Science.gov

Sample records for 1,4-dihydroxyanthraquinone

  1. Comparison of sorption behavior of Th(IV) and U(VI) on modified impregnated resin containing quinizarin with that conventional prepared impregnated resin.

    PubMed

    Hosseini, Mohammad Saeid; Hosseini-Bandegharaei, Ahmad

    2011-06-15

    This paper reports the results obtained by studying the ion-exchange properties of a new solvent impregnated resin (SIR), which was prepared by impregnation of quinizarin (1,4-dihydroxyanthraquinone, QNZ) on Amberlite XAD-16 after nitration of the benzene rings present in its structure. The sorption behavior of Th(IV) and U(VI) on/in the modified SIR was compared with that of the SIR prepared via the conventional method. It was observed that sorption capacity and sorption rate of the modified SIR are significantly greater than the conventional one. The modified SIR was then applied to the extraction of Th(IV) and U(VI) ions at the presence of many co-existence metal ions. The results obtained denote on successful application of this new SIR to analysis of natural water samples spiked to Th(IV) and U(VI) ions.

  2. Characterization of secondary metabolites of an endophytic fungus from Curcuma wenyujin.

    PubMed

    Yan, Jvfen; Qi, Ningbo; Wang, Suping; Gadhave, Kiran; Yang, Shulin

    2014-11-01

    Endophytic fungi are ubiquitous in the plant kingdom and they produce a variety of secondary metabolites to protect plant communities and to show some potential for human use. However, secondary metabolites produced by endophytic fungi in the medicinal plant Curcuma wenyujin are sparsely explored and characterized. The aim of this study was to characterize the secondary metabolites of an active endophytic fungus. M7226, the mutant counterpart of endophytic fungus EZG0807 previously isolated from the root of C. wenyujin, was as a target strain. After fermentation, the secondary metabolites were purified using a series of purification methods including thin layer chromatography, column chromatography with silica, ODS-C18, Sephadex LH-20, and macroporous resin, and were analyzed using multiple pieces of data (UV, IR, MS, and NMR). Five compounds were isolated and identified as curcumin, cinnamic acid, 1,4-dihydroxyanthraquinone, gibberellic acid, and kaempferol. Interestingly, curcumin, one of the main active ingredients of C. wenyujin, was isolated as a secondary metabolite from a fungal endophyte for the first time.

  3. Solvent effects on the photophysical properties of poly[1,4-dihydroxyanthraquinoneimine-1,3-bis(phenylene-ester-methylene)tetramethyldisiloxane].

    PubMed

    Dorneanu, Petronela Pascariu; Homocianu, Mihaela; Tigoianu, Ionut Radu; Airinei, Anton; Zaltariov, Mirela; Cazacu, Maria

    2015-01-05

    Absorption and fluorescence spectra of a polyquinoneimine, PQI, built on 1,4-dihydroxyanthraquinone and a siloxane diamine, 1,3-bis(amino-phenylene-ester-methylene)tetramethyldisiloxane, have been investigated in solvents of different polarities. The effect of solvents on the spectral properties was investigated using Lippert-Mataga and Bakhshiev polarity functions and Catalán's multiple linear regression approach. Absorption and fluorescence spectra in studied solvents exhibit hypsochromic and bathochromic shifts, respectively. The polarity of the solvent was the main parameter which changes the spectral properties of PQI. Also, the binary mixtures of chloroform with methanol and dimethyl sulfoxide were used to analyze the intermolecular interactions and preferential solvation. The preferential solvation parameters (local mole fraction (X₂(L)), excess function (δs₂) and preferential solvation constant (KPS)) were calculated from spectral data and discussed as a function of cosolvent content. The values of quantum yield, decreased linearly with increasing solvent polarity (for non-polar and polar solvents).

  4. Solvent effects on the photophysical properties of poly[1,4-dihydroxyanthraquinoneimine-1,3-bis(phenylene-ester-methylene)tetramethyldisiloxane

    NASA Astrophysics Data System (ADS)

    Dorneanu, Petronela Pascariu; Homocianu, Mihaela; Tigoianu, Ionut Radu; Airinei, Anton; Zaltariov, Mirela; Cazacu, Maria

    2015-01-01

    Absorption and fluorescence spectra of a polyquinoneimine, PQI, built on 1,4-dihydroxyanthraquinone and a siloxane diamine, 1,3-bis(amino-phenylene-ester-methylene)tetramethyldisiloxane, have been investigated in solvents of different polarities. The effect of solvents on the spectral properties was investigated using Lippert-Mataga and Bakhshiev polarity functions and Catalán's multiple linear regression approach. Absorption and fluorescence spectra in studied solvents exhibit hypsochromic and bathochromic shifts, respectively. The polarity of the solvent was the main parameter which changes the spectral properties of PQI. Also, the binary mixtures of chloroform with methanol and dimethyl sulfoxide were used to analyze the intermolecular interactions and preferential solvation. The preferential solvation parameters (local mole fraction (X2L) , excess function (δs2) and preferential solvation constant (KPS)) were calculated from spectral data and discussed as a function of cosolvent content. The values of quantum yield, decreased linearly with increasing solvent polarity (for non-polar and polar solvents).

  5. Anthraquinones quinizarin and danthron unwind negatively supercoiled DNA and lengthen linear DNA

    SciTech Connect

    Verebová, Valéria; Adamcik, Jozef; Danko, Patrik; Podhradský, Dušan; Miškovský, Pavol; Staničová, Jana

    2014-01-31

    Highlights: • Anthraquinones quinizarin and danthron unwind negatively supercoiled DNA. • Anthraquinones quinizarin and danthron lengthen linear DNA. • Anthraquinones quinizarin and danthron possess middle binding affinity to DNA. • Anthraquinones quinizarin and danthron interact with DNA by intercalating mode. - Abstract: The intercalating drugs possess a planar aromatic chromophore unit by which they insert between DNA bases causing the distortion of classical B-DNA form. The planar tricyclic structure of anthraquinones belongs to the group of chromophore units and enables anthraquinones to bind to DNA by intercalating mode. The interactions of simple derivatives of anthraquinone, quinizarin (1,4-dihydroxyanthraquinone) and danthron (1,8-dihydroxyanthraquinone), with negatively supercoiled and linear DNA were investigated using a combination of the electrophoretic methods, fluorescence spectrophotometry and single molecule technique an atomic force microscopy. The detection of the topological change of negatively supercoiled plasmid DNA, unwinding of negatively supercoiled DNA, corresponding to appearance of DNA topoisomers with the low superhelicity and an increase of the contour length of linear DNA in the presence of quinizarin and danthron indicate the binding of both anthraquinones to DNA by intercalating mode.

  6. Determination of lithium in pharmaceutical formulations used in the treatment of bipolar disorder by flow injection analysis with spectrophotometric detection.

    PubMed

    Silva, Cássia Maria L da; Almeida, Vanessa G K; Cassella, Ricardo J

    2007-10-15

    In this work, a flow injection system with spectrophotometric detection was developed for the determination of lithium in pharmaceutical formulations used in the treatment of bipolar disorder. Reaction between Quinizarine (1,4-dihydroxyanthraquinone) and Li(I) ion in alkaline medium containing dimethylsulfoxide (DMSO) was explored for this purpose. The flow system was optimized regarding to its chemical (DMSO, Quinizarine and NaOH concentrations and sample pH) and physical parameters (sample loop volume, carrier flow rate and reactor length) in order to establish better conditions in terms of sensitivity and sampling frequency. The results obtained showed that the concentration of DMSO in the reagent solution presents remarkable influence on the magnitude of analytical signal. Chemical species that could be found in the formulations such as Na(I), K(I), Mg(II), Ca(II), Ti(IV), Cl(-), CO(3)(2-) e sodium dodecylsulfate were tested as possible interfering ions. Among them, only non-monovalent cations presented noticeable interference on lithium signal. However, they were not found in concentrations high enough to cause interference in the determination of lithium in the samples. Sample preparation was performed by sonicating a slurry prepared by dispersing 100mg of powdered sample in 15mL of 0.10molL(-1) HCl solution. Results obtained by developed methodology were not statistically different from those obtained by flame emission spectrometry. In the optimized conditions the method presented a linear range of 5-40mgL(-1) and a relative standard deviation of 3.6% at 5mgL(-1) Li concentration. Detection and quantification limits were 0.54 and 1.8mgL(-1), respectively. Sampling frequency, calculated as the time interval passed between two consecutive injections, was 60 samples per hour. The methodology was successfully applied in the determination of lithium in three commercial samples.

  7. Evaluation of natural anthracene-derived compounds as antimitotic agents.

    PubMed

    Badria, Farid A; Ibrahim, Ahmed S

    2013-04-01

    Plants that contain anthracene-derived compounds such as anthraquinones have been reported to act as anticancer besides their use for millennia to treat constipation, but the mechanism of action is still unfolding. Therefore we pursue this study to explore a new horizon in the anticancer property of these agents with relevance to mitotic arrest. To achieve this goal, the antimitotic activity of a series of naturally occurring anthracene-derived anthraquinones including anthrone, alizarin (1,2-dihydroxyanthraquinone), quinizarin (1,4-dihydroxyanthraquinone), rhein (4,5-dihydroxyanthraquinone-2-carboxylic acid), emodin (1,6,8-trihydroxy-3-methylanthraquinone), and aloe emodin (1,8-dihydroxy-3-hydroxymethylanthraquinone) were evaluated using Allium cepa root tips. Initial results revealed that the mitosis was inhibited after 3, 6, and 24 h, respectively, of incubation with 500, 250, and 125 ppm of each compound in a dose-dependent manner. Furthermore, alizarin at 500 ppm was proved to be the most active compound to arrest the mitosis after 24 h followed by emodin, aloe emodin, rhein, and finally quinizarin. Interestingly, this inhibition of mitosis was irreversible in root tips incubated with each compound at concentration of 500 ppm but not with 250 ppm or 125 ppm, where the roots regained their normal mitotic activity after 96 h post-incubation in water. This re-evaluation of an old remedy suggests that several bioactive anthraquinones possess promising anti-mitotic activity that may have the potential to be lead compounds for the development of a new class of multifaceted natural anticancer/antimitotic agents.