Science.gov

Sample records for 1-2 nm thick

  1. Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity.

    PubMed

    Miyazaki, Hideki T; Kurokawa, Yoichi

    2006-03-10

    We demonstrate controlled squeezing of visible light waves into nanometer-sized optical cavities. The light is perpendicularly confined in a few-nanometer-thick SiO2 film sandwiched between Au claddings in the form of surface plasmon polaritons and exhibits Fabry-Perot resonances in a longitudinal direction. As the thickness of the dielectric core is reduced, the plasmon wavelength becomes shorter; then a smaller cavity is realized. A dispersion relation down to a surface plasmon wavelength of 51 nm for a red light, which is less than 8% of the free-space wavelength, was experimentally observed. Any obvious breakdowns of the macroscopic electromagnetics based on continuous dielectric media were not disclosed for 3-nm-thick cores.

  2. Spin pumping and Gilbert damping in atomically flat nanometric thick YIG|NM system

    NASA Astrophysics Data System (ADS)

    Alyahyaei, H. M.; Tang, Chi; Yang, Bowen; Shi, Jing

    2014-03-01

    Epitaxial nanometric thick ytrrium iron garnet (YIG) films grown on (111) and (110) gadolliun gallium garnet (GGG) substrates via PLD exhibit an atomically flat surface. This extremely flat surface with a roughness ~ 0.1 Å offers a more controlled study of the physical mechanism behind the newly observed damping in YIG|NM bilayer systems. Our bilayer systems consist of a 30 nm thick YIG film, either (111) or (110), and a non-magnetic layer, either beta-phase Ta or Pd, with thickness ranging from 0 to 20 nm. We have performed ferromagnetic resonance (FMR) experiments and observed systematic thickness dependence of the FMR linewidth. As the thickness of NM increases, the FMR linewidth increases rapidly and then slowly approaches saturation. The effect of the YIG surface on the Gilbert damping due to the magnetic proximity effect and on spin pumping in such bilayer systems will be discussed. The research is supported by NSF/EECS.

  3. Final report on the torque key komparison CCM.T-K1.2 measurand torque: 0 N.m, 500 N.m, 1000 N.m

    NASA Astrophysics Data System (ADS)

    Röske, Dirk

    2015-01-01

    The purpose of the CIPM subsequent bilateral comparison CCM.T-K1.2 was to link another participant, namely the National Institute of Metrology (Thailand), in short NIMT, to the CCM.T-K1 torque key comparison. The measuring capabilities up to 1000 N.m of dead-weight torque standard machines with supported lever were investigated. The pilot laboratory was the same in both comparisons—it was the Physikalisch-Technische Bundesanstalt (PTB, Braunschweig, Germany). The same two very stable torque transducers with well-known properties were used as travelling standards. The measurements at the participating laboratory were carried out between November 2007 and February 2008. According to the technical protocol, torque steps of 500 N.m and 1000 N.m had to be measured both in clockwise and anticlockwise directions. Corrections had to be applied to the results reported by the participants taking into account the use of different amplifiers, the creep (due to different loading times of the machines) and the environmental conditions in the laboratories (temperature and relative humidity of the ambient air). The results of the pilot laboratory in this bilateral comparison are in very good agreement with the same results obtained in the CCM.T-K1 comparison. For each of the transducers, the two torque steps and both senses of direction of the torque vector, the key comparison reference value of the CCM.T-K1 was taken, and the results of participant NIMT were calculated with respect to these values. The agreement between the results is very good. The smallest expanded (k = 2) relative uncertainty of the machine stated by the participant is 1 × 10-4. The results of the comparison support this uncertainty statement. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by CCM, according

  4. Fabrication of sub-12 nm thick silicon nanowires by processing scanning probe lithography masks

    SciTech Connect

    Kyoung Ryu, Yu; Garcia, Ricardo; Aitor Postigo, Pablo; Garcia, Fernando

    2014-06-02

    Silicon nanowires are key elements to fabricate very sensitive mechanical and electronic devices. We provide a method to fabricate sub-12 nm silicon nanowires in thickness by combining oxidation scanning probe lithography and anisotropic dry etching. Extremely thin oxide masks (0.3–1.1 nm) are transferred into nanowires of 2–12 nm in thickness. The width ratio between the mask and the silicon nanowire is close to one which implies that the nanowire width is controlled by the feature size of the nanolithography. This method enables the fabrication of very small single silicon nanowires with cross-sections below 100 nm{sup 2}. Those values are the smallest obtained with a top-down lithography method.

  5. An improved plate theory of order (1,2) for thick composite laminates

    NASA Technical Reports Server (NTRS)

    Tessler, A.

    1992-01-01

    A new (1,2)-order theory is proposed for the linear elasto-static analysis of laminated composite plates. The basic assumptions are those concerning the distribution through the laminate thickness of the displacements, transverse shear strains and the transverse normal stress, with these quantities regarded as some weighted averages of their exact elasticity theory representations. The displacement expansions are linear for the inplane components and quadratic for the transverse component, whereas the transverse shear strains and transverse normal stress are respectively quadratic and cubic through the thickness. The main distinguishing feature of the theory is that all strain and stress components are expressed in terms of the assumed displacements prior to the application of a variational principle. This is accomplished by an a priori least-square compatibility requirement for the transverse strains and by requiring exact stress boundary conditions at the top and bottom plate surfaces. Equations of equilibrium and associated Poisson boundary conditions are derived from the virtual work principle. It is shown that the theory is particularly suited for finite element discretization as it requires simple C(sup 0)- and C(sup -1)-continuous displacement interpolation fields. Analytic solutions for the problem of cylindrical bending are derived and compared with the exact elasticity solutions and those of our earlier (1,2)-order theory based on the assumed displacements and transverse strains.

  6. Fabrication of 5-20 nm thick β-W films

    SciTech Connect

    Narasimham, Avyaya J.; Medikonda, Manasa; Matsubayashi, Akitomo; Khare, Prasanna; Chong, Hyuncher; Matyi, Richard J.; Diebold, Alain; LaBella, Vincent P.

    2014-11-15

    A technique to fabricate 5 to 20 nm thick sputter deposited β W films on SiO{sub 2} and Si substrates is presented. This is achieved by growing tungsten on a 5 nm SiO{sub 2} layer or in an oxygen controlled environment by flowing 2 sccm of O{sub 2} during deposition. Resistivity, X-ray photoelectron spectroscopy, X-ray diffraction and reflectivity studies were performed to determine the phase and thickness of tungsten films. These results demonstrate a technique to grow this film on bare Si or a SiO{sub 2} substrate, which can enable growth on the bottom of a write unit in a non-volatile spin logic device.

  7. Metallic Nanoshells with Sub-10 nm Thickness and Their Performance as Surface-Enhanced Spectroscopy Substrate.

    PubMed

    Zhang, Xuemin; Guo, Lei; Luo, Jinmin; Zhao, Xueqi; Wang, Tieqiang; Li, Yunong; Fu, Yu

    2016-04-20

    As a crucial structural parameter, shell thickness greatly influences the optical properties of metallic nanoshells. However, there still lacks a reliable approach to prepare ultrathin core-shell nanoparticles. To solve this problem, a two-step gold seeding process was pointed out to increase the packing density of gold seeds on the silica core. With use of this method, the packing density of gold seeds reaches ∼60%, enabling us to successfully reduce the shell thickness to the sub-10 nm range. Afterward, we investigated optical properties of the as-prepared ultrathin nanoshells. It is found that thinner nanoshells exhibit a wider optical tunability and a greater electromagnetic field enhancement than their thicker counterparts, which makes ultrathin nanoshells an ideal substrate for surface-enhanced spectroscopes. PMID:27019405

  8. Elastic Properties of 4-6 nm-thick Glassy Carbon Thin Films

    NASA Astrophysics Data System (ADS)

    Manoharan, M. P.; Lee, H.; Rajagopalan, R.; Foley, H. C.; Haque, M. A.

    2010-01-01

    Glassy carbon is a disordered, nanoporous form of carbon with superior thermal and chemical stability in extreme environments. Freestanding glassy carbon specimens with 4-6 nm thickness and 0.5 nm average pore size were synthesized and fabricated from polyfurfuryl alcohol precursors. Elastic properties of the specimens were measured in situ inside a scanning electron microscope using a custom-built micro-electro-mechanical system. The Young’s modulus, fracture stress and strain values were measured to be about 62 GPa, 870 MPa and 1.3%, respectively; showing strong size effects compared to a modulus value of 30 GPa at the bulk scale. This size effect is explained on the basis of the increased significance of surface elastic properties at the nanometer length-scale.

  9. Label-free imaging of thick tissue at 1550 nm using a femtosecond optical parametric generator.

    PubMed

    Trägårdh, Johanna; Robb, Gillian; Gadalla, Kamal K E; Cobb, Stuart; Travis, Christopher; Oppo, Gian-Luca; McConnell, Gail

    2015-08-01

    We have developed a simple wavelength-tunable optical parametric generator (OPG), emitting broadband ultrashort pulses with peak wavelengths at 1530-1790 nm, for nonlinear label-free microscopy. The OPG consists of a periodically poled lithium niobate crystal, pumped at 1064 nm by a ultrafast Yb:fiber laser with high pulse energy. We demonstrate that this OPG can be used for label-free imaging, by third-harmonic generation, of nuclei of brain cells and blood vessels in a >150 μm thick brain tissue section, with very little decay of intensity with imaging depth and no visible damage to the tissue at an incident average power of 15 mW. PMID:26258338

  10. 120nm resolution in thick samples with structured illumination and adaptive optics

    NASA Astrophysics Data System (ADS)

    Thomas, Benjamin; Sloan, Megan; Wolstenholme, Adrian J.; Kner, Peter

    2014-03-01

    μLinear Structured Illumination Microscopy (SIM) provides a two-fold increase over the diffraction limited resolution. SIM produces excellent images with 120nm resolution in tissue culture cells in two and three dimensions. For SIM to work correctly, the point spread function (PSF) and optical transfer function (OTF) must be known, and, ideally, should be unaberrated. When imaging through thick samples, aberrations will be introduced into the optical system which will reduce the peak intensity and increase the width of the PSF. This will lead to reduced resolution and artifacts in SIM images. Adaptive optics can be used to correct the optical wavefront restoring the PSF to its unaberrated state, and AO has been used in several types of fluorescence microscopy. We demonstrate that AO can be used with SIM to achieve 120nm resolution through 25m of tissue by imaging through the full thickness of an adult C. elegans roundworm. The aberrations can be corrected over a 25μm × 45μm field of view with one wavefront correction setting, demonstrating that AO can be used effectively with widefield superresolution techniques.

  11. Structure and magnetic properties of 300-nm-thick FePt films with Hf underlayer

    NASA Astrophysics Data System (ADS)

    Shen, C. Y.; Chang, H. W.; Yuan, F. T.; Su, C. C.; Wang, Y. W.; Fan, C. L.; Wang, C. R.; Shih, C. W.; Chang, W. C.

    2016-11-01

    Structure, microstructure, magnetic properties of 300-nm-thick FePt films with 10-nm-thick Hf underlayer have been studied. The experimental results showed that the very thin Hf underlayer could promote the ordering at reduced temperatures by facilitating the nucleation of the order phase, leading to refined grain size and magnetic domain size. Therefore, the permanent magnetic properties of FePt films were enhanced. (BH)max and Hc of FePt films were greatly enhanced from 5.0-21.0 MGOe and 1.4-11.0 kOe for single layer to 10.2-23.6 MGOe and 4.5-13.2 kOe for Hf-underlayered films annealed in Ta region of 400-600 °C, respectively. Nevertheless, the severe interdiffusion between the Hf and FePt layers at Ta=800 °C resulted in the decreased S, coarsened surface morphology, grain and magnetic domain sizes, and therefore the slightly decreased (BH)max to 18.0 MGOe.

  12. Ultra-soft 100 nm thick zero Poisson's ratio film with 60% reversible compressibility

    NASA Astrophysics Data System (ADS)

    Nguyen, Chieu; Szalewski, Steve; Saraf, Ravi

    2013-03-01

    Squeezing films of most solids, liquids and granular materials causes dilation in the lateral dimension which is characterized by a positive Poisson's ratio. Auxetic materials, such as, special foams, crumpled graphite, zeolites, spectrin/actin membrane, and carbon nanotube laminates shrink, i.e., their Poisson's ratio is negative. As a result of Poisson's effect, the force to squeeze an amorphous material, such as a viscous thin film coating adhered to rigid surface increases by over million fold as the thickness decreases from 10 μm to 100 nm due to constrain on lateral deformations and off-plane relaxation. We demonstrate, ultra-soft, 100 nm films of polymer/nanoparticle composite adhered to 1.25 cm diameter glass that can be reversibly squeezed over 60% strain between rigid plates requiring (very) low stresses below 100 KPa. Unlike non-zero Poisson's ratio materials, stiffness decreases with thickness, and the stress distribution is uniform over the film as mapped electro-optically. The high deformability at very low stresses is explained by considering reentrant cellular structure found in cork and the wings of beetles that have Poisson's ratio near zero.

  13. A thick CESL stressed ultra-small (Lg=40-nm) SiGe-channel MOSFET fabricated with 193-nm scanner lithography and TEOS hard mask etching

    NASA Astrophysics Data System (ADS)

    Liao, Wen-Shiang; Chen, Tung-Hung; Lin, Hsin-Hung; Chang, Wen-Tung; Shih, Tommy; Tsen, Huan-Chiu; Chung, Lee

    2007-03-01

    A 100Å-thick SiGe (22.5%) channel MOSFET with gate length down to 40nm has been successfully integrated with 14Å nitrided gate oxide as well as a 1200Å high-compressive PECVD ILD-SiNx stressing layer as the contact etching stop layer (CESL) that enhances the PMOS electron mobility with +33% current gain. To achieve a poly-Si gate length target of 400Å (40nm), a 193nm scanner lithography and an aggressive oxide hard mask etching techniques were used. First, a 500Å-thick TEOS hard mask layer was deposited upon the 1500Å-thick poly-Si gate electrode. Second, both 1050Å-thick bottom anti-reflective coating (BARC) and 2650Å-thick photoresist (P/R) were coated and a 193nm scanner lithography tool was used for the gate layout patterning with nominal logic 90nm exposure energy. Then, a deep sub-micron plasma etcher was used for an aggressive P/R and BARC trimming down processing and the TEOS hard mask was subsequently plasma etched in another etching chamber without breaking the plasma etcher's vacuum. Continuously, the P/R and BARC were removed with a plasma ashing and RCA cleaning. Moreover, the patterned Si-fin capping oxide can be further trimmed down with a diluted HF (aq) solution (DHF) while rendering the RCA cleaning process and the remained TEOS hard mask is still thick enough for the subsequent poly-Si gate main etching. Finally, an ultra narrow poly-Si gate length of 40nm with promising PMOS drive current enhancement can be formed through a second poly-Si etching, which is above the underneath SiGe (22.5%) conduction channel as well as its upper 14Å-thick nitrided gate oxide.

  14. 1-nm-thick graphene tri-layer as the ultimate copper diffusion barrier

    SciTech Connect

    Nguyen, Ba-Son; Lin, Jen-Fin

    2014-02-24

    We demonstrate the thinnest ever reported Cu diffusion barrier, a 1-nm-thick graphene tri-layer. X-ray diffraction patterns and Raman spectra show that the graphene is thermally stable at up to 750 °C against Cu diffusion. Transmission electron microscopy images show that there was no inter-diffusion in the Cu/graphene/Si structure. Raman analyses indicate that the graphene may have degraded into a nanocrystalline structure at 750 °C. At 800 °C, the perfect carbon structure was damaged, and thus the barrier failed. The results of this study suggest that graphene could be the ultimate Cu interconnect diffusion barrier.

  15. Tunneling characteristics for nm-thick mesas consisting of a few intrinsic Josephson junctions

    NASA Astrophysics Data System (ADS)

    Suzuki, Minoru; Ohmaki, Masayuki; Takemura, Ryota; Hamada, Kenji; Watanabe, Takao; Ota, Kensuke; Kitano, Haruhisa; Maeda, Atsutaka

    2008-10-01

    Very thin mesa structures consisting of a few intrinsic Josephson junctions have been fabricated on single crystal surfaces of Bi2Sr2CaCu2O8+δ. In the fabrication procedure, annealing is conducted after the mesa structure is formed by Ar ion milling. Or, the annealing is skipped and, instead, the electrodes to the mesas have been deposited in vacuum immediately after crystals are cleaved. We have attained both uniform current-voltage (I-V) characteristics and small contact resistances, which are usually difficult to obtain at the same time in the case of nm-thick mesa structures. For the mesas thus fabricated, it is found that the Josephson critical current Jc of the top IJJ (the surface junction) is reduced significantly. The reduction of Jc is more significant when the doping level of the crystal used is lower. We argue that this is due to the proximity efiect of the surface junction, in which the top electrode is in close proximity with the Ag or Au film of a thickness of the order of 300 nm. For mesas obtained by this method, the switching probability distribution has been measured. It is found that when the mesa lateral size is larger than 2 μm the switching is unreproducible and lacking systematic temperature dependence. It is also found that escape temperature Tesc and the standard deviation σ for the switching probability distribution exhibits a large deviation from the Kramers' thermal activation theory. When the lateral size is no larger than 2 μm, the switching probability distribution results show coincidence with the theory in the temperature range from 1.3 K to 5 K. Below 0.5 K, the escape temperature tends to saturate and indicates a crossover near 0.5 K from the thermal activation to the macroscopic quantum tunneling.

  16. Leaping shampoo glides on a 500-nm-thick lubricating air layer

    NASA Astrophysics Data System (ADS)

    Li, Erqiang; Lee, Sanghyun; Marston, Jeremy; Bonito, Andrea; Thoroddsen, Sigurdur

    2013-11-01

    When a stream of shampoo is fed onto a pool in one's hand, a jet can leap sideways or rebound from the liquid surface in an intriguing phenomenon known as the Kaye effect. Earlier studies have debated whether non-Newtonian effects are the underlying cause of this phenomenon, making the jet glide on top of a shear-thinning liquid layer, or whether an entrained air layer is responsible. Herein we show unambiguously that the jet slides on a lubricating air layer [Lee et al., Phys. Rev. E 87, 061001 (2013)]. We identify this layer by looking through the pool liquid and observing its rupture into fine micro-bubbles. The resulting micro-bubble sizes suggest that the thickness of this air layer is around 500 nm. This thickness estimate is also supported by the tangential deceleration of the jet during the rebounding, with the shear stress within the thin air layer sufficient for the observed deceleration. Particle tracking within the jet shows uniform velocity, with no pronounced shear, which would be required for shear-thinning effects. The role of the surfactant may primarily be to stabilize the air film.

  17. Signaling through ERK1/2 controls myelin thickness during myelin repair in the adult central nervous system.

    PubMed

    Fyffe-Maricich, Sharyl L; Schott, Alexandra; Karl, Molly; Krasno, Janet; Miller, Robert H

    2013-11-20

    Oligodendrocytes, the myelin-forming cells of the CNS, exquisitely tailor the thickness of individual myelin sheaths to the diameter of their target axons to maximize the speed of action potential propagation, thus ensuring proper neuronal connectivity and function. Following demyelinating injuries to the adult CNS, newly formed oligodendrocytes frequently generate new myelin sheaths. Following episodes of demyelination such as those that occur in patients with multiple sclerosis, however, the matching of myelin thickness to axon diameter fails leaving remyelinated axons with thin myelin sheaths potentially compromising function and leaving axons vulnerable to damage. How oligodendrocytes determine the appropriate thickness of myelin for an axon of defined size during repair is unknown and identifying the signals that regulate myelin thickness has obvious therapeutic implications. Here, we show that sustained activation of extracellular-regulated kinases 1 and 2 (ERK1/2) in oligodendrocyte lineage cells results in accelerated myelin repair after injury, and is sufficient for the generation of thick myelin sheaths around remyelinated axons in the adult mouse spinal cord. Our findings suggest a model where ERK1/2 MAP kinase signaling acts as a myelin thickness rheostat that instructs oligodendrocytes to generate axon-appropriate quantities of myelin.

  18. A {1,2}-Order Plate Theory Accounting for Three-Dimensional Thermoelastic Deformations in Thick Composite and Sandwich Laminates

    NASA Technical Reports Server (NTRS)

    Tessler, A.; Annett, M. S.; Gendron, G.

    2001-01-01

    A {1,2}-order theory for laminated composite and sandwich plates is extended to include thermoelastic effects. The theory incorporates all three-dimensional strains and stresses. Mixed-field assumptions are introduced which include linear in-plane displacements, parabolic transverse displacement and shear strains, and a cubic distribution of the transverse normal stress. Least squares strain compatibility conditions and exact traction boundary conditions are enforced to yield higher polynomial degree distributions for the transverse shear strains and transverse normal stress through the plate thickness. The principle of virtual work is used to derive a 10th-order system of equilibrium equations and associated Poisson boundary conditions. The predictive capability of the theory is demonstrated using a closed-form analytic solution for a simply-supported rectangular plate subjected to a linearly varying temperature field across the thickness. Several thin and moderately thick laminated composite and sandwich plates are analyzed. Numerical comparisons are made with corresponding solutions of the first-order shear deformation theory and three-dimensional elasticity theory. These results, which closely approximate the three-dimensional elasticity solutions, demonstrate that through - the - thickness deformations even in relatively thin and, especially in thick. composite and sandwich laminates can be significant under severe thermal gradients. The {1,2}-order kinematic assumptions insure an overall accurate theory that is in general superior and, in some cases, equivalent to the first-order theory.

  19. Large-scale freestanding nanometer-thick graphite pellicles for mass production of nanodevices beyond 10 nm.

    PubMed

    Kim, Seul-Gi; Shin, Dong-Wook; Kim, Taesung; Kim, Sooyoung; Lee, Jung Hun; Lee, Chang Gu; Yang, Cheol-Woong; Lee, Sungjoo; Cho, Sang Jin; Jeon, Hwan Chul; Kim, Mun Ja; Kim, Byung-Gook; Yoo, Ji-Beom

    2015-09-21

    Extreme ultraviolet lithography (EUVL) has received much attention in the semiconductor industry as a promising candidate to extend dimensional scaling beyond 10 nm. We present a new pellicle material, nanometer-thick graphite film (NGF), which shows an extreme ultraviolet (EUV) transmission of 92% at a thickness of 18 nm. The maximum temperature induced by laser irradiation (λ = 800 nm) of 9.9 W cm(-2) was 267 °C, due to the high thermal conductivity of the NGF. The freestanding NGF was found to be chemically stable during annealing at 500 °C in a hydrogen environment. A 50 × 50 mm large area freestanding NGF was fabricated using the wet and dry transfer (WaDT) method. The NGF can be used as an EUVL pellicle for the mass production of nanodevices beyond 10 nm. PMID:26159369

  20. Pulsed-N{sub 2} assisted growth of 5-20 nm thick β-W films

    SciTech Connect

    Narasimham, Avyaya J.; Green, Avery; Matyi, Richard J.; Khare, Prasanna; Vo, Tuan; Diebold, Alain; LaBella, Vincent P.

    2015-11-15

    A technique to deposit 5-20 nm thick β-phase W using a 2-second periodic pulse of 1 sccm-N{sub 2} gas on Si(001) and SiN(5 nm)/Si(001) substrates is reported. Resistivity, X-ray photoelectron spectroscopy and X-ray reflectivity were utilized to determine phase, bonding and thickness, respectively. X-ray diffraction patterns were utilized to determine the crystal structure, lattice constant and crystal size using the LeBail method. The flow rate of Nitrogen gas (continuous vs. pulsing) had significant impact upon the crystallinity and formation of β-phase W.

  1. 2D Zeolite Coatings: Langmuir-Schaefer Deposition of 3 nm Thick MFI Zeolite Nanosheets.

    PubMed

    Rangnekar, Neel; Shete, Meera; Agrawal, Kumar Varoon; Topuz, Berna; Kumar, Prashant; Guo, Qiang; Ismail, Issam; Alyoubi, Abdulrahman; Basahel, Sulaiman; Narasimharao, Katabathini; Macosko, Christopher W; Mkhoyan, K Andre; Al-Thabaiti, Shaeel; Stottrup, Benjamin; Tsapatsis, Michael

    2015-05-26

    Stable suspensions of zeolite nanosheets (3 nm thick MFI layers) were prepared in ethanol following acid treatment, which partially removed the associated organic structure-directing agent. Nanosheets from these suspensions could then be dispersed at the air-water interface and transferred to silicon wafers using Langmuir-Schaefer deposition. Using layer-by-layer deposition, control on coating thickness was demonstrated. In-plane X-ray diffraction (XRD) revealed that the deposited nanosheets contract upon calcination similar to bulk MFI crystals. Different methods for secondary growth resulted in preferentially oriented thin films of MFI, which had sub-12-nm thickness in certain cases. Upon calcination, there was no contraction detectable by in-plane XRD, indicating well-intergrown MFI films that are strongly attached to the substrate.

  2. Strain relaxation in nm-thick Cu and Cu-alloy films bonded to a rigid substrate

    NASA Astrophysics Data System (ADS)

    Herrmann, Ashley Ann Elizabeth

    In the wide scope of modern technology, nm-thick metallic films are increasingly used as lubrication layers, optical coatings, plating seeds, diffusion barriers, adhesion layers, metal contacts, reaction catalyzers, etc. A prominent example is the use of nm-thick Cu films as electroplating seed layers in the manufacturing of integrated circuits (ICs). These high density circuits are linked by on-chip copper interconnects, which are manufactured by filling Cu into narrow trenches by electroplating. The Cu fill by electroplating requires a thin Cu seed deposited onto high-aspect-ratio trenches. In modern ICs, these trenches are approaching 10 nm or less in width, and the seed layers less than 1 nm in thickness. Since nm-thick Cu seed layers are prone to agglomeration or delamination, achieving uniform, stable and highly-conductive ultra-thin seeds has become a major manufacturing challenge. A fundamental understanding of the strain behavior and thermal stability of nm-thick metal films adhered to a rigid substrate is thus critically needed. In this study, we focus on understanding the deformation modes of nm-thick Cu and Cu-alloy films bonded to a rigid Si substrate and under compressive stress. The strengthening of Cu films through alloying is also studied. In-situ transport measurements are used to monitor the deformation of such films as they are heated from room temperature to 400 °C. Ex-situ AFM is then used to help characterize the mode of strain relaxation. The relaxation modes are known to be sensitive to the wetting and adhesive properties of the film-substrate interface. We use four different liners (Ta, Ru, Mo and Co), interposed between the film and substrate to provide a wide range of interfacial properties to study their effect on the film's thermal stability. Our measurements indicate that when the film/liner interfacial energy is low, grain growth is the dominant relaxation mechanism. As the interface energy increases, grain growth is suppressed, and

  3. Thickness effect on laser-induced-damage threshold of indium-tin oxide films at 1064 nm

    SciTech Connect

    Wang Haifeng; Huang Zhimeng; Zhang Dayong; Luo Fei; Huang Lixian; Li Yanglong; Luo Yongquan; Wang Weiping; Zhao Xiangjie

    2011-12-01

    Laser-induced-damage characteristics of commercial indium-tin oxide (ITO) films deposited by DC magnetron sputtering deposition on K9 glass substrates as a function of the film thickness have been studied at 1064 nm with a 10 ns laser pulse in the 1-on-1 mode, and the various mechanisms for thickness effect on laser-induced-damage threshold (LIDT) of the film have been discussed in detail. It is observed that laser-damage-resistance of ITO film shows dramatic thickness effect with the LIDT of the 50-nm ITO film 7.6 times as large as the value of 300 nm film, and the effect of depressed carrier density by decreasing the film thickness is demonstrated to be the primary reason. Our experiment findings indicate that searching transparent conductive oxide (TCO) film with low carrier density and high carrier mobility is an efficient technique to improve the laser-damage-resistance of TCO films based on maintaining their well electric conductivity.

  4. Thickness effect of ultra-thin Ta2O5 resistance switching layer in 28 nm-diameter memory cell

    PubMed Central

    Park, Tae Hyung; Song, Seul Ji; Kim, Hae Jin; Kim, Soo Gil; Chung, Suock; Kim, Beom Yong; Lee, Kee Jeung; Kim, Kyung Min; Choi, Byung Joon; Hwang, Cheol Seong

    2015-01-01

    Resistance switching (RS) devices with ultra-thin Ta2O5 switching layer (0.5–2.0 nm) with a cell diameter of 28 nm were fabricated. The performance of the devices was tested by voltage-driven current—voltage (I-V) sweep and closed-loop pulse switching (CLPS) tests. A Ta layer was placed beneath the Ta2O5 switching layer to act as an oxygen vacancy reservoir. The device with the smallest Ta2O5 thickness (0.5 nm) showed normal switching properties with gradual change in resistance in I-V sweep or CLPS and high reliability. By contrast, other devices with higher Ta2O5 thickness (1.0–2.0 nm) showed abrupt switching with several abnormal behaviours, degraded resistance distribution, especially in high resistance state, and much lower reliability performance. A single conical or hour-glass shaped double conical conducting filament shape was conceived to explain these behavioural differences that depended on the Ta2O5 switching layer thickness. Loss of oxygen via lateral diffusion to the encapsulating Si3N4/SiO2 layer was suggested as the main degradation mechanism for reliability, and a method to improve reliability was also proposed. PMID:26527044

  5. Measuring sub-nm adsorbed water layer thickness and desorption rate using a fused-silica whispering-gallery microresonator

    NASA Astrophysics Data System (ADS)

    Ganta, D.; Dale, E. B.; Rosenberger, A. T.

    2014-05-01

    We report an optical method for measuring the thickness of the water layer adsorbed onto the surface of a high-Q fused-silica microresonator. Light from a tunable diode laser operating near 1550 nm is coupled into the microresonator to excite whispering-gallery modes (WGMs). By observing thermal distortion or even bistability of the WGM resonances caused by absorption in the water layer, the contribution of that absorption to the total loss is determined. Thereby, the thickness of the water layer is found to be ˜0.1 nm (approximately one monolayer). This method is further extended to measure the desorption rate of the adsorbed water, which is roughly exponential with a decay time of ˜40 h when the fused-silica microresonator is held in a vacuum chamber at low pressure.

  6. The cutting of ultrathin sections with the thickness less than 20 nm from biological specimens embedded in resin blocks.

    PubMed

    Nebesářová, Jana; Hozák, Pavel; Frank, Luděk; Štěpan, Petr; Vancová, Marie

    2016-06-01

    Low voltage electron microscopes working in transmission mode, like LVEM5 (Delong Instruments, Czech Republic) working at accelerating voltage 5 kV or scanning electron microscope working in transmission mode with accelerating voltage below 1 kV, require ultrathin sections with the thickness below 20 nm. Decreasing of the primary electron energy leads to enhancement of image contrast, which is especially useful in the case of biological samples composed of elements with low atomic numbers. As a result treatments with heavy metals, like post-fixation with osmium tetroxide or ultrathin section staining, can by omitted. The disadvantage is reduced penetration ability of incident electrons influencing the usable thickness of the specimen resulting in the need of ultrathin sections of under 20 nm thickness. In this study we want to answer basic questions concerning the cutting of extremely ultrathin sections: Is it possible routinely and reproducibly to cut extremely thin sections of biological specimens embedded in commonly used resins with contemporary ultramicrotome techniques and under what conditions? Microsc. Res. Tech. 79:512-517, 2016. © 2016 Wiley Periodicals, Inc. PMID:27030160

  7. Tension strength of a thick graphite/epoxy laminate after impact by a 1/2-in. radius impactor

    NASA Technical Reports Server (NTRS)

    Poe, C. C., Jr.; Illg, W.; Garber, D. P.

    1986-01-01

    NASA is developing graphite/epoxy filament-wound cases for solid rocket motors of the space shuttle. They are wet-wound with AS4W graphite fiber and HBRF-55A epoxy. The membrane region is about 1.4 inches thick. Two 30-inch-diameter by 12-inch-long cylinders were impacted every two inches of circumference with 1/2-inch radius impactors that were dropped from various heights. One cylinder was empty and the other was filled with inert propellant. Two-inch-wide test specimens were cut from the cylinders. Each was centered on an impact site. The specimens were x-rayed and loaded to failure in uniaxial tension. Rigid body mechanics and the Hertz law were used to predict impact force, local deformations, contact diameters, and contact pressures. The depth of impact damage was predicted using Love's solution for pressure applied on part of the boundary of a semi-infinite body. The predictions were reasonably good. The strengths of the impacted specimens were reduced by as much as 37 percent without visible surface damage. Even the radiographs did not reveal the nonvisible damage.

  8. Localization and quasilocalization of a spin-1 /2 fermion field on a two-field thick braneworld

    NASA Astrophysics Data System (ADS)

    Guo, Heng; Xie, Qun-Ying; Fu, Chun-E.

    2015-11-01

    Localization of a spin-1 /2 fermion on the braneworld is an important and interesting problem. It is well known that a five-dimensional free massless fermion Ψ minimally coupled to gravity cannot be localized on the Randall-Sundrum braneworld. In order to trap such a fermion, the coupling between the fermion and bulk scalar fields should be introduced. In this paper, localization and quasilocalization of a bulk fermion on the thick braneworld generated by two scalar fields (a kink scalar ϕ and a dilaton scalar π ) are investigated. Two types of couplings between the fermion and two scalars are considered. One coupling is the usual Yukawa coupling -η Ψ ¯ϕ Ψ between the fermion and kink scalar, another one is λ Ψ ¯ΓM∂Mπ γ5Ψ between the fermion and dilaton scalar. The left-chiral fermion zero mode can be localized on the brane, and both the left- and right-chiral fermion massive Kaluza-Klein modes may be localized or quasilocalized. Hence the four-dimensional massless left-chiral fermion and massive Dirac fermions, whose lifetime is infinite or finite, can be obtained on the brane.

  9. Structural and electronic characterization of 355 nm laser-crystallized silicon: Interplay of film thickness and laser fluence

    SciTech Connect

    Semler, Matthew R.; Swenson, Orven F.; Hoey, Justin M.; Guruvenket, Srinivasan; Gette, Cody R.; Hobbie, Erik K.

    2014-04-28

    We present a detailed study of the laser crystallization of amorphous silicon thin films as a function of laser fluence and film thickness. Silicon films grown through plasma-enhanced chemical vapor deposition were subjected to a Q-switched, diode-pumped solid-state laser operating at 355 nm. The crystallinity, morphology, and optical and electronic properties of the films are characterized through transmission and reflectance spectroscopy, resistivity measurements, Raman spectroscopy, X-ray diffraction, atomic force microscopy, and optical and scanning-electron microscopy. Our results reveal a unique surface morphology that strongly couples to the electronic characteristics of the films, with a minimum laser fluence at which the film properties are optimized. A simple scaling model is used to relate film morphology to conductivity in the laser-processed films.

  10. Fabrication of 3-nm-thick Si3N4 membranes for solid-state nanopores using the poly-Si sacrificial layer process

    PubMed Central

    Yanagi, Itaru; Ishida, Takeshi; Fujisaki, Koji; Takeda, Ken-ichi

    2015-01-01

    To improve the spatial resolution of solid-state nanopores, thinning the membrane is a very important issue. The most commonly used membrane material for solid-state nanopores is silicon nitride (Si3N4). However, until now, stable wafer-scale fabrication of Si3N4 membranes with a thickness of less than 5 nm has not been reported, although a further reduction in thickness is desired to improve spatial resolution. In the present study, to fabricate thinner Si3N4 membranes with a thickness of less than 5 nm in a wafer, a new fabrication process that employs a polycrystalline-Si (poly-Si) sacrificial layer was developed. This process enables the stable fabrication of Si3N4 membranes with thicknesses of 3 nm. Nanopores were fabricated in the membrane using a transmission electron microscope (TEM) beam. Based on the relationship between the ionic current through the nanopores and their diameter, the effective thickness of the nanopores was estimated to range from 0.6 to 2.2 nm. Moreover, DNA translocation through the nanopores was observed. PMID:26424588

  11. Synthesis and characterization of 10 nm thick piezoelectric AlN films with high c-axis orientation for miniaturized nanoelectromechanical devices

    SciTech Connect

    Zaghloul, Usama; Piazza, Gianluca

    2014-06-23

    The scaling of piezoelectric nanoelectromechanical systems (NEMS) is challenged by the synthesis of ultrathin and high quality piezoelectric films on very thin electrodes. We report the synthesis and characterization of the thinnest piezoelectric aluminum nitride (AlN) films (10 nm) ever deposited on ultrathin platinum layers (2–5 nm) using reactive sputtering. X-ray diffraction, high-resolution transmission electron microscopy, and fast Fourier transform analyses confirmed the proper crystal orientation, fine columnar texture, and the continuous lattice structure within individual grains in the deposited AlN nanometer thick films. The average extracted d{sub 31} piezoelectric coefficient for the synthesized films is −1.73 pC/N, which is comparable to the reported values for micron thick and highly c-axis oriented AlN films. The 10 nm AlN films were employed to demonstrate two different types of optimized piezoelectric nanoactuators. The unimorph actuators exhibit vertical displacements as large as 1.1 μm at 0.7 V for 25 μm long and 30 nm thick beams. These results have a great potential to realize miniaturized NEMS relays with extremely low voltage, high frequency resonators, and ultrasensitive sensors.

  12. Repeated appearance and disappearance of localized surface plasmon resonance in 1.2 nm gold clusters induced by adsorption and desorption of hydrogen atoms.

    PubMed

    Ishida, Ryo; Yamazoe, Seiji; Koyasu, Kiichirou; Tsukuda, Tatsuya

    2016-02-01

    Addition of an aqueous solution of NaBH4 to a dispersion of small (∼1.2 nm) gold clusters stabilized by poly(N-vinyl-2-pyrrolidone) (Au:PVP) induced a localized surface plasmon resonance (LSPR) absorption for a certain period of time while maintaining the cluster size. The duration of the LSPR band could be lengthened by increasing the NaBH4 concentration and shortened by increasing the concentration of dissolved O2, and the LSPR band could be made to appear and reappear repeatedly. The appearance of the LSPR band is explained by the electron donation to the Au core from the adsorbed H atoms that originate from NaBH4, whereas its disappearance is ascribed to the removal of H atoms by their reaction with O2. These results suggest that the transition between the metallic and non-metallic electronic structures of the Au clusters can be reversibly induced by the adsorption and desorption of H atoms, which are electronically equivalent to Au.

  13. Thickness-dependent crystallization on thermal anneal for titania/silica nm-layer composites deposited by ion beam sputter method.

    PubMed

    Pan, Huang-Wei; Wang, Shun-Jin; Kuo, Ling-Chi; Chao, Shiuh; Principe, Maria; Pinto, Innocenzo M; DeSalvo, Riccardo

    2014-12-01

    Crystallization following thermal annealing of thin film stacks consisting of alternating nm-thick titania/silica layers was investigated. Several prototypes were designed, featuring a different number of titania/silica layer pairs, and different thicknesses (in the range from 4 to 40 nm, for the titania layers), but the same nominal refractive index (2.09) and optical thickness (a quarter of wavelength at 1064 nm). The prototypes were deposited by ion beam sputtering on silicon substrates. All prototypes were found to be amorphous as-deposited. Thermal annealing in air at progressive temperatures was subsequently performed. It was found that the titania layers eventually crystallized forming the anatase phase, while the silica layers remained always amorphous. However, progressively thinner layers exhibited progressively higher threshold temperatures for crystallization onset. Accordingly it can be expected that composites with thinner layers will be able to sustain higher annealing temperatures without crystallizing, and likely yielding better optical and mechanical properties for advanced coatings application. These results open the way to the use of materials like titania and hafnia, that crystallize easily under thermal anneal, but ARE otherwise promising candidate materials for HR coatings necessary for cryogenic 3rd generation laser interferometric gravitational wave detectors. PMID:25606914

  14. Estimation of anisotropy coefficient and total attenuation of swine liver at 850 nm based on a goniometric technique: influence of sample thickness.

    PubMed

    Saccomandi, P; Vogel, V; Bazrafshan, B; Schena, E; Vogl, T J; Silvestri, S; Mäntele, W

    2014-01-01

    Estimation of optical properties of biologic tissue is crucial for theoretical modeling of laser treatments in medicine. Tissue highly absorbs and scatters the light between 650 nm and 1300 nm, where the laser provides therapeutic effects. Among other properties, the characteristic of biological tissues to scatter the light traveling trough, is described by the anisotropy coefficient (g). The relationship between g and the distribution of the scattered light at different angles is described by Henyey-Greenstein phase function. The measurement of angular distribution of scattered light is performed by the goniometric technique. This paper describes the estimation of g and attenuation coefficient, μt, of swine liver at 850 nm, performed by an ad hoc designed goniometric-based system, where a spectrometer measures intensities of scattered light at fixed angles (0°, 30°, 45°, 60, 120°, 135° and 150°). Both one-term and two-term Henyey-Greenstein phase function have been employed to estimate anisotropy coefficient for forward (gfs) and backward scattering (gbs). Measurements are performed on samples of two thicknesses (60 um and 30 urn) to investigate the influence of this factor on g, and repeated 6 times for each thickness. The estimated values of gfs were 0.947 and 0.951 for thickness of 60 μm and 30 μm, respectively; the estimations of gfs were -0.498 and -0.270 for thickness of 60 μm and 30 μm, respectively. Moreover, μt of liver has been estimated (i.e., 90±20 cm(1)), through Lambert-Beer equation. The comparison of our results with data reported in literature encourages the use of the ad hoc designed tool for performing experiments on other tissue, and at other wavelengths. PMID:25571198

  15. Liquid crystal films as on-demand, variable thickness (50–5000 nm) targets for intense lasers

    SciTech Connect

    Poole, P. L. Andereck, C. D.; Schumacher, D. W.; Daskalova, R. L.; Feister, S.; George, K. M.; Willis, C.; Akli, K. U.; Chowdhury, E. A.

    2014-06-15

    We have developed a new type of target for intense laser-matter experiments that offers significant advantages over those currently in use. The targets consist of a liquid crystal film freely suspended within a metal frame. They can be formed rapidly on-demand with thicknesses ranging from nanometers to micrometers, where the particular value is determined by the liquid crystal temperature and initial volume as well as by the frame geometry. The liquid crystal used for this work, 8CB (4′-octyl-4-cyanobiphenyl), has a vapor pressure below 10{sup −6} Torr, so films made at atmospheric pressure maintain their initial thickness after pumping to high vacuum. Additionally, the volume per film is such that each target costs significantly less than one cent to produce. The mechanism of film formation and relevant physics of liquid crystals are described, as well as ion acceleration data from the first shots on liquid crystal film targets at the Ohio State University Scarlet laser facility.

  16. High electron mobility in high-polarization sub-10 nm barrier thickness InAlGaN/GaN heterostructure

    NASA Astrophysics Data System (ADS)

    Medjdoub, Farid; Kabouche, Riad; Linge, Astrid; Grimbert, Bertrand; Zegaoui, Malek; Gamarra, Piero; Lacam, Cédric; Tordjman, Maurice; di Forte-Poisson, Marie-Antoinette

    2015-10-01

    We report on the improvement of the electron transport properties of the two-dimensional electron gas (2DEG) confined at a nearly lattice-matched quaternary barrier InAlGaN/AlN/GaN heterostructure using a sub-10 nm ultrathin barrier. Electron mobilities of 1800 (RT) and 6800 cm2 V-1 s-1 (77 K) are achieved while delivering a high electron density of 1.9 × 1013 cm-2, resulting in extremely low sheet resistances of 191 Ω/□ at RT and below 50 Ω/□ at 77 K. These 2DEG properties exceed the best ones ever reported for III-N structures. The excellent current and power gain cut-off frequencies of 60 and 190 GHz at VDS = 15 V obtained using 0.25 µm technology reflect the outstanding 2DEG properties.

  17. Absorption enhancement through Fabry-Pérot resonant modes in a 430 nm thick InGaAs/GaAsP multiple quantum wells solar cell

    SciTech Connect

    Behaghel, B.; Tamaki, R.; Watanabe, K.; Sodabanlu, H.; Vandamme, N.; Dupuis, C.; Bardou, N.; Cattoni, A.; Okada, Y.; Sugiyama, M.; Collin, S.; Guillemoles, J.-F.

    2015-02-23

    We study light management in a 430 nm-thick GaAs p-i-n single junction solar cell with 10 pairs of InGaAs/GaAsP multiple quantum wells (MQWs). The epitaxial layer transfer on a gold mirror improves light absorption and increases the external quantum efficiency below GaAs bandgap by a factor of four through the excitation of Fabry-Perot resonances. We show a good agreement with optical simulation and achieve around 10% conversion efficiency. We demonstrate numerically that this promising result can be further improved by anti-reflection layers. This study paves the way to very thin MQWs solar cells.

  18. 1.5-nm-thick silicon oxide gate films grown at 150 deg. C using modified reactive ion beam deposition with pyrolytic-gas passivation

    SciTech Connect

    Yamada, Hiroshi

    2007-03-15

    Low-temperature ultrathin silicon oxide gate film growth using modified reactive ion beam deposition (RIBD) with an in situ pyrolytic-gas passivation (PGP) method is described. RIBD uses low-energy-controlled reactive and ionized species and potentializes low-temperature film growth. By combining RIBD with PGP using N{sub 2}O and NF{sub 3}, 1.5-nm-thick silicon oxide gate films with high-potential barrier height energy, 3.51 eV, and low-leakage current, less than about 10{sup -5} A/cm{sup 2} at 2 MV/cm, can be obtained at a growth temperature of 150 deg. C. From an evaluation of number densities of N, F, and O atoms near the 1.5-5.0-nm-thick RIBD-with-PGP silicon oxide films/Si(100) interfaces, it is believed that interfacial N and F atoms contribute to improve the electrical characteristics and F effectively compensates the residual inconsistent-state bonding sites after the N passivation.

  19. Method 415.3, Rev. 1.2: Determination of Total Organic Carbon and Specific UV Absorbance at 254 nm in Source Water and Drinking Water

    EPA Science Inventory

    This method provides procedures for the determination of total organic carbon (TOC), dissolved organic carbon (DOC), and UV absorption at 254 nm (UVA) in source waters and drinking waters. The DOC and UVA determinations are used in the calculation of the Specific UV Absorbance (S...

  20. Combined 60° Wide-Field Choroidal Thickness Maps and High-Definition En Face Vasculature Visualization Using Swept-Source Megahertz OCT at 1050 nm

    PubMed Central

    Mohler, Kathrin J.; Draxinger, Wolfgang; Klein, Thomas; Kolb, Jan Philip; Wieser, Wolfgang; Haritoglou, Christos; Kampik, Anselm; Fujimoto, James G.; Neubauer, Aljoscha S.; Huber, Robert; Wolf, Armin

    2015-01-01

    Purpose To demonstrate ultrahigh-speed swept-source optical coherence tomography (SS-OCT) at 1.68 million A-scans/s for choroidal imaging in normal and diseased eyes over a ∼60° field of view. To investigate and correlate wide-field three-dimensional (3D) choroidal thickness (ChT) and vascular patterns using ChT maps and coregistered high-definition en face images extracted from a single densely sampled Megahertz-OCT (MHz-OCT) dataset. Methods High-definition, ∼60° wide-field 3D datasets consisting of 2088 × 1024 A-scans were acquired using a 1.68 MHz prototype SS-OCT system at 1050 nm based on a Fourier-domain mode-locked laser. Nine subjects (nine eyes) with various chorioretinal diseases or without ocular pathology are presented. Coregistered ChT maps, choroidal summation maps, and depth-resolved en face images referenced to either the retinal pigment epithelium or the choroidal–scleral interface were generated using manual segmentation. Results Wide-field ChT maps showed a large inter- and intraindividual variance in peripheral and central ChT. In only four of the nine eyes, the location with the largest ChT was coincident with the fovea. The anatomy of the large lumen vessels of the outer choroid seems to play a major role in determining the global ChT pattern. Focal ChT changes with large thickness gradients were observed in some eyes. Conclusions Different ChT and vascular patterns could be visualized over ∼60° in patients for the first time using OCT. Due to focal ChT changes, a high density of thickness measurements may be favorable. High-definition depth-resolved en face images are complementary to cross sections and thickness maps and enhance the interpretation of different ChT patterns. PMID:26431482

  1. Fundamental reliability of 1.5-nm-thick silicon oxide gate films grown at 150 deg. C by modified reactive ion beam deposition

    SciTech Connect

    Yamada, Hiroshi

    2008-01-15

    The reliability of 1.5-nm-thick silicon oxide gate films grown at 150 deg. C by modified reactive ion beam deposition (RIBD) with in situ pyrolytic-gas passivation (PGP) using N{sub 2}O and NF{sub 3} was investigated. RIBD uses low-energy-controlled reactive, ionized species and potentializes low-temperature film growth. Although the oxide films were grown at a low temperature of 150 deg. C, their fundamental indices of reliability, such as the time-dependent dielectric breakdown lifetime and interface state density, were almost equivalent to those of oxide films grown at 850 deg. C using a furnace. This is probably due to localized interfacial N and F atoms. The number density of interfacial N atoms was about seven times larger than that for the furnace-grown oxide films, and this is a key factor for improving the reliability through the compensation of residual inconsistent-state bonding sites.

  2. Controlling the electronic properties of SWCNT FETs via modification of the substrate surface prior to atomic layer deposition of 10 nm thick Al2O3 film

    NASA Astrophysics Data System (ADS)

    Kim, Joonsung; Yoon, Jangyeol; Na, Junhong; Yee, Seongmin; Kim, Gyu Tae; Ha, Jeong Sook

    2013-11-01

    We demonstrate the controllability of the electronic transport properties of single-walled carbon nanotube (SWCNT) field effect transistors (FETs) via the use of 10 nm thick atomic-layer-deposited aluminum oxide (Al2O3) gate dielectric films, where the substrate surfaces were modified with differently functionalized self-assembled monolayers (SAMs) prior to their growth, namely SAMs with hydrophobic (-CH3) or hydrophilic (-OH) groups. Al2O3 grown on a hydrophilic surface causes the SWCNT FETs to keep their intrinsic p-type transfer characteristics by alleviating the electron-doping effect originating from defects in the Al2O3 film. However, the SAM with methyl groups increases the defect density of the Al2O3 film, enhancing the n-type transfer characteristics and inducing ambipolar to n-type behavior in the SWCNT FETs. In this work, we find clues about the distribution of charged defects in the Al2O3 film, which strongly influences the transfer characteristics of the SWCNT FETs, by measuring the thickness-dependent flat band voltages.

  3. Demonstrating 1 nm-oxide-equivalent-thickness HfO{sub 2}/InSb structure with unpinning Fermi level and low gate leakage current density

    SciTech Connect

    Trinh, Hai-Dang; Lin, Yueh-Chin; Nguyen, Hong-Quan; Luc, Quang-Ho; Nguyen, Minh-Thuy; Duong, Quoc-Van; Nguyen, Manh-Nghia; Wang, Shin-Yuan; Yi Chang, Edward

    2013-09-30

    In this work, the band alignment, interface, and electrical characteristics of HfO{sub 2}/InSb metal-oxide-semiconductor structure have been investigated. By using x-ray photoelectron spectroscopy analysis, the conduction band offset of 1.78 ± 0.1 eV and valence band offset of 3.35 ± 0.1 eV have been extracted. The transmission electron microscopy analysis has shown that HfO{sub 2} layer would be a good diffusion barrier for InSb. As a result, 1 nm equivalent-oxide-thickness in the 4 nm HfO{sub 2}/InSb structure has been demonstrated with unpinning Fermi level and low leakage current of 10{sup −4} A/cm{sup −2}. The D{sub it} value of smaller than 10{sup 12} eV{sup −1}cm{sup −2} has been obtained using conduction method.

  4. [(B3O3H3)(n)M]+ (n = 1, 2;M = Cu, Ag, Au): a new class of metal-cation complexes.

    PubMed

    Li, Da-Zhi; Dong, Chen-Chu; Zhang, Shi-Guo

    2013-08-01

    A density functional theory (DFT) investigation into the structures and bonding characteristics of [(B3O3H3)nM](+)(n = 1, 2;M = Cu, Ag, Au) complexes was performed. DFT calculations and natural bond orbital (NBO) analyses indicate that the ΙB metal complexes of boroxine exhibit intriguing bonding characteristics, different from the typical cation-π interactions between ΙB metal-cations and benzene. The complexes of [B3O3H3M](+) and [(B3O3H3)2 M](+) (M = Cu, Ag, and Au) favor the conformation of perfectly planar structures with the C2v and D2h symmetry along one of the threefold molecular axes of boroxine, respectively. Detailed natural resonance theory (NRT) and canonical molecular orbitals (CMOs) analyses show that interaction between the metal cation and the boroxine in [B3O3H3M](+) (M = Cu, Ag, and Au) is mainly ionic, while the ΙB metal-cations←π donation effect is responsible for the binding site. In these complexes, boroxine serves as terminals η(1)-B3O3H3 with one O atom of the B3O3 ring. The infra-red (IR) spectra of [B3O3H3M](+) were simulated to facilitate their future experimental characterization. The complexes all give two IR active modes at about 1,300 and 2,700 cm(-1), which are inactive in pure boroxine. Simultaneously, the B-H stretching modes of the complexes are red-shifted due to the interaction between the metal-cation and boroxine. To explore the possibility of the structural pattern developed in this work forming mesoporous materials, complexes [(B3O3H3M)6](6+) (M = Cu, Ag, and Au) were also studied, which appear to be unique and particular interesting: they are all true minima with D6h symmetries and pore sizes ranging from 12.04 Å to 13.65 Å. PMID:23636641

  5. Sub-0.5 nm equivalent oxide thickness scaling for Si-doped Zr1-xHfxO2 thin film without using noble metal electrode.

    PubMed

    Ahn, Ji-Hoon; Kwon, Se-Hun

    2015-07-22

    The dielectric properties of the Si-doped Zr1-xHfxO2 thin films were investigated over a broad compositional range with the goal of improving their properties for use as DRAM capacitor materials. The Si-doped Zr1-xHfxO2 thin films were deposited on TiN bottom electrodes by atomic layer deposition using a TEMA-Zr/TEMA-Hf mixture precursor for deposition of Zr1-xHfxO2 film and Tris-EMASiH as a Si precursor. The Si stabilizer increased the tetragonality and the dielectric constant; however, at high fractions of Si, the crystal structure degraded to amorphous and the dielectric constant decreased. Doping with Si exhibited a larger influence on the dielectric constant at higher Hf content. A Si-doped Hf-rich Zr1-xHfxO2 thin film, with tetragonal structure, exhibited a dielectric constant of about 50. This is the highest value among all reported results for Zr and Hf oxide systems, and equivalent oxide thickness (EOT) value of under 0.5 nm could be obtained with a leakage current of under 10(-7) A·cm(-2), which is the lowest EOT value ever reported for a DRAM storage capacitor system without using a noble-metal-based electrode. PMID:26125098

  6. High quality HfO{sub 2}/p-GaSb(001) metal-oxide-semiconductor capacitors with 0.8 nm equivalent oxide thickness

    SciTech Connect

    Barth, Michael; Datta, Suman; Bruce Rayner, G.; McDonnell, Stephen; Wallace, Robert M.; Bennett, Brian R.; Engel-Herbert, Roman

    2014-12-01

    We investigate in-situ cleaning of GaSb surfaces and its effect on the electrical performance of p-type GaSb metal-oxide-semiconductor capacitor (MOSCAP) using a remote hydrogen plasma. Ultrathin HfO{sub 2} films grown by atomic layer deposition were used as a high permittivity gate dielectric. Compared to conventional ex-situ chemical cleaning methods, the in-situ GaSb surface treatment resulted in a drastic improvement in the impedance characteristics of the MOSCAPs, directly evidencing a much lower interface trap density and enhanced Fermi level movement efficiency. We demonstrate that by using a combination of ex-situ and in-situ surface cleaning steps, aggressively scaled HfO{sub 2}/p-GaSb MOSCAP structures with a low equivalent oxide thickness of 0.8 nm and efficient gate modulation of the surface potential are achieved, allowing to push the Fermi level far away from the valence band edge high up into the band gap of GaSb.

  7. Hybrid Laser-Arc Welding of 10-mm-Thick Cast Martensitic Stainless Steel CA6NM: As-Welded Microstructure and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Mirakhorli, Fatemeh; Cao, Xinjin; Pham, Xuan-Tan; Wanjara, Priti; Fihey, Jean-Luc

    2016-07-01

    Cast CA6NM martensitic stainless steel plates, 10 mm in thickness, were welded using hybrid laser-arc welding. The effect of different welding speeds on the as-welded joint integrity was characterized in terms of the weld bead geometry, defects, microstructure, hardness, ultimate tensile strength, and impact energy. Significant defects such as porosity, root humping, underfill, and excessive penetration were observed at a low welding speed (0.5 m/min). However, the underfill depth and excessive penetration in the joints manufactured at welding speeds above 0.75 m/min met the specifications of ISO 12932. Characterization of the as-welded microstructure revealed untempered martensite and residual delta ferrite dispersed at prior-austenite grain boundaries in the fusion zone. In addition, four different heat-affected zones in the weldments were differentiated through hardness mapping and inference from the Fe-Cr-Ni ternary phase diagram. The tensile fracture occurred in the base metal for all the samples and fractographic analysis showed that the crack path is within the martensite matrix, along primary delta ferrite-martensite interfaces and within the primary delta ferrite. Additionally, Charpy impact testing demonstrated slightly higher fracture energy values and deeper dimples on the fracture surface of the welds manufactured at higher welding speeds due to grain refinement and/or lower porosity.

  8. Direct Write Processing of Multi-micron Thickness Copper Nano-particle Paste on Flexible Substrates with 532 nm Laser Wavelength

    NASA Astrophysics Data System (ADS)

    Lopez-Espiricueta, Dunia; Fearon, Eamonn; Edwardson, Stuart; Dearden, Geoffrey

    The Laser Assisted Direct Write (LA-DW) method has been implemented in the development of different markets and material processing, recently also used for creating Printed Circuit Boards (PCB) or electrical circuitry. The process consists in the deposition of metallic nano-particle (NP) inks, which are afterwards cured or sintered by laser irradiation, thus creating conductive pathways; advantages are speed, accuracy and the protection of the heat affected zone (HAZ). This research will study the behaviour of the heat dissipation relatively within the Nano-particle Copper paste after being irradiated with 1064 nm and 532 nm wavelengths, research will be developed on different widths and depths deposited onto flat surfaces such as flexible PET. Comparisons to be made between resistivity results obtained from different wavelengths.

  9. Low interfacial trap density and sub-nm equivalent oxide thickness in In{sub 0.53}Ga{sub 0.47}As (001) metal-oxide-semiconductor devices using molecular beam deposited HfO{sub 2}/Al{sub 2}O{sub 3} as gate dielectrics

    SciTech Connect

    Chu, L. K.; Merckling, C.; Dekoster, J.; Caymax, M.; Alian, A.; Heyns, M.; Kwo, J.; Hong, M.

    2011-07-25

    We investigated the passivation of In{sub 0.53}Ga{sub 0.47}As (001) surface by molecular beam epitaxy techniques. After growth of strained In{sub 0.53}Ga{sub 0.47}As on InP (001) substrate, HfO{sub 2}/Al{sub 2}O{sub 3} high-{kappa} oxide stacks have been deposited in-situ after surface reconstruction engineering. Excellent capacitance-voltage characteristics have been demonstrated along with low gate leakage currents. The interfacial density of states (D{sub it}) of the Al{sub 2}O{sub 3}/In{sub 0.53}Ga{sub 0.47}As interface have been revealed by conductance measurement, indicating a downward D{sub it} profile from the energy close to the valence band (medium 10{sup 12} cm{sup -2}eV{sup -1}) towards that close to the conduction band (10{sup 11} cm{sup -2}eV{sup -1}). The low D{sub it}'s are in good agreement with the high Fermi-level movement efficiency of greater than 80%. Moreover, excellent scalability of the HfO{sub 2} has been demonstrated as evidenced by the good dependence of capacitance oxide thickness on the HfO{sub 2} thickness (dielectric constant of HfO{sub 2}{approx}20) and the remained low D{sub it}'s due to the thin Al{sub 2}O{sub 3} passivation layer. The sample with HfO{sub 2} (3.4 nm)/Al{sub 2}O{sub 3} (1.2 nm) as the gate dielectrics has exhibited an equivalent oxide thickness of {approx}0.93 nm.

  10. Electronic Transitions of Jet-cooled SiC2, Si2Cn (n=1-3), Si3Cn (n = 1,2), and SiC6H4 between 250 and 710 nm

    NASA Astrophysics Data System (ADS)

    Steglich, M.; Maier, J. P.

    2015-03-01

    Electronic transitions of the title molecules were measured between 250 and 710 nm using a mass-resolved 1 + 1’ resonant two-photon ionization technique at a resolution of 0.1 nm. Calculations at the B3LYP/aug-cc-pVQZ level of theory support the analyses. Because of their spectral properties, SiC2, linear Si2C2, Si3C, and SiC6H4 are interesting target species for astronomical searches in the visible spectral region. Of special relevance is the Si-C2-Si chain, which features a prominent band at 516.4 nm of a strong transition (f = 0.25). This band and one from SiC6H4 at 445.3 nm were also investigated at higher resolution (0.002 nm).

  11. Highly Crystalline Low Band Gap Polymer Based on Thieno[3,4-c]pyrrole-4,6-dione for High-Performance Polymer Solar Cells with a >400 nm Thick Active Layer.

    PubMed

    Jung, Jae Woong; Russell, Thomas P; Jo, Won Ho

    2015-06-24

    Two thieno[3,4-c]pyrrole-4,6-dione (TPD)-based copolymers combined with 2,2'-bithiophene (BT) or (E)-2-(2-(thiophen-2-yl)vinyl)thiophene (TV) have been designed and synthesized to investigate the effect of the introduction of a vinylene group in the polymer backbone on the optical, electrochemical, and photovoltaic properties of the polymers. Although both polymers have shown similar optical band gaps and frontier energy levels, regardless of the introduction of vinylene bridge, the introduction of a π-extended vinylene group in the polymer backbone substantially enhances the charge transport characteristics of the resulting polymer due to its strong tendency to self-assemble and thus to enhance the crystallinity. An analysis on charge recombination in the active layer of a solar cell device indicates that the outstanding charge transport (μ = 1.90 cm(2)·V(-1)·s(-1)) of PTVTPD with a vinylene group effectively suppresses the bimolecular recombination, leading to a high power conversion efficiency (PCE) up to 7.16%, which is 20% higher than that (5.98%) of the counterpart polymer without a vinylene group (PBTTPD). More importantly, PTVTPD-based devices do not show a large variation of photovoltaic performance with the active layer thickness; that is, the PCE remains at 6% as the active layer thickness increases up to 450 nm, demonstrating that the PTVTPD-based solar cell is very compatible with industrial processing.

  12. Epitaxial GeSn film formed by solid phase epitaxy and its application to Yb{sub 2}O{sub 3}-gated GeSn metal-oxide-semiconductor capacitors with sub-nm equivalent oxide thickness

    SciTech Connect

    Lee, Ching-Wei; Wu, Yung-Hsien; Hsieh, Ching-Heng; Lin, Chia-Chun

    2014-11-17

    Through the technique of solid phase epitaxy (SPE), an epitaxial Ge{sub 0.955}Sn{sub 0.045} film was formed on a Ge substrate by depositing an amorphous GeSn film followed by a rapid thermal annealing at 550 °C. A process that uses a SiO{sub 2} capping layer on the amorphous GeSn film during SPE was proposed and it prevents Sn precipitation from occurring while maintaining a smooth surface due to the reduced surface mobility of Sn atoms. The high-quality epitaxial GeSn film was observed to have single crystal structure, uniform thickness and composition, and tiny surface roughness with root mean square of 0.56 nm. With a SnO{sub x}-free surface, Yb{sub 2}O{sub 3}-gated GeSn metal-oxide-semiconductor (MOS) capacitors with equivalent oxide thickness (EOT) of 0.55 nm were developed. A small amount of traps inside the Yb{sub 2}O{sub 3} was verified by negligible hysteresis in capacitance measurement. Low leakage current of 0.4 A/cm{sup 2} at gate bias of flatband voltage (V{sub FB})-1 V suggests the high quality of the gate dielectric. In addition, the feasibility of using Yb{sub 2}O{sub 3} to well passivate GeSn surface was also evidenced by the small interface trap density (D{sub it}) of 4.02 × 10{sup 11} eV{sup −1} cm{sup −2}, which can be attributed to smooth GeSn surface and Yb{sub 2}O{sub 3} valency passivation. Both leakage current and D{sub it} performance outperform other passivation techniques at sub-nm EOT regime. The proposed epitaxial GeSn film along with Yb{sub 2}O{sub 3} dielectric paves an alternative way to enable high-performance GeSn MOS devices.

  13. Relaxation mechanism of β-carotene from S2 (1Bu(+)) state to S1 (2Ag(-)) state: femtosecond time-resolved near-IR absorption and stimulated resonance Raman studies in 900-1550 nm region.

    PubMed

    Takaya, Tomohisa; Iwata, Koichi

    2014-06-12

    Carotenoids have two major low-lying excited states, the second lowest (S2 (1Bu(+))) and the lowest (S1 (2Ag(-))) excited singlet states, both of which are suggested to be involved in the energy transfer processes in light-harvesting complexes. Studying vibrational dynamics of S2 carotenoids requires ultrafast time-resolved near-IR Raman spectroscopy, although it has much less sensitivity than visible Raman spectroscopy. In this study, the relaxation mechanism of β-carotene from the S2 state to the S1 state is investigated by femtosecond time-resolved multiplex near-IR absorption and stimulated Raman spectroscopy. The energy gap between the S2 and S1 states is estimated to be 6780 cm(-1) from near-IR transient absorption spectra. The near-IR stimulated Raman spectrum of S2 β-carotene show three bands at 1580, 1240, and 1050 cm(-1). When excess energy of 4000 cm(-1) is added, the S1 C═C stretch band shows a large upshift with a time constant of 0.2 ps. The fast upshift is explained by a model that excess energy generated by internal conversion from the S2 state to the S1 state is selectively accepted by one of the vibronic levels of the S1 state and is redistributed among all the vibrational modes.

  14. Crystalline ZrTiO{sub 4} gated p-metal–oxide–semiconductor field effect transistors with sub-nm equivalent oxide thickness featuring good electrical characteristics and reliability

    SciTech Connect

    Wu, Chao-Yi; Hsieh, Ching-Heng; Lee, Ching-Wei; Wu, Yung-Hsien

    2015-02-02

    ZrTiO{sub 4} crystallized in orthorhombic (o-) phase was stacked with an amorphous Yb{sub 2}O{sub 3} interfacial layer as the gate dielectric for Si-based p-MOSFETs. With thermal annealing after gate electrode, the gate stack with equivalent oxide thickness (EOT) of 0.82 nm achieves high dielectric quality by showing a low interface trap density (D{sub it}) of 2.75 × 10{sup 11 }cm{sup −2}eV{sup −1} near the midgap and low oxide traps. Crystallization of ZrTiO{sub 4} and post metal annealing are also proven to introduce very limited amount of metal induced gap states or interfacial dipole. The p-MOSFETs exhibit good sub-threshold swing of 75 mV/dec which is ascribed to the low D{sub it} value and small EOT. Owing to the Y{sub 2}O{sub 3} interfacial layer and smooth interface with Si substrate that, respectively, suppress phonon and surface roughness scattering, the p-MOSFETs also display high hole mobility of 49 cm{sup 2}/V-s at 1 MV/cm. In addition, I{sub on}/I{sub off} ratio larger than 10{sup 6} is also observed. From the reliability evaluation by negative bias temperature instability test, after stressing with an electric field of −10 MV/cm at 85 °C for 1000 s, satisfactory threshold voltage shift of 12 mV and sub-threshold swing degradation of 3% were obtained. With these promising characteristics, the Yb{sub 2}O{sub 3}/o-ZrTiO{sub 4} gate stack holds the great potential for next-generation electronics.

  15. Charge transport-accumulation in multilayer structures with Si{sub 3}N{sub 4} and thick(5.5 nm) SiO{sub 2}

    SciTech Connect

    Novikov, Yu. N.

    2015-04-21

    Double-injection, transport, and accumulation of charge in metal-thick oxide-nitride-silicon and silicon-tunnel oxide-nitride-thick oxide-silicon structures have been theoretically studied. Calculation results were compared to experimental results. The charge transport in Si{sub 3}N{sub 4} is quantitatively described assuming the multiphonon ionization theory of neutral traps with a capture cross-section less than 10{sup −14} cm{sup 2}. With traps amphoterism taken into account, the calculation predicts the existence of a layer with their excessive concentration near the SiO{sub 2}/Si{sub 3}N{sub 4} interface. The model satisfactorily describes the write/erase characteristics in silicon-oxide-nitride-oxide-silicon-structures from Bu and White (Solid-State Electron. 45, 113 (2001))

  16. Quasi-cw tissue transillumination at 1064 nm

    NASA Astrophysics Data System (ADS)

    Bernini, Umberto; Ramaglia, Antonio; Russo, Paolo

    1997-08-01

    An extended series of transillumination experiments has been performed in vitro on animal samples (bovine muscle, up to 30- mm-thick; chicken wing and quail femur, 12-mm-thick) and in vivo on the human hand (thickness, about 20 mm), using a pulsed light source (7 ns, about 10-4 J/pulse, 10 Hz rep rate) from a collimated (1.2 m) Nd:YAG laser beam (1064 nm). A PIN photodiode connected to a digital oscilloscope was used to measure the maximum intensity of the beam pulse transmitted through the sample (i.e., no temporal discrimination of the output signal was attempted) while it was scanned across the source/detector assembly. One dimensional scans were performed on bovine muscle samples in which thin metallic test objects were embedded, in order to study the spatial resolution of the technique (for bovine muscle at 1064 nm, absorption and reduced scattering coefficients are reported to be about 1 cm-1 and 3 cm-1, respectively). The measured spatial resolution was as good as 3.6 mm in 30 mm of tissue thickness. In the two-dimensional scans of the chicken and quail sample, fat and bone tissues can be easily seen with good resolution, whereas imaging of the middle finger of a human hand shows cartilaginoid and bone tissue with 1 - 2 mm resolution. Hence, this simple collimated quasi-cw technique gives significantly better results for tissue imaging than pure cw transillumination. Use of (pulsed) light above 1000 nm and a high energy content per pulse are supposed to explain the positive experimental findings.

  17. Tuning the thickness of electrochemically grafted layers in large area molecular junctions

    SciTech Connect

    Fluteau, T.; Bessis, C.; Barraud, C. Della Rocca, M. L.; Lafarge, P.; Martin, P.; Lacroix, J.-C.

    2014-09-21

    We have investigated the thickness, the surface roughness, and the transport properties of oligo(1-(2-bisthienyl)benzene) (BTB) thin films grafted on evaporated Au electrodes, thanks to a diazonium-based electro-reduction process. The thickness of the organic film is tuned by varying the number of electrochemical cycles during the growth process. Atomic force microscopy measurements reveal the evolution of the thickness in the range of 2–27 nm. Its variation displays a linear dependence with the number of cycles followed by a saturation attributed to the insulating behavior of the organic films. Both ultrathin (2 nm) and thin (12 and 27 nm) large area BTB-based junctions have then been fabricated using standard CMOS processes and finally electrically characterized. The electronic responses are fully consistent with a tunneling barrier in case of ultrathin BTB film whereas a pronounced rectifying behavior is reported for thicker molecular films.

  18. Thickness dependence on the optoelectronic properties of multilayered GaSe based photodetector

    NASA Astrophysics Data System (ADS)

    Ko, Pil Ju; Abderrahmane, Abdelkader; Takamura, Tsukasa; Kim, Nam-Hoon; Sandhu, Adarsh

    2016-08-01

    Two-dimensional (2D) layered materials exhibit unique optoelectronic properties at atomic thicknesses. In this paper, we fabricated metal–semiconductor–metal based photodetectors using layered gallium selenide (GaSe) with different thicknesses. The electrical and optoelectronic properties of the photodetectors were studied, and these devices showed good electrical characteristics down to GaSe flake thicknesses of 30 nm. A photograting effect was observed in the absence of a gate voltage, thereby implying a relatively high photoresponsivity. Higher values of the photoresponsivity occurred for thicker layers of GaSe with a maximum value 0.57 AW‑1 and external quantum efficiency of of 132.8%, and decreased with decreasing GaSe flake thickness. The detectivity was 4.05 × 1010 cm Hz1/2 W‑1 at 532 nm laser wavelength, underscoring that GaSe is a promising p-type 2D material for photodetection applications in the visible spectrum.

  19. Thickness dependence on the optoelectronic properties of multilayered GaSe based photodetector

    NASA Astrophysics Data System (ADS)

    Ko, Pil Ju; Abderrahmane, Abdelkader; Takamura, Tsukasa; Kim, Nam-Hoon; Sandhu, Adarsh

    2016-08-01

    Two-dimensional (2D) layered materials exhibit unique optoelectronic properties at atomic thicknesses. In this paper, we fabricated metal-semiconductor-metal based photodetectors using layered gallium selenide (GaSe) with different thicknesses. The electrical and optoelectronic properties of the photodetectors were studied, and these devices showed good electrical characteristics down to GaSe flake thicknesses of 30 nm. A photograting effect was observed in the absence of a gate voltage, thereby implying a relatively high photoresponsivity. Higher values of the photoresponsivity occurred for thicker layers of GaSe with a maximum value 0.57 AW-1 and external quantum efficiency of of 132.8%, and decreased with decreasing GaSe flake thickness. The detectivity was 4.05 × 1010 cm Hz1/2 W-1 at 532 nm laser wavelength, underscoring that GaSe is a promising p-type 2D material for photodetection applications in the visible spectrum.

  20. ELECTRONIC TRANSITIONS OF JET-COOLED SiC{sub 2}, Si{sub 2}C{sub n} (n=1−3), Si{sub 3}C{sub n} (n = 1,2), AND SiC{sub 6}H{sub 4} BETWEEN 250 AND 710 nm

    SciTech Connect

    Steglich, M.; Maier, J. P. E-mail: j.p.maier@unibas.ch

    2015-03-10

    Electronic transitions of the title molecules were measured between 250 and 710 nm using a mass-resolved 1 + 1’ resonant two-photon ionization technique at a resolution of 0.1 nm. Calculations at the B3LYP/aug-cc-pVQZ level of theory support the analyses. Because of their spectral properties, SiC{sub 2}, linear Si{sub 2}C{sub 2}, Si{sub 3}C, and SiC{sub 6}H{sub 4} are interesting target species for astronomical searches in the visible spectral region. Of special relevance is the Si–C{sub 2}–Si chain, which features a prominent band at 516.4 nm of a strong transition (f = 0.25). This band and one from SiC{sub 6}H{sub 4} at 445.3 nm were also investigated at higher resolution (0.002 nm)

  1. 1,2-Dichloroethane

    Integrated Risk Information System (IRIS)

    1,2 - Dichloroethane ; CASRN 107 - 06 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinoge

  2. 1,2-Dichloropropane

    Integrated Risk Information System (IRIS)

    1,2 - Dichloropropane ; CASRN 78 - 87 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinoge

  3. 1,2-Dichlorobenzene

    Integrated Risk Information System (IRIS)

    1,2 - Dichlorobenzene ; CASRN 95 - 50 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinoge

  4. 1,2-Diphenylhydrazine

    Integrated Risk Information System (IRIS)

    1,2 - Diphenylhydrazine ; CASRN 122 - 66 - 7 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcin

  5. 1,2-Dibromoethane

    Integrated Risk Information System (IRIS)

    1,2 - Dibromoethane ; CASRN 106 - 93 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogen

  6. Plasma assisted molecular beam epitaxy growth and effect of varying buffer thickness on the formation of ultra-thin In{sub 0.17}Al{sub 0.83}N/GaN heterostructure on Si(111)

    SciTech Connect

    Chowdhury, Subhra; Biswas, Dhrubes

    2015-02-23

    This work reports on the detailed plasma-assisted molecular beam epitaxy (PAMBE) growth of ultra-thin In{sub 0.17}Al{sub 0.83}N/GaN heterostructures on Si(111) substrate with three different buffer thickness (600 nm, 400 nm, and 200 nm). Growth through critical optimization of growth conditions is followed by the investigation of impact of varying buffer thickness on the formation of ultra-thin 1.5 nm, In{sub 0.17}Al{sub 0.83}N–1.25 nm, GaN–1.5 nm, In{sub 0.17}Al{sub 0.83}N heterostructure, in terms of threading dislocation (TD) density. Analysis reveals a drastic reduction of TD density from the order 10{sup 10 }cm{sup −2} to 10{sup 8 }cm{sup −2} with increasing buffer thickness resulting smooth ultra-thin active region for thick buffer structure. Increasing strain with decreasing buffer thickness is studied through reciprocal space mapping analysis. Surface morphology through atomic force microscopy analysis also supports our study by observing an increase of pits and root mean square value (0.89 nm, 1.2nm, and 1.45 nm) with decreasing buffer thickness which are resulted due to the internal strain and TDs.

  7. Characterization of AlInN/AlN/GaN Heterostructures with Different AlN Buffer Thickness

    NASA Astrophysics Data System (ADS)

    Çörekçi, S.; Dugan, S.; Öztürk, M. K.; Çetin, S. Ş.; Çakmak, M.; Özçelik, S.; Özbay, E.

    2016-07-01

    Two AlInN/AlN/GaN heterostructures with 280-nm- and 400-nm-thick AlN buffer grown on sapphire substrates by metal-organic chemical vapor deposition (MOCVD) have been investigated by x-ray diffraction (XRD), atomic force microscopy (AFM), photoluminescence (PL) and Hall-effect measurements. The symmetric (0002) plane with respect to the asymmetric (10bar{1}2) plane in the 280-nm-thick AlN buffer has a higher crystal quality, as opposed to the 400-nm-thick buffer. The thinner buffer improves the crystallinity of both (0002) and (10bar{1}2) planes in the GaN layers, it also provides a sizeable reduction in dislocation density of GaN. Furthermore, the lower buffer thickness leads to a good quality surface with an rms roughness of 0.30 nm and a dark spot density of 4.0 × 108 cm-2. The optical and transport properties of the AlInN/AlN/GaN structure with the relatively thin buffer are compatible with the enhancement in its structural quality, as verified by XRD and AFM results.

  8. Sub-10 nm nanopantography

    NASA Astrophysics Data System (ADS)

    Tian, Siyuan; Donnelly, Vincent M.; Ruchhoeft, Paul; Economou, Demetre J.

    2015-11-01

    Nanopantography, a massively parallel nanopatterning method over large areas, was previously shown to be capable of printing 10 nm features in silicon, using an array of 1000 nm-diameter electrostatic lenses, fabricated on the substrate, to focus beamlets of a broad area ion beam on selected regions of the substrate. In the present study, using lens dimensional scaling optimized by computer simulation, and reduction in the ion beam image size and energy dispersion, the resolution of nanopantography was dramatically improved, allowing features as small as 3 nm to be etched into Si.

  9. Demonstration of pattern transfer into sub-100 nm polysilicon line/space features patterned with extreme ultraviolet lithography

    SciTech Connect

    Cardinale, G. F.; Henderson, C. C.; Goldsmith, J. E. M.; Mangat, P. J. S.; Cobb, J.; Hector, S. D.

    1999-11-01

    In two separate experiments, we have successfully demonstrated the transfer of dense- and loose-pitch line/space (L/S) photoresist features, patterned with extreme ultraviolet (EUV) lithography, into an underlying hard mask material. In both experiments, a deep-UV photoresist ({approx}90 nm thick) was spin cast in bilayer format onto a hard mask (50-90 nm thick) and was subsequently exposed to EUV radiation using a 10x reduction EUV exposure system. The EUV reticle was fabricated at Motorola (Tempe, AZ) using a subtractive process with Ta-based absorbers on Mo/Si multilayer mask blanks. In the first set of experiments, following the EUV exposures, the L/S patterns were transferred first into a SiO{sub 2} hard mask (60 nm thick) using a reactive ion etch (RIE), and then into polysilicon (350 nm thick) using a triode-coupled plasma RIE etcher at the University of California, Berkeley, microfabrication facilities. The latter etch process, which produced steep (>85 degree sign ) sidewalls, employed a HBr/Cl chemistry with a large (>10:1) etch selectivity of polysilicon to silicon dioxide. In the second set of experiments, hard mask films of SiON (50 nm thick) and SiO{sub 2} (87 nm thick) were used. A RIE was performed at Motorola using a halogen gas chemistry that resulted in a hard mask-to-photoresist etch selectivity >3:1 and sidewall profile angles {>=}85 degree sign . Line edge roughness (LER) and linewidth critical dimension (CD) measurements were performed using Sandia's GORA(c) CD digital image analysis software. Low LER values (6-9 nm, 3{sigma}, one side) and good CD linearity (better than 10%) were demonstrated for the final pattern-transferred dense polysilicon L/S features from 80 to 175 nm. In addition, pattern transfer (into polysilicon) of loose-pitch (1:2) L/S features with CDs{>=}60 nm was demonstrated. (c) 1999 American Vacuum Society.

  10. Albuquerque, NM, USA

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Albuquerque, NM (35.0N, 106.5W) is situated on the edge of the Rio Grande River and flood plain which cuts across the image. The reddish brown surface of the Albuquerque Basin is a fault depression filled with ancient alluvial fan and lake bed sediments. On the slopes of the Manzano Mountains to the east of Albuquerque, juniper and other timber of the Cibola National Forest can be seen as contrasting dark tones of vegetation.

  11. Accurate thickness measurement of graphene

    NASA Astrophysics Data System (ADS)

    Shearer, Cameron J.; Slattery, Ashley D.; Stapleton, Andrew J.; Shapter, Joseph G.; Gibson, Christopher T.

    2016-03-01

    Graphene has emerged as a material with a vast variety of applications. The electronic, optical and mechanical properties of graphene are strongly influenced by the number of layers present in a sample. As a result, the dimensional characterization of graphene films is crucial, especially with the continued development of new synthesis methods and applications. A number of techniques exist to determine the thickness of graphene films including optical contrast, Raman scattering and scanning probe microscopy techniques. Atomic force microscopy (AFM), in particular, is used extensively since it provides three-dimensional images that enable the measurement of the lateral dimensions of graphene films as well as the thickness, and by extension the number of layers present. However, in the literature AFM has proven to be inaccurate with a wide range of measured values for single layer graphene thickness reported (between 0.4 and 1.7 nm). This discrepancy has been attributed to tip-surface interactions, image feedback settings and surface chemistry. In this work, we use standard and carbon nanotube modified AFM probes and a relatively new AFM imaging mode known as PeakForce tapping mode to establish a protocol that will allow users to accurately determine the thickness of graphene films. In particular, the error in measuring the first layer is reduced from 0.1-1.3 nm to 0.1-0.3 nm. Furthermore, in the process we establish that the graphene-substrate adsorbate layer and imaging force, in particular the pressure the tip exerts on the surface, are crucial components in the accurate measurement of graphene using AFM. These findings can be applied to other 2D materials.

  12. Accurate thickness measurement of graphene.

    PubMed

    Shearer, Cameron J; Slattery, Ashley D; Stapleton, Andrew J; Shapter, Joseph G; Gibson, Christopher T

    2016-03-29

    Graphene has emerged as a material with a vast variety of applications. The electronic, optical and mechanical properties of graphene are strongly influenced by the number of layers present in a sample. As a result, the dimensional characterization of graphene films is crucial, especially with the continued development of new synthesis methods and applications. A number of techniques exist to determine the thickness of graphene films including optical contrast, Raman scattering and scanning probe microscopy techniques. Atomic force microscopy (AFM), in particular, is used extensively since it provides three-dimensional images that enable the measurement of the lateral dimensions of graphene films as well as the thickness, and by extension the number of layers present. However, in the literature AFM has proven to be inaccurate with a wide range of measured values for single layer graphene thickness reported (between 0.4 and 1.7 nm). This discrepancy has been attributed to tip-surface interactions, image feedback settings and surface chemistry. In this work, we use standard and carbon nanotube modified AFM probes and a relatively new AFM imaging mode known as PeakForce tapping mode to establish a protocol that will allow users to accurately determine the thickness of graphene films. In particular, the error in measuring the first layer is reduced from 0.1-1.3 nm to 0.1-0.3 nm. Furthermore, in the process we establish that the graphene-substrate adsorbate layer and imaging force, in particular the pressure the tip exerts on the surface, are crucial components in the accurate measurement of graphene using AFM. These findings can be applied to other 2D materials.

  13. Continuous-wave simultaneous dual-wavelength operation at 912 nm and 1063 nm in Nd:GdVO4

    NASA Astrophysics Data System (ADS)

    Lünstedt, K.; Pavel, N.; Petermann, K.; Huber, G.

    2007-01-01

    A continuous-wave, diode-pumped Nd:GdVO4 thin disk laser with simultaneous dual-wavelength emission at the 912 nm 4 F 3/2→4 I 9/2 quasi-three-level transition and the 1063 nm 4 F 3/2→4 I 11/2 four-level transition is demonstrated and analyzed. Output powers of 1.7 W at 912 nm and of 1.6 W at 1063 nm were achieved simultaneously from a 0.3-at.%, 300-μm thick Nd:GdVO4 crystal that was multi-pass excited with 26.8 W of available diode pump power. Second harmonic generation to 456 nm with LiB3O5 yielded 0.96 W in 912 nm single-wavelength operation and 0.73 W in 912 nm/1063 nm dual-wavelength operation.

  14. Quantitative analysis of surface tension of liquid nano-film with thickness: Two stage stability mechanism, molecular dynamics and thermodynamics approach

    NASA Astrophysics Data System (ADS)

    Peng, Tiefeng; Li, Qibin; Chen, Jie; Gao, Xuechao

    2016-11-01

    The effects of thickness on surface tension of aqueous nano-films under the same lateral size were studied by molecular dynamics (MD) simulations. The surface tension was found to decrease with decreasing thickness when film thickness is below 1.5 nm. Between 4 and 1.5 nm, the trend is for the surface tension to decrease but this is not as significant as between 1.5 and 1.2 nm. For the surface tension of salt nano-films, with low temperatures resulting in monotonous decreasing with thickness, while high temperature (e.g. 479 K) exhibited a first increase then decrease for surface tension with thickness. Filippini et al. (2014) suggested that surface tension is constant with the thickness as long as the sheet remains in one piece, also the decrease observed and as proposed by Werth et al. (2013) is not due to a confinement effect on Lennard-Jones systems. However, in this study for aqueous nano-films, a two stage mechanism was proposed to interpret this effect, for which the stability was classified according to thickness range and validated by disjoining pressure. The results are important in describing the role of surface tension in determining the behaviour of disjoining pressure.

  15. Thermal behavior of 1,2-dipalmitoyl-sn-3-phosphoglycerocholine bi- and multi-layers, deposited with physical vapor deposition under ellipsometric growth control.

    PubMed

    González H, Carmen; Volkmann, Ulrich G; Retamal, Maria J; Cisternas, Marcelo; Sarabia, Mauricio A; López, Karina A

    2012-04-01

    1,2-dipalmitoyl-sn-3-phosphoglycerocholine membranes were deposited onto a silicon substrate (Si/SiO(2)) using physical vapor deposition with in situ ellipsometric thickness control. Along several heating cycles it was possible to identify well-defined boundaries for gel, ripple, liquid crystalline, and fluid-disordered phases. Particularly, the second order transition between gel and ripple phase was clearly identified in the range of ~28-34 °C using Raman spectroscopy. Atomic force microscopy and imaging ellipsometry (IE) were used to observe and characterize the ripple phase undulations of period λ = 20.8 nm and average height h = 19.95 nm along the temperature interval of ~34 to 40 °C. Clusters/agglomerations heights of more than twice the membrane thickness were observed with IE, induced by heating cycles.

  16. Characterization of nanometer-thick polycrystalline silicon with phonon-boundary scattering enhanced thermoelectric properties and its application in infrared sensors

    NASA Astrophysics Data System (ADS)

    Zhou, Huchuan; Kropelnicki, Piotr; Lee, Chengkuo

    2014-12-01

    Although significantly reducing the thermal conductivity of silicon nanowires has been reported, it remains a challenge to integrate silicon nanowires with structure materials and electrodes in the complementary metal-oxide-semiconductor (CMOS) process. In this paper, we investigated the thermal conductivity of nanometer-thick polycrystalline silicon (poly-Si) theoretically and experimentally. By leveraging the phonon-boundary scattering, the thermal conductivity of 52 nm thick poly-Si was measured as low as around 12 W mK-1 which is only about 10% of the value of bulk single crystalline silicon. The ZT of n-doped and p-doped 52 nm thick poly-Si was measured as 0.067 and 0.024, respectively, while most previously reported data had values of about 0.02 and 0.01 for a poly-Si layer with a thickness of 0.5 μm and above. Thermopile infrared sensors comprising 128 pairs of thermocouples made of either n-doped or p-doped nanometer-thick poly-Si strips in a series connected by an aluminium (Al) metal interconnect layer are fabricated using microelectromechanical system (MEMS) technology. The measured vacuum specific detectivity (D*) of the n-doped and p-doped thermopile infrared (IR) sensors are 3.00 × 108 and 1.83 × 108 cm Hz1/2 W-1 for sensors of 52 nm thick poly-Si, and 5.75 × 107 and 3.95 × 107 cm Hz1/2 W-1 for sensors of 300 nm thick poly-Si, respectively. The outstanding thermoelectric properties indicate our approach is promising for diverse applications using ultrathin poly-Si technology.Although significantly reducing the thermal conductivity of silicon nanowires has been reported, it remains a challenge to integrate silicon nanowires with structure materials and electrodes in the complementary metal-oxide-semiconductor (CMOS) process. In this paper, we investigated the thermal conductivity of nanometer-thick polycrystalline silicon (poly-Si) theoretically and experimentally. By leveraging the phonon-boundary scattering, the thermal conductivity of 52 nm

  17. Characterization of nanometer-thick polycrystalline silicon with phonon-boundary scattering enhanced thermoelectric properties and its application in infrared sensors.

    PubMed

    Zhou, Huchuan; Kropelnicki, Piotr; Lee, Chengkuo

    2015-01-14

    Although significantly reducing the thermal conductivity of silicon nanowires has been reported, it remains a challenge to integrate silicon nanowires with structure materials and electrodes in the complementary metal-oxide-semiconductor (CMOS) process. In this paper, we investigated the thermal conductivity of nanometer-thick polycrystalline silicon (poly-Si) theoretically and experimentally. By leveraging the phonon-boundary scattering, the thermal conductivity of 52 nm thick poly-Si was measured as low as around 12 W mK(-1) which is only about 10% of the value of bulk single crystalline silicon. The ZT of n-doped and p-doped 52 nm thick poly-Si was measured as 0.067 and 0.024, respectively, while most previously reported data had values of about 0.02 and 0.01 for a poly-Si layer with a thickness of 0.5 μm and above. Thermopile infrared sensors comprising 128 pairs of thermocouples made of either n-doped or p-doped nanometer-thick poly-Si strips in a series connected by an aluminium (Al) metal interconnect layer are fabricated using microelectromechanical system (MEMS) technology. The measured vacuum specific detectivity (D*) of the n-doped and p-doped thermopile infrared (IR) sensors are 3.00 × 10(8) and 1.83 × 10(8) cm Hz(1/2) W(-1) for sensors of 52 nm thick poly-Si, and 5.75 × 10(7) and 3.95 × 10(7) cm Hz(1/2) W(-1) for sensors of 300 nm thick poly-Si, respectively. The outstanding thermoelectric properties indicate our approach is promising for diverse applications using ultrathin poly-Si technology.

  18. Synthesis and Near-infrared Luminescent Properties of NaGdF4:Nd3+@NaGdF4 Core/Shell Nanocrystals with Different Shell Thickness.

    PubMed

    Li, Xinke; You, Fangtian; Peng, Hongshang; Huang, Shihua

    2016-04-01

    The near-infrared to near-infrared (NIR-to-NIR) photoluminescence of nanocrystals has outstanding advantages in biological imaging. NaGdF4:Nd3+ core nanocrystals and NaGdF4:Nd3+@NaGdF4 core/shell nanocrystals with different shell thicknesses were synthesized by a simple solvothermal method. The obtained nanocrystals were characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis. The phase of all nanocrystals is hexagonal. NaGdF4:Nd3+ core nanocrystals have an average size of 6 nm. By controlling core-shell ratio for 1:2 and 1:3, we obtained NaGdF4:Nd3+@NaGdF4 core/shell nanocrystals with average sizes of 10 nm and 11 nm, respectively. When excited at 808 nm, strong NIR emission was observed. The emission peaks at -860 nm, -1060 nm and -1330 nm correspond to the transitions from the 4F3/2 state to the 4I9/2, 4I1/2 and 4I13/2 state of Nd3+ ions, respectively. The emission intensity of NaGdF4:Nd3+@NaGdF4 core/shell nanocrystals is stronger than that of the core. The intensity increases with the increase of shell thickness. The shell improves the luminous efficiency by reducing surface defects. The decay time of Nd3+ emission in NaGdF4:Nd3+@NaGdF4 core/shell nanocrystal is longer than that in NaGdF4:Nd3+ core, indicating that the shell isolates effectively the emitting ions (Nd3+) from the quenching defects. With the increase of shell thickness, the decay time becomes longer. Within a certain range of shell thickness, thicker shell can protect the emitting Nd3+ ions on the surface of core nanocrystals more effectively.

  19. Synthesis and Near-infrared Luminescent Properties of NaGdF4:Nd3+@NaGdF4 Core/Shell Nanocrystals with Different Shell Thickness.

    PubMed

    Li, Xinke; You, Fangtian; Peng, Hongshang; Huang, Shihua

    2016-04-01

    The near-infrared to near-infrared (NIR-to-NIR) photoluminescence of nanocrystals has outstanding advantages in biological imaging. NaGdF4:Nd3+ core nanocrystals and NaGdF4:Nd3+@NaGdF4 core/shell nanocrystals with different shell thicknesses were synthesized by a simple solvothermal method. The obtained nanocrystals were characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis. The phase of all nanocrystals is hexagonal. NaGdF4:Nd3+ core nanocrystals have an average size of 6 nm. By controlling core-shell ratio for 1:2 and 1:3, we obtained NaGdF4:Nd3+@NaGdF4 core/shell nanocrystals with average sizes of 10 nm and 11 nm, respectively. When excited at 808 nm, strong NIR emission was observed. The emission peaks at -860 nm, -1060 nm and -1330 nm correspond to the transitions from the 4F3/2 state to the 4I9/2, 4I1/2 and 4I13/2 state of Nd3+ ions, respectively. The emission intensity of NaGdF4:Nd3+@NaGdF4 core/shell nanocrystals is stronger than that of the core. The intensity increases with the increase of shell thickness. The shell improves the luminous efficiency by reducing surface defects. The decay time of Nd3+ emission in NaGdF4:Nd3+@NaGdF4 core/shell nanocrystal is longer than that in NaGdF4:Nd3+ core, indicating that the shell isolates effectively the emitting ions (Nd3+) from the quenching defects. With the increase of shell thickness, the decay time becomes longer. Within a certain range of shell thickness, thicker shell can protect the emitting Nd3+ ions on the surface of core nanocrystals more effectively. PMID:27451742

  20. Nanometer thick elastic graphene engine.

    PubMed

    Lee, Jong Hak; Tan, Jun You; Toh, Chee-Tat; Koenig, Steven P; Fedorov, V E; Castro Neto, Antonio H; Ozyilmaz, Barbaros

    2014-05-14

    Significant progress has been made in the construction and theoretical understanding of molecular motors because of their potential use. Here, we have demonstrated fabrication of a simple but powerful 1 nm thick graphene engine. The engine comprises a high elastic membrane-piston made of graphene and weakly chemisorbed ClF3 molecules as the high power volume changeable actuator, while a 532 nm LASER acts as the ignition plug. Rapid volume expansion of the ClF3 molecules leads to graphene blisters. The size of the blister is controllable by changing the ignition parameters. The estimated internal pressure per expansion cycle of the engine is about ∼10(6) Pa. The graphene engine presented here shows exceptional reliability, showing no degradation after 10,000 cycles. PMID:24773247

  1. Thickness dependence on the optoelectronic properties of multilayered GaSe based photodetector.

    PubMed

    Ko, Pil Ju; Abderrahmane, Abdelkader; Takamura, Tsukasa; Kim, Nam-Hoon; Sandhu, Adarsh

    2016-08-12

    Two-dimensional (2D) layered materials exhibit unique optoelectronic properties at atomic thicknesses. In this paper, we fabricated metal-semiconductor-metal based photodetectors using layered gallium selenide (GaSe) with different thicknesses. The electrical and optoelectronic properties of the photodetectors were studied, and these devices showed good electrical characteristics down to GaSe flake thicknesses of 30 nm. A photograting effect was observed in the absence of a gate voltage, thereby implying a relatively high photoresponsivity. Higher values of the photoresponsivity occurred for thicker layers of GaSe with a maximum value 0.57 AW(-1) and external quantum efficiency of of 132.8%, and decreased with decreasing GaSe flake thickness. The detectivity was 4.05 × 10(10) cm Hz(1/2) W(-1) at 532 nm laser wavelength, underscoring that GaSe is a promising p-type 2D material for photodetection applications in the visible spectrum. PMID:27354428

  2. The thickness of glaciers

    NASA Astrophysics Data System (ADS)

    Faraoni, Valerio; Vokey, Marshall W.

    2015-09-01

    Basic formulae and results of glacier physics appearing in glaciology textbooks can be derived from first principles introduced in algebra-based first year physics courses. We discuss the maximum thickness of alpine glaciers and ice sheets and the relation between maximum thickness and length of an ice sheet. Knowledge of ordinary differential equations allows one to derive also the local ice thickness.

  3. Thickness fluctuations in black lipid membranes.

    PubMed Central

    Hladky, S B; Gruen, D W

    1982-01-01

    Because a black lipid membrane is compressible, there will be spontaneous fluctuations in its thickness. Qualitative arguments are given that the preferred configuration of the membranes is flat and that thickness fluctuations are smaller in amplitude than the differences in mean thickness observed using different hydrocarbon solvents. Fluctuations with short characteristic lengths will not be large as a result of the large amounts of oil-water contact these would entail. Quantitative analysis based on an extension of the treatment for soap films, predicts that the root mean square (rms) amplitude for fluctuations of wavelength longer than approximately 10 nm is negligible for glyceryl monooleate membranes with squalene (less than 3%) but may be approximately 20% with n-decane. rms fluctuations of 20% would lead to a discrepancy between the rms thickness of the core and the mean reciprocal thickness of only 6%. PMID:7104437

  4. trans-1,2-Dichloroethylene

    Integrated Risk Information System (IRIS)

    trans - 1,2 - Dichloroethylene ; CASRN 156 - 60 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for No

  5. 1,2,4-Tribromobenzene

    Integrated Risk Information System (IRIS)

    1,2,4 - Tribromobenzene ; CASRN 615 - 54 - 3 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcin

  6. 1,1,2-Trichloropropane

    Integrated Risk Information System (IRIS)

    1,1,2 - Trichloropropane ; CASRN 598 - 77 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarci

  7. 1,2,3-Trichloropropane

    Integrated Risk Information System (IRIS)

    1,2,3 - Trichloropropane ; CASRN 96 - 18 - 4 Human health assessment information on a chemical substance is included in IRIS only after a comprehensive review of toxicity data by U.S . EPA health scientists from several program offices , regional offices , and the Office of Research and Development

  8. cis-1,2-Dichloroethylene

    Integrated Risk Information System (IRIS)

    cis - 1,2 - Dichloroethylene ; CASRN 156 - 59 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Nonc

  9. 1,1,2-Trichloroethane

    Integrated Risk Information System (IRIS)

    1,1,2 - Trichloroethane ; CASRN 79 - 00 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcino

  10. 1,2,4-Trichlorobenzene

    Integrated Risk Information System (IRIS)

    1,2,4 - Trichlorobenzene ; CASRN 120 - 82 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarci

  11. 1,2-Epoxybutane (EBU)

    Integrated Risk Information System (IRIS)

    1,2 - Epoxybutane ( EBU ) ; CASRN 106 - 88 - 7 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarc

  12. 14 CFR 1.2 - Abbreviations and symbols.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Federal Register citations affecting § 1.2, see the List of CFR Sections Affected, which appears in the...) means nondirectional beacon (automatic direction finder). NM means nautical mile. NOPAC means North... Tracking and Reporting System. RAIL means runway alignment indicator light system. RBN means radio...

  13. 14 CFR 1.2 - Abbreviations and symbols.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Federal Register citations affecting § 1.2, see the List of CFR Sections Affected, which appears in the...) means nondirectional beacon (automatic direction finder). NM means nautical mile. NOPAC means North... Tracking and Reporting System. RAIL means runway alignment indicator light system. RBN means radio...

  14. 1.86 W cw single-frequency 1319 nm ring laser pumped at 885 nm.

    PubMed

    Li, M L; Zhao, W F; Zhang, S B; Guo, L; Hou, W; Li, J M; Lin, X C

    2012-03-20

    A 1.86 W cw single-frequency 1319 nm laser was produced by using an 885 nm-pumped Nd:YAG crystal with a compact four-mirror ring cavity, for the first time to our knowledge. The Nd:YAG produced a slope efficiency of 21% and an optical-to-optical efficiency of 18% with respect to the absorbed diode pump power. A near-diffraction-limited beam with M(2)=1.2 was achieved under the maximum output power. PMID:22441467

  15. Corneal thickness in glaucoma.

    PubMed

    De Cevallos, E; Dohlman, C H; Reinhart, W J

    1976-02-01

    The central corneal stromal thickness of patients with open angle glaucoma, secondary glaucoma (the majority aphakic), or a history of unilateral acute angle closure glaucoma were measured and compared with the stromal thickness of a group of normal patients. In open angle glaucoma, there was a small but significant increase in the average stromal thickness. This thickness increase was, in all likelihood, due to an abnormal function of the endothelium in this disease since the level of the intraocular pressure did not seem to be a factor. There was no correlation between stromal thickness and duration of the glaucoma or type of anti-glaucomatous medication. Most cases of secondary glaucome, controlled medically or not, had markedly increased corneal thickness, again, most likely, due to endothelial damage rather than to level of intraocular pressure. After an angle closure attack, permanent damage to the cornea was found to be rare. PMID:1247273

  16. Lead Thickness Measurements

    SciTech Connect

    Rucinski, R.; /Fermilab

    1998-02-16

    The preshower lead thickness applied to the outside of D-Zero's superconducting solenoid vacuum shell was measured at the time of application. This engineering documents those thickness measurements. The lead was ordered in sheets 0.09375-inch and 0.0625-inch thick. The tolerance on thickness was specified to be +/- 0.003-inch. The sheets all were within that thickness tolerance. The nomenclature for each sheet was designated 1T, 1B, 2T, 2B where the numeral designates it's location in the wrap and 'T' or 'B' is short for 'top' or 'bottom' half of the solenoid. Micrometer measurements were taken at six locations around the perimeter of each sheet. The width,length, and weight of each piece was then measured. Using an assumed pure lead density of 0.40974 lb/in{sup 3}, an average sheet thickness was calculated and compared to the perimeter thickness measurements. In every case, the calculated average thickness was a few mils thinner than the perimeter measurements. The ratio was constant, 0.98. This discrepancy is likely due to the assumed pure lead density. It is not felt that the perimeter is thicker than the center regions. The data suggests that the physical thickness of the sheets is uniform to +/- 0.0015-inch.

  17. Thick film hydrogen sensor

    DOEpatents

    Hoffheins, Barbara S.; Lauf, Robert J.

    1995-01-01

    A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors.

  18. Thick film hydrogen sensor

    DOEpatents

    Hoffheins, B.S.; Lauf, R.J.

    1995-09-19

    A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors. 8 figs.

  19. Education and "Thick" Epistemology

    ERIC Educational Resources Information Center

    Kotzee, Ben

    2011-01-01

    In this essay Ben Kotzee addresses the implications of Bernard Williams's distinction between "thick" and "thin" concepts in ethics for epistemology and for education. Kotzee holds that, as in the case of ethics, one may distinguish between "thick" and "thin" concepts of epistemology and, further, that this distinction points to the importance of…

  20. Single virus particle mass detection using microresonators with nanoscale thickness

    NASA Astrophysics Data System (ADS)

    Gupta, A.; Akin, D.; Bashir, R.

    2004-03-01

    In this letter, we present the microfabrication and application of arrays of silicon cantilever beams as microresonator sensors with nanoscale thickness to detect the mass of individual virus particles. The dimensions of the fabricated cantilever beams were in the range of 4-5 μm in length, 1-2 μm in width and 20-30 nm in thickness. The virus particles we used in the study were vaccinia virus, which is a member of the Poxviridae family and forms the basis of the smallpox vaccine. The frequency spectra of the cantilever beams, due to thermal and ambient noise, were measured using a laser Doppler vibrometer under ambient conditions. The change in resonant frequency as a function of the virus particle mass binding on the cantilever beam surface forms the basis of the detection scheme. We have demonstrated the detection of a single vaccinia virus particle with an average mass of 9.5 fg. These devices can be very useful as components of biosensors for the detection of airborne virus particles.

  1. 469nm Fiber Laser Source

    SciTech Connect

    Drobshoff, A; Dawson, J W; Pennington, D M; Payne, S A; Beach, R

    2005-01-20

    We have demonstrated 466mW of 469nm light from a frequency doubled continuous wave fiber laser. The system consisted of a 938nm single frequency laser diode master oscillator, which was amplified in two stages to 5 Watts using cladding pumped Nd{sup 3+} fiber amplifiers and then frequency doubled in a single pass through periodically poled KTP. The 3cm long PPKTP crystal was made by Raicol Crystals Ltd. with a period of 5.9 {micro}m and had a phase match temperature of 47 degrees Centigrade. The beam was focused to a 1/e{sup 2} diameter in the crystal of 29 {micro}m. Overall conversion efficiency was 11% and the results agreed well with standard models. Our 938nm fiber amplifier design minimizes amplified spontaneous emission at 1088nm by employing an optimized core to cladding size ratio. This design allows the 3-level transition to operate at high inversion, thus making it competitive with the 1088nm 4-level transition. We have also carefully chosen the fiber coil diameter to help suppress propagation of wavelengths longer than 938 nm. At 2 Watts, the 938nm laser had an M{sup 2} of 1.1 and good polarization (correctable with a quarter and half wave plate to >10:1).

  2. Photodissociation of Methyl Iodide at 193 NM

    NASA Astrophysics Data System (ADS)

    Xu, Hong; Pratt, Stephen

    2014-05-01

    A new measurement of the photodissociation of CH3I at 193 nm is reported in which we use a combination of vacuum ultraviolet photoionization and velocity map ion imaging. The iodine photofragments are probed by single-photon ionization at photon energies above and below the photoionization threshold of I(2P3/2) . The relative I(2P3/2) and I*(2P1/2) photoionization cross sections are determined at these wavelengths by using the known branching fractions for the photodissociation at 266 nm. Velocity map ion images indicate that the branching fraction for I(2P3/2) atoms is non-zero, and yield a value of 0.07 +/- 0.01. Interestingly, the translational energy distribution extracted from the image shows that the translational energy of the I(2P3/2) fragments is significantly smaller than that of the I*(2P1/2) atoms. This observation indicates the internal rotational/vibrational energy of the CH3 co-fragment is very high in the I(2P3/2) channel. The results can be interpreted in a manner consistent with the previous measurements, and provide a more complete picture of the dissociation dynamics of this prototypical molecule. This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences under contract No. DE-AC02-06CH11357.

  3. Detection limits of 405 nm and 633 nm excited PpIX fluorescence for brain tumor detection during stereotactic biopsy

    NASA Astrophysics Data System (ADS)

    Markwardt, Niklas; Götz, Marcus; Haj-Hosseini, Neda; Hollnburger, Bastian; Sroka, Ronald; Stepp, Herbert; Zelenkov, Petr; Rühm, Adrian

    2016-04-01

    5-aminolevulinic-acid-(5-ALA)-induced protoporphyrin IX (PpIX) fluorescence may be used to improve stereotactic brain tumor biopsies. In this study, the sensitivity of PpIX-based tumor detection has been investigated for two potential excitation wavelengths (405 nm, 633 nm). Using a 200 μm fiber in contact with semi-infinite optical phantoms containing ink and Lipovenös, PpIX detection limits of 4.0 nM and 200 nM (relating to 1 mW excitation power) were determined for 405 nm and 633 nm excitation, respectively. Hence, typical PpIX concentrations in glioblastomas of a few μM should be well detectable with both wavelengths. Additionally, blood layers of selected thicknesses were placed between fiber and phantom. Red excitation was shown to be considerably less affected by blood interference: A 50 μm blood layer, for instance, blocked the 405- nm-excited fluorescence completely, but reduced the 633-nm-excited signal by less than 50%. Ray tracing simulations demonstrated that - without blood layer - the sensitivity advantage of 405 nm rises for decreasing fluorescent volume from 50-fold to a maximum of 100-fold. However, at a tumor volume of 1 mm3, which is a typical biopsy sample size, the 633-nm-excited fluorescence signal is only reduced by about 10%. Further simulations revealed that with increasing fiber-tumor distance, the signal drops faster for 405 nm. This reduces the risk of detecting tumor tissue outside the needle's coverage, but diminishes the overlap between optically and mechanically sampled volumes. While 405 nm generally offers a higher sensitivity, 633 nm is more sensitive to distant tumors and considerably superior in case of blood-covered tumor tissue.

  4. Photoresist outgassing at 157 nm exposure

    NASA Astrophysics Data System (ADS)

    Hien, Stefan; Angood, Steve; Ashworth, Dominic; Basset, Steve; Bloomstein, Theodore M.; Dean, Kim R.; Kunz, Roderick R.; Miller, Daniel A.; Patel, Shashikant; Rich, Georgia K.

    2001-08-01

    Contamination of optical elements during photoresist exposure is a serious issue in optical lithography. The outgassing of photoresist has been identified as a problem at 248nm and 193nm in production because the organic films that can be formed on an exposure lens can cause transmission loss and sever image distortion. At these exposure energies, the excitation of the photo acid generator, formation of acid, and cleavage of the protecting group are highly selective processes. At 157nm, the exposure energy is much higher (7.9 eV compared to 6.4 eV at 193nm) and it is known from laser ablation experiments that direct laser cleavage of sigma bonds occurs. The fragments formed during this irradiation can be considered as effective laser deposition precursors even in the mid ppb level. In this study, methods to quantify photoresist outgassing at 157 nm are discussed. Three criteria have been set up at International SEMATECH to protect lens contamination and to determine the severity of photoresist outgassing. First, we measured film thickness loss as a function of exposure dose for a variety of materials. In a second test we studied the molecular composition of the outgassing fragments with an exposure chamber coupled to a gas chromatograph and a mass spectrometer detector. Our third method was a deposition test of outgassing vapors on a CaF2 proof plate followed by analysis using VUV and X-ray photoelectron spectroscopies (XPS). With this technique we found deposits for many different resists. Our main focus is on F- and Si- containing resists. Both material classes form deposits especially if these atoms are bound to the polymer side chains. Whereas the F-containing films can be cleaned off under 157nm irradiation, cleaning of Si-containing films mainly produces SiO2. Our cleaning studies of plasma deposited F-containing organic films on SiO2 did not indicate damage of this surface by the possible formation of HF. Despite that we strongly recommend engineering

  5. Evaluation of dental pulp repair using low level laser therapy (688 nm and 785 nm) morphologic study in capuchin monkeys

    NASA Astrophysics Data System (ADS)

    Pretel, H.; Oliveira, J. A.; Lizarelli, R. F. Z.; Ramalho, L. T. O.

    2009-02-01

    The aim of this study was to evaluate the hypothesis that low-level laser therapy (LLLT) 688 nm and 785 nm accelerate dentin barrier formation and repair process after traumatic pulp exposure. The sample consisted of 45 premolars of capuchin monkeys (Cebus apella) with pulp exposure Class V cavities. All premolars were treated with calcium hydroxide (Ca(OH)2), divided in groups of 15 teeth each, and analyzed on 7th, 25th, and 60th day. Group GI - only Ca(OH)2, GII - laser 688 nm, and GIII - laser 785 nm. Laser beam was used in single and punctual dose with the parameters: continuous, 688 nm and 785 nm wavelength, tip's area of 0.00785 cm2, power 50 mW, application time 20 s, dose 255 J/cm2, energy 2 J. Teeth were capped with Ca(OH)2, Ca(OH)2 cement and restored with amalgam. All groups presented pulp repair. On 25th day the thickness of the formed dentin barrier was different between the groups GI and GII (p < 0.05) and between groups GI and GIII (p < 0.01). On 60th day there was difference between GI and GIII (p < 0.01). It may be concluded that, LLLT 688 nm and 785 nm accelerated dentin barrier formation and consequently pulp repair process, with best results using infrared laser 785 nm.

  6. Origami of thick panels

    NASA Astrophysics Data System (ADS)

    Chen, Yan; Peng, Rui; You, Zhong

    2015-07-01

    Origami patterns, including the rigid origami patterns in which flat inflexible sheets are joined by creases, are primarily created for zero-thickness sheets. In order to apply them to fold structures such as roofs, solar panels, and space mirrors, for which thickness cannot be disregarded, various methods have been suggested. However, they generally involve adding materials to or offsetting panels away from the idealized sheet without altering the kinematic model used to simulate folding. We develop a comprehensive kinematic synthesis for rigid origami of thick panels that differs from the existing kinematic model but is capable of reproducing motions identical to that of zero-thickness origami. The approach, proven to be effective for typical origami, can be readily applied to fold real engineering structures.

  7. Importance of Corneal Thickness

    MedlinePlus

    ... News About Us Donate In This Section The Importance of Corneal Thickness email Send this article to ... is important because it can mask an accurate reading of eye pressure, causing doctors to treat you ...

  8. Critical thickness for the agglomeration of thin metal films

    SciTech Connect

    Boragno, C.; Buatier de Mongeot, F.; Felici, R.; Robinson, I.K.

    2009-09-15

    A thin metal film can exist in a metastable state with respect to breaking into small clusters. In this paper we report on grazing incidence small-angle x-ray scattering studies carried out in situ during the annealing of thin Ni films, between 2 and 10 nm thick, deposited on an amorphous SiO{sub 2} substrate. Our results show the presence of two different regimes which depend on the initial film thickness. For thicknesses less than 5 nm the annealing results in the formation of small, compact clusters on top of a residual Ni wetting layer. For thicknesses greater than 5 nm the film breaks into large, well-separated clusters and the substrate shows an uncovered clean surface.

  9. Noncontact optical measurement of lens capsule thickness ex vivo

    NASA Astrophysics Data System (ADS)

    Ziebarth, Noel M.; Manns, Fabrice; Uhlhorn, Stephen; Parel, Jean-Marie

    2004-07-01

    Purpose: To design a non-contact optical system to measure lens capsule thickness in cadaver eyes. Methods: The optical system uses a 670nm laser beam delivered to a single-mode fiber coupler. The output of the fiber coupler is focused onto the tissue using an aspheric lens (NA=0.68) mounted on a motorized translation stage. Light reflected from the sample is collected by the fiber coupler and sent to a silicon photodiode connected to a power meter. Peaks in the power signal are detected when the focal point of the aspheric lens coincides with the capsule boundaries. The capsule thickness is proportional to the distance between successive peaks. Anterior and posterior lens capsule thickness measurements were performed on 13 human, 10 monkey, and 34 New Zealand white rabbit lenses. The cadaver eyes were prepared for optical measurements by bonding a PMMA ring on the sclera. The posterior pole was sectioned, excess vitreous was removed, and the eye was placed on a Teflon slide. The cornea and iris were then sectioned. After the experiments, the lenses were excised, placed in 10% buffered formalin, and prepared for histology. Results: Central anterior lens capsule thickness was 9.4+/-2.9μm (human), 11.2+/-6.6μm (monkey), and 10.3+/-3.6μm (rabbit) optically and 14.9+/-1.6μm (human), 17.7+/-4.9μm (monkey), and 12.6+/-2.3μm (rabbit) histologically. The values for the central posterior capsule were 9.4+/-2.9μm (human), 6.6+/-2.5μm (monkey), and 7.9+/-2.3μm (rabbit) optically and 4.6+/-1.4μm (human), 4.5+/-1.2μm (monkey), and 5.7+/-1.7μm (rabbit) histologically. Conclusions: This study demonstrates that a non-contact optical system can successfully measure lens capsule thickness in cadaver eyes.

  10. Deep ultraviolet (254 nm) focal plane array

    NASA Astrophysics Data System (ADS)

    Cicek, Erdem; Vashaei, Zahra; McClintock, Ryan; Razeghi, Manijeh

    2011-10-01

    We report the synthesis, fabrication and testing of a 320 × 256 focal plane array (FPA) of back-illuminated, solarblind, p-i-n, AlxGa1-xN-based detectors, fully realized within our research laboratory. We implemented a novel pulsed atomic layer deposition technique for the metalorganic chemical vapor deposition (MOCVD) growth of crackfree, thick, and high Al composition AlxGa1-xN layers. Following the growth, the wafer was processed into a 320 × 256 array of 25 μm × 25 μm pixels on a 30 μm pixel-pitch and surrounding mini-arrays. A diagnostic mini-array was hybridized to a silicon fan-out chip to allow the study of electrical and optical characteristics of discrete pixels of the FPA. At a reverse bias of 1 V, an average photodetector exhibited a low dark current density of 1.12×10-8 A/cm2. Solar-blind operation is observed throughout the array with peak detection occurring at wavelengths of 256 nm and lower and falling off three orders of magnitude by 285 nm. After indium bump deposition and dicing, the FPA is hybridized to a matching ISC 9809 readout integrated circuit (ROIC). By developing a novel masking technology, we significantly reduced the visible response of the ROIC and thus the need for external filtering to achieve solar- and visible-blind operation is eliminated. This allowed the FPA to achieve high external quantum efficiency (EQE): at 254 nm, average pixels showed unbiased peak responsivity of 75 mA/W, which corresponds to an EQE of ~37%. Finally, the uniformity of the FPA and imaging properties are investigated.

  11. Evaluation of the Diode laser (810nm,980nm) on dentin tubule diameter following internal bleaching

    PubMed Central

    Kiomarsi, Nazanin; Salim, Soheil; Sarraf, Pegah; Javad-Kharazifard, Mohammad

    2016-01-01

    Background The aim of this study was to evaluate the effect of diode laser irradiation and bleaching materials on the dentinal tubule diameter after laser bleaching. Material and Methods The dentin discs of 40 extracted third molar were used in this experiment. Each disc surface was divided into two halves by grooving. Half of samples were laser bleached at different wavelengths with two different concentrations of hydrogen peroxide. Other half of each disc with no laser bleaching remained as a negative control. Dentin discs were assigned randomly into four groups (n=10) with following hydrogen peroxide and diode laser wavelength specifications; Group 1 (30% - 810 nm), group 2 (30% - 980 nm), group 3 (46% - 810 nm) and group 4 (46% - 980 nm). All specimens were sent for scanning electron microscopic (SEM) analysis in order to measure tubular diameter in laser treated and control halves. Data were analyzed by ANOVA and Tukey test (p<0.05). Results A significant reduction in dentin tubule diameter was observed in groups 1, 2 and 4. There was no significant difference between groups 1 and 2 and between groups 3 and 4 after bleaching. Conclusions The SEM results showed that diode laser was able to reduce dentin tubule diameter and its effect on dentin was dependent on chemical action of bleaching material. Key words:Laser, diode, dentin, tubule, diameter. PMID:27398172

  12. Side Elevation, End Elevation, Cross Section, 1/2 Roof Plan, 1/2 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Side Elevation, End Elevation, Cross Section, 1/2 Roof Plan, 1/2 Reflected Plan, 1/2 Floor Plan, 1/2 Reflected Plan - Jack's Mill Covered Bridge, Spanning Henderson Creek, Oquawka, Henderson County, IL

  13. Process optimization of high aspect ratio sub-32nm HSQ/AR3 bi-layer resist pillar

    NASA Astrophysics Data System (ADS)

    Chen, Wei-Su; Tsai, Ming-Jinn

    2011-04-01

    RRAM is the candidate of next generation new non-volatile memory. The etched stacking film thickness of RRAM cell pillar is not easy to reduce below 50 nm during CD scaling down since part of RRAM cell pillar height is removed during CMP polishing of dielectric passivation to expose the pillar top surface for the following metallization process. Therefore resist pillar pattern with high aspect ratio (AR) is needed to act as etch mask for defining thick RRAM cell pillar structure. Bilayer resist (BLR) process is most suitable for forming high AR pattern. Dry develop process is the key step for generating sub-32 nm high AR BLR pillar pattern. In this study optimization of dry develop process is investigated for high AR pillar with hydrogen silsesquioxane (HSQ) as upper thin imaging layer for e-beam exposure and AR3-600 as the thick underlayer for etching resistant. Experimental results are summarized below. Highest AR of ~6 for HSQ/AR3 BLR semi-dense L/S=1/2 pillar with vertical profile is obtained under optimized dry develop condition with O2, N2, Ar flow rates, chamber pressure, top and bottom power of 8, 5, 0 sccm, 1 mTorr, 200 and 100 watts respectively. AR is lower for looser pattern density. CD variation between HSQ/AR3-600 BLR pillars with different pattern density is optimized to 5.6 nm. The pillar profile is vertical in vacuum for pattern of any density but distorts more severe for denser pattern during ventilation to atmosphere. The most critical process parameters for obtaining high aspect ratio BLR pillar are O2 flow rate and top power. Sidewall profile angle of pillar is mainly dependent on chamber pressure and bottom power.

  14. Photoionization of Nitromethane at 355nm and 266nm

    NASA Astrophysics Data System (ADS)

    Martínez, Denhi; Betancourt, Francisco; Poveda, Juan Carlos; Guerrero, Alfonso; Cisneros, Carmen; Álvarez, Ignacio

    2014-05-01

    Nitromethane is one of the high-yield clean liquid fuels, i.e., thanks to the oxygen contained in nitromethane, much less atmospheric oxygen is burned compared to hydrocarbons such as gasoline, making the nitromethane an important prototypical energetic material, the understanding of its chemistry is relevant in other fields such as atmospheric chemistry or biochemistry. In this work we present the study of photoionization dynamics by multiphoton absorption with 355 nm and 266 nm wavelength photons, using time of flight spectrometry in reflectron mode (R-TOF). Some of the observed ion products appear for both wavelength and other only in one of them; both results were compared with preview observations and new ions were detected. This work is supported by CONACYT grant 165410 and DGAPA-UNAM grants IN-107-912 and IN-102-613.

  15. Thick Film Interference.

    ERIC Educational Resources Information Center

    Trefil, James

    1983-01-01

    Discusses why interference effects cannot be seen with a thick film, starting with a review of the origin of interference patterns in thin films. Considers properties of materials in films, properties of the light source, and the nature of light. (JN)

  16. Rifting Thick Lithosphere - Canning Basin, Western Australia

    NASA Astrophysics Data System (ADS)

    Czarnota, Karol; White, Nicky

    2016-04-01

    The subsidence histories and architecture of most, but not all, rift basins are elegantly explained by extension of ~120 km thick lithosphere followed by thermal re-thickening of the lithospheric mantle to its pre-rift thickness. Although this well-established model underpins most basin analysis, it is unclear whether the model explains the subsidence of rift basins developed over substantially thick lithosphere (as imaged by seismic tomography beneath substantial portions of the continents). The Canning Basin of Western Australia is an example where a rift basin putatively overlies lithosphere ≥180 km thick, imaged using shear wave tomography. Subsidence modelling in this study shows that the entire subsidence history of the <300 km wide and <6 km thick western Canning Basin is adequately explained by mild Ordovician extension (β≈1.2) of ~120 km thick lithosphere followed by post-rift thermal subsidence. This is consistent with the established model, described above, albeit with perturbations due to transient dynamic topography support which are expressed as basin-wide unconformities. In contrast the <150 km wide and ~15 km thick Fitzroy Trough of the eastern Canning Basin reveals an almost continuous period of normal faulting between the Ordovician and Carboniferous (β<2.0) followed by negligible post-rift thermal subsidence. These features cannot be readily explained by the established model of rift basin development. We attribute the difference in basin architecture between the western and eastern Canning Basin to rifting of thick lithosphere beneath the eastern part, verified by the presence of ~20 Ma diamond-bearing lamproites intruded into the basin depocentre. In order to account for the observed subsidence, at standard crustal densities, the lithospheric mantle is required to be depleted in density by 50-70 kg m-3, which is in line with estimates derived from modelling rare-earth element concentrations of the ~20 Ma lamproites and global isostatic

  17. Influence of biofilm thickness on nitrous oxide (N2O) emissions from denitrifying fluidized bed bioreactors (DFBBRs).

    PubMed

    Eldyasti, Ahmed; Nakhla, George; Zhu, Jesse

    2014-12-20

    Nitrous oxide (N2O) is a significant anthropogenic greenhouse gas emitted from biological nutrient removal (BNR) processes. This study tries to get a deeper insight into N2O emissions from denitrifying fluidized bed bioreactors (DFBBRs) and its relationship to the biofilm thickness, diffusivity, and reaction rates. The DFBBR was operated at two different organic and nitrogen loading rates of 5.9–7 kg COD/(m3 d) and 1.2–2 kg N/(m3 d), respectively. Results showed that the N2O conversion rate from the DFBBR at a biofilm thickness of 680 μm was 0.53% of the total influent nitrogen loading while at the limited COD and a biofilm thickness of 230 μm, the N2O conversion rate increased by 196–1.57% of the influent nitrogen loading concomitant with a sevenfold increase in liquid nitrite concentration. Comparing the N2O emissions at different biofilm thickness showed that the N2O emission decreased exponentially with biofilm thickness due to the retention of slow growth denitrifiers and the limited diffusivity of N2O.

  18. Characteristics of blue organic light emitting diodes with different thick emitting layers

    NASA Astrophysics Data System (ADS)

    Li, Chong; Tsuboi, Taiju; Huang, Wei

    2014-08-01

    We fabricated blue organic light emitting diodes (called blue OLEDs) with emitting layer (EML) of diphenylanthracene derivative 9,10-di(2-naphthyl)anthracene (ADN) doped with blue-emitting DSA-ph (1-4-di-[4-(N,N-di-phenyl)amino]styryl-benzene) to investigate how the thickness of EML and hole injection layer (HIL) influences the electroluminescence characteristics. The driving voltage was observed to increase with increasing EML thickness from 15 nm to 70 nm. The maximum external quantum efficiency of 6.2% and the maximum current efficiency of 14 cd/A were obtained from the OLED with 35 nm thick EML and 75 nm thick HIL. High luminance of 120,000 cd/m2 was obtained at 7.5 V from OLED with 15 nm thick EML.

  19. 43 CFR 2812.1-2 - Contents.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Contents. 2812.1-2 Section 2812.1-2 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT... Bay Revested Lands § 2812.1-2 Contents. (a) An individual applicant and each member of...

  20. 43 CFR 2812.1-2 - Contents.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Contents. 2812.1-2 Section 2812.1-2 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT... Bay Revested Lands § 2812.1-2 Contents. (a) An individual applicant and each member of...

  1. 16 CFR 1.2 - Procedure.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 1 2012-01-01 2012-01-01 false Procedure. 1.2 Section 1.2 Commercial Practices FEDERAL TRADE COMMISSION ORGANIZATION, PROCEDURES AND RULES OF PRACTICE GENERAL PROCEDURES Industry Guidance Advisory Opinions § 1.2 Procedure. (a) Application. The request for advice...

  2. 44 CFR 1.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Definitions. 1.2 Section 1.2... GENERAL RULEMAKING; POLICY AND PROCEDURES General § 1.2 Definitions. (a) Rule or regulation means the...) Significant adverse effects on competition, employment, investment, productivity, innovation, or on...

  3. 43 CFR 2812.1-2 - Contents.

    Code of Federal Regulations, 2012 CFR

    2006-10-01

    ... 43 Public Lands: Interior 2 2006-10-01 2006-10-01 false Contents. 2812.1-2 Section 2812.1-2 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT... Bay Revested Lands § 2812.1-2 Contents. (a) An individual applicant and each member of...

  4. 43 CFR 2812.1-2 - Contents.

    Code of Federal Regulations, 2013 CFR

    1997-10-01

    ... 43 Public Lands: Interior 2 1997-10-01 1997-10-01 false Contents. 2812.1-2 Section 2812.1-2 LAND RESOURCE MANAGEMENT (2000) TRAMROADS AND LOGGING ROADS Over O. and C. and Coos Bay Revested Lands § 2812.1-2 Contents. (a) An individual applicant and each member of any unincorporated association which...

  5. 7 CFR 1.2 - Policy.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 1 2010-01-01 2010-01-01 false Policy. 1.2 Section 1.2 Agriculture Office of the Secretary of Agriculture ADMINISTRATIVE REGULATIONS Official Records § 1.2 Policy. (a) Agencies of USDA shall comply with the time limits set forth in the FOIA and in this subpart for responding to...

  6. 49 CFR 1.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Definitions. 1.2 Section 1.2 Transportation Office of the Secretary of Transportation ORGANIZATION AND DELEGATION OF POWERS AND DUTIES General § 1.2 Definitions. As used in this part, Administrator includes: (a) The Federal Aviation Administrator. (b) The Federal Highway Administrator. (c)...

  7. 7 CFR 1.2 - Policy.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 1 2013-01-01 2013-01-01 false Policy. 1.2 Section 1.2 Agriculture Office of the Secretary of Agriculture ADMINISTRATIVE REGULATIONS Official Records § 1.2 Policy. (a) Agencies of USDA shall comply with the time limits set forth in the FOIA and in this subpart for responding to...

  8. 43 CFR 2812.1-2 - Contents.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Contents. 2812.1-2 Section 2812.1-2 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT... Bay Revested Lands § 2812.1-2 Contents. (a) An individual applicant and each member of...

  9. 43 CFR 2812.1-2 - Contents.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Contents. 2812.1-2 Section 2812.1-2 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT... Bay Revested Lands § 2812.1-2 Contents. (a) An individual applicant and each member of...

  10. Absolute Measurements of Radiation Damage in Nanometer Thick Films

    PubMed Central

    Alizadeh, Elahe; Sanche, Léon

    2013-01-01

    We address the problem of absolute measurements of radiation damage in films of nanometer thicknesses. Thin films of DNA (~ 2–160nm) are deposited onto glass substrates and irradiated with varying doses of 1.5 keV X-rays under dry N2 at atmospheric pressure and room temperature. For each different thickness, the damage is assessed by measuring the loss of the supercoiled configuration as a function of incident photon fluence. From the exposure curves, the G-values are deduced, assuming that X-ray photons interacting with DNA, deposit all of their energy in the film. The results show that the G-value (i.e., damage per unit of deposited energy) increases with film thickness and reaches a plateau at 30±5 nm. This thickness dependence provides a correction factor to estimate the actual G-value for films with thicknesses below 30nm thickness. Thus, the absolute values of damage can be compared with that of films of any thickness under different experimental conditions. PMID:22562941

  11. Achromatic circular polarizer in the 482-535 nm range based on polypropylene films

    NASA Astrophysics Data System (ADS)

    Muravsky, Al. A.; Murauski, An. A.; Agabekov, V. E.; Chuvasheva, O. O.; Ivanova, N. A.

    2012-11-01

    We present a design for an achromatic circular polarizer based on polypropylene films. The circular polarizer, having eccentricity ≥0.92 in the 482-535 nm range and ideally circular for the wavelength of ~505 nm, is obtained by combining BOPP C2-25 and BOPP C2-35 films of thickness 23 m and 33 μm.

  12. Non-contact optical measurement of lens capsule thickness during simulated accommodation

    NASA Astrophysics Data System (ADS)

    Ziebarth, Noel; Manns, Fabrice; Acosta, Ana-Carolina; Parel, Jean-Marie

    2005-04-01

    Purpose: To non-invasively measure the thickness of the anterior and posterior lens capsule, and to determine if it significantly changes during accommodation. Methods: Anterior and posterior capsule thickness was measured on post-mortem lenses using a non-contact optical system using a focus-detection technique. The optical system uses a 670nm laser beam delivered to a single-mode fiber coupler. The output of the fiber coupler is focused on the tissue surface using an aspheric lens (NA=0.68) mounted on a translation stage with a motorized actuator. Light reflected from the sample surface is collected by the fiber coupler and sent to a photoreceiver connected to a computer-controlled data acquisition system. Optical intensity peaks are detected when the aspheric lens is focused on the capsule boundaries. The capsule thickness is equal to the distance traveled between two peaks multiplied by the capsule refractive index. Anterior and posterior lens capsule thickness measurements were performed on 18 cynomolgus (age average: 6+/-1 years, range: 4-7 years) eyes, 1 rhesus (age: 2 years) eye, and 12 human (age average: 65+/-16, range: 47-92) eyes during simulated accommodation. The mounted sample was placed under the focusing objective of the optical system so that the light was incident on the center pole. Measurements were taken of the anterior lens capsule in the unstretched and the stretched 5mm states. The lens was flipped, and the same procedure was performed for the posterior lens capsule. Results: The precision of the optical system was determined to be +/-0.5um. The resolution is 4um and the sensitivity is 52dB. The human anterior lens capsule thickness was 6.0+/-1.2um unstretched and 4.9+/-0.9um stretched (p=0.008). The human posterior lens capsule was 5.7+/-1.2um unstretched and 5.7+/-1.4um stretched (p=0.974). The monkey anterior lens capsule thickness was 5.9+/-1.9um unstretched and 4.8+/-1.0um stretched (p=0.002). The monkey posterior lens capsule was 5

  13. Segmentation of the macular choroid in OCT images acquired at 830nm and 1060nm

    NASA Astrophysics Data System (ADS)

    Lee, Sieun; Beg, Mirza F.; Sarunic, Marinko V.

    2013-06-01

    Retinal imaging with optical coherence tomography (OCT) has rapidly advanced in ophthalmic applications with the broad availability of Fourier domain (FD) technology in commercial systems. The high sensitivity afforded by FD-OCT has enabled imaging of the choroid, a layer of blood vessels serving the outer retina. Improved visualization of the choroid and the choroid-sclera boundary has been investigated using techniques such as enhanced depth imaging (EDI), and also with OCT systems operating in the 1060-nm wavelength range. We report on a comparison of imaging the macular choroid with commercial and prototype OCT systems, and present automated 3D segmentation of the choroid-scleral layer using a graph cut algorithm. The thickness of the choroid is an important measurement to investigate for possible correlation with severity, or possibly early diagnosis, of diseases such as age-related macular degeneration.

  14. Impact of buffer layer and Pt thickness on the interface structure and magnetic properties in (Co/Pt) multilayers

    NASA Astrophysics Data System (ADS)

    Bersweiler, M.; Dumesnil, K.; Lacour, D.; Hehn, M.

    2016-08-01

    The influence of Pt thickness on the interface structure (roughness / intermixing) and magnetic properties has been investigated for (Co / Pt) multilayers sputtered on a Pt or a thin oxide (MgO or AlO x ) buffer layer. When Pt thickness increases from 1.2 nm-2.2 nm, we observe that the effective anisotropy increases with the Pt thickness, simultaneously with the decrease of roughness, i.e. the occurrence of sharper interfaces. Perpendicular magnetic anisotropy (PMA) is still achieved on the oxide buffer layers, but with a lower effective anisotropy correlated to more perturbed interfaces. The detailed analysis of the saturation magnetization shows that: (i) M s is significantly enhanced in the case of rough/intermixed interfaces, which is attributed to and discussed in the framework of Pt induced polarization, (ii) the change in volume dipolar anisotropy is the main factor responsible for the reduction of K eff for systems grown on oxides. Beyond the major role of volume dipolar contribution that reduces PMA, a supplemental positive contribution promoting PMA can be invoked for rough interfaces and large M s (deposit on oxide). This contribution is consistent with a dipolar surface anisotropy term and increases for rough interfaces, in contrast to the Néel surface anisotropy. These opposite variations may interestingly lead to an enhanced anisotropy in (Co / Pt) stackings grown on oxides compared to systems deposited on Pt, i.e. with sharper interfaces.

  15. Au@Ag Core-Shell Nanocubes with Finely Tuned and Well-Controlled Sizes, Shell Thicknesses, and Optical Properties

    PubMed Central

    Ma, Yanyun; Li, Weiyang; Cho, Eun Chul; Li, Zhiyuan; Yu, Taekyung; Zeng, Jie; Xie, Zhaoxiong; Xia, Younan

    2010-01-01

    This paper describes a facile method for generating Au@Ag core-shell nanocubes with edge lengths controllable in the range of 13.4 to 50 nm. The synthesis involved the use of single-crystal, spherical Au nanocrystals of 11 nm in size as the seeds in an aqueous system, with ascorbic acid serving as the reductant and cetyltrimethylammonium chloride (CTAC) as the capping agent. The thickness of the Ag shells could be finely tuned from 1.2 to 20 nm by varying the ratio of AgNO3 precursor to Au seeds. We also investigated the growth mechanism by examining the effects of seeds (capped by CTAC or CTAB) and capping agent (CTAC vs. CTAB) on both size and shape of the resultant core-shell nanocrystals. Our results clearly indicate that CTAC worked much better than CTAB as a capping agent in both the syntheses of Au seeds and Au@Ag core-shell nanocubes. We further studied the localized surface plasmon resonance properties of the Au@Ag nanocubes as a function of the Ag shell thickness. By comparing with the extinction spectra obtained from theoretical calculations, we derived a critical value around 3 nm for the shell thickness at which the plasmon excitation of the Au cores would be completely screened by the Ag shells. Moreover, these Au@Ag core-shell nanocubes could be converted into Au-based hollow nanostructures containing the original Au seeds in the interiors through a galvanic replacement reaction. PMID:20964400

  16. 32nm overlay improvement capabilities

    NASA Astrophysics Data System (ADS)

    Eichelberger, Brad; Huang, Kevin; O'Brien, Kelly; Tien, David; Tsai, Frank; Minvielle, Anna; Singh, Lovejeet; Schefske, Jeffrey

    2008-03-01

    The industry is facing a major challenge looking forward on the technology roadmap with respect to overlay control. Immersion lithography has established itself as the POR for 45nm and for the next few nodes. As the gap closes between scanner capability and device requirements new methodologies need to be taken into consideration. Double patterning lithography is an approach that's being considered for 32 and below, but it creates very strict demands for overlay performance. The fact that a single layer device will need to be patterned using two sequential single processes creates a strong coupling between the 1st and 2nd exposure. The coupling effect during the double patterning process results in extremely tight tolerances for overlay error and scanner capabilities. The purpose of this paper is to explore a new modeling method to improve lithography performance for the 32nm node. Not necessarily unique for double patterning, but as a general approach to improve overlay performance regardless of which patterning process is implemented. We will achieve this by performing an in depth source of variance analysis of current scanner performance and project the anticipated improvements from our new modeling approach. Since the new modeling approach will involve 2nd and 3rd order corrections we will also provide and analysis that outlines current metrology capabilities and sampling optimizations to further expand the opportunities of an efficient implementation of such approach.

  17. Thick Photoresist Original Master:

    NASA Astrophysics Data System (ADS)

    Mizuno, Hirotaka; Sugihara, Okihiro; Kaino, Toshikuni; Ohe, Yuka; Okamoto, Naomichi; Hoshino, Masahito

    A simple and low-cost fabrication method of polymeric optical waveguides with large core sizes for plastic optical fibers is presented. The waveguides are fabricated by hot embossing with a rectangular ridge ultraviolet (UV)-cured epoxy resin stamper. The stamper is fabricated by replication of a rectangular groove mold that is made from silicone rubber replicated from a rectangular ridge original master made from thick photoresist (SU-8). A rectangular ridge shape of the original photoresist master of 1 mm size was realized by using a flattening process, which involves hot embossing before the exposure process and using a UV-cut filter during the exposure process.

  18. Thickness tunable transport in alloyed WSSe field effect transistors

    NASA Astrophysics Data System (ADS)

    Karande, Shruti D.; Kaushik, Naveen; Narang, Deepa S.; Late, Dattatray; Lodha, Saurabh

    2016-10-01

    We report the field effect transistor characteristics of exfoliated transition metal dichalcogenide alloy tungsten sulphoselenide. WSSe is a layered material of strongly bonded S-W-Se atoms having weak interlayer van der Waals forces with a significant potential for spintronic and valleytronic applications due to its polar nature. The X-ray photoelectron spectroscopy measurements on crystals grown by the chemical vapor transport method indicate a stoichiometry of the form WSSe. We report flake thickness tunable transport mechanism with n-type behavior in thin flakes ( ≤11 nm) and ambipolarity in thicker flakes. The devices with flake thicknesses of 2.4 nm-54.8 nm exhibit a maximum electron mobility of ˜50 cm2/V s along with an ION/IOFF ratio >106. The electron Schottky barrier height values of 35 meV and 52 meV extracted from low temperature I-V measurements for 3.9 nm and 25.5 nm thick flakes, respectively, indicate that an increase in hole current with thickness is likely due to lowering of the bandgap through an increase in energy of the valence band maximum.

  19. Glomerular basement membrane thickness among the Saudi population.

    PubMed

    Kfoury, Hala

    2016-01-01

    The aim of this work was to determine the mean glomerular basement membrane (GBM) thickness in the Saudi population. We calculated the average GBM thickness in patients diagnosed with minimal change disease, and the ultrastructural analysis of at least three glomeruli was reviewed using a digital camera installed in an electron microscope. There were a total of 53 cases from 53 Saudi patients aged 2-70 years old. The mean GBM thickness for all cases was 323.6 ± 49.5 nm. There was no significant statistical difference in the mean GBM thickness between males and females. There were significant differences in the mean GBM thickness between all age groups, except for between the age groups 18-60 and >60 years old, where GBM thickness did not differ significantly. Age was significantly correlated with definite progression or diminution in the thickness of the GBM. The mean GBM thickness in our Saudi sample population was comparable to the very few reported measurements in the literature. There was no significant association between GBM thickness and gender; however, GBM thickness is directly proportional to age, up to 60 years old.

  20. X-1-2 on ramp

    NASA Technical Reports Server (NTRS)

    1951-01-01

    The Bell Aircraft Corporation X-1-2 aircraft on the ramp at NACA High Speed Flight Research Station located on the South Base of Muroc Army Air Field in 1947. The X-1-2 flew until October 23, 1951, completing 74 glide and powered flights with nine different pilots. The aircraft has white paint and the NACA tail band. The black Xs are reference markings for tracking purposes. They were widely used on NACA aircraft in the early 1950s. There were five versions of the Bell X-1 rocket-powered research aircraft that flew at the NACA High-Speed Flight Research Station, Edwards, California. The bullet-shaped X-1 aircraft were built by Bell Aircraft Corporation, Buffalo, N.Y. for the U.S. Army Air Forces (after 1947, U.S. Air Force) and the National Advisory Committee for Aeronautics (NACA). The X-1 Program was originally designated the XS-1 for EXperimental Sonic. The X-1's mission was to investigate the transonic speed range (speeds from just below to just above the speed of sound) and, if possible, to break the 'sound barrier.' Three different X-1s were built and designated: X-1-1, X-1-2 (later modified to become the X-1E), and X-1-3. The basic X-1 aircraft were flown by a large number of different pilots from 1946 to 1951. The X-1 Program not only proved that humans could go beyond the speed of sound, it reinforced the understanding that technological barriers could be overcome. The X-1s pioneered many structural and aerodynamic advances including extremely thin, yet extremely strong wing sections; supersonic fuselage configurations; control system requirements; powerplant compatibility; and cockpit environments. The X-1 aircraft were the first transonic-capable aircraft to use an all-moving stabilizer. The flights of the X-1s opened up a new era in aviation. The first X-1 was air-launched unpowered from a Boeing B-29 Superfortress on Jan. 25, 1946. Powered flights began in December 1946. On Oct. 14, 1947, the X-1-1, piloted by Air Force Captain Charles 'Chuck' Yeager

  1. NM goes to China:4.

    PubMed

    Young, P

    1977-12-22

    Participants in a Nursing Mirror sponsored tour of China spent a day at the Tsinan Hospital and Medical College. They were permitted to watch 3 operations performed under traditional anesthesia. A thyroidictomy and removal of an ovarian cyst were performed under herbal anesthesia, and an operation for cancer of the esophagus was performed with acupuncture anesthesia. The patients were conscious throughout the procedures and appeared to be confortable. The herbal anesthesia was made by combining a substance derived from thorn apple flowers with a muscle relaxant. These traditional methods of anesthesia permitted the patients to cooperate with the surgeon during the operation. The patients suffered no after effects from the anesthesia, and the group was told that recovery time was shorter than when Western forms of anesthesia were used. The tour group also visited the nurses' training school and were informed that 1) there were 200 students currently enrolled in the school and 2) nursing training consisted of 1 1/2 years of academic work followed by 1/2 year of on the job training. The group discussed family planning services with hospital personnel and learned 1) IUD insertions were performed by trained midwives; 2) midwives conducted childbirth classes for pregnant women; 3) labor was induced primarily with herbal medicines; and 4) women were prepared to cope with labor pain through ideological education although acupuncture and pethidine were sometimes used to reduce pain.

  2. Pioneer Venus polarimetry and haze optical thickness

    NASA Technical Reports Server (NTRS)

    Knibbe, W. J. J.; Wauben, W. M. F.; Travis, L. D.; Hovenier, J. W.

    1992-01-01

    The Pioneer Venus mission provided us with high-resolution measurements at four wavelengths of the linear polarization of sunlight reflected by the Venus atmosphere. These measurements span the complete phase angle range and cover a period of more than a decade. A first analysis of these data by Kawabata et al. confirmed earlier suggestions of a haze layer above and partially mixed with the cloud layer. They found that the haze exhibits large spatial and temporal variations. The haze optical thickness at a wavelength of 365 nm was about 0.06 at low latitudes, but approximately 0.8 at latitudes from 55 deg poleward. Differences between morning and evening terminator have also been reported by the same authors. Using an existing cloud/haze model of Venus, we study the relationship between the haze optical thickness and the degree of linear polarization. Variations over the visible disk and phase angle dependence are investigated. For that purpose, exact multiple scattering computations are compared with Pioneer Venus measurements. To get an impression of the variations over the visible disk, we have first studied scans of the polarization parallel to the intensity equator. After investigating a small subset of the available data we have the following results. Adopting the haze particle characteristics given by Kawabata et al., we find a thickening of the haze at increasing latitudes. Further, we see a difference in haze optical thickness between the northern and southern hemispheres that is of the same order of magnitude as the longitudinal variation of haze thickness along a scan line. These effects are most pronounced at a wavelength of 935 nm. We must emphasize the tentative nature of the results, because there is still an enormous amount of data to be analyzed. We intend to combine further polarimetric research of Venus with constraints on the haze parameters imposed by physical and chemical processes in the atmosphere.

  3. 23 CFR 1.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false Definitions. 1.2 Section 1.2 Highways FEDERAL HIGHWAY... shall have the following meaning: Administrator. The Federal Highway Administrator. Advertising policy... laws, heretofore or hereafter enacted, relating to Federal aid for highways. Latest available...

  4. 23 CFR 1.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 23 Highways 1 2011-04-01 2011-04-01 false Definitions. 1.2 Section 1.2 Highways FEDERAL HIGHWAY... shall have the following meaning: Administrator. The Federal Highway Administrator. Advertising policy... laws, heretofore or hereafter enacted, relating to Federal aid for highways. Latest available...

  5. 23 CFR 1.2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 23 Highways 1 2012-04-01 2012-04-01 false Definitions. 1.2 Section 1.2 Highways FEDERAL HIGHWAY... shall have the following meaning: Administrator. The Federal Highway Administrator. Advertising policy... laws, heretofore or hereafter enacted, relating to Federal aid for highways. Latest available...

  6. 23 CFR 1.2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 23 Highways 1 2013-04-01 2013-04-01 false Definitions. 1.2 Section 1.2 Highways FEDERAL HIGHWAY... shall have the following meaning: Administrator. The Federal Highway Administrator. Advertising policy... laws, heretofore or hereafter enacted, relating to Federal aid for highways. Latest available...

  7. 23 CFR 1.2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 23 Highways 1 2014-04-01 2014-04-01 false Definitions. 1.2 Section 1.2 Highways FEDERAL HIGHWAY... shall have the following meaning: Administrator. The Federal Highway Administrator. Advertising policy... laws, heretofore or hereafter enacted, relating to Federal aid for highways. Latest available...

  8. 24 CFR 1.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... participates in carrying out such program or activity (such as a redeveloper in the Urban Renewal Program... 24 Housing and Urban Development 1 2011-04-01 2011-04-01 false Definitions. 1.2 Section 1.2 Housing and Urban Development Office of the Secretary, Department of Housing and Urban...

  9. 24 CFR 1.2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... participates in carrying out such program or activity (such as a redeveloper in the Urban Renewal Program... 24 Housing and Urban Development 1 2013-04-01 2013-04-01 false Definitions. 1.2 Section 1.2 Housing and Urban Development Office of the Secretary, Department of Housing and Urban...

  10. 24 CFR 1.2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... participates in carrying out such program or activity (such as a redeveloper in the Urban Renewal Program... 24 Housing and Urban Development 1 2012-04-01 2012-04-01 false Definitions. 1.2 Section 1.2 Housing and Urban Development Office of the Secretary, Department of Housing and Urban...

  11. 24 CFR 1.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... participates in carrying out such program or activity (such as a redeveloper in the Urban Renewal Program... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Definitions. 1.2 Section 1.2 Housing and Urban Development Office of the Secretary, Department of Housing and Urban...

  12. 24 CFR 1.2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... participates in carrying out such program or activity (such as a redeveloper in the Urban Renewal Program... 24 Housing and Urban Development 1 2014-04-01 2014-04-01 false Definitions. 1.2 Section 1.2 Housing and Urban Development Office of the Secretary, Department of Housing and Urban...

  13. 8 CFR 1.2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 8 Aliens and Nationality 1 2014-01-01 2014-01-01 false Definitions. 1.2 Section 1.2 Aliens and... alien means an applicant for admission coming or attempting to come into the United States at a port-of-entry, or an alien seeking transit through the United States at a port-of-entry, or an alien...

  14. 45 CFR 1210.1-2 - Scope.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false Scope. 1210.1-2 Section 1210.1-2 Public Welfare Regulations Relating to Public Welfare (Continued) CORPORATION FOR NATIONAL AND COMMUNITY SERVICE VISTA... separation of any Trainee or Volunteer. Separate procedures, as detailed in the VISTA Handbook,...

  15. Thickness Dependence of Properties of ITO Films Deposited on PET Substrates.

    PubMed

    Kim, Seon Tae; Kim, Tae Gyu; Cho, Hyun; Yoon, Su Jong; Kim, Hye Sung; Kim, Jin Kon

    2016-02-01

    Indium tin oxide (ITO) films with various thicknesses from 104 nm to 513 nm were prepared onto polyethylene terephthalate (PET) substrates by using r.f. magnetron sputtering without intentionally heating the substrates. The structural, optical, and electrical properties of ITO films were investigated as a function of film thickness. It was found that the amorphous nature of the ITO film was dominant below the thickness of about 200 nm but the degree of the crystallinity increased with an increasing thickness above the thickness of about 250 nm, resulting in the increase of carrier concentration and therefore reducing the electrical resistivity from 5.1 x 10(-3) to 9.4 x 10(-4) omega x cm. The average transmittance (400-800 nm) of the ITO deposited PET substrates decreased as the film thickness was increasing and was above 80% for the thickness below 315 nm. The results show that the improvement of the film crystallinity with the film thickness contributes to the increase of the carrier concentration and the enhancement of the electrical conductivity. PMID:27433686

  16. Ultrasonic Inspection Of Thick Sections

    NASA Technical Reports Server (NTRS)

    Friant, C. L.; Djordjevic, B. B.; O'Keefe, C. V.; Ferrell, W.; Klutz, T.

    1993-01-01

    Ultrasonics used to inspect large, relatively thick vessels for hidden defects. Report based on experiments in through-the-thickness transmission of ultrasonic waves in both steel and filament-wound composite cases of solid-fuel rocket motors.

  17. How thick is the lithosphere?

    PubMed

    Kanamori, H; Press, F

    1970-04-25

    A rapid decrease in shear velocity in the suboceanic mantle is used to infer the thickness of the lithosphere. It is proposed that new and highly precise group velocity data constrain the solutions and imply a thickness near 70 km.

  18. Simultaneous orientation and thickness mapping in transmission electron microscopy

    SciTech Connect

    Tyutyunnikov, Dmitry; Özdöl, V. Burak; Koch, Christoph T.

    2014-12-04

    In this paper we introduce an approach for simultaneous thickness and orientation mapping of crystalline samples by means of transmission electron microscopy. We show that local thickness and orientation values can be extracted from experimental dark-field (DF) image data acquired at different specimen tilts. The method has been implemented to automatically acquire the necessary data and then map thickness and crystal orientation for a given region of interest. We have applied this technique to a specimen prepared from a commercial semiconductor device, containing multiple 22 nm technology transistor structures. The performance and limitations of our method are discussed and compared to those of other techniques available.

  19. Effect of different thickness h-BN coatings on interface shear strength of quartz fiber reinforced Sisbnd Osbnd Csbnd N composite

    NASA Astrophysics Data System (ADS)

    Wang, Shubin; Zheng, Yu

    2014-02-01

    Hexagonal boron nitride (h-BN) coatings with different thickness were prepared on quartz fibers to improve mechanical properties of quartz fiber reinforced Sisbnd Osbnd Csbnd N composite. Scanning electron microscopy (SEM), push-out test and single edge notched beam (SENB) in three point bending test were employed to study morphology, interface shear strength and fracture toughness of the composite. The results showed that h-BN coatings changed the crack growth direction and weaken the interface shear strength efficiently. When the h-BN coating was 308.2 nm, the interface shear strength was about 5.2 MPa, which was about one-quarter of that of the sample without h-BN coatings. After the heating process for obtaining composite, the h-BN nanometer-sized grains would grow up to micron-sized hexagonal grains. Different thickness h-BN coatings had different structure. When the coatings were relatively thin, the hexagonal grains were single layer structure, and when the coatings were thicker, the hexagonal grains were multiple layer structure. This multiple layer interface phase would consume more power of cracks, thus interface shear strength of the composite decreased steadily with the increasing of h-BN coatings thickness. When the coating thickness was 238.8 nm, KIC reaches the peak value 3.8 MPa m1/2, which was more than two times of that of composites without h-BN coatings.

  20. Pushing the resolution of photolithography down to 15nm by surface plasmon interference.

    PubMed

    Dong, Jianjie; Liu, Juan; Kang, Guoguo; Xie, Jinghui; Wang, Yongtian

    2014-01-01

    A deep ultraviolet plasmonic structure is designed and a surface plasmon interference lithography method using the structure is proposed to generate large-area periodic nanopatterns. By exciting the anti-symmetric coupled surface plasmon polaritons in the structure, ultrahigh resolution periodic patterns can be formed in a photoresist. The resolution of the generated patterns can be tuned by changing the refractive index and thickness of the photoresist. We demonstrate numerically that one-dimensional and two-dimensional patterns with a half-pitch resolution of 14.6 nm can be generated in a 25 nm-thick photoresist by using the structure under 193 nm illumination. Furthermore, the half-pitch resolution of the generated patterns can be down to 13 nm if high refractive index photoresists are used. Our findings open up an avenue to push the half-pitch resolution of photolithography towards 10 nm.

  1. Thickness dependence of the twin density in YBa sub 2 Cu sub 3 O sub 7 minus. delta. thin films sputtered onto MgO substrates

    SciTech Connect

    Streiffer, S.K.; Zielinski, E.M.; Lairson, B.M.; Bravman, J.C. )

    1991-05-13

    The lengths and spacings of twins in YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} thin films deposited onto MgO substrates have been measured by transmission electron microscopy as a function of film thickness {ital t}, for {ital t} ranging from 50 to 1400 nm. The twin length is linear in {ital t}, while the twin spacing follows a {ital t}{sup 1/2} dependence. This form for the twin spacing is consistent with the prediction of a simple free energy expression for the twinning transformation.

  2. Effect of Ru thickness on spin pumping in Ru/Py bilayer

    SciTech Connect

    Behera, Nilamani; Singh, M. Sanjoy; Chaudhary, Sujeet; Pandya, Dinesh K. Muduli, P. K.

    2015-05-07

    We report the effect of Ru thickness (t{sub Ru}) on ferromagnetic resonance (FMR) line-width of Ru(t{sub Ru})/Py(23 nm) bilayer samples grown on Si(100)/SiO{sub 2} substrates at room temperature by magnetron sputtering. The FMR line-width is found to vary linearly with frequency for all thicknesses of Ru, indicating intrinsic origin of damping. For Ru thicknesses below 15 nm, Gilbert-damping parameter, α is almost constant. We ascribe this behavior to spin back flow that is operative for Ru thicknesses lower than the spin diffusion length in Ru, λ{sub sd}. For thicknesses >15 nm (>λ{sub sd}), the damping constant increases with Ru thickness, indicating spin pumping from Py into Ru.

  3. Beam profile measurements for dental phototherapy: the effect of distance, wavelength and tissue thickness

    NASA Astrophysics Data System (ADS)

    Palin, William M.; Hadis, Mohammed A.; Milward, Michael R.; Carroll, James D.; Cooper, Paul R.

    2015-03-01

    Light delivery for potential bacterial disinfection (UV/blue) and photobiomodulation (near-IR) requires specific, concentrated and controllable local irradiance and dose. Dental targets for light irradiation involve dentine, which scatters, absorbs and reflects light, reducing local irradiance. This study compared the effectiveness of LEDs (400-900nm) and lasers (660nm and 810nm) to penetrate dentine. Caries-free wisdom teeth were sectioned through the Pulpchamber by either cutting perpendicular to the crown, the buccal aspect or obliquely. Specimens were wet-polished to 1, 2 or 3mm thicknesses to expose the dentine on opposing surfaces. The beam profile of the LEDs/lasers were measured through dentine specimens (n=5) to obtain beam width following optical calibration, and spatial irradiance distribution following photodiode power calibration. There were no significant differences in the percentage power and irradiance transmitted through different dentine specimens between LEDs and lasers (P>0.05). However, light penetration through tissue was wavelength dependent and highest for red and near-IR wavelengths (P<0.05) for specimens cut perpendicular to the crown compared with buccal and oblique specimens. The beam diameters increased and irradiance decreased significantly (P<0.05) with increasing specimen thickness/distance for both LEDs and lasers. There was a noticeable shift in beam position for all light sources in buccal and oblique specimens. Data indicated that dentine tubule orientation may alter the direction of light through the tissue. Optimal light penetration and distribution through dentine at specific distance is best achieved with a flat-top beam distribution vertically through the crown of the tooth.

  4. Reproducibility of airway wall thickness measurements

    NASA Astrophysics Data System (ADS)

    Schmidt, Michael; Kuhnigk, Jan-Martin; Krass, Stefan; Owsijewitsch, Michael; de Hoop, Bartjan; Peitgen, Heinz-Otto

    2010-03-01

    Airway remodeling and accompanying changes in wall thickness are known to be a major symptom of chronic obstructive pulmonary disease (COPD), associated with reduced lung function in diseased individuals. Further investigation of this disease as well as monitoring of disease progression and treatment effect demand for accurate and reproducible assessment of airway wall thickness in CT datasets. With wall thicknesses in the sub-millimeter range, this task remains challenging even with today's high resolution CT datasets. To provide accurate measurements, taking partial volume effects into account is mandatory. The Full-Width-at-Half-Maximum (FWHM) method has been shown to be inappropriate for small airways1,2 and several improved algorithms for objective quantification of airway wall thickness have been proposed.1-8 In this paper, we describe an algorithm based on a closed form solution proposed by Weinheimer et al.7 We locally estimate the lung density parameter required for the closed form solution to account for possible variations of parenchyma density between different lung regions, inspiration states and contrast agent concentrations. The general accuracy of the algorithm is evaluated using basic tubular software and hardware phantoms. Furthermore, we present results on the reproducibility of the algorithm with respect to clinical CT scans, varying reconstruction kernels, and repeated acquisitions, which is crucial for longitudinal observations.

  5. Analysis of Cav1.2 and Ryanodine Receptor Clusters in Rat Ventricular Myocytes

    PubMed Central

    Scriven, David R.L.; Asghari, Parisa; Schulson, Meredith N.; Moore, Edwin D.W.

    2010-01-01

    We analyzed the distribution of ryanodine receptor (RyR) and Cav1.2 clusters in adult rat ventricular myocytes using three-dimensional object-based colocalization metrics. We found that ∼75% of the Cav1.2 clusters and 65% of the RyR clusters were within couplons, and both were roughly two and a half times larger than their extradyadic counterparts. Within a couplon, Cav1.2 was concentrated near the center of the underlying RyR cluster and accounted for ∼67% of its size. These data, together with previous findings from binding studies, enable us to estimate that a couplon contains 74 RyR tetramers and 10 copies of the α-subunit of Cav1.2. Extradyadic clusters of RyR contained ∼30 tetramers, whereas the extradyadic Cav1.2 clusters contained, on average, only four channels. Between 80% and 85% of both RyR and Cav1.2 molecules are within couplons. RyR clusters were in the closest proximity, with a median nearest-neighbor distance of 552 nm; comparable values for Cav1.2 clusters and couplons were 619 nm and 735 nm, respectively. Extradyadic RyR clusters were significantly closer together (624 nm) and closer to the couplons (674 nm) than the couplons were to each other. In contrast, the extradyadic clusters of Cav1.2 showed no preferential localization and were broadly distributed. These results provide a wealth of morphometric data that are essential for understanding intracellular Ca2+ regulation and modeling Ca2+ dynamics. PMID:21156134

  6. Waterway Ice Thickness Measurements

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The ship on the opposite page is a U. S. Steel Corporation tanker cruising through the ice-covered waters of the Great Lakes in the dead of winter. The ship's crew is able to navigate safely by plotting courses through open water or thin ice, a technique made possible by a multi-agency technology demonstration program in which NASA is a leading participant. Traditionally, the Great Lakes-St. Lawrence Seaway System is closed to shipping for more than three months of winter season because of ice blockage, particularly fluctuations in the thickness and location of ice cover due to storms, wind, currents and variable temperatures. Shippers have long sought a system of navigation that would allow year-round operation on the Lakes and produce enormous economic and fuel conservation benefits. Interrupted operations require that industrial firms stockpile materials to carry them through the impassable months, which is costly. Alternatively, they must haul cargos by more expensive overland transportation. Studies estimate the economic benefits of year-round Great Lakes shipping in the hundreds of millions of dollars annually and fuel consumption savings in the tens of millions of gallons. Under Project Icewarn, NASA, the U.S. Coast Guard and the National Oceanic Atmospheric Administration collaborated in development and demonstration of a system that permits safe year-round operations. It employs airborne radars, satellite communications relay and facsimile transmission to provide shippers and ships' masters up-to-date ice charts. Lewis Research Center contributed an accurate methods of measuring ice thickness by means of a special "short-pulse" type of radar. In a three-year demonstration program, Coast Guard aircraft equipped with Side-Looking Airborne Radar (SLAR) flew over the Great Lakes three or four times a week. The SLAR, which can penetrate clouds, provided large area readings of the type and distribution of ice cover. The information was supplemented by short

  7. Efficient methylammonium lead iodide perovskite solar cells with active layers from 300 to 900 nm

    SciTech Connect

    Momblona, C.; Malinkiewicz, O.; Soriano, A.; Gil-Escrig, L.; Bandiello, E.; Scheepers, M.; Bolink, H. J.; Edri, E.

    2014-08-01

    Efficient methylammonium lead iodide perovskite-based solar cells have been prepared in which the perovskite layer is sandwiched in between two organic charge transporting layers that block holes and electrons, respectively. This configuration leads to stable and reproducible devices that do not suffer from strong hysteresis effects and when optimized lead to efficiencies close to 15%. The perovskite layer is formed by using a dual-source thermal evaporation method, whereas the organic layers are processed from solution. The dual-source thermal evaporation method leads to smooth films and allows for high precision thickness variations. Devices were prepared with perovskite layer thicknesses ranging from 160 to 900 nm. The short-circuit current observed for these devices increased with increasing perovskite layer thickness. The main parameter that decreases with increasing perovskite layer thickness is the fill factor and as a result optimum device performance is obtained for perovskite layer thickness around 300 nm. However, here we demonstrate that with a slightly oxidized electron blocking layer the fill factor for the solar cells with a perovskite layer thickness of 900 nm increases to the same values as for the devices with thin perovskite layers. As a result the power conversion efficiencies for the cells with 300 and 900 nm are very similar, 12.7% and 12%, respectively.

  8. Nanometer-thick flat lens with adjustable focus

    SciTech Connect

    Son, T. V.; Haché, A.; Ba, C. O. F.; Vallée, R.

    2014-12-08

    We report laser beam focusing by a flat, homogeneous film with a thickness of less than 100 nm. The effect relies on refractive index changes occurring in vanadium dioxide as it undergoes a phase transition from insulator to metal. Phase front curvature is achieved by means of temperature gradients, and adjustable focal lengths from infinity to 30 cm are attained.

  9. 45 CFR 1211.1-2 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... VOLUNTEER GRIEVANCE PROCEDURES § 1211.1-2 Applicability. This part applies to all volunteers enrolled under part A of title I of the Domestic Volunteer Service Act of 1973, as amended, Pub. L. 93-113, (42...

  10. 45 CFR 1211.1-2 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... VOLUNTEER GRIEVANCE PROCEDURES § 1211.1-2 Applicability. This part applies to all volunteers enrolled under part A of title I of the Domestic Volunteer Service Act of 1973, as amended, Pub. L. 93-113, (42...

  11. AC conductivity and relaxation mechanism in (Nd1/2Li1/2)(Fe1/2V1/2)O3 ceramics

    NASA Astrophysics Data System (ADS)

    Nath, Susmita; Barik, Subrat Kumar; Choudhary, R. N. P.

    2016-05-01

    In the present study we have synthesized polycrystalline sample of (Nd1/2Li1/2)(Fe1/2V1/2)O3 ceramic by a standard high-temperature solid-state reaction technique. Studies of dielectric and electrical properties of the compound have been carried out in a wide range of temperature (RT - 400 °C) and frequency (1kHz - 1MHz) using complex impedance spectroscopic technique. The imaginary vs. real component of the complex impedance plot (Nyquist plot) of the prepared sample exhibits the existence of grain, grain boundary contributions in the complex electrical parameters and negative temperature coefficient of resistance (NTCR) type behavior like semiconductor. Details study of ac conductivity plot reveals that the material obeys universal Jonscher's power law.

  12. Cloaking spin-(1/2) matter waves

    SciTech Connect

    Lin, De-Hone

    2010-06-15

    A physical construct for the cloaking of relativistic spin-(1/2) matter waves is proposed. It is shown that when the effective energy and mass of relativistic spin-(1/2) particles moving in an effective vector field in a spherical shell are controlled, their matter waves can be perfectly guided through the shell without any distortion or loss; that is, the construct provides a three-dimensional cloaking shell for relativistic spin-(1/2) matter waves. The proposal serves as the basis for some interesting applications such as providing a method to guide the matter waves of spin particles and an ideal setup to exhibit spin-spin interactions as well as perfect quantum interferences of some global effects in spin-(1/2) matter waves.

  13. Aqueous Solution Processed Photoconductive Cathode Interlayer for High Performance Polymer Solar Cells with Thick Interlayer and Thick Active Layer.

    PubMed

    Nian, Li; Chen, Zhenhui; Herbst, Stefanie; Li, Qingyuan; Yu, Chengzhuo; Jiang, Xiaofang; Dong, Huanli; Li, Fenghong; Liu, Linlin; Würthner, Frank; Chen, Junwu; Xie, Zengqi; Ma, Yuguang

    2016-09-01

    An aqueous-solution-processed photoconductive cathode interlayer is developed, in which the photoinduced charge transfer brings multiple advantages such as increased conductivity and electron mobility, as well as reduced work function. Average power conversion efficiency over 10% is achieved even when the thickness of the cathode interlayer and active layer is up to 100 and 300 nm, respectively.

  14. Thickness dependent wetting properties and surface free energy of HfO2 thin films

    NASA Astrophysics Data System (ADS)

    Zenkin, Sergei; Belosludtsev, Alexandr; Kos, Šimon; Čerstvý, Radomír; Haviar, Stanislav; Netrvalová, Marie

    2016-06-01

    We show here that intrinsic hydrophobicity of HfO2 thin films can be easily tuned by the variation of film thickness. We used the reactive high-power impulse magnetron sputtering for preparation of high-quality HfO2 films with smooth topography and well-controlled thickness. Results show a strong dependence of wetting properties on the thickness of the film in the range of 50-250 nm due to the dominance of the electrostatic Lifshitz-van der Waals component of the surface free energy. We have found the water droplet contact angle ranging from ≈120° for the thickness of 50 nm to ≈100° for the thickness of 2300 nm. At the same time the surface free energy grows from ≈25 mJ/m2 for the thickness of 50 nm to ≈33 mJ/m2 for the thickness of 2300 nm. We propose two explanations for the observed thickness dependence of the wetting properties: influence of the non-dominant texture and/or non-monotonic size dependence of the particle surface energy.

  15. Development of the nitride film thickness standard (NFTS)

    NASA Astrophysics Data System (ADS)

    Durga Pal, Prabha

    1998-07-01

    The semiconductor industry has been demanding film thickness reference material for films other than thermally grown silicon dioxide for sometime. To meet this challenge, Nitride Film Thickness Standard (NFTS) has been developed in four nominal thickness values, 20.0 nm, 90.0 nm, 120.0 nm and 200.0 nm. These are silicon nitride (Si3N4) films on silicon crystal substrate. Work is underway to develop a 9.0 nm standard. Thin nitride films are particularly needed for calibration of the thickness of nitride layers in capacitors and isolation masks for LOCOS (local oxidation of silicon). The reference material is certified for derived film thickness. The study consists of measurements made on four different sets of wafers that included patterned and unpatterned wafers. The measurements made on these wafer sets were used for answering issues related to film stability and cleaning. The stability study includes the search for a cleaning process that will restore a prior surface condition. On two sets of wafers two different types of cleaning procedures were used. Results indicate that a sulfuric acidmegasonic clean will etch the nitride film while an isopropyl alcohol clean followed by a deionized water rinse can be used over and over again. The third set of wafers was never cleaned and measurements were made on these over a period of two years. The last set of wafers is patterned. These are cleaned prior to measurement. Results show that LPCVD silicon nitride films are stable and can be used with confidence over a long period of time for calibrating optical metrology instruments.

  16. Optical spectroscopy of sputtered nanometer-thick yttrium iron garnet films

    SciTech Connect

    Jakubisova-Liskova, Eva Visnovsky, Stefan; Chang, Houchen; Wu, Mingzhong

    2015-05-07

    Nanometer (nm)-thick yttrium iron garnet (Y{sub 3}Fe{sub 5}O{sub 12}, YIG) films present interest for spintronics. This work employs spectral ellipsometry and magneto-optic Kerr effect (MOKE) spectra to characterize nm-thick YIG films grown on single-crystal Gd{sub 3}Ga{sub 5}O{sub 12} substrates by magnetron sputtering. The thickness (t) of the films ranges between 10 nm and 40 nm. Independent on t, the polar MOKE hysteresis loops saturate in the field of about 1.8 kOe, consistent with the saturation magnetization in bulk YIG (4πM{sub s} ≈ 1.75 kG). The MOKE spectrum measured at photon energies between 1.3 eV and 4.5 eV on the 38-nm-thick film agrees with that measured on single-crystal YIG bulk materials. The MOKE spectrum of the 12-nm-thick film still preserves the structure of the bulk YIG but its amplitude at lower photon energies is modified due to the fact that the radiation penetration depth exceeds 20 nm. The t dependence of the MOKE amplitude is consistent with MOKE calculations. The results indicate that the films are stoichiometric, strain free, without Fe{sup 2+}, and preserve bulk YIG properties down to t ≈ 10 nm.

  17. Full-field imprinting of sub-40 nm patterns

    NASA Astrophysics Data System (ADS)

    Yeo, Jeongho; Kim, Hoyeon; Eynon, Ben

    2008-03-01

    Imprint lithography has been included on the ITRS Lithography Roadmap at the 32, 22 and 16 nm nodes. Step and Flash Imprint Lithography (S-FIL (R)) is a unique patterning method that has been designed from the beginning to enable precise overlay to enable multilevel device fabrication. A photocurable low viscosity resist is dispensed dropwise to match the pattern density requirements of the device, thus enabling patterning with a uniform residual layer thickness across a field and across multiple wafers. Further, S-FIL provides sub-50 nm feature resolution without the significant expense of multi-element projection optics or advanced illumination sources. However, since the technology is 1X, it is critical to address the infrastructure associated with the fabrication of imprint masks (templates). For sub-32 nm device manufacturing, one of the major technical challenges remains the fabrication of full-field 1x imprint masks with commercially viable write times. Recent progress in the writing of sub-40 nm patterns using commercial variable shape e-beam tools and non-chemically amplified resists has demonstrated a very promising route to realizing these objectives, and in doing so, has considerably strengthened imprint lithography as a competitive manufacturing technology for the sub-32nm node. Here we report the first imprinting results from sub-40 nm full-field patterns, using Samsung's current flash memory production device design. The fabrication of the imprint mask and the resulting critical dimension control and uniformity are discussed, along with image placement results. The imprinting results are described in terms of CD uniformity, etch results, and overlay.

  18. Control of shell thickness in silica-coating of Au nanoparticles and their X-ray imaging properties.

    PubMed

    Kobayashi, Yoshio; Inose, Hiromitsu; Nakagawa, Tomohiko; Gonda, Kohsuke; Takeda, Motohiro; Ohuchi, Noriaki; Kasuya, Atsuo

    2011-06-15

    This paper describes a performance of precise control of shell thickness in silica-coating of Au nanoparticles based on a sol-gel process, and an investigation into X-ray imaging properties for the silica-coated Au (Au/SiO(2)) particles. The Au nanoparticles with a size of 16.9±1.2 nm prepared through a conventional citrate reduction method were used as core particles. The Au nanoparticles were silica-coated with a sol-gel reaction using tetraethylorthosilicate (TEOS) as a silica source, sodium hydroxide (NaOH) as a catalyst, and (3-aminopropyl) trimethoxysilane (APMS) as a silane coupling agent. An increase in TEOS concentration resulted in an increase in shell thickness. Under certain concentrations of Au, H(2)O, NaOH, and APMS, the Au/SiO(2) particles with silica shell thickness of 6.0-61.0 nm were produced with varying TEOS concentration. Absorption peak wavelength of surface plasmon resonance of the Au/SiO(2) colloid solution depended on silica shell thickness, which agreed approximately with the predictions by Mie theory. The as-prepared colloid solution could be concentrated up to an Au concentration of 0.19 M with salting-out and centrifugation. The concentrated colloid solution showed an X-ray image with high contrast, and a computed tomography value for the colloid solution with an Au concentration of 0.129 M was achieved 1329.7±52.7 HU. PMID:21458820

  19. Step and flash imprint lithography for sub-100-nm patterning

    NASA Astrophysics Data System (ADS)

    Colburn, Matthew; Grot, Annette; Amistoso, Marie N.; Choi, Byung J.; Bailey, Todd C.; Ekerdt, John G.; Sreenivasan, S. V.; Hollenhorst, James; Willson, C. Grant

    2000-07-01

    Step and Flash Imprint Lithography (SFIL) is an alternative to photolithography that efficiently generates high aspect-ratio, sub-micron patterns in resist materials. Other imprint lithography techniques based on physical deformation of a polymer to generate surface relief structures have produced features in PMMA as small as 10 nm, but it is very difficult to imprint large depressed features or to imprint a thick films of resist with high aspect-ratio features by these techniques. SFIL overcomes these difficulties by exploiting the selectivity and anisotropy of reactive ion etch (RIE). First, a thick organic 'transfer' layer (0.3 micrometer to 1.1 micrometer) is spin coated to planarize the wafer surface. A low viscosity, liquid organosilicon photopolymer precursor is then applied to the substrate and a quartz template applied at 2 psi. Once the master is in contact with the organosilicon solution, a crosslinking photopolymerization is initiated via backside illumination with broadband UV light. When the layer is cured the template is removed. This process relies on being able to imprint the photopolymer while leaving the minimal residual material in the depressed areas. Any excess material is etched away using a CHF3/He/O2 RIE. The exposed transfer layer is then etched with O2 RIE. The silicon incorporated in the photopolymer allows amplification of the low aspect ratio relief structure in the silylated resist into a high aspect ratio feature in the transfer layer. The aspect ratio is limited only by the mechanical stability of the transfer layer material and the O2 RIE selectivity and anisotropy. This method has produced 60 nm features with 6:1 aspect ratios. This lithography process was also used to fabricate alternating arrays of 100 nm Ti lines on a 200 nm pitch that function as efficient micropolarizers. Several types of optical devices including gratings, polarizers, and sub-wavelength structures can be easily patterned by SFIL.

  20. Influence of magnetic electrodes thicknesses on the transport properties of magnetic tunnel junctions with perpendicular anisotropy

    SciTech Connect

    Cuchet, Léa; Rodmacq, Bernard; Auffret, Stéphane; Sousa, Ricardo C.; Dieny, Bernard

    2014-08-04

    The influence of the bottom and top magnetic electrodes thicknesses on both perpendicular anisotropy and transport properties is studied in (Co/Pt)/Ta/CoFeB/MgO/FeCoB/Ta magnetic tunnel junctions. By carefully investigating the relative magnetic moment of the two electrodes as a function of their thicknesses, we identify and quantify the presence of magnetically dead layers, likely localized at the interfaces with Ta, that is, 0.33 nm for the bottom electrode and 0.60 nm for the top one. Critical thicknesses (spin-reorientation transitions) are determined as 1.60 and 1.65 nm for bottom and top electrodes, respectively. The tunnel magnetoresistance ratio reaches its maximum value, as soon as both effective (corrected from dead layer) electrode thicknesses exceed 0.6 nm.

  1. Influence of the Film Thickness on the Crystallization of Poly(e-Caprolactone) Ultrathin Films, a Real Time AFM Study.

    NASA Astrophysics Data System (ADS)

    Mareau, Vincent H.; Prud'Homme, Robert E.

    2004-03-01

    Whereas spherulitic crystallization in thick polymer films has been extensively studied (kinetics and morphology), the understanding of the influence of the film thickness on the crystallization process in ultrathin films is still incomplete. In a previous study (Mareau, V.H.; Prud'homme, R.E. Macromolecules 2002, 36, 675), radial growth rates measured during isothermal crystallization of poly(e-caprolactone)/poly(vinyl chloride) (PCL/PVC) blends thin films (between 1000 and 100 nm) were found to decrease with the film thickness. However, no variation was observed in this range of thicknesses for pure PCL. In this work, ultrathin (less than 100 nm) spin-coated PCL films were isothermally crystallized and observed by AFM. Crystallizations were performed at low supercooling and isolated flat-on lamellae with a truncated lozenge shape were observed. Growth rates decrease for film thicknesses below 30 nm, along with distinct morphological modifications, and non-linear growth are observed in 5 nm thick films.

  2. 21nm x-ray laser Thomson scattering of laser-heated exploding foil plasmas

    SciTech Connect

    Dunn, J; Rus, B; Mocek, T; Nelson, A J; Foord, M E; Rozmus, W; Baldis, H A; Shepherd, R L; Kozlova, M; Polan, J; Homer, P; Stupka, M

    2007-09-26

    Recent experiments were carried out on the Prague Asterix Laser System (PALS) towards the demonstration of a soft x-ray laser Thomson scattering diagnostic for a laser-produced exploding foil. The Thomson probe utilized the Ne-like zinc x-ray laser which was double-passed to deliver {approx}1 mJ of focused energy at 21.2 nm wavelength and lasting {approx}100 ps. The plasma under study was heated single-sided using a Gaussian 300-ps pulse of 438-nm light (3{omega} of the PALS iodine laser) at laser irradiances of 10{sup 13}-10{sup 14} W cm{sup -2}. Electron densities of 10{sup 20}-10{sup 22} cm{sup -3} and electron temperatures from 200 to 500 eV were probed at 0.5 or 1 ns after the peak of the heating pulse during the foil plasma expansion. A flat-field 1200 line mm{sup -1} variable-spaced grating spectrometer with a cooled charge-coupled device readout viewed the plasma in the forward direction at 30{sup o} with respect to the x-ray laser probe. We show results from plasmas generated from {approx}1 {micro}m thick targets of Al and polypropylene (C{sub 3}H{sub 6}). Numerical simulations of the Thomson scattering cross-sections will be presented. These simulations show electron peaks in addition to a narrow ion feature due to collective (incoherent) Thomson scattering. The electron features are shifted from the frequency of the scattered radiation approximately by the electron plasma frequency {+-}{omega}{sub pe} and scale as n{sub e}{sup 1/2}.

  3. Apker Award Talk: Atomic Beam Measurement of the Indium 6p1 / 2 Scalar Polarizability

    NASA Astrophysics Data System (ADS)

    Augenbraun, Benjamin

    2016-05-01

    We report on the first measurement of the scalar polarizability of the indium 6p1 / 2 -excited state using two-step laser spectroscopy in an atomic beam. This is one in a series of precise atomic structure measurements by the Majumder lab at Williams College, which serve as stringent tests of abinitio calculation methods for three-valence-electron systems. We stabilize a laser to the indium 5p1 / 2 --> 6s1 / 2 410 nm transition and scan a second laser across the 6s1 / 2 --> 6p1 / 2 1343 nm transition. The two laser beams are overlapped and interact transversely with a collimated atomic beam of indium. Two-tone FM spectroscopy allows us to observe the small (< 1 part in 103) IR absorption, and characteristic sideband features in the RF-demodulated lineshape provide built-in frequency calibration. Application of DC electric fields up to 20 kV/cm give rise to Stark shifts of order 100 MHz. Because our group has previously measured the difference in polarizabilities within the 410 nm transition, we can determine the 6p1 / 2 polarizability with no loss of precision. Preliminary results are in excellent agreement with recent theoretical calculations and can be used to infer accurate values for the indium 6 p - 5 d matrix elements.

  4. 1,2,4,5-Tetrachlorobenzene

    Integrated Risk Information System (IRIS)

    1,2,4,5 - Tetrachlorobenzene ; CASRN 95 - 94 - 3 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Nonca

  5. 1,1,1,2-Tetrafluoroethane

    Integrated Risk Information System (IRIS)

    1,1,1,2 - Tetrafluoroethane ; CASRN 811 - 97 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Nonca

  6. 1,1,2,2-Tetrachloroethane

    Integrated Risk Information System (IRIS)

    1,1,2,2 - Tetrachloroethane ; CASRN 79 - 34 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncar

  7. 1,2-Dibromo-3-chloropropane (DBCP)

    Integrated Risk Information System (IRIS)

    1,2 - Dibromo - 3 - chloropropane ( DBCP ) ; CASRN 96 - 12 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessm

  8. 1,1,1,2-Tetrachloroethane

    Integrated Risk Information System (IRIS)

    1,1,1,2 - Tetrachloroethane ; CASRN 630 - 20 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Nonca

  9. 1,2,3-triazolium ionic liquids

    DOEpatents

    Luebke, David; Nulwala, Hunaid; Tang, Chau

    2014-12-09

    The present invention relates to compositions of matter that are ionic liquids, the compositions comprising substituted 1,2,3-triazolium cations combined with any anion. Compositions of the invention should be useful in the separation of gases and, perhaps, as catalysts for many reactions.

  10. 43 CFR 1815.1-2 - Applications.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., DEPARTMENT OF THE INTERIOR GENERAL MANAGEMENT (1000) INTRODUCTION AND GENERAL GUIDANCE Disaster Relief § 1815.1-2 Applications. (a) Place of filing. The application for relief shall be filed in the office which... particular disaster and its effect upon contract performance. (3) An estimate of the damages suffered. (4)...

  11. The dynamics of femtosecond pulsed laser removal of 20 nm Ni films from an interface

    NASA Astrophysics Data System (ADS)

    Schrider, Keegan J.; Torralva, Ben; Yalisove, Steven M.

    2015-09-01

    The dynamics of femtosecond laser removal of 20 nm Ni films on glass substrates was studied using time-resolved pump-probe microscopy. 20 nm thin films exhibit removal at two distinct threshold fluences, removal of the top 7 nm of Ni above 0.14 J/cm2, and removal of the entire 20 nm film above 0.36 J/cm2. Previous work shows the top 7 nm is removed through liquid spallation, after irradiation the Ni melts and rapidly expands leading to tensile stress and cavitation within the Ni film. This work shows that above 0.36 J/cm2 the 20 nm film is removed in two distinct layers, 7 nm and 13 nm thick. The top 7 nm layer reaches a speed 500% faster than the bottom 13 nm layer at the same absorbed fluence, 500-2000 m/s and 300-700 m/s in the fluence ranges studied. Significantly different velocities for the top 7 nm layer and bottom 13 nm layer indicate removal from an interface occurs by a different physical mechanism. The method of measuring film displacement from the development of Newton's rings was refined so it could be shown that the 13 nm layer separates from the substrate within 70 ps and accelerates to its final velocity within several hundred picoseconds. We propose that removal of the bottom 13 nm is consistent with heterogeneous nucleation and growth of vapor at the Ni-glass interface, but that the rapid separation and acceleration of the 13 nm layer from the Ni-glass interface requires consideration of exotic phases of Ni after excitation.

  12. 49 CFR 179.400-8 - Thickness of plates.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... the outer jacket shell may not be less than 7/16 inch. The minimum wall thickness, after forming, of the outer jacket heads may not be less than 1/2 inch and they must be made from steel specified in § 179.16(c). The annular space is to be evacuated, and the cylindrical portion of the outer...

  13. Internal rotation for predicting conformational population of 1,2-difluorethane and 1,2-dichloroethane

    NASA Astrophysics Data System (ADS)

    Venâncio, Mateus F.; Dos Santos, Hélio F.; De Almeida, Wagner B.

    2016-06-01

    The contribution of internal rotation to the thermal correction of Gibbs free energy (ΔG) is estimated using the quantum pendulum model (QPM) to solve the characteristic Schrödinger equation. The procedure is applied to theoretical prediction of conformational population of 1,2-difluorethane (1,2-DFE) and 1,2-dichloroethane (1,2-DCE) molecules. The predicted population for the anti form was 37% and 75%, for 1,2-DFE and 1,2-DCE respectively, in excellent agreement with experimental gas phase data available, 37 ± 5% and 78 ± 5%. These results provide great support to the use of the QPM model to account for the low vibrational frequency modes effect on the calculation of thermodynamic properties.

  14. Barkhausen noise in variable thickness amorphous finemet films

    SciTech Connect

    Puppin, Ezio; Pinotti, Ermanno; Brenna, Massimiliano

    2007-03-15

    We measured the statistical properties of Barkhausen noise in finemet films with nominal composition Fe{sub 73.5}Cu{sub 1}Nb{sub 3}Si{sub 22.5}B{sub 4} and variable thickness between 25 and 1000 nm. Films have been sputtered on glass substrates and their structure is amorphous. The critical exponents of the power-law distributions for the jumps amplitude show a remarkable stability over the whole thickness range, whereas the other macroscopic magnetic properties undergo strong variations. The value of the critical exponent is about 0.8 between 50 and 500 nm with a small increase up to 1.0 at 1000 nm. These values are similar to those observed with the same experimental technique in other two-dimensional (2D) systems, but definitely smaller with respect to the values observed in truly three-dimensional (3D) systems. Our data therefore indicate that, in the investigated thickness range, the behavior remains typical of 2D systems. The small increase of the critical exponent at 1000 nm might be an indication of a starting transition toward a 3D behavior.

  15. Microstructure evolution with varied layer thickness in magnetron-sputtered Ni/C multilayer films

    PubMed Central

    Peng, Jichang; Li, Wenbin; Huang, Qiushi; Wang, Zhanshan

    2016-01-01

    The microstructure evolution of magnetron-sputtered Ni/C multilayers was investigated by varying the Ni and C layer thickness in the region of a few nanometers. For the samples having 2.6-nm-thick C layers, the interface width increases from 0.37 to 0.81 nm as the Ni layer thickness decreases from 4.3 to 1.3 nm. Especially for the samples with Ni layers less than 2.0 nm, the interface width changes significantly due to the discontinuously distributed Ni crystallites. For the samples having 2.8-nm-thick Ni layers, the interface width increases from 0.37 to 0.59 nm when the C layer thickness decreases from 4.3 to 0.7 nm. The evolution of interface microstructures with varied Ni and C layers is explained based on a proposed simple growth model of Ni and C layers. PMID:27515586

  16. 1,2-Diazinium hydrogen chloranilate

    PubMed Central

    Gotoh, Kazuma; Ishida, Hiroyuki

    2008-01-01

    In the crystal structure of the title compound, C4H5N2 +·C6HCl2O4 −, there are three crystallographically independent 1,2-diazinium cations and hydrogen chloranilate anions. The anions are held together by pairs of O—H⋯O hydrogen bonds to form two types of dimers, one of which is centrosymmetric. The 1,2-diazinium cations are linked on both sides of each dimer via bifurcated N—H⋯O hydrogen bonds to give two kinds of 2–2 cation–anion associations. The 2–2 associations are linked by inter­molecular C—H⋯O and C—H⋯N hydrogen bonds, forming a mol­ecular tape along the [230] direction. The tapes are further connected by C—H⋯O hydrogen bonds, forming a three-dimensional network. PMID:21580959

  17. Nitrone Cycloadditions of 1,2-Cyclohexadiene

    PubMed Central

    Barber, Joyann S.; Styduhar, Evan D.; Pham, Hung V.; McMahon, Travis C.; Houk, K. N.; Garg, Neil K.

    2016-01-01

    We report the first 1,3-dipolar cycloadditions of 1,2-cyclohexadiene, a rarely exploited strained allene. 1,2-Cyclohexadiene is generated in situ under mild conditions and trapped with nitrones to give isoxazolidine products in synthetically useful yields. The reactions occur regioselectively and exhibit a notable endo preference, thus resulting in the controlled formation of two new bonds and two stereogenic centers. DFT calculations of stepwise and concerted reaction pathways are used to rationalize the observed selectivities. Moreover, the strategic manipulation of nitrone cycloadducts demonstrates the utility of this methodology for the assembly of compounds bearing multiple heterocyclic units. These studies showcase the exploitation of a traditionally avoided reactive intermediate in chemical synthesis. PMID:26854652

  18. Evaluation of Retinal and Choroidal Thickness in Fuchs' Uveitis Syndrome

    PubMed Central

    Ozsutcu, Mustafa

    2016-01-01

    Purpose. We aimed to investigate retinal and choroidal thickness in the eyes of patients with Fuchs' uveitis syndrome (FUS). Methods. Fifteen patients with unilateral FUS and 20 healthy control subjects were enrolled. Spectral domain optical coherence tomography (Spectralis HRA+OCT, 870 nm; Heidelberg Engineering, Heidelberg, Germany) was used to obtain retinal and choroidal thickness measurements. The retinal nerve fiber layer (RNFL) thickness, macular thickness, and choroidal thickness of the eyes with FUS were compared with the unaffected eye and the eyes of healthy control subjects. Results. The mean choroidal thickness at fovea and at each point within the horizontal nasal and temporal quadrants at 500 μm intervals to a distance of 1500 µm from the foveal center was significantly thinner in the affected eye of FUS patients compared with the unaffected eye of FUS patients or the eyes of healthy control subjects. However, there were no significant differences in RNFL or macular thickness between groups. Conclusions. Affected eyes in patients with FUS tend to have thinner choroids as compared to eyes of unaffected fellow eyes and healthy individuals, which might be a result of the chronic inflammation associated with the disease. PMID:27579176

  19. Impact of metal nano layer thickness on tunneling oxide and memory performance of core-shell iridium-oxide nanocrystals

    SciTech Connect

    Banerjee, W.; Maikap, S.; Tien, T.-C.; Li, W.-C.; Yang, J.-R.

    2011-10-01

    The impact of iridium-oxide (IrO{sub x}) nano layer thickness on the tunneling oxide and memory performance of IrO{sub x} metal nanocrystals in an n-Si/SiO{sub 2}/Al{sub 2}O{sub 3}/IrO{sub x}/Al{sub 2}O{sub 3}/IrO{sub x} structure has been investigated. A thinner (1.5 nm) IrO{sub x} nano layer has shown better memory performance than that of a thicker one (2.5 nm). Core-shell IrO{sub x} nanocrystals with a small average diameter of 2.4 nm and a high density of {approx}2 x 10{sup 12}/cm{sup 2} have been observed by scanning transmission electron microscopy. The IrO{sub x} nanocrystals are confirmed by x-ray photoelectron spectroscopy. A large memory window of 3.0 V at a sweeping gate voltage of {+-}5 V and 7.2 V at a sweeping gate voltage of {+-} 8 V has been observed for the 1.5 nm-thick IrO{sub x} nano layer memory capacitors with a small equivalent oxide thickness of 8 nm. The electrons and holes are trapped in the core and annular regions of the IrO{sub x} nanocrystals, respectively, which is explained by Gibbs free energy. High electron and hole-trapping densities are found to be 1.5 x 10{sup 13}/cm{sup 2} and 2 x 10{sup 13}/cm{sup 2}, respectively, due to the small size and high-density of IrO{sub x} nanocrystals. Excellent program/erase endurance of >10{sup 6} cycles and good retention of 10{sup 4} s with a good memory window of >1.2 V under a small operation voltage of {+-} 5 V are obtained. A large memory size of >10 Tbit/sq. in. can be designed by using the IrO{sub x} nanocrystals. This study is not only important for the IrO{sub x} nanocrystal charge-trapping memory investigation but it will also help to design future metal nanocrystal flash memory.

  20. Impact of buffer layer and Pt thickness on the interface structure and magnetic properties in (Co/Pt) multilayers

    NASA Astrophysics Data System (ADS)

    Bersweiler, M.; Dumesnil, K.; Lacour, D.; Hehn, M.

    2016-08-01

    The influence of Pt thickness on the interface structure (roughness / intermixing) and magnetic properties has been investigated for (Co / Pt) multilayers sputtered on a Pt or a thin oxide (MgO or AlO x ) buffer layer. When Pt thickness increases from 1.2 nm–2.2 nm, we observe that the effective anisotropy increases with the Pt thickness, simultaneously with the decrease of roughness, i.e. the occurrence of sharper interfaces. Perpendicular magnetic anisotropy (PMA) is still achieved on the oxide buffer layers, but with a lower effective anisotropy correlated to more perturbed interfaces. The detailed analysis of the saturation magnetization shows that: (i) M s is significantly enhanced in the case of rough/intermixed interfaces, which is attributed to and discussed in the framework of Pt induced polarization, (ii) the change in volume dipolar anisotropy is the main factor responsible for the reduction of K eff for systems grown on oxides. Beyond the major role of volume dipolar contribution that reduces PMA, a supplemental positive contribution promoting PMA can be invoked for rough interfaces and large M s (deposit on oxide). This contribution is consistent with a dipolar surface anisotropy term and increases for rough interfaces, in contrast to the Néel surface anisotropy. These opposite variations may interestingly lead to an enhanced anisotropy in (Co / Pt) stackings grown on oxides compared to systems deposited on Pt, i.e. with sharper interfaces.

  1. Foveal Thickness Alterations in Patients with Migraine

    PubMed Central

    Cankaya, Cem; Tecellioglu, Mehmet

    2016-01-01

    Aim: To investigate the alterations in foveal retinal thickness (FT) values in patients with migraine and to reveal the correlations between FT and clinical characteristics of migraine disease. Methods: This study included sixty-eight eyes of 34 migraine patients [twenty-eight eyes of 14 patients with aura (group 1), and forty eyes of 20 patients without aura (group 2)] and forty eyes of 20 healthy volunteer who served as the control group (group 3). FT values were measured by optical coherence tomography (OCT) in each group. Results: Mean age of patients in group 1, 2, and 3 was 34.0± 6.82, 35.2±10.12, and 35.1± 6.85 years, respectively (p=0.84). Mean FT was 211.07±7.36, 220.0±12.01, and 221.85±12.27 in groups 1, 2, and 3, respectively. There was statistically significance among the group 1-2 and 1-3 (p=0.002 and p< 0.001). There was no statistically significance between group 2-3 (p=0.88). Conclusion: This study suggests that in particular migraine with aura may lead to a reduction in FT values. This finding can be explained by the blood flow decrease theory in migraine; however larger studies seem mandatory. PMID:27147787

  2. 850nm VCSEL with a liquid crystal overlay

    NASA Astrophysics Data System (ADS)

    Nair, Veena M.; Panajotov, Krassimir; Petrov, Mikov; Thienpont, Hugo; Xie, Yi; Beeckman, Jeroen; Neyts, Kristiaan

    2012-06-01

    We developed an in- house technology to overlay liquid crystal (LC) on top of a 850nm Vertical Cavity Surface Emitting Laser (VCSEL) creating a so-called LC-VCSEL. Prior to this, the effect of the cell thickness on the planar alignment of the E7 LC is investigated. It is observed that the LC orientation is planar, uniformly aligned over the whole cell with an average pre-tilt of 22.50 in a thin a cell of 13μm thickness; such alignment uniformity is not observed in a thick cell of 125μm. Nevertheless, several domains of good uniformity are still present. Further, the polarization resolved LI characteristics of LC-VCSEL are investigated with and without the insertion of LC in a cell glued directly onto VCSEL package. Before filling in the LC, the VCSEL emits linearly polarized light and this linear polarization is lost after LC filling. The output intensity as a function of polarizer angle shows partial planar alignment of the E7 LC, which is very important for the further advancement of the LC-VCSEL integrated system.

  3. Laser detection of material thickness

    DOEpatents

    Early, James W.

    2002-01-01

    There is provided a method for measuring material thickness comprising: (a) contacting a surface of a material to be measured with a high intensity short duration laser pulse at a light wavelength which heats the area of contact with the material, thereby creating an acoustical pulse within the material: (b) timing the intervals between deflections in the contacted surface caused by the reverberation of acoustical pulses between the contacted surface and the opposite surface of the material: and (c) determining the thickness of the material by calculating the proportion of the thickness of the material to the measured time intervals between deflections of the contacted surface.

  4. 1,1,2-Trichloro-1,2,2-trifluoroethane (CFC-113)

    Integrated Risk Information System (IRIS)

    1,1,2 - Trichloro - 1,2,2 - trifluoroethane ( CFC - 113 ) ; CASRN 76 - 13 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health

  5. Equilibria of 1,1,2,-trichloro-1,2,2-trifluoroethane on activated carbons

    SciTech Connect

    Cho, S.Y.; Lee, Y.Y.

    1995-07-01

    ChloroFluoroCarbons (CFCs) are now considered to be the prime contribution to stratospheric ozone depletion. As a result, the use of activated carbons to adsorb specific CFCs has received great attention. In this paper, the equilibrium adsorption characteristics of 1,1,2-trichloro-1,2,2-trifluoroethane vapor on different-shaped carbons were studied. Adsorption isotherms of 1,2,2-trichloro-1,2,2-trifluoroethane on an activated carbon pellet and an activated carbon felt were measured. The equilibria of 1,1,2-trichloro-1,2,2-trifluoroethane on the activated carbon pellet having a dual pore structure were expressed by the Redlich-Peterson equation, and equilibrium constants were expressed as functions of temperature from 298 to 393 K. On the other hand, the equilibria of 1,1,2-trichloro-1,2,2-trifluoroethane on the activated carbon felt having a relatively uniform pore structure were interpreted by the Dubinin-Radushkevich correlation based on the micropore volume filling theory. The affinity coefficient was correlated by the molar polarization.

  6. Complementary metal-oxide-semiconductor compatible 1060 nm photodetector with ultrahigh gain under low bias.

    PubMed

    Hall, David; Li, Baoxia; Liu, Yu-Hsin; Yan, Lujiang; Lo, Yu-Hwa

    2015-10-01

    Falling on the tail of the absorption spectrum of silicon, 1060 nm Si detectors often suffer from low responsivity unless an exceedingly thick absorption layer is used, a design that requires high operation voltage and high purity epitaxial or substrate material. We report an all-silicon 1060 nm detector with ultrahigh gain to allow for low operation voltage (<4  V) and thin (200 nm) effective absorption layer, using the recently discovered cycling excitation process. With 1% external quantum efficiency, a responsivity of 93 A/W was demonstrated in a p/n junction device compatible with the complementary metal-oxide-semiconductor process. PMID:26421551

  7. Synthesis of novel fluoropolymers for 157-nm photoresists by cyclopolymerization

    NASA Astrophysics Data System (ADS)

    Kodama, Shun-ichi; Kaneko, Isamu; Takebe, Yoko; Okada, Shinji; Kawaguchi, Yasuhide; Shida, Naomi; Ishikawa, Seiichi; Toriumi, Minoru; Itani, Toshiro

    2002-07-01

    Novel fluoropolymers having partially fluorinated monocyclic (5-membered and 6-membered ring) structure have been synthesized with radical cyclo-polymerization, which have C- F bond in the polymer main chain and also possess fluorocontaining acidic alcohol group. These polymers have excellent transparency lower than 1.0 μm-1 at 157nm wave length. The number-average molecular weight (Mn) of the polymers is 4000 to 20000, the glass transition temperature (Tg) is 130 to 155 °C and the decomposition temperature (Td) is about 400 °C. Copolymerization reaction with the other monomers (ex. fluoroolefins,(meth)acrylates and vinyl esters) were also examined. The introduction of protecting group (ex. methoxylmethly, and t-butoxycarbonyl group) to alcohol units of the polymer can be applied before or after polymerization reaction. We also evaluated fundamental resist performances. These have excellent transparency of 0.5 to 1.5 μm-1, good solubility in the standard alkaline solution (0.26N N-tetramethylammonium hydroxide aqueous solution) and relatively high sensitivities below than 10mJ/cm2. The imaging results of the above fluoropolymer based positive- working resists are presented. Under 100-nm line and space pattern are delineated in 200-nm thick film by using the phase shift mask.

  8. Ion transport in sub-5-nm graphene nanopores

    SciTech Connect

    Suk, Myung E.; Aluru, N. R.

    2014-02-28

    Graphene nanopore is a promising device for single molecule sensing, including DNA bases, as its single atom thickness provides high spatial resolution. To attain high sensitivity, the size of the molecule should be comparable to the pore diameter. However, when the pore diameter approaches the size of the molecule, ion properties and dynamics may deviate from the bulk values and continuum analysis may not be accurate. In this paper, we investigate the static and dynamic properties of ions with and without an external voltage drop in sub-5-nm graphene nanopores using molecular dynamics simulations. Ion concentration in graphene nanopores sharply drops from the bulk concentration when the pore radius is smaller than 0.9 nm. Ion mobility in the pore is also smaller than bulk ion mobility due to the layered liquid structure in the pore-axial direction. Our results show that a continuum analysis can be appropriate when the pore radius is larger than 0.9 nm if pore conductivity is properly defined. Since many applications of graphene nanopores, such as DNA and protein sensing, involve ion transport, the results presented here will be useful not only in understanding the behavior of ion transport but also in designing bio-molecular sensors.

  9. Characterization of 32nm node BEOL grating structures using scatterometry

    NASA Astrophysics Data System (ADS)

    Zangooie, Shahin; Sendelbach, Matthew; Angyal, Matthew; Archie, Charles; Vaid, Alok; Matthew, Itty; Herrera, Pedro

    2008-03-01

    Implementations of scatterometry in the back end of the line (BEOL) of the devices requires design of advanced measurement targets with attention to CMP ground rule constraints as well as model simplicity details. In this paper we outline basic design rules for scatterometry back end targets by stacking and staggering measurement pads to reduce metal pattern density in the horizontal plane of the device and to avoid progressive dishing problems along the vertical direction. Furthermore, important characteristics of the copper shapes in terms of their opaqueness and uniformity are discussed. It is shown that the M1 copper thicknesses larger than 100 nm are more than sufficient for accurate back end scatterometry implementations eliminating the need for modeling of contributions from the buried layers. AFM and ellipsometry line scans also show that the copper pads are sufficiently uniform with a sweet spot area of around 20 μm. Hence, accurate scatterometry can be done with negligible edge and/or dishing contributions if the measurement spot is placed any where within the sweet spot area. Reference metrology utilizing CD-SEM and CD-AFM techniques prove accuracy of the optical solutions for the develop inspect and final inspect grating structures. The total measurement uncertainty (TMU) values for the process of record line width are of the order of 0.77 nm and 0.35 nm at the develop inspect and final inspect levels, respectively.

  10. Improved Coal-Thickness Measurement

    NASA Technical Reports Server (NTRS)

    Barr, T. A.

    1984-01-01

    Summed signals and dielectric-filled antenna improve measurement. Improved FM radar for measuring thickness of coal seam eliminates spectrum splitting and reduces magnitude of echo from front coal surface.

  11. Edge-on thick discs

    NASA Astrophysics Data System (ADS)

    Kasparova, A.; Katkov, I.; Chilingarian, I.; Silchenko, O.; Moiseev, A.; Borisov, S.

    2016-06-01

    Although thick stellar discs are detected in nearly all edge-on disc galaxies, their formation scenarios still remain a matter of debate. Due to observational difficulties, there is a lack of information about their stellar populations. Using the Russian 6-m telescope BTA we collected deep spectra of thick discs in three edge-on early-type disc galaxies located in different environments: NGC4111 in a dense group, NGC4710 in the Virgo cluster, and NGC5422 in a sparse group. We see intermediate age (4 ‑ 5 Gyr) metal rich ([Fe/H] ~ ‑0.2 ‑ 0.0 dex) stellar populations in NGC4111 and NGC4710. On the other hand, NGC5422 does not harbour young stars, its only disc is thick and old (10 Gyr) and its α-element abundance suggests a long formation epoch implying its formation at high redshift. Our results prove the diversity of thick disc formation scenarios.

  12. Low leakage ZrO2 based capacitors for sub 20 nm dynamic random access memory technology nodes

    NASA Astrophysics Data System (ADS)

    Pešić, Milan; Knebel, Steve; Geyer, Maximilian; Schmelzer, Sebastian; Böttger, Ulrich; Kolomiiets, Nadiia; Afanas'ev, Valeri V.; Cho, Kyuho; Jung, Changhwa; Chang, Jaewan; Lim, Hanjin; Mikolajick, Thomas; Schroeder, Uwe

    2016-02-01

    During dynamic random access memory (DRAM) capacitor scaling, a lot of effort was put searching for new material stacks to overcome the scaling limitations of the current material stack, such as leakage and sufficient capacitance. In this study, very promising results for a SrTiO3 based capacitor with a record low capacitance equivalent thickness value of 0.2 nm at target leakage current are presented. Due to the material properties of SrTiO3 films (high vacancy concentration and low band gap), which are leading to an increased leakage current, a physical thickness of at least 8 nm is required at target leakage specifications. However, this physical thickness would not fit into an 18 nm DRAM structure. Therefore, two different new approaches to develop a new ZrO2 based DRAM capacitor stack by changing the inter-layer material from Al2O3 to SrO and the exchange of the top electrode material from TiN to Pt are presented. A combination of these two approaches leads to a capacitance equivalent thickness value of 0.47 nm. Most importantly, the physical thickness of <5 nm for the dielectric stack is in accordance with the target specifications. Detailed evaluation of the leakage current characteristics leads to a capacitor model which allows the prediction of the electrical behavior with thickness scaling.

  13. High accuracy wall thickness loss monitoring

    NASA Astrophysics Data System (ADS)

    Gajdacsi, Attila; Cegla, Frederic

    2014-02-01

    Ultrasonic inspection of wall thickness in pipes is a standard technique applied widely in the petrochemical industry. The potential precision of repeat measurements with permanently installed ultrasonic sensors however significantly surpasses that of handheld sensors as uncertainties associated with coupling fluids and positional offsets are eliminated. With permanently installed sensors the precise evaluation of very small wall loss rates becomes feasible in a matter of hours. The improved accuracy and speed of wall loss rate measurements can be used to evaluate and develop more effective mitigation strategies. This paper presents an overview of factors causing variability in the ultrasonic measurements which are then systematically addressed and an experimental setup with the best achievable stability based on these considerations is presented. In the experimental setup galvanic corrosion is used to induce predictable and very small wall thickness loss. Furthermore, it is shown that the experimental measurements can be used to assess the effect of reduced wall loss that is produced by the injection of corrosion inhibitor. The measurements show an estimated standard deviation of about 20nm, which in turn allows us to evaluate the effect and behaviour of corrosion inhibitors within less than an hour.

  14. (1+2)-dimensional strongly nonlocal solitons

    SciTech Connect

    Ouyang Shigen; Guo Qi

    2007-11-15

    Approximate solutions of (1+2)-dimensional strongly nonlocal solitons (SNSs) are presented. It is shown that the power of a SNS in a nematic liquid crystal is in direct proportion to the second power of the degree of nonlocality, the power of a SNS in a nonlocal medium with a logarithmic nonlocal response is in inverse proportion to the second power of its beamwidth, and the power of a SNS in a nonlocal medium with an sth-power decay nonlocal response is in direct proportion to the (s+2)th power of the degree of nonlocality.

  15. Relationships among equivalent oxide thickness, nanochemistry, and nanostructure in atomic layer chemical-vapor-deposited Hf-O films on Si

    NASA Astrophysics Data System (ADS)

    Dey, S. K.; Das, A.; Tsai, M.; Gu, D.; Floyd, M.; Carpenter, R. W.; De Waard, H.; Werkhoven, C.; Marcus, S.

    2004-05-01

    The relationships among the equivalent oxide thickness (EOT), nanochemistry, and nanostructure of atomic layer chemical-vapor-deposited (ALCVD) Hf-O-based films, with oxide and nitrided oxide interlayers on Si substrates, were studied using x-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HRTEM), scanning transmission electron microscopy (STEM) in annular dark-field imaging (ADF), and parallel electron energy-loss spectroscopy (PEELS), capacitance-voltage, and leakage-current-voltage measurements. The XPS (Hf 4f binding energy shift) studies indicated the formation of Hf-O-Si bonds in as-deposited amorphous films, the amount of which was influenced by the interlayer composition and annealing conditions. After post-deposition annealing in N2 and O2, the Hf-O layers were nanocrystalline. Although HRTEM images showed a structurally sharp interface between the Hf-O layer and the interlayer, angle-resolved XPS, ADF imaging, and PEELS in the STEM revealed a chemically diffused HfSiOx region in between. This interdiffusion was observed by the detection of Si (using Si L edge) and Hf (using Hf O2,3 edge) in the Hf-O layer and the interlayer. For an annealed Hf-O/interlayer stack, with an ALCVD target thickness of 4.0 nm for the Hf-O layer on 1.2 nm of nitrided chemical oxide, the experimentally measured EOT and leakage current (at -1 V) were 1.52 nm and ˜10-8 A/cm2. A three-layer (1.2 nm interlayer of nitrided chemical oxide/compositionally graded, 2 nm region of HfSiOx/2 nm HfO2 layer) capacitor model was used to determine the respective contributions to the measured EOT, and the dielectric permittivity of the interlayer was found to be 6.06. These studies clearly indicate that a total EOT of 1 nm and below is attainable in the Hf-N-O-Si/Si-N-O system.

  16. Ultrathin GaN quantum disk nanowire LEDs with sub-250 nm electroluminescence.

    PubMed

    Sarwar, A T M Golam; May, Brelon J; Chisholm, Matthew F; Duscher, Gerd J; Myers, Roberto C

    2016-04-21

    By quantum confining GaN at monolayer thickness with AlN barriers inside of a nanowire, deep ultraviolet LEDs are demonstrated. Full three-dimensional strain dependent energy band simulations are carried out within multiple quantum disk (MQD) GaN/AlN nanowire superlattice heterostructures. It is found that, even within the same nanowire MQD, the emission energy of the ultrathin GaN QDs varies from disk to disk due to the changing strain distribution and polarization charge induced energy band bending along the axial nanowire direction. MQD heterostructures are grown by plasma-assisted molecular beam epitaxy to form self-assembled catalyst-free nanowires with 1 to 2 monolayer thick GaN insertions within an AlN matrix. Photoluminescence peaks are observed at 295 nm and 283 nm from the 2 ML and 1 ML thick MQD samples, respectively. Polarization-doped nanowire LEDs are grown incorporating 1 ML thick GaN MQD active regions from which we observe deep ultraviolet electroluminescence. The shortest LED wavelength peak observed is 240 nm and attributed to electron hole recombination within 1 ML thick GaN QDs.

  17. Ultrathin GaN quantum disk nanowire LEDs with sub-250 nm electroluminescence

    DOE PAGES

    Chisholm, Matthew F.; Golam Sarwar, A. T. M.; Myers, Roberto C.; Mays, Brelon J.; Duscher, Gerd J.

    2016-03-18

    By quantum confining GaN at monolayer thickness with AlN barriers inside of a nanowire, deep ultraviolet LEDs are demonstrated. Full three-dimensional strain dependent energy band simulations are carried out within multiple quantum disk (MQD) GaN/AlN nanowire superlattice heterostructures. It is found that, even within the same nanowire MQD, the emission energy of the ultrathin GaN QDs varies from disk to disk due to the changing strain distribution and polarization charge induced energy band bending along the axial nanowire direction. MQD heterostructures are grown by plasma-assisted molecular beam epitaxy to form self-assembled catalyst-free nanowires with 1 to 2 monolayer thick GaNmore » insertions within an AlN matrix. Photoluminescence peaks are observed at 295 nm and 283 nm from the 2 ML and 1 ML thick MQD samples, respectively. Polarization-doped nanowire LEDs are grown incorporating 1 ML thick GaN MQD active regions from which we observe deep ultraviolet electroluminescence. As a result, the shortest LED wavelength peak observed is 240 nm and attributed to electron hole recombination within 1 ML thick GaN QDs.« less

  18. Simultaneous triple 914 nm, 1084 nm, and 1086 nm operation of a diode-pumped Nd:YVO4 laser

    NASA Astrophysics Data System (ADS)

    Lü, Yanfei; Xia, Jing; Liu, Huilong; Pu, Xiaoyun

    2014-10-01

    We report a diode-pumped continuous-wave (cw) triple-wavelength Nd:YVO4 laser operating at 914, 1084, and 1086 nm. A theoretical analysis has been introduced to determine the threshold conditions for simultaneous triple-wavelength laser. Using a T-shaped cavity, we realized an efficient triple-wavelength operation at 4F3/2→4I9/2 and 4F3/2→4I11/2 transitions for Nd:YVO4 crystal, simultaneously. At an absorbed pump power of 16 W (or 25 W of incident pump power), the maximum output power was 2.3 W, which included 914 nm, 1084 nm, and 1086 nm three wavelengths, and the optical conversion efficiency with respect to the absorbed pump power was 14.4%.

  19. Taming the 1.2 m Telescope

    NASA Astrophysics Data System (ADS)

    Griffin, S.; Edwards, M.; Greenwald, D.; Kono, D.; Liang, D.; Lohnes, K.; Wright, V.; Spillar, E.

    2013-09-01

    Achievable residual jitter on the 1.2 m telescope at MSSS shown in Figure 1 has historically been limited to 10-20 arc-sec. peak in moderate wind conditions due to the combination of the dynamics associated with the twin telescopes on the common declination axis shaft, and the related control system behavior. Figure 1 1.2 m Telescope The lightly damped, low frequency fundamental vibration mode shape of the telescopes rotating out of phase on the common declination axis shaft severely degraded the performance of the prior controllers. This vibration mode is easily excited by external forces such as wind loading and internal torque commands from the mount control system. The relatively poor historic performance was due to a combination of the low error rejection of external disturbances, and the controller exciting the mode. A radical new approach has been implemented that has resulted in a decrease of jitter to less than 1 arcsec under most conditions. The new approach includes minor hardware modifications to provide active damping with accelerometers as feedback sensors. This architecture has allowed a bandwidth increase of almost an order of magnitude and eliminated the large amplitude motions at the mode natural frequency, resulting in much improved pointing and jitter performance. A representative comparison of historical versus new architecture performance is shown in Figure 2 for the declination axis.

  20. RF magnetron sputtering of thick platinum coatings on glass microspheres

    SciTech Connect

    Meyer, S.F.; Hsieh, E.J.; Burt, R.J.

    1980-05-28

    Thick platinum coatings on glass microspheres are needed for proposed Laser Fusion targets. The spherical nature of these substrates coupled with the small dimensions (approx. 100 ..mu..m OD) make it difficult to achieve a smooth and uniform coating. Coating problems encountered include a rough surface and porous microstructure from the oblique incidence and lack of temperature and bias control, clumping of the microspheres causing non-uniformities, and particle accumulation causing cone defects. Sputtering parameters significantly affecting the coatings include total pressure, DC substrate bias, and the addition of doping gases. Using an ultrasonic vibrating screened cage and RF magnetron Sputtergun, we have successfully batch coated microspheres with up to 6 ..mu..m of Pt, with a surface roughness of 200 nm, thickness non-concentricity of 300 nm, and density greater than 98% of bulk Pt.

  1. Evolution of properties of epitaxial bismuth iron garnet films with increasing thickness

    NASA Astrophysics Data System (ADS)

    Kahl, S.; Grishin, A. M.

    2004-07-01

    Bismuth iron garnet (BIG) films of thicknesses from 470 to 2560 nm were prepared by pulsed laser deposition under identical deposition conditions. All films are epitaxial, bismuth deficient, and show rms surface roughnesses between 15 and 40 nm. X-ray coherence lengths decrease with increasing film thickness. Films below approximately 1 μm are free of cracks, thicker films possess a network of cracks. From fits of optical transmission spectra, real and imaginary parts of the refractive indices were found for wavelengths from 500 to 850 nm. The effects of thin film interference and surface roughness were included. With these data as input information, each of our experimental Faraday rotation spectra was described by a single diamagnetic line in visible light. The measured spectra could be reproduced and parameters of the magneto-optical transition were obtained. We observed a broadening of the transition with increasing film thickness and a red shift of the center frequency. This corresponds to our experimental observation that the wavelength of maximum Faraday rotation for BIG films in visible light shifts to longer wavelengths by almost 40 nm for a 2560-nm-thick film as compared to a 470-nm-thick film. As BIG is not thermodynamically stable, aging is a crucial question. We found that careful annealing in oxygen below the deposition temperature increases the angle of Faraday rotation, while film properties deteriorate during long annealing times at the deposition temperature.

  2. Change in Tear Film Lipid Layer Thickness, Corneal Thickness, Volume and Topography after Superficial Cauterization for Conjunctivochalasis

    PubMed Central

    Chan, Tommy C. Y.; Ye, Cong; Ng, Paul KF; Li, Emmy Y. M.; Yuen, Hunter K. L.; Jhanji, Vishal

    2015-01-01

    We evaluated the change in tear film lipid layer thickness, corneal thickness, volume and topography after superficial cauterization of symptomatic conjunctivochalasis. Bilateral superficial conjunctival cauterization was performed in 36 eyes of 18 patients with symptomatic conjunctivochalasis. The mean age of patients (12 males, 6 females) was 68.6 ± 10.9 years (range: 44–83 years). Preoperatively, 28 eyes (77.8%) had grade 1 conjunctivochalasis, and 8 eyes (22.2%) had grade 2 conjunctivochalasis. At 1 month postoperatively, the severity of conjunctivochalasis decreased significantly (p < 0.001) and 29 eyes (80.6%) had grade 0 conjunctivochalasis whereas 7 eyes (19.4%) had grade 1 conjunctivochalasis. The mean Ocular Surface Disease Index score decreased from 31.5 ± 15.2 preoperatively to 21.5 ± 14.2 at the end of 1 month postoperatively (p = 0.001). There was a statistically significant increase in mean tear film lipid layer thickness 1 month after the surgery (49.6 ± 16.1 nm vs 62.6 ± 21.6 nm; p < 0.001). The central corneal thickness, thinnest corneal thickness and corneal volume decreased significantly postoperatively (p < 0.001). Our study showed that superficial conjunctival cauterization is an effective technique for management of conjunctivochalasis in the short term. An increase in tear film lipid layer thickness along with a decrease in corneal thickness and volume were observed after surgical correction of conjunctivochalasis. PMID:26184418

  3. Change in Tear Film Lipid Layer Thickness, Corneal Thickness, Volume and Topography after Superficial Cauterization for Conjunctivochalasis.

    PubMed

    Chan, Tommy C Y; Ye, Cong; Ng, Paul K F; Li, Emmy Y M; Yuen, Hunter K L; Jhanji, Vishal

    2015-01-01

    We evaluated the change in tear film lipid layer thickness, corneal thickness, volume and topography after superficial cauterization of symptomatic conjunctivochalasis. Bilateral superficial conjunctival cauterization was performed in 36 eyes of 18 patients with symptomatic conjunctivochalasis. The mean age of patients (12 males, 6 females) was 68.6 ± 10.9 years (range: 44-83 years). Preoperatively, 28 eyes (77.8%) had grade 1 conjunctivochalasis, and 8 eyes (22.2%) had grade 2 conjunctivochalasis. At 1 month postoperatively, the severity of conjunctivochalasis decreased significantly (p < 0.001) and 29 eyes (80.6%) had grade 0 conjunctivochalasis whereas 7 eyes (19.4%) had grade 1 conjunctivochalasis. The mean Ocular Surface Disease Index score decreased from 31.5 ± 15.2 preoperatively to 21.5 ± 14.2 at the end of 1 month postoperatively (p = 0.001). There was a statistically significant increase in mean tear film lipid layer thickness 1 month after the surgery (49.6 ± 16.1 nm vs 62.6 ± 21.6 nm; p < 0.001). The central corneal thickness, thinnest corneal thickness and corneal volume decreased significantly postoperatively (p < 0.001). Our study showed that superficial conjunctival cauterization is an effective technique for management of conjunctivochalasis in the short term. An increase in tear film lipid layer thickness along with a decrease in corneal thickness and volume were observed after surgical correction of conjunctivochalasis. PMID:26184418

  4. Sub-10 nm nanopantography

    SciTech Connect

    Tian, Siyuan Donnelly, Vincent M. E-mail: economou@uh.edu; Economou, Demetre J. E-mail: economou@uh.edu; Ruchhoeft, Paul

    2015-11-09

    Nanopantography, a massively parallel nanopatterning method over large areas, was previously shown to be capable of printing 10 nm features in silicon, using an array of 1000 nm-diameter electrostatic lenses, fabricated on the substrate, to focus beamlets of a broad area ion beam on selected regions of the substrate. In the present study, using lens dimensional scaling optimized by computer simulation, and reduction in the ion beam image size and energy dispersion, the resolution of nanopantography was dramatically improved, allowing features as small as 3 nm to be etched into Si.

  5. Fabrication of 10nm diameter carbon nanopores

    SciTech Connect

    Radenovic, Aleksandra; Trepagnier, Eliane; Csencsits, Roseann; Downing, Kenneth H; Liphardt, Jan

    2008-09-25

    The addition of carbon to samples, during imaging, presents a barrier to accurate TEM analysis, the controlled deposition of hydrocarbons by a focused electron beam can be a useful technique for local nanometer-scale sculpting of material. Here we use hydrocarbon deposition to form nanopores from larger focused ion beam (FIB) holes in silicon nitride membranes. Using this method, we close 100-200nm diameter holes to diameters of 10nm and below, with deposition rates of 0.6nm per minute. I-V characteristics of electrolytic flow through these nanopores agree quantitatively with a one dimensional model at all examined salt concentrations.

  6. Influence of film thickness on laser ablation threshold of transparent conducting oxide thin-films

    NASA Astrophysics Data System (ADS)

    Rung, S.; Christiansen, A.; Hellmann, R.

    2014-06-01

    We report on a comprehensive study of the laser ablation threshold of transparent conductive oxide thin films. The ablation threshold is determined for both indium tin oxide and gallium zinc oxide as a function of film thickness and for different laser wavelengths. By using a pulsed diode pumped solid state laser at 1064 nm, 532 nm, 355 nm and 266 nm, respectively, the relationship between optical absorption length and film thickness is studied. We find that the ablation threshold decreases with increasing film thickness in a regime where the absorption length is larger than the film thickness. In turn, the ablation threshold increases in case the absorption length is smaller than the film thickness. In particular, we observe a minimum of the ablation threshold in a region where the film thickness is comparable to the absorption length. To the best of our knowledge, this behaviour previously predicted for thin metal films, has been unreported for all three regimes in case of transparent conductive oxides, yet. For industrial laser scribing processes, these results imply that the efficiency can be optimized by using a laser where the optical absorption length is close to the film thickness.

  7. Thickness dependent charge transfer states and dark carriers density in vacuum deposited small molecule organic photocell

    NASA Astrophysics Data System (ADS)

    Shekhar, Himanshu; Tzabari, Lior; Solomeshch, Olga; Tessler, Nir

    2016-10-01

    We have investigated the influence of the active layer thickness on the balance of the internal mechanisms affecting the efficiency of copper phthalocyanine - fullerene (C60) based vacuum deposited bulk heterojunction organic photocell. We fabricated a range of devices for which we varied the thickness of the active layer from 40 to 120 nm and assessed their performance using optical and electrical characterization techniques. As reported previously for phthalocyanine:C60, the performance of the device is highly dependent on the active layer thickness and of all the thicknesses we tried, the 40 nm thin active layer device showed the best solar cell characteristic parameters. Using the transfer matrix based optical model, which includes interference effects, we calculated the optical power absorbed in the active layers for the entire absorption band, and we found that this cannot explain the trend with thickness. Measurement of the cell quantum efficiency as a function of light intensity showed that the relative weight of the device internal processes changes when going from 40 nm to 120 nm thick active layer. Electrical modeling of the device, which takes different internal processes into account, allowed to quantify the changes in the processes affecting the generation - recombination balance. Sub gap external quantum efficiency and morphological analysis of the surface of the films agree with the model's result. We found that as the thickness grows the density of charge transfer states and of dark carriers goes up and the uniformity in the vertical direction is reduced.

  8. Laser Damage Growth in Fused Silica with Simultaneous 351 nm and 1053 nm irradiation

    SciTech Connect

    Norton, M A; Carr, A V; Carr, C W; Donohue, E E; Feit, M D; Hollingsworth, W G; Liao, Z; Negres, R A; Rubenchik, A M; Wegner, P J

    2008-10-24

    Laser-induced growth of optical damage often determines the useful lifetime of an optic in a high power laser system. We have extended our previous work on growth of laser damage in fused silica with simultaneous 351 nm and 1053 nm laser irradiation by measuring the threshold for growth with various ratios of 351 nm and 1053 nm fluence. Previously we reported that when growth occurs, the growth rate is determined by the total fluence. We now find that the threshold for growth is dependent on both the magnitude of the 351 nm fluence as well as the ratio of the 351 nm fluence to the 1053 nm fluence. Furthermore, the data suggests that under certain conditions the 1053 nm fluence does not contribute to the growth.

  9. Fragrance material review on 1,2-ethanediol, 1-phenyl-, 1,2-diacetate.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of 1,2-ethanediol, 1-phenyl-, 1,2-diacetate when used as a fragrance ingredient is presented. 1,2-Ethanediol, 1-phenyl-, 1,2-diacetate is a member of the fragrance structural group Aryl Alkyl Alcohol Simple Acid Esters (AAASAE). The AAASAE fragrance ingredients are prepared by reacting an aryl alkyl alcohol with a simple carboxylic acid (a chain of 1-4 carbons) to generate formate, acetate, propionate, butyrate, isobutyrate and carbonate esters. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 1,2-ethanediol, 1-phenyl-, 1,2-diacetate were evaluated, then summarized, and includes physical properties data. A safety assessment of the entire AAASAE will be published simultaneously with this document. Please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all AAASAE fragrances.

  10. Ionospheric slab thickness and its seasonal variations observed by GPS

    NASA Astrophysics Data System (ADS)

    Jin, Shuanggen; Cho, Jung-Ho; Park, Jung-Uk

    2007-11-01

    The ionospheric slab thickness, the ratio of the total electron content (TEC) to the F2-layer peak electron density (NmF2), is closely related to the shape of the ionospheric electron density profile Ne (h) and the TEC. Therefore, the ionospheric slab thickness is a significant parameter representative of the ionosphere. In this paper, the continuous GPS observations in South Korea are firstly used to study the equivalent slab thickness (EST) and its seasonal variability. The averaged diurnal medians of December January February (DJF), March April May (MAM), June July August (JJA) and September October November (SON) in 2003 have been considered to represent the winter, spring, summer and autumn seasons, respectively. The results show that the systematic diurnal changes of TEC, NmF2 and EST significantly appeared in each season and the higher values of TEC and NmF2 are observed during the equinoxes (semiannual anomaly) as well as in the mid-daytime of each season. The EST is significantly smaller in winter than in summer, but with a consistent variation pattern. During 14 16 LT in daytime, the larger EST values are observed in spring and autumn, while the smaller ones are in summer and winter. The peaks of EST diurnal variation are around 10 18 LT which are probably caused by the action of the thermospheric wind and the plasmapheric flow into the F2-region.

  11. System for measuring film thickness

    DOEpatents

    Batishko, Charles R.; Kirihara, Leslie J.; Peters, Timothy J.; Rasmussen, Donald E.

    1990-01-01

    A system for determining the thicknesses of thin films of materials exhibiting fluorescence in response to exposure to excitation energy from a suitable source of such energy. A section of film is illuminated with a fixed level of excitation energy from a source such as an argon ion laser emitting blue-green light. The amount of fluorescent light produced by the film over a limited area within the section so illuminated is then measured using a detector such as a photomultiplier tube. Since the amount of fluorescent light produced is a function of the thicknesses of thin films, the thickness of a specific film can be determined by comparing the intensity of fluorescent light produced by this film with the intensity of light produced by similar films of known thicknesses in response to the same amount of excitation energy. The preferred embodiment of the invention uses fiber optic probes in measuring the thicknesses of oil films on the operational components of machinery which are ordinarily obscured from view.

  12. Tube wall thickness measurement apparatus

    DOEpatents

    Lagasse, Paul R.

    1987-01-01

    An apparatus for measuring the thickness of a tube's wall for the tube's entire length and circumference by determining the deviation of the tube wall thickness from the known thickness of a selected standard item. The apparatus comprises a base and a first support member having first and second ends. The first end is connected to the base and the second end is connected to a spherical element. A second support member is connected to the base and spaced apart from the first support member. A positioning element is connected to and movable relative to the second support member. An indicator is connected to the positioning element and is movable to a location proximate the spherical element. The indicator includes a contact ball for first contacting the selected standard item and holding it against the spherical element. The contact ball then contacts the tube when the tube is disposed about the spherical element. The indicator includes a dial having a rotatable needle for indicating the deviation of the tube wall thickness from the thickness of the selected standard item.

  13. Tube wall thickness measurement apparatus

    DOEpatents

    Lagasse, P.R.

    1985-06-21

    An apparatus for measuring the thickness of a tube's wall for the tube's entire length and radius by determining the deviation of the tube wall thickness from the known thickness of a selected standard item. The apparatus comprises a base and a first support member having first and second ends. The first end is connected to the base and the second end is connected to a spherical element. A second support member is connected to the base and spaced apart from the first support member. A positioning element is connected to and movable relative to the second support member. An indicator is connected to the positioning element and is movable to a location proximate the spherical element. The indicator includes a contact ball for first contacting the selected standard item and holding it against the spherical element. The contact ball then contacts the tube when the tube is disposed about the spherical element. The indicator includes a dial having a rotatable needle for indicating the deviation of the tube wall thickness from the thickness of the selected standard item.

  14. How thick are lunar mare basalts

    NASA Technical Reports Server (NTRS)

    Hoerz, F.

    1978-01-01

    It is argued that De Hon's estimates of the thickness of lunar mare basalts, made by analyzing 'ghost' craters on mare surfaces, were inflated as the result of the crater morphometric data of Pike (1977) to reconstruct rim heights of degraded craters. Crater rim heights of 82 randomly selected highland craters of various states of degradation were determined, and median rim height was compared to that of corresponding fresh impact structures. Results indicate that the thickness estimates of De Hon may be reduced by a factor of 2, and that the total volume of mare basalt produced throughout lunar history could be as little as 1-2 million cubic kilometers. A survey of geochemical and petrographic evidence indicates that lateral transport of regolith components over distances of much greater than 10 km is relatively inefficient; it is suggested that vertical mixing of a highland substrate underlying the basaltic fill may have had a primordial role in generating the observed mare width distributions and high concentrations of exotic components in intrabasin regoliths.

  15. Photoelectron Emission Studies in CsBr at 257 nm

    SciTech Connect

    Maldonado, Juan R.; Liu, Zhi; Sun, Yun; Pianetta, Piero A.; Pease, Fabian W.; /Stanford U., Elect. Eng. Dept. /SLAC, SSRL

    2006-09-28

    CsBr/Cr photocathodes were found [1,2] to meet the requirements of a multi-electron beam lithography system operating with a light energy of 4.8 eV (257nm). The fact that photoemission was observed with a light energy below the reported 7.3 eV band gap for CsBr was not understood. This paper presents experimental results on the presence of intra-band gap absorption sites (IBAS) in CsBr thin film photo electron emitters, and presents a model based on IBAS to explain the observed photoelectron emission behavior at energies below band gap. A fluorescence band centered at 330 nm with a FWHM of about 0.34 eV was observed in CsBr/Cr samples under 257 nm laser illumination which can be attributed to IBAS and agrees well with previously obtained synchrotron photoelectron spectra[1] from the valence band of CsBr films.

  16. Scanning photorefractive keratectomy at 213 nm: PMMA ablations

    NASA Astrophysics Data System (ADS)

    Manns, Fabrice; Rol, Pascal O.; Wosnitza, Martin; Maine, Patrick; Parel, Jean-Marie A.

    1999-06-01

    Purpose: In scanning photorefractive keratectomy, the corneal surface is reshaped by laser ablation with a scanning beam for the correction of myopia or astigmatism. A precise knowledge of the volume of corneal tissue removed by each laser pulse is necessary to be able to develop accurate ablation algorithms for scanning photorefractive keratectomy. The purpose of this study was to measure the ablation per pulse created on PMMA surfaces with a Q-switched frequency-quintupled Nd:YAG laser emitting at 213 nm. Methods: A frequency-quintupled Nd:YAG laser emitting at 213 nm with a pulse duration of 5 ns and a pulse energy of 1.2 to 1.5 mJ was used. The laser beam was focused on the surface of PMMA blocks and ablation craters were produced with 10, 50 and 100 pulses. The shape of the ablation craters was measured with an optical profilometer and compared with the beam profile measured with a laser beam diagnostic system. Results: The beam intensity distribution in the near-field consisted of two quasi-Gaussian peaks. The ablation craters contained two peaks. Assuming a Gaussian intensity distribution, the ablation per pulse in PMMA at 213 nm can be modeled by a parabolic function. Conclusions: Optical profilometry can be used to accurately measure the ablation per pulse and evaluate the homogeneity of the beam.

  17. Simultaneous orientation and thickness mapping in transmission electron microscopy

    DOE PAGES

    Tyutyunnikov, Dmitry; Özdöl, V. Burak; Koch, Christoph T.

    2014-12-04

    In this paper we introduce an approach for simultaneous thickness and orientation mapping of crystalline samples by means of transmission electron microscopy. We show that local thickness and orientation values can be extracted from experimental dark-field (DF) image data acquired at different specimen tilts. The method has been implemented to automatically acquire the necessary data and then map thickness and crystal orientation for a given region of interest. We have applied this technique to a specimen prepared from a commercial semiconductor device, containing multiple 22 nm technology transistor structures. The performance and limitations of our method are discussed and comparedmore » to those of other techniques available.« less

  18. Dynamic exchange of myosin molecules between thick filaments.

    PubMed

    Saad, A D; Pardee, J D; Fischman, D A

    1986-12-01

    To examine thick filament assembly and myosin exchange, a fluorescence energy transfer assay has been established. Assembly-competent myosin molecules labeled with the sulfhydryl-specific fluorochromes 5-(2-[(iodoacetyl)-amino]ethyl)aminonaphthalene-1-sulfonic acids (IAEDANS) or 5-iodoacetamidofluorescein (IAF) were prepared. Using IAEDANS-labeled myosin as fluorescence donor and IAF-labeled myosin as acceptor, thick filament formation was followed by the decrease in donor fluorescence at 0.1 M KCl/10 mM potassium phosphate, pH 6.9. The critical concentration of myosin--i.e., that concentration that remained unassembled at equilibrium with fully formed filaments--was 40 nM. In FET and 125I-labeled myosin incorporation assays, extensive exchange of myosin between thick filaments was observed. The presence of a critical concentration and the measurements of extensive exchange suggest a dynamic equilibrium between fully polymerized myosin and a small pool of soluble myosin.

  19. Giant moving vortex mass in thick magnetic nanodots

    PubMed Central

    Guslienko, K. Y.; Kakazei, G. N.; Ding, J.; Liu, X. M.; Adeyeye, A. O.

    2015-01-01

    Magnetic vortex is one of the simplest topologically non-trivial textures in condensed matter physics. It is the ground state of submicron magnetic elements (dots) of different shapes: cylindrical, square etc. So far, the vast majority of the vortex dynamics studies were focused on thin dots with thickness 5–50 nm and only uniform across the thickness vortex excitation modes were observed. Here we explore the fundamental vortex mode in relatively thick (50–100 nm) dots using broadband ferromagnetic resonance and show that dimensionality increase leads to qualitatively new excitation spectra. We demonstrate that the fundamental mode frequency cannot be explained without introducing a giant vortex mass, which is a result of the vortex distortion due to interaction with spin waves. The vortex mass depends on the system geometry and is non-local because of important role of the dipolar interaction. The mass is rather small for thin dots. However, its importance increases drastically with the dot thickness increasing. PMID:26355430

  20. Waveguide structural effect on ripples of far-field pattern in 405-nm GaN-based laser diodes

    NASA Astrophysics Data System (ADS)

    Hwang, Sungmin; Shim, Jongin; Ryu, Hanyoul; Ha, Kyung-ho; Chae, Junghye; Nam, Okhyun

    2006-09-01

    We investigated the dependency of waveguide structures on ripples of far-field patterns in 405nm GaN-based laser diodes theoretically and experimentally. As the n-type cladding layer thickness decreases, the passive waveguide modes strongly interact with an active layer mode. This suggests that the thicknesses of n-AlGaN/GaN superlattice clad and n-GaN waveguide layers have significant influences on FFP ripples. We successfully obtained very smooth far-field patterns perpendicular to the junction plane by optimizing both n-AlGaN/GaN clad layer thickness and n-GaN waveguide layer thickness.

  1. Fermion localization on thick branes

    SciTech Connect

    Melfo, Alejandra; Pantoja, Nelson; Tempo, Jose David

    2006-02-15

    We consider chiral fermion confinement in scalar thick branes, which are known to localize gravity, coupled through a Yukawa term. The conditions for the confinement and their behavior in the thin-wall limit are found for various different BPS branes, including double walls and branes interpolating between different AdS{sub 5} spacetimes. We show that only one massless chiral mode is localized in all these walls, whenever the wall thickness is keep finite. We also show that, independently of wall's thickness, chiral fermionic modes cannot be localized in dS{sub 4} walls embedded in a M{sub 5} spacetime. Finally, massive fermions in double wall spacetimes are also investigated. We find that, besides the massless chiral mode localization, these double walls support quasilocalized massive modes of both chiralities.

  2. Applications of film thickness equations

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.; Dowson, D.

    1983-01-01

    A number of applications of elastohydrodynamic film thickness expressions were considered. The motion of a steel ball over steel surfaces presenting varying degrees of conformity was examined. The equation for minimum film thickness in elliptical conjunctions under elastohydrodynamic conditions was applied to roller and ball bearings. An involute gear was also introduced, it was again found that the elliptical conjunction expression yielded a conservative estimate of the minimum film thickness. Continuously variable-speed drives like the Perbury gear, which present truly elliptical elastohydrodynamic conjunctions, are favored increasingly in mobile and static machinery. A representative elastohydrodynamic condition for this class of machinery is considered for power transmission equipment. The possibility of elastohydrodynamic films of water or oil forming between locomotive wheels and rails is examined. The important subject of traction on the railways is attracting considerable attention in various countries at the present time. The final example of a synovial joint introduced the equation developed for isoviscous-elastic regimes of lubrication.

  3. LTCC Thick Film Process Characterization

    DOE PAGES

    Girardi, M. A.; Peterson, K. A.; Vianco, P. T.

    2016-05-01

    Low temperature cofired ceramic (LTCC) technology has proven itself in military/space electronics, wireless communication, microsystems, medical and automotive electronics, and sensors. The use of LTCC for high frequency applications is appealing due to its low losses, design flexibility and packaging and integration capability. Moreover, we summarize the LTCC thick film process including some unconventional process steps such as feature machining in the unfired state and thin film definition of outer layer conductors. The LTCC thick film process was characterized to optimize process yields by focusing on these factors: 1) Print location, 2) Print thickness, 3) Drying of tapes and panels,more » 4) Shrinkage upon firing, and 5) Via topography. Statistical methods were used to analyze critical process and product characteristics in the determination towards that optimization goal.« less

  4. Speckle in a thick diffuser

    NASA Astrophysics Data System (ADS)

    Chang, Nien-An

    Theory and experiments on speckle generated from a thick diffuser are presented in this thesis. An overview of speckle from a diffuser in a 4F optical processor gives a basic understanding of the speckle formation and properties. The speckle size depends on the F number of the system, while the interior properties of a diffuser are evident in the wavelength dependence of speckle. We then move on to analyzing speckle from a thick diffuser, which is composed of particles embedded in a host medium. Emphasis on the theory is placed on solving for the wavelength decorrelation of speckle in a thick diffuser. A brief overview of the scattering theory for a particle using the Lorenz-Mie theory is included. Then we present a careful analysis of the speckle created by propagation through a thick diffuser. In the analysis we use an angular spectrum approach that is valid in the non-paraxial case together with a decomposition of the thick diffuser into a cascade of many screens. This calculation is well-suited to numerical analysis and an original computer software program has been provided as an Appendix in this thesis. By adding the scattered field from the randomly-located particles on any screen and propagating through a free space between each screen, one can generate a speckled field after going through the whole cascade. The theoretical predictions are summarized and later compared with experimental results on a series of opal milk glass diffusers. In many practical applications it is particularly advantageous to have mild thick diffusers of controllable diffusivity. We have extensively studied a new diffuser series fabricated using polystyrene spheres of various diameters embedded in gelatin. Theory and experiments are in good agreement.

  5. Model-based cartilage thickness measurement in the submillimeter range

    SciTech Connect

    Streekstra, G. J.; Strackee, S. D.; Maas, M.; Wee, R. ter; Venema, H. W.

    2007-09-15

    Current methods of image-based thickness measurement in thin sheet structures utilize second derivative zero crossings to locate the layer boundaries. It is generally acknowledged that the nonzero width of the point spread function (PSF) limits the accuracy of this measurement procedure. We propose a model-based method that strongly reduces PSF-induced bias by incorporating the PSF into the thickness estimation method. We estimated the bias in thickness measurements in simulated thin sheet images as obtained from second derivative zero crossings. To gain insight into the range of sheet thickness where our method is expected to yield improved results, sheet thickness was varied between 0.15 and 1.2 mm with an assumed PSF as present in the high-resolution modes of current computed tomography (CT) scanners [full width at half maximum (FWHM) 0.5-0.8 mm]. Our model-based method was evaluated in practice by measuring layer thickness from CT images of a phantom mimicking two parallel cartilage layers in an arthrography procedure. CT arthrography images of cadaver wrists were also evaluated, and thickness estimates were compared to those obtained from high-resolution anatomical sections that served as a reference. The thickness estimates from the simulated images reveal that the method based on second derivative zero crossings shows considerable bias for layers in the submillimeter range. This bias is negligible for sheet thickness larger than 1 mm, where the size of the sheet is more than twice the FWHM of the PSF but can be as large as 0.2 mm for a 0.5 mm sheet. The results of the phantom experiments show that the bias is effectively reduced by our method. The deviations from the true thickness, due to random fluctuations induced by quantum noise in the CT images, are of the order of 3% for a standard wrist imaging protocol. In the wrist the submillimeter thickness estimates from the CT arthrography images correspond within 10% to those estimated from the anatomical

  6. Passivation of c-Si surfaces by sub-nm amorphous silicon capped with silicon nitride

    NASA Astrophysics Data System (ADS)

    Wan, Yimao; Yan, Di; Bullock, James; Zhang, Xinyu; Cuevas, Andres

    2015-12-01

    A sub-nm hydrogenated amorphous silicon (a-Si:H) film capped with silicon nitride (SiNx) is shown to provide a high level passivation to crystalline silicon (c-Si) surfaces. When passivated by a 0.8 nm a-Si:H/75 nm SiNx stack, recombination current density J0 values of 9, 11, 47, and 87 fA/cm2 are obtained on 10 Ω.cm n-type, 0.8 Ω.cm p-type, 160 Ω/sq phosphorus-diffused, and 120 Ω/sq boron-diffused silicon surfaces, respectively. The J0 on n-type 10 Ω.cm wafers is further reduced to 2.5 ± 0.5 fA/cm2 when the a-Si:H film thickness exceeds 2.5 nm. The passivation by the sub-nm a-Si:H/SiNx stack is thermally stable at 400 °C in N2 for 60 min on all four c-Si surfaces. Capacitance-voltage measurements reveal a reduction in interface defect density and film charge density with an increase in a-Si:H thickness. The nearly transparent sub-nm a-Si:H/SiNx stack is thus demonstrated to be a promising surface passivation and antireflection coating suitable for all types of surfaces encountered in high efficiency c-Si solar cells.

  7. Absolute thickness metrology with submicrometer accuracy using a low-coherence distance measuring interferometer.

    PubMed

    Zhao, Yang; Schmidt, Greg; Moore, Duncan T; Ellis, Jonathan D

    2015-09-01

    Absolute physical thickness across the sample aperture is critical in determining the index of a refraction profile from the optical path length profile for gradient index (GRIN) materials, which have a designed inhomogeneous refractive index. Motivated by this application, instrumentation was established to measure the absolute thickness of samples with nominally plane-parallel surfaces up to 50 mm thick. The current system is capable of measuring absolute thickness with 120 nm (1σ) repeatability and submicrometer expanded measurement uncertainty. Beside GRIN materials, this method is also capable of measuring other inhomogeneous and opaque materials. PMID:26368894

  8. Quadrature laser interferometer for in-line thickness measurement of glass panels using a current modulation technique.

    PubMed

    Kim, Jong-Ahn; Kang, Chu-Shik; Eom, Tae Bong; Jin, Jonghan; Suh, Ho Suhng; Kim, Jae Wan

    2014-07-10

    A thickness measurement system is proposed for in-line inspection of thickness variation of flat glass panels. Multi-reflection on the surfaces of glass panel generates an interference signal whose phase is proportional to the thickness of the glass panel. For accurate and stable calculation of the phase value, we obtain quadrature interference signals using a current modulation technique. The proposed system can measure a thickness profile with high speed and nanometric resolution, and obtain higher accuracy through real-time nonlinear error compensation. The thickness profile, measured by a transmissive-type experimental setup, coincided with a comparative result obtained using a contact-type thickness measurement system within the range of ±40  nm. The standard deviations of the measured thickness profiles and their waviness components were less than 3 nm with a scanning speed of 300  mm/s.

  9. Broadband Permittivity Measurements of Ruddlesden-Popper Srn+1TinO3n+1 (n=1,2,3) Thin Films

    NASA Astrophysics Data System (ADS)

    Orloff, N.; Tian, W.; Schlom, D.; Booth, J.; Takeuchi, I.

    2008-03-01

    In order to explore the microwave dielectric response of Sr2TiO4, Sr3Ti2O7, and Sr4Ti3O10 thin films, we have performed broadband in-plane quantitative complex permittivity(ɛ) measurements on Srn+1TinO3n+1 (n=1,2,3) thin films in the frequency range 100Hz-40GHz. The films, of approximately 160 nm thickness, were fabricated by molecular beam epitaxy[1], and standard lithographic techniques were used to define coplanar waveguide transmission lines and interdigitated capacitors using gold. We extracted ɛ from the measured complex S-parameters (.01-40GHz) and the complex impedance (100Hz-.001GHz), which were measured at 70K, 150K, 200K, and 250K using a cyrogenic probe station. We found that below ˜10GHz the ɛ's of these thin films were approximately constant with frequency: ɛ 38, 48, and 100 for Srn+1TinO3n+1 (n=1,2,3) respectively. In addition, the measured value for ɛ of Sr2TiO4 is consistent with recent theoretical calculations [2]. We will discuss in detail the temperature and electric field dependence of the measured complex ɛ for these material systems. [1] J.H. Haeni, et al APL, 78, 21 (2001) [2] C.J. Fennie and M.K. Rabe, PRB, 68, 184111 (2003)

  10. The 1.2 micron CMOS technology

    NASA Technical Reports Server (NTRS)

    Pina, C. A.

    1985-01-01

    A set of test structures was designed using the Jet Propulsion Laboratory (JPL) test chip assembler and was used to evaluate the first CMOS-bulk foundry runs with feature sizes of 1.2 microns. In addition to the problems associated with the physical scaling of the structures, this geometry provided an additional set of problems, since the design files had to be generated in such a way as to be capable of being processed through p-well, n-well, and twin-well processing lines. This requirement meant that the files containing the geometric design rules as well as the structure design files had to produce process-insensitive designs, a requirement that does not apply to the more mature 3.0-micron CMOS feature size technology. Because of the photolithographic steps required with this feature size, the maximum allowable chip size was 10 x 10 mm, and this chip was divided into 24 project areas, with each area being 1.6 x 1.6 mm in size. The JPL-designed structures occupied 13 out of the 21 allowable project sizes and provided the only test information obtained from these three preliminary runs. The structures were used to successfully evaluate three different manufacturing runs through two separate foundries.

  11. Dehalogenimonas spp. can Reductively Dehalogenate High Concentrations of 1,2-Dichloroethane, 1,2-Dichloropropane, and 1,1,2-Trichloroethane

    PubMed Central

    2012-01-01

    The contaminant concentrations over which type strains of the species Dehalogenimonas alkenigignens and Dehalogenimonas lykanthroporepellens were able to reductively dechlorinate 1,2-dichloroethane (1,2-DCA), 1,2-dichloropropane (1,2-DCP), and 1,1,2-trichloroethane (1,1,2-TCA) were evaluated. Although initially isolated from an environment with much lower halogenated solvent concentrations, D. alkenigignens IP3-3T was found to reductively dehalogenate chlorinated alkanes at concentrations comparable to D. lykanthroporepellens BL-DC-9T. Both species dechlorinated 1,2-DCA, 1,2-DCP, and 1,1,2-TCA present at initial concentrations at least as high as 8.7, 4.0, and 3.5 mM, respectively. The ability of Dehalogenimonas spp. to carry out anaerobic reductive dechlorination even in the presence of high concentrations of chlorinated aliphatic alkanes has important implications for remediation of contaminated soil and groundwater. PMID:23046725

  12. Dehalogenimonas spp. can Reductively Dehalogenate High Concentrations of 1,2-Dichloroethane, 1,2-Dichloropropane, and 1,1,2-Trichloroethane.

    PubMed

    Maness, Andrew D; Bowman, Kimberly S; Yan, Jun; Rainey, Fred A; Moe, William M

    2012-01-01

    The contaminant concentrations over which type strains of the species Dehalogenimonas alkenigignens and Dehalogenimonas lykanthroporepellens were able to reductively dechlorinate 1,2-dichloroethane (1,2-DCA), 1,2-dichloropropane (1,2-DCP), and 1,1,2-trichloroethane (1,1,2-TCA) were evaluated. Although initially isolated from an environment with much lower halogenated solvent concentrations, D. alkenigignens IP3-3T was found to reductively dehalogenate chlorinated alkanes at concentrations comparable to D. lykanthroporepellens BL-DC-9T. Both species dechlorinated 1,2-DCA, 1,2-DCP, and 1,1,2-TCA present at initial concentrations at least as high as 8.7, 4.0, and 3.5 mM, respectively. The ability of Dehalogenimonas spp. to carry out anaerobic reductive dechlorination even in the presence of high concentrations of chlorinated aliphatic alkanes has important implications for remediation of contaminated soil and groundwater. PMID:23046725

  13. Dehalogenimonas spp. can Reductively Dehalogenate High Concentrations of 1,2-Dichloroethane, 1,2-Dichloropropane, and 1,1,2-Trichloroethane.

    PubMed

    Maness, Andrew D; Bowman, Kimberly S; Yan, Jun; Rainey, Fred A; Moe, William M

    2012-01-01

    The contaminant concentrations over which type strains of the species Dehalogenimonas alkenigignens and Dehalogenimonas lykanthroporepellens were able to reductively dechlorinate 1,2-dichloroethane (1,2-DCA), 1,2-dichloropropane (1,2-DCP), and 1,1,2-trichloroethane (1,1,2-TCA) were evaluated. Although initially isolated from an environment with much lower halogenated solvent concentrations, D. alkenigignens IP3-3T was found to reductively dehalogenate chlorinated alkanes at concentrations comparable to D. lykanthroporepellens BL-DC-9T. Both species dechlorinated 1,2-DCA, 1,2-DCP, and 1,1,2-TCA present at initial concentrations at least as high as 8.7, 4.0, and 3.5 mM, respectively. The ability of Dehalogenimonas spp. to carry out anaerobic reductive dechlorination even in the presence of high concentrations of chlorinated aliphatic alkanes has important implications for remediation of contaminated soil and groundwater.

  14. Eddy current thickness measurement apparatus

    DOEpatents

    Rosen, Gary J.; Sinclair, Frank; Soskov, Alexander; Buff, James S.

    2015-06-16

    A sheet of a material is disposed in a melt of the material. The sheet is formed using a cooling plate in one instance. An exciting coil and sensing coil are positioned downstream of the cooling plate. The exciting coil and sensing coil use eddy currents to determine a thickness of the solid sheet on top of the melt.

  15. Radiation Failures in Intel 14nm Microprocessors

    NASA Technical Reports Server (NTRS)

    Bossev, Dobrin P.; Duncan, Adam R.; Gadlage, Matthew J.; Roach, Austin H.; Kay, Matthew J.; Szabo, Carl; Berger, Tammy J.; York, Darin A.; Williams, Aaron; LaBel, K.; Ingalls, James D.

    2016-01-01

    In this study the 14 nm Intel Broadwell 5th generation core series 5005U-i3 and 5200U-i5 was mounted on Dell Inspiron laptops, MSI Cubi and Gigabyte Brix barebones and tested with Windows 8 and CentOS7 at idle. Heavy-ion-induced hard- and catastrophic failures do not appear to be related to the Intel 14nm Tri-Gate FinFET process. They originate from a small (9 m 140 m) area on the 32nm planar PCH die (not the CPU) as initially speculated. The hard failures seem to be due to a SEE but the exact physical mechanism has yet to be identified. Some possibilities include latch-ups, charge ion trapping or implantation, ion channels, or a combination of those (in biased conditions). The mechanism of the catastrophic failures seems related to the presence of electric power (1.05V core voltage). The 1064 nm laser mimics ionization radiation and induces soft- and hard failures as a direct result of electron-hole pair production, not heat. The 14nm FinFET processes continue to look promising for space radiation environments.

  16. 810nm, 980nm, 1470nm and 1950nm diode laser comparison: a preliminary "ex vivo" study on oral soft tissues

    NASA Astrophysics Data System (ADS)

    Fornaini, Carlo; Merigo, Elisabetta; Sozzi, Michele; Selleri, Stefano; Vescovi, Paolo; Cucinotta, Annamaria

    2015-02-01

    The introduction of diode lasers in dentistry has several advantages, mainly consisting on the reduced size, reduced cost and possibility to beam delivering by optical fibers. At the moment the two diode wavelengths normally utilized in the dental field are 810 and 980 nm for soft tissues treatments. The aim of this study was to compare the efficacy of four different diode wavelengths: 810, 980, 1470 and 1950 nm diode laser for the ablation of soft tissues. Several samples of veal tongue were exposed to the four different wavelengths, at different fluences. The internal temperature of the soft tissues, in the area close to the beam, was monitored with thermocouple during the experiment. The excision quality of the exposed samples have been characterized by means of an optical microscope. Tissue damages and the cut regularity have been evaluated on the base of established criteria. The lowest thermal increase was recorded for 1950 nm laser. Best quality and speed of incision were obtained by the same wavelength. By evaluating epithelial, stromal and vascular damages for all the used wavelengths, the best result, in terms of "tissue respect", have been obtained for 1470 and 1950 nm exposures. From the obtained results 1470 and 1950 nm diode laser showed to be the best performer wavelengths among these used in this "ex vivo" study, probably due to their greatest affinity to water.

  17. Self-assembled WO3-x hierarchical nanostructures for photothermal therapy with a 915 nm laser rather than the common 980 nm laser.

    PubMed

    Li, Bo; Zhang, Yuxin; Zou, Rujia; Wang, Qian; Zhang, Bingjie; An, Lei; Yin, Fei; Hua, Yingqi; Hu, Junqing

    2014-04-28

    Photothermal therapy (PTT) is limited by unsuitable photothermal agents and near-infrared (NIR) light. Herein, self-assembled PEGylated WO3-x hierarchical nanostructures, which could serve as excellent laser-cavity mirrors, were successfully prepared via a simple one-pot solvothermal route. The as-prepared WO3-x hierarchical nanostructures displayed strong near-infrared absorption. The absorption of pure water at 980 nm is 30 times higher than that at 915 nm, and the temperature of water only increased by 3.4 °C under the irradiation of a 915 nm laser with a power density of 1.0 W cm(-2) for 10 min, while the temperature of water increased as much as 15.1 °C for the 980 nm laser. With continuous excitation by 915 nm light, the photothermal conversion efficiency of these WO3-x hierarchical nanostructures was evaluated to be 28.1%. Thus, the WO3-x hierarchical nanostructures could serve as excellent laser-cavity mirrors of a 915 nm laser. The PTT study on cancer cells in vivo demonstrated that the WO3-x hierarchical nanostructures can generate enough heat for efficient photothermal therapy of cancer cells under the irradiation of a 915 nm laser with a power density of 1.2 W cm(-2) over a short period (5-10 min).

  18. Silica shell/gold core nanoparticles: correlating shell thickness with the plasmonic red shift upon aggregation.

    PubMed

    Vanderkooy, Alan; Chen, Yang; Gonzaga, Ferdinand; Brook, Michael A

    2011-10-01

    Differences in the wavelengths of the surface plasmon band of gold nanoparticles (AuNP)--before and after particle aggregation--are widely used in bioanalytical assays. However, the gold surfaces in such bioassays can suffer from exchange and desorption of noncovalently bound ligands and from nonspecific adsorption of biomolecules. Silica shells on the surfaces of the gold can extend the available surface chemistries for bioconjugation and potentially avoid these issues. Therefore, silica was grown on gold surfaces using either hydrolysis/condensation of tetraethyl orthosilicate 1 under basic conditions or diglyceroxysilane 2 at neutral pH. The former precursor permitted slow, controlled growth of shells from about 1.7 to 4.3 nm thickness. By contrast, 3-4 nm thick silica shells formed within an hour using diglyceroxysilane; thinner or thicker shells were not readily available. Within the range of shell thicknesses synthesized, the presence of a silica shell on the gold nanoparticle did not significantly affect the absorbance maximum (~5 nm) of unaggregated particles. However, the change in absorbance wavelength upon aggregation of the particles was highly dependent on the thickness of the shell. With silica shells coating the AuNP, there was a significant decrease in the absorbance maximum of the aggregated particles, from ~578 to ~536 nm, as the shell thicknesses increased from ~1.7 to ~4.3 nm, because of increased distance between adjacent gold cores. These studies provide guidance for the development of colorimetric assays using silica-coated AuNP.

  19. Influence of electron transport layer thickness on optical properties of organic light-emitting diodes

    SciTech Connect

    Liu, Guohong; Liu, Yong; Li, Baojun; Zhou, Xiang

    2015-06-07

    We investigate experimentally and theoretically the influence of electron transport layer (ETL) thickness on properties of typical N,N′-diphenyl-N,N′-bis(1-naphthyl)-[1,1′-biphthyl]-4,4′-diamine (NPB)/tris-(8-hydroxyquinoline) aluminum (Alq{sub 3}) heterojunction based organic light-emitting diodes (OLEDs), where the thickness of ETL is varied to adjust the distance between the emitting zone and the metal electrode. The devices showed a maximum current efficiency of 3.8 cd/A when the ETL thickness is around 50 nm corresponding to an emitter-cathode distance of 80 nm, and a second maximum current efficiency of 2.6 cd/A when the ETL thickness is around 210 nm corresponding to an emitter-cathode distance of 240 nm. We adopt a rigorous electromagnetic approach that takes parameters, such as dipole orientation, polarization, light emitting angle, exciton recombination zone, and diffusion length into account to model the optical properties of devices as a function of varying ETL thickness. Our simulation results are accurately consistent with the experimental results with a widely varying thickness of ETL, indicating that the theoretical model may be helpful to design high efficiency OLEDs.

  20. Substrate interactions in dehalogenation of 1,2-dichloroethane, 1,2-dichloropropane, and 1,1,2-trichloroethane mixtures by Dehalogenimonas spp.

    PubMed

    Dillehay, Jacob L; Bowman, Kimberly S; Yan, Jun; Rainey, Fred A; Moe, William M

    2014-04-01

    When chlorinated alkanes are present as soil or groundwater pollutants, they often occur in mixtures. This study evaluated substrate interactions during the anaerobic reductive dehalogenation of chlorinated alkanes by the type strains of two Dehalogenimonas species, D. lykanthroporepellens and D. alkenigignens. Four contaminant mixtures comprised of combinations of the chlorinated solvents 1,2-dichloroethane (1,2-DCA), 1,2-dichloropropane (1,2-DCP), and 1,1,2-trichloroethane (1,1,2-TCA) were assessed for each species. Chlorinated solvent depletion and daughter product formation determined as a function of time following inoculation into anaerobic media revealed preferential dechlorination of 1,1,2-TCA over both 1,2-DCA and 1,2-DCP for both species. 1,2-DCA in particular was not dechlorinated until 1,1,2-TCA reached low concentrations. In contrast, both species concurrently dechlorinated 1,2-DCA and 1,2-DCP over a comparably large concentration range. This is the first report of substrate interactions during chlorinated alkane dehalogenation by pure cultures, and the results provide insights into the chlorinated alkane transformation processes that may be expected for contaminant mixtures in environments where Dehalogenimonas spp. are present. PMID:23990262

  1. Diode laser (980nm) cartilage reshaping

    NASA Astrophysics Data System (ADS)

    El Kharbotly, A.; El Tayeb, T.; Mostafa, Y.; Hesham, I.

    2011-03-01

    Loss of facial or ear cartilage due to trauma or surgery is a major challenge to the otolaryngologists and plastic surgeons as the complicated geometric contours are difficult to be animated. Diode laser (980 nm) has been proven effective in reshaping and maintaining the new geometric shape achieved by laser. This study focused on determining the optimum laser parameters needed for cartilage reshaping with a controlled water cooling system. Harvested animal cartilages were angulated with different degrees and irradiated with different diode laser powers (980nm, 4x8mm spot size). The cartilage specimens were maintained in a deformation angle for two hours after irradiation then released for another two hours. They were serially measured and photographed. High-power Diode laser irradiation with water cooling is a cheep and effective method for reshaping the cartilage needed for reconstruction of difficult situations in otorhinolaryngologic surgery. Key words: cartilage,diode laser (980nm), reshaping.

  2. Resist materials for 157-nm lithography

    NASA Astrophysics Data System (ADS)

    Toriumi, Minoru; Ishikawa, Seiichi; Miyoshi, Seiro; Naito, Takuya; Yamazaki, Tamio; Watanabe, Manabu; Itani, Toshiro

    2001-08-01

    Fluoropolymers are key materials for single layer resists of 157nm lithography. We have been studying fluoropolymers to identify their potential for base resins of 157nm photoresist. Many fluoropolymers showed high optical transparencies, with absorption coefficients of 0.01micrometers -1 to 2micrometers -1 at 157nm, and dry- etching resistance comparable to an ArF resist, and non- swelling solubility in the standard developer. Positive- tone resists were formulated using fluoropolymers that fulfill practical resist requirements. They showed good sensitivities, from 1 mJ/cm(superscript 2 to 10 mJ/cm2, and contrast in the sensitivity curves. They were able to be patterned using a F2 laser microstepper.

  3. Coal thickness guage using RRAS techniques, parts 2 and 3

    NASA Technical Reports Server (NTRS)

    King, J. D.; Rollwitz, W. L.

    1980-01-01

    Electron magnetic resonance was investigated as a sensing technique for use in measuring the thickness of the layer of coal overlying the rock substrate. The goal is development of a thickness gauge which will be usable for control of mining machinery to maintain the coal thickness within selected bounds. A sensor must be noncontracting, have a measurement range of 6 inches or more, and an accuracy of 1/2 inch or better. The sensor should be insensitive to variations in spacing between the sensor and the surface, the response speed should be adequate to permit use on continuous mining equipment, and the device should be rugged and otherwise suited for operation under conditions of high vibration, moisture, and dust. Finally, the sensor measurement must not be adversely affected by the natural effects occurring in coal such as impurities, voids, cracks, layering, high moisture level, and other conditions that are likely to be encountered.

  4. 635nm diode laser biostimulation on cutaneous wounds

    NASA Astrophysics Data System (ADS)

    Solmaz, Hakan; Gülsoy, Murat; Ülgen, Yekta

    2014-05-01

    Biostimulation is still a controversial subject in wound healing studies. The effect of laser depends of not only laser parameters applied but also the physiological state of the target tissue. The aim of this project is to investigate the biostimulation effects of 635nm laser irradiation on the healing processes of cutaneous wounds by means of morphological and histological examinations. 3-4 months old male Wistar Albino rats weighing 330 to 350 gr were used throughout this study. Low-level laser therapy was applied through local irradiation of red light on open skin excision wounds of 5mm in diameter prepared via punch biopsy. Each animal had three identical wounds on their right dorsal part, at which two of them were irradiated with continuous diode laser of 635nm in wavelength, 30mW of power output and two different energy densities of 1 J/cm2 and 3 J/cm2. The third wound was kept as control group and had no irradiation. In order to find out the biostimulation consequences during each step of wound healing, which are inflammation, proliferation and remodeling, wound tissues removed at days 3, 7, 10 and 14 following the laser irradiation are morphologically examined and than prepared for histological examination. Fragments of skin including the margin and neighboring healthy tissue were embedded in paraffin and 6 to 9 um thick sections cut are stained with hematoxylin and eosin. Histological examinations show that 635nm laser irradiation accelerated the healing process of cutaneous wounds while considering the changes of tissue morphology, inflammatory reaction, proliferation of newly formed fibroblasts and formation and deposition of collagen fibers. The data obtained gives rise to examine the effects of two distinct power densities of low-level laser irradiation and compare both with the non-treatment groups at different stages of healing process.

  5. Comparative study of Nd:KGW lasers pumped at 808 nm and 877 nm

    NASA Astrophysics Data System (ADS)

    Huang, Ke; Ge, Wen-Qi; Zhao, Tian-Zhuo; He, Jian-Guo; Feng, Chen-Yong; Fan, Zhong-Wei

    2015-10-01

    The laser performance and thermal analysis of Nd:KGW laser continuously pumped by 808 nm and 877 nm are comparatively investigated. Output power of 670 mW and 1587 mW, with nearly TEM00 mode, are achieved respectively at 808 nm pump and 877 nm pump. Meanwhile, a high-power passively Q-switched Nd:KGW/Cr4+:YAG laser pumped at 877 nm is demonstrated. An average output power of 1495 mW is obtained at pump power of 5.22 W while the laser is operating at repetition of 53.17 kHz. We demonstrate that 877 nm diode laser is a more potential pump source for Nd:KGW lasers.

  6. Histological evaluation of dermal tissue remodeling with the 1444-nm neodymium:yttrium-aluminum-garnet laser in in vivo model.

    PubMed

    Kim, Ji Hoon; Min, Kyung Hee; Heo, Chan Yeong; Baek, Rong Min; Park, Hyo Jin; Youn, Sang Woong; Kim, Eun Hee

    2013-09-01

    Laser lipolysis has a skin tightening effect by heating the deep dermis, in addition to the removal of fat tissues. The 1444-nm neodymium:yttrium-aluminum-garnet (Nd:YAG) laser has been expected to be more effective and safe for laser lipolysis, due to higher affinity to fat and water, than 1064-nm and 1320-nm wavelengths. The purpose of this study was to evaluate the skin tightening effect of the 1444-nm Nd:YAG laser through in vivo guinea pig models. The 1444-nm Nd:YAG laser was used to irradiate shaved dorsal skin of the guinea pigs and compared with controls (no power, only tunneling). Immediately, 1 week, 1 month and 3 months after laser administration, full-thickness skins were harvested and to evaluate dermal thickness, collagen organization, fibroblast proliferation, and intensity of elastic fibers and mucopolysaccharides, using hematoxylin-eosin, Masson-trichrome, Verhoeff's stain and Alcian blue stain. Dermal thickness showed an increase with time in all groups. In collagen organization, fibroblast proliferation, and intensity of elastic fibers and mucopolysaccharides, the treatment groups were higher than those of the control group, overall. Our study showed that the 1444-nm Nd:YAG laser appeared to be effective for the skin tightening effect in in vivo guinea pig models. The 1444-nm Nd:YAG laser can be used for skin tightening, as well as reduction of fat tissues.

  7. THE FORMATION OF IRIS DIAGNOSTICS. VI. THE DIAGNOSTIC POTENTIAL OF THE C ii LINES AT 133.5 nm IN THE SOLAR ATMOSPHERE

    SciTech Connect

    Rathore, Bhavna; Carlsson, Mats; Pontieu, Bart De; Leenaarts, Jorrit E-mail: mats.carlsson@astro.uio.no E-mail: jorrit.leenaarts@astro.su.se

    2015-10-01

    We use 3D radiation magnetohydrodynamic models to investigate how the thermodynamic quantities in the simulation are encoded in observable quantities, thus exploring the diagnostic potential of the C ii 133.5 nm lines. We find that the line core intensity is correlated with the temperature at the formation height but the correlation is rather weak, especially when the lines are strong. The line core Doppler shift is a good measure of the line-of-sight velocity at the formation height. The line width is both dependent on the width of the absorption profile (thermal and non-thermal width) and an opacity broadening factor of 1.2–4 due to the optically thick line formation with a larger broadening for double peak profiles. The C ii 133.5 nm lines can be formed both higher and lower than the core of the Mg ii k line depending on the amount of plasma in the 14–50 kK temperature range. More plasma in this temperature range gives a higher C ii 133.5 nm formation height relative to the Mg ii k line core. The synthetic line profiles have been compared with Interface Region Imaging Spectrograph observations. The derived parameters from the simulated line profiles cover the parameter range seen in observations but, on average, the synthetic profiles are too narrow. We interpret this discrepancy as a combination of a lack of plasma at chromospheric temperatures in the simulation box and too small non-thermal velocities. The large differences in the distribution of properties between the synthetic profiles and the observed ones show that the C ii 133.5 nm lines are powerful diagnostics of the upper chromosphere and lower transition region.

  8. Preparation of thick molybdenum targets

    NASA Technical Reports Server (NTRS)

    Singh, J. J.

    1974-01-01

    Thick natural molybdenum deposits on nickel plated copper substrates were prepared by thermal decomposition of molybdenum hexacarbonyl vapors on a heated surface in an inert gas atmosphere. The molybdenum metal atoms are firmly bonded to the substrate atoms, thus providing an excellent thermal contact across the junction. Molybdenum targets thus prepared should be useful for internal bombardment in a cyclotron where thermal energy inputs can exceed 10 kW.

  9. Crustal Thickness Beneath Ocean Islands

    NASA Astrophysics Data System (ADS)

    Gao, S. S.; Liu, K. H.; Cullers, R. L.

    2005-12-01

    We measured the thickness of the Earth's crust beneath about two dozen of the GDSN or GEOSCOPE stations located on ocean islands by stacking moveout-corrected high-quality P-to-S receiver functions (RFs). The RFs were filtered in the 0.05-0.5 Hz frequency bands to compress strong noises that are common for ocean island stations. Given the small (less than 2 s) time separation between the direct P and the P-to-S converted phase from the Moho, the PSmS phase, which has a negative polarity and can be clearly observed at almost all the stations, is used for the stacking. Preliminary resulting thickness at each of the stations is as follows: AFI (12.4 km), AIS (13.6), ASCN (9.6), BBSR (9.9), BORG (9.4), CRZF (6.6), GUMO (8.0), HNR (8.0), HOPE (19.0), KIP (13.0), MSEY (10.7), MSVF (15.1), NOUC (15.1), PAF (8.9), POHA (17.0), PPT (12.3), PTCN (10.4), RAR (12.8), RER (13.8), RPN (9.3), SEY (14.9), SHEL (17.5), TBT (14.1), XMAS (11.8). Crustal thickness at some of the stations has been measured previously, and our results are in general agreement with those measurements. Possible age-dependence of the resulting thickness and geological implications in the understanding of plume-lithosphere interactions and formation of ocean islands will be presented.

  10. Sub-10 nm carbon nanotube transistor.

    PubMed

    Franklin, Aaron D; Luisier, Mathieu; Han, Shu-Jen; Tulevski, George; Breslin, Chris M; Gignac, Lynne; Lundstrom, Mark S; Haensch, Wilfried

    2012-02-01

    Although carbon nanotube (CNT) transistors have been promoted for years as a replacement for silicon technology, there is limited theoretical work and no experimental reports on how nanotubes will perform at sub-10 nm channel lengths. In this manuscript, we demonstrate the first sub-10 nm CNT transistor, which is shown to outperform the best competing silicon devices with more than four times the diameter-normalized current density (2.41 mA/μm) at a low operating voltage of 0.5 V. The nanotube transistor exhibits an impressively small inverse subthreshold slope of 94 mV/decade-nearly half of the value expected from a previous theoretical study. Numerical simulations show the critical role of the metal-CNT contacts in determining the performance of sub-10 nm channel length transistors, signifying the need for more accurate theoretical modeling of transport between the metal and nanotube. The superior low-voltage performance of the sub-10 nm CNT transistor proves the viability of nanotubes for consideration in future aggressively scaled transistor technologies.

  11. Radiation Tolerance of 65nm CMOS Transistors

    DOE PAGES

    Krohn, M.; Bentele, B.; Christian, D. C.; Cumalat, J. P.; Deptuch, G.; Fahim, F.; Hoff, J.; Shenai, A.; Wagner, S. R.

    2015-12-11

    We report on the effects of ionizing radiation on 65 nm CMOS transistors held at approximately -20°C during irradiation. The pattern of damage observed after a total dose of 1 Grad is similar to damage reported in room temperature exposures, but we observe less damage than was observed at room temperature.

  12. White Sands, Carrizozo Lava Beds, NM

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A truly remarkable view of White Sands and the nearby Carrizozo Lava Beds in southeast NM (33.5N, 106.5W). White Sands, site of the WW II atomic bomb development and testing facility and later post war nuclear weapons testing that can still be seen in the cleared circular patterns on the ground.

  13. Negative-tone 193-nm resists

    NASA Astrophysics Data System (ADS)

    Cho, Sungseo; Vander Heyden, Anthony; Byers, Jeff D.; Willson, C. Grant

    2000-06-01

    A great deal of progress has been made in the design of single layer positive tone resists for 193 nm lithography. Commercial samples of such materials are now available from many vendors. The patterning of certain levels of devices profits from the use of negative tone resists. There have been several reports of work directed toward the design of negative tones resists for 193 nm exposure but, none have performed as well as the positive tone systems. Polymers with alicyclic structures in the backbone have emerged as excellent platforms from which to design positive tone resists for 193 nm exposure. We now report the adaptation of this class of polymers to the design of high performance negative tone 193 nm resists. New systems have been prepared that are based on a polarity switch mechanism for modulation of the dissolution rate. The systems are based on a polar, alicyclic polymer backbone that includes a monomer bearing a glycol pendant group that undergoes the acid catalyzed pinacol rearrangement upon exposure and bake to produce the corresponding less polar ketone. This monomer was copolymerized with maleic anhydride and a norbornene bearing a bis-trifluoromethylcarbinol. The rearrangement of the copolymer was monitored by FT-IR as a function of temperature. The synthesis of the norbornene monomers will be presented together with characterization of copolymers of these monomers with maleic anhydride. The lithographic performance of the new resist system will also be presented.

  14. MEPHISTO spectromicroscope reaches 20 nm lateral resolution

    NASA Astrophysics Data System (ADS)

    De Stasio, Gelsomina; Perfetti, Luca; Gilbert, B.; Fauchoux, O.; Capozi, M.; Perfetti, P.; Margaritondo, G.; Tonner, B. P.

    1999-03-01

    The recently described tests of the synchrotron imaging photoelectron spectromicroscope MEPHISTO (Microscope à Emission de PHotoélectrons par Illumination Synchrotronique de Type Onduleur) were complemented by further resolution improvements and tests, which brought the lateral resolution down to 20 nm. Images and line plot profiles demonstrate such performance.

  15. 1541nm GmAPD LADAR system

    NASA Astrophysics Data System (ADS)

    Kutteruf, Mary R.; Lebow, Paul

    2014-06-01

    The single photon sensitivity of Geiger-mode avalanche photo diodes (GmAPDs) has facilitated the development of LADAR systems that operate at longer stand-off distances, require lower laser pulse powers and are capable of imaging through a partial obscuration. In this paper, we describe a GmAPD LADAR system which operates at the eye-safe wavelength of 1541 nm. The longer wavelength should enhance system covertness and improve haze penetration compared to systems using 1064 nm lasers. The system is comprised of a COTS 1541 nm erbium fiber laser producing 4 ns pulses at 80 kHz to 450 kHz and a COTS camera with a focal plane of 32x32 InGaAs GmAPDs band-gap optimized for 1550 nm. Laboratory characterization methodology and results are discussed. We show that accurate modeling of the system response, allows us to achieve a depth resolution which is limited by the width of the camera's time bin (.25 ns or 1.5 inches) rather than by the duration of the laser pulse (4 ns or 2 ft.). In the presence of obscuration, the depth discrimination is degraded to 6 inches but is still significantly better than that dictated by the laser pulse duration. We conclude with a discussion of future work.

  16. Measuring Rind Thickness on Polyurethane Foam

    NASA Technical Reports Server (NTRS)

    Johnson, C.; Miller, J.; Brown, H.

    1985-01-01

    Nondestructive test determines rind thickness of polyurethane foam. Surface harness of foam measured by Shore durometer method: hardness on Shore D scale correlates well with rind thickness. Shore D hardness of 20, for example, indicates rind thickness of 0.04 inch (1 millimeter). New hardness test makes it easy to determine rind thickness of sample nondestructively and to adjust fabrication variables accordingly.

  17. Soliton models for thick branes

    NASA Astrophysics Data System (ADS)

    Peyravi, Marzieh; Riazi, Nematollah; Lobo, Francisco S. N.

    2016-05-01

    In this work, we present new soliton solutions for thick branes in 4+1 dimensions. In particular, we consider brane models based on the sine-Gordon (SG), φ 4 and φ 6 scalar fields, which have broken Z2 symmetry in some cases and are responsible for supporting and stabilizing the thick branes. The origin of the symmetry breaking in these models resides in the fact that the modified scalar field potential may have non-degenerate vacua. These vacua determine the cosmological constant on both sides of the brane. We also study the geodesic equations along the fifth dimension, in order to explore the particle motion in the neighborhood of the brane. Furthermore, we examine the stability of the thick branes, by determining the sign of the w^2 term in the expansion of the potential for the resulting Schrödinger-like equation, where w is the five-dimensional coordinate. It turns out that the φ ^4 brane is stable, while there are unstable modes for certain ranges of the model parameters in the SG and φ ^6 branes.

  18. Damage thresholds of thin film materials and high reflectors at 248 nm

    SciTech Connect

    Rainer, F.; Lowdermilk, W.H.; Milam, D.; Carniglia, C.K.; Hart, T.T.; Lichtenstein, T.L.

    1982-01-01

    Twenty-ns, 248-nm KrF laser pulses were used to measure laser damage thresholds for halfwave-thick layers of 15 oxide and fluoride coating materials, and for high reflectance coatings made with 13 combinations of these materials. The damage thresholds of the reflectors and single-layer films were compared to measurements of several properties of the halfwave-thick films to determine whether measurements of these properties of single-layer films to determine whether measurements of these properties of single-layer films were useful for identifying materials for fabrication of damage resistant coatings.

  19. Tabletop coherent diffractive microscopy with soft x-ray illumination from high harmonic generation at 29 nm and 13.5 nm

    NASA Astrophysics Data System (ADS)

    Raymondson, Daisy Arrelle

    Soft x-ray microscopy allows imaging at higher resolution than is possible with optical wavelengths. At the same time, it allows imaging of the internal structure of thick samples that cannot be viewed with electron microscopy. Optics for the soft x-ray region of the spectrum are limited, but coherent diffractive imaging techniques use computerized image reconstruction in place of a lens to form high-resolution images with x-rays. This dissertation presents a practical soft x-ray diffractive microscope with sub-100 nm resolution using tabletop coherent soft x-rays at 13.5 nm and 29 nm [1]. This represents the first demonstration of tabletop coherent imaging with 13.5 nm from high harmonics. Images with holography and phase retrieval are shown, with near-diffraction-limited resolution down to 53 nm [2--4]. The first tabletop diffractive images of biological samples with 13.5 nm and 29 nm beams are also shown [5]. This thesis also presents work on the construction of a high-power, high-repetition-rate laser amplifier implementing carrier-envelope phase stabilization. CEP stabilization provides unprecedented levels of control over the full electric field of an ultrafast laser. The first stage of the amplifier was stabilized to 250 mrad CEP noise on 100s timescales. The route to stabilizing the full 10 kHz, 30 W amplifier is outlined. This laser will be used for future coherent diffractive imaging applications at using high harmonic generation at 13.5 nm and shorter wavelengths, and will also be used for time-resolved studies of molecular dissociation [6].

  20. Electrical properties of Ba(Dy1/2Nb1/2)O3 ceramic

    NASA Astrophysics Data System (ADS)

    Nath, K. Amar; Chandra, K. P.; Dubey, K.; Prasad, K.

    2016-05-01

    Polycrystalline Ba(Dy1/2Nb1/2)O3 was prepared using a high-temperature solid-state reaction method. X-ray diffraction analysis indicated the formation of a single-phase cubic structure having space group Pm3m. AC impedance plots as a function of frequency at different temperatures were used to analyse the electrical behaviour of the sample, which indicated the negative temperature coefficient of resistance character. Complex impedance analysis targeted non-Debye type dielectric relaxation. Frequency dependent ac conductivity data obeyed Jonscher's power law. The apparent activation energy was estimated to be 0.97 eV at 1 kHz.

  1. Microwave spectrum, structural parameters, and quadrupole coupling for 1,2-dihydro-1,2-azaborine.

    PubMed

    Daly, Adam M; Tanjaroon, Chakree; Marwitz, Adam J V; Liu, Shih-Yuan; Kukolich, Stephen G

    2010-04-21

    The first microwave spectrum for 1,2-dihydro-1,2-azaborine has been measured in the frequency range 7-18 GHz, providing accurate rotational constants and nitrogen and boron quadrupole coupling strengths for three isotopomers, H(6)C(4)(11)B(14)N, H(6)C(4)(10)B(14)N, and H(5)DC(4)(11)B(14)N. The measured rotational constants were used to accurately determine coordinates for the substituted atoms and provide sufficient data to determine most of the important structural parameters for this molecule. The spectra were obtained using a pulsed beam Fourier transform microwave spectrometer, with sufficient resolution to allow accurate measurements of (14)N, (11)B, and (10)B nuclear quadrupole hyperfine interactions. High-level ab initio calculations provided structural parameters and quadrupole coupling strengths that are in very good agreement with measured values. The rotational constants for the parent compound are A = 5657.335(1), B = 5349.2807(5), and C = 2749.1281(4) MHz, yielding the inertial defect Delta(0) = 0.02 amu x A(2) for the ground-state structure. The observed near-zero and positive inertial defect clearly indicates that the molecular structure of 1,2-dihydro-1,2-azaborine is planar. The least-squares fit analysis to determine the azaborine ring structure yielded the experimental bond lengths and 2sigma errors R(B-N) = 1.45(3) A, R(B-C) = 1.51(1) A, and R(N-C) = 1.37(3) A for the ground-state structure. Interbond angles for the ring were also determined. An extended Townes-Dailey population analysis of the boron and nitrogen quadrupole coupling constants provided the valence p-electron occupancy p(c) = 0.3e for boron and p(c) = 1.3e for nitrogen.

  2. Thickness dependent optical and electrical properties of CdSe thin films

    NASA Astrophysics Data System (ADS)

    Purohit, A.; Chander, S.; Nehra, S. P.; Lal, C.; Dhaka, M. S.

    2016-05-01

    The effect of thickness on the optical and electrical properties of CdSe thin films is investigated in this paper. The films of thickness 445 nm, 631 nm and 810 nm were deposited on glass and ITO coated glass substrates using thermal evaporation technique. The deposited thin films were thermally annealed in air atmosphere at temperature 100°C and were subjected to UV-Vis spectrophotometer and source meter for optical and electrical analysis respectively. The absorption coefficient is observed to increase with photon energy and found maximum in higher photon energy region. The extinction coefficient and refractive index are also calculated. The electrical analysis shows that the electrical resistivity is observed to be decreased with thickness.

  3. Activationless charge transport across 4.5 to 22 nm in molecular electronic junctions

    PubMed Central

    Yan, Haijun; Bergren, Adam Johan; McCreery, Richard; Della Rocca, Maria Luisa; Martin, Pascal; Lafarge, Philippe; Lacroix, Jean Christophe

    2013-01-01

    In this work, we bridge the gap between short-range tunneling in molecular junctions and activated hopping in bulk organic films, and greatly extend the distance range of charge transport in molecular electronic devices. Three distinct transport mechanisms were observed for 4.5–22-nm-thick oligo(thiophene) layers between carbon contacts, with tunneling operative when d < 8 nm, activated hopping when d > 16 nm for high temperatures and low bias, and a third mechanism consistent with field-induced ionization of highest occupied molecular orbitals or interface states to generate charge carriers when d = 8–22 nm. Transport in the 8–22-nm range is weakly temperature dependent, with a field-dependent activation barrier that becomes negligible at moderate bias. We thus report here a unique, activationless transport mechanism, operative over 8–22-nm distances without involving hopping, which severely limits carrier mobility and device lifetime in organic semiconductors. Charge transport in molecular electronic junctions can thus be effective for transport distances significantly greater than the 1–5 nm associated with quantum-mechanical tunneling. PMID:23509271

  4. Activationless charge transport across 4.5 to 22 nm in molecular electronic junctions.

    PubMed

    Yan, Haijun; Bergren, Adam Johan; McCreery, Richard; Della Rocca, Maria Luisa; Martin, Pascal; Lafarge, Philippe; Lacroix, Jean Christophe

    2013-04-01

    In this work, we bridge the gap between short-range tunneling in molecular junctions and activated hopping in bulk organic films, and greatly extend the distance range of charge transport in molecular electronic devices. Three distinct transport mechanisms were observed for 4.5-22-nm-thick oligo(thiophene) layers between carbon contacts, with tunneling operative when d < 8 nm, activated hopping when d > 16 nm for high temperatures and low bias, and a third mechanism consistent with field-induced ionization of highest occupied molecular orbitals or interface states to generate charge carriers when d = 8-22 nm. Transport in the 8-22-nm range is weakly temperature dependent, with a field-dependent activation barrier that becomes negligible at moderate bias. We thus report here a unique, activationless transport mechanism, operative over 8-22-nm distances without involving hopping, which severely limits carrier mobility and device lifetime in organic semiconductors. Charge transport in molecular electronic junctions can thus be effective for transport distances significantly greater than the 1-5 nm associated with quantum-mechanical tunneling.

  5. VizieR Online Data Catalog: Thorium spectrum from 250nm to 5500nm (Redman+, 2014)

    NASA Astrophysics Data System (ADS)

    Redman, S. L.; Nave, G.; Sansonetti, C. J.

    2014-04-01

    We observed the spectrum of a commercial sealed Th/Ar HCL running at 25mA for almost 15hr starting on 2011 November 2. The region of observation was limited to between 8500/cm and 28000/cm (360nm and 1200nm) by the sensitivity of the silicon photodiode detector. (5 data files).

  6. Self-propagating reactions in Al/Zr multilayers: Anomalous dependence of reaction velocity on bilayer thickness

    SciTech Connect

    Barron, S. C.; Kelly, S. T.; Kirchhoff, J.; Knepper, R.; Fisher, K.; Hufnagel, T. C.; Weihs, T. P.; Livi, K. J. T.; Dufresne, E. M.; Fezzaa, K.; Barbee, T. W.

    2013-12-14

    High temperature, self-propagating reactions are observed in vapor-deposited Al/Zr multilayered foils of overall atomic ratios 3 Al:1 Zr and 2 Al:1 Zr and nanoscale layer thicknesses; however, the reaction velocities do not exhibit the inverse dependence on bilayer thickness that is expected based on changes in the average diffusion distance. Instead, for bilayer thicknesses of 20-30 nm, the velocity is essentially constant at ∼7.7 m/s. We explore several possible explanations for this anomalous behavior, including microstructural factors, changes in the phase evolution, and phase transformations in the reactant layers, but find no conclusive explanations. We determine that the phase evolution during self-propagating reactions in foils with a 3 Al:1 Zr stoichiometry is a rapid transformation from Al/Zr multilayers to the equilibrium intermetallic Al{sub 3}Zr compound with no intermediate crystalline phases. This phase evolution is the same for foils of 90 nm bilayer thicknesses and foils of bilayer thicknesses in the range of 27 nm to 35 nm. Further, for foils with a bilayer thickness of 90 nm and a 3 Al:1 Zr overall chemistry, the propagation front is planar and steady, in contrast to unsteady reaction fronts in foils with 1 Al:1 Zr overall chemistry and similar bilayer thicknesses.

  7. Ordering of self-assembled 5-nm-diameter poly(dimethylsiloxane) nanodots with sub-10 nm pitch using ultra-narrow electron-beam-drawn guide lines and three-dimensional control

    SciTech Connect

    Zhang, Hui; Hosaka, Sumio; Yin, You

    2014-03-03

    We demonstrate the possibility of forming long-range ordered self-assembled arrays of 5-nm-diameter nanodots with pitch of 10 × 7.5 nm{sup 2} using guide line templates and low molecular weight (MW) (4700–1200 g/mol) poly(styrene)-poly(dimethylsiloxane) (PS-PDMS) for application in ultrahigh density patterned magnetic recording media. We propose a three-dimensional control which involves control of the height of the guide lines, the thickness of the PS-PDMS films, and the gap between the guide lines in order to produce 5-nm-diameter, sub-10 nm pitched nanodots with long-range order along the guide lines. Adopting a 13-nm-thick PS-PDMS film and 14-nm-high resist guide lines, the 5-nm-diameter and 10 × 7.5 nm{sup 2}-pitched self-assembled nanodots were ordered in 4–7 dot arrays with long-range order. The experimental results demonstrate that the method is suitable for the production of patterned media with magnetic recording densities of 8.6 Tbit/in.{sup 2} using low MW PS-PDMS and slim guide lines.

  8. Ordering of self-assembled 5-nm-diameter poly(dimethylsiloxane) nanodots with sub-10 nm pitch using ultra-narrow electron-beam-drawn guide lines and three-dimensional control

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Hosaka, Sumio; Yin, You

    2014-03-01

    We demonstrate the possibility of forming long-range ordered self-assembled arrays of 5-nm-diameter nanodots with pitch of 10 × 7.5 nm2 using guide line templates and low molecular weight (MW) (4700-1200 g/mol) poly(styrene)-poly(dimethylsiloxane) (PS-PDMS) for application in ultrahigh density patterned magnetic recording media. We propose a three-dimensional control which involves control of the height of the guide lines, the thickness of the PS-PDMS films, and the gap between the guide lines in order to produce 5-nm-diameter, sub-10 nm pitched nanodots with long-range order along the guide lines. Adopting a 13-nm-thick PS-PDMS film and 14-nm-high resist guide lines, the 5-nm-diameter and 10 × 7.5 nm2-pitched self-assembled nanodots were ordered in 4-7 dot arrays with long-range order. The experimental results demonstrate that the method is suitable for the production of patterned media with magnetic recording densities of 8.6 Tbit/in.2 using low MW PS-PDMS and slim guide lines.

  9. 120 nm resolution and 55 nm structure size in STED-lithography.

    PubMed

    Wollhofen, Richard; Katzmann, Julia; Hrelescu, Calin; Jacak, Jaroslaw; Klar, Thomas A

    2013-05-01

    Two-photon direct laser writing (DLW) lithography is limited in the achievable structure size as well as in structure resolution. Adding stimulated emission depletion (STED) to DLW allowed overcoming both restrictions. We now push both to new limits. Using visible light for two-photon DLW (780 nm) and STED (532 nm), we obtain lateral structure sizes of 55 nm, a Sparrow limit of around 100 nm and we present two clearly separated lines spaced only 120 nm apart. The photo-resist used in these experiments is a mixture of tri- and tetra-acrylates and 7-Diethylamino-3-thenoylcoumarin as a photo-starter which can be readily quenched via STED.

  10. Influence of the interface on the magnetic properties of ferromagnetic ultrathin films with various adjacent copper thicknesses

    SciTech Connect

    Zhang, Dong; Jiang, Sheng; Luo, Chen; Wang, Yukun; Rui, Wenbin; Du, Jun; Zhai, Hongru; Zhai, Ya

    2014-05-07

    The interface and magnetic properties of two series of films with Ta(5 nm)/Fe{sub 20}Ni{sub 80}Nd{sub 0.017}(3 nm)/Cu(t nm) and Ta(5 nm)/Cu(t nm)/Fe{sub 50}Co{sub 50}Gd{sub 0.07}(3 nm)/Cu(2 nm) structures have been investigated by atomic force microscopy, vibrating sample magnetometer, and ferromagnetic resonance (FMR). The roughness of all films increases with increasing copper thickness, which causes the different grain sizes in the surface of films. The coercivity of FeCo-Gd films increases with increasing thickness of inserted Cu layer while decreases with increasing thickness of Cu capping layer for FeNi-Nd films. FMR linewidth exhibits huge dependence on the thickness of inserted Cu layer for FeCo-Gd films, increasing from 2270 to 3680 Oe, which comes from the additional contribution of effect of the two-magnon scattering. And the thickness of Cu capping layer shows also an influence on FMR linewidth of FeNi-Nd films, increasing from 190 to 320 Oe, which mainly comes from intrinsic FMR linewidth and plus minor inhomogeneous broadening. All of these extrinsic linewidth broadening are related to the interface roughness.

  11. Post-weld Tempered Microstructure and Mechanical Properties of Hybrid Laser-Arc Welded Cast Martensitic Stainless Steel CA6NM

    NASA Astrophysics Data System (ADS)

    Mirakhorli, Fatemeh; Cao, Xinjin; Pham, Xuan-Tan; Wanjara, Priti; Fihey, Jean-Luc

    2016-01-01

    Manufacturing of hydroelectric turbine components involves the assembly of thick-walled stainless steels using conventional multi-pass arc welding processes. By contrast, hybrid laser-arc welding may be an attractive process for assembly of such materials to realize deeper penetration depths, higher production rates, narrower fusion, and heat-affected zones, and lower distortion. In the present work, single-pass hybrid laser-arc welding of 10-mm thick CA6NM, a low carbon martensitic stainless steel, was carried out in the butt joint configuration using a continuous wave fiber laser at its maximum power of 5.2 kW over welding speeds ranging from 0.75 to 1.2 m/minute. The microstructures across the weldment were characterized after post-weld tempering at 873 K (600 °C) for 1 hour. From microscopic examinations, the fusion zone was observed to mainly consist of tempered lath martensite and some residual delta-ferrite. The mechanical properties were evaluated in the post-weld tempered condition and correlated to the microstructures and defects. The ultimate tensile strength and Charpy impact energy values of the fully penetrated welds in the tempered condition were acceptable according to ASTM, ASME, and industrial specifications, which bodes well for the introduction of hybrid laser-arc welding technology for the manufacturing of next generation hydroelectric turbine components.

  12. Brine film thicknesses on mica surfaces under geologic CO2 sequestration conditions and controlled capillary pressures

    NASA Astrophysics Data System (ADS)

    Kim, Tae Wook; Tokunaga, Tetsu K.; Bargar, John R.; Latimer, Matthew J.; Webb, Samuel M.

    2013-08-01

    Brine films remaining on mineral surfaces in deep reservoirs during CO2 sequestration are expected to influence multiphase flow, diffusion, and reactions, but little is known about their behavior. Using synchrotron X-ray fluorescence (XRF), we measured thicknesses of KCsI2 brine films on two difference roughness mica surfaces under conditions representative of geological CO2 sequestration (7.8 MPa and 40°C) to understand the influences of mineral surface roughness and capillary potential. Brine thicknesses measured on the Mica 1 (smooth) and Mica 2 (rough) mica surfaces ranged from 23 to 8 nm and 491 to 412 nm, respectively, over the small range of tested capillary potentials (0.18-3.7 kPa). Within these potentials, brine film thicknesses on mica were governed by surface roughness and only weakly influenced by capillary potentials. In comparing drainage and rewetting isotherms, some film thickness hysteresis was observed, possibly indicative of changes in mica wettability.

  13. Characterization of Thin Film Dissolution in Water with in Situ Monitoring of Film Thickness Using Reflectometry.

    PubMed

    Yersak, Alexander S; Lewis, Ryan J; Tran, Jenny; Lee, Yung C

    2016-07-13

    Reflectometry was implemented as an in situ thickness measurement technique for rapid characterization of the dissolution dynamics of thin film protective barriers in elevated water temperatures above 100 °C. Using this technique, multiple types of coatings were simultaneously evaluated in days rather than years. This technique enabled the uninterrupted characterization of dissolution rates for different coating deposition temperatures, postdeposition annealing conditions, and locations on the coating surfaces. Atomic layer deposition (ALD) SiO2 and wet thermally grown SiO2 (wtg-SiO2) thin films were demonstrated to be dissolution-predictable barriers for the protection of metals such as copper. A ∼49% reduction in dissolution rate was achieved for ALD SiO2 films by increasing the deposition temperatures from 150 to 300 °C. ALD SiO2 deposited at 300 °C and followed by annealing in an inert N2 environment at 1065 °C resulted in a further ∼51% reduction in dissolution rate compared with the nonannealed sample. ALD SiO2 dissolution rates were thus lowered to values of wtg-SiO2 in water by the combination of increasing the deposition temperature and postdeposition annealing. Thin metal films, such as copper, without a SiO2 barrier corroded at an expected ∼1-2 nm/day rate when immersed in room temperature water. This measurement technique can be applied to any optically transparent coating. PMID:27308723

  14. Effect of thickness on the structure, morphology and optical properties of sputter deposited Nb 2O 5 films

    NASA Astrophysics Data System (ADS)

    Lai, Fachun; Lin, Limei; Huang, Zhigao; Gai, Rongquan; Qu, Yan

    2006-12-01

    Nb 2O 5 films with the thickness ( d) ranging from 55 to 2900 nm were deposited on BK-7 substrates at room temperature by a low frequency reactive magnetron sputtering system. The structure, morphology and optical properties of the films were investigated by X-ray diffraction, atomic force microscopy and spectrophotometer, respectively. The experimental results indicated that the thickness affects drastically the structure, morphology and optical properties of the film. There exists a critical thickness of the film, dcri =2010 nm. The structure of the film remains amorphous as d < dcri. However, it becomes crystallized as d > dcri. The root mean square of surface roughness increases with increasing thickness as d > 1080 nm. Widths and depths of the holes on film surface increase monotonously with increasing thickness, and widths of the holes are larger than 1000 nm for the crystalline films. Refractive index increases with increasing thickness as d < dcri, while it decreases with increasing thickness as d > dcri. In addition, the extinction coefficient increases with increasing thickness as d > dcri.

  15. Metabolism of 1,2,3,4-, 1,2,3,5-, and 1,2,4,5-tetrachlorobenzene in the squirrel monkey

    SciTech Connect

    Schwartz, H.; Chu, I.; Villeneuve, D.C.; Benoit, F.M.

    1987-01-01

    The metabolism of three tetrachlorobenzene isomers (TeCB) was investigated in the squirrel monkey. The animals were administered orally 6 single doses of /sup 14/C-labeled 1,2,3,4-, 1,2,4,5-, or 1,2,3,5-tetrachlorobenzene over a 3-wk period at levels ranging from 50 to 100 mg/kg body weight (b.w) and kept in individual metabolism cages to collect urine and feces for radioassay. Approximately 38% (1,2,3,4-TeCB), 36% (1,2,3,5-TeCB), and 18% (1,2,4,5-TeCB) of the doses were excreted respectively in the feces 48 h post administration. In monkeys dosed with 1,2,3,4-TeCB, unchanged compound accounted for 50% of the fecal radioactivity. Unchanged compound accounted for more than 50% of the fecal radioactivity found in the monkeys dosed with 1,2,3,5-TeCB. The fecal metabolites were identified in both groups. No metabolites were detected in the feces of monkeys dosed with 1,2,4,5-TeCB. While the fecal route represented the major route of excretion for 1,2,3,4-TeCB, the other two isomers were eliminated exclusively in the feces. The above data in the squirrel monkey are different from those obtained with the rat and the rabbit, and demonstrate the different metabolic pathways for the isomers.

  16. Design and synthesis of novel 1,2,3-triazole-pyrimidine-urea hybrids as potential anticancer agents.

    PubMed

    Ma, Li-Ying; Wang, Bo; Pang, Lu-Ping; Zhang, Miao; Wang, Sai-Qi; Zheng, Yi-Chao; Shao, Kun-Peng; Xue, Deng-Qi; Liu, Hong-Min

    2015-03-01

    A series of novel 1,2,3-triazole-pyrimidine-urea hybrids were designed, synthesized and evaluated for anticancer activity against four selected cancer cell lines (MGC-803, EC-109, MCF-7 and B16-F10). Majority of the synthesized compounds exhibited moderate to potent activity against all the cancer cell lines assayed. Particularly, compounds 26, 30 and 38 exhibited excellent growth inhibition against B16-F10 with IC50 values of 32nM, 35nM and 42nM, respectively. Flow cytometry analysis demonstrated that compound 26 induced the cellular apoptosis in a concentration-dependent manner.

  17. 40 CFR 721.10345 - 1,2-Benzenedicarboxylic acid, 1,2-bis(methylcyclohexyl) ester.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...(methylcyclohexyl) ester. 721.10345 Section 721.10345 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10345 1,2-Benzenedicarboxylic acid, 1,2-bis(methylcyclohexyl) ester. (a... 1,2-benzenedicarboxylic acid, 1,2-bis(methylcyclohexyl) ester (PMN P-05-110; CAS No. 27987-25-3)...

  18. 40 CFR 721.10345 - 1,2-Benzenedicarboxylic acid, 1,2-bis(methylcyclohexyl) ester.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...(methylcyclohexyl) ester. 721.10345 Section 721.10345 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10345 1,2-Benzenedicarboxylic acid, 1,2-bis(methylcyclohexyl) ester. (a... 1,2-benzenedicarboxylic acid, 1,2-bis(methylcyclohexyl) ester (PMN P-05-110; CAS No. 27987-25-3)...

  19. 40 CFR 721.10345 - 1,2-Benzenedicarboxylic acid, 1,2-bis(methylcyclohexyl) ester.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...(methylcyclohexyl) ester. 721.10345 Section 721.10345 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10345 1,2-Benzenedicarboxylic acid, 1,2-bis(methylcyclohexyl) ester. (a... 1,2-benzenedicarboxylic acid, 1,2-bis(methylcyclohexyl) ester (PMN P-05-110; CAS No. 27987-25-3)...

  20. High Density Crossbar Arrays with Sub- 15 nm Single Cells via Liftoff Process Only.

    PubMed

    Khiat, Ali; Ayliffe, Peter; Prodromakis, Themistoklis

    2016-01-01

    Emerging nano-scale technologies are pushing the fabrication boundaries at their limits, for leveraging an even higher density of nano-devices towards reaching 4F(2)/cell footprint in 3D arrays. Here, we study the liftoff process limits to achieve extreme dense nanowires while ensuring preservation of thin film quality. The proposed method is optimized for attaining a multiple layer fabrication to reliably achieve 3D nano-device stacks of 32 × 32 nanowire arrays across 6-inch wafer, using electron beam lithography at 100 kV and polymethyl methacrylate (PMMA) resist at different thicknesses. The resist thickness and its geometric profile after development were identified to be the major limiting factors, and suggestions for addressing these issues are provided. Multiple layers were successfully achieved to fabricate arrays of 1 Ki cells that have sub- 15 nm nanowires distant by 28 nm across 6-inch wafer. PMID:27585643

  1. Photo-induced persistent inversion of germanium in a 200-nm-deep surface region.

    PubMed

    Prokscha, T; Chow, K H; Stilp, E; Suter, A; Luetkens, H; Morenzoni, E; Nieuwenhuys, G J; Salman, Z; Scheuermann, R

    2013-01-01

    The controlled manipulation of the charge carrier concentration in nanometer thin layers is the basis of current semiconductor technology and of fundamental importance for device applications. Here we show that it is possible to induce a persistent inversion from n- to p-type in a 200-nm-thick surface layer of a germanium wafer by illumination with white and blue light. We induce the inversion with a half-life of ~12 hours at a temperature of 220 K which disappears above 280 K. The photo-induced inversion is absent for a sample with a 20-nm-thick gold capping layer providing a Schottky barrier at the interface. This indicates that charge accumulation at the surface is essential to explain the observed inversion. The contactless change of carrier concentration is potentially interesting for device applications in opto-electronics where the gate electrode and gate oxide could be replaced by the semiconductor surface.

  2. High Density Crossbar Arrays with Sub- 15 nm Single Cells via Liftoff Process Only

    NASA Astrophysics Data System (ADS)

    Khiat, Ali; Ayliffe, Peter; Prodromakis, Themistoklis

    2016-09-01

    Emerging nano-scale technologies are pushing the fabrication boundaries at their limits, for leveraging an even higher density of nano-devices towards reaching 4F2/cell footprint in 3D arrays. Here, we study the liftoff process limits to achieve extreme dense nanowires while ensuring preservation of thin film quality. The proposed method is optimized for attaining a multiple layer fabrication to reliably achieve 3D nano-device stacks of 32 × 32 nanowire arrays across 6-inch wafer, using electron beam lithography at 100 kV and polymethyl methacrylate (PMMA) resist at different thicknesses. The resist thickness and its geometric profile after development were identified to be the major limiting factors, and suggestions for addressing these issues are provided. Multiple layers were successfully achieved to fabricate arrays of 1 Ki cells that have sub- 15 nm nanowires distant by 28 nm across 6-inch wafer.

  3. High Density Crossbar Arrays with Sub- 15 nm Single Cells via Liftoff Process Only

    PubMed Central

    Khiat, Ali; Ayliffe, Peter; Prodromakis, Themistoklis

    2016-01-01

    Emerging nano-scale technologies are pushing the fabrication boundaries at their limits, for leveraging an even higher density of nano-devices towards reaching 4F2/cell footprint in 3D arrays. Here, we study the liftoff process limits to achieve extreme dense nanowires while ensuring preservation of thin film quality. The proposed method is optimized for attaining a multiple layer fabrication to reliably achieve 3D nano-device stacks of 32 × 32 nanowire arrays across 6-inch wafer, using electron beam lithography at 100 kV and polymethyl methacrylate (PMMA) resist at different thicknesses. The resist thickness and its geometric profile after development were identified to be the major limiting factors, and suggestions for addressing these issues are provided. Multiple layers were successfully achieved to fabricate arrays of 1 Ki cells that have sub- 15 nm nanowires distant by 28 nm across 6-inch wafer. PMID:27585643

  4. The dynamics of femtosecond pulsed laser removal of 20 nm Ni films from an interface

    SciTech Connect

    Schrider, Keegan J.; Yalisove, Steven M.; Torralva, Ben

    2015-09-21

    The dynamics of femtosecond laser removal of 20 nm Ni films on glass substrates was studied using time-resolved pump-probe microscopy. 20 nm thin films exhibit removal at two distinct threshold fluences, removal of the top 7 nm of Ni above 0.14 J/cm{sup 2}, and removal of the entire 20 nm film above 0.36 J/cm{sup 2}. Previous work shows the top 7 nm is removed through liquid spallation, after irradiation the Ni melts and rapidly expands leading to tensile stress and cavitation within the Ni film. This work shows that above 0.36 J/cm{sup 2} the 20 nm film is removed in two distinct layers, 7 nm and 13 nm thick. The top 7 nm layer reaches a speed 500% faster than the bottom 13 nm layer at the same absorbed fluence, 500–2000 m/s and 300–700 m/s in the fluence ranges studied. Significantly different velocities for the top 7 nm layer and bottom 13 nm layer indicate removal from an interface occurs by a different physical mechanism. The method of measuring film displacement from the development of Newton's rings was refined so it could be shown that the 13 nm layer separates from the substrate within 70 ps and accelerates to its final velocity within several hundred picoseconds. We propose that removal of the bottom 13 nm is consistent with heterogeneous nucleation and growth of vapor at the Ni-glass interface, but that the rapid separation and acceleration of the 13 nm layer from the Ni-glass interface requires consideration of exotic phases of Ni after excitation.

  5. The crustal thickness of Australia

    USGS Publications Warehouse

    Clitheroe, G.; Gudmundsson, O.; Kennett, B.L.N.

    2000-01-01

    We investigate the crustal structure of the Australian continent using the temporary broadband stations of the Skippy and Kimba projects and permanent broadband stations. We isolate near-receiver information, in the form of crustal P-to-S conversions, using the receiver function technique. Stacked receiver functions are inverted for S velocity structure using a Genetic Algorithm approach to Receiver Function Inversion (GARFI). From the resulting velocity models we are able to determine the Moho depth and to classify the width of the crust-mantle transition for 65 broadband stations. Using these results and 51 independent estimates of crustal thickness from refraction and reflection profiles, we present a new, improved, map of Moho depth for the Australian continent. The thinnest crust (25 km) occurs in the Archean Yilgarn Craton in Western Australia; the thickest crust (61 km) occurs in Proterozoic central Australia. The average crustal thickness is 38.8 km (standard deviation 6.2 km). Interpolation error estimates are made using kriging and fall into the range 2.5-7.0 km. We find generally good agreement between the depth to the seismologically defined Moho and xenolith-derived estimates of crustal thickness beneath northeastern Australia. However, beneath the Lachlan Fold Belt the estimates are not in agreement, and it is possible that the two techniques are mapping differing parts of a broad Moho transition zone. The Archean cratons of Western Australia appear to have remained largely stable since cratonization, reflected in only slight variation of Moho depth. The largely Proterozoic center of Australia shows relatively thicker crust overall as well as major Moho offsets. We see evidence of the margin of the contact between the Precambrian craton and the Tasman Orogen, referred to as the Tasman Line. Copyright 2000 by the American Geophysical Union.

  6. Radiation Status of Sub-65 nm Electronics

    NASA Technical Reports Server (NTRS)

    Pellish, Jonathan A.

    2011-01-01

    Ultra-scaled complementary metal oxide semiconductor (CMOS) includes commercial foundry capabilities at and below the 65 nm technology node Radiation evaluations take place using standard products and test characterization vehicles (memories, logic/latch chains, etc.) NEPP focus is two-fold: (1) Conduct early radiation evaluations to ascertain viability for future NASA missions (i.e. leverage commercial technology development). (2) Uncover gaps in current testing methodologies and mechanism comprehension -- early risk mitigation.

  7. Laser damage database at 1064 nm

    SciTech Connect

    Rainer, F.; Gonzales, R.P.; Morgan, A.J.

    1990-03-01

    In conjunction with our diversification of laser damage testing capabilities, we have expanded upon a database of threshold measurements and parameter variations at 1064 nm. This includes all tests at low pulse-repetition frequencies (PRF) ranging from single shots to 120 Hz. These tests were conducted on the Reptile laser facility since 1987 and the Variable Pulse Laser (VPL) facility since 1988. Pulse durations ranged from 1 to 16 ns. 10 refs., 14 figs.

  8. A new life for a 10-year old MueTec2010 CD measurement system: the ultimate precision upgrade with additional film thickness measurement capability

    NASA Astrophysics Data System (ADS)

    Cassol, Gian Luca; Bianucci, Giovanni; Murai, Shiaki; Falk, Günther; Scheuring, Gerd; Döbereiner, Stefan; Brück, Hans-Jürgen

    2006-06-01

    A 10-year old MueTec2010, white light CD measurement system, installed at DNP Photomask Europe and previously owned by STMicroelectronics, has been upgraded to fulfill the high-end optical CD measurement requirements, and to add the film thickness measurement capability. That is the ultimate upgrade, consisting of two new computers with WINDOWS 2000 operating system, a new 150X measurement objective, a new 16-bit CCD digital camera, a new tube lens for the old Leica Ergoplan microscope, and the NanoStar software with the pattern recognition option. The upgrade yielded an average 45% repeatability improvement for isolated and dense lines and spaces, with 1.2nm average repeatability in a 0.3-10μm CD nominal range. Contact holes report an average 50% repeatability improvement, with 2.5nm average repeatability. The improved precision allows a +/-2-nm CD calibration and correlation down to 0.4μm CD nominal. Overall, the upgraded MueTec2010 shows same or better performance than the already installed Leica LWM250UV CD measurement system, despite the longer illumination wavelength of the former. The improved short and long term repeatability reduced the Gauge RandR figure from 24% to 11% at +/-20nm tolerance, which qualifies the system for high-end binary mask down to 0.5μm CD nominal. The feasibility to calibrate the system for 248nm Molybdenum Silicide Phase Shifting Masks is currently being investigated. In addition to that, the new measurement algorithms, the capability to take multiple measurements within the FOV, and the pattern recognition capability included in the NanoStar software gave a 75% throughput boost to the fully automated macros for the weekly calibration tests of the laser writing tools, compared to the LWM250UV run time. With little additional hardware and software, the system has also been upgraded to include the film thickness measurement capability for the PSM resist coating process (2nd exposure), without the need for a dedicated, more expensive

  9. Emissions in potassium vapour under 4S1/2-7S1/2 two-photon nsec excitation

    NASA Astrophysics Data System (ADS)

    Pentaris, D.; Chatzikyriakos, G.; Armyras, A.; Efthimiopoulos, T.

    2010-11-01

    The two-photon excitation of 4S1/2-7S1/2 transition of potassium atoms is studied. Several coherent emissions and processes are possible, such as parametric four-wave (PFWM), parametric six-wave (PSWM) mixing and competition with the stimulated hyper Raman (SHRS) and the amplified spontaneous emission (ASE). The radiations at the transitions 6P3/2,1/2-4S1/2, 6S1/2-4P3/2,1/2 and 5P3/2,1/2-4S1/2 are emitted only in the forward direction (indicating a parametric process), while the radiation at the transition 4P3/2,1/2-4S1/2 is emitted in the forward and in the backward direction, indicating an ASE process.

  10. Optimal thickness of silicon membranes to achieve maximum thermoelectric efficiency: A first principles study

    NASA Astrophysics Data System (ADS)

    Mangold, Claudia; Neogi, Sanghamitra; Donadio, Davide

    2016-08-01

    Silicon nanostructures with reduced dimensionality, such as nanowires, membranes, and thin films, are promising thermoelectric materials, as they exhibit considerably reduced thermal conductivity. Here, we utilize density functional theory and Boltzmann transport equation to compute the electronic properties of ultra-thin crystalline silicon membranes with thickness between 1 and 12 nm. We predict that an optimal thickness of ˜7 nm maximizes the thermoelectric figure of merit of membranes with native oxide surface layers. Further thinning of the membranes, although attainable in experiments, reduces the electrical conductivity and worsens the thermoelectric efficiency.

  11. Measurement of lateral charge diffusion in thick, fully depleted, back-illuminated CCDs

    SciTech Connect

    Karcher, Armin; Bebek, Christopher J.; Kolbe, William F.; Maurath, Dominic; Prasad, Valmiki; Uslenghi, Michela; Wagner, Martin

    2004-06-30

    Lateral charge diffusion in back-illuminated CCDs directly affects the point spread function (PSF) and spatial resolution of an imaging device. This can be of particular concern in thick, back-illuminated CCDs. We describe a technique of measuring this diffusion and present PSF measurements for an 800 x 1100, 15 mu m pixel, 280 mu m thick, back-illuminated, p-channel CCD that can be over-depleted. The PSF is measured over a wavelength range of 450 nm to 650 nm and at substrate bias voltages between 6 V and 80 V.

  12. Structure and laser-fabrication mechanisms of microcones on silver films of variable thickness

    NASA Astrophysics Data System (ADS)

    Danilov, P. A.; Zayarny, D. A.; Ionin, A. A.; Kudryashov, S. I.; Nguyen, T. T. H.; Rudenko, A. A.; Saraeva, I. N.; Kuchmizhak, A. A.; Vitrik, O. B.; Kulchin, Yu. N.

    2016-04-01

    Submicron dimensions, nanoscale crystalline structure, and fabrication mechanisms of microcones on silver films of variable (50-380 nm) thickness deposited onto glass substrates by single strongly focused femtosecond laser pulses of different fluences are experimentally studied using scanning electron microscopy. Fabrication mechanisms for nanoholes and microcones are discussed for films of the different thickness, as well as the extraordinary shapes of their constituent nanocrystallites, strongly elongated along the melt flow direction in thin films.

  13. Thickness Considerations of Two-Dimensional Layered Semiconductors for Transistor Applications.

    PubMed

    Zhang, Youwei; Li, Hui; Wang, Haomin; Xie, Hong; Liu, Ran; Zhang, Shi-Li; Qiu, Zhi-Jun

    2016-01-01

    Layered two-dimensional semiconductors have attracted tremendous attention owing to their demonstrated excellent transistor switching characteristics with a large ratio of on-state to off-state current, Ion/Ioff. However, the depletion-mode nature of the transistors sets a limit on the thickness of the layered semiconductor films primarily determined by a given Ion/Ioff as an acceptable specification. Identifying the optimum thickness range is of significance for material synthesis and device fabrication. Here, we systematically investigate the thickness-dependent switching behavior of transistors with a wide thickness range of multilayer-MoS2 films. A difference in Ion/Ioff by several orders of magnitude is observed when the film thickness, t, approaches a critical depletion width. The decrease in Ion/Ioff is exponential for t between 20 nm and 100 nm, by a factor of 10 for each additional 10 nm. For t larger than 100 nm, Ion/Ioff approaches unity. Simulation using technical computer-aided tools established for silicon technology faithfully reproduces the experimentally determined scaling behavior of Ion/Ioff with t. This excellent agreement confirms that multilayer-MoS2 films can be approximated as a homogeneous semiconductor with high surface conductivity that tends to deteriorate Ion/Ioff. Our findings are helpful in guiding material synthesis and designing advanced field-effect transistors based on the layered semiconductors. PMID:27403803

  14. Thickness Considerations of Two-Dimensional Layered Semiconductors for Transistor Applications

    NASA Astrophysics Data System (ADS)

    Zhang, Youwei; Li, Hui; Wang, Haomin; Xie, Hong; Liu, Ran; Zhang, Shi-Li; Qiu, Zhi-Jun

    2016-07-01

    Layered two-dimensional semiconductors have attracted tremendous attention owing to their demonstrated excellent transistor switching characteristics with a large ratio of on-state to off-state current, Ion/Ioff. However, the depletion-mode nature of the transistors sets a limit on the thickness of the layered semiconductor films primarily determined by a given Ion/Ioff as an acceptable specification. Identifying the optimum thickness range is of significance for material synthesis and device fabrication. Here, we systematically investigate the thickness-dependent switching behavior of transistors with a wide thickness range of multilayer-MoS2 films. A difference in Ion/Ioff by several orders of magnitude is observed when the film thickness, t, approaches a critical depletion width. The decrease in Ion/Ioff is exponential for t between 20 nm and 100 nm, by a factor of 10 for each additional 10 nm. For t larger than 100 nm, Ion/Ioff approaches unity. Simulation using technical computer-aided tools established for silicon technology faithfully reproduces the experimentally determined scaling behavior of Ion/Ioff with t. This excellent agreement confirms that multilayer-MoS2 films can be approximated as a homogeneous semiconductor with high surface conductivity that tends to deteriorate Ion/Ioff. Our findings are helpful in guiding material synthesis and designing advanced field-effect transistors based on the layered semiconductors.

  15. Thickness Considerations of Two-Dimensional Layered Semiconductors for Transistor Applications.

    PubMed

    Zhang, Youwei; Li, Hui; Wang, Haomin; Xie, Hong; Liu, Ran; Zhang, Shi-Li; Qiu, Zhi-Jun

    2016-01-01

    Layered two-dimensional semiconductors have attracted tremendous attention owing to their demonstrated excellent transistor switching characteristics with a large ratio of on-state to off-state current, Ion/Ioff. However, the depletion-mode nature of the transistors sets a limit on the thickness of the layered semiconductor films primarily determined by a given Ion/Ioff as an acceptable specification. Identifying the optimum thickness range is of significance for material synthesis and device fabrication. Here, we systematically investigate the thickness-dependent switching behavior of transistors with a wide thickness range of multilayer-MoS2 films. A difference in Ion/Ioff by several orders of magnitude is observed when the film thickness, t, approaches a critical depletion width. The decrease in Ion/Ioff is exponential for t between 20 nm and 100 nm, by a factor of 10 for each additional 10 nm. For t larger than 100 nm, Ion/Ioff approaches unity. Simulation using technical computer-aided tools established for silicon technology faithfully reproduces the experimentally determined scaling behavior of Ion/Ioff with t. This excellent agreement confirms that multilayer-MoS2 films can be approximated as a homogeneous semiconductor with high surface conductivity that tends to deteriorate Ion/Ioff. Our findings are helpful in guiding material synthesis and designing advanced field-effect transistors based on the layered semiconductors.

  16. Thickness Considerations of Two-Dimensional Layered Semiconductors for Transistor Applications

    PubMed Central

    Zhang, Youwei; Li, Hui; Wang, Haomin; Xie, Hong; Liu, Ran; Zhang, Shi-Li; Qiu, Zhi-Jun

    2016-01-01

    Layered two-dimensional semiconductors have attracted tremendous attention owing to their demonstrated excellent transistor switching characteristics with a large ratio of on-state to off-state current, Ion/Ioff. However, the depletion-mode nature of the transistors sets a limit on the thickness of the layered semiconductor films primarily determined by a given Ion/Ioff as an acceptable specification. Identifying the optimum thickness range is of significance for material synthesis and device fabrication. Here, we systematically investigate the thickness-dependent switching behavior of transistors with a wide thickness range of multilayer-MoS2 films. A difference in Ion/Ioff by several orders of magnitude is observed when the film thickness, t, approaches a critical depletion width. The decrease in Ion/Ioff is exponential for t between 20 nm and 100 nm, by a factor of 10 for each additional 10 nm. For t larger than 100 nm, Ion/Ioff approaches unity. Simulation using technical computer-aided tools established for silicon technology faithfully reproduces the experimentally determined scaling behavior of Ion/Ioff with t. This excellent agreement confirms that multilayer-MoS2 films can be approximated as a homogeneous semiconductor with high surface conductivity that tends to deteriorate Ion/Ioff. Our findings are helpful in guiding material synthesis and designing advanced field-effect transistors based on the layered semiconductors. PMID:27403803

  17. Isotope shift study in two visible lines: 500.6 nm and 520.3 nm of Pb I

    NASA Astrophysics Data System (ADS)

    Wasowicz, T. J.

    2005-06-01

    The isotope shift (IS) in two visible lines of neutral lead involving transitions 6s2 6p7s 1P1-6s2 6p2 1S0 (λ5OO.6 nm) and 6s2 6p8s 3P1-6s2 6p2 1S0 (λ520.3nm) have been measured using a Fabry-Perot interferometer. The isotope shifts between even isotopic pairs were found to be: v208-v206=73.3+/-0.9 mK and v208-v204=121.4+/-1.1 mK for 6p7s configuration and v208-v206=70.1+/-0.6 mK and v208-v204=135.7+/-0.8 mK for 6p8s configuration. The displacements of the centers of gravity of isotope 207 with respect to isotope 208 were determined to be v208-v207 CG=46.4+/-1.2 mK and v208-v207 CG=44.9+/-1.1 mK for 6p7s and 6p8s configurations, respectively.

  18. The Formation of IRIS Diagnostics. V. A Quintessential Model Atom of C II and General Formation Properties of the C II Lines at 133.5 nm

    NASA Astrophysics Data System (ADS)

    Rathore, Bhavna; Carlsson, Mats

    2015-10-01

    The C ii 133.5 {nm} lines are important observables for the NASA/SMEX mission Interface Region Imaging Spectrograph. To make three-dimensional (3D) non-LTE radiative transfer computationally feasible, it is crucial to have a model atom with as few levels as possible while retaining the main physical processes. We here develop such a model atom and we study the general formation properties of the C ii lines. We find that a nine-level model atom of C i-C iii with the transitions treated assuming complete frequency redistribution (CRD) suffices to describe the C ii 133.5 {nm} lines. 3D scattering effects are important for the intensity in the core of the line. The lines are formed in the optically thick regime. The core intensity is formed in layers where the temperature is about 10 kK at the base of the transition region. The lines are 1.2-4 times wider than the atomic absorption profile due to the formation in the optically thick regime. The smaller opacity broadening happens for single peak intensity profiles where the chromospheric temperature is low with a steep source function increase into the transition region, the larger broadening happens when there is a temperature increase from the photosphere to the low chromosphere leading to a local source function maximum and a double peak intensity profile with a central reversal. Assuming optically thin formation with the standard coronal approximation leads to several errors: neglecting photoionization severly underestimates the amount of C ii at temperatures below 16 kK, erroneously shifts the formation from 10 kK to 25 kK, and leads to too low intensities.

  19. Thickness and volume constants and ultrastructural organization of basement membrane (lens capsule).

    PubMed Central

    Fisher, R F; Hayes, B P

    1979-01-01

    1. The basement membrane of the crystalline lens of the rat has been found to have the following elastic constants: a Young's Modulus of elasticity of 0.56 +/- 0.38 x 10(6) Nm-2 at low stress and 11.3 +/- 1.9 x 10(6) Nm-2 at rupture, an ultimate stress of 28.8 +/- 4.5 x 10(5) Nm-2, and a maximum percentage elongation of 41.3 +/- 5.8. 2. The ratio of initial thickness of the membrane to the thickness at the point of rupture is 0.271 +/- 0.02 while the similar ratio for volume is 0.461 +/- 0.031. 3. Electron microscopic observations of ultrasonicated fragments of the entire membrane show long filaments in parallel arrays and sheets. The filaments show a periodicity of 3.7 nm and a spacing of 3.5 nm. 4. Electron microscopic observations of collagenase-treated membrane show a poorly staining matrix associated with separate short straight non-periodic filaments some 2.5 nm in diameter. In addition strands project from the ends of the filaments with a diameter of between 0.5 and 1.0 nm. 5. A model is proposed which consists of these filaments, composed of between three and five parallel strands, some 0.8 nm in diameter, wound in a superhelix. 6. The model predicts satisfactorily thickness and volume changes in the membrane when subjected to stress, and also indicates that the filaments would have a similar Young's Modulus of elasticity and ultimate stress to those of collagen. 7. If the basement membrane of the smallest retinal capillaries is subjected to a change of pressure of only 5 mmHg within the vessel lumen, then the membrane is likely to undergo some 30% reduction in thickness. Images Text-fig. 4 Plate 1 Plate 2 Plate 3 PMID:501593

  20. Role of human N-acetyltransferases, NAT1 or NAT2, in genotoxicity of nitroarenes and aromatic amines in Salmonella typhimurium NM6001 and NM6002.

    PubMed

    Oda, Y; Yamazaki, H; Shimada, T

    1999-06-01

    Human NAT1 and NAT2 genes were subcloned into pACYC184 vector and the plasmids thus obtained were introduced into Salmonella typhimurium O-acetyltransferase-deficient strain NM6000 (TA1538/1, 8-DNP/pSK1002), establishing new strains NM6001 and NM6002, respectively. We compared the sensitivities of these two strains with those of NM6000 towards carcinogenic nitroarenes and aromatic amines in the SOS/umu response. The induction of umuC gene expression by these chemicals in the presence and absence of the S9 fraction was assayed by measuring the cellular beta-galactosidase activity expressed by the umuC"lacZ fusion gene in the tester strains. 2-Nitrofluorene and 2-aminofluorene induced umuC gene expression more strongly in the NM6001 strain than in the NM6002 strain. In contrast, induction of umuC gene expression by 1, 8-dinitropyrene, 6-aminochrysene and 2-amino-3,5-dimethylimidazo[4, 5-f]quinoline was weaker in the NM6001 strain than in the NM6002 strain. 1-Nitropyrene, 2-amino-6-methyl-dipyrido[1,2-a:3', 2'-d]imidazole, 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole, 3-amino-1-methyl-5H-pyrido[4,3-b]indole, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine and 2-amino-3-methyl-9H-pyrido[2,3-b]indole were found to induce umuC gene expression at similar extents in both strains. These results suggest that the newly developed strains can be employed for the studies on mechanisms of genotoxicity of a variety of nitroarenes and aromatic amines, along with the assessment of cancer risk to humans. PMID:10357791

  1. Influence of AlN thickness on AlGaN epilayer grown by MOCVD

    NASA Astrophysics Data System (ADS)

    Jayasakthi, M.; Juillaguet, S.; Peyre, H.; Konczewicz, L.; Baskar, K.; Contreras, S.

    2016-10-01

    AlGaN/AlN layers were grown by metalorganic chemical vapor deposition (MOCVD) on sapphire substrates. The AlN buffer thickness was varied from 400 nm to 800 nm. The AlGaN layer thickness was 1000 nm. The crystalline quality, thickness and composition of AlGaN were determined using high resolution X-ray diffraction (HRXRD). The threading dislocation density (TDD) was found to decrease with increase of AlN layer thickness. Reciprocal space mapping (RSM) was used to estimate the strain and relaxation between AlGaN and AlN. The optical properties of AlGaN layers were investigated by temperature dependent photoluminescence (PL). PL intensities of AlGaN layers increases with increasing the AlN thickness. The surface morphology of AlGaN was studied by atomic force microscopy (AFM). Root mean square (RMS) roughness values were found to be decreased while increase of AlN thickness.

  2. ATR-FTIR as a thickness measurement technique for hydrated polymer-on-polymer coatings.

    PubMed

    Kane, Sheryl R; Ashby, Paul D; Pruitt, Lisa A

    2009-11-01

    Hydrated polymer coatings on polymer substrates are common for many biomedical applications, such as tissue engineering constructs, contact lenses, and catheters. The thickness of the coatings can affect the mechanical behavior of the systems and the cellular response, but measuring the coating thickness can be quite challenging using conventional methods. We propose a new method, that is, attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) to determine the relative thickness, combined with atomic force microscopy to calibrate the ATR-FTIR measurements. This technique was successfully employed to determine the hydrated thickness of a series of crosslinked tetraglyme coatings on ultrahigh molecular weight polyethylene substrates intended to reduce wear of acetabular cups in total hip replacements. The hydrated coatings ranged from 30 to 200 nm thick and were accurately measured despite the relatively high root-mean-square (RMS) roughness of the substrates, 20-35 nm (peak-to-peak roughness 55-100 nm). The calibrated ATR-FTIR technique is a promising new method for measuring the thickness of many other polymer-on-polymer and hydrated coatings.

  3. Aminodisilanes as silylating agents for dry-developed positive-tone resists for deep-ultraviolet (248-nm) and extreme ultraviolet (13.5-nm) microlithography

    NASA Astrophysics Data System (ADS)

    Wheeler, David R.; Hutton, Richard S.; Boyce, Craig H.; Stein, Susan M.; Cirelli, Raymond A.; Taylor, Gary N.

    1995-06-01

    Disilanes are used as silylating reagents for near-surface imaging with deep-UV (248 nm) and EUV (13.5 nm) lithography. A relatively thin imaging layer of a photo-cross-linking resist is spun over a thicker layer of hard-baked resist that functions as a planarizing layer and antireflective coating. Photoinduced acid generation and subsequent heating crosslinks render exposed areas impermeable to an aminodisilane that reacts with the unexposed regions. Subsequent silylation and reactive ion etching affords a positive-tone image. The use of disilanes introduces a higher concentration of silicon into the polymer than is possible with silicon reagents that incorporate only one silicon atom per reactive site. The higher silicon content in the silylated polymer increases etching selectivity between exposed and unexposed regions and thereby increases the contrast. The synthesis and reactivity of `smaller' disilanes, N,N-dimethylamino-1,2-dimethyldisilane, (DMADMDS), and N,N-diethylamino-1,2- dimethyldisilane also are described. Additional silylation improvements that minimize flow during silylation also are discussed including the addition of bifunctional disilanes to the monofunctional DMAPMDS. This causes the crosslinking to occur during silylation which minimizes flow. We have resolved high aspect ratio, very high quality 0.20 micrometers line and space patterns at 248 nm with a stepper having a numerical aperture (NA) equals 0.53 and have resolved nm.

  4. Novel 1.2kW UV laser system for micro fabrication and annealing

    NASA Astrophysics Data System (ADS)

    Herbst, Ludolf; Paetzel, Rainer; Schmidt, Kai

    2011-03-01

    The growing demand for laser micro fabrication drives further requirements on higher production speed per part and lower manufacturing costs. A newly developed 1.2 kW 308 nm excimer laser addresses both micro-manufacturing and high production throughput. Solid state UV laser sources usually cannot emit UV laser radiation directly. The inherently required frequency conversion limits the total output power to several 10 Watts below 350 nm. Furthermore these UV-conversion- modules limit the long term reliability of high power UV solid state lasers significantly because of the wear of the conversion crystals. Excimer lasers, however, overcome these issues by direct emission at 308, 248, or 193 nm. By now up to 540 Watts at 308 nm are established in production. With the new laser we have more than doubled the available output power to 1.2 kW. The combination of short wavelength and highest available UV laser power makes it ideal for processing of small features or to modify thin surfaces. Furthermore, pulsed UV laser radiation is very suitable for removing delicate electronic devices from manufacturing substrates. High-power UV laser systems are capable of processing large areas with resolution down to several microns in one single laser ablation step without using multiple lithography and wet chemical processes. For instance, laser Lift-Off and large area annealing have proven to be very efficient manufacturing techniques for volume production. In this paper, a novel 1.2 kW excimer laser will be presented and discussed.

  5. Gigashot optical degradation in silica optics at 351 nm.

    PubMed

    Ly, Sonny; Laurence, Ted A; Shen, Nan; Hollingsworth, Bill; Norton, Mary; Bude, Jeff D

    2015-02-23

    As applications of lasers demand higher average powers, higher repetition rates, and longer operation times, optics will need to perform well under unprecedented conditions. We investigate the optical degradation of fused silica surfaces at 351 nm for up to 10(9) pulses with pulse fluences up to 12 J/cm(2). The central result is that the transmission loss from defect generation is a function of the pulse intensity, I(p), and total integrated fluence, φ(T), and is influenced by oxygen partial pressure. In 10(-6) Torr vacuum, at low I(p), a transmission loss is observed that increases monotonically as a function of number of pulses. As the pulse intensity increases above 13 MW/cm(2), the observed transmission losses decrease, and are not measureable for 130 MW/cm(2). A physical model which supports the experimental data is presented to describe the suppression of transmission loss at high pulse intensity. Similar phenomena are observed in anti-reflective sol-gel coated optics. Absorption, not scattering, is the primary mechanism leading to transmission loss. In 2.5 Torr air, no transmission loss was detected under any pulse intensity used. We find that the absorption layer that leads to transmission loss is less than 1 nm in thickness, and results from a laser-activated chemical process involving photo-reduction of silica within a few monolayers of the surface. The competition between photo-reduction and photo-oxidation explains the measured data: transmission loss is reduced when either the light intensity or the O(2) concentration is high. We expect processes similar to these to occur in other optical materials for high average power applications.

  6. ERK1/2 regulate the balance between eccentric and concentric cardiac growth

    PubMed Central

    Kehat, Izhak; Davis, Jennifer; Tiburcy, Malte; Accornero, Federica; Saba-El-Leil, Marc K.; Maillet, Marjorie; York, Allen J.; Lorenz, John N.; Zimmermann, Wolfram H.; Meloche, Sylvain; Molkentin, Jeffery D.

    2011-01-01

    Rationale An increase in cardiac afterload typically produces concentric hypertrophy characterized by an increase in cardiomyocyte width, while volume overload or exercise results in eccentric growth characterized by cellular elongation and addition of sarcomeres in series. The signaling pathways that control eccentric versus concentric heart growth are not well understood. Objective To determine the role of extracellular signal-regulated kinases 1/2 in regulating the cardiac hypertrophic response. Methods and results Here we used mice lacking all ERK1/2 protein in the heart (Erk1−/− Erk2fl/fl-Cre) and mice expressing activated Mek1 in the heart to induce ERK1/2 signaling, as well as mechanistic experiments in cultured myocytes to assess cellular growth characteristics associated with this signaling pathway. While genetic deletion of all ERK1/2 from the mouse heart did not block the cardiac hypertrophic response per se, meaning that the heart still increased in weight with both aging and pathologic stress stimulation, it did dramatically alter how the heart grew. For example, adult myocytes from hearts of Erk1−/− Erk2fl/fl-Cre mice showed preferential eccentric growth (lengthening) while myocytes from Mek1 transgenic hearts showed concentric growth (width increase). Isolated adult myocytes acutely inhibited for ERK1/2 signaling by adenoviral gene transfer showed spontaneous lengthening while infection with an activated Mek1 adenovirus promoted constitutive ERK1/2 signaling and increased myocyte thickness. A similar effect was observed in engineered heart tissue under cyclical stretching, where ERK1/2 inhibition led to preferential lengthening. Conclusions Taken together these data demonstrate that the ERK1/2 signaling pathway uniquely regulates the balance between eccentric and concentric growth of the heart. Summary We studied mice lacking all ERK1/2 protein in the heart and mice expressing activated Mek1 in the heart to evaluate the role of the ERK 1/2

  7. Compression behaviour of thick vertically aligned carbon nanotube blocks.

    PubMed

    Pavese, Matteo; Musso, Simone; Pugno, Nicola M

    2010-07-01

    Blocks of vertically aligned multiwall carbon nanotubes were prepared by thermal chemical vapor deposition starting from camphor and ferrocene precursors. The blocks, having a thickness of approximately 2 mm and composed of nanotubes with diameter ranging between 30 and 80 nm, were submitted to compression tests. The results were analyzed accordingly with a simple model consisting in a parallel array of nanotubes under compression and bending suffering microscopic instability and compaction. The model mostly fits the experimental stress-strain curves, with a small deviation attributed to dissipative phenomena, such as frictional forces and nanotube wall breakage. PMID:21128406

  8. Spectroscopy of Pluto at six longitudes, 380-930 nm

    NASA Astrophysics Data System (ADS)

    Cruikshank, Dale P.; Pinilla-Alonso, Noemi; Lorenzi, Vania; Grundy, Will M.; Licandro, Javier; Binzel, Richard P.

    2014-11-01

    We have obtained spectra of the Pluto-Charon pair (unresolved) in the wavelength range 380-930 nm with resolution ~450 at six roughly equally spaced longitudes. The data were taken in May and June, 2014, with the 4.2-m Isaac Newton Telescope at Roque de Los Muchachos Observatory in the Canary Islands, using the ACAM (auxiliary-port camera) in spectrometer mode, and using two solar analog stars. The new spectra clearly show absorption bands of solid CH4 at 620, 728, and 850-910 nm, which were known from earlier work. The 620-nm CH4 band is intrinsically very weak, and its appearance indicates a long optical pathlength through the ice. This is especially true if it arises from CH4 dissolved in N2 ice. Earlier work (Owen et al. Science 261, 745, 1993) on the near-infrared spectrum of Pluto (1-2.5 µm) has shown that the CH4 bands are shifted to shorter wavelengths because the CH4 occurs as a solute in beta-phase crystalline N2. The optical pathlength through the N2 crystals must be on the order of several cm to produce the N2 band observed at 2.15 µm. The new spectra exhibit a pronounced red slope across the entire wavelength range; the slope is variable with longitude, and differs in a small but significant way from that measured at comparable longitudes by Grundy & Fink (Icarus 124, 329, 1996) in their 15-year study of Pluto’s spectrum (500-1000 nm). The new spectra will provide an independent means for calibrating the color filter bands on the Multispectral Visible Imaging Camera (MVIC) (Reuter et al. Space Sci. Rev. 140, 129, 2008) on the New Horizons spacecraft, which will encounter the Pluto-Charon system in mid-2015. They will also form the basis of modeling the spectrum of Pluto at different longitudes to help establish the nature of the non-ice component(s) of Pluto’s surface. It is presumed that the non-ice component is the source of the yellow-red coloration of Pluto, which is known to be variable across the surface.

  9. Spectroscopy of Pluto, 380-930 Nm at Six Longitudes

    NASA Technical Reports Server (NTRS)

    Cruikshank, D. P.; Pinilla-Alonso, N.; Lorenzi, V.; Grundy, William; Licandro, J.; Binzel, R. P.

    2014-01-01

    We have obtained spectra of the Pluto-Charon pair (unresolved) in the wavelength range 380-930 nm with resolution approx..450 at six roughly equally spaced longitudes. The data were taken in May and June, 2014, with the 4.2-m Isaac Newton Telescope at Roque de Los Muchachos Observatory in the Canary Islands, using the ACAM (auxiliary-port camera) in spectrometer mode, and using two solar analog stars. The new spectra clearly show absorption bands of solid CH4 at 620, 728, and 850-910 nm, which were known from earlier work. The 620-nm CH4 band is intrinsically very weak, and its appearance indicates a long optical path-length through the ice. This is especially true if it arises from CH4 dissolved in N2 ice. Earlier work (Owen et al. Science 261, 745, 1993) on the near-infrared spectrum of Pluto (1-2.5 microns) has shown that the CH4 bands are shifted to shorter wavelengths because the CH4 occurs as a solute in beta-phase crystalline N2. The optical path-length through the N2 crystals must be on the order of several cm to produce the N2 band observed at 2.15 microns. The new spectra exhibit a pronounced red slope across the entire wavelength range; the slope is variable with longitude, and differs in a small but significant way from that measured at comparable longitudes by Grundy & Fink (Icarus 124, 329, 1996) in their 15-year study of Pluto's spectrum (500-1000 nm). The new spectra will provide an independent means for calibrating the color filter bands on the Multispectral Visible Imaging Camera (MVIC) (Reuter et al. Space Sci. Rev. 140, 129, 2008) on the New Horizons spacecraft, which will encounter the Pluto-Charon system in mid-2015. They will also form the basis of modeling the spectrum of Pluto at different longitudes to help establish the nature of the non-ice component(s) of Pluto's surface. It is presumed that the non-ice component is the source of the yellow-red coloration of Pluto, which is known to be variable across the surface.

  10. Patterning polymeric structures with 2 nm resolution at 3 nm half pitch in ambient conditions.

    PubMed

    Martínez, R V; Losilla, N S; Martinez, J; Huttel, Y; Garcia, R

    2007-07-01

    The miniaturization limits of electronic and mechanical devices depend on the minimum pattern periodicity that is stable in ambient conditions. Here we demonstrate an atomic force microscopy lithography that enables the patterning of 2 nm organic structures with 6 nm periodicities in air. We also demonstrate that the lithography can be up-scaled for parallel patterning. The method is based on the formation of a nanoscale octane meniscus between a sharp conductive protrusion and a silicon (100) surface. The application of a high electrical field ( approximately 10 V/nm) produces the polymerization and cross-linking of the octane molecules within the meniscus followed by their deposition. The resulting pattern periodicities are very close to the ultimate theoretical limits achievable in air ( approximately 3 nm). The chemical composition of the patterns has been characterized by photoemission spectroscopy.

  11. 981 nm Yb:KYW laser intracavity pumped at 912 nm and frequency-doubling for an emission at 490.5 nm

    NASA Astrophysics Data System (ADS)

    Lü, Y. F.; Zhang, X. H.; Xia, J.; Chen, R.; Jin, G. Y.; Wang, J. G.; Li, C. L.; Ma, Z. Y.

    2010-05-01

    We present an Yb:KY(WO4)2 (Yb:KYW) laser emitting at 981 nm intracavity pumped by a 912 nm diode-pumped Nd:GdVO4 laser. A 808 nm diode laser is used to pump the Nd:GdVO4 crystal emitting at 912 nm, and the Yb:KYW laser emitting at 981 nm intracavity pumped at 912 nm. This configuration enabled us to indirectly diode-pump this ytterbium doped crystal, and to obtain 1.12 W output power at 981 nm for 19.6 W of incident pump power at 808 nm. Furthermore, intracavity second harmonic generation has also been demonstrated with a power of 106 mW at 490.5 nm by using a LBO nonlinear crystal.

  12. Catalytic hydrodechlorination of 1,2-dichloroethane using copper nanoparticles under reduction conditions of sodium borohydride.

    PubMed

    Huang, Chang-Chieh; Lo, Shang-Lien; Tsai, Shin-Mu; Lien, Hsing-Lung

    2011-09-01

    1,2-Dichloroethane (1,2-DCA) is a raw material used for the manufacture of vinyl chloride monomer (VCM) and therefore has very often been detected in the groundwater nearby the VCM manufacturing plant. Zero-valent iron (ZVI) is capable of degrading a wide array of highly chlorinated contaminants; however, the reactivity of ZVI towards 1,2-DCA is very low. In this study, zero-valent copper nanoparticles have been synthesized for effective dechlorination of 1,2-DCA under reduction conditions of sodium borohydride. Copper nanoparticles consisted of mainly metallic copper (Cu(0)) with small amounts of cuprous oxide (Cu(2)O). They have surface areas of about 19.0 m(2) g(-1) and an average diameter of 15 nm. Batch experiments were conducted to test the effectiveness of copper nanoparticles for 1,2-DCA degradation using sodium borohydride as electron donors where the ORP was measured as -1100 mV. More than 80% of 1,2-DCA (30 mg L(-1)) was rapidly degraded within 2 h in the presence of both copper nanoparticles (2.5 g L(-1)) and borohydride (25 mM). No reduction of 1,2-DCA was observed when the system contained either copper nanoparticles alone or borohydride alone. The degradation intermediates included ethane and ethylene accounting for 79% and ∼1.5% of the 1,2-DCA lost, respectively. Potential environmental applications can be achieved by immobilizing copper nanoparticles onto the surface of reducing metals to form a reactive bimetallic structure.

  13. Near infrared imaging of teeth at wavelengths between 1200 and 1600 nm

    NASA Astrophysics Data System (ADS)

    Chung, Soojeong; Fried, Daniel; Staninec, Michal; Darling, Cynthia L.

    2011-03-01

    Near-IR (NIR) imaging is a new technology that is currently being investigated for the detection and assessment of dental caries without the use of ionizing radiation. Several papers have been published on the use of transillumination and reflectance NIR imaging to detect early caries in enamel. The purpose of this study was to investigate alternative near infrared wavelengths besides 1300-nm in the range from 1200- 1600-nm to determine the wavelengths that yield the highest contrast in both transmission and reflectance imaging modes. Artificial lesions were created on thirty tooth sections of varying thickness for transillumination imaging. NIR images at wavelengths from the visible to 1600-nm were also acquired for fifty-four whole teeth with occlusal lesions using a tungsten halogen lamp with several spectral filters and a Ge-enhanced CMOS image sensor. Cavity preparations were also cut into whole teeth and Z250 composite was used as a restorative material to determine the contrast between composite and enamel at NIR wavelengths. Slightly longer NIR wavelengths are likely to have better performance for the transillumination of occlusal caries lesions while 1300-nm appears best for the transillumination of proximal surfaces. Significantly higher performance was attained at wavelengths that have higher water absorption, namely 1460-nm and wavelengths greater than 1500-nm and these wavelength regions are likely to be more effective for reflectance imaging. Wavelengths with higher water absorption also provided higher contrast of composite restorations.

  14. Quantitative comparison of the OCT imaging depth at 1300 nm and 1600 nm

    PubMed Central

    Kodach, V. M.; Kalkman, J.; Faber, D. J.; van Leeuwen, T. G.

    2010-01-01

    One of the present challenges in optical coherence tomography (OCT) is the visualization of deeper structural morphology in biological tissues. Owing to a reduced scattering, a larger imaging depth can be achieved by using longer wavelengths. In this work, we analyze the OCT imaging depth at wavelengths around 1300 nm and 1600 nm by comparing the scattering coefficient and OCT imaging depth for a range of Intralipid concentrations at constant water content. We observe an enhanced OCT imaging depth for 1600 nm compared to 1300 nm for Intralipid concentrations larger than 4 vol.%. For higher Intralipid concentrations, the imaging depth enhancement reaches 30%. The ratio of scattering coefficients at the two wavelengths is constant over a large range of scattering coefficients and corresponds to a scattering power of 2.8 ± 0.1. Based on our results we expect for biological tissues an increase of the OCT imaging depth at 1600 nm compared to 1300 nm for samples with high scattering power and low water content. PMID:21258456

  15. Measurement of coating thickness using laser heating

    NASA Astrophysics Data System (ADS)

    Martsinukov, S. A.; Kostrin, D. K.; Chernigovskiy, V. V.; Lisenkov, A. A.

    2016-08-01

    The analysis of thermal processes during the measurement of coating thickness with the use of heating with laser radiation is conducted. The obtained curves of the heating process allow determining thickness of the formed coatings.

  16. Vibrational analysis of 1,2-dichloro-2-methylpropane and 1,2-dibromo-2-methylpropane

    NASA Astrophysics Data System (ADS)

    Crowder, G. A.; Richardson, Mary Townsend

    1982-02-01

    Liquid-state IR and Raman spectra and solid-state IR spectra have been obtained for 1,2-dichloro-2-methylpropane and l,2-dibromo-2-methylpropane. Carbon-halogen stretching bands are observed in the liquid-state spectrum of the dichloro compound at 751, 725, 624 and 574 cm -1 and at 677, 640, 551 and 507 cm -1 in the liquid-state spectrum of the dibromo compound. Both compounds exist as P CTt HHH and P XT XHH conformations in the liquid, but only the P XT XHH conformer is present for each in the crystalline solid. Further Interpretation of the spectra was aided by normal coordinate calculations.

  17. Photolysis of formic acid at 355 nm

    NASA Astrophysics Data System (ADS)

    Martinez, Denhi; Bautista, Teonanacatl; Guerrero, Alfonso; Alvarez, Ignacio; Cisneros, Carmen

    2015-05-01

    Formic acid is well known as a food additive and recently an application on fuel cell technology has emerged. In this work we have studied the dissociative ionization process by multiphoton absorption of formic acid molecules at 355nm wavelength photons, using TOF spectrometry in reflectron mode (R-TOF). Some of the most abundant ionic fragments produced are studied at different settings of the laser harmonic generator. The dependence of the products on these conditions is reported. This work was supported by CONACYT Project 165410 and PAPIIT IN102613 and IN101215.

  18. 248nm silicon photoablation: Microstructuring basics

    SciTech Connect

    Poopalan, P.; Najamudin, S. H.; Wahab, Y.; Mazalan, M.

    2015-05-15

    248nm pulses from a KrF excimer laser was used to ablate a Si wafer in order to ascertain the laser pulse and energy effects for use as a microstructuring tool for MEMS fabrication. The laser pulses were varied between two different energy levels of 8mJ and 4mJ while the number of pulses for ablation was varied. The corresponding ablated depths were found to range between 11 µm and 49 µm, depending on the demagnified beam fluence.

  19. Effect of thickness on electrical properties of SILAR deposited SnS thin films

    NASA Astrophysics Data System (ADS)

    Akaltun, Yunus; Astam, Aykut; Cerhan, Asena; ćayir, Tuba

    2016-03-01

    Tin sulfide (SnS) thin films of different thickness were prepared on glass substrates by successive ionic layer adsorption and reaction (SILAR) method at room temperature using tin (II) chloride and sodium sulfide aqueous solutions. The thicknesses of the films were determined using spectroscopic ellipsometry measurements and found to be 47.2, 65.8, 111.0, and 128.7nm for 20, 25, 30 and 35 deposition cycles respectively. The electrical properties of the films were investigated using d.c. two-point probe method at room temperature and the results showed that the resistivity was found to decrease with increasing film thickness.

  20. Correlation of CsK{sub 2}Sb photocathode lifetime with antimony thickness

    SciTech Connect

    Mamun, M. A. Elmustafa, A. A.; Hernandez-Garcia, C.; Poelker, M.

    2015-06-01

    CsK{sub 2}Sb photocathodes with quantum efficiency on the order of 10% at 532 nm, and lifetime greater than 90 days at low voltage, were successfully manufactured via co-deposition of alkali species emanating from an effusion source. Photocathodes were characterized as a function of antimony layer thickness and alkali consumption, inside a vacuum chamber that was initially baked, but frequently vented without re-baking. Photocathode lifetime measured at low voltage is correlated with the antimony layer thickness. Photocathodes manufactured with comparatively thick antimony layers exhibited the best lifetime. We speculate that the antimony layer serves as a reservoir, or sponge, for the alkali.

  1. Correlation of CsK2Sb photocathode lifetime with antimony thickness

    SciTech Connect

    Mamun, M. A.; Hernandez-Garcia, C.; Poelker, M.; Elmustafa, A. A.

    2015-06-01

    CsK2Sb photocathodes with quantum efficiency on the order of 10% at 532 nm, and lifetime greater than 90 days at low voltage, were successfully manufactured via co-deposition of alkali species emanating from an effusion source. Photocathodes were characterized as a function of antimony layer thickness and alkali consumption, inside a vacuum chamber that was initially baked, but frequently vented without re-baking. Photocathode lifetime measured at low voltage is correlated with the antimony layer thickness. Photocathodes manufactured with comparatively thick antimony layers exhibited the best lifetime. We speculate that the antimony layer serves as a reservoir, or sponge, for the alkali.

  2. Creating universes with thick walls

    NASA Astrophysics Data System (ADS)

    Ulvestad, Andrew; Albrecht, Andreas

    2012-05-01

    We study the dynamics of a spherically symmetric false vacuum bubble embedded in a true vacuum region separated by a “thick wall”, which is generated by a scalar field in a quartic potential. We study the “Farhi-Guth-Guven” (FGG) quantum tunneling process by constructing numerical solutions relevant to this process. The Arnowitt-Deser-Misner mass of the spacetime is calculated, and we show that there is a lower bound that is a significant fraction of the scalar field mass. We argue that the zero mass solutions used to by some to argue against the physicality of the FGG process are artifacts of the thin wall approximation used in earlier work. We argue that the zero mass solutions should not be used to question the viability of the FGG process.

  3. Co thickness dependence of structural and magnetic properties in spin quantum cross devices utilizing stray magnetic fields

    SciTech Connect

    Kaiju, H. Kasa, H.; Mori, S.; Misawa, T.; Abe, T.; Nishii, J.; Komine, T.

    2015-05-07

    We investigate the Co thickness dependence of the structural and magnetic properties of Co thin-film electrodes sandwiched between borate glasses in spin quantum cross (SQC) devices that utilize stray magnetic fields. We also calculate the Co thickness dependence of the stray field between the two edges of Co thin-film electrodes in SQC devices using micromagnetic simulation. The surface roughness of Co thin films with a thickness of less than 20 nm on borate glasses is shown to be as small as 0.18 nm, at the same scanning scale as the Co film thickness, and the squareness of the hysteresis loop is shown to be as large as 0.96–1.0. As a result of the establishment of polishing techniques for Co thin-film electrodes sandwiched between borate glasses, we successfully demonstrate the formation of smooth Co edges and the generation of stray magnetic fields from Co edges. Theoretical calculation reveals that a strong stray field beyond 6 kOe is generated when the Co thickness is greater than 10 nm at a junction gap distance of 5 nm. From these experimental and calculation results, it can be concluded that SQC devices with a Co thickness of 10–20 nm can be expected to function as spin-filter devices.

  4. Thickness-Dependent Structural and Optoelectronic Properties of In2O3 Films Prepared by Spray Pyrolysis Technique

    NASA Astrophysics Data System (ADS)

    Khan, M. A. Majeed; Khan, Wasi

    2016-08-01

    In this work, nanostructured In2O3 thin films with thickness in the range of 40-160 nm were deposited on glass substrates by the chemical spray pyrolysis technique. The microstructural, surface morphology and optical properties were investigated as a function of film thickness through x-ray diffraction, scanning electron microscopy equipped with energy dispersive spectroscopy, atomic force microscopy, Raman spectroscopy, UV-visible spectroscopy and photoluminescence measurements. The x-ray diffraction analysis showed that the deposited films were polycrystalline in nature with a cubic structure having (222) as preferred orientation. The morphological analyses of the samples exhibited uniform and smooth surface of the films with systematical increments in the surface roughness with increasing film thickness. The grain size increased from 9 nm to 13 nm with increasing film thickness. Raman spectroscopy has been employed to study the crystalline quality and the structural disorder of the films. A blue-shift in the energy band gap ( E g) from 3.74 eV to 3.98 eV was observed with the increase of film thickness. Moreover, photoluminescence peaks of the In2O3 films appeared at 443 nm and 527 nm for all films. The thickness had a substantial influence on the microstructural and optical properties as well as on the luminescence intensity of the films. The strategy presented here indicates that the prepared films could be suitable candidates for optoelectronic device applications.

  5. 10 nm gap bowtie plasmonic apertures fabricated by modified lift-off process

    NASA Astrophysics Data System (ADS)

    Huang, I.-Chun; Holzgrafe, Jeffrey; Jensen, Russell A.; Choy, Jennifer T.; Bawendi, Moungi G.; Lončar, Marko

    2016-09-01

    Bowtie plasmonic apertures, with gap sizes down to 11 nm and silver film thickness of up to 150 nm (aspect ratio ˜14:1), were fabricated on a silicon nitride membrane. Transmission spectra feature the aperture resonances ranging from 470 to 687 nm, with quality factors around 10. The mode area of the smallest gap aperture is estimated to be as small as 0.002 (λ/n)2 using numerical modeling. Importantly, our fabrication technique, based on an e-beam lithography and a lift-off process, is scalable which allows fabrication of many devices in parallel over a relatively large area. We believe that the devices demonstrated in this work will find application in studying and engineering light-matter interactions.

  6. Synthesis of WS2 Nanowires as Efficient 808 nm-Laser-Driven Photothermal Nanoagents.

    PubMed

    Macharia, Daniel K; Yu, Nuo; Zhong, Runzhi; Xiao, Zhiyin; Yang, Jianmao; Chen, Zhigang

    2016-06-01

    A prerequisite for the development of photothermal ablation therapy for cancer is to obtain efficient photothermal nanoagents that can be irradiated by near-infrared (NIR) laser. Herein, we have reported the synthesis of WS2 nanowires as photothermal nanoagents by the reaction of WCl6 with CS2 in oleylamine at 280 degrees C. WS2 nanowires have the thickness of -2 nm and length of -100 nm. Importantly, the chloroform dispersion of WS2 nanowires exhibits strong photoabsorption in NIR region. The temperature of the dispersion (0.10-0.50 mg/mL) can increase by 12.8-23.9 degrees C in 5 min under the irradiation of 808 nm laser with a power density of 0.80 W/cm2. Therefore, WS2 nanowires have a great superiority as a new nanoagent for NIR-induced photothermal ablation of cancer, due to their small size and excellent photothermal performance.

  7. Synthesis of WS2 Nanowires as Efficient 808 nm-Laser-Driven Photothermal Nanoagents.

    PubMed

    Macharia, Daniel K; Yu, Nuo; Zhong, Runzhi; Xiao, Zhiyin; Yang, Jianmao; Chen, Zhigang

    2016-06-01

    A prerequisite for the development of photothermal ablation therapy for cancer is to obtain efficient photothermal nanoagents that can be irradiated by near-infrared (NIR) laser. Herein, we have reported the synthesis of WS2 nanowires as photothermal nanoagents by the reaction of WCl6 with CS2 in oleylamine at 280 degrees C. WS2 nanowires have the thickness of -2 nm and length of -100 nm. Importantly, the chloroform dispersion of WS2 nanowires exhibits strong photoabsorption in NIR region. The temperature of the dispersion (0.10-0.50 mg/mL) can increase by 12.8-23.9 degrees C in 5 min under the irradiation of 808 nm laser with a power density of 0.80 W/cm2. Therefore, WS2 nanowires have a great superiority as a new nanoagent for NIR-induced photothermal ablation of cancer, due to their small size and excellent photothermal performance. PMID:27427645

  8. 26 CFR 1.1-2 - Limitation on tax.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 1 2014-04-01 2013-04-01 true Limitation on tax. 1.1-2 Section 1.1-2 Internal... Surtaxes § 1.1-2 Limitation on tax. (a) Taxable years ending before January 1, 1971. For taxable years ending before January 1, 1971, the tax imposed by section 1 (whether by subsection (a) or subsection...

  9. 26 CFR 1.1-2 - Limitation on tax.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 1 2010-04-01 2010-04-01 true Limitation on tax. 1.1-2 Section 1.1-2 Internal... Surtaxes § 1.1-2 Limitation on tax. (a) Taxable years ending before January 1, 1971. For taxable years ending before January 1, 1971, the tax imposed by section 1 (whether by subsection (a) or subsection...

  10. 26 CFR 1.1-2 - Limitation on tax.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 1 2011-04-01 2009-04-01 true Limitation on tax. 1.1-2 Section 1.1-2 Internal... Surtaxes § 1.1-2 Limitation on tax. (a) Taxable years ending before January 1, 1971. For taxable years ending before January 1, 1971, the tax imposed by section 1 (whether by subsection (a) or subsection...

  11. 43 CFR § 2812.1-2 - Contents.

    Code of Federal Regulations, 2012 CFR

    2015-10-01

    ... 43 Public Lands: Interior 2 2015-10-01 2015-10-01 false Contents. § 2812.1-2 Section § 2812.1-2 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT... Coos Bay Revested Lands § 2812.1-2 Contents. (a) An individual applicant and each member of...

  12. 49 CFR 1.2 - Organization of the Department.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 1 2013-10-01 2013-10-01 false Organization of the Department. 1.2 Section 1.2 Transportation Office of the Secretary of Transportation ORGANIZATION AND DELEGATION OF POWERS AND DUTIES General § 1.2 Organization of the Department. (a) The Secretary of Transportation is the head of the Department. (b) The Department comprises...

  13. 43 CFR 3473.1-2 - Where submitted.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Land Management State office having jurisdiction over the lands (43 CFR subpart 1821). (2) All second... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Where submitted. 3473.1-2 Section 3473.1-2..., Rentals, and Royalties § 3473.1-2 Where submitted. (a)(1) All first-year rentals and the...

  14. 43 CFR 3473.1-2 - Where submitted.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Land Management State office having jurisdiction over the lands (43 CFR subpart 1821). (2) All second... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Where submitted. 3473.1-2 Section 3473.1-2..., Rentals, and Royalties § 3473.1-2 Where submitted. (a)(1) All first-year rentals and the...

  15. 43 CFR 3473.1-2 - Where submitted.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Land Management State office having jurisdiction over the lands (43 CFR subpart 1821). (2) All second... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Where submitted. 3473.1-2 Section 3473.1-2..., Rentals, and Royalties § 3473.1-2 Where submitted. (a)(1) All first-year rentals and the...

  16. 43 CFR 3473.1-2 - Where submitted.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Land Management State office having jurisdiction over the lands (43 CFR subpart 1821). (2) All second... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Where submitted. 3473.1-2 Section 3473.1-2..., Rentals, and Royalties § 3473.1-2 Where submitted. (a)(1) All first-year rentals and the...

  17. Low-intensity LED (625 and 405 nm) and laser (805 nm) killing of Propionibacterium acnes and Staphylococcus epidermidis

    NASA Astrophysics Data System (ADS)

    Tuchina, Elena S.; Tuchin, Valery V.

    2009-02-01

    In the present work we have investigated in vitro sensitivity of microorganisms P. acnes and S. epidermidis to action of red (625 nm and 405 nm) and infrared (805 nm) radiations in combination with photosensitizes Methylene Blue and Indocyanine Green.

  18. X-1-2 on ramp with Boeing B-29

    NASA Technical Reports Server (NTRS)

    1949-01-01

    The Bell Aircraft Corporation X-1-2 Sitting on the ramp at NACA High-Speed Flight Research Station with the Boeing B-29 launch ship behind. The painting near the nose of the B-29 depicts a stork carrying a bundle which is symbolic of the Mothership launching her babe (X-1-2). The pilot access door is open to the cockpit of the X-1-2 aircraft. On the X-1-2's fin is the old NACA shield, which was later replaced with a yellow band and the letters 'NACA' plus wings that were both black. There were four versions of the Bell X-1 rocket-powered research aircraft that flew at the NACA High-Speed Flight Research Station, Edwards, California. The bullet-shaped X-1 aircraft were built by Bell Aircraft Corporation, Buffalo, N.Y. for the U.S. Army Air Forces (after 1947, U.S. Air Force) and the National Advisory Committee for Aeronautics (NACA). The X-1 Program was originally designated the XS-1 for EXperimental Sonic. The X-1's mission was to investigate the transonic speed range (speeds from just below to just above the speed of sound) and, if possible, to break the 'sound barrier.' Three different X-1s were built and designated: X-1-1, X-1-2 (later modified to become the X-1E), and X-1-3. The basic X-1 aircraft were flown by a large number of different pilots from 1946 to 1951. The X-1 Program not only proved that humans could go beyond the speed of sound, it reinforced the understanding that technological barriers could be overcome. The X-1s pioneered many structural and aerodynamic advances including extremely thin, yet extremely strong wing sections; supersonic fuselage configurations; control system requirements; powerplant compatibility; and cockpit environments. The X-1 aircraft were the first transonic-capable aircraft to use an all-moving stabilizer. The flights of the X-1s opened up a new era in aviation. The first X-1 was air-launched unpowered from a Boeing B-29 Superfortress on Jan. 25, 1946. Powered flights began in December 1946. On Oct. 14, 1947, the X-1

  19. Amputee Socks: Thickness of Multiple Socks

    PubMed Central

    Cagle, John C; Yu, Alan J; Ciol, Marcia A; Sanders, JE

    2015-01-01

    Background and Aim It is unclear how total sock ply and thickness are related when more than one sock is worn. The objectives were to determine if the thickness of one multi-ply amputee sock of ply P was the same as the thickness of a stack of reduced-ply socks of total ply P; and if the thickness of N single socks stacked one on top of the other was equal to the sum (1 to N) of the single sock thicknesses. Technique Using a custom instrument, compressive stresses were applied while sock thickness was measured. Discussion The thickness of one multi-ply sock of ply P was typically less than the thickness of a stack of reduced-ply socks of total ply P. The thickness of N single socks stacked one on top of the other was approximately equal to the sum (1 to N) of the single sock thicknesses. Clinical Relevance Our findings suggest three 1-ply socks to be 20% greater in thickness than one 3-ply sock, and one 3-ply + two 1-ply socks to be 30% greater in thickness than one 5-ply sock. PMID:24240023

  20. Shell thickness determination of polymer-shelled microbubbles using transmission electron microscopy.

    PubMed

    Härmark, Johan; Hebert, Hans; Koeck, Philip J B

    2016-06-01

    Intravenously injected microbubbles (MBs) can be utilized as ultrasound contrast agent (CA) resulting in enhanced image quality. A novel CA, consisting of air filled MBs stabilized with a shell of polyvinyl alcohol (PVA) has been developed. These spherical MBs have been decorated with superparamagnetic iron oxide nanoparticles (SPIONs) in order to serve as both ultrasound and magnetic resonance imaging (MRI) CA. In this study, a mathematical model was introduced that determined the shell thickness of two types of SPIONs decorated MBs (Type A and Type B). The shell thickness of MBs is important to determine, as it affects the acoustical properties. In order to investigate the shell thickness, thin sections of plastic embedded MBs were prepared and imaged using transmission electron microscopy (TEM). However, the sections were cut at random distances from the MB center, which affected the observed shell thickness. Hence, the model determined the average shell thickness of the MBs from corrected mean values of the outer and inner radii observed in the TEM sections. The model was validated using simulated slices of MBs with known shell thickness and radius. The average shell thickness of Type A and Type B MBs were 651nm and 637nm, respectively.

  1. Electrically-pumped 850-nm micromirror VECSELs.

    SciTech Connect

    Geib, Kent Martin; Peake, Gregory Merwin; Serkland, Darwin Keith; Keeler, Gordon Arthur; Mar, Alan

    2005-02-01

    Vertical-external-cavity surface-emitting lasers (VECSELs) combine high optical power and good beam quality in a device with surface-normal output. In this paper, we describe the design and operating characteristics of an electrically-pumped VECSEL that employs a wafer-scale fabrication process and operates at 850 nm. A curved micromirror output coupler is heterogeneously integrated with AlGaAs-based semiconductor material to form a compact and robust device. The structure relies on flip-chip bonding the processed epitaxial material to an aluminum nitride mount; this heatsink both dissipates thermal energy and permits high frequency modulation using coplanar traces that lead to the VECSEL mesa. Backside emission is employed, and laser operation at 850 nm is made possible by removing the entire GaAs substrate through selective wet etching. While substrate removal eliminates absorptive losses, it simultaneously compromises laser performance by increasing series resistance and degrading the spatial uniformity of current injection. Several aspects of the VECSEL design help to mitigate these issues, including the use of a novel current-spreading n type distributed Bragg reflector (DBR). Additionally, VECSEL performance is improved through the use of a p-type DBR that is modified for low thermal resistance.

  2. DNA charge transport over 34 nm

    NASA Astrophysics Data System (ADS)

    Slinker, Jason D.; Muren, Natalie B.; Renfrew, Sara E.; Barton, Jacqueline K.

    2011-03-01

    Molecular wires show promise in nanoscale electronics, but the synthesis of uniform, long conductive molecules is a significant challenge. Deoxyribonucleic acid (DNA) of precise length, by contrast, is synthesized easily, but its conductivity over the distances required for nanoscale devices has not been explored. Here we demonstrate DNA charge transport (CT) over 34 nm in 100-mer monolayers on gold. Multiplexed gold electrodes modified with 100-mer DNA yield sizable electrochemical signals from a distal, covalent Nile Blue redox probe. Significant signal attenuation upon incorporation of a single base-pair mismatch demonstrates that CT is DNA-mediated. Efficient cleavage of these 100-mers by a restriction enzyme indicates that the DNA adopts a native conformation accessible to protein binding. Similar electron-transfer rates measured through 100-mer and 17-mer monolayers are consistent with rate-limiting electron tunnelling through the saturated carbon linker. This DNA-mediated CT distance of 34 nm surpasses that of most reports of molecular wires.

  3. High Temperature Superconducting Thick Films

    DOEpatents

    Arendt, Paul N.; Foltyn, Stephen R.; Groves, James R.; Holesinger, Terry G.; Jia, Quanxi

    2005-08-23

    An article including a substrate, a layer of an inert oxide material upon the surface of the substrate, (generally the inert oxide material layer has a smooth surface, i.e., a RMS roughness of less than about 2 nm), a layer of an amorphous oxide or oxynitride material upon the inert oxide material layer, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the amorphous oxide material layer is provided together with additional layers such as at least one layer of a buffer material upon the oriented cubic oxide material layer or a HTS top-layer of YBCO directly upon the oriented cubic oxide material layer. With a HTS top-layer of YBCO upon at least one layer of a buffer material in such an article, Jc's of 1.4×106 A/cm2 have been demonstrated with projected Ic's of 210 Amperes across a sample 1 cm wide.

  4. Passivation of c-Si surfaces by sub-nm amorphous silicon capped with silicon nitride

    SciTech Connect

    Wan, Yimao Yan, Di; Bullock, James; Zhang, Xinyu; Cuevas, Andres

    2015-12-07

    A sub-nm hydrogenated amorphous silicon (a-Si:H) film capped with silicon nitride (SiN{sub x}) is shown to provide a high level passivation to crystalline silicon (c-Si) surfaces. When passivated by a 0.8 nm a-Si:H/75 nm SiN{sub x} stack, recombination current density J{sub 0} values of 9, 11, 47, and 87 fA/cm{sup 2} are obtained on 10 Ω·cm n-type, 0.8 Ω·cm p-type, 160 Ω/sq phosphorus-diffused, and 120 Ω/sq boron-diffused silicon surfaces, respectively. The J{sub 0} on n-type 10 Ω·cm wafers is further reduced to 2.5 ± 0.5 fA/cm{sup 2} when the a-Si:H film thickness exceeds 2.5 nm. The passivation by the sub-nm a-Si:H/SiN{sub x} stack is thermally stable at 400 °C in N{sub 2} for 60 min on all four c-Si surfaces. Capacitance–voltage measurements reveal a reduction in interface defect density and film charge density with an increase in a-Si:H thickness. The nearly transparent sub-nm a-Si:H/SiN{sub x} stack is thus demonstrated to be a promising surface passivation and antireflection coating suitable for all types of surfaces encountered in high efficiency c-Si solar cells.

  5. Design and laser damage properties of a dichroic beam combiner coating for 22.5° incidence and S polarization with high-transmission at 527nm and high-reflection at 1054nm

    NASA Astrophysics Data System (ADS)

    Bellum, John C.; Field, Ella S.; Kletecka, Damon E.; Rambo, Patrick K.; Smith, Ian C.

    2015-11-01

    We have designed a dichroic beam combiner coating consisting of 11 HfO2/SiO2 layer pairs deposited on a large fused silica substrate. The coating provides high transmission (HT) at 527 nm and high reflection (HR) at 1054 nm for light at 22.5° angle of incidence (AOI) in air in S polarization (Spol). The coating's design is based on layers of near half-wave optical thickness in the design space for stable HT at 527 nm, with layer modifications that provide HR at 1054 nm while preserving HT at 527 nm. Its implementation in the 527 nm/1054 nm dual wavelength beam combiner arrangement has two options, with each option requiring one or the other of the high intensity beams to be incident on the dichroic coating from within the substrate (from glass). We show that there are differences between the two options with respect to the laser-induced damage threshold (LIDT) properties of the coating, and analyze the differences in terms of the 527 nm and 1054 nm E-field intensity behaviors for air --> coating and glass --> coating incidence. Our E-field analysis indicates that LIDTs for air --> coating incidence should be higher than for glass --> coating incidence. LIDT measurements for Spol at the use AOI with ns pulses at 532 nm and 1064 nm confirm this analysis with the LIDTs for glass --> coating incidence being about half those for air --> coating incidence at both wavelengths. These LIDT results and the E-field analysis clearly indicate that the best beam combiner option is the one for which the high intensity 527 nm beam is incident on the coating from air and the 1054 nm high intensity beam is incident on the coating from glass.

  6. 1.2-kW single-mode fiber laser based on 100-W high-brightness pump diodes

    NASA Astrophysics Data System (ADS)

    Yu, Hongbo; Kliner, Dahv A. V.; Liao, Kai-Hsiu; Segall, Jeff; Muendel, Martin H.; Morehead, James J.; Shen, Jane; Kutsuris, Matt; Luu, Johnny; Franke, Justin; Nguyen, Kelvin; Woods, Dave; Vance, Fred; Vecht, David; Meng, David; Duesterberg, Richard; Xu, Lei; Skidmore, Jay; Peters, Matthew; Guerin, Nicolas; Guo, James; Cheng, Jane; Du, Jihua; Johnson, Brad; Yin, Dongliang; Hsieh, Allen; Cheng, Peter; Demir, Abdullah; Cai, Jason; Gurram, Rupa; Lee, Kong-Weng; Raju, Reddy; Zou, Daniel; Srinivasan, Raman; Saini, Mandeep; Zavala, Laura; Rossin, Victor; Zucker, Erik P.; Ishiguro, Hiroaki; Sako, Hiroshi

    2012-02-01

    We have demonstrated a monolithic (fully fused), 1.2-kW, Yb-doped fiber laser with near-single-mode beam quality. This laser employs a new generation of high-brightness, fiber-coupled pump sources based on spatially multiplexed single emitters, with each pump providing 100 W at 915 nm within 0.15 NA from a standard 105/125 μm fiber. The fiber laser is end pumped through the high-reflector FBG using a 19:1 fused-fiber pump combiner, eliminating the need for pump/signal combiners. The output wavelength is 1080 nm, with a linewidth of < 0.5 nm FWHM. A peak power of 1.5 kW was reached in modulated operation (1-ms pulse duration) with M2 < 1.2.

  7. Reaction of pyrido(1,2-a)benzimidazole and tetrahydropyrido(1,2-a)benzimidazole with acetylenedicarboxylic ester

    SciTech Connect

    Prostakov, N.S.; Varlamov, A.V.; Shendrik, I.V.; Krapivko, A.P.; Golovtsov, N.I.

    1986-08-01

    Previously unknown polynuclear condensed systems with bridgehead nitrogen atoms have been obtained by treating acetylenedicarboxylic ester with pyrido(1,2-a)benzimidazole and tetrahydropyrido(1,2-a)benzimidazole.

  8. High thickness acrylamide photopolymer for peristrophic multiplexing

    NASA Astrophysics Data System (ADS)

    Ortuño, M.; Fernández, E.; Márquez, A.; Gallego, S.; Neipp, C.; Pascual, I.

    2006-05-01

    The acrylamide photolymers are considered interesting materials for holographic media. They have high diffraction efficiency (ratio of the intensities of the diffracted and the incident beams), an intermediate energetic sensitivity among other materials and post-processing steps are not necessary, therefore the media is not altered. The layers of these materials, about 1 mm thick, are a suitable media for recording many diffraction gratings in the same volume of photopolymer using peristrophic multiplexing technique, with great practical importance in the field of holographic memories type WORM (write once read many). In this work we study the recording of diffraction gratings by peristrophic multiplexing with axis of rotation perpendicular to the recording media. The photopolymer is composed of acrylamide as the polymerizable monomer, triethanolamine as radical generator, yellowish eosin as sensitizer and a binder of polyvinyl alcohol. We analyze the holographic behaviour of the material during recording and reconstruction of diffraction gratings using a continuous Nd:YAG laser (532 nm) at an intensity of 5 mW/cm2 as recording laser. The response of the material is monitored after recording with an He-Ne laser. We study the recording process of unslanted diffraction gratings of 1125 lines/mm. The diffraction efficiency of each hologram is seen to decrease as the number of holograms recorded increases, due to consumption of the available dynamic range, in a constant exposure scheduling. It can be seen that the photopolymer works well with high energy levels, without excessive dispersion of light by noise gratings. In order to homogenize the diffraction efficiency of each hologram we use the method proposed by Pu. This method is designed to share all or part of the avaliable dynamic range of the recording material among the holograms to be multiplexed. Using exposure schedules derived from this method we have used 3 scheduling recordings from the algorithm used

  9. Increasing the molecular contacts between maurotoxin and Kv1.2 channel augments ligand affinity.

    PubMed

    M'Barek, Sarrah; Chagot, Benjamin; Andreotti, Nicolas; Visan, Violeta; Mansuelle, Pascal; Grissmer, Stephan; Marrakchi, Mohamed; El Ayeb, Mohamed; Sampieri, François; Darbon, Hervé; Fajloun, Ziad; De Waard, Michel; Sabatier, Jean-Marc

    2005-08-15

    Scorpion toxins interact with their target ion channels through multiple molecular contacts. Because a "gain of function" approach has never been described to evaluate the importance of the molecular contacts in defining toxin affinity, we experimentally examined whether increasing the molecular contacts between a toxin and an ion channel directly impacts toxin affinity. For this purpose, we focused on two scorpion peptides, the well-characterized maurotoxin with its variant Pi1-like disulfide bridging (MTX(Pi1)), used as a molecular template, and butantoxin (BuTX), used as an N-terminal domain provider. BuTX is found to be 60-fold less potent than MTX(Pi1) in blocking Kv1.2 (IC(50) values of 165 nM for BuTX versus 2.8 nM for MTX(Pi1)). Removal of its N-terminal domain (nine residues) further decreases BuTX affinity for Kv1.2 by 5.6-fold, which is in agreement with docking simulation data showing the importance of this domain in BuTX-Kv1.2 interaction. Transfer of the BuTX N-terminal domain to MTX(Pi1) results in a chimera with five disulfide bridges (BuTX-MTX(Pi1)) that exhibits 22-fold greater affinity for Kv1.2 than MTX(Pi1) itself, in spite of the lower affinity of BuTX as compared to MTX(Pi1). Docking experiments performed with the 3-D structure of BuTX-MTX(Pi1) in solution, as solved by (1)H-NMR, reveal that the N-terminal domain of BuTX participates in the increased affinity for Kv1.2 through additional molecular contacts. Altogether, the data indicate that acting on molecular contacts between a toxin and a channel is an efficient strategy to modulate toxin affinity.

  10. First principles prediction of a morphotropic phase boundary in the Bi(Zn1/2Ti1/2)O3-(Bi1/2Sr1/2)(Zn1/2Nb1/2)O3 alloy

    SciTech Connect

    Cooper, Valentino R; Henry, Asegun S; Takagi, Shigeyuki M; Singh, David J

    2011-01-01

    The magnitude and direction of polarization within alloys of the tetragonally distorted Bi(Zn1/2Ti1/2)O3 (BZT) and the rhombohedrally oriented Bi1/2Sr1/2Zn1/2Nb1/2O3 (BSZN) are explored using density functional theory. For compositions with 50% of BZT, we find that the polarization points mainly along the [001] direction. Conversely, for low concentrations of BZT the polarization is rhombohedrally oriented. Based on these results we propose a phase diagram with a possible monoclinc phase between 25% and 50 % BZT where this material may have a useful piezoelectric response.

  11. X-1-2 mounted under B-29 for launch

    NASA Technical Reports Server (NTRS)

    1949-01-01

    A roll-out of the Boeing B-29 Superfortress, bomber with the Bell Aircraft Corporation X-1-2 mated and ready for flight. NACA Flight 33 was flown on September 23, 1949, as a pilot familiarization flight with NACA pilot, John H. Griffith at the controls. Griffith reached a top speed of Mach 0.998 during the flight. There were four versions of the Bell X-1 rocket-powered research aircraft that flew at the NACA High-Speed Flight Research Station, Edwards, California. The bullet-shaped X-1 aircraft were built by Bell Aircraft Corporation, Buffalo, N.Y. for the U.S. Army Air Forces (after 1947, U.S. Air Force) and the National Advisory Committee for Aeronautics (NACA). The X-1 Program was originally designated the XS-1 for EXperimental Sonic. The X-1's mission was to investigate the transonic speed range (speeds from just below to just above the speed of sound) and, if possible, to break the 'sound barrier.' Three different X-1s were built and designated: X-1-1, X-1-2 (later modified to become the X-1E), and X-1-3. The basic X-1 aircraft were flown by a large number of different pilots from 1946 to 1951. The X-1 Program not only proved that humans could go beyond the speed of sound, it reinforced the understanding that technological barriers could be overcome. The X-1s pioneered many structural and aerodynamic advances including extremely thin, yet extremely strong wing sections; supersonic fuselage configurations; control system requirements; powerplant compatibility; and cockpit environments. The X-1 aircraft were the first transonic-capable aircraft to use an all-moving stabilizer. The flights of the X-1s opened up a new era in aviation. The first X-1 was air-launched unpowered from a Boeing B-29 Superfortress on Jan. 25, 1946. Powered flights began in December 1946. On Oct. 14, 1947, the X-1-1, piloted by Air Force Captain Charles 'Chuck' Yeager, became the first aircraft to exceed the speed of sound, reaching about 700 miles per hour (Mach 1.06) and an altitude of

  12. Effect of coating thickness of iron oxide nanoparticles on their relaxivity in the MRI

    PubMed Central

    Hajesmaeelzadeh, Farzaneh; Shanehsazzadeh, Saeed; Grüttner, Cordula; Daha, Fariba Johari; Oghabian, Mohammad Ali

    2016-01-01

    Objective(s): Iron oxide nanoparticles have found prevalent applications in various fields including drug delivery, cell separation and as contrast agents. Super paramagnetic iron oxide (SPIO) nanoparticles allow researchers and clinicians to enhance the tissue contrast of an area of interest by increasing the relaxation rate of water. In this study, we evaluate the dependency of hydrodynamic size of iron oxide nanoparticles coated with Polyethylene glycol (PEG) on their relativities with 3 Tesla clinical MRI. Materials and Methods: We used three groups of nanoparticles with nominal sizes 20, 50 and 100 nm with a core size of 8.86 nm, 8.69 nm and 10.4 nm that they were covered with PEG 300 and 600 Da. A clinical magnetic resonance scanner determines the T1 and T2 relaxation times for various concentrations of PEG-coated nanoparticles. Results: The size measurement by photon correlation spectroscopy showed the hydrodynamic sizes of MNPs with nominal 20, 50 and 100 nm with 70, 82 and 116 nm for particles with PEG 600 coating and 74, 93 and 100 nm for particles with PEG 300 coating, respectively. We foud that the relaxivity decreased with increasing overall particle size (via coating thickness). Magnetic resonance imaging showed that by increasing the size of the nanoparticles, r2/r1 increases linearly. Conclusion: According to the data obtained from this study it can be concluded that increments in coating thickness have more influence on relaxivities compared to the changes in core size of magnetic nanoparticles. PMID:27081461

  13. Comparison of 980-nm and 1070-nm in endovenous laser treatment (EVLT)

    NASA Astrophysics Data System (ADS)

    Topaloglu, Nermin; Tabakoglu, Ozgur; Ergenoglu, Mehmet U.; Gülsoy, Murat

    2009-07-01

    The use of endovenous laser treatment for varicose veins has been increasing in recent years. It is a safer technique than surgical vein stripping. Its complications (e.g. bruising, pain) are less than the complications of surgical vein stripping. But best parameters such as optimum wavelength, power, and application duration are still under investigation to clarify uncertainties about this technique. To prevent its complications and improve its clinical outcomes, the exact mechanism of it has to be known. The aim of this study is to investigate the effect of different laser wavelengths on endovenous laser therapy. In this study 980-nm diode laser and 1070-nm fiber laser were used. Human veins were irradiated with 980-nm and 1070-nm lasers at 8 W and 10 W to find the optimal power and wavelength. After laser application, remarkable shrinkage was observed. Inner and outer diameters of the veins also narrowed for both of the laser types. 10 W of 980-nm laser application led to better shrinkage results.

  14. Dual illumination OCT at 1050nm and 840nm for whole eye segment imaging

    NASA Astrophysics Data System (ADS)

    Fan, Shanhui; Qin, Lin; Dai, Cuixia; Zhou, Chuanqing

    2014-11-01

    We presented an improved dual channel dual focus spectral domain optical coherence tomography (SD-OCT) with two illuminations at 840 nm and 1050 nm for whole eye segment imaging and biometry in vivo. The two light beams were coupled and optically optimized to scan the anterior and posterior segment of the eye simultaneously. This configuration with dichroic mirrors integrated in the sample arm enables us to acquire images from the anterior segment and retina effectively with minimum loss of sample signal. In addition, the full resolved complex (FRC) method was applied to double the imaging depth for the whole anterior segment imaging by eliminating the mirror image. The axial resolution for 1050 nm and 840 nm OCT was 14 μm and 8 μm in air, respectively. Finally, the system was successfully tested in imaging the unaccommodated and accommodated eyes. The preliminary results demonstrated the significant improvements comparing with our previous dual channel SD-OCT configuration in which the two probing beams had the same central wavelength of 840 nm.

  15. TCSPC FLIM in the wavelength range from 800 nm to 1700 nm (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Becker, Wolfgang; Shcheslavsky, Vladislav

    2016-03-01

    Excitation and detection in the wavelength range above 800nm is a convenient and relatively inexpensive way to increase the penetration depth in optical microscopy. Moreover, detection at long wavelength avoids the problem that tissue autofluorescence contaminates the signals from endogenous fluorescence probes. FLIM at NIR wavelength may therefore be complementary to multiphoton microscopy, especially if the lifetimes of NIR fluorophores report biological parameters of the tissue structures they are bound to. Unfortunately, neither the excitation sources nor the detectors of standard confocal and multiphoton laser scanning systems are directly suitable for excitation and detection of NIR fluorescence. Most of these problems can be solved, however, by using ps diode lasers or Ti:Sapphire lasers at their fundamental wavelength, and NIR-sensitive detectors. With NIR-sensitive PMTs the detection wavelength range can be extended up to 900 nm, with InGaAs SPAD detectors up to 1700 nm. Here, we demonstrate the use of a combination of laser scanning, multi-dimensional TCSPC, and advanced excitation sources and detectors for FLIM at up to 1700 nm. The performance was tested at tissue samples incubated with NIR dyes. The fluorescence lifetimes generally get shorter with increasing absorption and emission wavelengths of the dyes. For the cyanine dye IR1061, absorbing around 1060 nm, the lifetime was found to be as short as 70 ps. Nevertheless the fluorescence decay could still be clearly detected. Almost all dyes showed clear lifetime changes depending on the binding to different tissue constituents.

  16. Intelligent processing for thick composites

    NASA Astrophysics Data System (ADS)

    Shin, Daniel Dong-Ok

    2000-10-01

    Manufacturing thick composite parts are associated with adverse curing conditions such as large in-plane temperature gradient and exotherms. The condition is further aggravated because the manufacturer's cycle and the existing cure control systems do not adequately counter such affects. In response, the forecast-based thermal control system is developed to have better cure control for thick composites. Accurate cure kinetic model is crucial for correctly identifying the amount of heat generated for composite process simulation. A new technique for identifying cure parameters for Hercules AS4/3502 prepreg is presented by normalizing the DSC data. The cure kinetics is based on an autocatalytic model for the proposed method, which uses dynamic and isothermal DSC data to determine its parameters. Existing models are also used to determine kinetic parameters but rendered inadequate because of the material's temperature dependent final degree of cure. The model predictions determined from the new technique showed good agreement to both isothermal and dynamic DSC data. The final degree of cure was also in good agreement with experimental data. A realistic cure simulation model including bleeder ply analysis and compaction is validated with Hercules AS4/3501-6 based laminates. The nonsymmetrical temperature distribution resulting from the presence of bleeder plies agreed well to the model prediction. Some of the discrepancies in the predicted compaction behavior were attributed to inaccurate viscosity and permeability models. The temperature prediction was quite good for the 3cm laminate. The validated process simulation model along with cure kinetics model for AS4/3502 prepreg were integrated into the thermal control system. The 3cm Hercules AS4/3501-6 and AS4/3502 laminate were fabricated. The resulting cure cycles satisfied all imposed requirements by minimizing exotherms and temperature gradient. Although the duration of the cure cycles increased, such phenomena was

  17. 1-Amino-2-hydroxy-4-naphthalenesulfonic acid based Schiff bases or naphtho[1,2-d]oxazoles: selective synthesis and photophysical properties.

    PubMed

    Atahan, Alparslan; Durmus, Sefa

    2015-06-01

    A series of Schiff base and naphtho[1,2-d]oxazole derivatives were selectively synthesized via condensation reaction of 1-amino-2-hydroxy-4-naphthalenesulfonic acid and benzaldehyde derivatives at same conditions. The synthesized compounds were then characterized by using (1)HNMR, (13)CNMR, FTIR spectroscopies and elemental analyses. It was seen that the Schiff bases generated in the presence of OH group at ortho position of benzaldehyde derivatives. However, the products were naphtho[1,2-d]oxazoles in other cases. Then, the synthesized compounds were photophysically investigated by UV absorption and fluorescence emission spectroscopies. As a result, these Schiff bases have shown long wavelength absorption (λ(max): 386 nm) and emission (λ(max): 429-437 nm) effect while synthesized naphtho[1,2-d]oxazole derivatives have a set of absorption (λ(max): about 296, 308, 320 nm) and emission maxima (λ(max): 378-395 nm) at lower wavelength. PMID:25748593

  18. 1-Amino-2-hydroxy-4-naphthalenesulfonic acid based Schiff bases or naphtho[1,2-d]oxazoles: Selective synthesis and photophysical properties

    NASA Astrophysics Data System (ADS)

    Atahan, Alparslan; Durmus, Sefa

    2015-06-01

    A series of Schiff base and naphtho[1,2-d]oxazole derivatives were selectively synthesized via condensation reaction of 1-amino-2-hydroxy-4-naphthalenesulfonic acid and benzaldehyde derivatives at same conditions. The synthesized compounds were then characterized by using 1HNMR, 13CNMR, FTIR spectroscopies and elemental analyses. It was seen that the Schiff bases generated in the presence of OH group at ortho position of benzaldehyde derivatives. However, the products were naphtho[1,2-d]oxazoles in other cases. Then, the synthesized compounds were photophysically investigated by UV absorption and fluorescence emission spectroscopies. As a result, these Schiff bases have shown long wavelength absorption (λmax: 386 nm) and emission (λmax: 429-437 nm) effect while synthesized naphtho[1,2-d]oxazole derivatives have a set of absorption (λmax: about 296, 308, 320 nm) and emission maxima (λmax: 378-395 nm) at lower wavelength.

  19. Challenges of 29nm half-pitch NAND Flash STI patterning with 193nm dry lithography and self-aligned double patterning

    NASA Astrophysics Data System (ADS)

    Chiu, M. C.; Lin, Benjamin Szu-Min; Tsai, M. F.; Chang, Y. S.; Yeh, M. H.; Ying, T. H.; Ngai, Chris; Jin, Jaklyn; Yuen, Stephen; Huang, Sem; Chen, Yongmei; Miao, Liyan; Tai, Kevin; Conley, Amiad; Liu, Ian

    2008-11-01

    High NA (1.35) Immersion litho runs into the fundamental limit of printing at 40-45nm half pitch (HP). The next generation EUVL tool is known to be ready not until year 2012. Double patterning (DP) technology has been identified as the extension of optical photolithography technologies to 3xnm and 2xnm half-pitch for the low k1 regime to fill in the gap between Immersion lithography and EUVL. Self Aligned Double Patterning (SADP) Technology utilized mature process technology to reduce risk and faster time to market to support the continuation of Moore's Law of Scaling to reduce the cost/function. SADP uses spacer to do the pitch splitting bypass the conventional double patterning (e.g. Litho-Freeze-Litho-Etch (LFLE), or Litho-Etch-Litho-Etch (LELE)) overlay problem. Having a tight overlay performance is extremely critical for NAND Flash manufacturers to achieve a fast yield ramp in production. This paper describes the challenges and accomplishment of a Line-By-Spacer (LBS) SADP scheme to pattern the 29nm half-pitch NAND Flash STI application. A 193nm Dry lithography was chosen to pattern on top of the amorphous carbon (a-C) film stack. The resist pattern will be transferred on the top a-C core layer follow by spacer deposition and etch to achieve the pitch splitting. Then the spacer will be used to transfer to the bottom a-C universal hardmask. This high selectivity a-C hardmask will be used to transfer the 29nm half-pitch pattern to the STI. Good within wafer CD uniformity (CDU) <2nm and line width roughness (LWR) <2nm for the 29nm half-pitch NAND FLASH STI were demonstrated as the benefits using double amorphous carbon hardmask layers. The relationships among the photoresist CDs, CD trimming , as-deposited spacer film thickness, spacer width and the final STI line/core space/gap space CDs will also be discussed in this paper since patterning is combining both lithography performance with CVD and Etch process performance. Film selection for amorphous carbon and

  20. 308-nm excimer laser in endodontics

    NASA Astrophysics Data System (ADS)

    Liesenhoff, Tim

    1992-06-01

    Root canal preparation was performed on 20 extracted human teeth. After opening the coronal pulp, the root canals were prepared by 308 nm excimer laser only. All root canals were investigated under SEM after separation in the axial direction. By sagittal separation of the mandibles of freshly slaughtered cows, it was possible to get access to the tissues and irradiate under optical control. Under irradiation of excimer laser light, tissue starts to fluoresce. It was possible to demonstrate that each tissue (dentin, enamel, bone, pulpal, and connective tissue) has a characteristic spectral pattern. The SEM analyses showed that it is well possible to prepare root canals safely. All organic soft tissue has been removed by excimer laser irradiation. There was no case of via falsa. The simultaneous spectroscopic identification of the irradiated tissue provides a safe protection from overinstrumentation. First clinical trials on 20 patients suffering of chronical apical parodontitis have been carried out successfully.

  1. 1064-nm Nd:YAG laser nucleotomy

    NASA Astrophysics Data System (ADS)

    Vari, Sandor G.; Pergadia, Vani R.; Shi, Wei-Qiang; Snyder, Wendy J.; Fishbein, Michael C.; Grundfest, Warren S.

    1993-07-01

    The high incidence of patients with clinical and neurological symptoms of lumbar disc herniation has spurred the development of less invasive and more cost efficient methods to treat patients. In this study we evaluated pulsed and continuous wave (cw) 1064 nm Nd:YAG laser ablation and induced thermal damage in sheep intervertebral disc. We used the Heraeus LaserSonics Hercules 5040 (Nd:YAG) laser system and 400 micrometers bare and 600 micrometers ball-tipped fibers in cw and pulsed mode. For the laser parameters and fibers used in this study, ablation of the intervertebral disc was successful and thermal damage did not exceed 0.5 mm. Varying beam diameters and focusing abilities (i.e., bare and ball) did not produce any difference in the coagulation thermal effect.

  2. Micromachining with femtosecond 250-nm laser pulses

    NASA Astrophysics Data System (ADS)

    Li, C.; Argument, Michael A.; Tsui, Ying Y.; Fedosejevs, Robert

    2000-12-01

    Laser micromachining is a flexible technique for precision patterning of surfaces in microelectronics, microelectromechanical devices and integrated optical devices. Typical applications include drilling of holes, cutting of conducting lines or shaping of micro component surfaces. The resolution, edge finish and residual damage to the surrounding and underlying structures depend on a variety of parameters including laser energy, intensity, pulse width and wavelength. Femtosecond pulses are of particular interest because the limited time of interaction limits the lateral expansion of the plasma and the inward propagation of the heat front. Thus, very small spot size can be achieved and minimal heating and damage of underlying layers can be obtained. An additional advantage of femtosecond pulses is that multiphoton absorption leads to efficient coupling of energy to many materials independent of the linear reflectivity of the surface. Thus metals and transmitting dielectrics, which are difficult to micromachine, may be machined with such pulses. The coupling is improved further by employing ultraviolet wavelength laser pulses where the linear absorption typically is much higher than for visible and infrared laser pulses. To explore these advantages, we have initiated a study of the interaction of 250nm femtosecond laser pulses with metals. The laser pulses are obtained by generating the third harmonic from a femtosecond Ti:sapphire laser operating at 750nm. The pulses are focused to various intensities in the range of 1010Wcm2 to 1015 Wcm2 using reflective and refractive microscope objectives and ablation thresholds and ablation rates have been determined for a few metals. In addition the ability to control feature size and produce submicron holes and lines have been investigated. The results are presented and compared to results obtained using infrared and visible femtosecond laser pulses.

  3. The influences of roughness on film thickness measurements by Mueller matrix ellipsometry

    NASA Astrophysics Data System (ADS)

    Ramsey, David A.; Ludema, Kenneth C.

    1994-09-01

    The accuracy of measurement of the thickness of uniform thin films on solid substrates by null ellipsometry is severely limited when the substrate is rough. It is impossible to separate these two effects experimentally with the null ellipsometer, and there is no theoretical basis or generally used model available to separate these effects. Thus, a dual rotating-compensator Mueller matrix ellipsometer has been constructed to carry out film thickness measurements on rough substrates. Measurements were made on a set of specially prepared specimens of 8630 steel, roughened by grit blasting with aluminum oxide. Grit sizes and blasting pressures were varied to produce 11 different roughness values ranging from 0.01 to 1.295 μm Ra, as measured with a stylus tracer device. Upon each of the 11 roughness groups, films of magnesium fluoride were overlaid to thicknesses of 89, 180, 254, and 315 nm. One set of specimens was left uncoated. Experimental results for film thickness measurements on rough surfaces matched the ideal (for smooth surfaces) form well for roughnesses up to 0.13 μm Ra, at most angles of incidence. For rougher specimens, significant deviations in results were observed for all but the largest angles of incidence. The nonideal data were attributed to the cross-polarization effects of surface geometry, and apparent depolarization. The resolution of thickness measurements was 1 nm for polished specimens, and decreased continuously to 10 nm for the roughest specimens examined.

  4. Solution phase photolysis of 1,2-dithiane alone and with single-walled carbon nanotubes.

    PubMed

    Engel, Paul S; Gudimetla, Vittal B; Gancheff, Jorge S; Denis, Pablo A

    2012-08-16

    Photolysis of 1,2-dithiane (1) in acetonitrile with single walled carbon nanotubes (SWCNTs) was earlier reported to form thiol-functionalized SWCNTs via the butane-1,4-dithiyl diradical (2). The present study shows that 2 instead undergoes a facile rearrangement to thiophane-2-thiol (6). This photoreaction is clean, rapid, and irreversible under 313 nm irradiation. The secondary photolysis of 6 with SWCNTs at a shorter wavelength (254 nm) leads to 2-thiophanyl radicals 8, which derivatize SWCNTs by covalent attachment. Pyrolysis of the resulting "sulfurized SWCNTs" affords a mixture of organosulfur compounds, including thiophene formed by dehydrogenation. An unknown additional mechanism causes high TGA weight loss and a large incorporation of sulfur. PMID:22874092

  5. Measurement of 100 nm and 60 nm Particle Standards by Differential Mobility Analysis

    PubMed Central

    Mulholland, George W.; Donnelly, Michelle K.; Hagwood, Charles R.; Kukuck, Scott R.; Hackley, Vincent A.; Pui, David Y. H.

    2006-01-01

    The peak particle size and expanded uncertainties (95 % confidence interval) for two new particle calibration standards are measured as 101.8 nm ± 1.1 nm and 60.39 nm ± 0.63 nm. The particle samples are polystyrene spheres suspended in filtered, deionized water at a mass fraction of about 0.5 %. The size distribution measurements of aerosolized particles are made using a differential mobility analyzer (DMA) system calibrated using SRM® 1963 (100.7 nm polystyrene spheres). An electrospray aerosol generator was used for generating the 60 nm aerosol to almost eliminate the generation of multiply charged dimers and trimers and to minimize the effect of non-volatile contaminants increasing the particle size. The testing for the homogeneity of the samples and for the presence of multimers using dynamic light scattering is described. The use of the transfer function integral in the calibration of the DMA is shown to reduce the uncertainty in the measurement of the peak particle size compared to the approach based on the peak in the concentration vs. voltage distribution. A modified aerosol/sheath inlet, recirculating sheath flow, a high ratio of sheath flow to the aerosol flow, and accurate pressure, temperature, and voltage measurements have increased the resolution and accuracy of the measurements. A significant consideration in the uncertainty analysis was the correlation between the slip correction of the calibration particle and the measured particle. Including the correlation reduced the expanded uncertainty from approximately 1.8 % of the particle size to about 1.0 %. The effect of non-volatile contaminants in the polystyrene suspensions on the peak particle size and the uncertainty in the size is determined. The full size distributions for both the 60 nm and 100 nm spheres are tabulated and selected mean sizes including the number mean diameter and the dynamic light scattering mean diameter are computed. The use of these particles for calibrating DMAs and for

  6. The Doubling of 846 nm Light to Produce 423 nm Light for use in Atom Interferometry

    NASA Astrophysics Data System (ADS)

    Archibald, James; Birrell, Jeremey; Tang, Rebecca; Erickson, Chris; Goggins, Landon; Durfee, Dallin

    2009-10-01

    We present progress on a 423 nm fluorescence probe/cooling laser for use in our neutral calcium atom interferometer. The finished system will include an 846 nm diode laser that is coupled to a tapered amplifier. This light will be sent to a buildup cavity where we will achieve second-harmonic generation (SHG) using either a BBO non-linear crystal or a periodically-poled KTP crystal. We will discuss the theoretical considerations relating to the doubling of light in a crystal and the construction of our buildup cavity. We will also discuss its proposed application for use in atom interferometry.

  7. Absorption Measurements of Periodically Poled Potassium Titanyl Phosphate (PPKTP) at 775 nm and 1550 nm

    PubMed Central

    Steinlechner, Jessica; Ast, Stefan; Krüger, Christoph; Singh, Amrit Pal; Eberle, Tobias; Händchen, Vitus; Schnabel, Roman

    2013-01-01

    The efficient generation of second-harmonic light and squeezed light requires non-linear crystals that have low absorption at the fundamental and harmonic wavelengths. In this work the photo-thermal self-phase modulation technique is exploited to measure the absorption coefficient of periodically poled potassium titanyl phosphate (PPKTP) at 1,550 nm and 775 nm. The measurement results are (84±40) ppm/cm and (127±24) ppm/cm, respectively. We conclude that the performance of state-of-the-art frequency doubling and squeezed light generation in PPKTP is not limited by absorption. PMID:23291574

  8. Time-resolved analysis of thickness-dependent dewetting and ablation of silver films upon nanosecond laser irradiation

    NASA Astrophysics Data System (ADS)

    Qi, Dongfeng; Paeng, Dongwoo; Yeo, Junyeob; Kim, Eunpa; Wang, Letian; Chen, Songyan; Grigoropoulos, Costas P.

    2016-05-01

    Nanosecond pulsed laser dewetting and ablation of thin silver films is investigated by time-resolved imaging. Laser pulses of 532 nm wavelength and 5 ns temporal width are irradiated on silver films of different thicknesses (50 nm, 80 nm, and 350 nm). Below the ablation threshold, it is observed that the dewetting process does not conclude until 630 ns after the laser irradiation for all samples, forming droplet-like particles in the spot central region. At higher laser intensities, ablative material removal occurs in the spot center. Cylindrical rims are formed in the peripheral dewetting zone due to the solidification of transported matter at about 700 ns following the laser pulse exposure. In addition to these features, droplet fingers are superposed upon irradiation of 350-nm thick silver films with higher intensity.

  9. Thickness dependence oscillations of transport properties in thin films of a topological insulator Bi91Sb9

    NASA Astrophysics Data System (ADS)

    Rogacheva, E. I.; Orlova, D. S.; Nashchekina, O. N.; Dresselhaus, M. S.; Tang, S.

    2012-07-01

    The dependences of the electrical conductivity, Hall coefficient, magnetoresistance, and Seebeck coefficient on the thickness d (d = 15-400 nm) of the topological insulator Bi91Sb9 thin films grown on mica substrates were obtained at room temperature. In addition to the oscillations with a period Δd = (105 ± 5) nm in the thickness range d = 100-400 nm which are attributed to the quantization of the semiconductor electron energy spectrum, oscillations with a period Δd = (8 ± 2) nm in the range d = 15-60 nm were also revealed. It is suggested that the existence of the high-frequency oscillations in the thin films may be connected with the quantization of the metallic surface states energy spectrum.

  10. Nanofabrication at 1nm resolution by quantum optical lithography (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Pavel, Eugen

    2015-08-01

    A major problem in the optical lithography was the diffraction limit. Here, we report and demonstrate a lithography method, Quantum Optical Lithography [1,2], able to attain 1 nm resolution by optical means using new materials (fluorescent photosensitive glass-ceramics and QMC-5 resist). The performance is several times better than that described for any optical or Electron Beam Lithography (EBL) methods. In Fig. 1 we present TEM images of 1 nm lines recorded at 9.6 m/s. a) b) Fig. 1 TEM images of: a) multiple 1 nm lines written in a fluorescent photosensitive glass-ceramics sample; b) single 1 nm line written in QMC-5 resist. References [1] E. Pavel, S. Jinga, B.S. Vasile, A. Dinescu, V. Marinescu, R. Trusca and N. Tosa, "Quantum Optical Lithography from 1 nm resolution to pattern transfer on silicon wafer", Optics and Laser Technology, 60 (2014) 80-84. [2] E. Pavel, S. Jinga, E. Andronescu, B.S. Vasile, G. Kada, A. Sasahara, N. Tosa, A. Matei, M. Dinescu, A. Dinescu and O.R. Vasile, "2 nm Quantum Optical Lithography", Optics Communications,291 (2013) 259-263

  11. Thickness independent reduced forming voltage in oxygen engineered HfO{sub 2} based resistive switching memories

    SciTech Connect

    Sharath, S. U. Kurian, J.; Komissinskiy, P.; Hildebrandt, E.; Alff, L.; Bertaud, T.; Walczyk, C.; Calka, P.; Schroeder, T.

    2014-08-18

    The conducting filament forming voltage of stoichiometric hafnium oxide based resistive switching layers increases linearly with layer thickness. Using strongly reduced oxygen deficient hafnium oxide thin films grown on polycrystalline TiN/Si(001) substrates, the thickness dependence of the forming voltage is strongly suppressed. Instead, an almost constant forming voltage of about 3 V is observed up to 200 nm layer thickness. This effect suggests that filament formation and switching occurs for all samples in an oxidized HfO{sub 2} surface layer of a few nanometer thickness while the highly oxygen deficient thin film itself merely serves as a oxygen vacancy reservoir.

  12. 1064 nm Nd:YVO4 laser intracavity pumped at 912 nm and sum-frequency mixing for an emission at 491 nm.

    PubMed

    Herault, Emilie; Balembois, François; Georges, Patrick; Georges, Thierry

    2008-07-15

    We present for the first time a Nd:YVO(4) laser emitting at 1064 nm intracavity pumped at 912 nm by a Nd:GdVO(4) laser. We carried out a model to design the system properly, and laser performance was experimentally investigated. Intracavity sum-frequency mixing at 912 and 1064 nm was then realized in a BiBO crystal to reach the blue range. We obtained a cw output power of 155 mW at 491 nm with a pump laser diode emitting 20 W at 808 nm. PMID:18628821

  13. Cs 728 nm excited state Faraday anomalous dispersion optical filter with indirect pump

    NASA Astrophysics Data System (ADS)

    Tao, Zhiming; Zhang, Xiaogang; Chen, Mo; Liu, Zhongzheng; Zhu, Chuanwen; Liu, Zhiwen; Chen, Jingbiao

    2016-06-01

    We demonstrate a Cs excited state Faraday anomalous dispersion optical filter (ESFADOF) operating at 728 nm using a novel pump method, by which the pump beam and the probe beam in the ESFADOF realized here have no a common energy level. Using this method, the ESFADOF achieves a transmission of 2.39% with a bandwidth of 22.52 MHz, which can be applied to both laser frequency stabilization and future four-level active optical clocks. Under the 455 nm laser pump, in addition to 52D5/2, other states such as 72S1/2, 72P3/2, 62P3/2, 62P1/2 and 52D3/2 have also been populated effectively. Meanwhile, multiple wavelength filters exploiting atomic transitions to these states can be realized.

  14. Thin-thick coexistence behavior of 8CB liquid crystalline films on silicon.

    PubMed

    Garcia, R; Subashi, E; Fukuto, M

    2008-05-16

    The wetting behavior of thin films of 4-n-octyl-4'-cyanobiphenyl (8CB) on Si is investigated via optical and x-ray reflectivity measurement. An experimental phase diagram is obtained showing a broad thick-thin coexistence region spanning the bulk isotropic-to-nematic (T(IN)) and the nematic-to-smectic-A (T(NA)) temperatures. For Si surfaces with coverages between 47 and 72 +/- 3 nm, reentrant wetting behavior is observed twice as we increase the temperature, with separate coexistence behaviors near T(IN) and T(NA). For coverages less than 47 nm, however, the two coexistence behaviors merge into a single coexistence region. The observed thin-thick coexistence near the second-order NA transition is not anticipated by any previous theory or experiment. Nevertheless, the behavior of the thin and thick phases within the coexistence regions is consistent with this being an equilibrium phenomenon.

  15. Axial-scanning low-coherence interferometer method for noncontact thickness measurement of biological samples

    SciTech Connect

    Kim, Do-Hyun; Song, Chul-Gyu; Ilev, Ilko K.; Kang, Jin U.

    2011-02-20

    We investigated a high-precision optical method for measuring the thickness of biological samples regardless of their transparency. The method is based on the precise measurement of optical path length difference of the end surfaces of objects, using a dual-arm axial-scanning low-coherence interferometer. This removes any consideration of the shape, thickness, or transparency of testing objects when performing the measurement. Scanning the reference simplifies the measurement setup, resulting in unambiguous measurement. Using a 1310 nm wavelength superluminescent diode, with a 65 nm bandwidth, the measurement accuracy was as high as 11.6 {mu}m. We tested the method by measuring the thickness of both transparent samples and nontransparent soft biological tissues.

  16. Moderate repetition rate ultra-intense laser targets and optics using variable thickness liquid crystal films

    NASA Astrophysics Data System (ADS)

    Poole, P. L.; Willis, C.; Cochran, G. E.; Hanna, R. T.; Andereck, C. D.; Schumacher, D. W.

    2016-10-01

    Liquid crystal films are variable thickness, planar targets for ultra-intense laser matter experiments such as ion acceleration. Their target qualities also make them ideal for high-power laser optics such as plasma mirrors and waveplates. By controlling parameters of film formation, thickness can be varied on-demand from 10 nm to above 50 μm, enabling real-time optimization of laser interactions. Presented here are results using a device that draws films from a bulk liquid crystal source volume with any thickness in the aforementioned range. Films form within 2 μm of the same location each time, well within the Rayleigh range of even tight F / # systems, thus removing the necessity for realignment between shots. The repetition rate of the device exceeds 0.1 Hz for sub-100 nm films, facilitating higher repetition rate operation of modern laser facilities.

  17. Thickness dependent fatigue life at microcrack nucleation for metal thin films on flexible substrates

    NASA Astrophysics Data System (ADS)

    Sun, X. J.; Wang, C. C.; Zhang, J.; Liu, G.; Zhang, G. J.; Ding, X. D.; Zhang, G. P.; Sun, J.

    2008-10-01

    For polymer-supported metal thin films used in flexible electronics, the definition of the fatigue lifetime at microcrack nucleation (FLMN) should be more physically meaningful than all the previous definitions at structural instability. In this paper, the FLMN of Cu films (with thickness from 100 nm to 3.75 µm) as well as Al thin films (from 80 to 800 nm) was experimentally characterized at different strain ranges and different thicknesses by using a simple electrical resistance measurement (ERM). A significant thickness dependence was revealed for the FLMN and a similar Coffin-Manson fatigue relationship observed commonly in bulk materials was found to be still operative in both the films. Microstructural analyses were carried out to verify the feasibility of ERM correspondingly.

  18. Ultraviolet photodissociation of iodine monochloride (ICl) at 235, 250, and 265 nm

    SciTech Connect

    Diamantopoulou, N.; Kitsopoulos, Theofanis N.; Kartakoulis, A.; Glodic, P.; Samartzis, Peter C.

    2011-05-21

    ICl photolysis in the ultraviolet region of the spectrum (235-265 nm) is studied using the Slice Imaging technique. The Cl*({sup 2}P{sub 1/2})/Cl({sup 2}P{sub 3/2}) and the I*({sup 2}P{sub 1/2})/I({sup 2}P{sub 3/2}) branching ratio between the I({sup 2}P{sub 3/2}) + Cl({sup 2}P{sub 3/2})/Cl*({sup 2}P{sub 1/2}) and I*({sup 2}P{sub 1/2}) + Cl({sup 2}P{sub 3/2})/Cl*({sup 2}P{sub 1/2}) channels is extracted from the respective iodine and chlorine photofragment images. We find that ground state chlorine atoms (Cl({sup 2}P{sub 3/2})) are formed nearly exclusively with excited state iodine atoms (I*({sup 2}P{sub 1/2})), while excited spin-orbit chlorine atoms (Cl*({sup 2}P{sub 1/2})) are concurrently produced only with ground state iodine atoms (I({sup 2}P{sub 3/2})). We conclude that photolysis of ICl in this UV region is a relatively ''clean'' source of spin-orbit excited chlorine atoms that can be used in crossed molecular beam experiments.

  19. Synthesis of Naphtho[1',2':4,5]imidazo[1,2-a]pyridines and Imidazo[5,1,2-cd]indolizines Through Pd-Catalyzed Cycloaromatization of 2-Phenylimidazo[1,2-a]pyridines with Alkynes.

    PubMed

    Li, Peiyuan; Zhang, Xinying; Fan, Xuesen

    2015-08-01

    In this paper, palladium-catalyzed oxidative cycloaromatization of 2-phenylimidazo[1,2-a]pyridine (PIP) with internal alkyne is studied. From this reaction, two classes of fused N-heterocycle, naphtho[1',2':4,5]imidazo[1,2-a]pyridine (NIP) and imidazo[5,1,2-cd]indolizine (IID), were formed through dehydrogenative coupling featured with cleavage of the C-H bonds located on different moiety of the PIP substrates. Moreover, when 5-methyl-2-phenylimidazo [1,2-a]pyridine or 2-mesitylimidazo[1,2-a]pyridine was used, either NIP or IID could be obtained as an exclusive product with good efficiency. Intriguingly, Pd(II) showed different action mode in promoting this reaction compared with Rh(III) and led to the formation of NIP with reversed regio-selectivity for the reaction of asymmetrical alkyne. PMID:26168267

  20. X-1-2 on Ramp with Boeing B-29

    NASA Technical Reports Server (NTRS)

    1949-01-01

    The Bell Aircraft Corporation X-1-2 sitting on the ramp at NACA High- Speed Flight Research Station with the Boeing B-29 launch ship behind. The B-29 was fondly referred to as 'Fertile Myrtle.' The painting near the nose depicts a stork carrying a bundle which is symbolic of the Mothership launching her babe (X-1-2). The pilot access door is open to the cockpit of the X-1-2 aircraft.

  1. Sub-5 nm nanostructures fabricated by atomic layer deposition using a carbon nanotube template

    NASA Astrophysics Data System (ADS)

    Woo, Ju Yeon; Han, Hyo; Kim, Ji Weon; Lee, Seung-Mo; Ha, Jeong Sook; Shim, Joon Hyung; Han, Chang-Soo

    2016-07-01

    The fabrication of nanostructures having diameters of sub-5 nm is very a important issue for bottom-up nanofabrication of nanoscale devices. In this work, we report a highly controllable method to create sub-5 nm nano-trenches and nanowires by combining area-selective atomic layer deposition (ALD) with single-walled carbon nanotubes (SWNTs) as templates. Alumina nano-trenches having a depth of 2.6 ∼ 3.0 nm and SiO2 nano-trenches having a depth of 1.9 ∼ 2.2 nm fully guided by the SWNTs have been formed on SiO2/Si substrate. Through infilling ZnO material by ALD in alumina nano-trenches, well-defined ZnO nanowires having a thickness of 3.1 ∼ 3.3 nm have been fabricated. In order to improve the electrical properties of ZnO nanowires, as-fabricated ZnO nanowires by ALD were annealed at 350 °C in air for 60 min. As a result, we successfully demonstrated that as-synthesized ZnO nanowire using a specific template can be made for various high-density resistive components in the nanoelectronics industry.

  2. Effects of catalyst film thickness on plasma-enhanced carbon nanotube growth

    SciTech Connect

    Hofmann, S.; Cantoro, M.; Kleinsorge, B.; Casiraghi, C.; Parvez, A.; Robertson, J.; Ducati, C.

    2005-08-01

    A systematic study is presented of the influence of catalyst film thickness on carbon nanostructures grown by plasma-enhanced chemical-vapor deposition from acetylene and ammonia mixtures. We show that reducing the Fe/Co catalyst film thickness below 3 nm causes a transition from larger diameter (>40 nm), bamboolike carbon nanofibers to small diameter ({approx}5 nm) multiwalled nanotubes with two to five walls. This is accompanied by a more than 50 times faster growth rate and a faster catalyst poisoning. Thin Ni catalyst films only trigger such a growth transition when pretreated with an ammonia plasma. We observe a limited correlation between this growth transition and the coarsening of the catalyst film before deposition. For a growth temperature of {<=}550 deg. C, all catalysts showed mainly a tip growth regime and a similar activity on untreated silicon, oxidized silicon, and silicon nitride support.

  3. Cloud Thickness from Diffusion of Lidar Pulses in Clouds

    NASA Technical Reports Server (NTRS)

    Cahalan, Robert F.; Davis, A.; McGill, Matthew

    1999-01-01

    Measurements of the distribution of reflected light from a laser beam incident on an aqueous suspension of particles or "cloud" with known thickness and particle size distribution are reported. The distribution is referred to as the "cloud radiative Green's function", G. In the diffusion domain, G is sensitive to cloud thickness, allowing that important quantity to be retrieved. The goal of the laboratory simulation is to provide preliminary estimates of sensitivity of G to cloud thickness,for use in the optimal design of an offbeam Lidar instrument for remote sensing of cloud thickness (THOR, Thickness from Offbeam Returns). These clouds of polystyrene microspheres suspended in water are analogous to real clouds of water droplets suspended in air. The microsphere size distribution is roughly lognormal, from 0.5 microns to 25 microns, similar to real clouds. Density of suspended spheres is adjusted so mean-free-path of visible photons is about 10 cm, approximately 1000 times smaller than in real clouds. The light source is a ND:YAG laser at 530 nm. Detectors are flux and photon-counting Photomultiplier Tube (PMTS), with a glass probe for precise positioning. A Labview 5 VI controls positioning, and data acquisition, via an NI Motion Control board connected to a stepper motor driving an Edmund linear slider, and a 16-channel 16-bit NI-DAQ board. The stepper motor is accurate to 10 microns, and step size is selectable from the VI software. Far from the incident beam, the rate of exponential increase as the direction of the incident beam is approached scales as expected from diffusion theory, linearly with the cloud thickness, and inversely as the square root of the reduced optical thickness, and is independent of particle size. Near the beam the signal begins to increase faster than exponential, due to single and low-order scattering near the backward direction, and here the distribution depends on particle size. Results are being used to verify 3D Monte Carlo

  4. Resistance Spot Welding of AA5052 Sheet Metal of Dissimilar Thickness

    NASA Astrophysics Data System (ADS)

    Mat Din, N. A.; Zuhailawati, H.; Anasyida, A. S.

    2016-02-01

    Resistance spot welding of dissimilar thickness of AA5052 aluminum alloy was performed in order to investigate the effect of metal thickness on the weldment strength. Resistance spot welding was done using a spot welder machine available in Coraza Systems Sdn Bhd using a hemispherical of chromium copper electrode tip with radius of 6.00 mm under 14 kA of current and 0.02 bar of pressure for all thickness combinations. Lap joint configuration was produced between 2.0 mm thick sheet and 1.2 - 3.2 mm thick sheet, respectively. Microstructure of joint showed asymmetrical nugget shape that was larger on the thicker side indicating larger molten metal volume. Joint 2.0 mm x 3.2 mm sheets has the lowest hardness in both transverse direction and through thickness direction because less heat left in the weld nugget. The microstructure shows that this joint has coarse grains of HAZ. As thickness of sheet metal increased, the failure load of the joints increased. However, there was no linear correlation established between joint strength and metal thickness due to different shape of fusion zone in dissimilar thickness sheet metal.

  5. Variability of aerosol optical thickness and atmospheric turbidity in Tunisia

    NASA Astrophysics Data System (ADS)

    Masmoudi, M.; Chaabane, M.; Medhioub, K.; Elleuch, F.

    The aerosol optical thickness (AOT) τa computed from the spectral sun photometer in Thala (Tunisia) exhibited variability ranging from approximately 0.03 to greater than 2.0 at 870 nm for March-October 2001. These measurements are compared to the aerosol optical thickness computed in Ouagadougou (Burkina-Faso), Banizoumbou (Niger), IMC Oristano (Sardinia) and Rome Tor Vergata (Italy). Analysis of τa data from this observation network suggests that there is a high temporal and spatial variability of τa in the different sites. The Angström wavelength exponent α was found to vary with the magnitude of the aerosol optical thickness, with values as high as 1.5 for very low τa, and values of -0.1 for high τa situations. The relationship between the two parameters τa and α is investigated. Values of the turbidity coefficient β have been determined in Thala (Tunisia) for 8 months in 2001 based on a direct fitting method of the Angström power law expression using sun photometer data. The monthly averaged values of the turbidity coefficient β vary between 0.15 and 0.33. The months of July and October experienced the highest turbidity, while April experienced the lowest aerosol loading on average. The turbidity shows a maximum and minimum values for the Southwest and the Northwest wind directions, respectively. The single scattering albedo ωo for the 870 nm wavelength obtained from solar aureole data in Thala is analysed according to the particles' origin.

  6. Optically pumped semiconductor quantum dot disk laser operating at 1180 nm.

    PubMed

    Rautiainen, Jussi; Krestnikov, Igor; Butkus, Mantas; Rafailov, Edik U; Okhotnikov, Oleg G

    2010-03-01

    We demonstrate an optically pumped semiconductor disk laser using 39 layers of Stranski-Krastanov InGaAs quantum dots self-assembled during epitaxial growth on a monolithic GaAs/AlAs distributed Bragg reflector. The gain structure bonded to an intracavity diamond crystal heat spreader allows 1.75 W single-transverse-mode output (M(2)<1.2) with circular beam shape operating at 1180 nm in a disk laser geometry.

  7. Photodissociation of the Propargyl (C3D3) Radicals at 248 nm and 193 nm

    SciTech Connect

    Neumark., D.M.; Crider, P.E.; Castiglioni, L.; Kautzman, K.K.

    2009-01-21

    The photodissociation of perdeuterated propargyl (D{sub 2}CCCD) and propynyl (D{sub 3}CCC) radicals was investigated using fast beam photofragment translational spectroscopy. Radicals were produced from their respective anions by photodetachment at 540 nm and 450 nm (below and above the electron affinity of propynyl). The radicals were then photodissociated by 248 nm or 193 nm light. The recoiling photofragments were detected in coincidence with a time- and position-sensitive detector. Three channels were observed: D{sub 2} loss, CD + C{sub 2}D{sub 2}, and CD{sub 3} + C{sub 2}. Obervation of the D loss channel was incompatible with this experiment and was not attempted. Our translational energy distributions for D{sub 2} loss peaked at nonzero translational energy, consistent with ground state dissociation over small (< 1 eV) exit barriers with respect to separated products. Translational energy distributions for the two heavy channels peaked near zero kinetic energy, indicating dissociation on the ground state in the absence of exit barriers.

  8. NXT:1980Di immersion scanner for 7nm and 5nm production nodes

    NASA Astrophysics Data System (ADS)

    de Graaf, Roelof; Weichselbaum, Stefan; Droste, Richard; McLaren, Matthew; Koek, Bert; de Boeij, Wim

    2016-03-01

    Immersion scanners remain the critical lithography workhorses in semiconductor device manufacturing. When progressing towards the 7nm device node for logic and D18 device node for DRAM production, pattern-placement and layer-to-layer overlay requirements keep progressively scaling down and consequently require system improvements in immersion scanners. The on-product-overlay requirements are approaching levels of only a few nanometers, imposing stringent requirements on the scanner tool design in terms of reproducibility, accuracy and stability. In this paper we report on the performance of the NXT:1980Di immersion scanner. The NXT:1980Di builds upon the NXT:1970Ci, that is widely used for 16nm, 14nm and 10nm high-volume manufacturing. We will discuss the NXT:1980Di system- and sub-system/module enhancements that drive the scanner overlay, focus and productivity performance. Overlay, imaging, focus, productivity and defectivity data will be presented for multiple tools. To further reduce the on-product overlay system performance, alignment sensor contrast improvements as well as active reticle temperature conditioning are implemented on the NXT:1980Di. Reticle temperature conditioning will reduce reticle heating overlay and the higher contrast alignment sensor will improve alignment robustness for processed alignment targets. Due to an increased usage of multiple patterning techniques, an increased number of immersion exposures is required. NXT:1980Di scanner design modifications raised productivity levels from 250wph to 275wph. This productivity enhancement provides lower cost of ownership (CoO) for customers using immersion technology.

  9. THE SPECTRUM OF THORIUM FROM 250 nm TO 5500 nm: RITZ WAVELENGTHS AND OPTIMIZED ENERGY LEVELS

    SciTech Connect

    Redman, Stephen L.; Nave, Gillian; Sansonetti, Craig J.

    2014-03-01

    We have made precise observations of a thorium-argon hollow cathode lamp emission spectrum in the region between 350 nm and 1175 nm using a high-resolution Fourier transform spectrometer. Our measurements are combined with results from seven previously published thorium line lists to re-optimize the energy levels of neutral, singly, and doubly ionized thorium (Th I, Th II, and Th III). Using the optimized level values, we calculate accurate Ritz wavelengths for 19, 874 thorium lines between 250 nm and 5500 nm (40, 000 cm{sup –1} to 1800 cm{sup –1}). We have also found 102 new thorium energy levels. A systematic analysis of previous measurements in light of our new results allows us to identify and propose corrections for systematic errors in Palmer and Engleman and typographical errors and incorrect classifications in Kerber et al. We also found a large scatter with respect to the thorium line list of Lovis and Pepe. We anticipate that our Ritz wavelengths will lead to improved measurement accuracy for current and future spectrographs that make use of thorium-argon or thorium-neon lamps as calibration standards.

  10. Precision polarizability measurements of atomic cesium's 8 s 2S1 / 2 and 9 s 2S1 / 2 states

    NASA Astrophysics Data System (ADS)

    Weaver, Hannah; Kortyna, Andrew

    2013-05-01

    We report hyperfine-resolved scalar polarizabilities for cesium's 8 s 2S1 / 2 and 9 s 2S1 / 2 states using resonant two-photon spectroscopy. Two single-mode, external-cavity diode lasers drive the 6 s 2S1 / 2 --> 6 p 2P1 / 2 --> ns 2S1 / 2 transition (n = 8 or 9). Both laser beams are split and counter-propagate through an effusive beam and a vapor cell. An electric field applied across two parallel plates imposes Stark shifts on the ns 2S1 / 2 levels in the effusive beam. Electric-field strengths are measured in situ. The laser frequency is calibrated in the vapor cell using a phase modulation technique, with the modulation frequency referenced to the ground-state hyperfine splitting of atomic rubidium. Our measured 8 s 2S1 / 2 polarizability, 38370 +/- 380 a03, agrees with previous theory and experiments. Our measured 9 s 2S1 / 2 polarizability, 150700 +/- 1100 a03, agrees within two sigma of theory, but we are unaware of previous measurements. We also verify that these polarizabilities are independent of the hyperfine levels, placing upper limits on the differential polarizabilities of 200 +/- 260 a03 for the 8 s 2S1 / 2 state and 490 +/- 450 a03 for the 9 s 2S1 / 2 state. Supported by the National Science Foundation under Grant PHY-0653107.

  11. Voigt deconvolution method and its applications to pure oxygen absorption spectrum at 1270 nm band.

    PubMed

    Al-Jalali, Muhammad A; Aljghami, Issam F; Mahzia, Yahia M

    2016-03-15

    Experimental spectral lines of pure oxygen at 1270 nm band were analyzed by Voigt deconvolution method. The method gave a total Voigt profile, which arises from two overlapping bands. Deconvolution of total Voigt profile leads to two Voigt profiles, the first as a result of O2 dimol at 1264 nm band envelope, and the second from O2 monomer at 1268 nm band envelope. In addition, Voigt profile itself is the convolution of Lorentzian and Gaussian distributions. Competition between thermal and collisional effects was clearly observed through competition between Gaussian and Lorentzian width for each band envelope. Voigt full width at half-maximum height (Voigt FWHM) for each line, and the width ratio between Lorentzian and Gaussian width (ΓLΓG(-1)) have been investigated. The following applied pressures were at 1, 2, 3, 4, 5, and 8 bar, while the temperatures were at 298 K, 323 K, 348 K, and 373 K range.

  12. Voigt deconvolution method and its applications to pure oxygen absorption spectrum at 1270 nm band

    NASA Astrophysics Data System (ADS)

    AL-Jalali, Muhammad A.; Aljghami, Issam F.; Mahzia, Yahia M.

    2016-03-01

    Experimental spectral lines of pure oxygen at 1270 nm band were analyzed by Voigt deconvolution method. The method gave a total Voigt profile, which arises from two overlapping bands. Deconvolution of total Voigt profile leads to two Voigt profiles, the first as a result of O2 dimol at 1264 nm band envelope, and the second from O2 monomer at 1268 nm band envelope. In addition, Voigt profile itself is the convolution of Lorentzian and Gaussian distributions. Competition between thermal and collisional effects was clearly observed through competition between Gaussian and Lorentzian width for each band envelope. Voigt full width at half-maximum height (Voigt FWHM) for each line, and the width ratio between Lorentzian and Gaussian width (ΓLΓG- 1) have been investigated. The following applied pressures were at 1, 2, 3, 4, 5, and 8 bar, while the temperatures were at 298 K, 323 K, 348 K, and 373 K range.

  13. Voigt deconvolution method and its applications to pure oxygen absorption spectrum at 1270 nm band.

    PubMed

    Al-Jalali, Muhammad A; Aljghami, Issam F; Mahzia, Yahia M

    2016-03-15

    Experimental spectral lines of pure oxygen at 1270 nm band were analyzed by Voigt deconvolution method. The method gave a total Voigt profile, which arises from two overlapping bands. Deconvolution of total Voigt profile leads to two Voigt profiles, the first as a result of O2 dimol at 1264 nm band envelope, and the second from O2 monomer at 1268 nm band envelope. In addition, Voigt profile itself is the convolution of Lorentzian and Gaussian distributions. Competition between thermal and collisional effects was clearly observed through competition between Gaussian and Lorentzian width for each band envelope. Voigt full width at half-maximum height (Voigt FWHM) for each line, and the width ratio between Lorentzian and Gaussian width (ΓLΓG(-1)) have been investigated. The following applied pressures were at 1, 2, 3, 4, 5, and 8 bar, while the temperatures were at 298 K, 323 K, 348 K, and 373 K range. PMID:26709019

  14. Faster qualification of 193-nm resists for 100-nm development using photo cell monitoring

    NASA Astrophysics Data System (ADS)

    Jones, Chris M.; Kallingal, Chidam; Zawadzki, Mary T.; Jeewakhan, Nazneen N.; Kaviani, Nazila N.; Krishnan, Prakash; Klaum, Arthur D.; Van Ess, Joel

    2003-05-01

    The development of 100-nm design rule technologies is currently taking place in many R&D facilities across the world. For some critical alyers, the transition to 193-nm resist technology has been required to meet this leading edge design rule. As with previous technology node transitions, the materials and processes available are undergoing changes and improvements as vendors encounter and solve problems. The initial implementation of the 193-nm resits process did not meet the photolithography requirements of some IC manufacturers due to very high Post Exposure Bake temperature sensitivity and consequently high wafer to wafer CD variation. The photoresist vendors have been working to improve the performance of the 193-nm resists to meet their customer's requirements. Characterization of these new resists needs to be carried out prior to implementation in the R&D line. Initial results on the second-generation resists evaluated at Cypress Semicondcutor showed better CD control compared to the aelrier resist with comparable Depth of Focus (DOF), Exposure Latitute, Etch Resistance, etc. In addition to the standard lithography parameters, resist characterization needs to include defect density studies. It was found that the new resists process with the best CD control, resulted in the introduction of orders of magnitude higher yield limiting defects at Gate, Contact adn Local Interconnect. The defect data were shared with the resists vendor and within days of the discovery the resist vendor was able to pinpoint the source of the problem. The fix was confirmed and the new resists were successfully released to production. By including defect monitoring into the resist qualification process, Cypress Semiconductor was able to 1) drive correction actions earlier resulting in faster ramp and 2) eliminate potential yield loss. We will discuss in this paper how to apply the Micro Photo Cell Monitoring methodology for defect monitoring in the photolithogprhay module and the

  15. Zebrafish cardiac muscle thick filaments: isolation technique and three-dimensional structure.

    PubMed

    González-Solá, Maryví; Al-Khayat, Hind A; Behra, Martine; Kensler, Robert W

    2014-04-15

    To understand how mutations in thick filament proteins such as cardiac myosin binding protein-C or titin, cause familial hypertrophic cardiomyopathies, it is important to determine the structure of the cardiac thick filament. Techniques for the genetic manipulation of the zebrafish are well established and it has become a major model for the study of the cardiovascular system. Our goal is to develop zebrafish as an alternative system to the mammalian heart model for the study of the structure of the cardiac thick filaments and the proteins that form it. We have successfully isolated thick filaments from zebrafish cardiac muscle, using a procedure similar to those for mammalian heart, and analyzed their structure by negative-staining and electron microscopy. The isolated filaments appear well ordered with the characteristic 42.9 nm quasi-helical repeat of the myosin heads expected from x-ray diffraction. We have performed single particle image analysis on the collected electron microscopy images for the C-zone region of these filaments and obtained a three-dimensional reconstruction at 3.5 nm resolution. This reconstruction reveals structure similar to the mammalian thick filament, and demonstrates that zebrafish may provide a useful model for the study of the changes in the cardiac thick filament associated with disease processes.

  16. Zebrafish Cardiac Muscle Thick Filaments: Isolation Technique and Three-Dimensional Structure

    PubMed Central

    González-Solá, Maryví; AL-Khayat, Hind A.; Behra, Martine; Kensler, Robert W.

    2014-01-01

    To understand how mutations in thick filament proteins such as cardiac myosin binding protein-C or titin, cause familial hypertrophic cardiomyopathies, it is important to determine the structure of the cardiac thick filament. Techniques for the genetic manipulation of the zebrafish are well established and it has become a major model for the study of the cardiovascular system. Our goal is to develop zebrafish as an alternative system to the mammalian heart model for the study of the structure of the cardiac thick filaments and the proteins that form it. We have successfully isolated thick filaments from zebrafish cardiac muscle, using a procedure similar to those for mammalian heart, and analyzed their structure by negative-staining and electron microscopy. The isolated filaments appear well ordered with the characteristic 42.9 nm quasi-helical repeat of the myosin heads expected from x-ray diffraction. We have performed single particle image analysis on the collected electron microscopy images for the C-zone region of these filaments and obtained a three-dimensional reconstruction at 3.5 nm resolution. This reconstruction reveals structure similar to the mammalian thick filament, and demonstrates that zebrafish may provide a useful model for the study of the changes in the cardiac thick filament associated with disease processes. PMID:24739166

  17. Ice thickness in the Northwest Passage

    NASA Astrophysics Data System (ADS)

    Haas, Christian; Howell, Stephen E. L.

    2015-09-01

    Recently, the feasibility of commercial shipping in the ice-prone Northwest Passage (NWP) has attracted a lot of attention. However, very little ice thickness information actually exists. We present results of the first ever airborne electromagnetic ice thickness surveys over the NWP carried out in April and May 2011 and 2015 over first-year and multiyear ice. These show modal thicknesses between 1.8 and 2.0 m in all regions. Mean thicknesses over 3 m and thick, deformed ice were observed over some multiyear ice regimes shown to originate from the Arctic Ocean. Thick ice features more than 100 m wide and thicker than 4 m occurred frequently. Results indicate that even in today's climate, ice conditions must still be considered severe. These results have important implications for the prediction of ice breakup and summer ice conditions, and the assessment of sea ice hazards during the summer shipping season.

  18. Theoretical Determination of The Optimum Thickness of Perylene Layer in Bilayer Phthalocyanine/Perylene Photovoltaic Device

    NASA Astrophysics Data System (ADS)

    Pratiwi, Herlina; Siahaan, Timothy; Satriawan, Mirza; Nurwantoro, Pekik; Triyana, Kuwat

    2009-09-01

    We do theoretical study on thickness of the active layers in a heterojunction bilayer thin film photovoltaic device based on copper phthalocyanine (CuPc)/perylene that gives the highest Incident Photon to Current Efficiency (IPCE). The device we study consists Glass (1 mm)/ITO (Indium Tin Oxide, 120 nm)/CuPc (50 nm)/PTCDA (3, 4, 9, 10-perylenetetracarboxylic dianhydride, x nm)/Ag (40 nm), where x is the thickness of the PTCDA layer that we calculate here. The calculation is based on assumption that the photocurrent generation process is the result of the creation of photogenerated excitons, which difuse before dissociated at the CuPc/PTCDA interface following the diffusion equation, by internal optical electric field that comes from light exposure. We also assume that almost all photocurrent is created in the CuPc/PTCDA interface. Because the order of the thickness of the active layers is the same or smaller than of the wavelength of visible light, we take into account the effect of reflection and interference in the calculation of internal optical electric field distribution inside the device by making use complex indices of refraction of the active materials in our calculation. The modulus of it is proportional with the number generated excitons. The general solution of the exciton diffusion equation was used for calculating the photocurrent and the IPCE. Here, we find the optimum thickness of PTCDA layer that gives greatest IPCE at the wavelength of 344 nm and 467 nm, which are the wavelengths at which the absorption coefficients of CuPc and PTCDA, respectively, reach the maximum values.

  19. 34 nm Charge Transport through DNA

    NASA Astrophysics Data System (ADS)

    Slinker, Jason; Muren, Natalie; Renfrew, Sara; Barton, Jacqueline

    2011-03-01

    Long-range charge transport through DNA has broad-reaching implications due to its inherent biological recognition capabilities and unmatched capacity to be patterned into precise, nanoscale shapes. We have observed charge transport through 34 nm DNA monolayers (100 base pairs) using DNA-mediated electrochemistry. Cyclic voltammetry of multiplexed gold electrodes modified with 100mer DNAs reveal sizable peaks from distally-bound Nile Blue redox probes for well matched duplexes but highly attenuated redox peaks from 100mer monolayers containing a single base pair mismatch, demonstrating that the charge transfer is DNA-mediated. The 100mers on the gold surface are efficiently cleaved by the restriction enzyme RsaI. The 100mers in the DNA film thus adopt conformations that are readily accessible to protein binding and restriction. The ability to assemble well-characterized DNA films with these 100mers permits the demonstration of charge transport over distances surpassing most reports of molecular wires. Supported by funding from the NIH/NIBIB.

  20. Illumination optimization for 65nm technology node

    NASA Astrophysics Data System (ADS)

    Wang, Ching-Heng; Liu, Qingwei; Zhang, Liguo; Hung, Chi-Yuan

    2006-10-01

    The most important task of the microlithography process is to make the manufacturable process latitude/window, including dose latitude and Depth of Focus, as wide as possible. Thus, to perform a thorough source optimization during process development is becoming more critical as moving to high NA technology nodes. Furthermore, Optical proximity correction (OPC) are always used to provide a common process window for structures that would, otherwise, have no overlapping windows. But as the critical dimension of the IC design shrinks dramatically, the flexibility for applying OPC also decreases. So a robust microlithography process should also be OPC-friendly. This paper demonstrates our work on the illumination optimization during the process development. The Calibre ILO (Illumination Optimization) tool was used to perform the illumination optimization and provided plots of DOF vs. various parametric illumination settings. This was used to screen the various illumination settings for the one with optimum process margins. The resulting illumination conditions were then implemented and analyzed at a real wafer level on our 90/65nm critical layers, such as Active, Poly, Contact and Metal. In conclusion, based on these results, a summary is provided highlighting how OPC can get benefit from proper illumination optimization.

  1. Influence of thickness on physical properties of vacuum evaporated polycrystalline CdTe thin films for solar cell applications

    NASA Astrophysics Data System (ADS)

    Chander, Subhash; Dhaka, M. S.

    2016-02-01

    This paper presents the influence of thickness on physical properties of polycrystalline CdTe thin films. The thin films of thickness 450 nm, 650 nm and 850 nm were deposited employing thermal vacuum evaporation technique on glass and indium tin oxide (ITO) coated glass substrates. The physical properties of these as-grown thin films were investigated employing the X-ray diffraction (XRD), source meter, UV-Vis spectrophotometer, scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS). The structural analysis reveals that the films have zinc-blende cubic structure and polycrystalline in nature with preferred orientation (111). The structural parameters like lattice constant, interplanar spacing, grain size, strain, dislocation density and number of crystallites per unit area are calculated. The average grain size and optical band gap are found in the range 15.16-21.22 nm and 1.44-1.63 eV respectively and observed to decrease with thickness. The current-voltage characteristics show that the electrical conductivity is observed to decrease with thickness. The surface morphology shows that films are free from crystal defects like pin holes and voids as well as homogeneous and uniform. The EDS patterns show the presence of cadmium and tellurium elements in the as grown films. The experimental results reveal that the film thickness plays significant role on the physical properties of as-grown CdTe thin films and higher thickness may be used as absorber layer to solar cells applications.

  2. Preparation and investigation of nano-thick FTO/Ag/FTO multilayer transparent electrodes with high figure of merit.

    PubMed

    Yu, Shihui; Li, Lingxia; Lyu, Xiaosong; Zhang, Weifeng

    2016-01-01

    In order to improve the conductivity of the single-layered nano-thick F doped SnO2 (FTO) thin films, an Ag mid-layer is embedded between the FTO layers. In our work, the effects of mid-layer Ag and top FTO layer on the structural, electrical and optical properties of FTO/Ag/FTO multilayered composite structures deposited on quartz glass substrates by magnetron sputtering at 100 °C have been investigated. As the thickness of Ag mid-layer increases, the resistivity decreases. As the top FTO layer thickness increases, the resistivity increases. The highest value of figure of merit φTC is 7.8 × 10(-2 ) Ω(-1) for the FTO (20 nm)/Ag (7 nm)/FTO (30 nm) multilayers, while the average optical transmittance is 95.5% in the visible range of wavelengths and the resistivity is 8.8 × 10(-5 ) Ω·cm. In addition, we also describe the influence of Ag and top FTO layer thickness on structural, electrical and optical properties of the nano-thick FTO (20 nm)/Ag/FTO multilayers and the mechanism of the changes of electrical and optical properties at different Ag and top FTO layer thicknesses.

  3. Preparation and investigation of nano-thick FTO/Ag/FTO multilayer transparent electrodes with high figure of merit

    PubMed Central

    Yu, Shihui; Li, Lingxia; Lyu, Xiaosong; Zhang, Weifeng

    2016-01-01

    In order to improve the conductivity of the single–layered nano-thick F doped SnO2 (FTO) thin films, an Ag mid–layer is embedded between the FTO layers. In our work, the effects of mid–layer Ag and top FTO layer on the structural, electrical and optical properties of FTO/Ag/FTO multilayered composite structures deposited on quartz glass substrates by magnetron sputtering at 100 °C have been investigated. As the thickness of Ag mid–layer increases, the resistivity decreases. As the top FTO layer thickness increases, the resistivity increases. The highest value of figure of merit φTC is 7.8 × 10−2 Ω−1 for the FTO (20 nm)/Ag (7 nm)/FTO (30 nm) multilayers, while the average optical transmittance is 95.5% in the visible range of wavelengths and the resistivity is 8.8 × 10−5 Ω·cm. In addition, we also describe the influence of Ag and top FTO layer thickness on structural, electrical and optical properties of the nano-thick FTO (20 nm)/Ag/FTO multilayers and the mechanism of the changes of electrical and optical properties at different Ag and top FTO layer thicknesses. PMID:26833398

  4. 193 nm excimer laser sclerostomy in pseudophakic patients with advanced open angle glaucoma.

    PubMed Central

    Allan, B D; van Saarloos, P P; Cooper, R L; Constable, I J

    1994-01-01

    A modified open mask system incorporating an en face air jet to dry the target area during ablation and a conjunctival plication mechanism, which allows ab externo delivery of the 193 nm excimer laser without prior conjunctival dissection, has been developed to form small bore sclerostomies accurately and atraumatically. Full thickness sclerostomies, and sclerostomies guarded by a smaller internal ostium can be created. A pilot therapeutic trial was conducted in pseudophakic patients with advanced open angle glaucoma. Six full thickness sclerostomies (200 microns and 400 microns diameter) and three guarded sclerostomies were created in nine patients by 193 nm excimer laser ablation (fluence per pulse 400 mJ/cm2, pulse rate 16 Hz, air jet pressure intraocular pressure +25 mm Hg). After 6 months' follow up, intraocular pressure was controlled (< or = 16 mm Hg) in eight of the nine patients (6/9 without medication). Early postoperative complications included hyphaema (trace--2.5 mm) (6/9), temporary fibrinous sclerostomy occlusion (4/9), profound early hypotony (all patients without fibrinous occlusion), and suprachoroidal haemorrhage in one case. Conjunctival laser wounds were self sealing. Small bore laser sclerostomy procedures are functionally equivalent to conventional full thickness procedures, producing early postoperative hypotony, with an increased risk of suprachoroidal haemorrhage in association with this. Further research is required to improve control over internal guarding in excimer laser sclerostomy before clinical trials of this technique can safely proceed. Images PMID:8148335

  5. Thickness dependence of the dielectric properties of thermally evaporated Sb2Te3 thin films

    NASA Astrophysics Data System (ADS)

    Ulutas, K.; Deger, D.; Yakut, S.

    2013-03-01

    Sb2Te3 thin films of different thickness (23 - 350 nm) were prepared by thermal evaporation technique. The thickness dependence of the ac conductivity and dielectric properties of the Sb2Te3 films have been investigated in the frequency range 10 Hz- 100 kHz and within the temperature range 293-373K. Both the dielectric constant epsilon1 and dielectric loss factor epsilon2 were found to depend on frequency, temperature and film thickness. The frequency and temperature dependence of ac conductivity (σac(ω)) has also been determined. The ac conductivity of our samples satisfies the well known ac power law; i.e., σac(ω) propto ωs where s<1 and independent of the film thickness. The temperature dependence of ac conductivity and parameter s is reasonably well interpreted by the correlated barrier hopping (CBH) model. The activation energies were evaluated for various thicknesses. The temperature coefficient of the capacitance (TCC) and permitivity (TCP) were determined as a function of the film thickness. The microstructure of the samples were analyzed using X-ray diffraction (XRD). This results are discussed on the base of the differences in their morphologies and thicknesses. The tendency for amorphization of the crystalline phases becomes evident as the film thickness increases.

  6. A study of microclad thickness variation (1987)

    SciTech Connect

    Ramachandran, R.S.; Armstrong, K.P.

    1989-06-22

    A study was conducted to investigate the thickness variation of microclad material used in fabricating 1E38 bridges. For the role sampled (nine reels), standard deviations within reels ranged from 6.11 to 12.07 {mu}in. Thickness variations within reels ranged from 16.2 to 40.9 {mu}in., with the average thickness between 142.90 and 161.28 {mu}in.

  7. Do elliptical galaxies have thick disks?

    NASA Technical Reports Server (NTRS)

    Thomson, R. C.; Wright, A. E.

    1990-01-01

    The authors discuss new evidence which supports the existence of thick disks in elliptical/SO galaxies. Numerical simulations of weak interactions with thick disk systems produce shell structures very similar in appearance to those observed in many shell galaxies. The authors think this model presents a more plausible explanation for the formation of shell structures in elliptical/SO galaxies than does the merger model and, if correct, supports the existence of thick disks in elliptical/SO galaxies.

  8. Localizing gravity on exotic thick 3-branes

    SciTech Connect

    Castillo-Felisola, Oscar; Melfo, Alejandra; Pantoja, Nelson; Ramirez, Alba

    2004-11-15

    We consider localization of gravity on thick branes with a nontrivial structure. Double walls that generalize the thick Randall-Sundrum solution, and asymmetric walls that arise from a Z{sub 2} symmetric scalar potential, are considered. We present a new asymmetric solution: a thick brane interpolating between two AdS{sub 5} spacetimes with different cosmological constants, which can be derived from a 'fake supergravity' superpotential, and show that it is possible to confine gravity on such branes.

  9. Advanced CDU improvement for 22nm and below

    NASA Astrophysics Data System (ADS)

    Fujiwara, Tomoharu; Toki, Tsuyoshi; Tanaka, Daishi; Kosugi, Junichi; Susa, Tomohiko; Sakasai, Naruo; Tokui, Akira

    2011-04-01

    ArF water immersion lithography is expected to be used down to the 22nm hp node or below. However, such advancements in technology nodes have led to extremely small process margins. This necessitates more accurate means of process control. CD uniformity of the photo-resist (PR) image is affected by many sources. In the case of the exposure tool-CD error on the reticle, as well as exposure dose and focus errors are the key factors. For the PR process, heterogeneity of the stacked PR film thickness, post exposure bake (PEB) plate temperature, and development have an impact. Further, the process wafer also has error sources that include under-layer uniformity and wafer flatness. Fortunately, the majority of these factors is quite stable in a volume production process and can be compensated for by adjusting exposure dose and focus in the scanner. A technique to calculate exposure dose and focus correction values simultaneously from the measured PR image feature was reported previously [1]. In addition, a demonstration of a correction loop using a neural network calculation model was reported in SPIE 2010 [2], and the corrected CD uniformity was less than 1.5 nm (3-sigma) within the wafer. In this paper, we will report the latest CD uniformity correction results achieved with the NSR-S620D ArF immersion scanner using correction values estimated by scatterometry and CD-SEM. The method of correction using CD-SEM is newly developed. A maximum of nine parameters extracted from the PR profile are used in this correction. In general, the CD variation of an isolated line pattern caused by focus error is more sensitive than that of a dense pattern. Thus, we estimate the focus error from the isolated pattern, with the dose error estimated using both isolated and dense patterns. The Nikon CDU Master then derives the optimal control parameters for each compensation function in the scanner using the exposure dose and focus correction data, and the NSR-S620D is able to control

  10. Measurements at 351 nm of temporal dispersion in fibers

    SciTech Connect

    Griffith, R; Milam, D; Sell, W; Thompson, C

    1998-11-04

    1. Temporal dispersion at 351-nm was measured in the following: a 35-m bundle of 19 each 50-µm-core fibers, a companion 35-m single fiber, a 100-µm-core single fiber (at 4 lengths), and a 50-µm-core single fiber (two samples, 7 lengths). The 50-µm-core fiber was from preform #24; the 100-µm-core fiber was a prototype version having a thick cladding. All of the fibers were developed and manufactured at the Vavilov State Optical Institute, St. Petersburg, Russia. 2. Dispersion measurements were made by propagating a 20-ps 351-nm pulse through the fiber under test and recording the output on an S20 streak camera. The width of the pulse transmitted by the fiber was compared to that of a fraction of the pulse that had propagated over an air path. Values of dispersion were calculated as, D = {radical}(F² - A²) , where F and A are the full widths at half maximum (FWHM) for, respectively, the fiber-path and the air-path streaks. 3. In each of the experiments, the measured dispersion increased with counts in the streak record, which in principle, are proportional to intensity in the fiber. Measured values of dispersion ranged from about 0.6 to 1.0 ps/m for the single fibers. 4. The measured FWHMs of both the fiber-path pulse and the air-path pulse increased with increase in counts in the streak record. The rate of broadening was greatest for the fiber-path pulse, and the broadening of that pulse was the primary cause for the dependence of dispersion on counts in the streak record. Pulse broadening with increase in counts is symptomatic of camera saturation, but it is difficult to understand why saturation should have effected the fiber-path pulses more strongly. 5. There were spatial anomalies in the streak records of the output pulses from some of the fibers. Emission by the bundle of a "doubled" pulse is a primary example. In streaks recorded at about 800 counts, the total duration for the pair of pulses was about 100 ps. The maxima of the pulses occurred in

  11. Determination of the hyperfine coupling constant of the cesium 7S1/2 state

    NASA Astrophysics Data System (ADS)

    Yang, Guang; Wang, Jie; Yang, Baodong; Wang, Junmin

    2016-08-01

    We report the hyperfine splitting (HFS) measurement of the cesium (Cs) 7S1/2 state by optical–optical double-resonance spectroscopy with the Cs 6S1/2–6P3/2–7S1/2 (852 nm  +  1470 nm) ladder-type system. The HFS frequency calibration is performed by employing a phase-type waveguide electro-optic modulator together with a stable confocal Fabry–Perot cavity. From the measured HFS between the F″  =  3 and F″  =  4 manifolds of the Cs 7S1/2 state (HFS  =  2183.273  ±  0.062 MHz), we have determined the magnetic dipole hyperfine coupling constant (A  =  545.818  ±  0.016 MHz), which is in good agreement with the previous work but much more precise.

  12. Determination of the hyperfine coupling constant of the cesium 7S1/2 state

    NASA Astrophysics Data System (ADS)

    Yang, Guang; Wang, Jie; Yang, Baodong; Wang, Junmin

    2016-08-01

    We report the hyperfine splitting (HFS) measurement of the cesium (Cs) 7S1/2 state by optical-optical double-resonance spectroscopy with the Cs 6S1/2-6P3/2-7S1/2 (852 nm  +  1470 nm) ladder-type system. The HFS frequency calibration is performed by employing a phase-type waveguide electro-optic modulator together with a stable confocal Fabry-Perot cavity. From the measured HFS between the F″  =  3 and F″  =  4 manifolds of the Cs 7S1/2 state (HFS  =  2183.273  ±  0.062 MHz), we have determined the magnetic dipole hyperfine coupling constant (A  =  545.818  ±  0.016 MHz), which is in good agreement with the previous work but much more precise.

  13. Synthesis, electrochemistry and liquid crystal properties of 1,2,3-(NH)-triazolylferrocene derivatives

    NASA Astrophysics Data System (ADS)

    Zhao, Hai-Ying; Guo, Le; Chen, Shu-Feng; Bian, Zhan-Xi

    2013-12-01

    A series of aryl(5-ferrocenyl-2H-1,2,3-triazol-4-yl)methanone 3a-3d have been firstly synthesized and characterized. The X-ray crystal structure of phenyl(5-ferrocenyl-2H-1,2,3-triazol-4-yl)methanone 3a confirms that 1,2,3-triazole ring exists in the crystal as the 2H isomer form. The UV-vis absorption spectra of these compounds correspond to the assembled spectra of ferrocene and aryl substitute groups, and the fluorescence spectra show a maximum at 374 nm in CH2Cl2. The cyclic voltammograms of 3b-3d show the reversible oxidation waves of the ferrocenyl groups, and these waves anodically shift in comparison with ferrocene standard due to the electron withdrawing effect of the 1,2,3-triazoles ring. According to thermal polarizing microscopy and differential scanning calorimetry studies, compounds 3b-3d display liquid crystal behaviors over wider mesophase range during first heating.

  14. Increased yields of radical cations by arene addition to irradiated 1,2-dichloroethane

    NASA Astrophysics Data System (ADS)

    Funston, Alison M.; Miller, John R.

    2005-04-01

    Pulse radiolysis in chlorinated hydrocarbon liquids such as 1,2-dichloroethane is a versatile and effective method for the generation of solute radical cations. The addition of a large concentration of toluene or benzene to solutions of 1,2-dichloroethane is found to increase the yield of solute radical cations ( G=0.68 molecules 100 eV -1 in 1,2-dichloroethane (J. Phys. Chem. 83(15) (1979) 1944) by a factor of 2.5. The increased yield is found for solutes which have a potential of ˜1.1 V (vs. SCE) or below for the S + rad /S couple and is due to reaction of the chlorine atom:toluene (π-Cl rad ) complex with the solute. A similar species forms with benzene. π-Cl rad is formed with a yield of G=3.0, and arises principally as a result of geminate recombination of ions. It has an absorption in the visible with λ max 460 nm, ɛ max=1800 M -1 cm -1 and decays with an observed first-order rate constant k=1.12×10 6 s -1. The rate of reaction of the π-Cl • with added solutes ranges from 2.5 to 5×10 9 M -1 s -1. The other oxidant present in the 1,2-dichloroethane/toluene solutions is identified as the toluene cation dimer. This is formed from the 1,2-dichloroethane radical cation with bimolecular rate constant k=1.35×10 10 M -1 s -1 with a radiation chemical yield G=0.5. The rate of reaction of this species with the added solutes is diffusion controlled, k=1-2×10 10 M -1 s -1.

  15. Changes in the temperature-dependent specific volume of supported polystyrene films with film thickness.

    PubMed

    Huang, Xinru; Roth, Connie B

    2016-06-21

    Recent studies have measured or predicted thickness-dependent shifts in density or specific volume of polymer films as a possible means of understanding changes in the glass transition temperature Tg(h) with decreasing film thickness with some experimental works claiming unrealistically large (25%-30%) increases in film density with decreasing thickness. Here we use ellipsometry to measure the temperature-dependent index of refraction of polystyrene (PS) films supported on silicon and investigate the validity of the commonly used Lorentz-Lorenz equation for inferring changes in density or specific volume from very thin films. We find that the density (specific volume) of these supported PS films does not vary by more than ±0.4% of the bulk value for film thicknesses above 30 nm, and that the small variations we do observe are uncorrelated with any free volume explanation for the Tg(h) decrease exhibited by these films. We conclude that the derivation of the Lorentz-Lorenz equation becomes invalid for very thin films as the film thickness approaches ∼20 nm, and that reports of large density changes greater than ±1% of bulk for films thinner than this likely suffer from breakdown in the validity of this equation or in the difficulties associated with accurately measuring the index of refraction of such thin films. For larger film thicknesses, we do observed small variations in the effective specific volume of the films of 0.4 ± 0.2%, outside of our experimental error. These shifts occur simultaneously in both the liquid and glassy regimes uniformly together starting at film thicknesses less than ∼120 nm but appear to be uncorrelated with Tg(h) decreases; possible causes for these variations are discussed.

  16. Changes in the temperature-dependent specific volume of supported polystyrene films with film thickness

    NASA Astrophysics Data System (ADS)

    Huang, Xinru; Roth, Connie B.

    2016-06-01

    Recent studies have measured or predicted thickness-dependent shifts in density or specific volume of polymer films as a possible means of understanding changes in the glass transition temperature Tg(h) with decreasing film thickness with some experimental works claiming unrealistically large (25%-30%) increases in film density with decreasing thickness. Here we use ellipsometry to measure the temperature-dependent index of refraction of polystyrene (PS) films supported on silicon and investigate the validity of the commonly used Lorentz-Lorenz equation for inferring changes in density or specific volume from very thin films. We find that the density (specific volume) of these supported PS films does not vary by more than ±0.4% of the bulk value for film thicknesses above 30 nm, and that the small variations we do observe are uncorrelated with any free volume explanation for the Tg(h) decrease exhibited by these films. We conclude that the derivation of the Lorentz-Lorenz equation becomes invalid for very thin films as the film thickness approaches ˜20 nm, and that reports of large density changes greater than ±1% of bulk for films thinner than this likely suffer from breakdown in the validity of this equation or in the difficulties associated with accurately measuring the index of refraction of such thin films. For larger film thicknesses, we do observed small variations in the effective specific volume of the films of 0.4 ± 0.2%, outside of our experimental error. These shifts occur simultaneously in both the liquid and glassy regimes uniformly together starting at film thicknesses less than ˜120 nm but appear to be uncorrelated with Tg(h) decreases; possible causes for these variations are discussed.

  17. Changes in the temperature-dependent specific volume of supported polystyrene films with film thickness.

    PubMed

    Huang, Xinru; Roth, Connie B

    2016-06-21

    Recent studies have measured or predicted thickness-dependent shifts in density or specific volume of polymer films as a possible means of understanding changes in the glass transition temperature Tg(h) with decreasing film thickness with some experimental works claiming unrealistically large (25%-30%) increases in film density with decreasing thickness. Here we use ellipsometry to measure the temperature-dependent index of refraction of polystyrene (PS) films supported on silicon and investigate the validity of the commonly used Lorentz-Lorenz equation for inferring changes in density or specific volume from very thin films. We find that the density (specific volume) of these supported PS films does not vary by more than ±0.4% of the bulk value for film thicknesses above 30 nm, and that the small variations we do observe are uncorrelated with any free volume explanation for the Tg(h) decrease exhibited by these films. We conclude that the derivation of the Lorentz-Lorenz equation becomes invalid for very thin films as the film thickness approaches ∼20 nm, and that reports of large density changes greater than ±1% of bulk for films thinner than this likely suffer from breakdown in the validity of this equation or in the difficulties associated with accurately measuring the index of refraction of such thin films. For larger film thicknesses, we do observed small variations in the effective specific volume of the films of 0.4 ± 0.2%, outside of our experimental error. These shifts occur simultaneously in both the liquid and glassy regimes uniformly together starting at film thicknesses less than ∼120 nm but appear to be uncorrelated with Tg(h) decreases; possible causes for these variations are discussed. PMID:27334190

  18. Plasmonic waveguide ring resonators with 4 nm air gap and λ0(2)/15,000 mode-area fabricated using photolithography.

    PubMed

    Lee, Jaehak; Song, Juhee; Sung, Gun Yong; Shin, Jung H

    2014-10-01

    Plasmonic air-gap disk resonators with 3.5 μm diameter and a 4 nm thick, 40 nm wide air gap for a mode area of only λ0(2)/15,000 were fabricated using photolithography only. The resonant modes were clearly identified using tapered fiber coupling method at the resonant wavelengths of 1280-1620 nm. We also demonstrate the advantage of the air-gap structure by using the resonators as label-free biosensors with a sensitivity of 1.6 THz/nm.

  19. Influence of the absorber layer thickness and rod length on the performance of three-dimensional nanorods thin film hydrogenated amorphous silicon solar cells

    NASA Astrophysics Data System (ADS)

    Ho, Chung-I.; Liang, Wei-Chieh; Yeh, Dan-Ju; Su, Vin-Cent; Yang, Po-Chuan; Chen, Shih-Yen; Yang, Tsai-Ting; Lee, Jeng-Han; Kuan, Chieh-Hsiung; Cheng, I.-Chun; Lee, Si-Chen

    2013-04-01

    Performance of substrate-configured hydrogenated amorphous silicon solar cells based on ZnO nanorod arrays prepared by hydrothermal method has been investigated. The light harvest ability of three-dimensional nanorods solar cells is a compromise between the absorber layer thickness and the nanorods geometry. By optimizing the intrinsic a-Si:H absorber layer thickness from 75 to 250 nm and varying the length of the nanorods from 600 to 1800 nm, the highest energy conversion efficiency of 6.07% is obtained for the nanorods solar cell having thin absorber layer thickness of 200 nm with the rod length of 600 nm. This represents up to 28% enhanced efficiency compared to the conventional flat reference cell with similar absorber layer thickness.

  20. 43 CFR 3101.1-2 - Surface use rights.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Surface use rights. 3101.1-2 Section 3101... § 3101.1-2 Surface use rights. A lessee shall have the right to use so much of the leased lands as is... operations, and specification of interim and final reclamation measures. At a minimum, measures shall...

  1. 43 CFR 3101.1-2 - Surface use rights.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Surface use rights. 3101.1-2 Section 3101... § 3101.1-2 Surface use rights. A lessee shall have the right to use so much of the leased lands as is... operations, and specification of interim and final reclamation measures. At a minimum, measures shall...

  2. 43 CFR 3101.1-2 - Surface use rights.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Surface use rights. 3101.1-2 Section 3101... § 3101.1-2 Surface use rights. A lessee shall have the right to use so much of the leased lands as is... operations, and specification of interim and final reclamation measures. At a minimum, measures shall...

  3. 50 CFR Figures 1-2 to Part 223 - [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 10 2012-10-01 2012-10-01 false 1 Figures 1-2 to Part 223 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS THREATENED MARINE AND ANADROMOUS SPECIES Figures 1-2 to Part 223...

  4. 50 CFR Figures 1-2 to Part 223 - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false 1 Figures 1-2 to Part 223 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS THREATENED MARINE AND ANADROMOUS SPECIES Figures 1-2 to Part 223...

  5. 41 CFR 60-1.2 - Administrative responsibility.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 41 Public Contracts and Property Management 1 2014-07-01 2014-07-01 false Administrative responsibility. 60-1.2 Section 60-1.2 Public Contracts and Property Management Other Provisions Relating to... OF LABOR 1-OBLIGATIONS OF CONTRACTORS AND SUBCONTRACTORS Preliminary Matters; Equal...

  6. 41 CFR 60-1.2 - Administrative responsibility.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 41 Public Contracts and Property Management 1 2012-07-01 2009-07-01 true Administrative responsibility. 60-1.2 Section 60-1.2 Public Contracts and Property Management Other Provisions Relating to... OF LABOR 1-OBLIGATIONS OF CONTRACTORS AND SUBCONTRACTORS Preliminary Matters; Equal...

  7. 41 CFR 60-1.2 - Administrative responsibility.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 1 2010-07-01 2010-07-01 true Administrative responsibility. 60-1.2 Section 60-1.2 Public Contracts and Property Management Other Provisions Relating to... OF LABOR 1-OBLIGATIONS OF CONTRACTORS AND SUBCONTRACTORS Preliminary Matters; Equal...

  8. 41 CFR 60-1.2 - Administrative responsibility.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 41 Public Contracts and Property Management 1 2011-07-01 2009-07-01 true Administrative responsibility. 60-1.2 Section 60-1.2 Public Contracts and Property Management Other Provisions Relating to... OF LABOR 1-OBLIGATIONS OF CONTRACTORS AND SUBCONTRACTORS Preliminary Matters; Equal...

  9. 41 CFR 60-1.2 - Administrative responsibility.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 1 2013-07-01 2013-07-01 false Administrative responsibility. 60-1.2 Section 60-1.2 Public Contracts and Property Management Other Provisions Relating to... OF LABOR 1-OBLIGATIONS OF CONTRACTORS AND SUBCONTRACTORS Preliminary Matters; Equal...

  10. 77 FR 30407 - 1,2-Ethanediamine, N

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-23

    ... petition to EPA under the Federal Food, Drug, and Cosmetic Act (FFDCA), requesting an exemption from the... residues of 1,2- ethanediamine, N1-(2-aminoethyl)-, polymer with 2,4-diisocyanato-1- methylbenzene on food... apply to me? You may be potentially affected by this action if you are an agricultural producer,...

  11. 43 CFR 2201.1-2 - Segregative effect.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... System lands, which proposal shall be filed in compliance with 36 CFR part 254, the authorized officer... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Segregative effect. 2201.1-2 Section 2201... Exchanges-Specific Requirements § 2201.1-2 Segregative effect. (a) If a proposal is made to exchange...

  12. 43 CFR 2720.1-2 - Form of application.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Form of application. 2720.1-2 Section 2720.1-2 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) CONVEYANCE OF FEDERALLY-OWNED MINERAL INTERESTS Conveyance of Federally-Owned...

  13. 36 CFR 1.2 - Applicability and scope.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Applicability and scope. 1.2 Section 1.2 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR GENERAL... administered by the National Park Service; (2) The boundaries of lands and waters administered by the...

  14. Resolution of terminal 1,2-diols via silyl transfer.

    PubMed

    Sun, Xixi; Worthy, Amanda D; Tan, Kian L

    2013-10-18

    Through kinetic analysis and optimization, we report an improved resolution of terminal 1,2-diols via asymmetric silyl transfer. Because the reaction is a regiodivergent resolution, the monoprotected product could be isolated in excess of 95:5 er and 40% yield. The described method offers a means of chemically differentiating a terminal 1,2-diol with concomitant resolution of the enantiomers.

  15. 48 CFR 970.2201-1-2 - Policies.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... absence of any illegal drug, as defined in 10 CFR Part 707.4. All positions requiring access... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Policies. 970.2201-1-2 Section 970.2201-1-2 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY...

  16. 5 CFR 1.2 - Extent of the competitive service.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 5 Administrative Personnel 1 2014-01-01 2014-01-01 false Extent of the competitive service. 1.2 Section 1.2 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE RULES COVERAGE AND... pursuant to statute or by the Office of Personnel Management (hereafter referred to in this subchapter...

  17. 43 CFR 3582.1-2 - Hardrock minerals.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Hardrock minerals. 3582.1-2 Section 3582.1..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) SPECIAL LEASING AREAS National Park Service Areas § 3582.1-2 Hardrock minerals. Except as otherwise specifically provided in this subpart, leasing...

  18. 43 CFR 3583.1-2 - Hardrock minerals.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Hardrock minerals. 3583.1-2 Section 3583.1..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) SPECIAL LEASING AREAS Shasta and Trinity Units of the Whiskeytown-Shasta-Trinity National Recreation Area § 3583.1-2 Hardrock minerals. This subpart governs...

  19. 43 CFR 3583.1-2 - Hardrock minerals.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Hardrock minerals. 3583.1-2 Section 3583.1..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) SPECIAL LEASING AREAS Shasta and Trinity Units of the Whiskeytown-Shasta-Trinity National Recreation Area § 3583.1-2 Hardrock minerals. This subpart governs...

  20. 43 CFR 3583.1-2 - Hardrock minerals.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Hardrock minerals. 3583.1-2 Section 3583.1..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) SPECIAL LEASING AREAS Shasta and Trinity Units of the Whiskeytown-Shasta-Trinity National Recreation Area § 3583.1-2 Hardrock minerals. This subpart governs...

  1. 43 CFR 3582.1-2 - Hardrock minerals.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Hardrock minerals. 3582.1-2 Section 3582.1..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) SPECIAL LEASING AREAS National Park Service Areas § 3582.1-2 Hardrock minerals. Except as otherwise specifically provided in this subpart, leasing...

  2. 43 CFR 3583.1-2 - Hardrock minerals.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Hardrock minerals. 3583.1-2 Section 3583.1..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) SPECIAL LEASING AREAS Shasta and Trinity Units of the Whiskeytown-Shasta-Trinity National Recreation Area § 3583.1-2 Hardrock minerals. This subpart governs...

  3. 43 CFR 3582.1-2 - Hardrock minerals.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Hardrock minerals. 3582.1-2 Section 3582.1..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) SPECIAL LEASING AREAS National Park Service Areas § 3582.1-2 Hardrock minerals. Except as otherwise specifically provided in this subpart, leasing...

  4. 43 CFR 3582.1-2 - Hardrock minerals.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Hardrock minerals. 3582.1-2 Section 3582.1..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) SPECIAL LEASING AREAS National Park Service Areas § 3582.1-2 Hardrock minerals. Except as otherwise specifically provided in this subpart, leasing...

  5. 43 CFR 3103.1-2 - Where submitted.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Where submitted. 3103.1-2 Section 3103.1-2 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT...-2 Where submitted. (a)(1) All fees for lease applications or offers or for requests for approval...

  6. 43 CFR 3103.1-2 - Where submitted.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Where submitted. 3103.1-2 Section 3103.1-2 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT...-2 Where submitted. (a)(1) All fees for lease applications or offers or for requests for approval...

  7. 43 CFR 3103.1-2 - Where submitted.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Where submitted. 3103.1-2 Section 3103.1-2 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT...-2 Where submitted. (a)(1) All fees for lease applications or offers or for requests for approval...

  8. 43 CFR 3103.1-2 - Where submitted.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Where submitted. 3103.1-2 Section 3103.1-2 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT...-2 Where submitted. (a)(1) All fees for lease applications or offers or for requests for approval...

  9. OPC structures for maskshops qualification for the CMOS65nm and CMOS45nm nodes

    NASA Astrophysics Data System (ADS)

    Sundermann, Frank; Trouiller, Yorick; Urbani, Jean-Christophe; Couderc, Christophe; Belledent, Jérôme; Borjon, Amandine; Foussadier, Franck; Gardin, Christian; LeCam, Laurent; Rody, Yves; Saied, Mazen; Yesilada, Emek; Martinelli, Catherine; Wilkinson, Bill; Vautrin, Florent; Morgana, Nicolo; Robert, Frederic; Montgomery, Patrick; Kerrien, Gurwan; Planchot, Jonathan; Farys, Vincent; Di Maria, Jean-Luc

    2007-02-01

    Several qualification stages are required for new maskshop tools, first step is done by the maskshop internally. Taking a new writer for example, the maskshop will review the basic factory and site acceptance tests, including CD uniformity, CD linearity, local CD errors and registration errors. The second step is to have dedicated OPC (Optical Proximity Correction) structures from the wafer fab. These dedicated OPC structures will be measured by the maskshop to get a reticle CD metrology trend line. With this trend line, we can: - ensure the stability at reticle level of the maskshop processes - put in place a matching procedure to guarantee the same OPC signature at reticle level in case of any internal maskshop process change or new maskshop evaluation. Changes that require qualification could be process changes for capacity reasons, like introducing a new writer or a new manufacturing line, or for capability reasons, like a new process (new developer tool for example) introduction. Most advanced levels will have dedicated OPC structures. Also dedicated maskshop processes will be monitored with these specific OPC structures. In this paper, we will follow in detail the different reticle CD measurements of dedicated OPC structures for the three advanced logic levels of the 65nm node: poly level, contact level and metal level. The related maskshop's processes are - for poly: eaPSM 193nm with a nega CAR (Chemically Amplified Resist) process for Clear Field L/S (Lines & Space) reticles - for contact: eaPSM 193nm with a posi CAR process for Dark Field Holes reticles - for metal1: eaPSM 193nm with a posi CAR process for Dark Field L/S reticles. For all these structures, CD linearity, CD through pitch, length effects, and pattern density effects will be monitored. To average the metrology errors, the structures are placed twice on the reticle. The first part of this paper will describe the different OPC structures. These OPC structures are close to the DRM (Design Rule

  10. SIRT1, 2, 3 protect mouse oocytes from postovulatory aging.

    PubMed

    Zhang, Teng; Zhou, Yang; Li, Li; Wang, Hong-Hui; Ma, Xue-Shan; Qian, Wei-Ping; Shen, Wei; Schatten, Heide; Sun, Qing-Yuan

    2016-04-01

    The quality of metaphase II oocytes will undergo a time-dependent deterioration following ovulation as the result of the oocyte aging process. In this study, we determined that the expression of sirtuin family members (SIRT1, 2, 3) was dramatically reduced in mouse oocytes aged in vivo or in vitro. Increased intracellular ROS was observed when SIRT1, 2, 3 activity was inhibited. Increased frequency of spindle defects and disturbed distribution of mitochondria were also observed in MII oocytes aged in vitro after treatment with Nicotinamide (NAM), indicating that inhibition of SIRT1, 2, 3 may accelerate postovulatory oocyte aging. Interestingly, when MII oocytes were exposed to caffeine, the decline of SIRT1, 2, 3 mRNA levels was delayed and the aging-associated defective phenotypes could be improved. The results suggest that the SIRT1, 2, 3 pathway may play a potential protective role against postovulatory oocyte aging by controlling ROS generation. PMID:26974211

  11. SIRT1, 2, 3 protect mouse oocytes from postovulatory aging

    PubMed Central

    Zhang, Teng; Zhou, Yang; Li, Li; Wang, Hong-Hui; Ma, Xue-Shan; Qian, Wei-Ping; Shen, Wei; Schatten, Heide; Sun, Qing-Yuan

    2016-01-01

    The quality of metaphase II oocytes will undergo a time-dependent deterioration following ovulation as the result of the oocyte aging process. In this study, we determined that the expression of sirtuin family members (SIRT1, 2, 3) was dramatically reduced in mouse oocytes aged in vivo or in vitro. Increased intracellular ROS was observed when SIRT1, 2, 3 activity was inhibited. Increased frequency of spindle defects and disturbed distribution of mitochondria were also observed in MII oocytes aged in vitro after treatment with Nicotinamide (NAM), indicating that inhibition of SIRT1, 2, 3 may accelerate postovulatory oocyte aging. Interestingly, when MII oocytes were exposed to caffeine, the decline of SIRT1, 2, 3 mRNA levels was delayed and the aging-associated defective phenotypes could be improved. The results suggest that the SIRT1, 2, 3 pathway may play a potential protective role against postovulatory oocyte aging by controlling ROS generation. PMID:26974211

  12. Electric field control of spin re-orientation in perpendicular magnetic tunnel junctions—CoFeB and MgO thickness dependence

    NASA Astrophysics Data System (ADS)

    Meng, Hao; Naik, Vinayak Bharat; Liu, Ruisheng; Han, Guchang

    2014-07-01

    We report an investigation of electric-field (EF) control of spin re-orientation as functions of the thicknesses of CoFeB free layer (FL) and MgO layer in synthetic-antiferromagnetic pinned magnetic tunnel junctions with perpendicular magnetic anisotropy. It is found that the EF modulates the coercivity (Hc) of the FL almost linearly for all FL thicknesses, while the EF efficiency, i.e., the slope of the linearity, increases as the FL thickness increases. This linear variation in Hc is also observed for larger MgO thicknesses (≥1.5 nm), while the EF efficiency increases only slightly from 370 to 410 Oe nm/V when MgO thickness increases from 1.5 to 1.76 nm. We have further observed the absence of quasi-DC unipolar switching. We discuss its origin and highlight the underlying challenges to implement the EF controlled switching in a practical magnetic memory.

  13. Multi-watt 589nm fiber laser source

    SciTech Connect

    DAWSON, J W; DROBSHOFF, A D; BEACH, R J; MESSERLY, M J; PAYNE, S A; BROWN, A; PENNINGTON, D M; BAMFORD, D J; SHARPE, S J; COOK, D J

    2006-01-19

    We have demonstrated 3.5W of 589nm light from a fiber laser using periodically poled stoichiometric Lithium Tantalate (PPSLT) as the frequency conversion crystal. The system employs 938nm and 1583nm fiber lasers, which were sum-frequency mixed in PPSLT to generate 589nm light. The 938nm fiber laser consists of a single frequency diode laser master oscillator (200mW), which was amplified in two stages to >15W using cladding pumped Nd{sup 3+} fiber amplifiers. The fiber amplifiers operate at 938nm and minimize amplified spontaneous emission at 1088nm by employing a specialty fiber design, which maximizes the core size relative to the cladding diameter. This design allows the 3-level laser system to operate at high inversion, thus making it competitive with the competing 1088nm 4-level laser transition. At 15W, the 938nm laser has an M{sup 2} of 1.1 and good polarization (correctable with a quarter and half wave plate to >15:1). The 1583nm fiber laser consists of a Koheras 1583nm fiber DFB laser that is pre-amplified to 100mW, phase modulated and then amplified to 14W in a commercial IPG fiber amplifier. As a part of our research efforts we are also investigating pulsed laser formats and power scaling of the 589nm system. We will discuss the fiber laser design and operation as well as our results in power scaling at 589nm.

  14. Red fluorescent biofilm: the thick, the old, and the cariogenic

    PubMed Central

    Volgenant, Catherine M.C.; Hoogenkamp, Michel A.; Buijs, Mark J.; Zaura, Egija; ten Cate, Jacob (Bob) M.; van der Veen, Monique H.

    2016-01-01

    Background Some dental plaque fluoresces red. The factors involved in this fluorescence are yet unknown. Objective The aim of this study was to assess systematically the effect of age, thickness, and cariogenicity on the extent of red fluorescence produced by in vitro microcosm biofilms. Design The effects of biofilm age and thickness on red fluorescence were tested in a constant depth film fermentor (CDFF) by growing biofilms of variable thicknesses that received a constant supply of defined mucin medium (DMM) and eight pulses of sucrose/day. The influence of cariogenicity on red fluorescence was tested by growing biofilm on dentin disks receiving DMM, supplemented with three or eight pulses of sucrose/day. The biofilms were analyzed at different time points after inoculation, up to 24 days. Emission spectra were measured using a fluorescence spectrophotometer (λexc405 nm) and the biofilms were photographed with a fluorescence camera. The composition of the biofilms was assessed using 454-pyrosequecing of the 16S rDNA gene. Results From day 7 onward, the biofilms emitted increasing intensities of red fluorescence as evidenced by the combined red fluorescence peaks. The red fluorescence intensity correlated with biofilm thickness but not in a linear way. Biofilm fluorescence also correlated with the imposed cariogenicity, evidenced by the induced dentin mineral loss. Increasing the biofilm age or increasing the sucrose pulsing frequency led to a shift in the microbial composition. These shifts in composition were accompanied by an increase in red fluorescence. Conclusions The current study shows that a thicker, older, or more cariogenic biofilm results in a higher intensity of red fluorescence. PMID:27060056

  15. Novel spin-coating technology for 248-nm/193-nm DUV lithography and low-k spin on dielectrics of 200-mm/300-mm wafers

    NASA Astrophysics Data System (ADS)

    Gurer, Emir; Zhong, Tom X.; Lewellen, John W.; Lee, Ed C.

    2000-06-01

    An alternative coating technology was developed for 248 nm/193 nm DUV lithography and low-k spin on dielectric (SOD) materials used in the interconnect area. This is a 300 mm enabling technology which overcomes turbulent flow limitations above 2000 rpm and it prevents 40 - 60% reduction on the process latitudes of evaporation-related variables, common to 300 mm conventional coaters. Our new coating technology is fully enclosed and it is capable of controlling the solvent concentration above the resist film dynamically in the gas phase. This feature allows a direct control of the evaporation mass transfer which determines the quality of the final resist profiles. Following process advantages are reported in this paper: (1) Demonstrated that final resist film thickness can be routinely varied by 4000 angstrom at a fixed drying spin speed, thus minimizing the impact of turbulence wall for 300 mm wafers. (2) Evaporation control allows wider range of useful thickness from a fixed viscosity material. (3) Latitudes of evaporation-related process variables is about 40% larger than that of a conventional coater. (4) Highly uniform films of 0.05% were obtained for 8800 angstrom target thickness with tighter wafer-wafer profile control because of the enclosed nature of the technology. (5) Dynamic evaporation control facilitates resist consumption minimization. Preliminary results indicate feasibility of a 0.4 cc process of record (POR) for a 200 mm substrate. (6) Lower COO due to demonstrated relative insensitivity to environmental variables, robust resist consumption minimization and superior process capabilities. (7) Improved planarization and gap fill properties for the new generation photoresist/low-k SOD materials deposited using this enclosed coating technology.

  16. Measurement of the photoionization cross section of the 5S{sub 1/2} state of rubidium

    SciTech Connect

    Lowell, J.R.; Northup, T.; Patterson, B.M.; Takekoshi, T.; Knize, R.J.

    2002-12-01

    We report the measurement of the photoionization cross section for the 5S{sub 1/2} state of rubidium, using atoms confined in a magneto-optical trap. A single-photon rate at {lambda}=266 nm was found by monitoring the decay of trap fluorescence after exposure to ionizing radiation from a quadrupled Nd:YVO{sub 4} laser. In order to eliminate excited-state ionization, the photoionization and trapping lasers were alternately chopped, so that only ground-state atoms were ionized. We determine that the photoionization cross section at {lambda}=266 nm is {sigma}=1.7(2)x10{sup -20} cm{sup 2}.

  17. 100 nm half-pitch double exposure KrF lithography using binary masks

    NASA Astrophysics Data System (ADS)

    Geisler, S.; Bauer, J.; Haak, U.; Stolarek, D.; Schulz, K.; Wolf, H.; Meier, W.; Trojahn, M.; Matthus, E.

    2008-03-01

    In this paper we investigate the process margin for the 100nm half - pitch double exposure KrF lithography using binary masks for different illumination settings. The application of Double Exposure Lithography (DEL) would enlarge the capability of 248 nm exposure technique to smaller pitch e.g. for the integration of dedicated layers into 0.13 μm BiCMOS with critical dimension (CD) requirements exceeding the standard 248 nm lithography specification. The DEL was carried out with a KrF Scanner (Nikon S207D, NA Lens = 0.82) for a critical dimension (CD) of 100nm half pitch. The chemical amplified positive resists SL4800 or UV2000 (Rohm & Haas) with a thickness of 325nm were coated on a 70 nm AR10L (Rohm & Haas) bottom anti-reflective coating (BARC). With a single exposure and using binary masks it is not possible to resolve 100nm lines with a pitch of 200 nm, due to the refraction and the resolution limit. First we investigated the effect of focus variation. It is shown that the focus difference of 1st and 2nd exposure is one critical parameter of the DEL. This requires a good focus repeatability of the scanner. The depth of focus (DOF) of 360 nm with the coherence parameter σ = 0.4 was achieved for DEL with SL4800 resist. The influence of the better resist resolution of UV2000 on the process window will be shown (DOF = 460 nm). If we change the focus of one of the exposures the CD and DOF performance of spaces is reduced with simultaneous line position changing. Second we investigated the effect of different illumination shapes and settings. The results for conventional illumination with different values for σ and annular illumination with σ inner = 0.57 and σ outer = 0.85 will be shown. In summary, the results show that DEL has the potential to be a practical lithography enhancement method for device fabrication using high NA KrF tool generation.

  18. Polarization properties of lidar scattering from clouds at 347 nm and 694 nm.

    PubMed

    Pal, S R; Carswell, A I

    1978-08-01

    The polarization characteristics of lidar scattering from cumulus and low-lying shower clouds have been measured with a system operating at 694 nm (red) and 347 nm (blue). The backscatter profiles of the polarization components as well as of the total intensity of the return are presented and discussed for the two wavelengths. The linear depolarization ratio delta, which can be used as a measure of the unpolarized multiple scattering, has been obtained at both wavelengths. This quantity has a very low value at cloud base for both wavelengths and increases with pulse penetration. The blue registers generally higher values of a within the cloud. The measured total intensity backscatter functions for both wavelengths are presented and discussed in relation to theoretical calculations of cloud models.

  19. Analysis of multi-mode to single-mode conversion at 635 nm and 1550 nm

    NASA Astrophysics Data System (ADS)

    Zamora, Vanessa; Bogatzki, Angelina; Arndt-Staufenbiel, Norbert; Hofmann, Jens; Schröder, Henning

    2016-03-01

    We propose two low-cost and robust optical fiber systems based on the photonic lantern (PL) technology for operating at 635 nm and 1550 nm. The PL is an emerging technology that couples light from a multi-mode (MM) fiber to several single-mode (SM) fibers via a low-loss adiabatic transition. This bundle of SM fibers is observed as a MM fiber system whose spatial modes are the degenerate supermodes of the bundle. The adiabatic transition allows that those supermodes evolve into the modes of the MM fiber. Simulations of the MM fiber end structure and its taper transition have been performed via functional mode solver tools in order to understand the modal evolution in PLs. The modelled design consists of 7 SM fibers inserted into a low-index capillary. The material and geometry of the PLs are chosen such that the supermodes match to the spatial modes of the desired step-index MM fiber in a moderate loss transmission. The dispersion of materials is also considered. These parameters are studied in two PL systems in order to reach a spectral transmission from 450 nm to 1600 nm. Additionally, an analysis of the geometry and losses due to the mismatching of modes is presented. PLs are typically used in the fields of astrophotonics and space photonics. Recently, they are demonstrated as mode converters in telecommunications, especially focusing on spatial division multiplexing. In this study, we show the use of PLs as a promising interconnecting tool for the development of miniaturized spectrometers operating in a broad wavelength range.

  20. TUNABLE DIODE LASER MEASUREMENTS OF NO2 NEAR 670 NM AND 395 NM. (R823933)

    EPA Science Inventory

    Two single-mode diode lasers were used to record high-resolution absorption spectra of NO2 (dilute in Ar) near 670.2 and 394.5 nm over a range of temperatures (296 to 774 K) and total pressures (2.4 x 10(-2) to 1 atm). A commercial InGaAsP laser was tuned 1.3 cm(-1) at a repetiti...

  1. Performance comparison of bismuth/erbium co-doped optical fibre by 830 nm and 980 nm pumping

    NASA Astrophysics Data System (ADS)

    Yan, Binbin; Luo, Yanhua; Zareanborji, Amirhassan; Xiao, Gui; Peng, Gang-Ding; Wen, Jianxiang

    2016-10-01

    The performance of bismuth/erbium co-doped fibre (BEDF) by 830 nm and 980 nm pumping has been studied in detail, including the small signal absorption, pump absorption, emission, gain and excited state absorption (ESA). Based on the study, energy transition diagrams of BEDF under 830 nm or 980 nm pumping are proposed to clarify the spectroscopic properties. The results demonstrate the advantages of 830 nm pumping for BEDF over 980 nm pumping when considering the absorption, pumping efficiency, excited state absorption and optical amplification.

  2. Petal Thicknesses and Shape Transformations in Blooming Lilies

    SciTech Connect

    Portet, Thomas; Holmes, Peter N.; Bowden, Mark E.; Stephens, Sean A.; Varga, Tamas; Keller, Sarah L.

    2013-01-29

    During blooming, flower petals undergo significant shape changes. For lilies, various different mechanisms responsible for the change have been suggested [1,2]. One is that cell growth along the edge of a petal, or, more generally, a tepal, drives a transition from a cup shape (within a bud) to a saddle shape (within a bloom). This mechanism has been previously considered for tepals modeled as shallow elliptical shells whose thickness from the center, t, falls off at least as fast as t = t0 (1 - x2/a2 - y2/b2 ) [1]. Here t0 is the maximum thickness of the shell, a and b are the semimajor and semiminoraxes, x and y are the coordinates along the longitudinal and lateral axes. By measuring tepal thicknesses from images collected by x-ray tomography of intact buds and by photography of microtomed buds, we find that this condition is indeed met for both Lilium casablanca and Lilium lancifolium. [1] Liang and Mahadevan. Growth, geometry, and mechanics of a blooming lily.

  3. Cortical thickness and brain volumetric analysis in body dysmorphic disorder

    PubMed Central

    Madsen, Sarah K.; Zai, Alex; Pirnia, Tara; Arienzo, Donatello; Zhan, Liang; Moody, Teena D.; Thompson, Paul M.; Feusner, Jamie D.

    2015-01-01

    Individuals with body dysmorphic disorder (BDD) suffer from preoccupations with perceived defects in physical appearance, causing severe distress and disability. Although BDD affects 1-2% of the population, the neurobiology is not understood. Discrepant results in previous volumetric studies may be due to small sample sizes, and no study has investigated cortical thickness in BDD. The current study is the largest neuroimaging analysis of BDD. Participants included 49 medication-free, right-handed individuals with DSM-IV BDD and 44 healthy controls matched by age, sex, and education. Using high-resolution T1-weighted magnetic resonance imaging, we computed vertex-wise gray matter (GM) thickness on the cortical surface and GM volume using voxel-based morphometry. We also computed volumes in cortical and subcortical regions of interest. In addition to group comparisons, we investigated associations with symptom severity, insight, and anxiety within the BDD group. In BDD, greater anxiety was significantly associated with thinner GM in the left superior temporal cortex and greater GM volume in the right caudate nucleus. There were no significant differences in cortical thickness, GM volume, or volumes in regions of interest between BDD and control subjects. Subtle associations with clinical symptoms may characterize brain morphometric patterns in BDD, rather than large group differences in brain structure. PMID:25797401

  4. Control of lateral thickness gradients of Mo-Si multilayer on curved substrates using genetic algorithm.

    PubMed

    Yu, Bo; Jin, Chunshui; Yao, Shun; Li, Chun; Wang, Hui; Zhou, Feng; Guo, Benyin; Xie, Yao; Liu, Yu; Wang, Liping

    2015-09-01

    An inversion method based on a genetic algorithm has been developed to control the lateral thickness gradients of a Mo-Si multilayer deposited on curved substrates by planar magnetron sputtering. At first, the sputtering distribution of the target is inversed from coating thickness profiles of flat substrates at different heights. Then, the speed profiles of substrates sweeping across the target are optimized according to the desired coating thickness profiles of the primary and secondary mirrors in a two-bounce projection system. The measured coating thickness profiles show that the non-compensable added figure error is below 0.1 nm rms, and the wavelength uniformity across each mirror surface is within ±0.2% P-V. The inversion method introduced here exhibits its convenience in obtaining the sputtering distribution of the target and efficiency in coating iterations during process development. PMID:26368686

  5. On-Line Measurement of Lubricant Film Thickness Using Ultrasonic Reflection Coefficients

    SciTech Connect

    Drinkwater, B.W.; Dwyer-Joyce, R.S.; Harper, P.

    2004-02-26

    The ultrasonic reflectivity of a lubricant layer between two solid bodies depends on the ultrasonic frequency, the acoustic properties of the liquid and solid, and the layer thickness. In this paper, ultrasonic reflectivity measurements are used as a method for determining the thickness of lubricating films in bearing systems. An ultrasonic transducer is positioned on the outside of a bearing shell such that the wave is focused on the lubricant film layer. For a particular lubricant film the reflected pulse is processed to give a reflection coefficient spectrum. The lubricant film thickness is then obtained from either the layer stiffness or the resonant frequency. The method has been validated using static fluid wedges and the elastohydrodynamic film formed between a ball sliding on a flat. Film thickness values in the range 50-500 nm were recorded which agreed well with theoretical film formation predictions.

  6. Measurement of absolute optical thickness of mask glass by wavelength-tuning Fourier analysis.

    PubMed

    Kim, Yangjin; Hbino, Kenichi; Sugita, Naohiko; Mitsuishi, Mamoru

    2015-07-01

    Optical thickness is a fundamental characteristic of an optical component. A measurement method combining discrete Fourier-transform (DFT) analysis and a phase-shifting technique gives an appropriate value for the absolute optical thickness of a transparent plate. However, there is a systematic error caused by the nonlinearity of the phase-shifting technique. In this research the absolute optical-thickness distribution of mask blank glass was measured using DFT and wavelength-tuning Fizeau interferometry without using sensitive phase-shifting techniques. The error occurring during the DFT analysis was compensated for by using the unwrapping correlation. The experimental results indicated that the absolute optical thickness of mask glass was measured with an accuracy of 5 nm.

  7. Thickness-dependent fracture behaviour of flexible ZnO : Al thin films

    NASA Astrophysics Data System (ADS)

    Mohanty, Bhaskar Chandra; Choi, Hong Rak; Muk Choi, Yong; Cho, Yong Soo

    2011-01-01

    The effects of thickness on flexibility and crack initiation in ZnO : Al thin films sputter-deposited on polyethersulfone substrates have been investigated. With an increase in thickness, root-mean-square roughness and average crystallite size increase linearly. It is found that the higher the thickness, the lower is the strain required to initiate cracks in the film. The thinnest film (~240 nm) exhibits a crack-initiating critical strain of 0.96% and a saturated crack density of 0.10 µm-1. A critical energy release rate of 68.5 J m-2 and a mode I fracture toughness of 3.2 MPa m0.5 are estimated for the films. These parameters are found to exhibit a linear dependence on film thickness.

  8. Thickness-independent transport channels in topological insulator Bi(2)Se(3) thin films.

    PubMed

    Bansal, Namrata; Kim, Yong Seung; Brahlek, Matthew; Edrey, Eliav; Oh, Seongshik

    2012-09-14

    With high quality topological insulator Bi(2)Se(3) thin films, we report thickness-independent transport properties over wide thickness ranges. Conductance remained nominally constant as the sample thickness changed from 256 to ∼8  QL (where QL refers to quintuple layer, 1  QL≈1  nm). Two surface channels of very different behaviors were identified. The sheet carrier density of one channel remained constant at ∼3.0×10(13)  cm(-2) down to 2 QL, while the other, which exhibited quantum oscillations, remained constant at ∼8×10(12)  cm(-2) only down to ∼8  QL. The weak antilocalization parameters also exhibited similar thickness independence. These two channels are most consistent with the topological surface states and the surface accumulation layers, respectively.

  9. Electron-induced single event upsets in 28 nm and 45 nm bulk SRAMs

    DOE PAGES

    Trippe, J. M.; Reed, R. A.; Austin, R. A.; Sierawski, B. D.; Weller, R. A.; Funkhouser, E. D.; King, M. P.; Narasimham, B.; Bartz, B.; Baumann, R.; et al

    2015-12-01

    In this study, we present experimental evidence of single electron-induced upsets in commercial 28 nm and 45 nm CMOS SRAMs from a monoenergetic electron beam. Upsets were observed in both technology nodes when the SRAM was operated in a low power state. The experimental cross section depends strongly on both bias and technology node feature size, consistent with previous work in which SRAMs were irradiated with low energy muons and protons. Accompanying simulations demonstrate that δ-rays produced by the primary electrons are responsible for the observed upsets. Additional simulations predict the on-orbit event rates for various Earth and Jovian environmentsmore » for a set of sensitive volumes representative of current technology nodes. The electron contribution to the total upset rate for Earth environments is significant for critical charges as high as 0.2 fC. This value is comparable to that of sub-22 nm bulk SRAMs. Similarly, for the Jovian environment, the electron-induced upset rate is larger than the proton-induced upset rate for critical charges as high as 0.3 fC.« less

  10. Electron-induced single event upsets in 28 nm and 45 nm bulk SRAMs

    SciTech Connect

    Trippe, J. M.; Reed, R. A.; Austin, R. A.; Sierawski, B. D.; Weller, R. A.; Funkhouser, E. D.; King, M. P.; Narasimham, B.; Bartz, B.; Baumann, R.; Schrimpf, R. D.; Labello, R.; Nichols, J.; Weeden-Wright, S. L.

    2015-12-01

    In this study, we present experimental evidence of single electron-induced upsets in commercial 28 nm and 45 nm CMOS SRAMs from a monoenergetic electron beam. Upsets were observed in both technology nodes when the SRAM was operated in a low power state. The experimental cross section depends strongly on both bias and technology node feature size, consistent with previous work in which SRAMs were irradiated with low energy muons and protons. Accompanying simulations demonstrate that δ-rays produced by the primary electrons are responsible for the observed upsets. Additional simulations predict the on-orbit event rates for various Earth and Jovian environments for a set of sensitive volumes representative of current technology nodes. The electron contribution to the total upset rate for Earth environments is significant for critical charges as high as 0.2 fC. This value is comparable to that of sub-22 nm bulk SRAMs. Similarly, for the Jovian environment, the electron-induced upset rate is larger than the proton-induced upset rate for critical charges as high as 0.3 fC.

  11. A novel sub 20 nm single gate tunnel field effect transistor with intrinsic channel for ultra low power applications

    NASA Astrophysics Data System (ADS)

    Asthana, Pranav Kumar; Goswami, Yogesh; Ghosh, Bahniman

    2016-05-01

    We propose a nanoscale single gate ultra thin body intrinsic channel tunnel field effect transistor using the charge plasma concept for ultra low power applications. The characteristics of TFETs (having low leakage) are improved by junctionless TFETs through blending advantages of Junctionless FETs (with high on current). We further improved the characteristics, simultaneously simplifying the structure at a very low power rating using an InAs channel. We found that the proposed device structure has reduced short channel effects and parasitics and provides high speed operation even at a very low supply voltage with low leakage. Simulations resulted in IOFF of ˜ 9 × 10-16 A/μm, ION of ˜20 μA/μm, ION/IOFF of ˜2 × 1010, threshold voltage of 0.057 V, subthreshold slope of 7 mV/dec and DIBL of 86 mV/V for PolyGate/HfO2/InAs TFET at a temperature of 300 K, gate length of 20 nm, oxide thickness of 2 nm, film thickness of 10 nm, low-k spacer thickness of 10 nm and VDD of 0.2 V.

  12. A novel sub 20 nm single gate tunnel field effect transistor with intrinsic channel for ultra low power applications

    NASA Astrophysics Data System (ADS)

    Asthana, Pranav Kumar; Goswami, Yogesh; Ghosh, Bahniman

    2016-05-01

    We propose a nanoscale single gate ultra thin body intrinsic channel tunnel field effect transistor using the charge plasma concept for ultra low power applications. The characteristics of TFETs (having low leakage) are improved by junctionless TFETs through blending advantages of Junctionless FETs (with high on current). We further improved the characteristics, simultaneously simplifying the structure at a very low power rating using an InAs channel. We found that the proposed device structure has reduced short channel effects and parasitics and provides high speed operation even at a very low supply voltage with low leakage. Simulations resulted in IOFF of ∼ 9 × 10‑16 A/μm, ION of ∼20 μA/μm, ION/IOFF of ∼2 × 1010, threshold voltage of 0.057 V, subthreshold slope of 7 mV/dec and DIBL of 86 mV/V for PolyGate/HfO2/InAs TFET at a temperature of 300 K, gate length of 20 nm, oxide thickness of 2 nm, film thickness of 10 nm, low-k spacer thickness of 10 nm and VDD of 0.2 V.

  13. Two-micron lasing in NaLa{sub 1/2}Gd{sub 1/2}(WO{sub 4}){sub 2} crystals doped with Tm{sup 3+} ions

    SciTech Connect

    Bolshchikov, F A; Ryabochkina, P A; Zharikov, Evgeny V; Lis, Denis A; Subbotin, Kirill A; Zakharov, N G; Antipov, Oleg L

    2010-02-28

    Lasing on the {sup 3}F{sub 4{yields}}{sup 3}H{sub 6} transition of Tm{sup 3+} ions in Tm{sup 3+}:NaLa{sub 1/2}Gd{sub 1/2}(WO{sub 4}){sub 2} crystals pumped by a diode laser is obtained for the first time. The {pi}- and {sigma}-polarised laser radiation at wavelengths of 1908 and 1918 nm was generated with a slope efficiency of 28% and 25%, respectively. (lasers)

  14. Cortical thickness gradients in structural hierarchies

    PubMed Central

    Wagstyl, Konrad; Ronan, Lisa; Goodyer, Ian M.; Fletcher, Paul C.

    2015-01-01

    MRI, enabling in vivo analysis of cortical morphology, offers a powerful tool in the assessment of brain development and pathology. One of the most ubiquitous measures used—the thickness of the cortex—shows abnormalities in a number of diseases and conditions, but the functional and biological correlates of such alterations are unclear. If the functional connotations of structural MRI measures are to be understood, we must strive to clarify the relationship between measures such as cortical thickness and their cytoarchitectural determinants. We therefore sought to determine whether patterns of cortical thickness mirror a key motif of the cortex, specifically its structural hierarchical organisation. We delineated three sensory hierarchies (visual, somatosensory and auditory) in two species—macaque and human—and explored whether cortical thickness was correlated with specific cytoarchitectural characteristics. Importantly, we controlled for cortical folding which impacts upon thickness and may obscure regional differences. Our results suggest that an easily measurable macroscopic brain parameter, namely, cortical thickness, is systematically related to cytoarchitecture and to the structural hierarchical organisation of the cortex. We argue that the measurement of cortical thickness gradients may become an important way to develop our understanding of brain structure–function relationships. The identification of alterations in such gradients may complement the observation of regionally localised cortical thickness changes in our understanding of normal development and neuropsychiatric illnesses. PMID:25725468

  15. Regional Crustal Thickness Variations on Mars

    NASA Astrophysics Data System (ADS)

    Frey, H. V.; Bills, B. G.; Lyons, S. N.; Roark, J. H.

    1996-03-01

    We generated models of crustal thickness for Mars using both Mars50c and GMM-1 based on the assumption that gravity anomalies are due only to variations in surface and crust/mantle topography and crust and mantle densities are laterally constant, for a range of crust and mantle densities, and assumed average crustal thickness. Here we discuss regional variations in crustal thickness for one such model, with average thickness of 65 km and crust/mantle density contrast 0.5 (crust 3.0, mantle 3.5) gm/cc. Crustal thickness ranges from 140 km below Olympus Mons to less than 10 km below the Hellas and Isidis basins. Crust below Argyre is five times thicker than below Hellas, while that in Elysium is 85 km thick. Most (but not all) heavily cratered terrain is thicker than the crustal average, while most lowlying plains are only 25-45 km thick. Across the crustal dichotomy boundary zone the crustal thickness changes by 25 to 35 km over less than 500 km in some (but not all) places.

  16. Eggshell thickness in mourning dove populations

    USGS Publications Warehouse

    Kreitzer, J.F.

    1971-01-01

    Eggs (n = 452) of the mourning dove (Zenaidura macroura) were collected from 9 states in 1969 and 11 states in 1970, and shell thickness was compared with that of eggs (n = 97) collected from 24 states during the years 1861 to 1935. Mean shell thickness did not differ significantly in the test groups.

  17. Fluorination of 1,2,3,4- and 1,2,3,5-tetrahalobenzenes with potassium fluoride in dimethyl sulfone

    USGS Publications Warehouse

    Finger, G.C.; Dickerson, D.R.; Shiley, R.H.

    1972-01-01

    1,2,3,4-Tetrachlorobenzene, 1,2,3,5-tetrachlorobenzene, 2,4,6-trichlorofluorobenzene, and 2,6-dichloro-1,4-difluorobenzene were fluorinated with potassium fluoride and potassium fluoride-cesium fluoride mixtures in dimethyl sulfone. By varying the concentration, temperature and reaction time, the degree of fluorination could be controlled to some extent. The optimum conditions for producing mono-, di- and tri-fluoro-substituted chlorobenzenes and trace amounts of tetrafluorobenzene from the corresponding tetrachlorobenzenes are given. 1,2,3,5-Tetrafluorobenzene was obtained in 44.8% yield from 2,6-dichloro-1,4-difluorobenzene. 1,2,3,4-Tetrafluorobenzene was obtained in only trace amounts from 1,2,3,4-tetrachlorobenzene. A total of 24 new chlorofluorobenzenes and intermediates are described. Fluorination with potassium fluoride and certain other metal fluorides was also investigated. ?? 1972.

  18. X-1-2 on ramp during ground engine test

    NASA Technical Reports Server (NTRS)

    1947-01-01

    Ground engine test run on the Bell Aircraft Corporation X-1-2 airplane at NACA Muroc Flight Test Unit service area. Notice the front on the lower part of the aircraft aft of the nose section. The frost forms from the mixture of the propellants (including liquid oxygen) in the internal tanks. This photograph was taken in 1947. The aircraft shown is still painted in its original saffron (orange) paint finish. This was later changed to white, which was more visible against the dark blue sky than saffron turned out to be. There were four versions of the Bell X-1 rocket-powered research aircraft that flew at the NACA High-Speed Flight Research Station, Edwards, California. The bullet-shaped X-1 aircraft were built by Bell Aircraft Corporation, Buffalo, N.Y. for the U.S. Army Air Forces (after 1947, U.S. Air Force) and the National Advisory Committee for Aeronautics (NACA). The X-1 Program was originally designated the XS-1 for EXperimental Sonic. The X-1's mission was to investigate the transonic speed range (speeds from just below to just above the speed of sound) and, if possible, to break the 'sound barrier.' Three different X-1s were built and designated: X-1-1, X-1-2 (later modified to become the X-1E), and X-1-3. The basic X-1 aircraft were flown by a large number of different pilots from 1946 to 1951. The X-1 Program not only proved that humans could go beyond the speed of sound, it reinforced the understanding that technological barriers could be overcome. The X-1s pioneered many structural and aerodynamic advances including extremely thin, yet extremely strong wing sections; supersonic fuselage configurations; control system requirements; powerplant compatibility; and cockpit environments. The X-1 aircraft were the first transonic-capable aircraft to use an all-moving stabilizer. The flights of the X-1s opened up a new era in aviation. The first X-1 was air-launched unpowered from a Boeing B-29 Superfortress on Jan. 25, 1946. Powered flights began in December

  19. Pore radius fine tuning of a silica matrix (MCM-41) based on the synthesis of alumina nanolayers with different thicknesses by atomic layer deposition

    SciTech Connect

    Zemtsova, Elena G. Arbenin, Andrei Yu.; Plotnikov, Alexander F.; Smirnov, Vladimir M.

    2015-03-15

    The authors investigated a new approach to modify the surface of the mesoporous silica matrix MCM-41. This approach is based on manipulating the chemical composition of the porous surface layer and also on fine tuning the pore radius by applying the atomic layer deposition (ALD) technique. The synthesis of alumina nanolayers was performed on the planar and the porous matrix (MCM-41) by the ALD technique using aluminum tri-sec-butoxide and water as precursors. The authors show that one cycle on silicon, using aluminum tri-sec-butoxide and water as precursors, results in a 1–1.2 Å increase in alumina nanolayer thickness. This is comparable to the increase in thickness per cycle for other precursors such as trimethylaluminum and aluminum chloride. The authors show that the synthesis of an Al{sub 2}O{sub 3} nanolayer on the pore surface of the mesoporous silica matrix MCM-41 by the ALD technique results in a regular change in the porous structure of the samples. The specific porosity (ml/g) of the MCM-41 was 0.95 and that of MCM-41 after 5 ALD cycles was 0.39. The pore diameter (nm) of MCM-41 was 3.3 and that of MCM-41 after 5 ALD cycles was 2.3.

  20. One-step sonochemical syntheses of Ni@Pt core-shell nanoparticles with controlled shape and shell thickness for fuel cell electrocatalyst.

    PubMed

    Lee, Eunjik; Jang, Ji-Hoon; Matin, Md Abdul; Kwon, Young-Uk

    2014-01-01

    We demonstrate a facile one-step method to synthesize Ni@Pt core-shell nanoparticles (NPs) with a control over the shape and the Pt-shell thickness of the NPs. By adjusting the relative reactivity of the Pt and Ni reagents in ultrasound-assisted polyol reactions, two Ni@Pt NP samples of the same composition (Ni/Pt=1) and size (3-4 nm) but with different particle shape (octahedral vs. truncated octahedral) and different Pt-shell thicknesses (1-2 vs. 2-3 monolayer) are obtained. The control is achieved by using different Ni reagents, Ni(acac)2 (acac=acetylacetonate) and Ni(hfac)2 (hfac=hexafluoroacetylacetonate). A reaction mechanism that can explain all of the observations is proposed. The Ni@Pt NPs show up to threefold higher mass activity than pure Pt NPs in oxygen reduction reaction. Between the two Ni@Pt NP samples, the one composed of octahedral NPs with the thicker Pt-shell has higher activity than the other. PMID:23769750