Science.gov

Sample records for 1-2 affects arabidopsis

  1. Eukaryotic release factor 1-2 affects Arabidopsis responses to glucose and phytohormones during germination and early seedling development

    PubMed Central

    Zhou, Xiangjun; Cooke, Peter; Li, Li

    2010-01-01

    Germination and early seedling development are coordinately regulated by glucose and phytohormones such as ABA, GA, and ethylene. However, the molecules that affect plant responses to glucose and phytohormones remain to be fully elucidated. Eukaryotic release factor 1 (eRF1) is responsible for the recognition of the stop codons in mRNAs during protein synthesis. Accumulating evidence indicates that eRF1 functions in other processes in addition to translation termination. The physiological role of eRF1-2, a member of the eRF1 family, in Arabidopsis was examined here. The eRF1-2 gene was found to be specifically induced by glucose. Arabidopsis plants overexpressing eRF1-2 were hypersensitive to glucose during germination and early seedling development. Such hypersensitivity to glucose was accompanied by a dramatic reduction of the expression of glucose-regulated genes, chlorophyll a/b binding protein and plastocyanin. The hypersensitive response was not due to the enhanced accumulation of ABA. In addition, the eRF1-2 overexpressing plants showed increased sensitivity to paclobutrazol, an inhibitor of GA biosynthesis, and exogenous GA restored their normal growth. By contrast, the loss-of-function erf1-2 mutant exhibited resistance to paclobutrazol, suggesting that eRF1-2 may exert a negative effect on the GA signalling pathway. Collectively, these data provide evidence in support of a novel role of eRF1-2 in affecting glucose and phytohormone responses in modulating plant growth and development. PMID:19939886

  2. HY5 regulates Nitrite Reductase 1 (NIR1) and Ammonium Transporter1;2 (AMT1;2) in Arabidopsis seedlings

    PubMed Central

    Huang, Lifen; Zhang, Hongcheng; Zhang, Huiyong; Deng, Xing Wang; Wei, Ning

    2016-01-01

    HY5 (Long Hypocotyles 5) is a key transcription factor in Arabidopsis thaliana that has a pivotal role in seedling development. Soil nitrogen is an essential macronutrient, and its uptake, assimilation and metabolism are influenced by nutrient availability and by lights. To understand the role of HY5 in nitrogen assimilation pathways, we examined the phenotype as well as the expression of selected nitrogen assimilation-related genes in hy5 mutant grown under various nitrogen limiting and nitrogen sufficient conditions, or different light conditions. We report that HY5 positively regulates nitrite reductase gene NIR1 and negatively regulates the ammonium transporter gene AMT1;2 under all nitrogen and light conditions tested, while it affects several other genes in a nitrogen supply-dependent manner. HY5 is not required for light induction of NIR1, AMT1;2 and NIA genes, but it is necessary for high level expression of NIR1 and NIA under optimal nutrient and light conditions. In addition, nitrogen deficiency exacerbates the abnormal root system of hy5. Together, our results suggest that HY5 exhibits the growth-promoting activity only when sufficient nutrients, including lights, are provided, and that HY5 has a complex involvement in nitrogen acquisition and metabolism in Arabidopsis seedlings. PMID:26259199

  3. Manipulation of hemoglobin expression affects Arabidopsis shoot organogenesis.

    PubMed

    Wang, Yaping; Elhiti, Mohamed; Hebelstrup, Kim H; Hill, Robert D; Stasolla, Claudio

    2011-10-01

    Over the past few years non-symbiotic plant hemoglobins have been described in a variety of plant species where they fulfill several functions ranging from detoxification processes to basic aspects of plant growth and post-embryonic development. To date no information is available on the role of hemoglobins during in vitro morphogenesis. Shoot organogenesis was induced in Arabidopsis lines constitutively expressing class 1, 2 and 3 hemoglobins (GLB1, 2 and 3) and lines in which the respective genes were either downregulated by RNAi (GLB1) or knocked out (GLB2 and GLB3). The process was executed by culturing root explants on an initial auxin-rich callus induction medium (CIM) followed by a transfer onto a cytokinin-containing shoot induction medium (SIM). While the repression of GLB2 inhibited organogenesis the over-expression of GLB1 or GLB2 enhanced the number of shoots produced in culture, and altered the transcript levels of genes participating in cytokinin perception and signalling. The up-regulation of GLB1 or GLB2 activated CKI1 and AHK3, genes encoding cytokinin receptors and affected the transcript levels of cytokinin responsive regulators (ARRs). The expression of Type-A ARRs (ARR4, 5, 7, 15, and 16), feed-back repressors of the cytokinin pathway, was repressed in both hemoglobin over-expressors whereas that of several Type-B ARRs (ARR2, 12, and 13), transcription activators of cytokinin-responsive genes, was induced. Such changes enhanced the sensitivity of the root explants to cytokinin allowing the 35S::GLB1 and 35S::GLB2 lines to produce shoots at low cytokinin concentrations which did not promote organogenesis in the WT line. These results show that manipulation of hemoglobin can modify shoot organogenesis in Arabidopsis and possibly in those systems partially or completely unresponsive to applications of exogenous cytokinins.

  4. Arabidopsis AIP1-2 restricted by WER-mediated patterning modulates planar polarity

    PubMed Central

    Kiefer, Christian S.; Claes, Andrea R.; Nzayisenga, Jean-Claude; Pietra, Stefano; Stanislas, Thomas; Hüser, Anke; Ikeda, Yoshihisa; Grebe, Markus

    2015-01-01

    The coordination of cell polarity within the plane of the tissue layer (planar polarity) is crucial for the development of diverse multicellular organisms. Small Rac/Rho-family GTPases and the actin cytoskeleton contribute to planar polarity formation at sites of polarity establishment in animals and plants. Yet, upstream pathways coordinating planar polarity differ strikingly between kingdoms. In the root of Arabidopsis thaliana, a concentration gradient of the phytohormone auxin coordinates polar recruitment of Rho-of-plant (ROP) to sites of polar epidermal hair initiation. However, little is known about cytoskeletal components and interactions that contribute to this planar polarity or about their relation to the patterning machinery. Here, we show that ACTIN7 (ACT7) represents a main actin isoform required for planar polarity of root hair positioning, interacting with the negative modulator ACTIN-INTERACTING PROTEIN1-2 (AIP1-2). ACT7, AIP1-2 and their genetic interaction are required for coordinated planar polarity of ROP downstream of ethylene signalling. Strikingly, AIP1-2 displays hair cell file-enriched expression, restricted by WEREWOLF (WER)-dependent patterning and modified by ethylene and auxin action. Hence, our findings reveal AIP1-2, expressed under control of the WER-dependent patterning machinery and the ethylene signalling pathway, as a modulator of actin-mediated planar polarity. PMID:25428588

  5. Arabidopsis AIP1-2 restricted by WER-mediated patterning modulates planar polarity.

    PubMed

    Kiefer, Christian S; Claes, Andrea R; Nzayisenga, Jean-Claude; Pietra, Stefano; Stanislas, Thomas; Hüser, Anke; Ikeda, Yoshihisa; Grebe, Markus

    2015-01-01

    The coordination of cell polarity within the plane of the tissue layer (planar polarity) is crucial for the development of diverse multicellular organisms. Small Rac/Rho-family GTPases and the actin cytoskeleton contribute to planar polarity formation at sites of polarity establishment in animals and plants. Yet, upstream pathways coordinating planar polarity differ strikingly between kingdoms. In the root of Arabidopsis thaliana, a concentration gradient of the phytohormone auxin coordinates polar recruitment of Rho-of-plant (ROP) to sites of polar epidermal hair initiation. However, little is known about cytoskeletal components and interactions that contribute to this planar polarity or about their relation to the patterning machinery. Here, we show that ACTIN7 (ACT7) represents a main actin isoform required for planar polarity of root hair positioning, interacting with the negative modulator ACTIN-INTERACTING PROTEIN1-2 (AIP1-2). ACT7, AIP1-2 and their genetic interaction are required for coordinated planar polarity of ROP downstream of ethylene signalling. Strikingly, AIP1-2 displays hair cell file-enriched expression, restricted by WEREWOLF (WER)-dependent patterning and modified by ethylene and auxin action. Hence, our findings reveal AIP1-2, expressed under control of the WER-dependent patterning machinery and the ethylene signalling pathway, as a modulator of actin-mediated planar polarity.

  6. Flavonol-induced changes in PIN2 polarity and auxin transport in the Arabidopsis thaliana rol1-2 mutant require phosphatase activity

    PubMed Central

    Kuhn, Benjamin M.; Nodzyński, Tomasz; Errafi, Sanae; Bucher, Rahel; Gupta, Shibu; Aryal, Bibek; Dobrev, Petre; Bigler, Laurent; Geisler, Markus; Zažímalová, Eva; Friml, Jiří; Ringli, Christoph

    2017-01-01

    The phytohormone auxin is a major determinant and regulatory component important for plant development. Auxin transport between cells is mediated by a complex system of transporters such as AUX1/LAX, PIN, and ABCB proteins, and their localization and activity is thought to be influenced by phosphatases and kinases. Flavonols have been shown to alter auxin transport activity and changes in flavonol accumulation in the Arabidopsis thaliana rol1-2 mutant cause defects in auxin transport and seedling development. A new mutation in ROOTS CURL IN NPA 1 (RCN1), encoding a regulatory subunit of the phosphatase PP2A, was found to suppress the growth defects of rol1-2 without changing the flavonol content. rol1-2 rcn1-3 double mutants show wild type-like auxin transport activity while levels of free auxin are not affected by rcn1-3. In the rol1-2 mutant, PIN2 shows a flavonol-induced basal-to-apical shift in polar localization which is reversed in the rol1-2 rcn1-3 to basal localization. In vivo analysis of PINOID action, a kinase known to influence PIN protein localization in a PP2A-antagonistic manner, revealed a negative impact of flavonols on PINOID activity. Together, these data suggest that flavonols affect auxin transport by modifying the antagonistic kinase/phosphatase equilibrium. PMID:28165500

  7. Phytochrome B and REVEILLE1/2-mediated signalling controls seed dormancy and germination in Arabidopsis

    PubMed Central

    Jiang, Zhimin; Xu, Gang; Jing, Yanjun; Tang, Weijiang; Lin, Rongcheng

    2016-01-01

    Seeds maintain a dormant state to withstand adverse conditions and germinate when conditions become favourable to give rise to a new generation of flowering plants. Seed dormancy and germination are tightly controlled by internal and external signals. Although phytochrome photoreceptors are proposed to regulate primary seed dormancy, the underlying molecular mechanism remains elusive. Here we show that the REVEILLE1 (RVE1) and RVE2 transcription factors promote primary seed dormancy and repress red/far-red-light-reversible germination downstream of phytochrome B (phyB) in Arabidopsis thaliana. RVE1 and RVE2 expression is downregulated after imbibition and by phyB. RVE1 directly binds to the promoter of GIBBERELLIN 3-OXIDASE 2, inhibits its transcription and thus suppresses the biosynthesis of bioactive gibberellins. In addition, DELAY OF GERMINATION 1 also acts downstream of phyB. This study identifies a signalling pathway that integrates environmental light input with internal factors to control both seed dormancy and germination. PMID:27506149

  8. Zinc Oxide Nanoparticles Affect Biomass Accumulation and Photosynthesis in Arabidopsis

    PubMed Central

    Wang, Xiaoping; Yang, Xiyu; Chen, Siyu; Li, Qianqian; Wang, Wei; Hou, Chunjiang; Gao, Xiao; Wang, Li; Wang, Shucai

    2016-01-01

    Dramatic increase in the use of nanoparticles (NPs) in a variety of applications greatly increased the likelihood of the release of NPs into the environment. Zinc oxide nanoparticles (ZnO NPs) are among the most commonly used NPs, and it has been shown that ZnO NPs were harmful to several different plants. We report here the effects of ZnO NPs exposure on biomass accumulation and photosynthesis in Arabidopsis. We found that 200 and 300 mg/L ZnO NPs treatments reduced Arabidopsis growth by ∼20 and 80%, respectively, in comparison to the control. Pigments measurement showed that Chlorophyll a and b contents were reduced more than 50%, whereas carotenoid contents remain largely unaffected in 300 mg/L ZnO NPs treated Arabidopsis plants. Consistent with this, net rate of photosynthesis, leaf stomatal conductance, intercellular CO2 concentration and transpiration rate were all reduced more than 50% in 300 mg/L ZnO NPs treated plants. Quantitative RT-PCR results showed that expression levels of chlorophyll synthesis genes including CHLOROPHYLL A OXYGENASE (CAO), CHLOROPHYLL SYNTHASE (CHLG), COPPER RESPONSE DEFECT 1 (CRD1), MAGNESIUM-PROTOPORPHYRIN IX METHYLTRANSFERASE (CHLM) and MG-CHELATASE SUBUNIT D (CHLD), and photosystem structure gene PHOTOSYSTEM I SUBUNIT D-2 (PSAD2), PHOTOSYSTEM I SUBUNIT E-2 (PSAE2), PHOTOSYSTEM I SUBUNIT K (PSAK) and PHOTOSYSTEM I SUBUNIT K (PSAN) were reduced about five folds in 300 mg/L ZnO NPs treated plants. On the other hand, elevated expression, though to different degrees, of several carotenoids synthesis genes including GERANYLGERANYL PYROPHOSPHATE SYNTHASE 6 (GGPS6), PHYTOENE SYNTHASE (PSY) PHYTOENE DESATURASE (PDS), and ZETA-CAROTENE DESATURASE (ZDS) were observed in ZnO NPs treated plants. Taken together, these results suggest that toxicity effects of ZnO NPs observed in Arabidopsis was likely due to the inhibition of the expression of chlorophyll synthesis genes and photosystem structure genes, which results in the inhibition of

  9. Vascular plant one-zinc-finger protein 1/2 transcription factors regulate abiotic and biotic stress responses in Arabidopsis.

    PubMed

    Nakai, Yusuke; Nakahira, Yoichi; Sumida, Hiroki; Takebayashi, Kosuke; Nagasawa, Yumiko; Yamasaki, Kanako; Akiyama, Masako; Ohme-Takagi, Masaru; Fujiwara, Sumire; Shiina, Takashi; Mitsuda, Nobutaka; Fukusaki, Eiichiro; Kubo, Yasuyuki; Sato, Masa H

    2013-03-01

    Plants adapt to abiotic and biotic stresses by activating abscisic acid-mediated (ABA) abiotic stress-responsive and salicylic acid-(SA) or jasmonic acid-mediated (JA) biotic stress-responsive pathways, respectively. Although the abiotic stress-responsive pathway interacts antagonistically with the biotic stress-responsive pathways, the mechanisms that regulate these pathways remain largely unknown. In this study, we provide insight into the function of vascular plant one-zinc-finger proteins (VOZs) that modulate various stress responses in Arabidopsis. The expression of many stress-responsive genes was changed in the voz1voz2 double mutant under normal growth conditions. Consistent with altered stress-responsive gene expression, freezing- and drought-stress tolerances were increased in the voz1voz2 double mutant. In contrast, resistance to a fungal pathogen, Colletotrichum higginsianum, and to a bacterial pathogen, Pseudomonas syringae, was severely impaired. Thus, impairing VOZ function simultaneously conferred increased abiotic tolerance and biotic stress susceptibility. In a chilling stress condition, both the VOZ1 and VOZ2 mRNA expression levels and the VOZ2 protein level gradually decreased. VOZ2 degradation during cold exposure was completely inhibited by the addition of the 26S proteasome inhibitor, MG132, a finding that suggested that VOZ2 degradation is dependent on the ubiquitin/26S proteasome system. In voz1voz2, ABA-inducible transcription factor CBF4 expression was enhanced significantly even under normal growth conditions, despite an unchanged endogenous ABA content. A finding that suggested that VOZs negatively affect CBF4 expression in an ABA-independent manner. These results suggest that VOZs function as both negative and positive regulators of the abiotic and biotic stress-responsive pathways, and control Arabidopsis adaptation to various stress conditions.

  10. Caesium-affected gene expression in Arabidopsis thaliana.

    PubMed

    Sahr, Tobias; Voigt, Gabriele; Paretzke, Herwig G; Schramel, Peter; Ernst, Dieter

    2005-03-01

    * Excessive caesium can be toxic to plants. Here we investigated Cs uptake and caesium-induced gene expression in Arabidopsis thaliana. * Accumulation was measured in plants grown for 5 wk on agar supplemented with nontoxic and up to toxic levels of Cs. Caesium-induced gene expression was studied by suppression-subtractive hybridization (SSH) and RT-PCR. * Caesium accumulated in leaf rosettes dependent upon the external concentration in the growth media, whereas the potassium concentration decreased in rosettes. At a concentration of 850 microM, Cs plants showed reduced development, and withered with an increase in concentration to 1 mM Cs. SSH resulted in the isolation of 73 clones that were differentially expressed at a Cs concentration of 150 microM. Most of the genes identified belong to groups of genes encoding proteins in stress defence, detoxification, transport, homeostasis and general metabolism, and proteins controlling transcription and translation. * The present study identified a number of marker genes for Cs in Arabidopsis grown under nontoxic Cs concentrations, indicating that Cs acts as an abiotic stress factor.

  11. Small changes in ambient temperature affect alternative splicing in Arabidopsis thaliana

    PubMed Central

    Streitner, Corinna; Simpson, Craig G.; Shaw, Paul; Danisman, Selahattin; Brown, John W.S.; Staiger, Dorothee

    2013-01-01

    Alternative splicing (AS) gives rise to multiple mRNA isoforms from the same gene, providing possibilities to regulate gene expression beyond the level of transcription. In a recent paper in Nucleic Acids Research we used a high resolution RT-PCR based panel to study changes in AS patterns in plants with altered levels of an hnRNP-like RNA-binding protein in Arabidopsis thaliana. Furthermore, we detected significant changes in AS patterns between different Arabidopsis ecotypes. Here we investigated how small changes in ambient temperature affect AS. We found significant changes in AS for 12 of 28 investigated events (43%) upon transfer of Arabidopsis plants from 20°C to 16°C and for 6 of the 28 investigated events (21%) upon transfer from 20°C to 24°C. PMID:23656882

  12. Allyl isothiocyanate affects the cell cycle of Arabidopsis thaliana

    PubMed Central

    Åsberg, Signe E.; Bones, Atle M.; Øverby, Anders

    2015-01-01

    Isothiocyanates (ITCs) are degradation products of glucosinolates present in members of the Brassicaceae family acting as herbivore repellents and antimicrobial compounds. Recent results indicate that allyl ITC (AITC) has a role in defense responses such as glutathione depletion, ROS generation and stomatal closure. In this study we show that exposure to non-lethal concentrations of AITC causes a shift in the cell cycle distribution of Arabidopsis thaliana leading to accumulation of cells in S-phases and a reduced number of cells in non-replicating phases. Furthermore, transcriptional analysis revealed an AITC-induced up-regulation of the gene encoding cyclin-dependent kinase A while several genes encoding mitotic proteins were down-regulated, suggesting an inhibition of mitotic processes. Interestingly, visualization of DNA synthesis indicated that exposure to AITC reduced the rate of DNA replication. Taken together, these results indicate that non-lethal concentrations of AITC induce cells of A. thaliana to enter the cell cycle and accumulate in S-phases, presumably as a part of a defensive response. Thus, this study suggests that AITC has several roles in plant defense and add evidence to the growing data supporting a multifunctional role of glucosinolates and their degradation products in plants. PMID:26042144

  13. Gibberellins inhibit adventitious rooting in hybrid aspen and Arabidopsis by affecting auxin transport.

    PubMed

    Mauriat, Mélanie; Petterle, Anna; Bellini, Catherine; Moritz, Thomas

    2014-05-01

    Knowledge of processes involved in adventitious rooting is important to improve both fundamental understanding of plant physiology and the propagation of numerous plants. Hybrid aspen (Populus tremula × tremuloïdes) plants overexpressing a key gibberellin (GA) biosynthesis gene (AtGA20ox1) grow rapidly but have poor rooting efficiency, which restricts their clonal propagation. Therefore, we investigated the molecular basis of adventitious rooting in Populus and the model plant Arabidopsis. The production of adventitious roots (ARs) in tree cuttings is initiated from the basal stem region, and involves the interplay of several endogenous and exogenous factors. The roles of several hormones in this process have been characterized, but the effects of GAs have not been fully investigated. Here, we show that a GA treatment negatively affects the numbers of ARs produced by wild-type hybrid aspen cuttings. Furthermore, both hybrid aspen plants and intact Arabidopsis seedlings overexpressing AtGA20ox1, PttGID1.1 or PttGID1.3 genes (with a 35S promoter) produce few ARs, although ARs develop from the basal stem region of hybrid aspen and the hypocotyl of Arabidopsis. In Arabidopsis, auxin and strigolactones are known to affect AR formation. Our data show that the inhibitory effect of GA treatment on adventitious rooting is not mediated by perturbation of the auxin signalling pathway, or of the strigolactone biosynthetic and signalling pathways. Instead, GAs appear to act by perturbing polar auxin transport, in particular auxin efflux in hybrid aspen, and both efflux and influx in Arabidopsis.

  14. Post-Synthetic Defucosylation of AGP by Aspergillus nidulans α-1,2-Fucosidase Expressed in Arabidopsis Apoplast Induces Compensatory Upregulation of α-1,2-Fucosyltransferases

    PubMed Central

    Pogorelko, Gennady V.; Reem, Nathan T.; Young, Zachary T.; Chambers, Lauran; Zabotina, Olga A.

    2016-01-01

    Cell walls are essential components of plant cells which perform a variety of important functions for the different cell types, tissues and organs of a plant. Besides mechanical function providing cell shape, cell walls participate in intercellular communication, defense during plant-microbe interactions, and plant growth. The plant cell wall consists predominantly of polysaccharides with the addition of structural glycoproteins, phenolic esters, minerals, lignin, and associated enzymes. Alterations in the cell wall composition created through either changes in biosynthesis of specific constituents or their post-synthetic modifications in the apoplast compromise cell wall integrity and frequently induce plant compensatory responses as a result of these alterations. Here we report that post-synthetic removal of fucose residues specifically from arabinogalactan proteins in the Arabidopsis plant cell wall induces differential expression of fucosyltransferases and leads to the root and hypocotyl elongation changes. These results demonstrate that the post-synthetic modification of cell wall components presents a valuable approach to investigate the potential signaling pathways induced during plant responses to such modifications that usually occur during plant development and stress responses. PMID:27448235

  15. An Arabidopsis Stomatin-Like Protein Affects Mitochondrial Respiratory Supercomplex Organization1[C][W][OPEN

    PubMed Central

    Gehl, Bernadette; Lee, Chun Pong; Bota, Pedro; Blatt, Michael R.; Sweetlove, Lee J.

    2014-01-01

    Stomatins belong to the band-7 protein family, a diverse group of conserved eukaryotic and prokaryotic membrane proteins involved in the formation of large protein complexes as protein-lipid scaffolds. The Arabidopsis (Arabidopsis thaliana) genome contains two paralogous genes encoding stomatin-like proteins (SLPs; AtSLP1 and AtSLP2) that are phylogenetically related to human SLP2, a protein involved in mitochondrial fusion and protein complex formation in the mitochondrial inner membrane. We used reverse genetics in combination with biochemical methods to investigate the function of AtSLPs. We demonstrate that both SLPs localize to mitochondrial membranes. SLP1 migrates as a large (approximately 3 MDa) complex in blue-native gel electrophoresis. Remarkably, slp1 knockout mutants have reduced protein and activity levels of complex I and supercomplexes, indicating that SLP affects the assembly and/or stability of these complexes. These findings point to a role for SLP1 in the organization of respiratory supercomplexes in Arabidopsis. PMID:24424325

  16. A Role for the GCC-Box in Jasmonate-Mediated Activation of the PDF1.2 Gene of Arabidopsis1

    PubMed Central

    Brown, Rebecca L.; Kazan, Kemal; McGrath, Ken C.; Maclean, Don J.; Manners, John M.

    2003-01-01

    The PDF1.2 gene of Arabidopsis encoding a plant defensin is commonly used as a marker for characterization of the jasmonate-dependent defense responses. Here, using PDF1.2 promoter-deletion lines linked to the β-glucoronidase-reporter gene, we examined putative promoter elements associated with jasmonate-responsive expression of this gene. Using stably transformed plants, we first characterized the extended promoter region that positively regulates basal expression from the PDF1.2 promoter. Second, using promoter deletion constructs including one from which the GCC-box region was deleted, we observed a substantially lower response to jasmonate than lines carrying this motif. In addition, point mutations introduced into the core GCC-box sequence substantially reduced jasmonate responsiveness, whereas addition of a 20-nucleotide-long promoter element carrying the core GCC-box and flanking nucleotides provided jasmonate responsiveness to a 35S minimal promoter. Taken together, these results indicated that the GCC-box plays a key role in conferring jasmonate responsiveness to the PDF1.2 promoter. However, deletion or specific mutations introduced into the core GCC-box did not completely abolish the jasmonate responsiveness of the promoter, suggesting that the other promoter elements lying downstream from the GCC-box region may also contribute to jasmonate responsiveness. In other experiments, we identified a jasmonate- and pathogen-responsive ethylene response factor transcription factor, AtERF2, which when overexpressed in transgenic Arabidopsis plants activated transcription from the PDF1.2, Thi2.1, and PR4 (basic chitinase) genes, all of which contain a GCC-box sequence in their promoters. Our results suggest that in addition to their roles in regulating ethylene-mediated gene expression, ethylene response factors also appear to play important roles in regulating jasmonate-responsive gene expression, possibly via interaction with the GCC-box. PMID:12805630

  17. Gamma-aminobutyric acid depletion affects stomata closure and drought tolerance of Arabidopsis thaliana.

    PubMed

    Mekonnen, Dereje Worku; Flügge, Ulf-Ingo; Ludewig, Frank

    2016-04-01

    A rapid accumulation of γ-aminobutyric acid (GABA) during biotic and abiotic stresses is well documented. However, the specificity of the response and the primary role of GABA under such stress conditions are hardly understood. To address these questions, we investigated the response of the GABA-depleted gad1/2 mutant to drought stress. GABA is primarily synthesized from the decarboxylation of glutamate by glutamate decarboxylase (GAD) which exists in five copies in the genome of Arabidopsis thaliana. However, only GAD1 and GAD2 are abundantly expressed, and knockout of these two copies dramatically reduced the GABA content. Phenotypic analysis revealed a reduced shoot growth of the gad1/2 mutant. Furthermore, the gad1/2 mutant was wilted earlier than the wild type following a prolonged drought stress treatment. The early-wilting phenotype was due to an increase in stomata aperture and a defect in stomata closure. The increase in stomata aperture contributed to higher stomatal conductance. The drought oversensitive phenotype of the gad1/2 mutant was reversed by functional complementation that increases GABA level in leaves. The functionally complemented gad1/2 x pop2 triple mutant contained more GABA than the wild type. Our findings suggest that GABA accumulation during drought is a stress-specific response and its accumulation induces the regulation of stomatal opening thereby prevents loss of water.

  18. Unequal functional redundancy between the two Arabidopsis thaliana high-affinity sulphate transporters SULTR1;1 and SULTR1;2.

    PubMed

    Barberon, Marie; Berthomieu, Pierre; Clairotte, Michael; Shibagaki, Nakako; Davidian, Jean-Claude; Gosti, Françoise

    2008-01-01

    * In Arabidopsis, SULTR1;1 and SULTR1;2 are two genes proposed to be involved in high-affinity sulphate uptake from the soil solution. We address here the specific issue of their functional redundancy for the uptake of sulphate and for the accumulation of its toxic analogue selenate with regard to plant growth and selenate tolerance. * Using the complete set of genotypes, including the wild-type, each one of the single sultr1;1 and sultr1;2 mutants and the resulting double sultr1;1-sultr1;2 mutant, we performed a detailed phenotypic analysis of root length, shoot biomass, sulphate uptake, sulphate and selenate accumulation and selenate tolerance. * The results all ordered the four different genotypes according to the same functional hierarchy. Wild-type and sultr1;1 mutant plants displayed similar phenotypes. By contrast, sultr1;1-sultr1;2 double-mutant plants showed the most extreme phenotype and the sultr1;2 mutant displayed intermediate performances. Additionally, the degree of selenate tolerance was directly related to the seedling selenate content according to a single sigmoid regression curve common to all the genotypes. * The SULTR1;1 and SULTR1;2 genes display unequal functional redundancy, which leaves open for SULTR1;1 the possibility of displaying an additional function besides its role in sulphate membrane transport.

  19. Removal of the local geomagnetic field affects reproductive growth in Arabidopsis.

    PubMed

    Xu, Chunxiao; Wei, Shufeng; Lu, Yan; Zhang, Yuxia; Chen, Chuanfang; Song, Tao

    2013-09-01

    The influence of the geomagnetic field-removed environment on Arabidopsis growth was investigated by cultivation of the plants in a near-null magnetic field and local geomagnetic field (45 µT) for the whole growth period under laboratory conditions. The biomass accumulation of plants in the near-null magnetic field was significantly suppressed at the time when plants were switching from vegetative growth to reproductive growth compared with that of plants grown in the local geomagnetic field, which was caused by a delay in the flowering of plants in the near-null magnetic field. At the early or later growth stage, no significant difference was shown in the biomass accumulation between the plants in the near-null magnetic field and local geomagnetic field. The average number of siliques and the production of seeds per plant in the near-null magnetic field was significantly lower by about 22% and 19%, respectively, than those of control plants. These resulted in a significant reduction of about 20% in the harvest index of plants in the near-null magnetic field compared with that of the controls. These results suggest that the removal of the local geomagnetic field negatively affects the reproductive growth of Arabidopsis, which thus affects the yield and harvest index.

  20. Two novel herbicide candidates affect Arabidopsis thaliana growth by inhibiting nitrogen and phosphate absorption.

    PubMed

    Sun, Chongchong; Jin, Yujian; He, Haifeng; Wang, Wei; He, Hongwu; Fu, Zhengwei; Qian, Haifeng

    2015-09-01

    Both 2-[(2,4-dichlorophenoxy)acetoxy](methy)lmethyl-5,5-dimethyl-1,3,2-dioxaphosphinan-2-one (termed as IIa) and 2-[(4-chloro-2-methyl-phenoxy)-acetoxy](methyl)methyl-5,5-dimethyl-1,3,2-dioxaphosphinan-2-one (termed as IIr) are novel herbicide candidates that positively affect herbicidal activity via the introduction of a phosphorus-containing heterocyclic ring. This report investigated the mechanism of IIa and IIr on weed control in the model plant Arabidopsis thaliana at physiological, ultrastructural and molecular levels. IIa and IIr significantly inhibited the growth of A. thaliana and altered its root structure by inhibiting energy metabolism and lipid or protein biosynthesis. These compounds also significantly affected the absorption of nitrogen and phosphorus by down-regulating the transcripts of nitrate transporter-related genes, ammonium transporter-related genes and phosphorus transporter-related genes.

  1. Natural Variation in Epigenetic Pathways Affects the Specification of Female Gamete Precursors in Arabidopsis[OPEN

    PubMed Central

    Rodríguez-Leal, Daniel; León-Martínez, Gloria; Abad-Vivero, Ursula; Vielle-Calzada, Jean-Philippe

    2015-01-01

    In angiosperms, the transition to the female gametophytic phase relies on the specification of premeiotic gamete precursors from sporophytic cells in the ovule. In Arabidopsis thaliana, a single diploid cell is specified as the premeiotic female gamete precursor. Here, we show that ecotypes of Arabidopsis exhibit differences in megasporogenesis leading to phenotypes reminiscent of defects in dominant mutations that epigenetically affect the specification of female gamete precursors. Intraspecific hybridization and polyploidy exacerbate these defects, which segregate quantitatively in F2 populations derived from ecotypic hybrids, suggesting that multiple loci control cell specification at the onset of female meiosis. This variation in cell differentiation is influenced by the activity of ARGONAUTE9 (AGO9) and RNA-DEPENDENT RNA POLYMERASE6 (RDR6), two genes involved in epigenetic silencing that control the specification of female gamete precursors. The pattern of transcriptional regulation and localization of AGO9 varies among ecotypes, and abnormal gamete precursors in ovules defective for RDR6 share identity with ectopic gamete precursors found in selected ecotypes. Our results indicate that differences in the epigenetic control of cell specification lead to natural phenotypic variation during megasporogenesis. We propose that this mechanism could be implicated in the emergence and evolution of the reproductive alternatives that prevail in flowering plants. PMID:25829442

  2. CacyBP/SIP binds ERK1/2 and affects transcriptional activity of Elk-1.

    PubMed

    Kilanczyk, Ewa; Filipek, Slawomir; Jastrzebska, Beata; Filipek, Anna

    2009-02-27

    In this work we showed for the first time that mouse CacyBP/SIP interacts with extracellular signal regulated kinases 1 and 2 (ERK1/2). We also established that a calcium binding protein, S100A6, competes for this interaction. Moreover, the E217K mutant of CacyBP/SIP does not bind significantly to ERK1/2 although it retains the ability to interact with S100A6. Molecular modeling shows that the E217K mutation in the 189-219 CacyBP/SIP fragment markedly changes its electrostatic potential, suggesting that the binding with ERK1/2 might have an electrostatic character. We also demonstrate that CacyBP/SIP-ERK1/2 interaction inhibits phosphorylation of the Elk-1 transcription factor in vitro and in the nuclear fraction of NB2a cells. Altogether, our data suggest that the binding of CacyBP/SIP with ERK1/2 might regulate Elk-1 phosphorylation/transcriptional activity and that S100A6 might further modulate this effect via Ca(2+)-dependent interaction with CacyBP/SIP and competition with ERK1/2.

  3. CacyBP/SIP binds ERK1/2 and affects transcriptional activity of Elk-1

    SciTech Connect

    Kilanczyk, Ewa; Filipek, Slawomir; Jastrzebska, Beata; Filipek, Anna

    2009-02-27

    In this work we showed for the first time that mouse CacyBP/SIP interacts with extracellular signal regulated kinases 1 and 2 (ERK1/2). We also established that a calcium binding protein, S100A6, competes for this interaction. Moreover, the E217K mutant of CacyBP/SIP does not bind significantly to ERK1/2 although it retains the ability to interact with S100A6. Molecular modeling shows that the E217K mutation in the 189-219 CacyBP/SIP fragment markedly changes its electrostatic potential, suggesting that the binding with ERK1/2 might have an electrostatic character. We also demonstrate that CacyBP/SIP-ERK1/2 interaction inhibits phosphorylation of the Elk-1 transcription factor in vitro and in the nuclear fraction of NB2a cells. Altogether, our data suggest that the binding of CacyBP/SIP with ERK1/2 might regulate Elk-1 phosphorylation/transcriptional activity and that S100A6 might further modulate this effect via Ca{sup 2+}-dependent interaction with CacyBP/SIP and competition with ERK1/2.

  4. Aberrant gene expression in the Arabidopsis SULTR1;2 mutants suggests a possible regulatory role for this sulfate transporter in response to sulfur nutrient status.

    PubMed

    Zhang, Bo; Pasini, Rita; Dan, Hanbin; Joshi, Naveen; Zhao, Yihong; Leustek, Thomas; Zheng, Zhi-Liang

    2014-01-01

    Sulfur is required for the biosynthesis of cysteine, methionine and numerous other metabolites, and thus is critical for cellular metabolism and various growth and developmental processes. Plants are able to sense their physiological state with respect to sulfur availability, but the sensor remains to be identified. Here we report the isolation and characterization of two novel allelic mutants of Arabidopsis thaliana, sel1-15 and sel1-16, which show increased expression of a sulfur deficiency-activated gene β-glucosidase 28 (BGLU28). The mutants, which represent two different missense alleles of SULTR1;2, which encodes a high-affinity sulfate transporter, are defective in sulfate transport and as a result have a lower cellular sulfate level. However, when treated with a very high dose of sulfate, sel1-15 and sel1-16 accumulated similar amounts of internal sulfate and its metabolite glutathione (GSH) to wild-type, but showed higher expression of BGLU28 and other sulfur deficiency-activated genes than wild-type. Reduced sensitivity to inhibition of gene expression was also observed in the sel1 mutants when fed with the sulfate metabolites Cys and GSH. In addition, a SULTR1;2 knockout allele also exhibits reduced inhibition in response to sulfate, Cys and GSH, consistent with the phenotype of sel1-15 and sel1-16. Taken together, the genetic evidence suggests that, in addition to its known function as a high-affinity sulfate transporter, SULTR1;2 may have a regulatory role in response to sulfur nutrient status. The possibility that SULTR1;2 may function as a sensor of sulfur status or a component of a sulfur sensory mechanism is discussed.

  5. Cold stress affects H(+)-ATPase and phospholipase D activity in Arabidopsis.

    PubMed

    Muzi, Carlo; Camoni, Lorenzo; Visconti, Sabina; Aducci, Patrizia

    2016-11-01

    Low temperature is an environmental stress that greatly influences plant performance and distribution. Plants exposed to cold stress exhibit modifications of plasma membrane physical properties that can affect their functionality. Here it is reported the effect of low temperature exposure of Arabidopsis plants on the activity of phospholipase D and H(+)-ATPase, the master enzyme located at the plasma membrane. The H(+)-ATPase activity was differently affected, depending on the length of cold stress imposed. In particular, an exposure to 4 °C for 6 h determined the strong inhibition of the H(+)-ATPase activity, that correlates with a reduced association with the regulatory 14-3-3 proteins. A longer exposure first caused the full recovery of the enzymatic activity followed by a significant activation, in accordance with both the increased association with 14-3-3 proteins and induction of H(+)-ATPase gene transcription. Different time lengths of cold stress treatment were also shown to strongly stimulate the phospholipase D activity and affect the phosphatidic acid levels of the plasma membranes. Our results suggest a functional correlation between the activity of phospholipase D and H(+)-ATPase mediated by phosphatidic acid release during the cold stress response.

  6. Tubulin cytoskeleton in elongation zone of Arabidopsis root is affected by clinorotation

    NASA Astrophysics Data System (ADS)

    Shevchenko, G.; Kalinina, Ya.; Kordyum, E.

    Our aim is to find out how clinorotation influences root growth For this purpose we followed the dynamics of tubulin cytoskeleton cortical and endoplasmic microtubules in cells from elongation zone of Arabidopsis roots transfected with GFP-MAP4 3 day old seedlings In distal part of elongation zone in epidermal cells mainly distinct endoplasmic microtubules were observed Prominent cortical microtubules start to be evident in cells in central elongation zone Under clinorotation clusters formed by MAP4 appear in all parts of elongation zone evidencing that microtubule arrangement is somehow distorted there Application of cytochalasin D which disrupts proper functioning of actin cytoskeleton in controls affected mainly the endoplasmic microtubules in cells with isotropic growth where MAP4 was clustered Under clinorotation disruption of actin cytoskeleton by cytochalasin D caused appearance of MAP4 clusters in cells growing anisotropically In those cells cortical microtubules are affected as well as endoplasmic Due to the fact that cortical microtubules are responsible for ordered growth of plant cell and are arranged into a robust structure change of their organization under clinorotation could impact cell growth This proves that cells in elongation zone switching their growth mode from isotropic to anisotropic are rather sensitive to altered gravity The fact that more severe distortion of cortical microtubules was noted in cells with damaged actin microfilaments proves mutually related functioning of actin and tubulin cytoskeletons under clinorotation

  7. The Arabidopsis defense component EDM2 affects the floral transition in an FLC-dependent manner.

    PubMed

    Tsuchiya, Tokuji; Eulgem, Thomas

    2010-05-01

    Arabidopsis thaliana EDM2 was previously shown to be specifically required for disease resistance mediated by the R protein RPP7. Here we provide additional data showing that the role of EDM2 in plant immunity is limited and does not include a function in basal defense. In addition, we found that EDM2 has a promoting effect on the floral transition. We further found that the protein kinase WNK8 physically interacts with EDM2 in the nucleus. Unlike EDM2, which serves as a substrate of this kinase, WNK8 appears not to be required for RPP7-mediated defense. As reported previously, however, WNK8 does affect flowering time. Epistasis analyses suggested that EDM2 acts upstream of the floral repressor FLC (AT5G10140) and downstream of WNK8 (AT5G41990) in a regulatory module that resembles the autonomous floral promotion pathway, comprising a set of mechanisms that are known to affect the floral transition by regulating FLC transcript levels.

  8. Arabidopsis acyl-CoA-binding protein ACBP6 localizes in the phloem and affects jasmonate composition.

    PubMed

    Ye, Zi-Wei; Lung, Shiu-Cheung; Hu, Tai-Hua; Chen, Qin-Fang; Suen, Yung-Lee; Wang, Mingfu; Hoffmann-Benning, Susanne; Yeung, Edward; Chye, Mee-Len

    2016-12-01

    Arabidopsis thaliana ACYL-COA-BINDING PROTEIN6 (AtACBP6) encodes a cytosolic 10-kDa AtACBP. It confers freezing tolerance in transgenic Arabidopsis, possibly by its interaction with lipids as indicated by the binding of acyl-CoA esters and phosphatidylcholine to recombinant AtACBP6. Herein, transgenic Arabidopsis transformed with an AtACBP6 promoter-driven β-glucuronidase (GUS) construct exhibited strong GUS activity in the vascular tissues. Immunoelectron microscopy using anti-AtACBP6 antibodies showed AtACBP6 localization in the phloem especially in the companion cells and sieve elements. Also, the presence of gold grains in the plasmodesmata indicated its potential role in systemic trafficking. The AtACBP6 protein, but not its mRNA, was found in phloem exudate of wild-type Arabidopsis. Fatty acid profiling using gas chromatography-mass spectrometry revealed an increase in the jasmonic acid (JA) precursor, 12-oxo-cis,cis-10,15-phytodienoic acid (cis-OPDA), and a reduction in JA and/or its derivatives in acbp6 phloem exudates in comparison to the wild type. Quantitative real-time PCR showed down-regulation of COMATOSE (CTS) in acbp6 rosettes suggesting that AtACBP6 affects CTS function. AtACBP6 appeared to affect the content of JA and/or its derivatives in the sieve tubes, which is consistent with its role in pathogen-defense and in its wound-inducibility of AtACBP6pro::GUS. Taken together, our results suggest the involvement of AtACBP6 in JA-biosynthesis in Arabidopsis phloem tissues.

  9. The CTRB1/2 Locus Affects Diabetes Susceptibility and Treatment via the Incretin Pathway

    PubMed Central

    ‘t Hart, Leen M.; Fritsche, Andreas; Nijpels, Giel; van Leeuwen, Nienke; Donnelly, Louise A.; Dekker, Jacqueline M.; Alssema, Marjan; Fadista, Joao; Carlotti, Françoise; Gjesing, Anette P.; Palmer, Colin N.A.; van Haeften, Timon W.; Herzberg-Schäfer, Silke A.; Simonis-Bik, Annemarie M.C.; Houwing-Duistermaat, Jeanine J.; Helmer, Quinta; Deelen, Joris; Guigas, Bruno; Hansen, Torben; Machicao, Fausto; Willemsen, Gonneke; Heine, Robert J.; Kramer, Mark H.H.; Holst, Jens J.; de Koning, Eelco J.P.; Häring, Hans-Ulrich; Pedersen, Oluf; Groop, Leif; de Geus, Eco J.C.; Slagboom, P. Eline; Boomsma, Dorret I.; Eekhoff, Elisabeth M.W.; Pearson, Ewan R.; Diamant, Michaela

    2013-01-01

    The incretin hormone glucagon-like peptide 1 (GLP-1) promotes glucose homeostasis and enhances β-cell function. GLP-1 receptor agonists (GLP-1 RAs) and dipeptidyl peptidase-4 (DPP-4) inhibitors, which inhibit the physiological inactivation of endogenous GLP-1, are used for the treatment of type 2 diabetes. Using the Metabochip, we identified three novel genetic loci with large effects (30–40%) on GLP-1–stimulated insulin secretion during hyperglycemic clamps in nondiabetic Caucasian individuals (TMEM114; CHST3 and CTRB1/2; n = 232; all P ≤ 8.8 × 10−7). rs7202877 near CTRB1/2, a known diabetes risk locus, also associated with an absolute 0.51 ± 0.16% (5.6 ± 1.7 mmol/mol) lower A1C response to DPP-4 inhibitor treatment in G-allele carriers, but there was no effect on GLP-1 RA treatment in type 2 diabetic patients (n = 527). Furthermore, in pancreatic tissue, we show that rs7202877 acts as expression quantitative trait locus for CTRB1 and CTRB2, encoding chymotrypsinogen, and increases fecal chymotrypsin activity in healthy carriers. Chymotrypsin is one of the most abundant digestive enzymes in the gut where it cleaves food proteins into smaller peptide fragments. Our data identify chymotrypsin in the regulation of the incretin pathway, development of diabetes, and response to DPP-4 inhibitor treatment. PMID:23674605

  10. Interaction between parental environment and genotype affects plant and seed performance in Arabidopsis

    PubMed Central

    He, Hanzi; de Souza Vidigal, Deborah; Snoek, L. Basten; Schnabel, Sabine; Nijveen, Harm; Hilhorst, Henk; Bentsink, Leónie

    2014-01-01

    Seed performance after dispersal is highly dependent on parental environmental cues, especially during seed formation and maturation. Here we examine which environmental factors are the most dominant in this respect and whether their effects are dependent on the genotypes under investigation. We studied the influence of light intensity, photoperiod, temperature, nitrate, and phosphate during seed development on five plant attributes and thirteen seed attributes, using 12 Arabidopsis genotypes that have been reported to be affected in seed traits. As expected, the various environments during seed development resulted in changed plant and/or seed performances. Comparative analysis clearly indicated that, overall, temperature plays the most dominant role in both plant and seed performance, whereas light has a prominent impact on plant traits. In comparison to temperature and light, nitrate mildly affected some of the plant and seed traits while phosphate had even less influence on those traits. Moreover, clear genotype-by-environment interactions were identified. This was shown by the fact that individual genotypes responded differentially to the environmental conditions. Low temperature significantly increased seed dormancy and decreased seed longevity of NILDOG1 and cyp707a1-1, whereas low light intensity increased seed dormancy and decreased seed longevity of NILDOG3 and NILDOG6. This also indicates that different genetic and molecular pathways are involved in the plant and seed responses. By identifying environmental conditions that affect the dormancy vs longevity correlation in the same way as previously identified naturally occurring loci, we have identified selective forces that probably shaped evolution for these important seed traits. PMID:25240065

  11. Interaction between parental environment and genotype affects plant and seed performance in Arabidopsis.

    PubMed

    He, Hanzi; de Souza Vidigal, Deborah; Snoek, L Basten; Schnabel, Sabine; Nijveen, Harm; Hilhorst, Henk; Bentsink, Leónie

    2014-12-01

    Seed performance after dispersal is highly dependent on parental environmental cues, especially during seed formation and maturation. Here we examine which environmental factors are the most dominant in this respect and whether their effects are dependent on the genotypes under investigation. We studied the influence of light intensity, photoperiod, temperature, nitrate, and phosphate during seed development on five plant attributes and thirteen seed attributes, using 12 Arabidopsis genotypes that have been reported to be affected in seed traits. As expected, the various environments during seed development resulted in changed plant and/or seed performances. Comparative analysis clearly indicated that, overall, temperature plays the most dominant role in both plant and seed performance, whereas light has a prominent impact on plant traits. In comparison to temperature and light, nitrate mildly affected some of the plant and seed traits while phosphate had even less influence on those traits. Moreover, clear genotype-by-environment interactions were identified. This was shown by the fact that individual genotypes responded differentially to the environmental conditions. Low temperature significantly increased seed dormancy and decreased seed longevity of NILDOG1 and cyp707a1-1, whereas low light intensity increased seed dormancy and decreased seed longevity of NILDOG3 and NILDOG6. This also indicates that different genetic and molecular pathways are involved in the plant and seed responses. By identifying environmental conditions that affect the dormancy vs longevity correlation in the same way as previously identified naturally occurring loci, we have identified selective forces that probably shaped evolution for these important seed traits.

  12. Waving and skewing: how gravity and the surface of growth media affect root development in Arabidopsis.

    PubMed

    Oliva, Michele; Dunand, Christophe

    2007-01-01

    Arabidopsis seedlings growing on inclined agar surfaces exhibit characteristic root behaviours called 'waving' and 'skewing': the former consists of a series of undulations, whereas the latter is a deviation from the direction of gravity. Even though the precise basis of these growth patterns is not well understood, both gravity and the contact between the medium and the root are considered to be the major players that result in these processes. The influence of these forces on root surface-dependent behaviours can be verified by growing seedlings at different gel pitches: plants growing on vertical plates present roots with slight waving and skewing when compared with seedlings grown on plates held at minor angles of < 90 degrees . However, other factors are thought to modulate root growth on agar; for instance, it has been demonstrated that the presence and concentration of certain compounds in the medium (such as sucrose) and of drugs able to modify the plant cell cytoskeleton also affect skewing and waving. The recent discovery of an active role of ethylene on surface-dependent root behaviour, and the finding of new mutants showing anomalous growth, pave the way for a more detailed description of these phenomena.

  13. Common gas phase molecules from fungi affect seed germination and plant health in Arabidopsis thaliana

    PubMed Central

    2014-01-01

    Fungal volatile organic compounds (VOCs) play important ecophysiological roles in mediating inter-kingdom signaling with arthropods but less is known about their interactions with plants. In this study, Arabidopsis thaliana was used as a model in order to test the physiological effects of 23 common vapor-phase fungal VOCs that included alcohols, aldehydes, ketones, and other chemical classes. After exposure to a shared atmosphere with the 23 individual VOCs for 72 hrs, seeds were assayed for rate of germination and seedling formation; vegetative plants were assayed for fresh weight and chlorophyll concentration. All but five of the VOCs tested (1-decene, 2-n-heptylfuran, nonanal, geosmin and -limonene) had a significant effect in inhibiting either germination, seedling formation or both. Seedling formation was entirely inhibited by exposure to 1-octen-3-one, 2-ethylhexanal, 3-methylbutanal, and butanal. As assayed by a combination of fresh weight and chlorophyll concentration, 2-ethylhexanal had a negative impact on two-week-old vegetative plants. Three other compounds (1-octen-3-ol, 2-ethylhexanal, and 2-heptylfuran) decreased fresh weight alone. Most of the VOCs tested did not change the fresh weight or chlorophyll concentration of vegetative plants. In summary, when tested as single compounds, fungal VOCs affected A. thaliana in positive, negative or neutral ways. PMID:25045602

  14. Maternal environment affects the genetic basis of seed dormancy in Arabidopsis thaliana.

    PubMed

    Postma, Froukje M; Ågren, Jon

    2015-02-01

    The genetic basis of seed dormancy, a key life history trait important for adaptive evolution in plant populations, has yet been studied only using seeds produced under controlled conditions in greenhouse environments. However, dormancy is strongly affected by maternal environmental conditions, and interactions between seed genotype and maternal environment have been reported. Consequently, the genetic basis of dormancy of seeds produced under natural field conditions remains unclear. We examined the effect of maternal environment on the genetic architecture of seed dormancy using a recombinant inbred line (RIL) population derived from a cross between two locally adapted populations of Arabidopsis thaliana from Italy and Sweden. We mapped quantitative trait loci (QTL) for dormancy of seeds produced in the greenhouse and at the native field sites of the parental genotypes. The Italian genotype produced seeds with stronger dormancy at fruit maturation than did the Swedish genotype in all three environments, and the maternal field environments induced higher dormancy levels compared to the greenhouse environment in both genotypes. Across the three maternal environments, a total of nine dormancy QTL were detected, three of which were only detected among seeds matured in the field, and six of which showed significant QTL × maternal environment interactions. One QTL had a large effect on dormancy across all three environments and colocalized with the candidate gene DOG1. Our results demonstrate the importance of studying the genetic basis of putatively adaptive traits under relevant conditions.

  15. CIPK23 is involved in iron acquisition of Arabidopsis by affecting ferric chelate reductase activity.

    PubMed

    Tian, Qiuying; Zhang, Xinxin; Yang, An; Wang, Tianzuo; Zhang, Wen-Hao

    2016-05-01

    Iron deficiency is one of the major limiting factors affecting quality and production of crops in calcareous soils. Numerous signaling molecules and transcription factors have been demonstrated to play a regulatory role in adaptation of plants to iron deficiency. However, the mechanisms underlying the iron deficiency-induced physiological processes remain to be fully dissected. Here, we demonstrated that the protein kinase CIPK23 was involved in iron acquisition. Lesion of CIPK23 rendered Arabidopsis mutants hypersensitive to iron deficiency, as evidenced by stronger chlorosis in young leaves and lower iron concentration than wild-type plants under iron-deficient conditions by down-regulating ferric chelate reductase activity. We found that iron deficiency evoked an increase in cytosolic Ca(2+) concentration and the elevated Ca(2+) would bind to CBL1/CBL9, leading to activation of CIPK23. These novel findings highlight the involvement of calcium-dependent CBL-CIPK23 complexes in the regulation of iron acquisition. Moreover, mutation of CIPK23 led to changes in contents of mineral elements, suggesting that CBL-CIPK23 complexes could be as "nutritional sensors" to sense and regulate the mineral homeostasis in Arabisopsis.

  16. Disruption of a DNA topoisomerase I gene affects morphogenesis in Arabidopsis.

    PubMed

    Takahashi, Taku; Matsuhara, Shio; Abe, Mitsutomo; Komeda, Yoshibumi

    2002-09-01

    The genesis of phyllotaxis, which often is associated with the Fibonacci series of numbers, is an old unsolved puzzle in plant morphogenesis. Here, we show that disruption of an Arabidopsis topoisomerase (topo) I gene named TOP1alpha affects phyllotaxis and plant architecture. The divergence angles and internode lengths between two successive flowers were more random in the top1alpha mutant than in the wild type. The top1alpha plants sporadically produced multiple flowers from one node, and the number of floral organ primordia often was different. The mutation also caused the twisting of inflorescences and individual flowers and the serration of leaf margins. These morphological abnormalities indicate that TOP1alpha may play a critical role in the maintenance of a regular pattern of organ initiation. The top1alpha mutant transformed with the RNA interference construct for TOP1beta, another topo I gene arrayed tandemly with TOP1alpha, was found to be lethal at young seedling stages, suggesting that topo I activity is essential in plants.

  17. Two ancestral APETALA3 homologs from the basal angiosperm Magnolia wufengensis (Magnoliaceae) can affect flower development of Arabidopsis.

    PubMed

    Jing, Danlong; Liu, Zhixiong; Zhang, Bo; Ma, Jiang; Han, Yiyang; Chen, Faju

    2014-03-01

    APETALA3 (AP3) homologs are involved in specifying petal and stamen identities in core eudicot model organisms. In order to investigate the functional conservation of AP3 homologs between core eudicots and basal angiosperm, we isolated and identified two AP3 homologs from Magnolia wufengensis, a woody basal angiosperm belonging to the family Magnoliaceae. Sequence and phylogenetic analyses revealed that both genes are clade members of the paleoAP3 lineage. Moreover, a highly conserved motif of paleoAP3 is found in the C-terminal regions of MAwuAP3_1/2 proteins, but the PI-derived motif, usually present in AP3/DEF-like lineage members, is missing. Semi-quantitative and real time PCR analyses showed that the expression of MAwuAP3_1/2 was restricted to tepals and stamens. However, the MAwuAP3_1 expression was maintained at a high level during the rapid increased in size of tepals and stamens, while MAwuAP3_2 mRNA was only detected at the early stage of tepal and stamen development. Furthermore, the expression of MAwuAP3_1/2 in transgenic Arabidopsis causes phenotypic changes which partly resemble those caused by ectopic expressions of the endogenous AP3 gene. Moreover, the 35S::MAwuAP3_1/2 transgenic Arabidopsis can be used partially to rescue the loss-of-function ap3 mutant (ap3-3) of Arabidopsis. These findings call for a more comprehensive understanding of the B-functional evolution from basal angiosperm to core eudicot clades.

  18. Light, genotype, and abscisic acid affect chloroplast positioning in guard cells of Arabidopsis thaliana leaves in distinct ways.

    PubMed

    Königer, Martina; Jessen, Brita; Yang, Rui; Sittler, Dorothea; Harris, Gary C

    2010-09-01

    The goal of this study was to investigate the effects of light intensity, genotype, and various chemical treatments on chloroplast movement in guard cells of Arabidopsis thaliana leaves. After treatment at various light intensities (dark, low, and high light), leaf discs were fixed with glutaraldehyde, and imaged using confocal laser microscopy. Each chloroplast was assigned a horizontal (close to pore, center, or epidermal side) and vertical (outer, middle, inner) position. White light had a distinct effect on chloroplast positioning, most notably under high light (HL) when chloroplasts on the upper leaf surface of wild-type (WT) moved from epidermal and center positions toward the pore. This was not the case for phot1-5/phot2-1 or phot2-1 plants, thus phototropins are essential for chloroplast positioning in guard cells. In npq1-2 mutants, fewer chloroplasts moved to the pore position under HL than in WT plants, indicating that white light can affect chloroplast positioning also in a zeaxanthin-dependent way. Cytochalasin B inhibited the movement of chloroplasts to the pore under HL, while oryzalin did not, supporting the idea that actin plays a role in the movement. The movement along actin cables is dependent on CHUP1 since chloroplast positioning in chup1 was significantly altered. Abscisic acid (ABA) caused most chloroplasts in WT and phot1-5/phot2-1 to be localized in the center, middle part of the guard cells irrespective of light treatment. This indicates that not only light but also water stress influences chloroplast positioning.

  19. Cytonuclear interactions affect adaptive traits of the annual plant Arabidopsis thaliana in the field

    PubMed Central

    Roux, Fabrice; Mary-Huard, Tristan; Barillot, Elise; Wenes, Estelle; Botran, Lucy; Durand, Stéphanie; Villoutreix, Romain; Martin-Magniette, Marie-Laure; Camilleri, Christine; Budar, Françoise

    2016-01-01

    Although the contribution of cytonuclear interactions to plant fitness variation is relatively well documented at the interspecific level, the prevalence of cytonuclear interactions at the intraspecific level remains poorly investigated. In this study, we set up a field experiment to explore the range of effects that cytonuclear interactions have on fitness-related traits in Arabidopsis thaliana. To do so, we created a unique series of 56 cytolines resulting from cytoplasmic substitutions among eight natural accessions reflecting within-species genetic diversity. An assessment of these cytolines and their parental lines scored for 28 adaptive whole-organism phenotypes showed that a large proportion of phenotypic traits (23 of 28) were affected by cytonuclear interactions. The effects of these interactions varied from slight but frequent across cytolines to strong in some specific parental pairs. Two parental pairs accounted for half of the significant pairwise interactions. In one parental pair, Ct-1/Sha, we observed symmetrical phenotypic responses between the two nuclear backgrounds when combined with specific cytoplasms, suggesting nuclear differentiation at loci involved in cytonuclear epistasis. In contrast, asymmetrical phenotypic responses were observed in another parental pair, Cvi-0/Sha. In the Cvi-0 nuclear background, fecundity and phenology-related traits were strongly affected by the Sha cytoplasm, leading to a modified reproductive strategy without penalizing total seed production. These results indicate that natural variation in cytoplasmic and nuclear genomes interact to shape integrative traits that contribute to adaptation, thereby suggesting that cytonuclear interactions can play a major role in the evolutionary dynamics of A. thaliana. PMID:26979961

  20. Leaf biomechanical properties in Arabidopsis thaliana polysaccharide mutants affect drought survival.

    PubMed

    Balsamo, Ronald; Boak, Merewyn; Nagle, Kayla; Peethambaran, Bela; Layton, Bradley

    2015-11-26

    Individual sugars are the building blocks of cell wall polysaccharides, which in turn comprise a plant׳s overall architectural structure. But which sugars play the most prominent role in maintaining a plant׳s mechanical stability during large cellular deformations induced by drought? We investigated the individual contributions of several genes that are involved in the synthesis of monosaccharides which are important for cell wall structure. We then measured drought tolerance and mechanical integrity during simulated drought in Arabidopsis thaliana. To assess mechanical properties, we designed a small-scale tensile tester for measuring failure strain, ultimate tensile stress, work to failure, toughness, and elastic modulus of 6-week-old leaves in both hydrated and drought-simulated states. Col-0 mutants used in this study include those deficient in lignin, cellulose, components of hemicellulose such as xylose and fucose, the pectic components arabinose and rhamnose, as well as mutants with enhanced arabinose and total pectin content. We found that drought tolerance is correlated to the mechanical and architectural stability of leaves as they experience dehydration. Of the mutants, S096418 with mutations for reduced xylose and galactose was the least drought tolerant, while the arabinose-altered CS8578 mutants were the least affected by water loss. There were also notable correlations between drought tolerance and mechanical properties in the diminished rhamnose mutant, CS8575 and the dehydrogenase-disrupted S120106. Our findings suggest that components of hemicellulose and pectins affect leaf biomechanical properties and may play an important role in the ability of this model system to survive drought.

  1. Suppression of Arabidopsis flowering by near-null magnetic field is affected by light.

    PubMed

    Xu, Chunxiao; Li, Yue; Yu, Yang; Zhang, Yuxia; Wei, Shufeng

    2015-09-01

    We previously reported that a near-null magnetic field suppressed Arabidopsis flowering in white light, which might be related to the function modification of cryptochrome (CRY). To further demonstrate that the effect of near-null magnetic field on Arabidopsis flowering is associated with CRY, Arabidopsis wild type and CRY mutant plants were grown in the near-null magnetic field under blue or red light with different light cycle and photosynthetic photon flux density. We found that Arabidopsis flowering was significantly suppressed by near-null magnetic field in blue light with lower intensity (10 µmol/m(2) /s) and shorter cycle (12 h period: 6 h light/6 h dark). However, flowering time of CRY1/CRY2 mutants did not show any difference between plants grown in near-null magnetic field and in local geomagnetic field under detected light conditions. In red light, no significant difference was shown in Arabidopsis flowering between plants in near-null magnetic field and local geomagnetic field under detected light cycles and intensities. These results suggest that changes of blue light cycle and intensity alter the effect of near-null magnetic field on Arabidopsis flowering, which is mediated by CRY.

  2. Arabidopsis flower specific defense gene expression patterns affect resistance to pathogens

    PubMed Central

    Ederli, Luisa; Dawe, Adam; Pasqualini, Stefania; Quaglia, Mara; Xiong, Liming; Gehring, Chris

    2015-01-01

    We investigated whether the Arabidopsis flower evolved protective measures to increase reproductive success. Firstly, analyses of available transcriptome data show that the most highly expressed transcripts in the closed sepal (stage 12) are enriched in genes with roles in responses to chemical stimuli and cellular metabolic processes. At stage 15, there is enrichment in transcripts with a role in responses to biotic stimuli. Comparative analyses between the sepal and petal in the open flower mark an over-representation of transcripts with a role in responses to stress and catalytic activity. Secondly, the content of the biotic defense-associated phytohormone salicylic acid (SA) in sepals and petals is significantly higher than in leaves. To understand whether the high levels of stress responsive transcripts and the higher SA content affect defense, wild-type plants (Col-0) and transgenic plants defective in SA accumulation (nahG) were challenged with the biotrophic fungus Golovinomyces cichoracearum, the causal agent of powdery mildew, and the necrotrophic fungus Botrytis cinerea. NahG leaves were more sensitive than those of Col-0, suggesting that in leaves SA has a role in the defense against biotrophs. In contrast, sepals and petals of both genotypes were resistant to G. cichoracearum, indicating that in the flower, resistance to the biotrophic pathogen is not critically dependent on SA, but likely dependent on the up-regulation of stress-responsive genes. Since sepals and petals of both genotypes are equally susceptible to B. cinerea, we conclude that neither stress-response genes nor increased SA accumulation offers protection against the necrotrophic pathogen. These results are interpreted in the light of the distinctive role of the flower and we propose that in the early stages, the sepal may act as a chemical defense barrier of the developing reproductive structures against biotrophic pathogens. PMID:25750645

  3. A near-null magnetic field affects cryptochrome-related hypocotyl growth and flowering in Arabidopsis

    NASA Astrophysics Data System (ADS)

    Xu, Chunxiao; Yin, Xiao; Lv, Yan; Wu, Changzhe; Zhang, Yuxia; Song, Tao

    2012-03-01

    The blue light receptor, cryptochrome, has been suggested to act as a magnetoreceptor based on the proposition that photochemical reactions are involved in sensing the geomagnetic field. But the effects of the geomagnetic field on cryptochrome remain unclear. Although the functions of cryptochrome have been well demonstrated for Arabidopsis, the effect of the geomagnetic field on the growth of Arabidopsis and its mechanism of action are poorly understood. We eliminated the local geomagnetic field to grow Arabidopsis in a near-null magnetic field and found that the inhibition of Arabidopsis hypocotyl growth by white light was weakened, and flowering time was delayed. The expressions of three cryptochrome-signaling-related genes, PHYB, CO and FT also changed; the transcript level of PHYB was elevated ca. 40%, and that of CO and FT was reduced ca. 40% and 50%, respectively. These data suggest that the effects of a near-null magnetic field on Arabidopsis are cryptochrome-related, which may be revealed by a modification of the active state of cryptochrome and the subsequent signaling cascade.

  4. An eukaryotic translation initiation factor, AteIF5A-2, affects cadmium accumulation and sensitivity in Arabidopsis.

    PubMed

    Xu, Xiao-Yan; Ding, Zhong-Jie; Chen, Lei; Yan, Jin-Ying; Li, Gui-Xin; Zheng, Shao-Jian

    2015-10-01

    Cadmium (Cd) is one of the most toxic elements and can be accumulated in plants easily; meanwhile, eIF5A is a highly conserved protein in all eukaryotic organisms. The present work tried to investigate whether eIF5A is involved in Cd accumulation and sensitivity in Arabidopsis (Arabidopsis thaliana L.) by comparing the wild-type Columbia-0 (Col-0) with a knockdown mutant of AteIF5A-2, fbr12-3 under Cd stress conditions. The results showed that the mutant fbr12-3 accumulated more Cd in roots and shoots and had significantly lower chlorophyll content, shorter root length, and smaller biomass, suggesting that downregulation of AteIF5A-2 makes the mutant more Cd sensitive. Real-time polymerase chain reaction revealed that the expressions of metal transporters involved in Cd uptake and translocation including IRT1, ZIP1, AtNramp3, and AtHMA4 were significantly increased but the expressions of PCS1 and PCS2 related to Cd detoxification were decreased notably in fbr12-3 compared with Col-0. As a result, an increase in MDA and H2 O2 content but decrease in root trolox, glutathione and proline content under Cd stress was observed, indicating that a severer oxidative stress occurs in the mutant. All these results demonstrated for the first time that AteIF5A influences Cd sensitivity by affecting Cd uptake, accumulation, and detoxification in Arabidopsis.

  5. Changes in gravity affect gene expression, protein modulation and metabolite pools of arabidopsis

    NASA Astrophysics Data System (ADS)

    Hampp, R.; Martzivanou, M.; Maier, R. M.; Magel, E.

    Callus cultures of Arabidopsis thaliana (cv. Columbia) in Petri dishes / suspension cultures were exposed to altered g-forces by centrifugation (1 to 10 g), klinorotation, and μ g (sounding rocket flights). Using semi-quantitative RT-PCR, transcripts of genes coding for metabolic key enzymes (ADP-glucose pyrophosphorylase, ADPG-PP; ß-amylase, fructose-1,6-bisphosphatase, FBPase; glyceraldehyde-P dehydrogenase, GAPDH; hydroxymethylglutaryl-CoA reductase, HMG; phenylalanine-ammonium-lyase, PAL; PEP carboxylase, PEPC) were used to monitor threshold conditions for g-number (all) and time of exposure (ß-amylase) which led to altered amounts of the gene product. Exposure to approx. 5 g and higher for 1h resulted in altered transcript levels: transcripts of ß-amylase, PAL, and PEPC were increased, those of ADPG-PP decreased, while those of FBPase, GAPDH, and HMG were not affected. This probably indicates a shift from starch synthesis to starch degradation and increased rates of anaplerosis (PEPC: supply of ketoacids for amino acid synthesis). In order to get more information about g-related effects on gene expression, we used a 1h-exposure to 7 g for a microarray analysis. Transcripts of more than 200 genes were significantly increased in amount (ratio 7g / 1g control; 21.6 and larger). They fall into several categories. Transcripts coding for enzymes of major pathways form the largest group (25%), followed by gene products involved in cellular organisation and cell wall formation / rearrangement (17%), signalling, phosphorylation/dephosphorylation (12%), proteolysis and transport (10% each), hormone synthesis plus related events (8%), defense (4%), stress-response (2%), and gravisensing (2%). Many of the alterations are part of a general stress response, but some changes related to the synthesis / rearrangement of cell wall components could be more hyper-g-specific. Using macroarrays with selected genes according to our hypergravity study (metabolism / signalling

  6. Overexpression of the Novel Arabidopsis Gene At5g02890 Alters Inflorescence Stem Wax Composition and Affects Phytohormone Homeostasis

    PubMed Central

    Xu, Liping; Zeisler, Viktoria; Schreiber, Lukas; Gao, Jie; Hu, Kaining; Wen, Jing; Yi, Bin; Shen, Jinxiong; Ma, Chaozhi; Tu, Jinxing; Fu, Tingdong

    2017-01-01

    The cuticle is composed of cutin and cuticular wax. It covers the surfaces of land plants and protects them against environmental damage. At5g02890 encodes a novel protein in Arabidopsis thaliana. In the current study, protein sequence analysis showed that At5g02890 is highly conserved in the Brassicaceae. Arabidopsis lines overexpressing At5g02890 (OE-At5g02890 lines) and an At5g02890 orthologous gene from Brassica napus (OE-Bn1 lines) exhibited glossy stems. Chemical analysis revealed that overexpression of At5g02890 caused significant reductions in the levels of wax components longer than 28 carbons (C28) in inflorescence stems, whereas the levels of wax molecules of chain length C28 or shorter were significantly increased. Transcriptome analysis indicated that nine of 11 cuticular wax synthesis-related genes with different expression levels in OE-At5g02890 plants are involved in very-long-chain fatty acid (VLCFA) elongation. At5g02890 is localized to the endoplasmic reticulum (ER), which is consistent with its function in cuticular wax biosynthesis. These results demonstrate that the overexpression of At5g02890 alters cuticular wax composition by partially blocking VLCFA elongation of C28 and higher. In addition, detailed analysis of differentially expressed genes associated with plant hormones and endogenous phytohormone levels in wild-type and OE-At5g02890 plants indicated that abscisic acid (ABA), jasmonic acid (JA), and jasmonoyl-isoleucine (JA-Ile) biosynthesis, as well as polar auxin transport, were also affected by overexpression of At5g02890. Taken together, these findings indicate that overexpression of At5g02890 affects both cuticular wax biosynthesis and phytohormone homeostasis in Arabidopsis. PMID:28184233

  7. Intronic T-DNA insertion in Arabidopsis NBR1 conditionally affects wild-type transcript level

    PubMed Central

    Rodríguez, Milagros Collados; Wawrzyńska, Anna; Sirko, Agnieszka

    2014-01-01

    Abstract The SALK_135513 line of Arabidopsis thaliana is annotated by GenBank to have the T-DNA insertion in the fourth exon of NBR1 (At4g24690). Careful molecular analyses of the homozygous plants of SALK_135513 line indicated the place of T-DNA insertion in the fourth intron. Unexpectedly, 2 kinds of NBR1 transcripts, the wild-type and the mutated, resulting from alternative splicing events, were detected in those plants. Our findings explain the problems encountered by us with phenotypic evaluation of this line and emphasize the necessity for independent verification of the exact insertion site followed by careful expression studies when working with Arabidopsis T-DNA insertional mutants. PMID:25482782

  8. Intronic T-DNA insertion in Arabidopsis NBR1 conditionally affects wild-type transcript level.

    PubMed

    Rodríguez, Milagros Collados; Wawrzyńska, Anna; Sirko, Agnieszka

    2014-01-01

    The SALK_135513 line of Arabidopsis thaliana is annotated by GenBank to have the T-DNA insertion in the fourth exon of NBR1 (At4g24690). Careful molecular analyses of the homozygous plants of SALK_135513 line indicated the place of T-DNA insertion in the fourth intron. Unexpectedly, 2 kinds of NBR1 transcripts, the wild-type and the mutated, resulting from alternative splicing events, were detected in those plants. Our findings explain the problems encountered by us with phenotypic evaluation of this line and emphasize the necessity for independent verification of the exact insertion site followed by careful expression studies when working with Arabidopsis T-DNA insertional mutants.

  9. Modification of AtGRDP1 gene expression affects silique and seed development in Arabidopsis thaliana.

    PubMed

    Rodríguez-Hernández, Aída Araceli; Muro-Medina, Carlos Vladimir; Ramírez-Alonso, Jocelin Itzel; Jiménez-Bremont, Juan Francisco

    2017-03-08

    Glycine Rich Proteins (GRPs) are induced at different developmental stages and in specific plant tissues. Recently, we described a novel Arabidopsis gene encoding a short glycine-rich domain protein (AtGRDP1). This gene is involved in abiotic stress responsiveness; the Atgrdp1-null mutant seeds were more sensitive to stress, while the opposite phenotype was achieved by AtGRDP1 overexpression. In this study, we analyzed the phenotype of the fruits produced by Arabidopsis Atgrdp1 mutants and 35S::AtGRDP1 overexpression lines. Our analyses revealed important changes in silique length, seed number, seed weight and morphology in the analyzed lines. In particular, Atgrdp1 mutant lines exhibited several defects including short siliques, a diminished number of seeds per silique, and reduction in seed size and weight as compared to Col-0. The overexpression of the AtGRDP1 gene also generated phenotypes with alterations in size of silique, number of seeds per silique, and size and weight of seed. In addition, the expression analysis of AtGRDP1 gene showed that it was expressed in floral and fruit organs, with the highest expression level in mature siliques. The alterations in the siliques and seeds traits in the Atgrdp1 mutant line, as well as the phenotypes observed in AtGRDP1 overexpression lines, suggest a role of the AtGRDP1 gene in the Arabidopsis fruit development.

  10. Phospholipase D affects translocation of NPR1 to the nucleus in Arabidopsis thaliana

    PubMed Central

    Janda, Martin; Šašek, Vladimír; Chmelařová, Hana; Andrejch, Jan; Nováková, Miroslava; Hajšlová, Jana; Burketová, Lenka; Valentová, Olga

    2015-01-01

    Phytohormone salicylic acid (SA) is a crucial component of plant-induced defense against biotrophic pathogens. Although the key players of the SA pathway are known, there are still gaps in the understanding of the molecular mechanism and the regulation of particular steps. In our previous research, we showed in Arabidopsis suspension cells that n-butanol, which specifically modulates phospholipase D activity, significantly suppresses the transcription of the pathogenesis related (PR-1) gene, which is generally accepted as the SA pathway marker. In the presented study, we have investigated the site of n-butanol action in the SA pathway. We were able to show in Arabidopsis plants treated with SA that n-butanol inhibits the transcription of defense genes (PR-1, WRKY38). Fluorescence microscopy of Arabidopsis thaliana mutants expressing 35S::NPR1-GFP (nonexpressor pathogenesis related 1) revealed significantly decreased nuclear localization of NPR1 in the presence of n-butanol. On the other hand, n-butanol did not decrease the nuclear localization of NPR1 in 35S::npr1C82A-GFP and 35S::npr1C216A-GFP mutants constitutively expressing NPR1 monomers. Mass spectrometric analysis of plant extracts showed that n-butanol significantly changes the metabolic fingerprinting while t-butanol had no effect. We found groups of the plant metabolites, influenced differently by SA and n-butanol treatment. Thus, we proposed several metabolites as markers for n-butanol action. PMID:25741350

  11. Stability of small ubiquitin-like modifier (SUMO) proteases OVERLY TOLERANT TO SALT1 and -2 modulates salicylic acid signalling and SUMO1/2 conjugation in Arabidopsis thaliana.

    PubMed

    Bailey, Mark; Srivastava, Anjil; Conti, Lucio; Nelis, Stuart; Zhang, Cunjin; Florance, Hannah; Love, Andrew; Milner, Joel; Napier, Richard; Grant, Murray; Sadanandom, Ari

    2016-01-01

    Small ubiquitin-like modifier proteases 1 and 2 (SUMO1/2) have been linked to the regulation of salicylic acid (SA)-mediated defence signalling in Arabidopsis thaliana. In order to define the role of the SUMO proteases OVERLY TOLERANT TO SALT1 and -2 (OTS1/2) in defence and to provide insight into SUMO1/2-mediated regulation of SA signalling, we examined the status of SA-mediated defences in ots1/2 mutants. The ots1 ots2 double mutant displayed enhanced resistance to virulent Pseudomonas syringae and higher levels of SA compared with wild-type (WT) plants. Furthermore, ots1 ots2 mutants exhibited upregulated expression of the SA biosynthesis gene ICS1 in addition to enhanced SA-responsive ICS1 expression beyond that of WT. SA stimulated OTS1/2 degradation and promoted accumulation of SUMO1/2 conjugates. These results indicate that OTS1 and -2 act in a feedback loop in SA signalling and that de novo OTS1/2 synthesis works antagonistically to SA-promoted degradation, adjusting the abundance of OTS1/2 to moderate SA signalling. Accumulation of SUMO1/2 conjugates coincides with SA-promoted OTS degradation and may play a positive role in SA-mediated signalling in addition to its repressive roles reported elsewhere.

  12. Altered expression of the bZIP transcription factor DRINK ME affects growth and reproductive development in Arabidopsis thaliana.

    PubMed

    Lozano-Sotomayor, Paulina; Chávez Montes, Ricardo A; Silvestre-Vañó, Marina; Herrera-Ubaldo, Humberto; Greco, Raffaella; Pablo-Villa, Jeanneth; Galliani, Bianca M; Diaz-Ramirez, David; Weemen, Mieke; Boutilier, Kim; Pereira, Andy; Colombo, Lucia; Madueño, Francisco; Marsch-Martínez, Nayelli; de Folter, Stefan

    2016-11-01

    Here we describe an uncharacterized gene that negatively influences Arabidopsis growth and reproductive development. DRINK ME (DKM; bZIP30) is a member of the bZIP transcription factor family, and is expressed in meristematic tissues such as the inflorescence meristem (IM), floral meristem (FM), and carpel margin meristem (CMM). Altered DKM expression affects meristematic tissues and reproductive organ development, including the gynoecium, which is the female reproductive structure and is determinant for fertility and sexual reproduction. A microarray analysis indicates that DKM overexpression affects the expression of cell cycle, cell wall, organ initiation, cell elongation, hormone homeostasis, and meristem activity genes. Furthermore, DKM can interact in yeast and in planta with proteins involved in shoot apical meristem maintenance such as WUSCHEL, KNAT1/BP, KNAT2 and JAIBA, and with proteins involved in medial tissue development in the gynoecium such as HECATE, BELL1 and NGATHA1. Taken together, our results highlight the relevance of DKM as a negative modulator of Arabidopsis growth and reproductive development.

  13. Titanium dioxide nanoparticles (100-1000 mg/l) can affect vitamin E response in Arabidopsis thaliana.

    PubMed

    Szymańska, Renata; Kołodziej, Karolina; Ślesak, Ireneusz; Zimak-Piekarczyk, Paulina; Orzechowska, Aleksandra; Gabruk, Michał; Żądło, Andrzej; Habina, Iwona; Knap, Wiesław; Burda, Květoslava; Kruk, Jerzy

    2016-06-01

    In the present study we analyze the effect of seed treatment by a range of nano-TiO2 concentrations on the growth of Arabidopsis thaliana plants, on the vitamin E content and the expression of its biosynthetic genes, as well as activity of antioxidant enzymes and lipid peroxidation. To conduct the mechanistic analysis of nano-TiO2 on plants growth and antioxidant status we applied nanoparticles concentrations that are much higher than those reported in the environment. We find that as the concentration of nano-TiO2 increases, the biomass, and chlorophyll content in 5-week-old Arabidopsis thaliana plants decrease in a concentration dependent manner. In opposite, higher nano-TiO2 concentration enhanced root growth. Our results indicate that a high concentration of nano-TiO2 induces symptoms of toxicity and elevates the antioxidant level. We also find that the expression levels of tocopherol biosynthetic genes were either down- or upregulated in response to nano-TiO2. Thermoluminescence analysis shows that higher nano-TiO2 concentrations cause lipid peroxidation. To the best of our knowledge, this is the first report concerning the effect of nano-TiO2 on vitamin E status in plants. We conclude that nano-TiO2 affects the antioxidant response in Arabidopsis thaliana plants. This could be an effect of a changes in vitamin E gene expression that is diminished under lower tested nano-TiO2 concentrations and elevated under 1000 μg/ml.

  14. Mutations in epidermis-specific HD-ZIP IV genes affect floral organ identity in Arabidopsis thaliana.

    PubMed

    Kamata, Naoko; Okada, Hitomi; Komeda, Yoshibumi; Takahashi, Taku

    2013-08-01

    Development of the epidermis involves members of the class-IV homeodomain-leucine zipper (HD-ZIP IV) transcription factors. The Arabidopsis HD-ZIP IV family consists of 16 members, among which PROTODERMAL FACTOR 2 (PDF2) and ARABIDOPSIS THALIANA MERISTEM LAYER 1 (ATML1) play an indispensable role in the differentiation of shoot epidermal cells; however, the functions of other HD-ZIP IV genes that are also expressed specifically in the shoot epidermis remain to be fully elucidated. We constructed double mutant combinations of these HD-ZIP IV mutant alleles and found that the double mutants of pdf2-1 with homeodomain glabrous1-1 (hdg1-1), hdg2-3, hdg5-1 and hdg12-2 produced abnormal flowers with sepaloid petals and carpelloid stamens in association with the reduced expression of the petal and stamen identity gene APETALA 3 (AP3). Expression of another petal and stamen identity gene PISTILATA (PI) was less affected in these mutants. We confirmed that AP3 expression in pdf2-1 hdg2-3 was normally induced at the initial stages of flower development, but was attenuated both in the epidermis and internal cell layers of developing flowers. As the expression of PDF2 and these HD-ZIP IV genes during floral organ formation is exclusively limited to the epidermal cell layer, these double mutations may have non-cell-autonomous effects on AP3 expression in the internal cell layers. Our results suggest that cooperative functions of PDF2 and other members of the HD-ZIP IV family in the epidermis are crucial for normal development of floral organs in Arabidopsis.

  15. NIMA-related kinase NEK6 affects plant growth and stress response in Arabidopsis.

    PubMed

    Zhang, Bo; Chen, Hao-Wei; Mu, Rui-Ling; Zhang, Wang-Ke; Zhao, Ming-Yu; Wei, Wei; Wang, Fang; Yu, Hui; Lei, Gang; Zou, Hong-Feng; Ma, Biao; Chen, Shou-Yi; Zhang, Jin-Song

    2011-12-01

    The NIMA-related kinases (NEKs) are a family of serine/threonine kinases involved largely in cell cycle control in fungi, mammals and other eukaryotes. In Arabidopsis, NEK6 is involved in the regulation of epidermal cell morphogenesis. However, other roles of NEK6 in plants are less well understood. Here we report functions of NEK6 in plant growth, development and stress responses in Arabidopsis. NEK6 transcripts and proteins are induced by ethylene precursor ACC and salt stress. Expression of other NEK genes except NEK5 is also responsive to the two treatments. Overexpression and mutant analysis disclose that the NEK6 gene increases rosette growth, seed yield and lateral root formation. However, NEK6 appears to play a negative role in the control of seed size. The gene also promotes plant tolerance to salt stress and osmotic stress in its overexpressing plants. The NEK6 gene may achieve its function through suppression of ethylene biosynthesis and activation of CYCB1;1 and CYCA3;1 expression. Our present study reveals new functions of the NEK6 gene in plant growth and stress tolerance, and manipulation of NEK6 may improve important agronomic traits in crop plants.

  16. A loss-of-function mutation in Calmodulin2 gene affects pollen germination in Arabidopsis thaliana.

    PubMed

    Landoni, Michela; De Francesco, Alessandra; Galbiati, Massimo; Tonelli, Chiara

    2010-10-01

    Calmodulin (CAM) is an ubiquitous calcium binding protein whose function is to translate the signals, perceived as calcium concentration variations, into the appropriate cellular responses. In Arabidopsis thaliana there are 4 CAM isoforms which are highly similar, encoded by 7 genes, and one possible explanation proposed for the evolutionary conservation of the CAM gene family is that the different genes have acquired different functions so that they play possibly overlapping but non-identical roles. Here we report the characterization of the Arabidopsis mutant cam2-2, identified among the lines of the gene-trapping collection EXOTIC because of a distorted segregation of kanamycin resistance. Phenotypic analysis showed that in normal growth conditions cam2-2 plants were indistinguishable from the wild type while genetic analysis showed a reduced transmission of the cam2-2 allele through the male gametophyte and in vitro pollen germination revealed a reduced level of germination in comparison with the wild type. These results provide genetic evidence of the involvement of a CAM gene in pollen germination and support the theory of functional diversification of the CAM gene family.

  17. Alterations in seed development gene expression affect size and oil content of Arabidopsis seeds.

    PubMed

    Fatihi, Abdelhak; Zbierzak, Anna Maria; Dörmann, Peter

    2013-10-01

    Seed endosperm development in Arabidopsis (Arabidopsis thaliana) is under control of the polycomb group complex, which includes Fertilization Independent Endosperm (FIE). The polycomb group complex regulates downstream factors, e.g. Pheres1 (PHE1), by genomic imprinting. In heterozygous fie mutants, an endosperm develops in ovules carrying a maternal fie allele without fertilization, finally leading to abortion. Another endosperm development pathway depends on MINISEED3 (a WRKY10 transcription factor) and HAIKU2 (a leucine-rich repeat kinase). While the role of seed development genes in the embryo and endosperm establishment has been studied in detail, their impact on metabolism and oil accumulation remained unclear. Analysis of oil, protein, and sucrose accumulation in mutants and overexpression plants of the four seed development genes revealed that (1) seeds carrying a maternal fie allele accumulate low oil with an altered composition of triacylglycerol molecular species; (2) homozygous mutant seeds of phe1, mini3, and iku2, which are smaller, accumulate less oil and slightly less protein, and starch, which accumulates early during seed development, remains elevated in mutant seeds; (3) embryo-specific overexpression of FIE, PHE1, and MINI3 has no influence on seed size and weight, nor on oil, protein, or sucrose content; and (4) overexpression of IKU2 results in seeds with increased size and weight, and oil content of overexpressed IKU2 seeds is increased by 35%. Thus, IKU2 overexpression represents a novel strategy for the genetic manipulation of the oil content in seeds.

  18. A mutation in protein phosphatase 2A regulatory subunit A affects auxin transport in Arabidopsis

    NASA Technical Reports Server (NTRS)

    Garbers, C.; DeLong, A.; Deruere, J.; Bernasconi, P.; Soll, D.; Evans, M. L. (Principal Investigator)

    1996-01-01

    The phytohormone auxin controls processes such as cell elongation, root hair development and root branching. Tropisms, growth curvatures triggered by gravity, light and touch, are also auxin-mediated responses. Auxin is synthesized in the shoot apex and transported through the stem, but the molecular mechanism of auxin transport is not well understood. Naphthylphthalamic acid (NPA) and other inhibitors of auxin transport block tropic curvature responses and inhibit root and shoot elongation. We have isolated a novel Arabidopsis thaliana mutant designated roots curl in NPA (rcn1). Mutant seedlings exhibit altered responses to NPA in root curling and hypocotyl elongation. Auxin efflux in mutant seedlings displays increased sensitivity to NPA. The rcn1 mutation was transferred-DNA (T-DNA) tagged and sequences flanking the T-DNA insert were cloned. Analysis of the RCN1 cDNA reveals that the T-DNA insertion disrupts a gene for the regulatory A subunit of protein phosphatase 2A (PP2A-A). The RCN1 gene rescues the rcn1 mutant phenotype and also complements the temperature-sensitive phenotype of the Saccharomyces cerevisiae PP2A-A mutation, tpd3-1. These data implicate protein phosphatase 2A in the regulation of auxin transport in Arabidopsis.

  19. A mutation in protein phosphatase 2A regulatory subunit A affects auxin transport in Arabidopsis.

    PubMed Central

    Garbers, C; DeLong, A; Deruére, J; Bernasconi, P; Söll, D

    1996-01-01

    The phytohormone auxin controls processes such as cell elongation, root hair development and root branching. Tropisms, growth curvatures triggered by gravity, light and touch, are also auxin-mediated responses. Auxin is synthesized in the shoot apex and transported through the stem, but the molecular mechanism of auxin transport is not well understood. Naphthylphthalamic acid (NPA) and other inhibitors of auxin transport block tropic curvature responses and inhibit root and shoot elongation. We have isolated a novel Arabidopsis thaliana mutant designated roots curl in NPA (rcn1). Mutant seedlings exhibit altered responses to NPA in root curling and hypocotyl elongation. Auxin efflux in mutant seedlings displays increased sensitivity to NPA. The rcn1 mutation was transferred-DNA (T-DNA) tagged and sequences flanking the T-DNA insert were cloned. Analysis of the RCN1 cDNA reveals that the T-DNA insertion disrupts a gene for the regulatory A subunit of protein phosphatase 2A (PP2A-A). The RCN1 gene rescues the rcn1 mutant phenotype and also complements the temperature-sensitive phenotype of the Saccharomyces cerevisiae PP2A-A mutation, tpd3-1. These data implicate protein phosphatase 2A in the regulation of auxin transport in Arabidopsis. Images PMID:8641277

  20. Antisense and chemical suppression of the nonmevalonate pathway affects ent-kaurene biosynthesis in Arabidopsis.

    PubMed

    Okada, Kazunori; Kawaide, Hiroshi; Kuzuyama, Tomohisa; Seto, Haruo; Curtis, Ian S; Kamiya, Yuji

    2002-06-01

    Transgenic plants of Arabidopsis thaliana (L.) Heynh. (ecotype Columbia) expressing the antisense AtMECT gene, encoding 2- C-methyl- D-erythritol 4-phosphate cytidylyltransferase, were generated to elucidate the physiological role of the nonmevalonate pathway for production of ent-kaurene, the latter being the plastidic precursor of gibberellins. In transformed plants pigmentation and accumulation of ent-kaurene were reduced compared to wild-type plants. Fosmidomycin, an inhibitor of 1-deoxy- D-xylulose 5-phosphate reductoisomerase (DXR), caused a similar depletion of these compounds in transgenic plants. These observations suggest that both AtMECT and DXR are important in the synthesis of isopentenyl diphosphate and dimethylallyl diphosphate and that ent-kaurene is mainly produced through the nonmevalonate pathway in the plastid.

  1. Non-Photochemical Quenching Capacity in Arabidopsis thaliana Affects Herbivore Behaviour

    PubMed Central

    Johansson Jänkänpää, Hanna; Frenkel, Martin; Zulfugarov, Ismayil; Reichelt, Michael; Krieger-Liszkay, Anja; Mishra, Yogesh; Gershenzon, Jonathan; Moen, Jon; Lee, Choon-Hwan; Jansson, Stefan

    2013-01-01

    Under natural conditions, plants have to cope with numerous stresses, including light-stress and herbivory. This raises intriguing questions regarding possible trade-offs between stress defences and growth. As part of a program designed to address these questions we have compared herbivory defences and damage in wild type Arabidopsis thaliana and two “photoprotection genotypes”, npq4 and oePsbS, which respectively lack and overexpress PsbS (a protein that plays a key role in qE-type non-photochemical quenching). In dual-choice feeding experiments both a specialist (Plutella xylostella) and a generalist (Spodoptera littoralis) insect herbivore preferred plants that expressed PsbS most strongly. In contrast, although both herbivores survived equally well on each of the genotypes, for oviposition female P. xylostella adults preferred plants that expressed PsbS least strongly. However, there were no significant differences between the genotypes in levels of the 10 most prominent glucosinolates; key substances in the Arabidopsis anti-herbivore chemical defence arsenal. After transfer from a growth chamber to the field we detected significant differences in the genotypes’ metabolomic profiles at all tested time points, using GC-MS, but no consistent “metabolic signature” for the lack of PsbS. These findings suggest that the observed differences in herbivore preferences were due to differences in the primary metabolism of the plants rather than their contents of typical “defence compounds”. A potentially significant factor is that superoxide accumulated most rapidly and to the highest levels under high light conditions in npq4 mutants. This could trigger changes in planta that are sensed by herbivores either directly or indirectly, following its dismutation to H2O2. PMID:23301046

  2. A recessive mutation in the RUB1-conjugating enzyme, RCE1, reveals a requirement for RUB modification for control of ethylene biosynthesis and proper induction of basic chitinase and PDF1.2 in Arabidopsis.

    PubMed

    Larsen, Paul B; Cancel, Jesse D

    2004-05-01

    By screening etiolated Arabidopsis seedlings for mutants with aberrant ethylene-related phenotypes, we identified a mutant that displays features of the ethylene-mediated triple response even in the absence of ethylene. Further characterization showed that the phenotype observed for the dark-grown seedlings of this mutant is reversible by prevention of ethylene perception and is dependent on a modest increase in ethylene production correlated with an increase in 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase (ACO) activity in the hypocotyl. Molecular characterization of leaves of the mutant revealed severely impaired induction of basic chitinase (chiB) and plant defensin (PDF)1.2 following treatment with jasmonic acid and/or ethylene. Positional cloning of the mutation resulted in identification of a 49-bp deletion in RCE1 (related to ubiquitin 1 (RUB1)-conjugating enzyme), which has been demonstrated to be responsible for covalent attachment of RUB1 to the SCF (Skpl Cdc 53 F-box) ubiquitin ligase complex to modify its activity. Our analyses with rce1-2 demonstrate a previously unknown requirement for RUB1 modification for regulation of ethylene biosynthesis and proper induction of defense-related genes in Arabidopsis.

  3. Peering into the separate roles of root and shoot cytosolic glutamine synthetase 1;2 by use of grafting experiments in Arabidopsis.

    PubMed

    Guan, Miao; Schjoerring, Jan K

    2016-11-01

    Cytosolic glutamine synthetase 1;2 plays an important role in the primary nitrogen assimilation in roots. Based on characterization of the knockout mutant gln1;2 we have recently demonstrated that Gln1;2 is also essential for ammonium handling in shoots. Here we built reciprocally grafted plants between wild type (Wt) and gln1;2 in order to separate the root and shoot roles of Gln1;2. Significant reduction in silique number and seed yield were observed in the grafted plants 1;2shoot/Wtroot relative to Wtshoot/1;2root and Wtshoot/Wtroot. Shoot Gln1;2 thus played a crucial role for seed production. Tracing experiments with (15)N showed that the relative nitrogen remobilization from vegetative organs to seeds in gln1;2 was just as efficient as in the Wt plants. This was the case although the total quantity of nitrogen in gln1;2 was significantly lower compared to that in the Wt. We conclude that the functions of shoot Gln1;2 are primarily associated with internal N signaling for establishment of seed yield capacity rather than with nitrogen remobilization.

  4. High expression of Lifeact in Arabidopsis thaliana reduces dynamic reorganization of actin filaments but does not affect plant development.

    PubMed

    van der Honing, Hannie S; van Bezouwen, Laura S; Emons, Anne Mie C; Ketelaar, Tijs

    2011-10-01

    Lifeact is a novel probe that labels actin filaments in a wide range of organisms. We compared the localization and reorganization of Lifeact:Venus-labeled actin filaments in Arabidopsis root hairs and root epidermal cells of lines that express different levels of Lifeact: Venus with that of actin filaments labeled with GFP:FABD2, a commonly used probe in plants. Unlike GFP:FABD2, Lifeact:Venus labeled the highly dynamic fine F-actin in the subapical region of tip-growing root hairs. Lifeact:Venus expression at varying levels was not observed to affect plant development. However, at expression levels comparable to those of GFP:FABD2 in a well-characterized marker line, Lifeact:Venus reduced reorganization rates of bundles of actin filaments in root epidermal cells. Reorganization rates of cytoplasmic strands, which reflect the reorganization of the actin cytoskeleton, were also reduced in these lines. Moreover, in the same line, Lifeact:Venus-decorated actin filaments were more resistant to depolymerization by latrunculin B than those in an equivalent GFP:FABD2-expressing line. In lines where Lifeact: Venus is expressed at lower levels, these effects are less prominent or even absent. We conclude that Lifeact: Venus reduces remodeling of the actin cytoskeleton in Arabidopsis in a concentration-dependent manner. Since this reduction occurs at expression levels that do not cause defects in plant development, selection of normally growing plants is not sufficient to determine optimal Lifeact expression levels. When correct expression levels of Lifeact have been determined, it is a valuable probe that labels dynamic populations of actin filaments such as fine F-actin, better than FABD2 does.

  5. Genotype-environment interactions at quantitative trait loci affecting inflorescence development in Arabidopsis thaliana.

    PubMed Central

    Ungerer, Mark C; Halldorsdottir, Solveig S; Purugganan, Michael D; Mackay, Trudy F C

    2003-01-01

    Phenotypic plasticity and genotype-environment interactions (GEI) play a prominent role in plant morphological diversity and in the potential functional capacities of plant life-history traits. The genetic basis of plasticity and GEI, however, is poorly understood in most organisms. In this report, inflorescence development patterns in Arabidopsis thaliana were examined under different, ecologically relevant photoperiod environments for two recombinant inbred mapping populations (Ler x Col and Cvi x Ler) using a combination of quantitative genetics and quantitative trait locus (QTL) mapping. Plasticity and GEI were regularly observed for the majority of 13 inflorescence traits. These observations can be attributable (at least partly) to variable effects of specific QTL. Pooled across traits, 12/44 (27.3%) and 32/62 (51.6%) of QTL exhibited significant QTL x environment interactions in the Ler x Col and Cvi x Ler lines, respectively. These interactions were attributable to changes in magnitude of effect of QTL more often than to changes in rank order (sign) of effect. Multiple QTL x environment interactions (in Cvi x Ler) clustered in two genomic regions on chromosomes 1 and 5, indicating a disproportionate contribution of these regions to the phenotypic patterns observed. High-resolution mapping will be necessary to distinguish between the alternative explanations of pleiotropy and tight linkage among multiple genes. PMID:14504242

  6. Genotype-environment interactions at quantitative trait loci affecting inflorescence development in Arabidopsis thaliana.

    PubMed

    Ungerer, Mark C; Halldorsdottir, Solveig S; Purugganan, Michael D; Mackay, Trudy F C

    2003-09-01

    Phenotypic plasticity and genotype-environment interactions (GEI) play a prominent role in plant morphological diversity and in the potential functional capacities of plant life-history traits. The genetic basis of plasticity and GEI, however, is poorly understood in most organisms. In this report, inflorescence development patterns in Arabidopsis thaliana were examined under different, ecologically relevant photoperiod environments for two recombinant inbred mapping populations (Ler x Col and Cvi x Ler) using a combination of quantitative genetics and quantitative trait locus (QTL) mapping. Plasticity and GEI were regularly observed for the majority of 13 inflorescence traits. These observations can be attributable (at least partly) to variable effects of specific QTL. Pooled across traits, 12/44 (27.3%) and 32/62 (51.6%) of QTL exhibited significant QTL x environment interactions in the Ler x Col and Cvi x Ler lines, respectively. These interactions were attributable to changes in magnitude of effect of QTL more often than to changes in rank order (sign) of effect. Multiple QTL x environment interactions (in Cvi x Ler) clustered in two genomic regions on chromosomes 1 and 5, indicating a disproportionate contribution of these regions to the phenotypic patterns observed. High-resolution mapping will be necessary to distinguish between the alternative explanations of pleiotropy and tight linkage among multiple genes.

  7. Integration of Ethylene and Light Signaling Affects Hypocotyl Growth in Arabidopsis

    PubMed Central

    Yu, Yanwen; Huang, Rongfeng

    2017-01-01

    As an ideal model for studying ethylene effects on cell elongation, Arabidopsis hypocotyl growth is widely used due to the unique characteristic that ethylene stimulates hypocotyl elongation in the light but inhibits it in the dark. Although the contrasting effect of ethylene on hypocotyl growth has long been known, the molecular basis of this effect has only gradually been identified in recent years. In the light, ethylene promotes the expression of PHYTOCHROME INTERACTING FACTOR 3 (PIF3) and the degradation of ELONGATED HYPOCOTYL 5 (HY5) protein, thus stimulating hypocotyl growth. In the dark, ETHYLENE RESPONSE FACTOR 1 (ERF1) and WAVE-DAMPENED 5 (WDL5) induced by ethylene are responsible for its inhibitory effect on hypocotyl elongation. Moreover, CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) and PHYTOCHROME B (phyB) mediate the light-suppressed ethylene response in different ways. Here, we review several pivotal advances associated with ethylene-regulated hypocotyl elongation, focusing on the integration of ethylene and light signaling during seedling emergence from the soil. PMID:28174592

  8. Transgene expression patterns indicate that spaceflight affects stress signal perception and transduction in arabidopsis

    NASA Technical Reports Server (NTRS)

    Paul, A. L.; Daugherty, C. J.; Bihn, E. A.; Chapman, D. K.; Norwood, K. L.; Ferl, R. J.

    2001-01-01

    The use of plants as integral components of life support systems remains a cornerstone of strategies for long-term human habitation of space and extraterrestrial colonization. Spaceflight experiments over the past few decades have refined the hardware required to grow plants in low-earth orbit and have illuminated fundamental issues regarding spaceflight effects on plant growth and development. Potential incipient hypoxia, resulting from the lack of convection-driven gas movement, has emerged as a possible major impact of microgravity. We developed transgenic Arabidopsis containing the alcohol dehydrogenase (Adh) gene promoter linked to the beta-glucuronidase (GUS) reporter gene to address specifically the possibility that spaceflight induces the plant hypoxia response and to assess whether any spaceflight response was similar to control terrestrial hypoxia-induced gene expression patterns. The staining patterns resulting from a 5-d mission on the orbiter Columbia during mission STS-93 indicate that the Adh/GUS reporter gene was activated in roots during the flight. However, the patterns of expression were not identical to terrestrial control inductions. Moreover, although terrestrial hypoxia induces Adh/GUS expression in the shoot apex, no apex staining was observed in the spaceflight plants. This indicates that either the normal hypoxia response signaling is impaired in spaceflight or that spaceflight inappropriately induces Adh/GUS activity for reasons other than hypoxia.

  9. Transgene Expression Patterns Indicate That Spaceflight Affects Stress Signal Perception and Transduction in Arabidopsis1

    PubMed Central

    Paul, Anna-Lisa; Daugherty, Christine J.; Bihn, Elizabeth A.; Chapman, David K.; Norwood, Kelly L.L.; Ferl, Robert J.

    2001-01-01

    The use of plants as integral components of life support systems remains a cornerstone of strategies for long-term human habitation of space and extraterrestrial colonization. Spaceflight experiments over the past few decades have refined the hardware required to grow plants in low-earth orbit and have illuminated fundamental issues regarding spaceflight effects on plant growth and development. Potential incipient hypoxia, resulting from the lack of convection-driven gas movement, has emerged as a possible major impact of microgravity. We developed transgenic Arabidopsis containing the alcohol dehydrogenase (Adh) gene promoter linked to the β-glucuronidase (GUS) reporter gene to address specifically the possibility that spaceflight induces the plant hypoxia response and to assess whether any spaceflight response was similar to control terrestrial hypoxia-induced gene expression patterns. The staining patterns resulting from a 5-d mission on the orbiter Columbia during mission STS-93 indicate that the Adh/GUS reporter gene was activated in roots during the flight. However, the patterns of expression were not identical to terrestrial control inductions. Moreover, although terrestrial hypoxia induces Adh/GUS expression in the shoot apex, no apex staining was observed in the spaceflight plants. This indicates that either the normal hypoxia response signaling is impaired in spaceflight or that spaceflight inappropriately induces Adh/GUS activity for reasons other than hypoxia. PMID:11402191

  10. Inbreeding Affects Gene Expression Differently in Two Self-Incompatible Arabidopsis lyrata Populations with Similar Levels of Inbreeding Depression.

    PubMed

    Menzel, Mandy; Sletvold, Nina; Ågren, Jon; Hansson, Bengt

    2015-08-01

    Knowledge of which genes and pathways are affected by inbreeding may help understanding the genetic basis of inbreeding depression, the potential for purging (selection against deleterious recessive alleles), and the transition from outcrossing to selfing. Arabidopsis lyrata is a predominantly self-incompatible perennial plant, closely related to the selfing model species A. thaliana. To examine how inbreeding affects gene expression, we compared the transcriptome of experimentally selfed and outcrossed A. lyrata originating from two Scandinavian populations that express similar inbreeding depression for fitness (∂ ≈ 0.80). The number of genes significantly differentially expressed between selfed and outcrossed individuals were 2.5 times higher in the Norwegian population (≈ 500 genes) than in the Swedish population (≈ 200 genes). In both populations, a majority of genes were upregulated on selfing (≈ 80%). Functional annotation analysis of the differentially expressed genes showed that selfed offspring were characterized by 1) upregulation of stress-related genes in both populations and 2) upregulation of photosynthesis-related genes in Sweden but downregulation in Norway. Moreover, we found that reproduction- and pollination-related genes were affected by inbreeding only in Norway. We conclude that inbreeding causes both general and population-specific effects. The observed common effects suggest that inbreeding generally upregulates rather than downregulates gene expression and affects genes associated with stress response and general metabolic activity. Population differences in the number of affected genes and in effects on the expression of photosynthesis-related genes show that the genetic basis of inbreeding depression can differ between populations with very similar levels of inbreeding depression.

  11. Each of the chloroplast potassium efflux antiporters affects photosynthesis and growth of fully developed Arabidopsis rosettes under short-day photoperiod.

    PubMed

    Dana, Somnath; Herdean, Andrei; Lundin, Björn; Spetea, Cornelia

    2016-12-01

    In Arabidopsis thaliana, the chloroplast harbors three potassium efflux antiporters (KEAs), namely KEA1 and KEA2 in the inner envelope and KEA3 in the thylakoid membrane. They may play redundant physiological roles as in our previous analyses of young developing Arabidopsis rosettes under long-day photoperiod (16 h light per day), chloroplast kea single mutants resembled the wild-type plants, whereas kea1kea2 and kea1kea2kea3 mutants were impaired in chloroplast development and photosynthesis resulting in stunted growth. Here, we aimed to study whether chloroplast KEAs play redundant roles in chloroplast function of older Arabidopsis plants with fully developed rosettes grown under short-day photoperiod (8 h light per day). Under these conditions, we found defects in photosynthesis and growth in the chloroplast kea single mutants, and most dramatic defects in the kea1kea2 double mutant. The mechanism behind these defects in the single mutants involves reduction in the electron transport rate (kea1 and kea3), and stomata conductance (kea1, kea2 and kea3), which in turn affect CO2 fixation rates. The kea1kea2 mutant, in addition to these alterations, displayed reduced levels of photosynthetic machinery. Taken together, our data suggest that, in addition to the previously reported roles in chloroplast development in young rosettes, each chloroplast KEA affects photosynthesis and growth of Arabidopsis fully developed rosettes.

  12. Mutations of Arabidopsis TBL32 and TBL33 Affect Xylan Acetylation and Secondary Wall Deposition

    PubMed Central

    Yuan, Youxi; Teng, Quincy; Zhong, Ruiqin; Haghighat, Marziyeh; Richardson, Elizabeth A.; Ye, Zheng-Hua

    2016-01-01

    Xylan is a major acetylated polymer in plant lignocellulosic biomass and it can be mono- and di-acetylated at O-2 and O-3 as well as mono-acetylated at O-3 of xylosyl residues that is substituted with glucuronic acid (GlcA) at O-2. Based on the finding that ESK1, an Arabidopsis thaliana DUF231 protein, specifically mediates xylan 2-O- and 3-O-monoacetylation, we previously proposed that different acetyltransferase activities are required for regiospecific acetyl substitutions of xylan. Here, we demonstrate the functional roles of TBL32 and TBL33, two ESK1 close homologs, in acetyl substitutions of xylan. Simultaneous mutations of TBL32 and TBL33 resulted in a significant reduction in xylan acetyl content and endoxylanase digestion of the mutant xylan released GlcA-substituted xylooligomers without acetyl groups. Structural analysis of xylan revealed that the tbl32 tbl33 mutant had a nearly complete loss of 3-O-acetylated, 2-O-GlcA-substituted xylosyl residues. A reduction in 3-O-monoacetylated and 2,3-di-O-acetylated xylosyl residues was also observed. Simultaneous mutations of TBL32, TBL33 and ESK1 resulted in a severe reduction in xylan acetyl level down to 15% of that of the wild type, and concomitantly, severely collapsed vessels and stunted plant growth. In particular, the S2 layer of secondary walls in xylem vessels of tbl33 esk1 and tbl32 tbl33 esk1 exhibited an altered structure, indicating abnormal assembly of secondary wall polymers. These results demonstrate that TBL32 and TBL33 play an important role in xylan acetylation and normal deposition of secondary walls. PMID:26745802

  13. Mutations of Arabidopsis TBL32 and TBL33 affect xylan acetylation and secondary wall deposition

    DOE PAGES

    Yuan, Youxi; Teng, Quincy; Zhong, Ruiqin; ...

    2016-01-08

    Xylan is a major acetylated polymer in plant lignocellulosic biomass and it can be monoand di-acetylated at O-2 and O-3 as well as mono-acetylated at O-3 of xylosyl residues that is substituted with glucuronic acid (GlcA) at O-2. Based on the finding that ESK1, an Arabidopsis thaliana DUF231 protein, specifically mediates xylan 2-O- and 3-O-monoacetylation, we previously proposed that different acetyltransferase activities are required for regiospecific acetyl substitutions of xylan. Here, we demonstrate the functional roles of TBL32 and TBL33, two ESK1 close homologs, in acetyl substitutions of xylan. Simultaneous mutations of TBL32 and TBL33 resulted in a significant reductionmore » in xylan acetyl content and endoxylanase digestion of the mutant xylan released GlcA-substituted xylooligomers without acetyl groups. Structural analysis of xylan revealed that the tbl32 tbl33 mutant had a nearly complete loss of 3-O-acetylated, 2-O-GlcA-substituted xylosyl residues. A reduction in 3-Omonoacetylated and 2,3-di-O-acetylated xylosyl residues was also observed. Simultaneous mutations of TBL32, TBL33 and ESK1 resulted in a severe reduction in xylan acetyl level down to 15% of that of the wild type, and concomitantly, severely collapsed vessels and stunted plant growth. In particular, the S2 layer of secondary walls in xylem vessels of tbl33 esk1 and tbl32 tbl33 esk1 exhibited an altered structure, indicating abnormal assembly of secondary wall polymers. Furthermore, these results demonstrate that TBL32 and TBL33 play an important role in xylan acetylation and normal deposition of secondary walls.« less

  14. Arabidopsis thaliana DOF6 negatively affects germination in non-after-ripened seeds and interacts with TCP14

    PubMed Central

    Rueda-Romero, Paloma; Barrero-Sicilia, Cristina; Gómez-Cadenas, Aurelio; Carbonero, Pilar; Oñate-Sánchez, Luis

    2012-01-01

    Seed dormancy prevents seeds from germinating under environmental conditions unfavourable for plant growth and development and constitutes an evolutionary advantage. Dry storage, also known as after-ripening, gradually decreases seed dormancy by mechanisms not well understood. An Arabidopsis thaliana DOF transcription factor gene (DOF6) affecting seed germination has been characterized. The transcript levels of this gene accumulate in dry seeds and decay gradually during after-ripening and also upon seed imbibition. While constitutive over-expression of DOF6 produced aberrant growth and sterility in the plant, its over-expression induced upon seed imbibition triggered delayed germination, abscisic acid (ABA)-hypersensitive phenotypes and increased expression of the ABA biosynthetic gene ABA1 and ABA-related stress genes. Wild-type germination and gene expression were gradually restored during seed after-ripening, despite of DOF6-induced over-expression. DOF6 was found to interact in a yeast two-hybrid system and in planta with TCP14, a previously described positive regulator of seed germination. The expression of ABA1 and ABA-related stress genes was also enhanced in tcp14 knock-out mutants. Taken together, these results indicate that DOF6 negatively affects seed germination and opposes TCP14 function in the regulation of a specific set of ABA-related genes. PMID:22155632

  15. Canopy light cues affect emission of constitutive and methyl jasmonate-induced volatile organic compounds in Arabidopsis thaliana

    PubMed Central

    Kegge, Wouter; Weldegergis, Berhane T; Soler, Roxina; Eijk, Marleen Vergeer-Van; Dicke, Marcel; Voesenek, Laurentius A C J; Pierik, Ronald

    2013-01-01

    The effects of plant competition for light on the emission of plant volatile organic compounds (VOCs) were studied by investigating how different light qualities that occur in dense vegetation affect the emission of constitutive and methyl-jasmonate-induced VOCs. Arabidopsis thaliana Columbia (Col-0) plants and Pieris brassicae caterpillars were used as a biological system to study the effects of light quality manipulations on VOC emissions and attraction of herbivores. VOCs were analysed using gas chromatography–mass spectrometry and the effects of light quality, notably the red : far red light ratio (R : FR), on expression of genes associated with VOC production were studied using reverse transcriptase–quantitative PCR. The emissions of both constitutive and methyl-jasmonate-induced green leaf volatiles and terpenoids were partially suppressed under low R : FR and severe shading conditions. Accordingly, the VOC-based preference of neonates of the specialist lepidopteran herbivore P. brassicae was significantly affected by the R : FR ratio. We conclude that VOC-mediated interactions among plants and between plants and organisms at higher trophic levels probably depend on light alterations caused by nearby vegetation. Studies on plant–plant and plant–insect interactions through VOCs should take into account the light quality within dense stands when extrapolating to natural and agricultural field conditions. PMID:23845065

  16. Arabidopsis thaliana plants with different levels of aliphatic- and indolyl-glucosinolates affect host selection and performance of Bemisia tabaci.

    PubMed

    Markovich, Oshry; Kafle, Dinesh; Elbaz, Moshe; Malitsky, Sergey; Aharoni, Asaph; Schwarzkopf, Alexander; Gershenzon, Jonathan; Morin, Shai

    2013-12-01

    Generalist insects show reduced selectivity when subjected to similar, but not identical, host plant chemical signatures. Here, we produced transgenic Arabidopsis thaliana plants that over-express genes regulating the aliphatic- and indolyl- glucosinolates biosynthetic pathways with either a constitutive (CaMV 35S) or a phloem-specific promoter (AtSUC2). This allowed us to examine how exposure to high levels of aliphatic- or indolyl-glucosinolates in homogenous habitats (leaf cage apparatus containing two wild-type or two transgenic leaves) and heterogeneous habitats (leaf cage apparatus containing one wild-type and one transgenic leaf) affects host selection and performance of Bemsia tabaci, a generalist phloem-feeding insect. Data from homogenous habitats indicated that exposure to A. thaliana plants accumulating high levels of aliphatic- or indolyl-glucosinolates negatively affected the performance of both adult females and nymphs of B. tabaci. Data from heterogeneous habitats indicated that B. tabaci adult females selected for oviposition plants on which their offspring perform better (preference-performance relationship). However, the combinations of wild-type and transgenic plants in heterogeneous habitats increased the period of time until the first choice was made and led to increased movement rate on transgenic plants, and reduced fecundity on wild-type plants. Overall, our findings are consistent with the view that both performance and selectivity of B. tabaci decrease in heterogeneous habitats that contain plants with closely-related chemical signatures.

  17. Arabidopsis thaliana DOF6 negatively affects germination in non-after-ripened seeds and interacts with TCP14.

    PubMed

    Rueda-Romero, Paloma; Barrero-Sicilia, Cristina; Gómez-Cadenas, Aurelio; Carbonero, Pilar; Oñate-Sánchez, Luis

    2012-03-01

    Seed dormancy prevents seeds from germinating under environmental conditions unfavourable for plant growth and development and constitutes an evolutionary advantage. Dry storage, also known as after-ripening, gradually decreases seed dormancy by mechanisms not well understood. An Arabidopsis thaliana DOF transcription factor gene (DOF6) affecting seed germination has been characterized. The transcript levels of this gene accumulate in dry seeds and decay gradually during after-ripening and also upon seed imbibition. While constitutive over-expression of DOF6 produced aberrant growth and sterility in the plant, its over-expression induced upon seed imbibition triggered delayed germination, abscisic acid (ABA)-hypersensitive phenotypes and increased expression of the ABA biosynthetic gene ABA1 and ABA-related stress genes. Wild-type germination and gene expression were gradually restored during seed after-ripening, despite of DOF6-induced over-expression. DOF6 was found to interact in a yeast two-hybrid system and in planta with TCP14, a previously described positive regulator of seed germination. The expression of ABA1 and ABA-related stress genes was also enhanced in tcp14 knock-out mutants. Taken together, these results indicate that DOF6 negatively affects seed germination and opposes TCP14 function in the regulation of a specific set of ABA-related genes.

  18. Proteomic analyses identify a diverse array of nuclear processes affected by small ubiquitin-like modifier conjugation in Arabidopsis.

    PubMed

    Miller, Marcus J; Barrett-Wilt, Gregory A; Hua, Zhihua; Vierstra, Richard D

    2010-09-21

    The covalent attachment of SUMO (small ubiquitin-like modifier) to other intracellular proteins affects a broad range of nuclear processes in yeast and animals, including chromatin maintenance, transcription, and transport across the nuclear envelope, as well as protects proteins from ubiquitin addition. Substantial increases in SUMOylated proteins upon various stresses have also implicated this modification in the general stress response. To help understand the role(s) of SUMOylation in plants, we developed a stringent method to isolate SUMO-protein conjugates from Arabidopsis thaliana that exploits a tagged SUMO1 variant that faithfully replaces the wild-type protein. Following purification under denaturing conditions, SUMOylated proteins were identified by tandem mass spectrometry from both nonstressed plants and those exposed to heat and oxidative stress. The list of targets is enriched for factors that direct SUMOylation and for nuclear proteins involved in chromatin remodeling/repair, transcription, RNA metabolism, and protein trafficking. Targets of particular interest include histone H2B, components in the LEUNIG/TOPLESS corepressor complexes, and proteins that control histone acetylation and DNA methylation, which affect genome-wide transcription. SUMO attachment site(s) were identified in a subset of targets, including SUMO1 itself to confirm the assembly of poly-SUMO chains. SUMO1 also becomes conjugated with ubiquitin during heat stress, thus connecting these two posttranslational modifications in plants. Taken together, we propose that SUMOylation represents a rapid and global mechanism for reversibly manipulating plant chromosomal functions, especially during environmental stress.

  19. Ecologically Different Fungi Affect Arabidopsis Development: Contribution of Soluble and Volatile Compounds

    PubMed Central

    Casarrubia, Salvatore; Sapienza, Sara; Fritz, Héma; Daghino, Stefania; Rosenkranz, Maaria; Schnitzler, Jörg-Peter; Martin, Francis; Perotto, Silvia

    2016-01-01

    Plant growth and development can be influenced by mutualistic and non-mutualistic microorganisms. We investigated the ability of the ericoid endomycorrhizal fungus Oidiodendron maius to influence growth and development of the non-host plant Arabidopsis thaliana. Different experimental setups (non-compartmented and compartmented co-culture plates) were used to investigate the influence of both soluble and volatile fungal molecules on the plant phenotype. O. maius promoted growth of A. thaliana in all experimental setups. In addition, a peculiar clumped root phenotype, characterized by shortening of the primary root and by an increase of lateral root length and number, was observed in A. thaliana only in the non-compartmented plates, suggesting that soluble diffusible molecules are responsible for this root morphology. Fungal auxin does not seem to be involved in plant growth promotion and in the clumped root phenotype because co-cultivation with O. maius did not change auxin accumulation in plant tissues, as assessed in plants carrying the DR5::GUS reporter construct. In addition, no correlation between the amount of fungal auxin produced and the plant root phenotype was observed in an O. maius mutant unable to induce the clumped root phenotype in A. thaliana. Addition of active charcoal, a VOC absorbant, in the compartmented plates did not modify plant growth promotion, suggesting that VOCs are not involved in this phenomenon. The low VOCs emission measured for O. maius further corroborated this hypothesis. By contrast, the addition of CO2 traps in the compartmented plates drastically reduced plant growth, suggesting involvement of fungal CO2 in plant growth promotion. Other mycorrhizal fungi, as well as a saprotrophic and a pathogenic fungus, were also tested with the same experimental setups. In the non-compartmented plates, most fungi promoted A. thaliana growth and some could induce the clumped root phenotype. In the compartmented plate experiments, a general

  20. Sirtinol, a Sir2 protein inhibitor, affects stem cell maintenance and root development in Arabidopsis thaliana by modulating auxin-cytokinin signaling components

    PubMed Central

    Singh, Sharmila; Singh, Alka; Yadav, Sandeep; Gautam, Vibhav; Singh, Archita; Sarkar, Ananda K.

    2017-01-01

    In Arabidopsis thaliana, besides several key transcription factors and chromatin modifiers, phytohormones auxin and cytokinin play pivotal role in shoot and root meristem maintenance, and lateral root (LR) development. Sirtinol, a chemical inhibitor of Sir2 proteins, is known to promote some auxin induced phenotypes in Arabidopsis. However, its effect on plant stem cell maintenance or organ formation remained unaddressed. Here we show that sirtinol affects meristem maintenance by altering the expression of key stem cell regulators, cell division and differentiation by modulating both auxin and cytokinin signaling in Arabidopsis thaliana. The expression of shoot stem cell niche related genes WUSCHEL (WUS) and CLAVATA3 (CLV3) was upregulated, whereas SHOOT MERISTEMLESS (STM) was downregulated in sirtinol treated seedlings. The expression level and domain of key root stem cell regulators PLETHORA (PLTs) and WUS-Related Homeobox 5 (WOX5) were altered in sirtinol treated roots. Sirtinol affects LR development by disturbing proper auxin transport and maxima formation, similar to 2,4-dichlorophenoxyacetic acid (2,4-D). Sirtinol also affects LR formation by altering cytokinin biosynthesis and signaling genes in roots. Therefore, sirtinol affects shoot and root growth, meristem maintenance and LR development by altering the expression of cytokinin-auxin signaling components, and regulators of stem cells, meristems, and LRs. PMID:28195159

  1. Project Ice Storm: Prenatal Maternal Stress Affects Cognitive and Linguistic Functioning in 5 1/2-Year-Old Children

    ERIC Educational Resources Information Center

    Laplante, David P.; Brunet, Alain; Schmitz, Norbert; Ciampi, Antonio; King, Suzanne

    2008-01-01

    The study used data from Project Ice Storm to determine the extent to which exposure to prenatal maternal stress due to a natural disaster can explain variance in the intellectual and language performance of offspring at age 5 1/2.

  2. Rhizosphere Microbial Community Composition Affects Cadmium and Zinc Uptake by the Metal-Hyperaccumulating Plant Arabidopsis halleri

    PubMed Central

    Muehe, E. Marie; Weigold, Pascal; Adaktylou, Irini J.; Planer-Friedrich, Britta; Kraemer, Ute; Kappler, Andreas

    2015-01-01

    The remediation of metal-contaminated soils by phytoextraction depends on plant growth and plant metal accessibility. Soil microorganisms can affect the accumulation of metals by plants either by directly or indirectly stimulating plant growth and activity or by (im)mobilizing and/or complexing metals. Understanding the intricate interplay of metal-accumulating plants with their rhizosphere microbiome is an important step toward the application and optimization of phytoremediation. We compared the effects of a “native” and a strongly disturbed (gamma-irradiated) soil microbial communities on cadmium and zinc accumulation by the plant Arabidopsis halleri in soil microcosm experiments. A. halleri accumulated 100% more cadmium and 15% more zinc when grown on the untreated than on the gamma-irradiated soil. Gamma irradiation affected neither plant growth nor the 1 M HCl-extractable metal content of the soil. However, it strongly altered the soil microbial community composition and overall cell numbers. Pyrosequencing of 16S rRNA gene amplicons of DNA extracted from rhizosphere samples of A. halleri identified microbial taxa (Lysobacter, Streptomyces, Agromyces, Nitrospira, “Candidatus Chloracidobacterium”) of higher relative sequence abundance in the rhizospheres of A. halleri plants grown on untreated than on gamma-irradiated soil, leading to hypotheses on their potential effect on plant metal uptake. However, further experimental evidence is required, and wherefore we discuss different mechanisms of interaction of A. halleri with its rhizosphere microbiome that might have directly or indirectly affected plant metal accumulation. Deciphering the complex interactions between A. halleri and individual microbial taxa will help to further develop soil metal phytoextraction as an efficient and sustainable remediation strategy. PMID:25595759

  3. The Evolutionarily Conserved Protein PHOTOSYNTHESIS AFFECTED MUTANT71 Is Required for Efficient Manganese Uptake at the Thylakoid Membrane in Arabidopsis

    PubMed Central

    Steinberger, Iris; Herdean, Andrei; Gandini, Chiara; Labs, Mathias; Flügge, Ulf-Ingo; Geimer, Stefan; Schmidt, Sidsel Birkelund; Husted, Søren; Spetea, Cornelia; Leister, Dario

    2016-01-01

    In plants, algae, and cyanobacteria, photosystem II (PSII) catalyzes the light-driven oxidation of water. The oxygen-evolving complex of PSII is a Mn4CaO5 cluster embedded in a well-defined protein environment in the thylakoid membrane. However, transport of manganese and calcium into the thylakoid lumen remains poorly understood. Here, we show that Arabidopsis thaliana PHOTOSYNTHESIS AFFECTED MUTANT71 (PAM71) is an integral thylakoid membrane protein involved in Mn2+ and Ca2+ homeostasis in chloroplasts. This protein is required for normal operation of the oxygen-evolving complex (as evidenced by oxygen evolution rates) and for manganese incorporation. Manganese binding to PSII was severely reduced in pam71 thylakoids, particularly in PSII supercomplexes. In cation partitioning assays with intact chloroplasts, Mn2+ and Ca2+ ions were differently sequestered in pam71, with Ca2+ enriched in pam71 thylakoids relative to the wild type. The changes in Ca2+ homeostasis were accompanied by an increased contribution of the transmembrane electrical potential to the proton motive force across the thylakoid membrane. PSII activity in pam71 plants and the corresponding Chlamydomonas reinhardtii mutant cgld1 was restored by supplementation with Mn2+, but not Ca2+. Furthermore, PAM71 suppressed the Mn2+-sensitive phenotype of the yeast mutant Δpmr1. Therefore, PAM71 presumably functions in Mn2+ uptake into thylakoids to ensure optimal PSII performance. PMID:27020959

  4. Potato tuber expression of Arabidopsis WRINKLED1 increase triacylglycerol and membrane lipids while affecting central carbohydrate metabolism.

    PubMed

    Hofvander, Per; Ischebeck, Till; Turesson, Helle; Kushwaha, Sandeep K; Feussner, Ivo; Carlsson, Anders S; Andersson, Mariette

    2016-09-01

    Tuber and root crops virtually exclusively accumulate storage products in the form of carbohydrates. An exception is yellow nutsedge (Cyperus esculentus) in which tubers have the capacity to store starch and triacylglycerols (TAG) in roughly equal amounts. This suggests that a tuber crop can efficiently handle accumulation of energy dense oil. From a nutritional as well as economic aspect, it would be of interest to utilize the high yield capacity of tuber or root crops for oil accumulation similar to yellow nutsedge. The transcription factor WRINKLED1 from Arabidopsis thaliana, which in seed embryos induce fatty acid synthesis, has been shown to be a major factor for oil accumulation. WRINKLED1 was expressed in potato (Solanum tuberosum) tubers to explore whether this factor could impact tuber metabolism. This study shows that a WRINKLED1 transcription factor could induce triacylglycerol accumulation in tubers of transformed potato plants grown in field (up to 12 nmol TAG/mg dry weight, 1% of dry weight) together with a large increase in polar membrane lipids. The changes in metabolism further affected starch accumulation and composition concomitant with massive increases in sugar content.

  5. Altered sucrose synthase and invertase expression affects the local and systemic sugar metabolism of nematode-infected Arabidopsis thaliana plants.

    PubMed

    Cabello, Susana; Lorenz, Cindy; Crespo, Sara; Cabrera, Javier; Ludwig, Roland; Escobar, Carolina; Hofmann, Julia

    2014-01-01

    Sedentary endoparasitic nematodes of plants induce highly specific feeding cells in the root central cylinder. From these, the obligate parasites withdraw all required nutrients. The feeding cells were described as sink tissues in the plant's circulation system that are supplied with phloem-derived solutes such as sugars. Currently, there are several publications describing mechanisms of sugar import into the feeding cells. However, sugar processing has not been studied so far. Thus, in the present work, the roles of the sucrose-cleaving enzymes sucrose synthases (SUS) and invertases (INV) in the development of Heterodera schachtii were studied. Gene expression analyses indicate that both enzymes are regulated transcriptionally. Nematode development was enhanced on multiple INV and SUS mutants. Syncytia of these mutants were characterized by altered enzyme activity and changing sugar pool sizes. Further, the analyses revealed systemically affected sugar levels and enzyme activities in the shoots of the tested mutants, suggesting changes in the source-sink relationship. Finally, the development of the root-knot nematode Meloidogyne javanica was studied in different INV and SUS mutants and wild-type Arabidopsis plants. Similar effects on the development of both sedentary endoparasitic nematode species (root-knot and cyst nematode) were observed, suggesting a more general role of sucrose-degrading enzymes during plant-nematode interactions.

  6. Arabidopsis PTD is required for type I crossover formation and affects recombination frequency in two different chromosomal regions.

    PubMed

    Lu, Pingli; Wijeratne, Asela J; Wang, Zhengjia; Copenhaver, Gregory P; Ma, Hong

    2014-03-20

    In eukaryotes, crossovers together with sister chromatid cohesion maintain physical association between homologous chromosomes, ensuring accurate chromosome segregation during meiosis I and resulting in exchange of genetic information between homologues. The Arabidopsis PTD (Parting Dancers) gene affects the level of meiotic crossover formation, but its functional relationships with other core meiotic genes, such as AtSPO11-1, AtRAD51, and AtMSH4, are unclear; whether PTD has other functions in meiosis is also unknown. To further analyze PTD function and to test for epistatic relationships, we compared the meiotic chromosome behaviors of Atspo11-1 ptd and Atrad51 ptd double mutants with the relevant single mutants. The results suggest that PTD functions downstream of AtSPO11-1 and AtRAD51 in the meiotic recombination pathway. Furthermore, we found that meiotic defects in rck ptd and Atmsh4 ptd double mutants showed similar meiotic phenotypes to those of the relevant single mutants, providing genetic evidences for roles of PTD and RCK in the type I crossovers pathway. Moreover, we employed a pollen tetrad-based fluorescence method and found that the meiotic crossover frequencies in two genetic intervals were significantly reduced from 6.63% and 22.26% in wild-type to 1.14% and 6.36%, respectively, in the ptd-2 mutant. These results revealed new aspects of PTD function in meiotic crossover formation.

  7. Synergistic action of histone acetyltransferase GCN5 and receptor CLAVATA1 negatively affects ethylene responses in Arabidopsis thaliana.

    PubMed

    Poulios, Stylianos; Vlachonasios, Konstantinos E

    2016-02-01

    GENERAL CONTROL NON-REPRESSIBLE 5 (GCN5) is a histone acetyltransferase (HAT) and the catalytic subunit of several multicomponent HAT complexes that acetylate lysine residues of histone H3. Mutants in AtGCN5 display pleiotropic developmental defects including aberrant meristem function. Shoot apical meristem (SAM) maintenance is regulated by CLAVATA1 (CLV1), a receptor kinase that controls the size of the shoot and floral meristems. Upon activation through CLV3 binding, CLV1 signals to the transcription factor WUSCHEL (WUS), restricting WUS expression and thus the meristem size. We hypothesized that GCN5 and CLV1 act together to affect SAM function. Using genetic and molecular approaches, we generated and characterized clv gcn5 mutants. Surprisingly, the clv1-1 gcn5-1 double mutant exhibited constitutive ethylene responses, suggesting that GCN5 and CLV signaling act synergistically to inhibit ethylene responses in Arabidopsis. This genetic and molecular interaction was mediated by ETHYLENE INSENSITIVE 3/ EIN3-LIKE1 (EIN3/EIL1) transcription factors. Our data suggest that signals from the CLV transduction pathway reach the GCN5-containing complexes in the nucleus and alter the histone acetylation status of ethylene-responsive genes, thus translating the CLV information to transcriptional activity and uncovering a link between histone acetylation and SAM maintenance in the complex mode of ethylene signaling.

  8. Novel Genes Affecting the Interaction between the Cabbage Whitefly and Arabidopsis Uncovered by Genome-Wide Association Mapping.

    PubMed

    Broekgaarden, Colette; Bucher, Johan; Bac-Molenaar, Johanna; Keurentjes, Joost J B; Kruijer, Willem; Voorrips, Roeland E; Vosman, Ben

    2015-01-01

    Plants have evolved a variety of ways to defend themselves against biotic attackers. This has resulted in the presence of substantial variation in defense mechanisms among plants, even within a species. Genome-wide association (GWA) mapping is a useful tool to study the genetic architecture of traits, but has so far only had limited exploitation in studies of plant defense. Here, we study the genetic architecture of defense against the phloem-feeding insect cabbage whitefly (Aleyrodes proletella) in Arabidopsis thaliana. We determined whitefly performance, i.e. the survival and reproduction of whitefly females, on 360 worldwide selected natural accessions and subsequently performed GWA mapping using 214,051 SNPs. Substantial variation for whitefly adult survival and oviposition rate (number of eggs laid per female per day) was observed between the accessions. We identified 39 candidate SNPs for either whitefly adult survival or oviposition rate, all with relatively small effects, underpinning the complex architecture of defense traits. Among the corresponding candidate genes, i.e. genes in linkage disequilibrium (LD) with candidate SNPs, none have previously been identified as a gene playing a role in the interaction between plants and phloem-feeding insects. Whitefly performance on knock-out mutants of a number of candidate genes was significantly affected, validating the potential of GWA mapping for novel gene discovery in plant-insect interactions. Our results show that GWA analysis is a very useful tool to gain insight into the genetic architecture of plant defense against herbivorous insects, i.e. we identified and validated several genes affecting whitefly performance that have not previously been related to plant defense against herbivorous insects.

  9. Novel Genes Affecting the Interaction between the Cabbage Whitefly and Arabidopsis Uncovered by Genome-Wide Association Mapping

    PubMed Central

    Broekgaarden, Colette; Bucher, Johan; Bac-Molenaar, Johanna; Keurentjes, Joost J. B.; Kruijer, Willem; Voorrips, Roeland E.; Vosman, Ben

    2015-01-01

    Plants have evolved a variety of ways to defend themselves against biotic attackers. This has resulted in the presence of substantial variation in defense mechanisms among plants, even within a species. Genome-wide association (GWA) mapping is a useful tool to study the genetic architecture of traits, but has so far only had limited exploitation in studies of plant defense. Here, we study the genetic architecture of defense against the phloem-feeding insect cabbage whitefly (Aleyrodes proletella) in Arabidopsis thaliana. We determined whitefly performance, i.e. the survival and reproduction of whitefly females, on 360 worldwide selected natural accessions and subsequently performed GWA mapping using 214,051 SNPs. Substantial variation for whitefly adult survival and oviposition rate (number of eggs laid per female per day) was observed between the accessions. We identified 39 candidate SNPs for either whitefly adult survival or oviposition rate, all with relatively small effects, underpinning the complex architecture of defense traits. Among the corresponding candidate genes, i.e. genes in linkage disequilibrium (LD) with candidate SNPs, none have previously been identified as a gene playing a role in the interaction between plants and phloem-feeding insects. Whitefly performance on knock-out mutants of a number of candidate genes was significantly affected, validating the potential of GWA mapping for novel gene discovery in plant-insect interactions. Our results show that GWA analysis is a very useful tool to gain insight into the genetic architecture of plant defense against herbivorous insects, i.e. we identified and validated several genes affecting whitefly performance that have not previously been related to plant defense against herbivorous insects. PMID:26699853

  10. The Arabidopsis gene DIG6 encodes a large 60S subunit nuclear export GTPase 1 that is involved in ribosome biogenesis and affects multiple auxin-regulated development processes.

    PubMed

    Zhao, Huayan; Lü, Shiyou; Li, Ruixi; Chen, Tao; Zhang, Huoming; Cui, Peng; Ding, Feng; Liu, Pei; Wang, Guangchao; Xia, Yiji; Running, Mark P; Xiong, Liming

    2015-11-01

    The circularly permuted GTPase large subunit GTPase 1 (LSG1) is involved in the maturation step of the 60S ribosome and is essential for cell viability in yeast. Here, an Arabidopsis mutant dig6 (drought inhibited growth of lateral roots) was isolated. The mutant exhibited multiple auxin-related phenotypes, which included reduced lateral root number, altered leaf veins, and shorter roots. Genetic mapping combined with next-generation DNA sequencing identified that the mutation occurred in AtLSG1-2. This gene was highly expressed in regions of auxin accumulation. Ribosome profiling revealed that a loss of function of AtLSG1-2 led to decreased levels of monosomes, further demonstrating its role in ribosome biogenesis. Quantitative proteomics showed that the expression of certain proteins involved in ribosome biogenesis was differentially regulated, indicating that ribosome biogenesis processes were impaired in the mutant. Further investigations showed that an AtLSG1-2 deficiency caused the alteration of auxin distribution, response, and transport in plants. It is concluded that AtLSG1-2 is integral to ribosome biogenesis, consequently affecting auxin homeostasis and plant development.

  11. Psychological Distress, Anxiety, and Depression of Cancer-Affected BRCA1/2 Mutation Carriers: a Systematic Review.

    PubMed

    Ringwald, Johanna; Wochnowski, Christina; Bosse, Kristin; Giel, Katrin Elisabeth; Schäffeler, Norbert; Zipfel, Stephan; Teufel, Martin

    2016-10-01

    Understanding the intermediate- and long-term psychological consequences of genetic testing for cancer patients has led to encouraging research, but a clear consensus of the psychosocial impact and clinical routine for cancer-affected BRCA1 and BRCA2 mutation carriers is still missing. We performed a systematic review of intermediate- and long-term studies investigating the psychological impact like psychological distress, anxiety, and depression in cancer-affected BRCA mutation carriers compared to unaffected mutation carriers. This review included the screening of 1243 studies. Eight intermediate- and long-term studies focusing on distress, anxiety, and depression symptoms among cancer-affected mutation carriers at least six months after the disclosure of genetic testing results were included. Studies reported a great variety of designs, methods, and patient outcomes. We found evidence indicating that cancer-affected mutation carriers experienced a negative effect in relation to psychological well-being in terms of an increase in symptoms of distress, anxiety, and depression in the first months after test disclosure. In the intermediate- and long-term, no significant clinical relevant symptoms occurred. However, none of the included studies used specific measurements, which can clearly identify psychological burdens of cancer-affected mutation carriers. We concluded that current well-implemented distress screening instruments are not sufficient for precisely identifying the psychological burden of genetic testing. Therefore, future studies should implement coping strategies, specific personality structures, the impact of genetic testing, supportive care needs and disease management behaviour to clearly screen for the possible intermediate- and long-term psychological impact of a positive test disclosure.

  12. A New Mutation, hap1-2, Reveals a C Terminal Domain Function in AtMago Protein and Its Biological Effects in Male Gametophyte Development in Arabidopsis thaliana

    PubMed Central

    Cilano, Kevin; Mazanek, Zachary; Khan, Mahmuda; Metcalfe, Sarah; Zhang, Xiao-Ning

    2016-01-01

    The exon-exon junction complex (EJC) is a conserved eukaryotic multiprotein complex that examines the quality of and determines the availability of messenger RNAs (mRNAs) posttranscriptionally. Four proteins, MAGO, Y14, eIF4AIII and BTZ, function as core components of the EJC. The mechanisms of their interactions and the biological indications of these interactions are still poorly understood in plants. A new mutation, hap1-2. leads to premature pollen death and a reduced seed production in Arabidopsis. This mutation introduces a viable truncated transcript AtMagoΔC. This truncation abolishes the interaction between AtMago and AtY14 in vitro, but not the interaction between AtMago and AteIF4AIII. In addition to a strong nuclear presence of AtMago, both AtMago and AtMagoΔC exhibit processing-body (P-body) localization. This indicates that AtMagoΔC may replace AtMago in the EJC when aberrant transcripts are to be degraded. When introducing an NMD mutation, upf3-1, into the existing HAP1/hap1-2 mutant, plants showed a severely reduced fertility. However, the change of splicing pattern of a subset of SR protein transcripts is mostly correlated with the sr45-1 and upf3-1 mutations, not the hap1-2 mutation. These results imply that the C terminal domain (CTD) of AtMago is required for the AtMago-AtY14 heterodimerization during EJC assembly, UPF3-mediated NMD pathway and the AtMago-AtY14 heterodimerization work synergistically to regulate male gametophyte development in plants. PMID:26867216

  13. Mutations Affecting Starch Synthase III in Arabidopsis Alter Leaf Starch Structure and Increase the Rate of Starch Synthesis1

    PubMed Central

    Zhang, Xiaoli; Myers, Alan M.; James, Martha G.

    2005-01-01

    The role of starch synthase (SS) III (SSIII) in the synthesis of transient starch in Arabidopsis (Arabidopsis thaliana) was investigated by characterizing the effects of two insertion mutations at the AtSS3 gene locus. Both mutations, termed Atss3-1 and Atss3-2, condition complete loss of SSIII activity and prevent normal gene expression at both the mRNA and protein levels. The mutations cause a starch excess phenotype in leaves during the light period of the growth cycle due to an apparent increase in the rate of starch synthesis. In addition, both mutations alter the physical structure of leaf starch. Significant increases were noted in the mutants in the frequency of linear chains in amylopectin with a degree of polymerization greater than approximately 60, and relatively small changes were observed in chains of degree of polymerization 4 to 50. Furthermore, starch in the Atss3-1 and Atss3-2 mutants has a higher phosphate content, approximately two times that of wild-type leaf starch. Total SS activity is increased in both Atss3 mutants and a specific SS activity appears to be up-regulated. The data indicate that, in addition to its expected direct role in starch assembly, SSIII also has a negative regulatory function in the biosynthesis of transient starch in Arabidopsis. PMID:15908598

  14. Family-based linkage and association mapping reveals novel genes affecting Plum pox virus infection in Arabidopsis thaliana.

    PubMed

    Pagny, Gaëlle; Paulstephenraj, Pauline S; Poque, Sylvain; Sicard, Ophélie; Cosson, Patrick; Eyquard, Jean-Philippe; Caballero, Mélodie; Chague, Aurélie; Gourdon, Germain; Negrel, Lise; Candresse, Thierry; Mariette, Stéphanie; Decroocq, Véronique

    2012-11-01

    Sharka is a devastating viral disease caused by the Plum pox virus (PPV) in stone fruit trees and few sources of resistance are known in its natural hosts. Since any knowledge gained from Arabidopsis on plant virus susceptibility factors is likely to be transferable to crop species, Arabidopsis's natural variation was searched for host factors essential for PPV infection. To locate regions of the genome associated with susceptibility to PPV, linkage analysis was performed on six biparental populations as well as on multiparental lines. To refine quantitative trait locus (QTL) mapping, a genome-wide association analysis was carried out using 147 Arabidopsis accessions. Evidence was found for linkage on chromosomes 1, 3 and 5 with restriction of PPV long-distance movement. The most relevant signals occurred within a region at the bottom of chromosome 3, which comprises seven RTM3-like TRAF domain-containing genes. Since the resistance mechanism analyzed here is recessive and the rtm3 knockout mutant is susceptible to PPV infection, it suggests that other gene(s) present in the small identified region encompassing RTM3 are necessary for PPV long-distance movement. In consequence, we report here the occurrence of host factor(s) that are indispensable for virus long-distance movement.

  15. A mutation in Arabidopsis seedling plastid development1 affects plastid differentiation in embryo-derived tissues during seedling growth.

    PubMed

    Ruppel, Nicholas J; Logsdon, Charles A; Whippo, Craig W; Inoue, Kentaro; Hangarter, Roger P

    2011-01-01

    Oilseed plants like Arabidopsis (Arabidopsis thaliana) develop green photosynthetically active embryos. Upon seed maturation, the embryonic chloroplasts degenerate into a highly reduced plastid type called the eoplast. Upon germination, eoplasts redifferentiate into chloroplasts and other plastid types. Here, we describe seedling plastid development1 (spd1), an Arabidopsis seedling albino mutant capable of producing normal green vegetative tissues. Mutant seedlings also display defects in etioplast and amyloplast development. Precocious germination of spd1 embryos showed that the albino seedling phenotype of spd1 was dependent on the passage of developing embryos through the degreening and dehydration stages of seed maturation, suggesting that SPD1 is critical during eoplast development or early stages of eoplast redifferentiation. The SPD1 gene was found to encode a protein containing a putative chloroplast-targeting sequence in its amino terminus and also domains common to P-loop ATPases. Chloroplast localization of the SPD1 protein was confirmed by targeting assays in vivo and in vitro. Although the exact function of SPD1 remains to be defined, our findings reveal aspects of plastid development unique to embryo-derived cells.

  16. High resolution genetic and physical mapping of the I-3 region of tomato chromosome 7 reveals almost continuous microsynteny with grape chromosome 12 but interspersed microsynteny with duplications on Arabidopsis chromosomes 1, 2 and 3.

    PubMed

    Lim, G T T; Wang, G-P; Hemming, M N; McGrath, D J; Jones, D A

    2008-12-01

    The tomato I-3 gene introgressed from the Lycopersicon pennellii accession LA716 confers resistance to race 3 of the fusarium wilt pathogen Fusarium oxysporum f. sp. lycopersici. We have improved the high-resolution map of the I-3 region of tomato chromosome 7 with the development and mapping of 31 new PCR-based markers. Recombinants recovered from L. esculentum cv. M82 x IL7-2 F2 and (IL7-2 x IL7-4) x M82 TC1F2 mapping populations, together with recombinants recovered from a previous M82 x IL7-3 F2 mapping population, were used to position these markers. A significantly higher recombination frequency was observed in the (IL7-2 x IL7-4) x M82 TC1F2 mapping population based on a reconstituted L. pennellii chromosome 7 compared to the other two mapping populations based on smaller segments of L. pennellii chromosome 7. A BAC contig consisting of L. esculentum cv. Heinz 1706 BACs covering the I-3 region has also been established. The new high-resolution map places the I-3 gene within a 0.38 cM interval between the molecular markers RGA332 and bP23/gPT with an estimated physical size of 50-60 kb. The I-3 region was found to display almost continuous microsynteny with grape chromosome 12 but interspersed microsynteny with Arabidopsis thaliana chromosomes 1, 2 and 3. An S-receptor-like kinase gene family present in the I-3 region of tomato chromosome 7 was found to be present in the microsyntenous region of grape chromosome 12 but was absent altogether from the A. thaliana genome.

  17. [Molecular mechanism of AtGA3OX1 and AtGA3OX2 genes affecting secondary wall thickening in stems in Arabidopsis].

    PubMed

    Wang, Zeng-Guang; Chai, Guo-Hua; Wang, Zhi-Yao; Tang, Xian-Feng; Sun, Chang-Jiang; Zhou, Gong-Ke; Ma, San-Mei

    2013-05-01

    Bioactive gibberellins (GAs) are a type of important plant growth regulators, which play the key roles in multiple processes, such as seed germination, leaf expansion, flowering, fruit bearing, and stem development. Its biosynthesis is regulated by a variety of enzymes including gibberellin 3-oxidase that is a key rate-limiting enzyme. In Arabidopsis, gibberellin 3-oxidase consists of four members, of which AtGA3OX1 and AtGA3OX2 are highly expressed in stems, suggesting the potential roles in the stem development played by the two genes. To date, there are few studies on AtGA3OX1 and AtGA3OX2 regulating secondary wall thickening in stems. In this study, we used the atga3ox1atga3ox2 double mutant as the materials to study the effects of AtGA3OX1 and AtGA3OX2 genes on secondary wall thickening in stems. The results indicated that simulations repression of AtGA3OX1 and AtGA3OX2 genes resulted in significantly reduction of secondary wall thickening of fiber cells, but not that of vessel cells. Three main components (cellulose, hemicelluloses, and lignin) were also dramatically suppressed in the double mutants. qRT-PCR analysis demonstrated that the expressions of secondary wall biosynthetic genes and the associated transcription factors were obviously affected in AtGA3OX1 and AtGA3OX2 double mutant. Therefore, we presume that Arabidopsis AtGA3OX1 and AtGA3OX2 genes might activate the expression of these transcription factors, thus regulate secondary wall thickening in stems. Together, our results provide a theoretical basis for enhancing the lodging resistance of food crops and improving the biomass of energy plants by genetically engineering Arabidopsis AtGA3OX homologs.

  18. The absence of chlorophyll b affects lateral mobility of photosynthetic complexes and lipids in grana membranes of Arabidopsis and barley chlorina mutants.

    PubMed

    Tyutereva, Elena V; Evkaikina, Anastasiia I; Ivanova, Alexandra N; Voitsekhovskaja, Olga V

    2017-04-05

    The lateral mobility of integral components of thylakoid membranes, such as plastoquinone, xanthophylls, and pigment-protein complexes, is critical for the maintenance of efficient light harvesting, high rates of linear electron transport, and successful repair of damaged photosystem II (PSII). The packaging of the photosynthetic pigment-protein complexes in the membrane depends on their size and stereometric parameters which in turn depend on the composition of the complexes. Chlorophyll b (Chlb) is an important regulator of antenna size and composition. In this study, the lateral mobility (the mobile fraction size) of pigment-protein complexes and lipids in grana membranes was analyzed in chlorina mutants of Arabidopsis and barley lacking Chlb. In the Arabidopsis ch1-3 mutant, diffusion of membrane lipids decreased as compared to wild-type plants, but the diffusion of photosynthetic complexes was not affected. In the barley chlorina f2 3613 mutant, the diffusion of pigment-protein complexes significantly decreased, while the diffusion of lipids increased, as compared to wild-type plants. We propose that the size of the mobile fractions of pigment-protein complexes in grana membranes in vivo is higher than reported previously. The data are discussed in the context of the protein composition of antennae, characteristics of the plastoquinone pool, and production of reactive oxygen species in leaves of chlorina mutants.

  19. Depletion of Arabidopsis SC35 and SC35-like serine/arginine-rich proteins affects the transcription and splicing of a subset of genes

    PubMed Central

    Xia, Xi; Sun, Zhenfei

    2017-01-01

    Serine/arginine-rich (SR) proteins are important splicing factors which play significant roles in spliceosome assembly and splicing regulation. However, little is known regarding their biological functions in plants. Here, we analyzed the phenotypes of mutants upon depleting different subfamilies of Arabidopsis SR proteins. We found that loss of the functions of SC35 and SC35-like (SCL) proteins cause pleiotropic changes in plant morphology and development, including serrated leaves, late flowering, shorter roots and abnormal silique phyllotaxy. Using RNA-seq, we found that SC35 and SCL proteins play roles in the pre-mRNA splicing. Motif analysis revealed that SC35 and SCL proteins preferentially bind to a specific RNA sequence containing the AGAAGA motif. In addition, the transcriptions of a subset of genes are affected by the deletion of SC35 and SCL proteins which interact with NRPB4, a specific subunit of RNA polymerase II. The splicing of FLOWERING LOCUS C (FLC) intron1 and transcription of FLC were significantly regulated by SC35 and SCL proteins to control Arabidopsis flowering. Therefore, our findings provide mechanistic insight into the functions of plant SC35 and SCL proteins in the regulation of splicing and transcription in a direct or indirect manner to maintain the proper expression of genes and development. PMID:28273088

  20. The Arabidopsis DELAY OF GERMINATION 1 gene affects ABSCISIC ACID INSENSITIVE 5 (ABI5) expression and genetically interacts with ABI3 during Arabidopsis seed development.

    PubMed

    Dekkers, Bas J W; He, Hanzi; Hanson, Johannes; Willems, Leo A J; Jamar, Diaan C L; Cueff, Gwendal; Rajjou, Loïc; Hilhorst, Henk W M; Bentsink, Leónie

    2016-02-01

    The seed expressed gene DELAY OF GERMINATION (DOG) 1 is absolutely required for the induction of dormancy. Next to a non-dormant phenotype, the dog1-1 mutant is also characterized by a reduced seed longevity suggesting that DOG1 may affect additional seed processes as well. This aspect however, has been hardly studied and is poorly understood. To uncover additional roles of DOG1 in seeds we performed a detailed analysis of the dog1 mutant using both transcriptomics and metabolomics to investigate the molecular consequences of a dysfunctional DOG1 gene. Further, we used a genetic approach taking advantage of the weak aba insensitive (abi) 3-1 allele as a sensitized genetic background in a cross with dog1-1. DOG1 affects the expression of hundreds of genes including LATE EMBRYOGENESIS ABUNDANT and HEAT SHOCK PROTEIN genes which are affected by DOG1 partly via control of ABI5 expression. Furthermore, the content of a subset of primary metabolites, which normally accumulate during seed maturation, was found to be affected in the dog1-1 mutant. Surprisingly, the abi3-1 dog1-1 double mutant produced green seeds which are highly ABA insensitive, phenocopying severe abi3 mutants, indicating that dog1-1 acts as an enhancer of the weak abi3-1 allele and thus revealing a genetic interaction between both genes. Analysis of the dog1 and dog1 abi3 mutants revealed additional seed phenotypes and therefore we hypothesize that DOG1 function is not limited to dormancy but that it is required for multiple aspects of seed maturation, in part by interfering with ABA signalling components.

  1. Overexpression of the Brassica napus BnLAS gene in Arabidopsis affects plant development and increases drought tolerance.

    PubMed

    Yang, Minggui; Yang, Qingyong; Fu, Tingdong; Zhou, Yongming

    2011-03-01

    The GRAS proteins are a family of transcription regulators found in plants and play diverse roles in plant growth and development. To study the biological roles of GRAS family genes in Brassica napus, an Arabidopsis LAS homologous gene, BnLAS and its two homologs were cloned from B. napus and its two progenitor species, Brassica rapa and Brassica oleracea. Relatively high levels of BnLAS were observed in roots, shoot tips, lateral meristems and flower organs based on the analysis of the transcripts by quantitative RT-PCR and promoter-reporter assays. Constitutive overexpression of BnLAS in Arabidopsis resulted in inhibition of growth, and delays in leaf senescence and flowering time. A large portion of transgenic lines had darker leaf color and higher chlorophyll content than in wild type plants. Interestingly, water lose rates in transgenic leaves were reduced, and transgenic plants exhibited enhanced drought tolerance and increased recovery after exposed to dehydration treatment. The stomatal density on leaves of the transgenic plants increased significantly due to the smaller cell size. However, the stomatal aperture on the leaves of the transgenic plants reduced significantly compared with wild type plants. More epidermal wax deposition on transgenic leaves was observed. Furthermore, several genes involved in wax synthesis and regulation, including CER1, CER2, KCS1 and KCS2, were upregulated in the transgenic plants. Our results indicate a potential to utilize BnLAS in the improvement of drought tolerance in plants.

  2. Alterations in Seed Development Gene Expression Affect Size and Oil Content of Arabidopsis Seeds1[C][W][OPEN

    PubMed Central

    Fatihi, Abdelhak; Zbierzak, Anna Maria; Dörmann, Peter

    2013-01-01

    Seed endosperm development in Arabidopsis (Arabidopsis thaliana) is under control of the polycomb group complex, which includes Fertilization Independent Endosperm (FIE). The polycomb group complex regulates downstream factors, e.g. Pheres1 (PHE1), by genomic imprinting. In heterozygous fie mutants, an endosperm develops in ovules carrying a maternal fie allele without fertilization, finally leading to abortion. Another endosperm development pathway depends on MINISEED3 (a WRKY10 transcription factor) and HAIKU2 (a leucine-rich repeat kinase). While the role of seed development genes in the embryo and endosperm establishment has been studied in detail, their impact on metabolism and oil accumulation remained unclear. Analysis of oil, protein, and sucrose accumulation in mutants and overexpression plants of the four seed development genes revealed that (1) seeds carrying a maternal fie allele accumulate low oil with an altered composition of triacylglycerol molecular species; (2) homozygous mutant seeds of phe1, mini3, and iku2, which are smaller, accumulate less oil and slightly less protein, and starch, which accumulates early during seed development, remains elevated in mutant seeds; (3) embryo-specific overexpression of FIE, PHE1, and MINI3 has no influence on seed size and weight, nor on oil, protein, or sucrose content; and (4) overexpression of IKU2 results in seeds with increased size and weight, and oil content of overexpressed IKU2 seeds is increased by 35%. Thus, IKU2 overexpression represents a novel strategy for the genetic manipulation of the oil content in seeds. PMID:24014578

  3. MES Buffer Affects Arabidopsis Root Apex Zonation and Root Growth by Suppressing Superoxide Generation in Root Apex

    PubMed Central

    Kagenishi, Tomoko; Yokawa, Ken; Baluška, František

    2016-01-01

    In plants, growth of roots and root hairs is regulated by the fine cellular control of pH and reactive oxygen species (ROS). MES, 2-(N-morpholino)ethanesulfonic acid as one of the Good’s buffers has broadly been used for buffering medium, and it is thought to suit for plant growth with the concentration at 0.1% (w/v) because the buffer capacity of MES ranging pH 5.5–7.0 (for Arabidopsis, pH 5.8). However, many reports have shown that, in nature, roots require different pH values on the surface of specific root apex zones, namely meristem, transition zone, and elongation zone. Despite the fact that roots always grow on a media containing buffer molecule, little is known about impact of MES on root growth. Here, we have checked the effects of different concentrations of MES buffer using growing roots of Arabidopsis thaliana. Our results show that 1% of MES significantly inhibited root growth, the number of root hairs and length of meristem, whereas 0.1% promoted root growth and root apex area (region spanning from the root tip up to the transition zone). Furthermore, superoxide generation in root apex disappeared at 1% of MES. These results suggest that MES disturbs normal root morphogenesis by changing the ROS homeostasis in root apex. PMID:26925066

  4. A Genetic Screen for Mutations Affecting Cell Division in the Arabidopsis thaliana Embryo Identifies Seven Loci Required for Cytokinesis

    PubMed Central

    Gillmor, C. Stewart; Roeder, Adrienne H. K.; Sieber, Patrick; Somerville, Chris; Lukowitz, Wolfgang

    2016-01-01

    Cytokinesis in plants involves the formation of unique cellular structures such as the phragmoplast and the cell plate, both of which are required to divide the cell after nuclear division. In order to isolate genes that are involved in de novo cell wall formation, we performed a large-scale, microscope-based screen for Arabidopsis mutants that severely impair cytokinesis in the embryo. We recovered 35 mutations that form abnormally enlarged cells with multiple, often polyploid nuclei and incomplete cell walls. These mutants represent seven genes, four of which have previously been implicated in phragmoplast or cell plate function. Mutations in two loci show strongly reduced transmission through the haploid gametophytic generation. Molecular cloning of both corresponding genes reveals that one is represented by hypomorphic alleles of the kinesin-5 gene RADIALLY SWOLLEN 7 (homologous to tobacco kinesin-related protein TKRP125), and that the other gene corresponds to the Arabidopsis FUSED ortholog TWO-IN-ONE (originally identified based on its function in pollen development). No mutations that completely abolish the formation of cross walls in diploid cells were found. Our results support the idea that cytokinesis in the diploid and haploid generations involve similar mechanisms. PMID:26745275

  5. VERDANDI Is a Direct Target of the MADS Domain Ovule Identity Complex and Affects Embryo Sac Differentiation in Arabidopsis[W

    PubMed Central

    Matias-Hernandez, Luis; Battaglia, Raffaella; Galbiati, Francesca; Rubes, Marco; Eichenberger, Christof; Grossniklaus, Ueli; Kater, Martin M.; Colombo, Lucia

    2010-01-01

    In Arabidopsis thaliana, the three MADS box genes SEEDSTICK (STK), SHATTERPROOF1 (SHP1), and SHP2 redundantly regulate ovule development. Protein interaction studies have shown that a multimeric complex composed of the ovule identity proteins together with the SEPALLATA MADS domain proteins is necessary to determine ovule identity. Despite the extensive knowledge that has become available about these MADS domain transcription factors, little is known regarding the genes that they regulate. Here, we show that STK, SHP1, and SHP2 redundantly regulate VERDANDI (VDD), a putative transcription factor that belongs to the plant-specific B3 superfamily. The vdd mutant shows defects during the fertilization process resulting in semisterility. Analysis of the vdd mutant female gametophytes indicates that antipodal and synergid cell identity and/or differentiation are affected. Our results provide insights into the pathways regulated by the ovule identity factors and the role of the downstream target gene VDD in female gametophyte development. PMID:20581305

  6. Neutron Radiation Affects the Expression of Genes Involved in the Response to Auxin, Senescence and Oxidative Stress in Arabidopsis

    NASA Astrophysics Data System (ADS)

    Fortunati, A.; Tassone, P.; Migliaccio, F.

    2008-06-01

    Researches were conducted on the effect of neutron radiation on the expression of genes auxin activated or connected with the process of senescence in Arabidopsis plants. The research was done by applying the real-time polymerase chain reaction (PCR) technique. The results indicated that the auxin response factors (ARFs) genes are clearly downregulated, whereas the indolacetic acid-induced (Aux/IAAs) genes in some cases were upregulated. By contrast in the mutants for auxin transport aux1 and eir1 the ARFs genes were upregulated. In addition, both in the wildtype and mutants, some already known genes activated by stress and senescence were significantly upregulated. On the basis of these researches we conclude that the process of senescence induced by irradiation is, at least in part, controlled by the physiology of the hormone auxin.

  7. Loss of GET pathway orthologs in Arabidopsis thaliana causes root hair growth defects and affects SNARE abundance

    PubMed Central

    Xing, Shuping; Mehlhorn, Dietmar Gerald; Wallmeroth, Niklas; Asseck, Lisa Yasmin; Kar, Ritwika; Voss, Alessa; Denninger, Philipp; Schmidt, Vanessa Aphaia Fiona; Schwarzländer, Markus; Stierhof, York-Dieter

    2017-01-01

    Soluble N-ethylmaleimide–sensitive factor attachment protein receptor (SNARE) proteins are key players in cellular trafficking and coordinate vital cellular processes, such as cytokinesis, pathogen defense, and ion transport regulation. With few exceptions, SNAREs are tail-anchored (TA) proteins, bearing a C-terminal hydrophobic domain that is essential for their membrane integration. Recently, the Guided Entry of Tail-anchored proteins (GET) pathway was described in mammalian and yeast cells that serve as a blueprint of TA protein insertion [Schuldiner M, et al. (2008) Cell 134(4):634–645; Stefanovic S, Hegde RS (2007) Cell 128(6):1147–1159]. This pathway consists of six proteins, with the cytosolic ATPase GET3 chaperoning the newly synthesized TA protein posttranslationally from the ribosome to the endoplasmic reticulum (ER) membrane. Structural and biochemical insights confirmed the potential of pathway components to facilitate membrane insertion, but the physiological significance in multicellular organisms remains to be resolved. Our phylogenetic analysis of 37 GET3 orthologs from 18 different species revealed the presence of two different GET3 clades. We identified and analyzed GET pathway components in Arabidopsis thaliana and found reduced root hair elongation in Atget lines, possibly as a result of reduced SNARE biogenesis. Overexpression of AtGET3a in a receptor knockout (KO) results in severe growth defects, suggesting presence of alternative insertion pathways while highlighting an intricate involvement for the GET pathway in cellular homeostasis of plants. PMID:28096354

  8. Mutations in Arabidopsis thaliana genes involved in the tryptophan biosynthesis pathway affect root waving on tilted agar surfaces

    NASA Technical Reports Server (NTRS)

    Rutherford, R.; Gallois, P.; Masson, P. H.

    1998-01-01

    Arabidopsis thaliana roots grow in a wavy pattern upon a slanted surface. A novel mutation in the anthranilate synthase alpha 1 (ASA1) gene, named trp5-2wvc1, and mutations in the tryptophan synthase alpha and beta 1 genes (trp3-1 and trp2-1, respectively) confer a compressed root wave phenotype on tilted agar surfaces. When trp5-2wvc1 seedlings are grown on media supplemented with anthranilate metabolites, their roots wave like wild type. Genetic and pharmacological experiments argue that the compressed root wave phenotypes of trp5-2wvc1, trp2-1 and trp3-1 seedlings are not due to reduced IAA biosynthetic potential, but rather to a deficiency in L-tryptophan (L-Trp), or in a L-Trp derivative. Although the roots of 7-day-old seedlings possess higher concentrations of free L-Trp than the shoot as a whole, trp5-2wvc1 mutants show no detectable alteration in L-Trp levels in either tissue type, suggesting that a very localized shortage of L-Trp, or of a L-Trp-derived compound, is responsible for the observed phenotype.

  9. Nitrogen Source and External Medium pH Interaction Differentially Affects Root and Shoot Metabolism in Arabidopsis

    PubMed Central

    Sarasketa, Asier; González-Moro, M. Begoña; González-Murua, Carmen; Marino, Daniel

    2016-01-01

    Ammonium nutrition often represents an important growth-limiting stress in plants. Some of the symptoms that plants present under ammonium nutrition have been associated with pH deregulation, in fact external medium pH control is known to improve plants ammonium tolerance. However, the way plant cell metabolism adjusts to these changes is not completely understood. Thus, in this work we focused on how Arabidopsis thaliana shoot and root respond to different nutritional regimes by varying the nitrogen source (NO3- and NH4+), concentration (2 and 10 mM) and pH of the external medium (5.7 and 6.7) to gain a deeper understanding of cell metabolic adaptation upon altering these environmental factors. The results obtained evidence changes in the response of ammonium assimilation machinery and of the anaplerotic enzymes associated to Tricarboxylic Acids (TCA) cycle in function of the plant organ, the nitrogen source and the degree of ammonium stress. A greater stress severity at pH 5.7 was related to NH4+ accumulation; this could not be circumvented in spite of the stimulation of glutamine synthetase, glutamate dehydrogenase, and TCA cycle anaplerotic enzymes. Moreover, this study suggests specific functions for different gln and gdh isoforms based on the nutritional regime. Overall, NH4+ accumulation triggering ammonium stress appears to bear no relation to nitrogen assimilation impairment. PMID:26870054

  10. Alteration of seed fatty acid composition by an ethyl methanesulfonate-induced mutation in Arabidopsis thaliana affecting diacylglycerol acyltransferase activity.

    PubMed Central

    Katavic, V; Reed, D W; Taylor, D C; Giblin, E M; Barton, D L; Zou, J; Mackenzie, S L; Covello, P S; Kunst, L

    1995-01-01

    In characterizing the enzymes involved in the formation of very long-chain fatty acids (VLCFAs) in the Brassicaceae, we have generated a series of mutants of Arabidopsis thaliana that have reduced VLCFA content. Here we report the characterization of a seed lipid mutant, AS11, which, in comparison to wild type (WT), has reduced levels of 20:1 and 18:1 and accumulates 18:3 as the major fatty acid in triacylglycerols. Proportions of 18:2 remain similar to WT. Genetic analyses indicate that the fatty acid phenotype is caused by a semidominant mutation in a single nuclear gene, designated TAG1, located on chromosome 2. Biochemical analyses have shown that the AS11 phenotype is not due to a deficiency in the capacity to elongate 18:1 or to an increase in the relative delta 15 or delta 12 desaturase activities. Indeed, the ratio of desaturase/elongase activities measured in vitro is virtually identical in developing WT and AS11 seed homogenates. Rather, the fatty acid phenotype of AS11 is the result of reduced diacylglycerol acyltransferase activity throughout development, such that triacylglycerol biosynthesis is reduced. This leads to a reduction in 20:1 biosynthesis during seed development, leaving more 18:1 available for desaturation. Thus, we have demonstrated that changes to triacylglycerol biosynthesis can result in dramatic changes in fatty acid composition and, in particular, in the accumulation of VLCFAs in seed storage lipids. PMID:7784510

  11. Peroxisomal polyamine oxidase and NADPH-oxidase cross-talk for ROS homeostasis which affects respiration rate in Arabidopsis thaliana

    PubMed Central

    Andronis, Efthimios A.; Moschou, Panagiotis N.; Toumi, Imene; Roubelakis-Angelakis, Kalliopi A.

    2014-01-01

    Homeostasis of reactive oxygen species (ROS) in the intracellular compartments is of critical importance as ROS have been linked with nearly all cellular processes and more importantly with diseases and aging. PAs are nitrogenous molecules with an evolutionary conserved role in the regulation of metabolic and energetic status of cells. Recent evidence also suggests that polyamines (PA) are major regulators of ROS homeostasis. In Arabidopsis the backconversion of the PAs spermidine (Spd) and spermine to putrescine and Spd, respectively, is catalyzed by two peroxisomal PA oxidases (AtPAO). However, the physiological role of this pathway remains largely elusive. Here we explore the role of peroxisomal PA backconversion and in particular that catalyzed by the highly expressed AtPAO3 in the regulation of ROS homeostasis and mitochondrial respiratory burst. Exogenous PAs exert an NADPH-oxidase dependent stimulation of oxygen consumption, with Spd exerting the strongest effect. This increase is attenuated by treatment with the NADPH-oxidase blocker diphenyleneiodonium iodide (DPI). Loss-of-function of AtPAO3 gene results to increased NADPH-oxidase-dependent production of superoxide anions (O2•− ), but not H2O2, which activate the mitochondrial alternative oxidase pathway (AOX). On the contrary, overexpression of AtPAO3 results to an increased but balanced production of both H2O2 and O2•− . These results suggest that the ratio of O2•− /H2O2 regulates respiratory chain in mitochondria, with PA-dependent production of O2•− by NADPH-oxidase tilting the balance of electron transfer chain in favor of the AOX pathway. In addition, AtPAO3 seems to be an important component in the regulating module of ROS homeostasis, while a conserved role for PA backconversion and ROS across kingdoms is discussed. PMID:24765099

  12. Conserved phosphorylation sites in the activation loop of the Arabidopsis phytosulfokine receptor PSKR1 differentially affect kinase and receptor activity

    PubMed Central

    Hartmann, Jens; Linke, Dennis; Bönniger, Christine; Tholey, Andreas; Sauter, Margret

    2015-01-01

    PSK (phytosulfokine) is a plant peptide hormone perceived by a leucine-rich repeat receptor kinase. Phosphosite mapping of epitope-tagged PSKR1 (phytosulfokine receptor 1) from Arabidopsis thaliana plants identified Ser696 and Ser698 in the JM (juxtamembrane) region and probably Ser886 and/or Ser893 in the AL (activation loop) as in planta phosphorylation sites. In vitro-expressed kinase was autophosphorylated at Ser717 in the JM, and at Ser733, Thr752, Ser783, Ser864, Ser911, Ser958 and Thr998 in the kinase domain. The LC–ESI–MS/MS spectra provided support that up to three sites (Thr890, Ser893 and Thr894) in the AL were likely to be phosphorylated in vitro. These sites are evolutionarily highly conserved in PSK receptors, indicative of a conserved function. Site-directed mutagenesis of the four conserved residues in the activation segment, Thr890, Ser893, Thr894 and Thr899, differentially altered kinase activity in vitro and growth-promoting activity in planta. The T899A and the quadruple-mutated TSTT-A (T890A/S893A/T894A/T899A) mutants were both kinase-inactive, but PSKR1(T899A) retained growth-promoting activity. The T890A and S893A/T894A substitutions diminished kinase activity and growth promotion. We hypothesize that phosphorylation within the AL activates kinase activity and receptor function in a gradual and distinctive manner that may be a means to modulate the PSK response. PMID:26472115

  13. The overexpression of the pine transcription factor PpDof5 in Arabidopsis leads to increased lignin content and affects carbon and nitrogen metabolism.

    PubMed

    Rueda-López, Marina; Cañas, Rafael A; Canales, Javier; Cánovas, Francisco M; Ávila, Concepción

    2015-12-01

    PpDof 5 is a regulator of the expression of glutamine synthetase (GS; EC 6.3.1.2) genes in photosynthetic and non-photosynthetic tissues of maritime pine. We have used Arabidopsis thaliana as a model system to study PpDof 5 function in planta, generating transgenic lines overexpressing the pine transcription factor. The overexpression of PpDof 5 resulted in a substantial increase of lignin content with a simultaneous regulation of carbon and nitrogen key genes. In addition, partitioning in carbon and nitrogen compounds was spread via various secondary metabolic pathways. These results suggest pleiotropic effects of PpDof 5 expression on various metabolic pathways of carbon and nitrogen metabolism. Plants overexpressing PpDof 5 exhibited upregulation of genes encoding enzymes for sucrose and starch biosynthesis, with a parallel increase in the content of soluble sugars. When the plants were grown under nitrate as the sole nitrogen source, they exhibited a significant regulation of the expression of genes involved mainly in signaling, but similar growth rates to wild-type plants. However, plants grown under ammonium exhibited major induction of the expression of photosynthetic genes and differential expression of ammonium and nitrate transporters. All these data suggest that in addition to controlling ammonium assimilation, PpDof 5 could be also involved in the regulation of other pathways in carbon and nitrogen metabolism in pine trees.

  14. Grana-Localized Proteins, RIQ1 and RIQ2, Affect the Organization of Light-Harvesting Complex II and Grana Stacking in Arabidopsis[OPEN

    PubMed Central

    Yokoyama, Ryo; Yamamoto, Hiroshi; Kondo, Maki; Takeda, Satomi; Ifuku, Kentaro; Fukao, Yoichiro; Kamei, Yasuhiro; Nishimura, Mikio; Shikanai, Toshiharu

    2016-01-01

    Grana are stacked thylakoid membrane structures in land plants that contain PSII and light-harvesting complex II proteins (LHCIIs). We isolated two Arabidopsis thaliana mutants, reduced induction of non-photochemical quenching1 (riq1) and riq2, in which stacking of grana was enhanced. The curvature thylakoid 1a (curt1a) mutant was previously shown to lack grana structure. In riq1 curt1a, the grana were enlarged with more stacking, and in riq2 curt1a, the thylakoids were abnormally stacked and aggregated. Despite having different phenotypes in thylakoid structure, riq1, riq2, and curt1a showed a similar defect in the level of nonphotochemical quenching of chlorophyll fluorescence (NPQ). In riq curt1a double mutants, NPQ induction was more severely affected than in either single mutant. In riq mutants, state transitions were inhibited and the PSII antennae were smaller than in wild-type plants. The riq defects did not affect NPQ induction in the chlorophyll b-less mutant. RIQ1 and RIQ2 are paralogous and encode uncharacterized grana thylakoid proteins, but despite the high level of identity of the sequence, the functions of RIQ1 and RIQ2 were not redundant. RIQ1 is required for RIQ2 accumulation, and the wild-type level of RIQ2 did not complement the NPQ and thylakoid phenotypes in riq1. We propose that RIQ proteins link the grana structure and organization of LHCIIs. PMID:27600538

  15. KONJAC1 and 2 Are Key Factors for GDP-Mannose Generation and Affect l-Ascorbic Acid and Glucomannan Biosynthesis in Arabidopsis.

    PubMed

    Sawake, Shota; Tajima, Noriaki; Mortimer, Jenny C; Lao, Jeemeng; Ishikawa, Toshiki; Yu, Xiaolan; Yamanashi, Yukiko; Yoshimi, Yoshihisa; Kawai-Yamada, Maki; Dupree, Paul; Tsumuraya, Yoichi; Kotake, Toshihisa

    2015-12-01

    Humans are unable to synthesize l-ascorbic acid (AsA), yet it is required as a cofactor in many critical biochemical reactions. The majority of human dietary AsA is obtained from plants. In Arabidopsis thaliana, a GDP-mannose pyrophosphorylase (GMPP), VITAMIN C DEFECTIVE1 (VTC1), catalyzes a rate-limiting step in AsA synthesis: the formation of GDP-Man. In this study, we identified two nucleotide sugar pyrophosphorylase-like proteins, KONJAC1 (KJC1) and KJC2, which stimulate the activity of VTC1. The kjc1kjc2 double mutant exhibited severe dwarfism, indicating that KJC proteins are important for growth and development. The kjc1 mutation reduced GMPP activity to 10% of wild-type levels, leading to a 60% reduction in AsA levels. On the contrary, overexpression of KJC1 significantly increased GMPP activity. The kjc1 and kjc1kjc2 mutants also exhibited significantly reduced levels of glucomannan, which is also synthesized from GDP-Man. Recombinant KJC1 and KJC2 enhanced the GMPP activity of recombinant VTC1 in vitro, while KJCs did not show GMPP activity. Yeast two-hybrid assays suggested that the stimulation of GMPP activity occurs via interaction of KJCs with VTC1. These results suggest that KJCs are key factors for the generation of GDP-Man and affect AsA level and glucomannan accumulation through the stimulation of VTC1 GMPP activity.

  16. Overexpression of a cotton gene that encodes a putative transcription factor of AP2/EREBP family in Arabidopsis affects growth and development of transgenic plants.

    PubMed

    Zhou, Ying; Xia, Hui; Li, Xiao-Jie; Hu, Rong; Chen, Yun; Li, Xue-Bao

    2013-01-01

    In the study, a gene encoding a putative ethylene response factor of AP2/EREBP family was isolated from cotton (Gossypium hirsutum) and designated as GhERF12. Sequence alignment showed that GhERF12 protein contains a central AP2/ERF domain (58 amino acids) with two functional conserved amino acid residues (ala14 and asp19). Transactivation assay indicated that GhERF12 displayed strong transcription activation activity in yeast cells, suggesting that this protein may be a transcriptional activator in cotton. Quantitative RT-PCR analysis showed that GhERF12 expression in cotton was induced by ACC and IAA. Overexpression of GhERF12 in Arabidopsis affected seedling growth and development. The GhERF12 transgenic plants grew slowly, and displayed a dwarf phenotype. The mean bolting time of the transgenic plants was delayed for about 10 days, compared with that of wild type. Further study revealed that some ethylene-related and auxin-related genes were dramatically up-regulated in the transgenic plants, compared with those of wild type. Collectively, we speculated that GhERF12, as a transcription factor, may be involved in regulation of plant growth and development by activating the constitutive ethylene response likely related to auxin biosynthesis and/or signaling.

  17. Overexpression of EgROP1, a Eucalyptus vascular-expressed Rac-like small GTPase, affects secondary xylem formation in Arabidopsis thaliana.

    PubMed

    Foucart, Camille; Jauneau, Alain; Gion, Jean-Marc; Amelot, Nicolas; Martinez, Yves; Panegos, Patricia; Grima-Pettenati, Jacqueline; Sivadon, Pierre

    2009-01-01

    To better understand the genetic control of secondary xylem formation in trees we analysed genes expressed during Eucalyptus xylem development. Using eucalyptus xylem cDNA libraries, we identified EgROP1, a member of the plant ROP family of Rho-like GTPases. These signalling proteins are central regulators of many important processes in plants, but information on their role in xylogenesis is scarce. Quantitative real-time reverse-transcriptase polymerase chain reaction (qRT-PCR) confirmed that EgROP1 was preferentially expressed in the cambial zone and differentiating xylem in eucalyptus. Genetic mapping performed in a eucalyptus breeding population established a link between EgROP1 sequence polymorphisms and quantitative trait loci (QTLs) related to lignin profiles and fibre morphology. Overexpression of various forms of EgROP1 in Arabidopsis thaliana altered anisotropic cell growth in transgenic leaves, but most importantly affected vessel element and fibre growth in secondary xylem. Patches of fibre-like cells in the secondary xylem of transgenic plants showed changes in secondary cell wall thickness, lignin and xylan composition. These results suggest a role for EgROP1 in fibre cell morphology and secondary cell wall formation making it a good candidate gene for marker-based selection of eucalyptus trees.

  18. A R2R3-MYB transcription factor that is specifically expressed in cotton (Gossypium hirsutum) fibers affects secondary cell wall biosynthesis and deposition in transgenic Arabidopsis.

    PubMed

    Sun, Xiang; Gong, Si-Ying; Nie, Xiao-Ying; Li, Yang; Li, Wen; Huang, Geng-Qing; Li, Xue-Bao

    2015-07-01

    Secondary cell wall (SCW) is an important industrial raw material for pulping, papermaking, construction, lumbering, textiles and potentially for biofuel production. The process of SCW thickening of cotton fibers lays down the cellulose that will constitute the bulk (up to 96%) of the fiber at maturity. In this study, a gene encoding a MYB-domain protein was identified in cotton (Gossypium hirsutum) and designated as GhMYBL1. Quantitative real-time polymerase chain reaction (RT-PCR) analysis revealed that GhMYBL1 was specifically expressed in cotton fibers at the stage of secondary wall deposition. Further analysis indicated that this protein is a R2R3-MYB transcription factor, and is targeted to the cell nucleus. Overexpression of GhMYBL1 in Arabidopsis affected the formation of SCW in the stem xylem of the transgenic plants. The enhanced SCW thickening also occurred in the interfascicular fibers, xylary fibers and vessels of the GhMYBL1-overexpression transgenic plants. The expression of secondary wall-associated genes, such as CesA4, CesA7, CesA8, PAL1, F5H and 4CL1, were upregulated, and consequently, cellulose and lignin biosynthesis were enhanced in the GhMYBL1 transgenic plants. These data suggested that GhMYBL1 may participate in modulating the process of secondary wall biosynthesis and deposition of cotton fibers.

  19. COBRA-LIKE2, a Member of the Glycosylphosphatidylinositol-Anchored COBRA-LIKE Family, Plays a Role in Cellulose Deposition in Arabidopsis Seed Coat Mucilage Secretory Cells1,2[OPEN

    PubMed Central

    Ben-Tov, Daniela; Abraham, Yael; Stav, Shira; Thompson, Kevin; Loraine, Ann; Elbaum, Rivka; de Souza, Amancio; Pauly, Markus; Kieber, Joseph J.; Harpaz-Saad, Smadar

    2015-01-01

    Differentiation of the maternally derived seed coat epidermal cells into mucilage secretory cells is a common adaptation in angiosperms. Recent studies identified cellulose as an important component of seed mucilage in various species. Cellulose is deposited as a set of rays that radiate from the seed upon mucilage extrusion, serving to anchor the pectic component of seed mucilage to the seed surface. Using transcriptome data encompassing the course of seed development, we identified COBRA-LIKE2 (COBL2), a member of the glycosylphosphatidylinositol-anchored COBRA-LIKE gene family in Arabidopsis (Arabidopsis thaliana), as coexpressed with other genes involved in cellulose deposition in mucilage secretory cells. Disruption of the COBL2 gene results in substantial reduction in the rays of cellulose present in seed mucilage, along with an increased solubility of the pectic component of the mucilage. Light birefringence demonstrates a substantial decrease in crystalline cellulose deposition into the cellulosic rays of the cobl2 mutants. Moreover, crystalline cellulose deposition into the radial cell walls and the columella appears substantially compromised, as demonstrated by scanning electron microscopy and in situ quantification of light birefringence. Overall, the cobl2 mutants display about 40% reduction in whole-seed crystalline cellulose content compared with the wild type. These data establish that COBL2 plays a role in the deposition of crystalline cellulose into various secondary cell wall structures during seed coat epidermal cell differentiation. PMID:25583925

  20. Sequence adaptations affecting cleavage of the VP1/2A junction by the 3C protease in foot-and-mouth disease virus-infected cells.

    PubMed

    Gullberg, Maria; Polacek, Charlotta; Belsham, Graham J

    2014-11-01

    The foot-and-mouth disease virus (FMDV) capsid protein precursor P1-2A is cleaved by the virus-encoded 3C protease to VP0, VP3, VP1 and 2A. It was shown previously that modification of a single amino acid residue (K210E) within the VP1 protein and close to the VP1/2A cleavage site, inhibited cleavage of this junction and produced 'self-tagged' virus particles. A second site substitution (E83K) within VP1 was also observed within the rescued virus [Gullberg et al. (2013). J Virol 87: , 11591-11603]. It was shown here that introduction of this E83K change alone into a serotype O virus resulted in the rapid accumulation of a second site substitution within the 2A sequence (L2P), which also blocked VP1/2A cleavage. This suggests a linkage between the E83K change in VP1 and cleavage of the VP1/2A junction. Cells infected with viruses containing the VP1 K210E or the 2A L2P substitutions contained the uncleaved VP1-2A protein. The 2A L2P substitution resulted in the VP1/2A junction being highly resistant to cleavage by the 3C protease, hence it may be a preferred route for 'tagging' virus particles.

  1. Deletion of a C-terminal intrinsically disordered region of WRINKLED1 affects its stability and enhances oil accumulation in Arabidopsis.

    PubMed

    Ma, Wei; Kong, Que; Grix, Michael; Mantyla, Jenny J; Yang, Yang; Benning, Christoph; Ohlrogge, John B

    2015-09-01

    WRINKLED1 (WRI1) is a key transcription factor governing plant oil biosynthesis. We characterized three intrinsically disordered regions (IDRs) in Arabidopsis WRI1, and found that one C-terminal IDR of AtWRI1 (IDR3) affects the stability of AtWRI1. Analysis by bimolecular fluorescence complementation and yeast-two-hybrid assays indicated that the IDR3 domain does not determine WRI1 stability by interacting with BTB/POZ-MATH proteins connecting AtWRI1 with CULLIN3-based E3 ligases. Analysis of the WRI1 sequence revealed that a putative PEST motif (proteolytic signal) is located at the C-terminal region of AtWRI1(IDR) (3). We also show that a 91 amino acid domain at the C-terminus of AtWRI1 without the PEST motif is sufficient for transactivation. We found that removal of the PEST motif or mutations in putative phosphorylation sites increased the stability of AtWRI1, and led to increased oil biosynthesis when these constructs were transiently expressed in tobacco leaves. Oil content was also increased in the seeds of stable transgenic wri1-1 plants expressing AtWRI1 with mutations in the IDR3-PEST motif. Taken together, our data suggest that intrinsic disorder of AtWRI1(IDR3) may facilitate exposure of the PEST motif to protein kinases. Thus, phosphorylation of the PEST motif in the AtWRI1(IDR) (3) domain may affect AtWRI1-mediated plant oil biosynthesis. The results obtained here suggest a means to increase accumulation of oils in plant tissues through WRI1 engineering.

  2. AtLSG1-2 Regulates Leaf Growth by Affecting Cell Proliferation and the Onset of Endoreduplication and Synergistically Interacts with AtNMD3 during Cell Proliferation Process

    PubMed Central

    Zhao, Huayan; Lü, Shiyou; Xiong, Liming

    2017-01-01

    AtLSG1-2 is a circularly permuted GTPase required for ribosome biogenesis and recently shown to be involved in early leaf development, although it was unclear how AtLSG1-2 affects leaf growth. Here, we found that atlsg1-2 mutants had reduced leaf size as a result of decreased cell size and cell number. Leaf kinematic analysis and CYCB1;1::GUS expression pattern in atlsg1-2 mutant indicated that loss of function of AtLSG1-2 delays the transition from cell division to cell expansion. Decreases in ploidy levels and trichome branch number suggest that AtLSG1-2 deficiency suppresses endoreduplication. Real-time PCR analysis showed that genes specifically expressed in the proliferation stage were highly expressed and those involved in endoreduplication were differentially regulated. LSG1 is known to mediate the recruitment of nucleocytoplasmic shuttling protein NMD3 back to the nucleus in yeast, yet their relationship was unclear in plants. Our genetic analysis revealed that the atlsg1 atnmd3 double mutant displayed enhanced phenotypes as compared with the respective single mutant and that AtLSG1-2 and AtNMD3 synergistically affect the cell proliferation process. PMID:28344588

  3. The absence of eukaryotic initiation factor eIF(iso)4E affects the systemic spread of a Tobacco etch virus isolate in Arabidopsis thaliana.

    PubMed

    Contreras-Paredes, Carlos A; Silva-Rosales, Laura; Daròs, José-Antonio; Alejandri-Ramírez, Naholi D; Dinkova, Tzvetanka D

    2013-04-01

    Translation initiation factor eIF4E exerts an important role during infection of viral species in the family Potyviridae. Particularly, a eIF(iso)4E family member is required for Arabidopsis thaliana susceptibility to Turnip mosaic virus, Lettuce mosaic virus, and Tobacco etch virus (TEV). In addition, a resistance mechanism named restriction of TEV movement (RTM) in A. thaliana controls the systemic spread of TEV in Col-0 ecotype. Here, we describe that TEV-TAMPS, a Mexican isolate, overcomes the RTM resistance mechanism reported for TEV-7DA infection of the Col-0 ecotype but depends on eIF(iso)4E for its systemic spread. To understand at which level eIF(iso)4E participates in A. thaliana TEV-TAMPS infection, the viral RNA replication and translation were measured. The absence or overexpression of eIF(iso)4E did not affect viral translation, and replication was still observed in the absence of eIF(iso)4E. However, the TEV-TAMPS systemic spread was completely abolished in the null mutant. The viral protein genome-linked (VPg) precursor NIa was found in coimmunoprecipitated complexes with both, eIF(iso)4E and eIF4E. However, the viral coat protein (CP) was only present in the eIF(iso)4E complexes. Since both the VPg and the CP proteins are needed for systemic spread, we propose a role of A. thaliana eIF(iso)4E in the movement of TEV-TAMPS within this host.

  4. Loss of LORELEI function in the pistil delays initiation but does not affect embryo development in Arabidopsis thaliana.

    PubMed

    Tsukamoto, Tatsuya; Palanivelu, Ravishankar

    2010-11-01

    Double fertilization, uniquely observed in plants, requires successful sperm cell delivery by the pollen tube to the female gametophyte, followed by migration, recognition and fusion of the two sperm cells with two female gametic cells. The female gametophyte not only regulates these steps but also controls the subsequent initiation of seed development. Previously, we reported that loss of LORELEI, which encodes a putative glycosylphosphatidylinositol (GPI)-anchored protein, in the female reproductive tissues causes a delay in initiation of seed development. From these studies, however, it was unclear if embryos derived from fertilization of lre-5 gametophytes continued to lag behind wild type during seed development. Additionally, it was not determined if the delay in initiation of seed development had any lingering effects during seed germination. Finally, it was not known if loss of LORELEI function affects seedling development given that LORELEI is expressed in eight-day-old seedlings. Here, we showed that despite a delay in initiation, lre-5/lre-5 embryos recover, becoming equivalent to the developing wild-type embryos beginning at 72 hours after pollination. Additionally, lre-5/lre-5 seed germination, and seedling and root development are indistinguishable from wild type indicating that loss of LORELEI is tolerated, at least under standard growth conditions, in vegetative tissues.

  5. Loss of LORELEI function in the pistil delays initiation but does not affect embryo development in Arabidopsis thaliana

    PubMed Central

    Tsukamoto, Tatsuya

    2010-01-01

    Double fertilization, uniquely observed in plants, requires successful sperm cell delivery by the pollen tube to the female gametophyte, followed by migration, recognition and fusion of the two sperm cells with two female gametic cells. The female gametophyte not only regulates these steps but also controls the subsequent initiation of seed development. Previously, we reported that loss of LORELEI, which encodes a putative glycosylphosphatidylinositol (GPI)-anchored protein, in the female reproductive tissues causes a delay in initiation of seed development. From these studies, however, it was unclear if embryos derived from fertilization of lre-5 gametophytes continued to lag behind wild-type during seed development. Additionally, it was not determined if the delay in initiation of seed development had any lingering effects during seed germination. Finally, it was not known if loss of LORELEI function affects seedling development given that LORELEI is expressed in eight-day-old seedlings. Here, we showed that despite a delay in initiation, lre-5/lre-5 embryos recover, becoming equivalent to the developing wild-type embryos beginning at 72 hours after pollination. Additionally, lre-5/lre-5 seed germination, and seedling and root development are indistinguishable from wild-type indicating that loss of LORELEI is tolerated, at least under standard growth conditions, in vegetative tissues. PMID:21051955

  6. Mg-chelatase I subunit 1 and Mg-protoporphyrin IX methyltransferase affect the stomatal aperture in Arabidopsis thaliana.

    PubMed

    Tomiyama, Masakazu; Inoue, Shin-Ichiro; Tsuzuki, Tomo; Soda, Midori; Morimoto, Sayuri; Okigaki, Yukiko; Ohishi, Takaya; Mochizuki, Nobuyoshi; Takahashi, Koji; Kinoshita, Toshinori

    2014-07-01

    To elucidate the molecular mechanisms of stomatal opening and closure, we performed a genetic screen using infrared thermography to isolate stomatal aperture mutants. We identified a mutant designated low temperature with open-stomata 1 (lost1), which exhibited reduced leaf temperature, wider stomatal aperture, and a pale green phenotype. Map-based analysis of the LOST1 locus revealed that the lost1 mutant resulted from a missense mutation in the Mg-chelatase I subunit 1 (CHLI1) gene, which encodes a subunit of the Mg-chelatase complex involved in chlorophyll synthesis. Transformation of the wild-type CHLI1 gene into lost1 complemented all lost1 phenotypes. Stomata in lost1 exhibited a partial ABA-insensitive phenotype similar to that of rtl1, a Mg-chelatase H subunit missense mutant. The Mg-protoporphyrin IX methyltransferase (CHLM) gene encodes a subsequent enzyme in the chlorophyll synthesis pathway. We examined stomatal movement in a CHLM knockdown mutant, chlm, and found that it also exhibited an ABA-insensitive phenotype. However, lost1 and chlm seedlings all showed normal expression of ABA-induced genes, such as RAB18 and RD29B, in response to ABA. These results suggest that the chlorophyll synthesis enzymes, Mg-chelatase complex and CHLM, specifically affect ABA signaling in the control of stomatal aperture and have no effect on ABA-induced gene expression.

  7. Genome Wide Association Mapping for the Tolerance to the Polyamine Oxidase Inhibitor Guazatine in Arabidopsis thaliana

    PubMed Central

    Atanasov, Kostadin E.; Barboza-Barquero, Luis; Tiburcio, Antonio F.; Alcázar, Rubén

    2016-01-01

    Guazatine is a potent inhibitor of polyamine oxidase (PAO) activity. In agriculture, guazatine is used as non-systemic contact fungicide efficient in the protection of cereals and citrus fruits against disease. The composition of guazatine is complex, mainly constituted by a mixture of synthetic guanidated polyamines (polyaminoguanidines). Here, we have studied the effects from exposure to guazatine in the weed Arabidopsis thaliana. We report that micromolar concentrations of guazatine are sufficient to inhibit growth of Arabidopsis seedlings and induce chlorosis, whereas germination is barely affected. We observed the occurrence of quantitative variation in the response to guazatine between 107 randomly chosen Arabidopsis accessions. This enabled us to undertake genome-wide association (GWA) mapping that identified a locus on chromosome one associated with guazatine tolerance. CHLOROPHYLLASE 1 (CLH1) within this locus was studied as candidate gene, together with its paralog (CLH2). The analysis of independent clh1-2, clh1-3, clh2-3, clh2-2, and double clh1-2 clh2-3 mutant alleles indicated that CLH1 and/or CLH2 loss-of-function or expression down-regulation promote guazatine tolerance in Arabidopsis. We report a natural mechanism by which Arabidopsis populations can overcome toxicity by the fungicide guazatine. PMID:27092150

  8. Genome Wide Association Mapping for the Tolerance to the Polyamine Oxidase Inhibitor Guazatine in Arabidopsis thaliana.

    PubMed

    Atanasov, Kostadin E; Barboza-Barquero, Luis; Tiburcio, Antonio F; Alcázar, Rubén

    2016-01-01

    Guazatine is a potent inhibitor of polyamine oxidase (PAO) activity. In agriculture, guazatine is used as non-systemic contact fungicide efficient in the protection of cereals and citrus fruits against disease. The composition of guazatine is complex, mainly constituted by a mixture of synthetic guanidated polyamines (polyaminoguanidines). Here, we have studied the effects from exposure to guazatine in the weed Arabidopsis thaliana. We report that micromolar concentrations of guazatine are sufficient to inhibit growth of Arabidopsis seedlings and induce chlorosis, whereas germination is barely affected. We observed the occurrence of quantitative variation in the response to guazatine between 107 randomly chosen Arabidopsis accessions. This enabled us to undertake genome-wide association (GWA) mapping that identified a locus on chromosome one associated with guazatine tolerance. CHLOROPHYLLASE 1 (CLH1) within this locus was studied as candidate gene, together with its paralog (CLH2). The analysis of independent clh1-2, clh1-3, clh2-3, clh2-2, and double clh1-2 clh2-3 mutant alleles indicated that CLH1 and/or CLH2 loss-of-function or expression down-regulation promote guazatine tolerance in Arabidopsis. We report a natural mechanism by which Arabidopsis populations can overcome toxicity by the fungicide guazatine.

  9. Deletion of a Tandem Gene Family in Arabidopsis: Increased MEKK2 Abundance Triggers Autoimmunity when the MEKK1-MKK1/2-MPK4 Signaling Cascade Is Disrupted[C][W

    PubMed Central

    Su, Shih-Heng; Bush, Susan M.; Zaman, Najia; Stecker, Kelly; Sussman, Michael R.; Krysan, Patrick

    2013-01-01

    An Arabidopsis thaliana mitogen-activated protein (MAP) kinase cascade composed of MEKK1, MKK1/MKK2, and MPK4 was previously described as a negative regulator of defense response. MEKK1 encodes a MAP kinase kinase kinase and is a member of a tandemly duplicated gene family with MEKK2 and MEKK3. Using T-DNA insertion lines, we isolated a novel deletion mutant disrupting this gene family and found it to be phenotypically wild-type, in contrast with the mekk1 dwarf phenotype. Follow-up genetic analyses indicated that MEKK2 is required for the mekk1, mkk1 mkk2, and mpk4 autoimmune phenotypes. We next analyzed a T-DNA insertion in the MEKK2 promoter region and found that although it does not reduce the basal expression of MEKK2, it does prevent the upregulation of MEKK2 that is observed in mpk4 plants. This mekk2 allele can rescue the mpk4 autoimmune phenotype in a dosage-dependent manner. We also found that expression of constitutively active MPK4 restored MEKK2 abundance to wild-type levels in mekk1 mutant plants. Finally, using mass spectrometry, we showed that MEKK2 protein levels mirror MEKK2 mRNA levels. Taken together, our results indicate that activated MPK4 is responsible for regulating MEKK2 RNA abundance. In turn, the abundance of MEKK2 appears to be under cellular surveillance such that a modest increase can trigger defense response activation. PMID:23695980

  10. AtMYB44 regulates resistance to the green peach aphid and diamondback moth by activating EIN2-affected defences in Arabidopsis.

    PubMed

    Lü, B-B; Li, X-J; Sun, W-W; Li, L; Gao, R; Zhu, Q; Tian, S-M; Fu, M-Q; Yu, H-L; Tang, X-M; Zhang, C-L; Dong, H-S

    2013-09-01

    Recently we showed that the transcription activator AtMYB44 regulates expression of EIN2, a gene essential for ethylene signalling and insect resistance, in Arabidopsis thaliana (Arabidopsis). To link the transactivation with insect resistance, we investigated the wild-type and atmyb44 mutant plants, genetically Complemented atmyb44 (Catmyb44) and AtMYB44-Overexpression Transgenic Arabidopsis (MYB44OTA). We found that AtMYB44 played a critical role in Arabidopsis resistance to the phloem-feeding generalist green peach aphid (Myzus persicae Sulzer) and leaf-chewing specialist caterpillar diamondback moth (Plutella xylostella L.). AtMYB44 was required not only for the development of constitutive resistance but also for the induction of resistance by both herbivorous insects. Levels of constitutive and herbivore-induced resistance were consistent with corresponding amounts of the AtMYB44 protein constitutively produced in MYB44OTA and induced by herbivory in Catmyb44. In both cases, AtMYB44 promoted EIN2 expression to a greater extent in MYB44OTA than in Catmyb44. However, AtMYB44-promoted EIN2 expression was arrested with reduced resistance levels in the EIN2-deficient Arabidopsis mutant ein2-1 and the MYB44OTA ein2-1 hybrid. In the different plant genotypes, only MYB44OTA constitutively displayed phloem-based defences, which are specific to phloem-feeding insects, and robust expression of genes involved in the biosynthesis of glucosinolates, which are the secondary plant metabolites known as deterrents to generalist herbivores. Phloem-based defences and glucosinolate-related gene expression were not detected in ein2-1 and MYB44OTA ein2-1. These results establish a genetic connection between the regulatory role of AtMYB44 in EIN2 expression and the development of Arabidopsis resistance to insects.

  11. Base-pair opening dynamics of the microRNA precursor pri-miR156a affect temperature-responsive flowering in Arabidopsis.

    PubMed

    Kim, Hee-Eun; Kim, Wanhui; Lee, Ae-Ree; Jin, Suhyun; Jun, A Rim; Kim, Nak-Kyoon; Lee, Joon-Hwa; Ahn, Ji Hoon

    2017-03-18

    Internal and environmental cues, including ambient temperature changes, regulate the timing of flowering in plants. Arabidopsis miR156 represses flowering and plays an important role in the regulation of temperature-responsive flowering. However, the molecular basis of miR156 processing at lower temperatures remains largely unknown. Here, we performed nuclear magnetic resonance studies to investigate the base-pair opening dynamics of model RNAs at 16 °C and investigated the in vivo effects of the mutant RNAs on temperature-responsive flowering. The A9C and A10CG mutations in the B5 bulge of the lower stem of pri-miR156a stabilized the C15∙G98 and U16∙A97 base-pairs at the cleavage site of pri-miR156a at 16 °C. Consistent with this, production of mature miR156 was severely affected in plants overexpressing the A9C and A10CG constructs and these plants exhibited almost no delay in flowering at 16 °C. The A10G and A9AC mutations did not strongly affect C15∙G98 and U16∙A97 base-pairs at 16 °C, and plants overexpressing A10G and A9AC mutants of miR156 produced more mature miR156 than plants overexpressing the A9C and A10CG mutants and showed a strong delay in flowering at 16 °C. Interestingly, the A9AC mutation had distinct effects on the opening dynamics of the C15∙G98 and U16∙A97 base-pairs between 16 °C and 23 °C, and plants expressing the A9AC mutant miR156 showed only a moderate delay in flowering at 16 °C. Based on these results, we propose that fine-tuning of the base-pair stability at the cleavage site is essential for efficient processing of pri-miR156a at a low temperature and for reduced flowering sensitivity to ambient temperature changes.

  12. The Arabidopsis thaliana AT PRP39-1 gene, encoding a tetratricopeptide repeat protein with similarity to the yeast pre-mRNA processing protein PRP39, affects flowering time.

    PubMed

    Wang, Cunxi; Tian, Qing; Hou, Zhenglin; Mucha, Mark; Aukerman, Milo; Olsen, Odd-Arne

    2007-08-01

    Flowering is regulated by a network integrated from four major pathways, including the photoperiod, vernalization, gibberellin, and autonomous pathways. RNA processing within the autonomous pathway is well known to regulate Arabidopsis thaliana flowering time. Here we identify a novel Arabidopsis gene, designated AT PRP39-1, that affects flowering time. Based on observations that homozygous at prp39-1 plants are late flowering under both long and short days and responsive to GA and vernalization treatment, we tentatively conclude that AT PRP39-1 may represent a new component of the autonomous pathway. Consistent with previous studies on genes of the autonomous pathway, knockout of AT PRP39-1 in Arabidopsis displays an upregulation of the steady state level of FLC, and simultaneous downregulation of FT and SOC1 transcript levels in adult tissues. AT PRP39-1 encodes a tetratricopeptide repeat protein with a similarity to a yeast mRNA processing protein Prp39p, suggesting that the involvement of these tetratricopeptide repeat proteins in RNA processing is conserved among yeast, human, and plants. Structure modeling suggests that AT PRP39-1 has two TPR superhelical domains suitable for target protein binding. We discuss how AT PRP39-1 may function in the control of flowering in the context of the autonomous pathway.

  13. Bax/Mcl-1 balance affects neutrophil survival in intermittent hypoxia and obstructive sleep apnea: effects of p38MAPK and ERK1/2 signaling

    PubMed Central

    2012-01-01

    Background Prolonged neutrophil survival is evident in various cardiovascular and respiratory morbidities, in hypoxic conditions in-vitro and in patients with obstructive sleep apnea (OSA) characterized by nightly intermittent hypoxia (IH). This may lead to persistent inflammation, tissue injury and dysfunction. We therefore investigated by a translational approach the potential contribution of the intrinsic stress-induced mitochondrial pathway in extending neutrophil survival under IH conditions. Thus, neutrophils of healthy individuals treated with IH in-vitro and neutrophils of OSA patients undergoing nightly IH episodes in-vivo were investigated. Specifically, the balance between pro-apoptotic Bax and anti-apoptotic Mcl-1 protein expression, and the potential involvement of p38MAPK and ERK1/2 signaling pathways in the control of Mcl-1 expression were investigated. Methods Purified neutrophils were exposed to IH and compared to normoxia and to sustained hypoxia (SH) using a BioSpherix-OxyCycler C42 system. Bax and Mcl-1 levels, and p38MAPK and ERK1/2 phosphorylation were determined by western blotting. Also, Bax/Mcl-1 expression and Bax translocation to the mitochondria were assessed by confocal microscopy in pre-apoptotic neutrophils, before the appearance of apoptotic morphology. Co-localization of Bax and mitochondria was quantified by LSM 510 CarlZeiss MicroImaging using Manders Overlap Coefficient. A paired two-tailed t test, with Bonferroni correction for multiple comparisons, was used for statistical analysis. Results Compared to normoxia, IH and SH up-regulated the anti-apoptotic Mcl-1 by about 2-fold, down-regulated the pro-apoptotic Bax by 41% and 27%, respectively, and inhibited Bax co-localization with mitochondria before visible morphological signs of apoptosis were noted. IH induced ERK1/2 and p38MAPKs phosphorylation, whereas SH induced only p38MAPK phosphorylation. Accordingly, both ERK and p38MAPK inhibitors attenuated the IH-induced Mcl-1

  14. Probing native lignin macromolecular configuration in Arabidopsis thaliana in specific cell wall types: further insights into limited substrate degeneracy and assembly of the lignins of ref8, fah 1-2 and C4H::F5H lines.

    PubMed

    Patten, Ann M; Jourdes, Michaël; Cardenas, Claudia L; Laskar, Dhrubojyoti D; Nakazawa, Yoshihisa; Chung, Byung-Yeoup; Franceschi, Vincent R; Davin, Laurence B; Lewis, Norman G

    2010-03-01

    The interest in renewable, plant-derived, bioenergy/biofuels has resulted in a renaissance of plant cell-wall/lignin research. Herein, effects of modulating lignin monomeric compositions in a single plant species, Arabidopsis, are described. The earliest stage of putative "AcBr/Klason lignin" deposition was apparently unaffected by modulating p-coumarate 3-hydroxylase or ferulate 5-hydroxylase activities. This finding helps account for the inability of many other studies to fully suppress the reported putative levels of lignin deposition through monolignol biosynthesis manipulation, and also underscores limitations in frequently used lignin analytical protocols. The overall putative lignin content was greatly reduced (circa 62%) in a plant line harboring an H-(p-hydroxyphenyl) enriched lignin phenotype. This slightly increased H-monomer deposition level apparently occurred in cell-wall domains normally harboring guaiacyl (G) and/or syringyl (S) lignin moieties. For G- and S-enriched lignin phenotypes, the overall lignification process appeared analogous to wild type, with only xylem fiber and interfascicular fiber cells forming the S-enriched lignins. Laser microscope dissection of vascular bundles and interfascicular fibers, followed by pyrolysis GC/MS, supported these findings. Some cell types, presumably metaxylem and possibly protoxylem, also afforded small amounts of benzodioxane (sub)structures due to limited substrate degeneracy (i.e. utilizing 5-hydroxyconiferyl alcohol rather than sinapyl alcohol). For all plant lines studied, the 8-O-4' inter-unit frequency of cleavable H, G and/or S monomers was essentially invariant of monomeric composition for a given (putative) lignin content. These data again underscore the need for determination of lignin primary structures and identification of all proteins/enzymes involved in control of lignin polymer assembly/macromolecular configuration.

  15. Factors affecting the activation and inhibition of intracellular enzymes for degradation of 1,2 diamino benzene: kinetics and thermodynamic studies.

    PubMed

    P, Saranya; G, Sekaran

    2015-11-01

    Citrobacter freundii, the bacterium isolated from marine sediments was capable of degrading 1,2 diamino benzene (DAB), an endocrine disruptor. The mixed intracellular enzymes from C. freundii were extracted and purified. The mixed intracellular enzymes were used for the degradation of DAB and degree of degradation was evaluated in terms of pyruvic acid, the end product, formed. The variables such as effect of pH, temperature and metal ions on the degradation of DAB using mixed intracellular enzymes (MICE) were investigated. The maximum amount of pyruvic acid formed was found to be 569 ± 5 µg with 96% degradation efficiency at pH 7; temperature 25 °C; zinc nitrate 0.1 mM; and copper sulphate ions 0.15 mM. The stability of MICE at different temperatures and the interaction of MICE with metal ions were confirmed using FT-IR spectroscopy. The formation of pyruvic acid from degradation of DAB followed pseudo-second-order rate kinetics and it was a spontaneous, exothermic process. The activation energy of degradation of DAB by MICE was found to be 82.55 kJ/mol.

  16. Trace concentrations of imazethapyr (IM) affect floral organs development and reproduction in Arabidopsis thaliana: IM-induced inhibition of key genes regulating anther and pollen biosynthesis.

    PubMed

    Qian, Haifeng; Li, Yali; Sun, Chongchong; Lavoie, Michel; Xie, Jun; Bai, Xiaocui; Fu, Zhengwei

    2015-01-01

    Understanding how herbicides affect plant reproduction and growth is critical to develop herbicide toxicity model and refine herbicide risk assessment. Although our knowledge of herbicides toxicity mechanisms at the physiological and molecular level in plant vegetative phase has increased substantially in the last decades, few studies have addressed the herbicide toxicity problematic on plant reproduction. Here, we determined the long-term (4-8 weeks) effect of a chiral herbicide, imazethapyr (IM), which has been increasingly used in plant crops, on floral organ development and reproduction in the model plant Arabidopsis thaliana. More specifically, we followed the effect of two IM enantiomers (R- and S-IM) on floral organ structure, seed production, pollen viability and the transcription of key genes involved in anther and pollen development. The results showed that IM strongly inhibited the transcripts of genes regulating A. thaliana tapetum development (DYT1: DYSFUNCTIONAL TAPETUM 1), tapetal differentiation and function (TDF1: TAPETAL DEVELOPMENT AND FUNCTION1), and pollen wall formation and developments (AMS: ABORTED MICROSPORES, MYB103: MYB DOMAIN PROTEIN 103, MS1: MALE STERILITY 1, MS2: MALE STERILITY 2). Since DYT1 positively regulates 33 genes involved in cell-wall modification (such as, TDF1, AMS, MYB103, MS1, MS2) that can catalyze the breakdown of polysaccharides to facilitate anther dehiscence, the consistent decrease in the transcription of these genes after IM exposure should hamper anther opening as observed under scanning electron microscopy. The toxicity of IM on anther opening further lead to a decrease in pollen production and pollen viability. Furthermore, long-term IM exposure increased the number of apurinic/apyrimidinic sites (AP sites) in the DNA of A. thaliana and also altered the DNA of A. thaliana offspring grown in IM-free soils. Toxicity of IM on floral organs development and reproduction was generally higher in the presence of the R

  17. 2-DE based proteomic analysis of Saccharomyces cerevisiae wild and K+ transport-affected mutant (trk1,2) strains at the growth exponential and stationary phases.

    PubMed

    Curto, Miguel; Valledor, Luis; Navarrete, Clara; Gutiérrez, Dolores; Sychrova, Hana; Ramos, José; Jorrin, Jesús

    2010-11-10

    By using a 2-DE based workflow, the proteome of wild and potassium transport mutant trk1,2 under optimal growth potassium concentration (50mM) has been analyzed. At the exponential and stationary phases, both strains showed similar growth, morphology potassium content, and Vmax of rubidium transport, the only difference found being the Km values for this potassium analogue transport, higher for the mutant (20mM) than for the wild (3-6mM) cells. Proteins were buffer-extracted, precipitated, solubilized, quantified, and subjected to 2-DE analysis in the 5-8 pH range. More differences in protein content (37-64mgg(-1) cell dry weight) and number of resolved spots (178-307) were found between growth phases than between strains. In all, 164 spots showed no differences between samples and a total of 105 were considered to be differential after ANOVA test. 171 proteins, corresponding to 71 unique gene products have been identified, this set being dominated by cytosolic species and glycolitic enzymes. The ranking of the more abundant spots revealed no differences between samples and indicated fermentative metabolism, and active cell wall biosynthesis, redox homeostasis, biosynthesis of amino acids, coenzymes, nucleotides, and RNA, and protein turnover, apart from cell division and growth. PCA analysis allowed the separation of growth phases (PC1 and 2) and strains at the stationary phase (PC3 and 4), but not at the exponential one. These results are also supported by clustering analysis. As a general tendency, a number of spots newly appeared at the stationary phase in wild type, and to a lesser extent, in the mutant. These up-accumulated spots corresponded to glycolitic enzymes, indicating a more active glucose catabolism, accompanied by an accumulation of methylglyoxal detoxification, and redox-homeostasis enzymes. Also, more extensive proteolysis was observed at the stationary phase with this resulting in an accumulation of low Mr protein species.

  18. Arabidopsis MET1 cytosine methyltransferase mutants.

    PubMed Central

    Kankel, Mark W; Ramsey, Douglas E; Stokes, Trevor L; Flowers, Susan K; Haag, Jeremy R; Jeddeloh, Jeffrey A; Riddle, Nicole C; Verbsky, Michelle L; Richards, Eric J

    2003-01-01

    We describe the isolation and characterization of two missense mutations in the cytosine-DNA-methyltransferase gene, MET1, from the flowering plant Arabidopsis thaliana. Both missense mutations, which affect the catalytic domain of the protein, led to a global reduction of cytosine methylation throughout the genome. Surprisingly, the met1-2 allele, with the weaker DNA hypomethylation phenotype, alters a well-conserved residue in methyltransferase signature motif I. The stronger met1-1 allele caused late flowering and a heterochronic delay in the juvenile-to-adult rosette leaf transition. The distribution of late-flowering phenotypes in a mapping population segregating met1-1 indicates that the flowering-time phenotype is caused by the accumulation of inherited defects at loci unlinked to the met1 mutation. The delay in flowering time is due in part to the formation and inheritance of hypomethylated fwa epialleles, but inherited defects at other loci are likely to contribute as well. Centromeric repeat arrays hypomethylated in met1-1 mutants are partially remethylated when introduced into a wild-type background, in contrast to genomic sequences hypomethylated in ddm1 mutants. ddm1 met1 double mutants were constructed to further our understanding of the mechanism of DDM1 action and the interaction between two major genetic loci affecting global cytosine methylation levels in Arabidopsis. PMID:12663548

  19. A Single Amino Acid Change in Turnip Crinkle Virus Movement Protein p8 Affects RNA Binding and Virulence on Arabidopsis thaliana

    PubMed Central

    Wobbe, Kristin K.; Akgoz, Muslum; Dempsey, D’Maris Amick; Klessig, Daniel F.

    1998-01-01

    Comparison of the symptoms caused by turnip crinkle virus strain M (TCV-M) and TCV-B infection of a resistant Arabidopsis thaliana line termed Di-17 demonstrates that TCV-B has a greater ability to spread in planta. This ability is due to a single amino acid change in the viral movement protein p8 and inversely correlates with p8 RNA binding affinity. PMID:9621099

  20. Overexpression of ALDH10A8 and ALDH10A9 Genes Provides Insight into Their Role in Glycine Betaine Synthesis and Affects Primary Metabolism in Arabidopsis thaliana.

    PubMed

    Missihoun, Tagnon D; Willée, Eva; Guegan, Jean-Paul; Berardocco, Solenne; Shafiq, Muhammad R; Bouchereau, Alain; Bartels, Dorothea

    2015-09-01

    Betaine aldehyde dehydrogenases oxidize betaine aldehyde to glycine betaine in species that accumulate glycine betaine as a compatible solute under stress conditions. In contrast, the physiological function of betaine aldehyde dehydrogenase genes is at present unclear in species that do not accumulate glycine betaine, such as Arabidopsis thaliana. To address this question, we overexpressed the Arabidopsis ALDH10A8 and ALDH10A9 genes, which were identified to code for betaine aldehyde dehydrogenases, in wild-type A. thaliana. We analysed changes in metabolite contents of transgenic plants in comparison with the wild type. Using exogenous or endogenous choline, our results indicated that ALDH10A8 and ALDH10A9 are involved in the synthesis of glycine betaine in Arabidopsis. Choline availability seems to be a factor limiting glycine betaine synthesis. Moreover, the contents of diverse metabolites including sugars (glucose and fructose) and amino acids were altered in fully developed transgenic plants compared with the wild type. The plant metabolic response to salt and the salt stress tolerance were impaired only in young transgenic plants, which exhibited a delayed growth of the seedlings early after germination. Our results suggest that a balanced expression of the betaine aldehyde dehydrogenase genes is important for early growth of A. thaliana seedlings and for salt stress mitigation in young seedlings.

  1. The duration of time that beef cattle are fed a high-grain diet affects feed sorting behavior both before and after acute ruminal acidosis1,2.

    PubMed

    DeVries, T J; Schwaiger, T; Beauchemin, K A; Penner, G B

    2014-04-01

    The objective of this study was to determine how duration of time that cattle are fed a high-grain diet affects feed sorting, both before and after an episode of acute ruminal acidosis. Sixteen Angus heifers (261 ± 6.1 kg; BW ± SEM) were assigned to 1 of 4 blocks and fed a backgrounding (BG) diet (60% forage, DM basis). Within block, heifers were randomly assigned to 1 of 2 treatments differing in days fed a high-grain (HG; 9% forage, DM basis, fed ad libitum) diet before a ruminal acidosis challenge: 34 d for long adapted (LA) and 8 d for short adapted (SA). Ruminal acidosis was induced by restricting feed to 50% of DMI as a proportion of BW (determined individually for each heifer) for 24 h followed by an intraruminal infusion of ground barley at 10% of DMI as a proportion of BW measured before feed restriction. Feed and orts were sampled during the BG period, the first 26 d on the HG diet (only for LA cattle), the 8-d baseline (BASE) period, on the day of the ruminal acidosis challenge (CH), and during 2 consecutive 8-d recovery periods (REC1 and REC2) for each heifer and subjected to particle size analysis: 19-mm (long), 8-mm (medium), and 1.18-mm (short) screens and a pan (fine). On the BG diet, sorting for medium particles tended to be greater (104.2 vs. 102.1%; P = 0.07) for LA heifers than SA heifers, while sorting against short particles was greater (98.2 vs. 100.0%; P = 0.05) for LA heifers. During the first 26 d on the HG diet, LA cattle sorted for (P < 0.001) long (118.8%), medium (117.8%), and short (104.1%) particles and sorted against (P < 0.001) fine particles (45.3%). This sorting pattern was consistent for LA heifers during BASE period, CH day, and recovery periods, across which SA heifers exhibited less sorting (P ≤ 0.1). Greater duration of pH < 5.5 during the BASE period was associated with greater sorting for long particles (R(2) = 0.75, P = 0.01) in LA heifers and for long (R(2) = 0.49, P = 0.05) and medium (R(2) = 0.88, P < 0

  2. The Arabidopsis-related halophyte Thellungiella halophila: boron tolerance via boron complexation with metabolites?

    PubMed

    Lamdan, Netta Li; Attia, Ziv; Moran, Nava; Moshelion, Menachem

    2012-04-01

    Tolerance to boron (B) is still not completely understood. We tested here the hypothesis that Thellungiella halophila, an Arabidopsis thaliana-related 'extremophile' plant, with abundance of B in its natural environment, is tolerant to B, and examined the potential mechanisms of this tolerance. With 1-10 mm B applied ([B](ext)) to Thellungiella and Arabidopsis grown in hydroponics, the steady-state accumulated B concentration ([B](int)) in the root was below [B](ext), and was similar in both, suggesting both extrude B actively. Whether grown in soil or hydroponically, the shoot [B](int) was higher in Arabidopsis than in Thellungiella, suggesting more effective net B exclusion by Thellungiella root. Arabidopsis exhibited toxicity symptoms including reduced shoot fresh weight (FW), but Thellungiella was not affected, even at similar levels of shoot-accumulated [B](int) (about 10 to 40 mm B in 'shoot water'), suggesting additional B tolerance mechanism in Thellungiella shoot. At [B](ext) = 5 mm, the summed shoot concentration of the potentially B-binding polyhydroxyl metabolites (malic acid, fructose, glucose, sucrose and citric acid) in Arabidopsis was below [B](int) , but in Thellungiella it was over twofold higher than [B](int) , and therefore likely to allow appreciable 1:2 boron-metabolite complexation in the shoot. This, we suggest, is an important component of Thellungiella B tolerance mechanism.

  3. An S18 ribosomal protein gene copy at the Arabidopsis PFL locus affects plant development by its specific expression in meristems.

    PubMed Central

    Van Lijsebettens, M; Vanderhaeghen, R; De Block, M; Bauw, G; Villarroel, R; Van Montagu, M

    1994-01-01

    In Arabidopsis, mutation at PFL causes pointed first leaves, reduced fresh weight and growth retardation. We have cloned the wild-type PFL gene by T-DNA tagging, and demonstrate that it complements the mutant phenotype. PFL codes for ribosomal protein S18, based on the high homology with rat S18 and on purification of S18-equivalent peptides from plant ribosomes. pfl represents the first mutation in eukaryotic S18 proteins or their S13 prokaryotic counterparts, involved in translation initiation. Arabidopsis contains three S18 gene copies dispersed in the genetic map; they are all transcribed and code for completely identical proteins. No transcript is detected from the mutated gene, S18A. The activity of the S18A promoter is restricted to meristems, with a markedly high expression at the embryonic heart stage, and to wounding sites. This means that plants activate an extra copy of this ribosomal protein gene in tissues with cell division activity. We postulate that in meristematic tissues plants use transcriptional control to synthesize extra ribosomes to increase translational efficiency. In analogy with this, an additional, developmentally regulated gene copy might be expected for all ribosomal proteins. Images PMID:7913892

  4. Lack of FTSH4 Protease Affects Protein Carbonylation, Mitochondrial Morphology, and Phospholipid Content in Mitochondria of Arabidopsis: New Insights into a Complex Interplay.

    PubMed

    Smakowska, Elwira; Skibior-Blaszczyk, Renata; Czarna, Malgorzata; Kolodziejczak, Marta; Kwasniak-Owczarek, Malgorzata; Parys, Katarzyna; Funk, Christiane; Janska, Hanna

    2016-08-01

    FTSH4 is one of the inner membrane-embedded ATP-dependent metalloproteases in mitochondria of Arabidopsis (Arabidopsis thaliana). In mutants impaired to express FTSH4, carbonylated proteins accumulated and leaf morphology was altered when grown under a short-day photoperiod, at 22°C, and a long-day photoperiod, at 30°C. To provide better insight into the function of FTSH4, we compared the mitochondrial proteomes and oxyproteomes of two ftsh4 mutants and wild-type plants grown under conditions inducing the phenotypic alterations. Numerous proteins from various submitochondrial compartments were observed to be carbonylated in the ftsh4 mutants, indicating a widespread oxidative stress. One of the reasons for the accumulation of carbonylated proteins in ftsh4 was the limited ATP-dependent proteolytic capacity of ftsh4 mitochondria, arising from insufficient ATP amount, probably as a result of an impaired oxidative phosphorylation (OXPHOS), especially complex V. In ftsh4, we further observed giant, spherical mitochondria coexisting among normal ones. Both effects, the increased number of abnormal mitochondria and the decreased stability/activity of the OXPHOS complexes, were probably caused by the lower amount of the mitochondrial membrane phospholipid cardiolipin. We postulate that the reduced cardiolipin content in ftsh4 mitochondria leads to perturbations within the OXPHOS complexes, generating more reactive oxygen species and less ATP, and to the deregulation of mitochondrial dynamics, causing in consequence the accumulation of oxidative damage.

  5. AtrbohD and AtrbohF positively regulate abscisic acid-inhibited primary root growth by affecting Ca2+ signalling and auxin response of roots in Arabidopsis.

    PubMed

    Jiao, Yiheng; Sun, Lirong; Song, Yalin; Wang, Limin; Liu, Liping; Zhang, Liyue; Liu, Bo; Li, Ning; Miao, Chen; Hao, Fushun

    2013-11-01

    Reactive oxygen species (ROS) originating from the NADPH oxidases AtrbohD and AtrbohF play an important role in abscisic acid (ABA)-inhibited primary root growth in Arabidopsis. However, the mechanisms underlying this process remain elusive. In this study, the double mutant atrbohD1/F1 and atrbohD2/F2, in which both AtrbohD and AtrbohF were disrupted, were less sensitive to ABA suppression of root cell elongation than wild-type (WT) plants. Furthermore, the double mutants showed impaired ABA responses in roots, including ROS generation, cytosolic Ca(2+) increases, and activation of plasma membrane Ca(2+)-permeable channels compared with WT. Exogenous H2O2 can activate the Ca(2+) currents in roots of atrbohD1/F1. In addition, exogenous application of the auxin transport inhibitor naphthylphthalamic acid effectively promoted ABA inhibition of root growth of the mutants relative to that of WT. The ABA-induced decreases in auxin sensitivity of the root tips were more pronounced in WT than in atrbohD1/F1. These findings suggest that both AtrbohD and AtrbohF are essential for ABA-promoted ROS production in roots. ROS activate Ca(2+) signalling and reduce auxin sensitivity of roots, thus positively regulating ABA-inhibited primary root growth in Arabidopsis.

  6. Arabidopsis acyl-CoA-binding proteins ACBP4 and ACBP5 are subcellularly localized to the cytosol and ACBP4 depletion affects membrane lipid composition.

    PubMed

    Xiao, Shi; Li, Hong-Ye; Zhang, Jiao-Ping; Chan, Suk-Wah; Chye, Mee-Len

    2008-12-01

    In Arabidopsis thaliana, acyl-CoA-binding proteins (ACBPs) are encoded by six genes, and they display varying affinities for acyl-CoA esters. Recombinant ACBP4 and ACBP5 have been shown to bind oleoyl-CoA esters in vitro. In this study, the subcellular localizations of ACBP4 and ACBP5 were determined by biochemical fractionation followed by western blot analyses using anti-ACBP4 and anti-ACBP5 antibodies and immuno-electron microscopy. Confocal microscopy of autofluorescence-tagged ACBP4 and ACBP5, expressed transiently in onion epidermal cells and in transgenic Arabidopsis, confirmed their expression in the cytosol. Taken together, ACBP4 and ACBP5 are available in the cytosol to bind and transfer cytosolic oleoyl-CoA esters. Lipid profile analysis further revealed that an acbp4 knockout mutant showed decreases in membrane lipids (digalactosyldiacylglycerol, monogalactosyldiacylglycerol, phosphatidylcholine, phosphatidylethanolamine and phosphatidylinositol) while acbp4-complemented lines attained levels similar to wild type, suggesting that ACBP4 plays a role in the biosynthesis of membrane lipids including galactolipids and phospholipids.

  7. Constitutive expression of two apple (Malus x domestica Borkh.) homolog genes of LIKE HETEROCHROMATIN PROTEIN1 affects flowering time and whole-plant growth in transgenic Arabidopsis.

    PubMed

    Mimida, Naozumi; Kidou, Shin-Ichiro; Kotoda, Nobuhiro

    2007-09-01

    Fruit trees, such as apple (Malus x domestica Borkh.), are woody perennial plants with a long juvenile phase. The biological analysis for the regulation of flowering time provides insights into the reduction of juvenile phase and the acceleration of breeding in fruit trees. In Arabidopsis, LIKE HETEROCHROMATIN PROTEIN1 (LHP1) is involved in epigenetic silencing of the target genes such as flowering genes. We isolated and characterized twin apple LHP1 homolog genes, MdLHP1a and MdLHP1b. These genes may have been generated as a result of ancient genome duplication. Although the putative MdLHP1 proteins showed lower similarity to any other known plant LHP1 homologs, a chromo domain, a chromo shadow domain, and the nuclear localization signal motifs were highly conserved among them. RT-PCR analysis showed that MdLHP1a and MdLHP1b were expressed constantly in developing shoot apices of apple trees throughout the growing season. Constitutive expression of MdLHP1a or MdLHP1b could compensate for the pleiotropic phenotype of lhp1/tfl2 mutant, suggesting that apple LHP1 homolog genes are involved in the regulation of flowering time and whole-plant growth. Based on these results, LHP1 homolog genes might have rapidly evolved among plant species, but the protein functions were conserved, at least between Arabidopsis and apple.

  8. Analysis of the Metabolic Pathways Affected by Poly(γ-glutamic Acid) in Arabidopsis thaliana Based on GeneChip Microarray.

    PubMed

    Xu, Zongqi; Lei, Peng; Feng, Xiaohai; Li, Sha; Xu, Hong

    2016-08-17

    Plant growth is promoted by poly(γ-glutamic acid) (γ-PGA). However, the molecular mechanism underlying such promotion is not yet well understood. Therefore, we used GeneChip microarrays to explore the effects of γ-PGA on gene transcription in Arabidopsis thaliana. Our results revealed 299 genes significantly regulated by γ-PGA. These differently expressed genes participate mainly in metabolic and cellular processes and in stimuli responses. The metabolic pathways linked to these differently expressed genes were also investigated. A total of 64 of the 299 differently expressed genes were shown to be directly involved in 24 pathways such as brassinosteroid biosynthesis, α-linolenic acid metabolism, phenylpropanoid biosynthesis, and nitrogen metabolism, all of which were influenced by γ-PGA. The analysis demonstrated that γ-PGA promoted nitrogen assimilation and biosynthesis of brassinosteroids, jasmonic acid, and lignins, providing a better explanation for why γ-PGA promotes growth and enhances stress tolerance in plants.

  9. Changes in the effective gravitational field strength affect the state of phosphorylation of stress-related proteins in callus cultures of Arabidopsis thaliana

    PubMed Central

    Barjaktarović, Žarko; Schütz, Wolfgang; Madlung, Johannes; Fladerer, Claudia; Nordheim, Alfred; Hampp, Rüdiger

    2009-01-01

    In a recent study it was shown that callus cell cultures of Arabidopsis thaliana respond to changes in gravitational field strengths by changes in protein expression. Using ESI-MS/MS for proteins with differential abundance after separation by 2D-PAGE, 28 spots which changed reproducibly and significantly in amount (P <0.05) after 2 h of hypergravity (18 up-regulated, 10 down-regulated) could be identified. The corresponding proteins were largely involved in stress responses, including the detoxification of reactive oxygen species (ROS). In the present study, these investigations are extended to phosphorylated proteins. For this purpose, callus cell cultures of Arabidopsis thaliana were exposed to hypergravity (8 g) and simulated weightlessness (random positioning; RP) for up to 30 min, a period of time which yielded the most reliable data. The first changes, however, were visible as early as 10 min after the start of treatment. In comparison to 1 g controls, exposure to hypergravity resulted in 18 protein spots, and random positioning in 25, respectively, with increased/decreased signal intensity by at least 2-fold (P <0.05). Only one spot (alanine aminotransferase) responded the same way under both treatments. After 30 min of RP, four spots appeared, which could not be detected in control samples. Among the protein spots altered in phosphorylation, it was possible to identify 24 from those responding to random positioning and 12 which responded to 8 g. These 12 proteins (8 g) are partly (5 out of 12) the same as those changed in expression after exposure to 2 h of hypergravity. The respective proteins are involved in scavenging and detoxification of ROS (32%), primary metabolism (20.5%), general signalling (14.7%), protein translation and proteolysis (14.7%), and ion homeostasis (8.8%). Together with our recent data on protein expression, it is assumed that changes in gravitational fields induce the production of ROS. Our data further indicate that responses

  10. A mutation in the Arabidopsis HYL1 gene encoding a dsRNA binding protein affects responses to abscisic acid, auxin, and cytokinin

    NASA Technical Reports Server (NTRS)

    Lu, C.; Fedoroff, N.

    2000-01-01

    Both physiological and genetic evidence indicate interconnections among plant responses to different hormones. We describe a pleiotropic recessive Arabidopsis transposon insertion mutation, designated hyponastic leaves (hyl1), that alters the plant's responses to several hormones. The mutant is characterized by shorter stature, delayed flowering, leaf hyponasty, reduced fertility, decreased rate of root growth, and an altered root gravitropic response. It also exhibits less sensitivity to auxin and cytokinin and hypersensitivity to abscisic acid (ABA). The auxin transport inhibitor 2,3,5-triiodobenzoic acid normalizes the mutant phenotype somewhat, whereas another auxin transport inhibitor, N-(1-naph-thyl)phthalamic acid, exacerbates the phenotype. The gene, designated HYL1, encodes a 419-amino acid protein that contains two double-stranded RNA (dsRNA) binding motifs, a nuclear localization motif, and a C-terminal repeat structure suggestive of a protein-protein interaction domain. We present evidence that the HYL1 gene is ABA-regulated and encodes a nuclear dsRNA binding protein. We hypothesize that the HYL1 protein is a regulatory protein functioning at the transcriptional or post-transcriptional level.

  11. Time-Series Transcriptomics Reveals That AGAMOUS-LIKE22 Affects Primary Metabolism and Developmental Processes in Drought-Stressed Arabidopsis[OPEN

    PubMed Central

    Penfold, Christopher A.; Jenkins, Dafyd J.; Legaie, Roxane; Lawson, Tracy; Vialet-Chabrand, Silvere R.M.; Subramaniam, Sunitha; Hickman, Richard; Feil, Regina; Bowden, Laura; Hill, Claire; Lunn, John E.; Finkenstädt, Bärbel; Buchanan-Wollaston, Vicky; Beynon, Jim; Wild, David L.; Ott, Sascha

    2016-01-01

    In Arabidopsis thaliana, changes in metabolism and gene expression drive increased drought tolerance and initiate diverse drought avoidance and escape responses. To address regulatory processes that link these responses, we set out to identify genes that govern early responses to drought. To do this, a high-resolution time series transcriptomics data set was produced, coupled with detailed physiological and metabolic analyses of plants subjected to a slow transition from well-watered to drought conditions. A total of 1815 drought-responsive differentially expressed genes were identified. The early changes in gene expression coincided with a drop in carbon assimilation, and only in the late stages with an increase in foliar abscisic acid content. To identify gene regulatory networks (GRNs) mediating the transition between the early and late stages of drought, we used Bayesian network modeling of differentially expressed transcription factor (TF) genes. This approach identified AGAMOUS-LIKE22 (AGL22), as key hub gene in a TF GRN. It has previously been shown that AGL22 is involved in the transition from vegetative state to flowering but here we show that AGL22 expression influences steady state photosynthetic rates and lifetime water use. This suggests that AGL22 uniquely regulates a transcriptional network during drought stress, linking changes in primary metabolism and the initiation of stress responses. PMID:26842464

  12. Homologues of the Arabidopsis thaliana SHI/STY/LRP1 genes control auxin biosynthesis and affect growth and development in the moss Physcomitrella patens.

    PubMed

    Eklund, D Magnus; Thelander, Mattias; Landberg, Katarina; Ståldal, Veronika; Nilsson, Anders; Johansson, Monika; Valsecchi, Isabel; Pederson, Eric R A; Kowalczyk, Mariusz; Ljung, Karin; Ronne, Hans; Sundberg, Eva

    2010-04-01

    The plant hormone auxin plays fundamental roles in vascular plants. Although exogenous auxin also stimulates developmental transitions and growth in non-vascular plants, the effects of manipulating endogenous auxin levels have thus far not been reported. Here, we have altered the levels and sites of auxin production and accumulation in the moss Physcomitrella patens by changing the expression level of homologues of the Arabidopsis SHI/STY family proteins, which are positive regulators of auxin biosynthesis genes. Constitutive expression of PpSHI1 resulted in elevated auxin levels, increased and ectopic expression of the auxin response reporter GmGH3pro:GUS, and in an increased caulonema/chloronema ratio, an effect also induced by exogenous auxin application. In addition, we observed premature ageing and necrosis in cells ectopically expressing PpSHI1. Knockout of either of the two PpSHI genes resulted in reduced auxin levels and auxin biosynthesis rates in leafy shoots, reduced internode elongation, delayed ageing, a decreased caulonema/chloronema ratio and an increased number of axillary hairs, which constitute potential auxin biosynthesis sites. Some of the identified auxin functions appear to be analogous in vascular and non-vascular plants. Furthermore, the spatiotemporal expression of the PpSHI genes and GmGH3pro:GUS strongly overlap, suggesting that local auxin biosynthesis is important for the regulation of auxin peak formation in non-vascular plants.

  13. Elevated CO2-induced production of nitric oxide (NO) by NO synthase differentially affects nitrate reductase activity in Arabidopsis plants under different nitrate supplies.

    PubMed

    Du, Shaoting; Zhang, Ranran; Zhang, Peng; Liu, Huijun; Yan, Minggang; Chen, Ni; Xie, Huaqiang; Ke, Shouwei

    2016-02-01

    CO2 elevation often alters the plant's nitrate reductase (NR) activity, the first enzyme acting in the nitrate assimilation pathway. However, the mechanism underlying this process remains unknown. The association between elevated CO2-induced alterations of NR activity and nitric oxide (NO) was examined in Col-0 Arabidopsis fed with 0.2-10 mM nitrate, using NO donors, NO scavenger, and NO synthase (NOS) inhibitor. The noa1 mutant, in which most NOS activity was lost, and the NR activity-null mutant nia1 nia2 were also used to examine the above association. In response to CO2 elevation, NR activity increased in low-nitrate Col-0 plants but was inhibited in high-nitrate Col-0 plants. NO scavenger and NOS inhibitor could eliminate these two responses, whereas the application of NO donors mimicked these distinct responses in ambient CO2-grown Col-0 plants. Furthermore, in both low- and high-nitrate conditions, elevated CO2 increased NOS activity and NO levels in Col-0 and nia1 nia2 plants but had little effect on NO level and NR activity in noa1 plants. Considering all of these findings, this study concluded that, in response to CO2 elevation, either the NR activity induction in low-nitrate plants or the NR activity inhibition in high-nitrate plants is regulated by NOS-generated NO.

  14. Accumulation of Zeaxanthin in Abscisic Acid-Deficient Mutants of Arabidopsis Does Not Affect Chlorophyll Fluorescence Quenching or Sensitivity to Photoinhibition in Vivo.

    PubMed Central

    Hurry, V.; Anderson, J. M.; Chow, W. S.; Osmond, C. B.

    1997-01-01

    Abscisic acid (ABA)-deficient mutants of Arabidopsis do not synthesize the epoxy-xanthophylls antheraxanthin, violaxanthin, or neoxanthin. However, thylakoid membranes from these mutants contain 3-fold more zeaxanthin than wild-type plants. This increase in zeaxanthin occurs as a stoichiometric replacement of the missing violaxanthin and neoxanthin within the pigment-protein complexes of both photosystem I and photosystem II (PSII). The retention of zeaxanthin in the dark by ABA-deficient mutants sensitizes the leaves to the development of nonphotochemical quenching (NPQ) during the first 2 to 4 min following a dark-light transition. However, the increase in pool size does not result in any increase in steady-state NPQ. When we exposed wild-type and ABA-deficient mutants leaves to twice growth irradiance, the mutants developed lower maximal NPQ but suffered similar photoinhibition to wildtype, measured both as a decline in the ratio of variable to maximal fluorescence and as a loss of functional PSII centers from oxygen flash yield measurements. These results suggest that only a few of the zeaxanthin molecules present within the light-harvesting antenna of PSII may be involved in NPQ and neither the accumulation of a large pool of zeaxanthin within the antenna of PSII nor an increase in conversion of violaxanthin to zeaxanthin will necessarily enhance photoprotective energy dissipation. PMID:12223632

  15. DNA Topoisomerase I Affects Polycomb Group Protein-Mediated Epigenetic Regulation and Plant Development by Altering Nucleosome Distribution in Arabidopsis[W

    PubMed Central

    Liu, Xigang; Gao, Lei; Dinh, Thanh Theresa; Shi, Ting; Li, Dongming; Wang, Ruozhong; Guo, Lin; Xiao, Langtao; Chen, Xuemei

    2014-01-01

    It has been perplexing that DNA topoisomerases, enzymes that release DNA supercoils, play specific roles in development. In this study, using a floral stem cell model in Arabidopsis thaliana, we uncovered a role for TOPOISOMERASE1α (TOP1α) in Polycomb Group (PcG) protein-mediated histone 3 lysine 27 trimethylation (H3K27me3) at, and transcriptional repression of, the stem cell maintenance gene WUSCHEL (WUS). We demonstrated that H3K27me3 deposition at other PcG targets also requires TOP1α. Intriguingly, the repression of some, as well as the expression of many, PcG target genes requires TOP1α. The mechanism that unifies the opposing effects of TOP1α appears to lie in its role in decreasing nucleosome density, which probably allows the binding of factors that either recruit PcG, as we demonstrated for AGAMOUS at the WUS locus, or counteract PcG-mediated regulation. Although TOP1α reduces nucleosome density at all genes, the lack of a 5′ nucleosome-free region is a feature that distinguishes PcG targets from nontargets and may condition the requirement for TOP1α for their expression. This study uncovers a connection between TOP1α and PcG, which explains the specific developmental functions of TOP1α. PMID:25070639

  16. Barley Hv CIRCADIAN CLOCK ASSOCIATED 1 and Hv PHOTOPERIOD H1 Are Circadian Regulators That Can Affect Circadian Rhythms in Arabidopsis

    PubMed Central

    Martí, María C.; Laurie, David A.; Greenland, Andy J.; Hall, Anthony; Webb, Alex A. R.

    2015-01-01

    Circadian clocks regulate many aspects of plant physiology and development that contribute to essential agronomic traits. Circadian clocks contain transcriptional feedback loops that are thought to generate circadian timing. There is considerable similarity in the genes that comprise the transcriptional and translational feedback loops of the circadian clock in the plant Kingdom. Functional characterisation of circadian clock genes has been restricted to a few model species. Here we provide a functional characterisation of the Hordeum vulgare (barley) circadian clock genes Hv CIRCADIAN CLOCK ASSOCIATED 1 (HvCCA1) and Hv PHOTOPERIODH1, which are respectively most similar to Arabidopsis thaliana CIRCADIAN CLOCK ASSOCIATED 1 (AtCCA1) and PSEUDO RESPONSE REGULATOR 7 (AtPRR7). This provides insight into the circadian regulation of one of the major crop species of Northern Europe. Through a combination of physiological assays of circadian rhythms in barley and heterologous expression in wild type and mutant strains of A. thaliana we demonstrate that HvCCA1 has a conserved function to AtCCA1. We find that Hv PHOTOPERIOD H1 has AtPRR7-like functionality in A. thaliana and that the effects of the Hv photoperiod h1 mutation on photoperiodism and circadian rhythms are genetically separable. PMID:26076005

  17. Arabidopsis PTB1 and PTB2 proteins negatively regulate splicing of a mini-exon splicing reporter and affect alternative splicing of endogenous genes differentially.

    PubMed

    Simpson, Craig G; Lewandowska, Dominika; Liney, Michele; Davidson, Diane; Chapman, Sean; Fuller, John; McNicol, Jim; Shaw, Paul; Brown, John W S

    2014-07-01

    This paper examines the function of Arabidopsis thaliana AtPTB1 and AtPTB2 as plant splicing factors. The effect on splicing of overexpression of AtPTB1 and AtPTB2 was analysed in an in vivo protoplast transient expression system with a novel mini-exon splicing reporter. A range of mutations in pyrimidine-rich sequences were compared with and without AtPTB and NpU2AF65 overexpression. Splicing analyses of constructs in protoplasts and RNA from overexpression lines used high-resolution reverse transcription polymerase chain reaction (RT-PCR). AtPTB1 and AtPTB2 reduced inclusion/splicing of the potato invertase mini-exon splicing reporter, indicating that these proteins can repress plant intron splicing. Mutation of the polypyrimidine tract and closely associated Cytosine and Uracil-rich (CU-rich) sequences, upstream of the mini-exon, altered repression by AtPTB1 and AtPTB2. Coexpression of a plant orthologue of U2AF65 alleviated the splicing repression of AtPTB1. Mutation of a second CU-rich upstream of the mini-exon 3' splice site led to a decline in mini-exon splicing, indicating the presence of a splicing enhancer sequence. Finally, RT-PCR of AtPTB overexpression lines with c. 90 known alternative splicing (AS) events showed that AtPTBs significantly altered AS of over half the events. AtPTB1 and AtPTB2 are splicing factors that influence alternative splicing. This occurs in the potato invertase mini-exon via the polypyrimidine tract and associated pyrimidine-rich sequence.

  18. Variation in MPK12 affects water use efficiency in Arabidopsis and reveals a pleiotropic link between guard cell size and ABA response

    PubMed Central

    Des Marais, David L.; Auchincloss, Lisa C.; Sukamtoh, Emeline; McKay, John K.; Logan, Tierney; Richards, James H.; Juenger, Thomas E.

    2014-01-01

    Plant water relations are critical for determining the distribution, persistence, and fitness of plant species. Studying the genetic basis of ecologically relevant traits, however, can be complicated by their complex genetic, physiological, and developmental basis and their interaction with the environment. Water use efficiency (WUE), the ratio of photosynthetic carbon assimilation to stomatal conductance to water, is a dynamic trait with tremendous ecological and agricultural importance whose genetic control is poorly understood. In the present study, we use a quantitative trait locus-mapping approach to locate, fine-map, clone, confirm, and characterize an allelic substitution that drives differences in WUE among natural accessions of Arabidopsis thaliana. We show that a single amino acid substitution in an abscisic acid-responsive kinase, AtMPK12, causes reduction in WUE, and we confirm its functional role using transgenics. We further demonstrate that natural alleles at AtMPK12 differ in their response to cellular and environmental cues, with the allele from the Cape Verde Islands (CVI) being less responsive to hormonal inhibition of stomatal opening and more responsive to short-term changes in vapor pressure deficit. We also show that the CVI allele results in constitutively larger stomata. Together, these differences cause higher stomatal conductance and lower WUE compared with the common allele. These physiological changes resulted in reduced whole-plant transpiration efficiency and reduced fitness under water-limited compared with well-watered conditions. Our work demonstrates how detailed analysis of naturally segregating functional variation can uncover the molecular and physiological basis of a key trait associated with plant performance in ecological and agricultural settings. PMID:24550314

  19. Mutations of Arabidopsis TBL32 and TBL33 affect xylan acetylation and secondary wall deposition

    SciTech Connect

    Yuan, Youxi; Teng, Quincy; Zhong, Ruiqin; Haghighat, Marziyeh; Richardson, Elizabeth A.; Ye, Zheng -Hua; Zhang, Jin -Song

    2016-01-08

    Xylan is a major acetylated polymer in plant lignocellulosic biomass and it can be monoand di-acetylated at O-2 and O-3 as well as mono-acetylated at O-3 of xylosyl residues that is substituted with glucuronic acid (GlcA) at O-2. Based on the finding that ESK1, an Arabidopsis thaliana DUF231 protein, specifically mediates xylan 2-O- and 3-O-monoacetylation, we previously proposed that different acetyltransferase activities are required for regiospecific acetyl substitutions of xylan. Here, we demonstrate the functional roles of TBL32 and TBL33, two ESK1 close homologs, in acetyl substitutions of xylan. Simultaneous mutations of TBL32 and TBL33 resulted in a significant reduction in xylan acetyl content and endoxylanase digestion of the mutant xylan released GlcA-substituted xylooligomers without acetyl groups. Structural analysis of xylan revealed that the tbl32 tbl33 mutant had a nearly complete loss of 3-O-acetylated, 2-O-GlcA-substituted xylosyl residues. A reduction in 3-Omonoacetylated and 2,3-di-O-acetylated xylosyl residues was also observed. Simultaneous mutations of TBL32, TBL33 and ESK1 resulted in a severe reduction in xylan acetyl level down to 15% of that of the wild type, and concomitantly, severely collapsed vessels and stunted plant growth. In particular, the S2 layer of secondary walls in xylem vessels of tbl33 esk1 and tbl32 tbl33 esk1 exhibited an altered structure, indicating abnormal assembly of secondary wall polymers. Furthermore, these results demonstrate that TBL32 and TBL33 play an important role in xylan acetylation and normal deposition of secondary walls.

  20. The Arabidopsis thaliana lectin receptor kinase LecRK-I.9 is required for full resistance to Pseudomonas syringae and affects jasmonate signalling.

    PubMed

    Balagué, Claudine; Gouget, Anne; Bouchez, Olivier; Souriac, Camille; Haget, Nathalie; Boutet-Mercey, Stéphanie; Govers, Francine; Roby, Dominique; Canut, Hervé

    2016-07-11

    On microbial attack, plants can detect invaders and activate plant innate immunity. For the detection of pathogen molecules or cell wall damage, plants employ receptors that trigger the activation of defence responses. Cell surface proteins that belong to large families of lectin receptor kinases are candidates to function as immune receptors. Here, the function of LecRK-I.9 (At5g60300), a legume-type lectin receptor kinase involved in cell wall-plasma membrane contacts and in extracellular ATP (eATP) perception, was studied through biochemical, gene expression and reverse genetics approaches. In Arabidopsis thaliana, LecRK-I.9 expression is rapidly, highly and locally induced on inoculation with avirulent strains of Pseudomonas syringae pv. tomato (Pst). Two allelic lecrk-I.9 knock-out mutants showed decreased resistance to Pst. Conversely, over-expression of LecRK-I.9 led to increased resistance to Pst. The analysis of defence gene expression suggests an alteration of both the salicylic acid (SA) and jasmonic acid (JA) signalling pathways. In particular, LecRK-I.9 expression during plant-pathogen interaction was dependent on COI1 (CORONATINE INSENSITIVE 1) and JAR1 (JASMONATE RESISTANT 1) components, and JA-responsive transcription factors (TFs) showed altered levels of expression in plants over-expressing LecRK-I.9. A similar misregulation of these TFs was obtained by JA treatment. This study identified LecRK-I.9 as necessary for full resistance to Pst and demonstrated its involvement in the control of defence against pathogens through a regulation of JA signalling components. The role of LecRK-I.9 is discussed with regard to the potential molecular mechanisms linking JA signalling to cell wall damage and/or eATP perception.

  1. A Brassica napus PHT1 phosphate transporter, BnPht1;4, promotes phosphate uptake and affects roots architecture of transgenic Arabidopsis.

    PubMed

    Ren, Feng; Zhao, Cai-Zhi; Liu, Chun-Sen; Huang, Ke-Lin; Guo, Qian-Qian; Chang, Li-Li; Xiong, Huan; Li, Xue-Bao

    2014-12-01

    Phosphorus (P) is one of the essential nutrient elements for plant development. In this work, BnPht1;4 gene, encoding a phosphate transporter of PHT1 family, was isolated from Brassica napus. BnPht1;4 possesses the major characteristic of PHT1 high-affinity Pi transporters in plants, such as plasma-membrane localization and 12 transmembrane-spanning domains. Quantitative reverse-transcription PCR analysis and promoter activity assay showed BnPht1;4 was inert in plants under Pi sufficient conditions. However, expression of this gene was remarkably enhanced in roots under Pi deficient conditions. Interestingly, under low Pi conditions, its promoter activity is impaired in tips of elongated roots, suggesting that the high-affinity Pi transporter may be not involved in low Pi response at root tip area. The experimental results also indicated that BnPht1;4 induction by Pi deficiency is dependent on the existence of sugar. In 35S:BnPht1;4 transgenic Arabidopsis, the increase of Pi availability resulted in the change of root architecture under Pi deficient conditions, showing longer primary roots and lower lateral root density than that of wild type. By cis-element analysis, two P1BS and two W-box elements were found in BnPht1;4 promoter. Yeast one-hybrid assay indicated that PHR1 could bind to the BnPht1;4 promoter. P1BS elements in BnPht1;4 promoter are essential for BnPht1;4 induction in Pi starvation response. Furthermore, WRKY75 could bind to the BnPht1;4 promoter, in which W-box elements are important for this binding. These results indicated BnPht1;4 may be dually controlled by two family regulators under low Pi responses. Thus, our data on the regulative mechanism of high-affinity Pi transporter in Pi starvation response will be valuable for B. napus molecular agriculture.

  2. Neutralisation of a single voltage sensor affects gating determinants in all four pore-forming S6 segments of Ca(V)1.2: a cooperative gating model.

    PubMed

    Beyl, Stanislav; Depil, Katrin; Hohaus, Annette; Stary-Weinzinger, Anna; Linder, Tobias; Timin, Eugen; Hering, Steffen

    2012-10-01

    Voltage sensors trigger the closed-open transitions in the pore of voltage-gated ion channels. To probe the transmission of voltage sensor signalling to the channel pore of Ca(V)1.2, we investigated how elimination of positive charges in the S4 segments (charged residues were replaced by neutral glutamine) modulates gating perturbations induced by mutations in pore-lining S6 segments. Neutralisation of all positively charged residues in IIS4 produced a functional channel (IIS4(N)), while replacement of the charged residues in IS4, IIIS4 and IVS4 segments resulted in nonfunctional channels. The IIS4(N) channel displayed activation kinetics similar to wild type. Mutations in a highly conserved structure motif on S6 segments ("GAGA ring": G432W in IS6, A780T in IIS6, G1193T in IIIS6 and A1503G in IVS6) induce strong left-shifted activation curves and decelerated channel deactivation kinetics. When IIS4(N) was combined with these mutations, the activation curves were shifted back towards wild type and current kinetics were accelerated. In contrast, 12 other mutations adjacent to the GAGA ring in IS6-IVS6, which also affect activation gating, were not rescued by IIS4(N). Thus, the rescue of gating distortions in segments IS6-IVS6 by IIS4(N) is highly position-specific. Thermodynamic cycle analysis supports the hypothesis that IIS4 is energetically coupled with the distantly located GAGA residues. We speculate that conformational changes caused by neutralisation of IIS4 are not restricted to domain II (IIS6) but are transmitted to gating structures in domains I, III and IV via the GAGA ring.

  3. Arabidopsis hybrid speciation processes

    PubMed Central

    Schmickl, Roswitha; Koch, Marcus A.

    2011-01-01

    The genus Arabidopsis provides a unique opportunity to study fundamental biological questions in plant sciences using the diploid model species Arabidopsis thaliana and Arabidopsis lyrata. However, only a few studies have focused on introgression and hybrid speciation in Arabidopsis, although polyploidy is a common phenomenon within this genus. More recently, there is growing evidence of significant gene flow between the various Arabidopsis species. So far, we know Arabidopsis suecica and Arabidopsis kamchatica as fully stabilized allopolyploid species. Both species evolved during Pleistocene glaciation and deglaciation cycles in Fennoscandinavia and the amphi-Beringian region, respectively. These hybrid studies were conducted either on a phylogeographic scale or reconstructed experimentally in the laboratory. In our study we focus at a regional and population level. Our research area is located in the foothills of the eastern Austrian Alps, where two Arabidopsis species, Arabidopsis arenosa and A. lyrata ssp. petraea, are sympatrically distributed. Our hypothesis of genetic introgression, migration, and adaptation to the changing environment during the Pleistocene has been confirmed: We observed significant, mainly unidirectional gene flow between the two species, which has given rise to the tetraploid A. lyrata. This cytotype was able to escape from the narrow ecological niche occupied by diploid A. lyrata ssp. petraea on limestone outcrops by migrating northward into siliceous areas, leaving behind a trail of genetic differentiation. PMID:21825128

  4. 1,2-Diphenylhydrazine

    Integrated Risk Information System (IRIS)

    1,2 - Diphenylhydrazine ; CASRN 122 - 66 - 7 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcin

  5. 1,2-Dibromoethane

    Integrated Risk Information System (IRIS)

    EPA 635 / R - 04 / 067 www.epa.gov / iris TOXICOLOGICAL REVIEW OF 1,2 - DIBROMOETHANE ( CAS No . 106 - 93 - 4 ) In Support of Summary Information on the Integrated Risk Information System ( IRIS ) June 2004 U.S . Environmental Protection Agency Washington , DC DISCLAIMER This document has been revie

  6. 1,2-Dichloropropane

    Integrated Risk Information System (IRIS)

    1,2 - Dichloropropane ; CASRN 78 - 87 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinoge

  7. 1,2-Dichlorobenzene

    Integrated Risk Information System (IRIS)

    1,2 - Dichlorobenzene ; CASRN 95 - 50 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinoge

  8. 1,2-Dichloroethane

    Integrated Risk Information System (IRIS)

    1,2 - Dichloroethane ; CASRN 107 - 06 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinoge

  9. The Arabidopsis Circadian System

    PubMed Central

    McClung, C. Robertson; Salomé, Patrice A.; Michael, Todd P.

    2002-01-01

    Rhythms with periods of approximately 24 hr are widespread in nature. Those that persist in constant conditions are termed circadian rhythms and reflect the activity of an endogenous biological clock. Plants, including Arabidopsis, are richly rhythmic. Expression analysis, most recently on a genomic scale, indicates that the Arabidopsis circadian clock regulates a number of key metabolic pathways and stress responses. A number of sensitive and high-throughput assays have been developed to monitor the Arabidopsis clock. These assays have facilitated the identification of components of plant circadian systems through genetic and molecular biological studies. Although much remains to be learned, the framework of the Arabidopsis circadian system is coming into focus. Dedication This review is dedicated to the memory of DeLill Nasser, a wonderful mentor and an unwavering advocate of both Arabidopsis and circadian rhythms research. PMID:22303209

  10. Arabidopsis BPM proteins function as substrate adaptors to a cullin3-based E3 ligase to affect fatty acid metabolism in plants.

    PubMed

    Chen, Liyuan; Lee, Joo Hyun; Weber, Henriette; Tohge, Takayuki; Witt, Sandra; Roje, Sanja; Fernie, Alisdair R; Hellmann, Hanjo

    2013-06-01

    Regulation of transcriptional processes is a critical mechanism that enables efficient coordination of the synthesis of required proteins in response to environmental and cellular changes. Transcription factors require accurate activity regulation because they play a critical role as key mediators assuring specific expression of target genes. In this work, we show that cullin3-based E3 ligases have the potential to interact with a broad range of ethylene response factor (ERF)/APETALA2 (AP2) transcription factors, mediated by Math-BTB/POZ (for Meprin and TRAF [tumor necrosis factor receptor associated factor] homolog)-Broad complex, Tramtrack, Bric-a-brac/Pox virus and Zinc finger) proteins. The assembly with an E3 ligase causes degradation of their substrates via the 26S proteasome, as demonstrated for the wrinkled1 ERF/AP2 protein. Furthermore, loss of Math-BTB/POZ proteins widely affects plant development and causes altered fatty acid contents in mutant seeds. Overall, this work demonstrates a link between fatty acid metabolism and E3 ligase activities in plants and establishes CUL3-based E3 ligases as key regulators in transcriptional processes that involve ERF/AP2 family members.

  11. Tomato Transcription Factors Pti4, Pti5, and Pti6 Activate Defense Responses When Expressed in Arabidopsis

    PubMed Central

    Gu, Yong-Qiang; Wildermuth, Mary C.; Chakravarthy, Suma; Loh, Ying-Tsu; Yang, Caimei; He, Xiaohua; Han, Yu; Martin, Gregory B.

    2002-01-01

    The Pti4, Pti5, and Pti6 proteins from tomato were identified based on their interaction with the product of the Pto disease resistance gene, a Ser-Thr protein kinase. They belong to the ethylene-response factor (ERF) family of plant-unique transcription factors and bind specifically to the GCC-box cis element present in the promoters of many pathogenesis-related (PR) genes. Here, we show that these tomato ERFs are localized to the nucleus and function in vivo as transcription activators that regulate the expression of GCC box–containing PR genes. Expression of Pti4, Pti5, or Pti6 in Arabidopsis activated the expression of the salicylic acid–regulated genes PR1 and PR2. Expression of jasmonic acid– and ethylene-regulated genes, such as PR3, PR4, PDF1.2, and Thi2.1, was affected differently by each of the three tomato ERFs, with Arabidopsis-Pti4 plants having very high levels of PDF1.2 transcripts. Exogenous application of salicylic acid to Arabidopsis-Pti4 plants suppressed the increased expression of PDF1.2 but further stimulated PR1 expression. Arabidopsis plants expressing Pti4 displayed increased resistance to the fungal pathogen Erysiphe orontii and increased tolerance to the bacterial pathogen Pseudomonas syringae pv tomato. These results indicate that Pti4, Pti5, and Pti6 activate the expression of a wide array of PR genes and play important and distinct roles in plant defense. PMID:11971137

  12. Copper(I) and nickel(II) complexes with 1:1 vs. 1:2 coordination of ferrocenyl hydrazone ligands: do the geometry and composition of complexes affect DNA binding/cleavage, protein binding, antioxidant and cytotoxic activities?

    PubMed

    Krishnamoorthy, Paramasivam; Sathyadevi, Palanisamy; Butorac, Rachel R; Cowley, Alan H; Bhuvanesh, Nattamai S P; Dharmaraj, Nallasamy

    2012-04-21

    A new series of geometrically different complexes containing ferrocenyl hydrazone ligands were synthesised by reacting suitable precursor complex [MCl(2)(PPh(3))(2)] with the ligands HL(1) or HL(2) (where M = Cu(II) or Ni(II); HL(1) = [Cp(2)Fe(CH=N-NH-CO-C(6)H(5))] (1) and HL(2) = [Cp(2)Fe(CH=N-NH-CO-C(5)H(4)N)]) (2). The new complexes of the composition [Cu(L(1))(PPh(3))(2)], (3) [Cu(L(2))(PPh(3))(2)] (4), [Ni(L(1))(2)] (5) and [Ni(L(2))(2)] (6) were characterised by various spectral studies. Among them, complexes 3 and 5 characterised by single crystal X-ray diffraction showed a distorted tetrahedral structure for the former with 1:1 metal-ligand stoichiometry, but a distorted square planar geometry with 1:2 metal-ligand stoichiometry in the case of the latter. Systematic biological investigations like DNA binding, DNA cleavage, protein binding, free radical scavenging and cytotoxicity activities were carried out using all the synthesised compounds and the results obtained were explained on the basis of structure-activity relationships. The binding constant (K(b)) values of the synthesised compounds are found to be in the order of magnitude 10(3)-10(5) M(-1) and also they exhibit significant cleavage of supercoiled (SC) pUC19 DNA in the presence of H(2)O(2) as co-oxidant. The conformational changes of bovine serum albumin (BSA) upon binding with the above complexes were also studied. In addition, concentration dependent free radical scavenging potential of all the synthesised compounds (1-6) was also carried out under in vitro conditions. Assays on the cytotoxicity of the above complexes against HeLa and A431 tumor cells and NIH 3T3 normal cells were also carried out.

  13. Plastidial Glycolytic Glyceraldehyde-3-Phosphate Dehydrogenase Is an Important Determinant in the Carbon and Nitrogen Metabolism of Heterotrophic Cells in Arabidopsis.

    PubMed

    Anoman, Armand D; Muñoz-Bertomeu, Jesús; Rosa-Téllez, Sara; Flores-Tornero, María; Serrano, Ramón; Bueso, Eduardo; Fernie, Alisdair R; Segura, Juan; Ros, Roc

    2015-11-01

    This study functionally characterizes the Arabidopsis (Arabidopsis thaliana) plastidial glycolytic isoforms of glyceraldehyde-3-phosphate dehydrogenase (GAPCp) in photosynthetic and heterotrophic cells. We expressed the enzyme in gapcp double mutants (gapcp1gapcp2) under the control of photosynthetic (Rubisco small subunit RBCS2B [RBCS]) or heterotrophic (phosphate transporter PHT1.2 [PHT]) cell-specific promoters. Expression of GAPCp1 under the control of RBCS in gapcp1gapcp2 had no significant effect on the metabolite profile or growth in the aerial part (AP). GAPCp1 expression under the control of the PHT promoter clearly affected Arabidopsis development by increasing the number of lateral roots and having a major effect on AP growth and metabolite profile. Our results indicate that GAPCp1 is not functionally important in photosynthetic cells but plays a fundamental role in roots and in heterotrophic cells of the AP. Specifically, GAPCp activity may be required in root meristems and the root cap for normal primary root growth. Transcriptomic and metabolomic analyses indicate that the lack of GAPCp activity affects nitrogen and carbon metabolism as well as mineral nutrition and that glycerate and glutamine are the main metabolites responding to GAPCp activity. Thus, GAPCp could be an important metabolic connector of glycolysis with other pathways, such as the phosphorylated pathway of serine biosynthesis, the ammonium assimilation pathway, or the metabolism of γ-aminobutyrate, which in turn affect plant development.

  14. Plastidial Glycolytic Glyceraldehyde-3-Phosphate Dehydrogenase Is an Important Determinant in the Carbon and Nitrogen Metabolism of Heterotrophic Cells in Arabidopsis1

    PubMed Central

    Anoman, Armand D.; Muñoz-Bertomeu, Jesús; Rosa-Téllez, Sara; Flores-Tornero, María; Serrano, Ramón; Bueso, Eduardo; Fernie, Alisdair R.; Segura, Juan; Ros, Roc

    2015-01-01

    This study functionally characterizes the Arabidopsis (Arabidopsis thaliana) plastidial glycolytic isoforms of glyceraldehyde-3-phosphate dehydrogenase (GAPCp) in photosynthetic and heterotrophic cells. We expressed the enzyme in gapcp double mutants (gapcp1gapcp2) under the control of photosynthetic (Rubisco small subunit RBCS2B [RBCS]) or heterotrophic (phosphate transporter PHT1.2 [PHT]) cell-specific promoters. Expression of GAPCp1 under the control of RBCS in gapcp1gapcp2 had no significant effect on the metabolite profile or growth in the aerial part (AP). GAPCp1 expression under the control of the PHT promoter clearly affected Arabidopsis development by increasing the number of lateral roots and having a major effect on AP growth and metabolite profile. Our results indicate that GAPCp1 is not functionally important in photosynthetic cells but plays a fundamental role in roots and in heterotrophic cells of the AP. Specifically, GAPCp activity may be required in root meristems and the root cap for normal primary root growth. Transcriptomic and metabolomic analyses indicate that the lack of GAPCp activity affects nitrogen and carbon metabolism as well as mineral nutrition and that glycerate and glutamine are the main metabolites responding to GAPCp activity. Thus, GAPCp could be an important metabolic connector of glycolysis with other pathways, such as the phosphorylated pathway of serine biosynthesis, the ammonium assimilation pathway, or the metabolism of γ-aminobutyrate, which in turn affect plant development. PMID:26134167

  15. Open-System Magma Reservoir Affects Gas Segregation, Vesiculation, Fragmentation and Lava/Pyroclast Dispersal During the 1.2 km-deep 2007-2010 Submarine Eruption at West Mata Volcano

    NASA Astrophysics Data System (ADS)

    Rubin, K. H.; Clague, D. A.; Embley, R. W.; Hellebrand, E.; Soule, S. A.; Resing, J.

    2014-12-01

    West Mata, a small, active rear-arc volcano in the NE Lau Basin, erupts crystal and gas rich boninite magma. Eruptions were observed at the summit (1.2 km water depth) during 5 ROV Jason dives in 2009 (the deepest erupting submarine volcano observed to date). Subsequent ROV and ship-based bathymetric mapping revealed that a pit crater formed and the summit eruption ceased in 2010, with roughly simultaneous eruptions along the SW rift zone. During the summit eruption, a combination of water depth, H2O-CO2-rich and high crystallinity magma, a split in the conduit to feed two vent sites, and waxing/waning magma supply led to a range of effusive/explosive eruption styles and volcanic deposit types. The 2-3 vent Hades cluster and the lone Prometheus vent had different eruption characteristics. Petrographic, petrologic and geochemical studies of erupted products indicate a change in magma composition in time and space over a period of 3.5 yrs, suggesting a small, open-system magma reservoir within the volcano. Prometheus (1174m depth) produced mostly pyroclastic material during our observations (e.g., highly vesicular glowing fluidal ejecta that cooled in the water column and rounded recycled dense clasts), but sampling and 210Po radiometric dating show that several months prior pillowed lava flows, subsequently covered with cm-sized pyroclasts, had flowed >50m from the vent. In contrast, vents at Hades (1200m depth) cycled between lava production and vigorous degassing, 10-20m high fire fountains and bursts of glowing lava-skinned bubbles, the products of which froze/broke in the water column, forming unstable cones of spatter and scoria near the vents. We hypothesize that bubbles collapse rather than form lava balloons because of skin brittleness (from high crystal content) and hydrostatic pressure. Clast settling times and patterns suggest >100m water column rise height for 10+ cm-sized fragments. Pillow flows were also observed to be issuing from the base of the

  16. Evaluation of processes affecting 1,2-dibromo-3-chloropropane (DBCP) concentrations in ground water in the eastern San Joaquin Valley, California : analysis of chemical data and ground-water flow and transport simulations

    USGS Publications Warehouse

    Burow, Karen R.; Panshin, Sandra Y.; Dubrovsky, Neil H.; Vanbrocklin, David; Fogg, Graham E.

    1999-01-01

    A conceptual two-dimensional numerical flow and transport modeling approach was used to test hypotheses addressing dispersion, transformation rate, and in a relative sense, the effects of ground- water pumping and reapplication of irrigation water on DBCP concentrations in the aquifer. The flow and transport simulations, which represent hypothetical steady-state flow conditions in the aquifer, were used to refine the conceptual understanding of the aquifer system rather than to predict future concentrations of DBCP. Results indicate that dispersion reduces peak concentrations, but this process alone does not account for the apparent decrease in DBCP concentrations in ground water in the eastern San Joaquin Valley. Ground-water pumping and reapplication of irrigation water may affect DBCP concentrations to the extent that this process can be simulated indirectly using first-order decay. Transport simulation results indicate that the in situ 'effective' half-life of DBCP caused by processes other than dispersion and transformation to BAA could be on the order of 6 years.

  17. Cysteine-Generated Sulfide in the Cytosol Negatively Regulates Autophagy and Modulates the Transcriptional Profile in Arabidopsis[W

    PubMed Central

    Álvarez, Consolación; García, Irene; Moreno, Inmaculada; Pérez-Pérez, María Esther; Crespo, José L.; Romero, Luis C.; Gotor, Cecilia

    2012-01-01

    In Arabidopsis thaliana, DES1 is the only identified l-Cysteine desulfhydrase located in the cytosol, and it is involved in the degradation of cysteine and the concomitant production of H2S in this cell compartment. Detailed characterization of the T-DNA insertion mutants des1-1 and des1-2 has provided insight into the role of sulfide metabolically generated in the cytosol as a signaling molecule. Mutations of L-CYS DESULFHYDRASE 1 (DES1) impede H2S generation in the Arabidopsis cytosol and strongly affect plant metabolism. Senescence-associated vacuoles are detected in mesophyll protoplasts of des1 mutants. Additionally, DES1 deficiency promotes the accumulation and lipidation of the ATG8 protein, which is associated with the process of autophagy. The transcriptional profile of the des1-1 mutant corresponds to its premature senescence and autophagy-induction phenotypes, and restoring H2S generation has been shown to eliminate the phenotypic defects of des1 mutants. Moreover, sulfide is able to reverse ATG8 accumulation and lipidation, even in wild-type plants when autophagy is induced by carbon starvation, suggesting a general effect of sulfide on autophagy regulation that is unrelated to sulfur or nitrogen limitation stress. Our results suggest that cysteine-generated sulfide in the cytosol negatively regulates autophagy and modulates the transcriptional profile of Arabidopsis. PMID:23144183

  18. A tetratricopeptide repeat domain-containing protein SSR1 located in mitochondria is involved in root development and auxin polar transport in Arabidopsis.

    PubMed

    Zhang, Min; Wang, Cuiping; Lin, Qingfang; Liu, Aihua; Wang, Ting; Feng, Xuanjun; Liu, Jie; Han, Huiling; Ma, Yan; Bonea, Diana; Zhao, Rongmin; Hua, Xuejun

    2015-08-01

    Auxin polar transport mediated by a group of Pin-formed (PIN) transporters plays important roles in plant root development. However, the mechanism underlying the PIN expression and targeting in response to different developmental and environmental stimuli is still not fully understood. Here, we report a previously uncharacterized gene SSR1, which encodes a mitochondrial protein with tetratricopeptide repeat (TPR) domains, and show its function in root development in Arabidopsis thaliana. In ssr1-2, a SSR1 knock-out mutant, the primary root growth was dramatically inhibited due to severely impaired cell proliferation and cell elongation. Significantly lowered level of auxin was found in ssr1-2 roots by auxin measurement and was further supported by reduced expression of DR5-driven reporter gene. As a result, the maintenance of the root stem cell niche is compromised in ssr1-2. It is further revealed that the expression level of several PIN proteins, namely, PIN1, PIN2, PIN3, PIN4 and PIN7, were markedly reduced in ssr1-2 roots. In particular, we showed that the reduced protein level of PIN2 on cell membrane in ssr1-2 is due to impaired retrograde trafficking, possibly resulting from a defect in retromer sorting system, which destines PIN2 for degradation in vacuoles. In conclusion, our results indicated that SSR1 is functioning in root development in Arabidopsis, possibly by affecting PIN protein expression and subcellular targeting.

  19. Starch Metabolism in Arabidopsis

    PubMed Central

    Streb, Sebastian; Zeeman, Samuel C.

    2012-01-01

    Starch is the major non-structural carbohydrate in plants. It serves as an important store of carbon that fuels plant metabolism and growth when they are unable to photosynthesise. This storage can be in leaves and other green tissues, where it is degraded during the night, or in heterotrophic tissues such as roots, seeds and tubers, where it is stored over longer time periods. Arabidopsis accumulates starch in many of its tissues, but mostly in its leaves during the day. It has proven to be a powerful genetic system for discovering how starch is synthesised and degraded, and new proteins and processes have been discovered. Such work has major significance for our starch crops, whose yield and quality could be improved by the application of this knowledge. Research into Arabidopsis starch metabolism has begun to reveal how its daily turnover is integrated into the rest of metabolism and adapted to the environmental conditions. Furthermore, Arabidopsis mutant lines deficient in starch metabolism have been employed as tools to study other biological processes ranging from sugar sensing to gravitropism and flowering time control. This review gives a detailed account of the use of Arabidopsis to study starch metabolism. It describes the major discoveries made and presents an overview of our understanding today, together with some as-yet unresolved questions. PMID:23393426

  20. A R2R3-MYB transcription factor, GmMYB12B2, affects the expression levels of flavonoid biosynthesis genes encoding key enzymes in transgenic Arabidopsis plants.

    PubMed

    Li, Xiao-Wei; Li, Jing-Wen; Zhai, Ying; Zhao, Yan; Zhao, Xu; Zhang, Hai-Jun; Su, Lian-Tai; Wang, Ying; Wang, Qing-Yu

    2013-12-10

    Isoflavones play diverse roles in plant-microbe interactions and are potentially important for human nutrition and health. To study the regulation of isoflavonoid synthesis in soybean, the R2R3-MYB transcription factor GmMYB12B2 was isolated and characterized. Yeast expression experiments demonstrated that GmMYB12B2 showed transcriptional activity. GmMYB12B2 was localized in the nucleus when it was transiently expressed in onion epidermal cells. Real-time quantitative PCR analysis revealed that GmMYB12B2 transcription was increased in roots and mature seeds compared with other organs. The gene expression level in immature embryos was consistent with the accumulation of isoflavones. CHS8 is a key enzyme in plant flavonoid biosynthesis. Transient expression experiments in soybean calli demonstrated that CHS8 was regulated by GmMYB12B2 and produced more fluorescence. The expression levels of some key enzymes in flavonoid biosynthesis were examined in transgenic Arabidopsis lines. The results showed that the expression levels of PAL1, CHS and FLS in transgenic plants were significantly higher than those in wild type plants. However, the expression level of DFR was lower, and the expression levels of CHI, F3H and F3'H were the same in all lines. GmMYB12B2 expression caused a constitutive increase in the accumulation of flavonoids in transgenic Arabidopsis lines compared with wild type plants.

  1. cis-1,2-Dichloroethylene

    Integrated Risk Information System (IRIS)

    EPA / 635 / R - 09 / 006 F www.epa.gov / iris TOXICOLOGICAL REVIEW OF cis - 1,2 - DICHLOROETHYLENE and trans - 1,2 - DICHLOROETHYLENE ( CAS Nos . cis : 156 - 59 - 2 ; trans : 156 - 60 - 5 ; mixture : 540 - 59 - 0 ) In Support of Summary Information on the Integrated Risk Information System ( IRIS )

  2. Effect of cultural conditions on the seed-to-seed growth of Arabidopsis and Cardamine - A study of growth rates and reproductive development as affected by test tube seals

    NASA Technical Reports Server (NTRS)

    Hoshizaki, T.

    1982-01-01

    The effects of test tube seals on the growth, flowering, and seed pod formation of Arabidopsis thaliana (L.) Heynh., mouse ear cress, and Cardamine oligosperma Nutt, bitter cress, are studied in order to assess the conditions used in weightlessness experiments. Among other results, it is found that the growth (height) and flowering (date of bud appearance) were suppressed in mouse ear cress in tubes sealed with Saran. Seed pod formation which occurred by day 45 in open-to-air controls, was still lacking in the sealed plants even up to day 124. The growth and flowering of bitter cress were also suppressed by the Saran seal, although up to day 55 the Saran-sealed plants were taller. It is suggested that atmospheric composition was the cause of the suppression of growth, flowering, and seed pod development in these plants, since the mouse ear cress renewed their growth and then set seed pods after the Saran seal was ruptured.

  3. Targeted Enhancement of Glutamate-to-γ-Aminobutyrate Conversion in Arabidopsis Seeds Affects Carbon-Nitrogen Balance and Storage Reserves in a Development-Dependent Manner1[W][OA

    PubMed Central

    Fait, Aaron; Nesi, Adriano Nunes; Angelovici, Ruthie; Lehmann, Martin; Pham, Phuong Anh; Song, Luhua; Haslam, Richard P.; Napier, Johnathan A.; Galili, Gad; Fernie, Alisdair R.

    2011-01-01

    In seeds, glutamate decarboxylase (GAD) operates at the metabolic nexus between carbon and nitrogen metabolism by catalyzing the unidirectional decarboxylation of glutamate to form γ-aminobutyric acid (GABA). To elucidate the regulatory role of GAD in seed development, we generated Arabidopsis (Arabidopsis thaliana) transgenic plants expressing a truncated GAD from Petunia hybrida missing the carboxyl-terminal regulatory Ca2+-calmodulin-binding domain under the transcriptional regulation of the seed maturation-specific phaseolin promoter. Dry seeds of the transgenic plants accumulated considerable amounts of GABA, and during desiccation the content of several amino acids increased, although not glutamate or proline. Dry transgenic seeds had higher protein content than wild-type seeds but lower amounts of the intermediates of glycolysis, glycerol and malate. The total fatty acid content of the transgenic seeds was 50% lower than in the wild type, while acyl-coenzyme A accumulated in the transgenic seeds. Labeling experiments revealed altered levels of respiration in the transgenic seeds, and fractionation studies indicated reduced incorporation of label in the sugar and lipid fractions extracted from transgenic seeds. Comparative transcript profiling of the dry seeds supported the metabolic data. Cellular processes up-regulated at the transcript level included the tricarboxylic acid cycle, fatty acid elongation, the shikimate pathway, tryptophan metabolism, nitrogen-carbon remobilization, and programmed cell death. Genes involved in the regulation of germination were similarly up-regulated. Taken together, these results indicate that the GAD-mediated conversion of glutamate to GABA during seed development plays an important role in balancing carbon and nitrogen metabolism and in storage reserve accumulation. PMID:21921115

  4. Mutant analysis, protein-protein interactions and subcellular localization of the Arabidopsis B sister (ABS) protein.

    PubMed

    Kaufmann, Kerstin; Anfang, Nicole; Saedler, Heinz; Theissen, Günter

    2005-09-01

    Recently, close relatives of class B floral homeotic genes, termed B(sister) genes, have been identified in both angiosperms and gymnosperms. In contrast to the B genes themselves, B(sister) genes are exclusively expressed in female reproductive organs, especially in the envelopes or integuments surrounding the ovules. This suggests an important ancient function in ovule or seed development for B(sister) genes, which has been conserved for about 300 million years. However, investigation of the first loss-of-function mutant for a B(sister) gene (ABS/TT16 from Arabidopsis) revealed only a weak phenotype affecting endothelium formation. Here, we present an analysis of two additional mutant alleles, which corroborates this weak phenotype. Transgenic plants that ectopically express ABS show changes in the growth and identity of floral organs, suggesting that ABS can interact with floral homeotic proteins. Yeast-two-hybrid and three-hybrid analyses indicated that ABS can form dimers with SEPALLATA (SEP) floral homeotic proteins and multimeric complexes that also include the AGAMOUS-like proteins SEEDSTICK (STK) or SHATTERPROOF1/2 (SHP1, SHP2). These data suggest that the formation of multimeric transcription factor complexes might be a general phenomenon among MIKC-type MADS-domain proteins in angiosperms. Heterodimerization of ABS with SEP3 was confirmed by gel retardation assays. Fusion proteins tagged with CFP (Cyan Fluorescent Protein) and YFP (Yellow Fluorescent Protein) in Arabidopsis protoplasts showed that ABS is localized in the nucleus. Phylogenetic analysis revealed the presence of a structurally deviant, but closely related, paralogue of ABS in the Arabidopsis genome. Thus the evolutionary developmental genetics of B(sister) genes can probably only be understood as part of a complex and redundant gene network that may govern ovule formation in a conserved manner, which has yet to be fully explored.

  5. [Imprinting genes and it's expression in Arabidopsis].

    PubMed

    Zhang, Hong-Yu; Xu, Pei-Zhou; Yang, Hua; Wu, Xian-Jun

    2010-07-01

    Genomic imprinting refers to the phenomenon that the expression of a gene copy depends on its parent of origin. The Arabidopsis imprinted FIS (Fertilisation-independent seed) genes, mea, fis2, and fie, play essential roles in the repression of central cell and the regulation of early endosperm development. fis mutants display two phenotypes: autonomous diploid endosperm development when fertilization is absent and un-cellularised endosperm formation when fertilization occurs. The FIS Polycomb protein complex including the above three FIS proteins catalyzes histone H3 K27 tri-methylation on target loci. DME (DEMETER), a DNA glycosylase, and AtMET1 (Methyltransferase1), a DNA methyltransferase, are involved in the regulation of imprinted expression of both mea and fis2. This review summarizes the studies on the Arabidopsis imprinted FIS genes and other related genes. Recent works have shown that the insertion of transposons may affect nearby gene expression, which may be the main driving force behind the evolution of genomic imprinting. This summary covers the achievements on Arabidopsis imprinted genes will provide important information for studies on genomic imprinting in the important crops such as rice and maize.

  6. Sodium Influx and Accumulation in Arabidopsis1

    PubMed Central

    Essah, Pauline A.; Davenport, Romola; Tester, Mark

    2003-01-01

    Arabidopsis is frequently used as a genetic model in plant salt tolerance studies, however, its physiological responses to salinity remain poorly characterized. This study presents a characterization of initial Na+ entry and the effects of Ca2+ on plant growth and net Na+ accumulation in saline conditions. Unidirectional Na+ influx was measured carefully using very short influx times in roots of 12-d-old seedlings. Influx showed three components with distinct sensitivities to Ca2+, diethylpyrocarbonate, and osmotic pretreatment. Pharmacological agents and known mutants were used to test the contribution of different transport pathways to Na+ uptake. Influx was stimulated by 4-aminobutyric acid and glutamic acid; was inhibited by flufenamate, quinine, and cGMP; and was insensitive to modulators of K+ and Ca2+ channels. Influx did not differ from wild type in akt1 and hkt1 insertional mutants. These data suggested that influx was mediated by several different types of nonselective cation channels. Na+ accumulation in plants grown in 50 mm NaCl was strongly reduced by increasing Ca2+ activity (from 0.05-3.0 mm), and plant survival was improved. However, plant biomass was not affected by shoot Na+ concentration, suggesting that in Arabidopsis Na+ toxicity is not dependent on shoot Na+ accumulation. These data suggest that Arabidopsis is a good model for investigation of Na+ transport, but may be of limited utility as a model for the study of Na+ toxicity. PMID:12970496

  7. A petal breakstrength meter for Arabidopsis abscission studies

    PubMed Central

    Lease, Kevin A; Cho, Sung Ki; Walker, John C

    2006-01-01

    Background Abscission is the regulated dropping of plant organs, such as leaves or flower petals. This process involves a break down of the cell wall between layers of cells in the abscission zone, causing the organ to become detached. The model plant Arabidopsis thaliana undergoes floral organ abscission. Various experimental methods have been used to study Arabidopsis floral organ abscission, including measuring the petal breakstrength, or the amount of force required to pull a petal from the receptacle. Petal breakstrength provides a quantitative insight into the physical integrity of the petal abscission zone. Results We developed a petal breakstrength meter that allows rapid data acquisition on a personal computer. We present the design of the device and show its utility in measuring Arabidopsis petal breakstrength for abscission studies. Conclusion This petal breakstrength meter should enable researchers to perform the petal breakstrength assay as a routine part of the characterization of environmental and genetic factors affecting abscission. PMID:16483376

  8. 1,1,2-Trichloroethane

    Integrated Risk Information System (IRIS)

    1,1,2 - Trichloroethane ; CASRN 79 - 00 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcino

  9. 1,2,4-Tribromobenzene

    Integrated Risk Information System (IRIS)

    1,2,4 - Tribromobenzene ; CASRN 615 - 54 - 3 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcin

  10. 1,1,2-Trichloropropane

    Integrated Risk Information System (IRIS)

    1,1,2 - Trichloropropane ; CASRN 598 - 77 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarci

  11. 1,2,3-Trichloropropane

    Integrated Risk Information System (IRIS)

    EPA / 635 / R - 08 / 010F www.epa.gov / iris TOXICOLOGICAL REVIEW OF 1,2,3 - TRICHLOROPROPANE ( CAS No . 96 - 18 - 4 ) In Support of Summary Information on the Integrated Risk Information System ( IRIS ) September 2009 U.S . Environmental Protection Agency Washington DC i DISCLAIMER This document ha

  12. trans-1,2-Dichloroethylene

    Integrated Risk Information System (IRIS)

    trans - 1,2 - Dichloroethylene ; CASRN 156 - 60 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for No

  13. 1,2,4-Trichlorobenzene

    Integrated Risk Information System (IRIS)

    1,2,4 - Trichlorobenzene ; CASRN 120 - 82 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarci

  14. 1,2-Epoxybutane (EBU)

    Integrated Risk Information System (IRIS)

    1,2 - Epoxybutane ( EBU ) ; CASRN 106 - 88 - 7 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarc

  15. ITN1, a novel gene encoding an ankyrin-repeat protein that affects the ABA-mediated production of reactive oxygen species and is involved in salt-stress tolerance in Arabidopsis thaliana.

    PubMed

    Sakamoto, Hikaru; Matsuda, Osamu; Iba, Koh

    2008-11-01

    Salt stress and abscisic acid (ABA) induce accumulation of reactive oxygen species (ROS) in plant cells. ROS not only act as second messengers for the activation of salt-stress responses, but also have deleterious effects on plant growth due to their cytotoxicity. Therefore, the timing and degree of activation of ROS-producing or ROS-scavenging enzymes must be tightly regulated under salt-stress conditions. We identified a novel locus of Arabidopsis, designated itn1 (increased tolerance to NaCl1), whose disruption leads to increased salt-stress tolerance in vegetative tissues. ITN1 encodes a transmembrane protein with an ankyrin-repeat motif that has been implicated in diverse cellular processes such as signal transduction. Comparative microarray analysis between wild-type and the itn1 mutant revealed that induction of genes encoding the ROS-producing NADPH oxidases (RBOHC and RBOHD) under salt-stress conditions was suppressed in the mutant. This suppression was accompanied by a corresponding reduction in ROS accumulation. The ABA-induced expression of RBOHC and RBOHD was also suppressed in the mutant, as was the case for RD29A, an ABA-inducible marker gene. However, the ABA-induced expression of another marker gene, RD22, was not impaired in the mutant. These results suggest that the itn1 mutation partially impairs ABA signaling pathways, possibly leading to the reduction in ROS accumulation under salt-stress conditions. We discuss the possible mechanisms underlying the salt-tolerant phenotype of the itn1 mutant.

  16. Type-f thioredoxins have a role in the short-term activation of carbon metabolism and their loss affects growth under short-day conditions in Arabidopsis thaliana

    PubMed Central

    Naranjo, Belén; Diaz-Espejo, Antonio; Lindahl, Marika; Cejudo, Francisco Javier

    2016-01-01

    Redox regulation plays a central role in the adaptation of chloroplast metabolism to light. Extensive biochemical analyses in vitro have identified f-type thioredoxins (Trxs) as the most important catalysts for light-dependent reduction and activation of the enzymes of the Calvin–Benson cycle. However, the precise function of type f Trxs in vivo and their impact on plant growth are still poorly known. To address this issue we have generated an Arabidopsis thaliana double knock-out mutant, termed trxf1f2, devoid of both f1 and f2 Trxs. Despite the essential function previously proposed for f-type Trxs, the visible phenotype of the trxf1f2 double mutant was virtually indistinguishable from the wild type when grown under a long-day photoperiod. However, the Trx f-deficient plants showed growth inhibition under a short-day photoperiod which was not rescued at high light intensity. The absence of f-type Trxs led to significantly lower photosynthetic electron transport rates and higher levels of non-photochemical energy quenching. Notably, the Trx f null mutant suffered from a shortage of photosystem I electron acceptors and delayed activation of carbon dioxide fixation following a dark–light transition. Two redox-regulated Calvin–Benson cycle enzymes, fructose 1,6-bisphosphatase (FBPase) and Rubisco activase, showed retarded and incomplete reduction in the double mutant upon illumination, compared with wild-type plants. These results show that the function of f-type Trxs in the rapid activation of carbon metabolism in response to light is not entirely compensated for by additional plastid redox systems, and suggest that these Trxs have an important role in the light adjustment of photosynthetic metabolism. PMID:26842981

  17. LaAP2L1, a heterosis-associated AP2/EREBP transcription factor of Larix, increases organ size and final biomass by affecting cell proliferation in Arabidopsis.

    PubMed

    Li, Ai; Zhou, Yanan; Jin, Chuan; Song, Wenqin; Chen, Chengbin; Wang, Chunguo

    2013-11-01

    In Larix and in some crops, heterosis is prevalent and has been widely used in breeding to produce excellent varieties. However, the molecular basis of heterosis in Larix remains ambiguous. LaAP2L1, a member of the AP2/EREBP transcription factor family, has been suggested to be involved in heterosis in Larix hybrids. Here, the function and regulation of LaAP2L1 were further explored. Overexpression of LaAP2L1 led to markedly enlarged organs and heterosis-like traits in Arabidopsis. Fresh weight of leaves was almost twice as great as in vector controls. Likewise, seed yield of 35S::LaAP2L1 individual plants was >200% greater than that of control plants. The enlarged organs and heterosis-like traits displayed by 35S::LaAP2L1 plants were mainly due to enhanced cell proliferation and prolonged growth duration. At the molecular level, LaAP2L1 upregulated the expression of ANT, EBP1, and CycD3;1 and inhibited the expression of ARGOS in 35S::LaAP2L1 plants, suggesting an important molecular role of LaAP2L1 in regulating plant organ development. These findings provide new insights into the formation of heterosis in woody plants and suggest that LaAP2L1 has potential applications in breeding high-yielding crops and energy plants. In addition, 50 AP2/EREBP transcription factors, including LaAP2L1, in Larix were identified by transcriptome sequencing, and phylogenetic analysis was conducted. This provided information that will be important in further revealing the functions of these transcription factors.

  18. Type-f thioredoxins have a role in the short-term activation of carbon metabolism and their loss affects growth under short-day conditions in Arabidopsis thaliana.

    PubMed

    Naranjo, Belén; Diaz-Espejo, Antonio; Lindahl, Marika; Cejudo, Francisco Javier

    2016-03-01

    Redox regulation plays a central role in the adaptation of chloroplast metabolism to light. Extensive biochemical analyses in vitro have identified f-type thioredoxins (Trxs) as the most important catalysts for light-dependent reduction and activation of the enzymes of the Calvin-Benson cycle. However, the precise function of type f Trxs in vivo and their impact on plant growth are still poorly known. To address this issue we have generated an Arabidopsis thaliana double knock-out mutant, termed trxf1f2, devoid of both f1 and f2 Trxs. Despite the essential function previously proposed for f-type Trxs, the visible phenotype of the trxf1f2 double mutant was virtually indistinguishable from the wild type when grown under a long-day photoperiod. However, the Trx f-deficient plants showed growth inhibition under a short-day photoperiod which was not rescued at high light intensity. The absence of f-type Trxs led to significantly lower photosynthetic electron transport rates and higher levels of non-photochemical energy quenching. Notably, the Trx f null mutant suffered from a shortage of photosystem I electron acceptors and delayed activation of carbon dioxide fixation following a dark-light transition. Two redox-regulated Calvin-Benson cycle enzymes, fructose 1,6-bisphosphatase (FBPase) and Rubisco activase, showed retarded and incomplete reduction in the double mutant upon illumination, compared with wild-type plants. These results show that the function of f-type Trxs in the rapid activation of carbon metabolism in response to light is not entirely compensated for by additional plastid redox systems, and suggest that these Trxs have an important role in the light adjustment of photosynthetic metabolism.

  19. Transgenic Arabidopsis Gene Expression System

    NASA Technical Reports Server (NTRS)

    Ferl, Robert; Paul, Anna-Lisa

    2009-01-01

    The Transgenic Arabidopsis Gene Expression System (TAGES) investigation is one in a pair of investigations that use the Advanced Biological Research System (ABRS) facility. TAGES uses Arabidopsis thaliana, thale cress, with sensor promoter-reporter gene constructs that render the plants as biomonitors (an organism used to determine the quality of the surrounding environment) of their environment using real-time nondestructive Green Fluorescent Protein (GFP) imagery and traditional postflight analyses.

  20. Arabidopsis gene expression patterns are altered during spaceflight

    NASA Astrophysics Data System (ADS)

    Paul, Anna-Lisa; Popp, Michael P.; Gurley, William B.; Guy, Charles; Norwood, Kelly L.; Ferl, Robert J.

    The exposure of Arabidopsis thaliana (Arabidopsis) plants to spaceflight environments results in differential gene expression. A 5-day mission on orbiter Columbia in 1999 (STS-93) carried transgenic Arabidopsis plants engineered with a transgene composed of the alcohol dehydrogenase (Adh) gene promoter linked to the β-Glucuronidase (GUS) reporter gene. The plants were used to evaluate the effects of spaceflight on gene expression patterns initially by using the Adh/GUS transgene to address specifically the possibility that spaceflight induces a hypoxic stress response (Paul, A.L., Daugherty, C.J., Bihn, E.A., Chapman, D.K., Norwood, K.L., Ferl, R.J., 2001. Transgene expression patterns indicate that spaceflight affects stress signal perception and transduction in arabidopsis, Plant Physiol. 126, 613-621). As a follow-on to the reporter gene analysis, we report here the evaluation of genome-wide patterns of native gene expression within Arabidopsis shoots utilizing the Agilent DNA array of 21,000 Arabidopsis genes. As a control for the veracity of the array analyses, a selection of genes was further characterized with quantitative Real-Time RT PCR (ABI - Taqman®). Comparison of the patterns of expression for arrays probed with RNA isolated from plants exposed to spaceflight compared to RNA isolated from ground control plants revealed 182 genes that were differentially expressed in response to the spaceflight mission by more than 4-fold, and of those only 50 genes were expressed at levels chosen to support a conservative change call. None of the genes that are hallmarks of hypoxic stress were induced to this level. However, genes related to heat shock were dramatically induced - but in a pattern and under growth conditions that are not easily explained by elevated temperatures. These gene expression data are discussed in light of current models for plant responses to the spaceflight environment and with regard to potential future spaceflight experiment

  1. A Homolog of Blade-On-Petiole 1 and 2 (BOP1/2) Controls Internode Length and Homeotic Changes of the Barley Inflorescence1[OPEN

    PubMed Central

    Taketa, Shin; Mascher, Martin; Yuo, Takahisa; Beier, Sebastian; Taudien, Stefan; Morgante, Michele

    2016-01-01

    Inflorescence architecture in small-grain cereals has a direct effect on yield and is an important selection target in breeding for yield improvement. We analyzed the recessive mutation laxatum-a (lax-a) in barley (Hordeum vulgare), which causes pleiotropic changes in spike development, resulting in (1) extended rachis internodes conferring a more relaxed inflorescence, (2) broadened base of the lemma awns, (3) thinner grains that are largely exposed due to reduced marginal growth of the palea and lemma, and (4) and homeotic conversion of lodicules into two stamenoid structures. Map-based cloning enforced by mapping-by-sequencing of the mutant lax-a locus enabled the identification of a homolog of BLADE-ON-PETIOLE1 (BOP1) and BOP2 as the causal gene. Interestingly, the recently identified barley uniculme4 gene also is a BOP1/2 homolog and has been shown to regulate tillering and leaf sheath development. While the Arabidopsis (Arabidopsis thaliana) BOP1 and BOP2 genes act redundantly, the barley genes contribute independent effects in specifying the developmental growth of vegetative and reproductive organs, respectively. Analysis of natural genetic diversity revealed strikingly different haplotype diversity for the two paralogous barley genes, likely affected by the respective genomic environments, since no indication for an active selection process was detected. PMID:27208226

  2. Expression of BvGLP-1 encoding a germin-like protein from sugar beet in Arabidopsis thaliana leads to resistance against phytopathogenic fungi.

    PubMed

    Knecht, Katrin; Seyffarth, Monique; Desel, Christine; Thurau, Tim; Sherameti, Irena; Lou, Binggan; Oelmüller, Ralf; Cai, Daguang

    2010-04-01

    Nematode (Heterodera schachtii) resistance in sugar beet (Beta vulgaris) is controlled by a single dominant resistance gene, Hs1(pro-1). BvGLP-1 was cloned from resistant sugar beet. The BvGLP-1 messenger (m)RNA is highly upregulated in the resistant plants after nematode infection, suggesting its role in the Hs1(pro-1) mediated resistance. BvGLP-1 exhibits sequence homology to a set of plant germin-like proteins (GLP), from which several have proved to be functional in plant basal or defense resistance against fungal pathogens. To test whether BvGLP-1 is also involved in the plant-fungus interaction, we transferred BvGLP-1 into Arabidopsis and challenged the transgenic plants with the pathogenic fungi Verticillium longisporum and Rhizoctonia solani as well as with the beneficial endophytic fungus Piriformospora indica. The expression of BvGLP-1 in Arabidopsis elevated the H(2)O(2) content and conferred significant resistance to V. longisporum and R. solani but did not affect the beneficial interaction with P. indica in seedlings. Microscopic observations revealed a dramatic reduction in the amount of hyphae of the pathogenic fungi on the root surface as well as of fungal mycelium developed inside the roots of transgenic Arabidopsis compared with wild-type plants. Molecular analysis demonstrated that the BvGLP-1 expression in Arabidopsis constitutively activates the expression of a subset of plant defense-related proteins such as PR-1 to PR-4 and PDF1.2 but not PDF2.1 and PDF2.3. In contrast, the PDF2.1 mRNA level was downregulated. These data suggest an important role of BvGLP-1 in establishment of plant defense responses, which follow specific signaling routes that diverge from those induced by the beneficial fungus.

  3. Possible Role of MADS AFFECTING FLOWERING 3 and B-BOX DOMAIN PROTEIN 19 in Flowering Time Regulation of Arabidopsis Mutants with Defects in Nonsense-Mediated mRNA Decay

    PubMed Central

    Nasim, Zeeshan; Fahim, Muhammad; Ahn, Ji Hoon

    2017-01-01

    Eukaryotic cells use nonsense-mediated mRNA decay (NMD) to clear aberrant mRNAs from the cell, thus preventing the accumulation of truncated proteins. In Arabidopsis, two UP-Frameshift (UPF) proteins, UPF1 and UPF3, play a critical role in NMD. Although deficiency of UPF1 and UPF3 leads to various developmental defects, little is known about the mechanism underlying the regulation of flowering time by NMD. Here, we showed that the upf1-5 and upf3-1 mutants had a late-flowering phenotype under long-day conditions and the upf1-5 upf3-1 double mutants had an additive effect in delaying flowering time. RNA sequencing of the upf mutants revealed that UPF3 exerted a stronger effect than UPF1 in the UPF-mediated regulation of flowering time. Among genes known to regulate flowering time, FLOWERING LOCUS C (FLC) mRNA levels increased (up to 8-fold) in upf mutants, as confirmed by qPCR. The upf1-5, upf3-1, and upf1-5 upf3-1 mutants responded to vernalization, suggesting a role of FLC in delayed flowering of upf mutants. Consistent with the high FLC transcript levels and delayed flowering in upf mutants, levels of FLOWERING LOCUS T (FT) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) mRNAs were reduced in the upf mutants. However, RNA-seq did not identify an aberrant FLC transcript containing a premature termination codon (PTC), suggesting that FLC is not a direct target in the regulation of flowering time by NMD. Among flowering time regulators that act in an FLC-dependent manner, we found that MAF3, NF-YA2, NF-YA5, and TAF14 showed increased transcript levels in upf mutants. We also found that BBX19 and ATC, which act in an FLC-independent manner, showed increased transcript levels in upf mutants. An aberrant transcript containing a PTC was identified from MAF3 and BBX19 and the levels of the aberrant transcripts increased in upf mutants. Taking these results together, we propose that the late-flowering phenotype of upf mutants is mediated by at least two different

  4. Possible Role of MADS AFFECTING FLOWERING 3 and B-BOX DOMAIN PROTEIN 19 in Flowering Time Regulation of Arabidopsis Mutants with Defects in Nonsense-Mediated mRNA Decay.

    PubMed

    Nasim, Zeeshan; Fahim, Muhammad; Ahn, Ji Hoon

    2017-01-01

    Eukaryotic cells use nonsense-mediated mRNA decay (NMD) to clear aberrant mRNAs from the cell, thus preventing the accumulation of truncated proteins. In Arabidopsis, two UP-Frameshift (UPF) proteins, UPF1 and UPF3, play a critical role in NMD. Although deficiency of UPF1 and UPF3 leads to various developmental defects, little is known about the mechanism underlying the regulation of flowering time by NMD. Here, we showed that the upf1-5 and upf3-1 mutants had a late-flowering phenotype under long-day conditions and the upf1-5 upf3-1 double mutants had an additive effect in delaying flowering time. RNA sequencing of the upf mutants revealed that UPF3 exerted a stronger effect than UPF1 in the UPF-mediated regulation of flowering time. Among genes known to regulate flowering time, FLOWERING LOCUS C (FLC) mRNA levels increased (up to 8-fold) in upf mutants, as confirmed by qPCR. The upf1-5, upf3-1, and upf1-5 upf3-1 mutants responded to vernalization, suggesting a role of FLC in delayed flowering of upf mutants. Consistent with the high FLC transcript levels and delayed flowering in upf mutants, levels of FLOWERING LOCUS T (FT) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) mRNAs were reduced in the upf mutants. However, RNA-seq did not identify an aberrant FLC transcript containing a premature termination codon (PTC), suggesting that FLC is not a direct target in the regulation of flowering time by NMD. Among flowering time regulators that act in an FLC-dependent manner, we found that MAF3, NF-YA2, NF-YA5, and TAF14 showed increased transcript levels in upf mutants. We also found that BBX19 and ATC, which act in an FLC-independent manner, showed increased transcript levels in upf mutants. An aberrant transcript containing a PTC was identified from MAF3 and BBX19 and the levels of the aberrant transcripts increased in upf mutants. Taking these results together, we propose that the late-flowering phenotype of upf mutants is mediated by at least two different

  5. Auxin polar transport in arabidopsis under simulated microgravity conditions - relevance to growth and development

    NASA Astrophysics Data System (ADS)

    Miyamoto, K.; Oka, M.; Yamamoto, R.; Masuda, Y.; Hoson, T.; Kamisaka, S.; Ueda, J.

    1999-01-01

    Activity of auxin polar transport in inflorescence axes of Arabidopsis thaliana grown under simulated microgravity conditions was studied in relation to the growth and development. Seeds were germinated and allowed to grow on an agar medium in test tubes on a horizontal clinostat. Horizontal clinostat rotation substantially reduced the growth of inflorescence axes and the productivity of seeds of Arabidopsis thaliana (ecotypes Landsberg erecta and Columbia), although it little affected seed germination, development of rosette leaves and flowering. The activity of auxin polar transport in inflorescence axes decreased when Arabidopsis plants were grown on a horizontal clinostat from germination stage, being ca. 60% of 1 g control. On the other hand, the auxin polar transport in inflorescence axes of Arabidopsis grown in 1 g conditions was not affected when the segments were exposed to various gravistimuli, including 3-dimensional clinorotation, during transport experiments. Pin-formed mutant of Arabidopsis, having a unique structure of the inflorescence axis with no flower and extremely low levels of the activity of auxin polar transport in inflorescence axes and endogenous auxin, did not continue its vegetative growth under clinostat rotation. These facts suggest that the development of the system of auxin polar transport in Arabidopsis is affected by microgravity, resulting in the inhibition of growth and development, especially during reproductive growth.

  6. Contributions of two cytosolic glutamine synthetase isozymes to ammonium assimilation in Arabidopsis roots.

    PubMed

    Konishi, Noriyuki; Ishiyama, Keiki; Beier, Marcel Pascal; Inoue, Eri; Kanno, Keiichi; Yamaya, Tomoyuki; Takahashi, Hideki; Kojima, Soichi

    2016-12-21

    Glutamine synthetase (GS) catalyzes a reaction that incorporates ammonium into glutamate and yields glutamine in the cytosol and chloroplasts. Although the enzymatic characteristics of the GS1 isozymes are well known, their physiological functions in ammonium assimilation and regulation in roots remain unclear. In this study we show evidence that two cytosolic GS1 isozymes (GLN1;2 and GLN1;3) contribute to ammonium assimilation in Arabidopsis roots. Arabidopsis T-DNA insertion lines for GLN1;2 and GLN1;3 (i.e. gln1;2 and gln1;3 single-mutants), the gln1;2:gln1;3 double-mutant, and the wild-type accession (Col-0) were grown in hydroponic culture with variable concentrations of ammonium to compare their growth, and their content of nitrogen, carbon, ammonium, and amino acids. GLN1;2 and GLN1;3 promoter-dependent green fluorescent protein was observed under conditions with or without ammonium supply. Loss of GLN1;2 caused significant suppression of plant growth and glutamine biosynthesis under ammonium-replete conditions. In contrast, loss of GLN1;3 caused slight defects in growth and Gln biosynthesis that were only visible based on a comparison of the gln1;2 single- and gln1;2:gln1;3 double-mutants. GLN1;2, being the most abundantly expressed GS1 isozyme, markedly increased following ammonium supply and its promoter activity was localized at the cortex and epidermis, while GLN1;3 showed only low expression at the pericycle, suggesting their different physiological contributions to ammonium assimilation in roots. The GLN1;2 promoter-deletion analysis identified regulatory sequences required for controlling ammonium-responsive gene expression of GLN1;2 in Arabidopsis roots. These results shed light on GLN1 isozyme-specific regulatory mechanisms in Arabidopsis that allow adaptation to an ammonium-replete environment.

  7. Epigenetic natural variation in Arabidopsis thaliana.

    PubMed

    Vaughn, Matthew W; Tanurdzić, Milos; Lippman, Zachary; Jiang, Hongmei; Carrasquillo, Robert; Rabinowicz, Pablo D; Dedhia, Neilay; McCombie, W Richard; Agier, Nicolas; Bulski, Agnès; Colot, Vincent; Doerge, R W; Martienssen, Robert A

    2007-07-01

    Cytosine methylation of repetitive sequences is widespread in plant genomes, occurring in both symmetric (CpG and CpNpG) as well as asymmetric sequence contexts. We used the methylation-dependent restriction enzyme McrBC to profile methylated DNA using tiling microarrays of Arabidopsis Chromosome 4 in two distinct ecotypes, Columbia and Landsberg erecta. We also used comparative genome hybridization to profile copy number polymorphisms. Repeated sequences and transposable elements (TEs), especially long terminal repeat retrotransposons, are densely methylated, but one third of genes also have low but detectable methylation in their transcribed regions. While TEs are almost always methylated, genic methylation is highly polymorphic, with half of all methylated genes being methylated in only one of the two ecotypes. A survey of loci in 96 Arabidopsis accessions revealed a similar degree of methylation polymorphism. Within-gene methylation is heritable, but is lost at a high frequency in segregating F(2) families. Promoter methylation is rare, and gene expression is not generally affected by differences in DNA methylation. Small interfering RNA are preferentially associated with methylated TEs, but not with methylated genes, indicating that most genic methylation is not guided by small interfering RNA. This may account for the instability of gene methylation, if occasional failure of maintenance methylation cannot be restored by other means.

  8. Epigenetic Natural Variation in Arabidopsis thaliana

    PubMed Central

    Jiang, Hongmei; Carrasquillo, Robert; Rabinowicz, Pablo D; Dedhia, Neilay; McCombie, W. Richard; Agier, Nicolas; Bulski, Agnès; Colot, Vincent; Doerge, R.W; Martienssen, Robert A

    2007-01-01

    Cytosine methylation of repetitive sequences is widespread in plant genomes, occurring in both symmetric (CpG and CpNpG) as well as asymmetric sequence contexts. We used the methylation-dependent restriction enzyme McrBC to profile methylated DNA using tiling microarrays of Arabidopsis Chromosome 4 in two distinct ecotypes, Columbia and Landsberg erecta. We also used comparative genome hybridization to profile copy number polymorphisms. Repeated sequences and transposable elements (TEs), especially long terminal repeat retrotransposons, are densely methylated, but one third of genes also have low but detectable methylation in their transcribed regions. While TEs are almost always methylated, genic methylation is highly polymorphic, with half of all methylated genes being methylated in only one of the two ecotypes. A survey of loci in 96 Arabidopsis accessions revealed a similar degree of methylation polymorphism. Within-gene methylation is heritable, but is lost at a high frequency in segregating F 2 families. Promoter methylation is rare, and gene expression is not generally affected by differences in DNA methylation. Small interfering RNA are preferentially associated with methylated TEs, but not with methylated genes, indicating that most genic methylation is not guided by small interfering RNA. This may account for the instability of gene methylation, if occasional failure of maintenance methylation cannot be restored by other means. PMID:17579518

  9. Epigenetic regulation of gene responsiveness in Arabidopsis

    PubMed Central

    To, Taiko K.; Kim, Jong Myong

    2014-01-01

    The regulation of chromatin structure is inevitable for proper transcriptional response in eukaryotes. Recent reports in Arabidopsis have suggested that gene responsiveness is modulated by particular chromatin status. One such feature is H2A.Z, a histone variant conserved among eukaryotes. In Arabidopsis, H2A.Z is enriched within gene bodies of transcriptionally variable genes, which is in contrast to genic DNA methylation found within constitutive genes. In the absence of H2A.Z, the genes normally harboring H2A.Z within gene bodies are transcriptionally misregulated, while DNA methylation is unaffected. Therefore, H2A.Z may promote variability of gene expression without affecting genic DNA methylation. Another epigenetic information that could be important for gene responsiveness is trimethylation of histone H3 lysine 4 (H3K4me3). The level of H3K4me3 increases when stress responsive genes are transcriptionally activated, and it decreases after recovery from the stress. Even after the recovery, however, H3K4me3 is kept at some atypical levels, suggesting possible role of H3K4me3 for a stress memory. In this review, we summarize and discuss the growing evidences connecting chromatin features and gene responsiveness. PMID:24432027

  10. MTHFD1 controls DNA methylation in Arabidopsis

    PubMed Central

    Groth, Martin; Moissiard, Guillaume; Wirtz, Markus; Wang, Haifeng; Garcia-Salinas, Carolina; Ramos-Parra, Perla A.; Bischof, Sylvain; Feng, Suhua; Cokus, Shawn J.; John, Amala; Smith, Danielle C.; Zhai, Jixian; Hale, Christopher J.; Long, Jeff A.; Hell, Ruediger; Díaz de la Garza, Rocío I.; Jacobsen, Steven E.

    2016-01-01

    DNA methylation is an epigenetic mechanism that has important functions in transcriptional silencing and is associated with repressive histone methylation (H3K9me). To further investigate silencing mechanisms, we screened a mutagenized Arabidopsis thaliana population for expression of SDCpro-GFP, redundantly controlled by DNA methyltransferases DRM2 and CMT3. Here, we identify the hypomorphic mutant mthfd1-1, carrying a mutation (R175Q) in the cytoplasmic bifunctional methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase (MTHFD1). Decreased levels of oxidized tetrahydrofolates in mthfd1-1 and lethality of loss-of-function demonstrate the essential enzymatic role of MTHFD1 in Arabidopsis. Accumulation of homocysteine and S-adenosylhomocysteine, genome-wide DNA hypomethylation, loss of H3K9me and transposon derepression indicate that S-adenosylmethionine-dependent transmethylation is inhibited in mthfd1-1. Comparative analysis of DNA methylation revealed that the CMT3 and CMT2 pathways involving positive feedback with H3K9me are mostly affected. Our work highlights the sensitivity of epigenetic networks to one-carbon metabolism due to their common S-adenosylmethionine-dependent transmethylation and has implications for human MTHFD1-associated diseases. PMID:27291711

  11. Local Evolution of Seed Flotation in Arabidopsis

    PubMed Central

    Saez-Aguayo, Susana; Rondeau-Mouro, Corinne; Macquet, Audrey; Kronholm, Ilkka; Ralet, Marie-Christine; Berger, Adeline; Sallé, Christine; Poulain, Damien; Granier, Fabienne; Botran, Lucy; Loudet, Olivier; de Meaux, Juliette; Marion-Poll, Annie; North, Helen M.

    2014-01-01

    Arabidopsis seeds rapidly release hydrophilic polysaccharides from the seed coat on imbibition. These form a heavy mucilage layer around the seed that makes it sink in water. Fourteen natural Arabidopsis variants from central Asia and Scandinavia were identified with seeds that have modified mucilage release and float. Four of these have a novel mucilage phenotype with almost none of the released mucilage adhering to the seed and the absence of cellulose microfibrils. Mucilage release was modified in the variants by ten independent causal mutations in four different loci. Seven distinct mutations affected one locus, coding the MUM2 β-D-galactosidase, and represent a striking example of allelic heterogeneity. The modification of mucilage release has thus evolved a number of times independently in two restricted geographical zones. All the natural mutants identified still accumulated mucilage polysaccharides in seed coat epidermal cells. Using nuclear magnetic resonance (NMR) relaxometry their production and retention was shown to reduce water mobility into internal seed tissues during imbibition, which would help to maintain seed buoyancy. Surprisingly, despite released mucilage being an excellent hydrogel it did not increase the rate of water uptake by internal seed tissues and is more likely to play a role in retaining water around the seed. PMID:24625826

  12. Local evolution of seed flotation in Arabidopsis.

    PubMed

    Saez-Aguayo, Susana; Rondeau-Mouro, Corinne; Macquet, Audrey; Kronholm, Ilkka; Ralet, Marie-Christine; Berger, Adeline; Sallé, Christine; Poulain, Damien; Granier, Fabienne; Botran, Lucy; Loudet, Olivier; de Meaux, Juliette; Marion-Poll, Annie; North, Helen M

    2014-03-01

    Arabidopsis seeds rapidly release hydrophilic polysaccharides from the seed coat on imbibition. These form a heavy mucilage layer around the seed that makes it sink in water. Fourteen natural Arabidopsis variants from central Asia and Scandinavia were identified with seeds that have modified mucilage release and float. Four of these have a novel mucilage phenotype with almost none of the released mucilage adhering to the seed and the absence of cellulose microfibrils. Mucilage release was modified in the variants by ten independent causal mutations in four different loci. Seven distinct mutations affected one locus, coding the MUM2 β-D-galactosidase, and represent a striking example of allelic heterogeneity. The modification of mucilage release has thus evolved a number of times independently in two restricted geographical zones. All the natural mutants identified still accumulated mucilage polysaccharides in seed coat epidermal cells. Using nuclear magnetic resonance (NMR) relaxometry their production and retention was shown to reduce water mobility into internal seed tissues during imbibition, which would help to maintain seed buoyancy. Surprisingly, despite released mucilage being an excellent hydrogel it did not increase the rate of water uptake by internal seed tissues and is more likely to play a role in retaining water around the seed.

  13. Photoperiodic flowering regulation in Arabidopsis thaliana

    PubMed Central

    Golembeski, Greg S.; Kinmonth-Schultz, Hannah A.; Song, Young Hun; Imaizumi, Takato

    2015-01-01

    Photoperiod, or the duration of light in a given day, is a critical cue that flowering plants utilize to effectively assess seasonal information and coordinate their reproductive development in synchrony with the external environment. The use of the model plant, Arabidopsis thaliana, has greatly improved our understanding of the molecular mechanisms that determine how plants process and utilize photoperiodic information to coordinate a flowering response. This mechanism is typified by the transcriptional activation of FLOWERING LOCUS T (FT) gene by the transcription factor CONSTANS (CO) under inductive long-day conditions in Arabidopsis. FT protein then moves from the leaves to the shoot apex, where floral meristem development can be initiated. As a point of integration from a variety of environmental factors in the context of a larger system of regulatory pathways that affect flowering, the importance of photoreceptors and the circadian clock in CO regulation throughout the day has been a key feature of the photoperiodic flowering pathway. In addition to these established mechanisms, the recent discovery of a photosynthate derivative trehalose-6-phosphate as an activator of FT in leaves has interesting implications for the involvement of photosynthesis in the photoperiodic flowering response that were suggested from previous physiological experiments in flowering induction. PMID:25684830

  14. A predicted interactome for Arabidopsis.

    PubMed

    Geisler-Lee, Jane; O'Toole, Nicholas; Ammar, Ron; Provart, Nicholas J; Millar, A Harvey; Geisler, Matt

    2007-10-01

    The complex cellular functions of an organism frequently rely on physical interactions between proteins. A map of all protein-protein interactions, an interactome, is thus an invaluable tool. We present an interactome for Arabidopsis (Arabidopsis thaliana) predicted from interacting orthologs in yeast (Saccharomyces cerevisiae), nematode worm (Caenorhabditis elegans), fruitfly (Drosophila melanogaster), and human (Homo sapiens). As an internal quality control, a confidence value was generated based on the amount of supporting evidence for each interaction. A total of 1,159 high confidence, 5,913 medium confidence, and 12,907 low confidence interactions were identified for 3,617 conserved Arabidopsis proteins. There was significant coexpression of genes whose proteins were predicted to interact, even among low confidence interactions. Interacting proteins were also significantly more likely to be found within the same subcellular location, and significantly less likely to be found in conflicting localizations than randomly paired proteins. A notable exception was that proteins located in the Golgi were more likely to interact with Golgi, vacuolar, or endoplasmic reticulum sorted proteins, indicating possible docking or trafficking interactions. These predictions can aid researchers by extending known complexes and pathways with candidate proteins. In addition we have predicted interactions for many previously unknown proteins in known pathways and complexes. We present this interactome, and an online Web interface the Arabidopsis Interactions Viewer, as a first step toward understanding global signaling in Arabidopsis, and to whet the appetite for those who are awaiting results from high-throughput experimental approaches.

  15. Arabidopsis thaliana—Aphid Interaction

    PubMed Central

    Louis, Joe; Singh, Vijay; Shah, Jyoti

    2012-01-01

    Aphids are important pests of plants that use their stylets to tap into the sieve elements to consume phloem sap. Besides the removal of photosynthates, aphid infestation also alters source-sink patterns. Most aphids also vector viral diseases. In this chapter, we will summarize on recent significant findings in plant-aphid interaction, and how studies involving Arabidopsis thaliana and Myzus persicae (Sülzer), more commonly known as the green peach aphid (GPA), are beginning to provide important insights into the molecular basis of plant defense and susceptibility to aphids. The recent demonstration that expression of dsRNA in Arabidopsis can be used to silence expression of genes in GPA has further expanded the utility of Arabidopsis for evaluating the contribution of the aphid genome-encoded proteins to this interaction. PMID:22666177

  16. GOLDEN 2-LIKE transcription factors for chloroplast development affect ozone tolerance through the regulation of stomatal movement

    PubMed Central

    Nagatoshi, Yukari; Mitsuda, Nobutaka; Hayashi, Maki; Inoue, Shin-ichiro; Okuma, Eiji; Kubo, Akihiro; Murata, Yoshiyuki; Seo, Mitsunori; Saji, Hikaru; Kinoshita, Toshinori; Ohme-Takagi, Masaru

    2016-01-01

    Stomatal movements regulate gas exchange, thus directly affecting the efficiency of photosynthesis and the sensitivity of plants to air pollutants such as ozone. The GARP family transcription factors GOLDEN 2-LIKE1 (GLK1) and GLK2 have known functions in chloroplast development. Here, we show that Arabidopsis thaliana (A. thaliana) plants expressing the chimeric repressors for GLK1 and -2 (GLK1/2-SRDX) exhibited a closed-stomata phenotype and strong tolerance to ozone. By contrast, plants that overexpress GLK1/2 exhibited an open-stomata phenotype and higher sensitivity to ozone. The plants expressing GLK1-SRDX had reduced expression of the genes for inwardly rectifying K+ (K+in) channels and reduced K+in channel activity. Abscisic acid treatment did not affect the stomatal phenotype of 35S:GLK1/2-SRDX plants or the transcriptional activity for K+in channel gene, indicating that GLK1/2 act independently of abscisic acid signaling. Our results indicate that GLK1/2 positively regulate the expression of genes for K+in channels and promote stomatal opening. Because the chimeric GLK1-SRDX repressor driven by a guard cell-specific promoter induced a closed-stomata phenotype without affecting chloroplast development in mesophyll cells, modulating GLK1/2 activity may provide an effective tool to control stomatal movements and thus to confer resistance to air pollutants. PMID:27035938

  17. GOLDEN 2-LIKE transcription factors for chloroplast development affect ozone tolerance through the regulation of stomatal movement.

    PubMed

    Nagatoshi, Yukari; Mitsuda, Nobutaka; Hayashi, Maki; Inoue, Shin-Ichiro; Okuma, Eiji; Kubo, Akihiro; Murata, Yoshiyuki; Seo, Mitsunori; Saji, Hikaru; Kinoshita, Toshinori; Ohme-Takagi, Masaru

    2016-04-12

    Stomatal movements regulate gas exchange, thus directly affecting the efficiency of photosynthesis and the sensitivity of plants to air pollutants such as ozone. The GARP family transcription factors GOLDEN 2-LIKE1 (GLK1) and GLK2 have known functions in chloroplast development. Here, we show that Arabidopsis thaliana (A. thaliana) plants expressing the chimeric repressors for GLK1 and -2 (GLK1/2-SRDX) exhibited a closed-stomata phenotype and strong tolerance to ozone. By contrast, plants that overexpress GLK1/2 exhibited an open-stomata phenotype and higher sensitivity to ozone. The plants expressing GLK1-SRDX had reduced expression of the genes for inwardly rectifying K(+) (K(+) in) channels and reduced K(+) in channel activity. Abscisic acid treatment did not affect the stomatal phenotype of 35S:GLK1/2-SRDX plants or the transcriptional activity for K(+) in channel gene, indicating that GLK1/2 act independently of abscisic acid signaling. Our results indicate that GLK1/2 positively regulate the expression of genes for K(+) in channels and promote stomatal opening. Because the chimeric GLK1-SRDX repressor driven by a guard cell-specific promoter induced a closed-stomata phenotype without affecting chloroplast development in mesophyll cells, modulating GLK1/2 activity may provide an effective tool to control stomatal movements and thus to confer resistance to air pollutants.

  18. Arabidopsis Responds to Alternaria alternata Volatiles by Triggering Plastid Phosphoglucose Isomerase-Independent Mechanisms1[OPEN

    PubMed Central

    Sánchez-López, Ángela María; Bahaji, Abdellatif; De Diego, Nuria; Baslam, Marouane; Li, Jun; Almagro, Goizeder; García-Gómez, Pablo; Ricarte-Bermejo, Adriana; Novák, Ondřej; Spíchal, Lukáš; Ciordia, Sergio; Mena, María Carmen

    2016-01-01

    Volatile compounds (VCs) emitted by phylogenetically diverse microorganisms (including plant pathogens and microbes that do not normally interact mutualistically with plants) promote photosynthesis, growth, and the accumulation of high levels of starch in leaves through cytokinin (CK)-regulated processes. In Arabidopsis (Arabidopsis thaliana) plants not exposed to VCs, plastidic phosphoglucose isomerase (pPGI) acts as an important determinant of photosynthesis and growth, likely as a consequence of its involvement in the synthesis of plastidic CKs in roots. Moreover, this enzyme plays an important role in connecting the Calvin-Benson cycle with the starch biosynthetic pathway in leaves. To elucidate the mechanisms involved in the responses of plants to microbial VCs and to investigate the extent of pPGI involvement, we characterized pPGI-null pgi1-2 Arabidopsis plants cultured in the presence or absence of VCs emitted by Alternaria alternata. We found that volatile emissions from this fungal phytopathogen promote growth, photosynthesis, and the accumulation of plastidic CKs in pgi1-2 leaves. Notably, the mesophyll cells of pgi1-2 leaves accumulated exceptionally high levels of starch following VC exposure. Proteomic analyses revealed that VCs promote global changes in the expression of proteins involved in photosynthesis, starch metabolism, and growth that can account for the observed responses in pgi1-2 plants. The overall data show that Arabidopsis plants can respond to VCs emitted by phytopathogenic microorganisms by triggering pPGI-independent mechanisms. PMID:27663407

  19. Metabolic engineering of Arabidopsis for butanetriol production using bacterial genes.

    PubMed

    Abdel-Ghany, Salah E; Day, Irene; Heuberger, Adam L; Broeckling, Corey D; Reddy, Anireddy S N

    2013-11-01

    1,2,4-butanetriol (butanetriol) is a useful precursor for the synthesis of the energetic material butanetriol trinitrate and several pharmaceutical compounds. Bacterial synthesis of butanetriol from xylose or arabinose takes place in a pathway that requires four enzymes. To produce butanetriol in plants by expressing bacterial enzymes, we cloned native bacterial or codon optimized synthetic genes under different promoters into a binary vector and stably transformed Arabidopsis plants. Transgenic lines expressing introduced genes were analyzed for the production of butanetriol using gas chromatography coupled to mass spectrometry (GC-MS). Soil-grown transgenic plants expressing these genes produced up to 20 µg/g of butanetriol. To test if an exogenous supply of pentose sugar precursors would enhance the butanetriol level, transgenic plants were grown in a medium supplemented with either xylose or arabinose and the amount of butanetriol was quantified. Plants expressing synthetic genes in the arabinose pathway showed up to a forty-fold increase in butanetriol levels after arabinose was added to the medium. Transgenic plants expressing either bacterial or synthetic xylose pathways, or the arabinose pathway showed toxicity symptoms when xylose or arabinose was added to the medium, suggesting that a by-product in the pathway or butanetriol affected plant growth. Furthermore, the metabolite profile of plants expressing arabinose and xylose pathways was altered. Our results demonstrate that bacterial pathways that produce butanetriol can be engineered into plants to produce this chemical. This proof-of-concept study for phytoproduction of butanetriol paves the way to further manipulate metabolic pathways in plants to enhance the level of butanetriol production.

  20. Lipid transport mediated by Arabidopsis TGD proteins is unidirectional from the endoplasmic reticulum to the plastid

    SciTech Connect

    Xu, C.; Moellering, E. R., Muthan, B.; Fan, J.; Benning, C.

    2010-06-01

    The transfer of lipids between the endoplasmic reticulum (ER) and the plastid in Arabidopsis involves the TRIGALACTOSYLDIACYLGLYCEROL (TGD) proteins. Lipid exchange is thought to be bidirectional based on the presence of specific lipid molecular species in Arabidopsis mutants impaired in the desaturation of fatty acids of membrane lipids in the ER and plastid. However, it was unclear whether TGD proteins were required for lipid trafficking in both directions. This question was addressed through the analysis of double mutants of tgd1-1 or tgd4-3 in genetic mutant backgrounds leading to a defect in lipid fatty acid desaturation either in the ER (fad2) or the plastid (fad6). The fad6 tgd1-1 and fad6 tgd4-3 double mutants showed drastic reductions in the relative levels of polyunsaturated fatty acids and of galactolipids. The growth of these plants and the development of photosynthetic membrane systems were severely compromised, suggesting a disruption in the import of polyunsaturated fatty acid-containing lipid species from the ER. Furthermore, a forward-genetic screen in the tgd1-2 dgd1 mutant background led to the isolation of a new fad6-2 allele with a marked reduction in the amount of digalactosyldiacylglycerol. In contrast, the introduction of fad2, affecting fatty acid desaturation of lipids in the ER, into the two tgd mutant backgrounds did not further decrease the level of fatty acid desaturation in lipids of extraplastidic membranes. These results suggest that the role of TGD proteins is limited to plastid lipid import, but does not extend to lipid export from the plastid to extraplastidic membranes.

  1. Functional aspects of the photosynthetic light reactions in heat stressed Arabidopsis deficient in digalactosyl-diacylglycerol.

    PubMed

    Essemine, Jemâa; Govindachary, Sridharan; Ammar, Saïda; Bouzid, Sadok; Carpentier, Robert

    2011-09-01

    Plants are often submitted, in their natural environment, to various abiotic stresses such as heat stress. However, elevated temperature has a detrimental impact on overall plant growth and development. We have examined the physiological response of the dgd1-2 and dgd1-3 Arabidopsis mutants lacking 30-40% of digalactosyl-diacylglycerol (DGDG) exposed to heat constraint. These mutants, which grow similarly to wild type under normal conditions, were previously reported to be defective in basal thermotolerance as measured by cotyledon development. However their functional properties were not described. Chlorophyll fluorescence measurements and absorbance changes at 820nm were used to monitor photosystem II (PSII) and PSI activity, respectively. It was observed that both mutants have similar photosystem activities with some differences. The mutants were less able to use near saturation light energy and elicited higher rates of cyclic PSI electron flow compare to wild type. Arabidopsis leaves exposed to short-term (5min) mild (40°C) or strong (44°C) heat treatment have shown a decline in the operating effective quantum yield of PSII and in the proportion of active PSI reaction centers. However, cyclic PSI electron flow was enhanced. The establishment of the energy-dependent non-photochemical quenching of chlorophyll fluorescence was accelerated but its decline under illumination was inhibited. Furthermore, heat stress affected the process implicated in the redistribution of light excitation energy between the photosystems known as the light state transitions. All the effects of heat stress mentioned above were more intense in the mutant leaves with dgd1-3 being even more susceptible. The decreased DGDG content of the thylakoid membranes together with other lipid changes are proposed to influence the thermo-sensitivity of the light reactions of photosynthesis towards heat stress.

  2. Unidirectional Movement of Cellulose Synthase Complexes in Arabidopsis Seed Coat Epidermal Cells Deposit Cellulose Involved in Mucilage Extrusion, Adherence, and Ray Formation1[OPEN

    PubMed Central

    Lam, Patricia; Young, Robin; DeBolt, Seth

    2015-01-01

    CELLULOSE SYNTHASE5 (CESA5) synthesizes cellulose necessary for seed mucilage adherence to seed coat epidermal cells of Arabidopsis (Arabidopsis thaliana). The involvement of additional CESA proteins in this process and details concerning the manner in which cellulose is deposited in the mucilage pocket are unknown. Here, we show that both CESA3 and CESA10 are highly expressed in this cell type at the time of mucilage synthesis and localize to the plasma membrane adjacent to the mucilage pocket. The isoxaben resistant1-1 and isoxaben resistant1-2 mutants affecting CESA3 show defects consistent with altered mucilage cellulose biosynthesis. CESA3 can interact with CESA5 in vitro, and green fluorescent protein-tagged CESA5, CESA3, and CESA10 proteins move in a linear, unidirectional fashion around the cytoplasmic column of the cell, parallel with the surface of the seed, in a pattern similar to that of cortical microtubules. Consistent with this movement, cytological evidence suggests that the mucilage is coiled around the columella and unwinds during mucilage extrusion to form a linear ray. Mutations in CESA5 and CESA3 affect the speed of mucilage extrusion and mucilage adherence. These findings imply that cellulose fibrils are synthesized in an ordered helical array around the columella, providing a distinct structure to the mucilage that is important for both mucilage extrusion and adherence. PMID:25926481

  3. The Arabidopsis Transcription Factor NAC016 Promotes Drought Stress Responses by Repressing AREB1 Transcription through a Trifurcate Feed-Forward Regulatory Loop Involving NAP[OPEN

    PubMed Central

    Sakuraba, Yasuhito; Kim, Ye-Sol; Han, Su-Hyun; Lee, Byoung-Doo; Paek, Nam-Chon

    2015-01-01

    Drought and other abiotic stresses negatively affect plant growth and development and thus reduce productivity. The plant-specific NAM/ATAF1/2/CUC2 (NAC) transcription factors have important roles in abiotic stress-responsive signaling. Here, we show that Arabidopsis thaliana NAC016 is involved in drought stress responses; nac016 mutants have high drought tolerance, and NAC016-overexpressing (NAC016-OX) plants have low drought tolerance. Using genome-wide gene expression microarray analysis and MEME motif searches, we identified the NAC016-specific binding motif (NAC16BM), GATTGGAT[AT]CA, in the promoters of genes downregulated in nac016-1 mutants. The NAC16BM sequence does not contain the core NAC binding motif CACG (or its reverse complement CGTG). NAC016 directly binds to the NAC16BM in the promoter of ABSCISIC ACID-RESPONSIVE ELEMENT BINDING PROTEIN1 (AREB1), which encodes a central transcription factor in the stress-responsive abscisic acid signaling pathway and represses AREB1 transcription. We found that knockout mutants of the NAC016 target gene NAC-LIKE, ACTIVATED BY AP3/PI (NAP) also exhibited strong drought tolerance; moreover, NAP binds to the AREB1 promoter and suppresses AREB1 transcription. Taking these results together, we propose that a trifurcate feed-forward pathway involving NAC016, NAP, and AREB1 functions in the drought stress response, in addition to affecting leaf senescence in Arabidopsis. PMID:26059204

  4. The Arabidopsis Transcription Factor NAC016 Promotes Drought Stress Responses by Repressing AREB1 Transcription through a Trifurcate Feed-Forward Regulatory Loop Involving NAP.

    PubMed

    Sakuraba, Yasuhito; Kim, Ye-Sol; Han, Su-Hyun; Lee, Byoung-Doo; Paek, Nam-Chon

    2015-06-01

    Drought and other abiotic stresses negatively affect plant growth and development and thus reduce productivity. The plant-specific NAM/ATAF1/2/CUC2 (NAC) transcription factors have important roles in abiotic stress-responsive signaling. Here, we show that Arabidopsis thaliana NAC016 is involved in drought stress responses; nac016 mutants have high drought tolerance, and NAC016-overexpressing (NAC016-OX) plants have low drought tolerance. Using genome-wide gene expression microarray analysis and MEME motif searches, we identified the NAC016-specific binding motif (NAC16BM), GATTGGAT[AT]CA, in the promoters of genes downregulated in nac016-1 mutants. The NAC16BM sequence does not contain the core NAC binding motif CACG (or its reverse complement CGTG). NAC016 directly binds to the NAC16BM in the promoter of ABSCISIC ACID-RESPONSIVE ELEMENT BINDING PROTEIN1 (AREB1), which encodes a central transcription factor in the stress-responsive abscisic acid signaling pathway and represses AREB1 transcription. We found that knockout mutants of the NAC016 target gene NAC-LIKE, ACTIVATED BY AP3/PI (NAP) also exhibited strong drought tolerance; moreover, NAP binds to the AREB1 promoter and suppresses AREB1 transcription. Taking these results together, we propose that a trifurcate feed-forward pathway involving NAC016, NAP, and AREB1 functions in the drought stress response, in addition to affecting leaf senescence in Arabidopsis.

  5. The salty tale of Arabidopsis.

    PubMed

    Sanders, D

    2000-06-29

    High concentrations of sodium chloride are toxic to most plant species. New insights into the mechanisms by which plants tolerate salt have emerged from the identification of genes in Arabidopsis thaliana that play a critical part in physiological resistance to salt.

  6. Araport: the Arabidopsis Information Portal

    PubMed Central

    Krishnakumar, Vivek; Hanlon, Matthew R.; Contrino, Sergio; Ferlanti, Erik S.; Karamycheva, Svetlana; Kim, Maria; Rosen, Benjamin D.; Cheng, Chia-Yi; Moreira, Walter; Mock, Stephen A.; Stubbs, Joseph; Sullivan, Julie M.; Krampis, Konstantinos; Miller, Jason R.; Micklem, Gos; Vaughn, Matthew; Town, Christopher D.

    2015-01-01

    The Arabidopsis Information Portal (https://www.araport.org) is a new online resource for plant biology research. It houses the Arabidopsis thaliana genome sequence and associated annotation. It was conceived as a framework that allows the research community to develop and release ‘modules’ that integrate, analyze and visualize Arabidopsis data that may reside at remote sites. The current implementation provides an indexed database of core genomic information. These data are made available through feature-rich web applications that provide search, data mining, and genome browser functionality, and also by bulk download and web services. Araport uses software from the InterMine and JBrowse projects to expose curated data from TAIR, GO, BAR, EBI, UniProt, PubMed and EPIC CoGe. The site also hosts ‘science apps,’ developed as prototypes for community modules that use dynamic web pages to present data obtained on-demand from third-party servers via RESTful web services. Designed for sustainability, the Arabidopsis Information Portal strategy exploits existing scientific computing infrastructure, adopts a practical mixture of data integration technologies and encourages collaborative enhancement of the resource by its user community. PMID:25414324

  7. EDS1 contributes to nonhost resistance of Arabidopsis thaliana against Erwinia amylovora.

    PubMed

    Moreau, Manon; Degrave, Alexandre; Vedel, Régine; Bitton, Frédérique; Patrit, Oriane; Renou, Jean-Pierre; Barny, Marie-Anne; Fagard, Mathilde

    2012-03-01

    Erwinia amylovora causes fire blight in rosaceous plants. In nonhost Arabidopsis thaliana, E. amylovora triggers necrotic symptoms associated with transient bacterial multiplication, suggesting either that A. thaliana lacks a susceptibility factor or that it actively restricts E. amylovora growth. Inhibiting plant protein synthesis at the time of infection led to an increase in necrosis and bacterial multiplication and reduced callose deposition, indicating that A. thaliana requires active protein synthesis to restrict E. amylovora growth. Analysis of the callose synthase-deficient pmr4-1 mutant indicated that lack of callose deposition alone did not lead to increased sensitivity to E. amylovora. Transcriptome analysis revealed that approximately 20% of the genes induced following E. amylovora infection are related to defense and signaling. Analysis of mutants affected in NDR1 and EDS1, two main components of the defense-gene activation observed, revealed that E. amylovora multiplied ten times more in the eds1-2 mutant than in the wild type but not in the ndr1-1 mutant. Analysis of mutants affected in three WRKY transcription factors showing EDS1-dependent activation identified WRKY46 and WRKY54 as positive regulators and WRKY70 as a negative regulator of defense against E. amylovora. Altogether, we show that EDS1 is a positive regulator of nonhost resistance against E. amylovora in A. thaliana and hypothesize that it controls the production of several effective defenses against E. amylovora through the action of WRKY46 and WRKY54, while WRKY70 acts as a negative regulator.

  8. Side Elevation, End Elevation, Cross Section, 1/2 Roof Plan, 1/2 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Side Elevation, End Elevation, Cross Section, 1/2 Roof Plan, 1/2 Reflected Plan, 1/2 Floor Plan, 1/2 Reflected Plan - Jack's Mill Covered Bridge, Spanning Henderson Creek, Oquawka, Henderson County, IL

  9. A hydroxycinnamoyltransferase responsible for synthesizing suberin aromatics in Arabidopsis

    PubMed Central

    Gou, Jin-Ying; Yu, Xiao-Hong; Liu, Chang-Jun

    2009-01-01

    Suberin, a polyester polymer in the cell wall of terrestrial plants, controls the transport of water and nutrients and protects plant from pathogenic infections and environmental stresses. Structurally, suberin consists of aliphatic and aromatic domains; p-hydroxycinnamates, such as ferulate, p-coumarate, and/or sinapate, are the major phenolic constituents of the latter. By analyzing the “wall-bound” phenolics of mutant lines of Arabidopsis deficient in a family of acyl-CoA dependent acyltransferase (BAHD) genes, we discovered that the formation of aromatic suberin in Arabidopsis, primarily in seed and root tissues, depends on a member of the BAHD superfamily of enzymes encoded by At5g41040. This enzyme exhibits an ω-hydroxyacid hydroxycinnamoyltransferase activity with an in vitro kinetic preference for feruloyl-CoA and 16-hydroxypalmitic acid. Knocking down or knocking out the At5g41040 gene in Arabidopsis reduces specifically the quantity of ferulate in suberin, but does not affect the accumulation of p-coumarate or sinapate. The loss of the suberin phenolic differentially affects the aliphatic monomer loads and alters the permeability and sensitivity of seeds and roots to salt stress. This highlights the importance of suberin aromatics in the polymer's function. PMID:19846769

  10. The roles of anion channels in Arabidopsis immunity

    PubMed Central

    Guo, Wei; Wang, Chengcheng; Zuo, Zhangli; Qiu, Jin-Long

    2014-01-01

    Anion efflux is one of the most immediate responses of plant cells to pathogen attacks, suggesting that anion channels may play a role in plant defense. Recently we reported that the chloride channel AtCLCd negatively regulates Arabidopsis pathogen-associated molecular pattern-triggered immunity (PTI), probably by affecting trafficking of the pattern recognition receptors (PRRs). Since AtCLCd is localized to the trans-Golgi network, it is not likely to be directly involved in anion flux across the plasma membrane. Here, we used a pharmacological approach to explore further the function of plasma membrane-localized R-type and S-type anion channels in plant immunity. We found that the R-type and S-type anion channels play opposite roles in Arabidopsis innate immunity. Inhibition of the R-type anion channels enhances, whereas inhibition of the S-type channels inhibits PTI and effector-triggered immunity (ETI). PMID:25763497

  11. Herbivore-induced resistance against microbial pathogens in Arabidopsis.

    PubMed

    De Vos, Martin; Van Zaanen, Wendy; Koornneef, Annemart; Korzelius, Jerôme P; Dicke, Marcel; Van Loon, L C; Pieterse, Corné M J

    2006-09-01

    Caterpillars of the herbivore Pieris rapae stimulate the production of jasmonic acid (JA) and ethylene (ET) in Arabidopsis (Arabidopsis thaliana) and trigger a defense response that affects insect performance on systemic tissues. To investigate the spectrum of effectiveness of P. rapae-induced resistance, we examined the level of resistance against different pathogens. Although the necrotrophic fungus Alternaria brassicicola is sensitive to JA-dependent defenses, herbivore-induced resistance was not effective against this pathogen. By contrast, caterpillar feeding significantly reduced disease caused by the bacterial pathogens Pseudomonas syringae pv tomato and Xanthomonas campestris pv armoraciae. However, this effect was apparent only locally in caterpillar-damaged tissue. Arabidopsis mutants jar1, coi1, ein2, sid2, eds5, and npr1 showed wild-type levels of P. rapae-induced protection against P. syringae pv tomato, suggesting that this local, herbivore-induced defense response does not depend exclusively on either JA, ET, or salicylic acid (SA). Resistance against the biotroph Turnip crinkle virus (TCV) requires SA, but not JA and ET. Nevertheless, herbivore feeding strongly affected TCV multiplication and TCV lesion formation, also in systemic tissues. Wounding alone was not effective, but application of P. rapae regurgitate onto the wounds induced a similar level of protection. Analysis of SA-induced PATHOGENESIS RELATED-1 (PR-1) expression revealed that P. rapae grazing primed Arabidopsis leaves for augmented expression of SA-dependent defenses. Pharmacological experiments showed that ET acts synergistically on SA-induced PR-1, suggesting that the increased production of ET upon herbivore feeding sensitizes the tissue to respond faster to SA, thereby contributing to an enhanced defensive capacity toward pathogens, such as TCV, that trigger SA-dependent defenses upon infection.

  12. 7 CFR 1.2 - Policy.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 1 2013-01-01 2013-01-01 false Policy. 1.2 Section 1.2 Agriculture Office of the Secretary of Agriculture ADMINISTRATIVE REGULATIONS Official Records § 1.2 Policy. (a) Agencies of USDA shall comply with the time limits set forth in the FOIA and in this subpart for responding to...

  13. 29 CFR 1.2 - Definitions. 1

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 1 2012-07-01 2012-07-01 false Definitions. 1 1.2 Section 1.2 Labor Office of the Secretary of Labor PROCEDURES FOR PREDETERMINATION OF WAGE RATES § 1.2 Definitions. 1 1 These definitions... Assistance Act of 1972. (e) The term Wage Determinations OnLine (WDOL) shall mean the Government Internet...

  14. 29 CFR 1.2 - Definitions. 1

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 1 2014-07-01 2013-07-01 true Definitions. 1 1.2 Section 1.2 Labor Office of the Secretary of Labor PROCEDURES FOR PREDETERMINATION OF WAGE RATES § 1.2 Definitions. 1 1 These definitions are... Assistance Act of 1972. (e) The term Wage Determinations OnLine (WDOL) shall mean the Government Internet...

  15. 29 CFR 1.2 - Definitions. 1

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 1 2011-07-01 2011-07-01 false Definitions. 1 1.2 Section 1.2 Labor Office of the Secretary of Labor PROCEDURES FOR PREDETERMINATION OF WAGE RATES § 1.2 Definitions. 1 1 These definitions... Assistance Act of 1972. (e) The term Wage Determinations OnLine (WDOL) shall mean the Government Internet...

  16. 29 CFR 1.2 - Definitions. 1

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 1 2013-07-01 2013-07-01 false Definitions. 1 1.2 Section 1.2 Labor Office of the Secretary of Labor PROCEDURES FOR PREDETERMINATION OF WAGE RATES § 1.2 Definitions. 1 1 These definitions... Assistance Act of 1972. (e) The term Wage Determinations OnLine (WDOL) shall mean the Government Internet...

  17. 11 CFR 1.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 11 Federal Elections 1 2010-01-01 2010-01-01 false Definitions. 1.2 Section 1.2 Federal Elections FEDERAL ELECTION COMMISSION PRIVACY ACT § 1.2 Definitions. As defined in the Privacy Act of 1974 and for the purposes of this part, unless otherwise required by the context, the following terms shall...

  18. 45 CFR 1210.1-2 - Scope.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 4 2011-10-01 2011-10-01 false Scope. 1210.1-2 Section 1210.1-2 Public Welfare Regulations Relating to Public Welfare (Continued) CORPORATION FOR NATIONAL AND COMMUNITY SERVICE VISTA TRAINEE DESELECTION AND VOLUNTEER EARLY TERMINATION PROCEDURES General § 1210.1-2 Scope. (a) This part applies to all Trainees and...

  19. 45 CFR 1211.1-2 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 4 2011-10-01 2011-10-01 false Applicability. 1211.1-2 Section 1211.1-2 Public Welfare Regulations Relating to Public Welfare (Continued) CORPORATION FOR NATIONAL AND COMMUNITY SERVICE VOLUNTEER GRIEVANCE PROCEDURES § 1211.1-2 Applicability. This part applies to all volunteers enrolled under part A of title I of the...

  20. 43 CFR 2812.1-2 - Contents.

    Code of Federal Regulations, 2010 CFR

    2006-10-01

    ... 43 Public Lands: Interior 2 2006-10-01 2006-10-01 false Contents. 2812.1-2 Section 2812.1-2 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT... Bay Revested Lands § 2812.1-2 Contents. (a) An individual applicant and each member of...

  1. 43 CFR 2812.1-2 - Contents.

    Code of Federal Regulations, 2010 CFR

    1997-10-01

    ... 43 Public Lands: Interior 2 1997-10-01 1997-10-01 false Contents. 2812.1-2 Section 2812.1-2 LAND RESOURCE MANAGEMENT (2000) TRAMROADS AND LOGGING ROADS Over O. and C. and Coos Bay Revested Lands § 2812.1-2 Contents. (a) An individual applicant and each member of any unincorporated association which...

  2. Asparagine Metabolic Pathways in Arabidopsis.

    PubMed

    Gaufichon, Laure; Rothstein, Steven J; Suzuki, Akira

    2016-04-01

    Inorganic nitrogen in the form of ammonium is assimilated into asparagine via multiple steps involving glutamine synthetase (GS), glutamate synthase (GOGAT), aspartate aminotransferase (AspAT) and asparagine synthetase (AS) in Arabidopsis. The asparagine amide group is liberated by the reaction catalyzed by asparaginase (ASPG) and also the amino group of asparagine is released by asparagine aminotransferase (AsnAT) for use in the biosynthesis of amino acids. Asparagine plays a primary role in nitrogen recycling, storage and transport in developing and germinating seeds, as well as in vegetative and senescence organs. A small multigene family encodes isoenzymes of each step of asparagine metabolism in Arabidopsis, except for asparagine aminotransferase encoded by a single gene. The aim of this study is to highlight the structure of the genes and encoded enzyme proteins involved in asparagine metabolic pathways; the regulation and role of different isogenes; and kinetic and physiological properties of encoded enzymes in different tissues and developmental stages.

  3. Cadmium interferes with maintenance of auxin homeostasis in Arabidopsis seedlings.

    PubMed

    Hu, Yan Feng; Zhou, Guoying; Na, Xiao Fan; Yang, Lijing; Nan, Wen Bin; Liu, Xu; Zhang, Yong Qiang; Li, Jiao Long; Bi, Yu Rong

    2013-07-15

    Auxin and its homeostasis play key roles in many aspects of plant growth and development. Cadmium (Cd) is a phytotoxic heavy metal and its inhibitory effects on plant growth and development have been extensively studied. However, the underlying molecular mechanism of the effects of Cd stress on auxin homeostasis is still unclear. In the present study, we found that the root elongation, shoot weight, hypocotyl length and chlorophyll content in wild-type (WT) Arabidopsis seedlings were significantly reduced after exposure to Cd stress. However, the lateral root (LR) formation was markedly promoted by Cd stress. The level and distribution of auxin were both greatly altered in primary root tips and cotyledons of Cd-treated plants. The results also showed that after Cd treatment, the IAA content was significantly decreased, which was accompanied by increases in the activity of the IAA oxidase and alteration in the expression of several putative auxin biosynthetic and catabolic genes. Application of the auxin transport inhibitor, 1-naphthylphthalamic acid (NPA) and 1-naphthoxyacetic acid (1-NOA), reversed the effects of Cd on LR formation. Additionally, there was less promotion of LR formation by Cd treatment in aux1-7 and pin2 mutants than that in the WT. Meanwhile, Cd stress also altered the expression of PINs and AUX1 in Arabidopsis roots, implying that the auxin transport pathway is required for Cd-modulated LR development. Taken together, these findings suggest that Cd stress disturbs auxin homeostasis through affecting auxin level, distribution, metabolism, and transport in Arabidopsis seedling.

  4. PAUSED Encodes the Arabidopsis Exportin-t Ortholog1

    PubMed Central

    Hunter, Christine A.; Aukerman, Milo J.; Sun, Hui; Fokina, Maria; Poethig, R. Scott

    2003-01-01

    Los1p/exportin-t (XPOT) mediates the nuclear export of tRNAs in yeast and mammals. The requirements for this transport pathway are unclear, however, because los1 mutations do not affect yeast growth, and the phenotype of XPOT mutations in mammals is unknown. Here, we show that PAUSED (PSD) is the Arabidopsis ortholog of LOS1/XPOT and is capable of rescuing the tRNA export defect of los1 in Brewer's yeast (Saccharomyces cerevisiae), suggesting that its function has been conserved. Putative null alleles of PSD disrupt the initiation of the shoot apical meristem and delay leaf initiation after germination, the emergence of the radicle and lateral roots, and the transition to flowering. Plants doubly mutant for psd and hasty, the Arabidopsis ortholog of exportin 5, are viable but have a more severe phenotype than either single mutant. These results suggest that PSD plays a role in tRNA export in Arabidopsis, but that at least one—and perhaps several—additional tRNA export pathways also exist. The PSD transcript is broadly expressed during development and is alternatively spliced in the 3′-untranslated region. No temporal or spatial difference in the abundance of different splice forms was observed. We propose that the mutant phenotype of psd reflects defects in developmental events and cell/tissue types that require elevated levels of protein synthesis and are therefore acutely sensitive to a reduction in tRNA export. PMID:12913168

  5. PAUSED encodes the Arabidopsis exportin-t ortholog.

    PubMed

    Hunter, Christine A; Aukerman, Milo J; Sun, Hui; Fokina, Maria; Poethig, R Scott

    2003-08-01

    Los1p/exportin-t (XPOT) mediates the nuclear export of tRNAs in yeast and mammals. The requirements for this transport pathway are unclear, however, because los1 mutations do not affect yeast growth, and the phenotype of XPOT mutations in mammals is unknown. Here, we show that PAUSED (PSD) is the Arabidopsis ortholog of LOS1/XPOT and is capable of rescuing the tRNA export defect of los1 in Brewer's yeast (Saccharomyces cerevisiae), suggesting that its function has been conserved. Putative null alleles of PSD disrupt the initiation of the shoot apical meristem and delay leaf initiation after germination, the emergence of the radicle and lateral roots, and the transition to flowering. Plants doubly mutant for psd and hasty, the Arabidopsis ortholog of exportin 5, are viable but have a more severe phenotype than either single mutant. These results suggest that PSD plays a role in tRNA export in Arabidopsis, but that at least one-and perhaps several-additional tRNA export pathways also exist. The PSD transcript is broadly expressed during development and is alternatively spliced in the 3'-untranslated region. No temporal or spatial difference in the abundance of different splice forms was observed. We propose that the mutant phenotype of psd reflects defects in developmental events and cell/tissue types that require elevated levels of protein synthesis and are therefore acutely sensitive to a reduction in tRNA export.

  6. The Arabidopsis Polycomb Repressive Complex 1 (PRC1) Components AtBMI1A, B, and C Impact Gene Networks throughout All Stages of Plant Development1[OPEN

    PubMed Central

    Zhou, Yue

    2017-01-01

    Polycomb Group regulation in Arabidopsis (Arabidopsis thaliana) is required to maintain cell differentiation and allow developmental phase transitions. This is achieved by the activity of three PcG repressive complex 2s (PRC2s) and the participation of a yet poorly defined PRC1. Previous results showed that apparent PRC1 components perform discrete roles during plant development, suggesting the existence of PRC1 variants; however, it is not clear in how many processes these components participate. We show that AtBMI1 proteins are required to promote all developmental phase transitions and to control cell proliferation during organ growth and development, expanding their proposed range of action. While AtBMI1 function during germination is closely linked to B3 domain transcription factors VAL1/2 possibly in combination with GT-box binding factors, other AtBMI1 regulatory networks require participation of different factor combinations. Conversely, EMF1 and LHP1 bind many H3K27me3 positive genes up-regulated in atbmi1a/b/c mutants; however, loss of their function affects expression of a different subset, suggesting that even if EMF1, LHP1, and AtBMI1 exist in a common PRC1 variant, their role in repression depends on the functional context. PMID:27837089

  7. Arabidopsis AtERF014 acts as a dual regulator that differentially modulates immunity against Pseudomonas syringae pv. tomato and Botrytis cinerea

    PubMed Central

    Zhang, Huijuan; Hong, Yongbo; Huang, Lei; Li, Dayong; Song, Fengming

    2016-01-01

    ERF transcription factors play critical roles in plant immune responses. Here, we report the function of AtERF014, a nucleus-localized transcriptional activator, in Arabidopsis immunity. Expression of AtERF014 was induced by Pseudomonas syringae pv. tomato (Pst) and Botrytis cinerea (Bc). AtERF014-overexpressing (OE) plants displayed increased Pst resistance but decreased Bc resistance, whereas AtERF014-RNAi plants exhibited decreased Pst resistance but increased Bc resistance. After Pst infection, expression of salicylic acid (SA)-responsive genes AtPR1 and AtPR5 in AtERF014-OE plants and of a jasmonic acid/ethylene-responsive gene AtPDF1.2 in AtERF014-RNAi plants was intensified but expression of AtPDF1.2 in AtERF014-OE plants and of AtPR1 and AtPR5 in AtERF014-RNAi plants was weakened. After Bc infection, expression of AtPR1 and AtPR5 in AtERF014-OE plants was attenuated but expression of AtPR1, AtPR5 and AtPDF1.2 in AtERF014-RNAi plants was strengthened. Pathogen- and flg22-induced ROS burst, expression of PTI genes and SA-induced defense were partially suppressed in AtERF014-RNAi plants, whereas pathogen-induced ROS and flg22-induced immune response were strengthened in AtER014-OE plants. Altered expression of AtERR014 affected expression of pectin biosynthetic genes and pectin content in AtERF014-RNAi plants was decreased. These data demonstrate that AtERF014 acts as a dual regulator that differentially modulates immunity against Pst and Bc in Arabidopsis. PMID:27445230

  8. Arabidopsis AtERF014 acts as a dual regulator that differentially modulates immunity against Pseudomonas syringae pv. tomato and Botrytis cinerea.

    PubMed

    Zhang, Huijuan; Hong, Yongbo; Huang, Lei; Li, Dayong; Song, Fengming

    2016-07-22

    ERF transcription factors play critical roles in plant immune responses. Here, we report the function of AtERF014, a nucleus-localized transcriptional activator, in Arabidopsis immunity. Expression of AtERF014 was induced by Pseudomonas syringae pv. tomato (Pst) and Botrytis cinerea (Bc). AtERF014-overexpressing (OE) plants displayed increased Pst resistance but decreased Bc resistance, whereas AtERF014-RNAi plants exhibited decreased Pst resistance but increased Bc resistance. After Pst infection, expression of salicylic acid (SA)-responsive genes AtPR1 and AtPR5 in AtERF014-OE plants and of a jasmonic acid/ethylene-responsive gene AtPDF1.2 in AtERF014-RNAi plants was intensified but expression of AtPDF1.2 in AtERF014-OE plants and of AtPR1 and AtPR5 in AtERF014-RNAi plants was weakened. After Bc infection, expression of AtPR1 and AtPR5 in AtERF014-OE plants was attenuated but expression of AtPR1, AtPR5 and AtPDF1.2 in AtERF014-RNAi plants was strengthened. Pathogen- and flg22-induced ROS burst, expression of PTI genes and SA-induced defense were partially suppressed in AtERF014-RNAi plants, whereas pathogen-induced ROS and flg22-induced immune response were strengthened in AtER014-OE plants. Altered expression of AtERR014 affected expression of pectin biosynthetic genes and pectin content in AtERF014-RNAi plants was decreased. These data demonstrate that AtERF014 acts as a dual regulator that differentially modulates immunity against Pst and Bc in Arabidopsis.

  9. An International Bioinformatics Infrastructure to Underpin the Arabidopsis Community

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The future bioinformatics needs of the Arabidopsis community as well as those of other scientific communities that depend on Arabidopsis resources were discussed at a pair of recent meetings held by the Multinational Arabidopsis Steering Committee (MASC) and the North American Arabidopsis Steering C...

  10. Gravity-regulated gene expression in Arabidopsis thaliana

    NASA Astrophysics Data System (ADS)

    Sederoff, Heike; Brown, Christopher S.; Heber, Steffen; Kajla, Jyoti D.; Kumar, Sandeep; Lomax, Terri L.; Wheeler, Benjamin; Yalamanchili, Roopa

    Plant growth and development is regulated by changes in environmental signals. Plants sense environmental changes and respond to them by modifying gene expression programs to ad-just cell growth, differentiation, and metabolism. Functional expression of genes comprises many different processes including transcription, translation, post-transcriptional and post-translational modifications, as well as the degradation of RNA and proteins. Recently, it was discovered that small RNAs (sRNA, 18-24 nucleotides long), which are heritable and systemic, are key elements in regulating gene expression in response to biotic and abiotic changes. Sev-eral different classes of sRNAs have been identified that are part of a non-cell autonomous and phloem-mobile network of regulators affecting transcript stability, translational kinetics, and DNA methylation patterns responsible for heritable transcriptional silencing (epigenetics). Our research has focused on gene expression changes in response to gravistimulation of Arabidopsis roots. Using high-throughput technologies including microarrays and 454 sequencing, we iden-tified rapid changes in transcript abundance of genes as well as differential expression of small RNA in Arabidopsis root apices after minutes of reorientation. Some of the differentially regu-lated transcripts are encoded by genes that are important for the bending response. Functional mutants of those genes respond faster to reorientation than the respective wild type plants, indicating that these proteins are repressors of differential cell elongation. We compared the gravity responsive sRNAs to the changes in transcript abundances of their putative targets and identified several potential miRNA: target pairs. Currently, we are using mutant and transgenic Arabidopsis plants to characterize the function of those miRNAs and their putative targets in gravitropic and phototropic responses in Arabidopsis.

  11. Using "Arabidopsis" Genetic Sequences to Teach Bioinformatics

    ERIC Educational Resources Information Center

    Zhang, Xiaorong

    2009-01-01

    This article describes a new approach to teaching bioinformatics using "Arabidopsis" genetic sequences. Several open-ended and inquiry-based laboratory exercises have been designed to help students grasp key concepts and gain practical skills in bioinformatics, using "Arabidopsis" leucine-rich repeat receptor-like kinase (LRR…

  12. Characterization of a Selenate-Resistant Arabidopsis Mutant. Root Growth as a Potential Target for Selenate Toxicity1[OA

    PubMed Central

    El Kassis, Elie; Cathala, Nicole; Rouached, Hatem; Fourcroy, Pierre; Berthomieu, Pierre; Terry, Norman; Davidian, Jean-Claude

    2007-01-01

    Screening an Arabidopsis (Arabidopsis thaliana) T-DNA mutant library for selenate resistance enabled us to isolate a selenate-resistant mutant line (sel1-11). Molecular and genetic characterization showed that the mutant contained a lesion in the SULTR1;2 gene that encodes a high affinity root sulfate transporter. We showed that SULTR1;2 is the only gene among 13 mutated genes of the Arabidopsis sulfate transporter family whose mutation conferred selenate resistance to Arabidopsis. The selenate resistance phenotype of the sel1-11 mutant was mirrored by an 8-fold increase of root growth in the presence of selenate as shown by the calculated lethal concentration values. The impairment of SULTR1;2 activity in sel1-11 resulted in a reduced 35S-sulfate uptake capacity by both roots and calli and a reduced sulfate and selenate content in root, shoot, and calli. Comparing sulfate-to-selenate ratios instead of absolute sulfate and selenate contents in roots and shoots enabled us to gain better insight into the mechanism of selenate toxicity in Arabidopsis. Roots of the sel1-11 mutant line showed a higher sulfate to selenate ratio than that of wild-type roots, while there were no significant differences in sulfate to selenate ratios in shoots of wild-type and mutant lines. These results indicated that the mechanism that confers the selenate resistance phenotype to the sel1-11 line takes place rather in the roots. It might be in part the result of a lower selenate uptake and of a protective effect of sulfate against the toxic effects of selenate on root growth. These results revealed in plants a central and specific role of the transporter SULTR1;2 in selenate sensitivity; they further suggested that root growth and potentially the root tip activity might be a specific target of selenate toxicity in Arabidopsis. PMID:17208959

  13. Arabidopsis basic leucine-zipper transcription factors TGA9 and TGA10 interact with floral glutaredoxins ROXY1 and ROXY2 and are redundantly required for anther development.

    PubMed

    Murmu, Jhadeswar; Bush, Michael J; DeLong, Catherine; Li, Shutian; Xu, Mingli; Khan, Madiha; Malcolmson, Caroline; Fobert, Pierre R; Zachgo, Sabine; Hepworth, Shelley R

    2010-11-01

    ROXY1 and ROXY2 are CC-type floral glutaredoxins with redundant functions in Arabidopsis (Arabidopsis thaliana) anther development. We show here that plants lacking the basic leucine-zipper transcription factors TGA9 and TGA10 have defects in male gametogenesis that are strikingly similar to those in roxy1 roxy2 mutants. In tga9 tga10 mutants, adaxial and abaxial anther lobe development is differentially affected, with early steps in anther development blocked in adaxial lobes and later steps affected in abaxial lobes. Distinct from roxy1 roxy2, microspore development in abaxial anther lobes proceeds to a later stage with the production of inviable pollen grains contained within nondehiscent anthers. Histological analysis shows multiple defects in the anther dehiscence program, including abnormal stability and lignification of the middle layer and defects in septum and stomium function. Compatible with these defects, TGA9 and TGA10 are expressed throughout early anther primordia but resolve to the middle and tapetum layers during meiosis of pollen mother cells. Several lines of evidence suggest that ROXY promotion of anther development is mediated in part by TGA9 and TGA10. First, TGA9 and TGA10 expression overlaps with ROXY1/2 during anther development. Second, TGA9/10 and ROXY1/2 operate downstream of SPOROCYTELESS/NOZZLE, where they positively regulate a common set of genes that contribute to tapetal development. Third, TGA9 and TGA10 directly interact with ROXY proteins in yeast and in plant cell nuclei. These findings suggest that activation of TGA9/10 transcription factors by ROXY-mediated modification of cysteine residues promotes anther development, thus broadening our understanding of how redox-regulated TGA factors function in plants.

  14. 43 CFR 2812.1-2 - Contents.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Contents. 2812.1-2 Section 2812.1-2 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) TRAMROADS AND LOGGING ROADS Over O. and C. and Coos Bay Revested Lands § 2812.1-2 Contents. (a)...

  15. 43 CFR 2812.1-2 - Contents.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Contents. 2812.1-2 Section 2812.1-2 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) TRAMROADS AND LOGGING ROADS Over O. and C. and Coos Bay Revested Lands § 2812.1-2 Contents. (a)...

  16. 43 CFR 2812.1-2 - Contents.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Contents. 2812.1-2 Section 2812.1-2 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) TRAMROADS AND LOGGING ROADS Over O. and C. and Coos Bay Revested Lands § 2812.1-2 Contents. (a)...

  17. 43 CFR 2812.1-2 - Contents.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Contents. 2812.1-2 Section 2812.1-2 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) TRAMROADS AND LOGGING ROADS Over O. and C. and Coos Bay Revested Lands § 2812.1-2 Contents. (a)...

  18. In vitro Arabidopsis pollen germination and characterization of the inward potassium currents in Arabidopsis pollen grain protoplasts.

    PubMed

    Fan, L M; Wang, Y F; Wang, H; Wu, W H

    2001-08-01

    The focus of this study is to investigate the regulatory role of K(+) influx in Arabidopsis pollen germination and pollen tube growth. Using agar-containing media, in vitro methods for Arabidopsis pollen germination have been successfully established for the first time. The pollen germination percentage was nearly 75% and the average pollen tube length reached 135 microm after a 6 h incubation. A decrease in external K(+) concentration from 1 mM to 35 microM resulted in 30% inhibition of pollen germination and 40% inhibition of pollen tube growth. An increase in external K(+) concentration from 1 mM to 30 mM stimulated pollen tube growth but inhibited pollen germination. To study how K(+) influx is associated with pollen germination and tube growth, regulation of the inward K(+) channels in the pollen plasma membrane was investigated by conducting patch-clamp whole-cell recording with pollen protoplasts. K(+) currents were first identified in Arabidopsis pollen protoplasts. The inward K(+) currents were insensitive to changes in cytoplasmic Ca(2+) but were inhibited by a high concentration of external Ca(2+). A decrease of external Ca(2+) concentration from 10 mM (control) to 1 mM had no significant effect on the inward K(+) currents, while an increase of external Ca(2+) concentration from 10 mM to 50 mM inhibited the inward K(+) currents by 46%. Changes in external pH significantly affected the magnitude, conductance, voltage-independent maximal conductance, and activation kinetics of the inward K(+) currents. The physiological importance of potassium influx mediated by the inward K(+)-channels during Arabidopsis pollen germination and tube growth is discussed.

  19. The SERRATE protein is involved in alternative splicing in Arabidopsis thaliana

    PubMed Central

    Raczynska, Katarzyna Dorota; Stepien, Agata; Kierzkowski, Daniel; Kalak, Malgorzata; Bajczyk, Mateusz; McNicol, Jim; Simpson, Craig G.; Szweykowska-Kulinska, Zofia; Brown, John W. S.; Jarmolowski, Artur

    2014-01-01

    How alternative splicing (AS) is regulated in plants has not yet been elucidated. Previously, we have shown that the nuclear cap-binding protein complex (AtCBC) is involved in AS in Arabidopsis thaliana. Here we show that both subunits of AtCBC (AtCBP20 and AtCBP80) interact with SERRATE (AtSE), a protein involved in the microRNA biogenesis pathway. Moreover, using a high-resolution reverse transcriptase-polymerase chain reaction AS system we have found that AtSE influences AS in a similar way to the cap-binding complex (CBC), preferentially affecting selection of 5′ splice site of first introns. The AtSE protein acts in cooperation with AtCBC: many changes observed in the mutant lacking the correct SERRATE activity were common to those observed in the cbp mutants. Interestingly, significant changes in AS of some genes were also observed in other mutants of plant microRNA biogenesis pathway, hyl1-2 and dcl1-7, but a majority of them did not correspond to the changes observed in the se-1 mutant. Thus, the role of SERRATE in AS regulation is distinct from that of HYL1 and DCL1, and is similar to the regulation of AS in which CBC is involved. PMID:24137006

  20. Architectural phenotypes in the transparent testa mutants of Arabidopsis thaliana

    PubMed Central

    Buer, Charles S.; Djordjevic, Michael A.

    2009-01-01

    Flavonoids are low molecular weight secondary plant metabolites with a myriad of functions. As flavonoids affect auxin transport (an important growth-controlling hormone) and are biologically active in eukaryotes, flavonoid mutants were expected to have undescribed architectural phenotypes. The Arabidopsis thaliana transparent testa (tt) mutants are compromised in the enzymatic steps or transcriptional regulators affecting flavonoid synthesis. tt mutant seedlings were grown on hard-slanted agar (a stress condition), under varying light conditions, and in soil to examine the resulting growth patterns. These tt mutants revealed a wide variety of architectural phenotypes in root and aerial tissues. Mutants with increased inflorescences, siliques, and lateral root density or reduced stature are traits that could affect plant yield or performance under certain environmental conditions. The regulatory genes affected in architectural traits may provide useful molecular targets for examination in other plants. PMID:19129166

  1. Inducible Expression of Arabidopsis Response Regulator 22 (ARR22), a Type-C ARR, in Transgenic Arabidopsis Enhances Drought and Freezing Tolerance

    PubMed Central

    Kim, Jungmook

    2013-01-01

    The Arabidopsis two-component signaling system, which is comprised of sensor histidine kinases, histidine phosphotransfer proteins, and response regulators, mediates cytokinin response as well as various other plant responses including abiotic stress responses. Arabidopsis response regulators (ARRs) are classified into type-A, -B, and -C. Although the roles of type-A and -B ARRs are well established in Arabidopsis plant signaling, roles of type-C ARRs, ARR22 and ARR24, remain elusive. ARR22, a preferentially cytosolic protein, interacts with certain Arabidopsis histidine phosphotransfer proteins (AHPs) and displays phosphatase activity on AHP5. ARR22 is induced by cold and dehydration. Here, we show that inducible overexpression of ARR22 in Arabidopsis enhanced dehydration, drought, and cold tolerance in a dexamethasone-dependent manner, whereas mutation of the putative phospho-accepting Asp to Asn in ARR22 (ARR22D74N) abolished these tolerance phenotypes. Overexpression of ARR22 decreased electrolyte leakage in dehydration-, drought-, or cold-stressed transgenic Arabidopsis plants compared with that of ARR22D74N or compared with wild-type plants. Transpiration rates and stomatal apertures were not affected by ARR22 overexpression. No significant difference in both dehydration and freezing tolerance was observed between wild-type and arr22 mutants with or without cytokinin preincubation, consistent with the lack of phenotypes of arr22 mutants in their vegetative development. Meta-profile analyses of the microarray data on ARR22-responsive genes indicate that ARR22 modulates expression of a variety of abiotic stress-responsive genes, which might contribute to increasing drought and freezing tolerance. Taken together, these results suggest that ARR22 plays a positive role in the stress tolerance response in part via enhancing cell membrane integrity and that phospho-histidine phosphatase activity of ARR22 may be required for this function. PMID:24244460

  2. Molecular genetics of root gravitropism and waving in Arabidopsis thaliana.

    PubMed

    Sedbrook, J; Boonsirichai, K; Chen, R; Hilson, P; Pearlman, R; Rosen, E; Rutherford, R; Batiza, A; Carroll, K; Schulz, T; Masson, P H

    1998-05-01

    When Arabidopsis thaliana seedlings grow embedded in an agar-based medium, their roots grow vertically downward. This reflects their ability to sense the gravity vector and to position their tip parallel to it (gravitropism). We have isolated a number of mutations affecting root gravitropism in Arabidopsis thaliana. One of these mutations, named arg1, affects root and hypocotyl gravitropism without promoting defects in starch content or in the ability of seedlings' organs to respond to plant hormones. The ARG1 gene was cloned and shown to code for a protein with a J domain at its amino terminus and a second sequence motif found in several cytoskeleton binding proteins. Mutations in the AGR1 locus promote a strong defect in root gravitropism. Some alleles also confer an increased root resistance to exogenous ethylene and an increased sensitivity to auxin. AGR1 was cloned and found to encode a putative transmembrane protein which might be involved in polar auxin transport, or in regulating the differential growth response to gravistimulation. When Arabidopsis seedlings grow on the surface of agar-based media tilted backward, their roots wave. That wavy pattern of root growth derives from a combined response to gravity, touch and other surface-derived stimuli. It is accompanied by a reversible rotation of the root tip about its axis. A number of mutations affect the presence or the shape of root waves on tilted agar-based surfaces. One of them, wvc1, promotes the formation of compressed root waves under these conditions. The physiological and molecular analyses of this mutant suggest that a tryptophan-derived molecule other than IAA might be an important regulator of the curvature responsible for root waving.

  3. Aspartate oxidase plays an important role in Arabidopsis stomatal immunity.

    PubMed

    Macho, Alberto P; Boutrot, Freddy; Rathjen, John P; Zipfel, Cyril

    2012-08-01

    Perception of pathogen-associated molecular patterns (PAMPs), such as bacterial flagellin (or the peptide flg22), by surface-localized receptors activates defense responses and subsequent immunity. In a previous forward-genetic screen aimed at the identification of Arabidopsis (Arabidopsis thaliana) flagellin-insensitive (fin) mutants, we isolated fin4, which is severely affected in flg22-triggered reactive oxygen species (ROS) bursts. Here, we report that FIN4 encodes the chloroplastic enzyme ASPARTATE OXIDASE (AO), which catalyzes the first irreversible step in the de novo biosynthesis of NAD. Genetic studies on the role of NAD have been hindered so far by the lethality of null mutants in NAD biosynthetic enzymes. Using newly identified knockdown fin alleles, we found that AO is required for the ROS burst mediated by the NADPH oxidase RBOHD triggered by the perception of several unrelated PAMPs. AO is also required for RBOHD-dependent stomatal closure. However, full AO activity is not required for flg22-induced responses that are RBOHD independent. Interestingly, although the fin4 mutation dramatically affects RBOHD function, it does not affect functions carried out by other members of the RBOH family, such as RBOHC and RBOHF. Finally, we determined that AO is required for stomatal immunity against the bacterium Pseudomonas syringae. Altogether, our work reveals a novel specific requirement for AO activity in PAMP-triggered RBOHD-dependent ROS burst and stomatal immunity. In addition, the availability of viable mutants for the chloroplastic enzyme AO will enable future detailed studies on the role of NAD metabolism in different cellular processes, including immunity, in Arabidopsis.

  4. Molecular genetics of root gravitropism and waving in Arabidopsis thaliana

    NASA Technical Reports Server (NTRS)

    Sedbrook, J.; Boonsirichai, K.; Chen, R.; Hilson, P.; Pearlman, R.; Rosen, E.; Rutherford, R.; Batiza, A.; Carroll, K.; Schulz, T.; Masson, P. H.

    1998-01-01

    When Arabidopsis thaliana seedlings grow embedded in an agar-based medium, their roots grow vertically downward. This reflects their ability to sense the gravity vector and to position their tip parallel to it (gravitropism). We have isolated a number of mutations affecting root gravitropism in Arabidopsis thaliana. One of these mutations, named arg1, affects root and hypocotyl gravitropism without promoting defects in starch content or in the ability of seedlings' organs to respond to plant hormones. The ARG1 gene was cloned and shown to code for a protein with a J domain at its amino terminus and a second sequence motif found in several cytoskeleton binding proteins. Mutations in the AGR1 locus promote a strong defect in root gravitropism. Some alleles also confer an increased root resistance to exogenous ethylene and an increased sensitivity to auxin. AGR1 was cloned and found to encode a putative transmembrane protein which might be involved in polar auxin transport, or in regulating the differential growth response to gravistimulation. When Arabidopsis seedlings grow on the surface of agar-based media tilted backward, their roots wave. That wavy pattern of root growth derives from a combined response to gravity, touch and other surface-derived stimuli. It is accompanied by a reversible rotation of the root tip about its axis. A number of mutations affect the presence or the shape of root waves on tilted agar-based surfaces. One of them, wvc1, promotes the formation of compressed root waves under these conditions. The physiological and molecular analyses of this mutant suggest that a tryptophan-derived molecule other than IAA might be an important regulator of the curvature responsible for root waving.

  5. Overexpression of 20-Oxidase Confers a Gibberellin-Overproduction Phenotype in Arabidopsis

    PubMed Central

    Huang, Shihshieh; Raman, Anuradha S.; Ream, Joel E.; Fujiwara, Hideji; Cerny, R. Eric; Brown, Sherri M.

    1998-01-01

    In the gibberellin (GA) biosynthesis pathway, 20-oxidase catalyzes the oxidation and elimination of carbon-20 to give rise to C19-GAs. All bioactive GAs are C19-GAs. We have overexpressed a cDNA encoding 20-oxidase isolated from Arabidopsis seedlings in transgenic Arabidopsis plants. These transgenic plants display a phenotype that may be attributed to the overproduction of GA. The phenotype includes a longer hypocotyl, lighter-green leaves, increased stem elongation, earlier flowering, and decreased seed dormancy. However, the fertility of the transgenic plants is not affected. Increased levels of endogenous GA1, GA9, and GA20 were detected in seedlings of the transgenic line examined. GA4, which is thought to be the predominantly active GA in Arabidopsis, was not present at increased levels in this line. These results suggest that the overexpression of this 20-oxidase increases the levels of some endogenous GAs in transgenic seedlings, which causes the GA-overproduction phenotype. PMID:9808721

  6. A Rhizosphere Fungus Enhances Arabidopsis Thermotolerance through Production of an HSP90 Inhibitor1

    PubMed Central

    McLellan, Catherine A.; Turbyville, Thomas J.; Wijeratne, E.M. Kithsiri; Kerschen, Arthur; Vierling, Elizabeth; Queitsch, Christine; Whitesell, Luke; Gunatilaka, A.A. Leslie

    2007-01-01

    The molecular chaperone HEAT SHOCK PROTEIN90 (HSP90) is essential for the maturation of key regulatory proteins in eukaryotes and for the response to temperature stress. Earlier, we have reported that fungi living in association with plants of the Sonoran desert produce small molecule inhibitors of mammalian HSP90. Here, we address whether elaboration of the HSP90 inhibitor monocillin I (MON) by the rhizosphere fungus Paraphaeosphaeria quadriseptata affects plant HSP90 and plant environmental responsiveness. We demonstrate that MON binds Arabidopsis (Arabidopsis thaliana) HSP90 and can inhibit the function of HSP90 in lysates of wheat (Triticum aestivum) germ. MON treatment of Arabidopsis seedlings induced HSP101 and HSP70, conserved components of the stress response. Application of MON, or growth in the presence of MON, allowed Arabidopsis wild type but not AtHSP101 knockout mutant seedlings to survive otherwise lethal temperature stress. Finally, cocultivation of P. quadriseptata with Arabidopsis enhanced plant heat stress tolerance. These data demonstrate that HSP90-inhibitory compounds produced by fungi can influence plant growth and responses to the environment. PMID:17631526

  7. 44 CFR 1.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 44 Emergency Management and Assistance 1 2011-10-01 2011-10-01 false Definitions. 1.2 Section 1.2 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY... Emergency Management Agency. (e) Major rule means any regulation that is likely to result in: (1) An...

  8. 44 CFR 1.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Definitions. 1.2 Section 1.2 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY... Emergency Management Agency. (e) Major rule means any regulation that is likely to result in: (1) An...

  9. 24 CFR 1.2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... participates in carrying out such program or activity (such as a redeveloper in the Urban Renewal Program... 24 Housing and Urban Development 1 2013-04-01 2013-04-01 false Definitions. 1.2 Section 1.2 Housing and Urban Development Office of the Secretary, Department of Housing and Urban...

  10. 24 CFR 1.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... participates in carrying out such program or activity (such as a redeveloper in the Urban Renewal Program... 24 Housing and Urban Development 1 2011-04-01 2011-04-01 false Definitions. 1.2 Section 1.2 Housing and Urban Development Office of the Secretary, Department of Housing and Urban...

  11. 24 CFR 1.2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... participates in carrying out such program or activity (such as a redeveloper in the Urban Renewal Program... 24 Housing and Urban Development 1 2012-04-01 2012-04-01 false Definitions. 1.2 Section 1.2 Housing and Urban Development Office of the Secretary, Department of Housing and Urban...

  12. 24 CFR 1.2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... participates in carrying out such program or activity (such as a redeveloper in the Urban Renewal Program... 24 Housing and Urban Development 1 2014-04-01 2014-04-01 false Definitions. 1.2 Section 1.2 Housing and Urban Development Office of the Secretary, Department of Housing and Urban...

  13. 24 CFR 1.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... participates in carrying out such program or activity (such as a redeveloper in the Urban Renewal Program... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Definitions. 1.2 Section 1.2 Housing and Urban Development Office of the Secretary, Department of Housing and Urban...

  14. 8 CFR 1.2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 8 Aliens and Nationality 1 2014-01-01 2014-01-01 false Definitions. 1.2 Section 1.2 Aliens and... alien means an applicant for admission coming or attempting to come into the United States at a port-of-entry, or an alien seeking transit through the United States at a port-of-entry, or an alien...

  15. A Chemical Genetic Screening Procedure for Arabidopsis thaliana Seedlings

    PubMed Central

    Bjornson, Marta; Song, Xingshun; Dandekar, Abhaya; Franz, Annaliese; Drakakaki, Georgia; Dehesh, Katayoon

    2016-01-01

    Unbiased screening approaches are powerful tools enabling identification of novel players in biological processes. Chemical genetic screening refers to the technique of using a reporter response, such as expression of luciferase driven by a promoter of interest, to discover small molecules that affect a given process when applied to plants. These chemicals then act as tools for identification of regulatory components that could not otherwise be detected by forward genetic screens due to gene family redundancy or mutant lethality. This protocol describes a chemical genetic screen using Arabidopsis thaliana seedlings, which has led to recognition of novel players in the plant general stress response. PMID:27446980

  16. Function of Arabidopsis CPL1 in cadmium responses.

    PubMed

    Aksoy, Emre; Koiwa, Hisashi

    2013-05-01

    Transcriptional and post-transcriptional responses to external iron (Fe) availability are essential for the cellular Fe homeostasis. Fe deficiency strongly induces Fe utilization-related gene expression; however, little is known about the early Fe signaling that regulates expression of a central transcription factor FIT. In Arabidopsis, mutations in RNA polymerase II CTD-phosphatase-like 1 (CPL1) enhance the expression of Fe utilization-related genes including FIT under Fe deficiency. Fe content is significantly increased in the roots and decreased in the shoots of cpl1-2 plants, and root growth of the cpl1-2 mutant shows higher tolerance to Fe deficiency and to toxicity of cadmium (Cd). The cpl1-2 plants accumulate more Cd in the shoots, suggesting that Cd toxicity in the cpl1-2 roots is circumvented by the transport of excess Cd to the shoots. Here we show data suggesting that the root-to-shoot translocation of Cd in cpl1-2 is mediated by yet uncharacterized Cd transport mechanisms.

  17. Function of Arabidopsis CPL1 in cadmium responses

    PubMed Central

    Aksoy, Emre; Koiwa, Hisashi

    2013-01-01

    Transcriptional and post-transcriptional responses to external iron (Fe) availability are essential for the cellular Fe homeostasis. Fe deficiency strongly induces Fe utilization-related gene expression; however, little is known about the early Fe signaling that regulates expression of a central transcription factor FIT. In Arabidopsis, mutations in RNA polymerase II CTD-phosphatase-like 1 (CPL1) enhance the expression of Fe utilization-related genes including FIT under Fe deficiency. Fe content is significantly increased in the roots and decreased in the shoots of cpl1-2 plants, and root growth of the cpl1-2 mutant shows higher tolerance to Fe deficiency and to toxicity of cadmium (Cd). The cpl1-2 plants accumulate more Cd in the shoots, suggesting that Cd toxicity in the cpl1-2 roots is circumvented by the transport of excess Cd to the shoots. Here we show data suggesting that the root-to-shoot translocation of Cd in cpl1-2 is mediated by yet uncharacterized Cd transport mechanisms. PMID:23455022

  18. Defects in Peroxisomal 6-Phosphogluconate Dehydrogenase Isoform PGD2 Prevent Gametophytic Interaction in Arabidopsis thaliana1[OPEN

    PubMed Central

    Hölscher, Christian; Meyer, Tanja; Fischer, Kerstin

    2016-01-01

    We studied the localization of 6-phosphogluconate dehydrogenase (PGD) isoforms of Arabidopsis (Arabidopsis thaliana). Similar polypeptide lengths of PGD1, PGD2, and PGD3 obscured which isoform may represent the cytosolic and/or plastidic enzyme plus whether PGD2 with a peroxisomal targeting motif also might target plastids. Reporter-fusion analyses in protoplasts revealed that, with a free N terminus, PGD1 and PGD3 accumulate in the cytosol and chloroplasts, whereas PGD2 remains in the cytosol. Mutagenesis of a conserved second ATG enhanced the plastidic localization of PGD1 and PGD3 but not PGD2. Amino-terminal deletions of PGD2 fusions with a free C terminus resulted in peroxisomal import after dimerization, and PGD2 could be immunodetected in purified peroxisomes. Repeated selfing of pgd2 transfer (T-)DNA alleles yielded no homozygous mutants, although siliques and seeds of heterozygous plants developed normally. Detailed analyses of the C-terminally truncated PGD2-1 protein showed that peroxisomal import and catalytic activity are abolished. Reciprocal backcrosses of pgd2-1 suggested that missing PGD activity in peroxisomes primarily affects the male gametophyte. Tetrad analyses in the quartet1-2 background revealed that pgd2-1 pollen is vital and in vitro germination normal, but pollen tube growth inside stylar tissues appeared less directed. Mutual gametophytic sterility was overcome by complementation with a genomic construct but not with a version lacking the first ATG. These analyses showed that peroxisomal PGD2 activity is required for guided growth of the male gametophytes and pollen tube-ovule interaction. Our report finally demonstrates an essential role of oxidative pentose-phosphate pathway reactions in peroxisomes, likely needed to sustain critical levels of nitric oxide and/or jasmonic acid, whose biosynthesis both depend on NADPH provision. PMID:26941195

  19. Antagonistic interaction of BLADE-ON-PETIOLE1 and 2 with BREVIPEDICELLUS and PENNYWISE regulates Arabidopsis inflorescence architecture.

    PubMed

    Khan, Madiha; Xu, Mingli; Murmu, Jhadeswar; Tabb, Paul; Liu, Yuanyuan; Storey, Kathryn; McKim, Sarah M; Douglas, Carl J; Hepworth, Shelley R

    2012-02-01

    The transition to flowering in many plant species, including Arabidopsis (Arabidopsis thaliana), is marked by the elongation of internodes to make an inflorescence upon which lateral branches and flowers are arranged in a characteristic pattern. Inflorescence patterning relies in part on the activities of two three-amino-acid loop-extension homeodomain transcription factors: BREVIPEDICELLUS (BP) and PENNYWISE (PNY) whose interacting products also promote meristem function. We examine here the genetic interactions between BP-PNY whose expression is up-regulated in stems at the floral transition, and the lateral organ boundary genes BLADE-ON-PETIOLE1 (BOP1) and BOP2, whose expression is restricted to pedicel axils. Our data show that bp and pny inflorescence defects are caused by BOP1/2 gain of function in stems and pedicels. Compatible with this, inactivation of BOP1/2 rescues these defects. BOP expression domains are differentially enlarged in bp and pny mutants, corresponding to the distinctive patterns of growth restriction in these mutants leading to compacted internodes and clustered or downward-oriented fruits. Our data indicate that BOP1/2 are positive regulators of KNOTTED1-LIKE FROM ARABIDOPSIS THALIANA6 expression and that growth restriction in BOP1/2 gain-of-function plants requires KNOTTED1-LIKE FROM ARABIDOPSIS THALIANA6. Antagonism between BOP1/2 and BP is explained in part by their reciprocal regulation of gene expression, as evidenced by the identification of lignin biosynthetic genes that are repressed by BP and activated by BOP1/2 in stems. These data reveal BOP1/2 gain of function as the basis of bp and pny inflorescence defects and reveal how antagonism between BOP1/2 and BP-PNY contributes to inflorescence patterning in a model plant species.

  20. Sodium fluxes through nonselective cation channels in the plasma membrane of protoplasts from Arabidopsis roots.

    PubMed

    Demidchik, Vadim; Tester, Mark

    2002-02-01

    The aim of the present work was to characterize Na(+) currents through nonselective cation channels (NSCCs) in protoplasts derived from root cells of Arabidopsis. The procedure of the protoplast isolation was modified to increase the stability of Arabidopsis root protoplasts in low external Ca(2+) by digesting tissue in elevated Ca(2+). Experiments in whole-cell and outside-out modes were carried out. We found that Na(+) currents in Arabidopsis root protoplasts were mediated by cation channels that were insensitive to externally applied tetraethylammonium(+) and verapamil, had no time-dependent activation (permanently opened or completely activated within 1-2 ms), were voltage independent, and were weakly selective for monovalent cations. The selectivity sequence was as follows: K(+) (1.49) > NH(4)(+) (1.24) > Rb(+) (1.15) approximately equal to Cs(+) (1.10) approximately equal to Na(+) (1.00) > Li(+) (0.73) > tetraethylammonium(+) (0.47). Arabidopsis root NSCCs were blocked by H(+) (pK approximately equal to 6.0), Ca(2+) (K(1/2) approximately equal to 0.1 mM), Ba(2+), Zn(2+), La(3+), Gd(3+), quinine, and the His modifier diethylpyrocarbonate. They were insensitive to most organic blockers (nifedipine, verapamil, flufenamate, and amiloride) and to the SH-group modifier p-chloromercuriphenyl sulfonic acid. Voltage-insensitive, Ca(2+)-sensitive single channels were also resolved. Properties of Arabidopsis root NSCCs are discussed and compared with characteristics of similar conductances studied previously in plants and animals. It is suggested that NSCCs present a distinct group of plant ion channels, mediating toxic Na(+) influx to the cell and probably having other important roles in physiological processes of plants.

  1. Taxonomy and Phylogeny of Arabidopsis (Brassicaceae)

    PubMed Central

    Al-Shehbaz, Ihsan A.; O'Kane, Steve L.

    2002-01-01

    Detailed taxonomic, cytological, and phylogenetic accounts of Arabidopsis are presented. As currently delimited, the genus consists of nine species all of which are indigenous to Europe, with the ranges of two species extending into northern and eastern Asia and North American into central United States. A survey of chromosome numbers in the genus is presented, and the country of origin for each count is given. Detailed descriptions of all species and subspecies and keys to all taxa are provided. Generic assignments are updated for the 50 species previously included in Arabidopsis. A cladogram of the species of Arabidopsis based on molecular phylogenetic studies by the authors is given. PMID:22303187

  2. Arabidopsis thaliana life without phytochromes

    PubMed Central

    Strasser, Bárbara; Sánchez-Lamas, Maximiliano; Yanovsky, Marcelo J.; Casal, Jorge J.; Cerdán, Pablo D.

    2010-01-01

    Plants use light as a source of energy for photosynthesis and as a source of environmental information perceived by photoreceptors. Testing whether plants can complete their cycle if light provides energy but no information about the environment requires a plant devoid of phytochromes because all photosynthetically active wavelengths activate phytochromes. Producing such a quintuple mutant of Arabidopsis thaliana has been challenging, but we were able to obtain it in the flowering locus T (ft) mutant background. The quintuple phytochrome mutant does not germinate in the FT background, but it germinates to some extent in the ft background. If germination problems are bypassed by the addition of gibberellins, the seedlings of the quintuple phytochrome mutant exposed to red light produce chlorophyll, indicating that phytochromes are not the sole red-light photoreceptors, but they become developmentally arrested shortly after the cotyledon stage. Blue light bypasses this blockage, rejecting the long-standing idea that the blue-light receptors cryptochromes cannot operate without phytochromes. After growth under white light, returning the quintuple phytochrome mutant to red light resulted in rapid senescence of already expanded leaves and severely impaired expansion of new leaves. We conclude that Arabidopsis development is stalled at several points in the presence of light suitable for photosynthesis but providing no photomorphogenic signal. PMID:20176939

  3. Sulfenome mining in Arabidopsis thaliana

    PubMed Central

    Waszczak, Cezary; Akter, Salma; Eeckhout, Dominique; Persiau, Geert; Wahni, Khadija; Bodra, Nandita; Van Molle, Inge; De Smet, Barbara; Vertommen, Didier; Gevaert, Kris; De Jaeger, Geert; Van Montagu, Marc; Messens, Joris; Van Breusegem, Frank

    2014-01-01

    Reactive oxygen species (ROS) have been shown to be potent signaling molecules. Today, oxidation of cysteine residues is a well-recognized posttranslational protein modification, but the signaling processes steered by such oxidations are poorly understood. To gain insight into the cysteine thiol-dependent ROS signaling in Arabidopsis thaliana, we identified the hydrogen peroxide (H2O2)-dependent sulfenome: that is, proteins with at least one cysteine thiol oxidized to a sulfenic acid. By means of a genetic construct consisting of a fusion between the C-terminal domain of the yeast (Saccharomyces cerevisiae) AP-1–like (YAP1) transcription factor and a tandem affinity purification tag, we detected ∼100 sulfenylated proteins in Arabidopsis cell suspensions exposed to H2O2 stress. The in vivo YAP1-based trapping of sulfenylated proteins was validated by a targeted in vitro analysis of DEHYDROASCORBATE REDUCTASE2 (DHAR2). In DHAR2, the active site nucleophilic cysteine is regulated through a sulfenic acid-dependent switch, leading to S-glutathionylation, a protein modification that protects the protein against oxidative damage. PMID:25049418

  4. AC conductivity and relaxation mechanism in (Nd1/2Li1/2)(Fe1/2V1/2)O3 ceramics

    NASA Astrophysics Data System (ADS)

    Nath, Susmita; Barik, Subrat Kumar; Choudhary, R. N. P.

    2016-05-01

    In the present study we have synthesized polycrystalline sample of (Nd1/2Li1/2)(Fe1/2V1/2)O3 ceramic by a standard high-temperature solid-state reaction technique. Studies of dielectric and electrical properties of the compound have been carried out in a wide range of temperature (RT - 400 °C) and frequency (1kHz - 1MHz) using complex impedance spectroscopic technique. The imaginary vs. real component of the complex impedance plot (Nyquist plot) of the prepared sample exhibits the existence of grain, grain boundary contributions in the complex electrical parameters and negative temperature coefficient of resistance (NTCR) type behavior like semiconductor. Details study of ac conductivity plot reveals that the material obeys universal Jonscher's power law.

  5. Cloaking spin-(1/2) matter waves

    SciTech Connect

    Lin, De-Hone

    2010-06-15

    A physical construct for the cloaking of relativistic spin-(1/2) matter waves is proposed. It is shown that when the effective energy and mass of relativistic spin-(1/2) particles moving in an effective vector field in a spherical shell are controlled, their matter waves can be perfectly guided through the shell without any distortion or loss; that is, the construct provides a three-dimensional cloaking shell for relativistic spin-(1/2) matter waves. The proposal serves as the basis for some interesting applications such as providing a method to guide the matter waves of spin particles and an ideal setup to exhibit spin-spin interactions as well as perfect quantum interferences of some global effects in spin-(1/2) matter waves.

  6. Light inputs shape the Arabidopsis circadian system.

    PubMed

    Wenden, Bénédicte; Kozma-Bognár, László; Edwards, Kieron D; Hall, Anthony J W; Locke, James C W; Millar, Andrew J

    2011-05-01

    The circadian clock is a fundamental feature of eukaryotic gene regulation that is emerging as an exemplar genetic sub-network for systems biology. The circadian system in Arabidopsis plants is complex, in part due to its phototransduction pathways, which are themselves under circadian control. We therefore analysed two simpler experimental systems. Etiolated seedlings entrained by temperature cycles showed circadian rhythms in the expression of genes that are important for the clock mechanism, but only a restricted set of downstream target genes were rhythmic in microarray assays. Clock control of phototransduction pathways remained robust across a range of light inputs, despite the arrhythmic transcription of light-signalling genes. Circadian interactions with light signalling were then analysed using a single active photoreceptor. Phytochrome A (phyA) is expected to be the only active photoreceptor that can mediate far-red (FR) light input to the circadian clock. Surprisingly, rhythmic gene expression was profoundly altered under constant FR light, in a phyA-dependent manner, resulting in high expression of evening genes and low expression of morning genes. Dark intervals were required to allow high-amplitude rhythms across the transcriptome. Clock genes involved in this response were identified by mutant analysis, showing that the EARLY FLOWERING 4 gene is a likely target and mediator of the FR effects. Both experimental systems illustrate how profoundly the light input pathways affect the plant circadian clock, and provide strong experimental manipulations to understand critical steps in the plant clock mechanism.

  7. The Receptor Kinase IMPAIRED OOMYCETE SUSCEPTIBILITY1 Attenuates Abscisic Acid Responses in Arabidopsis1[C][W

    PubMed Central

    Hok, Sophie; Allasia, Valérie; Andrio, Emilie; Naessens, Elodie; Ribes, Elsa; Panabières, Franck; Attard, Agnès; Ris, Nicolas; Clément, Mathilde; Barlet, Xavier; Marco, Yves; Grill, Erwin; Eichmann, Ruth; Weis, Corina; Hückelhoven, Ralph; Ammon, Alexandra; Ludwig-Müller, Jutta; Voll, Lars M.; Keller, Harald

    2014-01-01

    In plants, membrane-bound receptor kinases are essential for developmental processes, immune responses to pathogens and the establishment of symbiosis. We previously identified the Arabidopsis (Arabidopsis thaliana) receptor kinase IMPAIRED OOMYCETE SUSCEPTIBILITY1 (IOS1) as required for successful infection with the downy mildew pathogen Hyaloperonospora arabidopsidis. We report here that IOS1 is also required for full susceptibility of Arabidopsis to unrelated (hemi)biotrophic filamentous oomycete and fungal pathogens. Impaired susceptibility in the absence of IOS1 appeared to be independent of plant defense mechanism. Instead, we found that ios1-1 plants were hypersensitive to the plant hormone abscisic acid (ABA), displaying enhanced ABA-mediated inhibition of seed germination, root elongation, and stomatal opening. These findings suggest that IOS1 negatively regulates ABA signaling in Arabidopsis. The expression of ABA-sensitive COLD REGULATED and RESISTANCE TO DESICCATION genes was diminished in Arabidopsis during infection. This effect on ABA signaling was alleviated in the ios1-1 mutant background. Accordingly, ABA-insensitive and ABA-hypersensitive mutants were more susceptible and resistant to oomycete infection, respectively, showing that the intensity of ABA signaling affects the outcome of downy mildew disease. Taken together, our findings suggest that filamentous (hemi)biotrophs attenuate ABA signaling in Arabidopsis during the infection process and that IOS1 participates in this pathogen-mediated reprogramming of the host. PMID:25274985

  8. Cisplatin inhibits MEK1/2

    PubMed Central

    Yamamoto, Tetsu; Tsigelny, Igor F.; Götz, Andreas W.; Howell, Stephen B.

    2015-01-01

    Cisplatin (cDDP) is known to bind to the CXXC motif of proteins containing a ferrodoxin-like fold but little is known about its ability to interact with other Cu-binding proteins. MEK1/2 has recently been identified as a Cu-dependent enzyme that does not contain a CXXC motif. We found that cDDP bound to and inhibited the activity of recombinant MEK1 with an IC50 of 0.28 μM and MEK1/2 in whole cells with an IC50 of 37.4 μM. The inhibition of MEK1/2 was relieved by both Cu+1 and Cu+2 in a concentration-dependent manner. cDDP did not inhibit the upstream pathways responsible for activating MEK1/2, and did not cause an acute depletion of cellular Cu that could account for the reduction in MEK1/2 activity. cDDP was found to bind MEK1/2 in whole cells and the extent of binding was augmented by supplementary Cu and reduced by Cu chelation. Molecular modeling predicts 3 Cu and cDDP binding sites and quantum chemistry calculations indicate that cDDP would be expected to displace Cu from each of these sites. We conclude that, at clinically relevant concentrations, cDDP binds to and inhibits MEK1/2 and that both the binding and inhibitory activity are related to its interaction with Cu bound to MEK1/2. This may provide the basis for useful interactions of cDDP with other drugs that inhibit MAPK pathway signaling. PMID:26155939

  9. A multicomponent formal [1+2+1+2]-cycloaddition for the synthesis of dihydropyridines.

    PubMed

    Girling, P Ricardo; Batsanov, Andrei S; Shen, Hong C; Whiting, Andrew

    2012-05-18

    Reaction of methoxyvinylmethylketone with different amines and aldehydes under Lewis-acid catalysed conditions results in a novel, formal, step-wise [1+2+1+2]-cycloaddition to give dihydropyridine products.

  10. Overexpression of TaNAC2D Displays Opposite Responses to Abiotic Stresses between Seedling and Mature Stage of Transgenic Arabidopsis

    PubMed Central

    Huang, Quanjun; Wang, Yan

    2016-01-01

    Environmental stresses frequently affect plant growth and development, and many genes have been found to be induced by unfavorable environmental conditions. Here, we reported the biological functions of TaNAC2D, a stress-related NAC (NAM, ATAF, and CUC) gene from wheat. TaNAC2D showed transcriptional activator activity in yeast. TaNAC2D-GFP fusion protein was localized in the nucleus of wheat mesophyll protoplasts. TaNAC2D transcript abundance was significantly induced by NaCl, PEG6000, and abscisic acid (ABA) at seedling stage, and repressed by NaCl and PEG6000 at mature plant stage. When TaNAC2D was introduced into Arabidopsis, the 35-day-old soil-grown TaNAC2D-overexpression (TaNAC2D-OX) plants displayed slower stomatal closure, higher water loss rate, and more sensitivity to salt and drought stresses compared with WT plants. In contrast, TaNAC2D-OX seedlings, grown on 1/2 MS medium supplemented with different concentrations of NaCl, Mannitol, and MV, had enhanced tolerances to salt, osmotic and oxidative stresses during seed germination and post-germination periods. The opposite stress-responsive phenotypes of transgenic Arabidopsis were consistent with the expression patterns of TaNAC2D in wheat. Moreover, under high salinity and dehydration conditions, three marker genes, including NCED3, RD29A, and RD29B, were down-regulated in 35-day-old TaNAC2D-OX plants grown in soil and up-regulated in 14-day-old TaNAC2D-OX seedlings grown on 1/2 MS medium. Our results suggest that the change in growth stages and environmental conditions may regulate TaNAC2D’s function. PMID:27933076

  11. The fifth international conference on Arabidopsis research

    SciTech Connect

    Hangarter, R.; Scholl, R.; Davis, K.; Feldmann, K.

    1993-12-31

    This volume contains abstracts of oral and poster presentations made in conjunction with the Fifth International Conference on Arabidopsis Research held August 19--22, 1993 at the Ohio State University, Columbus, Ohio.

  12. PAIR: the predicted Arabidopsis interactome resource.

    PubMed

    Lin, Mingzhi; Shen, Xueling; Chen, Xin

    2011-01-01

    The predicted Arabidopsis interactome resource (PAIR, http://www.cls.zju.edu.cn/pair/), comprised of 5990 experimentally reported molecular interactions in Arabidopsis thaliana together with 145,494 predicted interactions, is currently the most comprehensive data set of the Arabidopsis interactome with high reliability. PAIR predicts interactions by a fine-tuned support vector machine model that integrates indirect evidences for interaction, such as gene co-expressions, domain interactions, shared GO annotations, co-localizations, phylogenetic profile similarities and homologous interactions in other organisms (interologs). These predictions were expected to cover 24% of the entire Arabidopsis interactome, and their reliability was estimated to be 44%. Two independent example data sets were used to rigorously validate the prediction accuracy. PAIR features a user-friendly query interface, providing rich annotation on the relationships between two proteins. A graphical interaction network browser has also been integrated into the PAIR web interface to facilitate mining of specific pathways.

  13. Rhizobacteria-induced priming in Arabidopsis is dependent on ethylene, jasmonic acid, and NPR1.

    PubMed

    Ahn, Il-Pyung; Lee, Sang-Woo; Suh, Seok-Cheol

    2007-07-01

    A nonpathogenic rhizobacterium, Pseudomonas putida LSW17S, elicited systemic protection against Fusarium wilt and pith necrosis caused by Fusarium oxysporum f. sp. lycopersici and P. corrugata in tomato (Lycopersicon esculentum L.). LSW17S also confers disease resistance against P. syringae pv. tomato DC3000 (DC3000) on Arabidopsis ecotype Col-0. To investigate mechanisms underlying disease protection, expression patterns of defense-related genes PR1, PR2, PR5, and PDF1.2 and cellular defense responses such as hydrogen peroxide accumulation and callose deposition were investigated. LSW17S treatment exhibited the typical phenomena of priming. Strong and faster transcription of defense-related genes was induced and hydrogen peroxide or callose were accumulated in Arabidopsis treated with LSW17S and infected with DC3000. In contrast, individual actions of LSW17S and DC3000 did not elicit rapid molecular and cellular defense responses. Priming by LSW17S was translocated systemically and retained for more than 10 days. Treatment with LSW17S reduced pathogen proliferation in Arabidopsis ecotype Col-0 expressing bacterial NahG; however, npr1, etr1, and jar1 mutations impaired inhibition of pathogen growth. Cellular and molecular priming responses support these results. In sum, LSW17S primes Arabidopsis for NPR1-, ethylene-, and jasmonic acid-dependent disease resistance, and efficient molecular and cellular defense responses.

  14. Polyamine metabolic canalization in response to drought stress in Arabidopsis and the resurrection plant Craterostigma plantagineum.

    PubMed

    Alcázar, Rubén; Bitrián, Marta; Bartels, Dorothea; Koncz, Csaba; Altabella, Teresa; Tiburcio, Antonio F

    2011-02-01

    In this work, we have studied the transcriptional profiles of polyamine biosynthetic genes and analyzed polyamine metabolic fluxes during a gradual drought acclimation response in Arabidopsis thaliana and the resurrection plant Craterostigma plantagineum. The analysis of free putrescine, spermidine and spermine titers in Arabidopsis arginine decarboxylase (adc1-3, adc2-3), spermidine synthase (spds1-2, spds2-3) and spermine synthase (spms-2) mutants during drought stress, combined with the quantitative expression of the entire polyamine biosynthetic pathway in the wild-type, has revealed a strong metabolic canalization of putrescine to spermine induced by drought. Such canalization requires spermidine synthase 1 (SPDS1) and spermine synthase (SPMS) activities and, intriguingly, does not lead to spermine accumulation but to a progressive reduction in spermidine and spermine pools in the wild-type. Our results suggest the participation of the polyamine back-conversion pathway during the drought stress response rather than the terminal catabolism of spermine. The putrescine to spermine canalization coupled to the spermine to putrescine back-conversion confers an effective polyamine recycling-loop during drought acclimation. Putrescine to spermine canalization has also been revealed in the desiccation tolerant plant C. plantagineum, which conversely to Arabidopsis, accumulates high spermine levels which associate with drought tolerance. Our results provide a new insight to the polyamine homeostasis mechanisms during drought stress acclimation in Arabidopsis and resurrection plants.

  15. Cytosolic Glutamine Synthetase Gln1;2 Is the Main Isozyme Contributing to GS1 Activity and Can Be Up-Regulated to Relieve Ammonium Toxicity1[OPEN

    PubMed Central

    Pedersen, Carsten

    2016-01-01

    Cytosolic GS1 (Gln synthetase) is central for ammonium assimilation in plants. High ammonium treatment enhanced the expression of the GS1 isogene Gln-1;2 encoding a low-affinity high-capacity GS1 protein in Arabidopsis (Arabidopsis thaliana) shoots. Under the same conditions, the expression of the high-affinity low-capacity isoform Gln-1;1 was reduced. The expression of Gln-1;3 did not respond to ammonium treatment while Gln-1;4 and Gln-1;5 isogenes in all cases were expressed at a very low level. Gln-2 was highly expressed in shoots but only at a very low level in roots. To investigate the specific functions of the two isogenes Gln-1;1 and Gln-1;2 in shoots for ammonium detoxification, single and double knock-out mutants were grown under standard N supply or with high ammonium provision. Phenotypes of the single mutant gln1;1 were similar to the wild type, while growth of the gln1;2 single mutant and the gln1;1:gln1;2 double mutant was significantly impaired irrespective of N regime. GS1 activity was significantly reduced in both gln1;2 and gln1;1:gln1;2. Along with this, the ammonium content increased while that of Gln decreased, showing that Gln-1;2 was essential for ammonium assimilation and amino acid synthesis. We conclude that Gln-1;2 is the main isozyme contributing to shoot GS1 activity in vegetative growth stages and can be up-regulated to relieve ammonium toxicity. This reveals, to our knowledge, a novel shoot function of Gln-1;2 in Arabidopsis shoots. PMID:27231101

  16. A role for the TOC complex in Arabidopsis root gravitropism.

    PubMed

    Stanga, John P; Boonsirichai, Kanokporn; Sedbrook, John C; Otegui, Marisa S; Masson, Patrick H

    2009-04-01

    Arabidopsis (Arabidopsis thaliana) roots perceive gravity and reorient their growth accordingly. Starch-dense amyloplasts within the columella cells of the root cap are important for gravitropism, and starchless mutants such as pgm1 display an attenuated response to gravistimulation. The altered response to gravity1 (arg1) mutant is known to be involved with the early phases of gravity signal transduction. arg1 responds slowly to gravistimulation and is in a genetically distinct pathway from pgm1, as pgm1 mutants enhance the gravitropic defect of arg1. arg1 seeds were mutagenized with ethylmethane sulfonate to identify new mutants that enhance the gravitropic defect of arg1. Two modifier of arg1 mutants (mar1 and mar2) grow in random directions only when arg1 is present, do not affect phototropism, and respond like the wild type to application of phytohormones. Both have mutations affecting different components of the Translocon of Outer Membrane of Chloroplasts (TOC) complex. mar1 possesses a mutation in the TOC75-III gene; mar2 possesses a mutation in the TOC132 gene. Overexpression of TOC132 rescues the random growth phenotype of mar2 arg1 roots. Root cap amyloplasts in mar2 arg1 appear ultrastructurally normal. They saltate like the wild type and sediment at wild-type rates upon gravistimulation. These data point to a role for the plastidic TOC complex in gravity signal transduction within the statocytes.

  17. BODYGUARD is required for the biosynthesis of cutin in Arabidopsis.

    PubMed

    Jakobson, Liina; Lindgren, Leif Ove; Verdier, Gaëtan; Laanemets, Kristiina; Brosché, Mikael; Beisson, Fred; Kollist, Hannes

    2016-07-01

    The cuticle plays a critical role in plant survival during extreme drought conditions. There are, however, surprisingly, many gaps in our understanding of cuticle biosynthesis. An Arabidopsis thaliana T-DNA mutant library was screened for mutants with enhanced transpiration using a simple condensation spot method. Five mutants, named cool breath (cb), were isolated. The cb5 mutant was found to be allelic to bodyguard (bdg), which is affected in an α/β-hydrolase fold protein important for cuticle structure. The analysis of cuticle components in cb5 (renamed as bdg-6) and another T-DNA mutant allele (bdg-7) revealed no impairment in wax synthesis, but a strong decrease in total cutin monomer load in young leaves and flowers. Root suberin content was also reduced. Overexpression of BDG increased total leaf cutin monomer content nearly four times by affecting preferentially C18 polyunsaturated ω-OH fatty acids and dicarboxylic acids. Whole-plant gas exchange analysis showed that bdg-6 had higher cuticular conductance and rate of transpiration; however, plant lines overexpressing BDG resembled the wild-type with regard to these characteristics. This study identifies BDG as an important component of the cutin biosynthesis machinery in Arabidopsis. We also show that, using BDG, cutin can be greatly modified without altering the cuticular water barrier properties and transpiration.

  18. Temperature as a determinant factor for increased and reproducible in vitro pollen germination in Arabidopsis thaliana.

    PubMed

    Boavida, Leonor C; McCormick, Sheila

    2007-11-01

    Despite much effort, a robust protocol for in vitro germination of Arabidopsis thaliana pollen has been elusive. Here we show that controlled temperatures, a largely disregarded factor in previous studies, and a simple optimized medium, solidified or liquid, yielded pollen germination rates above 80% and pollen tube lengths of hundreds of microns, with both Columbia and Landsberg erecta (Ler) ecotypes. We found that pollen germination and tube growth were dependent on pollen density in both liquid and solid medium. Pollen germination rates were not substantially affected by flower or plant age. The quartet1 mutation negatively affected pollen germination, especially in the Ler ecotype. This protocol will facilitate functional analyses of insertional mutants affecting male gametophyte function, and should allow detailed gene expression analyses during pollen tube growth. Arabidopsis thaliana can now be included on the list of plant species that are suitable models for physiological studies of pollen tube elongation and tip growth.

  19. Effects of gravity on growth phenotype in MAPs mutants of Arabidopsis

    NASA Astrophysics Data System (ADS)

    Higuchi, Sayoko; Kumasaki, Saori; Matsumoto, Shouhei; Soga, Kouichi; Wakabayashi, Kazuyuki; Hashimoto, Takashi; Hoson, Takayuki

    Hypergravity suppresses elongation growth and promotes lateral expansion of stem organs in various plants. It has been shown that cortical microtubules are involved in gravity-induced modifications of growth and development. Because microtubule-associated proteins (MAPs) are important in dynamics of microtubules, they may also play a role in the gravity response. In the present study, the roles of MAPs (MOR1, SPR1, SPR2, MAP65, and KTN1) in hypergravityinduced changes in growth and development were examined in Arabidopsis hypocotyls. The expression of MOR1, SPR1, SPR2 , and MAP65 genes was down-regulated, whereas that of KTN1 gene was increased transiently by hypergravity. We analyzed the growth behavior of MAPs mutants (mor1/rid5, spr1-2 , spr2-2, and katanin mutants) under hypergravity conditions. Hypergravity inhibited elongation growth of hypocotyls in spr1-2 as in wild-type. On the other hand, elongation growth of hypocotyls in mor1/rid5, spr2-2, and katanin mutants was suppressed as compared with wild-type under 1 g conditions, and was not affected further by hypergravity stimuli. Hypocotyls of mor1/rid5, spr1-2 , and spr2-2 also showed helical growth even under 1 g conditions, and in mor1/rid5 such a phenotype was intensified under hypergravity conditions. The alignment of cell line was abnormal in hypocotyls of katanin mutants under both 1 g and hypergravity conditions. The orientation of cortical microtubules in wildtype hypocotyls was changed from transverse direction to longitudinal or random directions by hypergravity stimuli. In mor1/rid5 hypocotyls, the orientation of microtubules was random even under 1 g condition, which was not affected by hypergravity. Furthermore, partial disruption of cortical microtubules was observed in mor1/rid5 hypocotyls. These results suggest that MAPs, especially MOR1, play an important role in maintenance of normal growth phenotype against gravity in plants probably via stabilization of microtubule structure.

  20. Microwave spectrum of 1,2-propanediol

    NASA Astrophysics Data System (ADS)

    Lovas, F. J.; Plusquellic, D. F.; Pate, Brooks H.; Neill, Justin L.; Muckle, Matthew T.; Remijan, Anthony J.

    2009-09-01

    The microwave spectrum of the sugar alcohol 1,2-propanediol (CH 3CHOHCH 2OH) has been measured over the frequency range 6.5-25.0 GHz with several pulsed-beam Fourier-transform microwave spectrometers. Seven conformers of 1,2-propanediol have been assigned and ab initio electronic structure calculations of the 10 lowest energy forms have been calculated. Stark effect measurements were carried out on several of the lowest energy conformers to provide accurate determinations of the dipole moment components and assist in conformer assignment.

  1. Cell Polarity Signaling in Arabidopsis

    PubMed Central

    Yang, Zhenbiao

    2009-01-01

    Cell polarization is intimately linked to plant development, growth, and responses to the environment. Major advances have been made in our understanding of the signaling pathways and networks that regulate cell polarity in plants owing to recent studies on several model systems, e.g., tip growth in pollen tubes, cell morphogenesis in the leaf epidermis, and polar localization of PINs. From these studies we have learned that plant cells use conserved mechanisms such as Rho family GTPases to integrate both plant-specific and conserved polarity cues and to coordinate the cytoskeketon dynamics/reorganization and vesicular trafficking required for polarity establishment and maintenance. This review focuses upon signaling mechanisms for cell polarity formation in Arabidopsis, with an emphasis on Rho GTPase signaling in polarized cell growth and how these mechanisms compare with those for cell polarity signaling in yeast and animal systems. PMID:18837672

  2. Apoplastic Diffusion Barriers in Arabidopsis

    PubMed Central

    Schreiber, Lukas; Franke, Rochus Benni; Geldner, Niko; Reina-Pinto, José J.; Kunst, Ljerka

    2013-01-01

    During the development of Arabidopsis and other land plants, diffusion barriers are formed in the apoplast of specialized tissues within a variety of plant organs. While the cuticle of the epidermis is the primary diffusion barrier in the shoot, the Casparian strips and suberin lamellae of the endodermis and the periderm represent the diffusion barriers in the root. Different classes of molecules contribute to the formation of extracellular diffusion barriers in an organ- and tissue-specific manner. Cutin and wax are the major components of the cuticle, lignin forms the early Casparian strip, and suberin is deposited in the stage II endodermis and the periderm. The current status of our understanding of the relationships between the chemical structure, ultrastructure and physiological functions of plant diffusion barriers is discussed. Specific aspects of the synthesis of diffusion barrier components and protocols that can be used for the assessment of barrier function and important barrier properties are also presented. PMID:24465172

  3. 50 CFR 1.2 - Authorized representative.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR GENERAL PROVISIONS DEFINITIONS § 1.2 Authorized representative. Authorized representative means the subordinate... matters. The Director, U.S. Fish and Wildlife Service is frequently the authorized representative of...

  4. 8 CFR 1.2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Nationality DEPARTMENT OF HOMELAND SECURITY GENERAL PROVISIONS DEFINITIONS § 1.2 Definitions. As used in this... otherwise noted, means the Department of Homeland Security. Director or district director prior to March 1... or after March 1, 2003, pursuant to delegation from the Secretary of Homeland Security or...

  5. 1,1,1,2-Tetrafluoroethane

    Integrated Risk Information System (IRIS)

    1,1,1,2 - Tetrafluoroethane ; CASRN 811 - 97 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Nonca

  6. 1,2,4,5-Tetrachlorobenzene

    Integrated Risk Information System (IRIS)

    1,2,4,5 - Tetrachlorobenzene ; CASRN 95 - 94 - 3 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Nonca

  7. 1,1,2,2-Tetrachloroethane

    Integrated Risk Information System (IRIS)

    EPA / 635 / R - 09 / 001 F www.epa.gov / iris TOXICOLOGICAL REVIEW OF 1,1,2,2 - TETRACHLOROETHANE ( CAS No . 79 - 34 - 5 ) In Support of Summary Information on the Integrated Risk Information System ( IRIS ) September 2010 U.S . Environmental Protection Agency Washington , DC ii DISCLAIMER This docu

  8. 1,2,3-triazolium ionic liquids

    SciTech Connect

    Luebke, David; Nulwala, Hunaid; Tang, Chau

    2014-12-09

    The present invention relates to compositions of matter that are ionic liquids, the compositions comprising substituted 1,2,3-triazolium cations combined with any anion. Compositions of the invention should be useful in the separation of gases and, perhaps, as catalysts for many reactions.

  9. Theoretical study of the photo-isomerisation reactions of 1,2-dihydro-1,2-phosphaborine and 1,2-dihydro-1,2-alumazaine

    NASA Astrophysics Data System (ADS)

    Su, Ming-Der

    2015-07-01

    The mechanisms of the photochemical isomerisation reactions are investigated theoretically using the model systems, 1,2-dihydro-1,2-phosphaborine (5) and 1,2-dihydro-1,2-alumazaine (6), using the CAS(6,6)/6-311G(d,p) and MP2-CAS-(6,6)/6-311++G(3df,3pd)//CAS(6,6)/6-311G(d,p) methods. For each model reactant, three reaction pathways, which lead to three kinds of photo-isomers, are examined. The structures of the conical intersections, which play a key role in such photo-rearrangements, are determined. The thermal (or dark) reactions of the reactant species are also examined, using the same level of theory, to provide a qualitative explanation of the reaction pathways. These model investigations demonstrate that the preferred reaction route for these two aromatic heterocyclics is as follows: reactant → Franck-Condon region → conical intersection → photoproduct. The theoretical evidences anticipate that after irradiation of 5, the photoproduct yield of the Dewar BP-isomer, 8, should be larger than that of the Dewar BP-isomer, 7, whereas no Dewar BP-isomer 9 can be observed. Moreover, the present theoretical data predict after irradiation of 6, all three Dewar AlN-isomers (10, 11, and 12) and the starting molecule, 6, are produced.

  10. 1,1,1,2-Tetrachloroethane

    Integrated Risk Information System (IRIS)

    1,1,1,2 - Tetrachloroethane ; CASRN 630 - 20 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Nonca

  11. 1,2-Dibromo-3-chloropropane (DBCP)

    Integrated Risk Information System (IRIS)

    1,2 - Dibromo - 3 - chloropropane ( DBCP ) ; CASRN 96 - 12 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessm

  12. Molecular Genetics of Root Thigmoresponsiveness in Arabidopsis thaliana

    NASA Technical Reports Server (NTRS)

    Masson, Patrick H.

    2002-01-01

    The molecular mechanisms that allow plant roots to use gravity and touch as growth guides are investigated. We are using a molecular genetic strategy in Arabidopsis thaliana to study these processes. When Arabidopsis thaliana seedlings grow on tilted hard-agar surfaces, their roots develop a wavy pattern of growth which appears to derive from a succession of left-handed and right-handed circumnutation-like processes triggered by gravity and touch stimulation (Okada and Shimura, 1990; Rutherford et al., 1998; Rutherford and Masson, 1996). Interestingly, mutations that affect root waving on tilted hard-agar surfaces can be identified and characterized. Some of these mutations affect root gravitropism, while others appear to be responsible for the production of abnormal waves (no waves, compressed or square waves, coils) without affecting gravitropism. The specific objectives of this project were to functionally characterize two genes (WVD2 and WVD6) which are required for root waving on tilted agar surfaces, but not for root gravitropism. Specific objectives included a physiological and cytological analysis of the mutants, and molecular cloning and characterization of the corresponding genes. As summarized in this paper, we have reached these objectives. We have also identified and partially characterized other mutations that affect root skewing on hard-agar surfaces (sku5-1 and ago1), and have completed our work on the root-wave phenotype associated with mutations in genes of the tryptophan biosynthesis pathway (Lynn et al., 1999; Rutherford et al., 1998; Sedbrook et al., 2000, 2002). We briefly describe our progress on the cloning and characterization of WVD6, WVD2 and SKU5, and provide a list of papers (published, or in preparation) that derived from this grant. We also discuss the biological implications of our findings, with special emphasis on the analysis of WVD2.

  13. Phenotypic and chemotypic studies using Arabidopsis and yeast reveal that GHB converts to SSA and induce toxicity.

    PubMed

    Mekonnen, Dereje Worku; Ludewig, Frank

    2016-07-01

    γ-Hydroxybutyric acid (GHB) is a naturally occurring compound. It is detected in organisms such as yeasts, plants and mammals. GHB is produced from the reduction of succinic semialdehyde (SSA) by the activity of GHB dehydrogenase. Arabidopsis genome contains two GHB dehydrogenase encoding genes. The accumulation of GHB in ssadh mutants led to the speculation that GHB is the cause of aberrant phenotypes. Conversely, the accumulation of GHB in Arabidopsis plants subjected to abiotic stresses was described as a way of avoiding SSA induced damage. To resolve these contrasting views on GHB, we examined the effect of exogenous GHB and SSA on the growth of yeast and Arabidopsis plants. GHB concentrations up to 1.5 mM didn't affect shoots of Arabidopsis plants; however, root growth was inhibited. In contrast, 0.3 mM SSA has severely affected the growth of plants. Treatment of yeast wild-type strain with 10 mM SSA and 10 mM GHB didn't affect the growth. However, the growth of yeast uga2 mutant was greatly inhibited by the same concentration of SSA, but not GHB. Metabolic analysis and enzyme activity assay on native gel showed that Arabidopsis, but not yeast, possesses a GHB dehydrogenase activity that converts GHB back to SSA. The enzymatic assay has also indicated the existence of an additional GHB dehydrogenase encoding gene(s) in Arabidopsis genome. Taken together, we conclude that GHB is less toxic than SSA. Its accumulation in ssadh mutants and during abiotic stresses is a response to avoid the SSA induced damage.

  14. Identification of quantitative trait loci controlling fibre length and lignin content in Arabidopsis thaliana stems.

    PubMed

    Capron, Arnaud; Chang, Xue Feng; Hall, Hardy; Ellis, Brian; Beatson, Rodger P; Berleth, Thomas

    2013-01-01

    Fibre properties and the biochemical composition of cell walls are important traits in many applications. For example, the lengths of fibres define the strength and quality of paper, and lignin content is a critical parameter for the use of biomass in biofuel production. Identifying genes controlling these traits is comparatively difficult in woody species, because of long generation times and limited amenability to high-resolution genetic mapping. To address this problem, this study mapped quantitative trait loci (QTLs) defining fibre length and lignin content in the Arabidopsis recombinant inbred line population Col-4 × Ler-0. Adapting high-throughput phenotyping techniques for both traits for measurements in Arabidopsis inflorescence stems identified significant QTLs for fibre length on chromosomes 2 and 5, as well as one significant QTL affecting lignin content on chromosome 2. For fibre length, total variation within the population was 208% higher than between parental lines and the identified QTLs explained 50.58% of the observed variation. For lignin content, the values were 261 and 26.51%, respectively. Bioinformatics analysis of the associated intervals identified a number of candidate genes for fibre length and lignin content. This study demonstrates that molecular mapping of QTLs pertaining to wood and fibre properties is possible in Arabidopsis, which substantially broadens the use of Arabidopsis as a model species for the functional characterization of plant genes.

  15. Mutations in a new Arabidopsis cyclophilin disrupt its interaction with protein phosphatase 2A

    NASA Technical Reports Server (NTRS)

    Jackson, K.; Soll, D.; Evans, M. L. (Principal Investigator)

    1999-01-01

    The heterotrimeric protein phosphatase 2A (PP2A) is a component of multiple signaling pathways in eukaryotes. Disruption of PP2A activity in Arabidopsis is known to alter auxin transport and growth response pathways. We demonstrated that the regulatory subunit A of an Arabidopsis PP2A interacts with a novel cyclophilin, ROC7. The gene for this cyclophilin encodes a protein that contains a unique 30-amino acid extension at the N-terminus, which distinguishes the gene product from all previously identified Arabidopsis cyclophilins. Altered forms of ROC7 cyclophilin with mutations in the conserved DENFKL domain did not bind to PP2A. Unlike protein phosphatase 2B, PP2A activity in Arabidopsis extracts was not affected by the presence of the cyclophilin-binding molecule cyclosporin. The ROC7 transcript was expressed to high levels in all tissues tested. Expression of an ROC7 antisense transcript gave rise to increased root growth. These results indicate that cyclophilin may have a role in regulating PP2A activity, by a mechanism that differs from that employed for cyclophilin regulation of PP2B.

  16. Analyses of a gravistimulation-specific Ca2+ signature in Arabidopsis using parabolic flights.

    PubMed

    Toyota, Masatsugu; Furuichi, Takuya; Sokabe, Masahiro; Tatsumi, Hitoshi

    2013-10-01

    Gravity is a critical environmental factor affecting the morphology and functions of organisms on the Earth. Plants sense changes in the gravity vector (gravistimulation) and regulate their growth direction accordingly. In Arabidopsis (Arabidopsis thaliana) seedlings, gravistimulation, achieved by rotating the specimens under the ambient 1g of the Earth, is known to induce a biphasic (transient and sustained) increase in cytoplasmic calcium concentration ([Ca(2+)]c). However, the [Ca(2+)]c increase genuinely caused by gravistimulation has not been identified because gravistimulation is generally accompanied by rotation of specimens on the ground (1g), adding an additional mechanical signal to the treatment. Here, we demonstrate a gravistimulation-specific Ca(2+) response in Arabidopsis seedlings by separating rotation from gravistimulation by using the microgravity (less than 10(-4)g) conditions provided by parabolic flights. Gravistimulation without rotating the specimen caused a sustained [Ca(2+)]c increase, which corresponds closely to the second sustained [Ca(2+)]c increase observed in ground experiments. The [Ca(2+)]c increases were analyzed under a variety of gravity intensities (e.g. 0.5g, 1.5g, or 2g) combined with rapid switching between hypergravity and microgravity, demonstrating that Arabidopsis seedlings possess a very rapid gravity-sensing mechanism linearly transducing a wide range of gravitational changes (0.5g-2g) into Ca(2+) signals on a subsecond time scale.

  17. Transcription Factor Arabidopsis Activating Factor1 Integrates Carbon Starvation Responses with Trehalose Metabolism.

    PubMed

    Garapati, Prashanth; Feil, Regina; Lunn, John Edward; Van Dijck, Patrick; Balazadeh, Salma; Mueller-Roeber, Bernd

    2015-09-01

    Plants respond to low carbon supply by massive reprogramming of the transcriptome and metabolome. We show here that the carbon starvation-induced NAC (for NO APICAL MERISTEM/ARABIDOPSIS TRANSCRIPTION ACTIVATION FACTOR/CUP-SHAPED COTYLEDON) transcription factor Arabidopsis (Arabidopsis thaliana) Transcription Activation Factor1 (ATAF1) plays an important role in this physiological process. We identified TREHALASE1, the only trehalase-encoding gene in Arabidopsis, as a direct downstream target of ATAF1. Overexpression of ATAF1 activates TREHALASE1 expression and leads to reduced trehalose-6-phosphate levels and a sugar starvation metabolome. In accordance with changes in expression of starch biosynthesis- and breakdown-related genes, starch levels are generally reduced in ATAF1 overexpressors but elevated in ataf1 knockout plants. At the global transcriptome level, genes affected by ATAF1 are broadly associated with energy and carbon starvation responses. Furthermore, transcriptional responses triggered by ATAF1 largely overlap with expression patterns observed in plants starved for carbon or energy supply. Collectively, our data highlight the existence of a positively acting feedforward loop between ATAF1 expression, which is induced by carbon starvation, and the depletion of cellular carbon/energy pools that is triggered by the transcriptional regulation of downstream gene regulatory networks by ATAF1.

  18. Rapid Analysis of Circadian Phenotypes in Arabidopsis Protoplasts Transfected with a Luminescent Clock Reporter

    PubMed Central

    Hansen, Louise L.; van Ooijen, Gerben

    2016-01-01

    The plant circadian clock allows the anticipation of daily changes to the environment. This anticipation aids the responses to temporally predictable biotic and abiotic stress. Conversely, disruption of circadian timekeeping severely compromises plant health and reduces agricultural crop yields. It is therefore imperative that we understand the intricate regulation of circadian rhythms in plants, including the factors that affect motion of the transcriptional clockwork itself. Testing circadian defects in the model plant Arabidopsis thaliana (Arabidopsis) traditionally involves crossing specific mutant lines to a line rhythmically expressing firefly luciferase from a circadian clock gene promoter. This approach is laborious, time-consuming, and could be fruitless if a mutant has no circadian phenotype. The methodology presented here allows a rapid initial assessment of circadian phenotypes. Protoplasts derived from mutant and wild-type Arabidopsis are isolated, transfected with a rhythmically expressed luminescent reporter, and imaged under constant light conditions for 5 days. Luminescent traces will directly reveal whether the free-running period of mutant plants is different from wild-type plants. The advantage of the method is that any Arabidopsis line can efficiently be screened, without the need for generating a stably transgenic luminescent clock marker line in that mutant background. PMID:27684315

  19. Basipetal auxin transport is required for gravitropism in roots of Arabidopsis

    NASA Technical Reports Server (NTRS)

    Rashotte, A. M.; Brady, S. R.; Reed, R. C.; Ante, S. J.; Muday, G. K.; Davies, E. (Principal Investigator)

    2000-01-01

    Auxin transport has been reported to occur in two distinct polarities, acropetally and basipetally, in two different root tissues. The goals of this study were to determine whether both polarities of indole-3-acetic acid (IAA) transport occur in roots of Arabidopsis and to determine which polarity controls the gravity response. Global application of the auxin transport inhibitor naphthylphthalamic acid (NPA) to roots blocked the gravity response, root waving, and root elongation. Immediately after the application of NPA, the root gravity response was completely blocked, as measured by an automated video digitizer. Basipetal [(3)H]IAA transport in Arabidopsis roots was inhibited by NPA, whereas the movement of [(14)C]benzoic acid was not affected. Inhibition of basipetal IAA transport by local application of NPA blocked the gravity response. Inhibition of acropetal IAA transport by application of NPA at the root-shoot junction only partially reduced the gravity response at high NPA concentrations. Excised root tips, which do not receive auxin from the shoot, exhibited a normal response to gravity. The Arabidopsis mutant eir1, which has agravitropic roots, exhibited reduced basipetal IAA transport but wild-type levels of acropetal IAA transport. These results support the hypothesis that basipetally transported IAA controls root gravitropism in Arabidopsis.

  20. Capturing Arabidopsis root architecture dynamics with ROOT-FIT reveals diversity in responses to salinity.

    PubMed

    Julkowska, Magdalena M; Hoefsloot, Huub C J; Mol, Selena; Feron, Richard; de Boer, Gert-Jan; Haring, Michel A; Testerink, Christa

    2014-11-01

    The plant root is the first organ to encounter salinity stress, but the effect of salinity on root system architecture (RSA) remains elusive. Both the reduction in main root (MR) elongation and the redistribution of the root mass between MRs and lateral roots (LRs) are likely to play crucial roles in water extraction efficiency and ion exclusion. To establish which RSA parameters are responsive to salt stress, we performed a detailed time course experiment in which Arabidopsis (Arabidopsis thaliana) seedlings were grown on agar plates under different salt stress conditions. We captured RSA dynamics with quadratic growth functions (root-fit) and summarized the salt-induced differences in RSA dynamics in three growth parameters: MR elongation, average LR elongation, and increase in number of LRs. In the ecotype Columbia-0 accession of Arabidopsis, salt stress affected MR elongation more severely than LR elongation and an increase in LRs, leading to a significantly altered RSA. By quantifying RSA dynamics of 31 different Arabidopsis accessions in control and mild salt stress conditions, different strategies for regulation of MR and LR meristems and root branching were revealed. Different RSA strategies partially correlated with natural variation in abscisic acid sensitivity and different Na(+)/K(+) ratios in shoots of seedlings grown under mild salt stress. Applying root-fit to describe the dynamics of RSA allowed us to uncover the natural diversity in root morphology and cluster it into four response types that otherwise would have been overlooked.

  1. Regiospecific synthesis of 3-substituted imidazo[1,2-a]pyridines, imidazo[1,2-a]pyrimidines, and imidazo[1,2-c]pyrimidine.

    PubMed

    Katritzky, Alan R; Xu, Yong-Jiang; Tu, Hongbin

    2003-06-13

    3-Substituted imidazo[1,2-a]pyridines, imidazo[1,2-a]pyrimidines, and imidazo[1,2-c]pyrimidine were obtained regiospecifically in yields of 35-92% in one pot by reaction of 2-aminopyridines or 2-(or 4-)aminopyrimidines, respectively, with 1,2-bis(benzotriazolyl)-1,2-(dialkylamino)ethanes.

  2. Applicability of Phytoextraction with Arabidopsis halleri ssp. gemmifera to Remediate Cd-contaminated Andisols

    NASA Astrophysics Data System (ADS)

    Kameyama, Koji; Tani, Shigeru; Sugawara, Reiko; Ishikawa, Yuichi

    The objective of this study was to investigate the applicability of phytoextraction with a Cd-hyperaccumulator plant (Arabidopsis halleri ssp. gemmifera) to remediate Cd-contaminated Andisols. Cd absorption potentials of this plant for Andisols were examined in pot experiments. Sequentially, phytoextraction durations for remediation of Cd-contaminated Andisols were calculated from the experimental data. The results were as follows: (1) Cd concentrations in the plant shoots ranged from 170-750 mgṡkg-1. (2) Cd absorption of the plant for Andisols with ALC (Autoclaved Lightweight aerated Concrete) was less than for Andisols without ALC. However, the plants absorbed the same amount of soil Cd extracted by 0.01 M HCl with or without ALC. (3) Calculations suggest that the applicability of phytoextraction with this plant is high for slightly contaminated Andisols. Therefore, phytoextraction with Arabidopsis halleri ssp. gemmifera may be a viable option for the remediation of Cd-contaminated Andisols.

  3. Expression of an Arabidopsis sodium/proton antiporter gene (AtNHX1)in peanut to improve salt tolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salinity is a major environmental stress that affects agricultural productivity worldwide. One approach to improving salt tolerance in crops is through high expression of the Arabidopsis gene AtNHX1, which encodes a vacuolar sodium/proton antiporter that sequesters excess sodium ion into the large i...

  4. Piriformospora indica Stimulates Root Metabolism of Arabidopsis thaliana

    PubMed Central

    Strehmel, Nadine; Mönchgesang, Susann; Herklotz, Siska; Krüger, Sylvia; Ziegler, Jörg; Scheel, Dierk

    2016-01-01

    Piriformospora indica is a root-colonizing fungus, which interacts with a variety of plants including Arabidopsis thaliana. This interaction has been considered as mutualistic leading to growth promotion of the host. So far, only indolic glucosinolates and phytohormones have been identified as key players. In a comprehensive non-targeted metabolite profiling study, we analyzed Arabidopsis thaliana’s roots, root exudates, and leaves of inoculated and non-inoculated plants by ultra performance liquid chromatography/electrospray ionization quadrupole-time-of-flight mass spectrometry (UPLC/(ESI)-QTOFMS) and gas chromatography/electron ionization quadrupole mass spectrometry (GC/EI-QMS), and identified further biomarkers. Among them, the concentration of nucleosides, dipeptides, oligolignols, and glucosinolate degradation products was affected in the exudates. In the root profiles, nearly all metabolite levels increased upon co-cultivation, like carbohydrates, organic acids, amino acids, glucosinolates, oligolignols, and flavonoids. In the leaf profiles, we detected by far less significant changes. We only observed an increased concentration of organic acids, carbohydrates, ascorbate, glucosinolates and hydroxycinnamic acids, and a decreased concentration of nitrogen-rich amino acids in inoculated plants. These findings contribute to the understanding of symbiotic interactions between plant roots and fungi of the order of Sebacinales and are a valid source for follow-up mechanistic studies, because these symbioses are particular and clearly different from interactions of roots with mycorrhizal fungi or dark septate endophytes PMID:27399695

  5. Bicarbonate Induced Redox Proteome Changes in Arabidopsis Suspension Cells

    PubMed Central

    Yin, Zepeng; Balmant, Kelly; Geng, Sisi; Zhu, Ning; Zhang, Tong; Dufresne, Craig; Dai, Shaojun; Chen, Sixue

    2017-01-01

    Climate change as a result of increasing atmospheric CO2 affects plant growth and productivity. CO2 is not only a carbon donor for photosynthesis but also an environmental signal that can perturb cellular redox homeostasis and lead to modifications of redox-sensitive proteins. Although redox regulation of protein functions has emerged as an important mechanism in several biological processes, protein redox modifications and how they function in plant CO2 response remain unclear. Here a new iodoTMTRAQ proteomics technology was employed to analyze changes in protein redox modifications in Arabidopsis thaliana suspension cells in response to bicarbonate (mimic of elevated CO2) in a time-course study. A total of 47 potential redox-regulated proteins were identified with functions in carbohydrate and energy metabolism, transport, ROS scavenging, cell structure modulation and protein turnover. This inventory of previously unknown redox responsive proteins in Arabidopsis bicarbonate responses lays a foundation for future research toward understanding the molecular mechanisms underlying plant CO2 responses. PMID:28184230

  6. Piriformospora indica Stimulates Root Metabolism of Arabidopsis thaliana.

    PubMed

    Strehmel, Nadine; Mönchgesang, Susann; Herklotz, Siska; Krüger, Sylvia; Ziegler, Jörg; Scheel, Dierk

    2016-07-08

    Piriformospora indica is a root-colonizing fungus, which interacts with a variety of plants including Arabidopsis thaliana. This interaction has been considered as mutualistic leading to growth promotion of the host. So far, only indolic glucosinolates and phytohormones have been identified as key players. In a comprehensive non-targeted metabolite profiling study, we analyzed Arabidopsis thaliana's roots, root exudates, and leaves of inoculated and non-inoculated plants by ultra performance liquid chromatography/electrospray ionization quadrupole-time-of-flight mass spectrometry (UPLC/(ESI)-QTOFMS) and gas chromatography/electron ionization quadrupole mass spectrometry (GC/EI-QMS), and identified further biomarkers. Among them, the concentration of nucleosides, dipeptides, oligolignols, and glucosinolate degradation products was affected in the exudates. In the root profiles, nearly all metabolite levels increased upon co-cultivation, like carbohydrates, organic acids, amino acids, glucosinolates, oligolignols, and flavonoids. In the leaf profiles, we detected by far less significant changes. We only observed an increased concentration of organic acids, carbohydrates, ascorbate, glucosinolates and hydroxycinnamic acids, and a decreased concentration of nitrogen-rich amino acids in inoculated plants. These findings contribute to the understanding of symbiotic interactions between plant roots and fungi of the order of Sebacinales and are a valid source for follow-up mechanistic studies, because these symbioses are particular and clearly different from interactions of roots with mycorrhizal fungi or dark septate endophytes.

  7. Comparative pathobiology of Heterobasidion annosum during challenge on Pinus sylvestris and Arabidopsis roots: an analysis of defensin gene expression in two pathosystems.

    PubMed

    Jaber, Emad; Xiao, Chaowen; Asiegbu, Fred O

    2014-03-01

    Heterobasidion annosum is widely known as a major root and butt rot pathogen of conifer trees, but little information is available on its interaction with the roots of herbaceous angiosperm plants. We investigated the infection biology of H. annosum during challenge with the angiosperm model Arabidopsis and monitored the host response after exposure to different hormone elicitors, chemicals (chitin, glucan and chitosan) and fungal species that represent diverse basidiomycete life strategies [e.g., pathogen (H. annosum), saprotroph (Stereum sanguinolentum) and mutualist (Lactarius rufus)]. The results revealed that the tree pathogen (H. annosum) and the saprotroph (S. sanguinolentum) could infect the Col-8 (Columbia) ecotype of Arabidopsis in laboratory inoculation experiments. Germinated H. annosum spores had appressorium-like penetration structures attached to the surface of the Arabidopsis roots. Subsequent invasive fungal growth led to the disintegration of the vascular region of the root tissues. Progression of root rot symptoms in Arabidopsis was similar to the infection development that was previously documented in Scots pine seedlings. Scots pine PsDef1 and Arabidopsis DEFLs (AT5G44973.1) and PDF1.2 were induced at the initial stage of the infection. However, differences in the expression patterns of the defensin gene homologs from the two plant groups were observed under various conditions, suggesting functional differences in their regulation. The potential use of the H. annosum-Arabidopsis pathosystem as a model for studying forest tree diseases is discussed.

  8. 1,1,2-Trichloro-1,2,2-trifluoroethane (CFC-113)

    Integrated Risk Information System (IRIS)

    1,1,2 - Trichloro - 1,2,2 - trifluoroethane ( CFC - 113 ) ; CASRN 76 - 13 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health

  9. The Arabidopsis Mediator Complex Subunit16 Is a Key Component of Basal Resistance against the Necrotrophic Fungal Pathogen Sclerotinia sclerotiorum.

    PubMed

    Wang, Chenggang; Yao, Jin; Du, Xuezhu; Zhang, Yanping; Sun, Yijun; Rollins, Jeffrey A; Mou, Zhonglin

    2015-09-01

    Although Sclerotinia sclerotiorum is a devastating necrotrophic fungal plant pathogen in agriculture, the virulence mechanisms utilized by S. sclerotiorum and the host defense mechanisms against this pathogen have not been fully understood. Here, we report that the Arabidopsis (Arabidopsis thaliana) Mediator complex subunit MED16 is a key component of basal resistance against S. sclerotiorum. Mutants of MED16 are markedly more susceptible to S. sclerotiorum than mutants of 13 other Mediator subunits, and med16 has a much stronger effect on S. sclerotiorum-induced transcriptome changes compared with med8, a mutation not altering susceptibility to S. sclerotiorum. Interestingly, med16 is also more susceptible to S. sclerotiorum than coronatine-insensitive1-1 (coi1-1), which is the most susceptible mutant reported so far. Although the jasmonic acid (JA)/ethylene (ET) defense pathway marker gene PLANT DEFENSIN1.2 (PDF1.2) cannot be induced in either med16 or coi1-1, basal transcript levels of PDF1.2 in med16 are significantly lower than in coi1-1. Furthermore, ET-induced suppression of JA-activated wound responses is compromised in med16, suggesting a role for MED16 in JA-ET cross talk. Additionally, MED16 is required for the recruitment of RNA polymerase II to PDF1.2 and OCTADECANOID-RESPONSIVE ARABIDOPSIS ETHYLENE/ETHYLENE-RESPONSIVE FACTOR59 (ORA59), two target genes of both JA/ET-mediated and the transcription factor WRKY33-activated defense pathways. Finally, MED16 is physically associated with WRKY33 in yeast and in planta, and WRKY33-activated transcription of PDF1.2 and ORA59 as well as resistance to S. sclerotiorum depends on MED16. Taken together, these results indicate that MED16 regulates resistance to S. sclerotiorum by governing both JA/ET-mediated and WRKY33-activated defense signaling in Arabidopsis.

  10. Genetic Analysis of Gravity Signal Transduction in Arabidopsis thaliana Seedlings

    NASA Astrophysics Data System (ADS)

    Boonsirichai, K.; Harrison, B.; Stanga, J.; Young, L.-S.; Neal, C.; Sabat, G.; Murthy, N.; Harms, A.; Sedbrook, J.; Masson, P.

    The primary roots of Arabidopsis thaliana seedlings respond to gravity stimulation by developing a tip curvature that results from differential cellular elongation on opposite flanks of the elongation zone. This curvature appears modulated by a lateral gradient of auxin that originates in the gravity-perceiving cells (statocytes) of the root cap through an apparent lateral repositioning of a component the auxin efflux carrier complex within these cells (Friml et al, 2002, Nature 415: 806-809). Unfortunately, little is known about the molecular mechanisms that govern early phases of gravity perception and signal transduction within the root-cap statocytes. We have used a molecular genetic approach to uncover some of these mechanisms. Mutations in the Arabidopsis ARG1 and ARL2 genes, which encode J-domain proteins, resulted in specific alterations in root and hypocotyl gravitropism, without pleiotropic phenotypes. Interestingly, ARG1 and ARL2 appear to function in the same genetic pathway. A combination of molecular genetic, biochemical and cell-biological approaches were used to demonstrate that ARG1 functions in early phases of gravity signal transduction within the root and hypocotyl statocytes, and is needed for efficient lateral auxin transport within the cap. The ARG1 protein is associated with components of the secretory and/or endosomal pathways, suggesting its role in the recycling of components of the auxin efflux carrier complex between plasma membrane and endosome (Boonsirichai et al, 2003, Plant Cell 15:2612-2625). Genetic modifiers of arg1-2 were isolated and shown to enhance the gravitropic defect of arg1-2, while resulting in little or no gravitropic defects in a wild type ARG1 background. A slight tendency for arg1-2;mar1-1 and arg1-2;mar2-1 double-mutant organs to display an opposite gravitropic response compared to wild type suggests that all three genes contribute to the interpretation of the gravity-vector information by seedling organs. The

  11. Impact of the PGPB Enterobacter radicincitans DSM 16656 on growth, glucosinolate profile, and immune responses of Arabidopsis thaliana.

    PubMed

    Brock, Anita K; Berger, Beatrice; Mewis, Inga; Ruppel, Silke

    2013-04-01

    Plant growth-promoting bacteria (PGPB) affect plant cellular processes in various ways. The endophytic bacterial strain Enterobacter radicincitans DSM 16656 has been shown to improve plant growth and yield in various agricultural and vegetable crops. Besides its ability to fix atmospheric nitrogen, produce phytohormones, and solubilize phosphate compounds, the strain is highly competitive against native endophytic organisms and colonizes the endorhizosphere in high numbers. Here, we show that E. radicincitans inoculation of the noncrop plant Arabidopsis thaliana promotes plant growth. Furthermore, high performance liquid chromatography (HPLC) analysis revealed that bacterial inoculation slightly decreased amounts of aliphatic glucosinolates in plant leaves in a fast-growing stage but increased these compounds in an older phase where growth is mostly completed. This effect seems to correlate with developmental stage and depends on the nitrogen requirement. Additionally, nitrogen deficiency studies with seedlings grown on medium containing different nitrogen concentrations suggest that plant nitrogen demand can influence the intensity of plant growth enhancement by E. radicincitans. This endophyte seems not to activate stress-inducible mitogen-activated protein kinases (MAPKs). Analyzing transcription of the defense-related genes PR1, PR2, PR5, and PDF1.2 by quantitative real time polymerase chain reaction (qPCR) revealed that E. radicincitans DSM 16656 is able to induce priming via salicylic acid (SA) or jasmonate (JA)/ethylene (ET) signaling pathways to protect plants against potential pathogen attack.

  12. 7-Rhamnosylated Flavonols Modulate Homeostasis of the Plant Hormone Auxin and Affect Plant Development*

    PubMed Central

    Kuhn, Benjamin M.; Errafi, Sanae; Bucher, Rahel; Dobrev, Petre; Geisler, Markus; Bigler, Laurent; Zažímalová, Eva; Ringli, Christoph

    2016-01-01

    Flavonols are a group of secondary metabolites that affect diverse cellular processes. They are considered putative negative regulators of the transport of the phytohormone auxin, by which they influence auxin distribution and concomitantly take part in the control of plant organ development. Flavonols are accumulating in a large number of glycosidic forms. Whether these have distinct functions and diverse cellular targets is not well understood. The rol1-2 mutant of Arabidopsis thaliana is characterized by a modified flavonol glycosylation profile that is inducing changes in auxin transport and growth defects in shoot tissues. To determine whether specific flavonol glycosides are responsible for these phenotypes, a suppressor screen was performed on the rol1-2 mutant, resulting in the identification of an allelic series of UGT89C1, a gene encoding a flavonol 7-O-rhamnosyltransferase. A detailed analysis revealed that interfering with flavonol rhamnosylation increases the concentration of auxin precursors and auxin metabolites, whereas auxin transport is not affected. This finding provides an additional level of complexity to the possible ways by which flavonols influence auxin distribution and suggests that flavonol glycosides play an important role in regulating plant development. PMID:26742840

  13. 7-Rhamnosylated Flavonols Modulate Homeostasis of the Plant Hormone Auxin and Affect Plant Development.

    PubMed

    Kuhn, Benjamin M; Errafi, Sanae; Bucher, Rahel; Dobrev, Petre; Geisler, Markus; Bigler, Laurent; Zažímalová, Eva; Ringli, Christoph

    2016-03-04

    Flavonols are a group of secondary metabolites that affect diverse cellular processes. They are considered putative negative regulators of the transport of the phytohormone auxin, by which they influence auxin distribution and concomitantly take part in the control of plant organ development. Flavonols are accumulating in a large number of glycosidic forms. Whether these have distinct functions and diverse cellular targets is not well understood. The rol1-2 mutant of Arabidopsis thaliana is characterized by a modified flavonol glycosylation profile that is inducing changes in auxin transport and growth defects in shoot tissues. To determine whether specific flavonol glycosides are responsible for these phenotypes, a suppressor screen was performed on the rol1-2 mutant, resulting in the identification of an allelic series of UGT89C1, a gene encoding a flavonol 7-O-rhamnosyltransferase. A detailed analysis revealed that interfering with flavonol rhamnosylation increases the concentration of auxin precursors and auxin metabolites, whereas auxin transport is not affected. This finding provides an additional level of complexity to the possible ways by which flavonols influence auxin distribution and suggests that flavonol glycosides play an important role in regulating plant development.

  14. Identifying essential genes in Arabidopsis thaliana.

    PubMed

    Meinke, David; Muralla, Rosanna; Sweeney, Colleen; Dickerman, Allan

    2008-09-01

    Eight years after publication of the Arabidopsis genome sequence and two years before completing the first phase of an international effort to characterize the function of every Arabidopsis gene, plant biologists remain unable to provide a definitive answer to the following basic question: what is the minimal gene set required for normal growth and development? The purpose of this review is to summarize different strategies employed to identify essential genes in Arabidopsis, an important component of the minimal gene set in plants, to present an overview of the datasets and specific genes identified to date, and to discuss the prospects for future saturation of this important class of genes. The long-term goal of this collaborative effort is to facilitate basic research in plant biology and complement ongoing research with other model organisms.

  15. Spin-1/2 Optical Lattice Clock

    NASA Astrophysics Data System (ADS)

    Lemke, N. D.; Ludlow, A. D.; Barber, Z. W.; Fortier, T. M.; Diddams, S. A.; Jiang, Y.; Jefferts, S. R.; Heavner, T. P.; Parker, T. E.; Oates, C. W.

    2009-08-01

    We experimentally investigate an optical clock based on Yb171 (I=1/2) atoms confined in an optical lattice. We have evaluated all known frequency shifts to the clock transition, including a density-dependent collision shift, with a fractional uncertainty of 3.4×10-16, limited principally by uncertainty in the blackbody radiation Stark shift. We measured the absolute clock transition frequency relative to the NIST-F1 Cs fountain clock and find the frequency to be 518 295 836 590 865.2(0.7) Hz.

  16. Differentiation of programmed Arabidopsis cells

    PubMed Central

    Xie, De-Yu; Shi, Ming-Zhu

    2012-01-01

    Plants express genes that encode enzymes that catalyse reactions to form plant secondary metabolites in specific cell types. However, the mechanisms of how plants decide their cellular metabolic fate and how cells diversify and specialise their specific secondary metabolites remains largely unknown. Additionally, whether and how an established metabolic program impacts genome-wide reprogramming of plant gene expression is unclear. We recently isolated PAP1-programmed anthocyanin-producing (red) and -free (white) cells from Arabidopsis thaliana; our previous studies have indicated that the PAP1 expression level is similar between these two different cell types. Transcriptional analysis showed that the red cells contain the TTG1-GL3/TT8-PAP1 regulatory complex, which controls anthocyanin biosynthesis; in contrast, the white cells and the wild-type cells lack this entire complex. These data indicate that different regulatory programming underlies the different metabolic states of these cells. In addition, our previous transcriptomic comparison indicated that there is a clear difference in the gene expression profiles of the red and wild-type cells, which is probably a consequence of cell-specific reprogramming. Based on these observations, in this report we discuss the potential mechanisms that underlie the programming and reprogramming of gene expression involved in anthocyanin biosynthesis. PMID:22126737

  17. Defense against Sclerotinia sclerotiorum in Arabidopsis is dependent on jasmonic acid, salicylic acid, and ethylene signaling.

    PubMed

    Guo, Xiaomei; Stotz, Henrik U

    2007-11-01

    Genotypic differences in susceptibility of Arabidopsis thaliana to Sclerotinia sclerotiorum have not been reported due to the extreme susceptibility of this cruciferous plant. To overcome this limitation, we have established inoculation conditions that enable evaluation of differences in susceptibility to S. sclerotiorum among Arabidopsis mutants and ecotypes. Two coil mutant alleles conferred hypersusceptibility to S. sclerotiorum. The plant defensin gene PDF1.2 was no longer induced after challenging the coi1-2 mutant with S. sclerotiorum. Hypersusceptibility of the coi1-2 mutant to S. sclerotiorum was not correlated with oxalate sensitivity. The mutants npr1 and ein2 were also hypersusceptible to S. sclerotiorum. Induction of PDF1.2 and the pathogenesis-related gene PR1 was reduced in ein2 and npr1 mutants, respectively. Actigard, a commercial formulation of the systemic acquired resistance inducer benzothiadiazole, reduced susceptibility to S. sclerotiorum. Based on histochemical analysis of oxalate-deficient and wild-type strains of S. sclerotiorum, oxalate caused a decrease in hydrogen peroxide production but no detectable changes in plant superoxide production or gene expression.

  18. Direct transcriptional activation of BT genes by NLP transcription factors is a key component of the nitrate response in Arabidopsis.

    PubMed

    Sato, Takeo; Maekawa, Shugo; Konishi, Mineko; Yoshioka, Nozomi; Sasaki, Yuki; Maeda, Haruna; Ishida, Tetsuya; Kato, Yuki; Yamaguchi, Junji; Yanagisawa, Shuichi

    2017-01-29

    Nitrate modulates growth and development, functioning as a nutrient signal in plants. Although many changes in physiological processes in response to nitrate have been well characterized as nitrate responses, the molecular mechanisms underlying the nitrate response are not yet fully understood. Here, we show that NLP transcription factors, which are key regulators of the nitrate response, directly activate the nitrate-inducible expression of BT1 and BT2 encoding putative scaffold proteins with a plant-specific domain structure in Arabidopsis. Interestingly, the 35S promoter-driven expression of BT2 partially rescued growth inhibition caused by reductions in NLP activity in Arabidopsis. Furthermore, simultaneous disruption of BT1 and BT2 affected nitrate-dependent lateral root development. These results suggest that direct activation of BT1 and BT2 by NLP transcriptional activators is a key component of the molecular mechanism underlying the nitrate response in Arabidopsis.

  19. Salt-Related MYB1 Coordinates Abscisic Acid Biosynthesis and Signaling during Salt Stress in Arabidopsis1

    PubMed Central

    Wang, Ting; Tohge, Takayuki; Ivakov, Alexander; Mueller-Roeber, Bernd; Fernie, Alisdair R.; Mutwil, Marek; Schippers, Jos H.M.; Persson, Staffan

    2015-01-01

    Abiotic stresses, such as salinity, cause global yield loss of all major crop plants. Factors and mechanisms that can aid in plant breeding for salt stress tolerance are therefore of great importance for food and feed production. Here, we identified a MYB-like transcription factor, Salt-Related MYB1 (SRM1), that negatively affects Arabidopsis (Arabidopsis thaliana) seed germination under saline conditions by regulating the levels of the stress hormone abscisic acid (ABA). Accordingly, several ABA biosynthesis and signaling genes act directly downstream of SRM1, including SALT TOLERANT1/NINE-CIS-EPOXYCAROTENOID DIOXYGENASE3, RESPONSIVE TO DESICCATION26, and Arabidopsis NAC DOMAIN CONTAINING PROTEIN19. Furthermore, SRM1 impacts vegetative growth and leaf shape. We show that SRM1 is an important transcriptional regulator that directly targets ABA biosynthesis and signaling-related genes and therefore may be regarded as an important regulator of ABA-mediated salt stress tolerance. PMID:26243618

  20. Mechanical touch responses of Arabidopsis TCH1-3 mutant roots on inclined hard-agar surface

    NASA Astrophysics Data System (ADS)

    Zha, Guodong; Wang, Bochu; Liu, Junyu; Yan, Jie; Zhu, Liqing; Yang, Xingyan

    2016-01-01

    The gravity-induced mechanical touch stimulus can affect plant root architecture. Mechanical touch responses of plant roots are an important aspect of plant root growth and development. Previous studies have reported that Arabidopsis TCH1-3 genes are involved in mechano-related events, how-ever, the physiological functions of TCH1-3 genes in Arabidopsis root mechanoresponses remain unclear. In the present study, we applied an inclined hard agar plate method to produce mechanical touch stimulus, and provided evidence that altered mechanical environment could influence root growth. Furthermore, tch1-3 Arabidopsis mutants were investigated on inclined agar surfaces to explore the functions of TCH1-3 genes on Arabidopsis root mechanoresponses. The results showed that two tch2 mutants, cml24-2 and cml24-4, exhibited significantly reduced root length, biased skewing, and decreased density of lateral root. In addition, primary root length and density of lateral root of tch3 (cml12-2) was significantly decreased on inclined agar surfaces. This study indicates that the tch2 and tch3 mutants are hypersensitive to mechanical touch stimulus, and TCH2 (CML24-2 and CML24-4) and TCH3 (CML12-2) genes may participate in the mechanical touch response of Arabidopsis roots.

  1. DELLA proteins modulate Arabidopsis defences induced in response to caterpillar herbivory

    PubMed Central

    Bede, Jacqueline C.

    2014-01-01

    Upon insect herbivory, many plant species change the direction of metabolic flux from growth into defence. Two key pathways modulating these processes are the gibberellin (GA)/DELLA pathway and the jasmonate pathway. In this study, the effect of caterpillar herbivory on plant-induced responses was compared between wild-type Arabidopsis thaliana (L.) Heynh. and quad-della mutants that have constitutively elevated GA responses. The labial saliva (LS) of caterpillars of the beet armyworm, Spodoptera exigua, is known to influence induced plant defence responses. To determine the role of this herbivore cue in determining metabolic shifts, plants were subject to herbivory by caterpillars with intact or impaired LS secretions. In both wild-type and quad-della plants, a jasmonate burst is an early response to caterpillar herbivory. Negative growth regulator DELLA proteins are required for the LS-mediated suppression of hormone levels. Jasmonate-dependent marker genes are induced in response to herbivory independently of LS, with the exception of AtPDF1.2 that showed LS-dependent expression in the quad-della mutant. Early expression of the salicylic acid (SA)-marker gene, AtPR1, was not affected by herbivory which also reflected SA hormone levels; however, this gene showed LS-dependent expression in the quad-della mutant. DELLA proteins may positively regulate glucosinolate levels and suppress laccase-like multicopper oxidase activity in response to herbivory. The present results show a link between DELLA proteins and early, induced plant defences in response to insect herbivory; in particular, these proteins are necessary for caterpillar LS-associated attenuation of defence hormones. PMID:24399173

  2. Allocation of Heme Is Differentially Regulated by Ferrochelatase Isoforms in Arabidopsis Cells

    PubMed Central

    Espinas, Nino A.; Kobayashi, Koichi; Sato, Yasushi; Mochizuki, Nobuyoshi; Takahashi, Kaori; Tanaka, Ryouichi; Masuda, Tatsuru

    2016-01-01

    Heme is involved in various biological processes as a cofactor of hemoproteins located in various organelles. In plant cells, heme is synthesized by two isoforms of plastid-localized ferrochelatase, FC1 and FC2. In this study, by characterizing Arabidopsis T-DNA insertional mutants, we showed that the allocation of heme is differentially regulated by ferrochelatase isoforms in plant cells. Analyses of weak (fc1-1) and null (fc1-2) mutants suggest that FC1-producing heme is required for initial growth of seedling development. In contrast, weak (fc2-1) and null (fc2-2) mutants of FC2 showed pale green leaves and retarded growth, indicating that FC2-producing heme is necessary for chloroplast development. During the initial growth stage, FC2 deficiency caused reduction of plastid cytochromes. In addition, although FC2 deficiency marginally affected the assembly of photosynthetic reaction center complexes, it caused relatively larger but insufficient light-harvesting antenna to reaction centers, resulting in lower efficiency of photosynthesis. In the later vegetative growth, however, fc2-2 recovered photosynthetic growth, showing that FC1-producing heme may complement the FC2 deficiency. On the other hand, reduced level of cytochromes in microsomal fraction was discovered in fc1-1, suggesting that FC1-producing heme is mainly allocated to extraplastidic organelles. Furthermore, the expression of FC1 is induced by the treatment of an elicitor flg22 while that of FC2 was reduced, and fc1-1 abolished the flg22-dependent induction of FC1 expression and peroxidase activity. Consequently, our results clarified that FC2 produces heme for the photosynthetic machinery in the chloroplast, while FC1 is the housekeeping enzyme providing heme cofactor to the entire cell. In addition, FC1 can partly complement FC2 deficiency and is also involved in defense against stressful conditions. PMID:27630653

  3. The QQS orphan gene of Arabidopsis modulates carbon and nitrogen allocation in soybean

    PubMed Central

    Li, Ling; Wurtele, Eve Syrkin

    2015-01-01

    The genome of each species contains as high as 8% of genes that are uniquely present in that species. Little is known about the functional significance of these so-called species specific or orphan genes. The Arabidopsis thaliana gene Qua-Quine Starch (QQS) is species specific. Here, we show that altering QQS expression in Arabidopsis affects carbon partitioning to both starch and protein. We hypothesized QQS may be conserved in a feature other than primary sequence, and as such could function to impact composition in another species. To test the potential of QQS in affecting composition in an ectopic species, we introduced QQS into soybean. Soybean T1 lines expressing QQS have up to 80% decreased leaf starch and up to 60% increased leaf protein; T4 generation seeds from field-grown plants contain up to 13% less oil, while protein is increased by up to 18%. These data broaden the concept of QQS as a modulator of carbon and nitrogen allocation, and demonstrate that this species-specific gene can affect the seed composition of an agronomic species thought to have diverged from Arabidopsis 100 million years ago. PMID:25146936

  4. Taming the 1.2 m Telescope

    NASA Astrophysics Data System (ADS)

    Griffin, S.; Edwards, M.; Greenwald, D.; Kono, D.; Liang, D.; Lohnes, K.; Wright, V.; Spillar, E.

    2013-09-01

    Achievable residual jitter on the 1.2 m telescope at MSSS shown in Figure 1 has historically been limited to 10-20 arc-sec. peak in moderate wind conditions due to the combination of the dynamics associated with the twin telescopes on the common declination axis shaft, and the related control system behavior. Figure 1 1.2 m Telescope The lightly damped, low frequency fundamental vibration mode shape of the telescopes rotating out of phase on the common declination axis shaft severely degraded the performance of the prior controllers. This vibration mode is easily excited by external forces such as wind loading and internal torque commands from the mount control system. The relatively poor historic performance was due to a combination of the low error rejection of external disturbances, and the controller exciting the mode. A radical new approach has been implemented that has resulted in a decrease of jitter to less than 1 arcsec under most conditions. The new approach includes minor hardware modifications to provide active damping with accelerometers as feedback sensors. This architecture has allowed a bandwidth increase of almost an order of magnitude and eliminated the large amplitude motions at the mode natural frequency, resulting in much improved pointing and jitter performance. A representative comparison of historical versus new architecture performance is shown in Figure 2 for the declination axis.

  5. Analysis of Unfolded Protein Response in Arabidopsis

    PubMed Central

    Chen, Yani; Brandizzi, Federica

    2014-01-01

    The unfolded protein response (UPR) is fundamental for development and adaption in eukaryotic cells. Arabidopsis has become one of the best model systems to uncover conserved mechanisms of the UPR in multicellular eukaryotes as well as organism-specific regulation of the UPR in plants. Monitoring the UPR in planta is an elemental approach to identifying regulatory components and to revealing molecular mechanisms of the plant UPR. In this chapter, we provide protocols for the induction and analyses of plant UPR at a molecular level in Arabidopsis. Three kinds of ER stress treatment methods and quantitation of the plant UPR activation are described here. PMID:23913037

  6. Arabidopsis thaliana FAR-RED ELONGATED HYPOCOTYLS3 (FHY3) and FAR-RED-IMPAIRED RESPONSE1 (FAR1) modulate starch synthesis in response to light and sugar.

    PubMed

    Ma, Lin; Xue, Na; Fu, Xiaoyu; Zhang, Haisen; Li, Gang

    2017-03-01

    In living organisms, daily light/dark cycles profoundly affect cellular processes. In plants, optimal growth and development, and adaptation to daily light-dark cycles, require starch synthesis and turnover. However, the underlying molecular mechanisms coordinating daily starch metabolism remain poorly understood. To explore the roles of Arabidopsis thaliana light signal transduction proteins FAR-RED ELONGATED HYPOCOTYLS3 (FHY3) and FAR-RED-IMPAIRED RESPONSE1 (FAR1) in starch metabolism, the contents of starch and water-soluble polysaccharides, and the structure of starch granules were investigated in fhy3, far1 and fhy3 far1 mutant plants. Disruption of FHY3 or FAR1 reduced starch accumulation and altered starch granule structure in the fhy3-4, far1-2, and fhy3-4 far1-2 mutant plants. Furthermore, molecular and genetic evidence revealed that the gene encoding the starch-debranching enzyme ISOAMYLASE2 (ISA2) is a direct target of FHY3 and FAR1, and functions in light-induced starch synthesis. Our data establish the first molecular link between light signal transduction and starch synthesis, suggesting that the light-signaling proteins FHY3 and FAR1 influence starch synthesis and starch granule formation through transcriptional activation of ISA2.

  7. An aeroponic culture system for the study of root herbivory on Arabidopsis thaliana

    PubMed Central

    2011-01-01

    Background Plant defense against herbivory has been studied primarily in aerial tissues. However, complex defense mechanisms have evolved in all parts of the plant to combat herbivore attack and these mechanisms are likely to differ in the aerial and subterranean environment. Research investigating defense responses belowground has been hindered by experimental difficulties associated with the accessibility and quality of root tissue and the lack of bioassays using model plants with altered defense profiles. Results We have developed an aeroponic culture system based on a calcined clay substrate that allows insect herbivores to feed on plant roots while providing easy recovery of the root tissue. The culture method was validated by a root-herbivore system developed for Arabidopsis thaliana and the herbivore Bradysia spp. (fungus gnat). Arabidopsis root mass obtained from aeroponically grown plants was comparable to that from other culture systems, and the plants were morphologically normal. Bradysia larvae caused considerable root damage resulting in reduced root biomass and water absorption. After feeding on the aeroponically grown root tissue, the larvae pupated and emerged as adults. Root damage of mature plants cultivated in aeroponic substrate was compared to that of Arabidopsis seedlings grown in potting mix. Seedlings were notably more susceptible to Bradysia feeding than mature plants and showed decreased overall growth and survival rates. Conclusions A root-herbivore system consisting of Arabidopsis thaliana and larvae of the opportunistic herbivore Bradysia spp. has been established that mimics herbivory in the rhizosphere. Bradysia infestation of Arabidopsis grown in this culture system significantly affects plant performance. The culture method will allow simple profiling and in vivo functional analysis of root defenses such as chemical defense metabolites that are released in response to belowground insect attack. PMID:21392399

  8. Glutamate dehydrogenase isoenzyme 3 (GDH3) of Arabidopsis thaliana is regulated by a combined effect of nitrogen and cytokinin.

    PubMed

    Marchi, Laura; Degola, Francesca; Polverini, Eugenia; Tercé-Laforgue, Thérèse; Dubois, Frédéric; Hirel, Bertrand; Restivo, Francesco Maria

    2013-12-01

    In higher plants, NAD(H)-glutamate dehydrogenase (GDH; EC 1.4.1.2) is an abundant enzyme that exists in different isoenzymic forms. In Arabidopsis thaliana, three genes (Gdh1, Gdh2 and Gdh3) encode three different GDH subunits (β, α and γ) that randomly associate to form a complex array of homo- and heterohexamers. The modification of the GDH isoenzyme pattern and its regulation was studied during the development of A. thaliana in the gdh1, gdh2 single mutants and the gdh1-2 double mutant, with particular emphasis on GDH3. Investigations showed that the GDH3 isoenzyme could not be detected in closely related Arabidopsis species. The induction and regulation of GDH3 activity in the leaves and roots was investigated following nitrogen deprivation in the presence or absence of sucrose or kinetin. These experiments indicate that GDH3 is likely to play an important role during senescence and nutrient remobilization.

  9. Natural variations in expression of regulatory and detoxification related genes under limiting phosphate and arsenate stress in Arabidopsis thaliana

    PubMed Central

    Shukla, Tapsi; Kumar, Smita; Khare, Ria; Tripathi, Rudra D.; Trivedi, Prabodh K.

    2015-01-01

    Abiotic stress including nutrient deficiency and heavy metal toxicity severely affects plant growth, development, and productivity. Genetic variations within and in between species are one of the important factors in establishing interactions and responses of plants with the environment. In the recent past, natural variations in Arabidopsis thaliana have been used to understand plant development and response toward different stresses at genetic level. Phosphorus deficiency negatively affects plant growth and metabolism and modulates expression of the genes involved in Pi homeostasis. Arsenate, As(V), a chemical analog of Pi, is taken up by the plants via phosphate transport system. Studies suggest that during Pi deficiency, enhanced As(V) uptake leads to increased toxicity in plants. Here, the natural variations in Arabidopsis have been utilized to study the As(V) stress response under limiting Pi condition. The primary root length was compared to identify differential response of three Arabidopsis accessions (Col-0, Sij-1, and Slavi-1) under limiting Pi and As(V) stress. To study the molecular mechanisms responsible for the differential response, comprehensive expression profiling of the genes involved in uptake, detoxification, and regulatory mechanisms was carried out. Analysis suggests genetic variation-dependent regulatory mechanisms may affect differential response of Arabidopsis natural variants toward As(V) stress under limiting Pi condition. Therefore, it is hypothesized that detailed analysis of the natural variations under multiple stress conditions might help in the better understanding of the biological processes involved in stress tolerance and adaptation. PMID:26557133

  10. Continuous transformation of a -1/2 wedge disclination line to a +1/2 one

    NASA Astrophysics Data System (ADS)

    Fukuda, Jun-Ichi

    2010-04-01

    It is known that, in the order-parameter space S2/Z2 (a typical example being a uniaxial nematic liquid crystal in three dimensions), a -1/2 wedge disclination line and a +1/2 one are topologically equivalent and can thus be transformed continuously into each other. Here we report the realization of this transformation in a simulation of a cholesteric blue phase under an electric field.

  11. 1,2-hydroxypyridonates as contrast agents for magnetic resonance imaging: TREN-1,2-HOPO.

    PubMed

    Jocher, Christoph J; Moore, Evan G; Xu, Jide; Avedano, Stefano; Botta, Mauro; Aime, Silvio; Raymond, Kenneth N

    2007-10-29

    1,2-Hydroxypyridinones (1,2-HOPO) form very stable lanthanide complexes that may be useful as contrast agents for magnetic resonance imaging (MRI). X-ray diffraction of single crystals established that the solid-state structures of the Eu(III) and the previously reported [Inorg. Chem. 2004, 43, 5452] Gd(III) complex are identical. The recently discovered sensitizing properties of 1,2-HOPO chelates for Eu(III) luminescence [J. Am. Chem. Soc. 2006, 128, 10 067] allow for direct measurement of the number of water molecules coordinated to the metal center. Fluorescence measurements of the Eu(III) complex corroborate that, in solution, two water molecules coordinate the lanthanide (q = 2) as proposed from the analysis of NMRD profiles. In addition, fluorescence measurements have verified the anion binding interactions of lanthanide TREN-1,2-HOPO complexes in solution, studied by relaxivity, revealing only very weak oxalate binding (KA = 82.7 +/- 6.5 M-1). Solution thermodynamic studies of the metal complex and free ligand have been carried out using potentiometry, spectrophotometry, and fluorescence spectroscopy. The metal ion selectivity of TREN-1,2-HOPO supports the feasibility of using 1,2-HOPO ligands for selective lanthanide binding [pGd = 19.3 (2), pZn = 15.2 (2), pCa = 8.8 (3)].

  12. Chinese Wild-Growing Vitis amurensis ICE1 and ICE2 Encode MYC-Type bHLH Transcription Activators that Regulate Cold Tolerance in Arabidopsis

    PubMed Central

    Xu, Weirong; Jiao, Yuntong; Li, Ruimin; Zhang, Ningbo; Xiao, Dongming; Ding, Xiaoling; Wang, Zhenping

    2014-01-01

    Winter hardiness is an important trait for grapevine breeders and producers, so identification of the regulatory mechanisms involved in cold acclimation is of great potential value. The work presented here involves the identification of two grapevine ICE gene homologs, VaICE1 and VaICE2, from an extremely cold-tolerant accession of Chinese wild-growing Vitis amurnensis, which are phylogenetically related to other plant ICE1 genes. These two structurally different ICE proteins contain previously reported ICE-specific amino acid motifs, the bHLH-ZIP domain and the S-rich motif. Expression analysis revealed that VaICE1 is constitutively expressed but affected by cold stress, unlike VaICE2 that shows not such changed expression as a consequence of cold treatment. Both genes serve as transcription factors, potentiating the transactivation activities in yeasts and the corresponding proteins localized to the nucleus following transient expression in onion epidermal cells. Overexpression of either VaICE1 or VaICE2 in Arabidopsis increase freezing tolerance in nonacclimated plants. Moreover, we show that they result in multiple biochemical changes that were associated with cold acclimation: VaICE1/2-overexpressing plants had evaluated levels of proline, reduced contents of malondialdehyde (MDA) and decreased levels of electrolyte leakage. The expression of downstream cold responsive genes of CBF1, COR15A, and COR47 were significantly induced in Arabidopsis transgenically overexpressing VaICE1 or VaICE2 upon cold stress. VaICE2, but not VaICE1 overexpression induced KIN1 expression under cold-acclimation conditions. Our results suggest that VaICE1 and VaICE2 act as key regulators at an early step in the transcriptional cascade controlling freezing tolerance, and modulate the expression levels of various low-temperature associated genes involved in the C-repeat binding factor (CBF) pathway. PMID:25019620

  13. Arabidopsis PCNAs form complexes with selected D-type cyclins

    PubMed Central

    Strzalka, Wojciech K.; Aggarwal, Chhavi; Krzeszowiec, Weronika; Jakubowska, Agata; Sztatelman, Olga; Banas, Agnieszka K.

    2015-01-01

    Proliferating Cell Nuclear Antigen (PCNA) is a key nuclear protein of eukaryotic cells. It has been shown to form complexes with cyclin dependent kinases, cyclin dependent kinase inhibitors and the D-type cyclins which are involved in the cell cycle control. In Arabidopsis two genes coding for PCNA1 and PCNA2 proteins have been identified. In this study by analyzing Arabidopsis PCNA/CycD complexes we tested the possible functional differentiation of PCNA1/2 proteins in cell cycle control. Most out of the 10 cyclins investigated showed only nuclear localization except CycD2;1, CycD4;1, and CycD4;2 which were observed both in the nucleus and cytoplasm. Using the Y2H, BiFC and FLIM-FRET techniques we identified D-type cyclins which formed complexes with either PCNA1 or PCNA2. Among the candidates tested only CycD1;1, CycD3;1, and CycD3;3 were not detected in a complex with the PCNA proteins. Moreover, our results indicate that the formation of CycD3;2/PCNA and CycD4;1/PCNA complexes can be regulated by other as yet unidentified factor(s). Additionally, FLIM-FRET analyses suggested that in planta the distance between PCNA1/CycD4;1, PCNA1/CycD6;1, PCNA1/CycD7;1, and PCNA2/CycD4;2 proteins was shorter than that between PCNA2/CycD4;1, PCNA2/CycD6;1, PCNA2/CycD7;1, and PCNA1/CycD4;2 pairs. These data indicate that the nine amino acid differences between PCNA1 and PCNA2 have an impact on the architecture of Arabidopsis CycD/PCNA complexes. PMID:26379676

  14. Light regulation of cadmium-induced cell death in Arabidopsis

    PubMed Central

    Smith, Sarah J; Wang, Yun; Slabas, Antoni R; Chivasa, Stephen

    2014-01-01

    Cadmium is an environmental pollutant with deleterious effects on both prokaryotic and eukaryotic organisms. In plants, the effects of cadmium toxicity are concentration dependent; lower doses destabilize many physiological processes and inhibit cell growth and multiplication, while higher doses evoke a more severe response that triggers activation of cell death. We recently investigated the effects of light on cadmium toxicity in Arabidopsis using a cell suspension culture system. Although not affecting the inhibitory effects on cell multiplication, we found that light is a powerful regulator of Cd-induced cell death. A very specific proteomic response, which was clearly controlled by light, preceded cell death. Here we discuss the implications of these findings and highlight similarities between the regulation of cell death triggered by Cd and fumonisin B1. We consider how both compounds could be useful tools in dissecting plant cell death signaling. PMID:24398567

  15. Photoreceptor-mediated bending towards UV-B in Arabidopsis.

    PubMed

    Vandenbussche, Filip; Tilbrook, Kimberley; Fierro, Ana Carolina; Marchal, Kathleen; Poelman, Dirk; Van Der Straeten, Dominique; Ulm, Roman

    2014-06-01

    Plants reorient their growth towards light to optimize photosynthetic light capture--a process known as phototropism. Phototropins are the photoreceptors essential for phototropic growth towards blue and ultraviolet-A (UV-A) light. Here we detail a phototropic response towards UV-B in etiolated Arabidopsis seedlings. We report that early differential growth is mediated by phototropins but clear phototropic bending to UV-B is maintained in phot1 phot2 double mutants. We further show that this phototropin-independent phototropic response to UV-B requires the UV-B photoreceptor UVR8. Broad UV-B-mediated repression of auxin-responsive genes suggests that UVR8 regulates directional bending by affecting auxin signaling. Kinetic analysis shows that UVR8-dependent directional bending occurs later than the phototropin response. We conclude that plants may use the full short-wavelength spectrum of sunlight to efficiently reorient photosynthetic tissue with incoming light.

  16. Thermospermine suppresses auxin-inducible xylem differentiation in Arabidopsis thaliana.

    PubMed

    Yoshimoto, Kaori; Noutoshi, Yoshiteru; Hayashi, Ken-ichiro; Shirasu, Ken; Takahashi, Taku; Motose, Hiroyasu

    2012-08-01

    Thermospermine, a structural isomer of spermine, is synthesized by a thermospermine synthase designated ACAULIS5 (ACL5). Thermospermine-deficient acl5 mutant of Arabidopsis thaliana shows severe dwarfism and excessive xylem differentiation. By screening for compounds that affect xylem differentiation in the acl5 mutant, we identified auxin analogs that remarkably enhanced xylem vessel differentiation in the acl5 mutant but not in the wild type. The xylem-inducing effect of auxin analogs was clearly suppressed by thermospermine, indicating that auxin-inducible xylem differentiation is normally limited by thermospermine. Here, we further characterized xylem-inducing effect of auxin analogs in various organs. Auxin analogs promoted protoxylem differentiation in roots and cotyledons in the acl5 mutant. Our results indicate that the opposite action between thermospermine and auxin in xylem differentiation is common in different organs and also suggest that thermospermine might be required for the suppression of protoxylem differentiation.

  17. Enantioselective effects of herbicide imazapyr on Arabidopsis thaliana.

    PubMed

    Hsiao, Yu-Ling; Wang, Yei-Shung; Yen, Jui-Hung

    2014-01-01

    The enantioselective toxicity of chiral herbicides in the environment is of increasing concern. To investigate the enantioselective effects of the chiral herbicide imazapyr on target organisms, we exposed Arabidopsis thaliana to imazapyr enantiomers and racemate. The results show that imazapyr was enantioselectively toxic to A. thaliana. The total chlorophyll content in A. thaliana was affected more by (+)-imazapyr than (±)-imazapyr and (-)-imazapyr. Concentrations of proline and malondialdehyde reflected a toxic effect in the order of (+)-imazapyr > (±)-imazapyr > (-)-imazapyr at every concentration. Acetolactate synthase (ALS) activity was inhibited more by (+)-imazapyr than (±)-imazapyr or (-)-imazapyr. At 100 mg L(-1) of imazapyr, ALS activity was 78%, 43%, and 19% with (-)-, (±)-, and (+)-imazapyr, respectively. The results suggest the significant enantioselective toxicity of imazapyr in A. thaliana for greater toxicity with (+)-imazapyr than (±)-imazapyr and (-)-imazapyr, which suggests that (+)-imazapyr has more herbicidal effect.

  18. A phospholipid uptake system in the model plant Arabidopsis thaliana.

    PubMed

    Poulsen, Lisbeth R; López-Marqués, Rosa L; Pedas, Pai R; McDowell, Stephen C; Brown, Elizabeth; Kunze, Reinhard; Harper, Jeffrey F; Pomorski, Thomas G; Palmgren, Michael

    2015-07-27

    Plants use solar energy to produce lipids directly from inorganic elements and are not thought to require molecular systems for lipid uptake from the environment. Here we show that Arabidopsis thaliana Aminophospholipid ATPase10 (ALA10) is a P4-type ATPase flippase that internalizes exogenous phospholipids across the plasma membrane, after which they are rapidly metabolized. ALA10 expression and phospholipid uptake are high in the epidermal cells of the root tip and in guard cells, the latter of which regulate the size of stomatal apertures to modulate gas exchange. ALA10-knockout mutants exhibit reduced phospholipid uptake at the root tips and guard cells and are affected in growth and transpiration. The presence of a phospholipid uptake system in plants is surprising. Our results suggest that one possible physiological role of this system is to internalize lysophosphatidylcholine, a signalling lipid involved in root development and stomatal control.

  19. Imaging lipid droplets in Arabidopsis mutants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Confocal fluorescence microscopy was adapted for the imaging of neutral lipids in plant leaves with defects in normal lipid metabolism using two different fluorescent dyes. Disruptions in a gene locus, At4g24160, yielded Arabidopsis thaliana plants with a preponderance of oil bodies in their leaves ...

  20. Engineering calcium oxalate crystal formation in Arabidopsis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many plants accumulate crystals of calcium oxalate. Just how these crystals form remains unknown. To gain insight into the mechanisms regulating calcium oxalate crystal formation, a crystal engineering approach was initiated utilizing the non-crystal accumulating plant, Arabidopsis. The success of t...

  1. Arabidopsis, the Rosetta stone of flowering time?

    PubMed

    Simpson, Gordon G; Dean, Caroline

    2002-04-12

    Multiple environmental and endogenous inputs regulate when plants flower. The molecular genetic dissection of flowering time control in Arabidopsis has identified an integrated network of pathways that quantitatively control the timing of this developmental switch. This framework provides the basis to understand the evolution of different reproductive strategies and how floral pathways interact through seasonal progression.

  2. Shotgun Proteomic Analysis of Arabidopsis thaliana Leaves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two shotgun tandem mass spectrometry proteomics approaches, Multidimensional Protein Identification Technology (MudPIT) and 1D-Gel-LC-MS/MS, were used to identify Arabidopsis thaliana leaf proteins. These methods utilize different protein/peptide separation strategies. Detergents not compatible wit...

  3. Arabidopsis gene expression patterns during spaceflight

    NASA Astrophysics Data System (ADS)

    Paul, A.-L.; Ferl, R. J.

    The exposure of Arabidopsis thaliana (Arabidopsis) plants to spaceflight environments resulted in the differential expression of hundreds of genes. A 5 day mission on orbiter Columbia in 1999 (STS-93) carried transgenic Arabidopsis plants engineered with a transgene composed of the alcohol dehydrogenase (Adh) gene promoter linked to the β -Glucuronidase (GUS) reporter gene. The plants were used to evaluate the effects of spaceflight on two fronts. First, expression patterns visualized with the Adh/GUS transgene were used to address specifically the possibility that spaceflight induces a hypoxic stress response, and to assess whether any spaceflight response was similar to control terrestrial hypoxia-induced gene expression patterns. (Paul et al., Plant Physiol. 2001, 126:613). Second, genome-wide patterns of native gene expression were evaluated utilizing the Affymetrix ATH1 GeneChip? array of 8,000 Arabidopsis genes. As a control for the veracity of the array analyses, a selection of genes identified with the arrays was further characterized with quantitative Real-Time RT PCR (ABI - TaqmanTM). Comparison of the patterns of expression for arrays of hybridized with RNA isolated from plants exposed to spaceflight compared to the control arrays revealed hundreds of genes that were differentially expressed in response to spaceflight, yet most genes that are hallmarks of hypoxic stress were unaffected. These results will be discussed in light of current models for plant responses to the spaceflight environment, and with regard to potential future flight opportunities.

  4. 77 FR 30407 - 1,2-Ethanediamine, N

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-23

    ... AGENCY 40 CFR Part 180 1,2-Ethanediamine, N1-(2-aminoethyl)-, polymer with 2, 4- diisocyanato-1...-ethanediamine, N1-(2-aminoethyl)-, polymer with 2,4-diisocyanato-1-methylbenzene, when used as an inert... residues of 1,2- ethanediamine, N1-(2-aminoethyl)-, polymer with 2,4-diisocyanato-1- methylbenzene on...

  5. Dominant and recessive mutations in the Raf-like kinase HT1 gene completely disrupt stomatal responses to CO2 in Arabidopsis

    PubMed Central

    Hashimoto-Sugimoto, Mimi; Negi, Juntaro; Monda, Keina; Higaki, Takumi; Isogai, Yasuhiro; Nakano, Toshiaki; Hasezawa, Seiichiro; Iba, Koh

    2016-01-01

    HT1 (HIGH LEAF TEMPERATURE 1) is the first component associated with changes in stomatal aperture in response to CO2 to be isolated by forward genetic screening. The HT1 gene encodes a protein kinase expressed mainly in guard cells. The loss-of-function ht1-1 and ht1-2 mutants in Arabidopsis thaliana have CO2-hypersensitive stomatal closure with concomitant reductions in their kinase activities in vitro. In addition to these mutants, in this study we isolate or obtaine five new ht1 alleles (ht1-3, ht1-4, ht1-5, ht1-6, and ht1-7). Among the mutants, only ht1-3 has a dominant mutant phenotype and has widely opened stomata due to CO2 insensitivity. The ht1-3 mutant has a missense mutation affecting a non-conserved residue (R102K), whereas the other six recessive mutants have mutations in highly conserved residues in the catalytic domains required for kinase activity. We found that the dominant mutation does not affect the expression of HT1 or the ability to phosphorylate casein, a universal kinase substrate, but it does affect autophosphorylation activity in vitro. A 3D structural model of HT1 also shows that the R102 residue protrudes from the surface of the kinase, implying a role for the formation of oligomers and/or interaction with its targets. We demonstrate that both the loss-of-function and gain-of-function ht1 mutants have completely disrupted CO2 responses, although they have normal responses to ABA. Furthermore, light-induced stomatal opening is smaller in ht1-3 and much smaller in ht1-2. Taken together, these results indicate that HT1 is a critical regulator for CO2 signaling and is partially involved in the light-induced stomatal opening pathway. PMID:27034327

  6. Regulatory function of Arabidopsis lipid transfer protein 1 (LTP1) in ethylene response and signaling.

    PubMed

    Wang, Honglin; Sun, Yue; Chang, Jianhong; Zheng, Fangfang; Pei, Haixia; Yi, Yanjun; Chang, Caren; Dong, Chun-Hai

    2016-07-01

    Ethylene as a gaseous plant hormone is directly involved in various processes during plant growth and development. Much is known regarding the ethylene receptors and regulatory factors in the ethylene signal transduction pathway. In Arabidopsis thaliana, REVERSION-TO-ETHYLENE SENSITIVITY1 (RTE1) can interact with and positively regulates the ethylene receptor ETHYLENE RESPONSE1 (ETR1). In this study we report the identification and characterization of an RTE1-interacting protein, a putative Arabidopsis lipid transfer protein 1 (LTP1) of unknown function. Through bimolecular fluorescence complementation, a direct molecular interaction between LTP1 and RTE1 was verified in planta. Analysis of an LTP1-GFP fusion in transgenic plants and plasmolysis experiments revealed that LTP1 is localized to the cytoplasm. Analysis of ethylene responses showed that the ltp1 knockout is hypersensitive to 1-aminocyclopropanecarboxylic acid (ACC), while LTP1 overexpression confers insensitivity. Analysis of double mutants etr1-2 ltp1 and rte1-3 ltp1 demonstrates a regulatory function of LTP1 in ethylene receptor signaling through the molecular association with RTE1. This study uncovers a novel function of Arabidopsis LTP1 in the regulation of ethylene response and signaling.

  7. The 1.2 micron CMOS technology

    NASA Technical Reports Server (NTRS)

    Pina, C. A.

    1985-01-01

    A set of test structures was designed using the Jet Propulsion Laboratory (JPL) test chip assembler and was used to evaluate the first CMOS-bulk foundry runs with feature sizes of 1.2 microns. In addition to the problems associated with the physical scaling of the structures, this geometry provided an additional set of problems, since the design files had to be generated in such a way as to be capable of being processed through p-well, n-well, and twin-well processing lines. This requirement meant that the files containing the geometric design rules as well as the structure design files had to produce process-insensitive designs, a requirement that does not apply to the more mature 3.0-micron CMOS feature size technology. Because of the photolithographic steps required with this feature size, the maximum allowable chip size was 10 x 10 mm, and this chip was divided into 24 project areas, with each area being 1.6 x 1.6 mm in size. The JPL-designed structures occupied 13 out of the 21 allowable project sizes and provided the only test information obtained from these three preliminary runs. The structures were used to successfully evaluate three different manufacturing runs through two separate foundries.

  8. TANG1, Encoding a Symplekin_C Domain-Contained Protein, Influences Sugar Responses in Arabidopsis.

    PubMed

    Zheng, Leiying; Shang, Li; Chen, Xing; Zhang, Limin; Xia, Yan; Smith, Caroline; Bevan, Michael W; Li, Yunhai; Jing, Hai-Chun

    2015-07-01

    Sugars not only serve as energy and cellular carbon skeleton but also function as signaling molecules regulating growth and development in plants. Understanding the molecular mechanisms in sugar signaling pathways will provide more information for improving plant growth and development. Here, we describe a sugar-hypersensitive recessive mutant, tang1. Light-grown tang1 mutants have short roots and increased starch and anthocyanin contents when grown on high-sugar concentration medium. Dark-grown tang1 plants exhibit sugar-hypersensitive hypocotyl elongation and enhanced dark development. The tang1 mutants also show an enhanced response to abscisic acid but reduced response to ethylene. Thus, tang1 displays a range of alterations in sugar signaling-related responses. The TANG1 gene was isolated by a map-based cloning approach and encodes a previously uncharacterized unique protein with a predicted Symplekin tight-junction protein C terminus. Expression analysis indicates that TANG1 is ubiquitously expressed at moderate levels in different organs and throughout the Arabidopsis (Arabidopsis thaliana) life cycle; however, its expression is not affected by high-sugar treatment. Genetic analysis shows that PRL1 and TANG1 have additive effects on sugar-related responses. Furthermore, the mutation of TANG1 does not affect the expression of genes involved in known sugar signaling pathways. Taken together, these results suggest that TANG1, a unique gene, plays an important role in sugar responses in Arabidopsis.

  9. HASTY, the Arabidopsis ortholog of exportin 5/MSN5, regulates phase change and morphogenesis.

    PubMed

    Bollman, Krista M; Aukerman, Milo J; Park, Mee-Yeon; Hunter, Christine; Berardini, Tanya Z; Poethig, R Scott

    2003-04-01

    Loss-of-function mutations of HASTY (HST) affect many different processes in Arabidopsis development. In addition to reducing the size of both roots and lateral organs of the shoot, hst mutations affect the size of the shoot apical meristem, accelerate vegetative phase change, delay floral induction under short days, adaxialize leaves and carpels, disrupt the phyllotaxis of the inflorescence, and reduce fertility. Double mutant analysis suggests that HST acts in parallel to SQUINT in the regulation of phase change and in parallel to KANADI in the regulation of leaf polarity. Positional cloning demonstrated that HST is the Arabidopsis ortholog of the importin beta-like nucleocytoplasmic transport receptors exportin 5 in mammals and MSN5 in yeast. Consistent with a potential role in nucleocytoplasmic transport, we found that HST interacts with RAN1 in a yeast two-hybrid assay and that a HST-GUS fusion protein is located at the periphery of the nucleus. HST is one of at least 17 members of the importin-beta family in Arabidopsis and is the first member of this family shown to have an essential function in plants. The hst loss-of-function phenotype suggests that this protein regulates the nucleocytoplasmic transport of molecules involved in several different morphogenetic pathways, as well as molecules generally required for root and shoot growth.

  10. Design and synthesis of novel neuroprotective 1,2-dithiolane/chroman hybrids.

    PubMed

    Koufaki, Maria; Kiziridi, Christina; Alexi, Xanthippi; Alexis, Michael N

    2009-09-01

    Novel 1,2-dithiolane/chroman hybrids bearing heterocyclic rings such as 1,2,4- and 1,3,4-oxadiazole, 1,2,3-triazole and tetrazole were designed and synthesized. The neuroprotective activity of the new analogues was tested against oxidative stress-induced cell death of glutamate-challenged HT22 hippocampal neurons. Our results show that bioisosteric replacement of amide group in 2-position of the chroman moiety, by 1,3,4-oxadiazole did not affect activity. However, analogue 5 bearing the 1,2,4-oxadiazole moiety showed improved neuroprotective activity. The presence of nitrogen heterocycles strongly influences the neuroprotective activity of 5-substituted chroman derivatives, depending on the nature of heterocycle. Replacement of the amide group of the first generation analogues by 1,2,4-oxadiazole or 1,2,3-triazole resulted in significant improvement of the activity against glutamate induced oxidative stress.

  11. 26. A sepia photograph, 7 1/2" x 8 1/2" oh ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. A sepia photograph, 7 1/2" x 8 1/2" oh semi-matte paper, aerial oblique of central Terre Haute with negative inscribed letters (prints on positive as white) along the bottom margin, "(02105-631K-118) (3-10-37. 10:30A) (R-1000) (State Normal College, Terre Haute, Ind.)" This view taken looking east shows the gas building in the near foreground right. On the reverse in red pencil, "Campus Scenes 10" and in black pencil, "1937". Source: Indiana State University Archives. - John T. Beasley Building, 632 Cherry Street (between Sixth & Seventh Streets), Terre Haute, Vigo County, IN

  12. Auxin-Mediated Ribosomal Biogenesis Regulates Vacuolar Trafficking in Arabidopsis[W

    PubMed Central

    Rosado, Abel; Sohn, Eun Ju; Drakakaki, Georgia; Pan, Songqin; Swidergal, Alexandra; Xiong, Yuqing; Kang, Byung-Ho; Bressan, Ray A.; Raikhel, Natasha V.

    2010-01-01

    In plants, the mechanisms that regulate the transit of vacuolar soluble proteins containing C-terminal and N-terminal vacuolar sorting determinants (VSDs) to the vacuole are largely unknown. In a screen for Arabidopsis thaliana mutants affected in the trafficking of C-terminal VSD containing proteins, we isolated the ribosomal biogenesis mutant rpl4a characterized by its partial secretion of vacuolar targeted proteins and a plethora of developmental phenotypes derived from its aberrant auxin responses. In this study, we show that ribosomal biogenesis can be directly regulated by auxins and that the exogenous application of auxins to wild-type plants results in vacuolar trafficking defects similar to those observed in rpl4a mutants. We propose that the influence of auxin on ribosomal biogenesis acts as a regulatory mechanism for auxin-mediated developmental processes, and we demonstrate the involvement of this regulatory mechanism in the sorting of vacuolar targeted proteins in Arabidopsis. PMID:20061553

  13. The phenotype of Arabidopsis thaliana det1 mutants suggest a role for cytokinins in greening

    SciTech Connect

    Chory, J.; Aguilar, N.; Peto, C.A.

    1990-01-01

    When grown in the absence of light, the det1 mutants of Arabidopsis thaliana develop characteristics of light-grown plants by morphological, cellular, and molecular criteria. Further, in light-grown plants, mutations in the DET1 gene affect cell-type-specific expression of light-regulated genes and the chloroplast developmental program. Here we show that the addition of exogenously added cytokinins (either 2-isopentenyl adenine, kinetin, or benzyladenine) to the growth medium of dark-germinated wild-type seedlings results in seedlings that resemble det1 mutants, instead of having the normal etiolated morphology. Like det1 mutants, these dark-grown seedlings now contain chloroplasts and have high levels of expression of genes that are normally light''-regulated. These results suggest an important role for cytokinins during greening of Arabidopsis, and may implicate cytokinin levels or an increased sensitivity to cytokinins as explanations for some of the observed phenotypes of det1 mutants.

  14. A conserved genetic pathway determines inflorescence architecture in Arabidopsis and rice.

    PubMed

    Liu, Chang; Teo, Zhi Wei Norman; Bi, Yang; Song, Shiyong; Xi, Wanyan; Yang, Xiaobei; Yin, Zhongchao; Yu, Hao

    2013-03-25

    The spatiotemporal architecture of inflorescences that bear flowers determines plant reproductive success by affecting fruit set and plant interaction with pollinators. The inflorescence architecture that displays great diversity across flowering plants depends on developmental decisions at inflorescence meristems. Here we report a key conserved genetic pathway determining inflorescence architecture in Arabidopsis thaliana and Oryza sativa (rice). In Arabidopsis, four MADS-box genes, SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1, SHORT VEGETATIVE PHASE, AGAMOUS-LIKE 24, and SEPALLATA 4 act redundantly and directly to suppress TERMINAL FLOWER1 (TFL1) in emerging floral meristems. This is indispensable for the well-known function of APETALA1 in specifying floral meristems and is coupled with a conformational change in chromosome looping at the TFL1 locus. Similarly, we demonstrate that the orthologs of these MADS-box genes in rice determine panicle branching by regulating TFL1-like genes. Our findings reveal a conserved regulatory pathway that determines inflorescence architecture in flowering plants.

  15. FRIENDLY Regulates Mitochondrial Distribution, Fusion, and Quality Control in Arabidopsis1[W][OPEN

    PubMed Central

    El Zawily, Amr M.; Schwarzländer, Markus; Finkemeier, Iris; Johnston, Iain G.; Benamar, Abdelilah; Cao, Yongguo; Gissot, Clémence; Meyer, Andreas J.; Wilson, Ken; Datla, Raju; Macherel, David; Jones, Nick S.; Logan, David C.

    2014-01-01

    Mitochondria are defining components of most eukaryotes. However, higher plant mitochondria differ biochemically, morphologically, and dynamically from those in other eukaryotes. FRIENDLY, a member of the CLUSTERED MITOCHONDRIA superfamily, is conserved among eukaryotes and is required for correct distribution of mitochondria within the cell. We sought to understand how disruption of FRIENDLY function in Arabidopsis (Arabidopsis thaliana) leads to mitochondrial clustering and the effects of this aberrant chondriome on cell and whole-plant physiology. We present evidence for a role of FRIENDLY in mediating intermitochondrial association, which is a necessary prelude to mitochondrial fusion. We demonstrate that disruption of mitochondrial association, motility, and chondriome structure in friendly affects mitochondrial quality control and leads to mitochondrial stress, cell death, and strong growth phenotypes. PMID:25165398

  16. The Arabidopsis lyrata genome sequence and the basis of rapid genome size change

    SciTech Connect

    Hu, Tina T.; Pattyn, Pedro; Bakker, Erica G.; Cao, Jun; Cheng, Jan-Fang; Clark, Richard M.; Fahlgren, Noah; Fawcett, Jeffrey A.; Grimwood, Jane; Gundlach, Heidrun; Haberer, Georg; Hollister, Jesse D.; Ossowski, Stephan; Ottilar, Robert P.; Salamov, Asaf A.; Schneeberger, Korbinian; Spannagl, Manuel; Wang, Xi; Yang, Liang; Nasrallah, Mikhail E.; Bergelson, Joy; Carrington, James C.; Gaut, Brandon S.; Schmutz, Jeremy; Mayer, Klaus F. X.; Van de Peer, Yves; Grigoriev, Igor V.; Nordborg, Magnus; Weigel, Detlef; Guo, Ya-Long

    2011-04-29

    In our manuscript, we present a high-quality genome sequence of the Arabidopsis thaliana relative, Arabidopsis lyrata, produced by dideoxy sequencing. We have performed the usual types of genome analysis (gene annotation, dN/dS studies etc. etc.), but this is relegated to the Supporting Information. Instead, we focus on what was a major motivation for sequencing this genome, namely to understand how A. thaliana lost half its genome in a few million years and lived to tell the tale. The rather surprising conclusion is that there is not a single genomic feature that accounts for the reduced genome, but that every aspect centromeres, intergenic regions, transposable elements, gene family number is affected through hundreds of thousands of cuts. This strongly suggests that overall genome size in itself is what has been under selection, a suggestion that is strongly supported by our demonstration (using population genetics data from A. thaliana) that new deletions seem to be driven to fixation.

  17. Isolation of LUMINIDEPENDENS: a gene involved in the control of flowering time in Arabidopsis.

    PubMed

    Lee, I; Aukerman, M J; Gore, S L; Lohman, K N; Michaels, S D; Weaver, L M; John, M C; Feldmann, K A; Amasino, R M

    1994-01-01

    Plants have evolved the ability to regulate flowering in response to environmental signals such as temperature and photoperiod. The physiology and genetics of floral induction have been studied extensively, but the molecular mechanisms that underlie this process are poorly understood. To study this process, we isolated a gene, LUMINIDEPENDENS (LD), that is involved in the timing of flowering in Arabidopsis. Mutations in this gene render Arabidopsis late flowering and appear to affect light perception. The late-flowering phenotype of the ld mutation was partially suppressed by vernalization. Genomic and cDNA clones of the LD gene were characterized. The predicted amino acid sequence of the LD protein contains 953 residues and includes two putative bipartite nuclear localization signals and a glutamine-rich region.

  18. Light-independent developmental regulation of cab gene expression in Arabidopsis thaliana seedlings.

    PubMed Central

    Brusslan, J A; Tobin, E M

    1992-01-01

    We found a transient increase in the amount of mRNA for four nuclear genes encoding chloroplast proteins during early development of Arabidopsis thaliana. This increase began soon after germination as cotyledons emerged from the seed coat; it occurred in total darkness and was not affected by external factors, such as gibberellins or light treatments used to stimulate germination. Three members of the cab gene family and the rbcS-1A gene exhibited this expression pattern. Because timing of the increase coincided with cotyledon emergence and because it occurred independently of external stimuli, we suggest that this increase represents developmental regulation of these genes. Further, 1.34 kilobases of the cab1 promoter was sufficient to confer this expression pattern on a reporter gene in transgenic Arabidopsis seedlings. The ability of the cab genes to respond to phytochrome preceded this developmental increase, showing that these two types of regulation are independent. Images PMID:1380166

  19. Arabidopsis thaliana Glyoxalase 2-1 Is Required during Abiotic Stress but Is Not Essential under Normal Plant Growth

    PubMed Central

    Devanathan, Sriram; Erban, Alexander; Perez-Torres, Rodolfo; Kopka, Joachim; Makaroff, Christopher A.

    2014-01-01

    The glyoxalase pathway, which consists of the two enzymes, GLYOXALASE 1 (GLX 1) (E.C.: 4.4.1.5) and 2 (E.C.3.1.2.6), has a vital role in chemical detoxification. In Arabidopsis thaliana there are at least four different isoforms of glyoxalase 2, two of which, GLX2-1 and GLX2-4 have not been characterized in detail. Here, the functional role of Arabidopsis thaliana GLX2-1 is investigated. Glx2-1 loss-of-function mutants and plants that constitutively over-express GLX2-1 resemble wild-type plants under normal growth conditions. Insilico analysis of publicly available microarray datasets with ATTEDII, Mapman and Genevestigator indicate potential role(s) in stress response and acclimation. Results presented here demonstrate that GLX2-1 gene expression is up-regulated in wild type Arabidopsis thaliana by salt and anoxia stress, and by excess L-Threonine. Additionally, a mutation in GLX2-1 inhibits growth and survival during abiotic stresses. Metabolic profiling studies show alterations in the levels of sugars and amino acids during threonine stress in the plants. Elevated levels of polyamines, which are known stress markers, are also observed. Overall our results suggest that Arabidopsis thaliana GLX2-1 is not essential during normal plant life, but is required during specific stress conditions. PMID:24760003

  20. Biochemical and genetic characterization of three molybdenum cofactor hydroxylases in Arabidopsis thaliana.

    PubMed

    Hoff, T; Frandsen, G I; Rocher, A; Mundy, J

    1998-07-09

    Aldehyde oxidases and xanthine dehydrogenases/oxidases belong to the molybdenum cofactor dependent hydroxylase class of enzymes. Zymograms show that Arabidopsis thaliana has at least three different aldehyde oxidases and one xanthine oxidase. Three different cDNA clones encoding putative aldehyde oxidases (AtAO1, 2, 3) were isolated. An aldehyde oxidase is the last step in abscisic acid (ABA) biosynthesis. AtAO1 is mainly expressed in seeds and roots which might reflect that it is involved in ABA biosynthesis.

  1. Genetic and genomic analysis of Rhizoctonia solani interactions with Arabidopsis; evidence of resistance mediated through NADPH oxidases.

    PubMed

    Foley, Rhonda C; Gleason, Cynthia A; Anderson, Jonathan P; Hamann, Thorsten; Singh, Karam B

    2013-01-01

    Rhizoctonia solani is an important soil-borne necrotrophic fungal pathogen, with a broad host range and little effective resistance in crop plants. Arabidopsis is resistant to R. solani AG8 but susceptible to R. solani AG2-1. A screen of 36 Arabidopsis ecotypes and mutants affected in the auxin, camalexin, salicylic acid, abscisic acid and ethylene/jasmonic acid pathways did not reveal any variation in response to R. solani and demonstrated that resistance to AG8 was independent of these defense pathways. The Arabidopsis Affymetrix ATH1 Genome array was used to assess global gene expression changes in plants infected with AG8 and AG2-1 at seven days post-infection. While there was considerable overlap in the response, some gene families were differentially affected by AG8 or AG2-1 and included those involved in oxidative stress, cell wall associated proteins, transcription factors and heat shock protein genes. Since a substantial proportion of the gene expression changes were associated with oxidative stress responses, we analysed the role of NADPH oxidases in resistance. While single NADPH oxidase mutants had no effect, a NADPH oxidase double mutant atrbohf atrbohd resulted in an almost complete loss of resistance to AG8, suggesting that reactive oxidative species play an important role in Arabidopsis's resistance to R. solani.

  2. Disruption of abscisic acid signaling constitutively activates Arabidopsis resistance to the necrotrophic fungus Plectosphaerella cucumerina.

    PubMed

    Sánchez-Vallet, Andrea; López, Gemma; Ramos, Brisa; Delgado-Cerezo, Magdalena; Riviere, Marie-Pierre; Llorente, Francisco; Fernández, Paula Virginia; Miedes, Eva; Estevez, José Manuel; Grant, Murray; Molina, Antonio

    2012-12-01

    Plant resistance to necrotrophic fungi is regulated by a complex set of signaling pathways that includes those mediated by the hormones salicylic acid (SA), ethylene (ET), jasmonic acid (JA), and abscisic acid (ABA). The role of ABA in plant resistance remains controversial, as positive and negative regulatory functions have been described depending on the plant-pathogen interaction analyzed. Here, we show that ABA signaling negatively regulates Arabidopsis (Arabidopsis thaliana) resistance to the necrotrophic fungus Plectosphaerella cucumerina. Arabidopsis plants impaired in ABA biosynthesis, such as the aba1-6 mutant, or in ABA signaling, like the quadruple pyr/pyl mutant (pyr1pyl1pyl2pyl4), were more resistant to P. cucumerina than wild-type plants. In contrast, the hab1-1abi1-2abi2-2 mutant impaired in three phosphatases that negatively regulate ABA signaling displayed an enhanced susceptibility phenotype to this fungus. Comparative transcriptomic analyses of aba1-6 and wild-type plants revealed that the ABA pathway negatively regulates defense genes, many of which are controlled by the SA, JA, or ET pathway. In line with these data, we found that aba1-6 resistance to P. cucumerina was partially compromised when the SA, JA, or ET pathway was disrupted in this mutant. Additionally, in the aba1-6 plants, some genes encoding cell wall-related proteins were misregulated. Fourier transform infrared spectroscopy and biochemical analyses of cell walls from aba1-6 and wild-type plants revealed significant differences in their Fourier transform infrared spectratypes and uronic acid and cellulose contents. All these data suggest that ABA signaling has a complex function in Arabidopsis basal resistance, negatively regulating SA/JA/ET-mediated resistance to necrotrophic fungi.

  3. Identification of a locus controlling Verticillium disease symptom response in Arabidopsis thaliana.

    PubMed

    Veronese, Paola; Narasimhan, Meena L; Stevenson, Rebecca A; Zhu, Jian-K; Weller, Stephen C; Subbarao, Krishna V; Bressan, Ray A

    2003-09-01

    Verticillium dahliae Klebahn is a soil-borne fungal pathogen causing vascular diseases. The pathogen penetrates the host through the roots, spreads through the xylem, and systemically colonizes both resistant and susceptible genotypes. To elucidate the genetic and molecular bases of plant-Verticillium interactions, we have developed a pathosystem utilizing Arabidopsis thaliana and an isolate of V. dahliae pathogenic to both cruciferous and non-cruciferous crops. Relative tolerance (based on symptom severity) but no immunity was found in a survey of Arabidopsis ecotypes. Anthocyanin accumulation, stunting, and chlorosis were common symptoms. Specific responses of the more susceptible ecotype Columbia were induction of early flowering and dying. The more tolerant ecotype C-24 was characterized by pathogen-induced delay of transition to flowering and mild chlorosis symptoms. Genetic analysis indicated that a single dominant locus, Verticillium dahliae-tolerance (VET1), likely functioning also as a negative regulator of the transition to flowering, was able to convey increased tolerance. VET1 was mapped on chromosome IV. The differential symptom responses observed between ecotypes were not correlated with different rates of fungal tissue colonization or with differential transcript accumulation of PR-1 and PDF1.2 defense genes whose activation was not detected during the Arabidopsis-V. dahliae interaction. Impairment in salicylic acid (SA)- or jasmonic acid (JA)-dependent signaling did not cause hypersensitivity to the fungal infection, whereas ethylene insensitivity led to reduced chlorosis and ABA deficiency to reduced anthocyanin accumulation. The results of this study clearly indicated that the ability of V. dahliae to induce disease symptoms is also connected to the genetic control of development and life span in Arabidopsis.

  4. NAD(H)-dependent glutamate dehydrogenase is essential for the survival of Arabidopsis thaliana during dark-induced carbon starvation.

    PubMed

    Miyashita, Yo; Good, Allen G

    2008-01-01

    Interconversion between glutamate and 2-oxoglutarate, which can be catalysed by glutamate dehydrogenase (GDH), is a key reaction in plant carbon (C) and nitrogen (N) metabolism. However, the physiological role of plant GDH has been a controversial issue for several decades. To elucidate the function of GDH, the expression of GDH in various tissues of Arabidopsis thaliana was studied. Results suggested that the expression of two Arabidopsis GDH genes was differently regulated depending on the organ/tissue types and cellular C availability. Moreover, Arabidopsis mutants defective in GDH genes were identified and characterized. The two isolated mutants, gdh1-2 and gdh2-1, were crossed to make a double knockout mutant, gdh1-2/gdh2-1, which contained negligible levels of NAD(H)-dependent GDH activity. Phenotypic analysis on these mutants revealed an increased susceptibility of gdh1-2/gdh2-1 plants to C-deficient conditions. This conditional phenotype of the double knockout mutant supports the catabolic role of GDH and its role in fuelling the TCA cycle during C starvation. The reduced rate of glutamate catabolism in the gdh2-1 and gdh1-2/gdh2-1 plants was also evident by the growth retardation of these mutants when glutamate was supplied as the alternative N source. Furthermore, amino acid profiles during prolonged dark conditions were significantly different between WT and the gdh mutant plants. For instance, glutamate levels increased in WT plants but decreased in gdh1-2/gdh2-1 plants, and aberrant accumulation of several amino acids was detected in the gdh1-2/gdh2-1 plants. These results suggest that GDH plays a central role in amino acid breakdown under C-deficient conditions.

  5. Rewiring of the Jasmonate Signaling Pathway in Arabidopsis during Insect Herbivory

    PubMed Central

    Verhage, Adriaan; Vlaardingerbroek, Ido; Raaymakers, Ciska; Van Dam, Nicole M.; Dicke, Marcel; Van Wees, Saskia C. M.; Pieterse, Corné M. J.

    2011-01-01

    Plant defenses against insect herbivores and necrotrophic pathogens are differentially regulated by different branches of the jasmonic acid (JA) signaling pathway. In Arabidopsis, the basic helix-loop-helix leucine zipper transcription factor (TF) MYC2 and the APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) domain TF ORA59 antagonistically control these distinct branches of the JA pathway. Feeding by larvae of the specialist insect herbivore Pieris rapae activated MYC2 transcription and stimulated expression of the MYC2-branch marker gene VSP2, while it suppressed transcription of ORA59 and the ERF-branch marker gene PDF1.2. Mutant jin1 and jar1-1 plants, which are impaired in the MYC2-branch of the JA pathway, displayed a strongly enhanced expression of both ORA59 and PDF1.2 upon herbivory, indicating that in wild-type plants the MYC2-branch is prioritized over the ERF-branch during insect feeding. Weight gain of P. rapae larvae in a no-choice setup was not significantly affected, but in a two-choice setup the larvae consistently preferred jin1 and jar1-1 plants, in which the ERF-branch was activated, over wild-type Col-0 plants, in which the MYC2-branch was induced. In MYC2- and ORA59-impaired jin1-1/RNAi-ORA59 plants this preference was lost, while in ORA59-overexpressing 35S:ORA59 plants it was gained, suggesting that the herbivores were stimulated to feed from plants that expressed the ERF-branch rather than that they were deterred by plants that expressed the MYC2-branch. The feeding preference of the P. rapae larvae could not be linked to changes in glucosinolate levels. Interestingly, application of larval oral secretion into wounded leaf tissue stimulated the ERF-branch of the JA pathway, suggesting that compounds in the oral secretion have the potential to manipulate the plant response toward the caterpillar-preferred ERF-regulated branch of the JA response. Our results suggest that by activating the MYC2-branch of the JA pathway, plants prevent stimulation

  6. 17th International Conference on Arabidopsis Research

    SciTech Connect

    Bender, Judith

    2006-07-02

    The 17th International Conference on Arabidopsis Research was held at the University of Madison, Wisconsin from June 27- July 2, 2006. ICAR-2006 included approximately 625 scientists from across the world. The scientific program was of excellent quality featuring 73 talks, including 30 from invited speakers. There were also 6 community-organized workshops (facilitated by conference staff) featuring additional talks on topics including ‘Submitting data to long-term repositories,’ ‘TAIR introductory workshop,’ ‘Web services and demonstration,’ ‘Public engagement: broadening the impact of your research,’ ‘Systems biology approaches to analysis of metabolic and regulatory networks of Arabidopsis,’ and ‘Mechanotransduction in Arabidopsis.’ Approximately 440 posters were presented in general topic areas including, among others, Development, Modeling/Other Systems, Energy, Environment, and Genetic/Epigenetic mechanisms. Graduate students, postdoctoral researchers, junior faculty, and underrepresented minorities made up a significant portion of the oral presentations thereby promoting the training of young scientists and facilitating important career development opportunities for speakers. Several poster sessions provided an opportunity for younger participants to freely meet with more established scientists. The North American Arabidopsis Steering Committee (NAASC) continued its outreach effort and again sponsored two special luncheons to encourage personal and professional development of young scientists and also underrepresented minorities. The ‘Emerging Scientists Luncheon’ featured 10 graduate students selected on the basis of scientific excellence of their submitted research abstracts. The ‘Minority Funding Luncheon,’ featured 8 awardees selected by the NAASC through a widely-publicized application process. This luncheon was established specifically to provide an opportunity for underrepresented minorities, and/or scientists from

  7. [Research of imidazo[1,2-a]benzimidazole derivatives. XXX. Synthesis and properties of (imidazo[1,2-a]benzimidazolyl-2)acetic acid derivatives].

    PubMed

    Anisimova, V A; Tolpygin, I E; Spasov, A A; Serdiuk, T S; Sukhov, A G

    2011-01-01

    Ethyl esters of (9-subtituted-imidazo[1,2-a]benzimidazolyl-2)acetic acids were synthesized. The chemical properties of these esters (hydrolysis, decarboxylation, hydrazinolysis) and biological activity (fungicidal, antimicrobial, antiarrhythmic activity, and also affects on the brain rhythmogenesis) of the prepared compounds were studied.

  8. Interactions among Genes Regulating Ovule Development in Arabidopsis Thaliana

    PubMed Central

    Baker, S. C.; Robinson-Beers, K.; Villanueva, J. M.; Gaiser, J. C.; Gasser, C. S.

    1997-01-01

    The INNER NO OUTER (INO) and AINTEGUMENTA (ANT) genes are essential for ovule integument development in Arabidopsis thaliana. Ovules of ino mutants initiate two integument primordia, but the outer integument primordium forms on the opposite side of the ovule from the normal location and undergoes no further development. The inner integument appears to develop normally, resulting in erect, unitegmic ovules that resemble those of gymnosperms. ino plants are partially fertile and produce seeds with altered surface topography, demonstrating a lineage dependence in development of the testa. ant mutations affect initiation of both integuments. The strongest of five new ant alleles we have isolated produces ovules that lack integuments and fail to complete megasporogenesis. ant mutations also affect flower development, resulting in narrow petals and the absence of one or both lateral stamens. Characterization of double mutants between ant, ino and other mutations affecting ovule development has enabled the construction of a model for genetic control of ovule development. This model proposes parallel independent regulatory pathways for a number of aspects of this process, a dependence on the presence of an inner integument for development of the embryo sac, and the existence of additional genes regulating ovule development. PMID:9093862

  9. Distinct Phyllosphere Bacterial Communities on Arabidopsis Wax Mutant Leaves

    PubMed Central

    Reisberg, Eva E.; Hildebrandt, Ulrich; Riederer, Markus; Hentschel, Ute

    2013-01-01

    The phyllosphere of plants is inhabited by diverse microorganisms, however, the factors shaping their community composition are not fully elucidated. The plant cuticle represents the initial contact surface between microorganisms and the plant. We thus aimed to investigate whether mutations in the cuticular wax biosynthesis would affect the diversity of the phyllosphere microbiota. A set of four Arabidopsis thaliana eceriferum mutants (cer1, cer6, cer9, cer16) and their respective wild type (Landsberg erecta) were subjected to an outdoor growth period and analysed towards this purpose. The chemical distinctness of the mutant wax phenotypes was confirmed by gas chromatographic measurements. Next generation amplicon pyrosequencing of the bacterial communities showed distinct community patterns. This observation was supported by denaturing gradient gel electrophoresis experiments. Microbial community analyses revealed bacterial phylotypes that were ubiquitously present on all plant lines (termed “core” community) while others were positively or negatively affected by the wax mutant phenotype (termed “plant line-specific“ community). We conclude from this study that plant cuticular wax composition can affect the community composition of phyllosphere bacteria. PMID:24223831

  10. Adenosine kinase modulates root gravitropism and cap morphogenesis in Arabidopsis.

    PubMed

    Young, Li-Sen; Harrison, Benjamin R; Narayana Murthy, U M; Moffatt, Barbara A; Gilroy, Simon; Masson, Patrick H

    2006-10-01

    Adenosine kinase (ADK) is a key enzyme that regulates intra- and extracellular levels of adenosine, thereby modulating methyltransferase reactions, production of polyamines and secondary compounds, and cell signaling in animals. Unfortunately, little is known about ADK's contribution to the regulation of plant growth and development. Here, we show that ADK is a modulator of root cap morphogenesis and gravitropism. Upon gravistimulation, soluble ADK levels and activity increase in the root tip. Mutation in one of two Arabidopsis (Arabidopsis thaliana) ADK genes, ADK1, results in cap morphogenesis defects, along with alterations in root sensitivity to gravistimulation and slower kinetics of root gravitropic curvature. The kinetics defect can be partially rescued by adding spermine to the growth medium, whereas the defects in cap morphogenesis and gravitropic sensitivity cannot. The root morphogenesis and gravitropism defects of adk1-1 are accompanied by altered expression of the PIN3 auxin efflux facilitator in the cap and decreased expression of the auxin-responsive DR5-GUS reporter. Furthermore, PIN3 fails to relocalize to the bottom membrane of statocytes upon gravistimulation. Consequently, adk1-1 roots cannot develop a lateral auxin gradient across the cap, necessary for the curvature response. Interestingly, adk1-1 does not affect gravity-induced cytoplasmic alkalinization of the root statocytes, suggesting either that ADK1 functions between cytoplasmic alkalinization and PIN3 relocalization in a linear pathway or that the pH and PIN3-relocalization responses to gravistimulation belong to distinct branches of the pathway. Our data are consistent with a role for ADK and the S-adenosyl-L-methionine pathway in the control of root gravitropism and cap morphogenesis.

  11. In vitro activities of four xyloglucan endotransglycosylases from Arabidopsis

    NASA Technical Reports Server (NTRS)

    Campbell, P.; Braam, J.; McIntire, L. V. (Principal Investigator)

    1999-01-01

    Xyloglucan endotransglycosylases (XETs) are encoded by a gene family in Arabidopsis thaliana. These enzymes modify a major structural component of the plant cell wall, xyloglucan, and therefore may influence plant growth and development. We have produced four Arabidopsis XETs (TCH4, Meri-5, EXGT and XTR9) using the baculovirus/insect cell system and compared their biochemical activities. TCH4, as previously demonstrated, and the other three proteins are capable of carrying out transglycosylation of xyloglucans. The K(m) for XLLGol acceptor oligosaccharide is in the range of 20-40 microM for all the XETs except XTR9, which has a Km of 5 microM and is significantly inhibited by high levels of XLLGol. All four enzymes are most active between pH 6.0 and 6.5. TCH4 and XTR9 have temperature optima of 18 degrees C, whereas Meri-5 and EXGT are most active at 28 and 37 degrees C, respectively. Although the activity levels of three of the XETs are not influenced by the presence of fucose on the xyloglucan polymer, XTR9 has a clear preference for non-fucosylated xyloglucan polymer. The four XETs show a marked preference for XLLGol over either XXFGol or XXXGol as acceptor oligosaccharide. All four XETs are glycosylated; however, only the activities of TCH4 and Meri-5 are affected by the removal of the N-glycan with PNGase F. These four enzymes most likely function solely as transglycosylases because xyloglucan endoglucanase activity was not apparent. Subtle differences in biochemical activities may influence the physiological functions of the distinct XETs in vivo.

  12. Arabidopsis PIZZA Has the Capacity to Acylate Brassinosteroids

    PubMed Central

    Schneider, Katja; Breuer, Christian; Kawamura, Ayako; Jikumaru, Yusuke; Hanada, Atsushi; Fujioka, Shozo; Ichikawa, Takanari; Kondou, Youichi; Matsui, Minami; Kamiya, Yuji; Yamaguchi, Shinjiro; Sugimoto, Keiko

    2012-01-01

    Brassinosteroids (BRs) affect a wide range of developmental processes in plants and compromised production or signalling of BRs causes severe growth defects. To identify new regulators of plant organ growth, we searched the Arabidopsis FOX (Full-length cDNA Over-eXpressor gene) collection for mutants with altered organ size and isolated two overexpression lines that display typical BR deficient dwarf phenotypes. The phenotype of these lines, caused by an overexpression of a putative acyltransferase gene PIZZA (PIZ), was partly rescued by supplying exogenous brassinolide (BL) and castasterone (CS), indicating that endogenous BR levels are rate-limiting for the growth of PIZ overexpression lines. Our transcript analysis further showed that PIZ overexpression leads to an elevated expression of genes involved in BR biosynthesis and a reduced expression of BR inactivating hydroxylases, a transcriptional response typical to low BR levels. Taking the advantage of relatively high endogenous BR accumulation in a mild bri1-301 background, we found that overexpression of PIZ results in moderately reduced levels of BL and CS and a strong reduction of typhasterol (TY) and 6-deoxocastasterone (6-deoxoCS), suggesting a role of PIZ in BR metabolism. We tested a set of potential substrates in vitro for heterologously expressed PIZ and confirmed its acyltransferase activity with BL, CS and TY. The PIZ gene is expressed in various tissues but as reported for other genes involved in BR metabolism, the loss-of-function mutants did not display obvious growth phenotypes under standard growth conditions. Together, our data suggest that PIZ can modify BRs by acylation and that these properties might help modulating endogenous BR levels in Arabidopsis. PMID:23071642

  13. Rethinking Transcriptional Activation in the Arabidopsis Circadian Clock

    PubMed Central

    Fogelmark, Karl; Troein, Carl

    2014-01-01

    Circadian clocks are biological timekeepers that allow living cells to time their activity in anticipation of predictable daily changes in light and other environmental factors. The complexity of the circadian clock in higher plants makes it difficult to understand the role of individual genes or molecular interactions, and mathematical modelling has been useful in guiding clock research in model organisms such as Arabidopsis thaliana. We present a model of the circadian clock in Arabidopsis, based on a large corpus of published time course data. It appears from experimental evidence in the literature that most interactions in the clock are repressive. Hence, we remove all transcriptional activation found in previous models of this system, and instead extend the system by including two new components, the morning-expressed activator RVE8 and the nightly repressor/activator NOX. Our modelling results demonstrate that the clock does not need a large number of activators in order to reproduce the observed gene expression patterns. For example, the sequential expression of the PRR genes does not require the genes to be connected as a series of activators. In the presented model, transcriptional activation is exclusively the task of RVE8. Predictions of how strongly RVE8 affects its targets are found to agree with earlier interpretations of the experimental data, but generally we find that the many negative feedbacks in the system should discourage intuitive interpretations of mutant phenotypes. The dynamics of the clock are difficult to predict without mathematical modelling, and the clock is better viewed as a tangled web than as a series of loops. PMID:25033214

  14. Electrical properties of Ba(Dy1/2Nb1/2)O3 ceramic

    NASA Astrophysics Data System (ADS)

    Nath, K. Amar; Chandra, K. P.; Dubey, K.; Prasad, K.

    2016-05-01

    Polycrystalline Ba(Dy1/2Nb1/2)O3 was prepared using a high-temperature solid-state reaction method. X-ray diffraction analysis indicated the formation of a single-phase cubic structure having space group Pm3m. AC impedance plots as a function of frequency at different temperatures were used to analyse the electrical behaviour of the sample, which indicated the negative temperature coefficient of resistance character. Complex impedance analysis targeted non-Debye type dielectric relaxation. Frequency dependent ac conductivity data obeyed Jonscher's power law. The apparent activation energy was estimated to be 0.97 eV at 1 kHz.

  15. Evolutionary Divergence of Arabidopsis thaliana Classical Peroxidases.

    PubMed

    Kupriyanova, E V; Mamoshina, P O; Ezhova, T A

    2015-10-01

    Polymorphisms of 62 peroxidase genes derived from Arabidopsis thaliana were investigated to evaluate evolutionary dynamics and divergence of peroxidase proteins. By comparing divergence of duplicated genes AtPrx53-AtPrx54 and AtPrx36-AtPrx72 and their products, nucleotide and amino acid substitutions were identified that were apparently targets of positive selection. These substitutions were detected among paralogs of 461 ecotypes from Arabidopsis thaliana. Some of these substitutions are conservative and matched paralogous peroxidases in other Brassicaceae species. These results suggest that after duplication, peroxidase genes evolved under the pressure of positive selection, and amino acid substitutions identified during our study provided divergence of properties and physiological functions in peroxidases. Our predictions regarding functional significance for amino acid residues identified in variable sites of peroxidases may allow further experimental assessment of evolution of peroxidases after gene duplication.

  16. Root gravitropism in maize and Arabidopsis

    NASA Technical Reports Server (NTRS)

    Evans, Michael L.

    1993-01-01

    Research during the period 1 March 1992 to 30 November 1993 focused on improvements in a video digitizer system designed to automate the recording of surface extension in plants responding to gravistimulation. The improvements included modification of software to allow detailed analysis of localized extension patterns in roots of Arabidopsis. We used the system to analyze the role of the postmitotic isodiametric growth zone (a region between the meristem and the elongation zone) in the response of maize roots to auxin, calcium, touch and gravity. We also used the system to analyze short-term auxin and gravitropic responses in mutants of Arabidopsis with reduced auxin sensitivity. In a related project, we studied the relationship between growth rate and surface electrical currents in roots by examining the effects of gravity and thigmostimulation on surface potentials in maize roots.

  17. DYn-2 Based Identification of Arabidopsis Sulfenomes*

    PubMed Central

    Akter, Salma; Huang, Jingjing; Bodra, Nandita; De Smet, Barbara; Wahni, Khadija; Rombaut, Debbie; Pauwels, Jarne; Gevaert, Kris; Carroll, Kate; Van Breusegem, Frank; Messens, Joris

    2015-01-01

    Identifying the sulfenylation state of stressed cells is emerging as a strategic approach for the detection of key reactive oxygen species signaling proteins. Here, we optimized an in vivo trapping method for cysteine sulfenic acids in hydrogen peroxide (H2O2) stressed plant cells using a dimedone based DYn-2 probe. We demonstrated that DYn-2 specifically detects sulfenylation events in an H2O2 dose- and time-dependent way. With mass spectrometry, we identified 226 sulfenylated proteins after H2O2 treatment of Arabidopsis cells, residing in the cytoplasm (123); plastid (68); mitochondria (14); nucleus (10); endoplasmic reticulum, Golgi and plasma membrane (7) and peroxisomes (4). Of these, 123 sulfenylated proteins have never been reported before to undergo cysteine oxidative post-translational modifications in plants. All in all, with this DYn-2 approach, we have identified new sulfenylated proteins, and gave a first glance on the locations of the sulfenomes of Arabidopsis thaliana. PMID:25693797

  18. High-throughput TILLING for Arabidopsis.

    PubMed

    Till, Bradley J; Colbert, Trenton; Codomo, Christine; Enns, Linda; Johnson, Jessica; Reynolds, Steven H; Henikoff, Jorja G; Greene, Elizabeth A; Steine, Michael N; Comai, Luca; Henikoff, Steven

    2006-01-01

    Targeting induced local lesions in genomes (TILLING) is a general strategy for identifying induced point mutations that can be applied to almost any organism. In this chapter, we describe the basic methodology for high-throughput TILLING. Gene segments are amplified using fluorescently tagged primers, and products are denatured and reannealed to form heteroduplexes between the mutated sequence and its wild-type counterpart. These heteroduplexes are substrates for cleavage by the endonuclease CEL I. Following cleavage, products are analyzed on denaturing polyacrylamide gels using the LI-COR DNA analyzer system. High-throughput TILLING has been adopted by the Arabidopsis TILLING Project (ATP) to provide allelic series of point mutations for the general Arabidopsis community.

  19. Comparative transcriptomics of Arabidopsis sperm cells.

    PubMed

    Borges, Filipe; Gomes, Gabriela; Gardner, Rui; Moreno, Nuno; McCormick, Sheila; Feijó, José A; Becker, Jörg D

    2008-10-01

    In flowering plants, the two sperm cells are embedded within the cytoplasm of the growing pollen tube and as such are passively transported to the embryo sac, wherein double fertilization occurs upon their release. Understanding the mechanisms and conditions by which male gametes mature and take part in fertilization are crucial goals in the study of plant reproduction. Studies of gene expression in male gametes of maize (Zea mays) and Plumbago and in lily (Lilium longiflorum) generative cells already showed that the previously held view of transcriptionally inert male gametes was not true, but genome-wide studies were lacking. Analyses in the model plant Arabidopsis (Arabidopsis thaliana) were hindered, because no method to isolate sperm cells was available. Here, we used fluorescence-activated cell sorting to isolate sperm cells from Arabidopsis, allowing GeneChip analysis of their transcriptome at a genome-wide level. Comparative analysis of the sperm cell transcriptome with those of representative sporophytic tissues and of pollen showed that sperm has a distinct and diverse transcriptional profile. Functional classifications of genes with enriched expression in sperm cells showed that DNA repair, ubiquitin-mediated proteolysis, and cell cycle progression are overrepresented Gene Ontology categories. Moreover, analysis of the small RNA and DNA methylation pathways suggests that distinct mechanisms might be involved in regulating the epigenetic state of the paternal genome. We identified numerous candidate genes whose involvement in sperm cell development and fertilization can now be directly tested in Arabidopsis. These results provide a roadmap to decipher the role of sperm-expressed proteins.

  20. Regulatory Proteolysis in Arabidopsis-Pathogen Interactions.

    PubMed

    Pogány, Miklós; Dankó, Tamás; Kámán-Tóth, Evelin; Schwarczinger, Ildikó; Bozsó, Zoltán

    2015-09-24

    Approximately two and a half percent of protein coding genes in Arabidopsis encode enzymes with known or putative proteolytic activity. Proteases possess not only common housekeeping functions by recycling nonfunctional proteins. By irreversibly cleaving other proteins, they regulate crucial developmental processes and control responses to environmental changes. Regulatory proteolysis is also indispensable in interactions between plants and their microbial pathogens. Proteolytic cleavage is simultaneously used both by plant cells, to recognize and inactivate invading pathogens, and by microbes, to overcome the immune system of the plant and successfully colonize host cells. In this review, we present available results on the group of proteases in the model plant Arabidopsis thaliana whose functions in microbial pathogenesis were confirmed. Pathogen-derived proteolytic factors are also discussed when they are involved in the cleavage of host metabolites. Considering the wealth of review papers available in the field of the ubiquitin-26S proteasome system results on the ubiquitin cascade are not presented. Arabidopsis and its pathogens are conferred with abundant sets of proteases. This review compiles a list of those that are apparently involved in an interaction between the plant and its pathogens, also presenting their molecular partners when available.

  1. Analysis of the Arabidopsis Mitochondrial Proteome1

    PubMed Central

    Millar, A. Harvey; Sweetlove, Lee J.; Giegé, Philippe; Leaver, Christopher J.

    2001-01-01

    The complete set of nuclear genes that encode proteins targeted to mitochondria in plants is currently undefined and thus the full range of mitochondrial functions in plants is unknown. Analysis of two-dimensional gel separations of Arabidopsis cell culture mitochondrial protein revealed approximately 100 abundant proteins and 250 low-abundance proteins. Comparison of subfractions of mitochondrial protein on two-dimensional gels provided information on the soluble, membrane, or integral membrane locations of this protein set. A total of 170 protein spots were excised, trypsin-digested, and matrix-assisted laser desorption ionization/time of flight mass spectrometry spectra obtained. Using this dataset, 91 of the proteins were identified by searching translated Arabidopsis genomic databases. Of this set, 81 have defined functions based on sequence comparison. These functions include respiratory electron transport, tricarboxylic acid cycle metabolism, amino acid metabolism, protein import, processing, and assembly, transcription, membrane transport, and antioxidant defense. A total of 10 spectra were matched to Arabidopsis putative open reading frames for which no specific function has been determined. A total of 64 spectra did not match to an identified open reading frame. Analysis of full-length putative protein sequences using bioinformatic tools to predict subcellular targeting (TargetP, Psort, and MitoProt) revealed significant variation in predictions, and also a lack of mitochondrial targeting prediction for several characterized mitochondrial proteins. PMID:11743115

  2. Arabidopsis alternative oxidase sustains Escherichia coli respiration.

    PubMed Central

    Kumar, A M; Söll, D

    1992-01-01

    Glutamyl-tRNA reductase, encoded by the hemA gene, is the first enzyme in porphyrin biosynthesis in many organisms. Hemes, important porphyrin derivatives, are essential components of redox enzymes, such as cytochromes. Thus a hemA Escherichia coli strain (SASX41B) is deficient in cytochrome-mediated aerobic respiration. Upon complementation of this strain with an Arabidopsis thaliana cDNA library, we isolated a clone which permitted the SASX41B strain to grow aerobically. The clone encodes the gene for Arabidopsis alternative oxidase, whose deduced amino acid sequence was found to have 71% identity with that of the enzyme from the voodoo lily, Sauromatum guttatum. The Arabidopsis protein is expressed as a 31-kDa protein in E. coli and confers on this organism cyanide-resistant growth, which in turn is sensitive to salicylhydroxamate. This implies that a single polypeptide is sufficient for alternative oxidase activity. Based on these observations we propose that a cyanide-insensitive respiratory pathway operates in the transformed E. coli hemA strain. Introduction of this pathway now opens the way to genetic/molecular biological investigations of alternative oxidase and its cofactor. Images PMID:1438286

  3. Phosphorylation of plastoglobular proteins in Arabidopsis thaliana

    PubMed Central

    Lohscheider, Jens N.; Friso, Giulia; van Wijk, Klaas J.

    2016-01-01

    Plastoglobules (PGs) are plastid lipid–protein particles with a small specialized proteome and metabolome. Among the 30 core PG proteins are six proteins of the ancient ABC1 atypical kinase (ABC1K) family and their locations in an Arabidopsis mRNA-based co-expression network suggested central regulatory roles. To identify candidate ABC1K targets and a possible ABC1K hierarchical phosphorylation network within the chloroplast PG proteome, we searched Arabidopsis phosphoproteomics data from publicly available sources. Evaluation of underlying spectra and/or associated information was challenging for a variety of reasons, but supported pSer sites and a few pThr sites in nine PG proteins, including five FIBRILLINS. PG phosphorylation motifs are discussed in the context of possible responsible kinases. The challenges of collection and evaluation of published Arabidopsis phosphorylation data are discussed, illustrating the importance of deposition of all mass spectrometry data in well-organized repositories such as PRIDE and ProteomeXchange. This study provides a starting point for experimental testing of phosho-sites in PG proteins and also suggests that phosphoproteomics studies specifically designed toward the PG proteome and its ABC1K are needed to understand phosphorylation networks in these specialized particles. PMID:26962209

  4. TBP-associated factors in Arabidopsis.

    PubMed

    Lago, Clara; Clerici, Elena; Mizzi, Luca; Colombo, Lucia; Kater, Martin M

    2004-11-24

    Initiation of transcription mediated by RNA polymerase II requires a number of transcription factors among which TFIID is the major core promoter recognition factor. TFIID is composed of highly conserved factors which include the TATA-binding protein (TBP) and about 14 TBP-associated factors (TAFs). Since TAFs play important roles in transcription they have been extensively studied in organisms like yeast, Drosophila and human. Surprisingly, TAFs have been poorly characterized in plants. With the completion of the Arabidopsis genome sequence, it is possible to search for TAFs, since many of them have conserved amino acid sequences. Mining the genome of Arabidopsis for TAFs resulted in the identification of 18 putative Arabidopsis TAFs (AtTAFs). We have analyzed their protein structure and their genomic localisation. Expression profiling by RT-PCR showed that these TAFs are expressed in all parts of the plant which is in agreement with their general role in transcription. These analyses in combination with their evolutionary conservation with TAFs of other organisms are discussed.

  5. Phytochrome regulation of branching in Arabidopsis.

    PubMed

    Finlayson, Scott A; Krishnareddy, Srirama R; Kebrom, Tesfamichael H; Casal, Jorge J

    2010-04-01

    The red light:far-red light ratio perceived by phytochromes controls plastic traits of plant architecture, including branching. Despite the significance of branching for plant fitness and productivity, there is little quantitative and mechanistic information concerning phytochrome control of branching responses in Arabidopsis (Arabidopsis thaliana). Here, we show that in Arabidopsis, the negative effects of the phytochrome B mutation and of low red light:far-red light ratio on branching were largely due to reduced bud outgrowth capacity and an increased degree of correlative inhibition acting on the buds rather than due to a reduced number of leaves and buds available for branching. Phytochrome effects on the degree of correlative inhibition required functional BRANCHED1 (BRC1), BRC2, AXR1, MORE AXILLARY GROWTH2 (MAX2), and MAX4. The analysis of gene expression in selected buds indicated that BRC1 and BRC2 are part of different gene networks. The BRC1 network is linked to the growth capacity of specific buds, while the BRC2 network is associated with coordination of growth among branches. We conclude that the branching integrators BRC1 and BRC2 are necessary for responses to phytochrome, but they contribute differentially to these responses, likely acting through divergent pathways.

  6. The Arabidopsis Cop9 signalosome subunit 4 (CNS4) is involved in adventitious root formation.

    PubMed

    Pacurar, Daniel Ioan; Pacurar, Monica Lacramioara; Lakehal, Abdellah; Pacurar, Andrea Mariana; Ranjan, Alok; Bellini, Catherine

    2017-04-04

    The COP9 signalosome (CSN) is an evolutionary conserved multiprotein complex that regulates many aspects of plant development by controlling the activity of CULLIN-RING E3 ubiquitin ligases (CRLs). CRLs ubiquitinate and target for proteasomal degradation a vast number of specific substrate proteins involved in many developmental and physiological processes, including light and hormone signaling and cell division. As a consequence of CSN pleiotropic function, complete loss of CSN activity results in seedling lethality. Therefore, a detailed analysis of CSN physiological functions in adult Arabidopsis plants has been hampered by the early seedling lethality of csn null mutants. Here we report the identification and characterization of a viable allele of the Arabidopsis COP9 signalosome subunit 4 (CSN4). The allele, designated csn4-2035, suppresses the adventitious root (AR) phenotype of the Arabidopsis superroot2-1 mutant, potentially by altering its auxin signaling. Furthermore, we show that although the csn4-2035 mutation affects primary and lateral root (LR) formation in the 2035 suppressor mutant, CSN4 and other subunits of the COP9 complex seem to differentially control AR and LR development.

  7. An improved method for the visualization of conductive vessels in Arabidopsis thaliana inflorescence stems

    PubMed Central

    Jupa, Radek; Didi, Vojtěch; Hejátko, Jan; Gloser, Vít

    2015-01-01

    Dye perfusion is commonly used for the identification of conductive elements important for the study of xylem development as well as precise hydraulic estimations. The tiny size of inflorescence stems, the small amount of vessels in close arrangement, and high hydraulic resistivity delimit the use of the method for quantification of the water conductivity of Arabidopsis thaliana, one of the recently most extensively used plant models. Here, we present an extensive adjustment to the method in order to reliably identify individual functional (conductive) vessels. Segments of inflorescence stems were sealed in silicone tubes to prevent damage and perfused with a dye solution. Our results showed that dyes often used for staining functional xylem elements (safranin, fuchsine, toluidine blue) failed with Arabidopsis. In contrast, Fluorescent Brightener 28 dye solution perfused through segments stained secondary cell walls of functional vessels, which were clearly distinguishable in native cross sections. When compared to identification based on the degree of development of secondary cell walls, identification with the help of dye perfusion revealed a significantly lower number of functional vessels and values of theoretical hydraulic conductivity. We found that lignified but not yet functional vessels form a substantial portion of the xylem in apical and basal segments of Arabidopsis and, thus, significantly affect the analyzed functional parameters of xylem. The presented methodology enables reliable identification of individual functional vessels, allowing thus estimations of hydraulic conductivities to be improved, size distributions and vessel diameters to be refined, and data variability generally to be reduced. PMID:25914701

  8. Functional Analysis of the Arabidopsis TETRASPANIN Gene Family in Plant Growth and Development1[OPEN

    PubMed Central

    Wang, Feng; Muto, Antonella; Van de Velde, Jan; Neyt, Pia; Himanen, Kristiina; Vandepoele, Klaas; Van Lijsebettens, Mieke

    2015-01-01

    TETRASPANIN (TET) genes encode conserved integral membrane proteins that are known in animals to function in cellular communication during gamete fusion, immunity reaction, and pathogen recognition. In plants, functional information is limited to one of the 17 members of the Arabidopsis (Arabidopsis thaliana) TET gene family and to expression data in reproductive stages. Here, the promoter activity of all 17 Arabidopsis TET genes was investigated by pAtTET::NUCLEAR LOCALIZATION SIGNAL-GREEN FLUORESCENT PROTEIN/β-GLUCURONIDASE reporter lines throughout the life cycle, which predicted functional divergence in the paralogous genes per clade. However, partial overlap was observed for many TET genes across the clades, correlating with few phenotypes in single mutants and, therefore, requiring double mutant combinations for functional investigation. Mutational analysis showed a role for TET13 in primary root growth and lateral root development and redundant roles for TET5 and TET6 in leaf and root growth through negative regulation of cell proliferation. Strikingly, a number of TET genes were expressed in embryonic and seedling progenitor cells and remained expressed until the differentiation state in the mature plant, suggesting a dynamic function over developmental stages. The cis-regulatory elements together with transcription factor-binding data provided molecular insight into the sites, conditions, and perturbations that affect TET gene expression and positioned the TET genes in different molecular pathways; the data represent a hypothesis-generating resource for further functional analyses. PMID:26417009

  9. The Calcium Ion Is a Second Messenger in the Nitrate Signaling Pathway of Arabidopsis.

    PubMed

    Riveras, Eleodoro; Alvarez, José M; Vidal, Elena A; Oses, Carolina; Vega, Andrea; Gutiérrez, Rodrigo A

    2015-10-01

    Understanding how plants sense and respond to changes in nitrogen availability is the first step toward developing strategies for biotechnological applications, such as improvement of nitrogen use efficiency. However, components involved in nitrogen signaling pathways remain poorly characterized. Calcium is a second messenger in signal transduction pathways in plants, and it has been indirectly implicated in nitrate responses. Using aequorin reporter plants, we show that nitrate treatments transiently increase cytoplasmic Ca(2+) concentration. We found that nitrate also induces cytoplasmic concentration of inositol 1,4,5-trisphosphate. Increases in inositol 1,4,5-trisphosphate and cytoplasmic Ca(2+) levels in response to nitrate treatments were blocked by U73122, a pharmacological inhibitor of phospholipase C, but not by the nonfunctional phospholipase C inhibitor analog U73343. In addition, increase in cytoplasmic Ca(2+) levels in response to nitrate treatments was abolished in mutants of the nitrate transceptor NITRATE TRANSPORTER1.1/Arabidopsis (Arabidopsis thaliana) NITRATE TRANSPORTER1 PEPTIDE TRANSPORTER FAMILY6.3. Gene expression of nitrate-responsive genes was severely affected by pretreatments with Ca(2+) channel blockers or phospholipase C inhibitors. These results indicate that Ca(2+) acts as a second messenger in the nitrate signaling pathway of Arabidopsis. Our results suggest a model where NRT1.1/AtNPF6.3 and a phospholipase C activity mediate the increase of Ca(2+) in response to nitrate required for changes in expression of prototypical nitrate-responsive genes.

  10. ML3: a novel regulator of herbivory-induced responses in Arabidopsis thaliana.

    PubMed

    Fridborg, Ingela; Johansson, Anna; Lagensjö, Johanna; Leelarasamee, Natthanon; Floková, Kristyna; Tarkowská, Danuse; Meijer, Johan; Bejai, Sarosh

    2013-02-01

    ML (MD2-related lipid recognition) proteins are known to enhance innate immune responses in mammals. This study reports the analysis of the putative ML gene family in Arabidopsis thaliana and suggests a role for the ML3 gene in herbivory-associated responses in plants. Feeding by larvae of the Lepidopteran generalist herbivore Spodoptera littoralis and larvae of the specialist herbivore Plutella xylostella activated ML3 transcription in leaf tissues. ML3 loss-of-function Arabidopsis plants were compromised in the upregulation of herbivory-induced genes and displayed a semi-dwarf phenotype. Herbivory bioassays showed that larvae of S. littoralis fed on ml3 mutant plants gained more weight compared to larvae fed on wild-type plants while larvae of P. xylostella did not show any significant difference. Virus-induced gene silencing of ML3 expression in plants compromised in jasmonic acid (JA) and salicylic acid (SA) signalling revealed a complex role of ML3 in JA/defence signalling affecting both JA- and SA-dependent responses. The data suggest that ML3 is involved in herbivory-mediated responses in Arabidopsis and that it has a potential role in herbivory-associated molecular pattern recognition.

  11. Genetic analysis of the gravitropic set-point angle in lateral roots of arabidopsis

    NASA Astrophysics Data System (ADS)

    Mullen, J. L.; Hangarter, R. P.

    2003-05-01

    Research on gravity responses in plants has mostly focused on primary roots and shoots, which typically orient to a vertical orientation. However, the distribution of lateral organs and their characteristically non-vertical growth orientation are critical for the determination of plant form. For example, in Arabidopsis, when lateral roots emerge from the primary root, they grow at a nearly horizontal orientation. As they elongate, the roots slowly curve until they eventually reach a vertical orientation. The regulation of this lateral root orientation is an important component affecting overall root system architecture. We found that this change in orientation is not simply due to the onset of gravitropic competence, as non-vertical lateral roots are capable of both positive and negative gravitropism. Thus, the horizontal growth of new lateral roots appears to be determined by what is called the gravitropic set-point angle (GSA). This developmental control of the GSA of lateral roots in Arabidopsis provides a useful system for investigating the components involved in regulating gravitropic responses. Using this system, we have identified several Arabidopsis mutants that have altered lateral root orientations but maintain normal primary root orientation.

  12. MYB75 functions in regulation of secondary cell wall formation in the Arabidopsis inflorescence stem.

    PubMed

    Bhargava, Apurva; Mansfield, Shawn D; Hall, Hardy C; Douglas, Carl J; Ellis, Brian E

    2010-11-01

    Deposition of lignified secondary cell walls in plants involves a major commitment of carbon skeletons in both the form of polysaccharides and phenylpropanoid constituents. This process is spatially and temporally regulated by transcription factors, including a number of MYB family transcription factors. MYB75, also called PRODUCTION OF ANTHOCYANIN PIGMENT1, is a known regulator of the anthocyanin branch of the phenylpropanoid pathway in Arabidopsis (Arabidopsis thaliana), but how this regulation might impact other aspects of carbon metabolism is unclear. We established that a loss-of-function mutation in MYB75 (myb75-1) results in increased cell wall thickness in xylary and interfascicular fibers within the inflorescence stem. The total lignin content and S/G ratio of the lignin monomers were also affected. Transcript profiles from the myb75-1 inflorescence stem revealed marked up-regulation in the expression of a suite of genes associated with lignin biosynthesis and cellulose deposition, as well as cell wall modifying proteins and genes involved in photosynthesis and carbon assimilation. These patterns suggest that MYB75 acts as a repressor of the lignin branch of the phenylpropanoid pathway. Since MYB75 physically interacts with another secondary cell wall regulator, the KNOX transcription factor KNAT7, these regulatory proteins may form functional complexes that contribute to the regulation of secondary cell wall deposition in the Arabidopsis inflorescence stem and that integrate the metabolic flux through the lignin, flavonoid, and polysaccharide pathways.

  13. Abscisic acid and blue light signaling pathways in chloroplast movements in Arabidopsis mesophyll.

    PubMed

    Eckstein, Aleksandra; Krzeszowiec, Weronika; Banaś, Agnieszka Katarzyna; Janowiak, Franciszek; Gabryś, Halina

    2016-01-01

    Abscisic acid (ABA) and phototropins act antagonistically to control stomatal movements. Here, we investigated the role of ABA in phototropin-directed chloroplast movements in mesophyll cells of Arabidopsis thaliana. We analyzed the expression of phototropins at mRNA and protein level under the influence of ABA. PHOT1 mRNA level was decreased by ABA in the dark while it was insensitive to ABA in light. PHOT2 mRNA level was independent of the hormone treatment. The levels of phototropin proteins were down-regulated by ABA, both in darkness and light. No impact of exogenous ABA on amplitudes and kinetics of chloroplast movements was detected. Chloroplast responses in wild type Arabidopsis and three mutants, abi4, abi2 (abscisic acid insensitive4, 2) and aba1 (abscisic acid1), were measured to account for endogenous ABA signaling. The chloroplast responses were slightly reduced in abi2 and aba1 mutants in strong light. To further investigate the effect, abi2 and aba1 mutants were supplemented with exogenous ABA. In the aba1 mutant, the reaction was rescued but in abi2 it was unaffected. Our results show that ABA is not directly involved in phototropin-controlled chloroplast responses in mature leaves of Arabidopsis. However, the disturbance of ABA biosynthesis and signaling in mutants affects some elements of the chloroplast movement mechanism. In line with its role as a stress hormone, ABA appears to enhance plant sensitivity to light and promote the chloroplast avoidance response.

  14. Arabidopsis B-BOX32 interacts with CONSTANS-LIKE3 to regulate flowering

    PubMed Central

    Tripathi, Prateek; Carvallo, Marcela; Hamilton, Elizabeth E.; Preuss, Sasha

    2017-01-01

    Plants have the ability to respond to seasonal environmental variations by monitoring day length to initiate flowering. The transition from vegetative to the reproductive stage is the critical developmental switch in flowering plants to ensure optimal fitness and/or yield. It has been previously reported that B-BOX32 (BBX32) has the potential to increase grain yield when ectopically expressed in soybean. In the present study, we performed a detailed molecular characterization of the Arabidopsis B-box domain gene BBX32. We showed that the circadian clock in Arabidopsis regulates BBX32 and expressed in the early morning. To understand the molecular mechanism of BBX32 regulation, we performed a large-scale yeast two-hybrid screen and identified CONSTANS-LIKE 3 (COL3)/BBX4 as one of its interacting protein partners. Using different genetic and biochemical assays, we have validated this interaction and shown that COL3 targets FT in the presence of BBX32 to regulate the flowering pathway. Based on these findings, we hypothesized that this BBX32-COL3 module could be an additional regulatory mechanism affecting the reproductive development in Arabidopsis that could be translated to crops for increased agricultural productivity. PMID:27999181

  15. Arabidopsis B-BOX32 interacts with CONSTANS-LIKE3 to regulate flowering.

    PubMed

    Tripathi, Prateek; Carvallo, Marcela; Hamilton, Elizabeth E; Preuss, Sasha; Kay, Steve A

    2017-01-03

    Plants have the ability to respond to seasonal environmental variations by monitoring day length to initiate flowering. The transition from vegetative to the reproductive stage is the critical developmental switch in flowering plants to ensure optimal fitness and/or yield. It has been previously reported that B-BOX32 (BBX32) has the potential to increase grain yield when ectopically expressed in soybean. In the present study, we performed a detailed molecular characterization of the Arabidopsis B-box domain gene BBX32 We showed that the circadian clock in Arabidopsis regulates BBX32 and expressed in the early morning. To understand the molecular mechanism of BBX32 regulation, we performed a large-scale yeast two-hybrid screen and identified CONSTANS-LIKE 3 (COL3)/BBX4 as one of its interacting protein partners. Using different genetic and biochemical assays, we have validated this interaction and shown that COL3 targets FT in the presence of BBX32 to regulate the flowering pathway. Based on these findings, we hypothesized that this BBX32-COL3 module could be an additional regulatory mechanism affecting the reproductive development in Arabidopsis that could be translated to crops for increased agricultural productivity.

  16. Multiscale digital Arabidopsis predicts individual organ and whole-organism growth

    PubMed Central

    Chew, Yin Hoon; Wenden, Bénédicte; Flis, Anna; Mengin, Virginie; Taylor, Jasper; Davey, Christopher L.; Tindal, Christopher; Thomas, Howard; Ougham, Helen J.; de Reffye, Philippe; Stitt, Mark; Williams, Mathew; Muetzelfeldt, Robert; Halliday, Karen J.; Millar, Andrew J.

    2014-01-01

    Understanding how dynamic molecular networks affect whole-organism physiology, analogous to mapping genotype to phenotype, remains a key challenge in biology. Quantitative models that represent processes at multiple scales and link understanding from several research domains can help to tackle this problem. Such integrated models are more common in crop science and ecophysiology than in the research communities that elucidate molecular networks. Several laboratories have modeled particular aspects of growth in Arabidopsis thaliana, but it was unclear whether these existing models could productively be combined. We test this approach by constructing a multiscale model of Arabidopsis rosette growth. Four existing models were integrated with minimal parameter modification (leaf water content and one flowering parameter used measured data). The resulting framework model links genetic regulation and biochemical dynamics to events at the organ and whole-plant levels, helping to understand the combined effects of endogenous and environmental regulators on Arabidopsis growth. The framework model was validated and tested with metabolic, physiological, and biomass data from two laboratories, for five photoperiods, three accessions, and a transgenic line, highlighting the plasticity of plant growth strategies. The model was extended to include stochastic development. Model simulations gave insight into the developmental control of leaf production and provided a quantitative explanation for the pleiotropic developmental phenotype caused by overexpression of miR156, which was an open question. Modular, multiscale models, assembling knowledge from systems biology to ecophysiology, will help to understand and to engineer plant behavior from the genome to the field. PMID:25197087

  17. Genetic analysis of the gravitropic set-point angle in lateral roots of Arabidopsis

    NASA Technical Reports Server (NTRS)

    Mullen, J. L.; Hangarter, R. P.; Kiss, J. Z. (Principal Investigator)

    2003-01-01

    Research on gravity responses in plants has mostly focused on primary roots and shoots, which typically orient to a vertical orientation. However, the distribution of lateral organs and their characteristically non-vertical growth orientation are critical for the determination of plant form. For example, in Arabidopsis, when lateral roots emerge from the primary root, they grow at a nearly horizontal orientation. As they elongate, the roots slowly curve until they eventually reach a vertical orientation. The regulation of this lateral root orientation is an important component affecting overall root system architecture. We found that this change in orientation is not simply due to the onset of gravitropic competence, as non-vertical lateral roots are capable of both positive and negative gravitropism. Thus, the horizontal growth of new lateral roots appears to be determined by what is called the gravitropic set-point angle (GSA). This developmental control of the GSA of lateral roots in Arabidopsis provides a useful system for investigating the components involved in regulating gravitropic responses. Using this system, we have identified several Arabidopsis mutants that have altered lateral root orientations but maintain normal primary root orientation. c2003 COSPAR. Published by Elsevier Ltd. All rights reserved.

  18. The Arabidopsis TAC Position Viewer: a high-resolution map of transformation-competent artificial chromosome (TAC) clones aligned with the Arabidopsis thaliana Columbia-0 genome.

    PubMed

    Hirose, Yoshitsugu; Suda, Kunihiro; Liu, Yao-Guang; Sato, Shusei; Nakamura, Yukino; Yokoyama, Koji; Yamamoto, Naoki; Hanano, Shigeru; Takita, Eiji; Sakurai, Nozomu; Suzuki, Hideyuki; Nakamura, Yasukazu; Kaneko, Takakazu; Yano, Kentaro; Tabata, Satoshi; Shibata, Daisuke

    2015-09-01

    We present a high-resolution map of genomic transformation-competent artificial chromosome (TAC) clones extending over all Arabidopsis thaliana (Arabidopsis) chromosomes. The Arabidopsis genomic TAC clones have been valuable genetic tools. Previously, we constructed an Arabidopsis genomic TAC library consisting of more than 10,000 TAC clones harboring large genomic DNA fragments extending over the whole Arabidopsis genome. Here, we determined 13,577 end sequences from 6987 Arabidopsis TAC clones and mapped 5937 TAC clones to precise locations, covering approximately 90% of the Arabidopsis chromosomes. We present the large-scale data set of TAC clones with high-resolution mapping information as a Java application tool, the Arabidopsis TAC Position Viewer, which provides ready-to-go transformable genomic DNA clones corresponding to certain loci on Arabidopsis chromosomes. The TAC clone resources will accelerate genomic DNA cloning, positional walking, complementation of mutants and DNA transformation for heterologous gene expression.

  19. Metabolism of 1,2,3,4-, 1,2,3,5-, and 1,2,4,5-tetrachlorobenzene in the squirrel monkey

    SciTech Connect

    Schwartz, H.; Chu, I.; Villeneuve, D.C.; Benoit, F.M.

    1987-01-01

    The metabolism of three tetrachlorobenzene isomers (TeCB) was investigated in the squirrel monkey. The animals were administered orally 6 single doses of /sup 14/C-labeled 1,2,3,4-, 1,2,4,5-, or 1,2,3,5-tetrachlorobenzene over a 3-wk period at levels ranging from 50 to 100 mg/kg body weight (b.w) and kept in individual metabolism cages to collect urine and feces for radioassay. Approximately 38% (1,2,3,4-TeCB), 36% (1,2,3,5-TeCB), and 18% (1,2,4,5-TeCB) of the doses were excreted respectively in the feces 48 h post administration. In monkeys dosed with 1,2,3,4-TeCB, unchanged compound accounted for 50% of the fecal radioactivity. Unchanged compound accounted for more than 50% of the fecal radioactivity found in the monkeys dosed with 1,2,3,5-TeCB. The fecal metabolites were identified in both groups. No metabolites were detected in the feces of monkeys dosed with 1,2,4,5-TeCB. While the fecal route represented the major route of excretion for 1,2,3,4-TeCB, the other two isomers were eliminated exclusively in the feces. The above data in the squirrel monkey are different from those obtained with the rat and the rabbit, and demonstrate the different metabolic pathways for the isomers.

  20. 40 CFR 721.10345 - 1,2-Benzenedicarboxylic acid, 1,2-bis(methylcyclohexyl) ester.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...(methylcyclohexyl) ester. 721.10345 Section 721.10345 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10345 1,2-Benzenedicarboxylic acid, 1,2-bis(methylcyclohexyl) ester. (a... 1,2-benzenedicarboxylic acid, 1,2-bis(methylcyclohexyl) ester (PMN P-05-110; CAS No. 27987-25-3)...

  1. 40 CFR 721.10345 - 1,2-Benzenedicarboxylic acid, 1,2-bis(methylcyclohexyl) ester.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...(methylcyclohexyl) ester. 721.10345 Section 721.10345 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10345 1,2-Benzenedicarboxylic acid, 1,2-bis(methylcyclohexyl) ester. (a... 1,2-benzenedicarboxylic acid, 1,2-bis(methylcyclohexyl) ester (PMN P-05-110; CAS No. 27987-25-3)...

  2. 40 CFR 721.10345 - 1,2-Benzenedicarboxylic acid, 1,2-bis(methylcyclohexyl) ester.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...(methylcyclohexyl) ester. 721.10345 Section 721.10345 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10345 1,2-Benzenedicarboxylic acid, 1,2-bis(methylcyclohexyl) ester. (a... 1,2-benzenedicarboxylic acid, 1,2-bis(methylcyclohexyl) ester (PMN P-05-110; CAS No. 27987-25-3)...

  3. Cell wall glucomannan in Arabidopsis is synthesised by CSLA glycosyltransferases, and influences the progression of embryogenesis.

    PubMed

    Goubet, Florence; Barton, Christopher J; Mortimer, Jennifer C; Yu, Xiaolan; Zhang, Zhinong; Miles, Godfrey P; Richens, Jenny; Liepman, Aaron H; Seffen, Keith; Dupree, Paul

    2009-11-01

    Mannans are hemicellulosic polysaccharides that have previously been implicated as structural constituents of cell walls and as storage reserves but which may serve other functions during plant growth and development. Several members of the Arabidopsis cellulose synthase-like A (CSLA) family have previously been shown to synthesise mannan polysaccharides in vitro when heterologously expressed. It has also been found that CSLA7 is essential for embryogenesis, suggesting a role for the CSLA7 product in development. To determine whether the CSLA proteins are responsible for glucomannan synthesis in vivo, we characterised insertion mutants in each of the nine Arabidopsis CSLA genes and several double and triple mutant combinations. csla9 mutants showed substantially reduced glucomannan, and triple csla2csla3csla9 mutants lacked detectable glucomannan in stems. Nevertheless, these mutants showed no alteration in stem development or strength. Overexpression of CSLA2, CSLA7 and CSLA9 increased the glucomannan content in stems. Increased glucomannan synthesis also caused defective embryogenesis, leading to delayed development and occasional embryo death. The embryo lethality of csla7 was complemented by overexpression of CSLA9, suggesting that the glucomannan products are similar. We conclude that CSLA2, CSLA3 and CSLA9 are responsible for the synthesis of all detectable glucomannan in Arabidopsis stems, and that CSLA7 synthesises glucomannan in embryos. These results are inconsistent with a substantial role for glucomannan in wall strength in Arabidopsis stems, but indicate that glucomannan levels affect embryogenesis. Together with earlier heterologous expression studies, the glucomannan deficiency observed in csla mutant plants demonstrates that the CSLA family encodes glucomannan synthases.

  4. A Single Amino Acid Substitution in an ORANGE Protein Promotes Carotenoid Overaccumulation in Arabidopsis1[OPEN

    PubMed Central

    Yuan, Hui; Owsiany, Katherine; Sheeja, T.E.; Zhou, Xiangjun; Rodriguez, Caroline; Li, Yongxi; Welsch, Ralf; Chayut, Noam; Yang, Yong; Thannhauser, Theodore W.; Parthasarathy, Mandayam V.; Xu, Qiang; Deng, Xiuxin; Fei, Zhangjun; Schaffer, Ari; Katzir, Nurit; Burger, Joseph; Tadmor, Yaakov; Li, Li

    2015-01-01

    Carotenoids are crucial for plant growth and human health. The finding of ORANGE (OR) protein as a pivotal regulator of carotenogenesis offers a unique opportunity to comprehensively understand the regulatory mechanisms of carotenoid accumulation and develop crops with enhanced nutritional quality. Here, we demonstrated that alteration of a single amino acid in a wild-type OR greatly enhanced its ability to promote carotenoid accumulation. Whereas overexpression of OR from Arabidopsis (Arabidopsis thaliana; AtOR) or from the agronomically important crop sorghum (Sorghum bicolor; SbOR) increased carotenoid levels up to 2-fold, expression of AtORHis (R90H) or SbORHis (R104H) variants dramatically enhanced carotenoid accumulation by up to 7-fold in the Arabidopsis calli. Moreover, we found that AtORAla (R90A) functioned similarly to AtORHis to promote carotenoid overproduction. Neither AtOR nor AtORHis greatly affected carotenogenic gene expression. AtORHis exhibited similar interactions with phytoene synthase (PSY) as AtOR in posttranscriptionally regulating PSY protein abundance. AtORHis triggered biogenesis of membranous chromoplasts in the Arabidopsis calli, which shared structures similar to chromoplasts found in the curd of the orange cauliflower (Brassica oleracea) mutant. By contrast, AtOR did not cause plastid-type changes in comparison with the controls, but produced plastids containing larger and electron-dense plastoglobuli. The unique ability of AtORHis in mediating chromoplast biogenesis is responsible for its induced carotenoid overproduction. Our study demonstrates ORHis/Ala as powerful tools for carotenoid enrichment in plants, and provides insights into the mechanisms underlying ORHis-regulated carotenoid accumulation. PMID:26224804

  5. The Arabidopsis Epithiospecifier Protein Promotes the Hydrolysis of Glucosinolates to Nitriles and Influences Trichoplusia ni Herbivory

    PubMed Central

    Lambrix, Virginia; Reichelt, Michael; Mitchell-Olds, Thomas; Kliebenstein, Daniel J.; Gershenzon, Jonathan

    2001-01-01

    Glucosinolates are anionic thioglucosides that have become one of the most frequently studied groups of defensive metabolites in plants. When tissue damage occurs, the thioglucoside linkage is hydrolyzed by enzymes known as myrosinases, resulting in the formation of a variety of products that are active against herbivores and pathogens. In an effort to learn more about the molecular genetic and biochemical regulation of glucosinolate hydrolysis product formation, we analyzed leaf samples of 122 Arabidopsis ecotypes. A distinct polymorphism was observed with all ecotypes producing primarily isothiocyanates or primarily nitriles. The ecotypes Columbia (Col) and Landsberg erecta (Ler) differed in their hydrolysis products; therefore, the Col × Ler recombinant inbred lines were used for mapping the genes controlling this polymorphism. The major quantitative trait locus (QTL) affecting nitrile versus isothiocyanate formation was found very close to a gene encoding a homolog of a Brassica napus epithiospecifier protein (ESP), which causes the formation of epithionitriles instead of isothiocyanates during glucosinolate hydrolysis in the seeds of certain Brassicaceae. The heterologously expressed Arabidopsis ESP was able to convert glucosinolates both to epithionitriles and to simple nitriles in the presence of myrosinase, and thus it was more versatile than previously described ESPs. The role of ESP in plant defense is uncertain, because the generalist herbivore Trichoplusia ni (the cabbage looper) was found to feed more readily on nitrile-producing than on isothiocyanate-producing Arabidopsis. However, isothiocyanates are frequently used as recognition cues by specialist herbivores, and so the formation of nitriles instead of isothiocyanates may allow Arabidopsis to be less apparent to specialists. PMID:11752388

  6. Optimization of conditions for germination of cold-stored Arabidopsis thaliana pollen.

    PubMed

    Bou Daher, Firas; Chebli, Youssef; Geitmann, Anja

    2009-03-01

    One of the rare weak points of the model plant Arabidopsis is the technical problem associated with the germination of its male gametophyte and the generation of the pollen tube in vitro. Arabidopsis pollen being tricellular has a notoriously low in vitro germination compared to species with bicellular pollen. This drawback strongly affects the reproducibility of experiments based on this cellular system. Together with the fact that pollen collection from this species is tedious, these are obstacles for the standard use of Arabidopsis pollen for experiments that require high numbers of pollen tubes and for which the percentage of germination needs to be highly reproducible. The possibility of freeze-storing pollen after bulk collection is a potential way to solve these problems, but necessitates methods that ensure continued viability and reproducible capacity to germinate. Our objective was the optimization of germination conditions for Arabidopsis pollen that had been freeze-stored. We optimized the concentrations of various media components conventionally used for in vitro pollen germination. We found that in general 4 mM calcium, 1.62 mM boric acid, 1 mM potassium, 1 mM magnesium, 18% sucrose at pH 7 and a temperature of 22.5 degrees C are required for optimal pollen germination. However, different experimental setups may deviate in their requirements from this general protocol. We suggest how to optimally use these optimized methods for different practical experiments ranging from morphological observations of pollen tubes in optical and electron microscopy to their bulk use for molecular and biochemical analyses or for experimental setups for which a specific medium stiffness is critical.

  7. The Arabidopsis COX11 Homolog is Essential for Cytochrome c Oxidase Activity.

    PubMed

    Radin, Ivan; Mansilla, Natanael; Rödel, Gerhard; Steinebrunner, Iris

    2015-01-01

    Members of the ubiquitous COX11 (cytochrome c oxidase 11) protein family are involved in copper delivery to the COX complex. In this work, we characterize the Arabidopsis thaliana COX11 homolog (encoded by locus At1g02410). Western blot analyses and confocal microscopy identified Arabidopsis COX11 as an integral mitochondrial protein. Despite sharing high sequence and structural similarities, the Arabidopsis COX11 is not able to functionally replace the Saccharomyces cerevisiae COX11 homolog. Nevertheless, further analysis confirmed the hypothesis that Arabidopsis COX11 is essential for COX activity. Disturbance of COX11 expression through knockdown (KD) or overexpression (OE) affected COX activity. In KD lines, the activity was reduced by ~50%, resulting in root growth inhibition, smaller rosettes and leaf curling. In OE lines, the reduction was less pronounced (~80% of the wild type), still resulting in root growth inhibition. Additionally, pollen germination was impaired in COX11 KD and OE plants. This effect on pollen germination can only partially be attributed to COX deficiency and may indicate a possible auxiliary role of COX11 in ROS metabolism. In agreement with its role in energy production, the COX11 promoter is highly active in cells and tissues with high-energy demand for example shoot and root meristems, or vascular tissues of source and sink organs. In COX11 KD lines, the expression of the plasma-membrane copper transporter COPT2 and of several copper chaperones was altered, indicative of a retrograde signaling pathway pertinent to copper homeostasis. Based on our data, we postulate that COX11 is a mitochondrial chaperone, which plays an important role for plant growth and pollen germination as an essential COX complex assembly factor.

  8. The Arabidopsis COX11 Homolog is Essential for Cytochrome c Oxidase Activity

    PubMed Central

    Radin, Ivan; Mansilla, Natanael; Rödel, Gerhard; Steinebrunner, Iris

    2015-01-01

    Members of the ubiquitous COX11 (cytochrome c oxidase 11) protein family are involved in copper delivery to the COX complex. In this work, we characterize the Arabidopsis thaliana COX11 homolog (encoded by locus At1g02410). Western blot analyses and confocal microscopy identified Arabidopsis COX11 as an integral mitochondrial protein. Despite sharing high sequence and structural similarities, the Arabidopsis COX11 is not able to functionally replace the Saccharomyces cerevisiae COX11 homolog. Nevertheless, further analysis confirmed the hypothesis that Arabidopsis COX11 is essential for COX activity. Disturbance of COX11 expression through knockdown (KD) or overexpression (OE) affected COX activity. In KD lines, the activity was reduced by ~50%, resulting in root growth inhibition, smaller rosettes and leaf curling. In OE lines, the reduction was less pronounced (~80% of the wild type), still resulting in root growth inhibition. Additionally, pollen germination was impaired in COX11 KD and OE plants. This effect on pollen germination can only partially be attributed to COX deficiency and may indicate a possible auxiliary role of COX11 in ROS metabolism. In agreement with its role in energy production, the COX11 promoter is highly active in cells and tissues with high-energy demand for example shoot and root meristems, or vascular tissues of source and sink organs. In COX11 KD lines, the expression of the plasma-membrane copper transporter COPT2 and of several copper chaperones was altered, indicative of a retrograde signaling pathway pertinent to copper homeostasis. Based on our data, we postulate that COX11 is a mitochondrial chaperone, which plays an important role for plant growth and pollen germination as an essential COX complex assembly factor. PMID:26734017

  9. In Vitro Morphogenesis of Arabidopsis to Search for Novel Endophytic Fungi Modulating Plant Growth

    PubMed Central

    Mascarello, Maurizio

    2015-01-01

    Fungal endophytes have shown to affect plant growth and to confer stress tolerance to the host; however, effects of endophytes isolated from water plants have been poorly investigated. In this study, fungi isolated from stems (stem-E) and roots (root-E) of Mentha aquatica L. (water mint) were identified, and their morphogenetic properties analysed on in vitro cultured Arabidopsis (L.) Heynh., 14 and 21 days after inoculation (DAI). Nineteen fungi were analysed and, based on ITS analysis, 17 isolates showed to be genetically distinct. The overall effect of water mint endophytes on Arabidopsis fresh (FW) and dry weight (DW) was neutral and positive, respectively, and the increased DW, mainly occurring 14 DAI, was possibly related to plant defence mechanism. Only three fungi increased both FW and DW of Arabidopsis at 14 and 21 DAI, thus behaving as plant growth promoting (PGP) fungi. E-treatment caused a reduction of root depth and primary root length in most cases and inhibition-to-promotion of root area and lateral root length, from 14 DAI. Only Phoma macrostoma, among the water mint PGP fungi, increased both root area and depth, 21 DAI. Root depth and area 14 DAI were shown to influence DWs, indicating that the extension of the root system, and thus nutrient uptake, was an important determinant of plant dry biomass. Reduction of Arabidopsis root depth occurred to a great extent when plants where treated with stem-E while root area decreased or increased under the effects of stem-E and root-E, respectively, pointing to an influence of the endophyte origin on root extension. M. aquatica and many other perennial hydrophytes have growing worldwide application in water pollution remediation. The present study provided a model for directed screening of endophytes able to modulate plant growth in the perspective of future field applications of these fungi. PMID:26641657

  10. Gravity response mechanisms of lateral organs and the control of plant architecture in Arabidopsis

    NASA Astrophysics Data System (ADS)

    Mullen, J.; Hangarter, R.

    Most research on gravity responses in plants has focused on primary roots and shoots, which typically grow in a vertical orientation. However, the patterns of lateral organ formation and their growth orientation, which typically are not vertical, govern plant architecture. For example, in Arabidopsis, when lateral roots emerge from the primary root, they grow at a nearly horizontal orientation. As they elongate, the roots slowly curve until they eventually reach a vertical orientation. The regulation of this lateral root orientation is an important component affecting the overall root system architecture. We have found that this change in orientation is not simply due to the onset of gravitropic competence, as non-vertical lateral roots are capable of both positive and negative gravitropism. Thus, the horizontal growth of the new lateral roots is determined by what is called the gravitropic set-point angle (GSA). In Arabidopsis shoots, rosette leaves and inflorescence branches also display GSA-dependent developmental changes in their orientation. The developmental control of the GSA of lateral organs in Arabidopsis provides us with a useful system for investigating the components involved in regulating directionality of tropistic responses. We have identified several Arabidopsis mutants that have either altered lateral root orientations, altered orientation of lateral organs in the shoot, or both, but maintain normal primary organ orientation. The mgsa ({m}odified {g}ravitropic {s}et-point {a}ngle) mutants with both altered lateral root and shoot orientation show that there are common components in the regulation of growth orientation in the different organs. Rosette leaves and lateral roots also have in common a regulation of positioning by red light. Further molecular and physiological analyses of the GSA mutants will provide insight into the basis of GSA regulation and, thus, a better understanding of how gravity controls plant architecture. [This work was

  11. Analysis of Arabidopsis Accessions Hypersensitive to a Loss of Chloroplast Translation1[OPEN

    PubMed Central

    Parker, Nicole; Wang, Yixing; Meinke, David

    2016-01-01

    Natural accessions of Arabidopsis (Arabidopsis thaliana) differ in their ability to tolerate a loss of chloroplast translation. These differences can be attributed in part to variation in a duplicated nuclear gene (ACC2) that targets homomeric acetyl-coenzyme A carboxylase (ACCase) to plastids. This functional redundancy allows limited fatty acid biosynthesis to occur in the absence of heteromeric ACCase, which is encoded in part by the plastid genome. In the presence of functional ACC2, tolerant alleles of several nuclear genes, not yet identified, enhance the growth of seedlings and embryos disrupted in chloroplast translation. ACC2 knockout mutants, by contrast, are hypersensitive. Here we describe an expanded search for hypersensitive accessions of Arabidopsis, evaluate whether all of these accessions are defective in ACC2, and characterize genotype-to-phenotype relationships for homomeric ACCase variants identified among 855 accessions with sequenced genomes. Null alleles with ACC2 nonsense mutations, frameshift mutations, small deletions, genomic rearrangements, and defects in RNA splicing are included among the most sensitive accessions examined. By contrast, most missense mutations affecting highly conserved residues failed to eliminate ACC2 function. Several accessions were identified where sensitivity could not be attributed to a defect in either ACC2 or Tic20-IV, the chloroplast membrane channel required for ACC2 uptake. Overall, these results underscore the central role of ACC2 in mediating Arabidopsis response to a loss of chloroplast translation, highlight future applications of this system to analyzing chloroplast protein import, and provide valuable insights into the mutational landscape of an important metabolic enzyme that is highly conserved throughout eukaryotes. PMID:27707889

  12. Putative sugarcane FT/TFL1 genes delay flowering time and alter reproductive architecture in Arabidopsis

    PubMed Central

    Coelho, Carla P.; Minow, Mark A. A.; Chalfun-Júnior, Antonio; Colasanti, Joseph

    2014-01-01

    Agriculturally important grasses such as rice, maize, and sugarcane are evolutionarily distant from Arabidopsis, yet some components of the floral induction process are highly conserved. Flowering in sugarcane is an important factor that negatively affects cane yield and reduces sugar/ethanol production from this important perennial bioenergy crop. Comparative studies have facilitated the identification and characterization of putative orthologs of key flowering time genes in sugarcane, a complex polyploid plant whose genome has yet to be sequenced completely. Using this approach we identified phosphatidylethanolamine-binding protein (PEBP) gene family members in sugarcane that are similar to the archetypical FT and TFL1 genes of Arabidopsis that play an essential role in controlling the transition from vegetative to reproductive growth. Expression analysis of ScTFL1, which falls into the TFL1-clade of floral repressors, showed transcripts in developing leaves surrounding the shoot apex but not at the apex itself. ScFT1 was detected in immature leaves and apical regions of vegetatively growing plants and, after the floral transition, expression also occurred in mature leaves. Ectopic over-expression of ScTFL1 in Arabidopsis caused delayed flowering in Arabidopsis, as might be expected for a gene related to TFL1. In addition, lines with the latest flowering phenotype exhibited aerial rosette formation. Unexpectedly, over-expression of ScFT1, which has greatest similarity to the florigen-encoding FT, also caused a delay in flowering. This preliminary analysis of divergent sugarcane FT and TFL1 gene family members from Saccharum spp. suggests that their expression patterns and roles in the floral transition has diverged from the predicted role of similar PEBP family members. PMID:24904616

  13. A Single Amino Acid Substitution in an ORANGE Protein Promotes Carotenoid Overaccumulation in Arabidopsis.

    PubMed

    Yuan, Hui; Owsiany, Katherine; Sheeja, T E; Zhou, Xiangjun; Rodriguez, Caroline; Li, Yongxi; Welsch, Ralf; Chayut, Noam; Yang, Yong; Thannhauser, Theodore W; Parthasarathy, Mandayam V; Xu, Qiang; Deng, Xiuxin; Fei, Zhangjun; Schaffer, Ari; Katzir, Nurit; Burger, Joseph; Tadmor, Yaakov; Li, Li

    2015-09-01

    Carotenoids are crucial for plant growth and human health. The finding of ORANGE (OR) protein as a pivotal regulator of carotenogenesis offers a unique opportunity to comprehensively understand the regulatory mechanisms of carotenoid accumulation and develop crops with enhanced nutritional quality. Here, we demonstrated that alteration of a single amino acid in a wild-type OR greatly enhanced its ability to promote carotenoid accumulation. Whereas overexpression of OR from Arabidopsis (Arabidopsis thaliana; AtOR) or from the agronomically important crop sorghum (Sorghum bicolor; SbOR) increased carotenoid levels up to 2-fold, expression of AtOR(His) (R90H) or SbOR(His) (R104H) variants dramatically enhanced carotenoid accumulation by up to 7-fold in the Arabidopsis calli. Moreover, we found that AtOR(Ala) (R90A) functioned similarly to AtOR(His) to promote carotenoid overproduction. Neither AtOR nor AtOR(His) greatly affected carotenogenic gene expression. AtOR(His) exhibited similar interactions with phytoene synthase (PSY) as AtOR in posttranscriptionally regulating PSY protein abundance. AtOR(His) triggered biogenesis of membranous chromoplasts in the Arabidopsis calli, which shared structures similar to chromoplasts found in the curd of the orange cauliflower (Brassica oleracea) mutant. By contrast, AtOR did not cause plastid-type changes in comparison with the controls, but produced plastids containing larger and electron-dense plastoglobuli. The unique ability of AtOR(His) in mediating chromoplast biogenesis is responsible for its induced carotenoid overproduction. Our study demonstrates OR(His/Ala) as powerful tools for carotenoid enrichment in plants, and provides insights into the mechanisms underlying OR(His)-regulated carotenoid accumulation.

  14. Analysis of Arabidopsis Accessions Hypersensitive to a Loss of Chloroplast Translation.

    PubMed

    Parker, Nicole; Wang, Yixing; Meinke, David

    2016-11-01

    Natural accessions of Arabidopsis (Arabidopsis thaliana) differ in their ability to tolerate a loss of chloroplast translation. These differences can be attributed in part to variation in a duplicated nuclear gene (ACC2) that targets homomeric acetyl-coenzyme A carboxylase (ACCase) to plastids. This functional redundancy allows limited fatty acid biosynthesis to occur in the absence of heteromeric ACCase, which is encoded in part by the plastid genome. In the presence of functional ACC2, tolerant alleles of several nuclear genes, not yet identified, enhance the growth of seedlings and embryos disrupted in chloroplast translation. ACC2 knockout mutants, by contrast, are hypersensitive. Here we describe an expanded search for hypersensitive accessions of Arabidopsis, evaluate whether all of these accessions are defective in ACC2, and characterize genotype-to-phenotype relationships for homomeric ACCase variants identified among 855 accessions with sequenced genomes. Null alleles with ACC2 nonsense mutations, frameshift mutations, small deletions, genomic rearrangements, and defects in RNA splicing are included among the most sensitive accessions examined. By contrast, most missense mutations affecting highly conserved residues failed to eliminate ACC2 function. Several accessions were identified where sensitivity could not be attributed to a defect in either ACC2 or Tic20-IV, the chloroplast membrane channel required for ACC2 uptake. Overall, these results underscore the central role of ACC2 in mediating Arabidopsis response to a loss of chloroplast translation, highlight future applications of this system to analyzing chloroplast protein import, and provide valuable insights into the mutational landscape of an important metabolic enzyme that is highly conserved throughout eukaryotes.

  15. Subcellular Localization and Functional Analysis of the Arabidopsis GTPase RabE1[W][OA

    PubMed Central

    Speth, Elena Bray; Imboden, Lori; Hauck, Paula; He, Sheng Yang

    2009-01-01

    Membrane trafficking plays a fundamental role in eukaryotic cell biology. Of the numerous known or predicted protein components of the plant cell trafficking system, only a relatively small subset have been characterized with respect to their biological roles in plant growth, development, and response to stresses. In this study, we investigated the subcellular localization and function of an Arabidopsis (Arabidopsis thaliana) small GTPase belonging to the RabE family. RabE proteins are phylogenetically related to well-characterized regulators of polarized vesicle transport from the Golgi apparatus to the plasma membrane in animal and yeast cells. The RabE family of GTPases has also been proposed to be a putative host target of AvrPto, an effector protein produced by the plant pathogen Pseudomonas syringae, based on yeast two-hybrid analysis. We generated transgenic Arabidopsis plants that constitutively expressed one of the five RabE proteins (RabE1d) fused to green fluorescent protein (GFP). GFP-RabE1d and endogenous RabE proteins were found to be associated with the Golgi apparatus and the plasma membrane in Arabidopsis leaf cells. RabE down-regulation, due to cosuppression in transgenic plants, resulted in drastically altered leaf morphology and reduced plant size, providing experimental evidence for an important role of RabE GTPases in regulating plant growth. RabE down-regulation did not affect plant susceptibility to pathogenic P. syringae bacteria; conversely, expression of the constitutively active RabE1d-Q74L enhanced plant defenses, conferring resistance to P. syringae infection. PMID:19233904

  16. In Vitro Morphogenesis of Arabidopsis to Search for Novel Endophytic Fungi Modulating Plant Growth.

    PubMed

    Dovana, Francesco; Mucciarelli, Marco; Mascarello, Maurizio; Fusconi, Anna

    2015-01-01

    Fungal endophytes have shown to affect plant growth and to confer stress tolerance to the host; however, effects of endophytes isolated from water plants have been poorly investigated. In this study, fungi isolated from stems (stem-E) and roots (root-E) of Mentha aquatica L. (water mint) were identified, and their morphogenetic properties analysed on in vitro cultured Arabidopsis (L.) Heynh., 14 and 21 days after inoculation (DAI). Nineteen fungi were analysed and, based on ITS analysis, 17 isolates showed to be genetically distinct. The overall effect of water mint endophytes on Arabidopsis fresh (FW) and dry weight (DW) was neutral and positive, respectively, and the increased DW, mainly occurring 14 DAI, was possibly related to plant defence mechanism. Only three fungi increased both FW and DW of Arabidopsis at 14 and 21 DAI, thus behaving as plant growth promoting (PGP) fungi. E-treatment caused a reduction of root depth and primary root length in most cases and inhibition-to-promotion of root area and lateral root length, from 14 DAI. Only Phoma macrostoma, among the water mint PGP fungi, increased both root area and depth, 21 DAI. Root depth and area 14 DAI were shown to influence DWs, indicating that the extension of the root system, and thus nutrient uptake, was an important determinant of plant dry biomass. Reduction of Arabidopsis root depth occurred to a great extent when plants where treated with stem-E while root area decreased or increased under the effects of stem-E and root-E, respectively, pointing to an influence of the endophyte origin on root extension. M. aquatica and many other perennial hydrophytes have growing worldwide application in water pollution remediation. The present study provided a model for directed screening of endophytes able to modulate plant growth in the perspective of future field applications of these fungi.

  17. Arabidopsis nitrate reductase activity is stimulated by the E3 SUMO ligase AtSIZ1

    PubMed Central

    Park, Bong Soo; Song, Jong Tae; Seo, Hak Soo

    2011-01-01

    Small ubiquitin-related modifier (SUMO) is a small polypeptide that modulates protein activity and regulates hormone signalling, abiotic and biotic responses in plants. Here we show that AtSIZ regulates nitrogen assimilation in Arabidopsis through its E3 SUMO ligase function. Dwarf plants of siz1-2 flower early, show abnormal seed development and have high salicylic acid content and enhanced resistance to bacterial pathogens. These mutant phenotypes are reverted to wild-type phenotypes by exogenous ammonium but not by nitrate, phosphate or potassium. Decreased nitrate reductase activity in siz1-2 plants resulted in low nitrogen concentrations, low nitric oxide production and high nitrate content in comparison with wild-type plants. The nitrate reductases, NIA1 and NIA2, are sumoylated by AtSIZ1, which dramatically increases their activity. Both sumoylated and non-sumoylated NIA1 and NIA2 can form dimers. Our results indicate that AtSIZ1 positively controls nitrogen assimilation by promoting sumoylation of NRs in Arabidopsis. PMID:21772271

  18. Arabidopsis MRG domain proteins bridge two histone modifications to elevate expression of flowering genes

    PubMed Central

    Xu, Yifeng; Gan, Eng-Seng; Zhou, Jie; Wee, Wan-Yi; Zhang, Xiaoyu; Ito, Toshiro

    2014-01-01

    Trimethylation of lysine 36 of histone H3 (H3K36me3) is found to be associated with various transcription events. In Arabidopsis, the H3K36me3 level peaks in the first half of coding regions, which is in contrast to the 3′-end enrichment in animals. The MRG15 family proteins function as ‘reader’ proteins by binding to H3K36me3 to control alternative splicing or prevent spurious intragenic transcription in animals. Here, we demonstrate that two closely related Arabidopsis homologues (MRG1 and MRG2) are localised to the euchromatin and redundantly ensure the increased transcriptional levels of two flowering time genes with opposing functions, FLOWERING LOCUS C and FLOWERING LOCUS T (FT). MRG2 directly binds to the FT locus and elevates the expression in an H3K36me3-dependent manner. MRG1/2 binds to H3K36me3 with their chromodomain and interact with the histone H4-specific acetyltransferases (HAM1 and HAM2) to achieve a high expression level through active histone acetylation at the promoter and 5′ regions of target loci. Together, this study presents a mechanistic link between H3K36me3 and histone H4 acetylation. Our data also indicate that the biological functions of MRG1/2 have diversified from their animal homologues during evolution, yet they still maintain their conserved H3K36me3-binding molecular function. PMID:25183522

  19. Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway.

    PubMed Central

    Penninckx, I A; Eggermont, K; Terras, F R; Thomma, B P; De Samblanx, G W; Buchala, A; Métraux, J P; Manners, J M; Broekaert, W F

    1996-01-01

    A 5-kD plant defensin was purified from Arabidopsis leaves challenged with the fungus Alternaria brassicicola and shown to possess antifungal properties in vitro. The corresponding plant defensin gene was induced after treatment of leaves with methyl jasmonate or ethylene but not with salicylic acid or 2,6-dichloroisonicotinic acid. When challenged with A. brassicicola, the levels of the plant defensin protein and mRNA rose both in inoculated leaves and in nontreated leaves of inoculated plants (systemic leaves). These events coincided with an increase in the endogenous jasmonic acid content of both types of leaves. Systemic pathogen-induced expression of the plant defensin gene was unaffected in Arabidopsis transformants (nahG) or mutants (npr1 and cpr1) affected in the salicylic acid response but was strongly reduced in the Arabidopsis mutants eln2 and col1 that are blocked in their response to ethylene and methyl jasmonate, respectively. Our results indicate that systemic pathogen-induced expression of the plant defensin gene in Arabidopsis is independent of salicylic acid but requires components of the ethylene and jasmonic acid response. PMID:8989885

  20. Capturing Arabidopsis Root Architecture Dynamics with root-fit Reveals Diversity in Responses to Salinity1[W][OPEN

    PubMed Central

    Julkowska, Magdalena M.; Hoefsloot, Huub C.J.; Mol, Selena; Feron, Richard; de Boer, Gert-Jan; Haring, Michel A.; Testerink, Christa

    2014-01-01

    The plant root is the first organ to encounter salinity stress, but the effect of salinity on root system architecture (RSA) remains elusive. Both the reduction in main root (MR) elongation and the redistribution of the root mass between MRs and lateral roots (LRs) are likely to play crucial roles in water extraction efficiency and ion exclusion. To establish which RSA parameters are responsive to salt stress, we performed a detailed time course experiment in which Arabidopsis (Arabidopsis thaliana) seedlings were grown on agar plates under different salt stress conditions. We captured RSA dynamics with quadratic growth functions (root-fit) and summarized the salt-induced differences in RSA dynamics in three growth parameters: MR elongation, average LR elongation, and increase in number of LRs. In the ecotype Columbia-0 accession of Arabidopsis, salt stress affected MR elongation more severely than LR elongation and an increase in LRs, leading to a significantly altered RSA. By quantifying RSA dynamics of 31 different Arabidopsis accessions in control and mild salt stress conditions, different strategies for regulation of MR and LR meristems and root branching were revealed. Different RSA strategies partially correlated with natural variation in abscisic acid sensitivity and different Na+/K+ ratios in shoots of seedlings grown under mild salt stress. Applying root-fit to describe the dynamics of RSA allowed us to uncover the natural diversity in root morphology and cluster it into four response types that otherwise would have been overlooked. PMID:25271266

  1. Analyses of a Gravistimulation-Specific Ca2+ Signature in Arabidopsis using Parabolic Flights1[W][OPEN

    PubMed Central

    Toyota, Masatsugu; Furuichi, Takuya; Sokabe, Masahiro; Tatsumi, Hitoshi

    2013-01-01

    Gravity is a critical environmental factor affecting the morphology and functions of organisms on the Earth. Plants sense changes in the gravity vector (gravistimulation) and regulate their growth direction accordingly. In Arabidopsis (Arabidopsis thaliana) seedlings, gravistimulation, achieved by rotating the specimens under the ambient 1g of the Earth, is known to induce a biphasic (transient and sustained) increase in cytoplasmic calcium concentration ([Ca2+]c). However, the [Ca2+]c increase genuinely caused by gravistimulation has not been identified because gravistimulation is generally accompanied by rotation of specimens on the ground (1g), adding an additional mechanical signal to the treatment. Here, we demonstrate a gravistimulation-specific Ca2+ response in Arabidopsis seedlings by separating rotation from gravistimulation by using the microgravity (less than 10−4g) conditions provided by parabolic flights. Gravistimulation without rotating the specimen caused a sustained [Ca2+]c increase, which corresponds closely to the second sustained [Ca2+]c increase observed in ground experiments. The [Ca2+]c increases were analyzed under a variety of gravity intensities (e.g. 0.5g, 1.5g, or 2g) combined with rapid switching between hypergravity and microgravity, demonstrating that Arabidopsis seedlings possess a very rapid gravity-sensing mechanism linearly transducing a wide range of gravitational changes (0.5g–2g) into Ca2+ signals on a subsecond time scale. PMID:23835410

  2. Overexpression of ARGOS Genes Modifies Plant Sensitivity to Ethylene, Leading to Improved Drought Tolerance in Both Arabidopsis and Maize.

    PubMed

    Shi, Jinrui; Habben, Jeffrey E; Archibald, Rayeann L; Drummond, Bruce J; Chamberlin, Mark A; Williams, Robert W; Lafitte, H Renee; Weers, Ben P

    2015-09-01

    Lack of sufficient water is a major limiting factor to crop production worldwide, and the development of drought-tolerant germplasm is needed to improve crop productivity. The phytohormone ethylene modulates plant growth and development as well as plant response to abiotic stress. Recent research has shown that modifying ethylene biosynthesis and signaling can enhance plant drought tolerance. Here, we report novel negative regulators of ethylene signal transduction in Arabidopsis (Arabidopsis thaliana) and maize (Zea mays). These regulators are encoded by the ARGOS gene family. In Arabidopsis, overexpression of maize ARGOS1 (ZmARGOS1), ZmARGOS8, Arabidopsis ARGOS homolog ORGAN SIZE RELATED1 (AtOSR1), and AtOSR2 reduced plant sensitivity to ethylene, leading to enhanced drought tolerance. RNA profiling and genetic analysis suggested that the ZmARGOS1 transgene acts between an ethylene receptor and CONSTITUTIVE TRIPLE RESPONSE1 in the ethylene signaling pathway, affecting ethylene perception or the early stages of ethylene signaling. Overexpressed ZmARGOS1 is localized to the endoplasmic reticulum and Golgi membrane, where the ethylene receptors and the ethylene signaling protein ETHYLENE-INSENSITIVE2 and REVERSION-TO-ETHYLENE SENSITIVITY1 reside. In transgenic maize plants, overexpression of ARGOS genes also reduces ethylene sensitivity. Moreover, field testing showed that UBIQUITIN1:ZmARGOS8 maize events had a greater grain yield than nontransgenic controls under both drought stress and well-watered conditions.

  3. Selection on Meiosis Genes in Diploid and Tetraploid Arabidopsis arenosa

    PubMed Central

    Wright, Kevin M.; Arnold, Brian; Xue, Katherine; Šurinová, Maria; O’Connell, Jeremy; Bomblies, Kirsten

    2015-01-01

    Meiotic chromosome segregation is critical for fertility across eukaryotes, and core meiotic processes are well conserved even between kingdoms. Nevertheless, recent work in animals has shown that at least some meiosis genes are highly diverse or strongly differentiated among populations. What drives this remains largely unknown. We previously showed that autotetraploid Arabidopsis arenosa evolved stable meiosis, likely through reduced crossover rates, and that associated with this there is strong evidence for selection in a subset of meiosis genes known to affect axis formation, synapsis, and crossover frequency. Here, we use genome-wide data to study the molecular evolution of 70 meiosis genes in a much wider sample of A. arenosa. We sample the polyploid lineage, a diploid lineage from the Carpathian Mountains, and a more distantly related diploid lineage from the adjacent, but biogeographically distinct Pannonian Basin. We find that not only did selection act on meiosis genes in the polyploid lineage but also independently on a smaller subset of meiosis genes in Pannonian diploids. Functionally related genes are targeted by selection in these distinct contexts, and in two cases, independent sweeps occurred in the same loci. The tetraploid lineage has sustained selection on more genes, has more amino acid changes in each, and these more often affect conserved or potentially functional sites. We hypothesize that Pannonian diploid and tetraploid A. arenosa experienced selection on structural proteins that mediate sister chromatid cohesion, the formation of meiotic chromosome axes, and synapsis, likely for different underlying reasons. PMID:25543117

  4. Selection on meiosis genes in diploid and tetraploid Arabidopsis arenosa.

    PubMed

    Wright, Kevin M; Arnold, Brian; Xue, Katherine; Šurinová, Maria; O'Connell, Jeremy; Bomblies, Kirsten

    2015-04-01

    Meiotic chromosome segregation is critical for fertility across eukaryotes, and core meiotic processes are well conserved even between kingdoms. Nevertheless, recent work in animals has shown that at least some meiosis genes are highly diverse or strongly differentiated among populations. What drives this remains largely unknown. We previously showed that autotetraploid Arabidopsis arenosa evolved stable meiosis, likely through reduced crossover rates, and that associated with this there is strong evidence for selection in a subset of meiosis genes known to affect axis formation, synapsis, and crossover frequency. Here, we use genome-wide data to study the molecular evolution of 70 meiosis genes in a much wider sample of A. arenosa. We sample the polyploid lineage, a diploid lineage from the Carpathian Mountains, and a more distantly related diploid lineage from the adjacent, but biogeographically distinct Pannonian Basin. We find that not only did selection act on meiosis genes in the polyploid lineage but also independently on a smaller subset of meiosis genes in Pannonian diploids. Functionally related genes are targeted by selection in these distinct contexts, and in two cases, independent sweeps occurred in the same loci. The tetraploid lineage has sustained selection on more genes, has more amino acid changes in each, and these more often affect conserved or potentially functional sites. We hypothesize that Pannonian diploid and tetraploid A. arenosa experienced selection on structural proteins that mediate sister chromatid cohesion, the formation of meiotic chromosome axes, and synapsis, likely for different underlying reasons.

  5. Tungsten disrupts root growth in Arabidopsis thaliana by PIN targeting.

    PubMed

    Adamakis, Ioannis-Dimosthenis S; Panteris, Emmanuel; Eleftheriou, Eleftherios P

    2014-08-15

    Tungsten is a heavy metal with increasing concern over its environmental impact. In plants it is extensively used to deplete nitric oxide by inhibiting nitrate reductase, but its presumed toxicity as a heavy metal has been less explored. Accordingly, its effects on Arabidopsis thaliana primary root were assessed. The effects on root growth, mitotic cell percentage, nitric oxide and hydrogen peroxide levels, the cytoskeleton, cell ultrastructure, auxin and cytokinin activity, and auxin carrier distribution were investigated. It was found that tungsten reduced root growth, particularly by inhibiting cell expansion in the elongation zone, so that root hairs emerged closer to the root tip than in the control. Although extensive vacuolation was observed, even in meristematic cells, cell organelles were almost unaffected and microtubules were not depolymerized but reoriented. Tungsten affected auxin and cytokinin activity, as visualized by the DR5-GFP and TCS-GFP expressing lines, respectively. Cytokinin fluctuations were similar to those of the mitotic cell percentage. DR5-GFP signal appeared ectopically expressed, while the signals of PIN2-GFP and PIN3-GFP were diminished even after relatively short exposures. The observed effects were not reminiscent of those of any nitric oxide scavengers. Taken together, inhibition of root growth by tungsten might rather be related to a presumed interference with the basipetal flow of auxin, specifically affecting cell expansion in the elongation zone.

  6. Crystalline 1H-1,2,3-triazol-5-ylidenes

    SciTech Connect

    Bertrand, Guy; Gulsado-Barrios, Gregorio; Bouffard, Jean; Donnadieu, Bruno

    2016-08-02

    The present invention provides novel and stable crystalline 1H-1,2,3 triazolium carbenes and metal complexes of 1H-1,2,3 triazolium carbenes. The present invention also provides methods of making 1H-1,2,3 triazolium carbenes and metal complexes of 1H-1,2,3 triazolium carbenes. The present invention also provides methods of using 1H-1,2,3 triazolium carbenes and metal complexes of 1H-1,2,3 triazolium carbenes in catalytic reactions.

  7. A survey of dominant mutations in Arabidopsis thaliana.

    PubMed

    Meinke, David W

    2013-02-01

    Following the recent publication of a comprehensive dataset of 2400 genes with a loss-of-function mutant phenotype in Arabidopsis (Arabidopsis thaliana), questions remain concerning the diversity of dominant mutations in Arabidopsis. Most of these dominant phenotypes are expected to result from inappropriate gene expression, novel protein function, or disrupted protein complexes. This review highlights the major classes of dominant mutations observed in model organisms and presents a collection of 200 Arabidopsis genes associated with a dominant or semidominant phenotype. Emphasis is placed on mutants identified through forward genetic screens of mutagenized or activation-tagged populations. These datasets illustrate the variety of genetic changes and protein functions that underlie dominance in Arabidopsis and may ultimately contribute to phenotypic variation in flowering plants.

  8. Crystallization and preliminary crystallographic analysis of a C2 protein from Arabidopsis thaliana.

    PubMed

    Diaz, Maira; Rodriguez, Lesia; Gonzalez-Guzman, Miguel; Martínez-Ripoll, Martín; Albert, Armando

    2011-12-01

    An uncharacterized protein from Arabidopsis thaliana consisting of a single C2 domain (At3g17980) was cloned into the pETM11 vector and expressed in Escherichia coli, allowing purification to homogeneity in a single chromatographic step. Good-quality diffracting crystals were obtained using vapour-diffusion techniques. The crystals diffracted to 2.2 Å resolution and belonged to space group P2(1)2(1)2(1), with unit-cell parameters a = 35.3, b = 88.9, c = 110.6 Å. A promising molecular-replacement solution has been found using the structure of the C2 domain of Munc13-C2b (PDB entry 3kwt) as the search model.

  9. Arabidopsis CBF3 and DELLAs positively regulate each other in response to low temperature

    PubMed Central

    Zhou, Mingqi; Chen, Hu; Wei, Donghui; Ma, Hong; Lin, Juan

    2017-01-01

    The C-repeat binding factor (CBF) is crucial for regulation of cold response in higher plants. In Arabidopsis, the mechanism of CBF3-caused growth retardation is still unclear. Our present work shows that CBF3 shares the similar repression of bioactive gibberellin (GA) as well as upregulation of DELLA proteins with CBF1 and -2. Genetic analysis reveals that DELLAs play an essential role in growth reduction mediated by CBF1, -2, -3 genes. The in vivo and in vitro evidences demonstrate that GA2-oxidase 7 gene is a novel CBF3 regulon. Meanwhile, DELLAs contribute to cold induction of CBF1, -2, -3 genes through interaction with jasmonate (JA) signaling. We conclude that CBF3 promotes DELLAs accumulation through repressing GA biosynthesis and DELLAs positively regulate CBF3 involving JA signaling. CBFs and DELLAs collaborate to retard plant growth in response to low temperature. PMID:28051152

  10. The Arabidopsis Mediator Complex Subunit16 Is a Key Component of Basal Resistance against the Necrotrophic Fungal Pathogen Sclerotinia sclerotiorum1[OPEN

    PubMed Central

    Wang, Chenggang; Yao, Jin; Du, Xuezhu; Zhang, Yanping; Sun, Yijun; Rollins, Jeffrey A.; Mou, Zhonglin

    2015-01-01

    Although Sclerotinia sclerotiorum is a devastating necrotrophic fungal plant pathogen in agriculture, the virulence mechanisms utilized by S. sclerotiorum and the host defense mechanisms against this pathogen have not been fully understood. Here, we report that the Arabidopsis (Arabidopsis thaliana) Mediator complex subunit MED16 is a key component of basal resistance against S. sclerotiorum. Mutants of MED16 are markedly more susceptible to S. sclerotiorum than mutants of 13 other Mediator subunits, and med16 has a much stronger effect on S. sclerotiorum-induced transcriptome changes compared with med8, a mutation not altering susceptibility to S. sclerotiorum. Interestingly, med16 is also more susceptible to S. sclerotiorum than coronatine-insensitive1-1 (coi1-1), which is the most susceptible mutant reported so far. Although the jasmonic acid (JA)/ethylene (ET) defense pathway marker gene PLANT DEFENSIN1.2 (PDF1.2) cannot be induced in either med16 or coi1-1, basal transcript levels of PDF1.2 in med16 are significantly lower than in coi1-1. Furthermore, ET-induced suppression of JA-activated wound responses is compromised in med16, suggesting a role for MED16 in JA-ET cross talk. Additionally, MED16 is required for the recruitment of RNA polymerase II to PDF1.2 and OCTADECANOID-RESPONSIVE ARABIDOPSIS ETHYLENE/ETHYLENE-RESPONSIVE FACTOR59 (ORA59), two target genes of both JA/ET-mediated and the transcription factor WRKY33-activated defense pathways. Finally, MED16 is physically associated with WRKY33 in yeast and in planta, and WRKY33-activated transcription of PDF1.2 and ORA59 as well as resistance to S. sclerotiorum depends on MED16. Taken together, these results indicate that MED16 regulates resistance to S. sclerotiorum by governing both JA/ET-mediated and WRKY33-activated defense signaling in Arabidopsis. PMID:26143252

  11. Alanine Aminotransferase Variants Conferring Diverse NUE Phenotypes in Arabidopsis thaliana

    PubMed Central

    McAllister, Chandra H.; Good, Allen G.

    2015-01-01

    Alanine aminotransferase (AlaAT, E.C. 2.6.1.2), is a pyridoxal-5’-phosphate-dependent (PLP) enzyme that catalyzes the reversible transfer of an amino group from alanine to 2-oxoglutarate to produce glutamate and pyruvate, or vice versa. It has been well documented in both greenhouse and field studies that tissue-specific over-expression of AlaAT from barley (Hordeum vulgare, HvAlaAT) results in a significant increase in plant NUE in both canola and rice. While the physical phenotypes associated with over-expression of HvAlaAT have been well characterized, the role this enzyme plays in vivo to create a more N efficient plant remains unknown. Furthermore, the importance of HvAlaAT, in contrast to other AlaAT enzyme homologues in creating this phenotype has not yet been explored. To address the role of AlaAT in NUE, AlaAT variants from diverse sources and different subcellular locations, were expressed in the wild-type Arabidopsis thaliana Col-0 background and alaat1;2 (alaat1-1;alaat2-1) knockout background in various N environments. The analysis and comparison of both the physical and physiological properties of AlaAT over-expressing transgenic plants demonstrated significant differences between plants expressing the different AlaAT enzymes under different external conditions. This analysis indicates that the over-expression of AlaAT variants other than HvAlaAT in crop plants could further increase the NUE phenotype(s) previously observed. PMID:25830496

  12. Alanine aminotransferase variants conferring diverse NUE phenotypes in Arabidopsis thaliana.

    PubMed

    McAllister, Chandra H; Good, Allen G

    2015-01-01

    Alanine aminotransferase (AlaAT, E.C. 2.6.1.2), is a pyridoxal-5'-phosphate-dependent (PLP) enzyme that catalyzes the reversible transfer of an amino group from alanine to 2-oxoglutarate to produce glutamate and pyruvate, or vice versa. It has been well documented in both greenhouse and field studies that tissue-specific over-expression of AlaAT from barley (Hordeum vulgare, HvAlaAT) results in a significant increase in plant NUE in both canola and rice. While the physical phenotypes associated with over-expression of HvAlaAT have been well characterized, the role this enzyme plays in vivo to create a more N efficient plant remains unknown. Furthermore, the importance of HvAlaAT, in contrast to other AlaAT enzyme homologues in creating this phenotype has not yet been explored. To address the role of AlaAT in NUE, AlaAT variants from diverse sources and different subcellular locations, were expressed in the wild-type Arabidopsis thaliana Col-0 background and alaat1;2 (alaat1-1;alaat2-1) knockout background in various N environments. The analysis and comparison of both the physical and physiological properties of AlaAT over-expressing transgenic plants demonstrated significant differences between plants expressing the different AlaAT enzymes under different external conditions. This analysis indicates that the over-expression of AlaAT variants other than HvAlaAT in crop plants could further increase the NUE phenotype(s) previously observed.

  13. Knockout mutants as a tool to identify the subunit composition of Arabidopsis glutamine synthetase isoforms.

    PubMed

    Dragićević, Milan; Todorović, Slađana; Bogdanović, Milica; Filipović, Biljana; Mišić, Danijela; Simonović, Ana

    2014-06-01

    Glutamine synthetase (GS) is a key enzyme in nitrogen assimilation, which catalyzes the formation of glutamine from ammonia and glutamate. Plant GS isoforms are multimeric enzymes, recently shown to be decamers. The Arabidopsis genome encodes five cytosolic (GS1) proteins labeled as GLN1;1 through GLN1;5 and one chloroplastic (GS2) isoform, GLN2;0. However, as many as 11 GS activity bands were resolved from different Arabidopsis tissues by Native PAGE and activity staining. Western analysis showed that all 11 isoforms are composed exclusively of 40 kDa GS1 subunits. Of five GS1 genes, only GLN1;1, GLN1;2 and GLN1;3 transcripts accumulated to significant levels in vegetative tissues, indicating that only subunits encoded by these three genes produce the 11-band zymogram. Even though the GS2 gene also had significant expression, the corresponding activity was not detected, probably due to inactivation. To resolve the subunit composition of 11 active GS1 isoforms, homozygous knockout mutants deficient in the expression of different GS1 genes were selected from the progeny of T-DNA insertional SALK and SAIL lines. Comparison of GS isoenzyme patterns of the selected GS1 knockout mutants indicated that all of the detected isoforms consist of varying proportions of GLN1;1, GLN1;2 and GLN1;3 subunits, and that GLN1;1 and GLN1;3, as well as GLN1;2 and GLN1;3 and possibly GLN1;1 and GLN1;2 proteins combine in all proportions to form active homo- and heterodecamers.

  14. Vibrational analysis of 1,2-dichloro-2-methylpropane and 1,2-dibromo-2-methylpropane

    NASA Astrophysics Data System (ADS)

    Crowder, G. A.; Richardson, Mary Townsend

    1982-02-01

    Liquid-state IR and Raman spectra and solid-state IR spectra have been obtained for 1,2-dichloro-2-methylpropane and l,2-dibromo-2-methylpropane. Carbon-halogen stretching bands are observed in the liquid-state spectrum of the dichloro compound at 751, 725, 624 and 574 cm -1 and at 677, 640, 551 and 507 cm -1 in the liquid-state spectrum of the dibromo compound. Both compounds exist as P CTt HHH and P XT XHH conformations in the liquid, but only the P XT XHH conformer is present for each in the crystalline solid. Further Interpretation of the spectra was aided by normal coordinate calculations.

  15. ASPARTATE OXIDASE Plays an Important Role in Arabidopsis Stomatal Immunity1[W][OA

    PubMed Central

    Macho, Alberto P.; Boutrot, Freddy; Rathjen, John P.; Zipfel, Cyril

    2012-01-01

    Perception of pathogen-associated molecular patterns (PAMPs), such as bacterial flagellin (or the peptide flg22), by surface-localized receptors activates defense responses and subsequent immunity. In a previous forward-genetic screen aimed at the identification of Arabidopsis (Arabidopsis thaliana) flagellin-insensitive (fin) mutants, we isolated fin4, which is severely affected in flg22-triggered reactive oxygen species (ROS) bursts. Here, we report that FIN4 encodes the chloroplastic enzyme ASPARTATE OXIDASE (AO), which catalyzes the first irreversible step in the de novo biosynthesis of NAD. Genetic studies on the role of NAD have been hindered so far by the lethality of null mutants in NAD biosynthetic enzymes. Using newly identified knockdown fin alleles, we found that AO is required for the ROS burst mediated by the NADPH oxidase RBOHD triggered by the perception of several unrelated PAMPs. AO is also required for RBOHD-dependent stomatal closure. However, full AO activity is not required for flg22-induced responses that are RBOHD independent. Interestingly, although the fin4 mutation dramatically affects RBOHD function, it does not affect functions carried out by other members of the RBOH family, such as RBOHC and RBOHF. Finally, we determined that AO is required for stomatal immunity against the bacterium Pseudomonas syringae. Altogether, our work reveals a novel specific requirement for AO activity in PAMP-triggered RBOHD-dependent ROS burst and stomatal immunity. In addition, the availability of viable mutants for the chloroplastic enzyme AO will enable future detailed studies on the role of NAD metabolism in different cellular processes, including immunity, in Arabidopsis. PMID:22730426

  16. Characterization of Sugar Insensitive (sis) Mutants of Arabidopsis

    SciTech Connect

    Gibson, Susan I.

    2009-06-08

    Despite the fact that soluble sugar levels have been postulated to play an important role in the control of a wide variety of plant metabolic and developmental pathways, the mechanisms by which plants respond to soluble sugar levels remain poorly understood. Plant responses to soluble sugar levels are also important in bioenergy production, as plant sugar responses are believed to help regulate both carbon fixation and carbon partitioning. For example, accumulation of soluble sugars, such as sucrose and glucose, in source tissues leads to feedback inhibition of photosynthesis, thereby decreasing rates of carbon fixation. Soluble sugar levels can also affect sink strengths, affecting the rates of accumulation of carbon-based compounds into both particular molecular forms (e.g. carbohydrates versus lipids versus proteins) and particular plant organs and tissues. Mutants of Arabidopsis that are defective in the ability to respond to soluble sugar levels were isolated and used as tools to identify some of the factors involved in plant sugar response. These sugar insensitive (sis) mutants were isolated by screening mutagenized seeds for those that were able to germinate and develop relatively normal shoot systems on media containing 0.3 M glucose or 0.3 M sucrose. At these sugar concentrations, wild-type Arabidopsis germinate and produce substantial root systems, but show little to no shoot development. Twenty-eight sis mutants were isolated during the course of four independent mutant screens. Based on a preliminary characterization of all of these mutants, sis3 and sis6 were chosen for further study. Both of these mutations appear to lie in previously uncharacterized loci. Unlike many other sugar-response mutants, sis3 mutants exhibit a wild-type or near wild-type response in all phytohormone-response assays conducted to date. The sis6-1 mutation is unusual in that it appears to be due to overexpression of a gene, rather than representing a loss of function mutation

  17. Down-regulation of Kelch domain-containing F-box protein in Arabidopsis enhances the production of (poly)phenols and tolerance to ultraviolet radiation.

    PubMed

    Zhang, Xuebin; Gou, Mingyue; Guo, Chunrong; Yang, Huijun; Liu, Chang-Jun

    2015-02-01

    Phenylpropanoid biosynthesis in plants engenders myriad phenolics with diverse biological functions. Phenylalanine ammonia-lyase (PAL) is the first committed enzyme in the pathway, directing primary metabolic flux into a phenylpropanoid branch. Previously, we demonstrated that the Arabidopsis (Arabidopsis thaliana) Kelch domain-containing F-box proteins, AtKFB01, AtKFB20, and AtKFB50, function as the negative regulators controlling phenylpropanoid biosynthesis via mediating PAL's ubiquitination and subsequent degradation. Here, we reveal that Arabidopsis KFB39, a close homolog of AtKFB50, also interacts physically with PAL isozymes and modulates PAL stability and activity. Disturbing the expression of KFB39 reciprocally affects the accumulation/deposition of a set of phenylpropanoid end products, suggesting that KFB39 is an additional posttranslational regulator responsible for the turnover of PAL and negatively controlling phenylpropanoid biosynthesis. Furthermore, we discover that exposure of Arabidopsis to ultraviolet (UV)-B radiation suppresses the expression of all four KFB genes while inducing the transcription of PAL isogenes; these data suggest that Arabidopsis consolidates both transcriptional and posttranslational regulation mechanisms to maximize its responses to UV light stress. Simultaneous down-regulation of all four identified KFBs significantly enhances the production of (poly)phenols and the plant's tolerance to UV irradiation. This study offers a biotechnological approach for engineering the production of useful phenolic chemicals and for increasing a plant's resistance to environmental stress.

  18. Down-Regulation of Kelch Domain-Containing F-Box Protein in Arabidopsis Enhances the Production of (Poly)phenols and Tolerance to Ultraviolet Radiation1[OPEN

    PubMed Central

    Zhang, Xuebin; Gou, Mingyue; Guo, Chunrong; Yang, Huijun; Liu, Chang-Jun

    2015-01-01

    Phenylpropanoid biosynthesis in plants engenders myriad phenolics with diverse biological functions. Phenylalanine ammonia-lyase (PAL) is the first committed enzyme in the pathway, directing primary metabolic flux into a phenylpropanoid branch. Previously, we demonstrated that the Arabidopsis (Arabidopsis thaliana) Kelch domain-containing F-box proteins, AtKFB01, AtKFB20, and AtKFB50, function as the negative regulators controlling phenylpropanoid biosynthesis via mediating PAL’s ubiquitination and subsequent degradation. Here, we reveal that Arabidopsis KFB39, a close homolog of AtKFB50, also interacts physically with PAL isozymes and modulates PAL stability and activity. Disturbing the expression of KFB39 reciprocally affects the accumulation/deposition of a set of phenylpropanoid end products, suggesting that KFB39 is an additional posttranslational regulator responsible for the turnover of PAL and negatively controlling phenylpropanoid biosynthesis. Furthermore, we discover that exposure of Arabidopsis to ultraviolet (UV)-B radiation suppresses the expression of all four KFB genes while inducing the transcription of PAL isogenes; these data suggest that Arabidopsis consolidates both transcriptional and posttranslational regulation mechanisms to maximize its responses to UV light stress. Simultaneous down-regulation of all four identified KFBs significantly enhances the production of (poly)phenols and the plant’s tolerance to UV irradiation. This study offers a biotechnological approach for engineering the production of useful phenolic chemicals and for increasing a plant’s resistance to environmental stress. PMID:25502410

  19. Rh-Catalyzed Asymmetric Hydrogenation of 1,2-Dicyanoalkenes.

    PubMed

    Li, Meina; Kong, Duanyang; Zi, Guofu; Hou, Guohua

    2017-01-06

    A highly efficient enantioselective hydrogenation of 1,2-dicyanoalkenes catalyzed by the complex of rhodium and f-spiroPhos has been developed. A series of 1,2-dicyanoalkenes were successfully hydrogenated to the corresponding chiral 1,2-dicyanoalkanes under mild conditions with excellent enantioselectivities (up to 98% ee). This methodology provides efficient access to the asymmetric synthesis of chiral diamines.

  20. Acyl migration kinetics of vegetable oil 1,2-diacylglycerols

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The acyl migration kinetics of long-chain 1,2-diacylglycerol (1,2-DAG) to form 1,3-diacylglycerol (1,3-DAG) over the temperature range of 25 to 80 degrees Celsius were examined using proton NMR spectroscopy. The 1,2-DAG mole fraction of 0.32 at equilibrium was found to be insensitive to temperature...

  1. 43 CFR 3471.1-2 - Land description in lease.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Land description in lease. 3471.1-2 Section 3471.1-2 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND... Coal Management Provisions and Limitations § 3471.1-2 Land description in lease. (a) All...

  2. 43 CFR 3430.1-2 - Commercial quantities defined.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Commercial quantities defined. 3430.1-2 Section 3430.1-2 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND... Leases § 3430.1-2 Commercial quantities defined. For the purpose of § 3430.1-1 of this title,...

  3. 45 CFR 1216.1-2 - Applicability of this part.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 4 2011-10-01 2011-10-01 false Applicability of this part. 1216.1-2 Section 1216.1-2 Public Welfare Regulations Relating to Public Welfare (Continued) CORPORATION FOR NATIONAL AND COMMUNITY SERVICE NONDISPLACEMENT OF EMPLOYED WORKERS AND NONIMPAIRMENT OF CONTRACTS FOR SERVICE § 1216.1-2 Applicability of this part. (a)...

  4. 43 CFR § 2812.1-2 - Contents.

    Code of Federal Regulations, 2010 CFR

    2015-10-01

    ... 43 Public Lands: Interior 2 2015-10-01 2015-10-01 false Contents. § 2812.1-2 Section § 2812.1-2 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT... Coos Bay Revested Lands § 2812.1-2 Contents. (a) An individual applicant and each member of...

  5. An update on the regulation of photosynthesis by thylakoid ion channels and transporters in Arabidopsis.

    PubMed

    Spetea, Cornelia; Herdean, Andrei; Allorent, Guillaume; Carraretto, Luca; Finazzi, Giovanni; Szabo, Ildikò

    2017-03-23

    In natural variable environments, plants rapidly adjust photosynthesis for optimal balance between light absorption and utilization. There is increasing evidence suggesting that ion fluxes across the chloroplast thylakoid membrane play an important role in this regulation, by affecting the proton motive force, and consequently photosynthesis and thylakoid membrane ultrastructure. This minireview presents an update on the thylakoid ion channels and transporters characterized in Arabidopsis thaliana as being involved in these processes, as well as an outlook at the evolutionary conservation of their functions in other photosynthetic organisms. This is a contribution to shed light on the thylakoid network of ion fluxes and how they help plants to adjust photosynthesis in variable light environments.

  6. Piriformospora indica antagonizes cyst nematode infection and development in Arabidopsis roots

    PubMed Central

    Daneshkhah, R.; Cabello, S.; Rozanska, E.; Sobczak, M.; Grundler, F. M. W.; Wieczorek, K.; Hofmann, J.

    2013-01-01

    The beneficial endophytic fungus Piriformospora indica colonizes the roots of many plant species, including the model plant Arabidopsis thaliana. Its colonization promotes plant growth, development, and seed production as well as resistance to various biotic and abiotic stresses. In the present work, P. indica was tested as potential antagonist of the sedentary plant-parasitic nematode Heterodera schachtii. This biotrophic cyst-forming nematode induces severe host plant damage by changing the morphogenesis and physiology of infected roots. Here it is shown that P. indica colonization, as well as the application of fungal exudates and cell-wall extracts, significantly affects the vitality, infectivity, development, and reproduction of H. schachtii. PMID:23956413

  7. Phenotypic alterations in Arabidopsis thaliana plants caused by Rhodococcus fascians infection.

    PubMed

    de O Manes, Carmem-Lara; Beeckman, Tom; Ritsema, Tita; Van Montagu, Marc; Goethals, Koen; Holsters, Marcelle

    2004-04-01

    Arabidopsis thaliana (L.) Heynh. plants were challenged with Rhodococcus fascians at several developmental stages and using different inoculation procedures. A variety of morphological alterations was scored on the infected plants; some of them resembled phenotypes of A. thaliana mutants in their shoot apical meristem (SAM) organization. Infection with R. fascians did not affect SAM organization in wild type nor in SAM mutants. Anatomical studies on the new organs formed after infection with R. fascians demonstrated extensive bacterial colonization. Colonization and concomitant production of specific signals are the likely cause of malformations.

  8. Retarded Embryo Development 1 (RED1) regulates embryo development, seed maturation and plant growth in Arabidopsis.

    PubMed

    Du, Qian; Wang, Huanzhong

    2016-07-20

    Plant seeds accumulate large amounts of protein and carbohydrate as storage reserves during maturation. Thus, understanding the genetic control of embryo and seed development may provide bioengineering tools for yield improvement. In this study, we report the identification of Retarded Embryo Development 1 (RED1) gene in Arabidopsis, whose two independent T-DNA insertion mutant lines, SALK_085642 (red1-1) and SALK_022583 (red1-2), show a retarded embryo development phenotype. The embryogenesis process ceases at the late heart stage in red1-1 and at the bent-cotyledon stage in red1-2, respectively, resulting in seed abortion in both lines. The retarded embryo development and seed abortion phenotypes reverted to normal when RED1 complementation constructs were introduced into mutant plants. Small red1-2 homozygous plants can be successfully rescued by culturing immature seeds, indicating that seed abortion likely results from compromised tolerance to the desiccation process associated with seed maturation. Consistent with this observation, red1-2 seeds accumulate less protein, and the expression of two late embryo development reporter transgenes, LEA::GUS and β-conglycinin::GUS, was significantly weak and started relatively late in the red1-2 mutant lines compared to the wild type. The RED1 gene encodes a plant specific novel protein that is localized in the nucleus. These results indicate that RED1 plays important roles in embryo development, seed maturation and plant growth.

  9. Lipase-catalyzed methanolysis of triricinolein in organic solvent to produce 1,2(2,3)-diricinolein.

    PubMed

    Turner, Charlotta; He, Xiaohua; Nguyen, Tasha; Lin, Jiann-Tsyh; Wong, Rosalind Y; Lundin, Robert E; Harden, Leslie; McKeon, Thomas

    2003-11-01

    The objective of this study was to find the optimal parameters for lipase-catalyzed methanolysis of triricinolein to produce 1,2(2,3)-diricinolein. Four different immobilized lipases were tested, Candida antarctica type B (CALB), Rhizomucor miehei (RML), Pseudomonas cepacia (PCL), and Penicillium roquefortii (PRL). n-Hexane and diisopropyl ether (DIPE) were examined as reaction media at three different water activities (a(w)), 0.11, 0.53, and 0.97. The consumption of triricinolein and the formation of 1,2(2,3)-diricinolein, methyl ricinoleate, and ricinoleic acid were followed for up to 48 h. PRL gave the highest yield of 1,2(2,3)-diricinolein. Moreover, this lipase showed the highest specificity for the studied reaction, i.e., high selectivity for the reaction with triricinolein but low for 1,2(2,3)-diricinolein. Recoveries of 93 and 88% DAG were obtained using PRL in DIPE at a(w) of 0.11 and 0.53, respectively. Further, NMR studies showed that a higher purity of the 1,2(2,3)-isomer vs. the 1,3-isomer was achieved at higher a(w) (88% at a(w) = 0.53), compared to lower a(w) (71% at a(w) = 0.11). The DAG obtained was acylated by the DAG acyltransferase from Arabidopsis thaliana. Therefore, this enzymatic product is a useful enzyme substrate for lipid biosynthesis. Accordingly, the use of PRL in DIPE at a(w) 0.53 is considered optimal for the synthesis of 1,2(2,3)-diricinolein from triricinolein.

  10. Reaction of pyrido(1,2-a)benzimidazole and tetrahydropyrido(1,2-a)benzimidazole with acetylenedicarboxylic ester

    SciTech Connect

    Prostakov, N.S.; Varlamov, A.V.; Shendrik, I.V.; Krapivko, A.P.; Golovtsov, N.I.

    1986-08-01

    Previously unknown polynuclear condensed systems with bridgehead nitrogen atoms have been obtained by treating acetylenedicarboxylic ester with pyrido(1,2-a)benzimidazole and tetrahydropyrido(1,2-a)benzimidazole.

  11. Primary Fatty Alcohols Are Major Components of Suberized Root Tissues of Arabidopsis in the Form of Alkyl Hydroxycinnamates1[OPEN

    PubMed Central

    Delude, Camille; Fouillen, Laetitia; Bhar, Palash; Cardinal, Marie-Josée; Pascal, Stephanie; Kosma, Dylan K.; Joubès, Jérôme

    2016-01-01

    Suberin is a complex hydrophobic polymer that acts as a barrier controlling water and solute fluxes and restricting pathogen infections. Suberin is deposited immediately outside of the plasmalemma in the cell wall of certain tissues such as endodermis of roots, aerial and underground periderms, and seed coats. Suberin consists of a variety of fatty acid derivatives polymerized with glycerol and phenolics. In this study, we show using liquid chromatography-tandem mass spectrometry and gas chromatography-mass spectrometry techniques that most of the fatty alcohols not covalently linked to the suberin polymer are in the form of alkyl hydroxycinnamates (AHCs), with alkyl caffeates predominating. Such compounds are not restricted to the periderm of mature roots but also are present in the endodermis of younger roots, where they are not extracted by rapid dipping in chloroform. Analysis of several mutants affected in key enzymes involved in the biosynthesis and export of suberin monomers suggests that the formation of the suberin polymer and associated waxes involves common pathways and occurs concomitantly in Arabidopsis (Arabidopsis thaliana) roots. Although fatty alcohols represent only minor components of the suberin polymer in Arabidopsis roots, this study demonstrates that they constitute the major aliphatics of suberin-associated waxes in the form of AHCs. Therefore, our results indicate that esterified fatty alcohols, both soluble and polymerized forms, represent major constituents of Arabidopsis root suberized barriers, being as abundant as α,ω-dicarboxylic and unsubstituted fatty acids. In addition, our results show that suberized layers represent a major sink for acyl-lipid metabolism in Arabidopsis roots. PMID:27231100

  12. Primary Fatty Alcohols Are Major Components of Suberized Root Tissues of Arabidopsis in the Form of Alkyl Hydroxycinnamates.

    PubMed

    Delude, Camille; Fouillen, Laetitia; Bhar, Palash; Cardinal, Marie-Josée; Pascal, Stephanie; Santos, Patricia; Kosma, Dylan K; Joubès, Jérôme; Rowland, Owen; Domergue, Frédéric

    2016-07-01

    Suberin is a complex hydrophobic polymer that acts as a barrier controlling water and solute fluxes and restricting pathogen infections. Suberin is deposited immediately outside of the plasmalemma in the cell wall of certain tissues such as endodermis of roots, aerial and underground periderms, and seed coats. Suberin consists of a variety of fatty acid derivatives polymerized with glycerol and phenolics. In this study, we show using liquid chromatography-tandem mass spectrometry and gas chromatography-mass spectrometry techniques that most of the fatty alcohols not covalently linked to the suberin polymer are in the form of alkyl hydroxycinnamates (AHCs), with alkyl caffeates predominating. Such compounds are not restricted to the periderm of mature roots but also are present in the endodermis of younger roots, where they are not extracted by rapid dipping in chloroform. Analysis of several mutants affected in key enzymes involved in the biosynthesis and export of suberin monomers suggests that the formation of the suberin polymer and associated waxes involves common pathways and occurs concomitantly in Arabidopsis (Arabidopsis thaliana) roots. Although fatty alcohols represent only minor components of the suberin polymer in Arabidopsis roots, this study demonstrates that they constitute the major aliphatics of suberin-associated waxes in the form of AHCs. Therefore, our results indicate that esterified fatty alcohols, both soluble and polymerized forms, represent major constituents of Arabidopsis root suberized barriers, being as abundant as α,ω-dicarboxylic and unsubstituted fatty acids. In addition, our results show that suberized layers represent a major sink for acyl-lipid metabolism in Arabidopsis roots.

  13. Live confocal imaging of Arabidopsis flower buds.

    PubMed

    Prunet, Nathanaël; Jack, Thomas P; Meyerowitz, Elliot M

    2016-11-01

    Recent advances in confocal microscopy, coupled with the development of numerous fluorescent reporters, provide us with a powerful tool to study the development of plants. Live confocal imaging has been used extensively to further our understanding of the mechanisms underlying the formation of roots, shoots and leaves. However, it has not been widely applied to flowers, partly because of specific challenges associated with the imaging of flower buds. Here, we describe how to prepare and grow shoot apices of Arabidopsis in vitro, to perform both single-point and time-lapse imaging of live, developing flower buds with either an upright or an inverted confocal microscope.

  14. RNA in situ hybridization in Arabidopsis.

    PubMed

    Wu, Miin-Feng; Wagner, Doris

    2012-01-01

    RNA in situ hybridization using digoxigenin-labeled riboprobes on tissue sections is a powerful technique for revealing microscopic spatial gene expression. Here, we describe an in situ hybridization method commonly practiced in Arabidopsis research labs. The highly stringent hybridization condition eliminates the usage of Ribonlucease A and gives highly specific signals. This also allows the use of longer probes which enhance signal strength without cross hybridization to closely related genes. In addition, using spin columns in template and riboprobe purification greatly reduces background signals.

  15. Effects of vertical rotation on Arabidopsis development

    NASA Technical Reports Server (NTRS)

    Brown, A. H.; Chapman, D. K.; Dahl, A. O.

    1975-01-01

    Various gross morphological end points of Arabidopsis development are examined in an attempt to separate the effects of growth on the horizontal clinostat into a component caused by rotation alone and another component caused by the altered position with respect to the direction of the g-vector. In a series of tests which involved comparisons between vertical stationary plants, vertical rotated plants, and plants rotated on clinostats, certain characters were consistently influenced by vertical rotation alone. The characters for which this effect was statistically significant were petiole length and leaf blade width.

  16. Carotenoid Biosynthesis in Arabidopsis: A Colorful Pathway

    PubMed Central

    Ruiz-Sola, M. Águila; Rodríguez-Concepción, Manuel

    2012-01-01

    Plant carotenoids are a family of pigments that participate in light harvesting and are essential for photoprotection against excess light. Furthermore, they act as precursors for the production of apocarotenoid hormones such as abscisic acid and strigolactones. In this review, we summarize the current knowledge on the genes and enzymes of the carotenoid biosynthetic pathway (which is now almost completely elucidated) and on the regulation of carotenoid biosynthesis at both transcriptional and post-transcriptional levels. We also discuss the relevance of Arabidopsis as a model system for the study of carotenogenesis and how metabolic engineering approaches in this plant have taught important lessons for carotenoid biotechnology. PMID:22582030

  17. First principles prediction of a morphotropic phase boundary in the Bi(Zn1/2Ti1/2)O3-(Bi1/2Sr1/2)(Zn1/2Nb1/2)O3 alloy

    SciTech Connect

    Cooper, Valentino R; Henry, Asegun S; Takagi, Shigeyuki M; Singh, David J

    2011-01-01

    The magnitude and direction of polarization within alloys of the tetragonally distorted Bi(Zn1/2Ti1/2)O3 (BZT) and the rhombohedrally oriented Bi1/2Sr1/2Zn1/2Nb1/2O3 (BSZN) are explored using density functional theory. For compositions with 50% of BZT, we find that the polarization points mainly along the [001] direction. Conversely, for low concentrations of BZT the polarization is rhombohedrally oriented. Based on these results we propose a phase diagram with a possible monoclinc phase between 25% and 50 % BZT where this material may have a useful piezoelectric response.

  18. Uranium perturbs signaling and iron uptake response in Arabidopsis thaliana roots.

    PubMed

    Doustaly, Fany; Combes, Florence; Fiévet, Julie B; Berthet, Serge; Hugouvieux, Véronique; Bastien, Olivier; Aranjuelo, Iker; Leonhardt, Nathalie; Rivasseau, Corinne; Carrière, Marie; Vavasseur, Alain; Renou, Jean-Pierre; Vandenbrouck, Yves; Bourguignon, Jacques

    2014-04-01

    Uranium is a natural element which is mainly redistributed in the environment due to human activity, including accidents and spillages. Plants may be useful in cleaning up after incidents, although little is yet known about the relationship between metal speciation and plant response. Here, J-Chess modeling was used to predict U speciation and exposure conditions affecting U bioavailability for plants. The model was confirmed by exposing Arabidopsis thaliana plants to U under hydroponic conditions. The early root response was characterized using complete Arabidopsis transcriptome microarrays (CATMA). Expression of 111 genes was modified at the three timepoints studied. The associated biological processes were further examined by real-time quantitative RT-PCR. Annotation revealed that oxidative stress, cell wall and hormone biosynthesis, and signaling pathways (including phosphate signaling) were affected by U exposure. The main actors in iron uptake and signaling (IRT1, FRO2, AHA2, AHA7 and FIT1) were strongly down-regulated upon exposure to uranyl. A network calculated using IRT1, FRO2 and FIT1 as bait revealed a set of genes whose expression levels change under U stress. Hypotheses are presented to explain how U perturbs the iron uptake and signaling response. These results give preliminary insights into the pathways affected by uranyl uptake, which will be of interest for engineering plants to help clean areas contaminated with U.

  19. Effect of simulated microgravity on auxin polar transport in inflorescence axis of Arabidopsis thaliana.

    PubMed

    Oka, M; Ueda, J; Miyamoto, K; Yamamoto, R; Hoson, T; Kamisaka, S

    1995-12-01

    The morphology, growth and development of higher plants are strongly influenced by environmental stimuli on the earth, which affect the changes in the dynamics of plant hormones in plants. Qualitative and quantitative changes in plant hormones are the most important internal factor to regulate plant growth and development. Among them, auxin (IAA) is of most significant. There are numerous reports concerning the physiological roles of auxin in plant growth and development (Matthysse and Scott 1984). One of the characteristics of auxin is to have the ability of polar transport along the vector of gravity on the earth (Schneider and Wightman 1978), suggesting that the activity of auxin polar transport is also important for the growth and development of plants. It has recently been reported that the normal activity of auxin polar transport in inflorescence axis of Arabidopsis thaliana was required for flower formation (Okada et al. 1991, Ueda et al. 1992). Considering the above evidence together with the fact that gravity affects the morphology, growth and development of higher plants, gravity might affect the qualitative and quantitative changes in plant hormones including the activity of auxin polar transport. In this paper, we report the effect of microgravity condition simulated by a three-dimensional (3-D) or a horizontal clinostat on the activity of auxin polar transport in inflorescence axis of Arabidopsis thaliana.

  20. Dissection of Arabidopsis ADP-RIBOSYLATION FACTOR 1 Function in Epidermal Cell PolarityW⃞

    PubMed Central

    Xu, Jian; Scheres, Ben

    2005-01-01

    Vesicle trafficking is essential for the generation of asymmetries, which are central to multicellular development. Core components of the vesicle transport machinery, such as ADP-ribosylation factor (ARF) GTPases, have been studied primarily at the single-cell level. Here, we analyze developmental functions of the ARF1 subclass of the Arabidopsis thaliana multigene ARF family. Six virtually identical ARF1 genes are ubiquitously expressed, and single loss-of-function mutants in these genes reveal no obvious developmental phenotypes. Fluorescence colocalization studies reveal that ARF1 is localized to the Golgi apparatus and endocytic organelles in both onion (Allium cepa) and Arabidopsis cells. Apical-basal polarity of epidermal cells, reflected by the position of root hair outgrowth, is affected when ARF1 mutants are expressed at early stages of cell differentiation but after they exit mitosis. Genetic interactions during root hair tip growth and localization suggest that the ROP2 protein is a target of ARF1 action, but its localization is slowly affected upon ARF1 manipulation when compared with that of Golgi and endocytic markers. Localization of a second potential target of ARF1 action, PIN2, is also aff