division 2George Mason University Introduction: Quantum information...decryption of codes with long encryption keys. Electron spins in quantum dots (QDs) are being widely investigated as qubits for storage and processing...field quantum dot la se r pu ls es z x y nuclear spins electron spin + nuclear spin field Sx El lip tic ity ( ra d) Delay time (ps) tim e Sy

  16. Micro-RNA detection based on fluorescence resonance energy transfer of DNA-carbon quantum dots probes.

    PubMed

    Khakbaz, Faeze; Mahani, Mohamad

    2017-04-15

    Carbon quantum dots have been proposed as an effective platform for miRNA detection. Carbon dots were synthesized by citric acid. The synthesized dots were characterized by dynamic light scattering, UV-Vis spectrophotometry, spectrofluorimetry, transmission electron microscopy and FT-IR spectrophotometry. The fluorescence quantum yield of the synthesized dots was determined using quinine sulfate as the standard. The FAM-labeled single stranded DNA, as sensing element, was adsorbed on dots by π-π interaction. The quenching of the dots fluorescence due to fluorescence resonance energy transfer (FRET) was used for mir 9-1 detection. In the presence of the complementary miRNA, the FRET did not take place and the fluorescence was recovered.

  17. Mathematics in the Middle.

    ERIC Educational Resources Information Center

    Leutzinger, Larry, Ed.

    This book contains articles that help to further the process of reform in the middle grades, recognizing that the knowledge acquired during these years greatly affects how well the secondary school curriculum will attain its goals. Critical issues facing middle grade classes in particular and all mathematics classrooms in general are discussed.…

  18. Generativity in Middle Adulthood.

    ERIC Educational Resources Information Center

    Hardin, Paula

    The study described in this paper was conducted to delineate the phenomenon of generativity in middle-aged adults in an attempt to identify its major characteristics, attributes, determinants, and situational or circumstantial variables. Three themes emerged from a literature survey of materials on middle adulthood: the theme of the entry…

  19. Probing silicon quantum dots by single-dot techniques

    NASA Astrophysics Data System (ADS)

    Sychugov, Ilya; Valenta, Jan; Linnros, Jan

    2017-02-01

    Silicon nanocrystals represent an important class of non-toxic, heavy-metal free quantum dots, where the high natural abundance of silicon is an additional advantage. Successful development in mass-fabrication, starting from porous silicon to recent advances in chemical and plasma synthesis, opens up new possibilities for applications in optoelectronics, bio-imaging, photovoltaics, and sensitizing areas. In this review basic physical properties of silicon nanocrystals revealed by photoluminescence spectroscopy, lifetime, intensity trace and electrical measurements on individual nanoparticles are summarized. The fabrication methods developed for accessing single Si nanocrystals are also reviewed. It is concluded that silicon nanocrystals share many of the properties of direct bandgap nanocrystals exhibiting sharp emission lines at low temperatures, on/off blinking, spectral diffusion etc. An analysis of reported results is provided in comparison with theory and with direct bandgap material quantum dots. In addition, the role of passivation and inherent interface/matrix defects is discussed.

  20. Antiretroviral treatment sequencing strategies to overcome HIV type 1 drug resistance in adolescents and adults in low-middle-income countries.

    PubMed

    De Luca, Andrea; Hamers, Raphael L; Schapiro, Jonathan M

    2013-06-15

    Antiretroviral treatment (ART) is expanding to human immunodeficiency virus type 1 (HIV-1)-infected persons in low-middle income countries, thanks to a public health approach. With 3 available drug classes, 2 ART sequencing lines are programmatically foreseen. The emergence and transmission of viral drug resistance represents a challenge to the efficacy of ART. Knowledge of HIV-1 drug resistance selection associated with specific drugs and regimens and the consequent activity of residual drug options are essential in programming ART sequencing options aimed at preserving ART efficacy for as long as possible. This article determines optimal ART sequencing options for overcoming HIV-1 drug resistance in resource-limited settings, using currently available drugs and treatment monitoring opportunities. From the perspective of drug resistance and on the basis of limited virologic monitoring data, optimal sequencing seems to involve use of a tenofovir-containing nonnucleoside reverse-transcriptase inhibitor-based first-line regimen, followed by a zidovudine-containing, protease inhibitor (PI)-based second-line regimen. Other options and their consequences are explored by considering within-class and between-class sequencing opportunities, including boosted PI monotherapies and future options with integrase inhibitors. Nucleoside reverse-transcriptase inhibitor resistance pathways in HIV-1 subtype C suggest an additional reason for accelerating stavudine phase out. Viral load monitoring avoids the accumulation of resistance mutations that significantly reduce the activity of next-line options. Rational use of resources, including broader access to viral load monitoring, will help ensure 3 lines of fully active treatment options, thereby increasing the duration of ART success.

  1. The direct, not V1-mediated, functional influence between the thalamus and middle temporal complex in the human brain is modulated by the speed of visual motion.

    PubMed

    Gaglianese, A; Costagli, M; Ueno, K; Ricciardi, E; Bernardi, G; Pietrini, P; Cheng, K

    2015-01-22

    The main visual pathway that conveys motion information to the middle temporal complex (hMT+) originates from the primary visual cortex (V1), which, in turn, receives spatial and temporal features of the perceived stimuli from the lateral geniculate nucleus (LGN). In addition, visual motion information reaches hMT+ directly from the thalamus, bypassing the V1, through a direct pathway. We aimed at elucidating whether this direct route between LGN and hMT+ represents a 'fast lane' reserved to high-speed motion, as proposed previously, or it is merely involved in processing motion information irrespective of speeds. We evaluated functional magnetic resonance imaging (fMRI) responses elicited by moving visual stimuli and applied connectivity analyses to investigate the effect of motion speed on the causal influence between LGN and hMT+, independent of V1, using the Conditional Granger Causality (CGC) in the presence of slow and fast visual stimuli. Our results showed that at least part of the visual motion information from LGN reaches hMT+, bypassing V1, in response to both slow and fast motion speeds of the perceived stimuli. We also investigated whether motion speeds have different effects on the connections between LGN and functional subdivisions within hMT+: direct connections between LGN and MT-proper carry mainly slow motion information, while connections between LGN and MST carry mainly fast motion information. The existence of a parallel pathway that connects the LGN directly to hMT+ in response to both slow and fast speeds may explain why MT and MST can still respond in the presence of V1 lesions.

  2. Chronic Noncommunicable Diseases in 6 Low- and Middle-Income Countries: Findings From Wave 1 of the World Health Organization's Study on Global Ageing and Adult Health (SAGE).

    PubMed

    Arokiasamy, Perianayagam; Uttamacharya; Kowal, Paul; Capistrant, Benjamin D; Gildner, Theresa E; Thiele, Elizabeth; Biritwum, Richard B; Yawson, Alfred E; Mensah, George; Maximova, Tamara; Wu, Fan; Guo, Yanfei; Zheng, Yang; Kalula, Sebastiana Zimba; Salinas Rodríguez, Aarón; Manrique Espinoza, Betty; Liebert, Melissa A; Eick, Geeta; Sterner, Kirstin N; Barrett, Tyler M; Duedu, Kwabena; Gonzales, Ernest; Ng, Nawi; Negin, Joel; Jiang, Yong; Byles, Julie; Madurai, Savathree Lorna; Minicuci, Nadia; Snodgrass, J Josh; Naidoo, Nirmala; Chatterji, Somnath

    2017-03-15

    In this paper, we examine patterns of self-reported diagnosis of noncommunicable diseases (NCDs) and prevalences of algorithm/measured test-based, undiagnosed, and untreated NCDs in China, Ghana, India, Mexico, Russia, and South Africa. Nationally representative samples of older adults aged ≥50 years were analyzed from wave 1 of the World Health Organization's Study on Global Ageing and Adult Health (2007-2010; n = 34,149). Analyses focused on 6 conditions: angina, arthritis, asthma, chronic lung disease, depression, and hypertension. Outcomes for these NCDs were: 1) self-reported disease, 2) algorithm/measured test-based disease, 3) undiagnosed disease, and 4) untreated disease. Algorithm/measured test-based prevalence of NCDs was much higher than self-reported prevalence in all 6 countries, indicating underestimation of NCD prevalence in low- and middle-income countries. Undiagnosed prevalence of NCDs was highest for hypertension, ranging from 19.7% (95% confidence interval (CI): 18.1, 21.3) in India to 49.6% (95% CI: 46.2, 53.0) in South Africa. The proportion untreated among all diseases was highest for depression, ranging from 69.5% (95% CI: 57.1, 81.9) in South Africa to 93.2% (95% CI: 90.1, 95.7) in India. Higher levels of education and wealth significantly reduced the odds of an undiagnosed condition and untreated morbidity. A high prevalence of undiagnosed NCDs and an even higher proportion of untreated NCDs highlights the inadequacies in diagnosis and management of NCDs in local health-care systems.

  3. Investigation of single-layer/multilayer self-assembled InAs quantum dots on GaAs{sub 1-x}Sb{sub x}/GaAs composite substrates

    SciTech Connect

    Tang, Dinghao; Kim, Yeongho Faleev, Nikolai; Honsberg, Christiana B.; Smith, David J.

    2015-09-07

    The structure-performance properties of single-layered and multi-layered InAs/GaAs{sub 1−x}Sb{sub x} quantum dot (QD) system, grown by molecular beam epitaxy on GaAs (001) substrates, have been investigated as a function of Sb concentration. Electron microscopy observations showed no significant crystalline defects for the single-layered InAs QDs (Sb 20%). X-ray diffraction analysis revealed that the increase of Sb concentration from 7.3% to 10.2% for the multi-layered QDs increased the strain relaxation from 0% to ∼23% and the dislocation density of GaAsSb layers went up to 3.6 × 10{sup 9 }cm{sup −2}. The peak energy of QD luminescence was red-shifted with increasing Sb concentration due to reduced strain inside QDs. Moreover, the carrier lifetime of the QDs was highly improved from 1.7 to 36.7 ns due to weak hole confinement as the Sb concentration was increased from 7.3% to 10.2%. These structures should be highly promising as the basis for photovoltaic solar-cell applications. Finally, the increased Sb concentration increased the thermal activation energy of electrons confined in the QDs from 163.7 to 206.8 meV, which was indicative of the improved thermal stability with Sb concentration.

  4. Development of steady-state electrical-heating fluorescence-sensing (SEF) technique for thermal characterization of one dimensional (1D) structures by employing graphene quantum dots (GQDs) as temperature sensors

    NASA Astrophysics Data System (ADS)

    Wan, Xiang; Li, Changzheng; Yue, Yanan; Xie, Danmei; Xue, Meixin; Hu, Niansu

    2016-11-01

    A fluorescence signal has been demonstrated as an effective implement for micro/nanoscale temperature measurement which can be realized by either direct fluorescence excitation from materials or by employing nanoparticles as sensors. In this work, a steady-state electrical-heating fluorescence-sensing (SEF) technique is developed for the thermal characterization of one-dimensional (1D) materials. In this method, the sample is suspended between two electrodes and applied with steady-state Joule heating. The temperature response of the sample is monitored by collecting a simultaneous fluorescence signal from the sample itself or nanoparticles uniformly attached on it. According to the 1D heat conduction model, a linear temperature dependence of heating powers is obtained, thus the thermal conductivity of the sample can be readily determined. In this work, a standard platinum wire is selected to measure its thermal conductivity to validate this technique. Graphene quantum dots (GQDs) are employed as the fluorescence agent for temperature sensing. Parallel measurement by using the transient electro-thermal (TET) technique demonstrates that a small dose of GQDs has negligible influence on the intrinsic thermal property of platinum wire. This SEF technique can be applied in two ways: for samples with a fluorescence excitation capability, this method can be implemented directly; for others with weak or no fluorescence excitation, a very small portion of nanoparticles with excellent fluorescence excitation can be used for temperature probing and thermophysical property measurement.

  5. Elimination of an Infestation of Rat Fur Mites (Radfordia ensifera) from a Colony of Long Evans Rats, Using the Micro-dot Technique for Topical Administration of 1% Ivermectin.

    PubMed

    Kondo, Sylvia; Taylor, Andrew; Chun, Stewart

    1998-01-01

    Micro-dot delivery of 1% ivermectin was used in an effort to eliminate an infestation of rat fur mites (Radfordia ensifera) from a conventionally housed colony of Long Evans rats. The colony was used for breeding as well as for behavioral testing. A micropipette was used to apply a 1% solution of ivermectin (2 mg/kg of body weight) to the skin on the dorsal aspect of the shoulder. Three treatments were applied at approximately 2-week intervals. All rats in the colony were treated. However, to avoid toxicity to neonates, nursing females and their pups (control group) received mineral oil in lieu of ivermectin until after weaning, at which time they also were treated with ivermectin. During the treatment phase, skin scrapings were used to detect mites. Control rats remained positive for fur mites when treated with mineral oil. After 3 applications of ivermectin, all rats were found to be free of mites. During the posttreatment phase, skin scrapings, dorsal tape tests, and a washing method were performed on euthanatized rats to detect mites. Rats tested up to 129 days (18 weeks) after ivermectin treatment were still free of mites. In a breeding colony composed of rats of various sizes and ages, micropipette delivery of ivermectin allowed for accurate dosing to eliminate fur mites, while preventing inadvertent toxicosis. We did not detect obvious adverse effects on the breeding program or on the behavioral studies in which these rats were subsequently used, nor did we detect morbidity or mortality associated with ivermectin administration.

  6. Regions. [Africa, Middle East].

    PubMed

    1985-03-01

    This discussion of population focuses on the regions of Africa and the Middle East. In South Africa more white women are working but fewer black women work. The overall result is that the percentage of women who work is declining. Marita de Beer, research liaison executive at the South African Advertising Research Foundation, reports that the female population grew by 31% in the past 10 years while the number of working women has grown by only 11%. Among blacks the female population rose by 36%, but the number of workers among them declined by about 1%. Married women are among the fastest growing groups of working women in South Africa. The most recent estimate of the population of Nigeria is 92 million. According to Professor Vremudia Diejomaoh, Nigeria's population will probably reach 155 million by 2000 with 33% living in urban areas. In Saudi Arabia the Pan Arab Research Center recently completed a census of retail outlets in 3 metropolitan areas: Jeddah, Riyadh, and Dammam. The types of outlets surveyed include large supermarkets, small supermarkets, groceries with and without deep freeze, tobacco shops, meat shop/delis, small cafeterias, large restaurants/hotels, cosmetics shops or perfumeries, camera stores, toy shops, pharmacies, watch and gift shop, newsstands, department store, and appliance outlets. Using the Census of Retail Outlets as a base, Pan Arab Research Center also has a new distribution audit system that will cover 500 outlets. By plotting Arab countries according to their population policies and their current growth rates, it is possible to project where the middle class will grow fastest in the Arab world. The countries that have declining growth rates and strong population programs designed to encourage lower fertility rates among women are Egypt, Tunisia, Morocco, Algeria, and Lebanon. The countries most likely to have a better per capita distribution of resources within this decade are those where governments encourage reductions in

  7. Photoluminescent C-dots@RGO for sensitive detection of hydrogen peroxide and glucose.

    PubMed

    Yeh, Ting-Yin; Wang, Chen-I; Chang, Huan-Tsung

    2013-10-15

    We have demonstrated sensitive detections of hydrogen peroxide (H2O2) and glucose using reduced graphene oxide decorated with carbon dots (C-dots@RGO). The C-dots@RGO prepared from catechin (reducing agent and carbon source) and graphene oxide via hydrothermal routes possesses excitation-wavelength-dependence photoluminescence (PL) characteristics, with maximum excitation and emission wavelengths of 365 and 440 nm, respectively. The C-dots@RGO is stable in solution containing NaCl up to 350 mM, but is quenched by reactive oxygen species (ROS). ROS reacts with H2O2 and thus its PL quenching toward the C-dots@RGO is minimized. When using C-dots@RGO and glucose oxidase (GOx), the PL assay allows detection of glucose in the presence of 10 µM of bovine serum albumin, with linearity over a concentration range from 1 to 60 µM (r=0.99) and a limit of detection (at a signal-to-noise ratio of 3) of 140 nM. The practicality of this assay has been validated by determining the concentrations of glucose in serum and saliva samples, with results of 5.1 ± 0.6mM (n=3) and 117.9 ± 8.1 μM (n=3), respectively. Our simple and sensitive assay opens a new avenue of developing assays for various analytes using C-dots@RGO in conjunction with different enzymes.

  8. Exciton binding energy in GaAsBiN spherical quantum dot heterostructures

    NASA Astrophysics Data System (ADS)

    Das, Subhasis; Dhar, S.

    2017-03-01

    The ground state exciton binding energies (EBE) of heavy hole excitons in GaAs1-x-yBixNy - GaAs spherical quantum dots (QD) are calculated using a variational approach under 1s hydrogenic wavefunctions within the framework of effective mass approximation. Both the nitrogen and the bismuth content in the material are found to affect the binding energy, in particular for larger nitrogen content and lower dot radii. Calculations also show that the ground state exciton binding energies of heavy holes increase more at smaller dot sizes as compared to that for the light hole excitons.

  9. Safely Managed Sanitation for All Means Fecal Sludge Management for At Least 1.8 Billion People in Low and Middle Income Countries.

    PubMed

    Berendes, David M; Sumner, Trent A; Brown, Joe M

    2017-02-14

    Although global access to sanitation is increasing, safe management of fecal waste is a rapidly growing challenge in low- and middle-income countries (LMICs). The goal of this study was to evaluate the current need for fecal sludge management (FSM) in LMICs by region, urban/rural status, and wealth. Recent Demographic and Health Survey data from 58 countries (847 685 surveys) were used to classify households by sanitation facility (facilities needing FSM, sewered facilities, ecological sanitation/other, or no facilities). Onsite piped water infrastructure was quantified to approximate need for wastewater management and downstream treatment. Over all surveyed nations, 63% of households used facilities requiring FSM, totaling approximately 1.8 billion people. Rural areas had similar proportions of toilets requiring FSM as urban areas. FSM needs scaled inversely with wealth: in the poorest quintile, households' sanitation facilities were almost 170 times more likely to require FSM (vs sewerage) than in the richest quintile. About one out of five households needing FSM had onsite piped water infrastructure, indicating domestic or reticulated wastewater infrastructure may be required if lacking for safe management of aqueous waste streams. FSM strategies must be included in future sanitation investment to achieve safe management of fecal wastes and protect public health.

  10. Prediction of movement following noxious stimulation during 1 minimum alveolar anesthetic concentration isoflurane/nitrous oxide anesthesia by means of middle latency auditory evoked responses.

    PubMed

    Leistritz, L; Kochs, E; Galicki, M; Witte, H

    2002-06-01

    This paper investigates the applicability of generalized dynamic neural networks for the design of a two-valued anesthetic depth indicator during isoflurane/nitrous oxide anesthesia. The indicator construction is based on the processing of middle latency auditory evoked responses (MLAER) in combination with the observation of the patient's movement reaction to skin incision. The framework of generalized dynamic neural networks does not require any data preprocessing, visual data inspection or subjective feature extraction. The study is based on a data set of 106 patients scheduled for elective surgery under isoflurane/nitrous oxide anesthesia. The processing of the measured MLAER is performed by a recurrent neural network that transforms the MLAER signals into signals having a very uncomplex structure. The evaluation of these signals is self-evident, and yields to a simple threshold classifier. Using only evoked potentials before the pain stimulus, the patient's reaction could be predicted with a probability of 81.5%. The MLAER is closely associated to the patient's reaction to skin incision following noxious stimulation during 1 minimum alveolar anesthetic concentration isoflurane/nitrous oxide anesthesia. In combination with other parameters, MLAER could contribute to an objective and trustworthy movement prediction to noxious stimulation.

  11. Palaeoproterozoic (1.83 Ga) zircons in a Bajocian (169 Ma) granite within a Middle Jurassic ophiolite (Rubiku, central Albania): a challenge for geodynamic models

    NASA Astrophysics Data System (ADS)

    Kryza, Ryszard; Beqiraj, Arjan

    2014-04-01

    Two distinct zircon populations, 1,827 ± 17 and 169 ± 2 Ma in age, have been found in the Rubiku granite dyke in the Middle Jurassic Mirdita ophiolite in central Albania. The old inherited zircons represent a homogeneous population formed during a discrete Palaeoproterozoic, likely magmatic, zircon crystallization event. These older zircons were likely incorporated, in large part, into the granite magma that crystallized broadly at the time of the ophiolite emplacement (around 169 Ma). The limited data available do not allow for the construction of an unequivocal petrogenetic model, though several palaeotectonic scenarios are discussed as possible settings for the granite formation. The models refer to recent findings of old inherited zircons in rocks at recent mid-ocean ridge settings, but also consider likely contributions of crustal materials to primary basic ophiolitic magmas within supra-subduction settings and subsequent accretion/collision circumstances. The presence of old zircons in much younger rocks within ophiolite successions runs counter to geodynamic models of interaction between the oceanic lithosphere and continental crust, but constraining their genesis would require further systematic studies on these old inherited zircons, both in mafic (if present) and in felsic rocks of the ophiolites.

  12. Congruency effects in dot comparison tasks: convex hull is more important than dot area.

    PubMed

    Gilmore, Camilla; Cragg, Lucy; Hogan, Grace; Inglis, Matthew

    2016-11-16

    The dot comparison task, in which participants select the more numerous of two dot arrays, has become the predominant method of assessing Approximate Number System (ANS) acuity. Creation of the dot arrays requires the manipulation of visual characteristics, such as dot size and convex hull. For the task to provide a valid measure of ANS acuity, participants must ignore these characteristics and respond on the basis of number. Here, we report two experiments that explore the influence of dot area and convex hull on participants' accuracy on dot comparison tasks. We found that individuals' ability to ignore dot area information increases with age and display time. However, the influence of convex hull information remains stable across development and with additional time. This suggests that convex hull information is more difficult to inhibit when making judgements about numerosity and therefore it is crucial to control this when creating dot comparison tasks.

  13. Congruency effects in dot comparison tasks: convex hull is more important than dot area

    PubMed Central

    Gilmore, Camilla; Cragg, Lucy; Hogan, Grace; Inglis, Matthew

    2016-01-01

    ABSTRACT The dot comparison task, in which participants select the more numerous of two dot arrays, has become the predominant method of assessing Approximate Number System (ANS) acuity. Creation of the dot arrays requires the manipulation of visual characteristics, such as dot size and convex hull. For the task to provide a valid measure of ANS acuity, participants must ignore these characteristics and respond on the basis of number. Here, we report two experiments that explore the influence of dot area and convex hull on participants’ accuracy on dot comparison tasks. We found that individuals’ ability to ignore dot area information increases with age and display time. However, the influence of convex hull information remains stable across development and with additional time. This suggests that convex hull information is more difficult to inhibit when making judgements about numerosity and therefore it is crucial to control this when creating dot comparison tasks. PMID:28163886

  14. 49 CFR Appendix B to Part 40 - DOT Drug Testing Semi-Annual Laboratory Report to Employers

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... number) By Drug (a) Marijuana Metabolite (number) (b) Cocaine Metabolite (number) (c) Opiates (number) (1... 49 Transportation 1 2011-10-01 2011-10-01 false DOT Drug Testing Semi-Annual Laboratory Report to... TRANSPORTATION WORKPLACE DRUG AND ALCOHOL TESTING PROGRAMS Pt. 40, App. B Appendix B to Part 40—DOT Drug...

  15. Effects of Solution Chemistry on Quantum Dot Transport and Retention in Porous Media

    NASA Astrophysics Data System (ADS)

    Englehart, J.; Wang, Y.; Zhu, H.; Colvin, V. L.; Pennell, K. D.

    2010-12-01

    Engineered nanomaterials with tunable surface chemistries, such as quantum dots, are becoming increasingly prevalent in commercial and medical applications. This increase in usage corresponds to an elevated risk of environmental exposures, and limited data are available on the fate and transport of quantum dots in the environment. The objective of this study was to quantify quantum dot transport and retention behavior under a variety of solution chemistries and in the presence of a non-aqueous phase liquid (NAPL) phase. The quantum dots were prepared with a CdSe/CdZnS core/shell that was coated with an amphiphilic copolymer. The primary quantum dot coating used in this study was octylamine modified polyacrylic acid, which yields a negative surface charge (zeta potential) ranging from -30 to -40 mV in water. The mean diameter of the quantum dots in deionized water ranged from 20-30 nm based on dynamic light scattering (DLS) analysis. Higher salt concentrations, ranging from 3 to 1000 mM NaCl, resulted in increased diameters of the quantum dots (28 to 190 nm, respectively). Transport and retention behavior of the quantum dots was evaluated using borosilicate glass columns (2.5 cm i.d. x 10 cm length) packed with 40-50 mesh (d50 = 355 µm) Ottawa sand that had been completely saturated with water. A pulse (ca. 60mL) of quantum dot suspension was introduced to the column at a flow rate of 1mL/min (pore-water velocity of 8m/d), followed by three pore volumes of particle-free solution. To evaluate effects of the presence of a NAPL phase, a uniform distribution of residual NAPL (Soltrol 220) was established prior to the quantum dot pulse injection. Concentrations of quantum dots in the column effluent and extracted from solid samples, quantified using an Inductively Coupled Plasma Optical Emission Spectrometer (ICP-OES), were used to construct an effluent breakthrough curve and retention profile for each experiment. The presence of a residual NAPL phase had negligible

  16. Dot-in-Well Quantum-Dot Infrared Photodetectors

    NASA Technical Reports Server (NTRS)

    Gunapala, Sarath; Bandara, Sumith; Ting, David; Hill, cory; Liu, John; Mumolo, Jason; Chang, Yia Chung

    2008-01-01

    Dot-in-well (DWELL) quantum-dot infrared photodetectors (QDIPs) [DWELL-QDIPs] are subjects of research as potentially superior alternatives to prior QDIPs. Heretofore, there has not existed a reliable method for fabricating quantum dots (QDs) having precise, repeatable dimensions. This lack has constituted an obstacle to the development of uniform, high-performance, wavelength-tailorable QDIPs and of focal-plane arrays (FPAs) of such QDIPs. However, techniques for fabricating quantum-well infrared photodetectors (QWIPs) having multiple-quantum- well (MQW) structures are now well established. In the present research on DWELL-QDIPs, the arts of fabrication of QDs and QWIPs are combined with a view toward overcoming the deficiencies of prior QDIPs. The longer-term goal is to develop focal-plane arrays of radiationhard, highly uniform arrays of QDIPs that would exhibit high performance at wavelengths from 8 to 15 m when operated at temperatures between 150 and 200 K. Increasing quantum efficiency is the key to the development of competitive QDIP-based FPAs. Quantum efficiency can be increased by increasing the density of QDs and by enhancing infrared absorption in QD-containing material. QDIPs demonstrated thus far have consisted, variously, of InAs islands on GaAs or InAs islands in InGaAs/GaAs wells. These QDIPs have exhibited low quantum efficiencies because the numbers of QD layers (and, hence, the areal densities of QDs) have been small typically five layers in each QDIP. The number of QD layers in such a device must be thus limited to prevent the aggregation of strain in the InAs/InGaAs/GaAs non-lattice- matched material system. The approach being followed in the DWELL-QDIP research is to embed In- GaAs QDs in GaAs/AlGaAs multi-quantum- well (MQW) structures (see figure). This material system can accommodate a large number of QD layers without excessive lattice-mismatch strain and the associated degradation of photodetection properties. Hence, this material

  17. Brightness-equalized quantum dots

    PubMed Central

    Lim, Sung Jun; Zahid, Mohammad U.; Le, Phuong; Ma, Liang; Entenberg, David; Harney, Allison S.; Condeelis, John; Smith, Andrew M.

    2015-01-01

    As molecular labels for cells and tissues, fluorescent probes have shaped our understanding of biological structures and processes. However, their capacity for quantitative analysis is limited because photon emission rates from multicolour fluorophores are dissimilar, unstable and often unpredictable, which obscures correlations between measured fluorescence and molecular concentration. Here we introduce a new class of light-emitting quantum dots with tunable and equalized fluorescence brightness across a broad range of colours. The key feature is independent tunability of emission wavelength, extinction coefficient and quantum yield through distinct structural domains in the nanocrystal. Precise tuning eliminates a 100-fold red-to-green brightness mismatch of size-tuned quantum dots at the ensemble and single-particle levels, which substantially improves quantitative imaging accuracy in biological tissue. We anticipate that these materials engineering principles will vastly expand the optical engineering landscape of fluorescent probes, facilitate quantitative multicolour imaging in living tissue and improve colour tuning in light-emitting devices. PMID:26437175

  18. Quantitative multiplexed quantum dot immunohistochemistry

    SciTech Connect

    Sweeney, E.; Ward, T.H.; Gray, N.; Womack, C.; Jayson, G.; Hughes, A.; Dive, C.; Byers, R.

    2008-09-19

    Quantum dots are photostable fluorescent semiconductor nanocrystals possessing wide excitation and bright narrow, symmetrical, emission spectra. These characteristics have engendered considerable interest in their application in multiplex immunohistochemistry for biomarker quantification and co-localisation in clinical samples. Robust quantitation allows biomarker validation, and there is growing need for multiplex staining due to limited quantity of clinical samples. Most reported multiplexed quantum dot staining used sequential methods that are laborious and impractical in a high-throughput setting. Problems associated with sequential multiplex staining have been investigated and a method developed using QDs conjugated to biotinylated primary antibodies, enabling simultaneous multiplex staining with three antibodies. CD34, Cytokeratin 18 and cleaved Caspase 3 were triplexed in tonsillar tissue using an 8 h protocol, each localised to separate cellular compartments. This demonstrates utility of the method for biomarker measurement enabling rapid measurement of multiple co-localised biomarkers on single paraffin tissue sections, of importance for clinical trial studies.

  19. Photovoltaic Current in Quantum Dots

    NASA Astrophysics Data System (ADS)

    Switkes, M.; Marcus, C. M.; Campman, K.; Gossard, A. C.

    1998-03-01

    We investigate the DC photovoltaic current, I_pv, due to coherent ``pumping'' in open ( g >= e^2/h ) quantum dots with radio-frequency modulation of the confining potential(B. Spivak, F. Zhou, and M. T. Beal Monod, Phys. Rev. B 51), p. 13226 (1995). I_pv is on the order of 20 pA≈ 10ef for a modulation frequency f = 15 MHz. The photovoltaic current exhibits mesoscopic fluctuations with magnetic field and with the static shape of the confining potential which do not appear to be correlated with fluctuations in the conductance of the dot. The photovoltaic current induced by pumping with two independent shape distortion gates depends on their relative phase; the relationship of this phase to time reversal symmetry is investigated with a view toward defining a generalized Landauer-Büttiker relation.

  20. Brightness-equalized quantum dots.

    PubMed

    Lim, Sung Jun; Zahid, Mohammad U; Le, Phuong; Ma, Liang; Entenberg, David; Harney, Allison S; Condeelis, John; Smith, Andrew M

    2015-10-05

    As molecular labels for cells and tissues, fluorescent probes have shaped our understanding of biological structures and processes. However, their capacity for quantitative analysis is limited because photon emission rates from multicolour fluorophores are dissimilar, unstable and often unpredictable, which obscures correlations between measured fluorescence and molecular concentration. Here we introduce a new class of light-emitting quantum dots with tunable and equalized fluorescence brightness across a broad range of colours. The key feature is independent tunability of emission wavelength, extinction coefficient and quantum yield through distinct structural domains in the nanocrystal. Precise tuning eliminates a 100-fold red-to-green brightness mismatch of size-tuned quantum dots at the ensemble and single-particle levels, which substantially improves quantitative imaging accuracy in biological tissue. We anticipate that these materials engineering principles will vastly expand the optical engineering landscape of fluorescent probes, facilitate quantitative multicolour imaging in living tissue and improve colour tuning in light-emitting devices.

  1. Nano-laser on silicon quantum dots

    NASA Astrophysics Data System (ADS)

    Huang, Wei-Qi; Liu, Shi-Rong; Qin, Chao-Jian; Lü, Quan; Xu, Li

    2011-04-01

    A new conception of nano-laser is proposed in which depending on the size of nano-clusters (silicon quantum dots (QD)), the pumping level of laser can be tuned by the quantum confinement (QC) effect, and the population inversion can be formed between the valence band and the localized states in gap produced from the surface bonds of nano-clusters. Here we report the experimental demonstration of nano-laser on silicon quantum dots fabricated by nanosecond pulse laser. The peaks of stimulated emission are observed at 605 nm and 693 nm. Through the micro-cavity of nano-laser, a full width at half maximum of the peak at 693 nm can reach to 0.5 nm. The theoretical model and the experimental results indicate that it is a necessary condition for setting up nano-laser that the smaller size of QD (d < 3 nm) can make the localized states into band gap. The emission energy of nano-laser will be limited in the range of 1.7-2.3 eV generally due to the position of the localized states in gap, which is in good agreement between the experiments and the theory.

  2. Michigan Middle Start Studies of Middle Start School Improvement, Lake Middle School: A Case Study.

    ERIC Educational Resources Information Center

    Gopalan, Pritha

    This case study documented the collaboration of Lake Middle School (pseudonym for a school in Michigan) with Middle Start, a middle-grades reform model and its progress and struggles implementing the model. Middle Start was coordinated by the Michigan Middle Start Partnership, and alliance that provided technical assistance, professional…

  3. A quantum dot in topological insulator nanofilm.

    PubMed

    Herath, Thakshila M; Hewageegana, Prabath; Apalkov, Vadym

    2014-03-19

    We introduce a quantum dot in topological insulator nanofilm as a bump at the surface of the nanofilm. Such a quantum dot can localize an electron if the size of the dot is large enough, ≳5 nm. The quantum dot in topological insulator nanofilm has states of two types, which belong to two ('conduction' and 'valence') bands of the topological insulator nanofilm. We study the energy spectra of such defined quantum dots. We also consider intraband and interband optical transitions within the dot. The optical transitions of the two types have the same selection rules. While the interband absorption spectra have multi-peak structure, each of the intraband spectra has one strong peak and a few weak high frequency satellites.

  4. Small mammal utilization by Middle Stone Age humans at Die Kelders Cave 1 and Pinnacle Point Site 5-6, Western Cape Province, South Africa.

    PubMed

    Armstrong, Aaron

    2016-12-01

    Reported here are the results of a taphonomic analysis of the small mammals (between 0.75 kg and 4.5 kg adult body weight) and size 1 bovids (≤20 kg adult body weight) from the Middle Stone Age (MSA) sites of Die Kelders Cave 1 (DK1) and Pinnacle Point Site 5-6 (PP5-6), Western Cape Province, South Africa. This study provides a comprehensive taphonomic analysis of MSA small mammals with a focus on discerning the role of humans in their accumulation and the implications for human behavioral adaptations. Based on comparisons with control assemblages of known accumulation, it is evident that humans accumulated many of the Cape dune mole-rats, hares, and size 1 bovids at DK1. The patterning of cut-marked and burned mole-rat remains at DK1 provides evidence in the MSA for the systematic utilization of small mammals for their skins and as a protein source. Unlike DK1, small mammals and size 1 bovids constitute only a small portion of the PP5-6 mammals and they exhibit little evidence of human accumulation. Nocturnal and diurnal raptors accumulated most of the small fauna at PP5-6. The nominal presence of small mammals in the PP5-6 fauna is atypical of MSA sites in the Cape Floristic Region, where they are abundant and often constitute large portions of MSA archaeofaunas. DK1 humans maximized the environmental yield by exploiting low-quality resources, a strategy employed possibly in response to localized environmental conditions and to greater human population densities. In comparison, the MIS5-4 humans at PP5-6 did not exploit small mammals and instead focused on higher-quality resources like shellfish and large ungulates. Humans and predators accumulated few small mammals at PP5-6, suggesting that these taxa may have been less abundant near the site and/or that humans could afford to concentrate on high-quality resources, perhaps because of a higher-yield local environment. This study suggests that an adaptive response to the environmental conditions of MIS4 was

  5. InAs/GaAs quantum dots on GaAs-on-V-grooved-Si substrate with high optical quality in the 1.3 μm band

    SciTech Connect

    Wan, Yating; Li, Qiang; Geng, Yu; Shi, Bei; Lau, Kei May

    2015-08-24

    We report self-assembled InAs/GaAs quantum dots (QDs) grown on a specially engineered GaAs-on-V-grooved-Si substrate by metal-organic vapor phase epitaxy. Recessed pockets formed on V-groove patterned Si (001) substrates were used to prevent most of the hetero-interfacial stacking faults from extending into the upper QD active region. 1.3 μm room temperature emission from high-density (5.6 × 10{sup 10 }cm{sup −2}) QDs has been obtained, with a narrow full-width-at-half-maximum of 29 meV. Optical quality of the QDs was found to be better than those grown on conventional planar offcut Si templates, as indicated by temperature-dependent photoluminescence analysis. Results suggest great potential to integrate QD lasers on a Si complementary-metal-oxide-semiconductor compatible platform using such GaAs on Si templates.

  6. Microsecond-sustained lasing from colloidal quantum dot solids

    PubMed Central

    Adachi, Michael M.; Fan, Fengjia; Sellan, Daniel P.; Hoogland, Sjoerd; Voznyy, Oleksandr; Houtepen, Arjan J.; Parrish, Kevin D.; Kanjanaboos, Pongsakorn; Malen, Jonathan A.; Sargent, Edward H.

    2015-01-01

    Colloidal quantum dots have grown in interest as materials for light amplification and lasing in view of their bright photoluminescence, convenient solution processing and size-controlled spectral tunability. To date, lasing in colloidal quantum dot solids has been limited to the nanosecond temporal regime, curtailing their application in systems that require more sustained emission. Here we find that the chief cause of nanosecond-only operation has been thermal runaway: the combination of rapid heat injection from the pump source, poor heat removal and a highly temperature-dependent threshold. We show microsecond-sustained lasing, achieved by placing ultra-compact colloidal quantum dot films on a thermally conductive substrate, the combination of which minimizes heat accumulation. Specifically, we employ inorganic-halide-capped quantum dots that exhibit high modal gain (1,200 cm−1) and an ultralow amplified spontaneous emission threshold (average peak power of ∼50 kW cm−2) and rely on an optical structure that dissipates heat while offering minimal modal loss. PMID:26493282

  7. Microsecond-sustained lasing from colloidal quantum dot solids.

    PubMed

    Adachi, Michael M; Fan, Fengjia; Sellan, Daniel P; Hoogland, Sjoerd; Voznyy, Oleksandr; Houtepen, Arjan J; Parrish, Kevin D; Kanjanaboos, Pongsakorn; Malen, Jonathan A; Sargent, Edward H

    2015-10-23

    Colloidal quantum dots have grown in interest as materials for light amplification and lasing in view of their bright photoluminescence, convenient solution processing and size-controlled spectral tunability. To date, lasing in colloidal quantum dot solids has been limited to the nanosecond temporal regime, curtailing their application in systems that require more sustained emission. Here we find that the chief cause of nanosecond-only operation has been thermal runaway: the combination of rapid heat injection from the pump source, poor heat removal and a highly temperature-dependent threshold. We show microsecond-sustained lasing, achieved by placing ultra-compact colloidal quantum dot films on a thermally conductive substrate, the combination of which minimizes heat accumulation. Specifically, we employ inorganic-halide-capped quantum dots that exhibit high modal gain (1,200 cm(-1)) and an ultralow amplified spontaneous emission threshold (average peak power of ∼50 kW cm(-2)) and rely on an optical structure that dissipates heat while offering minimal modal loss.

  8. Merging quantum dots, biomolecules, and polymers for record performance from solution-processed optoelectronics

    NASA Astrophysics Data System (ADS)

    Sargent, Edward H.

    2006-02-01

    We apply discoveries in nanoscience towards applications relevant to health, environment, security, and connectedness. A materials fundamental to our research is the quantum dot. Each quantum dot is a particle of semiconductor only a few nanometers in diameter. These semiconductor nanoparticles confine electrons to within their characteristic wavelength. Thus, just as changing the length of a guitar string changes the frequency of sound produced, so too does changing the size of a quantum dot alter the frequency - hence energy - the electron can adopt. As a result, quantum dots are tunable matter (Fig. 2). We work with colloidal quantum dots, nanoparticles produced in, and processed from, solution. They can be coated onto nearly anything - a semiconductor substrate, a window, a wall, fabric. Compared to epitaxially-grown semiconductors used to make optical detectors, lasers, and modulators, they are cheap, safe to work with, and easy to produce. Much of our work with quantum dots involves infrared light - its measurement, production, modulation, and harnessing. While there exists an abundance of work in colloidal quantum dots active in the visible, there are fewer results in the infrared. The wavelengths between 1000 and 2000 nm are nonetheless of great practical importance: half of the sun's power reaching the earth lies in this wavelength range; 'biological windows' in which tissue is relatively transparent and does not emit background light (autofluorescence) exist in the infrared; fiber-optic networks operate at 1.3 and 1.5 um.

  9. Double Quantum Dots in Carbon Nanotubes

    DTIC Science & Technology

    2010-06-02

    occupation of one dot is favored by increasing the detuning between the dots, the Coulomb interaction causes strong correlation effects realized by...of an additional val- ley degree of freedom, the two-electron eigenstates can be separated in an orbital part and a spin-valley part that are, to a...detuning, each dot is populated by a single electron and tunneling is sup- pressed because of Coulomb interactions. Thus, interdot coupling only occurs

  10. Improved Dot Diffusion For Image Halftoning

    DTIC Science & Technology

    1999-01-01

    The dot diffusion method for digital halftoning has the advantage of parallelism unlike the error diffusion method. The method was recently improved...by optimization of the so-called class matrix so that the resulting halftones are comparable to the error diffused halftones . In this paper we will...first review the dot diffusion method. Previously, 82 class matrices were used for dot diffusion method. A problem with this size of class matrix is

  11. Serological thymidine kinase 1 is a biomarker for early detection of tumours--a health screening study on 35,365 people, using a sensitive chemiluminescent dot blot assay.

    PubMed

    Chen, Zhi Heng; Huang, Shou Qing; Wang, Yande; Yang, Ai Zhen; Wen, Jian; Xu, Xiao Hong; Chen, Yan; Chen, Qu Bo; Wang, Ying Hong; He, Ellen; Zhou, Ji; Skog, Sven

    2011-01-01

    Serological thymidine kinase 1 (STK1) is a reliable proliferation marker for prognosis, monitoring tumour therapy, and relapse. Here we investigated the use of STK1 in health screening for early detection of pre-malignant and malignant diseases. The investigation was based on 35,365 participants in four independent health screening studies in China between 2005-2011. All participants were clinically examined. The concentration of STK1 was determined by a sensitive chemiluminescent dot blot ECL assay. The ROCvalue of the STK1 assay was 0.96. At a cut-off STK1 value of 2.0 pM, the likelihood (+) value was 236.5, and the sensitivity and the specificity were 0.78 and 0.99, respectively. The relative number of city-dwelling people with elevated STK1 values (≥2.0 pM) was 0.8% (198/26,484), while the corresponding value for the group of oil-field workers was 5.8% (514/8,355). The latter group expressed significantly higher frequency of refractory anaemia, fatty liver, and obesity, compared to the city dwellers, but no cases of breast hyperplasia or prostate hyperplasia. Furthermore, people working in oil drilling/oil transportation showed higher STK1 values and higher frequency of pre-malignancies and benign diseases than people working in the oil-field administration. In the STK1 elevated group of the city-dwelling people, a statistically significantly higher number of people were found to have malignancies, pre-malignancies of all types, moderate/severe type of hyperplasia of breast or prostate, or refractory anaemia, or to be at high risk for hepatitis B, compared to people with normal STK1 values (<2.0 pM). No malignancies were found in the normal STK1 group. In the elevated STK1 group 85.4% showed diseases linked to a higher risk for pre-/early cancerous progression, compared to 52.4% of those with normal STK1 values. Among participants with elevated STK1 values, 8.8% developed new malignancies or progress in their pre-malignancies within 5 to 72 months, compared

  12. Quantum dots in aperiodic order

    NASA Astrophysics Data System (ADS)

    Hörnquist, Michael; Ouchterlony, Thomas

    1998-12-01

    We study numerically with a Green-function technique one-dimensional arrays of quantum dots with two different models. The arrays are ordered according to the Fibonacci, the Thue-Morse, and the Rudin-Shapiro sequences. As a comparison, results from a periodically ordered chain and also from a random chain are included. The focus is on how the conductance (calculated within the Landauer-Büttiker formalism) depends on the Fermi level. In the first model, we find that in some cases rather small systems (≈60 dots) behave in the same manner as very large systems (>16,000 dots) and this makes it possible in these cases to interpret our results for the small systems in terms of the spectral properties of the infinite systems. In particular, we find that it is possible to see some consequences of the singular continuous spectra that some of the systems possess, at least for temperatures up to 100 mK. In the second model, we study the phenomenon ohmic addition, i.e. when the resistances of the constrictions add up to the total resistance. It results that of the systems studied, it is only the Rudin-Shapiro system that has this behaviour for large structures, while the resistances of the Fibonacci and the Thue-Morse systems might reach a limiting value (as a periodic system does).

  13. Quadrant Analysis of Quantitative Computed Tomography Scans of the Femoral Neck Reveals Superior Region-Specific Weakness in Young and Middle-Aged Men With Type 1 Diabetes Mellitus.

    PubMed

    Kuroda, Takuma; Ishikawa, Koji; Nagai, Takashi; Fukui, Tomoyasu; Hirano, Tsutomu; Inagaki, Katsunori

    2017-03-13

    We have previously shown that the intertrochanter of young and middle-aged patients with type 1 diabetes mellitus (T1DM) showed higher buckling ratio (an index of cortical instability) and lower volumetric bone mineral density (vBMD). However, we have not yet reported the detailed findings regarding the mechanical and density properties of the femoral neck. Therefore, we present a subanalysis of our previous study with the aim of further evaluating the middle third of the femoral neck via quadrant quantitative computed tomography in young and middle-aged patients with T1DM. Bone parameters in 4 anatomical quadrants (superoanterior [SA], inferoanterior [IA], inferoposterior [IP], and superoposterior [SP]) were cross-sectionally evaluated in 17 male T1DM patients and 18 sex-matched healthy controls aged between 18 and 49 yr using quadrant quantitative computed tomography analysis. Patients with T1DM had a thinner cortical thickness in the SP quadrant and a significantly lower cortical vBMD in the SA quadrant than the controls. The serum insulin-like growth factor-1 values in patients with T1DM were positively correlated with the average cortical thickness in the SA quadrant and the average trabecular vBMD in the SP quadrant of the femoral neck. The cortical thickness in controls was negatively correlated with age in the SP and IP quadrants. The cortical thickness in patients with T1DM showed no correlation with age in all quadrants. The fragility of the femoral neck was remarkable in the superior region of patients with T1DM. Insulin-like growth factor-1 may play an important role in superior cortical thinning and in lowering cortical vBMD. Furthermore, in young and middle-aged men with T1DM, the structure of the femoral neck exhibits similar changes as those observed with aging.

  14. Middle region of the Borrelia burgdorferi surface-located protein 1 (Lmp1) interacts with host chondroitin-6-sulfate and independently facilitates infection.

    PubMed

    Yang, Xiuli; Lin, Yi-Pin; Heselpoth, Ryan D; Buyuktanir, Ozlem; Qin, Jinhong; Kung, Faith; Nelson, Daniel C; Leong, John M; Pal, Utpal

    2016-01-01

    Borrelia burgdorferi surface-located membrane protein 1, also known as Lmp1, has been shown to play critical roles in pathogen evasion of host-acquired immune defences, thereby facilitating persistent infection. Lmp1 possesses three regions representing potentially discrete domains: Lmp1N, Lmp1M and Lmp1C. Because of its insignificant homology to known proteins, how Lmp1 or its specific regions contribute to microbial biology and infection remains enigmatic. Here, we show that distinct from Lmp1N and Lmp1C, Lmp1M is composed of at least 70% alpha helices and completely lacks recognizable beta sheets. The region binds to host glycosaminoglycan chondroitin-6-sulfate molecules and facilitates mammalian cell attachment, suggesting an adhesin function of Lmp1M. Phenotypic analysis of the Lmp1-deficient mutant engineered to produce Lmp1M on the microbial surface suggests that Lmp1M can independently support B. burgdorferi infectivity in murine hosts. Further exploration of functions of Lmp1 distinct regions will shed new light on the intriguing biology and infectivity of spirochetes and help develop novel interventions to combat Lyme disease.

  15. Synthetic Developments of Nontoxic Quantum Dots.

    PubMed

    Das, Adita; Snee, Preston T

    2016-03-03

    Semiconductor nanocrystals, or quantum dots (QDs), are candidates for biological sensing, photovoltaics, and catalysis due to their unique photophysical properties. The most studied QDs are composed of heavy metals like cadmium and lead. However, this engenders concerns over heavy metal toxicity. To address this issue, numerous studies have explored the development of nontoxic (or more accurately less toxic) quantum dots. In this Review, we select three major classes of nontoxic quantum dots composed of carbon, silicon and Group I-III-VI elements and discuss the myriad of synthetic strategies and surface modification methods to synthesize quantum dots composed of these material systems.

  16. Charge state hysteresis in semiconductor quantum dots

    SciTech Connect

    Yang, C. H.; Rossi, A. Lai, N. S.; Leon, R.; Lim, W. H.; Dzurak, A. S.

    2014-11-03

    Semiconductor quantum dots provide a two-dimensional analogy for real atoms and show promise for the implementation of scalable quantum computers. Here, we investigate the charge configurations in a silicon metal-oxide-semiconductor double quantum dot tunnel coupled to a single reservoir of electrons. By operating the system in the few-electron regime, the stability diagram shows hysteretic tunnelling events that depend on the history of the dots charge occupancy. We present a model which accounts for the observed hysteretic behaviour by extending the established description for transport in double dots coupled to two reservoirs. We demonstrate that this type of device operates like a single-electron memory latch.

  17. Highly Luminescent Carbon Dots Synthesized by Microwave-Assisted Pyrolysis and Evaluation of Their Toxicity to Physa acuta.

    PubMed

    Sun, Xiaobo; Jin, Xiaozhe; Pan, Wei; Guo, Enmian; Liu, Weijian; Li, Denghui; Lu, Kunchao; Si, Shuxin; Zhang, Nianxing; Jia, Zhenzhen; Shi, Yanping; Li, Qianqian; Wang, Jinping

    2016-01-01

    As a newly emerging class of nanomaterials, carbon dots have increasingly attracted researchers' attention. However, their potentially adverse environmental effects are yet largely unknown. In this work, the highly luminescent carbon dots were synthesized by microwave-assisted pyrolysis of tris(hydroxymethyl)aminomethane (Tris) and citric acid. Then acute and chronic toxicities of carbon dots to Physa acuta (P. acuta), as well as their effect on reproduction, were evaluated using the as-synthesized dots as an example. The quantum yield of the as-synthesized carbon dots was up to 53.5% excited at 360 nm with the most fluorescent fraction of 82.6% after simple purification by gel column. The results showed that no acute but chronic toxicities to P. acuta exposed to different treatment concentrations of the as-synthesized carbon dots were observed with dose- dependence. In addition, the fecundity of P. acuta was promoted significantly by the carbon dots at the concentrations of 0.5 and 1.0 mg/mL, yet inhibited at the concentration of 3.0 mg/mL after 12-day exposure. Mainly distributing in the visceral mass might be responsible for the effects of the carbon dots on the survival and fecundity of P. acuta. And there was no further evidence to confirm that the carbon dots can cause malformation in developing embryos.

  18. Middle East respiratory syndrome coronavirus M protein suppresses type I interferon expression through the inhibition of TBK1-dependent phosphorylation of IRF3

    PubMed Central

    Lui, Pak-Yin; Wong, Lok-Yin Roy; Fung, Cheuk-Lai; Siu, Kam-Leung; Yeung, Man-Lung; Yuen, Kit-San; Chan, Chi-Ping; Woo, Patrick Chiu-Yat; Yuen, Kwok-Yung; Jin, Dong-Yan

    2016-01-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) infection has claimed hundreds of lives and has become a global threat since its emergence in Saudi Arabia in 2012. The ability of MERS-CoV to evade the host innate antiviral response may contribute to its severe pathogenesis. Many MERS-CoV-encoded proteins were identified to have interferon (IFN)-antagonizing properties, which correlates well with the reduced IFN levels observed in infected patients and ex vivo models. In this study, we fully characterized the IFN-antagonizing property of the MERS-CoV M protein. Expression of MERS-CoV M protein suppressed type I IFN expression in response to Sendai virus infection or poly(I:C) induction. This suppressive effect was found to be specific for the activation of IFN regulatory factor 3 (IRF3) but not nuclear factor-κB. MERS-CoV M protein interacted with TRAF3 and disrupted TRAF3–TBK1 association leading to reduced IRF3 activation. M proteins from MERS-CoV and SARS-CoV have three highly similar conserved N-terminal transmembrane domains and a C-terminal region. Using chimeric and truncation mutants, the N-terminal transmembrane domains of the MERS-CoV M protein were found to be sufficient for its inhibitory effect on IFN expression, whereas the C-terminal domain was unable to induce this suppression. Collectively, our findings suggest a common and conserved mechanism through which highly pathogenic MERS-CoV and SARS-CoV harness their M proteins to suppress type I IFN expression at the level of TBK1-dependent phosphorylation and activation of IRF3 resulting in evasion of the host innate antiviral response. PMID:27094905

  19. SNP exploring in the middle and terminal regions of the IGF-1 gene and association with production and reproduction traits in Holstein cattle.

    PubMed

    Abdolmohammadi, A; Zamani, P

    2014-04-25

    Five primer sets were designed in order to identify single nucleotide polymorphisms (SNPs) in middle and terminal exons (2 to 6) and in some flanking intronic regions of the bovine insulin-like growth factor 1 (IGF-1) gene. Sequencing results of PCR products for 10% of animals showed no variant in exons but a SNP at intron 4 was occurred. Both polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and high resolution melting (HRM) methods were developed to genotype samples. The PCR-RFLP results showed the presence of three fragments on agarose gel for the C allele due to two cleavage sites while two fragments for the T allele were observed. Melting curves of 123bp fragments in HRM analysis showed a difference between temperature melting (Tm) of two homozygous genotypes as the CC genotypes had higher Tm than the TT genotypes. Melting curve of the CT genotype was different and crossed two parallel patterns of homozygous genotypes. The frequencies of the CC, CT and TT genotypes were 0.6, 0.37 and 0.03, respectively. Also, the estimated allele frequencies were 0.785 and 0.215 for the C and T alleles, respectively. Results showed higher accuracy of the HRM analysis compared to the PCR-RFLP method. Least square means (LSMs) comparison of the different genotypes in the SNP showed significant association with milk fat yield trait in the first lactation and open days after the second calving. The polymorphism did not have a significant effect on other milk production or reproduction traits. It seems that other variants or QTLs known in this region underlie genetic variation in the production and reproduction of dairy cattle.

  20. Cognitive and Psychosocial Consequences of Hurricanes Katrina and Rita Among Middle-Aged, Older, and Oldest-Old Adults in the Louisiana Healthy Aging Study (LHAS)1

    PubMed Central

    Cherry, Katie E.; Su, L. Joseph; Welsh, David A.; Galea, Sandro; Jazwinski, S. Michal; Silva, Jennifer L.; Erwin, Marla J.

    2010-01-01

    This study examined the impact of Hurricanes Katrina and Rita on cognitive and psychosocial functioning among middle-aged (45–64 years), older (65–89 years) and oldest-old adults (90 years and over) in the Louisiana Healthy Aging Study (LHAS). Analyses of pre- and post-disaster cognitive data showed storm-related decrements in working memory for the middle-aged and older adults, but not for the oldest-old adults. Regression analyses confirmed that measures of social engagement and storm-related disruption significantly predicted pre- to post-disaster differences in short-term and working memory performance for the middle-aged and older adults only. These results are consistent with a burden perspective on post-disaster psychological reactions. Implications for current views of disaster reactions are discussed. PMID:21461124