Science.gov

Sample records for 1-2 ghz system

  1. 600-GHz Electronically Tunable Vector Measurement System

    NASA Technical Reports Server (NTRS)

    Dengler, Robert; Maiwald, Frank; Siegel, Peter

    2007-01-01

    A compact, high-dynamic-range, electronically tunable vector measurement system that operates in the frequency range from approximately 560 to approximately 635 GHz has been developed as a prototype of vector measurement systems that would be suitable for use in nearly-real-time active submillimeter-wave imaging. As used here, 'vector measurement system" signifies an instrumentation system that applies a radio-frequency (RF) excitation to an object of interest and measures the resulting amplitude and phase response, relative to either the applied excitatory signal or another reference signal related in a known way to applied excitatory signal.

  2. 47 CFR 101.525 - 24 GHz system operations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false 24 GHz system operations. 101.525 Section 101.525 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES 24 GHz Service and Digital Electronic Message Service § 101.525 24 GHz...

  3. 47 CFR 101.525 - 24 GHz system operations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false 24 GHz system operations. 101.525 Section 101.525 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES 24 GHz Service and Digital Electronic Message Service § 101.525 24 GHz...

  4. The 94 GHz MMW imaging radar system

    NASA Technical Reports Server (NTRS)

    Alon, Yair; Ulmer, Lon

    1993-01-01

    The 94 GHz MMW airborne radar system that provides a runway image in adverse weather conditions is now undergoing tests at Wright-Patterson Air Force Base (WPAFB). This system, which consists of a solid state FMCW transceiver, antenna, and digital signal processor, has an update rate of 10 times per second, 0.35x azimuth resolution and up to 3.5 meter range resolution. The radar B scope (range versus azimuth) image, once converted to C scope (elevation versus azimuth), is compatible with the standard TV presentation and can be displayed on the Head Up Display (HUD) or Head Down Display (HDD) to aid the pilot during landing and takeoff in limited visibility conditions.

  5. Single loop multi-gap resonator for whole body EPR imaging of mice at 1.2 GHz.

    PubMed

    Petryakov, Sergey; Samouilov, Alexandre; Kesselring, Eric; Wasowicz, Tomasz; Caia, George L; Zweier, Jay L

    2007-09-01

    For whole body EPR imaging of small animals, typically low frequencies of 250-750 MHz have been used due to the microwave losses at higher frequencies and the challenges in designing suitable resonators to accommodate these large lossy samples. However, low microwave frequency limits the obtainable sensitivity. L-band frequencies can provide higher sensitivity, and have been commonly used for localized in vivo EPR spectroscopy. Therefore, it would be highly desirable to develop an L-band microwave resonator suitable for in vivo whole body EPR imaging of small animals such as living mice. A 1.2 GHz 16-gap resonator with inner diameter of 42 mm and 48 mm length was designed and constructed for whole body EPR imaging of small animals. The resonator has good field homogeneity and stability to animal-induced motional noise. Resonator stability was achieved with electrical and mechanical design utilizing a fixed position double coupling loop of novel geometry, thus minimizing the number of moving parts. Using this resonator, high quality EPR images of lossy phantoms and living mice were obtained. This design provides good sensitivity, ease of sample access, excellent stability and uniform B(1) field homogeneity for in vivo whole body EPR imaging of mice at 1.2 GHz. PMID:17625940

  6. SINGLE LOOP - MULTI GAP RESONATOR FOR WHOLE BODY EPR IMAGING OF MICE AT 1.2 GHZ

    PubMed Central

    Petryakov, Sergey; Samouilov, Alexandre; Kesselring, Eric; Wasowicz, Tomasz; Caia, George L.; Zweier, Jay L.

    2009-01-01

    For whole body EPR imaging of small animals, typically low frequencies of 250–750 MHz have been used due to the microwave losses at higher frequencies and the challenges in designing suitable resonators to accommodate these large lossy samples. However, low microwave frequency limits the obtainable sensitivity. L-band frequencies can provide higher sensitivity, and have been commonly used for localized in vivo EPR spectroscopy. Therefore, it would be highly desirable to develop an L-band microwave resonator suitable for in vivo whole body EPR imaging of small animals such as living mice. A 1.2 GHz 16 gap resonator with inner diameter of 43 mm and 48 mm length was designed and constructed for whole body EPR imaging of small animals. The resonator has good field homogeneity and stability to animal induced motional noise. Resonator stability was achieved with electrical and mechanical design utilizing a fixed position double coupling loop of novel geometry, thus minimizing the number of moving parts. Using this resonator, high quality EPR images of lossy phantoms and living mice were obtained. This design provides good sensitivity, ease of sample access, excellent stability and uniform B1 field homogeneity for in vivo whole body EPR imaging of mice at 1.2 GHz. PMID:17625940

  7. Single loop multi-gap resonator for whole body EPR imaging of mice at 1.2 GHz

    NASA Astrophysics Data System (ADS)

    Petryakov, Sergey; Samouilov, Alexandre; Kesselring, Eric; Wasowicz, Tomasz; Caia, George L.; Zweier, Jay L.

    2007-09-01

    For whole body EPR imaging of small animals, typically low frequencies of 250-750 MHz have been used due to the microwave losses at higher frequencies and the challenges in designing suitable resonators to accommodate these large lossy samples. However, low microwave frequency limits the obtainable sensitivity. L-band frequencies can provide higher sensitivity, and have been commonly used for localized in vivo EPR spectroscopy. Therefore, it would be highly desirable to develop an L-band microwave resonator suitable for in vivo whole body EPR imaging of small animals such as living mice. A 1.2 GHz 16-gap resonator with inner diameter of 42 mm and 48 mm length was designed and constructed for whole body EPR imaging of small animals. The resonator has good field homogeneity and stability to animal-induced motional noise. Resonator stability was achieved with electrical and mechanical design utilizing a fixed position double coupling loop of novel geometry, thus minimizing the number of moving parts. Using this resonator, high quality EPR images of lossy phantoms and living mice were obtained. This design provides good sensitivity, ease of sample access, excellent stability and uniform B1 field homogeneity for in vivo whole body EPR imaging of mice at 1.2 GHz.

  8. The 30/20 GHz communications system functional requirements

    NASA Technical Reports Server (NTRS)

    Siperko, C. M.; Frankfort, M.; Markham, R.; Wall, M.

    1981-01-01

    The characteristics of 30/20 GHz usage in satellite systems to be used in support of projected communication requirements of the 1990's are defined. A requirements analysis which develops projected market demand for satellite services by general and specialized carriers and an analysis of the impact of propagation and system constraints on 30/20 GHz operation are included. A set of technical performance characteristics for the 30/20 GHz systems which can serve the resulting market demand and the experimental program necessary to verify technical and operational aspects of the proposed systems is also discussed.

  9. 60 GHz ecrh system for the PPL PDX machine

    SciTech Connect

    Bowen, N.; Doane, J.; Newman, W.

    1981-01-01

    A 60-GHz kW Electron Cyclotron Resonance (ECR) heating system for the PDX machine is now under construction. It will use two of the pulse-type 60 GHz gyrotrons now being developed by Varian for the U.S. Department of Energy under a subcontract for Oak Ridge National Laboratory. The system will be used for various temperature profile, start-up, and heating experiments. This paper describes the design of the system and its physical configuration.

  10. Single-Chip T/R Module for 1.2 GHz

    NASA Technical Reports Server (NTRS)

    Moussessian, Alina; Mojarradi, Mohammad; Johnson, Travis; Davis, John; Grigorian, Edwin; Hoffman, James; Caro, Edward; Kuhn, William

    2006-01-01

    A single-chip CMOS-based (complementary-metal-oxide-semiconductorbased) transmit/receive (T/R) module is being developed for L-band radar systems. Previous T/R module implementations required multiple chips employing different technologies (GaAs, Si, and others) combined with off-chip transmission lines and discrete components including circulators. The new design eliminates the bulky circulator, significantly reducing the size and mass of the T/R module. Compared to multi-chip designs, the single-chip CMOS can be implemented with lower cost. These innovations enable cost-effective realization of advanced phased array and synthetic aperture radar systems that require integration of thousands of T/R modules. The circulator is a ferromagnetic device that directs the flow of the RF (radio frequency) power during transmission and reception. During transmission, the circulator delivers the transmitted power from the amplifier to the antenna, while preventing it from damaging the sensitive receiver circuitry. During reception, the circulator directs the energy from the antenna to the low-noise amplifier (LNA) while isolating the output of the power amplifier (PA). In principle, a circulator could be replaced by series transistors acting as electronic switches. However, in practice, the integration of conventional series transistors into a T/R chip introduces significant losses and noise. The prototype single-chip T/R module contains integrated transistor switches, but not connected in series; instead, they are connected in a shunt configuration with resonant circuits (see figure). The shunt/resonant circuit topology not only reduces the losses associated with conventional semiconductor switches but also provides beneficial transformation of impedances for the PA and the LNA. It provides full singlepole/ double-throw switching for the antenna, isolating the LNA from the transmitted signal and isolating the PA from the received signal. During reception, the voltage on

  11. Flux monitoring observations of Sgr A* at 8 GHz and 2 GHz with the NICT Kashima-Koganei VLBI System

    NASA Astrophysics Data System (ADS)

    Takekawa, S.; Oka, T.; Sekido, M.

    2014-05-01

    We have been conducting flux monitoring observations of Sgr A* at 8 GHz and 2 GHz using the NICT Kashima-Koganei VLBI system (109 km baseline) since mid-February 2013. The primary objective of the monitoring is a search for flux variation which is expected to be caused by the interaction between the G2 cloud and the accretion disk. Until 2013 September 22, we observed Sgr A* for 39 days, five hours on each day. Four quasars (NRAO 530, PKS 1622-253, PKS 1622-297, PKS 1921-293) were also observed as flux calibrators every 6 minutes. No significant change nor variation has been detected in the 8 GHz flux density of Sgr A*. The 8 GHz flux density was 0.81 ± 0.07 Jy (preliminary), while no significant 2 GHz emission was detected by our system. We will continue monitoring as often as possible until at least 2014 May.

  12. Modeling of NASA's 30/20 GHz satellite communications system

    NASA Technical Reports Server (NTRS)

    Kwatra, S. C.; Maples, B. W.; Stevens, G. A.

    1984-01-01

    NASA is in the process of developing technology for a 30/20 GHz satellite communications link. Currently hardware is being assembled for a test transponder. A simulation package is being developed to study the link performance in the presence of interference and noise. This requires developing models for the components of the system. This paper describes techniques used to model the components for which data is available. Results of experiments performed using these models are described. A brief overview of NASA's 30/20 GHz communications satellite program is also included.

  13. Passive 350 GHz Video Imaging Systems for Security Applications

    NASA Astrophysics Data System (ADS)

    Heinz, E.; May, T.; Born, D.; Zieger, G.; Anders, S.; Zakosarenko, V.; Meyer, H.-G.; Schäffel, C.

    2015-10-01

    Passive submillimeter-wave imaging is a concept that has been in the focus of interest as a promising technology for personal security screening for a number of years. In contradiction to established portal-based millimeter-wave scanning techniques, it allows for scanning people from a distance in real time with high throughput and without a distinct inspection procedure. This opens up new possibilities for scanning, which directly address an urgent security need of modern societies: protecting crowds and critical infrastructure from the growing threat of individual terror attacks. Considering the low radiometric contrast of indoor scenes in the submillimeter range, this objective calls for an extremely high detector sensitivity that can only be achieved using cooled detectors. Our approach to this task is a series of passive standoff video cameras for the 350 GHz band that represent an evolving concept and a continuous development since 2007. Arrays of superconducting transition-edge sensors (TES), operated at temperatures below 1 K, are used as radiation detectors. By this means, background limited performance (BLIP) mode is achieved, providing the maximum possible signal to noise ratio. At video rates, this leads to a temperature resolution well below 1 K. The imaging system is completed by reflector optics based on free-form mirrors. For object distances of 5-25 m, a field of view up to 2 m height and a diffraction-limited spatial resolution in the order of 1-2 cm is provided. Opto-mechanical scanning systems are part of the optical setup and capable of frame rates of up to 25 frames per second.

  14. MIMO based 3D imaging system at 360 GHz

    NASA Astrophysics Data System (ADS)

    Herschel, R.; Nowok, S.; Zimmermann, R.; Lang, S. A.; Pohl, N.

    2016-05-01

    A MIMO radar imaging system at 360 GHz is presented as a part of the comprehensive approach of the European FP7 project TeraSCREEN, using multiple frequency bands for active and passive imaging. The MIMO system consists of 16 transmitter and 16 receiver antennas within one single array. Using a bandwidth of 30 GHz, a range resolution up to 5 mm is obtained. With the 16×16 MIMO system 256 different azimuth bins can be distinguished. Mechanical beam steering is used to measure 130 different elevation angles where the angular resolution is obtained by a focusing elliptical mirror. With this system a high resolution 3D image can be generated with 4 frames per second, each containing 16 million points. The principle of the system is presented starting from the functional structure, covering the hardware design and including the digital image generation. This is supported by simulated data and discussed using experimental results from a preliminary 90 GHz system underlining the feasibility of the approach.

  15. Propagation study of 850nm/58 GHz hybrid municipal system

    NASA Astrophysics Data System (ADS)

    Wilfert, Otakar; Kvicera, Vaclav; Kolka, Zdenek; Grabner, Martin; Fiser, Ondrej

    2010-08-01

    The paper deals with the results of a propagation study on a fixed hybrid Free Space Optical (FSO) and Radio Frequency (RF) system operating in 850 nm / 58 GHz bands. Propagation models for the availability assessment of both FSO and RF links were examined against a comprehensive database of meteorological attenuation events. The influences of individual hydrometeors were analyzed and the availability performances of the simulated FSO/MMW hybrid link were evaluated. The study pointed out that visibility and rainfall measurements can be only used for the raw assessment of availability performance due to the concurrent occurrence of different attenuation effect.

  16. The 18/30 GHz fixed communications system service demand assessment. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Gabriszeski, T.; Reiner, P.; Rogers, J.; Terbo, W.

    1979-01-01

    The total demand for voice, video, and data communications services, and satellite transmission services at the 4/6 GHz, 12/14 GHz, and 18/30 GHz frequencies is discussed. Major study objectives, overall methodology, results, and general observations about a satellite systems market characteristics and trends are summarized.

  17. Spacecraft multibeam antenna system for 30/20 GHz

    NASA Technical Reports Server (NTRS)

    Roberts, T. E.; Scott, W. F.

    1984-01-01

    The major technical tasks that led to the definitions of operational and demonstration multiple beam antenna (MBA) flight systems and a proof of concept model (POC) are described. Features of the POC Model and its measured performance are presented in detail. Similar MBA's are proposed for transmitting and receiving with the POC Model representing the 20 GHz transmitting antenna. This POC MBA is a dual shaped-surface reflector system utilizing a movable free array to simulate complete CONUS coverage. The beam forming network utilizes ferrite components for switching from one beam to another. Measured results for components, subsystems and the complete MBA confirm the feasibility of the approach and also show excellent correlation with calculated values.

  18. 110 GHz ECH on DIII-D: System overview and initial operation

    SciTech Connect

    Cary, W.P.; Allen, J.C.; Callis, R.W.; Doane, J.L.; Harris, T.E.; Moeller, C.P.; Nerem, A.; Prater, R.; Remsen, D.

    1991-11-01

    A new high power electron cyclotron heating (ECH) system has been introduced on D3-D. This system is designed to operate at 110 GHz with a total output power of 2 MW. The system consists of four Varian VGT-8011 gyrotrons, (output power of 500 kW), and their associated support equipment. All components have been designed for up to a 10 second pulse duration. The 110 GHz system is intended to further progress in rf current drive experiments on D3-D when used in conjunction with the existing 60 GHz ECH (1.6 MW), and the 30--60 MHz ICH (2 MW) systems. H-mode physics, plasma stabilization experiments and transport studies are also to be conducted at 110 GHz. The present system design philosophy was based on experience gained from the existing 60 GHz ECH system. The consequences of these design decisions will be addressed as will the actual performance of various 110 GHz components.

  19. Control system renewal for efficient operation in RIKEN 18 GHz electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Uchiyama, A.; Ozeki, K.; Higurashi, Y.; Kidera, M.; Komiyama, M.; Nakagawa, T.

    2016-02-01

    A RIKEN 18 GHz electron cyclotron resonance ion source (18 GHz ECRIS) is used as an external ion source at the Radioactive Ion Beam Factory (RIBF) accelerator complex to produce an intense beam of medium-mass heavy ions (e.g., Ca and Ar). In most components that comprise the RIBF, the control systems (CSs) are integrated by the Experimental Physics and Industrial Control System (EPICS). On the other hand, a non-EPICS-based system has hardwired controllers, and it is used in the 18 GHz ECRIS CS as an independent system. In terms of efficient and effective operation, the 18 GHz ECRIS CS as well as the RIBF CS should be renewed using EPICS. Therefore, we constructed an 18 GHz ECRIS CS by using programmable logic controllers with embedded EPICS technology. In the renewed system, an operational log system was developed as a new feature, for supporting of the 18 GHz ECRIS operation.

  20. Special cascade LMS equalization scheme suitable for 60-GHz RoF transmission system.

    PubMed

    Liu, Siming; Shen, Guansheng; Kou, Yanbin; Tian, Huiping

    2016-05-16

    We design a specific cascade least mean square (LMS) equalizer and to the best of our knowledge, it is the first time this kind of equalizer has been employed for 60-GHz millimeter-wave (mm-wave) radio over fiber (RoF) system. The proposed cascade LMS equalizer consists of two sub-equalizers which are designated for optical and wireless channel compensations, respectively. We control the linear and nonlinear factors originated from optical link and wireless link separately. The cascade equalization scheme can keep the nonlinear distortions of the RoF system in a low degree. We theoretically and experimentally investigate the parameters of the two sub-equalizers to reach their best performances. The experiment results show that the cascade equalization scheme has a faster convergence speed. It needs a training sequence with a length of 10000 to reach its stable status, which is only half as long as the traditional LMS equalizer needs. With the utility of a proposed equalizer, the 60-GHz RoF system can successfully transmit 5-Gbps BPSK signal over 10-km fiber and 1.2-m wireless link under forward error correction (FEC) limit 10-3. An improvement of 4dBm and 1dBm in power sensitivity at BER 10-3 over traditional LMS equalizer can be observed when the signals are transmitted through Back-to-Back (BTB) and 10-km fiber 1.2-m wireless links, respectively. PMID:27409882

  1. A deep/wide 1-2 GHz snapshot survey of SDSS Stripe 82 using the Karl G. Jansky Very Large Array in a compact hybrid configuration

    NASA Astrophysics Data System (ADS)

    Heywood, I.; Jarvis, M. J.; Baker, A. J.; Bannister, K. W.; Carvalho, C. S.; Hardcastle, M.; Hilton, M.; Moodley, K.; Smirnov, O. M.; Smith, D. J. B.; White, S. V.; Wollack, E. J.

    2016-08-01

    We have used the Karl G. Jansky Very Large Array to image ˜100 deg2 of SDSS Stripe 82 at 1-2 GHz. The survey consists of 1026 snapshot observations of 2.5 min duration, using the hybrid CnB configuration. The survey has good sensitivity to diffuse, low surface brightness structures and extended radio emission, making it highly synergistic with existing 1.4 GHz radio observations of the region. The principal data products are continuum images, with 16 × 10 arcsec resolution, and a catalogue containing 11 782 point and Gaussian components resulting from fits to the thresholded Stokes-I brightness distribution, forming approximately 8948 unique radio sources. The typical effective 1σ noise level is 88 μJy beam-1. Spectral index estimates are included, as derived from the 1 GHz of instantaneous bandwidth. Astrometric and photometric accuracy are in excellent agreement with existing narrowband observations. A large-scale simulation is used to investigate clean bias, which we extend into the spectral domain. Clean bias remains an issue for snapshot surveys with the VLA, affecting our total intensity measurements at the ˜1σ level. Statistical spectral index measurements are in good agreement with existing measurements derived from matching separate surveys at two frequencies. At flux densities below ˜35σ the median in-band spectral index measurements begin to exhibit a bias towards flatness that is dependent on both flux density and the intrinsic spectral index. In-band spectral curvature measurements are likely to be unreliable for all but the very brightest components. Image products and catalogues are publicly available via an FTP server.

  2. A 90GHz Bolometer Camera Detector System for the Green

    NASA Technical Reports Server (NTRS)

    Benford, Dominic J.; Allen, Christine A.; Buchanan, Ernest; Chen, Tina C.; Chervenak, James A.; Devlin, Mark J.; Dicker, Simon R.; Forgione, Joshua B.

    2004-01-01

    We describe a close-packed, two-dimensional imaging detector system for operation at 90GHz (3.3 mm) for the 100m Green Bank Telescope (GBT). This system will provide high sensitivity (less than 1mJy in 1s) rapid imaging (15'x15' to 150 micron Jy in 1 hr) at the world's largest steerable aperture. The heart of this camera is an 8x8 close-packed, Nyquist-sampled array of superconducting transition edge sensor (TES) bolometers. We have designed and are producing a functional superconducting bolometer array system using a monolithic planar architecture and high-speed multiplexed readout electronics. With an NEP of approximately 2 x 10(exp -17) W/square root of Hz, the TES bolometers will provide fast, linear, sensitive response for high performance imaging. The detectors are read out by an 8x8 time domain SQUID multiplexer. A digital/analog electronics system has been designed to enable read out by SQUID multiplexers. First light for this instrument on the GBT is expected within a year.

  3. The DIII-D 3 MW, 110 GHz ECH system

    NASA Astrophysics Data System (ADS)

    Callis, R. W.; Lohr, J.; Ponce, D.; O'Neill, R. C.; Prater, R.; Luce, T. C.

    1999-09-01

    Three 110 GHz gyrotrons with nominal output power of 1 MW each have been installed and are operational on the DIII-D tokamak. One gyrotron is built by Gycom and has a nominal rating of 1 MW and a 2 s pulse length, with the pulse length being determined by the maximum temperature allowed on the edge cooled Boron Nitride window. The second and third gyrotrons were built by Communications and Power Industries (CPI). The first CPI gyrotron uses a double disc FC-75 cooled sapphire window which has a pulse length rating of 0.8 s at 1 MW, 2 s at 0.5 MW and 10 s at 0.35 MW. The second CPI gyrotron, utilizes a single disc chemical-vapor-deposition diamond window, that employs water cooling around the edge of the disc. Calculation predict that the diamond window should be capable of full 1 MW cw operation. All gyrotrons are connected to the tokamak by a low-loss-windowless evacuated transmission line using circular corrugated waveguide for propagation in the HE11 mode. Each waveguide system incorporates a two mirror launcher which can steer the rf beam poloidally from the center to the outer edge of the plasma. Central current drive experiments with the two gyrotrons with 1.5 MW of injected power drove about 0.17 MA. Results from using the three gyrotron systems will be reported as well as the plans to upgrade the system to 6 MW.

  4. 47 CFR 15.252 - Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz and 23.12-29.0 GHz.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz and 23.12-29.0 GHz. 15.252 Section 15.252 Telecommunication FEDERAL..., Additional Provisions § 15.252 Operation of wideband vehicular radar systems within the bands 16.2-17.7...

  5. 47 CFR 15.252 - Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz and 23.12-29.0 GHz.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz and 23.12-29.0 GHz. 15.252 Section 15.252 Telecommunication FEDERAL..., Additional Provisions § 15.252 Operation of wideband vehicular radar systems within the bands 16.2-17.7...

  6. 47 CFR 15.252 - Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz and 23.12-29.0 GHz.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz and 23.12-29.0 GHz. 15.252 Section 15.252 Telecommunication FEDERAL..., Additional Provisions § 15.252 Operation of wideband vehicular radar systems within the bands 16.2-17.7...

  7. 47 CFR 15.252 - Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz and 23.12-29.0 GHz.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz and 23.12-29.0 GHz. 15.252 Section 15.252 Telecommunication FEDERAL..., Additional Provisions § 15.252 Operation of wideband vehicular radar systems within the bands 16.2-17.7...

  8. 47 CFR 15.252 - Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz and 23.12-29.0 GHz.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz and 23.12-29.0 GHz. 15.252 Section 15.252 Telecommunication FEDERAL..., Additional Provisions § 15.252 Operation of wideband vehicular radar systems within the bands 16.2-17.7...

  9. The 60 GHz antenna system analyses for intersatellite links, phase B

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The purpose of this study is first to investigate, classify, and compare applicable antenna systems capable of establishing and maintaining intersatellite links at 60 GHz and secondly to select the most applicable system for a detailed conceptual design. The results are to be applicable to the development of intersatellite links at 60 GHz for future programs. Design goals are listed.

  10. A 94/183 GHz aircraft radiometer system for Project Storm Fury

    NASA Technical Reports Server (NTRS)

    Gagliano, J. A.; Stratigos, J. A.; Forsythe, R. E.; Schuchardt, J. M.; Welch, J. M.; Gallentine, D. O.

    1980-01-01

    A radiometer design suitable for use in NASA's WB-57F aircraft to collect data from severe storm regions was developed. The design recommended was a 94/183 GHz scanning radiometer with 3 IF channels on either side of the 183.3 GHz water vapor line and a single IF channel for a low loss atmospheric window channel at 94 GHz. The development and construction of the 94/183 GHz scanning radiometer known as the Advanced Microwave Moisture Sounder (AMMS) is presented. The radiometer scans the scene below the aircraft over an angle of + or - 45 degrees with the beamwidth of the scene viewed of approximately 2 degrees at 94 GHz and 1 degree at 183 GHz. The AMMS data collection system consists of a microcomputer used to store the radiometer data on the flight cartridge recorder, operate the stepper motor driven scanner, and collect housekeeping data such as thermistor temperature readings and aircraft time code.

  11. 146-GHz millimeter-wave radio-over-fiber photonic wireless transmission system.

    PubMed

    Fice, M J; Rouvalis, E; van Dijk, F; Accard, A; Lelarge, F; Renaud, C C; Carpintero, G; Seeds, A J

    2012-01-16

    We report the experimental implementation of a wireless transmission system with a 146-GHz carrier frequency which is generated by optical heterodyning the two modes from a monolithically integrated quantum dash dual-DFB source. The monolithic structure of the device and the inherent low noise characteristics of quantum dash gain material allow us to demonstrate the transmission of a 1 Gbps ON-OFF keyed data signal with the two wavelengths in a free-running state at 146-GHz carrier wave frequency. The tuning range of the device fully covers the W-band (75 - 110 GHz) and the F-band (90 - 140 GHz).

  12. Electromagnetic radiation from ingested sources in the human intestine between 150 MHz and 1.2 GHz.

    PubMed

    Chirwa, Lawrence C; Hammond, Paul A; Roy, Scott; Cumming, David R S

    2003-04-01

    The conventional method of diagnosing disorders of the human gastro-intestinal (GI) tract is by sensors embedded in cannulae that are inserted through the anus, mouth, or nose. However, these cannulae cause significant patient discomfort and cannot be used in the small intestine. As a result, there is considerable ongoing work in developing wireless sensors that can be used in the small intestine. The radiation characteristics of sources in the GI tract cannot be readily calculated due to the complexity of the human body and its composite tissues, each with different electrical characteristics. In addition, the compact antennas used are electrically small, making them inefficient radiators. This paper presents radiation characteristics for sources in the GI tract that should allow for the optimum design of more efficient telemetry systems. The characteristics are determined using the finite-difference time-domain method with a realistic antenna model on an established fully segmented human body model. Radiation intensity outside the body was found to have a Gaussian-form relationship with frequency. Maximum radiation occurs between 450 and 900 MHz. The gut region was found generally to inhibit vertically polarized electric fields more than horizontally polarized fields.

  13. Propagation effects on satellite systems at frequencies below 10 GHz: A handbook for satellite systems design

    NASA Astrophysics Data System (ADS)

    Flock, Warren L.

    1987-12-01

    Frequencies below 10 GHz continue to be used for a large portion of satellite service, and new applications, including mobile satellite service and the global positioning system, use frequencies below 10 GHz. As frequency decreases below 10 GHz, attenuation due to precipitation and gases decreases and ionospheric effects increase. Thus the ionosphere, which can be largely neglected above 10 GHz, receives major attention. Although attenuation and depolarization due to rain are less severe below 10 GHz than above, they are nevertheless still important and constitute another major topic. The handbook emphasizes the propagation effects on satellite communications but material that is pertinent to radio navigation and positioning systems and deep-space telecommunications is included as well. Chapter 1 through 7 describe the various propagation impairments, and Chapter 9 is devoted to the estimation or calculation of the magnitudes of these effects for use in system design. Chapter 10 covers link power budget equations and the role of propagation effects in these equations. Chapter 8 deals with the complex subject of interference between space and terrestrial systems.

  14. Propagation effects on satellite systems at frequencies below 10 GHz: A handbook for satellite systems design

    NASA Technical Reports Server (NTRS)

    Flock, Warren L.

    1987-01-01

    Frequencies below 10 GHz continue to be used for a large portion of satellite service, and new applications, including mobile satellite service and the global positioning system, use frequencies below 10 GHz. As frequency decreases below 10 GHz, attenuation due to precipitation and gases decreases and ionospheric effects increase. Thus the ionosphere, which can be largely neglected above 10 GHz, receives major attention. Although attenuation and depolarization due to rain are less severe below 10 GHz than above, they are nevertheless still important and constitute another major topic. The handbook emphasizes the propagation effects on satellite communications but material that is pertinent to radio navigation and positioning systems and deep-space telecommunications is included as well. Chapter 1 through 7 describe the various propagation impairments, and Chapter 9 is devoted to the estimation or calculation of the magnitudes of these effects for use in system design. Chapter 10 covers link power budget equations and the role of propagation effects in these equations. Chapter 8 deals with the complex subject of interference between space and terrestrial systems.

  15. Market capture by 30/20 GHz satellite systems. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Gamble, R. B.; Saporta, L.

    1981-01-01

    Demand for 30/20 GHz satellite systems over the next two decades is projected. Topics include a profile of the communications market, switched, dedicated, and packet transmission modes, deferred and real-time traffic, quality and reliability considerations, the capacity of competing transmission media, and scenarios for the growth and development of 30/20 GHz satellite communications.

  16. A Compact 600 GHz Electronically Tunable Vector Measurement System for Submillimeter Wave Imaging

    NASA Technical Reports Server (NTRS)

    Dengler, Robert; Maiwald, Frank; Siegel, Peter H.

    2006-01-01

    The design of a complete vector measurement system being tested over 560-635 GHz is presented. The topics include: 1) Current State-of-the-Art in Vector Measurements; 2) Submillimeter Active Imaging Requirements; 3) 600 GHz Vector Measurement System; 4) 450 MHz IF Signal; 5) 450 MHz IF signal @ 1 kHz Res. BW; 6) 450 MHz IF Signal Mixed with Shifted 450 MHz Reference Signal; 7) Reference Signal Offset Generator; 8) Cavity Bandpass Filter; 9) Miniature Multistage Helical Filter; 10) X36 450 MHz Multiplier; 11) 600 GHz Test Setup; 12) 600 GHz Transmit Module; 13) 600 GHz Receive Module; 14) Performance Tests: Amplitude Stability & Dynamic Range; 15) Performance Tests: Phase Stability; 16) Stability at Imaging Bandwidths; 17) Phase Measurement Verification; and 18) The Next Step: Imaging.

  17. Demonstrations of 10 and 40 Gbps upstream transmissions using 1.2 GHz RSOA-based ONU in long-reach access networks

    NASA Astrophysics Data System (ADS)

    Yeh, C. H.; Chow, C. W.; Wu, Y. F.; Chen, H. Y.

    2012-03-01

    Carrier-distributed long-reach passive optical network (LR-PON) is a promising candidate for future access networks. In this work, we analyze and compare the 4 × 2.5 Gb/s and 4 × 10 Gb/s upstream traffics in a carrier-distributed LR-PON using four wavelength-multiplexed 2.5 Gb/s on-off keying (OOK) and 10 Gb/s optical orthogonal frequency division multiplexing-quadrature amplitude modulation (OFDM-QAM) signals. Four commercial 1.2 GHz bandwidth reflective semiconductor optical amplifiers (RSOAs) are used in each optical networking unit (ONU) for the generation of the upstream signal. Due to the limited bandwidth of the RSOA, only up to 2.5 Gb/s upstream OOK signal can be generated. However, by using the spectral efficient modulation, such as OFDM-QAM, 10 Gb/s data rate can be achieved. 20, 50 and 75 km fiber transmissions are also compared using the two different kinds of modulation respectively.

  18. Inter-spin distance determination using L-band (1-2 GHz) non-adiabatic rapid sweep electron paramagnetic resonance (NARS EPR)

    PubMed Central

    Kittell, Aaron W.; Hustedt, Eric J.; Hyde, James S.

    2014-01-01

    Site-directed spin-labeling electron paramagnetic resonance (SDSL EPR) provides insight into the local structure and motion of a spin probe strategically attached to a molecule. When a second spin is introduced to the system, macromolecular information can be obtained through measurement of inter-spin distances either by continuous wave (CW) or pulsed electron double resonance (ELDOR) techniques. If both methodologies are considered, inter-spin distances of 8 to 80 Å can be experimentally determined. However, there exists a region at the upper limit of the conventional X-band (9.5 GHz) CW technique and the lower limit of the four-pulse double electron-electron resonance (DEER) experiment where neither method is particularly reliable. The work presented here utilizes L-band (1.9 GHz) in combination with non-adiabatic rapid sweep (NARS) EPR to address this opportunity by increasing the upper limit of the CW technique. Because L-band linewidths are three to seven times narrower than those at X-band, dipolar broadenings that are small relative to the X-band inhomogeneous linewidth become observable, but the signal loss due to the frequency dependence of the Boltzmann factor, has made L-band especially challenging. NARS has been shown to increase sensitivity by a factor of five, and overcomes much of this loss, making L-band distance determination more feasible [1]. Two different systems are presented and distances of 18–30 Å have been experimentally determined at physiologically relevant temperatures. Measurements are in excellent agreement with a helical model and values determined by DEER. PMID:22750251

  19. The design and evaluation of a 5.8 ghz laptop-based radar system

    NASA Astrophysics Data System (ADS)

    Teng, Kevin Chi-Ming

    This project involves design and analysis of a 5.8 GHz laptop-based radar system. The radar system measures Doppler, ranging and forming Synthetic Aperture Radar (SAR) images utilizing Matlab software provided from MIT Open Courseware and performs data acquisition and signal processing. The main purpose of this work is to bring new perspective to the existing radar project by increasing the ISM band frequency from 2.4 GHz to 5.8 GHz and to carry out a series of experiments on the implementation of the radar kit. Demonstrating the radar at higher operating frequency is capable of providing accurate data results in Doppler, ranging and SAR images.

  20. The 4.8 GHz LHC Schottky pick-up system

    SciTech Connect

    Caspers, Fritz; Jimenez, Jose Miguel; Jones, Rhodri Owain; Kroyer, Tom; Vuitton, Christophe; Hamerla, Timothy W.; Jansson, Andreas; Misek, Joel; Pasquinelli, Ralph J.; Seifrid, Peter; Sun, Ding; /Fermilab

    2007-06-01

    The LHC Schottky observation system is based on traveling wave type high sensitivity pickup structures operating at 4.8 GHz. The choice of the structure and operating frequency is driven by the demanding LHC impedance requirements, where very low impedance is required below 2 GHz, and good sensitivity at the selected band at 4.8 GHz. A sophisticated filtering and triple down -mixing signal processing chain has been designed and implemented in order to achieve the specified 100 dB instantaneous dynamic range without range switching. Detailed design aspects for the complete systems and test results without beam are presented and discussed.

  1. The 30/20 GHz fixed communications systems service demand assessment. Volume 3: Appendices

    NASA Technical Reports Server (NTRS)

    Gabriszeski, T.; Reiner, P.; Rogers, J.; Terbo, W.

    1979-01-01

    The market analysis of voice, video, and data 18/30 GHz communications systems services and satellite transmission services is discussed. Detail calculations, computer displays of traffic, survey questionnaires, and detailed service forecasts are presented.

  2. Concepts for 18/30 GHz satellite communication system, volume 1

    NASA Technical Reports Server (NTRS)

    Jorasch, R.; Baker, M.; Davies, R.; Cuccia, L.; Mitchell, C.

    1979-01-01

    Concepts for 18/30 GHz satellite communication systems are presented. Major terminal trunking as well as direct-to-user configurations were evaluated. Critical technologies in support of millimeter wave satellite communications were determined.

  3. The 30/20 GHz flight experiment system, phase 2. Volume 2: Experiment system description

    NASA Technical Reports Server (NTRS)

    Bronstein, L.; Kawamoto, Y.; Ribarich, J. J.; Scope, J. R.; Forman, B. J.; Bergman, S. G.; Reisenfeld, S.

    1981-01-01

    A detailed technical description of the 30/20 GHz flight experiment system is presented. The overall communication system is described with performance analyses, communication operations, and experiment plans. Hardware descriptions of the payload are given with the tradeoff studies that led to the final design. The spacecraft bus which carries the payload is discussed and its interface with the launch vehicle system is described. Finally, the hardwares and the operations of the terrestrial segment are presented.

  4. The 18/30 GHz fixed communications system service demand assessment. Volume 2: Main text

    NASA Technical Reports Server (NTRS)

    Gabriszeski, T.; Reiner, P.; Rogers, J.; Terbo, W.

    1979-01-01

    The total demand for communications services, and satellite transmission services at the 4/6 GHz, 12/14 GHz, and 18/30 GHz frequencies is assessed. The services are voice, video, and data services. Traffic demand, by service, is distributed by geographical regions, population density, and distance between serving points. Further distribution of traffic is made among four major end user groups: business, government, institutions and private individuals. A traffic demand analysis is performed on a typical metropolitan city to examine service distribution trends. The projected cost of C and Ku band satellite systems are compared on an individual service basis to projected terrestrial rates. Separation of traffic between transmission systems, including 18/30 GHz systems, is based on cost, user, and technical considerations.

  5. High-Frequency Wireless Communications System: 2.45-GHz Front-End Circuit and System Integration

    ERIC Educational Resources Information Center

    Chen, M.-H.; Huang, M.-C.; Ting, Y.-C.; Chen, H.-H.; Li, T.-L.

    2010-01-01

    In this article, a course on high-frequency wireless communications systems is presented. With the 145-MHz baseband subsystem available from a prerequisite course, the present course emphasizes the design and implementation of the 2.45-GHz front-end subsystem as well as system integration issues. In this curriculum, the 2.45-GHz front-end…

  6. Design of a 300 GHz Band TWT with a Folded Waveguide Fabricated by Microelectromechanical Systems

    NASA Astrophysics Data System (ADS)

    Tsutaki, Kunio; Neo, Yoichiro; Mimura, Hidenori; Masuda, Norio; Yoshida, Mitsuru

    2016-08-01

    For future broadband wireless links, we have designed a 300 GHz band traveling wave tube (TWT) with a folded waveguide fabricated by microelectromechanical systems (MEMS). The TWT operates at a beam voltage of 12 kV and a beam current of 8.3 mA. The classical large signal simulation code predicts the output power greater than 1 W and gain larger than 20 dB over the bandwidth from 280 to 300 GHz.

  7. The 30/20 GHz flight experiment system, phase 2. Volume 4: Experiment system development plan

    NASA Astrophysics Data System (ADS)

    Bronstein, L.; Kawamoto, Y.; Riberich, J. J.; Scope, J. R.; Forman, B. J.; Bergman, S. G.; Reisenfeld, S.

    1981-07-01

    The development plan for the 30/20 GHz flight experiment system is presented. A master program schedule with detailed development plans for each subsystem is planned with careful attention given to how technology items to ensure a minimal risk. The work breakdown structure shows the organization of the program management with detailed task definitions. The ROM costs based on the development plan are also given.

  8. The 30/20 GHz flight experiment system, phase 2. Volume 4: Experiment system development plan

    NASA Technical Reports Server (NTRS)

    Bronstein, L.; Kawamoto, Y.; Riberich, J. J.; Scope, J. R.; Forman, B. J.; Bergman, S. G.; Reisenfeld, S.

    1981-01-01

    The development plan for the 30/20 GHz flight experiment system is presented. A master program schedule with detailed development plans for each subsystem is planned with careful attention given to how technology items to ensure a minimal risk. The work breakdown structure shows the organization of the program management with detailed task definitions. The ROM costs based on the development plan are also given.

  9. Magnetic dimers and trimers in the disordered S =3/2 spin system BaTi1/2Mn1/2O3

    NASA Astrophysics Data System (ADS)

    Garcia, F. A.; Kaneko, U. F.; Granado, E.; Sichelschmidt, J.; Hölzel, M.; Duque, J. G. S.; Nunes, C. A. J.; Amaral, R. P.; Marques-Ferreira, P.; Lora-Serrano, R.

    2015-06-01

    We report a structural-magnetic investigation by x-ray absorption spectroscopy (XAS), neutron diffraction, dc susceptibility (χdc), and electron spin resonance (ESR) of the 12R-type perovskite BaTi1/2Mn1/2O3 . Our structural analysis by neutron diffraction supports the existence of structural trimers with chemically disordered occupancy of Mn4+ and Ti4+ ions, with the valence of the Mn ions confirmed by the XAS measurements. The magnetic properties are explored by combining dc-susceptibility and X -band (9.4 GHz) electron spin resonance, both in the temperature interval of 2 ≤T ≤1000 K. A scenario is presented under which the magnetism is explained by considering magnetic dimers and trimers, with exchange constants Ja/kB=200 (2 ) K and Jb/kB=130 (10 ) K, and orphan spins. Thus, BaTi1/2Mn1/2O3 is proposed as a rare case of an intrinsically disordered S =3/2 spin gap system with a frustrated ground state.

  10. A novel ultra-wideband 80 GHz FMCW radar system for contactless monitoring of vital signs.

    PubMed

    Wang, Siying; Pohl, Antje; Jaeschke, Timo; Czaplik, Michael; Köny, Marcus; Leonhardt, Steffen; Pohl, Nils

    2015-01-01

    In this paper an ultra-wideband 80 GHz FMCW-radar system for contactless monitoring of respiration and heart rate is investigated and compared to a standard monitoring system with ECG and CO(2) measurements as reference. The novel FMCW-radar enables the detection of the physiological displacement of the skin surface with submillimeter accuracy. This high accuracy is achieved with a large bandwidth of 10 GHz and the combination of intermediate frequency and phase evaluation. This concept is validated with a radar system simulation and experimental measurements are performed with different radar sensor positions and orientations.

  11. A novel ultra-wideband 80 GHz FMCW radar system for contactless monitoring of vital signs.

    PubMed

    Wang, Siying; Pohl, Antje; Jaeschke, Timo; Czaplik, Michael; Köny, Marcus; Leonhardt, Steffen; Pohl, Nils

    2015-01-01

    In this paper an ultra-wideband 80 GHz FMCW-radar system for contactless monitoring of respiration and heart rate is investigated and compared to a standard monitoring system with ECG and CO(2) measurements as reference. The novel FMCW-radar enables the detection of the physiological displacement of the skin surface with submillimeter accuracy. This high accuracy is achieved with a large bandwidth of 10 GHz and the combination of intermediate frequency and phase evaluation. This concept is validated with a radar system simulation and experimental measurements are performed with different radar sensor positions and orientations. PMID:26737409

  12. The 30/20 GHz fixed communications systems service demand assessment. Volume 3: Annex

    NASA Technical Reports Server (NTRS)

    Gamble, R. B.; Seltzer, H. R.; Speter, K. M.; Westheimer, M.

    1979-01-01

    A review of studies forecasting the communication market in the United States is given. The applicability of these forecasts to assessment of demand for the 30/20 GHz fixed communications system is analyzed. Costs for the 30/20 satellite trunking systems are presented and compared with the cost of terrestrial communications.

  13. Market capture by 30/20 GHz satellite systems, volume 2

    NASA Technical Reports Server (NTRS)

    Gamble, R. B.; Saporta, L.

    1981-01-01

    Results of a telecommunications demand study are presented. Forecasts of demand for 30/20 GHz satellite systems, and the expected build up of traffic on these systems are given as a function of time for each of several operational scenarios.

  14. Status of KSTAR 170 GHz, 1 MW Electron Cyclotron Heating and Current Drive System

    SciTech Connect

    Joung, M.; Bae, Y. S.; Jeong, J. H.; Park, S.; Kim, H. J.; Yang, H. L.; Park, H.; Cho, M. H.; Namkung, W.; Hosea, J.; Ellis, R.; Sakamoto, K.; Kajiwara, K.; Doane, J.

    2011-12-23

    A 170 GHz Electron Cyclotron Heating and Current Drive (ECH/CD) system on KSTAR is designed to launch total 2.4 MW of power for up to 300 sec into the plasma. At present the first 1 MW ECH/CD system is under installation and commissioning for 2011 KSTAR campaign. The 170 GHz, 1 MW, 300 sec gyrotron and the matching optics unit (MOU) will be provided from JAEA under collaboration between NFRI and JAEA. The transmission line consists of MOU and 70 m long 63.5 mm ID corrugated waveguides with the eight miter bends. The 1 MW, 10 sec launcher is developed based on the existing two-mirror front-end launcher in collaboration with Princeton Plasma Physics Laboratory and Pohang University of Science and Technology, and is installed on the low field side in the KSTAR equatorial plane. The mirror pivot is located at 30 cm below from the equatorial plane. 3.6 MVA power supply system is manufactured and now is under commissioning to meet the triode gun operation of JAEA gyrotron. The power supply consists of 66 kV/55 A cathode power supply, mode-anode system, and 50 kV/160 mA body power supply. In this paper, the current status of KSTAR 170 GHz, 1 MW ECH/CD system will be presented as well as the experimental plan utilizing 170 GHz new ECH/CD system.

  15. Wireless Channel Characterization in the 5 GHz Microwave Landing System Extension Band for Airport Surface Areas

    NASA Technical Reports Server (NTRS)

    Matolak, David W.

    2007-01-01

    In this project final report, entitled "Wireless Channel Characterization in the 5 GHz Microwave Landing System Extension Band for Airport Surface Areas," we provide a detailed description and model representation for the wireless channel in the airport surface environment in this band. In this executive summary, we review report contents, describe the achieved objectives and major findings, and highlight significant conclusions and recommendations.

  16. Physics Design of a 28 GHz Electron Heating System for the National Spherical Torus Experiment Upgrade

    SciTech Connect

    2013-07-09

    A megawatt-level, 28 GHz electron heating system is being designed to support non-inductive (NI) plasma current (I{sub p}) start-up and local heating and current drive (CD) in H-mode discharges in the National Spherical Torus Experiment Upgrade (NSTX-U). The development of fully NI I{sub p} start-up and ramp-up is an important goal of the NSTX-U research program. 28 GHz electron cyclotron (EC) heating is predicted to rapidly increase the central electron temperature (T{sub e}(0)) of low density NI plasmas generated by Coaxial Helicity Injection (CHI). The increased T{sub e}(0) will significantly reduce the Ip decay rate of CHI plasmas, allowing the coupling of fast wave heating and neutral beam injection. Also 28 GHz electron Bernstein wave (EBW) heating and CD can be used during the I{sub p} flat top in NSTX-U discharges when the plasma is overdense. Ray tracing and Fokker-Planck numerical simulation codes have been used to model EC and EBW heating and CD in NSTX-U. This paper presents a pre-conceptual design for the 28 GHz heating system and some of the results from the numerical simulations.

  17. Physics design of a 28 GHz electron heating system for the National Spherical Torus experiment upgrade

    SciTech Connect

    Taylor, G.; Bertelli, N.; Ellis, R. A.; Gerhardt, S. P.; Hosea, J. C.; Poli, F.; Harvey, R. W.; Raman, R.; Smirnov, A. P.

    2014-02-12

    A megawatt-level, 28 GHz electron heating system is being designed to support non-inductive (NI) plasma current (I{sub p}) start-up and local heating and current drive (CD) in H-mode discharges in the National Spherical Torus Experiment Upgrade (NSTX-U). The development of fully NI I{sub p} start-up and ramp-up is an important goal of the NSTXU research program. 28 GHz electron cyclotron (EC) heating is predicted to rapidly increase the central electron temperature (T{sub e}(0)) of low density NI plasmas generated by Coaxial Helicity Injection (CHI). The increased T{sub e}(0) will significantly reduce the I{sub p} decay rate of CHI plasmas, allowing the coupling of fast wave heating and neutral beam injection. Also 28 GHz electron Bernstein wave (EBW) heating and CD can be used during the I{sub p} flat top in NSTX-U discharges when the plasma is overdense. Ray tracing and Fokker-Planck numerical simulation codes have been used to model EC and EBW heating and CD in NSTX-U. This paper presents a pre-conceptual design for the 28 GHz heating system and some of the results from the numerical simulations.

  18. Physics design of a 28 GHz electron heating system for the National Spherical Torus experiment upgrade

    NASA Astrophysics Data System (ADS)

    Taylor, G.; Bertelli, N.; Ellis, R. A.; Gerhardt, S. P.; Harvey, R. W.; Hosea, J. C.; Poli, F.; Raman, R.; Smirnov, A. P.

    2014-02-01

    A megawatt-level, 28 GHz electron heating system is being designed to support non-inductive (NI) plasma current (Ip) start-up and local heating and current drive (CD) in H-mode discharges in the National Spherical Torus Experiment Upgrade (NSTX-U). The development of fully NI Ip start-up and ramp-up is an important goal of the NSTXU research program. 28 GHz electron cyclotron (EC) heating is predicted to rapidly increase the central electron temperature (Te(0)) of low density NI plasmas generated by Coaxial Helicity Injection (CHI). The increased Te(0) will significantly reduce the Ip decay rate of CHI plasmas, allowing the coupling of fast wave heating and neutral beam injection. Also 28 GHz electron Bernstein wave (EBW) heating and CD can be used during the Ip flat top in NSTX-U discharges when the plasma is overdense. Ray tracing and Fokker-Planck numerical simulation codes have been used to model EC and EBW heating and CD in NSTX-U. This paper presents a pre-conceptual design for the 28 GHz heating system and some of the results from the numerical simulations.

  19. Customer premise service study for 30/20 GHz satellite system

    NASA Technical Reports Server (NTRS)

    Milton, R. T.; Ross, D. P.; Harcar, A. R.; Freedenberg, P.; Schoen, D.

    1983-01-01

    Satellite systems in which the space segment operates in the 30/20 GHz frequency band are defined and compared as to their potential for providing various types of communications services to customer premises and the economic and technical feasibility of doing so. Technical tasks performed include: market postulation, definition of the ground segment, definition of the space segment, definition of the integrated satellite system, service costs for satellite systems, sensitivity analysis, and critical technology. Based on an analysis of market data, a sufficiently large market for services is projected so as to make the system economically viable. A large market, and hence a high capacity satellite system, is found to be necessary to minimize service costs, i.e., economy of scale is found to hold. The wide bandwidth expected to be available in the 30/20 GHz band, along with frequency reuse which further increases the effective system bandwidth, makes possible the high capacity system. Extensive ground networking is required in most systems to both connect users into the system and to interconnect Earth stations to provide spatial diversity. Earth station spatial diversity is found to be a cost effective means of compensating the large fading encountered in the 30/20 GHz operating band.

  20. Concepts for 18/30 GHz satellite communication system study. Executive summary

    NASA Technical Reports Server (NTRS)

    Baker, M.; Davies, R.; Cuccia, L.; Mitchell, C.

    1979-01-01

    An examination of a multiplicity of interconnected parameters ranging from specific technology details to total system economic costs for satellite communication systems at the 18/30 GHz transmission bands are presented. It was determined that K sub A band systems can incur a small communications outage during very heavy rainfall periods and that reducing the outage to zero would lead to prohibitive system costs. On the other hand, the economics of scale, ie, one spacecraft accommodating 2.5 GHz of bandwidth coupled with multiple beam frequency reuse, leads to very low costs for those users who can tolerate the 5 to 50 hours per year of downtime. A multiple frequency band satellite network can provide the ultimate optimized match to the consumer performance/economics demands.

  1. Baseband processor development/test performance for 30/20 GHz SS-TDMA communication system

    NASA Technical Reports Server (NTRS)

    Brown, L.; Sabourin, D.; Attwood, S.

    1984-01-01

    The baseband processor (BBP) development for the 30/20 GHz Satellite Communication System is described. The SS-TDMA concept for future satellite communications is reviewed, describing the overall system, the satellite payload, and the frequency plan. A brief general description of the BBP is given, and the proof-of-concept model of the BBP is summarized. Key technologies and custom LSI developed for the BBP are listed. Finally, key technology developments and test data are reported for the BBP.

  2. Large scale in vitro experiment system for 2 GHz exposure.

    PubMed

    Iyama, Takahiro; Ebara, Hidetoshi; Tarusawa, Yoshiaki; Uebayashi, Shinji; Sekijima, Masaru; Nojima, Toshio; Miyakoshi, Junji

    2004-12-01

    A beam formed radiofrequency (RF) exposure-incubator employing a horn antenna, a dielectric lens, and a culture case in an anechoic chamber is developed for large scale in vitro studies. The combination of an open type RF exposure source and a culture case through which RF is transmitted realizes a uniform electric field (+/-1.5 dB) in a 300 x 300 mm area that accommodates 49 35 mm diameter culture dishes. This large culture dish area enables simultaneous RF exposure of a large number of cells or various cell lines. The RF exposure source operates at 2142.5 MHz corresponding to the middle frequency of the downlink band of the International Mobile Telecommunication 2000 (IMT-2000) cellular system. The dielectric lens, which has a gain of 7 dB, focuses RF energy in the direction of the culture case and provides a uniform electric field. The culture case is sealed and connected to the main unit for environmental control, located outside the anechoic chamber, via ducts. The temperature at the center of the tray, which contains the culture dishes in the culture room, is maintained at 37.0 +/- 0.2 degrees C by air circulation. In addition, the appropriate CO2 density and humidity supplied to the culture case realizes stable long-term culture conditions. Specific absorption rate (SAR) dosimetry is performed using an electric field measurement technique and the Finite Difference Time Domain (FDTD) calculation method. The results indicate that the mean SAR of the culture fluid at the bottom of the 49 (7 x 7 array) culture dishes used in the in vitro experiments is 0.175 W/kg for an antenna input power of 1 W and the standard deviation of the SAR distribution is 59%. When only 25 culture dishes (5 x 5 array) are evaluated, the mean SAR is 0.139 W/kg for the same antenna input power and the standard deviation of the SAR distribution is 47%. The proliferation of the H4 cell line in 72 h in a pair of RF exposure-incubators reveals that the culture conditions are equivalent to

  3. Defining Mesoscale Convective Systems by Their 85-GHz Ice-Scattering Signatures.

    NASA Astrophysics Data System (ADS)

    Mohr, Karen I.; Zipser, Edward J.

    1996-06-01

    Mesoseale Convective systems are composed of numerous deep convective cells with varying amounts of large, convectively produced ice particles aloft. The magnitude of the 85-GHz brightness temperature depression resulting from scattering by large ice is believed to be related to the convective intensity and to the magnitude of the convective fluxes through a deep layer. The 85-GHz ice-scattering signature can be used to map the distribution of organized mesoscale regions of convectively produced large ice particles. The purpose of this article is to demonstrate the usefulness of the 85-GHz ice-scattering signature for describing the frequency, convective intensity, and geographic distribution of mesoscale convective systems.Objective criteria were developed to identify mesoscale convective systems from raw data from January, April, July, and October 1993. To minimize the effects of background contamination and to ensure that bounded areas contained convective elements, a "mesoscale convective system" was defined as an area bounded by 250 K of at least 2000 km2 of 85 GHz, with a minimum brightness temperature 225 K. Mesoscale convective systems extracted from the raw data were sorted and plotted by their areas and by their minimum brightness temperatures. Four area and brightness temperature classes were used to account for a spectrum of organized convection ranging from small to very large and from less organized to highly organized. The populations of mesoscale convective systems by this study's definition were consistent with infrared-based climatologies and large-scale seasonal dynamics. Land/water differences were high-lighted by the plots of minimum brightness temperature. Most of the intense mesoscale convective systems were located on or near land and seemed to occur most frequently in particular areas in North America, South America, Africa, and India.

  4. Standoff concealed weapon detection using a 350 GHz radar imaging system

    SciTech Connect

    Sheen, David M.; Hall, Thomas E.; Severtsen, Ronald H.; McMakin, Douglas L.; Hatchell, Brian K.; Valdez, Patrick LJ

    2010-04-01

    The Pacific Northwest National Laboratory is currently developing a 350 GHz, active, wideband, three-dimensional, radar imaging system to evaluate the feasibility of active sub-mm imaging for standoff concealed weapon detection. The prototype radar imaging system is based on a wideband, heterodyne, frequency-multiplier-based transceiver system coupled to a quasi-optical focusing system and high-speed rotating conical scanner. The wideband operation of this system provides accurate ranging information, and the images obtained are fully three-dimensional. Recent improvements to the system include increased imaging speed using improved balancing techniques, wider bandwidth, and image display techniques.

  5. Propagation Characteristics in an Underground Shopping Area for 5GHz-band Wireless Access Systems

    NASA Astrophysics Data System (ADS)

    Itokawa, Kiyohiko; Kita, Naoki; Sato, Akio; Matsue, Hideaki; Mori, Daisuke; Watanabe, Hironobu

    5-GHz band wireless access systems, such as the RLAN (Radio Local Area Network) system of IEEE802.11a, HiperLAN/2, HiSWANa and AWA, are developed and provide transmission rates over 20 Mbps for indoor use. Those 5-GHz access systems are expected to extend service areas from the office to the so-called “hot-spot" in public areas. Underground shopping malls are one of the anticipated service areas for such a nomadic wireless access service. Broadband propagation characteristics are required for radio zone design in an underground mall environment despite previous results obtained by narrow band measurements. This paper presents results of an experimental study on the propagation characteristics for broadband wireless access systems in an underground mall environment. First, broadband propagation path loss is measured and formulated considering human body shadowing. A ray trace simulation is used to clarify the basic propagation mechanism in such a closed environment. Next, a distance dependency of the delay spread during a crowded time period, rush hour, is found to be at most 65 nsec, which is under the permitted maximum value of the present 5-GHz systems. Finally, above propagation characteristics support the result of transmission test carried out by using AWA equipment.

  6. A Novel 24 Ghz One-Shot Rapid and Portable Microwave Imaging System (Camera)

    NASA Technical Reports Server (NTRS)

    Ghasr, M.T.; Abou-Khousa, M.A.; Kharkovsky, S.; Zoughi, R.; Pommerenke, D.

    2008-01-01

    A novel 2D microwave imaging system at 24 GHz based on MST techniques. Enhanced sensitivity and SNR by utilizing PIN diode-loaded resonant slots. Specific slot and array design to increase transmission and reduce cross -coupling. Real-time imaging at a rate in excess of 30 images per second. Reflection as well transmission mode capabilities. Utility and application for electric field distribution mapping related to: Nondestructive Testing (NDT), imaging applications (SAR, Holography), and antenna pattern measurements.

  7. Feasibility of an EHF (40/50 GHz) mobile satellite system using highly inclined orbits

    NASA Technical Reports Server (NTRS)

    Falciasecca, G.; Paraboni, A.; Ruggieri, M.; Valdoni, F.; Vatalaro, F.

    1990-01-01

    The pan-European L-band terrestrial cellular system (GSM) is expected to provide service to more than 10 million users by the year 2000. Discussed here is the feasibility of a new satellite system at EHF (40/50 GHz) to complement, at the end of the decade, the GSM system or its decendants in order to provide additional services at 64 kbits/s, or so. The main system aspects, channel characteristics, technology issues, and both on-board and earth terminal architectures are highlighted. Based on the performed analyses, a proposal was addressed to the Italian Space Agency (ASI), aimed at the implementation of a national plan.

  8. The 30/20 GHz demonstration system SSUS-D/BSE

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The systems consisting of a 30/20 GHz communication satellite featuring a multiple fixed beam and scanning beam antenna, SS-TDMA, onboard processing and high power TWT's and IMPATT amplifiers, a trunking space-diversity Earth station, a customer premise system (CPS) portable Earth station and a Master Control Station. Hardware, software and personnel are included to build and launch one satellite and to carry on a two year experimentation and demonstration period of advanced Ka-band systems concepts and technology. Included are first level plans identifying all tasks, a schedule for system development and an assessment of critical technology and risk and a preliminary experiments plan.

  9. The 94 GHz Cloud Radar System on a NASA ER-2 Aircraft

    NASA Technical Reports Server (NTRS)

    Li, Lihua; Heymsfield, Gerald M.; Racette, Paul E.; Tian, Lin; Zenker, Ed

    2003-01-01

    The 94-GHz (W-band) Cloud Radar System (CRS) has been developed and flown on a NASA ER-2 high-altitude (20 km) aircraft. The CRS is a fully coherent, polarimeteric Doppler radar that is capable of detecting clouds and precipitation from the surface up to the aircraft altitude in the lower stratosphere. The radar is especially well suited for cirrus cloud studies because of its high sensitivity and fine spatial resolution. This paper describes the CRS motivation, instrument design, specifications, calibration, and preliminary data &om NASA s Cirrus Regional Study of Tropical Anvils and Cirrus Layers - Florida Area Cirrus Experiment (CRYSTAL-FACE) field campaign. The unique combination of CRS with other sensors on the ER-2 provides an unprecedented opportunity to study cloud radiative effects on the global energy budget. CRS observations are being used to improve our knowledge of atmospheric scattering and attenuation characteristics at 94 GHz, and to provide datasets for algorithm implementation and validation for the upcoming NASA CloudSat mission that will use a 94-GHz spaceborne cloud radar to provide the first direct global survey of the vertical structure of cloud systems.

  10. Note: Radio frequency surface impedance characterization system for superconducting samples at 7.5 GHz.

    PubMed

    Xiao, B P; Reece, C E; Phillips, H L; Geng, R L; Wang, H; Marhauser, F; Kelley, M J

    2011-05-01

    A radio frequency (RF) surface impedance characterization (SIC) system that uses a novel sapphire-loaded niobium cavity operating at 7.5 GHz has been developed as a tool to measure the RF surface impedance of flat superconducting material samples. The SIC system can presently make direct calorimetric RF surface impedance measurements on the central 0.8 cm(2) area of 5 cm diameter disk samples from 2 to 20 K exposed to RF magnetic fields up to 14 mT. To illustrate system utility, we present first measurement results for a bulk niobium sample. PMID:21639552

  11. A system analysis of the 13.3 GHz scatterometer. [antenna patterns and signal transmission

    NASA Technical Reports Server (NTRS)

    Wang, J. R.

    1977-01-01

    The performance of the 13.3 GHz airborne scatterometer system which is used as a microwave remote sensor to detect moisture content of soil is analyzed with respect to its antenna pattern, the signal flow in the receiver data channels, and the errors in the signal outputs. The operational principle and the sensitivity of the system, as well as data handling are also described. The dielectric property of the terrain surface, as far as the scatterometer is concerned, is contained in the assumed forms of the functional dependence of the backscattering coefficient of the incident angle.

  12. A Compact 600 GHz Electronically Tunable Vector Measurement System for Submillimeter Wave Imaging

    NASA Technical Reports Server (NTRS)

    Dengler, Robert J.; Maiwald, Frank; Siegel, Peter H.

    2006-01-01

    A compact submillimeter wave transmission / reflection measurement system has been demonstrated at 560-635 GHz, with electronic tuning over the entire band. Maximum dynamic range measured at a single frequency is 90 dB (60 dB typical), and phase noise is less than +/- 2(deg). By using a frequency steerable lens at the source output and mixer input, the frequency agility of the system can be used to scan the source and receive beams, resulting in near real-time imaging capability using only a single pixel.

  13. Optical-network-connected multi-channel 96-GHz-band distributed radar system

    NASA Astrophysics Data System (ADS)

    Kanno, Atsushi; Kuri, Toshiaki; Kawanishi, Tetsuya

    2015-05-01

    The millimeter-wave (MMW) radar is a promising candidate for high-precision imaging because of its short wavelength and broad range of available bandwidths. In particular in the frequency range of 92-100 GHz, which is regulated for radiolocation, an atmospheric attenuation coefficient less than 1 dB/km limits the imaging range. Therefore, a combination of MMW radar and distributed antenna system directly connected to optical fiber networks can realize both high-precision imaging and large-area surveillance. In this paper, we demonstrate a multi-channel MMW frequency-modulated continuous-wave distributed radar system connected to an analog radio-over-fiber network.

  14. The 18 and 30 GHz fixed service communications satellite system study. [to determine the cost and performance characteristics

    NASA Technical Reports Server (NTRS)

    Bronstein, L. M.

    1979-01-01

    The use of the 18 and 30 GHz bands for fixed service satellite communications is examined. The cost and performance expected of 18 and 30 GHz hardware is assessed, selected trunking and direct to user concepts are optimized, and the cost of these systems are estimated. The effect of rain attenuation on the technical and economic viability of the system and methods circumventing the problem are discussed. Technology developments are investigated and cost estimates of these developments are presented.

  15. NASA's climate data system primer, version 1.2

    NASA Technical Reports Server (NTRS)

    Closs, James W.; Reph, Mary G.; Olsen, Lola M.

    1989-01-01

    This is a beginner's manual for NASA's Climate Data System (NCDS), an interactive scientific information management system that allows one to locate, access, manipulate, and display climate-research data. Additional information on the use of the system is available from the system itself.

  16. Lewis Investigates Frequency Sharing Between Future NASA Space Systems and Local Multipoint Distribution Systems in the 27-GHz Band

    NASA Technical Reports Server (NTRS)

    1997-01-01

    At the request of the Federal Communications Commission (FCC), the NASA Lewis Research Center undertook an intensive study to examine the feasibility of frequency sharing between future NASA space services and proposed Local Multipoint Distribution Systems (LMDS) in the 25.25- to 27.5-GHz band. This follows NASA's earlier involvement in the FCC's 1994 Negotiated Rule Making Committee which studied frequency sharing between Ka-band Fixed Satellite Services and LMDS in the 27.5- to 29.5-GHz band. LMDS is a terrestrial, cellular, wireless communication service primarily intended to provide television distribution from hub stations located within relatively small cells to fixed subscriber receivers. Some proposed systems, however, also plan to offer interactive services via subscriber-to-hub transmissions. LMDS providers anticipate that their systems will be a cost-effective alternative to cable television systems, especially in urban areas. LMDS proponents have expressed an interest in using frequencies below 27.5 GHz. NASA, however, plans to operate three types of space systems below 27.5 GHz. The H, I, and J follow-on satellites for the Tracking and Data Relay Satellite System (TDRSS), which are planned for launch beginning in 1999, are designed to receive high-data-rate transmissions (up to 800 Mbps) from low-Earth orbiting "user" spacecraft in the 25.25- to 27.5-GHz band. In this case, the potential interference is the aggregate interference from LMDS transmitters (both hubs and subscribers) into the TDRSS tracking receive beams as they sweep over the Earth's surface while tracking lower altitude user spacecraft.

  17. Classical models of the spin 1/2 system

    NASA Astrophysics Data System (ADS)

    Salazar-Lazaro, Carlos H.

    We proposed a Quaternionic mechanical system motivated by the Foucault pendulum as a classical model for the dynamics of the spin ½ system. We showed that this mechanical system contains the dynamics of the spin state of the electron under a uniform magnetic field as it is given by the Schrodinger-Pauli-Equation (SPE). We closed with a characterization of the dynamics of this generalized classical system by showing that it is equivalent with the dynamics of the Schrodinger Pauli Equation as long as the solutions to the generalized classical system are roots of the Lagrangian, that is the condition L = 0 holds.

  18. A 20 GHz low noise, low cost receiver for digital satellite communication system, ground terminal applications

    NASA Technical Reports Server (NTRS)

    Allen, Glen

    1988-01-01

    A 45 month effort for the development of a 20 GHz, low-noise, low-cost receiver for digital, satellite communication system, ground terminal applications is discussed. Six proof-of-concept receivers were built in two lots of three each. Performance was generally consistent between the two lots. Except for overall noise figure, parameters were within or very close to specification. While noise figure was specified as 3.5 dB, typical performance was measured at 3.0 to 5.5 dB, over the full temperature range of minus 30 C to plus 75 C.

  19. More than 100 channel supercontinuum CW optical source with precise 25GHz spacing for 10Gbit/s DWDM systems

    NASA Astrophysics Data System (ADS)

    Wang, Jianping; Nan, Yinbo; Zhou, Xianwei

    2006-01-01

    We experimentally demonstrate the generation of supercontinuum (SC) with a 12.5GHz DFB/EAM ultrashort optical pulse broadened in the high nonlinear fiber (HNLF). Through longitudinal mode-carving of the SC spectrum, a novel multiwavelength continuous wave (CW) optical source with precise 25GHz channel spacing is realized. The bit error rate (BER) curve and eye diagram show that the multiwavelength CW optical source is promising for dense wavelength division multiplexing (DWDM) systems.

  20. Nijmegen Baryon-Baryon Interactions for S = -1, -2 Systems

    NASA Astrophysics Data System (ADS)

    Rijken, Th. A.; Nagels, M. M.; Yamamoto, Y.

    We present and discuss the most recent version of the extended-soft-core (ESC) interactions. The ESC-model describes the nucleon-nucleon (NN), hyperon-nucleon (YN), and hyperon-hyperon (YY), in terms of meson-exchanges using (broken) SUF(3)-symmetry. In this approach to baryon-baryon (BB) the dynamics is derived from (i) one-boson-exchanges (OBE), (ii) two-meson-exchanges (TME), and (iii) meson-pair-exchanges (MPE), (iv) gluon-exchanges, and (v) quark-core effects. In the OBE-sector, a special feature is the importance of the axial-vector meson potentials, and the inclusion of a zero in the scalar- and axial- meson form-factors. Novelties are the inclusion of (a) odderon-exchange, and (b) special pronounced effects of the appearance of forbidden six-quark configurations. With these ingredients, a rather flexible dynamical framework is constructed. Namely, it appeared feasible to keep the parameters of the model in reasonable accordance with the predictions of the 3P0 quark-pair-creation model (QPC). This is the case for the meson- and meson-pair-baryon coupling constants and the F/(F + D)-ratio's as well. The NN, YN, and YY results for this model are rather promising. In particular, we improved the ΛN spin-orbit interaction greatly by the inclusion of (a) the Brown, Downs, and Iddings anti-symmetric spin-orbit potentials, and (b) new corrections to the MPE-potentials. Also, the special quark-core effects provide ample repulsion in the Σ+p(3S1,T = 3/2)- and ΣN(1S0,T = 1/2)-channels. The new version of the ESC-model reported here will be referred to as ESC07 henceforth.

  1. The 60 GHz antenna system analyses for intersatellite links, phase A

    NASA Technical Reports Server (NTRS)

    1984-01-01

    A tradeoff study for 60 GHz antenna systems applicable to an advanced Tracking and Data Acquisition System is also discussed. A conceptual design of a preferred antenna system is also discussed. The tradeoff results for four types of antenna systems are presented: (1) Reflector/fixed feed, (2) Mechanical scan, (3) Electronic scan; and (4) Hybrid mechanical/electronic scan. The 12 candidate antennas were assessed on the basis of a preliminary design and a performance analysis then were scored against 15 weighted parameters. This process resulted in the ranking of the 12 candidates for the two applications, namely, for the geostationary TDAS only with a narrow field of view and for low orbit user satellites with a wide field of view.

  2. A Megawatt-level 28z GHz Heating System For The National Spherical Torus Experiment Upgrade

    SciTech Connect

    Taylor, Gary

    2014-04-01

    The National Spherical Torus Experiment Upgrade (NSTX-U) will operate at axial toroidal fields of < 1 T and plasma currents, Ip < 2 MA. The development of non-inductive (NI) plasmas is a major long-term research goal for NSTX-U. Time dependent numerical simulations of 28 GHz electron cyclotron (EC) heating of low density NI start-up plasmas generated by Coaxial Helicity Injection (CHI) in NSTX-U predict a significant and rapid increase of the central electron temperature (Te(0)) before the plasma becomes overdense. The increased Te(0) will significantly reduce the Ip decay rate of CHI plasmas, allowing the coupling of fast wave heating and neutral beam injection. A megawatt-level, 28 GHz electron heating system is planned for heating NI start-up plasmas in NSTX-U. In addition to EC heating of CHI start-up discharges, this system will be used for electron Bernstein wave (EBW) plasma start-up, and eventually for EBW heating and current drive during the Ip flattop.

  3. A 28 GHz ECH/EBW System for the Proto-MPEX plasma source

    NASA Astrophysics Data System (ADS)

    Bigelow, Tim; Caughman, John; Campbell, Ian; Diem, Stephanie; Dukes, Carl; Goulding, Richard; Killough, Stephen; Rapp, Juergen

    2015-11-01

    The Prototype Materials Plasma Exposure Experiment (Proto-MPEX) is a linear high-intensity RF plasma source that requires plasma electron heating in overdense conditions to provide target parameters in the density and temperature range needed for plasma facing material studies. In Proto-MPEX, a dense helicon plasma is produced by 13.56 MHz RF power and is further heated by 28 GHz microwaves via Electron Bernstein Waves (EBW). A 28 GHz 200 kW cw gyrotron system from earlier experiments at ORNL provides the microwave power and has been successful to date at generating >150 kW in short pulses into a dummy load and >100 kW into the plasma via a 88.9 mm corrugated waveguide system and compact launcher near the plasma edge. For successful coupling via EBW into an overdense plasma, the launcher must be optimized and if possible have adjustable launch angle to maximize the efficiency. Modeling of the EBW coupling has been performed using the GENRAY-C code for the expected plasma profile in order to determine the best beam profile and polarization requirements. A compact HE11 mode waveguide launch with adjustable launch angle has been installed that is tightly coupled to the plasma. The submitted manuscript has been authored by a contractor of the U.S. Government under contract DE-AC05-00OR22725.

  4. A megawatt-level 28 GHz heating system for the National Spherical Torus Experiment Upgrade

    NASA Astrophysics Data System (ADS)

    Taylor, G.; Ellis, R. A.; Fredd, E.; Gerhardt, S. P.; Greenough, N.; Harvey, R. W.; Hosea, J. C.; Parker, R.; Poli, F.; Raman, R.; Shiraiwa, S.; Smirnov, A. P.; Terry, D.; Wallace, G.; Wukitch, S.

    2015-03-01

    The National Spherical Torus Experiment Upgrade (NSTX-U) will operate at axial toroidal fields of ≤ 1 T and plasma currents, Ip ≤ 2 MA. The development of non-inductive (NI) plasmas is a major long-term research goal for NSTX-U. Time dependent numerical simulations of 28 GHz electron cyclotron (EC) heating of low density NI start-up plasmas generated by Coaxial Helicity Injection (CHI) in NSTX-U predict a significant and rapid increase of the central electron temperature (Te(0)) before the plasma becomes overdense. The increased Te(0) will significantly reduce the Ip decay rate of CHI plasmas, allowing the coupling of fast wave heating and neutral beam injection. A megawatt-level, 28 GHz electron heating system is planned for heating NI start-up plasmas in NSTX-U. In addition to EC heating of CHI start-up discharges, this system will be used for electron Bernstein wave (EBW) plasma start-up, and eventually for EBW heating and current drive during the Ip flattop.

  5. A 2-GHz discrete-spectrum waveband-division microscopic imaging system

    NASA Astrophysics Data System (ADS)

    Xing, Fangjian; Chen, Hongwei; Lei, Cheng; Chen, Minghua; Yang, Sigang; Xie, Shizhong

    2015-03-01

    Limited by dispersion-induced pulse overlap, the frame rate of serial time-encoded amplified microscopy is confined to the megahertz range. Replacing the ultra-short mode-locked pulse laser by a multi-wavelength source, based on waveband-division technique, a serial time stretch microscopic imaging system with a line scan rate of in the gigahertz range is proposed and experimentally demonstrated. In this study, we present a surface scanning imaging system with a record line scan rate of 2 GHz and 15 pixels. Using a rectangular spectrum and a sufficiently large wavelength spacing for waveband-division, the resulting 2D image is achieved with good quality. Such a superfast imaging system increases the single-shot temporal resolution towards the sub-nanosecond regime.

  6. 14 CFR Sec. 1-2 - Waivers from this system of accounts and reports.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Waivers from this system of accounts and reports. Sec. 1-2 Section 1-2 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION... AIR CARRIERS General Accounting Provisions Sec. 1-2 Waivers from this system of accounts and...

  7. 14 CFR Sec. 1-2 - Waivers from this system of accounts and reports.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Waivers from this system of accounts and reports. Sec. 1-2 Section 1-2 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION... AIR CARRIERS General Accounting Provisions Sec. 1-2 Waivers from this system of accounts and...

  8. 14 CFR Sec. 1-2 - Waivers from this system of accounts and reports.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Waivers from this system of accounts and reports. Sec. 1-2 Section 1-2 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION... AIR CARRIERS General Accounting Provisions Sec. 1-2 Waivers from this system of accounts and...

  9. 14 CFR Sec. 1-2 - Waivers from this system of accounts and reports.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Waivers from this system of accounts and reports. Sec. 1-2 Section 1-2 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION... AIR CARRIERS General Accounting Provisions Sec. 1-2 Waivers from this system of accounts and...

  10. A 60GHz-Band 3-Dimensional System-in-Package Transmitter Module with Integrated Antenna

    NASA Astrophysics Data System (ADS)

    Suematsu, Noriharu; Yoshida, Satoshi; Tanifuji, Shoichi; Kameda, Suguru; Takagi, Tadashi; Tsubouchi, Kazuo

    A low cost, ultra small Radio Frequency (RF) transceiver module with integrated antenna is one of the key technologies for short range millimeter-wave wireless communication. This paper describes a 60GHz-band transmitter module with integrated dipole antenna. The module consists of three pieces of low-cost organic resin substrate. These substrates are vertically stacked by employing Cu ball bonding 3-dimensional (3-D) system-in-package (SiP) technology and the MMIC's are mounted on each organic substrates by using Au-stud bump bonding (SBB) technique. The planer dipole antenna is fabricated on the top of the stacked organic substrate to avoid the influence of the grounding metal on the base substrate. At 63GHz, maximum actual gain of 6.0dBi is obtained for fabricated planar dipole antenna. The measured radiation patterns are agreed with the electro-magnetic (EM) simulated result, therefore the other RF portion of the 3-D front-end module, such as flip chip mounted IC's on the top surface of the module, does not affect the antenna characteristics. The results show the feasibility of millimeter-wave low cost, ultra small antenna integrated module using stacked organic substrates.

  11. Terahertz MMICs and Antenna-in-Package Technology at 300 GHz for KIOSK Download System

    NASA Astrophysics Data System (ADS)

    Tajima, Takuro; Kosugi, Toshihiko; Song, Ho-Jin; Hamada, Hiroshi; El Moutaouakil, Amine; Sugiyama, Hiroki; Matsuzaki, Hideaki; Yaita, Makoto; Kagami, Osamu

    2016-09-01

    Toward the realization of ultra-fast wireless communications systems, the inherent broad bandwidth of the terahertz (THz) band is attracting attention, especially for short-range instant download applications. In this paper, we present our recent progress on InP-based THz MMICs and packaging techniques based on low-temperature co-fibered ceramic (LTCC) technology. The transmitter MMICs are based on 80-nm InP-based high electron mobility transistors (HEMTs). Using the transmitter packaged in an E-plane split-block waveguide and compact lens receiver packaged in LTCC multilayered substrates, we tested wireless data transmission up to 27 Gbps with the simple amplitude key shifting (ASK) modulation scheme. We also present several THz antenna-in-packaging solutions based on substrate integrated waveguide (SIW) technology. A vertical hollow (VH) SIW was applied to a compact medium-gain SIW antenna and low-loss interconnection integrated in LTCC multi-layer substrates. The size of the LTCC antennas with 15-dBi gain is less than 0.1 cm3. For feeding the antenna, we investigated an LTCC-integrated transition and polyimide transition to LTCC VH SIWs. These transitions exhibit around 1-dB estimated loss at 300 GHz and more than 35 GHz bandwidth with 10-dB return loss. The proposed package solutions make antennas and interconnections easy to integrate in a compact LTCC package with an MMIC chip for practical applications.

  12. A 17 GHz fine pointing closed loop system for a satellite broadcasting antenna

    NASA Astrophysics Data System (ADS)

    Melani, Maurizio

    The system design approach of a fine pointing closed loop system, based on a monopulse tracking of a 17-GHz up-link beacon located within the Italian area, to meet the stringent stability requirements of the elliptical beam antenna of the L-SAT (projected for 1987) is discussed. The characteristics of the dual reflector Gregorian type antenna, the Tracking Receiver, and the Antenna Pointing Subsystem are considered. The verification approach, consisting of a combination of analysis, computer simulations and tests, and the Pointing Error Analysis are described, and the prediction of the Engineering Model in orbit pointing stability is found to be 0.05 deg, as against the required 0.1 deg.

  13. Passively mode-locked 1 GHz MOPA system generating sub-500-fs pulses after external compression

    NASA Astrophysics Data System (ADS)

    Ulm, Thorsten; Harth, Florian; Klehr, Andreas; Erbert, Götz; L'huillier, Johannes

    2012-06-01

    We compared the performance of DQW and TQW edge-emitters in a passively mode-locked 1GHz MOPA system at 1075 nm wavelength. Passive mode-locking is induced by applying a reverse DC voltage to the absorber section. The average power is increased up to 0.9Wby a single-stripe pre-amplifier and a tapered amplifier. After compensation of the quadratic chirp in a grating compressor we achieved a pulse duration of 342 fs. We found that the oscillator gain current and the absorber bias voltage have significant impact on the pulse duration. Both parameters were used to optimize the MOPA system with respect to the shortest pulse length after compression.

  14. Inter-BSs virtual private network for privacy and security enhanced 60 GHz radio-over-fiber system

    NASA Astrophysics Data System (ADS)

    Zhang, Chongfu; Chen, Chen; Zhang, Wei; Jin, Wei; Qiu, Kun; Li, Changchun; Jiang, Ning

    2013-06-01

    A novel inter-basestations (inter-BSs) based virtual private network (VPN) for the privacy and security enhanced 60 GHz radio-over-fiber (RoF) system using optical code-division multiplexing (OCDM) is proposed and demonstrated experimentally. By establishing inter-BSs VPN overlaying the network structure of a 60 GHz RoF system, the express and private paths for the communication of end-users under different BSs can be offered. In order to effectively establish the inter-BSs VPN, the OCDM encoding/decoding technology is employed in the RoF system. In each BS, a 58 GHz millimeter-wave (MMW) is used as the inter-BSs VPN channel, while a 60 GHz MMW is used as the common central station (CS)-BSs communication channel. The optical carriers used for the downlink, uplink and VPN link transmissions are all simultaneously generated in a lightwave-centralized CS, by utilizing four-wave mixing (FWM) effect in a semiconductor optical amplifier (SOA). The obtained results properly verify the feasibility of our proposed configuration of the inter-BSs VPN in the 60 GHz RoF system.

  15. A multiple beam antenna concept for a 30/20 GHz satellite communications system

    NASA Technical Reports Server (NTRS)

    Forman, B. J.; Ohta, H. H.; Bronstein, L. M.

    1982-01-01

    Design and operational performance features of a NASA planned 30/30 GHz flight experiment communications system multiple-beam antenna (MBA) are described. The MBA is a shared aperture offset Cassegrain type with a main reflector diameter of 3 m and physically separated transmit and receive feeds. A planar frequency selective surface is employed which is transmissive to the receive signals and reflective to the transmit signals. Trade-offs and constraints in the MBA feed design are explored, noting the higher feed loss and complexity due to choosing variable power dividers for the beam forming network. Doublet beam coverage of the east coast of the continental U.S. is shown to be possible with a triangular lattice array of feed horns with aperture diameters and element spacings of two wavelengths. The doublet configuration requires ten times the components as a singlet array.

  16. Pierce-Wiggler electron beam system for 250 GHz GYRO-BWO: Final report

    SciTech Connect

    Pirkle, D.R.; Alford, C.W.; Anderson, M.H.; Garcia, R.F.; Legarra, J.R.; Nordquist, A.L.

    1989-01-01

    This final report summarizes the design and performance of the VUW-8028 Pierce-Wiggler electron beam systems, which can be used to power high frequency gyro-BWO's. The operator's manual for this gyro-BWO beamstick is included as appendix A. Researchers at Lawrence Livermore National Laboratory (LLNL) are developing a gyro-BWO with a center frequency of 250 GHz, 6% bandwidth, and 10 kV peak output power. The gyro-BWO will be used to drive a free electron laser amplifier at LLNL. The electron beam requirements of the gyro-BWO application are: Small beam size, .100 inch at 2500 gauss axial magnetic field; a large fraction of the electron energy in rotational velocity; ability to vary the electrons' axial velocity easily, for electronic tuning; and low velocity spread i.e. little variation in the axial velocities of the electrons in the interaction region. 1 ref., 13 figs.

  17. Optimization of a GHz UV Laser System for a High Gradient X-band PWT

    NASA Astrophysics Data System (ADS)

    Landahl, E.; Li, K.; Alvis, R.; Heritage, J. P.; Hartemann, F.; Baldis, H. A.; Luhmann, N. C., Jr.; Unterberg, E.; Yu, D.; Rosenzweig, J.; Pellegrini, C.

    1998-11-01

    A Plane Wave Transformer (PWT) is being designed to produce 25 MeV electron bunches of extremely high brightness using a 20 MW of X-band klystron. The PWT average brightness can be further increased by filling multiple rf buckets in the accelerating cavity during an individual klystron pulse. A diode laser in a short optical cavity is modulated with external fields and modelocked using a fast saturable absorber to produce sub-picosecond pulses which then seed a CPA system. A fiber switch is used to select a GHz pulse train which is subsequently amplified and converted to UV. Temporal pulse shaping is used to optimize the photocathode laser and minimize the PWT emittance.

  18. Design of the Collective Thomson scattering (CTS) system by using 170-GHz gyrotron in the KSTAR

    NASA Astrophysics Data System (ADS)

    Park, Min; Kim, Sun-Ho; Kim, Sung-Kyu; Lee, Kyu-Dong; Wang, Son-Jong

    2014-10-01

    The physics of energetic ions is one of the primary subjects to be understood toward the realization of a nuclear fusion power plant. Collective Thomson scattering (CTS) offers the possibility to diagnose the fast ions and the alpha particles in burning plasmas. Spatially- and temporally-resolved one-dimensional velocity distributions of the fast ions can be obtained from the scattered radiation with fewer geometric constraints by utilizing millimeter waves from a high-power gyrotron as a probe beam. We studied the feasibility of CTS fast-ion measurements in the KSTAR by calculating the spectral density functions. Based on that, we suggest a design for the CTS system that uses the currently-operating 170-GHz gyrotron for electron cyclotron heating (ECH) and electron cyclotron current drive (ECCD) in the KSTAR. The CTS system is presented as two subsystems: the antenna system and the heterodyne receiver system. The design procedure for an off-axis ellipsoidal mirror is described, and the CTS system requirements are discussed.

  19. Multi-GHz bandpass, high-repetition rate single channel mobile diagnostic system for ultra-wideband applications

    NASA Astrophysics Data System (ADS)

    Miner, Lynn M.; Voss, Donald E.

    1993-01-01

    Characterizing radiated ultra-wideband (UWB) signals poses challenges due to requirements for (1) multi-GHz bandpass recording of the signal's leading edge; (2) GHz-bandpass recording of long record lengths (10s-100s of ns); and (3) determining shot-to-shot reproducibility at rep-rates exceeding 10 kHz. The System Verification Apparatus (SVA) is a novel diagnostic system which can measure 60-ps rise-time signals on a single-shot basis, while monitoring pulse-to-pulse variation. The fully-integrated SVA includes a broadband sensor, signal and trigger conditioning electronics, multiple parallel digitizers with deep local storge, and automated software for acquiring, archiving, and analyzing waveform data with rapid (secs-minute) turnaround time. The instruments are housed in a portable 100-dB shielded aluminum enclosure. The SVA utilizes a 6-GHz bandpass free-field D-dot sensor to measure the incident electric field. Three separate digitizers together meet the requirements of high bandwidth, long record length, and high repetition rate. A 6-GHz bandpass scan converter digitizer captures the leading edge (few ns) of the radiated signal. 1-GHz and 600 MHz bandwidth solid-state digitizers supporting long record lengths (greater than 2 micrometers) record the balance of the signal, which typically contains negligible content above 1 GHz. These solid-state digitizers can store greater than 900 waveforms locally at rep-rates exceeding 65 Hz and 100 kHz, respectively. Data management and instrument control use an 80486-based PC, operating in a user-friendly Windows environment. All waveform and system configuration data are automatically stored in a built-in database. A fiber-optic link, up to 2 km long, provides electromagnetic isolation of the computer.

  20. A 90GHz Bolometer Camera Detector System for the Green Bank Telescope

    NASA Technical Reports Server (NTRS)

    Benford, Dominic J.; Allen, Christine A.; Buchanan, Ernest D.; Chen, Tina C.; Chervenak, James A.; Devlin, Mark J.; Dicker, Simon R.; Forgione, Joshua B.

    2004-01-01

    We describe a close-packed, two-dimensional imaging detector system for operation at 90GHz (3.3mm) for the 100 m Green Bank Telescope (GBT) This system will provide high sensitivity (<1mjy in 1s rapid imaging (15'x15' to 250 microJy in 1 hr) at the world's largest steerable aperture. The heart of this camera is an 8x8 close packed, Nyquist-sampled array of superconducting transition edge sensor bolometers. We have designed and are producing a functional superconducting bolometer array system using a monolithic planar architecture and high-speed multiplexed readout electronics. With an NEP of approx. 2.10(exp 17) W/square root Hz, the TES bolometers will provide fast linear sensitive response for high performance imaging. The detectors are read out by and 8x8 time domain SQUID multiplexer. A digital/analog electronics system has been designed to enable read out by SQUID multiplexers. First light for this instrument on the GBT is expected within a year.

  1. A Novel 24 GHz One-Shot, Rapid and Portable Microwave Imaging System

    NASA Technical Reports Server (NTRS)

    Ghasr, M. T.; Abou-Khousa, M. A.; Kharkovsky, S.; Zoughi, R.; Pommerenke, D.

    2008-01-01

    Development of microwave and millimeter wave imaging systems has received significant attention in the past decade. Signals at these frequencies penetrate inside of dielectric materials and have relatively small wavelengths. Thus. imaging systems at these frequencies can produce images of the dielectric and geometrical distributions of objects. Although there are many different approaches for imaging at these frequencies. they each have their respective advantageous and limiting features (hardware. reconstruction algorithms). One method involves electronically scanning a given spatial domain while recording the coherent scattered field distribution from an object. Consequently. different reconstruction or imaging techniques may be used to produce an image (dielectric distribution and geometrical features) of the object. The ability to perform this accuratev and fast can lead to the development of a rapid imaging system that can be used in the same manner as a video camera. This paper describes the design of such a system. operating at 2-1 GHz. using modulated scatterer technique applied to 30 resonant slots in a prescribed measurement domain.

  2. Development of 1.3GHz HTc rf SQUID

    NASA Astrophysics Data System (ADS)

    Liu, Xin-Yuan; Xie, Fei-Xiang; Meng, Shu-Chao; Dai, Yuan-Dong; Li, Zhuang-Zhi; Ma, Ping; Yang, Tao; Nie, Rui-Juan; Wang, Fu-Ren

    2004-01-01

    A new HTc rf SQUID working at around 1.3GHz has been developed to avoid electromagnetic interference such as growing mobile communication jamming. This new system works in a frequency range from 1.23 to 1.42GHz (centred at 1.3GHz), which is not occupied by commercial communication. The sensor used in the 1.3GHz rf SQUID is made of a HTc coplanar superconducting resonator and a large-area HTc superconducting film concentrator. We have achieved in the 1.3GHz HTc rf SQUID system a minimal flux noise of 2.5×10-5Phi0/(Hz)1/2 and a magnetic field sensitivity of 38fT/(Hz)1/2 in white noise range, respectively. The effective area of the concentrator fabricated on a 15×15mm2 substrate is 1.35mm2. It is shown that the 1.3GHz rf SQUID system has a high field sensitivity. Design and implementation of 1.3GHz HTc rf SQUID offers a promising direction of rf SQUID development for higher working frequency ranges.

  3. First results of LHCD experiments with 4.6 GHz system toward steady-state plasma in EAST

    NASA Astrophysics Data System (ADS)

    Liu, F. K.; Ding, B. J.; Li, J. G.; Wan, B. N.; Shan, J. F.; Wang, M.; Liu, L.; Zhao, L. M.; Li, M. H.; Li, Y. C.; Yang, Y.; Wu, Z. G.; Feng, J. Q.; Hu, H. C.; Jia, H.; Huang, Y. Y.; Wei, W.; Cheng, M.; Xu, L.; Zang, Q.; Lyu, B.; Lin, S. Y.; Duan, Y. M.; Wu, J. H.; Peysson, Y.; Decker, J.; Hillairet, J.; Ekedahl, A.; Luo, Z. P.; Qian, J. P.; Shen, B.; Gong, X. Z.; Hu, L. Q.; the EAST Team

    2015-11-01

    A 4.6 GHz lower-hybrid current drive (LHCD) system has been firstly commissioned in EAST in the 2014 campaign. The first LHCD results with 4.6 GHz show that LHW can be coupled to plasma with a low reflection coefficient, drive plasma current and plasma rotation, modify the plasma current profile, and heat plasma effectively. By means of configuration optimization and local gas puffing near the LHW antenna, good LHW-plasma coupling with a reflection coefficient less than 5% is obtained. The maximum LHW power coupled to plasma is up to 3.5 MW. The current drive (CD) efficiency is up to 1.1  ×  1019 A m-2 W-1 and the central electron temperature is above 4 keV, suggesting that LH power could be mainly deposited in the core region, which is in agreement with code simulation. Experiments show that the current profile is effectively modified and toroidal rotation in the co-current direction is driven by the LHCD. Also, the CD efficiency and current profile depend on the launched wave spectrum, suggesting the possibility of controlling the current profile by changing the phase difference. Repeatable H-mode plasma is obtained by either the 4.6 GHz LHCD system alone, or together with a 2.45 GHz LHCD system, the NBI (neutral beam injection) system. The different ELM features of H-mode between the different heating methods are under investigation.

  4. Cylindrical waveguide electromagnetic exposure system for biological studies with unrestrained mice at 1.9 GHz.

    PubMed

    Wasoontarajaroen, Siriwat; Thansandote, Artnarong; Gajda, Gregory B; Lemay, Eric P; McNamee, James P; Bellier, Pascale V

    2012-09-01

    This paper presents the development of an in vivo exposure system for exposing small rodents. The system consists of four identical cylindrical waveguide chambers, each with a plastic cage for housing the animal. The chamber is fed by circularly polarized radiofrequency power in the 1.9 GHz cellular frequency band and is vertically mounted so that the long axis of the animal is co-planar with the rotating incident electric field. Power sensors were used along with directional or hybrid couplers and a digital voltmeter for data acquisition for real-time dose rate monitoring. The system was tested to evaluate its dose rate performance when a mouse phantom or a mouse cadaver was inside the cage. The dose rate was quantified in terms of whole-body-average (WBA) specific absorption rate (SAR) per input power using both measurement and computational methods. The exposures of the mouse phantom and cadaver were evaluated for various possible postures and positions. The measurement results showed that the highest WBA-SAR was 16.9 W kg per 1 W incident power when the cadaver was lying prone against the cage wall and the lowest WBA-SAR was 10.4 W kg per 1 W incident power when the cadaver was standing upright in the cage center. These results were found to be in good agreement with those obtained from the computational method. PMID:22850231

  5. Recent Results using a 28 GHz EBW Heating and Current Drive System on MAST

    NASA Astrophysics Data System (ADS)

    Bigelow, Tim; Caughman, John; Peng, Martin; Diem, Stephanie; Hawes, Julian; Gurl, Chris; Griffiths, Jonathan; Shevchenko, Vladimir; Finburg, Paul; Mailloux, Joelle; Taylor, Gary

    2013-10-01

    Improvements to a high power 28 GHz gyrotron system have been made to the MAST Electron Bernstein Wave (EBW) heating, start up, and current drive system in the past few years as collaborative research between ORNL and CCFE. Recent EBW heating and CD experiments on MAST have improved upon previous RF generated plasma current levels. The goals of the research were to extend the initial EBW CD study by increasing substantially the power level and pulse length of the gyrotron hardware and improve transmission line efficiency used in initial experiments. A dummy-load power level of up to 200 kW and a pulse length approaching 0.5 s has been achieved. Arcing, localized to the launcher box, has been observed to limit the launched power level to ~80 kW for up to 450 ms. Several days of high power plasma operation have been recently completed with good progress in increasing the previously attainable solenoid-free plasma current levels. Up to 75 kA of plasma current was achieved at this injected power level. This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy.

  6. High Resolution GHZ and Thz (ftir) Spectroscopy and Theory of Parity Violation and Tunneling for 1,2-DITHIINE (C4H4S2) as a Candidate for Measuring the Parity Violating Energy Difference Between Enantiomers of Chiral Molecules

    NASA Astrophysics Data System (ADS)

    Albert, Sieghard; Bolotova, Irina; Chen, Ziqiu; Fábri, Csaba; Horny, Lubos; Quack, Martin; Seyfang, Georg; Zindel, Daniel

    2016-06-01

    We report high resolution spectroscopic results for 1,2-dithiine-(1,2-dithia-3,5-cyclohexadiene,C4H4S2) in the Gigahertz and Terahertz spectroscopic ranges and exploratory theoretical calculations of parity violation and tunneling processes in view of a possible experimental determination of the parity violating energy difference ΔpvE in this chiral molecule. Theory predicts that the parity violating energy difference in the ground state (ΔpvE≃11x10-11(hc) wn)is in principle measurable as it is much larger than the calculated tunneling splitting for the symmetrical potential Δ±E≃10-24(hc) wn. With a planar transition state for stereomutation at about 2500 wn tunneling splittings become appreciable above 2300 wn. This makes levels of well defined parity accessible to parity selection by available powerful infrared lasers and thus useful for one of the existing experimental approaches towards molecular parity violation. The new GHz spectra lead to greatly improved ground state rotational parameters for 1,2-dithiine. These are used as starting point for the first successful analyses of high resolution interferometric Fourier Transform Infrared (FTIR, THz) spectra for the fundamentals ν17 (1308.873 wn or 39.23903 THz), ν22 (623.094 wn or 18.67989 THz) and ν3 (1544.900 wn or 46.314937 THz) for which highly accurate spectroscopic parameters are reported. The results are discussed in relation to current efforts to measure ΔpvE.a-. M. Quack , Fundamental Symmetries and Symmetry Violations from High-resolution Spectroscopy, Handbook of High Resolution Spectroscopy, M. Quack and F. Merkt eds.,John Wiley & Sons Ltd, Chichester, New York, 2001, vol. 1, ch. 18, pp. 659-722 S. Albert, I. Bolotova, Z. Chen, C. Fábri, L. Horny, M. Quack, G. Seyfang and D. Zindel,Proceedings of the 20th Symposium on Atomic, Cluster and Surface Physics (SASP 2016), Innsbruck University Press, 2016, pp. 127-130, ISBN:978-3-903122-04-8. and to be published P. Dietiker, E. Miloglyadov, M

  7. The 110 GHz Gyrotron System on DIII-D: Gyrotron Tests and Physics Results

    SciTech Connect

    J. Lohr; P. Calahan; R.W. Callis; T.S. Chu; J.S. deGrassie; I. Gorelov; H. Ikezi; R.A. Legg; T.C. Luce; C.C. Petty; D. Ponce; R. Prater; D.J. Schuster; S.E. Tsimring

    1999-12-01

    The DIII-D tokamak has installed a system with three gyrotrons at the 1 MW level operating at 110 GHz. Physics experiments on electron cyclotron current drive, heating, and transport have been performed. Good efficiency has been achieved both for on-axis and off-axis current drive with relevance for control of the current density profile leading to advanced regimes of tokamak operation, although there is a difference between off-axis ECCD efficiency inside and outside the magnetic axis. Heating efficiency is excellent and electron temperatures up to 10 keV have been achieved. The gyrotron system is versatile, with poloidal scan and control of the polarization of the injected rf beam. Phase correcting mirrors form a Gaussian beam and focus it into the waveguide. Both perpendicular and oblique launch into the tokamak have been used. Three different gyrotron designs are installed and therefore unique problems specific to each have been encountered, including parasitic oscillations, mode hops during modulation and polarization control problems. Two of the gyrotrons suffered damage during operations, one due to filament failure and one due to a vacuum leak. The repairs and subsequent testing will be described. The transmission system uses evacuated, windowless waveguide and the three gyrotrons have output windows of three different materials. One gyrotron uses a diamond window and generates a Gaussian beam directly. The development of the system and specific tests and results from each of the gyrotrons will be presented. The DIII-D project has committed to an upgrade of the system, which will add three gyrotrons in the 1 MW class, all using diamond output windows, to permit operation at up to ten seconds per pulse at one megawatt output for each gyrotron.

  8. Synthesis and Thermal Behavior of a Fused, Tricyclic 1,2,3,4-Tetrazine Ring System.

    PubMed

    Chavez, David E; Bottaro, Jeffery C; Petrie, Mark; Parrish, Damon A

    2015-10-26

    This study presents the synthesis and characterization of a fused, tricyclic 1,2,3,4-tetrazine ring system. The molecule is synthesized in a three-step process from 5,5'-dinitro-bis,1,2,4-triazole via a di-N-amino compound. Oxidation to form the azo-coupled fused tricyclic 1,2,3,4-tetrazine is achieved using tert-butyl hypochlorite as the oxidant. The di-N-amino compound and the desired fused tricyclic 1,2,3,4-triazine display interesting thermal behavior and are predicted to be high-performance energetic materials.

  9. Violation of local realism by a system with N spin-(1/2) particles

    SciTech Connect

    Wu, Xiao-Hua; Zong, Hong-Shi

    2003-09-01

    Recently, it was found that Mermin's inequalities may not always be optimal for the refutation of a local realistic description [Phys. Rev. Lett. 88, 210402 (2002)]. To complete this work, we derive an inequality for the Greenberger-Horne-Zeilinger-type pure state for a system with N spin-(1/2) particles and the violation of the inequality can be shown for all the non product pure states. Mermin's inequality for a system of N spin-(1/2) particles and Gisin's theorem for a system of two spin-(1/2) particles are both included in our inequality.

  10. DPAL pump system exceeding 3kW at 766nm and 30 GHz bandwidth

    NASA Astrophysics Data System (ADS)

    Koenning, Tobias; McCormick, Dan; Irwin, David; Stapleton, Dean; Guiney, Tina; Patterson, Steve

    2016-03-01

    Due to their low quantum defect, diode pumped alkali metal vapor lasers (DPALs) offer the promise of scalability to very high average power levels while maintaining excellent beam quality. Research on DPALs has progressed to ever increasing power levels across multiple gain media species over the last years, necessitating pump power in the kW range. Each material requires a specific pump wavelength: near 852nm for cesium, 780nm for rubidium, 766nm for potassium, and 670nm for lithium atoms. The shorter pump wavelength below 800nm are outside the typical wavelength range for pump diodes developed for diode pumped solid state lasers (DPSS). The biggest challenge in pumping these materials efficiently is the need for maintaining the narrow gain media absorption band of approximately 0.01nm while greatly increasing power. Typical high power diode lasers achieve spectral widths around 3nm (FWHM) in the near infrared spectrum, but optical gratings may be used internal or external to the cavity to reduce the spectral width. Recently, experimental results have shown yet narrower line widths ranging from picometers at very low power levels to sub-100 picometers for water cooled stacks around 1kW of output power. The focus of this work is the development of a fiber-based pump system for potassium DPAL. The individual tasks are the development of high power 766nm chip material, a fiber-coupled module as a building block, and a scalable system design to address power requirements from hundreds of watts to tens of kilowatts. Results for a 3kW system achieving ~30GHz bandwidth at 766nm will be shown. Approaches for power-scaling and size reduction will be discussed.

  11. User's Guide to the Testing 1-2-3 Test Development and Delivery System.

    ERIC Educational Resources Information Center

    Edwards, Ethan A.

    Testing 1-2-3 is a general purpose testing system developed at the Computer-Based Education Research Laboratory at the University of Illinois for use on NovaNET computer-based education systems. The testing system can be used for: short, teacher-made quizzes, individualized examinations, computer managed instruction curriculum testing,…

  12. 77 FR 48097 - Operation of Radar Systems in the 76-77 GHz Band

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-13

    ... (NPRM), 77 FR 35176, June 16, 2011, in which it sought public comment on proposed amendments to Sec. Sec... general public. 3. The 76-77 GHz band, which is allocated to the Radio Astronomy service (RAS) and the... interference to RAS operations. Because the radio astronomy observatories typically have control over access...

  13. Controlled Quantum Teleportation via the GHZ Entangled Ions in the Ion-Trapped System

    NASA Astrophysics Data System (ADS)

    Xu, Xiong; Wang, Xiaoxue

    2016-08-01

    In this paper, we present a controlled quantum teleportation protocol. In the protocol, quantum information of an unknown state is faithfully transmitted from a sender (Alice) to a remote receiver (Bob) via the GHZ entangled ions under the control of the supervisor Charlie. The apparent Bell-state measurements that Alice should perform in order to teleport her ions are not needed.

  14. Conceptual communications system design in the 25.25-27.5 and 37.0-40.5 GHz frequency bands

    NASA Technical Reports Server (NTRS)

    Thompson, Michael W.

    1993-01-01

    Future space applications are likely to rely heavily on Ka-band frequencies (20-40 GHz) for communications traffic. Many space research activities are now conducted using S-band and X-band frequencies, which are becoming congested and require a degree of pre-coordination. In addition to providing relief from frequency congestion, Ka-band technologies offer potential size, weight, and power savings when compared to lower frequency bands. The use of the 37.0-37.5 and 40.0-40.5 GHz bands for future planetary missions was recently approved at the 1992 World Administrative Radio Conference (WARC-92). WARC-92 also allocated the band 25.25-27.5 GHz to the Intersatellite Service on a primary basis to accommodate Data Relay Satellite return link requirements. Intersatellite links are defined to be between artificial satellites and thus a communication link with the surface of a planetary body, such as the moon, and a relay satellite orbiting that body are not permitted in this frequency band. This report provides information about preliminary communications system concepts for forward and return links for earth-Mars and earth-lunar links using the 37.0-37.5 (return link) and 40.0-40.5 (forward link) GHz frequency bands. In this study we concentrate primarily on a conceptual system for communications between earth and a single lunar surface terminal (LST), and between earth and a single Mars surface terminal (MST). Due to large space losses, these links have the most stringent link requirements for an overall interplanetary system. The earth ground station is assumed to be the Deep Space Network (DSN) using either 34 meter or 70 meter antennas. We also develop preliminary communications concepts for a space-to-space system operating at near 26 GHz. Space-to-space applications can encompass a variety of operating conditions, and we consider several 'typical' scenarios described in more detail later in this report. Among these scenarios are vehicle-to-vehicle communications

  15. EBT-S 28-GHz, 200-kW, CW, mixed-mode, quasi-optical plasma heating system

    SciTech Connect

    White, T.L.; Kimrey, H.D.; Bigelow, T.S.; Bates, D.D.; Eason, H.O.

    1984-07-01

    The ELMO Bumpy Torus-Scale (EBT-S) 28-GHz, 200-kW, cw, plasma heating system consists of a gyrotron oscillator, an oversized waveguide two-bend transmission system, and a quasi-optical mixed-mode microwave distribution manifold that feeds microwave power to the 24 plasma loads of the EBT-S fusion experiment. Balancing power to the 24 loads of the EBT-S fusion experiment. Balancing power to the 24 loads was achieved by adjusting the areas at 24 coupling irises. System performance is easily measured using system calorimetry. The distribution manifold mixed-mode power transmission, reflection, and loss coefficients are 89%, 6%, and 5%, respectively. The overall system efficiency (plasma power/gyrotron power) is 80%, but with some modifications to the distribution manifold we believe the ultimate efficiency can approach 90%. The system reliability is outstanding with a world's record 1 x 10/sup 5/ kW h of 28-GHz energy delivered to the EBT-S device with well over 1 x 10/sup 3/ operating hours.

  16. The [17.0] 2Π1/2← X 2Π1/2 system of AlCa

    NASA Astrophysics Data System (ADS)

    Fabbi, Jacqueline C.; Langenberg, Jon D.; Morse, Michael D.

    2000-04-01

    Laser-induced fluorescence spectroscopy has been used to study supersonically cooled AlCa. This study investigates under higher resolution (0.007 cm-1) a single band previously studied and tentatively assigned as the (0-0) vibrational transition of the [17.0] 2Δ3/2(?)← X 2Π1/2 system of AlCa. The resolution of the rotational structure in the present study enabled a definite assignment as a 2Π1/2← 2Π1/2 transition. Analysis of the spectrum gives B0'=0.096685(19) cm-1, ( p+2 q)'=-0.013078(370) cm -1, and B0″=0.105518(20) cm -1. These convert to ground and excited state bond lengths of r0″=3.14942(30) and r0'=3.29014(32) Å, respectively.

  17. Generation and transmission of multiband and multi-gigabit 60-GHz MMW signals in an RoF system with frequency quintupling technique.

    PubMed

    Zhang, Liang; Zhu, Ming; Ye, Chenhui; Fan, Shu-Hao; Liu, Cheng; Hu, Xiaofeng; Cao, Pan; Chang, Qingjiang; Su, Yikai; Chang, Gee-Kung

    2013-04-22

    We propose and experimentally demonstrate a cost-effective radio-over-fiber (RoF) system to simultaneously generate and transmit multiband and multi-gigabit 60-GHz millimeter wave (MMW) signals using frequency quintupling technique. Multiband signals at 56-GHz and 60-GHz are realized with two cascaded single-drive Mach-Zehnder modulators (MZMs), where phase control is not required. Furthermore, only low-frequency (≤12GHz) optical and electrical devices are used in the central station (CS), which enable a cost-effective system. At the user-terminal, two-stage down-conversions are employed by envelope detection (ED) and intermediate frequency (IF) mixing, eliminating expensive high-speed synthesizer and critical phase control components. Error-free performances are achieved for the multiband MMW signals after 50-km single-mode fiber (SMF) and 10-ft wireless link transmissions.

  18. Determining potential 30/20 GHz domestic satellite system concepts and establishment of a suitable experimental configuration

    NASA Technical Reports Server (NTRS)

    Stevens, G. H.; Anzic, G.

    1979-01-01

    Issues and results in a NASA study of the potential concepts and markets for a multibeam 30/20 GHz domestic satellite system in the 1990s are presented. Issues considered include the reduction of signal attenuation due to rain, beam-beam interference isolation in the multibeam system, the method of access/modulation (FDMA, TDMA or hybrid) and the market for reduced reliability and wideband services. A hypothetical demonstration payload configuration which would attempt to resolve these issues is illustrated. The communications payload would employ a system of seven contiguous coverage spots in order to demonstrate a typical cell in a contiguous beam system having extensive frequency re-use, as in a direct-to-user system, and a single spot, typical of a trunking system, to determine signal isolation. The payload could be carried on several existing buses and is illustrated on an MMS bus.

  19. Phase equilibria in water-(1-, 2-, iso-)butanol-18-crown-6 systems

    NASA Astrophysics Data System (ADS)

    Kovalenko, N. A.; Golovina, N. B.; Bogachev, A. G.; Uspenskaya, I. A.

    2011-09-01

    We present the results from measuring the solubility of 18-crown-6 in isobutanol in the temperature interval of 280-308 K and information about liquid-liquid equilibria in water-(1-, 2-, iso-)butanol-18-crown-6 systems at 298 K. The parameter values of the extended UNIQUAC model were determined on the basis of information about the thermodynamic properties and phase equilibria in the binary systems. It is shown that we must use parameters of ternary interaction in addition to binary parameters to adequately describe the miscibility gap on the basis of the results of turbidimetric titration in ternary water-(1-,2-, iso)butanol-18-crown-6 systems.

  20. Determining potential 30/20 GHZ domestic satellite system concepts and establishment of a suitable experimental configuration

    NASA Technical Reports Server (NTRS)

    Stevens, G. H.; Anzic, G.

    1979-01-01

    NASA is conducting a series of millimeter wave satellite communication systems and market studies to: (1) determine potential domestic 30/20 GHz satellite concepts and market potential, and (2) establish the requirements for a suitable technology verification payload which, although intended to be modest in capacity, would sufficiently demonstrate key technologies and experimentally address key operational issues. Preliminary results and critical issues of the current contracted effort are described. Also included is a description of a NASA-developed multibeam satellite payload configuration which may be representative of concepts utilized in a technology flight verification program.

  1. Bacterial cyclic beta-(1,2)-glucan acts in systemic suppression of plant immune responses.

    PubMed

    Rigano, Luciano Ariel; Payette, Caroline; Brouillard, Geneviève; Marano, Maria Rosa; Abramowicz, Laura; Torres, Pablo Sebastián; Yun, Maximina; Castagnaro, Atilio Pedro; Oirdi, Mohamed El; Dufour, Vanessa; Malamud, Florencia; Dow, John Maxwell; Bouarab, Kamal; Vojnov, Adrian Alberto

    2007-06-01

    Although cyclic glucans have been shown to be important for a number of symbiotic and pathogenic bacterium-plant interactions, their precise roles are unclear. Here, we examined the role of cyclic beta-(1,2)-glucan in the virulence of the black rot pathogen Xanthomonas campestris pv campestris (Xcc). Disruption of the Xcc nodule development B (ndvB) gene, which encodes a glycosyltransferase required for cyclic glucan synthesis, generated a mutant that failed to synthesize extracellular cyclic beta-(1,2)-glucan and was compromised in virulence in the model plants Arabidopsis thaliana and Nicotiana benthamiana. Infection of the mutant bacterium in N. benthamiana was associated with enhanced callose deposition and earlier expression of the PATHOGENESIS-RELATED1 (PR-1) gene. Application of purified cyclic beta-(1,2)-glucan prior to inoculation of the ndvB mutant suppressed the accumulation of callose deposition and the expression of PR-1 in N. benthamiana and restored virulence in both N. benthamiana and Arabidopsis plants. These effects were seen when cyclic glucan and bacteria were applied either to the same or to different leaves. Cyclic beta-(1,2)-glucan-induced systemic suppression was associated with the transport of the molecule throughout the plant. Systemic suppression is a novel counterdefensive strategy that may facilitate pathogen spread in plants and may have important implications for the understanding of plant-pathogen coevolution and for the development of phytoprotection measures. PMID:17601826

  2. A feasibility study on image-based control of surgical robot using a 60-GHz wireless communication system.

    PubMed

    Takizawa, Kenichi; Omori, Shigeru; Harada, Hideo; Nakamura, Ryoichi; Muragaki, Yoshihiro; Iseki, Hiroshi

    2009-01-01

    This paper presents an evaluation study on the feasibility of introducing wireless connection into a neurosurgical robot, which is controlled by an image-based navigation system. The wireless connection introduced into the robotic system is based on amplitude shift keying (ASK) at 60 GHz. With this wireless connection, data transmission at the bit-rate of 1 Gbps or more is possible, and here high-definition video images (1080i/1080p) can be transmitted. Such a wireless connection system is implemented in the surgical robot replaces the cable connection between the digital video camera and the controller. In this study, the wireless robotic surgical system is evaluated in terms of its accuracy of navigation using the transmitted video images. The results of a wireless connection test under a line-of-sight (LOS) environment show that navigation accuracy observed when using this wireless surgical robot is comparable to that when using a wired robotic system. PMID:19963666

  3. Estimation of Transmitting Power to Compensate for Rain Attenuation for a Broadcasting Satellite System in the 21-GHz Band

    NASA Astrophysics Data System (ADS)

    Minematsu, Fumiaki; Tanaka, Shoji; Nakagawa, Hitoshi; Kawaguchi, Yutaka

    2002-01-01

    1. INTRODUCTION Rain attenuation in the 21-GHz band is much larger than that in the conventionally used 12-GHz band and the rain attenuation causes more serious program interruptions compared with that in the 12-GHz band. We are now studying an advanced broadcasting satellite in the 21-GHz band that enables adaptive compensation for heavy rain area by boosted beams using an on-board phased-array-transmitting antenna. To know the scale of this satellite system, it is important to estimate transmitting power needed to compensate for rain attenuation. Rain attenuation has so close association with rainfall that it is possible to estimate rain attenuation by measured rainfall. Japan meteorological agency is measuring 1-hour rainfalls for about 1300 locations in Japan. In this study, 1-hour rainfall data accumulated at more than 1000 locations over a period of 20 years were used statistically to grasp rainfall distribution throughout Japan and the transmitting power for compensation was estimated by use of these data. 2. CALCULATION MODEL FOR TRANSMITTING POWER ESTIMATION Assumed rain attenuation compensation area for Japanese archipelago was divided into 112 square areas. A size of each square was 0.1 degree in terms of azimuth and elevation angle for the beam direction of satellite transmitting antenna. For calculation, the link margin of 3.5 dB for clear sky was given to the area where 1-hour rainfall not larger than 3 mm was detected. For other square areas where 1-hour rainfall larger than 3 mm was detected, the link margin of 12 dB was given. The former link margin corresponds to the service availability of 99 % and the latter does to that of 99.9 % in an average year in Tokyo. A total system efficiency included radiation efficiency of the transmitting antenna of 1.0 was assumed. As modulation scheme, trellis coded 8-PSK (TC8PSK) was assumed. The required reception CN ratio for TC8PSK is 10.7 dB. As to TC8PSK, the baud rate of 57.72 Mbaud gives more than 100 Mbps

  4. Far-field 2.45 GHz irradiation system for cellular monolayers in vitro.

    PubMed

    Harrison, G H; McCulloch, D; Balcer-Kubiczek, E K; Robinson, J E

    1985-01-01

    A 2.45-GHz microwave exposure facility was developed for long-term TEM irradiation of cellular monolayers. Culture flasks with cells attached to the inside bottom surface were filled with medium, submerged in a 60 X 60 X 12-cm water bath on the field central axis, and exposed in the far-field 2 m below the ceiling-mounted antenna. A quarter-wave transformer plate increased the power transmitted into the water bath, and treatment temperatures were maintained by closed circulation with an external temperature control reservoir. Power density mapped below the quarter-wave plate indicated uniform TEM fields in the 25 X 25-cm region where flasks were located. With 1 kW of forward power to the antenna, the SAR [W/kg] = 45 exp(-0.607d) where d [cm] is the depth in water at any point within this area.

  5. Electron Cyclotron Resonance Heating on TEXTOR:. results from the preliminary 110 GHz system

    NASA Astrophysics Data System (ADS)

    Westerhof, E.; Hogeweij, G. M. D.; Hoekzema, J. A.; Schüller, F. C.; Barth, C. J.; Bindslev, H.; Donné, A. J. H.; Dumortier, P.; van Gorkom, J. C.; Jaspers, R. J. E.; Kalupin, D.; Koslowski, H. R.; Krämer-Flecken, A.; Lopes Cardozo, N. J.; van der Meiden, H. J.; Messiaen, A.; Oyevaar, T.; Polman, R. W.; Porte, L.; Udintsev, V. S.; Unterberg, B.; Vervier, M.; van Eester, D.; van Wassenhove, G.; Tec Team

    2003-02-01

    A 110 GHz, 400 kW, 200 ms gyrotron has been employed on TEXTOR for ECRH. The highly localised electron heating allowed the identification of (multiple) electron transport barriers. The RTP q-comb model for the electron heat conductivity gives a good description of TEXTOR results with ECRH in Ohmic discharges. Central ECRH in the current ramp phase speeds up central current penetration due to the highly peaked Te profile. A stable evolution of these discharges with early heating required the combination of counter-NBI with central ECRH. In RI-mode, central ECRH resulted in an increase of the confined energy in proportion to the ECRH power, without signs of power degradation as is usual in RI-mode with NBI and ICRH. Efficient ECRH is observed up to the X-mode cut-off density. The gyrotron has also been successfully used for diagnosis of energetic ions by means of Collective Thomson Scattering.

  6. Multi-megawatt 110 GHz ECH system for the DIII-D tokamak

    SciTech Connect

    Callis, R.W.; Lohr, J.; O`Neill, R.C.; Ponce, D.; Prater, R.

    1997-11-01

    Two 110 GHz gyrotrons with nominal output power of 1 MW each have been installed on the DIII-D tokamak. The first 110 GHz gyrotron built by Gycom has a nominal rating of 1 MW and a 2s pulse length, with the pulse length being determined by the maximum temperature allowed on the edge cooled boron nitride window. This gyrotron was first operated into the DIII-D tokamak in late 1996. The second gyrotron was built by Communications and Power Industries (CPI) was commissioned during the spring of 1997. The CPI gyrotron uses a double disc FC-75 cooled sapphire window which has a pulse length rating of 0.8s at 1 MW, 2s at 0.5 MW and 10s at 0.2 MW. Both gyrotrons are connected to the tokamak by a low-loss-windowless evacuated transmission line using circular corrugated waveguide for propagation in the HE(11) mode. Using short pulse lengths to avoid breakdown inside the air filled waveguide, the microwave beam has been measured inside the DIII-D vacuum vessel using a paper target and an IR camera. The resultant microwave beam was found to be well focused with a spot size of approximately 8 cm. The beam can be steered poloidially from the center to the outer edge of the plasma. The initial operation of the Gycom gyrotron with about 0.5 MW delivered to a low density plasma for 0.5 s showed good central electron heating, with peak temperature in excess of 10 keV. A third gyrotron, being built by CPI, will be installed later this year. Progress with the first CPI tube will also be discussed and future plans for the ECH installation and physics experiments will be presented.

  7. Sensing glucose concentrations at GHz frequencies with a fully embedded Biomicro-electromechanical system (BioMEMS)

    PubMed Central

    Birkholz, M.; Ehwald, K.-E.; Basmer, T.; Kulse, P.; Reich, C.; Drews, J.; Genschow, D.; Haak, U.; Marschmeyer, S.; Matthus, E.; Schulz, K.; Wolansky, D.; Winkler, W.; Guschauski, T.; Ehwald, R.

    2013-01-01

    The progressive scaling in semiconductor technology allows for advanced miniaturization of intelligent systems like implantable biosensors for low-molecular weight analytes. A most relevant application would be the monitoring of glucose in diabetic patients, since no commercial solution is available yet for the continuous and drift-free monitoring of blood sugar levels. We report on a biosensor chip that operates via the binding competition of glucose and dextran to concanavalin A. The sensor is prepared as a fully embedded micro-electromechanical system and operates at GHz frequencies. Glucose concentrations derive from the assay viscosity as determined by the deflection of a 50 nm TiN actuator beam excited by quasi-electrostatic attraction. The GHz detection scheme does not rely on the resonant oscillation of the actuator and safely operates in fluidic environments. This property favorably combines with additional characteristics—(i) measurement times of less than a second, (ii) usage of biocompatible TiN for bio-milieu exposed parts, and (iii) small volume of less than 1 mm3—to qualify the sensor chip as key component in a continuous glucose monitor for the interstitial tissue. PMID:25332510

  8. Sensing glucose concentrations at GHz frequencies with a fully embedded Biomicro-electromechanical system (BioMEMS)

    NASA Astrophysics Data System (ADS)

    Birkholz, M.; Ehwald, K.-E.; Basmer, T.; Kulse, P.; Reich, C.; Drews, J.; Genschow, D.; Haak, U.; Marschmeyer, S.; Matthus, E.; Schulz, K.; Wolansky, D.; Winkler, W.; Guschauski, T.; Ehwald, R.

    2013-06-01

    The progressive scaling in semiconductor technology allows for advanced miniaturization of intelligent systems like implantable biosensors for low-molecular weight analytes. A most relevant application would be the monitoring of glucose in diabetic patients, since no commercial solution is available yet for the continuous and drift-free monitoring of blood sugar levels. We report on a biosensor chip that operates via the binding competition of glucose and dextran to concanavalin A. The sensor is prepared as a fully embedded micro-electromechanical system and operates at GHz frequencies. Glucose concentrations derive from the assay viscosity as determined by the deflection of a 50 nm TiN actuator beam excited by quasi-electrostatic attraction. The GHz detection scheme does not rely on the resonant oscillation of the actuator and safely operates in fluidic environments. This property favorably combines with additional characteristics—(i) measurement times of less than a second, (ii) usage of biocompatible TiN for bio-milieu exposed parts, and (iii) small volume of less than 1 mm3—to qualify the sensor chip as key component in a continuous glucose monitor for the interstitial tissue.

  9. Propagation effects on satellite systems at frequencies below 10 GHz, a handbook for satellite systems design, 1st edition

    NASA Technical Reports Server (NTRS)

    Flock, W. L.

    1983-01-01

    Satellite communications below about 6 GHz may need to contend with ionospheric effects, including Faraday rotation and ionospheric scintillation, which become increasingly significant with decreasing frequency. Scintillation is most serious in equatorial, auroral, and polar latitudes; even the 4 to 6 GHz frequency range turns out to be subject to scintillation to a significant degree of equatorial latitudes. Faraday rotation, excess range or time delay, phase advance, Doppler frequency fluctuations, and dispersion are proportional to total electron content (TEC) or its variation along the path. Tropospheric refraction and fading affects low angle satellite transmissions as well as terrestrial paths. Attenuation and depolarization due to rain become less important with decreasing frequency but need consideration for frequencies of about 4 GHz and higher. Empirically derived relations are useful for estimating the attenuation expected due to rain for particular percentages of time. Aeronautical, maritime, and land mobile satellite services are subject to fading due to multipath propagation.

  10. Propagation effects on satellite systems at frequencies below 10 GHz, a handbook for satellite systems design, 1st edition

    NASA Astrophysics Data System (ADS)

    Flock, W. L.

    1983-12-01

    Satellite communications below about 6 GHz may need to contend with ionospheric effects, including Faraday rotation and ionospheric scintillation, which become increasingly significant with decreasing frequency. Scintillation is most serious in equatorial, auroral, and polar latitudes; even the 4 to 6 GHz frequency range turns out to be subject to scintillation to a significant degree of equatorial latitudes. Faraday rotation, excess range or time delay, phase advance, Doppler frequency fluctuations, and dispersion are proportional to total electron content (TEC) or its variation along the path. Tropospheric refraction and fading affects low angle satellite transmissions as well as terrestrial paths. Attenuation and depolarization due to rain become less important with decreasing frequency but need consideration for frequencies of about 4 GHz and higher. Empirically derived relations are useful for estimating the attenuation expected due to rain for particular percentages of time. Aeronautical, maritime, and land mobile satellite services are subject to fading due to multipath propagation.

  11. TVA`s Cumberland Units 1&2 SO{sub 2} removal system - an update

    SciTech Connect

    Buckner, J.H.; Brodsky, I.S.; Muraskin, D.J.

    1995-06-01

    Tennessee Valley Authority`s Cumberland Fossil Plant (CUF) is a Phase I facility listed under the 1990 CAA Amendments. Units 1 & 2 are two 1300 MWe coal fired units which presently bum an eastern bituminous coal containing approximately 2.8% sulfur. The Flue Gas Desulfurization (FGD) system reduces sulfur dioxide (SO{sub 2}) emissions from Units 1 and 2 by means of wet limestone - forced oxidation scrubbing. The absorber modules were provided by ABB Environmental Systems (ABBES) with balance of plant engineering, construction management, and startup provided by Raytheon Engineers and Constructors (RE&C) under a partnership arrangement with TVA. The FGD systems for Unit 1 & 2 were brought on-line October 12, 1994 and December 14, 1994, respectively. This paper will present a brief description of the overall project, the design basis, challenging problems and solutions during construction and initial startup. Specific topics will include: (1) Optimization studies underway; (2) Unique design aspects of the facility; (3) A description of the absorber and supporting systems including the limestone barge unloader, ball mill system for reagent preparation, and draft system upgrades; and (4) Experience gained in management of a large project under the unique partnership agreement.

  12. The effect of interference from satellites on digital radio-relay systems operating between 15.4 and 40 GHz

    NASA Astrophysics Data System (ADS)

    Serpell, S. C.

    The effect of emissions from satellites in the geostationary orbit on the performance of digital, terrestrial, radio-relay systems using shared frequency bands in the range 15.4-40 GHz is investigated. The interference contribution from each possible satellite station for different terrestrial system configurations is estimated using computer models, assuming that the individual satellite contributions can be totalled on a power basis. The results are expressed as carrier-to-interference ratios and can be converted to absolute terms by referring to the wanted-channel received-power levels of the terrestrial system. In addition, a model describing severe rain events is developed in order to investigate satellite interference in faded as well as clear-weather conditions. Results are obtained for rainfall and satellite locations appropriate to the UK, but these are also applicable for much of Western Europe.

  13. Technical specification for the Product Evaluation Management Information System (PREMIS) Version 1. 1. 2

    SciTech Connect

    Eaton, D.S.; Hall, R.C.; Orman, J.L.; Klamerus, J.

    1990-06-01

    This document contains the technical specifications and implementation details for the Product Evaluation Management Information System (PREMIS) Version 1.1.2. This document does not include the requirements analysis or design information and is not intended as a user's guide. The INGRES Applications-by-Forms (ABF) software development tool was used to specify and define the modules and screens which comprise the PREMIS application. Several external procedures are called by the ABF procedures; these have been written in VAX/VMS DCL (Digital Command Language) and SQL (Standard Query Language). These specifications together with the PREMIS information model and corresponding database definition constitute the PREMIS Version 1.1.2 technical specification and implementation description presented herein.

  14. Extraction systems using bis-1,2-dicarbollylcobaltate and polyoxonium compounds for lanthanide separations

    SciTech Connect

    Vanura, P.; Jedinakova-Krizova, V. )

    1992-12-01

    The extraction of rare earths (lanthanides, Y, Sc) by voluminous bis-1,2-dicarbollylcobaltate anions dissolved in nitrobenzene and in a nitrobenzene - carbon tetrachloride mixture has been investigated and the exchange extraction constants for both solvents, individual extraction constants and [Delta]G[sup 0] for ion transfer across the water - nitrobenzene phase boundary has been determined. Extraction decreases with increasing atomic number of the lanthanide. The influence of several polyoxonium compounds on the distribution ratios and the extraction selectivity has been investigated. In the extraction systems with bis-1,2-dicarbollylcobaltate - 18-crown-6 in nitrobenzene, synergism was found for the light lanthanides but antagonism was observed for the heavy ones. The overall separation factor is [alpha][sub La/Lu] [approx]10 compared to [alpha][sub La/Lu] [approx]2 in the absence of crown. 17 refs., 4 figs., 1 tab.

  15. Hamiltonian systems with detuned 1:1:2 resonance: Manifestation of bidromy

    SciTech Connect

    Sadovskii, D.A.; Zhilinskii, B.I. . E-mail: zhilin@univ-littoral.fr

    2007-01-15

    We consider a generalization of the 1:1:2 resonant swing-spring [see H. Dullin, A. Giacobbe, R.H. Cushman, Physica D 190 (2004) 15] which is suggested both by the symmetries of this system and by its physical and in particular molecular realizations [see R.H. Cushman, H.R. Dullin, A. Giacobbe, D.D. Holm, M. Joyeux, P. Lynch, D.A. Sadovskii, B.I. Zhilinskii, Phys. Rev. Lett. 93 (2004) 024302-1-024302-4]. Our generic integrable system is detuned off the exact Fermi resonance 1:2. The three-dimensional (3D) image of its energy-momentum map EM consists either of two or three qualitatively different non-intersecting 3D regions: a regular region at low vibrational excitation, a region with monodromy similar to that studied for the exact resonance, and in some cases-an intermediate region in which the 3D set of regular values of EM is partially self-overlapping while remaining connected. In the presence of this latter region, the system has an interesting property which we called bidromy. We analyze monodromy and bidromy for a concrete integrable classical Hamiltonian system of three coupled oscillators and for its quantum analog. We also show that the bifurcation involved in the transition from the regular region to the region with monodromy can be regarded as a special resonant equivariant analog of the Hamiltonian Hopf bifurcation.

  16. Physical chemistry of binary organic eutectic and monotectic alloys; 1,2,4,5-tetrachlorobenzene-β-naphthol and 1,2,4,5-tetramethylbenzene-succinonitrile systems

    NASA Astrophysics Data System (ADS)

    Rai, U. S.; Pandey, Pinky; Rai, R. N.

    2000-12-01

    Phase diagrams of 1,2,4,5-tetrachlorobenzene-β-naphthol and 1,2,4,5-tetramethylbenzene-succinonitrile systems which are organic analogues of a nonmetal-nonmetal and a nonmetal-metal system, respectively, show the formation of a simple eutectic (melting point 103.7°C) with 0.71 mole fraction of β-naphthol in the former case and a monotectic (melting point 76.0°C) with 0.07 mole fraction of succinonitrile and a eutectic (melting point 52.5°C) with 0.97 mole fraction of succinonitrile in the latter case. The growth behaviour of the pure components, the eutectics and the monotectic studied by measuring the rate of movement of the solid-liquid interface in a capillary, suggests that the data obey the Hillig-Turnbull equation, v= u(Δ T) n, where v is the growth velocity, Δ T is the undercooling and u and n are constants depending on the nature of the materials involved. From the values of enthalpy of fusion determined by the DSC method using Mettler DSC-4000 system, entropy of fusion, interfacial energy, enthalpy of mixing and excess thermodynamic functions were calculated. The optical microphotographs of pure components and polyphase materials show their characteristic features.

  17. Federal Emergency Management Information System (FEMIS) system administration guide. Version 1.2

    SciTech Connect

    Burford, M.J.; Burnett, R.A.; Curtis, L.M.

    1996-05-01

    The Federal Emergency Management Information System (FEMIS) is an emergency management planning and analysis tool that is being developed under the direction of the US Army Chemical biological Defense Command. The FEMIS System Administration Guide defines FEMIS hardware and software requirements and gives instructions for installing the FEMIS system package. System administrators, database administrators, and general users can use this guide to install, configure, and maintain the FEMIS client software package. This document provides a description of the FEMIS environment; distribution media; data, communications, and electronic mail servers; user workstations; and system management.

  18. Nonlinear quantum-mechanical system associated with Sine-Gordon equation in (1 + 2) dimensions

    SciTech Connect

    Zarmi, Yair

    2014-10-15

    Despite the fact that it is not integrable, the (1 + 2)-dimensional Sine-Gordon equation has N-soliton solutions, whose velocities are lower than the speed of light (c = 1), for all N ≥ 1. Based on these solutions, a quantum-mechanical system is constructed over a Fock space of particles. The coordinate of each particle is an angle around the unit circle. U, a nonlinear functional of the particle number-operators, which obeys the Sine-Gordon equation in (1 + 2) dimensions, is constructed. Its eigenvalues on N-particle states in the Fock space are the slower-than-light, N-soliton solutions of the equation. A projection operator (a nonlinear functional of U), which vanishes on the single-particle subspace, is a mass-density generator. Its eigenvalues on multi-particle states play the role of the mass density of structures that emulate free, spatially extended, relativistic particles. The simplicity of the quantum-mechanical system allows for the incorporation of perturbations with particle interactions, which have the capacity to “annihilate” and “create” solitons – an effect that does not have an analog in perturbed classical nonlinear evolution equations.

  19. Wireless Channel Characterization: Modeling the 5 GHz Microwave Landing System Extension Band for Future Airport Surface Communications

    NASA Technical Reports Server (NTRS)

    Matolak, D. W.; Apaza, Rafael; Foore, Lawrence R.

    2006-01-01

    We describe a recently completed wideband wireless channel characterization project for the 5 GHz Microwave Landing System (MLS) extension band, for airport surface areas. This work included mobile measurements at large and small airports, and fixed point-to-point measurements. Mobile measurements were made via transmission from the air traffic control tower (ATCT), or from an airport field site (AFS), to a receiving ground vehicle on the airport surface. The point-to-point measurements were between ATCT and AFSs. Detailed statistical channel models were developed from all these measurements. Measured quantities include propagation path loss and power delay profiles, from which we obtain delay spreads, frequency domain correlation (coherence bandwidths), fading amplitude statistics, and channel parameter correlations. In this paper we review the project motivation, measurement coordination, and illustrate measurement results. Example channel modeling results for several propagation conditions are also provided, highlighting new findings.

  20. 1.6 GHz distress radio call system (DRCS) via geostationary satellite (Inmarsat-E) - Results of the preoperational demonstration

    NASA Astrophysics Data System (ADS)

    Goebel, Walter

    1990-10-01

    The paper discusses features and operations of the spaceborne Emergency Position Indicating Radio Beacons (EPIRBs) system for distress alerting, which is expected to be used on every ship by August 1, 1993. Two types of EPIRBs that were developed to date are described: the floatable EPIRB, used by vessels over 300 GRT (convention ships subjected to the IMO rules) and the hand-held EPIRB used by smaller vessels such as fishing boats or yachts. The transmitted message formats of both are fully compatible. The distress alerts are presently transmitted through the polar orbiting satellite service at 406 MHz. However, the 36th Inmarsat Council in 1990 passed a decision to the effect that the Inmarsat geostationary satellite shall provide service at 1.6 GHz.

  1. 60-GHz optical/wireless MIMO system integrated with optical subcarrier multiplexing and 2x2 wireless communication.

    PubMed

    Lin, Chi-Hsiang; Lin, Chun-Ting; Huang, Hou-Tzu; Zeng, Wei-Siang; Chiang, Shou-Chih; Chang, Hsi-Yu

    2015-05-01

    This paper proposes a 2x2 MIMO OFDM Radio-over-Fiber scheme based on optical subcarrier multiplexing and 60-GHz MIMO wireless transmission. We also schematically investigated the principle of optical subcarrier multiplexing, which is based on a dual-parallel Mach-Zehnder modulator (DP-MZM). In our simulation result, combining two MIMO OFDM signals to drive DP-MZM gives rise to the PAPR augmentation of less than 0.4 dB, which mitigates nonlinear distortion. Moreover, we applied a Levin-Campello bit-loading algorithm to compensate for the uneven frequency responses in the V-band. The resulting system achieves OFDM signal rates of 61.5-Gbits/s with BER of 10(-3) over 25-km SMF transmission followed by 3-m wireless transmission.

  2. Implementation and Analysis of ISM 2.4 GHz Wireless Sensor Network Systems in Judo Training Venues.

    PubMed

    Lopez-Iturri, Peio; Aguirre, Erik; Azpilicueta, Leyre; Astrain, José Javier; Villadangos, Jesús; Falcone, Francisco

    2016-08-06

    In this work, the performance of ISM 2.4 GHz Wireless Sensor Networks (WSNs) deployed in judo training venues is analyzed. Judo is a very popular martial art, which is practiced by thousands of people not only at the competition level, but also as part of physical education programs at different school levels. There is a great variety of judo training venues, and each one has specific morphological aspects, making them unique scenarios in terms of radio propagation due to the presence of furniture, columns, equipment and the presence of human beings, which is a major issue as the person density within this kind of scenarios could be high. Another key aspect is the electromagnetic interference created by other wireless systems, such as WiFi or other WSNs, which make the radio planning a complex task in terms of coexistence. In order to analyze the impact of these features on the radio propagation and the performance of WSNs, an in-house developed 3D ray launching algorithm has been used. The obtained simulation results have been validated with a measurement campaign carried out in the sport facilities of the Public University of Navarre. The analysis is completed with the inclusion of an application designed to monitor biological constants of judokas, aimed to improve their training procedures. The application, that allows the simultaneous monitoring of multiple judokas (collective workouts) minimizing the efforts of the coach and medical supervisor, is based on commercial off-the-shelf products. The presented assessment of the presence of interfering wireless systems and the presence of human beings within judo training venues shows that an in-depth radio planning is required as these issues can have a great impact in the overall performance of a ISM 2.4 GHz WSN, affecting negatively the potential applications supported by wireless channel.

  3. Implementation and Analysis of ISM 2.4 GHz Wireless Sensor Network Systems in Judo Training Venues.

    PubMed

    Lopez-Iturri, Peio; Aguirre, Erik; Azpilicueta, Leyre; Astrain, José Javier; Villadangos, Jesús; Falcone, Francisco

    2016-01-01

    In this work, the performance of ISM 2.4 GHz Wireless Sensor Networks (WSNs) deployed in judo training venues is analyzed. Judo is a very popular martial art, which is practiced by thousands of people not only at the competition level, but also as part of physical education programs at different school levels. There is a great variety of judo training venues, and each one has specific morphological aspects, making them unique scenarios in terms of radio propagation due to the presence of furniture, columns, equipment and the presence of human beings, which is a major issue as the person density within this kind of scenarios could be high. Another key aspect is the electromagnetic interference created by other wireless systems, such as WiFi or other WSNs, which make the radio planning a complex task in terms of coexistence. In order to analyze the impact of these features on the radio propagation and the performance of WSNs, an in-house developed 3D ray launching algorithm has been used. The obtained simulation results have been validated with a measurement campaign carried out in the sport facilities of the Public University of Navarre. The analysis is completed with the inclusion of an application designed to monitor biological constants of judokas, aimed to improve their training procedures. The application, that allows the simultaneous monitoring of multiple judokas (collective workouts) minimizing the efforts of the coach and medical supervisor, is based on commercial off-the-shelf products. The presented assessment of the presence of interfering wireless systems and the presence of human beings within judo training venues shows that an in-depth radio planning is required as these issues can have a great impact in the overall performance of a ISM 2.4 GHz WSN, affecting negatively the potential applications supported by wireless channel. PMID:27509501

  4. Implementation and Analysis of ISM 2.4 GHz Wireless Sensor Network Systems in Judo Training Venues

    PubMed Central

    Lopez-Iturri, Peio; Aguirre, Erik; Azpilicueta, Leyre; Astrain, José Javier; Villadangos, Jesús; Falcone, Francisco

    2016-01-01

    In this work, the performance of ISM 2.4 GHz Wireless Sensor Networks (WSNs) deployed in judo training venues is analyzed. Judo is a very popular martial art, which is practiced by thousands of people not only at the competition level, but also as part of physical education programs at different school levels. There is a great variety of judo training venues, and each one has specific morphological aspects, making them unique scenarios in terms of radio propagation due to the presence of furniture, columns, equipment and the presence of human beings, which is a major issue as the person density within this kind of scenarios could be high. Another key aspect is the electromagnetic interference created by other wireless systems, such as WiFi or other WSNs, which make the radio planning a complex task in terms of coexistence. In order to analyze the impact of these features on the radio propagation and the performance of WSNs, an in-house developed 3D ray launching algorithm has been used. The obtained simulation results have been validated with a measurement campaign carried out in the sport facilities of the Public University of Navarre. The analysis is completed with the inclusion of an application designed to monitor biological constants of judokas, aimed to improve their training procedures. The application, that allows the simultaneous monitoring of multiple judokas (collective workouts) minimizing the efforts of the coach and medical supervisor, is based on commercial off-the-shelf products. The presented assessment of the presence of interfering wireless systems and the presence of human beings within judo training venues shows that an in-depth radio planning is required as these issues can have a great impact in the overall performance of a ISM 2.4 GHz WSN, affecting negatively the potential applications supported by wireless channel. PMID:27509501

  5. Frequency sharing between passive sensors and aeronautical radionavigation systems employing ground transponders in the band 4.2 - 4.4 GHz

    NASA Technical Reports Server (NTRS)

    Degroot, N. F.

    1982-01-01

    The 4.2 to 4.4 GHz band is reserved for radio altimeters aboard aircraft and for associated transponders on the ground. A radar altimeter system which utilizes associated ground transponders is described and the feasibility of co-channel operation of such a system with a typical passive sensor is analyzed.

  6. Novel 1.2kW UV laser system for micro fabrication and annealing

    NASA Astrophysics Data System (ADS)

    Herbst, Ludolf; Paetzel, Rainer; Schmidt, Kai

    2011-03-01

    The growing demand for laser micro fabrication drives further requirements on higher production speed per part and lower manufacturing costs. A newly developed 1.2 kW 308 nm excimer laser addresses both micro-manufacturing and high production throughput. Solid state UV laser sources usually cannot emit UV laser radiation directly. The inherently required frequency conversion limits the total output power to several 10 Watts below 350 nm. Furthermore these UV-conversion- modules limit the long term reliability of high power UV solid state lasers significantly because of the wear of the conversion crystals. Excimer lasers, however, overcome these issues by direct emission at 308, 248, or 193 nm. By now up to 540 Watts at 308 nm are established in production. With the new laser we have more than doubled the available output power to 1.2 kW. The combination of short wavelength and highest available UV laser power makes it ideal for processing of small features or to modify thin surfaces. Furthermore, pulsed UV laser radiation is very suitable for removing delicate electronic devices from manufacturing substrates. High-power UV laser systems are capable of processing large areas with resolution down to several microns in one single laser ablation step without using multiple lithography and wet chemical processes. For instance, laser Lift-Off and large area annealing have proven to be very efficient manufacturing techniques for volume production. In this paper, a novel 1.2 kW excimer laser will be presented and discussed.

  7. Development and Preliminary Commissioning Results of a Long Pulse 140 GHz ECRH System on EAST Tokamak (Invited)

    NASA Astrophysics Data System (ADS)

    Xu, Handong; Wang, Xiaojie; Liu, Fukun; Zhang, Jian; Huang, Yiyun; Shan, Jiafang; Wu, Dajun; Hu, Huaichuan; Li, Bo; Li, Miaohui; Yang, Yong; Feng, Jianqiang; Xu, Weiye; Tang, Yunying; Wei, Wei; Xu, Liqing; Liu, Yong; Zhao, Hailin; Lohr, J.; A. Gorelov, Y.; P. Anderson, J.; Ma, Wendong; Wu, Zege; Wang, Jian; Zhang, Liyuan; Guo, Fei; Sun, Haozhang; Yan, Xinsheng; East Team

    2016-04-01

    A long pulse electron cyclotron resonance heating (ECRH) system has been developed to meet the requirements of steady-state operation for the EAST superconducting tokamak, and the first EC wave was successfully injected into plasma during the 2015 spring campaign. The system is mainly composed of four 140 GHz gyrotron systems, 4 ITER-Like transmission lines, 4 independent channel launchers and corresponding power supplies, a water cooling, control & inter-lock system etc. Each gyrotron is expected to deliver a maximum power of 1 MW and be operated at 100-1000 s pulse lengths. The No.1 and No.2 gyrotron systems have been installed. In the initial commissioning, a series of parameters of 1 MW 1 s, 900 kW 10 s, 800 kW 95 s and 650 kW 753 s have been demonstrated successfully on the No.1 gyrotron system based on calorimetric dummy load measurements. Significant plasma heating and MHD instability suppression effects were observed in EAST experiments. In addition, high confinement (H-mode) discharges triggered by ECRH were obtained. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2011GB102000, 2012GB103000 and 2015GB103000)

  8. YAC 1.2.0: new aspects for coupling software in Earth system modelling

    NASA Astrophysics Data System (ADS)

    Hanke, Moritz; Redler, René; Holfeld, Teresa; Yastremsky, Maxim

    2016-08-01

    A lightweight software library has been developed to realise the coupling of Earth system model components. The software provides parallelised two-dimensional neighbourhood search, interpolation, and communication for the coupling between any two model components. The software offers flexible coupling of physical fields defined on regular and irregular grids on the sphere without a priori assumptions about grid structure or grid element types. All supported grids can be combined with any of the supported interpolations. We describe the new aspects of our approach and provide an overview of the implemented functionality and of some algorithms we use. Preliminary performance measurements for a set of realistic use cases are presented to demonstrate the potential performance and scalability of our approach. YAC 1.2.0 is now used for the coupling of the model components in the Icosahedral Nonhydrostatic (ICON) general circulation model.

  9. Non-Bloch decay of transient nutations in S=1/2 systems: An experimental investigation

    NASA Astrophysics Data System (ADS)

    Boscaino, R.; Gelardi, F. M.; Korb, J. P.

    1993-09-01

    The decay of transient nutations has been experimentally investigated in S=1/2 spin systems at microwave frequency: E' centers in silica and [AlO4]0 centers in quartz have been studied. We have found that the damping is well described by a single exponential decay function, as expected from a T1-T2 model (Bloch model). However, the agreement is only qualitative. In fact the measured decay rate Γ is faster than expected and depends on the driving-field amplitude: it tends to the Bloch value ΓB=1/2T2 in the low-power limit and becomes faster and faster on increasing the input power. In all the cases examined the power dependence of the decay rate is fit well by a simple linear dependence of Γ on the induced Rabi frequency χ. The observed power dependence of Γ cannot be ascribed to the inhomogeneity of χ over the sample volume nor to the radiation damping, since both effects are negligible in our experiments. Other mechanisms, which can, in principle, yield a χ dependence of Γ, e.g., the direct interaction of the driving field with structural two-level systems or the spreading of the spin-field coupling constant, are not compatible with the experimental conditions. So, our results suggest that the homogeneous dephasing time of each isochromat contains an intrinsic term and a χ-dependent one. The latter may originate in a field-induced enhancement of the hyperfine or dipolar interaction; however, neither of these mechanisms completely fits the experimental features. The relationship with the decay properties of other coherent regimes is also discussed.

  10. Triple quantum filtered spectroscopy of homonuclear three spin-1/2 systems employing isotropic mixing

    NASA Astrophysics Data System (ADS)

    Kirwai, Amey; Chandrakumar, N.

    2016-08-01

    We report the design and performance evaluation of novel pulse sequences for triple quantum filtered spectroscopy in homonuclear three spin-1/2 systems, employing isotropic mixing (IM) to excite triple quantum coherence (TQC). Our approach involves the generation of combination single quantum coherences (cSQC) from antisymmetric longitudinal or transverse magnetization components employing isotropic mixing (IM). cSQC's are then converted to TQC by a selective 180° pulse on one of the spins. As IM ideally causes magnetization to evolve under the influence of the spin coupling Hamiltonian alone, TQC is generated at a faster rate compared to sequences involving free precession. This is expected to be significant when the spins have large relaxation rates. Our approach is demonstrated experimentally by TQC filtered 1D spectroscopy on a 1H AX2 system (propargyl bromide in the presence of a paramagnetic additive), as well as a 31P linear AMX system (ATP in agar gel). The performance of the IM-based sequences for TQC excitation are compared against the standard three pulse sequence (Ernst et al., 1987) and an AX2 spin pattern recognition sequence (Levitt and Ernst, 1983). The latter reaches the unitary bound on TQC preparation efficiency starting from thermal equilibrium in AX2 systems, not considering relaxation. It is shown that in systems where spins relax rapidly, the new IM-based sequences indeed perform significantly better than the above two known TQC excitation sequences, the sensitivity enhancement being especially pronounced in the case of the proton system investigated. An overview of the differences in relaxation behavior is presented for the different approaches. Applications are envisaged to Overhauser DNP experiments and to in vivo NMR.

  11. Biodegradation of cis-1,2-Dichloroethene in Simulated Underground Thermal Energy Storage Systems.

    PubMed

    Ni, Zhuobiao; van Gaans, Pauline; Smit, Martijn; Rijnaarts, Huub; Grotenhuis, Tim

    2015-11-17

    Underground thermal energy storage (UTES) use has showed a sharp rise in numbers in the last decades, with aquifer thermal energy storage (ATES) and borehole thermal energy storage (BTES) most widely used. In many urban areas with contaminated aquifers, there exists a desire for sustainable heating and cooling with UTES and a need for remediation. We investigated the potential synergy between UTES and bioremediation with batch experiments to simulate the effects of changing temperature and liquid exchange that occur in ATES systems, and of only temperature change occurring in BTES systems on cis-DCE reductive dechlorination. Compared to the natural situation (NS) at a constant temperature of 10 °C, both UTES systems with 25/5 °C for warm and cold well performed significantly better in cis-DCE (cis-1,2-dichloroethene) removal. The overall removal efficiency under mimicked ATES and BTES conditions were respectively 13 and 8.6 times higher than in NS. Inoculation with Dehalococcoides revealed that their initial presence is a determining factor for the dechlorination process. Temperature was the dominating factor when Dehalococcoides abundance was sufficient. Stimulated biodegradation was shown to be most effective in the mimicked ATES warm well because of the combined effect of suitable temperature, sustaining biomass growth, and regular cis-DCE supply.

  12. Weather monitor station and 225 GHz radiometer system installed at Sierra Negra: the Large Millimeter Telescope site

    NASA Astrophysics Data System (ADS)

    Ferrusca, D.; Contreras R., J.

    2014-07-01

    The Large Millimeter Telescope (LMT) is a 50-m dish antenna designed to observe in the wavelength range of 0.85 to 4 mm at an altitude of 4600 m on the summit of Sierra Negra Puebla, Mexico. The telescope has a new atmospheric monitoring system that allows technical staff and astronomers to evaluate the conditions at the site and have enough information to operate the antenna in safe conditions, atmospheric data is also useful to schedule maintenance activities and conduct scientific observations, opacity data is used to calibrate the astronomical data and evaluate the quality of the sky at millimeter wavelengths. In this paper we describe the integration of a weather atmospheric monitoring system and a 225 GHz radiometer to the facilities around the telescope and also describe the hardware integration of these systems and the software methodology used to save and process the data and then make it available in real time to the astronomers and outside world through an internet connection. Finally we present a first set of atmospheric measurements and statistics taken with this new equipment during the wet and dry seasons of 2013/2014.

  13. MMIC Amplifiers for 90 to 130 GHz

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene; Pukala, David; Peralta, Alejandro; Bryerton, Eric; Morgan, Matt; Boyd, T.; Hu, Ming; Schmitz, Adele

    2007-01-01

    This brief describes two monolithic microwave integrated-circuit (MMIC) amplifier chips optimized to function in the frequency range of 90 to 130 GHz, covering nearly all of F-band (90 - 140 GHz). These amplifiers were designed specifically for local-oscillator units in astronomical radio telescopes such as the Atacama Large Millimeter Array (ALMA). They could also be readily adapted for use in electronic test equipment, automotive radar systems, and communications systems that operate between 90 and 130 GHz.

  14. Propagation effects handbook for satellite systems design. A summary of propagation impairments on 10 to 100 GHz satellite links with techniques for system design

    NASA Technical Reports Server (NTRS)

    Ippolito, Louis J.

    1989-01-01

    The NASA Propagation Effects Handbook for Satellite Systems Design provides a systematic compilation of the major propagation effects experienced on space-Earth paths in the 10 to 100 GHz frequency band region. It provides both a detailed description of the propagation phenomenon and a summary of the impact of the effect on the communications system design and performance. Chapter 2 through 5 describe the propagation effects, prediction models, and available experimental data bases. In Chapter 6, design techniques and prediction methods available for evaluating propagation effects on space-Earth communication systems are presented. Chapter 7 addresses the system design process and how the effects of propagation on system design and performance should be considered and how that can be mitigated. Examples of operational and planned Ku, Ka, and EHF satellite communications systems are given.

  15. Propagation effects handbook for satellite systems design. A summary of propagation impairments on 10 to 100 GHz satellite links with techniques for system design

    NASA Astrophysics Data System (ADS)

    Ippolito, Louis J.

    1989-02-01

    The NASA Propagation Effects Handbook for Satellite Systems Design provides a systematic compilation of the major propagation effects experienced on space-Earth paths in the 10 to 100 GHz frequency band region. It provides both a detailed description of the propagation phenomenon and a summary of the impact of the effect on the communications system design and performance. Chapter 2 through 5 describe the propagation effects, prediction models, and available experimental data bases. In Chapter 6, design techniques and prediction methods available for evaluating propagation effects on space-Earth communication systems are presented. Chapter 7 addresses the system design process and how the effects of propagation on system design and performance should be considered and how that can be mitigated. Examples of operational and planned Ku, Ka, and EHF satellite communications systems are given.

  16. The Upgrade of the DIII-D GHz ECH System to 6 MW

    SciTech Connect

    Cary, W.P.; Callis, R.W.; Lohr, J.M.; Ponce, D.; Legg, R.A.

    1999-11-01

    ECH power has proven capabilities to both heat and drive current in energetic plasmas. Recent developments in high power sources have made the use of these capabilities in energetic plasmas feasible. For the second phase of ECH power on DIII-D, there will be three 1 MW sources added to the existing 3 MW for a total generated power of 6 MW. The upgrade is based on the use of single disc CVD (chemical vapor deposition) diamond windows on 1 MW gyrotrons developed by CPI. AU gyrotrons are connected to the tokamak by low-loss-windowless evacuated transmission lines using circular corrugated waveguide for propagation in the HE{sub 11} mode. Each waveguide system incorporates a two-mirror launcher which can steer the rf beam poloidally from the center to the outer edge of the plasma and toroidally for either co- or counter-current drive. The total system overview and integration with existing systems will be discussed along with the new aspects of the upgrade from building modifications to the new launchers. Much of the upgrade is comprised of existing designs, which will need only slight modifications, while some components have required new designs because of longer pulse lengths.

  17. On the design and assessment of a 2.45 GHz radio telecommand system for remote patient monitoring.

    PubMed

    Crumley, G C; Evans, N E; Burns, J B; Trouton, T G

    1998-12-01

    This paper discusses the design and operational assessment of a minimum-power, 2.45 GHz portable pulse receiver and associated base transmitter comprising the interrogation link in a duplex, cross-band RF transponder designed for short-range, remote patient monitoring. A tangential receiver sensitivity of - 53 dBm was achieved using a 50 ohms microstrip stub-matched zero-bias diode detector and a CMOS baseband amplifier consuming 20 microA from + 3 V. The base transmitter generated an on-off keyed peak output of 0.5 W into 50 ohms. Both linear and right-hand circularly-polarised antennas were employed in system evaluations carried out within an operational Coronary Care Unit ward. For transmitting antenna heights of between 0.3 and 2.2 m above floor level. transponder interrogations were 95% reliable within the 82 m2 area of the ward, falling to an average of 46% in the surrounding rooms and corridors. Separating the polarisation modes, using the circular antenna set gave the higher overall reliability.

  18. On the design and assessment of a 2.45 GHz radio telecommand system for remote patient monitoring.

    PubMed

    Crumley, G C; Evans, N E; Burns, J B; Trouton, T G

    1998-12-01

    This paper discusses the design and operational assessment of a minimum-power, 2.45 GHz portable pulse receiver and associated base transmitter comprising the interrogation link in a duplex, cross-band RF transponder designed for short-range, remote patient monitoring. A tangential receiver sensitivity of - 53 dBm was achieved using a 50 ohms microstrip stub-matched zero-bias diode detector and a CMOS baseband amplifier consuming 20 microA from + 3 V. The base transmitter generated an on-off keyed peak output of 0.5 W into 50 ohms. Both linear and right-hand circularly-polarised antennas were employed in system evaluations carried out within an operational Coronary Care Unit ward. For transmitting antenna heights of between 0.3 and 2.2 m above floor level. transponder interrogations were 95% reliable within the 82 m2 area of the ward, falling to an average of 46% in the surrounding rooms and corridors. Separating the polarisation modes, using the circular antenna set gave the higher overall reliability. PMID:10223644

  19. Design of 2-4 GHz Equalizers for the Antiproton Accumulator Stacktail System

    SciTech Connect

    Deibele, C.; /Wisconsin U., Madison

    1999-01-01

    The antiproton source at Fermilab requires storage of antiprotons during the production of antiprotons. A fundamental part of the storage process involves stochastic cooling, which requires that the frequency spectrum from the pickups has notches at the revolution frequency and harmonics of the revolution frequency of the antiprotons in the storage ring. A system has been developed for broadband notches but suffers from dispersion. The dispersion inhibits the cooling process and therefore an equalizer is required. The process for designing the equalizers is described and results shown.

  20. An Optimized 2.4GHz RF Power Amplifier Performance for WLAN System

    NASA Astrophysics Data System (ADS)

    Ali, Mohammed H.; Chakrabarty, C. K.; Abdalla, Ahmed N.; Hock, Goh C.

    2013-06-01

    Recently, the design of RF power amplifiers (PAs) for modern wireless systems are faced with a difficult tradeoff for example, cellphone; battery lifetime is largely determined by the power efficiency of the PA and high spectral efficiency which have ability to transmit data at the highest possible rate for a given channel bandwidth. This paper presents the design a multi stage class AB power Amplifier with high power added efficiency (PAE) and acceptable linearity for the WLAN applications. The open-circuited third harmonic control circuit enhances the efficiency of the PA without deteriorating the linearity of class-AB mode of the PA. The voltage and current waveforms are simulated to evaluate the appropriate operation for the modes. The effectiveness of the proposed controller has been verified by comparing proposed method with another methods using simulation study under a variety of conditions. The proposed circuit operation for a WLAN signals delivers a power-added efficiency (PAE) of 37.6% is measured at 31.6-dBm output power while dissipating 34.61 mA from a 1.8V supply. Finally, the proposed PA is show a good and acceptable result for the WLAN system.

  1. A propagation effects handbook for satellite systems design. A summary of propagation impairments on 10-100 GHz satellite links, with techniques for system design. [tropospheric scattering

    NASA Technical Reports Server (NTRS)

    Kaul, R.; Wallace, R.; Kinal, G.

    1980-01-01

    This handbook provides satellite system engineers with a concise summary of the major propagation effects experienced on Earth-space paths in the 10 to 100 GHz frequency range. The dominant effect, attenuation due to rain, is dealt with in terms of both experimental data from measurements made in the U.S. and Canada, and the mathematical and conceptual models devised to explain the data. Rain systems, rain and attenuation models, depolarization and experimental data are described. The design techniques recommended for predicting propagation effects in Earth-space communications systems are presented. The questions of where in the system design process the effects of propagation should be considered, and what precautions should be taken when applying the propagation results are addressed in order to bridge the gap between the propagation research data and the classical link budget analysis of Earth-space communications system.

  2. A propagation effects handbook for satellite systems design. A summary of propagation impairments on 10-100 GHz satellite links, with techniques for system design

    NASA Astrophysics Data System (ADS)

    Kaul, R.; Wallace, R.; Kinal, G.

    1980-03-01

    This handbook provides satellite system engineers with a concise summary of the major propagation effects experienced on Earth-space paths in the 10 to 100 GHz frequency range. The dominant effect, attenuation due to rain, is dealt with in terms of both experimental data from measurements made in the U.S. and Canada, and the mathematical and conceptual models devised to explain the data. Rain systems, rain and attenuation models, depolarization and experimental data are described. The design techniques recommended for predicting propagation effects in Earth-space communications systems are presented. The questions of where in the system design process the effects of propagation should be considered, and what precautions should be taken when applying the propagation results are addressed in order to bridge the gap between the propagation research data and the classical link budget analysis of Earth-space communications system.

  3. Design of collective Thomson scattering system using 77 GHz gyrotron for bulk and tail ion diagnostics in the large helical device

    SciTech Connect

    Nishiura, M.; Tanaka, K.; Kubo, S.; Kawahata, K.; Shimozuma, T.; Mutoh, T.; Saito, T.; Tatematsu, Y.; Notake, T.

    2008-10-15

    Collective Thomson scattering (CTS) system is expected to be a strong diagnostic tool for measuring thermal and fast ion distribution function at a local point inside plasmas. The electron cyclotron resonance heating system using a gyrotron at the frequency range of 77 GHz has been installed at the large helical device (LHD). The feasibility of CTS system using the 77 GHz gyrotron is assessed in terms of scattering spectrum and a background noise of the electron cyclotron emission, which affect the signal to noise ratio, with the realistic plasma parameters and incident port locations of LHD. Based on the calculated scattering spectra for bulk and tail fast ion diagnostics, the scattering radiation receiver system with gyrotron frequency feedback circuit is proposed to avoid the frequency chirping.

  4. Feasibility study of microprocessor systems suitable for use in developing a real-time for the 4.75 GHz scatterometer

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A class of signal processors suitable for the reduction of radar scatterometer data in real time was developed. The systems were applied to the reduction of single polarized 13.3 GHz scatterometer data and provided a real time output of radar scattering coefficient as a function of incident angle. It was proposed that a system for processing of C band radar data be constructed to support scatterometer system currently under development. The establishment of a feasible design approach to the development of this processor system utilizing microprocessor technology was emphasized.

  5. Low-energy spin dynamics of the s = 1/2 kagome system herbertsmithite.

    PubMed

    Nilsen, G J; de Vries, M A; Stewart, J R; Harrison, A; Rønnow, H M

    2013-03-13

    The low-energy (ε = ħω < 1 meV), low-temperature (T = 0.05 K) spin dynamics of the s = 1/2 kagome candidate herbertsmithite are probed in the presence of magnetic fields up to 2.5 T. The zero-field spectra reveal a very weak continuum of scattering at T = 10 K and a broad inelastic peak centred at ε(max) = 0.2 meV at lower temperatures, T < 1 K. The broad peak is found to be strongly damped, with a liquid-like structure factor implying correlations at length scales up to r = 6 Å. The field dependence of the peak appears to follow the Zeeman splitting of s = 1/2 excitations, consistent with the weakly split 'doublets' observed in low-temperature specific heat. A possible explanation of these observations is a short-range correlated state involving defect spins between the kagome planes and moments in the kagome layers.

  6. β-Cu2V2O7 : A spin- (1)/(2) honeycomb lattice system

    NASA Astrophysics Data System (ADS)

    Tsirlin, Alexander A.; Janson, Oleg; Rosner, Helge

    2010-10-01

    We report on band-structure calculations and a microscopic model of the low-dimensional magnet β-Cu2V2O7 . Magnetic properties of this compound can be described by a spin- (1)/(2) anisotropic honeycomb lattice model with the averaged coupling J¯1=60-66K . The low symmetry of the crystal structure leads to two inequivalent couplings J1 and J1' but this weak spatial anisotropy does not affect the essential physics of the honeycomb spin lattice. The structural realization of the honeycomb lattice is highly nontrivial: the leading interactions J1 and J1' run via double bridges of VO4 tetrahedra between spatially separated Cu atoms while the interactions between structural nearest neighbors are negligible. The non-negligible interplane coupling J⊥≃15K gives rise to the long-range magnetic ordering at TN≃26K . Our model simulations improve the fit of the magnetic susceptibility data, compared to the previously assumed spin-chain models. Additionally, the simulated ordering temperature of 27 K is in remarkable agreement with the experiment. Our study evaluates β-Cu2V2O7 as the best available experimental realization of the spin- (1)/(2) Heisenberg model on the honeycomb lattice. We also provide an instructive comparison of different band-structure codes and computational approaches to the evaluation of exchange couplings in magnetic insulators.

  7. Integrated Safety Management System Phase I Verification for the Plutonium Finishing Plant (PFP) [VOL 1 & 2

    SciTech Connect

    SETH, S.S.

    2000-01-10

    U.S. Department of Energy (DOE) Policy 450.4, Safety Management System Policy commits to institutionalizing an Integrated Safety Management System (ISMS) throughout the DOE complex as a means of accomplishing its missions safely. DOE Acquisition Regulation 970.5204-2 requires that contractors manage and perform work in accordance with a documented safety management system.

  8. Novel imidazo[1,2-a]naphthyridinic systems (part 1): synthesis, antiproliferative and DNA-intercalating activities.

    PubMed

    Andaloussi, Mounir; Moreau, Emmanuel; Masurier, Nicolas; Lacroix, Jacques; Gaudreault, René C; Chezal, Jean-Michel; El Laghdach, Anas; Canitrot, Damien; Debiton, Eric; Teulade, Jean-Claude; Chavignon, Olivier

    2008-11-01

    Novel imidazo[1,2-a]naphthyridinic systems 6a-15a and 6b-15b were obtained from Friedländer's reaction in imidazo[1,2-a]pyridine series. Most of the compounds were evaluated for their antitumor activity in the NCIs in vitro human tumor cell line screening panel. Among them, pentacyclic derivatives 13b and 14a exhibited in vitro activity comparable to anticancer agent such as amsacrine. Their mechanism of cytotoxicity action was unrelated to poisoning or inhibiting abilities against topo1. On the contrary, we highlighted a direct intercalation of the drugs into DNA by electrophoresis on agarose gel. PMID:18403058

  9. NASA Electronic Library System (NELS) database schema, version 1.2

    NASA Technical Reports Server (NTRS)

    Melebeck, Clovis J.

    1991-01-01

    The database tables used by NELS version 1.2 are discussed. To provide the current functional capability offered by NELS, nineteen tables were created with ORACLE. Each table lists the ORACLE table name and provides a brief description of the tables intended use or function. The following sections cover four basic categories of tables: NELS object classes, NELS collections, NELS objects, and NELS supplemental tables. Also included in each section is a definition and/or relationship of each field to other fields or tables. The primary key(s) for each table is indicated with a single asterisk (*), while foreign keys are indicated with double asterisks (**). The primary key(s) indicate the key(s) which uniquely identifies a record for that table. The foreign key(s) is used to identify additional information in other table(s) for that record. The two appendices are the command which is used to construct the ORACLE tables for NELS. Appendix A contains the commands which create the tables which are defined in the following sections. Appendix B contains the commands which build the indices for these tables.

  10. SPITZER OBSERVATIONS OF THE HH 1/2 SYSTEM: THE DISCOVERY OF THE COUNTERJET

    SciTech Connect

    Noriega-Crespo, A.; Raga, A. C.

    2012-05-10

    We present unpublished Spitzer IRAC observations of the HH 1/2 young stellar outflow processed with a high angular resolution deconvolution algorithm that produces subarcsecond ({approx}0.''6-0.''8) images. In the resulting mid-infrared images, the optically invisible counterjet is detected for the first time. The counterjet is approximately half as bright as the jet at 4.5 {mu}m (the IRAC band that best traces young stellar outflows) and has a length of {approx}10''. The NW optical jet itself can be followed back in the mid-IR to the position of the exciting VLA 1 source. An analysis of the IRAC colors indicates that the jet/counterjet emission is dominated by collisionally excited H{sub 2} pure rotational lines arising from a medium with a neutral hydrogen gas density of {approx}1000-2000 cm{sup -3} and a temperature of {approx} 1500 K. The observed jet/counterjet brightness asymmetry is consistent with an intrinsically symmetric outflow with extinction from a dense, circumstellar structure of {approx}6'' size (along the outflow axis), and with a mean visual extinction, A{sub V} {approx} 11 mag.

  11. Federal Emergency Management Information system (FEMIS) data management guide. Version 1.2

    SciTech Connect

    Burnett, R.A.; Downing, T.R.; Gaustad, K.L.; Johnson, S.M.; Loveall, R.M.; Winters, C.

    1996-05-01

    The Federal Emergency Management Information System (FEMIS) is an emergency management planning and analysis tool that is being developed under the direction of the US Army Chemical and Biological Defense Command. The FEMIS Data Management Guide provides the background, as well as the operations and procedures needed to generate and maintain the data resources in the system. Database administrators, system administrators, and general users can use this guide to manage the data files and database that support the administrative, user-environment, database management, and operational capabilities of FEMIS. This document provides a description of the relational and spatial information present in FEMIS. It describes how the data was assembled, how it is loaded, and how it is managed while the system is in operation.

  12. A Reflection on the Fate of Chiral 1,2,4-Triazole Fungicides in Biological Systems

    EPA Science Inventory

    In biological systems, stereoisomers of chiral compounds can exhibit significantly different pharmacokinetics (absorption, distribution, metabolism, and elimination) and pharmacodynamics (physiological effects). Pharmacokinetic processes (i.e., what the body does to the chemical)...

  13. Integrated radwaste treatment system lessons learned from 2{1/2} years of operation

    SciTech Connect

    Baker, M.N.; Fussner, R.J.

    1997-05-01

    The Integrated Radwaste Treatment System (IRTS) at the West Valley Demonstration Project (WVDP) is a pretreatment scheme to reduce the amount of salts in the high-level radioactive waste (vitrification) stream. Following removal of cesium-137 (Cs-137) by ion-exchange in the Supernatant Treatment System (STS), the radioactive waste liquid is volume-reduced by evaporation. Trace amounts of Cs-137 in the resulting distillate are removed by ion-exchange, then the distillate is discharged to the existing plant water treatment system. The concentrated product, 37 to 41 percent solids by weight, is encapsulated in cement producing a stable, low-level waste form. The Integrated Radwaste Treatment System (IRTS) operated in this mode from May 1988 through November 1990, decontaminating 450,000 gallons of high-level waste liquid; evaporating and encapsulating the resulting concentrates into 10,393 71-gallon square drums. A number of process changes and variations from the original operating plan were required to increase the system flow rate and minimize waste volumes. This report provides a summary of work performed to operate the IRTS, including system descriptions, process highlights, and lessons learned.

  14. Propagation effects handbook for satellite systems design. A summary of propagation impairments on 10 to 100 GHz satellite links with techniques for system design

    NASA Technical Reports Server (NTRS)

    Ippolito, L. J.; Kaul, R. D.; Wallace, R. G.

    1983-01-01

    This Propagation Handbook provides satellite system engineers with a concise summary of the major propagation effects experienced on Earth-space paths in the 10 to 100 GHz frequency range. The dominant effect, attenuation due to rain, is dealt with in some detail, in terms of both experimental data from measurements made in the U.S. and Canada, and the mathematical and conceptual models devised to explain the data. In order to make the Handbook readily usable to many engineers, it has been arranged in two parts. Chapters 2-5 comprise the descriptive part. They deal in some detail with rain systems, rain and attenuation models, depolarization and experimental data. Chapters 6 and 7 make up the design part of the Handbook and may be used almost independently of the earlier chapters. In Chapter 6, the design techniques recommended for predicting propagation effects in Earth-space communications systems are presented. Chapter 7 addresses the questions of where in the system design process the effects of propagation should be considered, and what precautions should be taken when applying the propagation results.

  15. Propagation effects handbook for satellite systems design. A summary of propagation impairments on 10 to 100 GHz satellite links with techniques for system design

    NASA Astrophysics Data System (ADS)

    Ippolito, L. J.; Kaul, R. D.; Wallace, R. G.

    1983-06-01

    This Propagation Handbook provides satellite system engineers with a concise summary of the major propagation effects experienced on Earth-space paths in the 10 to 100 GHz frequency range. The dominant effect, attenuation due to rain, is dealt with in some detail, in terms of both experimental data from measurements made in the U.S. and Canada, and the mathematical and conceptual models devised to explain the data. In order to make the Handbook readily usable to many engineers, it has been arranged in two parts. Chapters 2-5 comprise the descriptive part. They deal in some detail with rain systems, rain and attenuation models, depolarization and experimental data. Chapters 6 and 7 make up the design part of the Handbook and may be used almost independently of the earlier chapters. In Chapter 6, the design techniques recommended for predicting propagation effects in Earth-space communications systems are presented. Chapter 7 addresses the questions of where in the system design process the effects of propagation should be considered, and what precautions should be taken when applying the propagation results.

  16. Bacterial Cyclic β-(1,2)-Glucan Acts in Systemic Suppression of Plant Immune Responses[W

    PubMed Central

    Rigano, Luciano Ariel; Payette, Caroline; Brouillard, Geneviève; Marano, Maria Rosa; Abramowicz, Laura; Torres, Pablo Sebastián; Yun, Maximina; Castagnaro, Atilio Pedro; Oirdi, Mohamed El; Dufour, Vanessa; Malamud, Florencia; Dow, John Maxwell; Bouarab, Kamal; Vojnov, Adrian Alberto

    2007-01-01

    Although cyclic glucans have been shown to be important for a number of symbiotic and pathogenic bacterium–plant interactions, their precise roles are unclear. Here, we examined the role of cyclic β-(1,2)-glucan in the virulence of the black rot pathogen Xanthomonas campestris pv campestris (Xcc). Disruption of the Xcc nodule development B (ndvB) gene, which encodes a glycosyltransferase required for cyclic glucan synthesis, generated a mutant that failed to synthesize extracellular cyclic β-(1,2)-glucan and was compromised in virulence in the model plants Arabidopsis thaliana and Nicotiana benthamiana. Infection of the mutant bacterium in N. benthamiana was associated with enhanced callose deposition and earlier expression of the PATHOGENESIS-RELATED1 (PR-1) gene. Application of purified cyclic β-(1,2)-glucan prior to inoculation of the ndvB mutant suppressed the accumulation of callose deposition and the expression of PR-1 in N. benthamiana and restored virulence in both N. benthamiana and Arabidopsis plants. These effects were seen when cyclic glucan and bacteria were applied either to the same or to different leaves. Cyclic β-(1,2)-glucan–induced systemic suppression was associated with the transport of the molecule throughout the plant. Systemic suppression is a novel counterdefensive strategy that may facilitate pathogen spread in plants and may have important implications for the understanding of plant–pathogen coevolution and for the development of phytoprotection measures. PMID:17601826

  17. Hydrogen Macro System Model User Guide, Version 1.2.1

    SciTech Connect

    Ruth, M.; Diakov, V.; Sa, T.; Goldsby, M.; Genung, K.; Hoseley, R.; Smith, A.; Yuzugullu, E.

    2009-07-01

    The Hydrogen Macro System Model (MSM) is a simulation tool that links existing and emerging hydrogen-related models to perform rapid, cross-cutting analysis. It allows analysis of the economics, primary energy-source requirements, and emissions of hydrogen production and delivery pathways.

  18. LONESTAR: Texas Community Colleges Student Tracking System. Pilot Test Version 1.2. Data Element Dictionary.

    ERIC Educational Resources Information Center

    National Center for Higher Education Management Systems, Boulder, CO.

    This manual contains descriptions of all required and optional data elements used by LONESTAR, the computer-based student follow-up and tracking system developed for Texas community colleges. For each element, the following information is provided: (1) element title (i.e., the official name used in all references to the element in tracking system…

  19. Amplitude Linearizers for PEP-II 1.2 MW Klystrons and LLRF Systems

    SciTech Connect

    Van Winkle, D.; Browne, J.; Fox, J.D.; Mastorides, T.; Rivetta, C.; Teytelman, D.; /SLAC

    2006-07-18

    The PEP-II B-factory has aggressive current increases planned for luminosity through 2008. At 2.2A (HER) on 4A (LER) currents, we estimate that longitudinal growth rates will be comparable to the damping rates currently achieved in the existing low level RF and longitudinal feedback systems. Prior to having a good non-linear time domain model [1] it was postulated that klystron small signal gain non-linearity may be contributing to measured longitudinal growth rates being higher than linearly predicted growth rates. Five prototype klystron amplitude modulation linearizers have been developed to explore improved linearity in the LLRF system. The linearizers operate at 476 MHz with 15 dB dynamic range and 1 MHz linear control bandwidth. Results from lab measurements and high current beam tests are presented. Future development plans, conclusions from beam testing and ideas for future use of this linearization technique are presented.

  20. Systems Biology Graphical Notation: Activity Flow language Level 1 Version 1.2.

    PubMed

    Mi, Huaiyu; Schreiber, Falk; Moodie, Stuart; Czauderna, Tobias; Demir, Emek; Haw, Robin; Luna, Augustin; Le Novère, Nicolas; Sorokin, Anatoly; Villéger, Alice

    2015-01-01

    The Systems Biological Graphical Notation (SBGN) is an international community effort for standardized graphical representations of biological pathways and networks. The goal of SBGN is to provide unambiguous pathway and network maps for readers with different scientific backgrounds as well as to support efficient and accurate exchange of biological knowledge between different research communities, industry, and other players in systems biology. Three SBGN languages, Process Description (PD), Entity Relationship (ER) and Activity Flow (AF), allow for the representation of different aspects of biological and biochemical systems at different levels of detail. The SBGN Activity Flow language represents the influences of activities among various entities within a network. Unlike SBGN PD and ER that focus on the entities and their relationships with others, SBGN AF puts the emphasis on the functions (or activities) performed by the entities, and their effects to the functions of the same or other entities. The nodes (elements) describe the biological activities of the entities, such as protein kinase activity, binding activity or receptor activity, which can be easily mapped to Gene Ontology molecular function terms. The edges (connections) provide descriptions of relationships (or influences) between the activities, e.g., positive influence and negative influence. Among all three languages of SBGN, AF is the closest to signaling pathways in biological literature and textbooks, but its well-defined semantics offer a superior precision in expressing biological knowledge. PMID:26528563

  1. Automated Procurement System (APS): Project management plan (DS-03), version 1.2

    NASA Technical Reports Server (NTRS)

    Murphy, Diane R.

    1994-01-01

    The National Aeronautics and Space Administration (NASA) Marshall Space Flight Center (MSFC) is implementing an Automated Procurement System (APS) to streamline its business activities that are used to procure goods and services. This Project Management Plan (PMP) is the governing document throughout the implementation process and is identified as the APS Project Management Plan (DS-03). At this point in time, the project plan includes the schedules and tasks necessary to proceed through implementation. Since the basis of APS is an existing COTS system, the implementation process is revised from the standard SDLC. The purpose of the PMP is to provide the framework for the implementation process. It discusses the roles and responsibilities of the NASA project staff, the functions to be performed by the APS Development Contractor (PAI), and the support required of the NASA computer support contractor (CSC). To be successful, these three organizations must work together as a team, working towards the goals established in this Project Plan. The Project Plan includes a description of the proposed system, describes the work to be done, establishes a schedule of deliverables, and discusses the major standards and procedures to be followed.

  2. Systems Biology Graphical Notation: Activity Flow language Level 1 Version 1.2.

    PubMed

    Mi, Huaiyu; Schreiber, Falk; Moodie, Stuart; Czauderna, Tobias; Demir, Emek; Haw, Robin; Luna, Augustin; Le Novère, Nicolas; Sorokin, Anatoly; Villéger, Alice

    2015-09-04

    The Systems Biological Graphical Notation (SBGN) is an international community effort for standardized graphical representations of biological pathways and networks. The goal of SBGN is to provide unambiguous pathway and network maps for readers with different scientific backgrounds as well as to support efficient and accurate exchange of biological knowledge between different research communities, industry, and other players in systems biology. Three SBGN languages, Process Description (PD), Entity Relationship (ER) and Activity Flow (AF), allow for the representation of different aspects of biological and biochemical systems at different levels of detail. The SBGN Activity Flow language represents the influences of activities among various entities within a network. Unlike SBGN PD and ER that focus on the entities and their relationships with others, SBGN AF puts the emphasis on the functions (or activities) performed by the entities, and their effects to the functions of the same or other entities. The nodes (elements) describe the biological activities of the entities, such as protein kinase activity, binding activity or receptor activity, which can be easily mapped to Gene Ontology molecular function terms. The edges (connections) provide descriptions of relationships (or influences) between the activities, e.g., positive influence and negative influence. Among all three languages of SBGN, AF is the closest to signaling pathways in biological literature and textbooks, but its well-defined semantics offer a superior precision in expressing biological knowledge.

  3. The Electron-Optical System of a Gyrotron with an Operating Frequency of 263 GHz for Spectroscopic Research

    NASA Astrophysics Data System (ADS)

    Kuftin, A. N.; Manuilov, V. N.

    2016-07-01

    We describe specific features of modeling numerically the operation of magnetron-injection guns, which form high-quality helical electron beams in gyrotrons operated in the short-wave part of the millimeter-wave band (at a wavelength of 1 mm). As an example, we consider the gun of a gyrotron having an operating frequency of 263 GHz designed for spectroscopic research. It is shown that there are good reasons to perform calculations and optimization of the magnetroninjection un in two steps. At the first step, a simplest two-dimensional model can be used, which allows only for the influence of the field of the electrodes and the intrinsic space charge of the beam on the beam parameters. At the second, final stage one should allow for such factors as roughness of the emitting surface and thermal velocities of electrons. The electron distribution function in oscillatory velocities and the coefficient of electron reflection from the magnetic mirror should be calculated. It is demonstrated that the magnetron-injection gun, which is optimized by the method presented, is sufficiently universal and can be operated both at the first and second cyclotron-frequency harmonics. This opens up the possibility of developing gyrotrons for spectroscopy applications at frequencies of 263 and 526 GHz, respectively, which are required for biological and medical research.

  4. Observational fear learning involves affective pain system and Cav1.2 Ca2+ channels in ACC

    PubMed Central

    Jeon, Daejong; Kim, Sangwoo; Chetana, Mattu; Jo, Daewoong; Ruley, H Earl; Lin, Shih-Yao; Rabah, Dania; Kinet, Jean-Pierre; Shin, Hee-Sup

    2010-01-01

    Fear can be acquired vicariously through social observation of others suffering from aversive stimuli. We found that mice (observers) developed freezing behavior by observing other mice (demonstrators) receive repetitive foot shocks. Observers had higher fear responses when demonstrators were socially related to themselves, such as siblings or mating partners. Inactivation of anterior cingulate cortex (ACC) and parafascicular or mediodorsal thalamic nuclei, which comprise the medial pain system representing pain affection, substantially impaired this observational fear learning, whereas inactivation of sensory thalamic nuclei had no effect. The ACC neuronal activities were increased and synchronized with those of the lateral amygdala at theta rhythm frequency during this learning. Furthermore, an ACC-limited deletion of Cav1.2 Ca2+ channels in mice impaired observational fear learning and reduced behavioral pain responses. These results demonstrate the functional involvement of the affective pain system and Cav1.2 channels of the ACC in observational social fear. PMID:20190743

  5. Observational fear learning involves affective pain system and Cav1.2 Ca2+ channels in ACC.

    PubMed

    Jeon, Daejong; Kim, Sangwoo; Chetana, Mattu; Jo, Daewoong; Ruley, H Earl; Lin, Shih-Yao; Rabah, Dania; Kinet, Jean-Pierre; Shin, Hee-Sup

    2010-04-01

    Fear can be acquired vicariously through social observation of others suffering from aversive stimuli. We found that mice (observers) developed freezing behavior by observing other mice (demonstrators) receive repetitive foot shocks. Observers had higher fear responses when demonstrators were socially related to themselves, such as siblings or mating partners. Inactivation of anterior cingulate cortex (ACC) and parafascicular or mediodorsal thalamic nuclei, which comprise the medial pain system representing pain affection, substantially impaired this observational fear learning, whereas inactivation of sensory thalamic nuclei had no effect. The ACC neuronal activities were increased and synchronized with those of the lateral amygdala at theta rhythm frequency during this learning. Furthermore, an ACC-limited deletion of Ca(v)1.2 Ca(2+) channels in mice impaired observational fear learning and reduced behavioral pain responses. These results demonstrate the functional involvement of the affective pain system and Ca(v)1.2 channels of the ACC in observational social fear.

  6. Collective uncertainty in partially polarized and partially decohered spin-(1/2) systems

    SciTech Connect

    Baragiola, Ben Q.; Chase, Bradley A.; Geremia, JM

    2010-03-15

    It has become common practice to model large spin ensembles as an effective pseudospin with total angular momentum J=Nj, where j is the spin per particle. Such approaches (at least implicitly) restrict the quantum state of the ensemble to the so-called symmetric Hilbert space. Here, we argue that symmetric states are not generally well preserved under the type of decoherence typical of experiments involving large clouds of atoms or ions. In particular, symmetric states are rapidly degraded under models of decoherence that act identically but locally on the different members of the ensemble. Using an approach [Phys. Rev. A 78, 052101 (2008)] that is not limited to the symmetric Hilbert space, we explore potential pitfalls in the design and interpretation of experiments on spin-squeezing and collective atomic phenomena when the properties of the symmetric states are extended to systems where they do not apply.

  7. Poynting Flux in the Region 1/2 Current Systems and Magnetic Cusp

    NASA Astrophysics Data System (ADS)

    Patrick, M.; Knudsen, D. J.; Burchill, J. K.; Stolle, C.; Rauberg, J.; Buchert, S. C.

    2015-12-01

    We present a global survey of ionospheric Poynting flux using the instruments onboard the three ESA Swarm spacecraft. The three Swarm satellites each carry an Electric Field Instrument (EFI) that can be used to measure ion drift velocities. Data from each EFI are combined with magnetometer measurements to create global poynting flux maps in each hemisphere, which are used to infer how electromagnetic energy dissipation in the Magnetosphere-Ionosphere-Thermosphere system changes with scale size, solar illumination, and interplanetary magnetic conditions. Acknowledgements: The EFIs were developed and built by a consortium thatincludes the University of Calgary, the Swedish Institute for Space Physics inUppsala, and COM DEV Canada. The Swarm EFI project is managed and funded by theEuropean Space Agency with additional funding from the Canadian Space Agency.

  8. Intelligent Engine Systems Work Element 1.2: Malfunction and Operator Error Reduction

    NASA Technical Reports Server (NTRS)

    Wiseman, Matthew

    2005-01-01

    Jet engines, although highly reliable and safe, do experience malfunctions that cause flight delays, passenger stress, and in some cases, in conjunction with inappropriate crew response, contribute to airplane accidents. On rare occasions, the anomalous engine behavior is not recognized until it is too late for the pilots to do anything to prevent or mitigate the resulting engine malfunction causing in-flight shutdowns (IFSDs), aborted takeoffs (ATOs), or loss of thrust control (LOTC). In some cases, the crew response to a myriad of external stimuli and existing training procedures is the source of the problem mentioned above. The problem is the reduction of jet engine malfunctions (IFSDs, ATOs, and LOTC) and inappropriate crew response (PSM+ICR) through the use of evolving and advanced technologies. The solution is to develop the overall system health maintenance architecture, detection and accommodation technologies, processes, and enhanced crew interfaces that would enable a significant reduction in IFSDs, ATOs, and LOTC. This program defines requirements and proposes a preliminary design concept of an architecture that enables the realization of the solution.

  9. Aerodynamic characteristics of the National Launch System (NLS) 1 1/2 stage launch vehicle

    NASA Technical Reports Server (NTRS)

    Springer, A. M.; Pokora, D. C.

    1994-01-01

    The National Aeronautics and Space Administration (NASA) is studying ways of assuring more reliable and cost effective means to space. One launch system studied was the NLS which included the l l/2 stage vehicle. This document encompasses the aerodynamic characteristics of the 1 l/2 stage vehicle. To support the detailed configuration definition two wind tunnel tests were conducted in the NASA Marshall Space Flight Center's 14x14-Inch Trisonic Wind Tunnel during 1992. The tests were a static stability and a pressure test, each utilizing 0.004 scale models. The static stability test resulted in the forces and moments acting on the vehicle. The aerodynamics for the reference configuration with and without feedlines and an evaluation of three proposed engine shroud configurations were also determined. The pressure test resulted in pressure distributions over the reference vehicle with and without feedlines including the reference engine shrouds. These pressure distributions were integrated and balanced to the static stability coefficients resulting in distributed aerodynamic loads on the vehicle. The wind tunnel tests covered a Mach range of 0.60 to 4.96. These ascent flight aerodynamic characteristics provide the basis for trajectory and performance analysis, loads determination, and guidance and control evaluation.

  10. Process Test Evaluation Report Waste Retrieval Sluicing System Emissions Collection (Phase 1 - 2 and 3)

    SciTech Connect

    PARKMAN, D.B.

    1999-12-29

    During sluicing of the first batch of sludge from tank 241-C-106 on November 18, 1998, an unexpected high concentration of volatile organic compounds was measured in the 296-C-006 ventilation stack. Eleven workers reported irritation related symptoms and were sent to Hanford Environmental Health Foundation (HEHF) and Kadlec Hospital for medical evaluations. No residual health effects were reported. As a result of the unexpectedly high concentrations of volatile organic compounds encountered during this November sluicing event, a phased process test designed to characterize the emission constituents was conducted on December 16, 1998, March 7, 1999, and March 28, 1999. The primary focus of this evaluation was to obtain samples of the 296-C-006 ventilation stack effluent and surrounding areas at elevated levels of volatile organic compounds initiated by sluicing. Characterization of the emission constituents was necessary to establish appropriate procedural and administrative exposure controls for continued sluicing. Additionally, this information would be used to evaluate the need for engineered equipment to mitigate any further potential chemical stack emissions. This evaluation confirms that the following actions taken during Phase I, Phase II, and Phase III of the Waste Retrieval Sluicing System Emissions Collection Process Test were conservative and appropriate for continued sluicing: Implement stack limit of 500 ppm volatile organic compounds, with lower administrative limits; Ensure worker involvement through enhanced planning; Continue using the existing fenced boundary location; Continue using pressure demand fresh air respiratory protection inside the C-Farm as recommended by Industrial Hygiene; Continue using the existing respiratory protection/ take cover requirements outside the C-Farm boundary as recommended by Industrial Hygiene; Continue using existing anti-contamination clothing; Minimize the number of workers exposed to emissions; Maintain the

  11. Graphene based GHz detectors

    NASA Astrophysics Data System (ADS)

    Boyd, Anthony K.; El Fatimy, Abdel; Barbara, Paola; Nath, Anindya; Campbell, Paul M.; Myers-Ward, Rachael; Daniels, Kevin; Gaskill, D. Kurt

    Graphene demonstrates great promise as a detector over a wide spectral range especially in the GHz range. This is because absorption is enhanced due to the Drude contribution. In the GHz range there are viable detection mechanisms for graphene devices. With this in mind, two types of GHz detectors are fabricated on epitaxial graphene using a lift off resist-based clean lithography process to produce low contact resistance. Both device types use asymmetry for detection, consistent with recent thoughts of the photothermoelectric effect (PTE) mechanism. The first is an antenna coupled device. It utilizes two dissimilar contact metals and the work function difference produces the asymmetry. The other device is a field effect transistor constructed with an asymmetric top gate that creates a PN junction and facilitates tuning the photovoltaic response. The response of both device types, tested from 100GHz to 170GHz, are reported. This work was sponsored by the U.S. Office of Naval Research (Award Number N000141310865).

  12. Monolithic 20-GHz Transmitting Module

    NASA Technical Reports Server (NTRS)

    Kascak, T.; Kaelin, G.; Gupta, A.

    1986-01-01

    20-GHz monolithic microwave/millimeter-wave integrated circuit (MMIC) with amplification and phase-shift (time-delay) capabilities developed. Use of MMIC module technology promises to make feasible development of weight- and cost-effective phased-array antenna systems, identified as major factor in achieving minimum cost and efficient use of frequency and orbital resources of future generations of communication satellite systems. Use of MMIC transmitting modules provides for relatively simple method for phase-shift control of many separate radio-frequency (RF) signals required for phased-array antenna systems.

  13. Orbit-spectrum sharing between the fixed-satellite and broadcasting-satellite services with applications to 12 GHz domestic systems

    NASA Technical Reports Server (NTRS)

    Reinhart, E. E.

    1974-01-01

    A systematic, tutorial analysis of the general problem of orbit-spectrum sharing among inhomogeneous satellite system is presented. Emphasis is placed on extrapolating and applying the available data on rain attenuation and on reconciling differences in the results of various measurements of the subjective effects of interference on television picture quality. An analytic method is presented for determining the approximate values of the intersatellite spacings required to keep mutual interference levels within prescribed limits when many dissimilar satellites share the orbit. A computer model was developed for assessing the interference compatibility of arbitrary configurations of large numbers of geostationary satellite systems. It is concluded that the band from 11.7 c GHz can be shared effectively by broadcasting-satellite and fixed-satellite systems. Recommendations for future study are included.

  14. Further Characterization of 394-GHz Gyrotron FU CW GII with Additional PID Control System for 600-MHz DNP-SSNMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ueda, Keisuke; Matsuki, Yoh; Fujiwara, Toshimichi; Tatematsu, Yoshinori; Ogawa, Isamu; Idehara, Toshitaka

    2016-09-01

    A 394-GHz gyrotron, FU CW GII, has been designed at the University of Fukui, Japan, for dynamic nuclear polarization (DNP)-enhanced solid-state nuclear magnetic resonance (SSNMR) experiments at 600-MHz 1H resonant frequency. After installation at the Institute for Protein Research (IPR), Osaka University, Japan, a PID feedback control system was equipped to regulate the electron gun heater current for stabilization of the electron beam current, which ultimately achieved stabilization of output power when operating in continuous wave (CW) mode. During exploration to further optimize operating conditions, a continuous tuning bandwidth of approximately 1 GHz was observed by varying the operating voltage at a fixed magnetic field. In the frequency range required for positive DNP enhancement, the output power was improved by increasing the magnetic field and the operating voltage from their initial operational settings. In addition, fine tuning of output frequency by varying the cavity cooling water temperature was demonstrated. These operating conditions and ancillary enhancements are expected to contribute to further enhancement of SSNMR signal.

  15. Generation of a three-qudit GHZ state with diamond defect spins

    NASA Astrophysics Data System (ADS)

    Hebbache, M.

    2016-07-01

    Diamond defect spins have emerged as potential qudits (d-dimensional quantum bit) in quantum information and quantum computing. A new scheme is proposed for realizing entangled states of GHZ (Greenberger-Horne-Zeilinger) class in a 3-qudit solid-state register. The qudits are the electron spin-1 carried by the negatively charged nitrogen-vacancy color center (NV-1) in diamond and the nuclear spin-\\frac{1}{2} of two carbon-13 impurities in the first neighbour shell. Multipartite entanglements between qudits are obtained by bringing the spin system in the vicinity of a level anticrossing. The degree of entanglement between all three qudits is quantified rigorously. GHZ and GHZ-like entangled states have applications in quantum communication and computation protocols.

  16. Lipocortins (annexins) 1, 2, 4 and 5 are increased in the central nervous system in multiple sclerosis.

    PubMed

    Elderfield, A J; Newcombe, J; Bolton, C; Flower, R J

    1992-07-01

    Western blotting and densitometry have been used to investigate the lipocortin content of post-mortem central nervous system (CNS) tissue samples from multiple sclerosis (MS) patients and normal controls. Lipocortins 1, 2, 4 and 5 were all detected in normal control grey and white matter. In white matter samples from MS patients these lipocortins were found to be significantly increased, a further elevation in lipocortin content was observed in MS plaque tissue. The implications of these findings with respect to the role of these proteins in inflammatory CNS disease and a possible mechanism of steroid action in the therapy of MS are discussed.

  17. Design and simulation of the active support system for a 1.2m meniscus primary mirror

    NASA Astrophysics Data System (ADS)

    Liu, Haitao; Fan, Bin; Zeng, Zhige; Li, Xiaojin; Wang, Hongqiao; Liu, Rong

    2015-07-01

    Thin meniscus primary mirrors with active support have been used successfully in many large telescopes, and also draw attention of many optical fabricators. Because the active support system can correct the low order figure errors, such as astigmatism, coma, trefoil 3rd astigmatism, the optical fabricators can just focus on to remove high order figure errors. This will shorten the fabrication time. In this paper, we present an active support system for a 1.2m meniscus parabolic primary mirror. It contains 37 axial push-pull force supports, 3 axial fixed points, and 4 lateral restraints. Some basic performance of the active support system is analyzed and the figure error correction capability is also studied based on Zernike modes.

  18. Cryogenic 160-GHz MMIC Heterodyne Receiver Module

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene A.; Soria, Mary M.; Owen, Heather R.; Dawson, Douglas E.; Kangaslahti, Pekka P.; Gaier, Todd C.; Voll, Patricia; Lau, Judy; Sieth, Matt; Church, Sarah

    2011-01-01

    A cryogenic 160-GHz MMIC heterodyne receiver module has demonstrated a system noise temperature of 100 K or less at 166 GHz. This module builds upon work previously described in Development of a 150-GHz MMIC Module Prototype for Large-Scale CMB Radiation (NPO-47664), NASA Tech Briefs, Vol. 35, No. 8 (August 2011), p. 27. In the original module, the local oscillator signal was saturating the MMIC low-noise amplifiers (LNAs) with power. In order to suppress the local oscillator signal from reaching the MMIC LNAs, the W-band (75 110 GHz) signal had to be filtered out before reaching 140 170 GHz. A bandpass filter was developed to cover 120 170 GHz, using microstrip parallel-coupled lines to achieve the desired filter bandwidth, and ensure that the unwanted W-band local oscillator signal would be sufficiently suppressed. With the new bandpass filter, the entire receiver can work over the 140 180-GHz band, with a minimum system noise temperature of 460 K at 166 GHz. The module was tested cryogenically at 20 K ambient temperature, and it was found that the receiver had a noise temperature of 100 K over an 8-GHz bandwidth. The receiver module now includes a microstrip bandpass filter, which was designed to have a 3-dB bandwidth of approximately 120-170 GHz. The filter was fabricated on a 3-mil-thick alumina substrate. The filter design was based on a W-band filter design made at JPL and used in the QUIET (Q/U Imaging ExperimenT) radiometer modules. The W-band filter was scaled for a new center frequency of 150 GHz, and the microstrip segments were changed accordingly. Also, to decrease the bandwidth of the resulting scaled design, the center gaps between the microstrip lines were increased (by four micrometers in length) compared to the gaps near the edges. The use of the 150-GHz bandpass filter has enabled the receiver module to function well at room temperature. The system noise temperature was measured to be less than 600 K (at room temperature) from 154 to 168 GHz

  19. Remediation of 1,2,3-trichlorobenzene contaminated soil using a combined thermal desorption-molten salt oxidation reactor system.

    PubMed

    Li, Jin-hui; Sun, Xiao-fei; Yao, Zhi-tong; Zhao, Xiang-yang

    2014-02-01

    A combined thermal desorption (TD)-molten salt oxidation (MSO) reactor system was applied to remediate the 1,2,3-trichlorobenzene (1,2,3-TCB) contaminated soil. The TD reactor was used to enrich the contaminant from soil, and its dechlorination of the contaminant was achieved in the MSO reactor. The optimum operating conditions of TD, and the effects of MSO reactor temperatures, additive amounts of the TCB on destruction and removal efficiency (DRE) of TCB and chlorine retention efficiency (CRE) were investigated. The reaction mechanism and pathway were proposed as well. The combined system could remediate the contaminated soil at a large scale of concentration from 5 to 25gkg(-1), and the DRE and CRE reached more than 99% and 95%, respectively, at temperatures above 850°C. The reaction emissions included C6H6, CH4, CO and CO2, and chlorinated species were not detected. It was found that a little increase in the temperature can considerably reduce the emission of C6H6, CH4, and CO, while the CO2 level increased.

  20. The design of an active support control system for a thin 1.2m primary mirror

    NASA Astrophysics Data System (ADS)

    Liu, Rong; Li, Xiaojin; Liu, Haitao; Wang, Hongqiao

    2014-09-01

    Active support system is a low-frequency wavefront error correction system, which is often used to correct the mirror deformation resulting from gravity, temperature, wind load, manufacture, installation and other factors. In addition, the active support technology can improve the efficiency of grinding and polishing by adjusting the surface shape in the process of manufacturing large mirrors. This article describes the design of an active support control system for a thin 1.2m primary mirror. The support system consists of 37 axial pneumatic actuators. And in order to change the shape of thin primary mirror we need to precisely control the 37 pneumatic actuators. These 37 pneumatic actuators are divided into six regions. Each region is designed with a control circuit board to realize force closed-loop control for the pneumatic actuators, and all control panels are connected to the PC by CAN bus. The control panels have to support: receive commands from the host PC; control the actuators; periodically return result of control. The whole control system is composed by hardware and control algorithm and communication program.

  1. Experimental Investigation of Plume-Induced Flow Separation on the National Launch System 1 1/2-Stage Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Springer, A.

    1994-01-01

    An experimental investigation of plume-induced flow separation on the National Launch System (NLS) 1 1/2-stage launch vehicle was done. This investigation resulted from concerns raised about the flow separation that was encountered on the Saturn 5. A large similarity exists between configurations and nominal trajectories. The study involved the use of solid plume simulators to simulate the base pressure encountered by the vehicle due to engine exhaust plumes at predetermined critical Mach numbers based on Saturn 5 flight plume effects. The solid plume was varied in location, resulting in a parametric study of base pressure effects on flow separation. In addition to the parametric study of arbitrary plume locations, the base pressure resulting from the nominal trajectory was tested. This analysis was accomplished through two wind tunnel tests run at NASA Marshall Space Flight Center's 14 x 14-inch Trisonic Wind Tunnel during 1992. The two tests were a static stability and a pressure test each using a 0.004-scale NLS 1 1/2-stage model. This study verified that flow separation is present at Mach 2.74 and 3.48 for predicted flight base pressures at nominal or higher levels. The flow separation at the predicted base pressure is only minor and should not be of great concern. It is not of the magnitude of the flow separation that was experienced on the Saturn 5. If the base pressure exceeds these nominal conditions, the flow separation can drastically increase, and is of concern.

  2. Possible solution to the riddle of HD 82943 multiplanet system: the three-planet resonance 1:2:5?

    NASA Astrophysics Data System (ADS)

    Baluev, Roman V.; Beaugé, Cristian

    2014-03-01

    We carry out a new analysis of the published radial velocity data for the planet-hosting star HD 82943. We include the recent Keck/HIRES measurements as well as the aged but much more numerous CORALIE data. We find that the CORALIE radial velocity measurements are polluted by a systematic annual variation which affected the robustness of many previous results. We show that after purging this variation, the residuals still contain a clear signature of an additional ˜1100 d periodicity. The latter variation leaves significant hints in all three independent radial velocity subsets that we analysed: the CORALIE data, the Keck data acquired prior to a hardware upgrade and the Keck data taken after the upgrade. We mainly treat this variation as a signature of a third planet in the system, although we cannot rule out other interpretations, such as long-term stellar activity. We find it easy to naturally obtain a stable three-planet radial velocity fit close to the three-planet mean-motion resonance 1:2:5, with the two main planets (those in the 1:2 resonance) in an aligned apsidal corotation. The dynamical status of the third planet is still uncertain: it may reside in as well as slightly out of the 5:2 resonance. We obtain the value of about 1075 d for its orbital period and ˜0.3MJup for its minimum mass, while the eccentric parameters are uncertain.

  3. Preliminary Bremstrahlung Measurements on VENUS at 18 and 28 GHz

    SciTech Connect

    Lyneis, C.M.; Leitner, D.

    2005-03-15

    The bremstrahlung produced by the VENUS ECR ion source at 18 GHz and 28 GHz in the axial direction has been measured with a germanium detector. The bremstrahlung spectrum goes out beyond 1 MeV at 28 GHz and this complicates analysis of the data and the design of the collimators and detection system. Preliminary spectra and the geometry of the detection system will be described.

  4. Feasibility demonstration of booster cross-over system for 3 1/2 inch SRB/MLP frangible nut system

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Recent testing of the SRB/MLP Frangible Nut System (SOS Part Number 114850-9/Boosters P/N 114848-3) at NASA indicated a need to reduce the function time between boosters (2) within a single frangible nut. These boosters are initiated separately by electrical impulse(s). Coupling the output of each detonator with an explosive cross-over would reduce the function time between boosters (independent of electrical impulse) while providing additional redundancy to the system. The objectives of this program were to: provide an explosive cross-over between boosters, reduce function time between boosters to less than one (1) millisecond within a given nut, reduce cost of boosters, be compatible with the existing frangible nut system, and meet requirements of USBI Spec's (nut 10SPC-0030, booster 10SPC-0031).

  5. GHz repetition rate tabletop X-band photoinjector for free-electron laser applications

    SciTech Connect

    Le Sage, G.P.; Fochs, S.N.; Feng, H.X.C.

    1995-12-31

    A 1-1/2 cell {pi}-mode X-bend (8.568 GHz) photoinjector system capable of producing trains of up to one hundred, 1 nC, 1ps, 5 MeV, {epsilon}{sub n} < 2.5 {pi} mm-mrad photoelectron bunches, at a micropulse repetition rate of 1-10 Hz, is currently under development at LLNL, in the UC Davis DAS coherent millimeter-wave group. The system is powered by a 20 MW, 8.568 GHz SLAC development klystron. The system also uses a Cs{sub 2}Te (Cesium Telluride) photocathode which has a quantum efficiency > 5% in the UV (210 nm). The compact UV laser system is composed of a synchronously modelocked AlGaAs semiconductor laser oscillator which produces pulses with a duration of 250 fs and 100 pJ energy at 830 nm, at a repetion rate of 2.142 GHz with less 400 is jitter, a 5 GHz bandwidth Lithium Niobate Mach-Zender fiber modulator, an 8-pass, 10{sup 6} gain, TiAl{sub 2}O{sub 3} (Titanium:Sapphire) chirped pulse amplifier, and 2 BBO frequency doublers in series to quadruple the laser frequency into the UV (207 nm).

  6. Product operator descriptions of the 2D DEPT J-resolved NMR experiment for weakly coupled ISn (I=\\frac{1}{2}, S=\\frac{3}{2}; n=1, 2, 3) spin systems

    NASA Astrophysics Data System (ADS)

    Tokatlı, Ahmet; Bahçeli, Semiha

    2010-02-01

    There are a variety of multi-pulse nuclear magnetic resonance (NMR) experiments for spectral assignment of complex molecules in a solution. The two-dimensional (2D) distortionless enhancement by polarization transfer (DEPT) J-resolved NMR experiment is a 13C-detected, spectral editing polarization transfer technique. The product operator theory is widely used for an analytical description of the multi-pulse NMR experiment for weakly coupled spin systems. In this study, analytical descriptions of the 2D DEPT J-resolved NMR experiment for weakly coupled ISn (I=\\textstyle{\\frac{1}{2}}, S=\\textstyle{\\frac{3}{2}} ; n=1, 2, 3) spin systems using the product operator theory have been introduced for the first time. The calculated intensities and positions of the observable signals are simulated for molecules containing [13C (I=\\textstyle{\\frac{1}{2}}) , 81Br (S=\\textstyle{\\frac{3}{2}})] nuclei by using a MAPLE program on a computer. Finally, we present a theoretical discussion and experimental suggestions.

  7. An automated alkaline elution system: DNA damage induced by 1,2-dibromo-3-chloropropane in vivo and in vitro.

    PubMed

    Brunborg, G; Holme, J A; Søderlund, E J; Omichinski, J G; Dybing, E

    1988-11-01

    An automated alkaline elution system for the detection of DNA damage has been developed. After manual application of samples, which is completed within 5 min, the subsequent supply of liquids, changes in flow rates, and temperature are controlled automatically. The system operates 16 filters and may easily be expanded. The sensitivity of the fluorometric DNA determinations with the Hoechst 33258 dye is increased by using an elution buffer (20 mM Na2EDTA, pH 12.50) with low background fluorescence. DNA is determined using an automated setup similar to the one recently presented by Sterzel et al. (1985, Anal. Biochem. 147, 462-467). The most significant modification is the use of a neutralization buffer which allows variations in the pH of eluted fractions. This change increases the sensitivity of the DNA measurements. The automated alkaline elution system was evaluated using the nematocide 1,2-dibromo-3-chloropropane (DBCP) in a study of its genotoxic effects in the testes and the kidneys. Significant DNA damage was induced in testicular cells by 2.5 microM DBCP (1 h) in vitro and 85 mumol/kg DBCP ip (3 h) in vivo. The damage appeared after short treatment times (10 min in vivo). Variations in the observed DBCP response in vivo were largely due to interanimal variations. The automated alkaline elution system proved to be a sensitive assay also for the detection of DNA damage in kidney nuclei prepared from rats exposed to DBCP. Provided that kidney nuclei from untreated rats, mice, or hamster were kept ice-cold until lysing, 85-100% of their DNA was retained after 16 h of elution, indicating highly intact DNA. Under the same conditions, guinea pig DNA was rapidly degraded unless the nuclei were prepared in a buffer with a higher concentration of Na2EDTA (20 mM). PMID:3239754

  8. Statistical determination of whole-body average SARs in a 2 GHz whole-body exposure system for unrestrained pregnant and newborn rats

    NASA Astrophysics Data System (ADS)

    Wang, Jianqing; Wake, Kanako; Kawai, Hiroki; Watanabe, Soichi; Fujiwara, Osamu

    2012-01-01

    A 2 GHz whole-body exposure to rats over a multigeneration has been conducted as part of bio-effect research in Japan. In this study, the rats moved freely in the cage inside the exposure system. From observation of the activity of rats in the cage, we found that the rats do not stay in each position with uniform possibility. In order to determine the specific absorption rate (SAR) during the entire exposure period with high accuracy, we present a new approach to statistically determine the SAR level in an exposure system. First, we divided the rat cage in the exposure system into several small areas, and derived the fraction of time the rats spent in each small area based on the classification of the documentary photos of rat activity. Then, using the fraction of time spent in each small area as a weighting factor, we calculated the statistical characteristics of the whole-body average SAR for pregnant rats and young rats during the entire exposure period. As a result, this approach gave the statistical distribution as well as the corresponding mean value, median value and mode value for the whole-body SAR so that we can reasonably clarify the relationship between the exposure level and possible biological effect.

  9. [Measurement and study report as a part of the control system for human safety and health protection against electromagnetic fields and electromagnetic radiation (0 Hz-300 GHz)].

    PubMed

    Aniołczyk, Halina

    2007-01-01

    The National Control System for safety and health protection against electromagnetic fields (EMF) and electromagnetic radiation (EMR) (0 Hz-300 GHz) is constantly analyzed in view of Directive 2004/40/EC. Reports on the effects of investments (at the designing stage or at the stage of looking for their localization) on the environment and measurement and study reports on the objects already existing or being put into operation are important elements of this system. These documents should meet both national and European Union's legislation requirements. The overriding goal of the control system is safety and health protection of humans against electromagnetic fields in the environment and in occupational settings. The author pays a particular attention to provisions made in directives issued by relevant ministers and to Polish standards, which should be documented in measurement and study reports published by the accredited laboratories and relating to the problems of human safety and health protection. Similar requirements are valid for the Reports. Therefore, along with measurement outcomes, the reports should include data on the EMF exposure classification at work-posts and the assessment of occupational risk resulting from EMF exposure or at least thorough data facilitating such a classification.

  10. Dynamic phase diagrams of a ferrimagnetic mixed spin (1/2, 1) Ising system within the path probability method

    NASA Astrophysics Data System (ADS)

    Ertaş, Mehmet; Keskin, Mustafa

    2015-11-01

    In this study we used the path probability method (PPM) to calculate the dynamic phase diagrams of a ferrimagnetic mixed spin-(1/2, 1) Ising system under an oscillating magnetic field. One of the main advantages of the PPM over the mean-field approximation and the effective-field theory based on Glauber-type stochastic dynamics is that it contains two rate constants which are very important for studying dynamic behaviors. We present the dynamic phase diagrams in the reduced magnetic field amplitude and reduced temperature plane and the twelve main different topological types of the phase diagrams are obtained. The phase diagrams contain paramagnetic (p), ferrimagnetic (i) and i + p mixed phases. They also exhibit a dynamic tricritical and reentrant behavior as well as the dynamic double critical end point (B), critical end point (E), quadruple point (QP) and triple point (TP). The dynamic phase diagrams are compared and discussed with the phase diagrams obtained in previous works within the mean-field approximation and the effective-field theory based on Glauber-type stochastic dynamics.

  11. Demonstration of broadband contrast at 1.2λ/D and greater for the EXCEDE starlight suppression system

    NASA Astrophysics Data System (ADS)

    Sirbu, Dan; Thomas, Sandrine J.; Belikov, Ruslan; Lozi, Julien; Bendek, Eduardo; Pluzhnik, Eugene; Lynch, Dana H.; Hix, Troy; Zell, Peter; Guyon, Olivier; Schneider, Glenn

    2016-04-01

    The EXoplanetary Circumstellar Environments and Disk Explorer (EXCEDE) science mission concept uses a visible-wavelength phase-induced amplitude apodization (PIAA) coronagraph to enable high-contrast imaging of circumstellar debris systems and some giant planets at angular separations reaching into the habitable zones of some of the nearest stars. We report on the experimental results obtained in the vacuum chamber at the Lockheed Martin Advanced Technology Center in 10% broadband light centered about 650 nm, with a median contrast of 1×10-5 between 1.2 and 2.0λ/D simultaneously with 3×10-7 contrast between 2 and 11λ/D for a single-sided dark hole using a deformable mirror (DM) upstream of the PIAA coronagraph. These results are stable and repeatable as demonstrated by three measurement runs with DM settings set from scratch and maintained on the best 90% out of the 1000 collected frames. We compare the reduced experimental data with simulation results from modeling observed experimental limits. The observed performance is consistent with uncorrected low-order modes not estimated by the low-order wavefront sensor. Modeled sensitivity to bandwidth and residual tip/tilt modes is well matched to the experiment.

  12. Comparative study of millimeter wave propagation at 30 GHz and 60 GHz in indoor environment

    NASA Astrophysics Data System (ADS)

    Polydorou, A.; Stratakos, G.; Capsalis, C.; Uzunoglu, N.

    1995-10-01

    The millimeter wave band appears to be a favourable choice for personal wireless communication systems for indoor environment, as it meets the requirements for sufficient bandwidth, small terminal dimensions and sporadic usage for commercial applications. In this paper measurements of millimeter wave propagation in both 30 GHz and 60 GHz bands, are presented in a comparative way. The topology of measurements covers both a line-of-sight situation and also a case where a direct path between transmitter and receiver does not exist. Although the second case does not seem obvious for outdoor applications in these frequencies, in indoor environment the multipath signals produced by objects like walls, doors, furniture etc., can be utilised in order to overcome the man-made shadowing. Both slow and fast fading characteristics of the received signal are studied and the measurements are modelled by the conventional Rician and Rayleigh distributions. Both frequency bands offer advantages for usage in in-house wireless communication systems. Although in 30 GHz band the coverage area is bigger than in 60 GHz (with the same transmitting power), frequency reuse is easier in 60 GHz band. because even if millimeter waves ‘escape’ through ‘windows’, the specific attenuation due to atmospheric oxygen (15 dB/km) at 60 GHz eliminates the interference between communication channels in neighbouring buildings.

  13. A 30 GHz monolithic receive module

    NASA Technical Reports Server (NTRS)

    Mondal, J.; Contolatis, T.; Geddes, J.; Bauhahn, P.; Sokolov, V.

    1990-01-01

    The technical achievements and deliveries made during the duration of the program to develop a 30 GHz monolithic receive module for communication feed array applications and to deliver submodules and 30 GHz monolithic receive modules for experimental evaluation are discussed. Key requirements include an overall receive module noise figure of 5 dB, a 30 dB RF-to-RF gain with six levels of intermediate gain control, a five bit phase shifter, and a maximum power consumption of 250 mW. In addition, the monolithic receive module design addresses a cost goal of less than one thousand dollars (1980 dollars) per module in unit buys of 5,000 or more, and a mechanical configuration that is applicable to a spaceborne phase array system. An additional task for the development and delivery of 32 GHz phase shifter integrated circuit (IC) for deep space communication is also described.

  14. Propagation handbook, frequencies above 10 GHz

    NASA Astrophysics Data System (ADS)

    Ippolito, Louis J.

    1988-08-01

    The progress and accomplishments in the developmet of the Fourth Edition of the NASA Propagation Effects Handbook for Satellite Systems Design, for frequencies 10 to 100 GHz, NASA Reference Publication 1082(04), dated May 1988, prepared by Westighouse Electric Corporation for the Jet Propulsion Laboratory are discussed.

  15. Propagation handbook, frequencies above 10 GHz

    NASA Technical Reports Server (NTRS)

    Ippolito, Louis J.

    1988-01-01

    The progress and accomplishments in the developmet of the Fourth Edition of the NASA Propagation Effects Handbook for Satellite Systems Design, for frequencies 10 to 100 GHz, NASA Reference Publication 1082(04), dated May 1988, prepared by Westighouse Electric Corporation for the Jet Propulsion Laboratory are discussed.

  16. Environmental assessment for the Satellite Power System (SPS): studies of honey bees exposed to 2. 45 GHz continuous-wave electromagnetic energy

    SciTech Connect

    Gary, N E; Westerdahl, B B

    1980-12-01

    A system for small animal exposure was developed for treating honey bees, Apis mellifera L., in brood and adult stages, with 2.45 GHz continuous wave microwaves at selected power densities and exposure times. Post-treatment brood development was normal and teratological effects were not detected at exposures of 3 to 50 mw/cm/sup 2/ for 30 minutes. Post-treatment survival, longevity, orientation, navigation, and memory of adult bees were also normal after exposures of 3 to 50 mw/cm/sup 2/ for 30 minutes. Post-treatment longevity of confined bees in the laboratory was normal after exposures of 3 to 50 mw/cm/sup 2/ for 24 hours. Thermoregulation of brood nest, foraging activity, brood rearing, and social interaction were not affected by chronic exposure to 1 mw/cm/sup 2/ during 28 days. In dynamic behavioral bioassays the frequency of entry and duration of activity of unrestrained, foraging adult bees was identical in microwave-exposed (5 to 40 mw/cm/sup 2/) areas versus control areas.

  17. Fiber-wireless transmission system of 108  Gb/sdata over 80 km fiber and 2×2multiple-input multiple-output wireless links at 100 GHz W-band frequency.

    PubMed

    Li, Xinying; Dong, Ze; Yu, Jianjun; Chi, Nan; Shao, Yufeng; Chang, G K

    2012-12-15

    We experimentally demonstrate a seamlessly integrated fiber-wireless system that delivers a 108  Gb/s signal through 80 km fiber and 1 m wireless transport over free space at 100 GHz adopting polarization-division-multiplexing quadrature-phase-shift-keying (PDM-QPSK) modulation and heterodyning coherent detection. The X- and Y-polarization components of the optical PDM-QPSK baseband signal are simultaneously upconverted to 100 GHz wireless carrier by optical polarization-diversity heterodyne beating, and then independently transmitted and received by two pairs of transmitter and receiver antennas, which form a 2×2 multiple-input multiple-output wireless link. At the wireless receiver, two-stage downconversion is performed firstly in the analog domain based on balanced mixer and sinusoidal radio frequency signal, and then in the digital domain based on digital signal processing (DSP). Polarization demultiplexing is realized by the constant modulus algorithm in the DSP part at the receiver. The bit-error ratio for the 108  Gb/s PDM-QPSK signal is less than the pre-forward-error-correction threshold of 3.8×10(-3) after both 1 m wireless delivery at 100 GHz and 80 km single-mode fiber-28 transmission. To our knowledge, this is the first demonstration to realize 100  Gb/s signal delivery through both fiber and wireless links at 100 GHz.

  18. BaV3O8: A possible Majumdar-Ghosh system with S = (1)/(2)

    NASA Astrophysics Data System (ADS)

    Chakrabarty, T.; Mahajan, A. V.; Gippius, A. A.; Tkachev, A. V.; Büttgen, N.; Kraetschmer, W.

    2013-07-01

    BaV3O8 contains magnetic V4+(S=1/2) ions and also nonmagnetic V5+(S=0) ions. The V4+ ions are arranged in a coupled Majumdar-Ghosh chainlike network. A Curie-Weiss fit of our magnetic susceptibility χ(T) data in the temperature region of 80-300 K yields a Curie constant C=0.39 cm3K/mole V4+ and an antiferromagnetic Weiss temperature θ=-26K. The χ(T) curve shows a broad maximum at T≃25 K indicative of short-range order (SRO) and an anomaly corresponding to long-range order (LRO) at TN˜6 K. The value of the “frustration parameter” (f=|θ/TN|˜5) suggests that the system is moderately frustrated. Above the LRO temperature, the experimental magnetic susceptibility data match well with the coupled Majumdar-Ghosh (or Jnn-Jnnn Heisenberg) chain model with the ratio of the nnn (next-nearest neighbor) to nn (nearest neighbor) magnetic coupling α=2 and Jnnn/kB=40 K. In a mean-field approach when considering the interchain interactions, we obtain the total interchain coupling to be about 16 K. The LRO anomaly at TN is also observed in the specific heat CP(T) data and is not sensitive to an applied magnetic field up to 90 kOe. A 51V NMR signal corresponding to the nonmagnetic vanadium was observed. Anomalies at 6 K were observed in the variation with temperature of the 51V NMR linewidth and the spin-lattice relaxation rate 1/T1 indicating that they are sensitive to the LRO onset and fluctuations at the magnetic V sites. The existence of two components (one short and another long) is observed in the spin-spin relaxation rate 1/T2 data in the vicinity of TN. The shorter component seems to be intimately connected with the magnetically ordered state. We suggest that both magnetically ordered and nonlong-range-ordered (non-LRO) regions coexist in this compound below the long-range-ordering temperature.

  19. Spin-1/2 XXZ chain system Cs2CoCl4 in a transverse magnetic field.

    PubMed

    Breunig, O; Garst, M; Sela, E; Buldmann, B; Becker, P; Bohatý, L; Müller, R; Lorenz, T

    2013-11-01

    Comparing high-resolution specific heat and thermal expansion measurements to exact finite-size diagonalization, we demonstrate that Cs(2)CoCl(4) for a magnetic field along the crystallographic b axis realizes the spin-1/2 XXZ chain in a transverse field. Exploiting both thermal as well as virtual excitations of higher crystal-field states, we find that the spin chain is in the XY limit with an anisotropy J(z)/J[perpindicular] ≈ 0.12, substantially smaller than previously believed. A spin-flop Ising quantum phase transition occurs at a critical field of μ(0)H(b)(cr) ≈ 2 T before around 3.5 T the description in terms of an effective spin-1/2 chain becomes inapplicable. PMID:24237555

  20. Description and evaluation of tropospheric chemistry and aerosols in the Community Earth System Model (CESM1.2)

    DOE PAGES

    Tilmes, S.; Lamarque, J. -F.; Emmons, L. K.; Kinnison, D. E.; Ma, P. -L.; Liu, X.; Ghan, S.; Bardeen, C.; Arnold, S.; Deeter, M.; et al

    2015-01-01

    The Community Atmosphere Model (CAM), version 5, is now coupled to extensive tropospheric and stratospheric chemistry, called CAM5-chem, and is available in addition to CAM4-chem in the Community Earth System Model (CESM) version 1.2. The main focus of this paper is to compare the performance of configurations with internally derived "free running" (FR) meteorology and "specified dynamics" (SD) against observations from surface, aircraft, and satellite, as well as understand the origin of the identified differences. We focus on the representation of aerosols and chemistry. All model configurations reproduce tropospheric ozone for most regions based on in situ and satellite observations.more » However, shortcomings exist in the representation of ozone precursors and aerosols. Tropospheric ozone in all model configurations agrees for the most part with ozonesondes and satellite observations in the tropics and the Northern Hemisphere within the variability of the observations. Southern hemispheric tropospheric ozone is consistently underestimated by up to 25%. Differences in convection and stratosphere to troposphere exchange processes are mostly responsible for differences in ozone in the different model configurations. Carbon monoxide (CO) and other volatile organic compounds are largely underestimated in Northern Hemisphere mid-latitudes based on satellite and aircraft observations. Nitrogen oxides (NOx) are biased low in the free tropical troposphere, whereas peroxyacetyl nitrate (PAN) is overestimated in particular in high northern latitudes. The present-day methane lifetime estimates are compared among the different model configurations. These range between 7.8 years in the SD configuration of CAM5-chem and 8.8 years in the FR configuration of CAM4-chem and are therefore underestimated compared to observational estimations. We find that differences in tropospheric aerosol surface area between CAM4 and CAM5 play an important role in controlling the burden of

  1. Description and evaluation of tropospheric chemistry and aerosols in the Community Earth System Model (CESM1.2)

    SciTech Connect

    Tilmes, S.; Lamarque, J. -F.; Emmons, L. K.; Kinnison, D. E.; Ma, P. -L.; Liu, X.; Ghan, S.; Bardeen, C.; Arnold, S.; Deeter, M.; Vitt, F.; Ryerson, T.; Elkins, J. W.; Moore, F.; Spackman, J. R.; Val Martin, M.

    2015-01-01

    The Community Atmosphere Model (CAM), version 5, is now coupled to extensive tropospheric and stratospheric chemistry, called CAM5-chem, and is available in addition to CAM4-chem in the Community Earth System Model (CESM) version 1.2. The main focus of this paper is to compare the performance of configurations with internally derived "free running" (FR) meteorology and "specified dynamics" (SD) against observations from surface, aircraft, and satellite, as well as understand the origin of the identified differences. We focus on the representation of aerosols and chemistry. All model configurations reproduce tropospheric ozone for most regions based on in situ and satellite observations. However, shortcomings exist in the representation of ozone precursors and aerosols. Tropospheric ozone in all model configurations agrees for the most part with ozonesondes and satellite observations in the tropics and the Northern Hemisphere within the variability of the observations. Southern hemispheric tropospheric ozone is consistently underestimated by up to 25%. Differences in convection and stratosphere to troposphere exchange processes are mostly responsible for differences in ozone in the different model configurations. Carbon monoxide (CO) and other volatile organic compounds are largely underestimated in Northern Hemisphere mid-latitudes based on satellite and aircraft observations. Nitrogen oxides (NOx) are biased low in the free tropical troposphere, whereas peroxyacetyl nitrate (PAN) is overestimated in particular in high northern latitudes. The present-day methane lifetime estimates are compared among the different model configurations. These range between 7.8 years in the SD configuration of CAM5-chem and 8.8 years in the FR configuration of CAM4-chem and are therefore underestimated compared to observational estimations. We find that differences in tropospheric aerosol surface area between CAM4 and CAM5 play an important role in controlling the

  2. 177-207 GHz Radiometer Front End: Single Sideband Measurements

    NASA Technical Reports Server (NTRS)

    Galin, I.; Schnitzer, C. A.; Dengler, R. J.; Quintero, O.

    1999-01-01

    Twenty years of progress in 200 GHz receivers for spaceborne remote sensing has yielded a 180-220 GHz technology with maturing characteristics, as evident by increasing availability of relevant hardware, paralleled by further refinement in receiver performance requirements at this spectrum band. The 177-207 GHz superheterodyne receiver, for the Earth observing system (EOS) microwave limb sounder (MLS), effectively illustrates such technology developments. This MLS receiver simultaneously detects six different signals, located at sidebands below and above its 191.95 GHZ local-oscillator (LO). The paper describes the MLS 177-207 GHz receiver front-end (RFE), and provides measured data for its lower and upper sidebands. Sideband ratio data is provided as a function of IF frequency, at different LO power drive, and for variation in the ambient temperature.

  3. Cosmic Microwave Background Observations with a Compact Heterogeneous 150 GHz Interferometer in Chile

    NASA Astrophysics Data System (ADS)

    Fowler, J. W.; Doriese, W. B.; Marriage, T. A.; Tran, H. T.; Aboobaker, A. M.; Dumont, C.; Halpern, M.; Kermish, Z. D.; Loh, Y.-S.; Page, L. A.; Staggs, S. T.; Wesley, D. H.

    2005-01-01

    We report on the design, first observing season, and analysis of data from a new prototype millimeter-wave interferometer, MINT. MINT consists of four 145 GHz SIS mixers operating in double-sideband mode in a compact heterogeneous configuration. The signal band is subdivided by a monolithic channelizer, after which the correlations between antennas are performed digitally. The typical receiver sensitivity in a 2 GHz band is 1.4 mK s1/2. The primary beams are 0.45d and 0.30d FWHM, with fringe spacing as small as 0.1d. MINT observed the cosmic microwave background (CMB) from Cerro Toco, in the Chilean Altiplano. The site quality at 145 GHz is good, with median nighttime atmospheric temperature of 9 K at zenith (exclusive of the CMB). Repeated observations of Mars, Jupiter, and a telescope-mounted calibration source establish the phase and magnitude stability of the system. MINT is the first interferometer dedicated to CMB studies to operate above 50 GHz. The same type of system can be used to probe the Sunyaev-Zel'dovich effect in galaxy clusters near the SZ null at 217 GHz. We give the essential features of MINT and present an analysis of sideband-separated, digitally sampled data recorded by the array. Based on 215 hours of data taken in late 2001, we set an upper limit on the CMB anisotropy in a band of width Δl=700 around l=1540 of δT<105 μK (95% confidence). Increased sensitivity can be achieved with more integration time, greater bandwidth, and more elements.

  4. Signaling through ERK1/2 controls myelin thickness during myelin repair in the adult central nervous system.

    PubMed

    Fyffe-Maricich, Sharyl L; Schott, Alexandra; Karl, Molly; Krasno, Janet; Miller, Robert H

    2013-11-20

    Oligodendrocytes, the myelin-forming cells of the CNS, exquisitely tailor the thickness of individual myelin sheaths to the diameter of their target axons to maximize the speed of action potential propagation, thus ensuring proper neuronal connectivity and function. Following demyelinating injuries to the adult CNS, newly formed oligodendrocytes frequently generate new myelin sheaths. Following episodes of demyelination such as those that occur in patients with multiple sclerosis, however, the matching of myelin thickness to axon diameter fails leaving remyelinated axons with thin myelin sheaths potentially compromising function and leaving axons vulnerable to damage. How oligodendrocytes determine the appropriate thickness of myelin for an axon of defined size during repair is unknown and identifying the signals that regulate myelin thickness has obvious therapeutic implications. Here, we show that sustained activation of extracellular-regulated kinases 1 and 2 (ERK1/2) in oligodendrocyte lineage cells results in accelerated myelin repair after injury, and is sufficient for the generation of thick myelin sheaths around remyelinated axons in the adult mouse spinal cord. Our findings suggest a model where ERK1/2 MAP kinase signaling acts as a myelin thickness rheostat that instructs oligodendrocytes to generate axon-appropriate quantities of myelin.

  5. Design of the 0.5 - 1 GHz Planar Recycler Pickup and Kicker Antennas

    SciTech Connect

    Deibele, C.; /Fermilab

    1999-01-01

    The stochastic cooling system in the Recycler ring at Fermilab required the addition of a 0.5-1 GHz cooling system. This requirement dictated the design of a new antenna for this band of the system. The design problem is defined, method of design is illustrated, and the measurement data are reported. The Recycler is a storage ring comprised of mostly permanent magnets located in the tunnel of the Main Injector at Fermilab. The goal for the construction of the Recycler is to collect and store unused antiprotons from collisions in the Tevatron for use in future collisions in the Tevatron. It will both stochastically and electron cool these unused antiprotons before another collision experiment is possible in the Tevatron. By reusing the antiprotons the luminosity of the experiment can be increased faster. The Recycler will use three bands for its stochastic cooling system. It will reuse the existing designs from the Antiproton Source for the 1-2 GHz and 2-4 GHz systems, and it requires a new design for an additional lower frequency band for the 0.5-1 GHz system. Since the existing designs were fabricated using a microstrip topology it was desired that the new design use a similar topology so that the vacuum tank designs and supporting hardware be identical for all three bands. A primary difference between the design of the pickups/kickers of the Antiproton Source and the Recycler is a different aperture in the machine itself. The Recycler has a bigger aperture and consequently reusing the designs for the existing Antiproton Source pickups/kickers is not electrically optimal but is cost efficient. Measurements will be shown later in this paper for the design of the 0.5-1 GHz system showing the effect of the aperture on the antenna performance. A mockup of the Recycler tank was manufactured for designing and testing the 0.5-1 GHz pickups/kickers. The design procedure was an iterative process and required both a constant dialogue and also a strong relationship with a

  6. 77 FR 45558 - 4.9 GHz Band

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-01

    ... Rulemaking Proceedings, 63 FR 24121, May 1 (1998). Electronic Filers: Comments may be filed electronically..., system configurations, or geographic morphologies that are best suited for fixed use in the 4.9 GHz...

  7. Abrogated thioredoxin system causes increased sensitivity to TNF-α-induced apoptosis via enrichment of p-ERK 1/2 in the nucleus.

    PubMed

    Yoo, Min-Hyuk; Carlson, Bradley A; Gladyshev, Vadim N; Hatfield, Dolph L

    2013-01-01

    Thioredoxin (Trx) and thioredoxin reductase 1 (TR1) are among the major redox regulators in mammalian cells and have a wide variety of roles, including removal of intracellular reactive oxygen species (ROS) and prevention of cell death. Tumor necrosis factor-α (TNF-α) induces cancer cell death. Although ROS have been proposed to participate in this process, the role of the thioredoxin system in TNF-α stimulated cell death remains unclear. We investigated the possibility that the thioredoxin system protects against TNF-α-induced cancer cell death by examining whether TR1/Trx1 status controls TNF-α-induced apoptosis in EMT6 murine breast cancer cells. TR1-deficient cells were more sensitive to TNF-α than control cells. Increased sensitivity to TNF-α was most pronounced in Trx1-deficient cells. TNF-α-induced nuclear localization of phosphorylated ERK 1/2 (p-ERK 1/2) correlated with increased apoptosis in TR1- and Trx1-deficient cells, suggesting a pro-apoptotic role for nuclear p-ERK 1/2 in TNF-α-induced apoptosis. In addition, phosphoinositide 3-kinase (PI3K) inhibition dramatically reduced TNF-α-stimulated apoptosis and nuclear localization of p-ERK 1/2. In contrast, inhibition of ROS, MEK, JNK, or p38 did not significantly alter p-ERK 1/2 localization or apoptosis in TR1- and Trx1-deficient cells compared to control cells. Further, NF-κB p65 localization was not changed in TR1- and Trx1-deficient cells in response to TNF-α relative to control cells. Our data suggest that the thioredoxin system plays a critical role in protecting against TNF-α-induced apoptosis by regulating the levels of nuclear p-ERK 1/2 in a PI3K-dependent manner.

  8. Structural and magnetic phase transition in samarium hydrogen system SmH{sub x} (x=1, 2, 3)

    SciTech Connect

    Priyanga, G. Sudha; Rajeswarapalanichamy, R.; Santhosh, M.; Iyakutti, K.

    2015-06-24

    We report ab-initio calculations for the structural and magnetic phase transition of SmH{sub x} (x= 1, 2, 3) using the Vienna ab-initio simulation package (VASP). The non-spin polarized (NSP) and spin polarized (SP) calculations are performed for these hydrides at normal and high pressure. It is found that these compounds are stable in ferromagnetic state at normal pressure. The calculated lattice parameters and bulk modulus of these hydrides are in good agreement with the available experimental results. A pressure-induced structural phase transition from cubic to hexagonal phase in SmH and SmH{sub 2} and hexagonal to cubic phase in SmH{sub 3} is predicted. A pressure-induced ferromagnetic to nonmagnetic phase transition is observed in SmH, SmH{sub 2} and SmH{sub 3} at the pressures of 104 GPa, 76 GPa and 81 GPa respectively. Ferromagnetism is quenched in mono, di and tri hydrides at high pressures.

  9. Compact 0.3-to-1.125 GHz self-biased phase-locked loop for system-on-chip clock generation in 0.18 µm CMOS

    NASA Astrophysics Data System (ADS)

    Zhang, Zhao; Liu, Liyuan; Feng, Peng; Liu, Jian; Wu, Nanjian

    2016-04-01

    In this paper, we propose a compact ring-oscillator-based self-biased phase-locked loop (SBPLL) for system-on-chip (SoC) clock generation. It adopts the proposed triple-well NMOS source degeneration voltage-to-current (V-I) converter instead of the operational amplifier (OPAMP) based V-I converter and a proposed simple start-up circuit with a negligible area to save power and area. The SBPLL is implemented in the 0.18 µm CMOS process, and it occupies 0.048 mm2 active core. The measurement results show the SBPLL can generate output frequency in a wide range from 300 MHz to 1.125 GHz with a constant loop bandwidth that is around 5 MHz and a relatively low jitter performance that is less than 4.9 mUI over the entire covered frequency range. From -20 to 70 °C the rms jitter variation and loop bandwidth variation at 1.125 GHz are 0.2 ps and 350 kHz, respectively. The rms jitter performance variation of all covered frequency points is less than 10% in the supply range from 1.5 to 1.7 V. Such SBPLL shows robustness over environmental variation. The maximum power consumption is 5.6 mW with 1.6 V supply at an output frequency of 1.125 GHz.

  10. Integrability in Dynamical Systems: Florida Workshop in Nonlinear Astronomy, 3rd, University of Florida, Gainesville, Oct. 1, 2, 1987, Proceedings

    SciTech Connect

    Buchler, J.R.; Ipser, J.R.; Williams, C.A.

    1988-01-01

    Recent advances in theoretical celestial mechanics are examined in reviews and reports. Topics addressed include resonant integrable models of galaxies, new integrable systems, Painleve expansions for integrable and nonintegrable ordinary differential equations, and particle-simulation solutions of the Vlasov equation in general relativity. Consideration is given to repulsive and attractive double-bubble space-times, the integrability of magnetic-confinement systems, Hannay's angle and Berry's phase in the classical adiabatic motion of charged particles, the integrability of the nonlinear wave equations, normalization in the face of integrability, and simplifications toward the integrability of perturbed Keplerian systems.

  11. ATS-6 attenuation diversity measurements at 20 and 30 GHz

    NASA Technical Reports Server (NTRS)

    Vogel, W. J.; Straiton, A. W.; Fannin, B. M.; Wagner, N. K.

    1975-01-01

    The results of data obtained at The University of Texas at Austin in conjunction with the ATS-6 millimeter wave experiment are presented. Attenuation measurements at 30 GHz and sky noise data at 20 GHz were obtained simultaneously at each of two sites separated by 11 km. Space diversity reduces outage time for a system in Austin, Texas with a 10 dB fade margin at 30 GHz from 15 hours to 16 minutes per year. The maximum cloud height shows a good correlation to the maximum attenuations measured.

  12. High efficiency IMPATT diodes for 60 GHz intersatellite link applications

    NASA Technical Reports Server (NTRS)

    Haugland, E. J.

    1984-01-01

    Intersatellite links are expected to play an increasingly important role in future satellite systems. Improved components are required to properly utilize the wide bandwidth allocated for intersatellite link applications around 60 GHz. IMPATT diodes offer the highest potential performance as solid state power sources for a 60 GHz transmitter. Presently available devices do not have the desired power and efficiency. High efficiency, high power IMPATT diodes for intersatellite link applications are being developed by NASA and other government agencies. The development of high efficiency 60 GHz IMPATT diodes by NASA is described.

  13. Hazardous material life-cycle cost model. System user's guide. Version 1. 2. Final report, October 1992-September 1993

    SciTech Connect

    LaFleur, B.J.; Jaeger, J.A.; Hermansen, L.A.

    1994-09-01

    The Hazardous Material Life-Cycle Cost Model (HMLCCM) was developed to estimate the total life-cycle costs of using various hazardous materials in the construction, maintenance, and repair of U.S. naval systems and facilities. the model estimates those costs derived from the need to protect the health and safety of workplace personnel and the need to protect the environment. The purpose of this guide is to provide users with a detailed description of the system as well as the basic structure and features of the HMLCCM and instructions on how to use the system. This report is an updated version of the original user's guide. Changes include added functionality by including permissible exposure levels (portion of OSHA Z-Table) and on-line access to Material Safety Data Sheet (MSDS) based on the current Hazardous Information System (HMIS).

  14. System Critical Design Audit (CDA). Books 1, 2 and 3; [Small Satellite Technology Initiative (SSTI Lewis Spacecraft Program)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Small Satellite Technology Initiative (SSTI) Lewis Spacecraft Program is evaluated. Spacecraft integration, test, launch, and spacecraft bus are discussed. Payloads and technology demonstrations are presented. Mission data management system and ground segment are also addressed.

  15. A new scoring system for the chances of identifying a BRCA1/2 mutation outperforms existing models including BRCAPRO

    PubMed Central

    Evans, D; Eccles, D; Rahman, N; Young, K; Bulman, M; Amir, E; Shenton, A; Howell, A; Lalloo, F

    2004-01-01

    Methods: DNA samples from affected subjects from 422 non-Jewish families with a history of breast and/or ovarian cancer were screened for BRCA1 mutations and a subset of 318 was screened for BRCA2 by whole gene screening techniques. Using a combination of results from screening and the family history of mutation negative and positive kindreds, a simple scoring system (Manchester scoring system) was devised to predict pathogenic mutations and particularly to discriminate at the 10% likelihood level. A second separate dataset of 192 samples was subsequently used to test the model's predictive value. This was further validated on a third set of 258 samples and compared against existing models. Results: The scoring system includes a cut-off at 10 points for each gene. This equates to >10% probability of a pathogenic mutation in BRCA1 and BRCA2 individually. The Manchester scoring system had the best trade-off between sensitivity and specificity at 10% prediction for the presence of mutations as shown by its highest C-statistic and was far superior to BRCAPRO. Conclusion: The scoring system is useful in identifying mutations particularly in BRCA2. The algorithm may need modifying to include pathological data when calculating whether to screen for BRCA1 mutations. It is considerably less time-consuming for clinicians than using computer models and if implemented routinely in clinical practice will aid in selecting families most suitable for DNA sampling for diagnostic testing. PMID:15173236

  16. Molecular modeling of oscillating GHz electric field influence on the kinesin affinity to microtubule

    NASA Astrophysics Data System (ADS)

    R. Saeidi, H.; S. Setayandeh, S.; Lohrasebi, A.

    2015-08-01

    Kinesin is a microtubule-associated motor protein which can respond to the external electric field due to its polarity. Using a molecular dynamics simulation method, the effect of such a field on the affinity of kinesin to the αβ-tubulin is investigated in this study. To consider kinesin affinity, the system is exposed to an electric field of 0.03 V/nm with frequency values of 1, 2, …, 9, and 10 GHz. It is found that the applied electric field can change kinesin affinity to the microtubule. These changes could perturb the normal operation of kinesin, such as the processive motility of kinesin on the microtubule.

  17. The 8-18 GHz radar spectrometer

    NASA Technical Reports Server (NTRS)

    Bush, T. F.; Ulaby, F. T.

    1973-01-01

    The design, construction, testing, and accuracy of an 8-18 GHz radar spectrometer, an FM-CW system which employs a dual antenna system, is described. The antennas, transmitter, and a portion of the receiver are mounted at the top of a 26 meter hydraulic boom which is in turn mounted on a truck for system mobility. HH and VV polarized measurements are possible at incidence angles ranging from 0 deg. to 80 deg. Calibration is accomplished by referencing the measurements against a Luneberg lens of known radar cross section.

  18. User's manual for the upper Delaware River riverine environmental flow decision support system (REFDSS), Version 1.1.2

    USGS Publications Warehouse

    Talbert, Colin; Maloney, Kelly O.; Holmquist-Johnson, Chris; Hanson, Leanne

    2014-01-01

    Between 2002 and 2006, the Fort Collins Science Center (FORT) at the U.S. Geological Survey (USGS) conducted field surveys, organized workshops, and performed analysis of habitat for trout and shad in the Upper Delaware River Basin. This work culminated in the development of decision support system software (the Delaware River DSS–DRDSS, Bovee and others, 2007) that works in conjunction with the Delaware River Basin Commission’s reservoir operations model, OASIS, to facilitate comparison of the habitat and water-delivery effects of alternative operating scenarios for the Basin. This original DRDSS application was developed in Microsoft Excel and is available to all interested parties through the FORT web site (http://www.fort.usgs.gov/Products/Software/DRDSS/). Initial user feedback on the original Excel-based DSS highlighted the need for a more user-friendly and powerful interface to effectively deliver the complex data and analyses encapsulated in the DSS. In order to meet this need, the USGS FORT and Northern Appalachian Research Branch (NARB) developed an entirely new graphical user interface (GUI) application. Support for this research was through the DOI WaterSmart program (http://www.doi.gov/watersmart/html/index.php) of which the USGS component is the National Water Census (http://water.usgs.gov/watercensus/WaterSMART.html). The content and methodology of the new GUI interface emulates those of the original DSS with a few exceptions listed below. Refer to Bovee and others (2007) for the original information. Significant alterations to the original DSS include: • We moved from Excel-based data storage and processing to a more powerful database back end powered by SQLite. The most notable effect of this is that the previous maximum temporal extent of 10 years has been replaced by a dynamic extent that can now cover the entire period of record for which we have data (1928–2000). • We incorporated interactive geographic information system (GIS

  19. SOFish ver. 1.2 - A Decision Support System for Fishery Managers in Managing Complex Fish Stocks

    NASA Astrophysics Data System (ADS)

    Supriatna, A. K.; Sholahuddin, A.; Ramadhan, A. P.; Husniah, H.

    2016-01-01

    Sustainability is an important issue in a fishery industry. A manager of the fishery industry is responsible in deciding the best harvest that is able to sustain the industry while it should also guarantee the profitability of the industry. The most used concept in determining the best harvest in many fisheries industries is the Maximum Sustainable Yield (MSY). It represents the maximum amount of biomass that can be taken out from the fish population without harming the sustainability of the fishery. In other words, it is used to keep the population size stay over a threshold value of population level whenever harvesting activities is going on until indefinite time. In this paper we discuss a Decision Support System (DSS) for fishery managers in estimating the best harvest in a fishery industry. The best harvest is known as the Maximum Sustainable Yield (MSY) of the fishery. The DSS produces the MSY based on the discretization of some mathematical models of population growth, including the most popular models, such as Verhulst, Gompertz and Richards models. We also adding a biological complexity into the models, i.e. the presence of various degree of intra-specific competition of the population, which enhances the realism of the model and the DSS.

  20. Performance of Versions 1,2 and 3 of the Goddard Earth Observing System (GEOS) Chemistry-Climate Model (CCM)

    NASA Technical Reports Server (NTRS)

    Pawson, Steven; Stolarski, Richard S.; Nielsen, J. Eric; Duncan, Bryan N.

    2008-01-01

    Version 1 of the Goddard Earth Observing System Chemistry-Climate Model (GEOS CCM) was used in the first CCMVa1 model evaluation and forms the basis for several studies of links between ozone and the circulation. That version of the CCM was based on the GEOS-4 GCM. Versions 2 and 3 of the GEOS CCM are based on the GEOS-5 GCM, which retains the "Lin-Rood" dynamical core but has a totally different set of physical parameterizatiOns to GEOS-4. In Version 2 of the GEOS CCM the Goddard stratospheric chemistry module is retained. Difference between Versions 1 and 2 thus reflect the physics changes of the underlying GCMs. Several comparisons between these two models are made, several of which reveal improvements in Version 2 (including a more realistic representation of the interannual variability of the Antarctic vortex). In Version 3 of the GEOS CCM, the stratospheric chemistry mechanism is replaced by the "GMI COMBO" code that includes tropospheric chemistry and different computational approaches. An advantage of this model version. is the reduction of high ozone biases that prevail at low chlorine loadings in Versions 1 and 2. This poster will compare and contrast various aspects of the three model versions that are relevant for understanding interactions between ozone and climate.

  1. One GHz digitizer for space based laser altimeter

    NASA Technical Reports Server (NTRS)

    Staples, Edward J.

    1991-01-01

    This is the final report for the research and development of the one GHz digitizer for space based laser altimeter. A feasibility model was designed, built, and tested. Only partial testing of essential functions of the digitizer was completed. Hybrid technology was incorporated which allows analog storage (memory) of the digitally sampled data. The actual sampling rate is 62.5 MHz, but executed in 16 parallel channels, to provide an effective sampling rate of one GHz. The average power consumption of the one GHz digitizer is not more than 1.5 Watts. A one GHz oscillator is incorporated for timing purposes. This signal is also made available externally for system timing. A software package was also developed for internal use (controls, commands, etc.) and for data communication with the host computer. The digitizer is equipped with an onboard microprocessor for this purpose.

  2. Imaging, Doppler, and spectroscopic radars from 95 to 700 GHz

    NASA Astrophysics Data System (ADS)

    Cooper, Ken B.

    2016-05-01

    Imaging, Doppler, and spectroscopic radars from 95 to 700 GHz, all using the frequency-modulated continuous-wave technique, are in various stages of development for both defense and science applications at the Jet Propulsion Laboratory. For standoff security screening, a 340 GHz imaging radar now achieves an 8.3 Hz frame, and it has been tested using power-efficient MMIC-based active multiplier sources into its front end. That system evolved from a 680 GHz security radar platform, which has also been modified to operate in a Doppler mode for probing the dynamics of blowing sand and sensing small-amplitude target vibrations. Meanwhile, 95 and 183 GHz radars based on similar RF architectures are currently being developed to probe cometary jets in space and, using a differential absorption technique, humidity inside upper-tropospheric clouds.

  3. A 20-GHz IMPATT transmitter

    NASA Technical Reports Server (NTRS)

    Chan, J. L.; Sun, C.

    1983-01-01

    The engineering development of a solid state transmitter amplifier operating in the 20 GHz frequency band. The development effort involved a variety of disciplines including IMPATT device development, circulator design, simple and multiple diode circuits designs, and amplifier integration and test.

  4. Operation Plumbbob. Project 1. 2. Field test of a system for measuring blast phenomena by airborne gages. Preliminary report May-Sep 57

    SciTech Connect

    Not Available

    1980-02-01

    Project 1.2 participated in Operation Plumbbob in order to proof test prototype air-blast instrumentation for Operation Hardtack and to train personnel in handling this experiment under field conditions. The air-blast systems consisted of (1) parachute-supported canisters containing self-recording mechanical pressure gages that were deployed by means of rockets and (2) balloon-supported pressure instrumentation. The pressure and recording equipment were used with both the balloon and rocket systems. Pressure-time records were obtained in all cases except one. In one of the rockets a pressure record was not obtained, due to a failure in the electrical system. There were several defects noted in the system, none of which are considered serious. The general performance of the system was satisfactory. It was concluded that the basic design was sound.

  5. An inductorless CMOS programmable-gain amplifier with a > 3 GHz bandwidth for 60 GHz wireless transceivers

    NASA Astrophysics Data System (ADS)

    Wei, Zhu; Baoyong, Chi; Lixue, Kuang; Wen, Jia; Zhihua, Wang

    2014-10-01

    An inductorless wideband programmable-gain amplifier (PGA) for 60 GHz wireless transceivers is presented. To attain wideband characteristics, a modified Cherry—Hooper amplifier with a negative capacitive neutralization technique is employed as the gain cell while a novel circuit technique for gain adjustment is adopted; this technique can be universally applicable in wideband PGA design and greatly simplifying the design of wideband PGA. By cascading two gain cells and an output buffer stage, the PGA achieves the highest gain of 30 dB with the bandwidth much wider than 3 GHz. The PGA has been integrated into one whole 60 GHz wireless transceiver and implemented in the TSMC 65 nm CMOS process. The measurements on the receiver front-end show that the receiver front-end achieves an 18 dB variable gain range with a > 3 GHz bandwidth, which proves the proposed PGA achieves an 18 dB variable gain range with a bandwidth much wider than 3 GHz. The PGA consumes 10.7 mW of power from a 1.2-V supply voltage with a core area of only 0.025 mm2.

  6. Design and Field-of-View Calibration of 114-660-GHz Optics of the Earth Observing System Microwave Limb Sounder

    NASA Technical Reports Server (NTRS)

    Cofield, Richard E.; Stek, Paul C.

    2006-01-01

    This paper describes the optics design and field-of view (FOV) calibration for five radiometers covering 114-660 GHz which share a common antenna in the Microwave Limb Sounder instrument on the National Aeronautics and Space Administration's Aura satellite. Details of near-field pattern measurements are presented. Estimated systematic scaling uncertainties (3/spl sigma/) on calibrated limb emissions, due to FOV calibration uncertainties, are below 0.4%. 3/spl sigma/ uncertainties in beamwidth and relative pointing of radiometer boresights are 0.006A(deg) and 0.003A(deg) , respectively. The uncertainty in modeled instrument response, due to the scan dependence of FOV patterns, is less than +/- 0.24 K equivalent blackbody temperature. Refinements to the calibration using in-flight data are presented.

  7. Nonequilibrium dynamics of a mixed spin-1/2 and spin-3/2 Ising ferrimagnetic system with a time dependent oscillating magnetic field source

    NASA Astrophysics Data System (ADS)

    Vatansever, Erol; Polat, Hamza

    2015-10-01

    Nonequilibrium phase transition properties of a mixed Ising ferrimagnetic model consisting of spin-1/2 and spin-3/2 on a square lattice under the existence of a time dependent oscillating magnetic field have been investigated by making use of Monte Carlo simulations with a single-spin flip Metropolis algorithm. A complete picture of dynamic phase boundary and magnetization profiles have been illustrated and the conditions of a dynamic compensation behavior have been discussed in detail. According to our simulation results, the considered system does not point out a dynamic compensation behavior, when it only includes the nearest-neighbor interaction, single-ion anisotropy and an oscillating magnetic field source. As the next-nearest-neighbor interaction between the spins-1/2 takes into account and exceeds a characteristic value which sensitively depends upon values of single-ion anisotropy and only of amplitude of external magnetic field, a dynamic compensation behavior occurs in the system. Finally, it is reported that it has not been found any evidence of dynamically first-order phase transition between dynamically ordered and disordered phases, which conflicts with the recently published molecular field investigation, for a wide range of selected system parameters.

  8. 338-GHz Semiconductor Amplifier Module

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene A.; Gaier, Todd C.; Soria, Mary M.; Fung, King Man; Rasisic, Vesna; Deal, William; Leong, Kevin; Mei, Xiao Bing; Yoshida, Wayne; Liu, Po-Hsin; Uyeda, Jansen; Lai, Richard

    2010-01-01

    Research findings were reported from an investigation of new gallium nitride (GaN) monolithic millimeter-wave integrated circuit (MMIC) power amplifiers (PAs) targeting the highest output power and the highest efficiency for class-A operation in W-band (75-110 GHz). W-band PAs are a major component of many frequency multiplied submillimeter-wave LO signal sources. For spectrometer arrays, substantial W-band power is required due to the passive lossy frequency multipliers.

  9. Sixty GHz IMPATT diode development

    NASA Technical Reports Server (NTRS)

    Ma, Y. E.; Chen, J.; Benko, E.; Barger, M. J.; Nghiem, H.; Trinh, T. Q.; Kung, J.

    1985-01-01

    The objective of this program is to develop 60 GHz GaAs IMPATT Diodes suitable for communications applications. The performance goal of the 60 GHz IMPATT is 1W CW output power with a conversion efficiency of 15 percent and 10 year life time. During the course of the program, double drift (DD) GaAs IMPATT Diodes have been developed resulting in the state of the art performance at V band frequencies. A CW output power of 1.12 W was demonstrated at 51.9 GHz with 9.7 percent efficiency. The best conversion efficiency achieved was 15.3 percent. V band DD GaAs IMPATTs were developed using both small signal and large signal analyses. GaAs wafers of DD flat, DD hybrid, and DD Read profiles using molecular beam epitaxy (MBE) were developed with excellent doping profile control. Wafer evaluation was routinely made by the capacitance versus voltage (C-V) measurement. Ion mass spectrometry (SIMS) analysis was also used for more detailed profile evaluation.

  10. 1,2-Dichloroethane

    Integrated Risk Information System (IRIS)

    1,2 - Dichloroethane ; CASRN 107 - 06 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinoge

  11. 1,2-Dichloropropane

    Integrated Risk Information System (IRIS)

    1,2 - Dichloropropane ; CASRN 78 - 87 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinoge

  12. 1,2-Dichlorobenzene

    Integrated Risk Information System (IRIS)

    1,2 - Dichlorobenzene ; CASRN 95 - 50 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinoge

  13. 1,2-Diphenylhydrazine

    Integrated Risk Information System (IRIS)

    1,2 - Diphenylhydrazine ; CASRN 122 - 66 - 7 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcin

  14. 1,2-Dibromoethane

    Integrated Risk Information System (IRIS)

    1,2 - Dibromoethane ; CASRN 106 - 93 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogen

  15. Studies of extraction and transport system for highly charged ion beam of 18 GHz superconducting electron cyclotron resonance ion source at Research Center for Nuclear Physics.

    PubMed

    Yorita, T; Hatanaka, K; Fukuda, M; Ueda, H; Yasuda, Y; Morinobu, S; Tamii, A; Kamakura, K

    2014-02-01

    An 18 GHz superconducting electron cyclotron resonance ion source is installed to increase beam currents and to extend the variety of ions especially for highly charged heavy ions which can be accelerated by cyclotrons of Research Center for Nuclear Physics (RCNP), Osaka University. The beam production developments of several ions from B to Xe have been already done [T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 79, 02A311 (2008) and T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 81, 02A332 (2010)] and the further studies for those beam extraction and its transport have been done in order to increase the beam current more. The plasma electrode, extraction electrode, and einzel lens are modified. Especially extraction electrode can be applied minus voltage for the beam extraction and it works well to improve the extracted beam current. The extraction voltage dependences of transmission and emittance also have been studied for beam current improvement which is injected into azimuthally varying field cyclotron at RCNP.

  16. Studies of extraction and transport system for highly charged ion beam of 18 GHz superconducting electron cyclotron resonance ion source at Research Center for Nuclear Physics

    SciTech Connect

    Yorita, T. Hatanaka, K.; Fukuda, M.; Ueda, H.; Yasuda, Y.; Morinobu, S.; Tamii, A.; Kamakura, K.

    2014-02-15

    An 18 GHz superconducting electron cyclotron resonance ion source is installed to increase beam currents and to extend the variety of ions especially for highly charged heavy ions which can be accelerated by cyclotrons of Research Center for Nuclear Physics (RCNP), Osaka University. The beam production developments of several ions from B to Xe have been already done [T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 79, 02A311 (2008) and T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 81, 02A332 (2010)] and the further studies for those beam extraction and its transport have been done in order to increase the beam current more. The plasma electrode, extraction electrode, and einzel lens are modified. Especially extraction electrode can be applied minus voltage for the beam extraction and it works well to improve the extracted beam current. The extraction voltage dependences of transmission and emittance also have been studied for beam current improvement which is injected into azimuthally varying field cyclotron at RCNP.

  17. Design of Dual Circularly Polarised 2-15 GHz Feed and the Polarisation Degree Measurement for CSRH-II Antenna System

    NASA Astrophysics Data System (ADS)

    Li, Sha; Yan, Yi Hua; Chen, Zhi Jun; Wang, Wei; Zhang, Fu Shun

    2015-04-01

    The Chinese Spectral Radioheliograph is an aperture-synthesis telescope observing the Sun in ultra wide bandwidth on the ground. It contains two arrays Chinese Spectral Radioheliograph-I and Chinese Spectral Radioheliograph-II from 0.4 to 15 GHz. In order to obtain ultra wide-band performance, the cascaded folded dipoles are used in this feed. At the same time, in order to get circularly polarised signals coming from the Sun, a wide-band 90° hybrid is added in the output ports of the feed. This feed has characteristics of about 10 dBi gain, less than 1.5 voltage standing wave ratio. It also has characteristics with low axial ratio, fixed phase centre location, and constant beam width in operating frequencies. Through cross-correlating all combinations of two orthogonal polarisations at each antenna, the polarisation state of the waves is measured and give a differential instrumental delay between two data channels. The relationship between the own polarisation degree of the Sun and the observed polarisation degree is also measured for cross-polarised delay in observing the Sun in this paper.

  18. Studies of extraction and transport system for highly charged ion beam of 18 GHz superconducting electron cyclotron resonance ion source at Research Center for Nuclear Physics.

    PubMed

    Yorita, T; Hatanaka, K; Fukuda, M; Ueda, H; Yasuda, Y; Morinobu, S; Tamii, A; Kamakura, K

    2014-02-01

    An 18 GHz superconducting electron cyclotron resonance ion source is installed to increase beam currents and to extend the variety of ions especially for highly charged heavy ions which can be accelerated by cyclotrons of Research Center for Nuclear Physics (RCNP), Osaka University. The beam production developments of several ions from B to Xe have been already done [T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 79, 02A311 (2008) and T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 81, 02A332 (2010)] and the further studies for those beam extraction and its transport have been done in order to increase the beam current more. The plasma electrode, extraction electrode, and einzel lens are modified. Especially extraction electrode can be applied minus voltage for the beam extraction and it works well to improve the extracted beam current. The extraction voltage dependences of transmission and emittance also have been studied for beam current improvement which is injected into azimuthally varying field cyclotron at RCNP. PMID:24593475

  19. Microwave interferometer using 94-GHz solid-state sources

    SciTech Connect

    Coffield, F.E.; Thomas, S.R.; Lang, D.D.; Stever, R.D.

    1983-11-14

    A 94-GHz microwave interferometer has been designed for the Tandem Mirror Experiment Upgrade and the Mirror Fusion Test Facility to replace the 140-GHz system. The new system is smaller and has modular single-channel units designed for high reliability. It is magnetically shielded and can be mounted close to the machine, which allows the use of lower power solid-state sources. Test results of the 94-GHz prototype indicate that the phase resolution is better than 1/sup 0/, the Impatt FM noise is 5 MHz wide, and the Gunn FM noise is 6 kHz wide. This paper presents the antenna designs along with the test results and discusses the unique problems associated with diagnosing a high electron temperature plasma in the presence of electron cyclotron resonant heating.

  20. Phase locking and frequency locking of a 140 GHz klystron and a 280 GHz carcinotron

    SciTech Connect

    Sprehn, D.W.; Rettig, C.L.; Luhmann, N.C. Jr. )

    1992-10-01

    A phase and frequency-locked loop to synchronize two microwave tube oscillators for a high density plasma collective scattering diagnostic has been designed, assembled, and tested. A Varian (VRT2121A16) reflex klystron was down converted by mixing with the eighth harmonic of a 17.437 GHz phase-locked Gunn oscillator, and the resulting baseband was used to lock the klystron phase to a 200 MHz crystal. The down-converted 140 GHz klystron frequency spectrum shows a linewidth {lt}50 Hz and sideband power {lt}50 dB below the carrier (dBc). Frequency locking of a Thomson CSF TH4224S 280 GHz carcinotron was performed and the klystron was then down converted by the stabilized carcinotron and phase locked to the 200 MHz crystal. The klystron would track the frequency excursions of the carcinotron when the system was perturbed by direct modulation with frequencies of up to 10 MHz and remained locked as long as modulation sidebands were kept {lt}15 dBc. The locked states of both configurations show 3 to 4 orders of magnitude improvement in short and long term stability over the unlocked states.

  1. An efficient one-pot two catalyst system in the construction of 2-substituted benzimidazoles: synthesis of benzimidazo[1,2-c]quinazolines.

    PubMed

    Cimarelli, Cristina; Di Nicola, Matteo; Diomedi, Simone; Giovannini, Riccardo; Hamprecht, Dieter; Properzi, Roberta; Sorana, Federico; Marcantoni, Enrico

    2015-12-28

    The benzimidazole core is a common moiety in a large number of natural products and pharmacologically active small molecules. The synthesis of novel benzimidazole derivatives remains a main focus in medicinal research. In continuation of the efforts towards Ce(III) catalysts for organic transformations, we observed for the first time the activity of the iodide ion and copper cation in activating CeCl3·7H2O in the selective formation of prototypical 2-substituted benzimidazoles. The one-pot CeCl3·7H2O-CuI catalytic system procedure includes the cyclo-dehydrogenation of aniline Schiff's bases, generated in situ from the condensation of 1,2-phenylenediamine and aldehydes, followed by the oxidation with iodine, which works as a hydrogen sponge. Mild reaction conditions, good to excellent yields, and clean reactions make the procedure a useful contribution to the synthesis of biologically active fused heterocycles containing benzimidazoquinazolines. PMID:26477673

  2. Transmission of Duobinary Signal in Optical 40 GHz Millimeter-Wave Radio-Over-Fiber Systems Utilizing Dual-Arm LiNbO3 Mach-Zehnder Modulator for Downstream

    NASA Astrophysics Data System (ADS)

    Dong-Nhat, Nguyen; Malekmohammadi, Amin

    2016-06-01

    In this paper, for the first time transmission of 2.5 Gb/s duobinary signal is investigated for the downlink direction in 40 GHz optical millimeter-wave generation or up-conversion, utilizing a dual-arm LiNb{O}_3 Mach-Zehnder modulator based on different modulation schemes, namely double- and single-sideband (DSB and SSB) and optical carrier suppression (OCS). The up-converted optical millimeter-wave employing OCS modulation scheme indicates the highest back-to-back received optical power and the smallest power penalty after long propagation in the single-mode fiber, in comparison to DSB and SSB. Directly modulated laser in association with OCS modulation scheme has been used to generate duobinary optical millimeter-wave signal in order to minimize the cost and complexity of the system.

  3. 47 CFR 25.136 - Licensing provisions for user transceivers in the 1.6/2.4 GHz, 1.5/1.6 GHz, and 2 GHz Mobile...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... the 1.6/2.4 GHz, 1.5/1.6 GHz, and 2 GHz Mobile Satellite Services. 25.136 Section 25.136 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS..., 1.5/1.6 GHz, and 2 GHz Mobile Satellite Services. In addition to the technical...

  4. 47 CFR 25.136 - Licensing provisions for user transceivers in the 1.6/2.4 GHz, 1.5/1.6 GHz, and 2 GHz Mobile...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... the 1.6/2.4 GHz, 1.5/1.6 GHz, and 2 GHz Mobile Satellite Services. 25.136 Section 25.136 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS..., 1.5/1.6 GHz, and 2 GHz Mobile Satellite Services. In addition to the technical...

  5. 47 CFR 25.136 - Licensing provisions for user transceivers in the 1.6/2.4 GHz, 1.5/1.6 GHz, and 2 GHz Mobile...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... the 1.6/2.4 GHz, 1.5/1.6 GHz, and 2 GHz Mobile Satellite Services. 25.136 Section 25.136 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS..., 1.5/1.6 GHz, and 2 GHz Mobile Satellite Services. In addition to the technical...

  6. A 492 GHz cooled Schottky receiver for radio-astronomy

    NASA Technical Reports Server (NTRS)

    Hernichel, J.; Schieder, R.; Stutzki, J.; Vowinkel, B.; Winnewisser, G.; Zimmermann, Peter

    1992-01-01

    We developed a 492 GHz cooled GaAs Schottky receiver driven by a solid state local oscillator with a DSB noise temperature of 550 K measured at the telescope. The receiver-bandwidth is approx. equal to 1.0 GHz. Quasi-optical mirrors focus the sky and local oscillator radiation into the mixer. Stability analysis via the Allan variance method shows that the total system including a 1 GHz bandwidth acousto-optical spectrometer built in Cologne allows integration times up to 100 sec per half switching cycle. We successfully used the receiver at the KOSMA 3 m telescope on Gornergrat (3150m) located in the central Swiss Alps near Zermatt during January-February 1992 for observations of the 492 GHz, (CI) (3)P1 to (3)P0 fine structure line in several galactic sources. These observations confirm that Gornergrat is an excellent winter submillimeter site in accordance with previous predictions based on the atmospheric opacity from KOSMA 345 GHz measurements.

  7. A 492 GHz cooled Schottky receiver for radio-astronomy

    NASA Astrophysics Data System (ADS)

    Hernichel, J.; Schieder, R.; Stutzki, J.; Vowinkel, B.; Winnewisser, G.; Zimmermann, Peter

    We developed a 492 GHz cooled GaAs Schottky receiver driven by a solid state local oscillator with a DSB noise temperature of 550 K measured at the telescope. The receiver-bandwidth is approx. equal to 1.0 GHz. Quasi-optical mirrors focus the sky and local oscillator radiation into the mixer. Stability analysis via the Allan variance method shows that the total system including a 1 GHz bandwidth acousto-optical spectrometer built in Cologne allows integration times up to 100 sec per half switching cycle. We successfully used the receiver at the KOSMA 3 m telescope on Gornergrat (3150m) located in the central Swiss Alps near Zermatt during January-February 1992 for observations of the 492 GHz, (CI) (3)P1 to (3)P0 fine structure line in several galactic sources. These observations confirm that Gornergrat is an excellent winter submillimeter site in accordance with previous predictions based on the atmospheric opacity from KOSMA 345 GHz measurements.

  8. A 17 GHz molecular rectifier

    NASA Astrophysics Data System (ADS)

    Trasobares, J.; Vuillaume, D.; Théron, D.; Clément, N.

    2016-10-01

    Molecular electronics originally proposed that small molecules sandwiched between electrodes would accomplish electronic functions and enable ultimate scaling to be reached. However, so far, functional molecular devices have only been demonstrated at low frequency. Here, we demonstrate molecular diodes operating up to 17.8 GHz. Direct current and radio frequency (RF) properties were simultaneously measured on a large array of molecular junctions composed of gold nanocrystal electrodes, ferrocenyl undecanethiol molecules and the tip of an interferometric scanning microwave microscope. The present nanometre-scale molecular diodes offer a current density increase by several orders of magnitude compared with that of micrometre-scale molecular diodes, allowing RF operation. The measured S11 parameters show a diode rectification ratio of 12 dB which is linked to the rectification behaviour of the direct current conductance. From the RF measurements, we extrapolate a cut-off frequency of 520 GHz. A comparison with the silicon RF-Schottky diodes, architecture suggests that the RF-molecular diodes are extremely attractive for scaling and high-frequency operation.

  9. Measurement of homonuclear magnetic dipole-dipole interactions in multiple 1/2-spin systems using constant-time DQ-DRENAR NMR

    NASA Astrophysics Data System (ADS)

    Ren, Jinjun; Eckert, Hellmut

    2015-11-01

    A new pulse sequence entitled DQ-DRENAR (Double-Quantum based Dipolar Recoupling Effects Nuclear Alignment Reduction) was recently described for the quantitative measurement of magnetic dipole-dipole interactions in homonuclear spin-1/2 systems involving multiple nuclei. As described in the present manuscript, the efficiency and performance of this sequence can be significantly improved, if the measurement is done in the constant-time mode. We describe both the theoretical analysis of this method and its experimental validation of a number of crystalline model compounds, considering both symmetry-based and back-to-back (BABA) DQ-coherence excitation schemes. Based on the combination of theoretical analysis and experimental results we discuss the effect of experimental parameters such as the chemical shift anisotropy (CSA), the spinning rate, and the radio frequency field inhomogeneity upon its performance. Our results indicate that constant-time (CT-) DRENAR is a method of high efficiency and accuracy for compounds with multiple homonuclear spin systems with particular promise for the analysis of stronger-coupled and short T2 spin systems.

  10. Observation of anomalous dielectric properties in low-dimensional spin 1/2 α-Cu2V2O7 magnetic system

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Jen; Chandrasekhar, Kakarla-Devi; Fan, Ko-Jung; Lin, Jiunn-Yuan; Lee, Jenn-Min; Chen, Jin-Ming; Yang, Hung-Duen

    Recently, low-dimensional magnetic systems have received much attention from both theoretical and experimental physics point of view due to their fascinating physical properties. In general, Cu2V2O7 can stabilize at least two sibling polymorphs named as α and β phases. In α phase, Cu2V2O7 crystallized in orthorhombic with Fdd2 space groups. The complex magnetic exchange interaction between the Cu-O-Cu ion within the intra and interchain creates the Dzyaloshinskii-Moriya interaction that leads to weak ferromagnetism below the magnetic transition temperature TN = 34 K. In this study, we present the results of multiple dielectric anomalies observed in the low dimensional spin 1/2 α-Cu2V2O7 magnetic system. The observed dielectric signatures can be ascribed to the complex magnetic interaction α-Cu2V2O7 system. Further, the chemical doping effect on the magnetic and multiferroic properties of α-Cu2V2O7 is underway.

  11. High sensitivity broadband 360GHz passive receiver for TeraSCREEN

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Oldfield, Matthew; Maestrojuán, Itziar; Platt, Duncan; Brewster, Nick; Viegas, Colin; Alderman, Byron; Ellison, Brian N.

    2016-05-01

    TeraSCREEN is an EU FP7 Security project aimed at developing a combined active, with frequency channel centered at 360 GHz, and passive, with frequency channels centered at 94, 220 and 360 GHz, imaging system for border controls in airport and commercial ferry ports. The system will include automatic threat detection and classification and has been designed with a strong focus on the ethical, legal and practical aspects of operating in these environments and with the potential threats in mind. Furthermore, both the passive and active systems are based on array receivers with the active system consisting of a 16 element MIMO FMCW radar centered at 360 GHz with a bandwidth of 30 GHz utilizing a custom made direct digital synthesizer. The 16 element passive receiver system at 360 GHz uses commercial Gunn diode oscillators at 90 GHz followed by custom made 90 to 180 GHz frequency doublers supplying the local oscillator for 360 GHz sub-harmonic mixers. This paper describes the development of the passive antenna module, local oscillator chain, frequency mixers and detectors used in the passive receiver array of this system. The complete passive receiver chain is characterized in this paper.

  12. 324GHz CMOS VCO Using Linear Superimposition Technique

    NASA Technical Reports Server (NTRS)

    Daquan, Huang; LaRocca, Tim R.; Samoska, Lorene A; Fung, Andy; Chang, Frank

    2007-01-01

    Terahertz (frequencies ranged from 300GHz to 3THz) imaging and spectroscopic systems have drawn increasing attention recently due to their unique capabilities in detecting and possibly analyzing concealed objects. The generation of terahertz signals is nonetheless nontrivial and traditionally accomplished by using either free-electron radiation, optical lasers, Gunn diodes or fundamental oscillation by using III-V based HBT/HEMT technology[1-3]... We have substantially extended the operation range of deep-scaled CMOS by using a linear superimposition method, in which we have realized a 324GHz VCO in 90nm digital CMOS with 4GHz tuning range under 1V supply voltage. This may also pave the way for ultra-high data rate wireless communications beyond that of IEEE 802.15.3c and reach data rates comparable to that of fiber optical communications, such as OC768 (40Gbps) and beyond.

  13. A 32 GHz microstrip array antenna for microspacecraft application

    NASA Technical Reports Server (NTRS)

    Huang, J.

    1994-01-01

    JPL/NASA is currently developing microspacecraft systems for future deep space applications. One of the frequency bands being investigated for microspacecraft is the Ka-band (32 GHz), which can be used with smaller equipment and provides a larger bandwidth. This article describes the successful development of a circularly polarized microstrip array with 28 dBic of gain at 32 GHz. This antenna, which is thin, flat, and small, can be surface-mounted onto the microspacecraft and, hence, takes very little volume and mass of the spacecraft. The challenges in developing this antenna are minimizing the microstrip antenna's insertion loss and maintaining a reasonable frequency bandwidth.

  14. Broadband Permittivity Measurements of Ruddlesden-Popper Srn+1TinO3n+1 (n=1,2,3) Thin Films

    NASA Astrophysics Data System (ADS)

    Orloff, N.; Tian, W.; Schlom, D.; Booth, J.; Takeuchi, I.

    2008-03-01

    In order to explore the microwave dielectric response of Sr2TiO4, Sr3Ti2O7, and Sr4Ti3O10 thin films, we have performed broadband in-plane quantitative complex permittivity(ɛ) measurements on Srn+1TinO3n+1 (n=1,2,3) thin films in the frequency range 100Hz-40GHz. The films, of approximately 160 nm thickness, were fabricated by molecular beam epitaxy[1], and standard lithographic techniques were used to define coplanar waveguide transmission lines and interdigitated capacitors using gold. We extracted ɛ from the measured complex S-parameters (.01-40GHz) and the complex impedance (100Hz-.001GHz), which were measured at 70K, 150K, 200K, and 250K using a cyrogenic probe station. We found that below ˜10GHz the ɛ's of these thin films were approximately constant with frequency: ɛ 38, 48, and 100 for Srn+1TinO3n+1 (n=1,2,3) respectively. In addition, the measured value for ɛ of Sr2TiO4 is consistent with recent theoretical calculations [2]. We will discuss in detail the temperature and electric field dependence of the measured complex ɛ for these material systems. [1] J.H. Haeni, et al APL, 78, 21 (2001) [2] C.J. Fennie and M.K. Rabe, PRB, 68, 184111 (2003)

  15. Anomalous Enhancement of Seebeck Coefficient in Pr-Based 1-2-20 System with Non-Kramers Doublet Ground States

    NASA Astrophysics Data System (ADS)

    Machida, Y.; Yoshida, T.; Ikeura, T.; Izawa, K.; Nakama, A.; Higashinaka, R.; Aoki, Y.; Sato, H.; Sakai, A.; Nakatsuji, S.; Nagasawa, N.; Matsumoto, K.; Onimaru, T.; Takabatake, T.

    2015-03-01

    Low-temperature Seebeck coefficient S/T measurements have been performed on Pr-based 1-2-20 system, PrTr2X20 (Tr = Ti, Ta, V, Ir, X = Al, Zn) with non-Kramers doublet ground states. For PrTr2X20 with X = Al, we find a large S/T, which amounts to those of heavy fermion metals. By contrast, S/T for PrIr2Zn20 is found to be considerably small as the same order of magnitude as those of ordinary metals, despite the commonly enhanced Sommerfeld coefficient γ throughout the system. A satisfactory of the quasi-universal relation between S/T and γ as well as the Kadowaki-Woods relation demonstrates that the mass enhancement is realized in PrTr2Al20 due to the hybridization between f-electrons and the conduction electrons. We also find that the small S/T of PrIr2Zn20 is enhanced at low temperatures under the fields on the verge of quadrupole ordered phase, and in the same regime, the electrical resistivity follows the quadratic temperature dependence with a steep slope as a characteristic of Fermi liquid. The results imply an emergence of a nontrivial coherent state with sizable mass enhancement associated with the quadrupole degree of freedom.

  16. Low-temperature properties of the S =1/2 spin system Yb3Ru4Al12 with a distorted kagome lattice structure

    NASA Astrophysics Data System (ADS)

    Nakamura, S.; Toyoshima, S.; Kabeya, N.; Katoh, K.; Nojima, T.; Ochiai, A.

    2015-06-01

    We have synthesized single crystals of ternary intermetallic Yb3Ru4Al12 with a distorted kagome lattice structure, and investigated the low-temperature resistivity, specific heat, magnetization, and magnetic phase transitions. Yb3Ru4Al12 is the first 4 f system that has a Gd3Ru4Al12 -type crystal structure where antiferromagnetic interaction acts on the spin. The crystal electric field (CEF) ground state of this compound is determined as a well isolated twofold degenerate state that is subjected to a strong easy-plane-type magnetic anisotropy. In the present study, the spin system of Yb3Ru4Al12 is regarded as an AFM X Y model of S =1 /2 . This compound undergoes successive magnetic phase transitions at 1.5 and 1.6 K, and the resistivity exhibits T2 behavior below 1 K. The ratio of the coefficient of the T2 term in the resistivity A , and that of the electronic specific heat coefficient γ0, deviates from the Kadowaki-Woods (KW) law. The successive phase transitions and low-temperature properties of Yb3Ru4Al12 where geometrical frustration and heavy fermion behavior occur are discussed.

  17. Helical order and multiferroicity in the S =1/2 quasi-kagome system KCu3As2O7(OD)3

    NASA Astrophysics Data System (ADS)

    Nilsen, G. J.; Okamoto, Y.; Ishikawa, H.; Simonet, V.; Colin, C. V.; Cano, A.; Chapon, L. C.; Hansen, T.; Mutka, H.; Hiroi, Z.

    2014-04-01

    Several Cu2+ hydroxide minerals have been recently identified as candidate realizations of the S=1/2 kagome Heisenberg model. In this context, we have studied the distorted system KCu3As2O7(OD)3 using neutron scattering and bulk measurements. Although the distortion favors magnetic order over a spin liquid ground state, refinement of the magnetic diffraction pattern below TN1=7.05(5) K yields a complex helical structure with k =(0.77,0,0.11). This structure, as well as the spin excitation spectrum, are well described by a classical Heisenberg model with ferromagnetic nearest neighbor couplings. Multiferroicity is observed below TN1, with an unusual crossover between improper and pseudoproper behavior occurring at TN2=5.5 K. The polarization at T =2 K is P =1.5μCm-2. The properties of KCu3As2O7(OD)3 highlight the variety of physics which arise from the interplay of spin and orbital degrees of freedom in Cu2+ kagome systems.

  18. Protection against 1,2-di-methylhydrazine-induced systemic oxidative stress and altered brain neurotransmitter status by probiotic Escherichia coli CFR 16 secreting pyrroloquinoline quinone.

    PubMed

    Pandey, Sumeet; Singh, Ashish; Chaudhari, Nirja; Nampoothiri, Laxmipriya P; Kumar, G Naresh

    2015-05-01

    Exposure to environmental pollutant 1,2-dimethylhydrazine (DMH) is attributed to systemic oxidative stress and is known to cause neurotropic effect by altering brain neurotransmitter status. Probiotics are opted as natural therapeutic against oxidative stress and also have the ability to modulate gut-brain axis. Pyrroloquinoline quinone (PQQ) is water-soluble, heat-stable antioxidant molecule. Aim of the present study was to evaluate the antioxidant efficacy of PQQ-producing probiotic E. coli CFR 16 on DMH-induced systemic oxidative damage and altered neurotransmitter status in rat brain. Adult virgin Charles Forster rats (200-250 g) were given DMH dose (25 mg/kg body weight, s.c.) for 8 weeks. Blood lipid peroxidation levels exhibited a marked increase while antioxidant enzyme activities of superoxide dismutase, catalase, glucose-6-phosphate dehydrogenase and glutathione peroxidase were found to be reduced in DMH-treated rats. Likewise, brain serotonin and norepinephrine levels displayed a significant decrease, whereas epinephrine levels demonstrated a marked increase in brain of these rats. PQQ-producing E. coli CFR 16 supplementation reduced systemic oxidative stress and also restored brain neurotransmitter status. However, E. coli CFR 16 did not show any effect on these parameters. In contrast, E. coli CFR 16:: vgb-gfp and E. coli CFR 16:: vgb-gfp vector exhibited some degree of protection again oxidative stress but they were not able to modulate neurotransmitter levels. In conclusion, continuous and sustained release of PQQ by probiotic E. coli in rat intestine ameliorates systemic oxidative stress and restored brain neurotransmitter levels.

  19. Characteristics of ocular temperature elevations after exposure to quasi- and millimeter waves (18-40 GHz)

    NASA Astrophysics Data System (ADS)

    Kojima, Masami; Suzuki, Yukihisa; Tsai, Cheng-Yu; Sasaki, Kensuke; Wake, Kanako; Watanabe, Soichi; Taki, Masao; Kamimura, Yoshitsugu; Hirata, Akimasa; Sasaki, Kazuyuki; Sasaki, Hiroshi

    2015-04-01

    In order to investigate changes in ocular temperature in rabbit eyes exposed to different frequencies (18 to 40 GHz) of quasi-millimeter waves, and millimeter waves (MMW). Pigmented rabbits were anesthetized with both general and topical anesthesia, and thermometer probes (0.5 mm in diameter) were inserted into their cornea (stroma), lens (nucleus) and vitreous (center of vitreous). The eyes were exposed unilaterally to 200 mW/cm2 by horn antenna for 3 min at 18, 22 and 26.5 GHz using a K band exposure system or 26.5, 35 and 40 GHz using a Ka band exposure system. Changes in temperature of the cornea, lens and vitreous were measured with a fluoroptic thermometer. Since the ocular temperatures after exposure to 26.5 GHz generated by the K band and Ka band systems were similar, we assumed that experimental data from these 2 exposure systems were comparable. The highest ocular temperature was induced by 40 GHz MMW, followed by 35 GHz. The 26.5 and 22 GHz corneal temperatures were almost the same. The lowest temperature was recorded at 18 GHz. The elevation in ocular temperature in response to exposure to 200 mW/cm2 MMW is dependent on MMW frequency. MMW exposure induced heat is conveyed not only to the cornea but also the crystalline lens.

  20. New space research frequency band proposals in the 20- to 40.5-GHz range

    NASA Technical Reports Server (NTRS)

    Bishop, D. F.

    1991-01-01

    Future space research communications systems may require spectra above 20 GHz. Frequency bands above 20 GHz are identified that are suitable for space research. The selection of the proper bands depends on consideration of interference with other radio services, adequate bandwidths, link performance, and technical requirements for practical implementation.

  1. FINAL REPORT TESTS ON THE DURAMELTER 1200 HLW PILOT MELTER SYSTEM USING AZ-101 HLW SIMULANTS VSL-02R0100-2 REV 1 2/17/03

    SciTech Connect

    KRUGER AA; MATLACK KS; KOT WK; BARDAKCI T; GONG W; D'ANGELO NA; SCHATZ TR; PEGG IL

    2011-12-29

    This document provides the final report on data and results obtained from a series of nine tests performed on the one-third scale DuraMelter{trademark} 1200 (DM1200) HLW Pilot Melter system that has been installed at VSL with an integrated prototypical off-gas treatment system. That system has replaced the DM1000 system that was used for HLW throughput testing during Part B1 [1]. Both melters have similar melt surface areas (1.2 m{sup 2}) but the DM1200 is prototypical of the present RPP-WTP HLW melter design whereas the DM1000 was not. These tests were performed under a corresponding RPP-WTP Test Specification and associated Test Plans. The nine tests reported here were preceded by an initial series of short-duration tests conducted to support the start-up and commissioning of this system. This report is a followup to the previously issued Preliminary Data Summary Reports. The DM1200 system was deployed for testing and confirmation of basic design, operability, flow sheet, and process control assumptions as well as for support of waste form qualification and permitting. These tests include data on processing rates, off-gas treatment system performance, recycle stream compositions, as well as process operability and reliability. Consequently, this system is a key component of the overall HLW vitrification development strategy. The primary objective of the present series of tests was to determine the effects of a variety of parameters on the glass production rate in comparison to the RPP-WTP HL W design basis of 400 kg/m{sup 2}/d. Previous testing on the DMIOOO system [1] concluded that achievement of that rate with simulants of projected WTP melter feeds (AZ-101 and C-106/AY-102) was unlikely without the use of bubblers. As part of those tests, the same feed that was used during the cold-commissioning of the West Valley Demonstration Project (WVDP) HLW vitrification system was run on the DM1000 system. The DM1000 tests reproduced the rates that were obtained at the

  2. Cross-impact study of foreign satellite communications on NASA's 30/20 GHz program

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A comprehensive traffic demand forecast and a scenario for the transition process from current satellite systems to more advanced systems of the 1990's are presented. Systems configurations with and without the use of 30/20 GHz are described and these two alternatives are compared. It is concluded that: (1) the use of 30/20 GHz will result in increased satellite capacity, which will be needed to satisfy demand; (2) the use of 30/20 GHz will decrease the transmission cost, especially for broadband communications; (3) in some areas, particularly Europe and Japan but also the U.S., 30/20 GHz is the only available frequency band for customer premise Earth stations because of the dense terrestrial microwave networks; and (4) the development of 30/20 GHz technology will improve U.S. markets for equipment and satellites in many world regions.

  3. Operation of the SUPARAMP at 33GHz

    NASA Technical Reports Server (NTRS)

    Chiao, R. Y.; Parrish, P. T.

    1975-01-01

    A 9mm degenerate parametric amplifier was constructed using a linear, series array of unbiased Josephson junctions as the active, nonlinear element. A balanced diode mixer was used as a synchronous detector, with a single source serving both as the pump and as the mixer local oscillator. A stable, net gain of 15 dB in an instantaneous bandwith (FWHM) of 3.4 GHz was achieved. A system noise temperature of 220 K + or - 5 K (DSB) was measured with a SUPARAMP contribution of only 20 K x or - 10 K. Output saturation was observed and complicates the interpretation of the noise temperature measurements and may render them upper limits. A comparison was made with the results of an earlier 3 cm suparamp. The data is in substantial agreement with theoretical predictions.

  4. FIA-automated system used to electrochemically measure nitrite and its interfering chemicals through a 1-2 DAB / Au electrode: gain of sensitivity at upper potentials

    NASA Astrophysics Data System (ADS)

    Almeida, F. L.; dos Santos Filho, S. G.; Fontes, M. B. A.

    2013-03-01

    The measurement of nitrite and its interfering-chemicals (paracetamol, ascorbic acid and uric acid) was performed employing a Flow-injection Analysis (FIA) system, which was automated using solenoid valves and air-pump. It is very important to quantify nitrite from river water, food and biologic fluids due to its antibacterial capacity in moderated concentrations, or its toxicity for human health even at low concentrations (> 20 μmol L-1 in blood fluids). Electrodes of the electrochemical planar sensor were defined by silk-screen technology. The measuring electrode was made from gold paste covered with 1-2 cis Diaminobenzene (DAB), which allowed good selectivity, linearity, repeatability, stability and optimized gain of sensitivity at 0.5 VAg/AgCl Nafion®117 (6.93 μA mol-1 L mm-2) compared to 0.3 VAg/AgCl Nafion® 117. The reference electrode was obtained from silver/palladium paste modified with chloride and covered with Nafion® 117. The auxiliary electrode was made from platinum paste. It was noteworthy that nitrite response adds to the response of the studied interfering-chemicals and it is predominant for concentrations lower than 175 μmol L-1.

  5. NucliSens EasyQ HIV-1 V1.2 system: Detection of human plasma-derived background signal.

    PubMed

    van Zyl, G U; Korsman, S N J; Maree, L; Preiser, W

    2010-05-01

    Until recently the NucliSens EasyQ HIV-1 V1.2 system has been used throughout South Africa as part of the national antiretroviral roll-out programme for the monitoring of HIV-1 RNA load in patients on antiretroviral treatment. Shortly after changing to a new assay lot number an increased proportion of patient specimens, showing detectable but low viral loads, was observed (<200 IU/ml). The test runs remained valid as the lysis buffer-only no-template controls (NTCs) remained negative. Contamination with amplification product was excluded. Subsequently the same phenomenon was observed in at least three other South African laboratories across different assay lot numbers. When testing aliquots of plasma, freshly obtained from HIV-negative donors, at two of these laboratories, 33/134 aliquots showed detectable values (range 26-370, median: 64 IU/ml), while all NTCs remained negative. These findings emphasize the importance of appropriate specimen controls in all diagnostic assays. In this case HIV-negative human plasma should be included routinely in addition to NTCs, which would allow rapid detection of a background signal. PMID:20219541

  6. Effect of surfactant-induced cell surface modifications on electron transport system and catechol 1,2-dioxygenase activities and phenanthrene biodegradation by Citrobacter sp. SA01.

    PubMed

    Li, Feng; Zhu, Lizhong

    2012-11-01

    In order to better understand how surfactants affect biodegradation of hydrophobic organic compounds (HOCs), Tween 80 and sodium dodecyl benzene sulfonate (SDBS), were selected to investigate effects on cell surface hydrophobicity (CSH), electron transport system (ETS) activities and phenanthrene biodegradation by Citrobacter sp. SA01. Tween 80 and SDBS increased CSH by 19.8-25.2%, ETS activities by 352.1-376.0μmol/gmin, catechol 1,2-dioxygenase (C12) activities by 50.8-52.7U/L, and phenanthrene biodegradation by 8.9-17.2% separately in the presence of 50mg/L of surfactants as compared to in their absence. Lipopolysaccharide (LPS) release was 334.7μg/mg in the presence of both surfactants whereas in their absence only 8.6-44.4μg/mg of LPS was released. Thus, enhanced LPS release probably increased ETS and C12 activities as well as phenanthrene biodegradation by increasing CSH. The results demonstrate that surfactant-enhanced CSH provides a simple, yet effective strategy for field applications of surfactant-enhanced bioremediation of HOCs.

  7. Modeling the impact of tropical mesoscale convective systems on Sahelian mineral dust budget: a case study during AMMA SOPs 1-2

    NASA Astrophysics Data System (ADS)

    Bouet, C.; Cautenet, G.; Marticorena, B.; Bergametti, G.; Chatenet, B.; Rajot, J.-L.; Descroix, L.

    2009-04-01

    Tropical mesoscale convective systems (MCSs) are a prominent feature of the African meteorology. A continuous monitoring of the aeolian activity in an experimental site located in Niger showed that such events are responsible for the major part of the annual local wind erosion, i.e. for most of the Sahelian dust emission [Rajot, 2001]. However, the net effect of these MCSs on mineral dust budget has to be estimated: on the one hand, these systems produce extremely high surface wind velocities leading to intense dust uptake, but on the other hand, rainfalls associated with these systems can efficiently remove the emitted dust from the atmosphere. High resolution modeling of MCSs appears as the most relevant approach to assess the budget between dust emission and deposition in such local meteorological systems. As a first step, in order to properly estimate dust emissions, it is necessary to accurately describe the surface wind fields at the local scale. Indeed, dust emission is a threshold phenomenon that depends on the third power of surface wind velocity. This study focuses on a case study of dust emission associated with the passage of a MCS observed during one of the intensive observation period of the international African Monsoon Multidisciplinary Analysis (AMMA - SOPs 1-2) program. The simulations were made using the Regional Atmospheric Modeling System (RAMS) coupled online with the dust production model (DPM) developed by Marticorena and Bergametti [1995] and recently improved by Laurent et al. [2008] for Africa. Two horizontal resolutions were tested (5 km and 2.5 km) as well as two microphysical schemes (a 1-moment scheme [Walko et al., 1995] and a 2-moment scheme [Meyers et al., 1997]). The use of the two convective parameterizations now available in the version 6 of RAMS (Kuo [1995] modified by Molinari [1985] and Molinari and Corsetti [1985], and Kain and Fritsch [1992; 1993]) to simulate cloud convection was also tested. Sensitivity tests have been

  8. Locoregional Recurrence Risk for Patients With T1,2 Breast Cancer With 1-3 Positive Lymph Nodes Treated With Mastectomy and Systemic Treatment

    SciTech Connect

    McBride, Andrew; Allen, Pamela; Woodward, Wendy; Kim, Michelle; Kuerer, Henry M.; Drinka, Eva Katherine; Sahin, Aysegul; Strom, Eric A.; Buzdar, Aman; Valero, Vicente; Hortobagyi, Gabriel N.; Hunt, Kelly K.; Buchholz, Thomas A.

    2014-06-01

    Purpose: Postmastectomy radiation therapy (PMRT) has been shown to benefit breast cancer patients with 1 to 3 positive lymph nodes, but it is unclear how modern changes in management have affected the benefits of PMRT. Methods and Materials: We retrospectively analyzed the locoregional recurrence (LRR) rates in 1027 patients with T1,2 breast cancer with 1 to 3 positive lymph nodes treated with mastectomy and adjuvant chemotherapy with or without PMRT during an early era (1978-1997) and a later era (2000-2007). These eras were selected because they represented periods before and after the routine use of sentinel lymph node surgery, taxane chemotherapy, and aromatase inhibitors. Results: 19% of 505 patients treated in the early era and 25% of the 522 patients in the later era received PMRT. Patients who received PMRT had significantly higher-risk disease features. PMRT reduced the rate of LRR in the early era cohort, with 5-year rates of 9.5% without PMRT and 3.4% with PMRT (log-rank P=.028) and 15-year rates 14.5% versus 6.1%, respectively; (Cox regression analysis: adjusted hazard ratio [AHR] 0.37, P=.035). However, PMRT did not appear to benefit patients treated in the later cohort, with 5-year LRR rates of 2.8% without PMRT and 4.2% with PMRT (P=.48; Cox analysis: AHR 1.41, P=.48). The most significant factor predictive of LRR for the patients who did not receive PMRT was the era in which the patient was treated (AHR 0.35 for later era, P<.001). Conclusion: The risk of LRR for patients with T1,2 breast cancer with 1 to 3 positive lymph nodes treated with mastectomy and systemic treatment is highly dependent on the era of treatment. Modern treatment advances and the selected use of PMRT for those with high-risk features have allowed for identification of a cohort at very low risk for LRR without PMRT.

  9. Teleportation of a 3-dimensional GHZ State

    NASA Astrophysics Data System (ADS)

    Cao, Hai-Jing; Wang, Huai-Sheng; Li, Peng-Fei; Song, He-Shan

    2012-05-01

    The process of teleportation of a completely unknown 3-dimensional GHZ state is considered. Three maximally entangled 3-dimensional Bell states function as quantum channel in the scheme. This teleportation scheme can be directly generalized to teleport an unknown d-dimensional GHZ state.

  10. Systemic immunosuppression following a single pharyngeal aspiration of 1,2:5,6-dibenzanthracene in female B6C3F1 mice.

    PubMed

    Smith, Donna C; Smith, Matthew J; White, Kimber L

    2010-01-01

    1,2:5,6-Dibenzanthracene (DBA) is ubiquitous in our environment as a contaminant produced by incomplete combustion of organics from sources such as forest fires, cigarette smoke, and asphalt paving, and it is more immunosuppressive of the T-dependent antibody-forming cell (AFC) response than the well-studied polycyclic aromatic hydrocarbon, benzo(a)pyrene. The systemic immunosuppressive effects of DBA were investigated following a single pharyngeal aspiration (pa) in female B(6)C(3)F(1) mice. The immunotoxic effects of DBA were evaluated using numerous assays of varying complexity to evaluate innate (natural killer [NK] cell activity), cell-mediated (T-lymphocyte proliferation, mixed leukocyte response [MLR], cytotoxic T-lymphocyte [CTL] activity, delayed-type hypersensitivity [DTH]), and humoral immunity (B-lymphocyte proliferation, T-dependent antibody responses). A single pa of DBA at doses up to 30 mg/kg had no effect on NK cell activity, anti-CD3 antibody-mediated T-lymphocyte proliferation, the MLR, or B-lymphocyte proliferation. DBA at 30 mg/kg suppressed Concanavalin A (ConA)-stimulated T-lymphocyte proliferation and the CTL response. DBA exposure reduced cytokine production in spleen cell culture supernatants after in vitro stimulation with ConA or lipopolysaccharide (LPS). Immunosuppression was observed at lower doses in the holistic assays. The DTH response to Candida albicans was significantly decreased at 3.0 mg/ kg DBA, while the AFC response was intermittently suppressed at 1.0 mg/kg, with no effect observed at 0.3 mg/kg. These results demonstrate that a single pa of DBA produces systemic immunotoxicity, and of the assays utilized, the holistic assays (i.e., DTH, AFC) appear to be most sensitive to the immunosuppressive effects of DBA.

  11. The MALT 90 GHz Pilot Survey

    NASA Astrophysics Data System (ADS)

    Jackson, James; Rathborne, Jill; Muller, Erik; Cunningham, Maria; Brooks, Kate; Fuller, Gary; Barnes, Peter; Ellingsen, Simon; Longmore, Steven; Wyrowski, Friedrich; Walsh, Andrew; Peretto, Nicolas

    2009-04-01

    In early November, 2008, Australian and international Galactic astronomers met to plan future surveys of the Galactic plane with ATNF facilities. We intend to coordinate our efforts so that such surveys produce the maximum scientific return with minimal overlap in observations. To this end, the Millimetre Astronomers Large-area multi-Transition (MALT) team was formed. The MALT team has identified key Galactic plane surveys: a 42--50 GHz survey, a 90 GHz survey and a 115 GHz survey. In this proposal, we aim to conduct a pilot survey to explore options in the 90 GHz (3 mm) range. This pilot survey will provide detection rates, typical line strengths, and source sizes for various "finder charts" for high-mass star-forming cores. Such information is crucial for a rational design of a complete 90 GHz MALT survey.

  12. Gyrotron Performance on the 110 GHZ Installation at the DIII-D Tokamak

    SciTech Connect

    Gorelov, I.; Lohr, J.M.; Ponce, D.; Callis, R.W.; Ikezi, H.; Legg, R.A.; Tsimring, S.E.

    1999-06-01

    The 110 GHz gyrotron system on the DIII-D tokamak comprises three different gyrotrons in the 1 MW class. The individual gyrotron characteristics and the operational experience with the system are described.

  13. Long-term follow-up from a phase 1/2 study of single-agent bortezomib in relapsed systemic AL amyloidosis.

    PubMed

    Reece, Donna E; Hegenbart, Ute; Sanchorawala, Vaishali; Merlini, Giampaolo; Palladini, Giovanni; Bladé, Joan; Fermand, Jean-Paul; Hassoun, Hani; Heffner, Leonard; Kukreti, Vishal; Vescio, Robert A; Pei, Lixia; Enny, Christopher; Esseltine, Dixie-Lee; van de Velde, Helgi; Cakana, Andrew; Comenzo, Raymond L

    2014-10-16

    CAN2007 was a phase 1/2 study of once- and twice-weekly single-agent bortezomib in relapsed primary systemic amyloid light chain amyloidosis (AL) amyloidosis. Seventy patients were treated, including 18 and 34 patients at the maximum planned doses on the once- and twice-weekly schedules. This prespecified final analysis provides mature response and long-term outcomes data after 3-year additional follow-up since the last report. In the once-weekly 1.6 mg/m(2) and twice-weekly 1.3 mg/m(2) bortezomib groups, final hematologic response rates were 68.8% and 66.7%; 80% of patients in each group sustained their response for ≥1 year. One-year progression-free rates were 72.2% and 76.8%. Median overall survival (OS) was 62.1 months and not reached; 4-year OS rates were 75.0% and 63.0%. Low baseline difference in κ/λ free light-chain level was associated with higher hematologic complete response rates and longer OS. At data cutoff, 40 (57%) patients had received subsequent therapy, including 19 (27%) retreated with bortezomib, 11 (58%) of whom achieved complete or partial hematologic responses. Four patients received prolonged bortezomib for between 3.5 and 5.6 years, with no new safety concerns, highlighting the feasibility of long-term therapy. Single-agent bortezomib produced durable hematologic responses and promising long-term OS in relapsed AL amyloidosis. This trial was registered at www.clinicaltrials.gov as #NCT00298766. PMID:25202139

  14. High power testing of a 17 GHz photocathode RF gun

    SciTech Connect

    Chen, S.C.; Danly, B.G.; Gonichon, J.

    1995-12-31

    The physics and technological issues involved in high gradient particle acceleration at high microwave (RF) frequencies are under study at MIT. The 17 GHz photocathode RF gun has a 1 1/2 cell ({pi} mode) room temperature cooper cavity. High power tests have been conducted at 5-10 MW levels with 100 ns pulses. A maximum surface electric field of 250 MV/m was achieved. This corresponds to an average on-axis gradient of 150 MeV/m. The gradient was also verified by a preliminary electron beam energy measurement. Even high gradients are expected in our next cavity design.

  15. 110 GHz, 1 MW Gyrotron Design Upgrades

    NASA Astrophysics Data System (ADS)

    Cauffman, Steve; Felch, Kevin; Borchard, Philipp; Cahalan, Pat; Chu, Sam; Dubrule, Craig

    1999-11-01

    Communications and Power Industries has incorporated a number of design changes into its most recent series of 110 GHz 1 MW gyrotrons, for use in ECH and ECCD experiments on the DIII-D tokamak. Two development gyrotrons previously installed at DIII-D used a modulating-anode electron gun design and output windows consisting of double-disk face-cooled sapphire on one system and an edge-cooled CVD diamond disk on the other. Three new systems presently in fabrication and test employ (a) a single-anode electron gun to avoid excitation of spurious modes during turn-on and turn-off and to simplify power supply requirements, (b) a modified TE_22,6 cavity to reduce competition from neighboring modes, (c) a two inch aperture edge-cooled CVD diamond window to allow transmission of a 1 MW Gaussian output beam, (d) a superconducting magnet system with a cryo-cooler to reduce liquid helium consumption, and (e) a number of internal and external plumbing simplifications to make cooling system connections more straightforward. Initial test results, if available, will be presented.

  16. Upgraded Waveguide Components for New 1.2 and 1.5 MW Gyrotrons on the DIII-D Tokamak

    NASA Astrophysics Data System (ADS)

    Gorelov, Y. A.; Doane, J. L.; Cengher, M.; Lohr, J.; Ponce, D.

    2012-10-01

    The present gyrotron system on the DIII-D tokamak comprises 110 GHz gyrotrons in the 1 MW class with designed pulse lengths of 10 s. The system is being upgraded with two types of depressed collector gyrotrons producing 1.2 MW at 110 GHz and 1.5 MW at 117.5 GHz, for which waveguide components having higher power ratings will be required. New power monitors and polarizers have been designed and fabricated, which are capable of operating for 10 s pulses at the higher power levels. This presentation reports an analysis of the component heat loading to obtain a thermal equilibrium. Using this equilibrium, a stress strain analysis was performed to calculate life expectancies. The calculations take into account the temperature dependence of the heat transfer coefficient in the component coolant channels. Although the high heat load components required upgrading, the waveguide lines themselves have adequate margins for the expected power and pulse length. A summary of the thermal capabilities of other components will also be presented.

  17. Spacecraft IF switch matrix for wideband service applications in 30/20 GHz communications satellite systems: Proof-of-concept model, executive summary

    NASA Technical Reports Server (NTRS)

    Ho, P. T.; Coban, E.; Pelose, J.

    1983-01-01

    The design and development of a unique coupler crossbar 20 x 20 microwave switch matrix are described. The test results of the proof of concept model that meets the requirements for a high speed satellite switched, time division multiple access (SS-TDMA) system are presented.

  18. Jupiter's radio spectrum from 74 MHz up to 8 GHz

    NASA Astrophysics Data System (ADS)

    de Pater, Imke; Butler, B. J.; Green, D. A.; Strom, R.; Millan, R.; Klein, M. J.; Bird, M. K.; Funke, O.; Neidhöfer, J.; Maddalena, R.; Sault, R. J.; Kesteven, M.; Smits, D. P.; Hunstead, R.

    2003-06-01

    We carried out a brief campaign in September 1998 to determine Jupiter's radio spectrum at frequencies spanning a range from 74 MHz up to 8 GHz. Eleven different telescopes were used in this effort, each uniquely suited to observe at a particular frequency. We find that Jupiter's spectrum is basically flat shortwards of 1-2 GHz, and drops off steeply at frequencies greater than 2 GHz. We compared the 1998 spectrum with a spectrum (330 MHz-8 GHz) obtained in June 1994, and report a large difference in spectral shape, being most pronounced at the lowest frequencies. The difference seems to be linear with log(ν), with the largest deviations at the lowest frequencies (ν). We have compared our spectra with calculations of Jupiter's synchrotron radiation using several published models. The spectral shape is determined by the energy-dependent spatial distribution of the electrons in Jupiter's magnetic field, which in turn is determined by the detailed diffusion process across L-shells and in pitch angle, as well as energy-dependent particle losses. The spectral shape observed in September 1998 can be matched well if the electron energy spectrum at L = 6 is modeled by a double power law E- a (1+( E/ E0)) - b, with a = 0.4, b = 3, E0 = 100 MeV, and a lifetime against local losses τ 0 = 6 × 10 7 s. In June 1994 the observations can be matched equally well with two different sets of parameters: (1) a = 0.6, b = 3, E0 = 100 MeV, τ 0 = 6 × 10 7 s, or (2) a = 0.4, b = 3, E0 = 100 MeV, τ 0 = 8.6 × 10 6 s. We attribute the large variation in spectral shape between 1994 and 1998 to pitch angle scattering, coulomb scattering and/or energy degradation by dust in Jupiter's inner radiation belts.

  19. Effect of benzoic acid on the removal of 1,2-dichloroethane by a siderite-catalyzed hydrogen peroxide and persulfate system.

    PubMed

    Li, Shengpin; Li, Mengjiao; Luo, Ximing; Huang, Guoxin; Liu, Fei; Chen, Honghan

    2016-01-01

    Benzoic acid can affect the iron-oxide mineral dissolution and react with hydroxyl radical. This study investigated its effect on 1,2-dichloroethane removal process by siderite-catalyzed hydrogen peroxide and persulfate. The variation of benzoic acid concentrations can affect pH value and soluble iron concentrations; when benzoic acid varied from 0 to 0.5 mmol/L, pH increased while Fe(2+) and Fe(3+) concentrations decreased, resulting in 1,2-dichloroethane removal efficiency which decreased from 91.2 to 5.0%. However, when benzoic acid varied from 0.5 to 10 mmol/L, pH decreased while Fe(2+) and Fe(3+) concentrations increased, resulting in 1,2-dichloroethane removal efficiency which increased from 5.0 to 83.4%.

  20. 23 GHz ferroelectric electron gun based gyrotron

    NASA Astrophysics Data System (ADS)

    Ben-Moshe, R.; Einat, M.

    2011-04-01

    Ferroelectric cathodes have been explored as an alternative electron source for microwave tubes. Past experiments have demonstrated operation at frequencies of 2-10 GHz. Since the ferroelectric cathode is based on surface plasma, the relatively high energy spread limits the tube operation frequency. Hence, the possibility to obtain higher frequencies remained questionable. In this experimental work a gyrotron oscillator was designed with the operation frequency increased toward that of millimeter waves. A cylindrical tube with a cutoff frequency of ˜22 GHz was integrated to a ferroelectric electron gun. Pulses of ˜0.5 μs duration with a frequency of 23 GHz were obtained.

  1. Early life exposure to 2.45GHz WiFi-like signals: effects on development and maturation of the immune system.

    PubMed

    Sambucci, Manolo; Laudisi, Federica; Nasta, Francesca; Pinto, Rosanna; Lodato, Rossella; Lopresto, Vanni; Altavista, Pierluigi; Marino, Carmela; Pioli, Claudio

    2011-12-01

    The development of the immune system begins during embryogenesis, continues throughout fetal life, and completes its maturation during infancy. Exposure to immune-toxic compounds at levels producing limited/transient effects in adults, results in long-lasting or permanent immune deficits when it occurs during perinatal life. Potentially harmful radiofrequency (RF) exposure has been investigated mainly in adult animals or with cells from adult subjects, with most of the studies showing no effects. Is the developing immune system more susceptible to the effects of RF exposure? To address this question, newborn mice were exposed to WiFi signals at constant specific absorption rates (SAR) of 0.08 or 4 W/kg, 2h/day, 5 days/week, for 5 consecutive weeks, starting the day after birth. The experiments were performed with a blind procedure using sham-exposed groups as controls. No differences in body weight and development among the groups were found in mice of both sexes. For the immunological analyses, results on female and male newborn mice exposed during early post-natal life did not show any effects on all the investigated parameters with one exception: a reduced IFN-γ production in spleen cells from microwaves (MW)-exposed (SAR 4 W/kg) male (not in female) mice compared with sham-exposed mice. Altogether our findings do not support the hypothesis that early post-natal life exposure to WiFi signals induces detrimental effects on the developing immune system. PMID:21907730

  2. Early life exposure to 2.45GHz WiFi-like signals: effects on development and maturation of the immune system.

    PubMed

    Sambucci, Manolo; Laudisi, Federica; Nasta, Francesca; Pinto, Rosanna; Lodato, Rossella; Lopresto, Vanni; Altavista, Pierluigi; Marino, Carmela; Pioli, Claudio

    2011-12-01

    The development of the immune system begins during embryogenesis, continues throughout fetal life, and completes its maturation during infancy. Exposure to immune-toxic compounds at levels producing limited/transient effects in adults, results in long-lasting or permanent immune deficits when it occurs during perinatal life. Potentially harmful radiofrequency (RF) exposure has been investigated mainly in adult animals or with cells from adult subjects, with most of the studies showing no effects. Is the developing immune system more susceptible to the effects of RF exposure? To address this question, newborn mice were exposed to WiFi signals at constant specific absorption rates (SAR) of 0.08 or 4 W/kg, 2h/day, 5 days/week, for 5 consecutive weeks, starting the day after birth. The experiments were performed with a blind procedure using sham-exposed groups as controls. No differences in body weight and development among the groups were found in mice of both sexes. For the immunological analyses, results on female and male newborn mice exposed during early post-natal life did not show any effects on all the investigated parameters with one exception: a reduced IFN-γ production in spleen cells from microwaves (MW)-exposed (SAR 4 W/kg) male (not in female) mice compared with sham-exposed mice. Altogether our findings do not support the hypothesis that early post-natal life exposure to WiFi signals induces detrimental effects on the developing immune system.

  3. NASA 60 GHz intersatellite communication link definition study. Baseline document

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The overall system and component concepts for a 60 GHz intersatellite communications link system (ICLS) are described. The ICLS was designed to augment the capabilities of the current Tracking and Data Relay Satellite System (TDRSS), providing a data rate capacity large enough to accommodate the expected rates for user satellites (USAT's) in the post-1995 timeframe. The use of 60 GHz for the anticipated successor to TDRSS, the Tracking and Data Acquisition System (TDAS), was selected because of current technology development that will enable multigigibit data rates. Additionally, the attenuation of the earth's atmosphere at 60 GHz means that there is virtually no possibility of terrestrially generated interference (intentional or accidental) or terrestrially based intercept. The ICLS includes the following functional areas: (1) the ICLS payload package on the GEO TDAS satellite that communicates simultaneously with up to five LEO USAT's; (2) the payload package on the USAT that communicates with the TDAS satellite; and (3) the crosslink payload package on the TDAS satellite that communicates with another TDAS satellite. Two methods of data relay on-board the TDAS spacecraft were addressed. One is a complete baseband system (demod and remod) with a bi-directional 2 Gbps data stream; the other is a channelized system wherein some of the channels are baseband and others are merely frequency translated before re-transmission. Descriptions of the TDAS antenna, transmitter, receiver, and mechanical designs are presented.

  4. Platelet-derived growth factor and reactive oxygen species (ROS) regulate Ras protein levels in primary human fibroblasts via ERK1/2. Amplification of ROS and Ras in systemic sclerosis fibroblasts.

    PubMed

    Svegliati, Silvia; Cancello, Raffaella; Sambo, Paola; Luchetti, Michele; Paroncini, Paolo; Orlandini, Guido; Discepoli, Giancarlo; Paterno, Roberto; Santillo, Mariarosaria; Cuozzo, Concetta; Cassano, Silvana; Avvedimento, Enrico V; Gabrielli, Armando

    2005-10-28

    The levels of Ras proteins in human primary fibroblasts are regulated by PDGF (platelet-derived growth factor). PDGF induced post-transcriptionally Ha-Ras by stimulating reactive oxygen species (ROS) and ERK1/2. Activation of ERK1/2 and high ROS levels stabilize Ha-Ras protein, by inhibiting proteasomal degradation. We found a remarkable example in vivo of amplification of this circuitry in fibroblasts derived from systemic sclerosis (scleroderma) lesions, producing vast excess of ROS and undergoing rapid senescence. High ROS, Ha-Ras, and active ERK1/2 stimulated collagen synthesis, DNA damage, and accelerated senescence. Conversely ROS or Ras inhibition interrupted the signaling cascade and restored the normal phenotype. We conclude that in primary fibroblasts stabilization of Ras protein by ROS and ERK1/2 amplifies the response of the cells to growth factors and in systemic sclerosis represents a critical factor in the onset and progression of the disease. PMID:16081426

  5. Dielectric relaxation in complex systems: quality sensing and dielectric properties of honeydew melons from 10 MHz to 1.8 GHz

    NASA Astrophysics Data System (ADS)

    Nigmatullin, R. R.; Arbuzov, A. A.; Nelson, S. O.; Trabelsi, S.

    2006-10-01

    Based on new data treatment methods, it is possible to identify the fitting function for the complex permittivity ɛ(jω) measured for a complex system representing plant tissues of honeydew melons in the frequency range (107 to 1.8×109 Hz) at 25°C. The identified fitting function contains 9 fitting parameters and well describes the plant tissue permittivity. These parameters vary for different tissues; their correlation behavior with respect to soluble solids content (SSC), tissue density (TD) and moisture content (MC) are found by a new approach based on the statistics of the fractional moments (SFM). These correlation dependencies expressed in the form of correlation functions can be used for quality sensing of different complex systems, in particular, for ripe fruits and vegetables, where direct relationships between molecular and fitting parameters are not easy to find. These correlation functions can be used for practical purposes to construct a desired calibration curve with respect to quality factors, as for example, moisture content or degree of maturity, expressed in terms of SSC value. The discovered common ``universality'' in dielectric behavior of such complex materials as plant tissues opens a possibility to use dielectric spectroscopy as a nondestructive method of control in analysis of electrical behavior (measured in the form of complex permittivity or impedance) for other complex materials.

  6. Efficient Synthesis of the 2-amino-6-chloro-4-cyclopropyl-7-fluoro-5-methoxy-pyrido[1,2-c]pyrimidine-1,3-dione core ring system

    PubMed Central

    Rosen, Jonathan D.; German, Nadezhda; Kerns, Robert J.

    2008-01-01

    An optimized total synthesis of the 2-amino-6-chloro-4-cyclopropyl-7-fluoro-5-methoxy-pyrido[1,2-c]pyrimidine-1,3-dione core structure of a new fluoroquinolone-like class of antibacterial agents is described. This synthesis is highlighted by a nearly quantitative ring-closing reaction to form the pyrido[1,2-c]pyrimidine core. This bicyclic ring system serves as a scaffold for a family of biologically active compounds. PMID:20160840

  7. The Low Band Observatory (LOBO): Expanding the VLA Low Frequency Commensal System for Continuous, Broad-band, sub-GHz Observations

    NASA Astrophysics Data System (ADS)

    Kassim, Namir E.; Clarke, Tracy E.; Helmboldt, Joseph F.; Peters, Wendy M.; Brisken, Walter; Hyman, Scott D.; Polisensky, Emil; Hicks, Brian

    2015-01-01

    The Naval Research Laboratory (NRL) and the National Radio Astronomy Observatory (NRAO) are currently commissioning the VLA Low Frequency Ionosphere and Transient Experiment (VLITE) on a subset of JVLA antennas at modest bandwidth. Its bounded scientific goals are to leverage thousands of JVLA on-sky hours per year for ionospheric and transient studies, and to demonstrate the practicality of a prime-focus commensal system on the JVLA. Here we explore the natural expansion of VLITE to a full-antenna, full-bandwidth Low Band Observatory (LOBO) that would follow naturally from a successful VLITE experience. The new Low Band JVLA receivers, coupled with the existing primary focus feeds, can access two frequency bands: 4 band (54 - 86 MHz) and P band (236-492 MHz). The 4 band feeds are newly designed and now undergoing testing. If they prove successful then they can be permanently mounted at the primary focus, unlike their narrow band predecessors. The combination of Low Band receivers and fixed, primary-focus feeds could provide continuous, broad-band data over two complimentary low-frequency bands. The system would also leverage the relatively large fields-of-view of ~10 degrees at 4 band, and ~2.5 degrees at P band, coupling an excellent survey capability with a natural advantage for serendipitous discoveries. We discuss the compelling science case that flows from LOBO's robust imaging and time domain capabilities coupled with thousands of hours of wide-field, JVLA observing time each year. We also touch on the possibility to incorporate Long Wavelength Array (LWA) stations as additional 'dishes' through the LOBO backend, to improve calibration and sensitivity in LOBO's 4 band.

  8. The Implications of ACTS Technology on the Requirements of Rain Attenuation Modeling for Communication System Specification and Analysis at 30/20 GHz and Beyond

    NASA Technical Reports Server (NTRS)

    Manning, Robert M.

    1996-01-01

    The advent of the use of the Ka-Band for space communications, coupled with the introduction of digital modulation techniques as well as multiple-beam methodology for satellites, has deemed it necessary to reassess the plethora of rain attenuation prediction models in use. The Advanced Communication Technology Satellite (ACTS) Project, undertaken by the National Aeronautics and Space Administration in 1983, offered such challenges to rain attenuation prediction modeling. Up to 1983, no such single modeling formalism existed that could fill such requirements. Not even the work done by the NASA Propagation Experimenters (NAPEX) Group had envisioned such requirements, so no dynamic Ka-Band data existed from which one could draw conclusions. In this paper, the basic rudiments of what has become to be known as the 'ACTS Rain Attenuation Prediction Model' will be presented. The concept of rain fade mitigation control availability will be introduced. A new evaluation is then presented for the performance of satellite communication systems, in particular, those to be operating within the Ka-Band and above, that will necessarily employ some type of dynamic rain fade mitigation procedure.

  9. Antenna study for 60 GHz intersatellite link

    NASA Astrophysics Data System (ADS)

    Ghosh, Subir

    1989-04-01

    This report describes a detailed study of the antenna design and operation for the 60 GHz intersatellite cross links to a geostationary relay satellite. Intersatellite links will be used extensively in the future to achieve global connectivity of satellite constellations. Scenarios for inter-orbital linkages were examined with respect to the following antenna characteristics: inter-orbital link parameters, pointing and tracking requirements, radio frequency (RF) design encompassing transmission and receiving links, tracking and anti-jamming measures, mechanical and thermal design, positioner mechanism, mounting and deployment, and signal routing. A comparative study of the options is given wherever appropriate, to highlight the key features. The key features of the proposed antenna system are: (1) a rotating reflector design to allow tracking with a fast moving satellite; (2) a beam waveguide arrangement which allows the transmitter and receiver equipment to be entirely located in a controlled environment; (3) a multi-function feed system (transmit receive, beacon) inside the antenna boom ensures a reliable and compact feed network; and (4) positional mechanisms for azimuth and elevation tracking that allow unconstrained RF signal routing through beam waveguides.

  10. Future mobile satellite communication concepts at 20/30 GHz

    NASA Technical Reports Server (NTRS)

    Barton, S. K.; Norbury, J. R.

    1990-01-01

    The outline of a design of a system using ultra small earth stations (picoterminals) for data traffic at 20/30 GHz is discussed. The picoterminals would be battery powered, have an RF transmitter power of 0.5 W, use a 10 cm square patch antenna, and have a receiver G/T of about -8 dB/K. Spread spectrum modulation would be required (due to interference consideration) to allow a telex type data link (less than 200 bit/s data rate) from the picoterminal to the hub station of the network and about 40 kbit/s on the outbound patch. An Olympus type transponder at 20/30 GHz could maintain several thousand simultaneous picoterminal circuits. The possibility of demonstrating a picoterminal network with voice traffic using Olympus is discussed together with fully mobile systems based on this concept.

  11. MMIC DHBT Common-Base Amplifier for 172 GHz

    NASA Technical Reports Server (NTRS)

    Paidi, Vamsi; Griffith, Zack; Wei, Yun; Dahlstrom, Mttias; Urteaga, Miguel; Rodwell, Mark; Samoska, Lorene; Fung, King Man; Schlecht, Erich

    2006-01-01

    Figure 1 shows a single-stage monolithic microwave integrated circuit (MMIC) power amplifier in which the gain element is a double-heterojunction bipolar transistor (DHBT) connected in common-base configuration. This amplifier, which has been demonstrated to function well at a frequency of 172 GHz, is part of a continuing effort to develop compact, efficient amplifiers for scientific instrumentation, wide-band communication systems, and radar systems that will operate at frequencies up to and beyond 180 GHz. The transistor is fabricated from a layered structure formed by molecular beam epitaxy in the InP/InGaAs material system. A highly doped InGaAs base layer and a collector layer are fabricated from the layered structure in a triple mesa process. The transistor includes two separate emitter fingers, each having dimensions of 0.8 by 12 m. The common-base configuration was chosen for its high maximum stable gain in the frequency band of interest. The input-matching network is designed for high bandwidth. The output of the transistor is matched to a load line for maximum saturated output power under large-signal conditions, rather than being matched for maximum gain under small-signal conditions. In a test at a frequency of 172 GHz, the amplifier was found to generate an output power of 7.5 mW, with approximately 5 dB of large-signal gain (see Figure 2). Moreover, the amplifier exhibited a peak small-signal gain of 7 dB at a frequency of 176 GHz. This performance of this MMIC single-stage amplifier containing only a single transistor represents a significant advance in the state of the art, in that it rivals the 170-GHz performance of a prior MMIC three-stage, four-transistor amplifier. [The prior amplifier was reported in "MMIC HEMT Power Amplifier for 140 to 170 GHz" (NPO-30127), NASA Tech Briefs, Vol. 27, No. 11 (November 2003), page 49.] This amplifier is the first heterojunction- bipolar-transistor (HBT) amplifier built for medium power operation in this

  12. Microwave ablation at 10.0 GHz achieves comparable ablation zones to 1.9 GHz in ex vivo bovine liver.

    PubMed

    Luyen, Hung; Gao, Fuqiang; Hagness, Susan C; Behdad, Nader

    2014-06-01

    We demonstrate the feasibility of using high-frequency microwaves for tissue ablation by comparing the performance of a 10 GHz microwave ablation system with that of a 1.9 GHz system. Two sets of floating sleeve dipole antennas operating at these frequencies were designed and fabricated for use in ex vivo experiments with bovine livers. Combined electromagnetic and transient thermal simulations were conducted to analyze the performance of these antennas. Subsequently, a total of 16 ablation experiments (eight at 1.9 GHz and eight at 10.0 GHz) were conducted at a power level of 42 W for either 5 or 10 min. In all cases, the 1.9 and 10 GHz experiments resulted in comparable ablation zone dimensions. Temperature monitoring probes revealed faster heating rates in the immediate vicinity of the 10.0 GHz antenna compared to the 1.9 GHz antenna, along with a slightly delayed onset of heating farther from the 10 GHz antenna, suggesting that heat conduction plays a greater role at higher microwave frequencies in achieving a comparably sized ablation zone. The results obtained from these experiments agree very well with the combined electromagnetic/thermal simulation results. These simulations and experiments show that using lower frequency microwaves does not offer any significant advantages, in terms of the achievable ablation zones, over using higher frequency microwaves. Indeed, it is demonstrated that high-frequency microwave antennas may be used to create reasonably large ablation zones. Higher frequencies offer the advantage of smaller antenna size, which is expected to lead to less invasive interstitial devices and may possibly lead to the development of more compact multielement arrays with heating properties not available from single-element antennas.

  13. Design of a 60 GHz beam waveguide antenna positioner

    NASA Technical Reports Server (NTRS)

    Emerick, Kenneth S.

    1989-01-01

    A development model antenna positioner mechanism with an integral 60 GHz radio frequency beam waveguide is discussed. The system features a 2-ft diameter carbon-fiber reinforced epoxy antenna reflector and support structure, and a 2-degree-of-freedom elevation over azimuth mechanism providing hemispherical field of view. Emphasis is placed on the constraints imposed on the mechanism by the radio frequency subsystems and how they impacted the mechanical configuration.

  14. Signaling pathways of interleukin-1 actions in the brain: anatomical distribution of phospho-ERK1/2 in the brain of rat treated systemically with interleukin-1beta.

    PubMed

    Nadjar, A; Combe, C; Busquet, P; Dantzer, R; Parnet, P

    2005-01-01

    Interleukin-1beta is released at the periphery during infection and acts on the nervous system to induce fever, neuroendocrine activation, and behavioral changes. These effects are mediated by brain type I IL-1 receptors. In vitro studies have shown the ability of interleukin-1beta to activate mitogen-activated protein kinase signaling pathways including p38, c-Jun N-terminal kinase and extracellular signal-regulated protein kinase 1 and 2 (ERK1/2). In contrast to other mitogen-activated protein kinases, little is known about ERK1/2 activation in the rat brain in response to interleukin-1beta. The aim of the present study was therefore to investigate spatial and temporal activation of ERK1/2 in the rat brain after peripheral administration of interleukin-1beta using immunohistochemistry to detect the phosphorylated form of the kinase. In non-stimulated conditions, phosphorylated ERK1/2 immunoreactivity was observed in neurons throughout the brain. Administration of interleukin-1beta (60 microg/kg, i.p.) induced the phosphorylation of ERK1/2 in areas at the interface between brain and blood or cerebrospinal fluid: meninges, circumventricular organs, endothelial like cells of the blood vessels, and in brain nuclei involved in behavioral depression, fever and neuroendocrine activation: paraventricular nucleus of the hypothalamus, supraoptic nucleus, central amygdala and arcuate nucleus. Double labeling of phosphorylated ERK1/2 and cell markers revealed the expression of phosphorylated ERK1/2 in neurons, astrocytes and microglia. Since phosphorylated ERK1/2 was found in structures in which type I IL-1 receptor has already been identified as well as in structures lacking this receptor, activation of ERK1/2 is likely to occur in response to both direct and indirect action of interleukin-1beta on its target cells.

  15. Initial Testing of a 140 GHz 1 MW Gyrotron

    NASA Astrophysics Data System (ADS)

    Cauffman, Stephen; Felch, Kevin; Blank, Monica; Borchard, Philipp; Cahalan, Pat; Chu, Sam; Jory, Howard

    2001-10-01

    CPI has completed the fabrication of a 140 GHz 1 MW CW gyrotron to be used on the W7-X stellarator at IPP Greifswald. Testing of the initial build of this gyrotron had just begun when this abstract was prepared, and was expected to finish in September, at which time a planned rebuild of the device was scheduled to begin. This poster will summarize the gyrotron design, present results of initial testing, and outline any design changes planned as a consequence of these results. This gyrotron's design employs a number of advanced features, including a diode electron gun for simplified operation, a single-stage depressed collector to enhance overall efficiency, a CVD diamond output window, an internal mode converter that converts the excited TE28,7 cavity mode to a Gaussian output beam, and a high-voltage layout that locates all external high voltage below the superconducting magnet system without requiring an oil tank for insulation. Similar features are being used for an 84 GHz 500 kW system being built for the KSTAR tokamak program and for a 110 GHz 1.5 MW system being designed in collaboration with MIT, UMd, UW, GA, and Calabazas Creek Research with funding provided by DOE.

  16. 160 Gbit/s photonics wireless transmission in the 300-500 GHz band

    NASA Astrophysics Data System (ADS)

    Yu, X.; Jia, S.; Hu, H.; Galili, M.; Morioka, T.; Jepsen, P. U.; Oxenløwe, L. K.

    2016-11-01

    To accommodate the ever increasing wireless traffic in the access networks, considerable efforts have been recently invested in developing photonics-assisted wireless communication systems with very high data rates. Superior to photonic millimeter-wave systems, terahertz (THz) band (300 GHz-10 THz) provides a much larger bandwidth and thus promises an extremely high capacity. However, the capacity potential of THz wireless systems has by no means been achieved yet. Here, we successfully demonstrate 160 Gbit/s wireless transmission by using a single THz emitter and modulating 25 GHz spaced 8 channels (20 Gbps per channel) in the 300-500 GHz band, which is the highest bitrate in the frequency band above 300 GHz, to the best of our knowledge.

  17. 47 CFR 15.251 - Operation within the bands 2.9-3.26 GHz, 3.267-3.332 GHz, 3.339-3.3458 GHz, and 3.358-3.6 GHz.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Operation within the bands 2.9-3.26 GHz, 3.267-3.332 GHz, 3.339-3.3458 GHz, and 3.358-3.6 GHz. 15.251 Section 15.251 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Intentional Radiators Radiated Emission...

  18. 47 CFR 15.251 - Operation within the bands 2.9-3.26 GHz, 3.267-3.332 GHz, 3.339-3.3458 GHz, and 3.358-3.6 GHz.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Operation within the bands 2.9-3.26 GHz, 3.267-3.332 GHz, 3.339-3.3458 GHz, and 3.358-3.6 GHz. 15.251 Section 15.251 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Intentional Radiators Radiated Emission...

  19. 47 CFR 15.251 - Operation within the bands 2.9-3.26 GHz, 3.267-3.332 GHz, 3.339-3.3458 GHz, and 3.358-3.6 GHz.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Operation within the bands 2.9-3.26 GHz, 3.267-3.332 GHz, 3.339-3.3458 GHz, and 3.358-3.6 GHz. 15.251 Section 15.251 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Intentional Radiators Radiated Emission...

  20. AIAA/NASA International Symposium on Space Information Systems, 2nd, Pasadena, CA, Sept. 17-19, 1990, Proceedings. Vols. 1 & 2

    NASA Technical Reports Server (NTRS)

    Tavenner, Leslie A. (Editor)

    1991-01-01

    These proceedings overview major space information system projects and lessons learned from current missions. Other topics include the science information system requirements for the 1990s, an information systems design approach for major programs, the technology needs and projections, the standards for space data information systems, the artificial intelligence technology and applications, international interoperability, and spacecraft data systems and architectures advanced communications. Other topics include the software engineering technology and applications, the multimission multidiscipline information system architectures, the distributed planning and scheduling systems and operations, and the computer and information systems architectures. Paper presented include prospects for scientific data analysis systems for solar-terrestrial physics in the 1990s, the Columbus data management system, data storage technologies for the future, the German aerospace research establishment, and launching artificial intelligence in NASA ground systems.

  1. A 31 GHz Survey of Low-Frequency Selected Radio Sources

    NASA Astrophysics Data System (ADS)

    Mason, B. S.; Weintraub, L.; Sievers, J.; Bond, J. R.; Myers, S. T.; Pearson, T. J.; Readhead, A. C. S.; Shepherd, M. C.

    2009-10-01

    The 100 m Robert C. Byrd Green Bank Telescope and the 40 m Owens Valley Radio Observatory telescope have been used to conduct a 31 GHz survey of 3165 known extragalactic radio sources over 143 deg2 of the sky. Target sources were selected from the NRAO VLA Sky Survey in fields observed by the Cosmic Background Imager (CBI); most are extragalactic active galactic nuclei (AGNs) with 1.4 GHz flux densities of 3-10 mJy. The resulting 31 GHz catalogs are presented in full online. Using a maximum-likelihood analysis to obtain an unbiased estimate of the distribution of the 1.4-31 GHz spectral indices of these sources, we find a mean 31-1.4 GHz flux ratio of 0.110 ± 0.003 corresponding to a spectral index of α = -0.71 ± 0.01 (S ν vprop να) 9.0% ± 0.8% of sources have α > - 0.5 and 1.2% ± 0.2% have α > 0. By combining this spectral-index distribution with 1.4 GHz source counts, we predict 31 GHz source counts in the range 1 mJy < S 31 < 4 mJy, N(>S 31) = (16.7 ± 1.7) deg-2(S 31/1 mJy)-0.80±0.07. We also assess the contribution of mJy-level (S 1.4 GHz < 3.4 mJy) radio sources to the 31 GHz cosmic microwave background power spectrum, finding a mean power of ell(ell + 1)C src ell/(2π) = 44 ± 14 μK2 and a 95% upper limit of 80 μK2 at ell = 2500. Including an estimated contribution of 12 μK2 from the population of sources responsible for the turn-up in counts below S 1.4 GHz = 1 mJy, this amounts to 21% ± 7% of what is needed to explain the CBI high-ell excess signal, 275 ± 63 μK2. These results are consistent with other measurements of the 31 GHz point-source foreground.

  2. First Results of the Superconducting ECR Ion Source Venus with 28 GHz

    NASA Astrophysics Data System (ADS)

    Leitner, D.; Lyneis, C. M.; Abbott, S. R.; Dwinell, R. D.; Collins, D.; Leitner, M.

    2005-03-01

    VENUS (Versatile ECR ion source for NUclear Science) is a next generation superconducting ECR ion source, designed to produce high current, high charge state ions for the 88-Inch Cyclotron at the Lawrence Berkeley National Laboratory. VENUS also serves as the prototype ion source for the RIA (Rare Isotope Accelerator) front end. The magnetic confinement configuration consists of three superconducting axial coils and six superconducting radial coils in a sextupole configuration. The nominal design fields of the axial magnets are 4T at injection and 3T at extraction; the nominal radial design field strength at the plasma chamber wall is 2T, making VENUS the world most powerful ECR plasma confinement structure. From the beginning, VENUS has been designed for optimum operation at 28 GHz with high power (10 kW). In 2003 the VENUS ECR ion source was commissioned at 18 GHz, while preparations for 28 GHz operation were being conducted. During this commissioning phase with 18 GHz, tests with various gases and metals have been performed with up to 2000 W RF power. At the initial commissioning tests at 18 GHz, 1100 eμA of O6+, 160 eμA of Xe20+, 160 eμA of Bi25+ and 100 eμA of Bi30+ and 11 eμA of Bi41+ were produced. In May 2004 the 28 GHz microwave power has been coupled into the VENUS ECR ion source. At initial operation more than 320 eμA of Xe20+ (twice the amount extracted at 18 GHz), 240 eμA of Bi24+ and Bi25+, and 245 eμA of Bi29+ were extracted. The paper briefly describes the design of the VENUS source, the 28 GHz microwave system and its beam analyzing system. First results at 28 GHz including emittance measurements are presented.

  3. First Results of the Superconducting ECR Ion Source Venus with 28 GHz

    SciTech Connect

    Leitner, D.; Lyneis, C.M.; Abbott, S.R.; Dwinell, R.D.; Collins, D.; Leitner, M.

    2005-03-15

    VENUS (Versatile ECR ion source for NUclear Science) is a next generation superconducting ECR ion source, designed to produce high current, high charge state ions for the 88-Inch Cyclotron at the Lawrence Berkeley National Laboratory. VENUS also serves as the prototype ion source for the RIA (Rare Isotope Accelerator) front end. The magnetic confinement configuration consists of three superconducting axial coils and six superconducting radial coils in a sextupole configuration. The nominal design fields of the axial magnets are 4T at injection and 3T at extraction; the nominal radial design field strength at the plasma chamber wall is 2T, making VENUS the world most powerful ECR plasma confinement structure. From the beginning, VENUS has been designed for optimum operation at 28 GHz with high power (10 kW).In 2003 the VENUS ECR ion source was commissioned at 18 GHz, while preparations for 28 GHz operation were being conducted. During this commissioning phase with 18 GHz, tests with various gases and metals have been performed with up to 2000 W RF power. At the initial commissioning tests at 18 GHz, 1100 e{mu}A of O6+, 160 e{mu}A of Xe20+, 160 e{mu}A of Bi25+ and 100 e{mu}A of Bi30+ and 11 e{mu}A of Bi41+ were produced.In May 2004 the 28 GHz microwave power has been coupled into the VENUS ECR ion source. At initial operation more than 320 e{mu}A of Xe20+ (twice the amount extracted at 18 GHz), 240 e{mu}A of Bi24+ and Bi25+, and 245 e{mu}A of Bi29+ were extracted. The paper briefly describes the design of the VENUS source, the 28 GHz microwave system and its beam analyzing system. First results at 28 GHz including emittance measurements are presented.

  4. Studying Star Formation in the Central Molecular Zone using 22 GHz Water and 6.7 GHz Methanol Masers

    NASA Astrophysics Data System (ADS)

    Rickert, Matthew; Yusef-Zadeh, Farhad; Ott, Juergen; Meier, David S.; SWAG

    2016-01-01

    The inner 400 pc of our Galaxy, or the so-called the central molecular zone (CMZ), has a unique environment with a large mass of dense, warm molecular gas. One of the premier questions is how star formation (SF) differs in this unique environment from elsewhere in the Galaxy. We intend to address this issue by identifying improved numbers and locations of early sites of SF. We have conducted high resolution surveys of the CMZ, looking for early SF indicators such as 22 GHz water and 6.7 GHz methanol masers. We present the initial water maser results from the SWAG survey and methanol results from the first full VLA survey of 6.7 GHz methanol masers in the CMZ. These surveys span beyond the inner 1.2ο x 0.5ο of the Galaxy, including Sgr B through Sgr C. The improved spatial and spectral resolutions (~26" and 2 km s-1) and sensitivity (RMS ~10 mJy beam-1) of our ATCA observations have allowed us to identify over 140 water maser candidates in the SWAG survey. This is a factor of 3 more than detected from prior surveys of the CMZ. The preliminary distribution of these candidates appears to be uniform along Galactic longitude. Should this distribution persist for water masers associated with star formation (as opposed to those produced by evolved stars), then this result would imply a more uniform distribution of recent SF activity in the CMZ. Prior works have shown that 2/3 of the molecular gas mass is located at positive Galactic longitudes, and young stellar objects (YSOs) identified by IR SEDs are located predominantly at negative Galactic longitudes. A combination of these results can provide insight on the evolution of SF within the CMZ. We are currently comparing the water maser positions to other catalogs (ex. OH/IR stars) in order to distinguish between the mechanisms producing these masers. We are also currently working on determining the distribution of 6.7 GHz methanol masers. These masers do not contain the same ambiguity as water masers as to their source

  5. Snow backscatter in the 1-8 GHz region

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.

    1976-01-01

    The 1-8 GHz microwave active spectrometer system was used to measure the backscatter response of snow covered ground. The scattering coefficient was measured for all linear polarization combinations at angles of incidence between nadir and 70 deg. Ground truth data consisted of soil moisture, soil temperature profile, snow depth, snow temperature profile, and snow water equivalent. The radar sensitivity to snow water equivalent increased in magnitude with increasing frequency and was almost angle independent for angles of incidence higher than 30 deg, particularly at the higher frequencies. In the 50 deg to 70 deg angular range and in the 6 to 8 GHz frequency range, the sensitivity was typically between -0.4 dB/.1 g/sq cm and -0.5 dB/,1 g/sq cm, and the associated linear correlation coefficient had a magnitude of about 0.8.

  6. Millimeter wave absorption in the nonhuman primate eye at 35 GHz and 94 GHz.

    PubMed

    Chalfin, Steven; D'Andrea, John A; Comeau, Paul D; Belt, Michael E; Hatcher, Donald J

    2002-07-01

    The purpose of this study was to evaluate anterior segment bioeffects of pulsed 35 GHz and 94 GHz microwave exposure in the nonhuman primate eye. Five juvenile rhesus monkeys (Macaca mulatta) underwent baseline anterior segment ocular assessment consisting of slit lamp examination, corneal topography, specular microscopy, and pachymetry. These studies were repeated after exposure of one eye to pulsed 35 GHz or 94 GHz microwaves at varied fluences, with the other eye serving as a control. The mean fluence required to produce a threshold corneal lesion (faint epithelial edema and fluorescein staining) was 7.5 J cm(-2) at 35 GHz and 5 J cm(-2) at 94 GHz. Transient changes in corneal topography and pachymetry were noted at these fluences. Endothelial cell counts remained unchanged. Threshold corneal injury from 35 GHz and 94 GHz microwave exposure is produced at fluences below those previously reported for CO2 laser radiation. These data may help elucidate the mechanism of thermal injury to the cornea, and resolve discrepancies between IEEE C95.1 (1999), NCRP (1986), and ICNIRP (1998) safety standards for exposure to non-ionizing radiation at millimeter wavelengths.

  7. Architecture for a 1-GHz Digital RADAR

    NASA Technical Reports Server (NTRS)

    Mallik, Udayan

    2011-01-01

    An architecture for a Direct RF-digitization Type Digital Mode RADAR was developed at GSFC in 2008. Two variations of a basic architecture were developed for use on RADAR imaging missions using aircraft and spacecraft. Both systems can operate with a pulse repetition rate up to 10 MHz with 8 received RF samples per pulse repetition interval, or at up to 19 kHz with 4K received RF samples per pulse repetition interval. The first design describes a computer architecture for a Continuous Mode RADAR transceiver with a real-time signal processing and display architecture. The architecture can operate at a high pulse repetition rate without interruption for an infinite amount of time. The second design describes a smaller and less costly burst mode RADAR that can transceive high pulse repetition rate RF signals without interruption for up to 37 seconds. The burst-mode RADAR was designed to operate on an off-line signal processing paradigm. The temporal distribution of RF samples acquired and reported to the RADAR processor remains uniform and free of distortion in both proposed architectures. The majority of the RADAR's electronics is implemented in digital CMOS (complementary metal oxide semiconductor), and analog circuits are restricted to signal amplification operations and analog to digital conversion. An implementation of the proposed systems will create a 1-GHz, Direct RF-digitization Type, L-Band Digital RADAR--the highest band achievable for Nyquist Rate, Direct RF-digitization Systems that do not implement an electronic IF downsample stage (after the receiver signal amplification stage), using commercially available off-the-shelf integrated circuits.

  8. A 12 GHz low-jitter LC-VCO PLL in 130 nm CMOS

    NASA Astrophysics Data System (ADS)

    You, Y.; Chen, J.; Feng, Y.; Tang, Y.; Huang, D.; Rui, W.; Gong, D.; Liu, T.; Ye, J.

    2015-03-01

    We present a wideband low-jitter LC-VCO phase-locked loop in 130 nm CMOS technology for high speed serial link applications. The PLL covers a 5.6 GHz to 13.4 GHz frequency range by using two LC-VCO cores with an RMS jitter of 370 fs. The single event effects testing is performed with a neutron beam at Los Alamos National Laboratory and no frequency disturbance is found over the test period. The PLL consumes 50.88 mW of power under a 1.2 V power supply.

  9. Lightning and 85-GHz MCSs in the Global Tropics

    NASA Technical Reports Server (NTRS)

    Toracinta, E. Richard; Zipser, E. J.

    1999-01-01

    Numerous observations of tropical convection show that tropical continental mesoscale convective systems (MCSs) are much more prolific lightning producers than their oceanic counterparts. Satellite-based climatologies using 85-GHz passive microwave ice-scattering signatures from the Special Sensor Microwave/Imager (SSM/I) indicate that MCSs of various size and intensity are found throughout the global tropics. In contrast, global lightning distributions show a strong land bias with an order of magnitude difference between land and ocean lightning. This is somewhat puzzling, since 85-GHz ice-scattering and the charge separation processes that lead to lightning are both thought to depend upon the existence of large graupel particles. The fact that low 85-GHz brightness temperatures are observed in tropical oceanic MCSs containing virtually no lightning leads to the postulate that tropical oceanic and tropical continental MCSs have fundamentally different hydrometeor profiles through the mixed phase region of the cloud (0 C <= T <= 20 C). Until recently, validation of this postulate has not been practicable on a global scale. Recent deployment of the Tropical Rainfall Measuring Mission (TRMM) satellite presents a unique opportunity for MCS studies. The multi-sensor instrument ensemble aboard TRMM, including a multi-channel microwave radiometer, the Lightning Imaging Sensor (LIS), and the first space-borne radar, facilitates high-resolution case studies of MCS structure throughout the global tropics. An important precursor, however, is to better understand the distribution of MCSs and lightning in the tropics. With that objective in mind, this research undertakes a systematic comparison of 85-GHz-defined MCSs and lightning over the global tropics for a full year, as an initial step toward quantifying differences between land and ocean convective systems.

  10. Two compact preamps cover 38-GHz bandwidth

    NASA Astrophysics Data System (ADS)

    Osbrink, N. K.; Fake, S. R.; Rosenberg, J. C.

    1985-09-01

    The design and performance characteristics of two compact preamplifiers that provide complete coverage of the 2-18 and 18-40 GHz frequency bands are examined. The 2-18-GHz prototype amplifier consists of four stages of thin-film hybrid microwave integrated circuit (MIC) amplification modules each of which incorporates a single GaAs distributed microwave integrated circuit (MMIC). The amplifier weights about 2 ounces and measures 1.75 x 1.15 x 0.67 inches. The 18-40-GHz amplifier consists of five thin-film MIC balanced gain stages and a MIC voltage regulator module with a throughline. The amplifier displays worst-case noise figures of 11.6 dB at the low frequency end of the band and less than 8 dB over much of the band.

  11. Next generation ECR ion sources: First results of the superconducting 28 GHz ECRIS VENUS

    NASA Astrophysics Data System (ADS)

    Leitner, D.; Lyneis, C. M.; Abbott, S. R.; Collins, D.; Dwinell, R. D.; Galloway, M. L.; Leitner, M.; Todd, D. S.

    2005-07-01

    VENUS (Versatile ECR ion source for NUclear Science) is a next generation superconducting ECR ion source, designed to produce high current, high charge state ions for the 88-Inch Cyclotron at the Lawrence Berkeley National Laboratory. VENUS also serves as the prototype ion source for the RIA (rare isotope accelerator) front end. The goal of the VENUS ECR ion source project as the RIA R&D injector is the production of 200 eμA of U30+, a high current medium charge state beam. On the other hand, as an injector ion source for the 88-Inch Cyclotron the design objective is the production of 5 eμA of U48+, a low current, very high charge state beam. To achieve those ambitious goals, the VENUS ECR ion source has been designed for optimum operation at 28 GHz. The nominal design fields of the axial magnets are 4 T at injection and 3 T at extraction; the nominal radial design field strength at the plasma chamber wall is 2 T, making VENUS currently the world’s most powerful ECR plasma confinement structure. Recently, the six year project has made significant progress. In June 2002, the first plasma was ignited at 18 GHz. During 2003, the VENUS ECR ion source was commissioned at 18 GHz, while preparations for 28 GHz operation were being conducted. In May 2004 28 GHz microwave power has been coupled into the VENUS ECR ion source for the first time. Preliminary performance-tests with oxygen, xenon and bismuth at 18 GHz and 28 GHz have shown promising results. Intensities close to or exceeding the RIA requirements have been produced for those few test beams. The paper will briefly describe the design of the VENUS source and its beam analyzing system. Results at 18 GHz and 28 GHz including first emittance measurements will be described.

  12. Microwave spectrum, structural parameters, and quadrupole coupling for 1,2-dihydro-1,2-azaborine.

    PubMed

    Daly, Adam M; Tanjaroon, Chakree; Marwitz, Adam J V; Liu, Shih-Yuan; Kukolich, Stephen G

    2010-04-21

    The first microwave spectrum for 1,2-dihydro-1,2-azaborine has been measured in the frequency range 7-18 GHz, providing accurate rotational constants and nitrogen and boron quadrupole coupling strengths for three isotopomers, H(6)C(4)(11)B(14)N, H(6)C(4)(10)B(14)N, and H(5)DC(4)(11)B(14)N. The measured rotational constants were used to accurately determine coordinates for the substituted atoms and provide sufficient data to determine most of the important structural parameters for this molecule. The spectra were obtained using a pulsed beam Fourier transform microwave spectrometer, with sufficient resolution to allow accurate measurements of (14)N, (11)B, and (10)B nuclear quadrupole hyperfine interactions. High-level ab initio calculations provided structural parameters and quadrupole coupling strengths that are in very good agreement with measured values. The rotational constants for the parent compound are A = 5657.335(1), B = 5349.2807(5), and C = 2749.1281(4) MHz, yielding the inertial defect Delta(0) = 0.02 amu x A(2) for the ground-state structure. The observed near-zero and positive inertial defect clearly indicates that the molecular structure of 1,2-dihydro-1,2-azaborine is planar. The least-squares fit analysis to determine the azaborine ring structure yielded the experimental bond lengths and 2sigma errors R(B-N) = 1.45(3) A, R(B-C) = 1.51(1) A, and R(N-C) = 1.37(3) A for the ground-state structure. Interbond angles for the ring were also determined. An extended Townes-Dailey population analysis of the boron and nitrogen quadrupole coupling constants provided the valence p-electron occupancy p(c) = 0.3e for boron and p(c) = 1.3e for nitrogen.

  13. 17 GHz High Gradient Accelerator Research

    SciTech Connect

    Temkin, Richard J.; Shapiro, Michael A.

    2013-07-10

    This is a report on the MIT High Gradient Accelerator Research program which has included: Operation of the 17 GHz, 25 MeV MIT/Haimson Research Corp. electron accelerator at MIT, the highest frequency, stand-alone accelerator in the world; collaboration with members of the US High Gradient Collaboration, including the design and test of novel structures at SLAC at 11.4 GHz; the design, construction and testing of photonic bandgap structures, including metallic and dielectric structures; the investigation of the wakefields in novel structures; and the training of the next generation of graduate students and postdoctoral associates in accelerator physics.

  14. 95 GHz Gyrotron with Ferroelectric Cathode

    NASA Astrophysics Data System (ADS)

    Einat, M.; Pilossof, M.; Ben-Moshe, R.; Hirshbein, H.; Borodin, D.

    2012-11-01

    Ferroelectric cathodes were reported as a feasible electron source for microwave tubes. However, due to the surface plasma emission characterizing this cathode, operation of millimeter wave tubes based on it remains questionable. Nevertheless, the interest in compact high power sources of millimeter waves and specifically 95 GHz is continually growing. In this experiment, a ferroelectric cathode is used as an electron source for a gyrotron with the output frequency extended up to 95 GHz. Power above a 5 kW peak and ˜0.5μs pulses are reported; a duty cycle of 10% is estimated to be achievable.

  15. A Pb(In{sub 1/2}Nb{sub 1/2})O{sub 3}–Pb(Zn{sub 1/3}Nb{sub 2/3})O{sub 3}–PbTiO{sub 3} ternary ferroelectric system with high T{sub C} and high piezoelectric properties

    SciTech Connect

    Li, Tao; Li, Xiuzhi; Wang, Zujian; Liu, Ying; He, Chao; Shen, Dongquan; Long, Xifa; Tailor, Hamel

    2013-01-15

    Graphical abstract: Display Omitted Highlights: ► (0.79 − x)Pb(In{sub 1/2}Nb{sub 1/2})O{sub 3}–0.21Pb(Zn{sub 1/3}Nb{sub 2/3})O{sub 3}–xPbTiO{sub 3} ceramics were prepared by two-step method. ► A morphotropic phase boundary region has been determined in the composition range of 0.28 < x < 0.32. ► The compositions within MPB region exhibit excellent piezoelectric properties. -- Abstract: (0.79 − x)Pb(In{sub 1/2}Nb{sub 1/2})O{sub 3}–0.21Pb(Zn{sub 1/3}Nb{sub 2/3})O{sub 3}–xPbTiO{sub 3} (x = 0.23–0.35) ternary ferroelectric system in the form of ceramics have been synthesized. Its structure and properties have been studied by X-ray powder diffraction and electric measurements. A morphotropic phase boundary region has been determined in the composition range of 0.28 < x < 0.32, where the Curie temperature T{sub C} and the rhombohedral–tetragonal phase transition temperature T{sub RT} were found to vary from 243 °C to 295 °C and 145 °C to 191 °C, respectively, much higher than PMNT and PZNT systems. The compositions within MPB region exhibit excellent piezoelectric properties such as piezoelectric coefficient d{sub 33} > 646 pC/N, T{sub RT} > 145 °C, T{sub C} > 273 °C and E{sub C} > 13 kV/cm for 0.5PIN–0.21PZN–0.29PT and 0.49PIN–0.21PZN–0.30PT, making the ceramics of this system a promising material for high power and high temperature application.

  16. 47 CFR 25.136 - Licensing provisions for user transceivers in the 1.6/2.4 GHz, 1.5/1.6 GHz, and 2 GHz Mobile...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Footnote 5.353A in 47 CFR 2.106 and the priority and real-time preemption requirements imposed by Footnote... the 1.6/2.4 GHz, 1.5/1.6 GHz, and 2 GHz Mobile-Satellite Services. 25.136 Section 25.136 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE...

  17. GHz low noise short wavelength infrared (SWIR) photoreceivers

    NASA Astrophysics Data System (ADS)

    Bai, Xiaogang; Yuan, Ping; McDonald, Paul; Boisvert, Joseph; Chang, James; Woo, Robyn; Labios, Eduardo; Sudharsanan, Rengarajan; Krainak, Michael; Yang, Guangning; Sun, Xiaoli; Lu, Wei; McIntosh, Dion; Zhou, Qiugui; Campbell, Joe

    2011-06-01

    Next generation LIDAR mapping systems require multiple channels of sensitive photoreceivers that operate in the wavelength region of 1.06 to 1.55 microns, with GHz bandwidth and sensitivity less than 300 fW/√Hz. Spectrolab has been developing high sensitivity photoreceivers using InAlAs impact ionization engineering (I2E) avalanche photodiodes (APDs) structures for this application. APD structures were grown using metal organic vapor epitaxy (MOVPE) and mesa devices were fabricated using these structures. We have achieved low excess noise at high gain in these APD devices; an impact ionization parameter, k, of about 0.15 has been achieved at gains >20 using InAlAs/InGaAlAs as a multiplier layer. Electrical characterization data of these devices show dark current less than 2 nA at a gain of 20 at room temperature; and capacitance of 0.4 pF for a typical 75 micron diameter APD. Photoreceivers were built by integrating I2E APDs with a low noise GHz transimpedance amplifier (TIA). The photoreceivers showed a bandwidth of 1 GHz and a noise equivalent power (NEP) of 150 fW/rt(Hz) at room temperature.

  18. Evaluation of Systemic Reform in Mathematics and Science: Synthesis and Proceedings of the Annual NISE Forum (4th, Arlington, VA, February 1-2, 1999). Workshop Report.

    ERIC Educational Resources Information Center

    Webb, Norman L.

    This document reports on the National Institute for Science Education (NISE) forum on the Evaluation of Systemic Reform in Mathematics and Science. The purposes of the forum were to reflect upon what to understand about the evaluation of reform in the educational system, and to encourage and support continuing efforts to learn more about how…

  19. Protective effects of valproic acid on the nigrostriatal dopamine system in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease.

    PubMed

    Kidd, S K; Schneider, J S

    2011-10-27

    The use of animal models (including the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine [MPTP] mouse model) to mimic dopaminergic (DAergic) cell loss and striatal dopamine (DA) depletion, as seen in Parkinson's disease (PD), has implicated a multitude of factors that might be associated with DAergic cell death in PD including excitotoxicity, inflammation, and oxidative stress. All of these factors have been shown to be reduced by administration of histone deacetylase (HDAC) inhibitors (HDACis) resulting in some degree of neuroprotection in various models of neurodegenerative disease including in Huntington's disease and amyotrophic lateral sclerosis. However, there is limited information of effects of HDACis in PD models. We have previously shown HDACis to be partially protective against 1-methyl-4-phenylpyridinium (MPP(+))-mediated cell loss in vitro. The present study was conducted to extend these findings to an in vivo PD model. The HDACi valproic acid (VPA) was co-administered with MPTP for 5 days to male FVBn mice and continued for an additional 2 weeks, throughout the period of active neurodegeneration associated with MPTP-mediated DAergic cell loss. VPA was able to partially prevent striatal dopamine depletion and almost completely protect against substantia nigra DAergic cell loss. These results suggest that VPA may be a potential disease-modifying therapy for PD. PMID:21846494

  20. Detection of 183 GHz H2O megamaser emission towards NGC 4945

    NASA Astrophysics Data System (ADS)

    Humphreys, E. M. L.; Vlemmings, W. H. T.; Impellizzeri, C. M. V.; Galametz, M.; Olberg, M.; Conway, J. E.; Belitsky, V.; De Breuck, C.

    2016-08-01

    Aims: The aim of this work is to search Seyfert 2 galaxy NGC 4945, a well-known 22 GHz water megamaser galaxy, for H2O (mega)maser emission at 183 GHz. Methods: We used APEX SEPIA Band 5 (an ALMA Band 5 receiver on the APEX telescope) to perform the observations. Results: We detected 183 GHz H2O maser emission towards NGC 4945 with a peak flux density of ~3 Jy near the galactic systemic velocity. The emission spans a velocity range of several hundred km s-1. We estimate an isotropic luminosity of >1000 L⊙, classifying the emission as a megamaser. A comparison of the 183 GHz spectrum with that observed at 22 GHz suggests that 183 GHz emission also arises from the active galactic nucleus (AGN) central engine. If the 183 GHz emission originates from the circumnuclear disk, then we estimate that a redshifted feature at 1084 km s-1 in the spectrum should arise from a distance of 0.022 pc from the supermassive black hole (1.6 × 105 Schwarzschild radii), i.e. closer than the water maser emission previously detected at 22 GHz. This is only the second time 183 GHz maser emission has been detected towards an AGN central engine (the other galaxy being NGC 3079). It is also the strongest extragalactic millimetre/submillimetre water maser detected to date. Conclusions: Strong millimetre 183 GHz H2O maser emission has now been shown to occur in an external galaxy. For NGC 4945, we believe that the maser emission arises, or is dominated by, emission from the AGN central engine. Emission at higher velocity, i.e. for a Keplerian disk closer to the black hole, has been detected at 183 GHz compared with that for the 22 GHz megamaser. This indicates that millimetre/submillimetre H2O masers can indeed be useful for tracing out more of AGN central engine structures and dynamics than previously probed. Future observations using ALMA Band 5 should unequivocally determine the origin of the emission in this and other galaxies.

  1. A shadowgraph study of the National Launch System's 1 1/2 stage vehicle configuration and Heavy Lift Launch Vehicle configuration. [Using the Marshall Space Flight Center's 14-Inch Trisonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Pokora, Darlene C.; Springer, Anthony M.

    1994-01-01

    A shadowgraph study of the National Launch System's (NLS's) 1 1/2 stage and heavy lift launch vehicle (HLLV) configurations is presented. Shadowgraphs are shown for the range of Mach numbers from Mach 0.6 to 5.0 at various angles-of-attack and roll angles. Since the 1 1/2 stage configuration is generally symmetric, no shadowgraphs of any roll angle are shown for this configuration. The major flow field phenomena over the NLS 1 1/2 stage and HLLV configurations are shown in the shadowgraphs. These shadowgraphs are used in the aerothermodynamic analysis of the external flow conditions the launch vehicle would encounter during the ascent stage of flight. The shadowgraphs presented in this study were obtained from configurations tested in the Marshall Space Flight Center's 14-Inch Trisonic Wind Tunnel during 1992.

  2. The 20 GHz GaAs monolithic power amplifier module development

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The development of a 20 GHz GaAs FET monlithic power amplifier module for advanced communication applications is described. Four-way power combing of four 0.6 W amplifier modules is used as the baseline approach. For this purpose, a monolithic four-way traveling-wave power divider/combiner was developed. Over a 20 GHz bandwidth (10 to 30 GHz), an insertion loss of no more than 1.2 dB was measured for a pair of back-to-back connected divider/combiners. Isolation between output ports is better than 20 dB, and VSWRs are better than 21:1. A distributed amplifier with six 300 micron gate width FETs and gate and drain transmission line tapers has been designed, fabricated, and evaluated for use as an 0.6 W module. This amplifier has achieved state-of-the-art results of 0.5 W output power with at least 4 dB gain across the entire 2 to 21 GHz frequency range. An output power of 2 W was achieved at a measurement frequency of 18 GHz when four distributed amplifiers were power-combined using a pair of traveling-wave divider/combiners. Another approach is the direct common-source cascading of three power FET stages. An output power of up to 2W with 12 dB gain and 20% power-added efficiency has been achieved with this approach (at 17 GHz). The linear gain was 14 dB at 1 W output. The first two stages of the three-stage amplifier have achieved an output power of 1.6 W with 9 dB gain and 26% power-added efficiency at 16 GHz.

  3. Generation and characterization of β1,2-gluco-oligosaccharide probes from Brucella abortus cyclic β-glucan and their recognition by C-type lectins of the immune system

    PubMed Central

    Zhang, Hongtao; Palma, Angelina S; Zhang, Yibing; Childs, Robert A; Liu, Yan; Mitchell, Daniel A; Guidolin, Leticia S; Weigel, Wilfried; Mulloy, Barbara; Ciocchini, Andrés E; Feizi, Ten; Chai, Wengang

    2016-01-01

    The β1,2-glucans produced by bacteria are important in invasion, survival and immunomodulation in infected hosts be they mammals or plants. However, there has been a lack of information on proteins which recognize these molecules. This is partly due to the extremely limited availability of the sequence-defined oligosaccharides and derived probes for use in the study of their interactions. Here we have used the cyclic β1,2-glucan (CβG) of the bacterial pathogen Brucella abortus, after removal of succinyl side chains, to prepare linearized oligosaccharides which were used to generate microarrays. We describe optimized conditions for partial depolymerization of the cyclic glucan by acid hydrolysis and conversion of the β1,2-gluco-oligosaccharides, with degrees of polymerization 2–13, to neoglycolipids for the purpose of generating microarrays. By microarray analyses, we show that the C-type lectin receptor DC-SIGNR, like the closely related DC-SIGN we investigated earlier, binds to the β1,2-gluco-oligosaccharides, as does the soluble immune effector serum mannose-binding protein. Exploratory studies with DC-SIGN are suggestive of the recognition also of the intact CβG by this receptor. These findings open the way to unravelling mechanisms of immunomodulation mediated by β1,2-glucans in mammalian systems. PMID:27053576

  4. A 50 GHz GaAs FET MIC transmitter/receiver using hermetic miniature probe transitions

    NASA Astrophysics Data System (ADS)

    Ogawa, Koichi; Ishizaki, Toshio; Hashimoto, Koji; Sakakura, Makoto; Uwano, Tomoki

    1989-09-01

    A very compact 50-GHz-band transmitter/receiver for a video link is described. The RF assemblies used in the system consist of 25/50-GHz frequency doublers, a 25-GHz dielectric-resonator oscillator, and a 25-GHz FM modulator. The circuits make extensive use of microwave IC technology with all GaAs FETs as active elements. The frequency doublers exhibit a minimum conversion loss of 2.6 dB and a maximum output power of 11 dBm. The modulator is highly frequency stabilized by the dielectric resonator. Recently developed miniature probe microstrip-to-waveguide transitions permit the IC assemblies to be installed compactly in hermetically sealed packages. Design considerations and experimental data for the transition are presented. Using these technologies a transmitting power of 10 dBm and a receiver noise figure of 13 dB have been obtained.

  5. Commissioning of the superconducting ECR ion source VENUS at 18 GHz

    SciTech Connect

    Leitner, Daniela; Abbott, Steven R.; Dwinell, Roger D.; Leitner, Matthaeus; Taylor, Clyde E.; Lyneis, Claude M.

    2004-06-01

    During the last year, the VENUS ECR ion source was commissioned at 18 GHz and preparations for 28 GHz operation are now underway. During the commissioning phase with 18 GHz, tests with various gases and metals have been performed with up to 2000 W RF power. The ion source performance is very promising [1,2]. VENUS (Versatile ECR ion source for Nuclear Science) is a next generation superconducting ECR ion source, designed to produce high current, high charge state ions for the 88-Inch Cyclotron at the Lawrence Berkeley National Laboratory. VENUS also serves as the prototype ion source for the RIA (Rare Isotope Accelerator) front end. The goal of the VENUS ECR ion source project as the RIA R&D injector is the production of 240e{micro}A of U{sup 30+}, a high current medium charge state beam. On the other hand, as an injector ion source for the 88-Inch Cyclotron the design objective is the production of 5e{micro}A of U{sup 48+}, a low current, very high charge state beam. To meet these ambitious goals, VENUS has been designed for optimum operation at 28 GHz. This frequency choice has several design consequences. To achieve the required magnetic confinement, superconducting magnets have to be used. The size of the superconducting magnet structure implies a relatively large plasma volume. Consequently, high power microwave coupling becomes necessary to achieve sufficient plasma heating power densities. The 28 GHz power supply has been delivered in April 2004.

  6. 280 GHz Gyro-BWO design study: Final report

    SciTech Connect

    Not Available

    1988-07-01

    This report summarizes the results of a design study of a 280 GHz Gyro-BWO tunable source. The purpose of this study is to identify and propose viable design alternatives for any significant technological risk associated with building an operational BWO system. The tunable Gyro-BWO system will have three major components: a Gyro-BWO microwave tube, a superconducting magnet, and a power supply/modulator. The design tasks for this study in order of decreasing importance are: design and specification of the superconducting magnet; preliminary design and layout of a Gyro-BWO microwave tube; and specification for the power supply/modulator. 2 refs., 4 figs.

  7. The 492 GHz emission of Sgr A* constrained by ALMA

    NASA Astrophysics Data System (ADS)

    Liu, Hauyu Baobab; Wright, Melvyn C. H.; Zhao, Jun-Hui; Mills, Elisabeth A. C.; Requena-Torres, Miguel A.; Matsushita, Satoki; Martín, Sergio; Ott, Jürgen; Morris, Mark R.; Longmore, Steven N.; Brinkerink, Christiaan D.; Falcke, Heino

    2016-09-01

    Aims: Our aim is to characterize the polarized continuum emission properties including intensity, polarization position angle, and polarization percentage of Sgr A* at ~492 GHz. This frequency, well into the submillimeter bump where the emission is supposed to become optically thin, allows us to see down to the event horizon. Hence the reported observations contain potentially vital information on black hole properties. We have compared our measurements with previous, lower frequency observations, which provides information in the time domain. Methods: We report continuum emission properties of Sgr A* at ~492 GHz, based on Atacama Large Millimeter Array (ALMA) observations. We measured flux densities of Sgr A* from the central fields of our ALMA mosaic observations. We used calibration observations of the likely unpolarized continuum emission of Titan and the observations of Ci line emission, to gauge the degree of spurious polarization. Results: The flux density of 3.6 ± 0.72 Jy which we measured during our run is consistent with extrapolations from previous, lower frequency observations. We found that the continuum emission of Sgr A* at ~492 GHz shows large amplitude differences between the XX and the YY correlations. The observed intensity ratio between the XX and YY correlations as a function of parallactic angle can be explained by a constant polarization position angle of ~158°± 3°. The fitted polarization percentage of Sgr A* during our observational period is 14% ± 1.2%. The calibrator quasar J1744-3116 we observed on the same night can be fitted to Stokes I = 252 mJy, with 7.9% ± 0.9% polarization at position angle PA = 14°± 4.2°. Conclusions: The observed polarization percentage and polarization position angle in the present work appear consistent with those expected from longer wavelength observations in the period of 1999-2005. In particular, the polarization position angle at 492 GHz expected from the previously fitted 167°± 7° intrinsic

  8. A 1.1-1.9 GHz SETI Survey of the Kepler Field. I. A Search for Narrow-band Emission from Select Targets

    NASA Astrophysics Data System (ADS)

    Siemion, Andrew P. V.; Demorest, Paul; Korpela, Eric; Maddalena, Ron J.; Werthimer, Dan; Cobb, Jeff; Howard, Andrew W.; Langston, Glen; Lebofsky, Matt; Marcy, Geoffrey W.; Tarter, Jill

    2013-04-01

    We present a targeted search for narrow-band (<5 Hz) drifting sinusoidal radio emission from 86 stars in the Kepler field hosting confirmed or candidate exoplanets. Radio emission less than 5 Hz in spectral extent is currently known to only arise from artificial sources. The stars searched were chosen based on the properties of their putative exoplanets, including stars hosting candidates with 380 K > T eq > 230 K, stars with five or more detected candidates or stars with a super-Earth (R p < 3 R ⊕) in a >50 day orbit. Baseband voltage data across the entire band between 1.1 and 1.9 GHz were recorded at the Robert C. Byrd Green Bank Telescope between 2011 February and April and subsequently searched offline. No signals of extraterrestrial origin were found. We estimate that fewer than ~1% of transiting exoplanet systems host technological civilizations that are radio loud in narrow-band emission between 1 and 2 GHz at an equivalent isotropically radiated power (EIRP) of ~1.5 × 1021 erg s-1, approximately eight times the peak EIRP of the Arecibo Planetary Radar, and we limit the number of 1-2 GHz narrow-band-radio-loud Kardashev type II civilizations in the Milky Way to be {<}10^{-6}\\ M^{-1}_\\odot. Here we describe our observations, data reduction procedures and results.

  9. A 1.1-1.9 GHz SETI SURVEY OF THE KEPLER FIELD. I. A SEARCH FOR NARROW-BAND EMISSION FROM SELECT TARGETS

    SciTech Connect

    Siemion, Andrew P. V.; Korpela, Eric; Werthimer, Dan; Cobb, Jeff; Lebofsky, Matt; Marcy, Geoffrey W.; Demorest, Paul; Maddalena, Ron J.; Langston, Glen; Howard, Andrew W.; Tarter, Jill

    2013-04-10

    We present a targeted search for narrow-band (<5 Hz) drifting sinusoidal radio emission from 86 stars in the Kepler field hosting confirmed or candidate exoplanets. Radio emission less than 5 Hz in spectral extent is currently known to only arise from artificial sources. The stars searched were chosen based on the properties of their putative exoplanets, including stars hosting candidates with 380 K > T{sub eq} > 230 K, stars with five or more detected candidates or stars with a super-Earth (R{sub p} < 3 R{sub Circled-Plus }) in a >50 day orbit. Baseband voltage data across the entire band between 1.1 and 1.9 GHz were recorded at the Robert C. Byrd Green Bank Telescope between 2011 February and April and subsequently searched offline. No signals of extraterrestrial origin were found. We estimate that fewer than {approx}1% of transiting exoplanet systems host technological civilizations that are radio loud in narrow-band emission between 1 and 2 GHz at an equivalent isotropically radiated power (EIRP) of {approx}1.5 Multiplication-Sign 10{sup 21} erg s{sup -1}, approximately eight times the peak EIRP of the Arecibo Planetary Radar, and we limit the number of 1-2 GHz narrow-band-radio-loud Kardashev type II civilizations in the Milky Way to be <10{sup -6} M{sub Sun }{sup -1}. Here we describe our observations, data reduction procedures and results.

  10. Development of a 150-GHz MMIC Module Prototype for Large-Scale CMB Radiation

    NASA Technical Reports Server (NTRS)

    Kangaslahti, Pekka P.; Samoska, Lorene A.; Gaier, Todd C.; Soria, Mary M.; Lau, Judy M.; Sieth, Matthew M.; VanWinkle, Daniel; Tantawi, Sami

    2011-01-01

    HEMT-based receiver arrays with excellent noise and scalability are already starting to be manufactured at 100 GHz, but the advances in technology should make it possible to develop receiver modules with even greater operation frequency up to 200 GHz. A prototype heterodyne amplifier module has been developed for operation from 140 to 170 GHz using monolithic millimeter-wave integrated circuit (MMIC) low-noise InP high electron mobility transistor (HEMT) amplifiers. The compact, scalable module is centered on the 150-GHz atmospheric window using components known to operate well at these frequencies. Arrays equipped with hundreds of these modules can be optimized for many different astrophysical measurement techniques, including spectroscopy and interferometry. This module is a heterodyne receiver module that is extremely compact, and makes use of 35-nm InP HEMT technology, and which has been shown to have excellent noise temperatures when cooled cryogenically to 30 K. This reduction in system noise over prior art has been demonstrated in commercial mixers (uncooled) at frequencies of 160-180 GHz. The module is expected to achieve a system noise temperature of 60 K when cooled. An MMIC amplifier module has been designed to demonstrate the feasibility of expanding heterodyne amplifier technology to the 140 to 170-GHz frequency range for astronomical observations. The miniaturization of many standard components and the refinement of RF interconnect technology have cleared the way to mass-production of heterodyne amplifier receivers, making it a feasible technology for many large-population arrays. This work furthers the recent research efforts in compact coherent receiver modules, including the development of the Q/U Imaging ExperimenT (QUIET) modules centered at 40 and 90 GHz, and the production of heterodyne module prototypes at 90 GHz.

  11. The Measurement and Analysis of System Noise Temperatures of the TM65m Radio Telescope at Low Frequency Bands1,2

    NASA Astrophysics Data System (ADS)

    Wang, Jin-Qing; Yu, Lin-Feng; Zhao, Rong-Bing; Jiang, Dong-Rong; Lou, Fang-Xun; Lao, Bao-Qiang; Li, Bing; Dong, Jian; Fan, Qing-Yuan; Qian, Zhi-Han; Liu, Qing-Hui; Jiang, Yong-Bin

    2015-07-01

    At first, the receiving system of the Tianma 65m radio telescope (TM65m in brief) and its noise characteristics at the L, S, C, and X four frequency bands are described. Then, a few measuring methods of system noise temperature are discussed, and the major factors affecting the noise temperature measurement are analyzed, including the errors caused by the non-linearity, feed network insertion loss, mismatch, and so on. With the Y-factor method the noise temperature of the noise source calibrated in the laboratory is verified, indicating that its accuracy attains ∼0.2K. Finally, the system noise temperatures actually measured at the four frequency bands and an analysis on the result are given.

  12. Space nuclear power systems 1989; Proceedings of the 6th Symposium, Albuquerque, NM, Jan. 8-12, 1989. Vols. 1 & 2

    NASA Technical Reports Server (NTRS)

    El-Genk, Mohamed S. (Editor); Hoover, Mark D. (Editor)

    1992-01-01

    The present conference discusses such space nuclear power (SNP) issues as current design trends for SDI applications, ultrahigh heat-flux systems with curved surface subcooled nucleate boiling, design and manufacturing alternatives for low cost production of SNPs, a lightweight radioisotope heater for the Galileo mission, compatible materials for uranium fluoride-based gas core SNPs, Johnson noise thermometry for SNPs, and uranium nitride/rhenium compatibility studies for the SP-100 SNP. Also discussed are system issues in antimatter energy conversion, the thermal design of a heat source for a Brayton cycle radioisotope power system, structural and thermal analyses of an isotope heat source, a novel plant protection strategy for transient reactors, and beryllium toxicity.

  13. Ferromagnetic resonance in Terfenol-D at 17 GHz

    NASA Astrophysics Data System (ADS)

    Dewar, G.; Pagel, Samuel; Sourivong, P.

    2000-03-01

    Ferromagnetic resonance (FMR) measurements were performed on several samples of Terfenol-D (Dy_0.73Tb_0.27Fe_1.95) at 16.95 GHz and over the temperature range 293 to 305 K. We find that the first magnetocrystalline constant is K1 = (-2.0 ± 0.2) × 10^6 erg/cm^3 at 294 K and dK1 \\over dT = (+2.4 ± 0.5) × 10^4 erg/K-cm^3. The samples exhibited hysteresis: the FMR absorption peak shifted by 4.0 kOe between measurements made with the magnetic field increasing and those made with the field decreasing. The absorption linewidths were broadened by inhomogeneous internal fields which changed as the samples were cycled in magnetic field and temperature.

  14. A Low Conversion Loss Eighth Harmonic Mixer with Wide Band-Stop Filters for Low Cost 94 GHz Receiver Front-Ends

    NASA Astrophysics Data System (ADS)

    Yao, Changfei; Chen, Zhenhua; Zhou, Ming; Luo, Yunsheng

    2016-01-01

    A 75-110 GHz low conversion loss (CL) eighth harmonic mixer is realized for low cost 94 GHz receiver front-ends. The mixing diodes are realized by GaAs foundry of Nanjing Electronic Devices Institute (NEDI) and its 3-D model is analyzed for impedance calculation of RF, LO, IF port. Wide band-stop filters and phase shift networks for RF and idle frequency signals recycling are designed with optimum load impedance for low CL. The measured CL of the mixers is lower than 28 dB, 18 dB, 16.5 dB in 75-110 GHz, 87-104 GHz and 90-100 GHz, respectively. The lowest tested CL is 14.7 dB at 94 GHz. The mixers are successfully applied in miniature and low cost 94 GHz receiver systems.

  15. Proceedings of the Conference on Image Storage and Transmission Systems for Libraries...December 1-2, 1969, National Bureau of Standards.

    ERIC Educational Resources Information Center

    Henderson, Madeline M., Comp.

    The challenge of networking is now being extended to cooperative library and information center systems. There are new demands for improved techniques for image storage and transmission, specifically including automated storage and retrieval of microforms and ultra-microforms and new developments in graphic and facsimile transmission. In this…

  16. Classification of GHZ-type, W-type, and GHZ-W-type multiqubit entanglement

    SciTech Connect

    Chen Lin; Chen Yixin

    2006-12-15

    We propose the concept of SLOCC-equivalent basis in the multiqubit space. In particular, two special SEBs, the Greenberger-Horne-Zeilinger-(GHZ-) type and the W-type basis are introduced. They can make up a more general family of multiqubit states, the GHZ-W-type states, which is a useful kind of entanglement for quantum teleportation and error correction. We completely characterize the property of this type of state, and mainly classify the GHZ-type and the W-type states in a regular way, which is related to the enumerative combinatorics. Many concrete examples are given to exhibit our method of classification. We also propose the condition on which two GHZ-W-type states are interconvertible with probability 1.

  17. Quasi-Optical Transmission Line for 94-GHz Radar

    NASA Technical Reports Server (NTRS)

    Perez, Raul M.; Veruttipong, Watt

    2008-01-01

    A quasi-optical transmission line (QOTL) has been developed as a low-loss transmission line for a spaceborne cloudobserving radar instrument that operates at a nominal frequency of 94 GHz. This QOTL could also readily be redesigned for use in terrestrial millimeter-wave radar systems and millimeter-wave imaging systems. In the absence of this or another lowloss transmission line, it would be necessary to use a waveguide transmission line in the original radar application. Unfortunately, transmission losses increase and power-handling capacities of waveguides generally decrease with frequency, such that at 94 GHz, the limitation on transmitting power and the combined transmission and reception losses (greater than 5 dB) in a waveguide transmission line previously considered for the original application would be unacceptable. The QOTL functions as a very-lowloss, three-port circulator. The QOTL includes a shaped input mirror that can be rotated to accept 94-GHz transmitter power from either of two high-power amplifiers. Inside the QOTL, the transmitter power takes the form of a linearly polarized beam radiated from a feed horn. This beam propagates through a system of mirrors, each of which refocuses the beam to minimize diffraction losses. A magnetically biased ferrite disc is placed at one of the foci to utilize the Faraday effect to rotate the polarization of the beam by 45 degrees. The beam is then transmitted via an antenna system. The radar return (scatter from clouds, and/or reflections from other objects) is collected by the same antenna and propagates through the Faraday rotator in the reverse of the direction of propagation of the transmitted beam. In the Faraday rotator, the polarization of the received signal is rotated a further 45 degrees, so that upon emerging from the Faraday rotator, the received beam is polarized at 90 with respect to the transmitted beam. The transmitted and received signals are then separated by a wire-grid polarizer.

  18. Superradiant Pulse And Amplified Spontaneous Emission From The Flash Pumped Atomic Iodine System Undergoing The Laser Transition Of 2P 1/2- 2P3/2

    NASA Astrophysics Data System (ADS)

    Hahn, Jae W.; Kim, Gyu U.; Lee, Sang S.

    1987-01-01

    Recently, Jaroszynski and King found superradiance(SR) occurring in photodissociatively created systems using NaI and n-C3F7I moleculesl) , and Hahn and Lee have performe2)d the amplified spontaneous emission(ASE) experiment in an iodine photodissociation laser(IPL) amplifier . In general, to observe SR experimentally, a very short intense pumping pulse of which FWHM is about a few tens of nanoseconds, is used for making a totally inverted system. But in this work, the amplifier is pumped with conventional flashlamps of FWHM=3us, yet we have detected a output pulse which is a superposition of ASE and SR. The temporal behaviour of the pulse is investigated in detail, and the experimental results are compared with theoretical results.

  19. Implementation of the Community Earth System Model (CESM1, version 1.2.1) as a new basemodel into version 2.50 of the MESSy framework

    NASA Astrophysics Data System (ADS)

    Baumgaertner, A. J. G.; Jöckel, P.; Kerkweg, A.; Sander, R.; Tost, H.

    2015-08-01

    The Community Earth System Model (CESM1), maintained by the United States National Centre for Atmospheric Research (NCAR) is connected with the Modular Earth Submodel System (MESSy). For the MESSy user community, this offers many new possibilities. The option to use the CESM1(CAM) atmospheric dynamical cores, especially the spectral element (SE) core, as an alternative to the ECHAM5 spectral transform dynamical core will provide scientific and computational advances for atmospheric chemistry and climate modelling with MESSy. The SE dynamical core does not require polar filters since the grid is quasi-uniform. By advecting the surface pressure rather then the logarithm of surface pressure the SE core locally conserves energy and mass. Furthermore, it has the possibility to scale to up to 105 compute cores, which is useful for current and future computing architectures. The well-established finite volume core from CESM1(CAM) is also made available. This offers the possibility to compare three different atmospheric dynamical cores within MESSy. Additionally, the CESM1 land, river, sea ice, glaciers and ocean component models can be used in CESM1/MESSy simulations, allowing to use MESSy as a comprehensive Earth System Model. For CESM1/MESSy setups, the MESSy process and diagnostic submodels for atmospheric physics and chemistry are used together with one of the CESM1(CAM) dynamical cores; the generic (infrastructure) submodels support the atmospheric model component. The other CESM1 component models as well as the coupling between them use the original CESM1 infrastructure code and libraries, although in future developments these can also be replaced by the MESSy framework. Here, we describe the structure and capabilities of CESM1/MESSy, document the code changes in CESM1 and MESSy, and introduce several simulations as example applications of the system. The Supplements provide further comparisons with the ECHAM5/MESSy atmospheric chemistry (EMAC) model and document

  20. Implementation of the Community Earth System Model (CESM) version 1.2.1 as a new base model into version 2.50 of the MESSy framework

    NASA Astrophysics Data System (ADS)

    Baumgaertner, A. J. G.; Jöckel, P.; Kerkweg, A.; Sander, R.; Tost, H.

    2016-01-01

    The Community Earth System Model (CESM1), maintained by the United States National Centre for Atmospheric Research (NCAR) is connected with the Modular Earth Submodel System (MESSy). For the MESSy user community, this offers many new possibilities. The option to use the Community Atmosphere Model (CAM) atmospheric dynamical cores, especially the state-of-the-art spectral element (SE) core, as an alternative to the ECHAM5 spectral transform dynamical core will provide scientific and computational advances for atmospheric chemistry and climate modelling with MESSy. The well-established finite volume core from CESM1(CAM) is also made available. This offers the possibility to compare three different atmospheric dynamical cores within MESSy. Additionally, the CESM1 land, river, sea ice, glaciers and ocean component models can be used in CESM1/MESSy simulations, allowing the use of MESSy as a comprehensive Earth system model (ESM). For CESM1/MESSy set-ups, the MESSy process and diagnostic submodels for atmospheric physics and chemistry are used together with one of the CESM1(CAM) dynamical cores; the generic (infrastructure) submodels support the atmospheric model component. The other CESM1 component models, as well as the coupling between them, use the original CESM1 infrastructure code and libraries; moreover, in future developments these can also be replaced by the MESSy framework. Here, we describe the structure and capabilities of CESM1/MESSy, document the code changes in CESM1 and MESSy, and introduce several simulations as example applications of the system. The Supplements provide further comparisons with the ECHAM5/MESSy atmospheric chemistry (EMAC) model and document the technical aspects of the connection in detail.

  1. Development and application of optimal design capability for coal gasification systems - Task 1 (Volume 1, 2 and 3). Topical report, July 1995

    SciTech Connect

    1995-09-01

    Selective catalytic reduction (SCR) is a process for the post-combustion removal of NO{sub x} from the flue gas of fossil-fuel-fired power plants. SCR is capable of NO{sub x} reduction efficiencies of up to 80 or 90 percent. SCR technology has been applied for treatment of flue gases from a variety of emission sources, including natural gas- and oil-fired gas turbines, process steam boilers in refineries, and coal-fired power plants. SCR applications to coal-fired power plants have occurred in Japan and Germany. Full-scale SCR systems have not been applied to coal-fired power plants in the U.S., although there have been small-scale demonstration projects. SCR has become increasingly widely applied in the U.S. to natural-gas fired gas turbine combined cycle systems. In the remainder of this section, we review the applicability of SCR, as well as the need for post-combustion NO{sub x} control, for several power generation systems.

  2. Realization of GHZ states and the GHZ test via cavity QED

    NASA Astrophysics Data System (ADS)

    Guerra, E. S.

    2005-09-01

    In this article we discuss the realization of atomic GHZ states involving three-level atoms and we show explicitly how to use this state to perform the GHZ test in which it is possible to decide between local realism theories and quantum mechanics. The experimental realizations proposed make use of the interaction of the Rydberg atoms with a cavity prepared in a coherent state.

  3. A 30/20 GHz FSS feasibility study

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The near term feasibility of direct-to-subscriber services were determined using the 30/20 GHz Fixed Satellite Service (FSS) frequency bands. Those technologies which need to be further developed before such a system can be implemented, were identified. To determine this feasibility, dozens of potential applications were examined for their near-term viability, and the subscriber base of three promising applications were estimated. The system requirements, terminal design, and satellite architecture were all investigated to determine whether a 30/20 GHz FSS system is technically and economically feasible by mid-1990s. It was concluded that such a system is feasible, although maturation of some technologies is needed. This system would likely consist of one or two multibeam satellites serving hub/spoke networks of simple user terminals and more complex, mutli-channel terminals of the service providers. Rain compensation would be accomplished non-adaptively through the use of coding, nonuniform satellite TWT power that is a function of a beam's anticipated downlink fading, and signal regeneration of traffic to the wettest climate regions. It was estimated that a potential market of almost two million users could exist in in the mid-1990s time frame for home banking and financial services via Ka-band satellites.

  4. The design, fabrication, operation and maintenance of D0 prototype 1/2 H. P. 170 S. C. F. H. gas recirculating-filtration-blending system

    SciTech Connect

    Sellberg, G.; Rapp, P.

    1991-10-01

    Fermi National Accelerator Laboratory (Fermilab) D{null} collider, E-740, uses 150 proportional drift tube (P.D.T.) modules connected to a common multiple header to supply clean low pressure gas. A second multiple header returns the gas to the mixing area and exhausts it to the atmosphere. To test and debug the major construction problems associated with a large and long term experiment, a small cosmic ray test stand was constructed in the Wilson Hall ground floor Physics area. The first four P.D.T.'s that were constructed at FNAL's lab 5 Assembly area were installed in an 110 ton cosmic ray test stand. Two P.D.T.'s were installed above the double 50 ton magnet toroids and two were installed below. A prototype gas system was fabricated for the purpose of conducting development of a recirculating, filtering, and blending system for gas components as called upon by daily requirements set by the current needs of a collider experiment.

  5. Design and Development of Thermistor based Power Meter at 140 GHz Frequency Band

    NASA Astrophysics Data System (ADS)

    Roy, Rajesh; Kush, Abhimanyue Kumar; Dixit, Rajendra Prasad

    2011-12-01

    Design and development of thermistor based power meter at 140 gigahertz (GHz) frequency band have been presented. Power meter comprises power sensor, amplifier circuit and dialog based graphical user interface in visual C++ for the average power measurement. The output power level of a component or system is very critical design factor. Thus there was a need of a power meter for the development of millimeter wave components at 140 GHz frequency band. Power sensor has been designed and developed using NTC (Negative Temperature Coefficient) thermistors. The design aims at developing a direct, simple and inexpensive power meter that can be used to measure absolute power at 140 GHz frequency band. Due to absorption of 140 GHz frequencies, resistance of thermistor changes to a new value. This change in resistance of thermistor can be converted to a dc voltage change and amplified voltage change can be fed to computer through data acquisition card. Dialog based graphical user interface (GUI) has been developed in visual C++ language for average power measurement in dBm. WR6 standard rectangular waveguide is the input port for the sensor of power meter. Temperature compensation has been achieved. Moderate sensor return loss greater than 20 dB has been found over the frequency range 110 to 170 GHz. The response time of the power sensor is 10 second. Average power accuracy is better than ±0.25 dB within the power range from -10 to 10 dBm at 140 GHz frequency band.

  6. Traveling-Wave Maser for 32 GHz

    NASA Technical Reports Server (NTRS)

    Shell, James; Clauss, Robert

    2009-01-01

    The figure depicts a traveling-wave ruby maser that has been designed (though not yet implemented in hardware) to serve as a low-noise amplifier for reception of weak radio signals in the frequency band of 31.8 to 32.3 GHz. The design offers significant improvements over previous designs of 32-GHz traveling-wave masers. In addition, relative to prior designs of 32-GHz amplifiers based on high-electron-mobility transistors, this design affords higher immunity to radio-frequency interference and lower equivalent input noise temperature. In addition to the basic frequency-band and low-noise requirements, the initial design problem included a requirement for capability of operation in a closed-cycle helium refrigerator at a temperature .4 K and a requirement that the design be mechanically simplified, relative to prior designs, in order to minimize the cost of fabrication and assembly. Previous attempts to build 32- GHz traveling-wave masers involved the use of metallic slow-wave structures comprising coupled transverse electromagnetic (TEM)-mode resonators that were subject to very tight tolerances and, hence, were expensive to fabricate and assemble. Impedance matching for coupling signals into and out of these earlier masers was very difficult. A key feature of the design is a slow-wave structure, the metallic portions of which would be mechanically relatively simple in that, unlike in prior slow-wave structures, there would be no internal metal steps, irises, or posts. The metallic portions of the slow-wave structure would consist only of two rectangular metal waveguide arms. The arms would contain sections filled with the active material (ruby) alternating with evanescent-wave sections. This structure would be transparent in both the signal-frequency band (the aforementioned range of 31.8 to 32.3 GHz) and the pump-frequency band (65.75 to 66.75 GHz), and would impose large slowing factors in both frequency bands. Resonant ferrite isolators would be placed in the

  7. trans-1,2-Dichloroethylene

    Integrated Risk Information System (IRIS)

    trans - 1,2 - Dichloroethylene ; CASRN 156 - 60 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for No

  8. 1,2,4-Tribromobenzene

    Integrated Risk Information System (IRIS)

    1,2,4 - Tribromobenzene ; CASRN 615 - 54 - 3 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcin

  9. 1,1,2-Trichloropropane

    Integrated Risk Information System (IRIS)

    1,1,2 - Trichloropropane ; CASRN 598 - 77 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarci

  10. 1,2,3-Trichloropropane

    Integrated Risk Information System (IRIS)

    1,2,3 - Trichloropropane ; CASRN 96 - 18 - 4 Human health assessment information on a chemical substance is included in IRIS only after a comprehensive review of toxicity data by U.S . EPA health scientists from several program offices , regional offices , and the Office of Research and Development

  11. cis-1,2-Dichloroethylene

    Integrated Risk Information System (IRIS)

    cis - 1,2 - Dichloroethylene ; CASRN 156 - 59 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Nonc

  12. 1,1,2-Trichloroethane

    Integrated Risk Information System (IRIS)

    1,1,2 - Trichloroethane ; CASRN 79 - 00 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcino

  13. 1,2,4-Trichlorobenzene

    Integrated Risk Information System (IRIS)

    1,2,4 - Trichlorobenzene ; CASRN 120 - 82 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarci

  14. 1,2-Epoxybutane (EBU)

    Integrated Risk Information System (IRIS)

    1,2 - Epoxybutane ( EBU ) ; CASRN 106 - 88 - 7 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarc

  15. NASA 60 GHz intersatellite links definition study. Final Review

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Viewgraphs are presented which outline the overall system and component concepts for a 60 GHz intersatellite communications link system (ICLS). The ICLS was designed to augment the capabilities of the current Tracking and Data Relay Satellite System (TDRSS), providing a data rate capacity large enough to accommodate the expected rates for user satellites (USAT's) in the post-1995 timeframe. Two methods of data relay on-board the planned TDAS (Tracking and Data Acquisition) satellites are described. One is an all-baseband system with a bi-directional 2 Gbps data stream; the other is a channelized crosslink system wherein some of the channels are baseband and others are merely frequency translated before re-transmission. The general system and technology design drivers are outlined along with the acquisition architecture design. Descriptions of the TDAS antenna, transmitter, receiver, and mechanical hardware are presented.

  16. 47 CFR 15.251 - Operation within the bands 2.9-3.26 GHz, 3.267-3.332 GHz, 3.339-3.3458 GHz, and 3.358-3.6 GHz.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Operation within the bands 2.9-3.26 GHz, 3.267..., Additional Provisions § 15.251 Operation within the bands 2.9-3.26 GHz, 3.267-3.332 GHz, 3.339-3.3458 GHz... spectrum analyzer or equivalent measuring receiver; (2) The angular separation between the direction...

  17. 47 CFR 15.251 - Operation within the bands 2.9-3.26 GHz, 3.267-3.332 GHz, 3.339-3.3458 GHz, and 3.358-3.6 GHz.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Operation within the bands 2.9-3.26 GHz, 3.267..., Additional Provisions § 15.251 Operation within the bands 2.9-3.26 GHz, 3.267-3.332 GHz, 3.339-3.3458 GHz... spectrum analyzer or equivalent measuring receiver; (2) The angular separation between the direction...

  18. Feasiblity study for a 34 GHz (Ka band) gyroamplifier

    NASA Technical Reports Server (NTRS)

    Stone, D. S.; Bier, R. E.; Caplan, M.; Huey, H. E.; Pirkle, D. R.; Robinson, J. D.; Thompson, L.

    1984-01-01

    The feasibility of using a gyroklystron power tube as the final amplifier in a 400 kW CW 34 GHz transmitter on the Goldstone Antenna is investigated. A conceptual design of the gyroklystron and the transmission line connecting it with the antenna feed horn is presented. The performance characteristics of the tube and transmission line are compared to the transmitter requirements for a deep space radar system. Areas of technical risk for a follow-on hardware development program for the gyroklystron amplifier and overmoded transmission line components are discussed.

  19. 8 GHz tunable Gunn oscillator in WR-137 waveguide

    NASA Astrophysics Data System (ADS)

    Rakshit, P. C.; Ghosh, G.; Saha, P. K.; Nag, B. R.

    1983-01-01

    The conventional technique of realizing waveguide resonators for Gunn diode oscillators to operate at the band edge of the waveguide fails owing to the excitation of a coaxial mode resonance formed by the post and the side walls of the waveguide. One of the solutions to the problem is to mount the diode in a ridged waveguide resonator. This has been demonstrated by constructing an 8 GHz Gunn oscillator using a single ridge in WR-137 waveguide. The steps in designing the oscillator system are also presented.

  20. Thermodynamic and Neutron Scattering Study of the Spin-1/2 Kagome Antiferromagnet ZnCu3(OH)6Cl2: A Quantum Spin Liquid System

    NASA Astrophysics Data System (ADS)

    Han, Tianheng

    New physics, such as a quantum spin liquid, can emerge in systems where quantum fluctuations are enhanced due to reduced dimensionality and strong frustration . The realization of a quantum spin liquid in two-dimensions would represent a new state of matter. It is believed that spin liquid physics plays a role in the phenomenon of high-Tc superconductivity, and the topological properties of the spin liquid state may have applications in the field of quantum information. The Zn-paratacamite family, ZnxCu4-- x(OH)6Cl2 for x > 0.33, is an ideal system to look for such an exotic state in the form of antiferromagnetic Cu 2 + kagome planes. The x = 1 end member, named herbertsmithite, has shown promising spin liquid properties from prior studies on powder samples. Here we show a new synthesis by which high-quality centimeter-sized single crystals of Znparatacamite have been produced for the first time. Neutron and synchrotron xray diffraction experiments indicate no structural transition down to T = 2 K. The magnetic susceptibility both perpendicular and parallel to the kagome plane has been measured for the x = 1 sample. A small, temperature-dependent anisotropy has been observed, where chi z / chip > 1 at high temperatures and chiz / chip < 1 at low temperatures. Fits of the high-temperature data to a Curie-Weiss model also reveal anisotropies for thetacw's and g-factors. By comparing with theoretical calculations, the presence of a small easy-axis exchange anisotropy can be deduced as a primary perturbation to the dominant Heisenberg nearest neighbor interaction. These results have great bearing on the interpretation of theoretical calculations based on the kagome Heisenberg antiferromagnet model to the experiments on ZnCu3(OH) 6Cl2. Specific heat measurements down to dilution temperatures and under strong applied magnetic fields show a superlinear temperature dependence with a finite linear term. Most importantly, we present neutron scattering measurements of the

  1. Effect of coriander seed powder (CSP) on 1, 2-dimethyl hydrazine-induced changes in antioxidant enzyme system and lipid peroxide formation in rats.

    PubMed

    Anilakumar, K R; Khanum, Farhath; Bawa, A S

    2010-03-01

    The effect of coriander seed powder (CSP), a culinary spice, on dimethyl hydrazine (DMH)-induced oxidative stress and toxicity in rats was investigated. Six groups of 6 male rats each were maintained for 12 weeks as (a) Control; (b) DMH (60 mg/kg body weight) injected; (c) 5% CSP incorporated diet; (d) 5% CSP incorporated diet + DMH; (e) 10% CSP incorporated diet; and (f) 10% CSP incorporated diet + DMH. The rats were sacrificed after 12 weeks. The results revealed that DMH administration lead to an increase in hepatic lipid peroxidation associated with reduction in levels of glutathione (GSH), activity of superoxide dismutase (SOD), and catalase and glucose-6-phosphate dehydrogenase. The coadministration of CSP and DMH diminished the hepatic malondialdehyde (MDA) significantly as compared to DMH-alone administered rats. The intake of coriander seeds at 10% level also enhanced the hepatic GSH-redox system by elevating GSH-Px, GSSGR, and GST activities. The DMH-induced decline in SOD and catalase activities was brought to normal by 10% CSP. The coadministration of CSP and the DMH produced a significant reduction in MDA and enhancement in catalase activity as compared to control. Coriander powder at 5% and 10% levels produced a significant rise in colonic catalase and GSH-Px. The coriander seeds produced significant beneficial effects by reducing the DMH-induced oxidative stress and enhancing the tissue levels of antioxidant/detoxification agent in tissues.

  2. 77 FR 45503 - 4.9 GHz Band

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-01

    ... errors in these provisions. These changes affecting the 4.9 GHz band in particular will improve spectrum... GHz Band AGENCY: Federal Communications Commission. ACTION: Final rule. SUMMARY: The Commission adopts...-4990 MHz (4.9 GHz) band applicants from certified frequency coordination. Next, the Commission...

  3. Multiple teleportation via partially entangled GHZ state

    NASA Astrophysics Data System (ADS)

    Xiong, Pei-Ying; Yu, Xu-Tao; Zhan, Hai-Tao; Zhang, Zai-Chen

    2016-08-01

    Quantum teleportation is important for quantum communication. We propose a protocol that uses a partially entangled Greenberger-Horne-Zeilinger (GHZ) state for single hop teleportation. Quantum teleportation will succeed if the sender makes a Bell state measurement, and the receiver performs the Hadamard gate operation, applies appropriate Pauli operators, introduces an auxiliary particle, and applies the corresponding unitary matrix to recover the transmitted state.We also present a protocol to realize multiple teleportation of partially entangled GHZ state without an auxiliary particle. We show that the success probability of the teleportation is always 0 when the number of teleportations is odd. In order to improve the success probability of a multihop, we introduce the method used in our single hop teleportation, thus proposing a multiple teleportation protocol using auxiliary particles and a unitary matrix. The final success probability is shown to be improved significantly for the method without auxiliary particles for both an odd or even number of teleportations.

  4. SEVENTH HARMONIC 20 GHz CO-GENERATOR

    SciTech Connect

    Hirshfield, Jay L

    2014-04-08

    To satisfy the need for multi-MW rf sources in frequency ranges where commercial sources do not exist, a study was undertaken on a class of devices based on gyro-harmonic frequency multiplication. This mechanism relies upon adding energy in gyrating motion to a linear electron beam that traverses a rotating-mode TE111-mode drive cavity in a dc magnetic field. The beam then drifts along the magnetic field into a second cavity, operating in the TEn11-mode tuned to the nth harmonic of the drive cavity. Studies of this configuration have been carried out for 2 < n < 7. Results are given for multi-MW, efficient operation of a 7th harmonic device operating at 20 GHz, and a 2nd harmonic device operating at 22.4 GHz.

  5. Tree attenuation at 20 GHz: Foliage effects

    NASA Technical Reports Server (NTRS)

    Vogel, Wolfhard J.; Goldhirsh, Julius

    1993-01-01

    Static tree attenuation measurements at 20 GHz (K-Band) on a 30 deg slant path through a mature Pecan tree with and without leaves showed median fades exceeding approximately 23 dB and 7 dB, respectively. The corresponding 1% probability fades were 43 dB and 25 dB. Previous 1.6 GHz (L-Band) measurements for the bare tree case showed fades larger than those at K-Band by 3.4 dB for the median and smaller by approximately 7 dB at the 1% probability. While the presence of foliage had only a small effect on fading at L-Band (approximately 1 dB additional for the median to 1% probability range), the attenuation increase was significant at K-Band, where it increased by about 17 dB over the same probability range.

  6. Loss of Projections, Functional Compensation, and Residual Deficits in the Mammalian Vestibulospinal System of Hoxb1-Deficient Mice1,2,3

    PubMed Central

    Boulland, Jean-Luc; Krezel, Wojciech; Setti, Eya

    2015-01-01

    Abstract The genetic mechanisms underlying the developmental and functional specification of brainstem projection neurons are poorly understood. Here, we use transgenic mouse tools to investigate the role of the gene Hoxb1 in the developmental patterning of vestibular projection neurons, with particular focus on the lateral vestibulospinal tract (LVST). The LVST is the principal pathway that conveys vestibular information to limb-related spinal motor circuits and arose early during vertebrate evolution. We show that the segmental hindbrain expression domain uniquely defined by the rhombomere 4 (r4) Hoxb1 enhancer is the origin of essentially all LVST neurons, but also gives rise to subpopulations of contralateral medial vestibulospinal tract (cMVST) neurons, vestibulo-ocular neurons, and reticulospinal (RS) neurons. In newborn mice homozygous for a Hoxb1-null mutation, the r4-derived LVST and cMVST subpopulations fail to form and the r4-derived RS neurons are depleted. Several general motor skills appear unimpaired, but hindlimb vestibulospinal reflexes, which are mediated by the LVST, are greatly reduced. This functional deficit recovers, however, during the second postnatal week, indicating a substantial compensation for the missing LVST. Despite the compensatory plasticity in balance, adult Hoxb1-null mice exhibit other behavioral deficits that manifest particularly in proprioception and interlimb coordination during locomotor tasks. Our results provide a comprehensive account of the developmental role of Hoxb1 in patterning the vestibular system and evidence for a remarkable developmental plasticity in the descending control of reflex limb movements. They also suggest an involvement of the lateral vestibulospinal tract in proprioception and in ensuring limb alternation generated by locomotor circuitry. PMID:26730404

  7. VLBI survey at 2. 29 GHz

    SciTech Connect

    Preston, R.A.; Morabito, D.D.; Williams, J.G.; Faulkner, J.; Jauncey, D.L.

    1985-09-01

    VLBI observations at 2.29 GHz with fringe spacings of about 3 milliarcsec have been performed on 1398 radio sources spread over the entire sky. 917 sources were detected, including 93 percent of the identified BL Lacertae objects, 86 percent of the quasars, and 36 percent of the galaxies. The resulting catalog of compact radio sources is useful for various astrophysical studies and in the formation of VLBI celestial reference frames. 252 references.

  8. Australia 31-GHz brightness temperature exceedance statistics

    NASA Technical Reports Server (NTRS)

    Gary, B. L.

    1988-01-01

    Water vapor radiometer measurements were made at DSS 43 during an 18 month period. Brightness temperatures at 31 GHz were subjected to a statistical analysis which included correction for the effects of occasional water on the radiometer radome. An exceedance plot was constructed, and the 1 percent exceedance statistics occurs at 120 K. The 5 percent exceedance statistics occurs at 70 K, compared with 75 K in Spain. These values are valid for all of the three month groupings that were studied.

  9. NASA 60 GHz intersatellite communication link definition study. Addendum A: Mixed baseband and IF signals

    NASA Technical Reports Server (NTRS)

    1986-01-01

    As part of a definition study for a 60 GHz intersatellite communications link system (ICLS), baseline design concepts for a channelized crosslink were identified. The crosslink would allow communications between geostationary satellites of the planned Tracking and Data Acquisition System (TDAS) and would accommodate a mixture of frequency translation coherent links (bent pipe links) and baseband-in/baseband-out links (mod/demod links). A 60 GHz communication system was developed for sizing and analyzing the crosslink. For the coherent links this system translates incoming signals directly up to the 60 GHz band; trunks the signals across from one satellite to a second satellite at 60 GHz then down converts to the proper frequency for re-transmission from the second satellite without converting to any intermediate frequencies. For the baseband-in/baseband-out links the baseband data is modulated on to the 60 GHz carrier at the transmitting satellite and demodulated at the receiving satellite. The frequency plan, equipment diagrams, and link calculations are presented along with results from sizing and reliability analyses.

  10. The 30-GHz monolithic receive module

    NASA Technical Reports Server (NTRS)

    Sokolov, V.; Geddes, J.; Bauhahn, P.

    1983-01-01

    Key requirements for a 30 GHz GaAs monolithic receive module for spaceborne communication antenna feed array applications include an overall receive module noise figure of 5 dB, a 30 dB RF to IF gain with six levels of intermediate gain control, a five-bit phase shifter, and a maximum power consumption of 250 mW. The RF designs for each of the four submodules (low noise amplifier, some gain control, phase shifter, and RF to IF sub-module) are presented. Except for the phase shifter, high frequency, low noise FETs with sub-half micron gate lengths are employed in the submodules. For the gain control, a two stage dual gate FET amplifier is used. The phase shifter is of the passive switched line type and consists of 5-bits. It uses relatively large gate width FETs (with zero drain to source bias) as the switching elements. A 20 GHz local oscillator buffer amplifier, a FET compatible balanced mixer, and a 5-8 GHz IF amplifier constitute the RF/IF sub-module. Phase shifter fabrication using ion implantation and a self-aligned gate technique is described. Preliminary RF results obtained on such phase shifters are included.

  11. The 60 GHz IMPATT diode development

    NASA Technical Reports Server (NTRS)

    Dat, Rovindra; Ayyagari, Murthy; Hoag, David; Sloat, David; Anand, Yogi; Whitely, Stan

    1986-01-01

    The objective is to develop 60 GHz IMPATT diodes suitable for communications applications. The performance goals of the 60 GHz IMPATT is 1W CW output power with a conversion efficiency of 15 percent and 10-year lifetime. The final design of the 60 GHz IMPATT structure evolved from computer simulations performed at the University of Michigan. The initial doping profile, involving a hybrid double-drift (HDD) design, was derived from a drift-diffusion model that used the static velocity-field characteristics for GaAs. Unfortunately, the model did not consider the effects of velocity undershoot and delay of the avalanche process due to energy relaxation. Consequently, the initial devices were oscillating at a much lower frequency than anticipated. With a revised simulation program that included the two effects given above, a second HDD profile was generated and was used as a basis for fabrication efforts. In the area of device fabrication, significant progress was made in epitaxial growth and characterization, wafer processing, and die assembly. The organo-metallic chemical vapor deposition (OMCVD) was used. Starting with a baseline X-Band IMPATT technology, appropriate processing steps were modified to satisfy the device requirements at V-Band. In terms of efficiency and reliability, the device requirements dictate a reduction in its series resistance and thermal resistance values. Qualitatively, researchers were able to reduce the diodes' series resistance by reducing the thickness of the N+ GaAs substrate used in its fabrication.

  12. Reaction of pyrido(1,2-a)benzimidazole and tetrahydropyrido(1,2-a)benzimidazole with acetylenedicarboxylic ester

    SciTech Connect

    Prostakov, N.S.; Varlamov, A.V.; Shendrik, I.V.; Krapivko, A.P.; Golovtsov, N.I.

    1986-08-01

    Previously unknown polynuclear condensed systems with bridgehead nitrogen atoms have been obtained by treating acetylenedicarboxylic ester with pyrido(1,2-a)benzimidazole and tetrahydropyrido(1,2-a)benzimidazole.

  13. 60 GHz gyrotron development program. Quarterly report No. 15, January-March 1983

    SciTech Connect

    Shively, J.F.; Bier, R.E.; Caplan, M.; Choi, E.K.; Craig, L.J.; Evans, S.J.; Felch, K.L.; Fox, L.J.; Hu, G.; Huey, H.E.

    1983-01-01

    The objective of this program is to develop a microwave oscillator capable of producing 200 kW of CW power at 60 GHz. Additional calculations for stepped cavity designs are reported. The work on collector fatigue improvement has continued. Window work has stressed the implementation of an FC-75 chilling system and the thermal imaging system for viewing the window temperature. Extensive measurements were made on the output window of the 56 GHz CW gyrotron using three systems. Further investigations of three water load approaches are described.

  14. Theory and experiment of a 94 GHz gyrotron traveling-wave amplifier

    NASA Astrophysics Data System (ADS)

    Song, H. H.; McDermott, D. B.; Hirata, Y.; Barnett, L. R.; Domier, C. W.; Hsu, H. L.; Chang, T. H.; Tsai, W. C.; Chu, K. R.; Luhmann, N. C.

    2004-05-01

    Experimental results are presented on the first W-band gyrotron Traveling-Wave Tube (gyro-TWT) developed to exploit the 94 GHz atmospheric window for long-range, high-resolution radar applications. The gyro-TWT is designed to operate in the higher order TE01 mode and is driven by a 100 kV, 5 A electron beam with a pitch angle of v⊥/vz=1 and velocity spread of Δvz/vz=5%. Large-signal simulations predict 140 kW output power at 92 GHz with 28% efficiency, 50 dB saturated gain, and 5% bandwidth. The stability of the amplifier against spurious oscillations has been checked with linear codes. To suppress the potential gyro-BWO interactions involving the TE02, TE11, and TE21 modes, the interaction circuit with a cutoff frequency of 91 GHz has been loaded with loss so that the single-path, cold-circuit attenuation is 90 dB at 93 GHz. A coaxial input coupler with 3% bandwidth is employed with a predicted and measured coupling of 1 dB and 2 dB, respectively. The operating voltage is limited to below 75 kV because of oscillations encountered at higher voltages in this initial embodiment. Preliminary test at Vb=60 kV and Ib=3.7 A yielded 59 kW saturated output power at 92.2 GHz with 42 dB gain, 26.6% efficiency, and a 3 dB bandwidth of 1.2 GHz (1.3%).

  15. Dynamic Nuclear Polarization at 700 MHz/460 GHz

    PubMed Central

    Barnes, Alexander B.; Markhasin, Evgeny; Daviso, Eugenio; Michaelis, Vladimir K.; Nanni, Emilio A.; Jawla, Sudheer; Mena, Elijah L.; DeRocher, Ronald; Thakkar, Ajay; Woskov, Paul; Herzfeld, Judith; Temkin, Richard J.; Griffin, Robert G.

    2014-01-01

    We describe the design and implementation of the instrumentation required to perform DNP-NMR at higher field strengths than previously demonstrated, and report the first magic-angle spinning (MAS) DNP-NMR experiments performed at H/e frequencies of 700 MHz/460 GHz. The extension of DNP-NMR to 16.4 T has required the development of probe technology, cryogenics, gyrotrons, and microwave transmission lines. The probe contains a 460 GHz microwave channel, with corrugated waveguide, tapers, and miter-bends that couple microwave power to the sample. Experimental efficiency is increased by a cryogenic exchange system for 3.2 mm rotors within the 89 mm bore. Sample temperatures ≤85 K, resulting in improved DNP enhancements, are achieved by a novel heat exchanger design, stainless steel and brass vacuum jacketed transfer lines, and a bronze probe dewar. In addition, the heat exchanger is preceded with a nitrogen drying and generation system in series with a pre-cooling refrigerator. This reduces liquid nitrogen usage from >400 liters per day to <100 liters per day and allows for continuous (>7 days) cryogenic spinning without detrimental frost or ice formation. Initial enhancements, ε=−40, and a strong microwave power dependence suggests the possibility for considerable improvement. Finally, two-dimensional spectra of a model system demonstrate that the higher field provides excellent resolution, even in a glassy, cryoprotecting matrix. PMID:23000974

  16. 47 CFR 15.253 - Operation within the bands 46.7-46.9 GHz and 76.0-77.0 GHz.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-77.0 GHz is restricted to vehicle-mounted field disturbance sensors used as vehicle radar systems... operation is as a vehicle-mounted field disturbance sensor. Operation under the provisions of this section...-mounted field disturbance sensors, if the vehicle is in motion the power density of any emission...

  17. 47 CFR 15.253 - Operation within the bands 46.7-46.9 GHz and 76.0-77.0 GHz.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-77.0 GHz is restricted to vehicle-mounted field disturbance sensors used as vehicle radar systems... operation is as a vehicle-mounted field disturbance sensor. Operation under the provisions of this section...-mounted field disturbance sensors, if the vehicle is in motion the power density of any emission...

  18. First demonstration of a vehicle mounted 250GHz real time passive imager

    NASA Astrophysics Data System (ADS)

    Mann, Chris

    2009-05-01

    This paper describes the design and performance of a ruggedized passive Terahertz imager, the frequency of operation is a 40GHz band centred around 250GHz. This system has been specifically targeted at vehicle mounted operation, outdoors in extreme environments. The unit incorporates temperature stabilization along with an anti-vibration chassis and is sealed to allow it to be used in a dusty environment. Within the system, a 250GHz heterodyne detector array is mated with optics and scanner to allow real time imaging out to 100 meters. First applications are envisaged to be stand-off, person borne IED detection to 30 meters but the unique properties in this frequency band present other potential uses such as seeing through smoke and fog. The possibility for use as a landing aid is discussed. A detailed description of the system design and video examples of typical imaging output will be presented.

  19. 42GHz ECRH assisted Plasma Breakdown in tokamak SST-1

    NASA Astrophysics Data System (ADS)

    Shukla, B. K.; Pradhan, S.; Patel, Paresh; Babu, Rajan; Patel, Jatin; Patel, Harshida; Dhorajia, Pragnesh; Tanna, V.; Atrey, P. K.; Manchanda, R.; Gupta, Manoj; Joisa, Shankar; Gupta, C. N.; Danial, Raju; Singh, Prashant; Jha, R.; Bora, D.

    2015-03-01

    In SST-1, 42GHz ECRH system has been commissioned to carry out breakdown and heating experiments at 0.75T and 1.5T operating toroidal magnetic fields. The 42GHz ECRH system consists of high power microwave source Gyrotron capable to deliver 500kW microwave power for 500ms duration, approximately 20 meter long transmission line and a mirror based launcher. The ECRH power in fundamental O-mode & second harmonic X-mode is launched from low field side (radial port) of the tokamak. At 0.75T operation, approximately 300 kW ECH power is launched in second harmonic X-mode and successful ECRH assisted breakdown is achieved at low loop_voltage ~ 3V. The ECRH power is launched around 45ms prior to loop voltage. The hydrogen pressure in tokamak is maintained ~ 1×10-5mbar and the pre-ionized density is ~ 4×1012/cc. At 1.5T operating toroidal magnetic field, the ECH power is launched in fundamental O-mode. The ECH power at fundamental harmonic is varied from 100 kW to 250 kW and successful breakdown is achieved in all ECRH shots. In fundamental harmonic there is no delay in breakdown while at second harmonic ~ 40ms delay is observed, which is normal in case of second harmonic ECRH assisted breakdown.

  20. Low-Noise MMIC Amplifiers for 120 to 180 GHz

    NASA Technical Reports Server (NTRS)

    Pukala, David; Samoska, Lorene; Peralta, Alejandro; Bayuk, Brian; Grundbacher, Ron; Oliver, Patricia; Cavus, Abdullah; Liu, Po-Hsin

    2009-01-01

    Three-stage monolithic millimeter-wave integrated-circuit (MMIC) amplifiers capable of providing useful amounts of gain over the frequency range from 120 to 180 GHz have been developed as prototype low-noise amplifiers (LNAs) to be incorporated into instruments for sensing cosmic microwave background radiation. There are also potential uses for such LNAs in electronic test equipment, passive millimeter- wave imaging systems, radar receivers, communication receivers, and systems for detecting hidden weapons. The main advantage afforded by these MMIC LNAs, relative to prior MMIC LNAs, is that their coverage of the 120-to-180-GHz frequency band makes them suitable for reuse in a wider variety of applications without need to redesign them. Each of these MMIC amplifiers includes InP transistors and coplanar waveguide circuitry on a 50- mthick chip (see Figure 1). Coplanar waveguide transmission lines are used for both applying DC bias and matching of input and output impedances of each transistor stage. Via holes are incorporated between top and bottom ground planes to suppress propagation of electromagnetic modes in the substrate. On the basis of computational simulations, each of these amplifiers was expected to operate with a small-signal gain of 14 dB and a noise figure of 4.3 dB. At the time of writing this article, measurements of noise figures had not been reported, but on-chip measurements had shown gains approaching their simulated values (see Figure 2).

  1. A 75-116-Ghz LNA with 23-K Noise Temperature at 108 Ghz

    NASA Technical Reports Server (NTRS)

    Varonen, Mikko; Reeves, Rodrigo; Kangaslahti, Pekka; Samoska, Lorene; Cleary, Kieran; Gawande, Rohit; Fung, Andy; Gaier, Todd; Weinreb, Sander; Readhead, Anthony C. S.; Sarkozy, Stephen; Lai, Richard

    2013-01-01

    In this paper we present the design and measurement results, both on-wafer and in package, of an ultra-low-noise and wideband monolithic microwave integrated circuit (MMIC) amplifier in the frequency range of 75 to 116 GHz. The three-stage amplifier packaged in a WR10 waveguide housing and fabricated using a 35-nm InP HEMT technology achieves a record noise temperature of 23 K at 108 GHz when cryogenically cooled to 27 K. The measured gain is 22 to 27 dB for frequency range of 75 to 116 GHz. Furthermore, the amplifier utilizes four finger devices with total gate width of 60 um resulting for improved linearity.

  2. Spacecraft mass trade-offs versus radio-frequency power and antenna size at 8 GHz and 32 GHz

    NASA Technical Reports Server (NTRS)

    Gilchriest, C. E.

    1987-01-01

    The purpose of this analysis is to help determine the relative merits of 32 GHz over 8 GHz for future deep space communications. This analysis is only a piece of the overall analysis and only considers the downlink communication mass, power, and size comparisons for 8 and 32 GHz. Both parabolic antennas and flat-plate arrays are considered. The Mars Sample Return mission is considered in some detail as an example of the tradeoffs involved; for this mission the mass, power, and size show a definite advantage of roughly 2:1 in using the 32 GHz over 8 GHz.

  3. Feasibility studies for a wireless 60 GHz tracking detector readout

    NASA Astrophysics Data System (ADS)

    Dittmeier, S.; Schöning, A.; Soltveit, H. K.; Wiedner, D.

    2016-09-01

    The amount of data produced by highly granular silicon tracking detectors in high energy physics experiments poses a major challenge to readout systems. At high collision rates, e.g. at LHC experiments, only a small fraction of data can be read out with currently used technologies. To cope with the requirements of future or upgraded experiments new data transfer techniques are required which offer high data rates at low power and low material budget. Wireless technologies operating in the 60 GHz band or at higher frequencies offer high data rates and are thus a promising upcoming alternative to conventional data transmission via electrical cables or optical fibers. Using wireless technology, the amount of cables and connectors in detectors can be significantly reduced. Tracking detectors profit most from a reduced material budget as fewer secondary particle interactions (multiple Coulomb scattering, energy loss, etc.) improve the tracking performance in general. We present feasibility studies regarding the integration of the wireless technology at 60 GHz into a silicon tracking detector. We use spare silicon strip modules of the ATLAS experiment as test samples which are measured to be opaque in the 60 GHz range. The reduction of cross talk between links and the attenuation of reflections is studied. An estimate of the maximum achievable link density is given. It is shown that wireless links can be placed as close as 2 cm next to each other for a layer distance of 10 cm by exploiting one or several of the following measures: highly directive antennas, absorbers like graphite foam, linear polarization and frequency channeling. Combining these measures, a data rate area density of up to 11 Tb/(s·m2) seems feasible. In addition, two types of silicon sensors are tested under mm-wave irradiation in order to determine the influence of 60 GHz data transmission on the detector performance: an ATLAS silicon strip sensor module and an HV-MAPS prototype for the Mu3e

  4. Configuration study for a 30 GHz monolithic receive array, volume 2

    NASA Technical Reports Server (NTRS)

    Nester, W. H.; Cleaveland, B.; Edward, B.; Gotkis, S.; Hesserbacker, G.; Loh, J.; Mitchell, B.

    1984-01-01

    The formalism of the sidelobe suppression algorithm and the method used to calculate the system noise figure for a 30 GHz monolithic receive array are presented. Results of array element weight determination and performance studies of a Gregorian aperture image system are also given.

  5. Demonstration of An Image Rejection Mixer for High Frequency Applications (26-36 GHz)

    NASA Technical Reports Server (NTRS)

    Bankston, Cheryl D.; Carlstrom, John E.

    1999-01-01

    A new high frequency image-rejection mixer was successfully tested in a 26-36 GHz band receiver. This paper briefly describes the motivation for implementation of an image rejection mixer in a receiver system, the basic operation of an image rejection mixer, and the development and testing of an image rejection mixer for a high frequency, cryogenic receiver system.

  6. Absolute Calibration of the Radio Astronomy Flux Density Scale at 22 to 43 GHz Using Planck

    NASA Astrophysics Data System (ADS)

    Partridge, B.; López-Caniego, M.; Perley, R. A.; Stevens, J.; Butler, B. J.; Rocha, G.; Walter, B.; Zacchei, A.

    2016-04-01

    The Planck mission detected thousands of extragalactic radio sources at frequencies from 28 to 857 GHz. Planck's calibration is absolute (in the sense that it is based on the satellite’s annual motion around the Sun and the temperature of the cosmic microwave background), and its beams are well characterized at sub-percent levels. Thus, Planck's flux density measurements of compact sources are absolute in the same sense. We have made coordinated Very Large Array (VLA) and Australia Telescope Compact Array (ATCA) observations of 65 strong, unresolved Planck sources in order to transfer Planck's calibration to ground-based instruments at 22, 28, and 43 GHz. The results are compared to microwave flux density scales currently based on planetary observations. Despite the scatter introduced by the variability of many of the sources, the flux density scales are determined to 1%-2% accuracy. At 28 GHz, the flux density scale used by the VLA runs 2%-3% ± 1.0% below Planck values with an uncertainty of +/- 1.0%; at 43 GHz, the discrepancy increases to 5%-6% ± 1.4% for both ATCA and the VLA.

  7. A 140 GHz pulsed EPR/212 MHz NMR spectrometer for DNP studies

    NASA Astrophysics Data System (ADS)

    Smith, Albert A.; Corzilius, Björn; Bryant, Jeffrey A.; DeRocher, Ronald; Woskov, Paul P.; Temkin, Richard J.; Griffin, Robert G.

    2012-10-01

    We described a versatile spectrometer designed for the study of dynamic nuclear polarization (DNP) at low temperatures and high fields. The instrument functions both as an NMR spectrometer operating at 212 MHz (1H frequency) with DNP capabilities, and as a pulsed-EPR operating at 140 GHz. A coiled TE011 resonator acts as both an NMR coil and microwave resonator, and a double balanced (1H, 13C) radio frequency circuit greatly stabilizes the NMR performance. A new 140 GHz microwave bridge has also been developed, which utilizes a four-phase network and ELDOR channel at 8.75 GHz, that is then multiplied and mixed to obtain 140 GHz microwave pulses with an output power of 120 mW. Nutation frequencies obtained are as follows: 6 MHz on S = 1/2 electron spins, 100 kHz on 1H, and 50 kHz on 13C. We demonstrate basic EPR, ELDOR, ENDOR, and DNP experiments here. Our solid effect DNP results demonstrate an enhancement of 144 and sensitivity gain of 310 using OX063 trityl at 80 K and an enhancement of 157 and maximum sensitivity gain of 234 using Gd-DOTA at 20 K, which is significantly better performance than previously reported at high fields (⩾3 T).

  8. Modified kagome physics in the natural spin-1/2 kagome lattice systems: kapellasite Cu3Zn(OH)6Cl2 and haydeeite Cu3Mg(OH)6Cl2.

    PubMed

    Janson, O; Richter, J; Rosner, H

    2008-09-01

    The recently discovered natural minerals Cu3Zn(OH)6Cl2 and Cu3Mg(OH)6Cl2 are spin 1/2 systems with an ideal kagome geometry. Based on electronic structure calculations, we develop a realistic model which includes couplings across the kagome hexagons beyond the original kagome model that are intrinsic in real kagome materials. Exact diagonalization studies for the derived model reveal a strong impact of these couplings on the magnetic ground state. Our predictions could be compared to and supplied with neutron scattering, thermodynamic data, and NMR data.

  9. CW dual-frequency MOPA laser with frequency separation of 45 GHz.

    PubMed

    Hu, Miao; Zheng, Yaoyuan; Cai, Ju; Zhang, Guiju; Li, Qiliang; Zhou, Xuefang; Wei, Yizhen; Lu, Yang

    2015-04-20

    A CW dual-frequency master oscillator power amplifier (MOPA) laser system with dozens of gigahertz (GHz) frequency separation is presented. The MOPA system consists of a monolithic microchip seed laser and a double-end pumped traveling wave power amplifier. The short length of seed laser cavity guarantees the seed signal with a large frequency separation (above 53 GHz) but low output power (below 247.8 mW). By adding a long and low-doped active medium laser amplifier stage, a significant increase in laser power and an improvement in beam quality are obtained. After fine temperature tuning of seed laser cavity for "spectra matching", a 2.40 W dual-frequency laser signal with 45 GHz frequency separation is achieved.

  10. The 30-GHz monolithic receive module

    NASA Technical Reports Server (NTRS)

    Bauhahn, P.; Geddes, J.; Sokolov, V.; Contolatis, T.

    1988-01-01

    The fourth year progress is described on a program to develop a 27.5 to 30 GHz GaAs monolithic receive module for spaceborne-communication antenna feed array applications, and to deliver submodules for experimental evaluation. Program goals include an overall receive module noise figure of 5 dB, a 30 dB RF to IF gain with six levels of intermediate gain control, a five bit phase shifter, and a maximum power consumption of 250 mW. Submicron gate length single and dual gate FETs are described and applied in the development of monolithic gain control amplifiers and low noise amplifiers. A two-stage monolithic gain control amplifier based on ion implanted dual gate MESFETs was designed and fabricated. The gain control amplifier has a gain of 12 dB at 29 GHz with a gain control range of over 13 dB. A two-stage monolithic low noise amplifier based on ion implanted MESFETs which provides 7 dB gain with 6.2 dB noise figure at 29 GHz was also developed. An interconnected receive module containing LNA, gain control, and phase shifter submodules was built using the LNA and gain control ICs as well as a monolithic phase shifter developed previously under this program. The design, fabrication, and evaluation of this interconnected receiver is presented. Progress in the development of an RF/IF submodule containing a unique ion implanted diode mixer diode and a broadband balanced mixer monolithic IC with on-chip IF amplifier and the initial design of circuits for the RF portion of a two submodule receiver are also discussed.

  11. A wideband 12 GHz down converter

    NASA Technical Reports Server (NTRS)

    Newman, B. A.; Rosenbaum, F. J.

    1972-01-01

    The design, fabrication, and evaluation of a single ended 12 GHz down-converter suitable for use in a low cost satellite ground terminal is described. The mixer uses waveguide, coaxial and MIC (microwave integrated circuit) transmission line components. Theoretical and experimental analyses of several microstrip circuit elements are presented including the traveling wave-directional filter, quarter wave-length proximity directional coupler, low pass filter and the quarterwave band stop filter. The optimum performance achieved for the mixer using a packaged diode was 9.4 db conversion loss and a bandwidth of 275 MHz.

  12. An LTCC 94 GHz Antenna Array

    SciTech Connect

    Aguirre, J; Pao, H; Lin, H; Garland, P; O'Neill, D; Horton, K

    2007-12-21

    An antenna array is designed in low-temperature cofired ceramic (LTCC) Ferro A6M{trademark} for a mm-wave application. The antenna is designed to operate at 94 GHz with a few percent bandwidth. A key manufacturing technology is the use of 3 mil diameter vias on a 6 mil pitch to construct the laminated waveguides that form the beamforming network and radiating elements. Measurements for loss in the laminated waveguide are presented. The slot-fed cavity-radiating element is designed to account for extremely tight mutual coupling between elements. The array incorporates a slot-fed multi-layer beamforming network.

  13. Initiation of phospholipomannan β-1,2 mannosylation involves Bmts with redundant activity, influences its cell wall location and regulates β-glucans homeostasis but is dispensable for Candida albicans systemic infection.

    PubMed

    Courjol, F; Mille, C; Hall, R A; Masset, A; Aijjou, R; Gow, N A R; Poulain, D; Jouault, T; Fradin, C

    2016-01-01

    Pathogenic and non-pathogenic fungi synthesize glycosphingolipids, which have a crucial role in growth and viability. Glycosphingolipids also contribute to fungal-associated pathogenesis. The opportunistic yeast pathogen Candida albicans synthesizes phospholipomannan (PLM), which is a glycosphingolipid of the mannosylinositol phosphorylceramide family. Through its lipid and glycan moieties, PLM contributes to the initial recognition of the yeast, causing immune system disorder and persistent fungal disease through activation of host signaling pathways. The lipid moiety of PLM activates the deregulation signaling pathway involved in yeast phagocytosis whereas its glycan moiety, composed of β-1,2 mannosides (β-Mans), participates to inflammatory processes through a mechanism involving Galectin-3. Biosynthesis of PLM β-Mans involves two β-1,2 mannosyltransferases (Bmts) that initiate (Bmt5) and elongate (Bmt6) the glycan chains. After generation of double bmtsΔ mutants, we show that Bmt5 has redundant activity with Bmt2, which can replace Bmt5 in bmt5Δ mutant. We also report that PLM is located in the inner layer of the yeast cell wall. PLM seems to be not essential for systemic infection of the yeast. However, defect of PLM β-mannosylation increases resistance of C. albicans to inhibitors of β-glucans and chitin synthesis, highlighting a role of PLM in cell wall homeostasis.

  14. Heterodyne detection of the 752.033-GHz H2O rotational absorption line

    NASA Technical Reports Server (NTRS)

    Dionne, G. F.; Fitzgerald, J. F.; Chang, T. S.; Litvak, M. M.; Fetterman, H. R.

    1980-01-01

    A tunable high resolution two stage heterodyne radiometer was developed for the purpose of investigating the intensity and lineshape of the 752.033 GHz rotational transition of water vapor. Single-sideband system noise temperatures of approximately 45,000 K were obtained using a sensitive GaAs Schottky diode as the first stage mixer. First local oscillator power was supplied by a CO2 laser pumped formic acid laser (761.61 GHz), generating an X-band IF signal with theoretical line center at 9.5744 GHz. Second local oscillator power was provided by means of a 3 GHz waveguide cavity filter with only 9 dB insertion loss. In absorption measurements of the H2O taken from a laboratory simulation of a high altitude rocket plume, the center frequency of the 752 GHz line was determined to within 1 MHz of the reported value. A rotational temperature 75 K, a linewidth 5 MHz and a Doppler shift 3 MHz were measured with the line-of-sight intersecting the simulated-plume axis at a distance downstream of 30 nozzle diameters. These absorption data were obtained against continuum background radiation sources at temperatures of 1175 and 300 K.

  15. A 17 GHz molecular rectifier

    PubMed Central

    Trasobares, J.; Vuillaume, D.; Théron, D.; Clément, N.

    2016-01-01

    Molecular electronics originally proposed that small molecules sandwiched between electrodes would accomplish electronic functions and enable ultimate scaling to be reached. However, so far, functional molecular devices have only been demonstrated at low frequency. Here, we demonstrate molecular diodes operating up to 17.8 GHz. Direct current and radio frequency (RF) properties were simultaneously measured on a large array of molecular junctions composed of gold nanocrystal electrodes, ferrocenyl undecanethiol molecules and the tip of an interferometric scanning microwave microscope. The present nanometre-scale molecular diodes offer a current density increase by several orders of magnitude compared with that of micrometre-scale molecular diodes, allowing RF operation. The measured S11 parameters show a diode rectification ratio of 12 dB which is linked to the rectification behaviour of the direct current conductance. From the RF measurements, we extrapolate a cut-off frequency of 520 GHz. A comparison with the silicon RF-Schottky diodes, architecture suggests that the RF-molecular diodes are extremely attractive for scaling and high-frequency operation. PMID:27694833

  16. 28 GHz Gyrotron ECRH on LDX

    NASA Astrophysics Data System (ADS)

    Woskov, P. P.; Kesner, J.; Michael, P. C.; Garnier, D. T.; Mauel, M. E.

    2010-12-01

    A 10 kW, CW, 28 GHz gyrotron has been implemented on LDX to increase the plasma density and to more fully explore the potential of high beta plasma stability in a dipole magnetic configuration. This added power represents about a 60% increase in ECRH to a new total of 26.9 kW with sources at 2.45, 6.4, and 10.5 GHz. The 1 Tesla resonances in LDX form small rings encompassing the entire plasma cross-section above and below the floating coil (F-coil) near the dipole axial region. A 32.5 mm diameter TE01 waveguide with a partial Vlasov step cut launches a diverging beam from above the F-coil that depends on internal wall reflections for plasma coupling. Initial gyrotron only plasmas exhibit steep natural profiles with fewer hot electrons than with the other sources. The background scattered radiation suggests that only about half the power is being absorbed with the present launcher.

  17. The 90 GHz radiometric imaging. [for terrain analysis

    NASA Technical Reports Server (NTRS)

    King, H. E.; White, J. D.; Wilson, W. J.; Mori, T. T.; Hollinger, J. P.; Troy, B. E.; Kenney, J. E.; Mcgoogan, J. T.

    1976-01-01

    A 90-GHz (3 mm wavelength) radiometer with a noise output fluctuation of 0.22 K (RMS), with a scanning antenna beam mirror, and the data processing system are described. Real-time radiometric imaging of terrain and man-made objects are shown. Flying at an altitude of 1500 ft a radiometer antenna with a 2 degrees halfpower beamwidth can distinguish landforms, waterways, roads, runways, bridges, ships at sea and their wakes, aircraft on runways, and athletic fields. A flight taken at an altitude of 3000 ft with approximately 2000 ft of clouds below the radiometer demonstrates the ability to distinguish bridges, rivers, marshland and other landforms even though the clouds are optically opaque. The radiometric images of a few representative scenes along with photographs of the corresponding scenes are presented to demonstrate the resolution of the imager system.

  18. Effects of Zn and substituents(methyl and p-tolyl) on the decay of electron transfer rates in porphyrin-benzene-(bicyclo[2.2.2]octane) n-quinone ( n=0,1,2) systems

    NASA Astrophysics Data System (ADS)

    do Monte, Silmar A.

    2001-03-01

    The electronic factor ( Δ) for photoinduced electron transfer (PET) in porphyrin-benzene-(bicyclo[2.2.2]octane) n-quinone ( n=0,1,2) systems (P-B-Q) is calculated by using the CI-CNDO/S method. An artificial potential is employed in order to bring the systems to the avoided crossing region. The effects of Zn coordination on the porphyrin ring and peripheral substitution are studied. We found that, without Zn, methyl substitution on meso positions diminishes significantly the decay coefficient of Δ with P-Q distance ( α). P-tolyl substituents, on positions (β,γ,δ), have a lower effect on α. Zn coordination is effective only in the case of methylated P ring, where α is lowered.

  19. Decay of N-qubit GHZ states in Pauli channels

    NASA Astrophysics Data System (ADS)

    Chen, Xiao-Yu; Wang, Ting-Ting

    2015-08-01

    An N-qubit Greenberger-Horne-Zeilinger (GHZ) state has many applications in various quantum information tasks and can be realized in different experimental schemes. A GHZ diagonal state evolves to another GHZ diagonal state in independent parallel Pauli channels. We give the explicit expression of the resultant GHZ diagonal state in terms of the initial state and channel parameters. If the initial state is a pure N qubit GHZ state or a three-qubit GHZ diagonal state admits a condition, the full separability criterion of the Pauli noisy state is equivalent to positive partial transpose (PPT) criterion. Thus the fully separable condition follows. Project supported by the National Natural Science Foundation of China (Grant No. 11375152).

  20. ATS-6 - Preliminary results from the 13/18-GHz COMSAT Propagation Experiment

    NASA Technical Reports Server (NTRS)

    Hyde, G.

    1975-01-01

    The 13/18-GHz COMSAT Propagation Experiment (CPE) is reviewed, the data acquisition and processing are discussed, and samples of preliminary results are presented. The need for measurements of both hydrometeor-induced attenuation statistics and diversity effectiveness is brought out. The facilitation of the experiment - CPE dual frequency and diversity site location, the CPE ground transmit terminals, the CPE transponder on Applications Technology Satellite-6 (ATS-6), and the CPE receive and data acquisition system - is briefly examined. The on-line preprocessing of the received signal is reviewed, followed by a discussion of the off-line processing of this database to remove signal fluctuations not due to hydrometeors. Finally, samples of the results of first-level analysis of the resultant data for the 18-GHz diversity site near Boston, Mass., and for the dual frequency 13/18-GHz site near Detroit, Mich., are presented and discussed.

  1. A Novel Quantum Blind Signature Scheme with Four-particle GHZ States

    NASA Astrophysics Data System (ADS)

    Fan, Ling; Zhang, Ke-Jia; Qin, Su-Juan; Guo, Fen-Zhuo

    2016-02-01

    In an arbitrated quantum signature scheme, the signer signs the message and the receiver verifies the signature's validity with the assistance of the arbitrator. We present an arbitrated quantum blind signature scheme by using four-particle entangled Greenberger-Horne-Zeilinger (GHZ) states. By using the special relationship of four-particle GHZ states, we cannot only support the security of quantum signature, but also guarantee the anonymity of the message owner. It has a wide application to E-payment system, E-government, E-business, and etc.

  2. Direct stress optic coefficients for YTZP ceramic and PTFE at GHz frequencies.

    PubMed

    Schemmel, Peter; Diederich, Gilles; Moore, Andrew J

    2016-04-18

    We report the first measurement of the direct stress optic coefficient for yttria-partially stabilized zirconia (YTZP) ceramic, using illumination between 260 and 380 GHz with applied stresses up to 27 MPa. YTZP exhibited a linear change in refractive index as a function of stress across the entire applied stress domain. A direct stress optic coefficient was also measured for polytetrafluoroethylene (PTFE). PTFE showed viscoelastic behavior at stress values above 4.5 MPa. These results open the way for quantitative sub-surface stress measurements in structural ceramics and ceramic coating systems at GHz and THz frequencies. PMID:27137250

  3. Twenty-GHz broadband microstrip array with electromagnetically coupled high-{Tc} superconducting feed network

    SciTech Connect

    Herd, J.S.; Poles, L.D.; Kenney, J.P.

    1996-07-01

    The use of high-temperature superconducting (HTS) feed lines and phase shifters can substantially improve the performance of microwave and millimeter-wave printed phased array antennas. A novel antenna architecture is described that provides a broadband radiating aperture to be used as a scanning array with compatible low-loss HTS phase shifters. The approach follows an earlier design demonstrated at 12 GHz, and this work extends the approach to 20 GHz. The antenna design, radiation patterns, bandwidth measurements, and thermal analysis are reported. A prototype thermal isolator design is described that reduces the heat load of coaxial interconnections between cryocooled and room temperature systems.

  4. Magnetic and dielectric properties of one-dimensional array of S = 1/2 linear trimer system Na{sub 2}Cu{sub 3}Ge{sub 4}O{sub 12}

    SciTech Connect

    Yasui, Yukio; Kawamura, Yuji; Kobayashi, Yoshiaki; Sato, Masatoshi

    2014-05-07

    Magnetic susceptibility χ, specific heat C, capacitance C{sub p}, and {sup 23}Na-NMR measurements have been carried out on polycrystalline samples of quantum spin linear trimer system Na{sub 2}Cu{sub 3}Ge{sub 4}O{sub 12}, which has the one-dimensional array of Cu{sub 3}O{sub 8} trimers formed of edge-sharing three CuO{sub 4} square planes. The exchange interactions between the Cu{sup 2+} (S = 1/2) spins have been determined by analyzing χ-T and C-T curves. By employing the isolated S = 1/2 Heisenberg trimer model above 70 K, the nearest-neighbor exchange couplings J{sub 1} and the second-neighbor one J{sub 2} in trimer have been evaluated to J{sub 1}/k{sub B} = 30 ± 20 K (antiferromagnetic) and J{sub 2}/k{sub B} = 340 ± 20 K. At low temperature region, two spins of the edge in the Cu{sub 3}O{sub 8} trimers form a nonmagnetic singlet by strong antiferromagnetic interaction J{sub 2}, and the spin left in the center of the Cu{sub 3}O{sub 8} trimer forms one-dimensional chains by the exchange interaction J{sub 3} between the trimers. By employing the S = 1/2 uniform Heisenberg chain model below 70 K, we have evaluated to J{sub 3}/k{sub B} = 18 ± 1 K. The mechanism of multiferroic behavior at T{sub c} = 2 K is discussed.

  5. Microwave ablation at 915 MHz vs 2.45 GHz: A theoretical and experimental investigation

    SciTech Connect

    Curto, Sergio; Taj-Eldin, Mohammed; Fairchild, Dillon; Prakash, Punit

    2015-11-15

    Purpose: The relationship between microwave ablation system operating frequency and ablation performance is not currently well understood. The objective of this study was to comparatively assess the differences in microwave ablation at 915 MHz and 2.45 GHz. Methods: Analytical expressions for electromagnetic radiation from point sources were used to compare power deposition at the two frequencies of interest. A 3D electromagnetic-thermal bioheat transfer solver was implemented with the finite element method to characterize power deposition and thermal ablation with asymmetrical insulated dipole antennas (single-antenna and dual-antenna synchronous arrays). Simulation results were validated against experiments in ex vivo tissue. Results: Theoretical, computational, and experimental results indicated greater power deposition and larger diameter ablation zones when using a single insulated microwave antenna at 2.45 GHz; experimentally, 32 ± 4.1 mm and 36.3 ± 1.0 mm for 5 and 10 min, respectively, at 2.45 GHz, compared to 24 ± 1.7 mm and 29.5 ± 0.6 mm at 915 MHz, with 30 W forward power at the antenna input port. In experiments, faster heating was observed at locations 5 mm (0.91 vs 0.49 °C/s) and 10 mm (0.28 vs 0.15 °C/s) from the antenna operating at 2.45 GHz. Larger ablation zones were observed with dual-antenna arrays at 2.45 GHz; however, the differences were less pronounced than for single antennas. Conclusions: Single- and dual-antenna arrays systems operating at 2.45 GHz yield larger ablation zone due to greater power deposition in proximity to the antenna, as well as greater role of thermal conduction.

  6. A 94/183 GHz multichannel radiometer for Convair flights

    NASA Technical Reports Server (NTRS)

    Gagliano, J. A.; Stratigos, J. A.; Forsythe, R. E.; Schuchardt, J. M.

    1979-01-01

    A multichannel 94/183 GHz radiometer was designed, built, and installed on the NASA Convair 990 research aircraft to take data for hurricane penetration flights, SEASAT-A underflights for measuring rain and water vapor, and Nimbus-G underflights for new sea ice signatures and sea surface temperature data (94 GHz only). The radiometer utilized IF frequencies of 1, 5, and 8.75 GHz about the peak of the atmospheric water vapor absorption line, centered at 183.3 GHz, to gather data needed to determine the shape of the water molecule line. Another portion of the radiometer operated at 94 GHz and obtained data on the sea brightness temperature, sea ice signatures, and on areas of rain near the ocean surface. The radiometer used a multiple lens antenna/temperature calibration technique using 3 lenses and corrugated feed horns at 94 GHz and 183 GHz. Alignment of the feed beams at 94 GHz and 183 GHz was accomplished using a 45 deg oriented reflecting surface which permitted simultaneous viewing of the feeds on alternate cycles of the chopping intervals.

  7. Synchrotron Spectral Curvature from 22 MHZ to 23 GHZ

    NASA Technical Reports Server (NTRS)

    Kogut, Alan J.

    2012-01-01

    We combine surveys of the radio sky at frequencies 22 MHz to 1.4 GHz with data from the ARCADE-2 instrument at frequencies 3 GHz to 10 GHz to characterize the frequency spectrum of diffuse synchrotron emission in the Galaxy. The radio spectrum steepens with frequency from 22 MHz to 10 GHz. The projected spectral index at 23 GHz derived from the low-frequency data agrees well with independent measurements using only data at frequencies 23 GHz and above. Comparing the spectral index at 23 GHz to the value from previously published analyses allows extension of the model to higher frequencies. The combined data are consistent with a power-law index beta = -2.64 +/-= 0.03 at 0.31 GHz, steepening by an amount of Delta-beta = 0.07 every octave in frequency. Comparison of the radio data to models including the cosmic-ray energy spectrum suggests that any break in the synchrotron spectrum must occur at frequencies above 23 GHz.

  8. Amplification of Picosecond Pulses in a 140-GHz Gyrotron-Traveling Wave Tube

    PubMed Central

    Kim, H. J.; Nanni, E. A.; Shapiro, M. A.; Sirigiri, J. R.; Woskov, P. P.; Temkin, R. J.

    2011-01-01

    An experimental study of picosecond pulse amplification in a gyrotron-traveling wave tube (gyro-TWT) has been carried out. The gyro-TWT operates with 30 dB of small signal gain near 140 GHz in the HE06 mode of a confocal waveguide. Picosecond pulses show broadening and transit time delay due to two distinct effects: the frequency dependence of the group velocity near cutoff and gain narrowing by the finite gain bandwidth of 1.2 GHz. Experimental results taken over a wide range of parameters show good agreement with a theoretical model in the small signal gain regime. These results show that in order to limit the pulse broadening effect in gyrotron amplifiers, it is crucial to both choose an operating frequency at least several percent above the cutoff of the waveguide circuit and operate at the center of the gain spectrum with sufficient gain bandwidth. PMID:21230783

  9. EPR of Cu2+ Prion Protein Constructs at 2 GHz Using the g⊥ Region to Characterize Nitrogen Ligation

    PubMed Central

    Hyde, James S.; Bennett, Brian; Walter, Eric D.; Millhauser, Glenn L.; Sidabras, Jason W.; Antholine, William E.

    2009-01-01

    Abstract A double octarepeat prion protein construct, which has two histidines, mixed with copper sulfate in a 3:2 molar ratio provides at most three imidazole ligands to each copper ion to form a square-planar Cu2+ complex. This work is concerned with identification of the fourth ligand. A new (to our knowledge) electron paramagnetic resonance method based on analysis of the intense features of the electron paramagnetic resonance spectrum in the g⊥ region at 2 GHz is introduced to distinguish between three and four nitrogen ligands. The methodology was established by studies of a model system consisting of histidine imidazole ligation to Cu2+. In this spectral region at 2 GHz (S-band), g-strain and broadening from the possible rhombic character of the Zeeman interaction are small. The most intense line is identified with the MI = +1/2 extra absorption peak. Spectral simulation demonstrated that this peak is insensitive to cupric Ax and Ay hyperfine interaction. The spectral region to the high-field side of this peak is uncluttered and suitable for analysis of nitrogen superhyperfine couplings to determine the number of nitrogens. The spectral region to the low-field side of the intense extra absorption peak in the g⊥ part of the spectrum is sensitive to the rhombic distortion parameters Ax and Ay. Application of the method to the prion protein system indicates that two species are present and that the dominant species contains four nitrogen ligands. A new loop-gap microwave resonator is described that contains ∼1 mL of frozen sample. PMID:19383478

  10. SUPESv.4.1.2

    SciTech Connect

    Red-Horse, J.; Mills-Curran, B.; Flanagan, D.; Taylor, L.; Sjaardema, G.

    2001-04-25

    SUPES is a collection of subprograms that perform frequently used non-numerical services for the engineering applications programmer. The three functional categories of SUPES are: (1) input command parsing, (2) dynamic memory management, and (3) system dependent utilities. The subprograms in categories one and two are written in standard FORTRAN-77, while the subprograms in category three are written provide a standarized FORTRAN interface to several system dependent features.

  11. 48 CFR 970.2201-1-2 - Policies.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... absence of any illegal drug, as defined in 10 CFR Part 707.4. All positions requiring access... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Policies. 970.2201-1-2 Section 970.2201-1-2 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY...

  12. GHz Electroluminescence Modulation in Nanoscale Subwavelength Emitters.

    PubMed

    Rossella, Francesco; Piazza, Vincenzo; Rocci, Mirko; Ercolani, Daniele; Sorba, Lucia; Beltram, Fabio; Roddaro, Stefano

    2016-09-14

    We investigate light emission from nanoscale point-sources obtained in hybrid metal-GaAs nanowires embedding two sharp axial Schottky barriers. Devices are obtained via the formation of Ni-rich metallic alloy regions in the nanostructure body thanks to a technique of controlled thermal annealing of Ni/Au electrodes. In agreement with recent findings, visible-light electroluminescence can be observed upon suitable voltage biasing of the junctions. We investigate the time-resolved emission properties of our devices and demonstrate an electrical modulation of light generation up to 1 GHz. We explore different drive configurations and discuss the intrinsic bottlenecks of the present device architecture. Our results demonstrate a novel technique for the realization of fast subwavelength light sources with possible applications in sensing and microscopy beyond the diffraction limit. PMID:27532324

  13. Direct satellite TV - The 12-GHz challenge

    NASA Astrophysics Data System (ADS)

    Fawcette, J.

    1982-02-01

    Manufacturers in Japan and Europe are developing the hardware necessary for commercially feasible direct broadcast satellite TV, including high-frequency circuits and mini-dishes for spacecasting. US companies are lagging behind due to formidable regulatory and legal difficulties. The article focuses on efforts to develop simple, inexpensive receivers which will be able to convert 12-GHz satellite transmissions into high-quality TV images. Three basic receiver designs are being developed: the mixer-downcaster, microwave integrated circuits using FET-preamplifier front ends with transistors connected by bond-wires, and monolithic gallium arsenide integrated circuits. Several companies are on the verge of introducing commercialized receivers utilizing these different basic designs.

  14. Contact gating at GHz frequency in graphene

    PubMed Central

    Wilmart, Q.; Inhofer, A.; Boukhicha, M.; Yang, W.; Rosticher, M.; Morfin, P.; Garroum, N.; Fève, G.; Berroir, J.-M.; Plaçais, B.

    2016-01-01

    The paradigm of graphene transistors is based on the gate modulation of the channel carrier density by means of a local channel gate. This standard architecture is subject to the scaling limit of the channel length and further restrictions due to access and contact resistances impeding the device performance. We propose a novel design, overcoming these issues by implementing additional local gates underneath the contact region which allow a full control of the Klein barrier taking place at the contact edge. In particular, our work demonstrates the GHz operation of transistors driven by independent contact gates. We benchmark the standard channel and novel contact gating and report for the later dynamical transconductance levels at the state of the art. Our finding may find applications in electronics and optoelectronics whenever there is need to control independently the Fermi level and the electrostatic potential of electronic sources or to get rid of cumbersome local channel gates. PMID:26879709

  15. Quantum limited quasiparticle mixers at 100 GHz

    SciTech Connect

    Mears, C.A; Hu, Qing; Richards, P.L. ); Worsham, A.H.; Prober, D.E. . Dept. of Applied Physics); Raeisaenen, A.V. . Radio Lab.)

    1990-09-01

    We have made accurate measurements of the noise and gain of superconducting-insulating-superconducting (SIS) mixers employing small area (1{mu}m{sup 2}) Ta/Ta{sub 2}O{sub 5}/Pb{sub 0.9}Bi{sub 0.1} tunnel junctions. We have measured an added mixer noise of 0.61 +/{minus} 0.31 quanta at 95.0 GHz, which is within 25 percent of the quantum limit of 0.5 quanta. We have carried out a detailed comparison between theoretical predictions of the quantum theory of mixing and experimentally measured noise and gain. We used the shapes of I-V curves pumped at the upper and lower sideband frequencies to deduce values of the embedding admittances at these frequencies. Using these admittances, the mixer noise and gain predicted by quantum theory are in excellent agreement with experiment. 21 refs., 9 figs.

  16. Contact gating at GHz frequency in graphene

    NASA Astrophysics Data System (ADS)

    Wilmart, Q.; Inhofer, A.; Boukhicha, M.; Yang, W.; Rosticher, M.; Morfin, P.; Garroum, N.; Fève, G.; Berroir, J.-M.; Plaçais, B.

    2016-02-01

    The paradigm of graphene transistors is based on the gate modulation of the channel carrier density by means of a local channel gate. This standard architecture is subject to the scaling limit of the channel length and further restrictions due to access and contact resistances impeding the device performance. We propose a novel design, overcoming these issues by implementing additional local gates underneath the contact region which allow a full control of the Klein barrier taking place at the contact edge. In particular, our work demonstrates the GHz operation of transistors driven by independent contact gates. We benchmark the standard channel and novel contact gating and report for the later dynamical transconductance levels at the state of the art. Our finding may find applications in electronics and optoelectronics whenever there is need to control independently the Fermi level and the electrostatic potential of electronic sources or to get rid of cumbersome local channel gates.

  17. A 20 GHz, 75 watt helix TWT for space communications

    NASA Technical Reports Server (NTRS)

    Heney, J. F.; Tamashiro, R. N.

    1982-01-01

    A space-qualified, helix-type traveling wave tube is being developed for satellite communication systems in the frequency band of 17.7 to 21.2 GHz. The design approach stresses very high efficiency operation, but with very low distortion. The tube provides multi-mode operation, permitting CW saturated power output levels of 75 watts, 40 watt and 7.5 watts. Operation is also anticipated at 5 dB below these saturation levels to achieve the required low distortion levels. Advanced construction features include a 5 stage depressed collector, a diamond supported helix slow-wave circuit, and a type M dispenser cathode. High reliability and long life (10 years) are objectives of the tube design. The status of the development and recent experimental results are presented.

  18. Improved Speed and Functionality of a 580-GHz Imaging Radar

    NASA Technical Reports Server (NTRS)

    Dengler, Robert; Cooper, Ken; Chattopadhyay, Goutam; Siegel, Peter; Schlecht, Erich; Mehdi, Imran; Skalare, Anders; Gill, John

    2010-01-01

    With this high-resolution imaging radar system, coherent illumination in the 576-to-589-GHz range and phase-sensitive detection are implemented in an all-solid-state design based on Schottky diode sensors and sources. By employing the frequency-modulated, continuous-wave (FMCW) radar technique, centimeter-scale range resolution has been achieved while using fractional bandwidths of less than 3 percent. The high operating frequencies also permit centimeter-scale cross-range resolution at several-meter standoff distances without large apertures. Scanning of a single-pixel transceiver enables targets to be rapidly mapped in three dimensions, so that the technology can be applied to the detection of concealed objects on persons.

  19. Scattering of Pruppacher-Pitter raindrops at 30 GHz

    NASA Technical Reports Server (NTRS)

    Yeh, C.; Woo, R.; Ishimaru, A.; Armstrong, J. W.

    1981-01-01

    Optimum design of modern ground-satellite communication systems requires the knowledge of rain-induced differential attenuation, differential phase shift, and cross polarization factors. Different available analytical techniques for raindrop scattering problems were assessed. These include: (1) geometrical theory of diffraction; (2) method of moment; (3) perturbation method; (4) point matching methods; (5) extended boundary condition method; and (6) global-local finite element method. The advantages and disadvantages of each are listed. The extended boundary condition method, which was determined to yield the most scattering results, is summarized. The scattered fields for Pruppacher-Pitter raindrops with sizes ranging from 0.5 mm to 3.5 mm at 20 C and at 30 GHz for several incidence angles are tabulated.

  20. A 3 Ghz photoelectron gun for high beam intensity

    SciTech Connect

    Bossart, R.; Braun, H.; Dehler, M.

    1995-12-31

    The CLIC Test Facility (CTF) for new accelerator structures of the proposed Compact Linear Collider (CLIC) is to be equipped with a new RF gun containing a laser driven photocathode. The new 3 GHz gun with photocathode shall produce a bunch train of 48 electron bunches of 25 nC charge each with a bunch length of 8 - 15 ps fwhm. The new RF gun consists of 2{1/2} cells and accelerates the beam to an energy of 7 MeV with a peak field gradient Ez = 100 MV/m. The strong space charge forces at low beam energy caused by the high charge density of the electron bunches must be contained by radial and longitudinal RF focusing in the RF gun. Radial RF focusing is applied by a conical backplane around the photocathode in the first cell where the electrons have a low energy. Longitudinal RF focusing is obtained by varying the length of each of the three cells of the gun. The total electric charge of the bunch train exceeds 1{mu}C and causes strong beam loading to the RF structures so that the stored energy is reduced to half of the unloaded RF energy. The RF gun under construction is being optimized by MAFIA beam simulations for an injector assembly comprising a second accelerating RF structure of 4 cells and an intermediate solenoid magnet correcting the beam divergence of the 2{1/2} cell gun. The scheme with two accelerating RF sections will provide a linear energy increase along the bunch suitable for further compression of the bunch length in a magnetic chicane.

  1. Phase equilibria and crystal chemistry of the CaO–1/2 Nd{sub 2}O{sub 3}–CoO{sub z} system at 885 °C in air

    SciTech Connect

    Wong-Ng, W.; Laws, W.; Talley, K.R.; Huang, Q.; Yan, Y.; Martin, J.; Kaduk, J.A.

    2014-07-01

    The phase diagram of the CaO–1/2 Nd{sub 2}O{sub 3}–CoO{sub z} system at 885 °C in air has been determined. The system consists of two calcium cobaltate compounds that have promising thermoelectric properties, namely, the 2D thermoelectric oxide solid solution, (Ca{sub 3−x}Nd{sub x})Co{sub 4}O{sub 9−z} (0≤x≤0.5), which has a misfit layered structure, and Ca{sub 3}Co{sub 2}O{sub 6} which consists of 1D chains of alternating CoO{sub 6} trigonal prisms and CoO{sub 6} octahedra. Ca{sub 3}Co{sub 2}O{sub 6} was found to be a point compound without the substitution of Nd on the Ca site. The reported Nd{sub 2}CoO{sub 4} phase was not observed at 885 °C. A ternary (Ca{sub 1−x}Nd{sub 1+x})CoO{sub 4−z} (x=0) phase, or (CaNdCo)O{sub 4−z}, was found to be stable at this temperature. A solid solution region of distorted perovskite (Nd{sub 1−x}Ca{sub x})CoO{sub 3−z} (0≤x≤0.25, space group Pnma) was established. In the peripheral binary systems, while a solid solution region was identified for (Nd{sub 1−x}Ca{sub x}){sub 2}O{sub 3−z} (0≤x≤0.2), Nd was not found to substitute in the Ca site of CaO. Six solid solution tie-line regions and six three-phase regions were determined in the CaO–Nd{sub 2}O{sub 3}–CoO{sub z} system in air. - Graphical abstract: Phase diagram of the 1/2 Nd{sub 2}O{sub 3}–CaO–CoO{sub x} system at 885 °C, showing the limits of various solid solutions, and the tie-line relationships of various phases. - Highlights: • Phase diagram of the CaO–1/2 Nd{sub 2}O{sub 3}–CoO{sub z} system constructed. • System consists of thermoelectric oxide (Ca{sub 3−x}Nd{sub x})Co{sub 4}O{sub 9−z} (0≤x≤0.5). • Structures of (Nd{sub 1−x}Ca{sub x})CoO{sub 3−z} and (CaNdCo)O{sub 4−z} determined.

  2. A Study of Dielectric Properties of Proteinuria between 0.2 GHz and 50 GHz

    PubMed Central

    Mun, Peck Shen; Ting, Hua Nong; Ong, Teng Aik; Wong, Chew Ming; Ng, Kwan Hong; Chong, Yip Boon

    2015-01-01

    This paper investigates the dielectric properties of urine in normal subjects and subjects with chronic kidney disease (CKD) at microwave frequency of between 0.2 GHz and 50 GHz. The measurements were conducted using an open-ended coaxial probe at room temperature (25°C), at 30°C and at human body temperature (37°C). There were statistically significant differences in the dielectric properties of the CKD subjects compared to those of the normal subjects. Statistically significant differences in dielectric properties were observed across the temperatures for normal subjects and CKD subjects. Pearson correlation test showed the significant correlation between proteinuria and dielectric properties. The experimental data closely matched the single-pole Debye model. The relaxation dispersion and relaxation time increased with the proteinuria level, while decreasing with the temperature. As for static conductivity, it increased with proteinuria level and temperature. PMID:26066351

  3. 100-GHz and 300-GHz coherent radio-over-fiber transmission using optical frequency comb source

    NASA Astrophysics Data System (ADS)

    Kanno, Atsushi; Kuri, Toshiaki; Hosako, Iwao; Kawanishi, Tetsuya; Yasumura, Yoshihiro; Yoshida, Yuki; Kitayama, Ken-ichi

    2013-01-01

    Millimeter-wave and sub-millimeter-wave radio-over-fiber (RoF) technology with digital-signal-processing­ aided coherent detection can be a promising candidate for high-speed radio transmission links with a capacity of greater than 10 Gb/s if the energy consumption does not increase drastically. We demonstrate 100-GHz­ and 300-GHz-band simultaneous RoF signal generation using an optical frequency comb source comprising an optical frequency shifter in an amplified optical fiber loop, and its radio transmission over the air. 10-Gbaud quadrature-phase-shift-keying provides a capacity of 18.6 Gb /s with a 7% forward error correction overhead in single carrier signal transmission as well as in multi-carrier transmission.

  4. Noise in waveguide between 18 GHz and 26.5 GHz

    NASA Astrophysics Data System (ADS)

    Allal, D.

    2016-01-01

    This report summarises the results of the Key Comparison CCEM.RF-K22.W on noise temperature, performed between October 2007 and February 2011. In this comparison, the available noise temperature of three noise sources was determined by six National Metrology Institutes (NMIs) in the frequency range from 18 GHz to 26.5 GHz. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCEM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  5. A 250 GHz Gyrotron with a 3 GHz Tuning Bandwidth for Dynamic Nuclear Polarization

    PubMed Central

    Barnes, Alexander B.; Nanni, Emilio A.; Herzfeld, Judith; Griffin, Robert G.; Temkin, Richard J.

    2012-01-01

    We describe the design and implementation of a novel tunable 250 GHz gyrotron oscillator with >10 W output power over most of a 3 GHz band and >35 W peak power. The tuning bandwidth and power are sufficient to generate a >1 MHz nutation frequency across the entire nitroxide EPR lineshape for cross effect DNP, as well as to excite solid effect transitions utilizing other radicals, without the need for sweeping the NMR magnetic field. Substantially improved tunability is achieved by implementing a long (23 mm) interaction cavity that can excite higher order axial modes by changing either the magnetic field of the gyrotron or the cathode potential. This interaction cavity excites the rotating TE5,2,q mode, and an internal mode converter outputs a high-quality microwave beam with >94% Gaussian content. The gyrotron was integrated into a DNP spectrometer, resulting in a measured DNP enhancement of 54 on the membrane protein bacteriorhodopsin. PMID:22743211

  6. T/R Multi-Chip MMIC Modules for 150 GHz

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene A.; Pukala, David M.; Soria, Mary M.; Sadowy, Gregory A.

    2009-01-01

    Modules containing multiple monolithic microwave integrated-circuit (MMIC) chips have been built as prototypes of transmitting/receiving (T/R) modules for millimeter-wavelength radar systems, including phased-array radar systems to be used for diverse purposes that could include guidance and avoidance of hazards for landing spacecraft, imaging systems for detecting hidden weapons, and hazard-avoidance systems for automobiles. Whereas prior landing radar systems have operated at frequencies around 35 GHz, the integrated circuits in this module operate in a frequency band centered at about 150 GHz. The higher frequency (and, hence, shorter wavelength), is expected to make it possible to obtain finer spatial resolution while also using smaller antennas and thereby reducing the sizes and masses of the affected systems.

  7. Rectenna Technology Program: Ultra light 2.45 GHz rectenna 20 GHz rectenna

    NASA Technical Reports Server (NTRS)

    Brown, William C.

    1987-01-01

    The program had two general objectives. The first objective was to develop the two plane rectenna format for space application at 2.45 GHz. The resultant foreplane was a thin-film, etched-circuit format fabricated from a laminate composed of 2 mil Kapton F sandwiched between sheets of 1 oz copper. The thin-film foreplane contains half wave dipoles, filter circuits, rectifying Schottky diode, and dc bussing lead. It weighs 160 grams per square meter. Efficiency and dc power output density were measured at 85% and 1 kw/sq m, respectively. Special testing techniques to measure temperature of circuit and diode without perturbing microwave operation using the fluoroptic thermometer were developed. A second objective was to investigate rectenna technology for use at 20 GHz and higher frequencies. Several fabrication formats including the thin-film scaled from 2.45 GHz, ceramic substrate and silk-screening, and monolithic were investigated, with the conclusion that the monolithic approach was the best. A preliminary design of the monolithic rectenna structure and the integrated Schottky diode were made.

  8. Spain 31-GHz observations of sky brightness temperatures

    NASA Technical Reports Server (NTRS)

    Gary, B. L.

    1988-01-01

    A water vapor radiometer was deployed at DSS 63 for 3 months of sky brightness temperature measurements at 31 GHz. An exceedance plot was derived from this data showing the fraction of time that 31 GHz 30 degree elevation angle brightness temperature exceeds specified values. The 5 percent exceedance statistics occurs at 75 K, compared with 70 K in Australia.

  9. Development and performance of a 129-GHz dynamic nuclear polarizer in an ultra-wide bore superconducting magnet

    PubMed Central

    Lumata, Lloyd L.; Martin, Richard; Jindal, Ashish K.; Kovacs, Zoltan; Conradi, Mark S.

    2014-01-01

    Objective We sought to build a dynamic nuclear polarization system for operation at 4.6 T (129 GHz) and evaluate its efficiency in terms of 13C polarization levels using free radicals that span a range of ESR linewidths. Materials and methods A liquid helium cryostat was placed in a 4.6 T superconducting magnet with a 150-mm warm bore diameter. A 129-GHz microwave source was used to irradiate 13C enriched samples. Temperatures close to 1 K were achieved using a vacuum pump with a 453-m3/h roots blower. A hyperpolarized 13C nuclear magnetic resonance (NMR) signal was detected using a saddle coil and a Varian VNMRS console operating at 49.208 MHz. Samples doped with free radicals BDPA (1,3-bisdipheny-lene-2-phenylallyl), trityl OX063 (tris{8-carboxyl-2,2,6,6-benzo(1,2-d:4,5-d)-bis(1,3)dithiole-4-yl}methyl sodium salt), galvinoxyl ((2,6-di-tert-butyl-α-(3,5-di-tert-butyl-4-oxo-2,5-cyclohexadien-1-ylidene)-p-tolyloxy), 2,2-diphenylpicrylhydrazyl (DPPH) and 4-oxo-TEMPO (4-Oxo-2,2,6,6-tetramethyl-1-piperidinyloxy) were assayed. Microwave dynamic nuclear polarization (DNP) spectra and solid-state 13C polarization levels for these samples were determined. Results 13C polarization levels close to 50 % were achieved for [1-13C]pyruvic acid at 1.15 K using the narrow electron spin resonance (ESR) linewidth free radicals trityl OX063 and BDPA, while 10–20 % 13C polarizations were achieved using galvinoxyl, DPPH and 4-oxo-TEMPO. Conclusion At this field strength free radicals with smaller ESR linewidths are still superior for DNP of 13C as opposed to those with linewidths that exceed that of the 1H Larmor frequency. PMID:25120071

  10. Broadband Characterization of a 100 to 180 GHz Amplifier

    NASA Technical Reports Server (NTRS)

    Kangaslahti, Pekka; Deal, W. R.; Mei, X. B.; Lai, R.

    2007-01-01

    Atmospheric science and weather forecasting require measurements of the temperature and humidity vs. altitude. These sounding measurements are obtained at frequencies close to the resonance frequencies of oxygen (118 GHz) and water (183 GHz) molecules. We have characterized a broadband amplifier that will increase the sensitivity of sounding and other instruments at these frequencies. This study demonstrated for the first t1me continuous low noise amplification from 100 to 180 GHz. The measured InP monolithic millimeter-wave Integrated circuit (MMIC) amplifier had more than 18 dB of gain from 100 to 180 GHz and 15 dB of gain up to 220 GHz. This is the widest bandwidth low noise amplifier result at these frequencies to date. The circuit was fabricated in Northrop Grumman Corporation 35 nm InP high electron mobility transistor (HEMT).

  11. Commissioning of 170 GHz, 1 MW EC H&CD in KSTAR

    NASA Astrophysics Data System (ADS)

    Jeong, J. H.; Sakamoto, K.; Joung, M.; Park, S. I.; Kim, H. J.; Han, W. S.; Kim, J. S.; Bae, Y. S.; Yang, H. L.; Kwak, J. G.; Kwon, M.; Namkung, W.; Park, H.; Cho, M. H.; Kajiwara, K.; Oda, Y.; Hosea, J.; Ellis, R.; Doane, J.; Olstad, R.

    2012-09-01

    The newly installed electron cyclotron heating and current drive (EC H&CD) system with a frequency of 170 GHz was successfully commissioned and used for the second-harmonic ECH-assisted startup in 2011 operational campaign of the KSTAR. As a RF power source, ITER pre-prototype of 170 GHz, 1 MW continuous-wave gyrotron, is loaned from the Japan Atomic Energy Agency (JAEA). During the KSTAR 2011 plamma campaign, maxumum pulse length of 10 sec at 0.6 MW EC beam was reliably injected into the plasma and the 170 GHz second harmonic ECH-assisted start-up was successful leading to reduce the flux consumption at toroidal magnetic field of 3 T. As a result, the flux consumption until the plasma current flat-top was reduced from 4.13 Wb for pure Ohmic to 3.62 Wb (12 % reduction) for the perpendicular injection. When the EC beam is launched with toroidal angle of 20 deg in co-CD direction, more reduced magnetic flux consumption was obtained with 3.14 Wb (24 % reduction) compared with pure OH plasmas. In recent, the gyrotron has been successfully commissioned with the output power of 1 MW and the pulse duration of 20 sec in KSTAR. This paper presents successful commissioning of 170 GHz EC H&CD system in KSTAR as well as the heating and startup experimental results.

  12. Low-cost 20-22 GHz MIC active receiver/radiometer

    NASA Astrophysics Data System (ADS)

    Mollenkopf, Steven; Katehi, Linda P. B.; Rebeiz, Gabriel M.

    1995-04-01

    A microwave integrated circuit active receiver is built and tested at 19-25 GHz. The receiver consists of a planar CPW-fed double folded-slot antenna coupled to a six-stage MESFET (metal semiconductor field effect transistors) amplifier and followed by a planar Schottky-diode detector. The folded-slot antenna on a GaAs half-space results in a wide frequency bandwidth suitable for MMIC amplifiers. The measured system performance show a video responsivity close to 1 GV/W at 20 GHz with a 3-dB bandwidth of 1500 MHz. A novel method which uses the planar video detector after the amplifier stages as an RF (radio frequency) mixer is used to measure the noise-figure of the direct detection radiometer. The system noise figure is 4.8 dB at 22 GHz. The radiometer sensitivity to a hot/cold load is 3.8 mu V/K. The measured antenna patterns show a 90% Gaussicity at 20-22 GHz. The active MIC receiver can be integrated monolithically for low-cost applications and is well suited for millimeter-wave linear imaging arrays.

  13. Low-cost 20-22 GHz MIC active receiver/radiometer

    NASA Technical Reports Server (NTRS)

    Mollenkopf, Steven; Katehi, Linda P. B.; Rebeiz, Gabriel M.

    1995-01-01

    A microwave integrated circuit active receiver is built and tested at 19-25 GHz. The receiver consists of a planar CPW-fed double folded-slot antenna coupled to a six-stage MESFET (metal semiconductor field effect transistors) amplifier and followed by a planar Schottky-diode detector. The folded-slot antenna on a GaAs half-space results in a wide frequency bandwidth suitable for MMIC amplifiers. The measured system performance show a video responsivity close to 1 GV/W at 20 GHz with a 3-dB bandwidth of 1500 MHz. A novel method which uses the planar video detector after the amplifier stages as an RF (radio frequency) mixer is used to measure the noise-figure of the direct detection radiometer. The system noise figure is 4.8 dB at 22 GHz. The radiometer sensitivity to a hot/cold load is 3.8 mu V/K. The measured antenna patterns show a 90% Gaussicity at 20-22 GHz. The active MIC receiver can be integrated monolithically for low-cost applications and is well suited for millimeter-wave linear imaging arrays.

  14. TWT design requirements for 30/20 GHz digital communications' satellite

    NASA Technical Reports Server (NTRS)

    Stankiewicz, N.; Anzic, G.

    1979-01-01

    The rapid growth of communication traffic (voice, data, and video) requires the development of additional frequency bands before the 1990's. The frequencies currently in use for satellite communications at 6/4 GHz are crowded and demands for 14/12 GHz systems are increasing. Projections are that these bands will be filled to capacity by the late 1980's. The next higher frequency band allocated for satellite communications is at 30/20 GHz. For interrelated reasons of efficiency, power level, and system reliability criteria, a candidate for the downlink amplifier in a 30/20 GHz communications' satellite is a dual mode traveling wave tube (TWT) equipped with a highly efficient depressed collector. A summary is given of the analyses which determine the TWT design requirements. The overall efficiency of such a tube is then inferred from a parametric study and from experimental data on multistaged depressed collectors. The expected TWT efficiency at 4 dB below output saturation is 24 percent in the high mode and 22 percent in the low mode.

  15. Evaluation of NorESM-OC (versions 1 and 1.2), the ocean carbon-cycle stand-alone configuration of the Norwegian Earth System Model (NorESM1)

    NASA Astrophysics Data System (ADS)

    Schwinger, Jörg; Goris, Nadine; Tjiputra, Jerry F.; Kriest, Iris; Bentsen, Mats; Bethke, Ingo; Ilicak, Mehmet; Assmann, Karen M.; Heinze, Christoph

    2016-08-01

    Idealised and hindcast simulations performed with the stand-alone ocean carbon-cycle configuration of the Norwegian Earth System Model (NorESM-OC) are described and evaluated. We present simulation results of three different model configurations (two different model versions at different grid resolutions) using two different atmospheric forcing data sets. Model version NorESM-OC1 corresponds to the version that is included in the NorESM-ME1 fully coupled model, which participated in CMIP5. The main update between NorESM-OC1 and NorESM-OC1.2 is the addition of two new options for the treatment of sinking particles. We find that using a constant sinking speed, which has been the standard in NorESM's ocean carbon cycle module HAMOCC (HAMburg Ocean Carbon Cycle model), does not transport enough particulate organic carbon (POC) into the deep ocean below approximately 2000 m depth. The two newly implemented parameterisations, a particle aggregation scheme with prognostic sinking speed, and a simpler scheme that uses a linear increase in the sinking speed with depth, provide better agreement with observed POC fluxes. Additionally, reduced deep ocean biases of oxygen and remineralised phosphate indicate a better performance of the new parameterisations. For model version 1.2, a re-tuning of the ecosystem parameterisation has been performed, which (i) reduces previously too high primary production at high latitudes, (ii) consequently improves model results for surface nutrients, and (iii) reduces alkalinity and dissolved inorganic carbon biases at low latitudes. We use hindcast simulations with prescribed observed and constant (pre-industrial) atmospheric CO2 concentrations to derive the past and contemporary ocean carbon sink. For the period 1990-1999 we find an average ocean carbon uptake ranging from 2.01 to 2.58 Pg C yr-1 depending on model version, grid resolution, and atmospheric forcing data set.

  16. Taming the 1.2 m Telescope

    NASA Astrophysics Data System (ADS)

    Griffin, S.; Edwards, M.; Greenwald, D.; Kono, D.; Liang, D.; Lohnes, K.; Wright, V.; Spillar, E.

    2013-09-01

    Achievable residual jitter on the 1.2 m telescope at MSSS shown in Figure 1 has historically been limited to 10-20 arc-sec. peak in moderate wind conditions due to the combination of the dynamics associated with the twin telescopes on the common declination axis shaft, and the related control system behavior. Figure 1 1.2 m Telescope The lightly damped, low frequency fundamental vibration mode shape of the telescopes rotating out of phase on the common declination axis shaft severely degraded the performance of the prior controllers. This vibration mode is easily excited by external forces such as wind loading and internal torque commands from the mount control system. The relatively poor historic performance was due to a combination of the low error rejection of external disturbances, and the controller exciting the mode. A radical new approach has been implemented that has resulted in a decrease of jitter to less than 1 arcsec under most conditions. The new approach includes minor hardware modifications to provide active damping with accelerometers as feedback sensors. This architecture has allowed a bandwidth increase of almost an order of magnitude and eliminated the large amplitude motions at the mode natural frequency, resulting in much improved pointing and jitter performance. A representative comparison of historical versus new architecture performance is shown in Figure 2 for the declination axis.

  17. Improvements in Speed and Functionality of a 670-GHz Imaging Radar

    NASA Technical Reports Server (NTRS)

    Dengler, Robert J.; Cooper, Ken B.; Mehdi, Imran; Siegel, Peter H.; Tarsala, Jan A.; Bryllert, Thomas E.

    2011-01-01

    Significant improvements have been made in the instrument originally described in a prior NASA Tech Briefs article: Improved Speed and Functionality of a 580-GHz Imaging Radar (NPO-45156), Vol. 34, No. 7 (July 2010), p. 51. First, the wideband YIG oscillator has been replaced with a JPL-designed and built phase-locked, low-noise chirp source. Second, further refinements to the data acquisition and signal processing software have been performed by moving critical code sections to C code, and compiling those sections to Windows DLLs, which are then invoked from the main LabVIEW executive. This system is an active, single-pixel scanned imager operating at 670 GHz. The actual chirp signals for the RF and LO chains were generated by a pair of MITEQ 2.5 3.3 GHz chirp sources. Agilent benchtop synthesizers operating at fixed frequencies around 13 GHz were then used to up-convert the chirp sources to 15.5 16.3 GHz. The resulting signals were then multiplied 36 times by a combination of off-the-shelf millimeter- wave components, and JPL-built 200- GHz doublers and 300- and 600-GHz triplers. The power required to drive the submillimeter-wave multipliers was provided by JPL-built W-band amplifiers. The receive and transmit signal paths were combined using a thin, high-resistivity silicon wafer as a beam splitter. While the results at present are encouraging, the system still lacks sufficient speed to be usable for practical applications in a contraband detection. Ideally, an image acquisition speed of ten seconds, or a factor of 30 improvement, is desired. However, the system improvements to date have resulted in a factor of five increase in signal acquisition speed, as well as enhanced signal processing algorithms, permitting clearer imaging of contraband objects hidden underneath clothing. In particular, advances in three distinct areas have enabled these performance enhancements: base source phase noise reduction, chirp rate, and signal processing. Additionally, a second

  18. Side Elevation, End Elevation, Cross Section, 1/2 Roof Plan, 1/2 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Side Elevation, End Elevation, Cross Section, 1/2 Roof Plan, 1/2 Reflected Plan, 1/2 Floor Plan, 1/2 Reflected Plan - Jack's Mill Covered Bridge, Spanning Henderson Creek, Oquawka, Henderson County, IL

  19. A 4 GHz digital receiver using the Uniboard platform

    NASA Astrophysics Data System (ADS)

    Comoretto, Giovanni; Russo, Antonietta; Quertier, Benjamin; Cais, Philippe; Camino, Pascal

    2012-09-01

    The Uniboard is a general purpose board, developed as a part of the Radionet FP7 program, that hosts 8 Altera StratixIV FPGAs interconnected by high speed links. It can be used standalone or as a part of a more complex system. The Digital receiver application uses a single Uniboard to implement a flexible packetization of a wideband signal in the frequency domain. It accepts a 4 GHz (8 GS/s) input bandwidth and provides up to 64 output bands. The bandwidth and position of each output band can be independently adjusted. The input signal is first analyzed by a polyphase filterbank, that splits the input band into 32 sub-bands with a bandwidth of 190 MHz and a spacing of 128 MHz. The overlap among adjacent bands allows the positioning of the output bands without dead regions. This filterbank is followed by an array of digitally defined downconverters, each one composed of a mixer/LO and a variable decimation filter. The filter band can be adjusted in binary steps from 1 to 128 MHz. Using tap recirculation, the filter shape remains constant over this whole range, with about 60 dB of stopband rejection and 90% usable passband. The output bands are packetized according to the VDIF VLBI standard, over eight 10G Ethernet links. Further processing can be done either on board, or in a cluster of conventional PCs. In addition, high speed ADC are in-house developed (ASIC 65nm CMOS STmicroelectronics) to feed the Uniboard card with 8GS/s, 4GHz BW, 3bits samples.

  20. The local radio-galaxy population at 20 GHz

    NASA Astrophysics Data System (ADS)

    Sadler, Elaine M.; Ekers, Ronald D.; Mahony, Elizabeth K.; Mauch, Tom; Murphy, Tara

    2014-02-01

    We have made the first detailed study of the high-frequency radio-source population in the local Universe, using a sample of 202 radio sources from the Australia Telescope 20 GHz (AT20G) survey identified with galaxies from the 6dF Galaxy Survey (6dFGS). The AT20G-6dFGS galaxies have a median redshift of z = 0.058 and span a wide range in radio luminosity, allowing us to make the first measurement of the local radio luminosity function at 20 GHz. Our sample includes some classical Fanaroff-Riley type I (FR I) and FR II radio galaxies, but most of the AT20G-6dFGS galaxies host compact (FR 0) radio active galactic nuclei which appear to lack extended radio emission even at lower frequencies. Most of these FR 0 sources show no evidence for relativistic beaming, and the FR 0 class appears to be a mixed population which includes young compact steep-spectrum and gigahertz peaked-spectrum radio galaxies. We see a strong dichotomy in the Wide-field Infrared Survey Explorer (WISE) mid-infrared colours of the host galaxies of FR I and FR II radio sources, with the FR I systems found almost exclusively in WISE `early-type' galaxies and the FR II radio sources in WISE `late-type' galaxies. The host galaxies of the flat- and steep-spectrum radio sources have a similar distribution in both K-band luminosity and WISE colours, though galaxies with flat-spectrum sources are more likely to show weak emission lines in their optical spectra. We conclude that these flat-spectrum and steep-spectrum radio sources mainly represent different stages in radio-galaxy evolution, rather than beamed and unbeamed radio-source populations.

  1. A theoretical investigation into the cooperativity effect between the H∙∙∙O and H∙∙∙F⁻ interactions and electrostatic potential upon 1:2 (F⁻:N-(Hydroxymethyl)acetamide) ternary-system formation.

    PubMed

    Tian, Qing-Ping; Wang, Yan-Hong; Shi, Wen-Jing; Song, Shu-Qin; Tang, Hai-Fei

    2013-12-01

    The cooperativity effects between the O/N-H∙∙∙F(-) anionic hydrogen-bonding and O/N-H∙∙∙O hydrogen-bonding interactions and electrostatic potentials in the 1:2 (F(-):N-(Hydroxymethyl)acetamide (signed as "ha")) ternary systems are investigated at the B3LYP/6-311++G** and MP2/6-311++G** levels. A comparison of the cooperativity effect in the "F(-)∙∙∙ha∙∙∙ha" and "FH∙∙∙ha(-)∙∙∙ha" systems is also carried out. The result shows that the increase of the H∙∙∙O interaction energy in the O-H∙∙∙O-H, N-H∙∙∙O-H or N-H∙∙∙O = C link is more notable than that in the O-H∙∙∙O = C contact upon ternary-system formation. The cooperativity effect is found in the complex formed by the O/N-H∙∙∙F(-) and O/N-H∙∙∙O interactions, while the anti-cooperativity effect is present in the system with only the O/N-H∙∙∙F(-) H-bond or the "FH∙∙∙ha(-)∙∙∙ha" complex by the N(-)∙∙∙H-F contact. Atoms in molecules (AIM) analysis and shift of electron density confirm the existence of cooperativity. The most negative surface electrostatic potential (V(S,min)) correlates well with the interaction energy E' int.(ha∙∙∙F-) and synergetic energy E(syn.), respectively. The relationship between the change of V(S,min) (i.e., ΔV(S,min)) and E(syn.) is also found.

  2. The 17 GHz active region number

    SciTech Connect

    Selhorst, C. L.; Pacini, A. A.; Costa, J. E. R.; Giménez de Castro, C. G.; Valio, A.; Shibasaki, K.

    2014-08-01

    We report the statistics of the number of active regions (NAR) observed at 17 GHz with the Nobeyama Radioheliograph between 1992, near the maximum of cycle 22, and 2013, which also includes the maximum of cycle 24, and we compare with other activity indexes. We find that NAR minima are shorter than those of the sunspot number (SSN) and radio flux at 10.7 cm (F10.7). This shorter NAR minima could reflect the presence of active regions generated by faint magnetic fields or spotless regions, which were a considerable fraction of the counted active regions. The ratio between the solar radio indexes F10.7/NAR shows a similar reduction during the two minima analyzed, which contrasts with the increase of the ratio of both radio indexes in relation to the SSN during the minimum of cycle 23-24. These results indicate that the radio indexes are more sensitive to weaker magnetic fields than those necessary to form sunspots, of the order of 1500 G. The analysis of the monthly averages of the active region brightness temperatures shows that its long-term variation mimics the solar cycle; however, due to the gyro-resonance emission, a great number of intense spikes are observed in the maximum temperature study. The decrease in the number of these spikes is also evident during the current cycle 24, a consequence of the sunspot magnetic field weakening in the last few years.

  3. 43 CFR 2201.1-2 - Segregative effect.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... System lands, which proposal shall be filed in compliance with 36 CFR part 254, the authorized officer... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Segregative effect. 2201.1-2 Section 2201... Exchanges-Specific Requirements § 2201.1-2 Segregative effect. (a) If a proposal is made to exchange...

  4. A 220 GHz reflection-type phased array concept study

    NASA Astrophysics Data System (ADS)

    Hedden, Abigail S.; Dietlein, Charles R.; Wikner, David A.

    2011-05-01

    The goal of this project is to enable light-weight, durable, and portable systems capable of performing standoff detection of person-borne improvised explosive devices (PB-IEDs) through the development of millimeter-wave reflection-type phased arrays. Electronic beam steering eliminates the need for complex mechanical scanners that are commonly implemented with millimeter-wave imaging systems and would reduce overall system size and weight. We present a concept study of a 220 GHz reflection-type phased array for the purpose of performing beam scanning of a confocal reflector system. Requirements for effective imaging of the desired target region are established, including spatial resolution, total scan angle, and number of image pixels achievable. We examine the effects of array architecture on beam characteristics as it is scanned off broadside, including Gaussicity and encircled energy. Benchmark requirements are determined and compared with the capabilities of several potential phase shifter technologies, including MEMS-based variable capacitor phase shifters, switches, and varactor diode-based phase shifters.

  5. Tunable All-Solid-State Local Oscillators to 1900 GHz

    NASA Technical Reports Server (NTRS)

    Ward, John; Chattopadhyay, Goutam; Maestrini, Alain; Schlecht, Erich; Gill, John; Javadi, Hamid; Pukala, David; Maiwald, Frank; Mehdi, Imran

    2004-01-01

    We present a status report of an ongoing effort to develop robust tunable all-solid-state sources up to 1900 GHz for the Heterodyne Instrument for the Far Infrared (HIFI) on the Herschel Space Observatory. GaAs based multi-chip power amplifier modules at W-band are used to drive cascaded chains of multipliers. We have demonstrated performance from chains comprised of four doublers up to 1600 GHz as well as from a x2x3x3 chain to 1900 GHz. Measured peak output power of 23 (micro)W at 1782 GHz and 2.6 (micro)W at 1900 GHz has been achieved when the multipliers are cooled to 120K. The 1900 GHz tripler was pumped with a four anode tripler that produces a peak of 4 mW at 630 GHz when cooled to 120 K. We believe that these sources can now be used to pump hot electron bolometer (HEB) heterodyne mixers.ter (HEB) heterodyne mixers.

  6. Sustaining GHz oscillation of carbon nanotube based oscillators via a MHz frequency excitation

    NASA Astrophysics Data System (ADS)

    Motevalli, Benyamin; Taherifar, Neda; Zhe Liu, Jefferson

    2016-05-01

    There have been intensive studies to investigate the properties of gigahertz nano-oscillators based on multi-walled carbon nanotubes (MWCNTs). Many of these studies, however, revealed that the unique telescopic translational oscillations in such devices would damp quickly due to various energy dissipation mechanisms. This challenge remains the primary obstacle against its practical applications. Herein, we propose a design concept in which a GHz oscillation could be re-excited by a MHz mechanical motion. This design involves a triple-walled CNT, in which sliding of the longer inner tube at a MHz frequency can re-excite and sustain a GHz oscillation of the shorter middle tube. Our molecular dynamics (MD) simulations prove this design concept at ˜10 nm scale. A mathematical model is developed to explore the feasibility at a larger size scale. As an example, in an oscillatory system with the CNT’s length above 100 nm, the high oscillatory frequency range of 1.8-3.3 GHz could be excited by moving the inner tube at a much lower frequency of 53.4 MHz. This design concept together with the mechanical model could energize the development of GHz nano-oscillators in miniaturized electro-mechanical devices.

  7. MMIC Power Amplifier Puts Out 40 mW From 75 to 110 GHz

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene

    2006-01-01

    A three-stage monolithic microwave integrated circuit (MMIC) W-band amplifier has been constructed and tested in a continuing effort to develop amplifiers as well as oscillators, frequency multipliers, and mixers capable of operating over wide frequency bands that extend above 100 GHz. There are numerous potential uses for MMICs like these in scientific instruments, radar systems, communication systems, and test equipment operating in this frequency range.

  8. Design of a 12-GHz multicarrier earth-terminal for satellite-CATV interconnection

    NASA Technical Reports Server (NTRS)

    Newman, B. A.; Singh, J. P.; Rosenbaum, F. J.

    1971-01-01

    The design and development of the front-end for a multi-carrier system that allows multiplex signal transmission from satellite-borne transponders is described. Detailed systems analyses provided down-converter specifications. The 12 GHz carrier down-converter uses waveguide, coaxial, and microstrip transmission line elements in its implementation. Mixing is accomplished in a single-ended coaxial mixer employing a field-replacable cartridge style diode.

  9. The 2-8 GHz solar dynamic spectra and polarization measurement feasibility study

    NASA Technical Reports Server (NTRS)

    Haddock, F. T.

    1971-01-01

    The preliminary system design of a Solar Microwave Spectrograph (SMS) is presented. This design resulted from a study to determine the feasibility of measuring solar polarization and dynamic spectra over the range of two to eight GHz, using broadband radio frequency instrumentation and rapid recording equipment in conjunction with radio telescopes. The scientific value of the proposed SMS instrument is discussed, with remarks concerning data reduction and analysis and a presentation of the engineering plan to implement the SMS system.

  10. RF measurements of a traveling-wave muffin-tin accelerating structure at 90 GHz

    SciTech Connect

    Chou, P.J.; Bowden, G.B.; Copeland, M.R.; Menegat, A.; Pritzkau, D.P.; Siemann, R.H.; Henke, H.

    1997-05-01

    A measuring system at the table-top scale was developed for RF measurements of a muffin-tin accelerating structure operating at 32 times the SLAC frequency (2.856 GHz). Both perturbation and non-perturbation methods are employed to characterize the RF properties of a muffin-tin structure. Conventional bead pull measurements are extended to millimeter wavelengths. Design of the measuring system and preliminary results of RF measurements are presented.

  11. 670 GHz Schottky Diode Based Subharmonic Mixer with CPW Circuits and 70 GHz IF

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Goutam (Inventor); Schlecht, Erich T. (Inventor); Lee, Choonsup (Inventor); Lin, Robert H. (Inventor); Gill, John J. (Inventor); Sin, Seth (Inventor); Mehdi, Imran (Inventor)

    2014-01-01

    A coplanar waveguide (CPW) based subharmonic mixer working at 670 GHz using GaAs Schottky diodes. One example of the mixer has a LO input, an RF input and an IF output. Another possible mixer has a LO input, and IF input and an RF output. Each input or output is connected to a coplanar waveguide with a matching network. A pair of antiparallel diodes provides a signal at twice the LO frequency, which is then mixed with a second signal to provide signals having sum and difference frequencies. The output signal of interest is received after passing through a bandpass filter tuned to the frequency range of interest.

  12. 43 CFR 2812.1-2 - Contents.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Contents. 2812.1-2 Section 2812.1-2 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT... Bay Revested Lands § 2812.1-2 Contents. (a) An individual applicant and each member of...

  13. 43 CFR 2812.1-2 - Contents.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Contents. 2812.1-2 Section 2812.1-2 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT... Bay Revested Lands § 2812.1-2 Contents. (a) An individual applicant and each member of...

  14. 16 CFR 1.2 - Procedure.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 1 2012-01-01 2012-01-01 false Procedure. 1.2 Section 1.2 Commercial Practices FEDERAL TRADE COMMISSION ORGANIZATION, PROCEDURES AND RULES OF PRACTICE GENERAL PROCEDURES Industry Guidance Advisory Opinions § 1.2 Procedure. (a) Application. The request for advice...

  15. 44 CFR 1.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Definitions. 1.2 Section 1.2... GENERAL RULEMAKING; POLICY AND PROCEDURES General § 1.2 Definitions. (a) Rule or regulation means the...) Significant adverse effects on competition, employment, investment, productivity, innovation, or on...

  16. 43 CFR 2812.1-2 - Contents.

    Code of Federal Regulations, 2012 CFR

    2006-10-01

    ... 43 Public Lands: Interior 2 2006-10-01 2006-10-01 false Contents. 2812.1-2 Section 2812.1-2 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT... Bay Revested Lands § 2812.1-2 Contents. (a) An individual applicant and each member of...

  17. 43 CFR 2812.1-2 - Contents.

    Code of Federal Regulations, 2013 CFR

    1997-10-01

    ... 43 Public Lands: Interior 2 1997-10-01 1997-10-01 false Contents. 2812.1-2 Section 2812.1-2 LAND RESOURCE MANAGEMENT (2000) TRAMROADS AND LOGGING ROADS Over O. and C. and Coos Bay Revested Lands § 2812.1-2 Contents. (a) An individual applicant and each member of any unincorporated association which...

  18. 7 CFR 1.2 - Policy.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 1 2010-01-01 2010-01-01 false Policy. 1.2 Section 1.2 Agriculture Office of the Secretary of Agriculture ADMINISTRATIVE REGULATIONS Official Records § 1.2 Policy. (a) Agencies of USDA shall comply with the time limits set forth in the FOIA and in this subpart for responding to...

  19. 49 CFR 1.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Definitions. 1.2 Section 1.2 Transportation Office of the Secretary of Transportation ORGANIZATION AND DELEGATION OF POWERS AND DUTIES General § 1.2 Definitions. As used in this part, Administrator includes: (a) The Federal Aviation Administrator. (b) The Federal Highway Administrator. (c)...

  20. 7 CFR 1.2 - Policy.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 1 2013-01-01 2013-01-01 false Policy. 1.2 Section 1.2 Agriculture Office of the Secretary of Agriculture ADMINISTRATIVE REGULATIONS Official Records § 1.2 Policy. (a) Agencies of USDA shall comply with the time limits set forth in the FOIA and in this subpart for responding to...

  1. 43 CFR 2812.1-2 - Contents.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Contents. 2812.1-2 Section 2812.1-2 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT... Bay Revested Lands § 2812.1-2 Contents. (a) An individual applicant and each member of...

  2. 43 CFR 2812.1-2 - Contents.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Contents. 2812.1-2 Section 2812.1-2 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT... Bay Revested Lands § 2812.1-2 Contents. (a) An individual applicant and each member of...

  3. A search for methanol masers at 44 GHz

    NASA Astrophysics Data System (ADS)

    Kalenskij, S. V.; Bachiller, R.; Berulis, I. I.; Val'tts, I. E.; Gomez-Gonzalez, J.; Martin-Pintado, J.; Rodriguez-Franco, A.; Slysh, V. I.

    1992-10-01

    Results of an extensive survey of young stellar objects in the methanol line 7(0) - 6(1)A(+) (44 GHz) are presented. Three new masers were detected towards cold IRAS sources in the dark clouds L 291 (GGD 27), L 379, and IC 1396 N. The new masers were also observed in 4(-1) - 3(0) E (36 GHz) and 1(0) - 0(0)A(+) (48 GHz) methanol transitions. A relationship between methanol masers and high-velocity flows with dense disks around central sources is proposed, and a possible correlation between maser emission and their intensity in the FIR is suggested.

  4. Asymptotic entanglement transformation between W and GHZ states

    SciTech Connect

    Vrana, Péter; Christandl, Matthias

    2015-02-15

    We investigate entanglement transformations with stochastic local operations and classical communication in an asymptotic setting using the concepts of degeneration and border rank of tensors from algebraic complexity theory. Results well-known in that field imply that GHZ states can be transformed into W states at rate 1 for any number of parties. As a generalization, we find that the asymptotic conversion rate from GHZ states to Dicke states is bounded as the number of subsystems increases and the number of excitations is fixed. By generalizing constructions of Coppersmith and Winograd and by using monotones introduced by Strassen, we also compute the conversion rate from W to GHZ states.

  5. Packaging of microwave integrated circuits operating beyond 100 GHz

    NASA Technical Reports Server (NTRS)

    Samoska, L.; Daniel, E.; Sokolov, V.; Sommerfeldt, S.; Bublitz, J.; Olson, K.; Gilbert, B.; Chow, D.

    2002-01-01

    Several methods of packaging high speed (75-330 GHz) InP HEMT MMIC devices are discussed. Coplanar wirebonding is presented with measured insertion loss of less than 0.5dB and return loss better than -17 dB from DC to 110 GHz. A motherboard/daughterboard packaging scheme is presented which supports minimum loss chains of MMICs using this coplanar wirebonding method. Split waveguide block packaging approaches are presented in G-band (140-220 GHz) with two types of MMIC-waveguide transitions: E-plane probe andantipodal finline.

  6. Spin-lattice relaxation of ligand nuclei in slowly reorienting paramagnetic complexes in the electronic doublet spin state ( S = {1}/{2}). A theoretical approach for strongly coupled two-spin systems

    NASA Astrophysics Data System (ADS)

    Benetis, Nikolas P.

    In this paper a general theory for treating the spin-lattice relaxation of a ligand nucleus (denoted by I) is derived for a metal complex in a doublet electron spin state ( S = {1}/{2}). The dipole-dipole SI interaction is treated for the case where the electron spin is also strongly coupled to the metal nucleus K. The SK interaction considered here is the hyperfine coupling, both scalar (SC) and dipolar (DD). The present theory is valid for slowly reorienting complexes in solution and can, furthermore, incorporate relaxation effects of the electron spin S, and the metal nucleus K due to processes which are faster than, and independent of, reorientation, i.e., for processes that fulfil the strong narrowing conditions. The effects of chemical exchange of the ligands and of anisotropic reorientation of the complex are also studied. Together with our previous studies of paramagnetic complexes with electron spin S ≧ 1, that have been recently reviewed by J. Kowalewski, L. Nordenskiöld, N. Benetis, and P. O. Westlund, ( Prog. NMR Spectrosc.17, 141 (1985)), the present work completes the elementary relaxation features of ligand nuclei of metal complexes in the slow motional regime. The present theory is shown to be more general than the theory of Bertini and co-workers ( J. Magn. Reson.59 , 213 (1984)), which can be obtained as a limit of the present approach by decoupling the reorientation from the motions of the S-K two spin system. The treatment of a strongly coupled two-spin system is emphasized since it provides a necessary step to the treatment of the relaxation of paramagnetic doublets.

  7. DQ-DRENAR: A new NMR technique to measure site-resolved magnetic dipole-dipole interactions in multispin-1/2 systems: Theory and validation on crystalline phosphates

    NASA Astrophysics Data System (ADS)

    Ren, Jinjun; Eckert, Hellmut

    2013-04-01

    A new solid state NMR technique is described for measuring homonuclear dipole-dipole interactions in multi-spin-1/2 systems under magic-angle spinning conditions. Re-coupling is accomplished in the form of an effective double quantum (DQ) Hamiltonian created by a symmetry-based POST-C7 sequence consisting of two excitation blocks, attenuating the signal (intensity S'). For comparison, a reference signal S0 with the dipolar re-coupling absent is generated by shifting the phase of the second block by 90° relative to the first block. As in rotational echo double resonance, the homonuclear dipole-dipole coupling constant can then be extracted from a plot of the normalized difference signal (S0 - S')/S0 versus dipolar mixing time. The method is given the acronym DQ-DRENAR ("Double-Quantum-based Dipolar Re-coupling effects Nuclear Alignment Reduction"). The method is analyzed mathematically, and on the basis of detailed simulations, with respect to the order and the geometry of the spin system, the dipolar truncation phenomenon, and the influence of the chemical shift anisotropy on experimental curves. Within the range of (S0 - S')/S0 ≤0.3-0.5 such DRENAR curves can be approximated by simple parabolae, yielding effective squared dipole-dipole coupling constants summed over all the pairwise interactions present. The method has been successfully validated for 31P-31P distance determinations of numerous crystalline model compounds representing a wide range of dipolar coupling strengths.

  8. Preliminary simulation of beam extraction for the 28-GHz ECR ion source

    NASA Astrophysics Data System (ADS)

    Park, Bum-Sik; Kim, Yonghwan; Choi, Sukjin

    2015-10-01

    The 28-GHz ECR (electron cyclotron resonance) ion source is under development to supply various beams from protons to uranium at the RISP (Rare Isotope Science Project). The superconducting magnet system for a 28-GHz ECR ion source consists of four solenoid coils and a saddle-type sextupole. A numerical simulation was accomplished to meet the design requirement of the ECR ion source by using the KOBRA3-INP code, which is the three dimensional ion optics code, to optimize the extraction system. The influence of the three-dimensional magnetic field and the space charge effect was considered to extract the highly-charged ion beam. In this paper, the design results for the extraction system were reported in detail.

  9. Planning assistance for the 30/20 GHz program, volume 2

    NASA Technical Reports Server (NTRS)

    Al-Kinani, G.; Frankfort, M.; Kaushal, D.; Markham, R.; Siperko, C.; Wall, M.

    1981-01-01

    In the baseline concept development the communications payload on Flight 1 was specified to consist of on-board trunking and emergency communications systems (ECS). On Flight 2 the communications payloads consisted of trunking and CPS on-board systems, the CPS capability replacing the Flight 1 ECS. No restriction was placed on the launch vehicle size. Constraints placed on multiple concept development effort were that launch vehicle size for Concept 1 was restricted to SUSS-D and for Concept 2 a SUSS-A. The design concept development was based on satisfying the baseline requirements set forth in the SOW for a single demonstration flight system. Key constraints on contractors were cost and launch vehicle size. Five major areas of new technology development were reviewed: (1) 30 GHz low noise receivers; (2) 20 GHz Power Amplifiers; (3) SS-TDMA switch; (4) Baseband Processor; (5) Multibeam Antennas.

  10. Advanced 30/20 GHz multiple-beam antennas for communications satellites

    NASA Technical Reports Server (NTRS)

    Myhre, R. W.

    1982-01-01

    Design concepts under development utilize two separate spacecraft antenna systems, one uplink at 30 GHz and the other a downlink at 20 GHz, where each antenna provides multiple fixed and scanning beams. Two contractors completed configuration trade-off studies and breadboarding of critical technology components, and are fabricating and testing proof-of-concept (POC) models to demonstrate the technology feasibility. Technology developments required for the proposed systems are presented, along with each contractor's progress to date. The technology development areas discussed include: (1) offset Cassegrain and shaped reflector systems for narrow beams with low sidelobes and wideangle off-axis scan; (2) diplexed beam-forming networks for dual polarization, low sidelobes, and fixed and scan-beam operation; (3) fast switching networks for scanning beams; and (4) fabrication of precision feed components and large offset reflectors.

  11. 14 CFR 1.2 - Abbreviations and symbols.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... affecting § 1.2, see the List of CFR Sections Affected, which appears in the Finding Aids section of the... above ground level. ALS means approach light system. APU means auxiliary power unit. ASR means...

  12. Experimental evaluation of a ruby maser at 43 GHz

    NASA Technical Reports Server (NTRS)

    Moore, C. R.; Neff, D.

    1982-01-01

    Inversion ratio measurements were conducted at several frequencies between 27 and 43 GHz for a pink ruby material (0.05% Cr/3+/ in Al2O3) at the push-pull pump angle of 54.7 degrees in order to determine the upper frequency limit where pink ruby could be expected to operate as a practical maser amplifier. Based on these measurements, a single-stage maser was developed which yielded 8 + or - 1 dB net gain and a 3 dB bandwidth of 180 MHz at a center frequency of 42.5 GHz. It is concluded that a multistage reflected wave maser could achieve bandwidths exceeding 1 GHz with 30 dB net gain at center frequencies near 40 GHz.

  13. Complementary 45 GHz Observations of the MALT-90 Pilot Sources

    NASA Astrophysics Data System (ADS)

    Fuller, Gary; Rathborne, Jill; Muller, Erik; Cunningham, Maria; Brooks, Kate; Barnes, Peter; Ellingsen, Simon; Longmore, Steven; Wyrowski, Friedrich; Walsh, Andrew; Peretto, Nicolas; Jackson, James

    2009-10-01

    The MALT-90 pilot survey is mapping 200 sources selected from different "finder charts" of massive star forming cores. This pilot survey is designed to provide detection rates, typical line strengths, and source sizes for the various types of objects. Such information is crucial, along with an understanding of the nature of the sources observed, for a rational design of a complete 90 GHz MALT survey. In this proposal we request time to obtain 45 GHz spectra of all the targets in MALT-90 pilot. As well as providing observations of a complementary set of lines to the 90 GHz data, better constraining the properties of the sources, these observations will provide a link allowing a comparison of the results of the MALT-90 and the 45GHz ATCA galactic plane pilot projects.

  14. 1.3 GHz superconducting RF cavity program at Fermilab

    SciTech Connect

    Ginsburg, C.M.; Arkan, T.; Barbanotti, S.; Carter, H.; Champion, M.; Cooley, L.; Cooper, C.; Foley, M.; Ge, M.; Grimm, C.; Harms, E.; /Fermilab

    2011-03-01

    At Fermilab, 9-cell 1.3 GHz superconducting RF (SRF) cavities are prepared, qualified, and assembled into cryomodules (CMs) for Project X, an International Linear Collider (ILC), or other future projects. The 1.3 GHz SRF cavity program includes targeted R&D on 1-cell 1.3 GHz cavities for cavity performance improvement. Production cavity qualification includes cavity inspection, surface processing, clean assembly, and one or more cryogenic low-power CW qualification tests which typically include performance diagnostics. Qualified cavities are welded into helium vessels and are cryogenically tested with pulsed high-power. Well performing cavities are assembled into cryomodules for pulsed high-power testing in a cryomodule test facility, and possible installation into a beamline. The overall goals of the 1.3 GHz SRF cavity program, supporting facilities, and accomplishments are described.

  15. Upgrades and Additions for the ECH System on DIII-D

    NASA Astrophysics Data System (ADS)

    Gorelov, Y. A.; Lohr, J.; Cengher, M.; Ponce, D.

    2013-10-01

    Six MW-class, 110 GHz gyrotrons have been in routine operation on DIII-D since 2008. One of these gyrotrons, which had low rf production and higher than normal collector power loading, failed due to a collector water leak. Nevertheless, the number of 110 GHz gyrotrons remained the same, as the first new 110 GHz CPI gyrotron with depressed collector potential design was installed and used in the 2013 experimental campaign. The DIII-D ECH transmission line system now comprises seven evacuated transmission lines up to 80 meters in length with transmission efficiencies from 69%-79% and four dual launchers. New stands are being fabricated and installed for two additional depressed collector gyrotrons, one with designed power of 1.2 MW at 110 GHz and the other with 1.5 MW at 117.5 GHz. One gyrotron was relocated to accommodate the new additions. High voltage power supplies, the water-cooling system and new waveguide lines for these gyrotrons are being built. One of the 110 GHz 1.0 MW gyrotrons in DIII-D was used as a source for heat exchanger tests. The rf beam was routed to a mobile test unit (MTU) trailer and shows expected expansion of beam radius vs distance from the waveguide end. Experiments were completed using 50-500 kW injected into the MTU lab at pulse lengths from 5-300 ms. Work supported by the US DOE under DE-FC02-04ER54698.

  16. Generation of GHZ states with invariant-based shortcuts

    NASA Astrophysics Data System (ADS)

    Ye, Li-Xiang; Lin, Xiu; Chen, Xiang; He, Juan; Yang, Rong-Can; Liu, Hong-Yu

    2016-07-01

    A scheme is proposed to generate three-atom GHZ states by applying the inversely engineered control method on the basis of Lewis-Riesenfeld invariants. In the proposal, three atoms that have different configurations are trapped in a bimodal cavity. Numerical simulations indicate that our protocol has an obvious improvement of speed for the generation of GHZ states. Moreover, the present scheme is robust against both parameter fluctuations and dissipation.

  17. Superconducting magnets for 110-150 GHz gyrotrons

    NASA Astrophysics Data System (ADS)

    Baze, J.-M.; Lesmond, C.; Lottin, J.-C.; Capitain, J.-J.; Lafon, D.; Magne, R.; Bonnet, P.; Bourquard, A.; Bresson, D.; Lacaze, A.

    1994-07-01

    Seven superconducting focusing magnets have been constructed for vertical gyrotrons devoted to the plasma heating of the tokomak Tore Supra. The performances in magnetic field strength, profile and homogeneity are spread over a large range so as to suit gyrotrons of microwave frequencies extending from 110 GHz to 150 GHz. The cryostats have a low consumption in cryogenic fluids which insure a one week autonomy.

  18. TFTR 60 GHz alpha particle collective Thomson Scattering diagnostic

    SciTech Connect

    Machuzak, J.S.; Woskov, P.P.; Gilmore, J.; Bretz, N.L.; Park, H.K.; Aamodt, R.E.; Cheung, P.Y.; Russell, D.A.; Bindslev, H.

    1995-03-01

    A 60 GHz gyrotron collective Thomson Scattering alpha particle diagnostic has been implemented for the D-T period on TFM. Gyrotron power of 0.1-1 kW in pulses of up to 1 second can be launched in X-mode. Efficient corrugated waveguides are used with antennaes and vacuum windows of the TFTR Microwave Scattering system. A multichannel synchronous detector receiver system and spectrum analyzer acquire the scattered signals. A 200 Megasample/sec digitizer is used to resolve fine structure in the frequency spectrum. By scattering nearly perpendicular to the magnetic field, this experiment will take advantage of an enhancement of the scattered signal which results from the interaction of the alpha particles with plasma resonances in the lower hybrid frequency range. Significant enhancements are expected, which will make these measurements possible with gyrotron power less than 1 kW, while maintaining an acceptable signal to noise ratio. We hope to extract alpha particle density and velocity distribution functions from the data. The D and T fuel densities and temperatures may also be obtainable by measurement of the respective ion cyclotron harmonic frequencies.

  19. Fabrication Studies for a Cylindrical DDS Structure at 90 GHz

    SciTech Connect

    Bowden, G.B.; Chou, P.J.; Kirby, R.E.; Menegat, A.; Siemann, R.H.; Spencer, J.E.; Wang, J.W.; /SLAC

    2011-08-26

    A natural extension of work on the next generation of high power RF sources and accelerating cavities for Linear Colliders implies cylindrical, damped, detuned structures for millimeter wavelengths. Commercial availability of WR-10 waveguides and other components in the 75-110 GHz range provides a practical goal. Fabrication methods are surveyed, compared and, in some cases, tested to determine whether they can provide the imposed tolerances. Different techniques and tolerances are compared to previous methods at longer wavelengths. The higher gradients and corresponding surface fields indicate that a better understanding of the surface physics is required as well as how the different fabrication steps influence those surface characteristics that impact the final operation. We consider existing systems at SLAC and elsewhere as a function of frequency to determine what is desirable to measure and control for all phases of the fabrication, testing, conditioning and use of these systems. For example, the importance of crystal structure to the different steps is discussed. The preferred method allows a variety of design alternatives to be pursued simultaneously and extends to shorter wavelengths as well as provides possibilities for embedded test and control elements.

  20. Z45: A new 45-GHz band dual-polarization HEMT receiver for the NRO 45-m radio telescope

    NASA Astrophysics Data System (ADS)

    Nakamura, Fumitaka; Ogawa, Hideo; Yonekura, Yoshinori; Kimura, Kimihiko; Okada, Nozomi; Kozu, Minato; Hasegawa, Yutaka; Tokuda, Kazuki; Ochiai, Tetsu; Mizuno, Izumi; Dobashi, Kazuhito; Shimoikura, Tomomi; Kameno, Seiji; Taniguchi, Kotomi; Shinnaga, Hiroko; Takano, Shuro; Kawabe, Ryohei; Nakajima, Taku; Iono, Daisuke; Kuno, Nario; Onishi, Toshikazu; Momose, Munetake; Yamamoto, Satoshi

    2015-12-01

    We developed a dual-linear-polarization HEMT (High Electron Mobility Transistor) amplifier receiver system of the 45-GHz band (hereafter Z45), and installed it in the Nobeyama 45-m radio telescope. The receiver system is designed to conduct polarization observations by taking the cross-correlation of two linearly polarized components, from which we process full Stokes spectroscopy. We aim to measure the magnetic field strength through the Zeeman effect of the emission line of CCS (JN = 43-32) toward pre-protostellar cores. A linear-polarization receiver system has a smaller contribution of instrumental polarization components to the Stokes V spectra than that of the circular polarization system, so that it is easier to obtain the Stokes V spectra. The receiver has an RF frequency of 42-46 GHz and an intermediate frequency (IF) band of 4-8 GHz. The typical noise temperature is about 50 K, and the system noise temperature ranges from 100 to 150 K over the frequency of 42-46 GHz. The receiver system is connected to two spectrometers, SAM45 and PolariS. SAM45 is a highly flexible FX-type digital spectrometer with a finest frequency resolution of 3.81 kHz. PolariS is a newly developed digital spectrometer with a finest frequency resolution of 60 Hz, and which has a capability to process the full-Stokes spectroscopy. The half-power beam width (HPBW) was measured to be 37″ at 43 GHz. The main beam efficiency of the Gaussian main beam was derived to be 0.72 at 43 GHz. The SiO maser observations show that the beam pattern is reasonably round at about 10% of the peak intensity and the side-lobe level was less than 3% of the peak intensity. Finally, we present some examples of astronomical observations using Z45.