Science.gov

Sample records for 1-5 kev x-ray

  1. Low-energy x-ray dosimetry studies (6 to 16 keV) at SSRL beamline 1-5

    NASA Astrophysics Data System (ADS)

    Ipe, N. E.; Chatterji, S.; Fassò, A.; Kase, K. R.; Seefred, R.; Olko, P.; Bilski, P.; Soares, C.

    1997-07-01

    Synchrotron radiation facilities provide a unique opportunity for low-energy x-ray dosimetry studies because of the availability of monochromatic x-ray beams. Results of such studies performed at the Stanford Synchrotron Radiation Laboratory (SSRL) are described. Polish lithium fluoride thermoluminescent dosemeters (TLDs), MTS-N(LiF:Mg, Ti- 0.4 mm thick), MCP-N (LiF:Mg, Cu, P - 0.4 mm thick) were exposed free in air to monochromatic x-rays (6-16 keV). These exposures were monitored with an SSRL ionization chamber. The responses (counts/Gy) of MTS-N and MCP-N were generally found to increase with increasing energy. The response at 16 keV is about 3 and 4 times higher than the response at 6 keV for MTS-N and MCP-N, respectively. Irradiation at 6 keV indicates a fairly linear dose response for both type of TLDs over a dose range of 0.01 to 0.4 Gy. In addition there appears to be no significant difference in responses between irradiating the TLDs from the front and the back sides. The energy response of the PTW ionization chamber type 23342 relative to the SSRL ionization chamber is within ±4.5% between 6 and 16 keV. Both the TLDs and the PTW ionization chamber can also be used for beam dosimetry.

  2. Absolute Calibration of Kodak Biomax-MS Film Response to X Rays in the 1.5- to 8-keV Energy Range

    SciTech Connect

    Marshall, F.J.; Knauer, J.P.; Anderson, D.; Schmitt, B.L.

    2006-09-28

    The absolute response of Kodak Biomax-MS film to x rays in the range from 1.5- to 8-keV has been measured using a laboratory e-beam generated x-ray source. The measurements were taken at specific line energies by using Bragg diffraction to produce monochromatic beams of x rays. Multiple exposures were taken on Biomax MS film up to levels exceeding optical densities of 2 as measured by a microdensitometer. The absolute beam intensity for each exposure was measured with a Si(Li) detector. Additional response measurements were taken with Kodak direct exposure film (DEF) so as to compare the results of this technique to previously published calibrations.

  3. Absolute calibration of Kodak Biomax-MS film response to x rays in the 1.5- to 8-keV energy range

    SciTech Connect

    Marshall, F. J.; Knauer, J. P.; Anderson, D.; Schmitt, B. L

    2006-10-15

    The absolute response of Kodak Biomax-MS film to x rays in the range from 1.5- to 8-keV has been measured using a laboratory electron-beam generated x-ray source. The measurements were taken at specific line energies by using Bragg diffraction to produce monochromatic beams of x rays. Multiple exposures were taken on Biomax MS film up to levels exceeding optical densities of 2 as measured by a microdensitometer. The absolute beam intensity for each exposure was measured with a Si(Li) detector. Additional response measurements were taken with Kodak direct exposure film (DEF) so as to compare the results of this technique to previously published calibrations. The Biomax-MS results have been fitted to a semiempirical mathematical model (Knauer et al., these proceedings). Users of the model can infer absolute fluences from observed exposure levels at either interpolated or extrapolated energies. To summarize the results: Biomax MS has comparable sensitivity to DEF film below 3 keV but has reduced sensitivity above 3 keV ({approx}50%). The lower exposure results from thinner emulsion layers, designed for use with phosphor screens. The ease with which Biomax-MS can be used in place of DEF (same format film, same developing process, and comparable sensitivity) makes it a good replacement.

  4. Absolute calibration of Kodak Biomax-MS film response to x rays in the 1.5- to 8-keV energy range

    NASA Astrophysics Data System (ADS)

    Marshall, F. J.; Knauer, J. P.; Anderson, D.; Schmitt, B. L.

    2006-10-01

    The absolute response of Kodak Biomax-MS film to x rays in the range from 1.5- to 8-keV has been measured using a laboratory electron-beam generated x-ray source. The measurements were taken at specific line energies by using Bragg diffraction to produce monochromatic beams of x rays. Multiple exposures were taken on Biomax MS film up to levels exceeding optical densities of 2 as measured by a microdensitometer. The absolute beam intensity for each exposure was measured with a Si (Li) detector. Additional response measurements were taken with Kodak direct exposure film (DEF) so as to compare the results of this technique to previously published calibrations. The Biomax-MS results have been fitted to a semiempirical mathematical model (Knauer et al., these proceedings). Users of the model can infer absolute fluences from observed exposure levels at either interpolated or extrapolated energies. To summarize the results: Biomax MS has comparable sensitivity to DEF film below 3keV but has reduced sensitivity above 3keV (˜50%). The lower exposure results from thinner emulsion layers, designed for use with phosphor screens. The ease with which Biomax-MS can be used in place of DEF (same format film, same developing process, and comparable sensitivity) makes it a good replacement.

  5. Time-resolved analysis of the X-ray emission of femtosecond-laser-produced plasmas in the 1.5-keV range

    NASA Astrophysics Data System (ADS)

    Bastiani-Ceccotti, S.; Audebert, P.; Nagels-Silvert, V.; Geindre, J. P.; Gauthier, J. C.; Adam, J. C.; Héron, A.; Chenais-Popovics, C.

    Recent experimental results on ion beams produced in high-intensity laser-solid interactions indicate the presence of very intense electric fields in the target. This suggests the possibility of efficiently heating a solid material by means of the fast electrons created during the laser-solid interactions and trapped in the target, rather than by the laser photons themselves. We tested this mechanism by irradiating very small cubic aluminum targets with the LULI 100-TW, 300-fs laser at 1.06-μm wavelength. X-ray spectra were measured with an ultra-fast streak camera, coupled to a conical Bragg crystal, providing spectra in the 1.5-keV range with high temporal and spectral resolution. The results indicate the creation of a hot plasma, but a very low coupling between the rapid electrons and the solid. A tentative explanation, in agreement with other experimental results and with preliminary particle-in-cell (PIC) simulations, points out the fatal role of the laser prepulse.

  6. Absolute K-shell ionization cross sections and L{alpha} and L{beta}{sub 1} x-ray production cross sections of Ga and As by 1.5-39-keV electrons

    SciTech Connect

    Merlet, C.; Llovet, X.; Fernandez-Varea, J. M.

    2006-06-15

    Absolute K-shell ionization and L{alpha} and L{beta}{sub 1} x-ray production cross sections for Ga and As have been measured for incident electrons in the energy range from 1.5 to 39 keV. The cross sections were deduced from K{alpha}, L{alpha}, and L{beta}{sub 1} x-ray intensities emitted from ultrathin GaAs samples deposited onto self-supporting carbon films. The x-ray intensities were measured on an electron microprobe equipped with several wavelength-dispersive spectrometers and were converted into absolute cross sections by using estimated values of the target thickness, spectrometer efficiency, and number of incident electrons. Experimental results are compared with cross sections calculated from the plane-wave and distorted-wave Born approximations, the relativistic binary-encounter-Bethe model, the results of two widely used simple analytical formulas, and, whenever possible, experimental data from the literature.

  7. Fine pitch transition-edge sensor X-ray microcalorimeters with sub-eV energy resolution at 1.5 keV

    NASA Astrophysics Data System (ADS)

    Lee, S. J.; Adams, J. S.; Bandler, S. R.; Chervenak, J. A.; Eckart, M. E.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; Porter, F. S.; Sadleir, J. E.; Smith, S. J.; Wassell, E. J.

    2015-11-01

    We are developing arrays of X-ray microcalorimeters on a 50-µm pitch that utilize transition-edge sensors as the sensor to measure the temperature rise when X-rays are absorbed. An array of this type of pixel has great potential for the study of point sources in future X-ray observatory missions. The pixels have gold absorbers with dimensions 45 × 45 × 4.2 µm3. We measured an energy resolution of 0.72 ± 0.03 eV full width at half maximum for the Al Kα complex in a subset of pixels within the array, which is the best resolution to date using a non-dispersive detector at this energy. We describe our characterization of this device including measurements of the heat capacity, thermal conductance to the heat bath, and the temperature and current sensitivity of the detector, and discuss its potential for improved performance.

  8. Interferometric X-Ray Imaging of Breast Cancer Specimens at 51 keV X-Ray Energy

    NASA Astrophysics Data System (ADS)

    Takeda, Tohoru; Wu, Jin; Tsuchiya, Yoshinori; Yoneyama, Akio; Lwin, Thet Thet; Aiyoshi, Yuji; Zeniya, Tsutomu; Hyodo, Kazuyuki; Ueno, Ei

    2004-08-01

    The feasibility of the interferometric X-ray imaging technique is examined for revealing the features of breast cancer specimens. The interferometric X-ray imaging system consisted of an asymmetrically cut silicon crystal, a monolithic X-ray interferometer, a phase-shifter, an object cell, and an X-ray CCD camera. Ten 10-mm-thick formalin-fixed breast cancer specimens were imaged at 51 keV, and these images were compared with absorption-contrast X-ray images obtained at 18 keV monochromatic synchrotron X-ray. The interferometric X-ray images clearly depicted the essential features of the breast cancer such as microcalcification down to a size of 0.036 mm, spiculation, and detailed inner soft tissue structures closely matched with histopathological morphology, while the absorption-contrast X-ray images obtained using nearly the same X-ray dose only resolved microcalcification down to a size of 0.108 mm and spiculation. The interferometric X-ray imaging technique can be considered to be an innovative technique for the early and accurate diagnosis of breast cancer using an extremely low X-ray dose.

  9. A study of 2-20 KeV X-rays from the Cygnus region

    NASA Technical Reports Server (NTRS)

    Bleach, R. D.

    1972-01-01

    Two rocket-borne proportional counters, each with 650 sq c, met area and 1.8 x 7.1 deg FWHM rectangular mechanical collimation, surveyed the Cygnus region in the 2 to 20 keV energy range on two occasions. X-ray spectral data gathered on 21 September 1970 from discrete sources in Cygnus are presented. The data from Cyg X-1, Cyg X-2, and Cyg X-3 have sufficient statistical significance to indicate mutually exclusive spectral forms for the three. Upper limits are presented for X-ray intensities above 2 keV for Cyg X-4 and Cyg X-5 (Cygnus loop). A search was made on 9 August 1971 for a diffuse component of X-rays 1.5 keV associated with an interarm region of the galaxy at galactic longitudes in the vicinity of 60 degrees. A statistically significant excess associated with a narrow disk component was detected. Several possible emission models are discussed, with the most likely candidate being a population of unresolvable low luminosity discrete sources.

  10. Quasar X-Ray Spectra At z=1.5

    NASA Technical Reports Server (NTRS)

    Siemiginowska, Aneta

    2001-01-01

    The predicted counts for ASCA observation was much higher than actually observed counts in the quasar. However, there are three weak hard x-ray sources in the GIS field. We are adding them to the source counts in modeling of hard x-ray background. The work is in progress. We have published a paper in Ap.J. on the luminosity function and the quasar evolution. Based on the theory described in this paper we are predicting a number of sources and their contribution to the x-ray background at different redshifts. These model predictions will be compared to the observed data in the final paper.

  11. Picosecond x-ray measurements from 100 eV to 30 keV

    SciTech Connect

    Attwood, D.T.; Kauffman, R.L.; Stradling, G.L.

    1980-10-15

    Picosecond x-ray measurements relevant to the Livermore Laser Fusion Program are reviewed. Resolved to 15 picoseconds, streak camera detection capabilities extend from 100 eV to higher than 30 keV, with synchronous capabilities in the visible, near infrared, and ultraviolet. Capabilities include automated data retrieval using charge coupled devices (CCD's), absolute x-ray intensity levels, novel cathodes, x-ray mirror/reflector combinations, and a variety of x-ray imaging devices.

  12. Sub-arcsecond X-ray Telescope for Imaging the Solar Corona at 1 keV

    NASA Astrophysics Data System (ADS)

    Gallagher, D.; Cash, W.; Jelsma, S.

    1996-05-01

    Over the past several years at the University of Colorado we have been developing an X-ray telescope that uses a new technique for focusing X-rays with grazing incidence optics The telescope uses spherical optics for all its components, thus utilizing the high quality surfaces obtainable when polishing spherical optics as compared to that of aspherical optics. A prototype engineering X-ray telescope has been fabricated and tested using the 300 meter vacuum pipe at White Sands Missile Range, NM. The telescope uses approximately 2 degree graze angles with tungsten coatings which gives a bandpass of 0.25-1.5 keV and a peak effective area of 0.08 cm(2) at 0.83 keV. Results from X-ray testing at energies of 0.25 keV and 0.93 keV (C-K and Cu-L) will be presented which verify 0.5 arcseconds performance at 0.93 keV. Results from modeling the X-ray telescope's response to the sun show that the current optics design would be capable of recording on the order of 10 images of a solar active region during a 300 second NASA sounding rocket flight at resolution of 0.5 arcsecond.

  13. Application of monochromatic keV X-ray source to X-ray drug delivery system

    NASA Astrophysics Data System (ADS)

    Uesaka, Mitsuru; Taguchi, Hiroki; Mori, Azusa; Yusa, Noritaka; Kato, Takamitsu; Okayasu, Ryuichi

    2009-09-01

    X-ray Drug Delivery System (DDS) enhances accumulation of anti-cancer drug or contrast agent by surrounding it with polymer and Enhanced Penetration and Retention (EPR) effect. DDS uses advanced nano-scaled polymers that contain and deliver drug or contrast agent to cancers without side effects. Several X-ray DDSs pose high-Z atoms such as gold to absorb X-rays effectively and used as contrast agent for inspection. Moreover, they have radiation enhancement effect by emission of Auger electron and successive characteristic X-rays. The enhancement factor of gold is more than five. This could be used even for therapy. This new modality must be very important for inspection and therapy of deep cancers. We are making use of our X-band Compton scattering monochromatic keV X-ray source for the inspection. Numerical simulation on monochromatic X-ray CT for possible concentration of gold-colloid DDS considering the X-ray property from the source was done. Enough visibility was confirmed. Furthermore, in vitro experiment analyzed its toxic effect to cells by the Alkaline comet assay and fluorescent immunostaining method for single and double strand breaks of DNA. Availability of clear imaging for the inspection has been confirmed by the numerical simulation and the in-vitro evaluation of the therapy effect is under way.

  14. Heliospheric X-Rays and the 1/4 keV Soft X-Ray Background Map

    NASA Astrophysics Data System (ADS)

    Robertson, I. P.; Cravens, T. E.; Snowden, S. L.

    2003-12-01

    X-rays are generated throughout the heliosphere as a consequence of charge transfer collisions between heavy solar wind ions and interstellar neutrals. The high charge state solar wind ions resulting from these collisions are left in highly excited states and emit extreme ultraviolet or soft x-ray photons. X-rays are also generated because of charge transfer collisions with neutral hydrogen in the Earth's geocorona. Our model simulates this charge transfer mechanism. It uses the Fahr hot model to determine spatial variations of interstellar helium and hydrogen densities. It also uses published terrestrial exospheric hydrogen distributions and solar wind speed, density and temperature distributions to determine x-ray intensities due to charge transfer with geocoronal hydrogen. We used the same viewing conditions as Snowden [1995] for the 1/4 keV channel soft x-ray background map in galactic coordinates, and produce an analogous heliospheric/geocoronal x-ray intensity map. Our preliminary conclusion is that roughly 50% of the total background soft x-ray intensity in the galactic plane and 25% at high galactic latitudes can be attributed to the charge transfer process operating within the solar system, with the remaining emission coming from outside our heliosphere.

  15. Guidelines for using a 10-keV x-ray source for hardness assurance

    SciTech Connect

    Fleetwood, D.M.

    1986-01-01

    In this paper, work done at Sandia is summarized that demonstrates that it is possible to use a 10-keV x-ray source for hardness assurance. Transistor data is presented that shows that a 10-keV x-ray source can be used as a reliable process monitor, in the sense that Co-60 part response can be predicted easily and reliably from x-ray part response. Further, test structure and functional part data is presented that illustrates how an x-ray source may be employed for wafer lot acceptance for silicon-gate CMOS devices that either employ quardbands or hardened field oxides for device isolation. Finally, a few words are said about the use of high-Z gate metallizations. These results should provide guidelines for implementation of lot acceptance testing with a 10-keV x-ray source.

  16. Using a 10-keV x-ray source for hardness assurance

    SciTech Connect

    Fleetwood, D.M.; Beegle, R.W.; Sexton, F.W.; Winokur, P.S.; Miller, S.L.; Schwank, J.R.; Jones, R.V.; McWhorter, P.J.

    1986-01-01

    It is shown that a 10 keV x-ray source can be used to predict the responses of microelectronic circuits to Co-60 irradiation. Guidelines for using an x-ray tester in a hardness assurance program for VLSI CMOS circuits are suggested. 5 refs., 2 figs., 1 tbl.

  17. Tomographic scanning microscope for 1-4 KeV x-rays

    SciTech Connect

    McNulty, I.; Feng, Y.P.; Hadda, W.S.; Trebes, J.E.

    1995-12-31

    X-ray microtomography enables three-dimensional imaging at submicron resolution with elemental and chemical state contrast. The 1-4 KeV energy region is promising for microtomography of biological, microelectronics, and materials sciences specimens. To capitalize on this potential, we are constructing a tomographic scanning x-ray microscope for 1-4 KeV x-ray on a spherical grating monochromator beamline at the Advance Photon Source. The microscope, which uses zone plate optics, has an anticipated spatial resolution of 100 nm and an energy resolution of better than 1 eV.

  18. The correlation of x-ray emission with pinch energy in a 1.5 kJ plasma focus

    NASA Astrophysics Data System (ADS)

    Hussain, S. S.; Ahmad, S.; Lee, S.; Zakaullah, M.

    2007-08-01

    Correlation of x-ray emission with pinch energy from a 1.5 kJ Mather-type plasma focus device for Ag and Sn inserts at the Cu tapered anode tip is reported. The space and time resolved x-ray emission characteristics are investigated by using a simple pinhole camera with appropriate filters and a multichannel pin-diode spectrometer. High voltage probe and Rogowski coil signals are used to estimate the pinch energy. At optimum conditions, the maximum x-ray yield in 4π-geometry is found to be 9 and 8 J/shot with efficiency of 0.6% and 0.5% for Sn and Ag inserted anodes. This is despite the fact that input energy converted to pinch energy is lower at 8% for Sn insert compared with 15% for the Ag insert. An increase in x-ray yield with an increase in pinch energy is observed for Sn as well as Ag. Pinhole images reveal that x-rays of energy less than 5 keV are emitted from the focus region and the high-energy x-rays are emanated from the anode tip.

  19. Cross calibration of new x-ray films against direct exposure film from 1 to 8 keV using the X-pinch x-ray source

    SciTech Connect

    Chandler, K.M.; Pikuz, S.A.; Shelkovenko, T.A.; Mitchell, M.D.; Hammer, D.A.; Knauer, J.P.

    2005-11-15

    A cross calibration of readily available x-ray sensitive films has been carried out against the calibrated direct exposure film (DEF) which is no longer being manufactured by Kodak. Four-wire X pinches made from various metal wires were used as x-ray sources for this purpose. Tests were carried out for the Kodak films Biomax MS, Biomax XAR, M100, Technical Pan, and T-Max over the energy range of 1-8 keV (12.4-1.5 A wavelength). The same hand-development procedures as described by Henke et al. [J. Opt. Soc. Am. B 3, 1540 (1986)] were followed for all films in every test. Sensitivity curves as a function of wavelength for these films relative DEF are presented. These relative calibrations show that Biomax MS is likely to be the best replacement film for DEF for most purposes over the energy range tested here.

  20. Cross calibration of new x-ray films against direct exposure film from 1 to 8 keV using the X-pinch x-ray source

    NASA Astrophysics Data System (ADS)

    Chandler, K. M.; Pikuz, S. A.; Shelkovenko, T. A.; Mitchell, M. D.; Hammer, D. A.; Knauer, J. P.

    2005-11-01

    A cross calibration of readily available x-ray sensitive films has been carried out against the calibrated direct exposure film (DEF) which is no longer being manufactured by Kodak. Four-wire X pinches made from various metal wires were used as x-ray sources for this purpose. Tests were carried out for the Kodak films Biomax MS, Biomax XAR, M100, Technical Pan, and T-Max over the energy range of 1-8keV (12.4-1.5Å wavelength). The same hand-development procedures as described by Henke et al. [J. Opt. Soc. Am. B 3, 1540 (1986)] were followed for all films in every test. Sensitivity curves as a function of wavelength for these films relative DEF are presented. These relative calibrations show that Biomax MS is likely to be the best replacement film for DEF for most purposes over the energy range tested here.

  1. Compton polarimeter for 10-30 keV x rays.

    PubMed

    Weber, S; Beilmann, C; Shah, C; Tashenov, S

    2015-09-01

    We present a simple and versatile polarimeter for x rays in the energy range of 10-30 keV. It uses Compton scattering in low-Z materials such as beryllium or boron carbide. The azimuthal distribution of the scattered x rays is sampled by an array of 12 silicon PIN diodes operated at room temperature. We evaluated the polarimetry performance using Monte-Carlo simulations and show experimental results. PMID:26429432

  2. Polaroid H-sheet as a polarizer for 33 keV X-rays

    NASA Astrophysics Data System (ADS)

    Collins, S. P.

    1997-07-01

    It is shown that Polaroid H-sheet (iodine-doped polyvinyl alcohol) can be used to good effect as a fixed-wavelength polarizer for 33.17 keV X-ray beams. Iodine K-edge dichroic spectra of HN22 and HN38 sheets are presented, and the HN22 is used to demonstrate X-ray polarization analysis and polarization rotation.

  3. Compton polarimeter for 10–30 keV x rays

    SciTech Connect

    Weber, S.; Beilmann, C.; Shah, C.; Tashenov, S.

    2015-09-15

    We present a simple and versatile polarimeter for x rays in the energy range of 10–30 keV. It uses Compton scattering in low-Z materials such as beryllium or boron carbide. The azimuthal distribution of the scattered x rays is sampled by an array of 12 silicon PIN diodes operated at room temperature. We evaluated the polarimetry performance using Monte-Carlo simulations and show experimental results.

  4. Microchannel plate pinhole camera for 20 to 100 keV x-ray imaging

    SciTech Connect

    Wang, C.L.; Leipelt, G.R.; Nilson, D.G.

    1984-10-03

    We present the design and construction of a sensitive pinhole camera for imaging suprathermal x-rays. Our device is a pinhole camera consisting of four filtered pinholes and microchannel plate electron multiplier for x-ray detection and signal amplification. We report successful imaging of 20, 45, 70, and 100 keV x-ray emissions from the fusion targets at our Novette laser facility. Such imaging reveals features of the transport of hot electrons and provides views deep inside the target.

  5. The Morphology of the X-ray Emission above 2 keV from Jupiter's Aurorae

    NASA Technical Reports Server (NTRS)

    Elsner, R.; Branduardi-Raymont, G.; Galand, M.; Grodent, D.; Waite, J. H.; Cravens, T.; Ford, P.

    2007-01-01

    The discovery in XMM-Newton X-ray data of X-ray emission above 2 keV from Jupiter's aurorae has led us to reexamine the Chandra ACIS-S observations taken in Feb 2003. Chandra's superior spatial resolution has revealed that the auroral X-rays with E > 2 keV are emitted from the periphery of the region emitting those with E < 1 keV. We are presently exploring the relationship of this morphology to that of the FUV emission from the main auroral oval and the polar cap. The low energy emission has previously been established as due to charge exchange between energetic precipitating ions of oxygen and either sulfur or carbon. It seems likely to us that the higher energy emission is due to precipitation of energetic electrons, possibly the same population of electrons responsible for the FUV emission. We discuss our analysis and interpretation.

  6. Observations of 12-200 keV X-rays from GX 339-4

    NASA Technical Reports Server (NTRS)

    Nolan, P. L.; Gruber, D. E.; Knight, F. K.; Matteson, J. L.; Peterson, L. E.; Levine, A. M.; Lewin, W. H. G.; Primini, F. A.

    1982-01-01

    X-ray spectra of GX 339-4 measured on three occasions in 1977 and 1978 are presented. These are the first reported measurements above 10 keV. The spectra can be described as the superposition of a soft component, which is dominant below about 20 keV, and a hard component at higher energy. Simultaneous measurements at lower energy show that the soft component vanished during the observation in early 1978. The behavior of these two components is similar to that of the spectrum of Cygnus X-1; this reinforces the previously noted resemblance in rapid X-ray variability.

  7. Laboratory source based full-field x-ray microscopy at 9 keV

    NASA Astrophysics Data System (ADS)

    Fella, C.; Balles, A.; Wiest, W.; Zabler, S.; Hanke, R.

    2016-01-01

    In the past decade, hard x-ray transmission microscopy experienced tremendous developments. With the avail-ability of efficient Fresnel zone plates, even set-ups utilizing laboratory sources were developed [1]. In order to improve the performance of these x-ray microscopes, novel approaches to fabricate optical elements [2] and brighter x-ray tubes [3] are promising candidates. We are currently building a laboratory transmission x-ray microscope for 9.25 keV, using an electron impact liquid-metal-jet anode source. Up to now, the further elements of our setup are: a polycapillary condenser, a tungsten zone plate, and a scintillator which is optically coupled to a CMOS camera. However, further variations in terms of optical elements are intended. Here we present the current status of our work, as well as first experimental results.

  8. THE COMPLEX X-RAY SPECTRUM OF THE SEFYERT 1.5 SOURCE NGC 6860

    SciTech Connect

    Winter, Lisa M.; Mushotzky, Richard

    2010-08-10

    The X-ray spectrum of the Seyfert 1.5 source NGC 6860 is among the most complex of the sources detected in the Swift Burst Alert Telescope all-sky survey. A short XMM-Newton follow-up observation of the source revealed a flat spectrum both above and below 2 keV. To uncover the complexity of the source, in this paper we analyze both a 40 ks Suzaku and a 100 ks XMM-Newton observation of NGC 6860. While the spectral state of the source changed between the newer observations presented here and the earlier short XMM-Newton spectrum-showing a higher flux and a steeper power-law component-the spectrum of NGC 6860 is still complex with clearly detected warm absorption signatures. We find that a two-component warm ionized absorber is present in the soft spectrum, with column densities of about 10{sup 20} and 10{sup 21} cm{sup -2}, ionization parameters of {xi} = 180 and 45 erg s{sup -1}, and outflow velocities for each component in the range of {approx}0-300 km s{sup -1}. Additionally, in the hard spectrum we find a broad ({approx}11, 000 km s{sup -1}) Fe K{alpha} emission line, redshifted by {approx}2800 km s{sup -1}.

  9. The Morphology of the X-ray Emission above 2 keV from Jupiter's Aurorae

    NASA Technical Reports Server (NTRS)

    Elsner, R.; Branduardi-Raymont, G.; Galand, M.; Grodent, D.; Gladstone, G. R.; Waite, J. H.; Cravens, T.; Ford, P.

    2007-01-01

    The discovery in XMM-Newton X-ray data of X-ray emission above 2 keY from Jupiter's aurorae has led us to reexamine the Chandra ACIS-S observations taken in Feb 2003. Chandra's superior spatial resolution has revealed that the auroral X-rays with E > 2 keV are emitted from the periphery of the region emitting those with E < 1 keV. We are presently exploring the relationship of this morphology to that of the FUV emission from the main auroral oval and the polar cap. The low energy emission has previously been established as due to charge exchange between energetic precipitating ions of oxygen and either sulfur or carbon. It seems likely to us that the higher energy emission is due to precipitation of energetic electrons, possibly the same population of electrons responsible for the FUV emission. We discuss our analysis and interpretation.

  10. MULTI-KEV X-RAY YIELDS FROM HIGH-Z GAS TARGETS FIELDED AT OMEGA

    SciTech Connect

    Kane, J O; Fournier, K B; May, M J; Colvin, J D; Thomas, C A; Marrs, R E; Compton, S M; Moody, J D; Bond, E J; Davis, J F

    2010-11-04

    The authors report on modeling of x-ray yield from gas-filled targets shot at the OMEGA laser facility. The OMEGA targets were 1.8 mm long, 1.95 mm in diameter Be cans filled with either a 50:50 Ar:Xe mixture, pure Ar, pure Kr or pure Xe at {approx} 1 atm. The OMEGA experiments heated the gas with 20 kJ of 3{omega} ({approx} 350 nm) laser energy delivered in a 1 ns square pulse. the emitted x-ray flux was monitored with the x-ray diode based DANTE instruments in the sub-keV range. Two-dimensional x-ray images (for energies 3-5 keV) of the targets were recorded with gated x-ray detectors. The x-ray spectra were recorded with the HENWAY crystal spectrometer at OMEGA. Predictions are 2D r-z cylindrical with DCA NLTE atomic physics. Models generally: (1) underpredict the Xe L-shell yields; (2) overpredict the Ar K-shell yields; (3) correctly predict the Xe thermal yields; and (4) greatly underpredict the Ar thermal yields. However, there are spreads within the data, e.g. the DMX Ar K-shell yields are correctly predicted. The predicted thermal yields show strong angular dependence.

  11. Demonstration of a 13-keV Kr K-shell x-ray source at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Fournier, K. B.; May, M. J.; Colvin, J. D.; Barrios, M. A.; Patterson, J. R.; Regan, S. P.

    2013-09-01

    We report 3% conversion efficiency of laser energy into Kr K-shell (≈13 keV) radiation, consistent with theoretical predictions. This is ≈10× greater than previous work. The emission was produced from a 4.1-mm-diameter, 4-mm-tall gas pipe target filled with 1.2 or 1.5 atm of Kr gas. 160 of the National Ignition Facility laser beams deposited ≈700 kJ of 3ω light into the target in an ≈140 TW, 5.0-ns-duration square pulse. The Dante diagnostics measured ≈5 TW into 4π solid angle of ≥12 keV x rays for ≈4 ns, which includes both continuum emission and flux in the Kr Heα line at 13 keV.

  12. X-ray grating interferometry at photon energies over 180 keV

    NASA Astrophysics Data System (ADS)

    Ruiz-Yaniz, M.; Koch, F.; Zanette, I.; Rack, A.; Meyer, P.; Kunka, D.; Hipp, A.; Mohr, J.; Pfeiffer, F.

    2015-04-01

    We report on the implementation and characterization of grating interferometry operating at an x-ray energy of 183 keV. With the possibility to use this technique at high x-ray energies, bigger specimens could be studied in a quantitative way. Also, imaging strongly absorbing specimens will benefit from the advantages of the phase and dark-field signals provided by grating interferometry. However, especially at these high photon energies the performance of the absorption grating becomes a key point on the quality of the system, because the grating lines need to keep their small width of a couple of micrometers and exhibit a greater height of hundreds of micrometers. The performance of high aspect ratio absorption gratings fabricated with different techniques is discussed. Further, a dark-field image of an alkaline multicell battery highlights the potential of high energy x-ray grating based imaging.

  13. A Review of X-ray Diagnostic Calibrations in the 2 to 100 keV Region Using the High Energy X-ray Calibration Facility (HEX)

    SciTech Connect

    Ali, Zaheer; Pond, T; Buckles, R A; Maddox, B R; Chen, C D; DeWald, E L; Izumi, N; Stewart, R

    2010-05-19

    The precise and accurate measurement of X-rays in the 2 keV to 100 keV region is crucial to the understanding of HED plasmas and warm dense matter in general. With the emergence of inertially confined plasma facilities as the premier platforms for ICF, laboratory astrophysics, and national security related plasma experiments, the need to calibrate diagnostics in the high energy X-ray regime has grown. At National Security Technologies High Energy X-ray Calibration Facility (HEX) in Livermore, California, X-ray imagers, filter-fluorescer spectrometers, crystal spectrometers, image plates, and nuclear diagnostics are calibrated. The HEX can provide measurements of atomic line radiation, X-ray flux (accuracy within 10%), and X-ray energy (accuracy within 1%). The HEX source is comprised of a commercial 160 kV X-ray tube, a fluorescer wheel, a filter wheel, and a lead encasement. The X-ray tube produces a Tungsten bremsstrahlung spectrum which causes a foil to fluoresce line radiation. To minimize bremsstrahlung in the radiation for calibration we also provide various foils as filters. For experimental purposes, a vacuum box capable of 10{sup -7} Torr, as well as HPGe and CdTe radiation detectors, are provided on an optical table. Most geometries and arrangements can be changed to meet experimental needs.

  14. Interferometric phase-contrast X-ray CT imaging of VX2 rabbit cancer at 35keV X-ray energy

    SciTech Connect

    Takeda, Tohoru; Wu Jin; Tsuchiya, Yoshinori; Lwin, Thet-Thet; Itai, Yuji; Yoneyama, Akio; Hyodo, Kazuyuki

    2004-05-12

    Imaging of large objects at 17.7-keV low x-ray energy causes huge x-ray exposure to the objects even using interferometric phase-contrast x-ray CT (PCCT). Thus, we tried to obtain PCCT images at high x-ray energy of 35keV and examined the image quality using a formalin-fixed VX2 rabbit cancer specimen with 15-mm in diameter. The PCCT system consisted of an asymmetrically cut silicon (220) crystal, a monolithic x-ray interferometer, a phase-shifter, an object cell and an x-ray CCD camera. The PCCT at 35 keV clearly visualized various inner structures of VX2 rabbit cancer such as necrosis, cancer, the surrounding tumor vessels, and normal liver tissue. Besides, image-contrast was not degraded significantly. These results suggest that the PCCT at 35 KeV is sufficient to clearly depict the histopathological morphology of VX2 rabbit cancer specimen.

  15. Sub-arcsec X-Ray Telescope for Imaging The Solar Corona In the 0.25 - 1.2 keV Band

    NASA Technical Reports Server (NTRS)

    Gallagher, Dennis; Cash, Webster; Jelsma, Schuyler; Farmer, Jason

    1996-01-01

    We have developed an X-ray telescope that uses a new technique for focusing X-rays with grazing incidence optics. The telescope was built with spherical optics for all of its components, utilizing the high quality surfaces obtainable when polishing spherical (as opposed to aspherical) optics. We tested the prototype X-ray telescope in the 300 meter vacuum pipe at White Sands Missile Range, NM. The telescope features 2 degee graze angles with tungsten coatings, yielding a bandpass of 0.25-1.5 keV with a peak effective area of 0.8 sq cm at 0.83 keV. Results from X-ray testing at energies of 0.25 keV and 0.93 keV (C-K and Cu-L) verify 0.5 arcsecond performance at 0.93 keV. Results from modeling the X-ray telescope's response to the Sun show that the current design would be capable of recording 10 half arcsecond images of a solar active region during a 300 second NASA sounding rocket flight.

  16. Subarcsecond x-ray telescope for imaging the solar corona in the 0.25- to 1.2-keV band

    NASA Astrophysics Data System (ADS)

    Gallagher, Dennis J.; Cash, Webster C.; Jelsma, Schuyler; Farmer, Jason

    1996-07-01

    We have developed an x-ray telescope that uses a new technique for focusing x-rays with grazing incidence optics. The telescope was built with spherical optics for all of its components, utilizing the high quality surfaces obtainable when polishing spherical (as opposed to aspherical) optics. We tested the prototype x-ray telescope in the 300 meter vacuum pipe at White Sands Missile Range, NM. The telescope features 2 degree graze angles with tungsten coatings, yielding a bandpass of 0.25-1.5 keV with a peak effective area of 0.8 cm(superscript 2) at 0.83 keV. Results from x-ray testing at energies of 0.25 keV and 0.93 keV (C-K and Cu-L) verify 0.5 arcsecond performance at 0.93 keV. Results from modeling the x-ray telescope's response to the SUn show that the current design would be capable of recording 10 half arcsecond images of a solar active region during a 300 second NASA sounding rocket flight.

  17. A 24 keV liquid-metal-jet x-ray source for biomedical applications

    SciTech Connect

    Larsson, D. H.; Takman, P. A. C.; Lundstroem, U.; Burvall, A.; Hertz, H. M.

    2011-12-15

    We present a high-brightness 24-keV electron-impact microfocus x-ray source based on continuous operation of a heated liquid-indium/gallium-jet anode. The 30-70 W electron beam is magnetically focused onto the jet, producing a circular 7-13 {mu}m full width half maximum x-ray spot. The measured spectral brightness at the 24.2 keV In K{sub {alpha}} line is 3 x 10{sup 9} photons/(s x mm{sup 2}x mrad{sup 2}x 0.1% BW) at 30 W electron-beam power. The high photon energy compared to existing liquid-metal-jet sources increases the penetration depth and allows imaging of thicker samples. The applicability of the source in the biomedical field is demonstrated by high-resolution imaging of a mammography phantom and a phase-contrast angiography phantom.

  18. New Observations of Soft X-ray (0.5-5 keV) Solar Spectra

    NASA Astrophysics Data System (ADS)

    Caspi, A.; Woods, T. N.; Mason, J. P.; Jones, A. R.; Warren, H. P.

    2013-12-01

    The solar corona is the brightest source of X-rays in the solar system, and the X-ray emission is highly variable on many time scales. However, the actual solar soft X-ray (SXR) (0.5-5 keV) spectrum is not well known, particularly during solar quiet periods, as, with few exceptions, this energy range has not been systematically studied in many years. Previous observations include high-resolution but very narrow-band spectra from crystal spectrometers (e.g., Yohkoh/BCS), or integrated broadband irradiances from photometers (e.g., GOES/XRS, TIMED/XPS, etc.) that lack detailed spectral information. In recent years, broadband measurements with moderate energy resolution (~0.5-0.7 keV FWHM) were made by SphinX on CORONAS-Photon and SAX on MESSENGER, although they did not extend to energies below ~1 keV. We present observations of solar SXR emission obtained using new instrumentation flown on recent SDO/EVE calibration rocket underflights. The photon-counting spectrometer, a commercial Amptek X123 with a silicon drift detector and an 8 μm Be window, measures the solar disk-integrated SXR emission from ~0.5 to >10 keV with ~0.15 keV FWHM resolution and 1 s cadence. A novel imager, a pinhole X-ray camera using a cooled frame-transfer CCD (15 μm pixel pitch), Ti/Al/C filter, and 5000 line/mm Au transmission grating, images the full Sun in multiple spectral orders from ~0.1 to ~5 nm with ~10 arcsec/pixel and ~0.01 nm/pixel spatial and spectral detector scales, respectively, and 10 s cadence. These instruments are prototypes for future CubeSat missions currently being developed. We present new results of solar observations on 04 October 2013 (NASA sounding rocket 36.290). We compare with previous results from 23 June 2012 (NASA sounding rocket 36.286), during which solar activity was low and no signal was observed above ~4 keV. We compare our spectral and imaging measurements with spectra and broadband irradiances from other instruments, including SDO/EVE, GOES/XRS, TIMED

  19. Searching for keV Sterile Neutrino Dark Matter with X-Ray Microcalorimeter Sounding Rockets

    NASA Astrophysics Data System (ADS)

    Figueroa-Feliciano, E.; Anderson, A. J.; Castro, D.; Goldfinger, D. C.; Rutherford, J.; Eckart, M. E.; Kelley, R. L.; Kilbourne, C. A.; McCammon, D.; Morgan, K.; Porter, F. S.; Szymkowiak, A. E.; XQC Collaboration

    2015-11-01

    High-resolution X-ray spectrometers onboard suborbital sounding rockets can search for dark matter candidates that produce X-ray lines, such as decaying keV-scale sterile neutrinos. Even with exposure times and effective areas far smaller than XMM-Newton and Chandra observations, high-resolution, wide field of view observations with sounding rockets have competitive sensitivity to decaying sterile neutrinos. We analyze a subset of the 2011 observation by the X-ray Quantum Calorimeter instrument centered on Galactic coordinates l=165°,b=-5° with an effective exposure of 106 s, obtaining a limit on the sterile neutrino mixing angle of {{sin}}22θ < 7.2× {10}-10 at 95% CL for a 7 keV neutrino. Better sensitivity at the level of {{sin}}22θ ∼ 2.1× {10}-11 at 95% CL for a 7 keV neutrino is achievable with future 300-s observations of the galactic center by the Micro-X instrument, providing a definitive test of the sterile neutrino interpretation of the reported 3.56 keV excess from galaxy clusters.

  20. Demonstration of a 13 keV Kr K-shell X-Ray Source at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Fournier, K. B.; May, M. J.; Colvin, J. D.; Barrios, M. A.; Patterson, J. R.; Regan, S. P.

    2013-10-01

    We report 3% conversion efficiency of laser energy into Kr K-shell (~13 keV) radiation, consistent with theoretical predictions. This is ~10 × greater than previous work. The emission was produced from a 4.1 mm diameter, 4 mm tall gas pipe target filled with 1.2 or 1.5 atm of Kr gas. 160 of the NIF laser beams deposited ~700 kJ of 3 ω light into the target in a ~140 TW, 5.0 ns duration square pulse. This laser configuration sufficiently heated the targets to optimize the K-shell x-ray emission. The Dante diagnostics measured ~5 TW into 4 π solid angle of >=12 keV x rays for ~4 ns, which includes both continuum emission and flux in the Kr Heα line at 13 keV. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This work was supported by the Defense Threat Reduction Agency under the intera- gency agreements 10027-1420 and 10027-6167.

  1. The Z accelerator as a source of > 100 kJ of x-rays above 4.8 keV

    SciTech Connect

    Deeney, C.; Coverdale, C.A.; Spielman, R.B.

    1998-04-13

    Recent K-shell scaling experiments on the 20 MA Z accelerator at Sandia National Laboratories have shown that large diameter (40 and 55 mm) arrays can be imploded with 80 to 210 wires of titanium or stainless steel. These implosions have produced up to 150 kJ of > 4.5 keV x-rays and 65 kJ of > 6.0 keV x-rays in 7 to 18 ns FWHM pulses. This is a major advance in plasma radiation source (PRS) capability since there is presently limited test capability above 3 keV. In fact, Z produces more > 4.5 keV x-rays than previous aboveground simulators produced at 1.5 keV. Z also produces some 200 kJ of x-rays between 1 and 3 keV in a continuous spectrum for these loads. The measured spectra and yields are consistent with 1-dimensional MHD calculations performed by NRL. Thermoelastic calorimeters, PVDF gauges, and optical impulse gauges have been successfully fielded with these sources.

  2. Hyper-filter-fluorescer spectrometer for x-rays above 120 keV

    DOEpatents

    Wang, Ching L.

    1983-01-01

    An apparatus utilizing filter-fluorescer combinations is provided to measure short bursts of high fluence x-rays above 120 keV energy, where there are no practical absorption edges available for conventional filter-fluorescer techniques. The absorption edge of the prefilter is chosen to be less than that of the fluorescer, i.e., E.sub.PRF E.sub.F. In this way, the response function is virtually zero between E.sub.PRF and E.sub.F and well defined and enhanced in an energy band of less than 1000 keV above the 120 keV energy.

  3. Impact of x-ray dose on the response of CR-39 to 1-5.5 MeV alphas

    NASA Astrophysics Data System (ADS)

    Rojas-Herrera, J.; Rinderknecht, H. G.; Zylstra, A. B.; Gatu Johnson, M.; Orozco, D.; Rosenberg, M. J.; Sio, H.; Seguin, F. H.; Frenje, J. A.; Li, C. K.; Petrasso, R. D.

    2015-03-01

    The CR-39 nuclear track detector is used in many nuclear diagnostics fielded at inertial confinement fusion (ICF) facilities. Large x-ray fluences generated by ICF experiments may impact the CR-39 response to incident charged particles. To determine the impact of x-ray exposure on the CR-39 response to alpha particles, a thick-target bremsstrahlung x-ray generator was used to expose CR-39 to various doses of 8 keV Cu-Kα and Kβ x-rays. The CR-39 detectors were then exposed to 1-5.5 MeV alphas from an Am-241 source. The regions of the CR-39 exposed to x-rays showed a smaller track diameter than those not exposed to x-rays: for example, a dose of 3.0 ± 0.1 Gy causes a decrease of (19 ± 2)% in the track diameter of a 5.5 MeV alpha particle, while a dose of 60.0 ± 1.3 Gy results in a decrease of (45 ± 5)% in the track diameter. The reduced track diameters were found to be predominantly caused by a comparable reduction in the bulk etch rate of the CR-39 with x-ray dose. A residual effect depending on alpha particle energy is characterized using an empirical formula.

  4. Impact of x-ray dose on the response of CR-39 to 1-5.5 MeV alphas.

    PubMed

    Rojas-Herrera, J; Rinderknecht, H G; Zylstra, A B; Gatu Johnson, M; Orozco, D; Rosenberg, M J; Sio, H; Seguin, F H; Frenje, J A; Li, C K; Petrasso, R D

    2015-03-01

    The CR-39 nuclear track detector is used in many nuclear diagnostics fielded at inertial confinement fusion (ICF) facilities. Large x-ray fluences generated by ICF experiments may impact the CR-39 response to incident charged particles. To determine the impact of x-ray exposure on the CR-39 response to alpha particles, a thick-target bremsstrahlung x-ray generator was used to expose CR-39 to various doses of 8 keV Cu-Kα and Kβ x-rays. The CR-39 detectors were then exposed to 1-5.5 MeV alphas from an Am-241 source. The regions of the CR-39 exposed to x-rays showed a smaller track diameter than those not exposed to x-rays: for example, a dose of 3.0 ± 0.1 Gy causes a decrease of (19 ± 2)% in the track diameter of a 5.5 MeV alpha particle, while a dose of 60.0 ± 1.3 Gy results in a decrease of (45 ± 5)% in the track diameter. The reduced track diameters were found to be predominantly caused by a comparable reduction in the bulk etch rate of the CR-39 with x-ray dose. A residual effect depending on alpha particle energy is characterized using an empirical formula. PMID:25832223

  5. Stacked depth graded multilayer for hard X-rays measured up to 130 keV

    NASA Astrophysics Data System (ADS)

    Jensen, C. P.; Christensen, F. E.; Romaine, S.; Bruni, R.; Zhong, Z.

    2007-09-01

    Depth graded multilayer designs for hard x-ray telescopes in the 10 keV to 70-80 keV energy range have had either W or Pt as the heavy element. These materials have been chosen because of reasonable optical constants, the possibility to grow smooth interfaces with the spacer material, and the stability over time. On the flip side both W and Pt have an absorption edge -- 69.5 keV (W) and 78.4 keV (Pt) -- which is very close to the two 44Ti lines at 67.9 keV and 78.4 keV that are produced in the envelope of a super nova explosion. Other materials have better optical constants and no absorption edges in this energy range, for example Ni 0.93V 0.07, but are not used because of high interface roughness. By using a WC/SiC multilayer for the bottom and a Ni 0.93V 0.07/SiC multilayer for the thicker top layers of a depth graded multilayer we have made a reflector that doesn't have a clear absorption edge. This reflector has been measured at energies between 8 keV and 130 keV. At a graze angle of 0.11 degree there is still nearly the same reflectivity below the W absorption edge as for a traditional W based coating, and above the W absorption edge there is still 48% reflection at 80 keV.

  6. Static and time-resolved 10-1000 keV x-ray imaging detector options for NIF

    SciTech Connect

    Landen, O.L.; Bell, P.M.; McDonald, J.W.; Park, H.-S.; Weber, F.; Moody, J.D.; Lowry, M.E.; Stewart, R.E.

    2004-10-01

    High energy (>10 keV) x-ray self-emission imaging and radiography will be essential components of many NIF high energy density physics experiments. In preparation for such experiments, we have evaluated the pros and cons of various static [x-ray film, bare charge-coupled device (CCD), and scintillator + CCD] and time-resolved (streaked and gated) 10-1000 keV detectors.

  7. Extension to Low Energies (<7keV) of High Pressure X-Ray Absorption Spectroscopy

    SciTech Connect

    Itie, J.-P.; Flank, A.-M.; Lagarde, P.; Idir, M.; Polian, A.; Couzinet, B.

    2007-01-19

    High pressure x-ray absorption has been performed down to 3.6 keV, thanks to the new LUCIA beamline (SLS, PSI) and to the use of perforated diamonds or Be gasket. Various experimental geometries are proposed, depending on the energy of the edge and on the concentration of the studied element. A few examples will be presented: BaTiO3 at the titanium K edge, Zn0.95 Mn0.05O at the manganese K edge, KCl at the potassium K edge.

  8. Study of 1–8 keV K-α x-ray emission from high intensity femtosecond laser produced plasma

    SciTech Connect

    Arora, V. Naik, P. A.; Chakera, J. A.; Bagchi, S.; Tayyab, M.; Gupta, P. D.

    2014-04-15

    We report an experimental study on the optimization of a laser plasma based x-ray source of ultra-short duration K-α line radiation. The interaction of pulses from a CPA based Ti:sapphire laser (10 TW, 45 fs, 10 Hz) system with magnesium, titanium, iron and copper solid target generates bright 1-8 keV K-α x-ray radiation. The x-ray yield was optimized with the laser pulse duration (at fixed fluence) which is varied in the range of 45 fs to 1.4 ps. It showed a maximum at laser pulse duration of ∼740 fs, 420 fs, 350 and 250 fs for Mg (1.3 keV), Ti (4.5 keV), Fe (6.4 keV) and Cu (8.05 keV) respectively. The x-ray yield is observed to be independent of the sign of the chirp. The scaling of the K-α yield (I{sub x} ∝ I{sub L}{sup β}) for 45 fs and optimized pulse duration were measured for laser intensities in the region of 3 × 10{sup 14} – 8 × 10{sup 17}. The x-ray yield shows a much faster scaling exponent β = 1.5, 2.1, 2.4 and 2.6 for Mg, Ti, Fe and Cu respectively at optimized pulse duration compared to scaling exponent of 0.65, 1.3, 1.5, and 1.7 obtained for 45 fs duration laser pulses. The laser to x-ray energy conversion efficiencies obtained for different target materials are η{sub Mg} = 1.2 × 10{sup −5}, η{sub Ti} = 3.1 × 10{sup −5}, η{sub Fe} = 2.7 × 10{sup −5}, η{sub Cu} = 1.9 × 10{sup −5}. The results have been explained from the efficient generation of optimal energy hot electrons at longer laser pulse duration. The faster scaling observed at optimal pulse duration indicates that the x-ray source is generated at the target surface and saturation of x-ray emission would appear at larger laser fluence. An example of utilization of the source for measurement of shock-wave profiles in a silicon crystal by time resolved x-ray diffraction is also presented.

  9. Efficient focusing of 8 keV X-rays with multilayer Fresnel zone plates fabricated by atomic layer deposition and focused ion beam milling.

    PubMed

    Mayer, Marcel; Keskinbora, Kahraman; Grévent, Corinne; Szeghalmi, Adriana; Knez, Mato; Weigand, Markus; Snigirev, Anatoly; Snigireva, Irina; Schütz, Gisela

    2013-05-01

    Fresnel zone plates (FZPs) recently showed significant improvement by focusing soft X-rays down to ~10 nm. In contrast to soft X-rays, generally a very high aspect ratio FZP is needed for efficient focusing of hard X-rays. Therefore, FZPs had limited success in the hard X-ray range owing to difficulties of manufacturing high-aspect-ratio zone plates using conventional techniques. Here, employing a method of fabrication based on atomic layer deposition (ALD) and focused ion beam (FIB) milling, FZPs with very high aspect ratios were prepared. Such multilayer FZPs with outermost zone widths of 10 and 35 nm and aspect ratios of up to 243 were tested for their focusing properties at 8 keV and shown to focus hard X-rays efficiently. This success was enabled by the outstanding layer quality thanks to ALD. Via the use of FIB for slicing the multilayer structures, desired aspect ratios could be obtained by precisely controlling the thickness. Experimental diffraction efficiencies of multilayer FZPs fabricated via this combination reached up to 15.58% at 8 keV. In addition, scanning transmission X-ray microscopy experiments at 1.5 keV were carried out using one of the multilayer FZPs and resolved a 60 nm feature size. Finally, the prospective of different material combinations with various outermost zone widths at 8 and 17 keV is discussed in the light of the coupled wave theory and the thin-grating approximation. Al2O3/Ir is outlined as a promising future material candidate for extremely high resolution with a theoretical efficiency of more than 20% for as small an outermost zone width as 10 nm at 17 keV. PMID:23592622

  10. Ultraviolet and X-ray Variability of the Seyfert 1.5 Galaxy Markarian 817

    NASA Astrophysics Data System (ADS)

    Winter, Lisa M.; Danforth, Charles; Vasudevan, Ranjan; Brandt, W. N.; Scott, Jennifer; Froning, Cynthia; Keeney, Brian; Shull, J. Michael; Penton, Steve; Mushotzky, Richard; Schneider, Donald P.; Arav, Nahum

    2011-02-01

    We present an investigation of the ultraviolet and X-ray spectra of the Seyfert 1.5 galaxy Markarian 817. The ultraviolet analysis includes two recent observations taken with the Cosmic Origins Spectrograph (COS) in 2009 August and December, as well as archival spectra from the International Ultraviolet Explorer and the Hubble Space Telescope. Twelve Lyα absorption features are detected in the 1997 Goddard High Resolution Spectrograph (GHRS) and 2009 COS spectra—of these, four are associated with high-velocity clouds in the interstellar medium, four are at low significance, and the remaining four are intrinsic features, which vary between the GHRS and COS observations. The strongest intrinsic absorber in the 1997 spectrum has a systemic velocity of ~-4250 km s-1. The corresponding feature in the COS data is five times weaker than the GHRS absorber. The three additional weak (equivalent width from 13 to 54 mÅ) intrinsic Lyα absorbers are at systemic velocities of -4100 km s-1, -3550 km s-1, and -2600 km s-1. However, intrinsic absorption troughs from highly ionized C IV and N V are not detected in the COS observations. No ionized absorption signatures are detected in the ~14 ks XMM-Newton EPIC spectra. The factor of five change in the intrinsic Lyα absorber is most likely due to bulk motions in the absorber, since there is no drastic change in the UV luminosity of the source from the GHRS to the COS observations. In a study of the variability of Mrk 817, we find that the X-ray luminosity varies by a factor of ~40 over 20 years, while the UV continuum/emission lines vary by at most a factor of ~2.3 over 30 years. The variability of the X-ray luminosity is strongly correlated with the X-ray power-law index, but no correlation is found with the simultaneous optical/UV photometry.

  11. X-Ray Detector for 1 to 30 keV

    NASA Technical Reports Server (NTRS)

    Alcorn, G.; Jackson, J., Jr; Grant, P.; Marshall, F.

    1983-01-01

    Array of silicon X-ray detecting diodes measures photon energy and provides image of X-ray pattern. Regardless of thickness of new X-ray detector, depletion region extends through it. Impinging X-rays generate electrons in quantities proportional to X-ray energy. X-ray detector is mated to chargecoupled-device array for image generation and processing. Useful in industrial part inspection, pulsed-plasma research and medical application.

  12. The Hard X-ray 20-40 keV AGN Luminosity Function

    NASA Technical Reports Server (NTRS)

    Beckmann, V.; Soldi, S.; Shrader, C. R.; Gehrels, N.; Produit, N.

    2006-01-01

    We have compiled a complete, significance limited extragalactic sample based on approximately 25,000 deg(sup 2) to a limiting flux of 3 x 10(exp -11) ergs per square centimeter per second. (approximately 7,000 deg(sup 2)) to a flux limit of 10(exp -11) ergs per square centimeter per second)) in the 20 - 40 keV band with INTEGRAL. We have constructed a detailed exposure map to compensate for effects of non-uniform exposure. The flux-number relation is best described by a power-law with a slope of alpha = 1.66 plus or minus 0.11. The integration of the cumulative flux per unit area leads to f(sub 20-40 keV) = 2.6 x 10(exp -10) ergs per square centimeter per second per sr(sup -1) which is about 1% of the known 20-40 keV X-ray background. We present the first luminosity function of AGN in the 20-40 keV energy range, based on 68 extragalactic objects detected by the imager IBIS/ISGRI on-board INTEGRAL. The luminosity function shows a smoothly connected two power-law form, with an index of gamma (sub 1) = 0.9 below, and gamma (sub 2) = 2.2 above the turn-over luminosity of L(sub *), = 4.6 x 10(sup 43) ergs per second. The emissivity of all INTEGRAL AGNs per unit volume is W(sub 20-40keV)(greater than 10(sup 41) ergs per second) = 2.8 x 10(sup 38) ergs per second h(sup 3)(sub 70) Mpc(sup -3). These results are consistent with those derived in the 2-20keV energy band and do not show a significant contribution by Compton-thick objects. Because the sample used in this study is truly local (z(raised bar) = 0.022)), only limited conclusions can be drawn for the evolution of AGNs in this energy band. But the objects explaining the peak in the cosmic X-ray background are likely to be either low luminosity AGN (L(sub x) less than 10(sup 41) ergs per second) or of other type, such as intermediate mass black holes, clusters, and star forming regions.

  13. High-efficiency multilevel zone plates for keV X-rays

    NASA Astrophysics Data System (ADS)

    di Fabrizio, E.; Romanato, F.; Gentili, M.; Cabrini, S.; Kaulich, B.; Susini, J.; Barrett, R.

    1999-10-01

    The development of high brilliance X-ray sources coupled with advances in manufacturing technologies has led to significant improvements in submicrometre probes for spectroscopy, diffraction and imaging applications. The generation of a small beam spot size is commonly based on three principles: total reflection (as used in optical elements involving mirrors or capillaries), refraction (such as in refractive lenses) and diffraction. The latter effect is employed in Bragg-Fresnel or Soret lenses, commonly known as Fresnel zone plate lenses. These lenses currently give the best spatial resolution, but are traditionally limited to rather soft X-rays-at high energies, their use is still limited by their efficiency. Here we report the fabrication of high-efficiency, high-contrast gold and nickel multistep (quaternary) Fresnel zone plates using electron beam lithography. We achieve a maximum efficiency of 55% for the nickel plate at 7keV. In addition to their high efficiency, the lenses offer the advantages of low background signal and effective reduction of unwanted diffraction orders. We anticipate that these lenses should have a significant impact on techniques such as microscopy, micro-fluorescence and micro-diffraction, which require medium resolution (500-100nm) and high flux at fixed energies.

  14. One-dimensional x-ray imaging using a spherically bent mica crystal at 4.75 keV

    SciTech Connect

    Workman, J.; Evans, S.; Kyrala, G. A.

    2001-01-01

    One-dimensional x-ray imaging of static gold bars using a spherically bent mica crystal is presented for the first time at an x-ray energy of 4.75 keV. X rays are produced using 1-ns-square pulses on the TRIDENT laser facility driving the He-like resonance transition in solid titanium disks. Time-integrated images of square profile parallel gold bars are recorded on direct exposure film with a magnification of {approx}10. Rising edge measurements of the bars demonstrate resolutions of about 6--7 {mu}m over a 400 {mu}m field of view.

  15. Measurement of mass attenuation coefficients for four mixtures using X-rays from 13 keV up to 40 keV

    NASA Astrophysics Data System (ADS)

    Angelone, M.; Esposito, A.; Chiti, M.; Gentile, A.

    2001-06-01

    The total absorption coefficients for some selected organic compounds relevant to health physics, Triaflol BN (C 3H 4O 2) n, Triaflol TN (C 12H 18O 7) n, Kapton (C 44H 20O 10) n, and Melinex (C 10H 8N 4O 4) n were measured in the X-ray energy range from 13 keV up to about 40 keV using a collimator, high purity germanium detector with thin Be window and variable energy X-ray source. The measured values are compared with the theoretical ones obtained using the XCOM code. The agreement is generally good within a few percent.

  16. Cross section for induced L X-ray emission by protons of energy <400 keV

    NASA Astrophysics Data System (ADS)

    Mohan, Harsh; Jain, Arvind Kumar; Kaur, Mandeep; Singh, Parjit S.; Sharma, Sunita

    2014-08-01

    In performing ion beam analysis, cross section for induced L X-ray emission plays a crucial role. There are different approaches by which these can be found experimentally or can be calculated theoretically based on various models. L X-ray production cross sections for Bi with protons in the energy range 260-400 keV at the interval of 20 keV are measured. These are compared with calculations obtained on the basis of current prevailing theories ECPSSR and ECPSSR-UA. Their importance in understanding this phenomenon and existing arguments in this regard will be highlighted.

  17. CONTRIBUTION OF UNRESOLVED POINT SOURCES TO THE DIFFUSE X-RAY BACKGROUND BELOW 1 keV

    SciTech Connect

    Gupta, A.; Galeazzi, M.

    2009-09-01

    We present here the analysis of X-ray point sources detected in several observations available in the XMM-Newton public archive. We focused, in particular, on energies below 1 keV, which are of particular relevance to the understanding of the diffuse X-ray background (DXB). The average field of all the exposures is 0.09 deg{sup -2}. We reached an average flux sensitivity of 5.8 x 10{sup -16}ergs{sup -1}cm{sup -2} in the soft band (0.5-2.0 keV) and 2.5 x 10{sup -16}ergs{sup -1}cm{sup -2} in the very soft band (0.4-0.6 keV). In this paper, we discuss the log N-log S results, the contribution to the integrated X-ray sky flux, and the properties of the cumulative spectrum from all sources. In particular, we found an excess flux at around 0.5 keV in the composite spectrum of faint sources. The excess seems to be a general property of all the fields observed suggesting an additional class of weak sources is contributing to the X-ray emission at these energies. Combining our results with previous investigations, we have also quantified the contribution of the individual components of the DXB in the 3/4 keV band.

  18. Origins of the 1/4 keV Soft X-Ray Background

    NASA Astrophysics Data System (ADS)

    Bellm, Eric C.; Vaillancourt, John E.

    2005-04-01

    Snowden and coworkers have presented a model for the 1/4 keV soft X-ray diffuse background in which the observed flux is dominated by a ~106 K thermal plasma located in a 100-300 pc diameter bubble surrounding the Sun but has significant contributions from a very patchy Galactic halo. Halo emission provides about 11% of the total observed flux and is responsible for half of the H I anticorrelation. The remainder of the anticorrelation is presumably produced by displacement of disk H I by the varying extent of the Local Hot Bubble (LHB). The ROSAT R1 and R2 bands used for this work had the unique spatial resolution and statistical precision required for separating the halo and local components but provide little spectral information. Some consistency checks had been made with older observations at lower X-ray energies, but we have made a careful investigation of the extent to which the model is supported by existing sounding rocket data in the Be (73-111 eV) and B (115-188 eV) bands, where the sensitivities to the model are qualitatively different from the ROSAT bands. We conclude that the two-component model is well supported by the low-energy data. We find that these combined observations of the local component may be consistent with single-temperature thermal emission models in collisional ionization equilibrium if depleted abundances are assumed. However, different model implementations give significantly different results, offering little support for the conclusion that the astrophysical situation is so simple.

  19. Using the X-pinch x-ray source to Cross Calibrate new X-ray films with DEF from 1 - 10 keV

    NASA Astrophysics Data System (ADS)

    Shelkovenko, T. A.; Chandler, K. M.; Pikuz, S. A.; Mitchell, M. D.; Hammer, D. A.; Knauer, J.; Meyerhofer, D.; Carpenter, B.

    2004-11-01

    Due to the recent cessation of the production of DEF x-ray film, cross calibration with other films has become necessary in order to find a replacement for DEF. DEF is sensitive over a large energy range, 2 - 35 keV, with peak sensitivity in the range of 2.5 - 5 keV, and is used in many applications. Cross calibration tests were carried out for the following Kodak films: BiomaxMR, BiomaxXAR, M100, Technical Pan, and T-Max and the same development procedures as described by Henke et al.^2 were followed for all films in every test. Various wire materials were used for the X pinches, including Al, Cu, Mo, Ni, Pd, and Ti, to span the desired x-ray energy range. In each test, a convex mica spectrograph and a Focusing Spectrometer with Spatial Resolution in 1D (FSSR-1D) with a spherically bent mica crystal were used with two pieces of 35 mm film that were cut in half. One half piece of DEF and one half piece of one of the aforementioned films were placed in each of the spectrometers so that both films were exposed by the same x-ray fluence and spectrum in every case. The same spectrum was recorded on both films in each spectrometer so that a direct comparison of the spectral sensitivities is possible. The results of these cross-calibrations will be presented and discussed. This research was supported largely by the SSAA program of the NNSA under DOE Cooperative agreement DE-FC03-02NA00057 with Cornell University. ^2Henke, et. al, "High-energy x-ray response of photographic films: models and measurement" J.Opt.Soc.AmB Vol.3, No.11, Nov 1986.

  20. Angular dependence of L X-rays emission for Ag by 10 keV electron-impact

    NASA Astrophysics Data System (ADS)

    Wang, Xing; Xu, Zhongfeng; Zhang, Ying; Ma, Chao; Zhu, Chengwei

    2016-08-01

    The characteristic X-ray intensities of Ag-Lα, Lβ1, Lβ2 and Lγ1 are measured in electron-impact ionization at energy of 10 keV. The emission angle in this work ranges from 0° to 20° at interval of 5°. The angular dependence of L X-ray intensity ratios has been investigated for Lα / Lβ1, Lβ2 / Lβ1 and Lγ1 / Lβ1. It is found from the experimental results that the emissions of Lβ1, Lβ2 and Lγ1 X-rays are spatially isotropic, while the Lα X-rays exhibit anisotropic emission. Consequently, the alignment behavior of vacancy states is discussed with thorough analysis of vacancy transfer process.

  1. Nonabelian dark matter models for 3.5 keV X-rays

    NASA Astrophysics Data System (ADS)

    Cline, James M.; Frey, Andrew R.

    2014-10-01

    A recent analysis of XXM-Newton data reveals the possible presence of an X-ray line at approximately 3.55 keV, which is not readily explained by known atomic transitions. Numerous models of eV-scale decaying dark matter have been proposed to explain this signal. Here we explore models of multicomponent nonabelian dark matter with typical mass ~ 1-10 GeV (higher values being allowed in some models) and eV-scale splittings that arise naturally from the breaking of the nonabelian gauge symmetry. Kinetic mixing between the photon and the hidden sector gauge bosons can occur through a dimension-5 or 6 operator. Radiative decays of the excited states proceed through transition magnetic moments that appear at one loop. The decaying excited states can either be primordial or else produced by upscattering of the lighter dark matter states. These models are significantly constrained by direct dark matter searches or cosmic microwave background distortions, and are potentially testable in fixed target experiments that search for hidden photons. We note that the upscattering mechanism could be distinguished from decays in future observations if sources with different dark matter velocity dispersions seem to require different values of the scattering cross section to match the observed line strengths.

  2. Rapid variability of 10-140 keV X-rays from Cygnus X-1

    NASA Technical Reports Server (NTRS)

    Nolan, P. L.; Gruber, D. E.; Matteson, J. L.; Peterson, L. E.; Rothschild, R. E.; Doty, J. P.; Levine, A. M.; Lewin, W. H. G.; Primini, F. A.

    1981-01-01

    On five occasions in 1977 and 1978, Cygnus X-1 was observed using the low-energy detectors of the UCSD/MIT Hard X-ray and Low-Energy Gamma Ray experiment on the HEAO 1 satellite. Rapid (times between 0.08 and 1000 sec) variability was found in the 10-140 keV band. The power spectrum was white for frequencies between 0.001 and 0.05 Hz and was proportional to the inverse of the frequency for frequencies between 0.05 and 3 Hz, indicating correlations on all time scales less than approximately 20 s. The shape of the energy spectrum was correlated with intensity; it was harder at higher intensity. If the emission is produced by Comptonization of a soft photon flux in a hot cloud, the heating of the cloud cannot be constant; it must vary on time scales up to approximately 20 s. A variable accretion rate could cause the observed effects.

  3. Nonabelian dark matter models for 3.5 keV X-rays

    SciTech Connect

    Cline, James M.; Frey, Andrew R. E-mail: a.frey@uwinnipeg.ca

    2014-10-01

    A recent analysis of XXM-Newton data reveals the possible presence of an X-ray line at approximately 3.55 keV, which is not readily explained by known atomic transitions. Numerous models of eV-scale decaying dark matter have been proposed to explain this signal. Here we explore models of multicomponent nonabelian dark matter with typical mass ∼ 1-10 GeV (higher values being allowed in some models) and eV-scale splittings that arise naturally from the breaking of the nonabelian gauge symmetry. Kinetic mixing between the photon and the hidden sector gauge bosons can occur through a dimension-5 or 6 operator. Radiative decays of the excited states proceed through transition magnetic moments that appear at one loop. The decaying excited states can either be primordial or else produced by upscattering of the lighter dark matter states. These models are significantly constrained by direct dark matter searches or cosmic microwave background distortions, and are potentially testable in fixed target experiments that search for hidden photons. We note that the upscattering mechanism could be distinguished from decays in future observations if sources with different dark matter velocity dispersions seem to require different values of the scattering cross section to match the observed line strengths.

  4. Low-energy x-ray dosimetry studies (7 to 17.5 keV) with synchroton radiation

    SciTech Connect

    Ipe, N.E.; Bellamy, H.; Flood, J.R.

    1995-06-01

    Unique properties of synchrotron radiation (SR), such as its high intensity, brightness, polarization, and broad spectral distribution (extending from x-ray to infra-red wavelengths) make it an attractive light source for numerous experiments. As SR facilities are rapidly being built all over the world, they introduce the need for low-energy x-ray dosemeters because of the potential radiation exposure to experimenters. However, they also provide a unique opportunity for low-energy x-ray dosimetry studies because of the availability of monochromatic x-ray beams. Results of such studies performed at the Stanford Synchrotron Radiation Laboratory are described. Lithium fluoride TLDs (TLD-100) of varying thicknesses (0.015 to 0.08 cm) were exposed free in air to monochromatic x-rays (7 to 17.5 keV). These exposures were monitored with ionization chambers. The response (nC/Gy) was found to increase with increasing TLD thickness and with increasing beam energy. A steeper increase in response with increasing energy was observed with the thicker TLDs. The responses at 7 and 17.5 keV were within a factor of 2.3 and 5.2 for the 0.015 and 0.08 cm-thick TLDs, respectively. The effects of narrow (beam size smaller than the dosemeter) and broad (beam size larger than the dosemeter) beams on the response of the TLDs are also reported.

  5. Sub-second variations of high energy ( 300 keV) hard X-ray emission from solar flares

    NASA Technical Reports Server (NTRS)

    Bai, Taeil

    1986-01-01

    Subsecond variations of hard X-ray emission from solar flares were first observed with a balloon-borne detector. With the launch of the Solar Maximum Mission (SMM), it is now well known that subsecond variations of hard X-ray emission occur quite frequently. Such rapid variations give constraints on the modeling of electron energization. Such rapid variations reported until now, however, were observed at relatively low energies. Fast mode data obtained by the Hard X-ray Burst Spectrometer (HXRBS) has time resolution of approximately 1 ms but has no energy resolution. Therefore, rapid fluctuations observed in the fast-mode HXRBS data are dominated by the low energy hard X-rays. It is of interest to know whether rapid fluctuations are observed in high-energy X-rays. The highest energy band at which subsecond variations were observed is 223 to 1057 keV. Subsecond variations observed with HXRBS at energies greater than 300 keV are reported, and the implications discussed.

  6. An Einstein survey of the 1 keV soft X-ray background in the Galactic plane

    NASA Technical Reports Server (NTRS)

    Stanford, John M.; Caillault, Jean-Pierre

    1994-01-01

    We have analyzed 56 Einstein Observatory Imaging Proportional Counter (IPC) observations within +/- 3 deg of the Galactic plane in order to determine the low-latitude soft X-ray background flux in the 0.56-1.73 keV band. Any detected X-ray point source which fell within our regions of study was removed from the image, enabling us to present maps of the background flux as a function of Galactic latitude along 18 meridians. These maps reveal considerable structure to the background in the Galactic plane on an angular scale of approximately 1 deg. Our results are compared with those of an earlier study of the 1 keV X-ray background along l = 25 deg by Kahn & Caillault. The double-peaked structure they found is not discernible in our results, possibly because of the presence of solar backscattered flux in their data. A model which takes into account contributions to the background by extragalactic and stellar sources, the distribution of both atomic and molecular absorbing material with the Galaxy, the energy dependence of the cross section for absorption of X-rays, and the energy dependence of the detector has been constructed and fitted to these new data to derive constraints on the scale height, temperature, and volume emissivity of the unaccounted-for X-ray-emitting material. The results of this model along l = 25 deg are roughly similar to those of the model of Kahn & Caillault along the same meridian.

  7. The diffuse X-ray spectrum from 14-200 keV as measured on OSO-5

    NASA Technical Reports Server (NTRS)

    Dennis, B. R.; Suri, A. N.; Frost, K. J.

    1973-01-01

    The measurement of energy spectrum of the diffuse component of cosmic X-ray flux made on the OSO-5 spacecraft is described. The contributions to the total counting rate of the actively shielded X-ray detector are considered in some detail and the techniques used to eliminate the non-cosmic components are described. Positive values for the cosmic flux are obtained in seven energy channels between 14 and 200 keV and two upper limits are obtained between 200 and 254 keV. The results can be fitted by a power law spectrum. A critical comparison is made with the OSO-3 results. Conclusions show that the reported break in the energy spectrum at 40 keV is probably produced by an erroneous correction for the radioactivity induced in the detector on each passage through the intense charged particle fluxes in the South Atlantic anomaly.

  8. Possible contributions of supernova remnants to the soft X-ray diffuse background (0.1 - 1keV)

    NASA Technical Reports Server (NTRS)

    Sanders, W. T.; Burrows, D. N.; Mccammon, D.; Kraushaar, W. L.

    1982-01-01

    Almost all of the B band (0.10-0.19 keV) and C band (0.15-0.28 keV) X-rays probably originate in a hot region surrounding the Sun, which Cox and Anderson modeled as a supernova remnant. This same region may account for a significant fraction of the M band (0.5-1 keV) X-rays if the nonequilibrium models of Cox and Anderson are applicable. A population of distant SNR similar to the local region, with center-to-center spacing of about 300 pc, could provide enough galactic M band emission to fill in the dip in the count rate in the galactic plane that would otherwise be present due to absorption of both the extra galactic power law flux and any large-scale-height stellar (or galactic halo) emission.

  9. Deconvolving X-ray spectral variability components in the Seyfert 1.5 NGC 3227

    SciTech Connect

    Arévalo, P.; Markowitz, A.

    2014-03-10

    We present the variability analysis of a 100 ks XMM-Newton observation of the Seyfert 1.5 active galaxy, NGC 3227. The observation found NGC 3227 in a period where its hard power-law component displayed remarkably little long-term variability. This lucky event allows us to clearly observe a soft spectral component undergoing a large-amplitude but slow flux variation. Using combined spectral and timing analysis, we isolate two independent variable continuum components and characterize their behavior as a function of timescale. Rapid and coherent variations throughout the 0.2-10 keV band reveal a spectrally hard (photon index Γ ∼ 1.7-1.8) power law, dominating the observed variability on timescales of 30 ks and shorter. Another component produces coherent fluctuations in the 0.2-2 keV range and is much softer (Γ ∼ 3); it dominates the observed variability on timescales greater than 30 ks. Both components are viewed through the same absorbers identified in the time-averaged spectrum. The combined spectral and timing analysis breaks the degeneracy between models for the soft excess: it is consistent with a power-law or thermal Comptonized component but not with a blackbody or an ionized reflection component. We demonstrate that the rapid variability in NGC 3227 is intrinsic to continuum-emitting components and is not an effect of variable absorption.

  10. Scintillating optical fiber array for high-resolution X-ray imaging over 5 keV

    NASA Astrophysics Data System (ADS)

    Bigler, E.; Polack, F.

    1985-04-01

    An X-ray image detector having a 10-5-micron resolution for 5-keV X-rays in high flux conditions is described. It consists of an array of optical fibers, the core of which has been replaced by a high-index fluorescent material. Preliminary realizations and experiments are reported, which give hope that good efficiencies will be obtained by matching a scintillating fiber array to an image intensifier. Such detectors should find useful applications, for example, to synchrotron radiation experiments.

  11. Efficient laser-induced 6-8 keV x-ray production from iron oxide aerogel and foil-lined cavity targets

    SciTech Connect

    Perez, F.; Kay, J. J.; Patterson, J. R.; Kane, J.; May, M.; Emig, J.; Colvin, J.; Gammon, S.; Satcher, J. H. Jr.; Fournier, K. B.; Villette, B.; Girard, F.; Reverdin, C.; Sorce, C.; Jaquez, J.

    2012-08-15

    The performance of new iron-based laser-driven x-ray sources has been tested at the OMEGA laser facility for production of x rays in the 6.5-8.5 keV range. Two types of targets were experimentally investigated: low-density iron oxide aerogels (density 6-16 mg/cm{sup 3}) and stainless steel foil-lined cavity targets (steel thickness 1-5 {mu}m). The targets were irradiated by 40 beams of the OMEGA laser (500 J/beam, 1 ns pulse, wavelength 351 nm). All targets showed good coupling with the laser, with <5% of the incident laser light backscattered by the resulting plasma in all cases (typically <2.5%). The aerogel targets produced T{sub e}=2 to 3 keV, n{sub e}=0.12-0.2 critical density plasmas yielding a 40%-60% laser-to-x-ray total conversion efficiency (CE) (1.2%-3% in the Fe K-shell range). The foil cavity targets produced T{sub e}{approx} 2 keV, n{sub e}{approx} 0.15 critical density plasmas yielding a 60%-75% conversion efficiency (1.6%-2.2% in the Fe K-shell range). Time-resolved images illustrate that the volumetric heating of low-density aerogels allow them to emit a higher K-shell x-ray yield even though they contain fewer Fe atoms. However, their challenging fabrication process leads to a larger shot-to-shot variation than cavity targets.

  12. The search for absorption of 1 keV X-rays by the Small Magellanic Cloud

    NASA Technical Reports Server (NTRS)

    Marazas, Brad

    1989-01-01

    The contribution of the extragalactic component of the diffuse background to the 1 keV energy band remains unknown. An effective way to ascertain this contribution is to measure the absorption of the extragalactic component by the neutral hydrogen in the Small Magellanic Cloud (SMC) with an instrument capable of eliminating point sources from the X-ray data that compensate for absorption. The image proportional counter data from the Einstein observatory can be used for this purpose. Additionally, any extended emission must also be eliminated. The resulting source free data can be compared to the neutral hydrogen and the amount of absorption can then be obtained when compared to the diffuse flux away from the SMC. However, due to other types of radiation contaminating the X-ray data, a true measure of the X-ray absorption was not obtained.

  13. 20-100 keV K(alpha) X-Ray Source Generation by Short Pulse High Intensity Lasers

    SciTech Connect

    Park, H-S; Koch, J A; Landen, O L; Phillips, T W; Goldsack, T

    2003-08-22

    We are studying the feasibility of utilizing K{alpha} x-ray sources in the range of 20 to 100 keV as a backlighters for imaging various stages of implosions and high areal density planar samples driven by the NIF laser facility. The hard x-ray K{alpha} sources are created by relativistic electron plasma interactions in the target material after a radiation by short pulse high intensity lasers. In order to understand K{alpha} source characteristics such as production efficiency and brightness as a function of laser parameters, we have performed experiments using the 10 J, 100 fs JanUSP laser. We utilized single-photon counting spectroscopy and x-ray imaging diagnostics to characterize the K{alpha} source. We find that the K{alpha} conversion efficiency from the laser energy is {approx} 3 x 10{sup -4}.

  14. Optical constants for hard x-ray multilayers over the energy range E = 35 - 180 keV

    NASA Astrophysics Data System (ADS)

    Windt, David L.; Donguy, Soizik; Hailey, Charles J.; Koglin, Jason E.; Honkimaki, Veijo; Ziegler, Eric; Christensen, Finn E.; Harrison, Fiona A.

    2004-02-01

    We have determined experimentally optical constants for eight thin film materials that can be used in hard X-ray multilayer coatings. Thin film samples of Ni.97V.03, Mo, W, Pt, C, B4C, Si and SiC were deposited by magnetron sputtering onto superpolished optical flats. Optical constants were determined from fits to reflectance-vs-incidence angle measurements made using synchrotron radiation over the energy range E=35 180 keV. We have also measured the X-ray reflectance of a prototype W/SiC multilayer coating over the energy range E=35 100 keV, and we compare the measured reflectance with a calculation using the newly derived optical constants.

  15. Bent-crystal Laue spectrograph for measuring x-ray spectra (15keV)

    SciTech Connect

    Failor, B. H.; Wong, S.; Riordan, J. C.; Hudson, L. T.; O'Brien, C. M.; Seltzer, S. M.; Seiler, S.; Pressley, L.; Lojewski, D. Y.

    2006-10-15

    A bent-crystal Laue {l_brace}or Cauchois [J. Phys. Radium 3, 320 (1932)] geometry{r_brace} spectrograph is a good compromise between sensitivity and spectral resolution for measuring x-ray spectra (15keV) from large area x-ray sources because source-size spectral broadening is mitigated. We have designed, built, and tested such a spectrograph for measuring the spectra from electron-beam x-ray sources with diameters as large as 30 cm. The same spectrograph geometry has also been used to diagnose (with higher spectral resolution) smaller sources, such as x-ray tubes for mammography and laser-driven inertial fusion targets. We review our spectrograph design and describe the performance of different components. We have compared the reflectivity and spectral resolution of LiF, and Ge diffracting crystals. We have also measured the differences in sensitivity and spectral resolution using different x-ray to light converters (plastic scintillator, CsI, and Gd{sub 2}O{sub 2}S) fiber optically coupled to an intensified charge-coupled device camera. We have also coupled scintillating fibers to photomultiplier tubes to obtain temporal records for discrete energy channels.

  16. Laboratory-based x-ray reflectometer for multilayer characterization in the 15–150 keV energy band

    SciTech Connect

    Windt, David L.

    2015-04-15

    A laboratory-based X-ray reflectometer has been developed to measure the performance of hard X-ray multilayer coatings at their operational X-ray energies and incidence angles. The instrument uses a sealed-tube X-ray source with a tungsten anode that can operate up to 160 kV to provide usable radiation in the 15–150 keV energy band. Two sets of adjustable tungsten carbide slit assemblies, spaced 4.1 m apart, are used to produce a low-divergence white beam, typically set to 40 μm × 800 μm in size at the sample. Multilayer coatings under test are held flat using a vacuum chuck and are mounted at the center of a high-resolution goniometer used for precise angular positioning of the sample and detector; additionally, motorized linear stages provide both vertical and horizontal adjustments of the sample position relative to the incident beam. A CdTe energy-sensitive detector, located behind a third adjustable slit, is used in conjunction with pulse-shaping electronics and a multi-channel analyzer to capture both the incident and reflected spectra; the absolute reflectance of the coating under test is computed as the ratio of the two spectra. The instrument’s design, construction, and operation are described in detail, and example results are presented obtained with both periodic, narrow-band and depth-graded, wide-band hard X-ray multilayer coatings.

  17. Laboratory-based x-ray reflectometer for multilayer characterization in the 15-150 keV energy band

    NASA Astrophysics Data System (ADS)

    Windt, David L.

    2015-04-01

    A laboratory-based X-ray reflectometer has been developed to measure the performance of hard X-ray multilayer coatings at their operational X-ray energies and incidence angles. The instrument uses a sealed-tube X-ray source with a tungsten anode that can operate up to 160 kV to provide usable radiation in the 15-150 keV energy band. Two sets of adjustable tungsten carbide slit assemblies, spaced 4.1 m apart, are used to produce a low-divergence white beam, typically set to 40 μm × 800 μm in size at the sample. Multilayer coatings under test are held flat using a vacuum chuck and are mounted at the center of a high-resolution goniometer used for precise angular positioning of the sample and detector; additionally, motorized linear stages provide both vertical and horizontal adjustments of the sample position relative to the incident beam. A CdTe energy-sensitive detector, located behind a third adjustable slit, is used in conjunction with pulse-shaping electronics and a multi-channel analyzer to capture both the incident and reflected spectra; the absolute reflectance of the coating under test is computed as the ratio of the two spectra. The instrument's design, construction, and operation are described in detail, and example results are presented obtained with both periodic, narrow-band and depth-graded, wide-band hard X-ray multilayer coatings.

  18. Bent-crystal Laue spectrograph for measuring x-ray spectra (15keV)

    NASA Astrophysics Data System (ADS)

    Failor, B. H.; Wong, S.; Riordan, J. C.; Hudson, L. T.; O'Brien, C. M.; Seltzer, S. M.; Seiler, S.; Pressley, L.; Lojewski, D. Y.

    2006-10-01

    A bent-crystal Laue {or Cauchois [J. Phys. Radium 3, 320 (1932)] geometry} spectrograph is a good compromise between sensitivity and spectral resolution for measuring x-ray spectra (15keV) from large area x-ray sources because source-size spectral broadening is mitigated. We have designed, built, and tested such a spectrograph for measuring the spectra from electron-beam x-ray sources with diameters as large as 30cm. The same spectrograph geometry has also been used to diagnose (with higher spectral resolution) smaller sources, such as x-ray tubes for mammography and laser-driven inertial fusion targets. We review our spectrograph design and describe the performance of different components. We have compared the reflectivity and spectral resolution of LiF, and Ge diffracting crystals. We have also measured the differences in sensitivity and spectral resolution using different x-ray to light converters (plastic scintillator, CsI, and Gd2O2S) fiber optically coupled to an intensified charge-coupled device camera. We have also coupled scintillating fibers to photomultiplier tubes to obtain temporal records for discrete energy channels.

  19. Dosimetric properties of high energy current (HEC) detector in keV x-ray beams

    NASA Astrophysics Data System (ADS)

    Zygmanski, Piotr; Shrestha, Suman; Elshahat, Bassem; Karellas, Andrew; Sajo, Erno

    2015-04-01

    We introduce a new x-ray radiation detector. The detector employs high-energy current (HEC) formed by secondary electrons consisting predominantly of photoelectrons and Auger electrons, to directly convert x-ray energy to detector signal without externally applied power and without amplification. The HEC detector is a multilayer structure composed of thin conducting layers separated by dielectric layers with an overall thickness of less than a millimeter. It can be cut to any size and shape, formed into curvilinear surfaces, and thus can be designed for a variety of QA applications. We present basic dosimetric properties of the detector as function of x-ray energy, depth in the medium, area and aspect ratio of the detector, as well as other parameters. The prototype detectors show similar dosimetric properties to those of a thimble ionization chamber, which operates at high voltage. The initial results obtained for kilovoltage x-rays merit further research and development towards specific medical applications.

  20. Multi-Kev X-Ray Emission from High-Z Gas Targets Fielded at Omega and NIF

    NASA Astrophysics Data System (ADS)

    May, Mark; Fournier, Kevin; Colvin, Jeff; Kane, Jave

    2010-11-01

    We report on the measured X-ray flux from gas-filled targets shot at both the OMEGA and NIF laser facilities. The OMEGA targets were 1.8 mm long, 1.95 mm in diameter Be cans filled with either a 50:50 Ar:Xe mixture, pure Ar, pure Kr or pure Xe at ˜ 1 atm. The OMEGA experiments heated the gas with 20 kJ of 3φ (˜350 nm) laser energy delivered in a 1 ns square pulse. The NIF targets were thin walled (25 μm), 4 mm long, 4 mm inner-diameter epoxy pipes filled with 1.2 atm of a 65:35 Ar:Xe mixture. The NIF experiments heated these targets with 350 kJ of 3φ (˜350 nm) laser energy delivered in a 5 ns square pulse at up to 75 TW of laser power. The emitted X-ray flux was monitored with the X-ray diode based DANTE instruments in the sub-keV range. Two-dimensional X-ray images (for energies 3-5 keV) of the targets were recorded with gated X-ray detectors. The X-ray spectra were recorded with the HENWAY crystal spectrometer at OMEGA. The results from both experiments will be compared. This work performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  1. X-ray backlighting sources of 4 to 10 keV for laser-fusion targets

    SciTech Connect

    Rupert, V.C.; Matthews, D.L.; Koppel, L.N.

    1981-05-12

    High-intensity, short-duration x-ray pulses are necessary to diagnose the compression of laser film targets. Present target designs are such that backlighting sources ranging from a few thousand electron volts to 100 keV will be necessary. The desired source durations range from a few tens of picoseconds for flash radiography to several nanoseconds for streaked backlighting, and the source occurrence must be tightly synchronized to that of the target-irradiating laser pulse. For the latter reason, a laser-induced x-ray pulse is preferred. An initial study of the K lines of Ti, Ni, and Zn as possible backlighting sources was conducted. The conversion efficiency of laser light into line radiation was obtained as a function of laser intensity, pulse length, and wavelength. A threshold laser intensity for x-ray line production was identified. Information was obtained on the size and duration of the x-ray emission source, in relation to laser parameters. The experimental results, and their impact on backlighting capability for high-density laser function targets, are discussed.

  2. 5 to 160 keV continuous-wave x-ray spectral energy distribution and energy flux density measurements

    SciTech Connect

    Tallon, R.W.; Koller, D.C.; Pelzl, R.M.; Pugh, R.D.; Bellem, R.D. . Microelectronics and Photonics Research Branch)

    1994-12-01

    In 1991, the USAF Phillips Laboratory Microelectronics and Photonics Research Branch installed a low energy x-ray facility (LEXR) for use in microelectronics radiation-effects analysis and research. Techniques developed for measuring the x-ray spectral energy distribution (differential intensity) from a tungsten-target bremsstrahlung x-ray source are reported. Spectra with end-point energies ranging from 20 to 160 keV were recorded. A separate effort to calibrate the dosimetry for the Phillips Laboratory low-energy x-ray facility established a need to know the spectral energy distributions at some point within the facility (previous calibration efforts had relies on spectra obtained from computer simulations). It was discovered that the primary discrepancy between the simulated and measured spectra was in the L- K-line data. The associated intensity (energy flux density) of the measured distributions was found to be up to 30% higher. Based on the measured distributions, predicted device responses were within 10% of the measured response as compared to about 30% accuracy obtained with simulated distributions.

  3. Laser-driven 6-16 keV x-ray imaging and backlighting with spherical crystals

    NASA Astrophysics Data System (ADS)

    Schollmeier, M.; Rambo, P. K.; Schwarz, J.; Smith, I. C.; Porter, J. L.

    2014-10-01

    Laser-driven x-ray self-emission imaging or backlighting of High Energy Density Physics experiments requires brilliant sources with keV energies and x-ray crystal imagers with high spatial resolution of about 10 μ m. Spherically curved crystals provide the required resolution when operated at near-normal incidence, which minimizes image aberrations due to astigmatism. However, this restriction dramatically limits the range of suitable crystal and spectral line combinations. We present a survey of crystals and spectral lines for x-ray backlighting and self-emission imaging with energies between 6 and 16 keV. Ray-tracing simulations including crystal rocking curves have been performed to predict image brightness and spatial resolution. Results have been benchmarked to experimental data using both Sandia's 4 kJ, ns Z-Beamlet and 200 J, ps Z-Petawatt laser systems. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2014-15552A.

  4. Dosimetric properties of high energy current (HEC) detector in keV x-ray beams.

    PubMed

    Zygmanski, Piotr; Shrestha, Suman; Elshahat, Bassem; Karellas, Andrew; Sajo, Erno

    2015-04-01

    We introduce a new x-ray radiation detector. The detector employs high-energy current (HEC) formed by secondary electrons consisting predominantly of photoelectrons and Auger electrons, to directly convert x-ray energy to detector signal without externally applied power and without amplification. The HEC detector is a multilayer structure composed of thin conducting layers separated by dielectric layers with an overall thickness of less than a millimeter. It can be cut to any size and shape, formed into curvilinear surfaces, and thus can be designed for a variety of QA applications. We present basic dosimetric properties of the detector as function of x-ray energy, depth in the medium, area and aspect ratio of the detector, as well as other parameters. The prototype detectors show similar dosimetric properties to those of a thimble ionization chamber, which operates at high voltage. The initial results obtained for kilovoltage x-rays merit further research and development towards specific medical applications. PMID:25789488

  5. The first MAXI/SSC catalog of X-ray sources in 0.7-7.0 keV

    NASA Astrophysics Data System (ADS)

    Tomida, Hiroshi; Uchida, Daiki; Tsunemi, Hiroshi; Imatani, Ritsuko; Kimura, Masashi; Nakahira, Satoshi; Hanayama, Takanori; Yoshidome, Koshiro

    2016-06-01

    We present the first source catalog of the Solid-state Slit Camera (SSC) of the Monitor of All-sky X-ray Image (MAXI) mission on the International Space Station, using the 45-month data from 2010 August to 2014 April in the 0.7-7.0 keV bands. Sources are searched for in two energy bands, 0.7-1.85 keV (soft) and 1.85-7.0 keV (hard), the limiting sensitivity of 3 and 4 mCrab are achieved, and 140 and 138 sources are detected in the soft and hard energy bands, respectively. Combining the two energy bands, 170 sources are listed in the MAXI/SSC catalog. All but 2 sources are identified with 22 galaxies including AGNs, 29 cluster of galaxies, 21 supernova remnants, 75 X-ray binaries, 8 stars, 5 isolated pulsars, and 9 non-categorized objects. Comparing the soft-band fluxes at the brightest end in our catalog with the ROSAT survey, which was performed about 20 years ago, 10% of the cataloged sources are found to have changed flux since the ROSAT era.

  6. The first MAXI/SSC catalog of X-ray sources in 0.7-7.0 keV

    NASA Astrophysics Data System (ADS)

    Tomida, Hiroshi; Uchida, Daiki; Tsunemi, Hiroshi; Imatani, Ritsuko; Kimura, Masashi; Nakahira, Satoshi; Hanayama, Takanori; Yoshidome, Koshiro

    2016-03-01

    We present the first source catalog of the Solid-state Slit Camera (SSC) of the Monitor of All-sky X-ray Image (MAXI) mission on the International Space Station, using the 45-month data from 2010 August to 2014 April in the 0.7-7.0 keV bands. Sources are searched for in two energy bands, 0.7-1.85 keV (soft) and 1.85-7.0 keV (hard), the limiting sensitivity of 3 and 4 mCrab are achieved, and 140 and 138 sources are detected in the soft and hard energy bands, respectively. Combining the two energy bands, 170 sources are listed in the MAXI/SSC catalog. All but 2 sources are identified with 22 galaxies including AGNs, 29 cluster of galaxies, 21 supernova remnants, 75 X-ray binaries, 8 stars, 5 isolated pulsars, and 9 non-categorized objects. Comparing the soft-band fluxes at the brightest end in our catalog with the ROSAT survey, which was performed about 20 years ago, 10% of the cataloged sources are found to have changed flux since the ROSAT era.

  7. Simulations of Microchannel Plate Sensitivity to <20 keV X-rays as a Function of Energy and Incident Angle

    SciTech Connect

    Kruschwitz, Craig; Wu, M.; Rochau, G. A.

    2013-06-13

    We present results of Monte Carlo simulations of microchannel plate (MCP) response to x-rays in the 250 eV to 20 keV energy range as a function of both x-ray energy and impact angle. The model is based on the model presented in Rochau et al. (2006). However, while the Rochau et al. (2006) model was two-dimensional, and their results only went to 5 keV, our results have been expanded to 20 keV, and our model has been incorporated into a three-dimensional Monte Carlo MCP model that we have developed over the past several years (Kruschwitz et al. 2011). X-ray penetration through multiple MCP pore walls is increasingly important above 5 keV. The effect of x-ray penetration through multiple pores on MCP performance was studied and is presented.

  8. A New Observation of the Quiet Sun Soft X-ray (0.5-5 keV) Spectrum

    NASA Astrophysics Data System (ADS)

    Caspi, A.; Woods, T. N.; Stone, J.

    2012-12-01

    The solar corona is the brightest source of X-rays in the solar system, and the X-ray emission is highly variable with solar activity. While this is particularly true during solar flares, when emission can be enhanced by many orders of magnitude up to gamma-ray energies, even the so-called "quiet Sun" is bright in soft X-rays (SXRs), as the ~1-2 MK ambient plasma of the corona emits significant thermal bremsstrahlung up to ~5 keV. However, the actual solar SXR (0.5-5 keV) spectrum is not well known, particularly during quiet periods, as, with few exceptions, this energy range has not been systematically studied in many years. Previous observations include ultra-high-resolution but very narrow-band spectra from crystral spectrometers (e.g. Yohkoh/BCS), or integrated broadband irradiances from photometers (e.g. GOES/XRS, TIMED/XPS, etc.) that lack detailed spectral information. In recent years, broadband measurements with fair energy resolution (~0.5-0.7 keV FWHM) were made by SphinX on CORONAS-Photon and XRS on MESSENGER, although they did not extend below ~1 keV. We present observations of the quiet Sun SXR emission obtained using a new SXR spectrometer flown on the third SDO/EVE underflight calibration rocket (NASA 36.286). The commercial off-the-shelf Amptek X123 silicon drift detector, with an 8-micron Be window and custom aperture, measured the solar SXR emission from ~0.5 to >10 keV with ~0.15 keV FWHM resolution (though, due to hardware limitations, with only ~0.12 keV binning) and 2-sec cadence over ~5 minutes on 23 June 2012. Despite the rising solar cycle, activity on 23 June 2012 was abnormally low, with no visible active regions and GOES XRS emission near 2010 levels; we measured no solar counts above ~4 keV during the observation period. We compare our X123 measurements with spectra and broadband irradiances from other instruments, including the SphinX observations during the deep solar minimum of 2009, and with upper limits of >3 keV quiet Sun emission

  9. TOPICAL REVIEW The solar UV-x-ray spectrum from 1.5 to 2000 Å

    NASA Astrophysics Data System (ADS)

    Doschek, G. A.; Feldman, U.

    2010-12-01

    This review illustrates the potential of UV-x-ray spectroscopy for determining the physical conditions in the solar chromosphere, transition region and corona, and how spectroscopy can be used as a tool to understand the physical mechanisms governing the atmosphere. It also illustrates the potential for understanding transient events such as solar flares. This is a vast topic, and therefore the review is necessarily not complete, but we have tried to be as general as possible in showing in particular how solar spectra are currently being used to understand the solar upper atmosphere. The review is intended for non-solar physicists with an interest in spectroscopy as well as for solar physicists who are not specialists in spectroscopy.

  10. 0.5-keV Soft X-ray attosecond continua

    PubMed Central

    Teichmann, S. M.; Silva, F.; Cousin, S. L.; Hemmer, M.; Biegert, J.

    2016-01-01

    Attosecond light pulses in the extreme ultraviolet have drawn a great deal of attention due to their ability to interrogate electronic dynamics in real time. Nevertheless, to follow charge dynamics and excitations in materials, element selectivity is a prerequisite, which demands such pulses in the soft X-ray region, above 200 eV, to simultaneously cover several fundamental absorption edges of the constituents of the materials. Here, we experimentally demonstrate the exploitation of a transient phase matching regime to generate carrier envelope controlled soft X-ray supercontinua with pulse energies up to 2.9±0.1 pJ and a flux of (7.3±0.1) × 107 photons per second across the entire water window and attosecond pulses with 13 as transform limit. Our results herald attosecond science at the fundamental absorption edges of matter by bridging the gap between ultrafast temporal resolution and element specific probing. PMID:27167525

  11. 0.5-keV Soft X-ray attosecond continua

    NASA Astrophysics Data System (ADS)

    Teichmann, S. M.; Silva, F.; Cousin, S. L.; Hemmer, M.; Biegert, J.

    2016-05-01

    Attosecond light pulses in the extreme ultraviolet have drawn a great deal of attention due to their ability to interrogate electronic dynamics in real time. Nevertheless, to follow charge dynamics and excitations in materials, element selectivity is a prerequisite, which demands such pulses in the soft X-ray region, above 200 eV, to simultaneously cover several fundamental absorption edges of the constituents of the materials. Here, we experimentally demonstrate the exploitation of a transient phase matching regime to generate carrier envelope controlled soft X-ray supercontinua with pulse energies up to 2.9+/-0.1 pJ and a flux of (7.3+/-0.1) × 107 photons per second across the entire water window and attosecond pulses with 13 as transform limit. Our results herald attosecond science at the fundamental absorption edges of matter by bridging the gap between ultrafast temporal resolution and element specific probing.

  12. Comparison of simulated and measured spectra from an X-ray tube for the energies between 20 and 35 keV

    NASA Astrophysics Data System (ADS)

    Yücel, M.; Emirhan, E.; Bayrak, A.; Ozben, C. S.; Yücel, E. Barlas

    2015-11-01

    Design and production of a simple and low cost X-ray imaging system that can be used for light industrial applications was targeted in the Nuclear Physics Laboratory of Istanbul Technical University. In this study, production, transmission and detection of X-rays were simulated for the proposed imaging device. OX/70-P dental tube was used and X-ray spectra simulated by Geant4 were validated by comparison with X-ray spectra measured between 20 and 35 keV. Relative detection efficiency of the detector was also determined to confirm the physics processes used in the simulations. Various time optimization tools were performed to reduce the simulation time.

  13. Attosecond keV x-ray pulses driven by Thomson scattering in a tight focus regime

    NASA Astrophysics Data System (ADS)

    Kim, D.; Lee, H.; Chung, S.; Lee, K.

    2009-06-01

    The radiation of a relativistic electron interacting with a co-propagating tightly focused high-power laser is investigated. High-order fields (HOFs) existing in a tight focus (a few micrometers or so) affect the dynamics of electrons rather significantly so as to enhance radiation intensity by several orders of magnitude. In the case of a co-propagating interaction geometry, the second-order field plays an important role in radiation enhancement. It is demonstrated that when HOFs are included, the radiation efficiency is increased by a factor of up to 100 000 for w0 = 2 and 5 μm, with a laser intensity of 2.2×1020 W cm-2, compared with that when HOFs are not included. The enhancement is larger for smaller electron energies and laser beam waists. It has also been shown that when an electron bunch interacts with a high-intensity tightly-focused femtosecond laser pulse in a co-propagation geometry, attosecond (~300 as) x-ray pulses can be produced. The photon energy can reach about 40 keV for an electron energy of 2 GeV. The physical scheme investigated in this work can be used for an ultrafast (attosecond or femtosecond) x-ray source in the range of 10-100 keV.

  14. A Catalog of Soft X-Ray Shadows, and More Contemplation of the 1/4 KeV Background

    NASA Technical Reports Server (NTRS)

    Snowden, S. L.; Freyberg, M. J.; Kuntz, K. D.; Sanders, W. T.

    1999-01-01

    This paper presents a catalog of shadows in the 1/4 keV soft X-ray diffuse background 4 (SXRB) that were identified by a comparison between ROSAT All-Sky Survey maps and DIRB&corrected IRAS 100 micron maps. These "shadows" are the negative correlations between the surface brightness of the SXRB and the column density of the Galactic interstellar medium (ISIM) over limited angular regions (a few degrees in extent). We have compiled an extensive but not exhaustive set of 378 shadows in the polar regions of the Galaxy (Absolute value (beta) > and approximately equal 20 deg.), and determined their foreground and background X-ray intensities (relative to the absorbing features), and the respective hardness ratios of that emission. The portion of the sky that was examined to find these shadows was restricted in general to regions where the minimum column density is less than and approximately equal to 4 x 10(exp 20) H/square cm, i.e., relatively high Galactic latitudes, and to regions away from distinct extended features in the SXRB such as supernova remnants and superbubbles. The results for the foreground intensities agree well with the recent results of a general analysis of the local 1/4 KeV emission while the background intensities show additional. but not unexpected scatter. The results also confirm the existence of a gradient in the hardness of the local 1/4 keV emission along a Galactic center/ anticenter axis with a temperature that varies from 10(exp 6.13) K to 10(exp 6.02) K, respectively. The average temperature of the foreground component from this analysis is 10(exp 6.08) K, compared to 10(exp 6.06) K in the previous analysis. Likewise, the average temperature for the distant component for the current and previous analyses are 10(exp 6.06) K and 10(exp 6.02) K, respectively. Finally, the results for the 1/4 keV halo emission are compared to the observed fluxes at 3/4 keV, where the lack of correlation suggests that the Galactic halo's 1/4 keV and 3/4 keV

  15. 0.5-keV Soft X-ray attosecond continua.

    PubMed

    Teichmann, S M; Silva, F; Cousin, S L; Hemmer, M; Biegert, J

    2016-01-01

    Attosecond light pulses in the extreme ultraviolet have drawn a great deal of attention due to their ability to interrogate electronic dynamics in real time. Nevertheless, to follow charge dynamics and excitations in materials, element selectivity is a prerequisite, which demands such pulses in the soft X-ray region, above 200 eV, to simultaneously cover several fundamental absorption edges of the constituents of the materials. Here, we experimentally demonstrate the exploitation of a transient phase matching regime to generate carrier envelope controlled soft X-ray supercontinua with pulse energies up to 2.9±0.1 pJ and a flux of (7.3±0.1) × 10(7) photons per second across the entire water window and attosecond pulses with 13 as transform limit. Our results herald attosecond science at the fundamental absorption edges of matter by bridging the gap between ultrafast temporal resolution and element specific probing. PMID:27167525

  16. Learning to Apply Metrology Principles to the Measurement of X-ray Intensities in the 500 eV to 110 keV Energy Range

    SciTech Connect

    Haugh, M. J.; Pond, T.; Silbernagel, C.; Torres, P.; Marlett, K.; Goldin, F.; Cyr, S.

    2011-02-08

    National Security Technologies, LLC (NSTec), Livermore Operations, has two optical radiation calibration laboratories accredited by “the National Voluntary Laboratories Accreditation Program (NVLAP) which is the accrediting body of” the National Institute of Standards and Technology (NIST), and is now working towards accreditation for its X-ray laboratories. NSTec operates several laboratories with X-ray sources that generate X-rays in the energy range from 50 eV to 115 keV. These X-ray sources are used to characterize and calibrate diagnostics and diagnostic components used by the various national laboratories, particularly for plasma analysis on the Lawrence Livermore National Laboratory (LLNL) National Ignition Facility (NIF). Because X-ray photon flux measurement methods that can be accredited, i.e., traceable to NIST, have not been developed for sources operating in these energy ranges, NSTec, NIST, and the National Voluntary Accreditation Program (NVLAP) together have defined a path toward the development and validation of accredited metrology methods for X-ray energies. The methodology developed for the high energy X-ray (HEX) Laboratory was NSTec’s starting point for X-ray metrology accreditation and will be the basis for the accredited processes in the other X-ray laboratories. This paper will serve as a teaching tool, by way of this example using the NSTec X-ray sources, for the process and methods used in developing an accredited traceable metrology.

  17. The Solar Flare 4: 10 keV X-ray Spectrum

    NASA Technical Reports Server (NTRS)

    Phillips, K. J. H.

    2004-01-01

    The 4-10 keV solar flare spectrum includes highly excited lines of stripped Ca, Fe, and Ni ions as well as a continuum steeply falling with energy. Groups of lines at approximately 7 keV and approximately 8 keV, observed during flares by the broad-band RHESSI spectrometer and called here the Fe-line and Fe/Ni-line features, are formed mostly of Fe lines but with Ni lines contributing to the approximately 8 keV feature. Possible temperature indicators of these line features are discussed - the peak or centroid energies of the Fe-line feature, the line ratio of the Fe-line to the Fe/Ni-line features, and the equivalent width of the Fe-line feature. The equivalent width is by far the most sensitive to temperature. However, results will be confused if, as is commonly believed, the abundance of Fe varies from flare to flare, even during the course of a single flare. With temperature determined from the thermal continuum, the Fe-line feature becomes a diagnostic of the Fe abundance in flare plasmas. These results are of interest for other hot plasmas in coronal ionization equilibrium such as stellar flare plasmas, hot gas in galaxies, and older supernova remnants.

  18. 5-20 keV laser-induced x-ray generation at 1 kHz from a liquid-jet target

    NASA Astrophysics Data System (ADS)

    Tompkins, R. J.; Mercer, I. P.; Fettweis, M.; Barnett, C. J.; Klug, D. R.; Porter, Lord G.; Clark, I.; Jackson, S.; Matousek, P.; Parker, A. W.; Towrie, M.

    1998-09-01

    We report ultrashort pulse, 1 kHz repetition rate x-ray generation in the 5-20 keV spectral region, induced by the interaction of laser radiation with copper nitrate solution and ethylene glycol liquid-jet targets. The characteristics of the copper nitrate source are relevant for application to time-resolved x-ray diffraction studies as well as for spectroscopic x-ray absorption studies. The x-ray sources were operated uninterrupted for in excess of 5 h with no detectable buildup of debris on the associated optics. The x-ray flux generated by both sources is estimated to be of the order of 106photons s-1 sr-1 in the 5-20 keV region. The spectra have been measured with both a PIN photodiode, and with transmission measurements taken using aluminum filters. We find that the plasma emission has a broadband component attributed to bremsstrahlung emission, with the bulk of the x-ray emission emitted from the chamber lying between 5 and 20 keV for both sources. The copper nitrate emission, however, delivers a dominant emission peak at 9 keV, attributed to the characteristic K emission of copper.

  19. Design and modeling of 40 keV X-ray optics for Titan experiment

    SciTech Connect

    Bajt, S

    2006-06-22

    In 2004 we designed and fabricated a 40 keV W/SiC multilayer coated mirrors with 2.0 nm period thickness that were tested at RAL (UK) in winter 2004/2005. The mirrors reflected from 35 to 70 keV (different grazing incidence angles) and showed high reflectivity. However, there was not enough beamtime at RAL to obtain quantitative results. Similar experiment will now be performed in Titan facility (LLNL). In this report we design and model multilayers with even shorter period than the ones used in 2004/2005 experiments. Our goal is to fabricate 1 nm period W/SiC multilayers with high reflectivity. This will enable operation at higher angle of grazing incidence and simplified the mounting fixture.

  20. The X-Ray Line Feature at 3.5 KeV in Galaxy Cluster Spectra

    NASA Astrophysics Data System (ADS)

    Phillips, K. J. H.; Sylwester, B.; Sylwester, J.

    2015-08-01

    Recent work by Bulbul et al. and Boyarsky et al. has suggested that a line feature at ∼3.5 keV in the X-ray spectra of galaxy clusters and individual galaxies seen with XMM-Newton is due to the decay of sterile neutrinos, a dark matter candidate. This identification has been criticized by Jeltema & Profumo on the grounds that model spectra suggest that atomic transitions in helium-like potassium (K xviii) and chlorine (Cl xvi) are more likely to be the emitters. Here it is pointed out that the K xviii lines have been observed in numerous solar flare spectra at high spectral resolution with the RESIK crystal spectrometer and also appear in Chandra HETG spectra of the coronally active star σ Gem. In addition, the solar flare spectra at least indicate a mean coronal potassium abundance, which is a factor between 9 and 11 higher than the solar photospheric abundance. This fact, together with the low statistical quality of the XMM-Newton spectra, completely account for the ∼3.5 keV feature and there is therefore no need to invoke a sterile neutrino interpretation of the observed line feature at ∼3.5 keV.

  1. Dust Scattering Halo from an Eclipsing X-ray Binary at 1.5 arcmin from Sgr A*

    NASA Astrophysics Data System (ADS)

    Jin, Chichuan; Haberl, Frank; Ponti, Gabriele

    2016-07-01

    AX J1745.6-2901 is an eclipsing neutron star low mass X-ray binary. This source is bright in X-rays and it has a high column density of absorbing gas along the line of sight, showcasing a strong dust scattering halo. Moreover, the dust scattering halo shows time evolution during the eclipsing phase. The combination of these phenomena can provide important information about the location of the neutron star and the dust properties along the line of sight. In this talk, I will show that based on a large set of XMM-Newton and Chandra data, we can conduct, for the first time, a powerful combined analysis of the radial profile of the dust scattering halo and the time evolution of the halo during the eclipsing phase. Our study can put constraints on the location of the source, the distribution and composition of the dust, and the metal abundance towards the source. Due to the proximity of the source to Sgr A* (only 1.5 arcmin), these properties are highly relevant to the dust in the Galactic centre, and are likely to be similar as the dust properties on the line of sight towards Sgr A*.

  2. Measurements of the X-ray linear attenuation coefficient for low atomic number materials at energies 32-66 and 140 keV

    NASA Astrophysics Data System (ADS)

    Midgley, S. M.

    2005-03-01

    The X-ray linear attenuation coefficient was measured for materials containing elements hydrogen to calcium. Characteristic X-rays with energies 32- 66 keV were produced by X-ray fluorescence using a secondary target system, and 140 keV gamma rays were obtained from an unsealed 99 mTc source. The photon beams were highly collimated and recorded using energy dispersive detection. A high-purity germanium detector was utilised to distinguish between measurements with K α and K β characteristic X-rays, and the gamma ray measurements used a sodium iodide detector. Samples were selected on the basis of having known composition and mass densities were measured using a pycnometer. The samples comprised six plastics, seven crystalline materials, three tissue substitute materials, three liquids and six salt solutions. Our results have an uncertainty of less than 2% and are a few percent lower than values predicted by the tabulations.

  3. Enhanced room temperature oxidation in silicon and porous silicon under 10 keV x-ray irradiation

    SciTech Connect

    Ryckman, Judson D.; Reed, Robert A.; Weller, Robert A.; Fleetwood, D. M.; Weiss, S. M.

    2010-12-01

    We report the observation of enhanced oxidation on silicon and porous silicon samples exposed in air ambient to high-dose-rate 10 keV x-ray radiation at room temperature. The evolution of the radiation-induced oxide growth is monitored by ellipsometry and interferometric reflectance spectroscopy. Fourier transform infrared (FTIR) spectroscopy shows the emergence of Si-O-Si stretching modes and corresponding suppression of SiH{sub x} and Si-Si modes in the porous silicon samples. The radiation response depends strongly on initial native oxide thickness and Si-H surface species. The enhanced oxidation mechanism is attributed to photoinduced oxidation processes wherein energetic photons are used to dissociate molecular oxygen and promote the formation of more reactive oxygen species.

  4. Variable Gap Undulator for 1.5-48 Kev Free Electron Laser at Linac Coherent Light Source

    SciTech Connect

    Pellegrini, C.; Wu, J.; /SLAC

    2011-08-17

    We study the feasibility of generating femtosecond duration Free-Electron Laser with a variable photon energy from 1.5 to 48 keV, using an electron bunch with the same characteristics of the LINAC Coherent Light Source (LCLS) bunch, and a planar undulator with additional focusing. We assume that the electron bunch energy can be changed, and the undulator has a variable gap, allowing a variable undulator parameter. It is assumed to be operated in an ultra-low charge and ultra-short pulse regime. We study the feasibility of a tunable, short pulse, X-ray FEL with photon energy from 1.5 to 48 keV, using an electron beam like the one in the LCLS and a 2:5 cm period, variable gap, planar undulator. The beam energy changes from 4.6 to 13.8 GeV, the electorn charge is kept at 10 pC, and the undulator parameter varies from 1 to 3. The undulator length needed to saturate the 48 keV FEL is about 55 m, with a peak power around 5 GW. At longer wavelength the saturation length is as short as 15 m, and the peak power around 20 GW. The results from the analytical models and the GENESIS simulations show that the system is feasible. The large wavelength range, full tunability and short, few femtosecond pulses, together with the large peak power, would provide a powerful research tool.

  5. X-Ray Crystallographic Structure of the Norwalk Virus Protease at 1.5-Å Resolution

    PubMed Central

    Zeitler, Corinne E.; Estes, Mary K.; Venkataram Prasad, B. V.

    2006-01-01

    Norwalk virus (NV), a member of the Caliciviridae family, is the major cause of acute, epidemic, viral gastroenteritis. The NV genome is a positive sense, single-stranded RNA that encodes three open reading frames (ORFs). The first ORF produces a polyprotein that is processed by the viral cysteine protease into six nonstructural proteins. We have determined the structure of the NV protease to 1.5 and 2.2 Å from crystals grown in the absence or presence, respectively, of the protease inhibitor AEBSF [4-(2-aminoethyl)-benzenesulfonyl fluoride]. The protease, which crystallizes as a stable dimer, exhibits a two-domain structure similar to those of other viral cysteine proteases with a catalytic triad composed of His 30, Glu 54, and Cys 139. The native structure of the protease reveals strong hydrogen bond interactions between His 30 and Glu 54, in the favorable syn configuration, indicating a role of Glu 54 during proteolysis. Mutation of this residue to Ala abolished the protease activity, in a fluorogenic peptide substrate assay, further substantiating the role of Glu 54 during proteolysis. These observations contrast with the suggestion, from a previous study of another norovirus protease, that this residue may not have a prominent role in proteolysis (K. Nakamura, Y. Someya, T. Kumasaka, G. Ueno, M. Yamamoto, T. Sato, N. Takeda, T. Miyamura, and N. Tanaka, J. Virol. 79:13685-13693, 2005). In the structure from crystals grown in the presence of AEBSF, Glu 54 undergoes a conformational change leading to disruption of the hydrogen bond interactions with His 30. Since AEBSF was not apparent in the electron density map, it is possible that these conformational changes are due to subtle changes in pH caused by its addition during crystallization. PMID:16641296

  6. Development of a soft x-ray diffractometer for a wideband multilayer grating with a novel layer structure in the 2-4 keV range

    SciTech Connect

    Imazono, Takashi; Koike, Masato; Kawachi, Tetsuya; Hasegawa, Noboru; Koeda, Masaru; Nagano, Tetsuya; Sasai, Hiroyuki; Oue, Yuki; Yonezawa, Zeno; Kuramoto, Satoshi; Terauchi, Masami; Takahashi, Hideyuki; Handa, Nobuo; Murano, Takanori

    2012-07-11

    We have been developing a wavelength-dispersive soft x-ray spectrograph covering an energy region of 50-4000 eV to attach to a conventional electron microscope. Observation of soft x-ray emission in the 2-4 keV range needs a multilayer coated grating. In order to evaluate the performance of the optical component in the energy region, a goniometric apparatus has been newly developed and the preliminary performance has been tested using synchrotron radiation.

  7. Measurement of X-ray mass attenuation coefficients in biological and geological samples in the energy range of 7-12keV.

    PubMed

    Trunova, Valentina; Sidorina, Anna; Kriventsov, Vladimir

    2014-10-17

    Information about X-ray mass attenuation coefficients in different materials is necessary for accurate X-ray fluorescent analysis. The X-ray mass attenuation coefficients for energy of 7-12keV were measured in biological (Mussel and Oyster tissues, blood, hair, liver, and Cabbage leaves) and geological (Baikal sludge, soil, and Alaskite granite) samples. The measurements were carried out at the EXAFS Station of Siberian Synchrotron Radiation Center (VEPP-3). Obtained experimental mass attenuation coefficients were compared with theoretical values calculated for some samples. PMID:25464176

  8. HEXIT-SAT: a mission concept for x-ray grazing incidence telescopes from 0.5 to 70 keV

    NASA Astrophysics Data System (ADS)

    Fiore, Fabrizio; Perola, Giuseppe C.; Pareschi, Giovanni; Citterio, Oberto; Anselmi, Alberto; Comastri, Andrea

    2004-10-01

    While the energy density of the Cosmic X-ray Background (CXB) provides a statistical estimate of the super massive black hole (SMBH) growth and mass density in the Universe, the lack, so far, of focusing instrument in the 20-60 keV (where the CXB energy density peaks), frustrates our effort to obtain a comprehensive picture of the SMBH evolutionary properties. HEXIT-SAT (High Energy X-ray Imaging Telescope SATellite) is a mission concept capable of exploring the hard X-ray sky with focusing/imaging instrumentation, to obtain an unbiased census of accreting SMBH up to the redshifts where galaxy formation peaks, and on extremely wide luminosity ranges. This will represent a leap forward comparable to that achieved in the soft X-rays by the Einstein Observatory in the late 70'. In addition to accreting SMBH, and very much like the Einstein Observatory, this mission would also have the capabilities of investigating almost any type of the celestial X-ray sources. HEXIT-SAT is based on high throughput (>400 cm2 @ 30 keV; >1200 cm2 @ 1 keV), high quality (15 arcsec Half Power Diameter) multi-layer optics, coupled with focal plane detectors with high efficiency in the full 0.5-70keV range. Building on the BeppoSAX experience, a low-Earth, equatorial orbit, will assure a low and stable particle background, and thus an extremely good sensitivity for faint hard X-ray sources. At the flux limits of 1/10 microCrab (10-30 keV) and 1/3 microCrab (20-40 keV) (reachable in one Msec observation) we should detect ~100 and ~40 sources in the 15 arcmin FWHM Field of View respectively, thus resolving >80% and ~65% of the CXB where its energy density peaks.

  9. Azimuthal and polar angle dependence of L X-ray differential cross-sections of Yb at 59.54 keV photon energy

    NASA Astrophysics Data System (ADS)

    Akkuş, T.; Şahin, Y.; Yılmaz, D.

    2016-01-01

    The azimuthal and polar angle dependence of L X-ray was investigated in the same experimental setup to remove the existing ambiguity about alignments measurements. We measured Ll, Lα, Lβ and Lγ X-ray differential cross sections of Yb for several different azimuthal angles (30°, 20°, 10°, 0°, -10° and -20°) and polar angles (90°, 100°, 110°, 120°, 130° and 140°) at 59.54 keV photon energy by using a Si(Li) detector. The azimuthal angle dependence of Ll and Lα X-rays were observed. The azimuthal anisotropy of Lβ and Lγ X-rays were not observed. On the other hand, differential cross-sections for Lβ and Lγ X-rays were found independent on the polar angle within experimental error, those for Ll and Lα X-rays depended on the polar angles. Azimuthal and polar angles dependence of L X-ray differential cross-sections contrast with the other experimental and theoretical results, which report evidence of the isotropic emission of Ll and Lα X-rays following photoionization.

  10. What dominates the X-ray emission of Andromeda at E>20 keV? New constraints from NuSTAR and Swift on a very bright, hard X-ray source

    NASA Astrophysics Data System (ADS)

    Yukita, Mihoko; Ptak, Andrew; Maccarone, Thomas J.; Hornschemeier, Ann E.; Wik, Daniel R.; Pottschmidt, Katja; Antoniou, Vallia; Baganoff, Frederick K.; Lehmer, Bret; Zezas, Andreas; Boyd, Patricia T.; Kennea, Jamie; Page, Kim L.

    2016-04-01

    Thanks to its better sensitivity and spatial resolution, NuSTAR allows us to investigate the E>10 keV properties of nearby galaxies. We now know that starburst galaxies, containing very young stellar populations, have X-ray spectra which drop quickly above 10 keV. We extend our investigation of hard X-ray properties to an older stellar population system, the bulge of M31. The NuSTAR and Swift simultaneous observations reveal a bright hard source dominating the M31 bulge above 20 keV, which is likely to be a counterpart of Swift J0042.6+4112 previously detected (but not classified) in the Swift BAT All-sky Hard X-ray Survey. This source had been classified as an XRB candidate in various Chandra and XMM-Newton studies; however, since it was not clear that it is the counterpart to the strong Swift J0042.6+4112 source at higher energies, the previous E < 10 keV observations did not generate much attention. The NuSTAR and Swift spectra of this source drop quickly at harder energies as observed in sources in starburst galaxies. The X-ray spectral properties of this source are very similar to those of an accreting pulsar; yet, we do not find a pulsation in the NuSTAR data. The existing deep HST images indicate no high mass donors at the location of this source, further suggesting that this source has an intermediate or low mass companion. The most likely scenario for the nature of this source is an X-ray pulsar with an intermediate/low mass companion similar to the Galactic Her X-1 system. We will also discuss other possibilities in more detail.

  11. SIGNIFICANT X-RAY LINE EMISSION IN THE 5-6 keV BAND OF NGC 4051

    SciTech Connect

    Turner, T. J.; Miller, L.; Reeves, J. N.; Lobban, A.; Braito, V.; Kraemer, S. B.; Crenshaw, D. M.

    2010-03-20

    A Suzaku X-ray observation of NGC 4051 taken during 2005 November reveals line emission at 5.44 keV in the rest frame of the galaxy which does not have an obvious origin in known rest-frame atomic transitions. The improvement to the fit statistic when this line is accounted for establishes its reality at >99.9% confidence: we have also verified that the line is detected in the three X-ray Imaging Spectrometer units independently. Comparison between the data and Monte Carlo simulations shows that the probability of the line being a statistical fluctuation is p < 3.3 x 10{sup -4}. Consideration of three independent line detections in Suzaku data taken at different epochs yields a probability p < 3 x 10{sup -11} and thus conclusively demonstrates that it cannot be a statistical fluctuation in the data. The new line and a strong component of Fe Kalpha emission from neutral material are prominent when the source flux is low, during 2005. Spectra from 2008 show evidence for a line consistent with having the same flux and energy as that observed during 2005, but inconsistent with having a constant equivalent width against the observed continuum. The stability of the line flux and energy suggests that it may not arise in transient hotspots, as has been suggested for similar lines in other sources, but could arise from a special location in the reprocessor, such as the inner edge of the accretion disk. Alternatively, the line energy may be explained by spallation of Fe into Cr, as discussed in a companion paper.

  12. Wide-Band KB Optics for Spectro-Microscopy Imaging Applications in the 6-13 keV X-ray Energy Range

    SciTech Connect

    Ziegler, E.; De Panfilis, S.; Peverini, L.; Vaerenbergh, P. van; Rocca, F.

    2007-01-19

    We present a Kirkpatrick-Baez optics (KB) system specially optimized to operate in the 6-13 keV X-ray range, where valuable characteristic lines are present. The mirrors are coated with aperiodic laterally graded (Ru/B4C)35 multilayers to define a 15% energy bandpass and to gain flux as compared to total reflection mirrors. For any X-ray energy selected the shape of each mirror can be optimized with a dynamical bending system so as to concentrate the X-ray beam into a micrometer-size spot. Once the KB mirrors are aligned at the X-ray energy corresponding to the barycenter of the XAS spectrum to be performed they remain in a steady state during the micro-XAS scans to minimize beam displacements. Results regarding the performance of the wideband KB optics and of the spectro-microscopy setup are presented, including beam stability issues.

  13. A statistical analysis of the broadband 0.1 to 3.5 keV spectral properties of X-ray-selected active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Thompson, R. J.; Cordova, F. A.

    1994-01-01

    We survey the broadband spectral properties of approximately 500 X-ray-selected active galactic nuclei (AGNs) observed with the Einstein Observatory. Included in this survey are the approximately 450 AGNs in the Extended Medium Sensitivity Survey (EMSS) of Gioia et al. (1990) and the approximately 50 AGNs in the Ultrasoft Survey of Cordova et al. (1992). We present a revised version of the latter sample, based on the post publication discovery of a software error in the Einstein Rev-1b processing. We find that the mean spectral index of the AGNs between 0.1 and 0.6 keV is softer, and the distribution of indices wider, than previous estimates based on analyses of the X-ray spectra of optically selected AGNs. A subset of these AGNs exhibit flux variabiulity, some on timescales as short as 0.05 days. A correlation between radio and hard X-ray luminosity is confirmed, but the data do not support a correlation between the radio and soft X-ray luminosities, or between radio loudness and soft X-ray spectral slope. Evidence for physically distinct soft and hard X-ray components is found, along with the possibility of a bias in previous optically selected samples toward selection of AGNs with flatter X-ray spectra.

  14. A laboratory 8 keV transmission full-field x-ray microscope with a polycapillary as condenser for bright and dark field imaging

    NASA Astrophysics Data System (ADS)

    Baumbach, S.; Kanngießer, B.; Malzer, W.; Stiel, H.; Wilhein, T.

    2015-08-01

    This article introduces a laboratory setup of a transmission full-field x-ray microscope at 8 keV photon energy. The microscope operates in bright and dark field imaging mode with a maximum field of view of 50 μm. Since the illumination geometry determines whether the sample is illuminated homogeneously and moreover, if different imaging methods can be applied, the condenser optic is one of the most significant parts. With a new type of x-ray condenser, a polycapillary optic, we realized bright field imaging and for the first time dark field imaging at 8 keV photon energy in a laboratory setup. A detector limited spatial resolution of 210 nm is measured on x-ray images of Siemens star test patterns.

  15. A laboratory 8 keV transmission full-field x-ray microscope with a polycapillary as condenser for bright and dark field imaging.

    PubMed

    Baumbach, S; Kanngießer, B; Malzer, W; Stiel, H; Wilhein, T

    2015-08-01

    This article introduces a laboratory setup of a transmission full-field x-ray microscope at 8 keV photon energy. The microscope operates in bright and dark field imaging mode with a maximum field of view of 50 μm. Since the illumination geometry determines whether the sample is illuminated homogeneously and moreover, if different imaging methods can be applied, the condenser optic is one of the most significant parts. With a new type of x-ray condenser, a polycapillary optic, we realized bright field imaging and for the first time dark field imaging at 8 keV photon energy in a laboratory setup. A detector limited spatial resolution of 210 nm is measured on x-ray images of Siemens star test patterns. PMID:26329204

  16. Possible low energy (E less than keV) nonthermal X-ray events. [analysis of proportional counter detector data from OGO-5

    NASA Technical Reports Server (NTRS)

    Kahler, S. W.

    1973-01-01

    A search of the 3- to 30-keV data from the NRL proportional counter detector on the Orbiting Geophysical Observatory-5 (OGO-5) satellite has yielded several events which may be nearly completely nonthermal in the e greater than 3 and less than 10 keV range. In each case an impulsive hard X-ray burst accompained by an impulsive microwave burst was associated with a low energy X-ray burst whose profile was a simple rise and fall. The lack of a two component nature in the low energy range argues that the low energy X-ray flux is due to a single physical mechanism, in this case nonthermal bremsstrahlung from accelerated electrons. However, the spectra and time profiles are quite consistent with a thermal interpretation. Polarization measurements are probably necessary to resolve the physical origin of such bursts.

  17. A laboratory 8 keV transmission full-field x-ray microscope with a polycapillary as condenser for bright and dark field imaging

    SciTech Connect

    Baumbach, S. Wilhein, T.; Kanngießer, B.; Malzer, W.; Stiel, H.

    2015-08-15

    This article introduces a laboratory setup of a transmission full-field x-ray microscope at 8 keV photon energy. The microscope operates in bright and dark field imaging mode with a maximum field of view of 50 μm. Since the illumination geometry determines whether the sample is illuminated homogeneously and moreover, if different imaging methods can be applied, the condenser optic is one of the most significant parts. With a new type of x-ray condenser, a polycapillary optic, we realized bright field imaging and for the first time dark field imaging at 8 keV photon energy in a laboratory setup. A detector limited spatial resolution of 210 nm is measured on x-ray images of Siemens star test patterns.

  18. Cross calibration of AGFA-D7 x-ray film against direct exposure film from 2 to 8.5 keV using laser generated x-rays

    NASA Astrophysics Data System (ADS)

    Kyrala, George A.

    2006-05-01

    Direct exposure film (DEF) is being discontinued. DEF film has been the workhorse in inertial confinement fusion (ICF) research and is used to record x-ray images and spectra. A previous search for a replacement [K. M. Chandler et al., Rev. Sci. Instrum. 76, 113111 (2005)] did not consider AGFA film. We present comparisons using the results of measurements using AGFA-D7 film, XAR, TMG, and Biomax-MS films in the same spectrometer recording a gold spectrum in the 2-4keV range and the iron spectrum in the 5-8.5keV range. AGFA film was found to have some unique properties useful in x-ray spectroscopy and imaging, especially when signal strength is not a concern.

  19. Evidence for Halo Contributions to the 1/4 keV Diffuse Soft X-Ray Background

    NASA Astrophysics Data System (ADS)

    Bellm, E. C.

    2003-12-01

    The 1/4-keV diffuse soft X-ray background (SXRB) apparently originates in a thermal plasma at around 106 K, but the location of this emission has proven to be difficult to determine. The finite flux in the Galactic plane and similarity of the spectrum at all latitudes led to a model where essentially all of the observed flux originated in a local hot bubble (LHB) surrounding the Sun. Snowden et al. (1998) have proposed a three-component model of the SXRB from the ROSAT All-Sky Survey R12 (1/4 keV) map which consists of an unabsorbed local component, an absorbed halo component, and an absorbed power law to represent the known contribution from AGN, which is quite small. We have investigated whether this model is consistent with the lower-energy data available from sounding rocket flights in the B and Be bands. We find that the Snowden model provides better correspondence with the low-energy Wisconsin bands than the pure LHB model. The differences are subtle because the bulk of the intensity variation in the Snowden model is still due to differences in the extent of the local bubble. We have also investigated whether the observed band ratios are fit by the emission models used. We find that with current collisional ionization equilibrium models, depleted abundances are necessary to be consistent with the observed band ratios. We also show that the model predictions depend strongly on the model version, which does little to lend confidence to their predictions. This work was supported by a NSF-REU site grant (AST-0139563) to the University of Wisconsin-Madison.

  20. On-site nondestructive inspection by upgraded portable 950 keV/3.95 MeV X-band linac x-ray sources

    NASA Astrophysics Data System (ADS)

    Ueaska, Mitsuru; Dobashi, Katsuhiro; Fujiwara, Takeshi; Pei, Cuixiang; Wu, Wenjing; Kusano, Joichi; Nakamura, Naoki; Yamamoto, Masashi; Tanabe, Eiji; Ohya, Seiji; Hattori, Yukiya; Miura, Itaru; Honma, Hidetaka; Ishida, Masahiro; Kimura, Yoshitomi

    2014-12-01

    We have developed and upgraded portable 950 keV/3.95 MeV X-band (9.3 GHz) linac x-ray sources for on-site nondestructive testing (NDT) for social and industrial infrastructures. We integrated the hardware devices as well as software systems. For the hardware, we established all designed parameters including x-ray intensities of 0.05/2 Gy min-1 at 1 m for 950 keV/3.95 MeV systems, respectively. Concerning the software, we adopted the wavelet analysis for enhanced image contrast and partial angle computed tomography (CT) for a small region of interest. The wavelet analysis is effective to reduce scattered low energy x-ray noise in addition to using physical filters and collimators. The partial CT is inevitable to reconstruct an inner reinforced iron tube in concrete. We successfully performed on-site inspection three times, namely of a nitrogen acid distillation tower, a reinforced concrete pier and a large sample cut from a bridge. We obtained the x-ray images of the inner tube, determined the sizes of reinforced iron parts and evaluated the mechanical tolerance. Moreover, we are developing a new x-ray camera specified for MeV x-rays used for NDT of heavy objects. Then, our system will become a self-consisting and specialized high energy x-ray on-site inspection system. We are going to promote an application to NDT of social and industrial infrastructures in Japan and around the world.

  1. Reduction in the intensity of solar X-ray emission in the 2- to 15-keV photon energy range and heating of the solar corona

    SciTech Connect

    Mirzoeva, I. K.

    2013-04-15

    The time profiles of the energy spectra of low-intensity flares and the structure of the thermal background of the soft X-ray component of solar corona emission over the period of January-February, 2003, are investigated using the data of the RHESSI project. A reduction in the intensity of X-ray emission of the solar flares and the corona thermal background in the 2- to 15-keV photon energy range is revealed. The RHESSI data are compared with the data from the Interball-Geotail project. A new mechanism of solar corona heating is proposed on the basis of the results obtained.

  2. Atomic inner-shell laser at 1.5-ångström wavelength pumped by an X-ray free-electron laser.

    PubMed

    Yoneda, Hitoki; Inubushi, Yuichi; Nagamine, Kazunori; Michine, Yurina; Ohashi, Haruhiko; Yumoto, Hirokatsu; Yamauchi, Kazuto; Mimura, Hidekazu; Kitamura, Hikaru; Katayama, Tetsuo; Ishikawa, Tetsuya; Yabashi, Makina

    2015-08-27

    Since the invention of the first lasers in the visible-light region, research has aimed to produce short-wavelength lasers that generate coherent X-rays; the shorter the wavelength, the better the imaging resolution of the laser and the shorter the pulse duration, leading to better temporal resolution in probe measurements. Recently, free-electron lasers based on self-amplified spontaneous emission have made it possible to generate a hard-X-ray laser (that is, the photon energy is of the order of ten kiloelectronvolts) in an ångström-wavelength regime, enabling advances in fields from ultrafast X-ray spectrosopy to X-ray quantum optics. An atomic laser based on neon atoms and pumped by a soft-X-ray (that is, a photon energy of less than one kiloelectronvolt) free-electron laser has been achieved at a wavelength of 14 nanometres. Here, we use a copper target and report a hard-X-ray inner-shell atomic laser operating at a wavelength of 1.5 ångströms. X-ray free-electron laser pulses with an intensity of about 10(19) watts per square centimetre tuned to the copper K-absorption edge produced sufficient population inversion to generate strong amplified spontaneous emission on the copper Kα lines. Furthermore, we operated the X-ray free-electron laser source in a two-colour mode, with one colour tuned for pumping and the other for the seed (starting) light for the laser. PMID:26310765

  3. Atomic inner-shell laser at 1.5-ångström wavelength pumped by an X-ray free-electron laser

    NASA Astrophysics Data System (ADS)

    Yoneda, Hitoki; Inubushi, Yuichi; Nagamine, Kazunori; Michine, Yurina; Ohashi, Haruhiko; Yumoto, Hirokatsu; Yamauchi, Kazuto; Mimura, Hidekazu; Kitamura, Hikaru; Katayama, Tetsuo; Ishikawa, Tetsuya; Yabashi, Makina

    2015-08-01

    Since the invention of the first lasers in the visible-light region, research has aimed to produce short-wavelength lasers that generate coherent X-rays; the shorter the wavelength, the better the imaging resolution of the laser and the shorter the pulse duration, leading to better temporal resolution in probe measurements. Recently, free-electron lasers based on self-amplified spontaneous emission have made it possible to generate a hard-X-ray laser (that is, the photon energy is of the order of ten kiloelectronvolts) in an ångström-wavelength regime, enabling advances in fields from ultrafast X-ray spectrosopy to X-ray quantum optics. An atomic laser based on neon atoms and pumped by a soft-X-ray (that is, a photon energy of less than one kiloelectronvolt) free-electron laser has been achieved at a wavelength of 14 nanometres. Here, we use a copper target and report a hard-X-ray inner-shell atomic laser operating at a wavelength of 1.5 ångströms. X-ray free-electron laser pulses with an intensity of about 1019 watts per square centimetre tuned to the copper K-absorption edge produced sufficient population inversion to generate strong amplified spontaneous emission on the copper Kα lines. Furthermore, we operated the X-ray free-electron laser source in a two-colour mode, with one colour tuned for pumping and the other for the seed (starting) light for the laser.

  4. Specular and diffuse x-ray scattering from tungsten/carbon multilayers having a high reflectivity at 10 keV.

    SciTech Connect

    Macrander, A.

    1998-09-10

    X-ray scattering measurements at 10 keV from multilayers having a period of 24.8 {angstrom} and consisting of 100 W/C bilayers are reported. Specular scans revealed first order reflectivities in the range 73.5% to 78.0% with bandpasses in the range of 1.5% to 1.7%. Total roughness (or interface grading) values deduced from fitting were in the range 2.5 to 3.0 for the last-to-grow surface of the W layers. Diffuse scattering measurements were made in a novel geometry that permitted investigation of in-plane momentum transfers up to 0.2 {angstrom}{sup {minus}1}. This is roughly an order of magnitude larger than is possible in conventional rocking scans. A power law dependence of the diffuse scattering after integration over a ''Brillioun zone'' is found. The exponent of this power law, 1.75, when interpreted using a logarithmic correlation function leads to a value of 1.0 {angstrom} for the correlated roughness.

  5. Close-packed Arrays of Transition-edge X-ray Microcalorimeters with High Spectral Resolution at 5.9 keV

    NASA Technical Reports Server (NTRS)

    Iyomoto, N.; Bandler, S. R.; Brekosky, R. P.; Brown, A.-D.; Chervenak, J. A.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; Porter, F. S.; Sadleir, J. E.; Smith, S. J.; Figueroa-Feliciano, E.

    2007-01-01

    We present measurements of high fill-factor arrays of superconducting transition-edge x-ray microcalorimeters designed to provide rapid thermalization of the x-ray energy. We designed an x-ray absorber that is cantilevered over the sensitive part of the thermometer itself, making contact only at normal metal-features. With absorbers made of electroplated gold, we have demonstrated an energy resolution between 2.4 and 3.1 eV at 5.9 keV on 13 separate pixels. We have determined the thermal and electrical parameters of the devices throughout the superconducting transition, and, using these parameters, have modeled all aspects of the detector performance.

  6. Development of 4.5 keV monochromatic X-ray radiography using the high-energy, picosecond LFEX laser

    NASA Astrophysics Data System (ADS)

    Sawada, H.; Fujioka, S.; Hosoda, T.; Zhang, Z.; Arikawa, Y.; Nagatomo, H.; Nishimura, H.; Sunahara, A.; Theobald, W.; Patel, P. K.; Beg, F. N.

    2016-05-01

    Development of a monochromatic x-ray imaging system using a high-energy short- pulse laser LFEX and a spherical crystal is reported. Irradiation of the intense short-pulse laser produces a flash of 4.51 keV Ti K-alpha x-ray while the spherically bent quartz crystal provides a narrow spectral bandwidth and high spatial resolution. This high spatiotemporal imaging technique was applied for recording 2-D monochromatic x-ray images of laser-driven Fast Ignition targets. The results show a sufficiently high spatial resolution to characterize the implosion core, suggesting that the core information extracted from the radiograph images can be used to benchmark a 2-D radiation-hydrodynamic code for accurate hydrodynamic modelling and optimization of FI fuel assembly in the asymmetrical implosion.

  7. Measurement of the x-ray mass attenuation coefficients of gold in the 38-50-keV energy range

    SciTech Connect

    Islam, M T; Rae, N A; Glover, J L; Barnea, Z; de Jonge, M D; Tran, C Q; Wang, J; Chantler, C T

    2010-11-12

    We used synchrotron x rays to measure the x-ray mass attenuation coefficients of gold at nine energies from 38 to 50 keV with accuracies of 0.1%. Our results are much more accurate than previous measurements in this energy range. A comparison of our measurements with calculated mass attenuation coefficients shows that our measurements fall almost exactly midway between the XCOM and FFAST calculated theoretical values, which differ from one another in this energy region by about 4%, even though the range includes no absorption edge. The consistency and accuracy of these measurements open the way to investigations of the x-ray attenuation in the region of the L absorption edge of gold.

  8. Close-packed arrays of transition-edge x-ray microcalorimeters with high spectral resolution at 5.9 keV

    SciTech Connect

    Iyomoto, N.; Bandler, S. R.; Brekosky, R. P.; Brown, A.-D.; Chervenak, J. A.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; Porter, F. S.; Sadleir, J. E.; Smith, S. J.; Figueroa-Feliciano, E.

    2008-01-07

    We present measurements of high fill-factor arrays of superconducting transition-edge x-ray microcalorimeters designed to provide rapid thermalization of the x-ray energy. We designed an x-ray absorber that is cantilevered over the sensitive part of the thermometer itself, making contact only at normal-metal features. With absorbers made of electroplated gold, we have demonstrated an energy resolution between 2.4 and 3.1 eV at 5.9 keV on 13 separate pixels. We have determined the thermal and electrical parameters of the devices throughout the superconducting transition and, using these parameters, have modeled all aspects of the detector performance.

  9. Contribution of the 6.7 keV Emission line from Stellar Flares to the Galactic Ridge X-ray Emission

    NASA Astrophysics Data System (ADS)

    Nwachukwu Eze, Romanus; Eze, Ambrose; Nwafor, Jude; Esaenwi, Sudum; Okeke, Pius; Ebisawa, Ken; Smith, Randall

    2015-08-01

    Stellar flares create sudden bursts of hot plasma that contain a wide range of temperatures, and are capable of generating 6.7 keV Fe XXV emission line via electronic collisional excitation. Using the measured 6.7 keV fluxes from a collection of Suzaku-observed stellar flares as a baseline, we estimate their contribution to the 6.7 keV emission line from the Galactic Ridge X-ray emission (GRXE). We modeled the extracted stellar flares’ spectra from our sources with an absorbed Bremstrahlung. We found strong 6.7 keV emission line from the extracted stellar flares’ spectra which is similar to the observed 6.7 keV emission line from the GRXE, while the 6.4 and 7.0 keV lines appear to be faint. The present result supports the earlier result that stellar flares contribute significantly to the total luminosity of the GRXE and that the GRXE luminosity could be primarily explained via hard X-ray emitting symbiotic stars (hSSs), and magnetic cataclysmic variables (mCVs), along with other white dwarf binary systems and stellar flares.

  10. Absolute detection efficiency of a microchannel plate detector to X rays in the 1-100 KeV energy range

    NASA Astrophysics Data System (ADS)

    Burginyon, Gary A.; Jacoby, Barry A.; Wobser, James K.; Ernst, Richard; Ancheta, Dione S.; Tirsell, Kenneth G.

    1993-02-01

    There is little information in the literature on the performance of working micro-channel plate (MCP) detectors at high x-ray energies. We have measured the absolute efficiency of a microchannel-plate-intensified, subnanosecond, one dimensional imaging x-ray detector developed at LLNL in the 1 to 100 keV range and at 1.25 MeV. The detector consists of a gold photocathode deposited on the front surface of the MCP (optimized for Ni K(subscript (alpha) ) x rays) to convert x rays to electrons, an MCP to amplify the electrons, and a fast In:CdS phosphor that converts the electron's kinetic energy to light. The phosphor is coated on a fiber-optic faceplate to transmit the light out of the vacuum system. Electrostatic focusing electrodes compress the electron current out of the MCP in one dimension while preserving spatial resolution in the other. The calibration geometry, dictated by a recent experiment, required grazing incidence x rays (15.6 degree(s)) onto the MCP detector in order to maximize deliverable current. The experiment also used a second detector made up of 0.071 in. thick BC422 plastic scintillator material from the Bicron Corporation. We compare the absolute efficiencies of these two detectors in units of optical W/cm(superscript 2) into 4 (pi) per x ray W/cm(superscript 2) incident. At 7.47 keV and 900 volts MCP bias, the MCP detector delivers approximately 1400 times more light than the scintillator detector.

  11. Weak Solar Flares in 3 -31.5 keV X-rays Detected in the Coronas-F Experiment

    NASA Astrophysics Data System (ADS)

    Gusev, Anatoly; Pugacheva, Galina; Martin, Inácio M.; Spjeldvik, Walther

    The RPS-1 spectrometer on the board of the Coronas-F satellite detecting solar X-rays in the range of 3-31.5 keV using a CdTe detector is described and some results of the observation of weak solar flares are presented. The detector has a high detection efficiency and radiation damage resistance necessary for long time space experiments. It has an active area of 46 mm2, a thickness of 1.4 mm, an operation voltage of 100 V, an energy resolution of 0.88 keV (13.87 keV Am241), a power consumption of 8.5 W, and a mass of 1.8 kg. The width of the first 12 channels (3-9 keV) is 0.5 keV, the width of the next 12 channels is 1 keV, and the width of the last 8 channels (21-31.5 keV) is 1.3 keV. The spectrum accumulation time in 32 channels is 16 s. The spectrometer provides vast experimental data on the spectra of soft X-ray emission of solar flares. The high spectral resolution of the instrument allows an investigation of the dynamics of the temperature in the source using the direct comparison of the spectrum shape with some models, for example, with the CHIANTI 5.2 model. It was noted that hardness of the spectrum in the flare maximum increases with the flare class and solar activity level. The magnetic heating of the corona was confirmed by the spectra of the background solar X ray radiation for various numbers of sunspots: the more sunspots, the harder the spectrum of the X-ray background radiation was registered and, respectively, the stronger was the impact on the Earth's atmosphere. Near the solar activity maximum, the background radiation intensity increased by more than an order of magnitude and the maximum energy increased from 6 to 20 keV. (To the memory of Drs. V.M. Pankov and V.L. Prokhin, colleagues and coworkers in the Coronas-F mission.)

  12. Dwarf galaxy γ-excess and 3.55 keV X-ray line in a nonthermal Dark Matter model

    NASA Astrophysics Data System (ADS)

    Biswas, Anirban; Majumdar, Debasish; Roy, Probir

    2016-01-01

    Recent data from Reticulum II (RetII) require the energy range of the FermiLAT γ-excess to be ∼2\\text-10 \\text{GeV} . We adjust our unified nonthermal Dark Matter (DM) model to accommodate this. We have two extra scalars beyond the Standard Model to also explain the 3.55 keV X-ray line. Now the mass of the heavier of them has to be increased to lie around 250 GeV, while that of the lighter one remains at 7.1 keV. This requires a new seed mechanism for the γ-excess and new Boltzmann equations for the generation of the DM relic density. All concerned data for RetII and the X-ray line can now be fitted well and consistency with other indirect limits attained.

  13. Performance of a reflection-type polarizer by use of muscovite mica crystal in the soft x-ray region of 1 keV

    SciTech Connect

    Imazono, Takashi; Ishino, Masahiko; Koike, Masato; Kimura, Hiroaki; Hirono, Toko; Sano, Kazuo

    2005-02-01

    To develop the polarizer functioning in the soft x-ray region of 1 keV, the polarization performance of muscovite mica has been investigated theoretically with a simulation code based on dynamical theory. As the result of calculation, muscovite mica is found to be a promising candidate as a reflection-type polarizer with the reflectivity for s polarization of 0.03 at approximately 0.9 keV at the angle of incidence of 45 deg. In order to verify the polarization performance of muscovite mica experimentally, a symmetric Bragg reflection measurement of muscovite mica(002) was carried out using a linearly polarized undulator radiation. As a result, the maximum reflectivity for s polarization and the extinction ratio of muscovite mica were approximately 0.018 and 200 at 878 eV, respectively. This result indicates that muscovite mica works as a practical polarizer in the soft x-ray region.

  14. X-ray production cross sections at incident photon energies across the M{sub i} (i=1-5) edges of {sub 90}Th

    SciTech Connect

    Kaur, Rajnish; Shehla,; Kumar, Anil; Puri, Sanjiv

    2015-08-28

    The X-ray production cross sections for the M{sub k} (k= ξ, δ, α, β, ζ, γ, m{sub 1}, m{sub 2}) groups of X-rays have been evaluated at incident photon energies across the M{sub i} (i =1-5) edges of {sub 90}Th using the relativistic Hartree-Fock-Slater model based photoionisation cross sections and recently reported values of the M-shell X-ray emission rates, fluorescence and Coster Kronig yields. Further, the energies of the prominent (M{sub i}-S{sub j}) (S{sub j}=N{sub j}, O{sub j} and i =1-3, j =1-7) resonant Raman scattered (RRS) peaks at different incident photon energies have also been evaluated using the neutral-atom electron binding energies (E{sub sj}) based on the relaxed orbital relativistic Hartree-Fock-Slater model.

  15. ROSAT detection of an X-ray shadow in the 1/4-keV diffuse background in the Draco nebula

    NASA Technical Reports Server (NTRS)

    Snowden, S. L.; Mebold, U.; Hirth, W.; Herbstmeier, U.; Schmitt, J. H. M.

    1991-01-01

    The detection by the Roentgen satellite (ROSAT) X-ray telescope of a shadow in the 1/4-keV (C-band, 0.1 to 0.284 keV) cosmic diffuse background is reported. The location and morphology of the local minimum in X-rays are in clear agreement with a discrete H I cloud. The shadow is very deep with a minimum level at 50 percent of the surrounding emission; therefore, a minimum of 50 percent of the observed off-cloud flux must originate on the far side of the cloud. The analysis of H I velocity components links the cloud with the Draco nebula (distance of about 600 parsecs); it then follows that there is significant 1/4-keV X-ray emission at large distance (more than 400 parsecs) from the galactic plane along this line of sight. The extent of the distant emission region is uncertain, and if it indicates the existence of a hot galactic corona, it must be patchy in nature.

  16. 7.1 keV sterile neutrino constraints from X-ray observations of 33 clusters of galaxies with Chandra ACIS

    NASA Astrophysics Data System (ADS)

    Hofmann, F.; Sanders, J. S.; Nandra, K.; Clerc, N.; Gaspari, M.

    2016-08-01

    Context. Recently an unidentified emission line at 3.55 keV has been detected in X-ray spectra of clusters of galaxies. The line has been discussed as a possible decay signature of 7.1 keV sterile neutrinos, which have been proposed as a dark matter (DM) candidate. Aims: We aim to put constraints on the proposed line emission in a large sample of Chandra-observed clusters and obtain limits on the mixing angle in a 7.1 keV sterile neutrino DM scenario. Methods: For a sample of 33 high-mass clusters of galaxies, we merge all observations from the Chandra data archive. Each cluster has more than 100 ks of combined exposure. The resulting high signal-to-noise spectra are used to constrain the flux of an unidentified line emission at 3.55 keV in the individual spectra and a merged spectrum of all clusters. Results: We obtained very detailed spectra around the 3.55 keV range and limits on an unidentified emission line. Assuming all DM were made of 7.1 keV sterile neutrinos, the upper limits on the mixing angle are sin2(2Θ) < 10.1×10-11 from ACIS-I and < 40.3×10-11 from ACIS-S data at 99.7 per cent confidence level. Conclusions: We do not find evidence for an unidentified emission line at 3.55 keV. The sample extends the list of objects searched for an emission line at 3.55 keV and will help to identify the best targets for future studies of the potential DM decay line with upcoming X-ray observatories like Hitomi (Astro-H), eROSITA, and Athena.

  17. Solar wind ˜0.1-1.5 keV electrons at quiet times

    NASA Astrophysics Data System (ADS)

    Tao, Jiawei; Wang, Linghua; Zong, Qiugang; Li, Gang; Salem, Chadi S.; Wimmer-Schweingruber, Robert F.; He, Jiansen; Tu, Chuanyi; Bale, Stuart D.

    2016-03-01

    We present a statistical survey of the energy spectrum of solar wind suprathermal (˜0.1-1.5 keV) electrons measured by the WIND 3-D Plasma & Energetic Particle (3DP) instrument at 1 AU during quiet times at the minimum and maximum of solar cycles 23 and 24. Firstly, we separate strahl (beaming) electrons and halo (isotropic) electrons based on their features in pitch angle distributions. Secondly, we fit the observed energy spectrum of both the strahl and halo electrons at ˜0.1-1.5 keV to a Kappa distribution function with an index κ, effective temperature Teff and density n0. We also integrate the the measurements over ˜0.1-1.5 keV to obtain the average electron energy Eavg of the strahl and halo. We find a strong positive correlation between κ and Teff for both the strahl and halo, possibly reflecting the nature of the generation of these suprathermal electrons. Among the 245 selected samples, ˜68% have the halo κ smaller than the strahl κ, while ˜50% have the halo Eh larger than the strahl Es.

  18. 5.9-keV Mn K-shell X-ray luminosity from the decay of 55Fe in Type Ia supernova models

    NASA Astrophysics Data System (ADS)

    Seitenzahl, I. R.; Summa, A.; Krauß, F.; Sim, S. A.; Diehl, R.; Elsässer, D.; Fink, M.; Hillebrandt, W.; Kromer, M.; Maeda, K.; Mannheim, K.; Pakmor, R.; Röpke, F. K.; Ruiter, A. J.; Wilms, J.

    2015-02-01

    We show that the X-ray line flux of the Mn Kα line at 5.9 keV from the decay of 55Fe is a promising diagnostic to distinguish between Type Ia supernova (SN Ia) explosion models. Using radiation transport calculations, we compute the line flux for two three-dimensional explosion models: a near-Chandrasekhar mass delayed detonation and a violent merger of two (1.1 and 0.9 M⊙) white dwarfs. Both models are based on solar metallicity zero-age main-sequence progenitors. Due to explosive nuclear burning at higher density, the delayed-detonation model synthesizes ˜3.5 times more radioactive 55Fe than the merger model. As a result, we find that the peak Mn Kα line flux of the delayed-detonation model exceeds that of the merger model by a factor of ˜4.5. Since in both models the 5.9-keV X-ray flux peaks five to six years after the explosion, a single measurement of the X-ray line emission at this time can place a constraint on the explosion physics that is complementary to those derived from earlier phase optical spectra or light curves. We perform detector simulations of current and future X-ray telescopes to investigate the possibilities of detecting the X-ray line at 5.9 keV. Of the currently existing telescopes, XMM-Newton/pn is the best instrument for close (≲1-2 Mpc), non-background limited SNe Ia because of its large effective area. Due to its low instrumental background, Chandra/ACIS is currently the best choice for SNe Ia at distances above ˜2 Mpc. For the delayed-detonation scenario, a line detection is feasible with Chandra up to ˜3 Mpc for an exposure time of 106 s. We find that it should be possible with currently existing X-ray instruments (with exposure times ≲5 × 105 s) to detect both of our models at sufficiently high S/N to distinguish between them for hypothetical events within the Local Group. The prospects for detection will be better with future missions. For example, the proposed Athena/X-IFU instrument could detect our delayed

  19. Saturated ablation in metal hydrides and acceleration of protons and deuterons to keV energies with a soft-x-ray laser

    SciTech Connect

    Andreasson, J.; Iwan, B.; Abreu, E.; Seibert, M. M.; Hajdu, J.; Timneanu, N.; Andrejczuk, A.; Bergh, M.; Caleman, C.; Nelson, A. J.; Bajt, S.; Faeustlin, R. R.; Singer, W.; Toleikis, S.; Tschentscher, T.; Chalupsky, J.; Hajkova, V.; Juha, L.; Chapman, H. N.; Heimann, P. A.

    2011-01-15

    Studies of materials under extreme conditions have relevance to a broad area of research, including planetary physics, fusion research, materials science, and structural biology with x-ray lasers. We study such extreme conditions and experimentally probe the interaction between ultrashort soft x-ray pulses and solid targets (metals and their deuterides) at the FLASH free-electron laser where power densities exceeding 10{sup 17} W/cm{sup 2} were reached. Time-of-flight ion spectrometry and crater analysis were used to characterize the interaction. The results show the onset of saturation in the ablation process at power densities above 10{sup 16} W/cm{sup 2}. This effect can be linked to a transiently induced x-ray transparency in the solid by the femtosecond x-ray pulse at high power densities. The measured kinetic energies of protons and deuterons ejected from the surface reach several keV and concur with predictions from plasma-expansion models. Simulations of the interactions were performed with a nonlocal thermodynamic equilibrium code with radiation transfer. These calculations return critical depths similar to the observed crater depths and capture the transient surface transparency at higher power densities.

  20. Saturated ablation in metal hydrides and acceleration of protons and deuterons to keV energies with a soft-x-ray laser

    NASA Astrophysics Data System (ADS)

    Andreasson, J.; Iwan, B.; Andrejczuk, A.; Abreu, E.; Bergh, M.; Caleman, C.; Nelson, A. J.; Bajt, S.; Chalupsky, J.; Chapman, H. N.; Fäustlin, R. R.; Hajkova, V.; Heimann, P. A.; Hjörvarsson, B.; Juha, L.; Klinger, D.; Krzywinski, J.; Nagler, B.; Pálsson, G. K.; Singer, W.; Seibert, M. M.; Sobierajski, R.; Toleikis, S.; Tschentscher, T.; Vinko, S. M.; Lee, R. W.; Hajdu, J.; Tîmneanu, N.

    2011-01-01

    Studies of materials under extreme conditions have relevance to a broad area of research, including planetary physics, fusion research, materials science, and structural biology with x-ray lasers. We study such extreme conditions and experimentally probe the interaction between ultrashort soft x-ray pulses and solid targets (metals and their deuterides) at the FLASH free-electron laser where power densities exceeding 1017 W/cm2 were reached. Time-of-flight ion spectrometry and crater analysis were used to characterize the interaction. The results show the onset of saturation in the ablation process at power densities above 1016 W/cm2. This effect can be linked to a transiently induced x-ray transparency in the solid by the femtosecond x-ray pulse at high power densities. The measured kinetic energies of protons and deuterons ejected from the surface reach several keV and concur with predictions from plasma-expansion models. Simulations of the interactions were performed with a nonlocal thermodynamic equilibrium code with radiation transfer. These calculations return critical depths similar to the observed crater depths and capture the transient surface transparency at higher power densities.

  1. The X-ray behaviour of the high-energy peaked BL Lacertae source PKS 2155-304 in the 0.3-10 keV band

    NASA Astrophysics Data System (ADS)

    Kapanadze, B.; Romano, P.; Vercellone, S.; Kapanadze, S.

    2014-10-01

    We present the results of our monitoring of the high-energy peaked BL Lac object PKS 2155-304 by the Swift/X-Ray Telescope (XRT) during 2005-2012. Our timing study shows that the source was highly variable both on longer (weeks-to-months) and intra-day time-scales, up to a factor of 7 in flux, and 30 per cent in fractional variability amplitudes, with no periodic variations. The X-ray spectra are mainly curved with broad ranges of photon index, curvature parameter, and hardness ratio which exhibit significant variability with the flux on different time-scales. Our study of multi-wavelength cross-correlations has revealed that the one-zone SSC scenario seems to be valid for the most optical-to-gamma-ray flares observed during 2006-2012. An `orphan' X-ray flare with no counterpart in other spectral bands suggests the existence of different electron populations. Based on the absence of a correlation between photon index and curvature parameter (expected from the energy-dependent acceleration probability scenario), the observed distribution of curvature parameter from the XRT spectra peaking at b = 0.37, and the observed anti-correlation between the curvature parameter and the 0.3-10 keV flux (i.e. lower curvatures in flaring states), we conclude that the most likely mechanism responsible for producing X-ray emission during the flares is the stochastic acceleration of the electrons.

  2. 950 keV X-Band Linac For Material Recognition Using Two-Fold Scintillator Detector As A Concept Of Dual-Energy X-Ray System

    SciTech Connect

    Lee, Kiwoo; Natsui, Takuya; Hirai, Shunsuke; Uesaka, Mitsuru; Hashimoto, Eiko

    2011-06-01

    One of the advantages of applying X-band linear accelerator (Linac) is the compact size of the whole system. That shows us the possibility of on-site system such as the custom inspection system in an airport. As X-ray source, we have developed X-band Linac and achieved maximum X-ray energy 950 keV using the low power magnetron (250 kW) in 2 {mu}s pulse length. The whole size of the Linac system is 1x1x1 m{sup 3}. That is realized by introducing X-band system. In addition, we have designed two-fold scintillator detector in dual energy X-ray concept. Monte carlo N-particle transport (MCNP) code was used to make up sensor part of the design with two scintillators, CsI and CdWO4. The custom inspection system is composed of two equipments: 950 keV X-band Linac and two-fold scintillator and they are operated simulating real situation such as baggage check in an airport. We will show you the results of experiment which was performed with metal samples: iron and lead as targets in several conditions.

  3. Validation of modelled imaging plates sensitivity to 1-100 keV x-rays and spatial resolution characterisation for diagnostics for the "PETawatt Aquitaine Laser"

    NASA Astrophysics Data System (ADS)

    Boutoux, G.; Batani, D.; Burgy, F.; Ducret, J.-E.; Forestier-Colleoni, P.; Hulin, S.; Rabhi, N.; Duval, A.; Lecherbourg, L.; Reverdin, C.; Jakubowska, K.; Szabo, C. I.; Bastiani-Ceccotti, S.; Consoli, F.; Curcio, A.; De Angelis, R.; Ingenito, F.; Baggio, J.; Raffestin, D.

    2016-04-01

    Thanks to their high dynamic range and ability to withstand electromagnetic pulse, imaging plates (IPs) are commonly used as passive detectors in laser-plasma experiments. In the framework of the development of the diagnostics for the Petawatt Aquitaine Laser facility, we present an absolute calibration and spatial resolution study of five different available types of IP (namely, MS-SR-TR-MP-ND) performed by using laser-induced K-shell X-rays emitted by a solid silver target irradiated by the laser ECLIPSE at CEntre Lasers Intenses et Applications. In addition, IP sensitivity measurements were performed with a 160 kV X-ray generator at CEA DAM DIF, where the absolute response of IP SR and TR has been calibrated to X-rays in the energy range 8-75 keV with uncertainties of about 15%. Finally, the response functions have been modeled in Monte Carlo GEANT4 simulations in order to reproduce experimental data. Simulations enable extrapolation of the IP response functions to photon energies from 1 keV to 1 GeV, of interest, e.g., for laser-driven radiography.

  4. Validation of modelled imaging plates sensitivity to 1-100 keV x-rays and spatial resolution characterisation for diagnostics for the "PETawatt Aquitaine Laser".

    PubMed

    Boutoux, G; Batani, D; Burgy, F; Ducret, J-E; Forestier-Colleoni, P; Hulin, S; Rabhi, N; Duval, A; Lecherbourg, L; Reverdin, C; Jakubowska, K; Szabo, C I; Bastiani-Ceccotti, S; Consoli, F; Curcio, A; De Angelis, R; Ingenito, F; Baggio, J; Raffestin, D

    2016-04-01

    Thanks to their high dynamic range and ability to withstand electromagnetic pulse, imaging plates (IPs) are commonly used as passive detectors in laser-plasma experiments. In the framework of the development of the diagnostics for the Petawatt Aquitaine Laser facility, we present an absolute calibration and spatial resolution study of five different available types of IP (namely, MS-SR-TR-MP-ND) performed by using laser-induced K-shell X-rays emitted by a solid silver target irradiated by the laser ECLIPSE at CEntre Lasers Intenses et Applications. In addition, IP sensitivity measurements were performed with a 160 kV X-ray generator at CEA DAM DIF, where the absolute response of IP SR and TR has been calibrated to X-rays in the energy range 8-75 keV with uncertainties of about 15%. Finally, the response functions have been modeled in Monte Carlo GEANT4 simulations in order to reproduce experimental data. Simulations enable extrapolation of the IP response functions to photon energies from 1 keV to 1 GeV, of interest, e.g., for laser-driven radiography. PMID:27131655

  5. Non-abelian dark matter solutions for Galactic gamma-ray excess and Perseus 3.5 keV X-ray line

    SciTech Connect

    Cheung, Kingman; Huang, Wei-Chih; Tsai, Yue-Lin Sming

    2015-05-26

    We attempt to explain simultaneously the Galactic center gamma-ray excess and the 3.5 keV X-ray line from the Perseus cluster based on a class of non-abelian SU(2) DM models, in which the dark matter and an excited state comprise a “dark” SU(2) doublet. The non-abelian group kinetically mixes with the standard model gauge group via dimensions-5 operators. The dark matter particles annihilate into standard model fermions, followed by fragmentation and bremsstrahlung, and thus producing a continuous spectrum of gamma-rays. On the other hand, the dark matter particles can annihilate into a pair of excited states, each of which decays back into the dark matter particle and an X-ray photon, which has an energy equal to the mass difference between the dark matter and the excited state, which is set to be 3.5 keV. The large hierarchy between the required X-ray and γ-ray annihilation cross-sections can be achieved by a very small kinetic mixing between the SM and dark sector, which effectively suppresses the annihilation into the standard model fermions but not into the excited state.

  6. Uranium enrichment measurements using the intensity ratios of self-fluorescence X-rays to 92* keV gamma ray in UXK alpha spectral region.

    PubMed

    Yücel, H; Dikmen, H

    2009-04-30

    In this paper, the known multigroup gamma-ray analysis method for uranium (MGAU) as one of the non-destructive gamma-ray spectrometry methods has been applied to certified reference nuclear materials (depleted, natural and enriched uranium) containing (235)U isotope in the range of 0.32-4.51% atom (235)U. Its analysis gives incorrect results for the low component (235)U in depleted and natural uranium samples where the build-up of the decay products begins to interfere with the analysis. The results reveal that the build-up of decay products seems to be significant and thus the algorithms for the presence of decay products should be improved to resulting in the correct enrichment value. For instance, for the case of (235)U analysis in depleted uranium or natural ore samples, self-induced X-rays such as 94.6 keV and 98.4 keV lying in UXK(alpha) spectral region used by MGAU can be excluded from the calculation. Because the significant increases have been observed in the intensities of uranium self-induced X-rays due to gamma-ray emissions with above 100 keV energy arising from decay products of (238)U and (235)U and these parents. Instead, the use of calibration curve to be made between the intensity ratios of self-fluorescence X-rays to 92(*)keV gamma-ray and the certified (235)U abundances is suggested for the determination of (235)U when higher amounts of decay products are detected in the gamma-ray spectrum acquired for the MGAU analysis. PMID:19203602

  7. Measurement of the x-ray mass attenuation coefficient and determination of the imaginary component of the atomic form-factor of tin over the energy range of 29 keV-60 keV.

    SciTech Connect

    de Jonge, M. D.; Tran, C. Q.; Chantler, C. T.; Barnea, Z.; Dhal, B. P.; Paterson, D.; Kanter, E. P.; Southworth, S. H.; Young, L.; Beno, M. A.; Linton, J. A.; Jennings, G.; Univ. of Melbourne; Australian Synchrotron Project

    2007-01-01

    We use the x-ray extended-range technique (XERT) [C. T. Chantler et al., Phys. Rev. A 64, 062506 (2001)] to measure the mass attenuation coefficients of tin in the x-ray energy range of 29-60 keV to 0.04-3 % accuracy, and typically in the range 0.1-0.2 %. Measurements made over an extended range of the measurement parameter space are critically examined to identify, quantify, and correct a number of potential experimental systematic errors. These results represent the most extensive experimental data set for tin and include absolute mass attenuation coefficients in the regions of x-ray absorption fine structure, extended x-ray absorption fine structure, and x-ray absorption near-edge structure. The imaginary component of the atomic form factor f{sub 2} is derived from the photoelectric absorption after subtracting calculated Rayleigh and Compton scattering cross sections from the total attenuation. Comparison of the result with tabulations of calculated photoelectric absorption coefficients indicates that differences of 1-2 % persist between calculated and observed values.

  8. Measurement of high-energy (10–60 keV) x-ray spectral line widths with eV accuracy

    SciTech Connect

    Seely, J. F. Feldman, U.; Glover, J. L.; Hudson, L. T.; Ralchenko, Y.; Henins, Albert; Pereira, N.; Di Stefano, C. A.; Kuranz, C. C.; Drake, R. P.; Chen, Hui; Williams, G. J.; Park, J.

    2014-11-15

    A high resolution crystal spectrometer utilizing a crystal in transmission geometry has been developed and experimentally optimized to measure the widths of emission lines in the 10–60 keV energy range with eV accuracy. The spectrometer achieves high spectral resolution by utilizing crystal planes with small lattice spacings (down to 2d = 0.099 nm), a large crystal bending radius and Rowland circle diameter (965 mm), and an image plate detector with high spatial resolution (60 μm in the case of the Fuji TR image plate). High resolution W L-shell and K-shell laboratory test spectra in the 10–60 keV range and Ho K-shell spectra near 47 keV recorded at the LLNL Titan laser facility are presented. The Ho K-shell spectra are the highest resolution hard x-ray spectra recorded from a solid target irradiated by a high-intensity laser.

  9. Development and Characterization of a 16.3 keV X-Ray Source at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Fournier, K. B.; Barrios, M. A.; Schneider, M. B.; Khan, S.; Chen, H.; Coppari, F.; Rygg, R.; Hohenberger, M.; Albert, F.; Moody, J.; Ralph, J.; Kemp, G. E.; Regan, S. P.

    2014-10-01

    X-ray sources at the National Ignition Facility are needed for radiography of in-flight capsules in inertial confinement fusion experiments and for diffraction studies of materials at high pressures. In the former case, we want to optimize signal to noise and signal over background ratios for the radiograph, in the latter case, we want to minimize high-energy emission from the backlighter that creates background on the diffraction data. Four interleaved shots at NIF were taken in one day, with laser irradiances on a Zr backlighter target ranging from 5 to 14 × 1015 W/cm2. Two shots were for source optimization as a function of laser irradiance. X-ray fluxes were measured with the time-resolved NIF X-ray Spectrometer (NXS) and the DANTE array of calibrated, filtered diodes. Two shots were optimized to make backscatter measurements with the FABS and NBI optical power systems. The backscatter levels are investigated to look for correlation with hot electron populations inferred from high-energy x rays measured with the FFLEX broadband spectrometer. Results from all shots are presented and compared with models. Work performed under the auspices of the U.S. DOE by LLNL under Contract No. DE-AC52-07NA27344.

  10. Mercuric iodide X-ray camera

    NASA Astrophysics Data System (ADS)

    Patt, B. E.; Delduca, A.; Dolin, R.; Ortale, C.

    A prototype X-ray camera utilizing a 1.5- by 1.5-in., 1024-element, thin mercuric iodide detector array has been tested and evaluated. The microprocessor-based camera is portable and operates at room temperature. Events can be localized within 1 to 2 mm at energies below 60 keV and within 5 to 6 mm at energies on the order of 600 keV.

  11. Mercuric iodide X-ray camera

    NASA Astrophysics Data System (ADS)

    Patt, B. E.; del Duca, A.; Dolin, R.; Ortale, C.

    1986-02-01

    A prototype X-ray camera utilizing a 1.5- by 1.5-in., 1024-element, thin mercuric iodide detector array has been tested and evaluated. The microprocessor-based camera is portable and operates at room temperature. Events can be localized within 1-2 mm at energies below 60 keV and within 5-6 mm at energies on the order of 600 keV.

  12. Liquid helium cryostat with internal fluorescence detection for x-ray absorption studies in the 2-6 keV energy region

    NASA Astrophysics Data System (ADS)

    McFarlane Holman, Karen L.; Latimer, Matthew J.; Yachandra, Vittal K.

    2004-06-01

    X-ray absorption spectroscopy (XAS) in the intermediate x-ray region (2-6 keV) for dilute biological samples has been limited because of detector/flux limitations and inadequate cryogenic instrumentation. We have designed and constructed a new tailpiece/sample chamber for a commercially available liquid helium cooled cryostat which overcomes difficulties related to low fluorescence signals by using thin window materials and incorporating an internal photodiode detector. With the apparatus, XAS data at the Cl, S, and Ca K edges have been collected on frozen solutions and biological samples at temperatures down to 60 K. A separate chamber has been incorporated for collecting room-temperature spectra of standard compounds (for energy calibration purposes) which prevents contamination of the cryostat chamber and allows the sample to remain undisturbed, both important concerns for studying dilute and radiation-sensitive samples.

  13. Space-resolved keV spectroscopy study of neonlike x-ray laser plasmas created with low-level prepulse irradiation

    NASA Astrophysics Data System (ADS)

    Nantel, Marc; Klisnick, Annie; Jamelot, Gerard; Holden, P. B.; Jaegle, Pierre; Zeitoun, Philippe; Tallents, Gregory J.; MacPhee, Andrew G.; Lewis, Ciaran L. S.

    1995-09-01

    Through the use of time-integrated space-resolved keV spectroscopy, we investigate line plasmas showing gain for irradiation using the prepulse technique. The experiments were conducted with the LULI laser of the Ecole Polytechnique, Palaiseau, France), at 1.06 micrometer with prepulse-to-main pulse intensity ratio ranging from 10-6 to 10-2. The particular x-ray lasers which were studied were the collisionally excited Ne-like zinc, copper and nickel systems. The effect of the prepulses on plasma conditions are inferred through spectroscopic line ratio diagnostics. It is observed that the value of the electron temperature for each system does not vary significantly with prepulse levels, nor does their spatially resolved profile along the line. The lateral width and density of the Ne-like regions in the plasmas of all three x-ray lasers are seen to increase with the prepulse level.

  14. High-efficiency Fresnel zone plates for hard X-rays by 100 keV e-beam lithography and electroplating.

    PubMed

    Gorelick, Sergey; Vila-Comamala, Joan; Guzenko, Vitaliy A; Barrett, Ray; Salomé, Murielle; David, Christian

    2011-05-01

    The fabrication and characterization of Fresnel zone plates (FZPs) for hard X-ray microscopy applications are reported. High-quality 500 nm- and 1 µm-thick Au FZPs with outermost zone widths down to 50 nm and 70 nm, respectively, and with diameters up to 600 µm were fabricated. The diffraction efficiencies of the fabricated FZPs were measured for a wide range of X-ray energies (2.8-13.2 keV) showing excellent values up to 65-75% of the theoretical values, reflecting the good quality of the FZPs. Spatially resolved diffraction efficiency measurements indicate the uniformity of the FZPs and a defect-free structure. PMID:21525653

  15. Determination of transition metal ion distribution in cubic spinel Co{sub 1.5}Fe{sub 1.5}O{sub 4} using anomalous x-ray diffraction

    SciTech Connect

    Singh, M. N.; Sinha, A. K. Ghosh, Haranath

    2015-08-15

    We report anomalous x-ray diffraction studies on Co ferrite with composition Co{sub 1.5}Fe{sub 1.5}O{sub 4} to obtain the distribution of transition metal ions in tetrahedral and octahedral sites. We synthesize spinel oxide (Co{sub 1.5}Fe{sub 1.5}O{sub 4}) through co-precipitation and subsequent annealing route. The imaginary part (absorption) of the energy dependent anomalous form factor is measured and the real part is calculated theoretically through Kramers–Krönig transformation to analyze anomalous x-ray diffraction peak intensities. Fe and Co K-edge x-ray absorption near edge structure (XANES) spectra are used to estimate charge states of transition metals. Our analysis, within experimental errors, suggests 44% of the tetrahedral sites contain Co in +2 oxidation state and the rest 56% sites contain Fe in +2 and +3 oxidation states. Similarly, 47% of the octahedral sites contain Fe in +3 oxidation states, whereas, the rest of the sites contain Co in +2 and +3 oxidation states. While a distinct pre-edge feature in the Fe K-edge XANES is observed, Co pre-edge remains featureless. Implications of these results to magnetism are briefly discussed.

  16. YIELDS OF IONS AND EXCITED STATES IN NONPOLAR LIQUIDS EXPOSED TO X-RAYS OF 1 TO 30 KEV ENERGY

    SciTech Connect

    HOLROYD,R.A.

    1999-08-18

    When x-rays from a synchrotron source are absorbed in a liquid, the x-ray energy (E{sub x}) is converted by the photoelectric effect into the kinetic energy of the electrons released. For hydrocarbons, absorption by the K-electrons of carbon dominates. Thus the energy of the photoelectron (E{sub pe}) is E{sub x}-E{sub b}, where E{sub b} is the K-shell binding energy of carbon. Additional electrons with energy equal to E{sub b} is released in the Auger process that fills the hole in the K-shell. These energetic electrons will produce many ionizations, excitations and products. The consequences of the high density of ionizations and excitations along the track of the photoelectron and special effects near the K-edge are examined here.

  17. An in-vacuum x-ray diffraction microscope for use in the 0.7-2.9 keV range

    SciTech Connect

    Vine, D. J.; Williams, G. J.; Clark, J. N.; Putkunz, C. T.; Abbey, B.; Nugent, K. A.; Pfeifer, M. A.; Legnini, D.; Roehrig, C.; Wrobel, E.; McNulty, I.; Huwald, E.; Riessen, G. van; Peele, A. G.; Beetz, T.; Irwin, J.; Feser, M.; Hornberger, B.

    2012-03-15

    A dedicated in-vacuum coherent x-ray diffraction microscope was installed at the 2-ID-B beamline of the Advanced Photon Source for use with 0.7-2.9 keV x-rays. The instrument can accommodate three common implementations of diffractive imaging; plane wave illumination; defocused-probe (Fresnel diffractive imaging) and scanning (ptychography) using either a pinhole, focused or defocused probe. The microscope design includes active feedback to limit motion of the optics with respect to the sample. Upper bounds on the relative optics-to-sample displacement have been measured to be 5.8 nm(v) and 4.4 nm(h) rms/h using capacitance micrometry and 27 nm/h using x-ray point projection imaging. The stability of the measurement platform and in-vacuum operation allows for long exposure times, high signal-to-noise and large dynamic range two-dimensional intensity measurements to be acquired. Finally, we illustrate the microscope's stability with a recent experimental result.

  18. Characterization of the PILATUS photon-counting pixel detector for X-ray energies from 1.75 keV to 60 keV

    NASA Astrophysics Data System (ADS)

    Donath, T.; Brandstetter, S.; Cibik, L.; Commichau, S.; Hofer, P.; Krumrey, M.; Lüthi, B.; Marggraf, S.; Müller, P.; Schneebeli, M.; Schulze-Briese, C.; Wernecke, J.

    2013-03-01

    The PILATUS detector module was characterized in the PTB laboratory at BESSY II comparing modules with 320 μm thick and newly developed 450 μm and 1000 μm thick silicon sensors. Measurements were carried out over a wide energy range, in-vacuum from 1.75 keV to 8.8 keV and in air from 8 keV to 60 keV. The quantum efficiency (QE) was measured as a function of energy and the spatial resolution was measured at several photon energies both in terms of the modulation transfer function (MTF) from edge profile measurements and by directly measuring the point spread function (PSF) of a single pixel in a raster scan with a pinhole beam. Independent of the sensor thickness, the measured MTF and PSF come close to those for an ideal pixel detector with the pixel size of the PILATUS detector (172 × 172 μm2). The measured QE follows the values predicted by calculation. Thicker sensors significantly enhance the QE of the PILATUS detectors for energies above 10 keV without impairing the spatial resolution and noise-free detection. In-vacuum operation of the PILATUS detector is possible at energies as low as 1.75 keV.

  19. Dark matter inelastic up-scattering with the interstellar plasma: A new source of x-ray lines, including at 3.5 keV

    NASA Astrophysics Data System (ADS)

    D'Eramo, Francesco; Hambleton, Kevin; Profumo, Stefano; Stefaniak, Tim

    2016-05-01

    We explore the phenomenology of a class of models where the dark matter particle can inelastically up-scatter to a heavier excited state via off-diagonal dipolar interactions with the interstellar plasma (gas or free electrons). The heavier particle then rapidly decays back to the dark matter particle plus a quasimonochromatic photon. For the process to occur at appreciable rates, the mass splitting between the heavier state and the dark matter must be comparable to, or smaller than, the kinetic energy of particles in the plasma. As a result, the predicted photon line falls in the soft x-ray range, or, potentially, at arbitrarily lower energies. We explore experimental constraints from cosmology and particle physics, and present accurate calculations of the dark matter thermal relic density and of the flux of monochromatic x rays from thermal plasma excitation. We find that the model provides a natural explanation for the observed 3.5 keV line from clusters of galaxies and from the Galactic center, and is consistent with null detections of the line from dwarf galaxies. The unique line shape, which will be resolved by future observations with the Hitomi (formerly Astro-H) satellite, and the predicted unique morphology and target-temperature dependence will enable easy discrimination of this class of models versus other scenarios for the generation of the 3.5 keV line or of any other unidentified line across the electromagnetic spectrum.

  20. A novel flat-response x-ray detector in the photon energy range of 0.1-4 keV

    NASA Astrophysics Data System (ADS)

    Li, Zhichao; Jiang, Xiaohua; Liu, Shenye; Huang, Tianxuan; Zheng, Jian; Yang, Jiamin; Li, Sanwei; Guo, Liang; Zhao, Xuefeng; Du, Huabin; Song, Tianming; Yi, Rongqing; Liu, Yonggang; Jiang, Shaoen; Ding, Yongkun

    2010-07-01

    A novel flat-response x-ray detector has been developed for the measurement of radiation flux from a hohlraum. In order to obtain a flat response in the photon energy range of 0.1-4 keV, it is found that both the cathode and the filter of the detector can be made of gold. A further improvement on the compound filter can then largely relax the requirement of the calibration x-ray beam. The calibration of the detector, which is carried out on Beijing Synchrotron Radiation Facility at Institute of High Energy Physics, shows that the detector has a desired flat response in the photon energy range of 0.1-4 keV, with a response flatness smaller than 13%. The detector has been successfully applied in the hohlraum experiment on Shenguang-III prototype laser facility. The radiation temperatures inferred from the detector agree well with those from the diagnostic instrument Dante installed at the same azimuth angle from the hohlraum axis, demonstrating the feasibility of the detector.

  1. A novel flat-response x-ray detector in the photon energy range of 0.1-4 keV.

    PubMed

    Li, Zhichao; Jiang, Xiaohua; Liu, Shenye; Huang, Tianxuan; Zheng, Jian; Yang, Jiamin; Li, Sanwei; Guo, Liang; Zhao, Xuefeng; Du, Huabin; Song, Tianming; Yi, Rongqing; Liu, Yonggang; Jiang, Shaoen; Ding, Yongkun

    2010-07-01

    A novel flat-response x-ray detector has been developed for the measurement of radiation flux from a hohlraum. In order to obtain a flat response in the photon energy range of 0.1-4 keV, it is found that both the cathode and the filter of the detector can be made of gold. A further improvement on the compound filter can then largely relax the requirement of the calibration x-ray beam. The calibration of the detector, which is carried out on Beijing Synchrotron Radiation Facility at Institute of High Energy Physics, shows that the detector has a desired flat response in the photon energy range of 0.1-4 keV, with a response flatness smaller than 13%. The detector has been successfully applied in the hohlraum experiment on Shenguang-III prototype laser facility. The radiation temperatures inferred from the detector agree well with those from the diagnostic instrument Dante installed at the same azimuth angle from the hohlraum axis, demonstrating the feasibility of the detector. PMID:20687719

  2. A novel flat-response x-ray detector in the photon energy range of 0.1-4 keV

    SciTech Connect

    Li Zhichao; Guo Liang; Jiang Xiaohua; Liu Shenye; Huang Tianxuan; Yang Jiamin; Li Sanwei; Zhao Xuefeng; Du Huabin; Song Tianming; Yi Rongqing; Liu Yonggang; Jiang Shaoen; Ding Yongkun; Zheng Jian

    2010-07-15

    A novel flat-response x-ray detector has been developed for the measurement of radiation flux from a hohlraum. In order to obtain a flat response in the photon energy range of 0.1-4 keV, it is found that both the cathode and the filter of the detector can be made of gold. A further improvement on the compound filter can then largely relax the requirement of the calibration x-ray beam. The calibration of the detector, which is carried out on Beijing Synchrotron Radiation Facility at Institute of High Energy Physics, shows that the detector has a desired flat response in the photon energy range of 0.1-4 keV, with a response flatness smaller than 13%. The detector has been successfully applied in the hohlraum experiment on Shenguang-III prototype laser facility. The radiation temperatures inferred from the detector agree well with those from the diagnostic instrument Dante installed at the same azimuth angle from the hohlraum axis, demonstrating the feasibility of the detector.

  3. In situ UV-visible spectrum acquisition of Br3-. Investigations of concentrated HBr aqueous solutions under 13-keV X-rays

    NASA Astrophysics Data System (ADS)

    Saffré, D.; Atinault, E.; Pin, S.; Renault, J. P.; Hazemann, J. L.; Baldacchino, G.

    2011-01-01

    Water radiolysis has been investigated by in situ and direct detection by using the scavenging method and 13-keV X-rays from ESRF synchrotron. By using a famous chemical system, concentrated hydrobromic acidic solutions over a range of concentrations (from 0.1 to 0.6 mole·dm-3), and real time absorption spectroscopy of Br3- around 266 nm, we aimed at evaluating the effect of 13-keV X-rays, below the ionization K-edge of Br, on the Br- oxidation yield value. The HO• scavenging time ranging in the picosecond scale is also taken into consideration going to the earliest initial yields. We have also observed the limit of use of N2O and air as saturation gas. The oxidation limitation also comes from the presence of H3O+ in abundance giving birth of competitive reactions. The determination of the dose rate delivered to the solution has been performed by using the Fricke dosimeter system by following absorbance at 304 nm. The dose rate was 18.5 Gy·s-1.

  4. A search for a keV signature of radiatively decaying dark matter with Suzaku XIS observations of the X-ray diffuse background

    NASA Astrophysics Data System (ADS)

    Sekiya, Norio; Yamasaki, Noriko Y.; Mitsuda, Kazuhisa

    2016-06-01

    We performed the deepest search for an X-ray emission line at between 0.5 and 7 keV from non-baryonic dark matter by the Suzaku XIS. Dark matter associated with the Milky Way was selected as the target to obtain the best signal-to-noise ratio. From the Suzaku archive, we selected 187 data sets of blank-sky regions that were dominated by the X-ray diffuse background. The data sets were from 2005 to 2013. The instrumental responses were adjusted by multiple calibration data sets of the Crab Nebula. We also improved the technique of subtracting lines of instrumental origin. These energy spectra were well described by X-ray emission due to charge exchange around the Solar System, hot plasma in and around the Milky Way, and the superposition of extra-galactic point sources. A signal of a narrow emission-line was searched for, and the significance of detection was evaluated in consideration of the blind search method (the Look-elsewhere Effect). Our results exhibited no significant detection of an emission line feature from dark matter. The 3 σ upper limit for the emission line intensity between 1 and 7 keV was ˜ 10-2 photons cm-2 s-1 sr-1, or ˜ 5 × 10-4 photons cm-2 s-1 sr-1 per M⊙ pc-2, assuming a dark matter distribution with the Galactic rotation curve. The parameters of sterile neutrinos as candidates of dark-matter were also constrained.

  5. The X-ray spectrum of AM Herculis from 0.1 to 150 keV

    NASA Technical Reports Server (NTRS)

    Rothschild, R. E.; Gruber, D. E.; Knight, F. K.; Matteson, J. L.; Nolan, P. L.; Swank, J. H.; Holt, S. S.; Serlemitsos, P. J.; Mason, K. O.; Tuohy, I. R.

    1981-01-01

    No significant flux at 100 keV was detected in the observations by the HEAO 1 satellite (March and April of 1978) and in several OSO 7 observations. The spectrum above 2 keV can be fitted by a composite thermal bremsstrahlung model that includes an approximation to the albedo expected from the white dwarf. The bremsstrahlung kT sub e from this model (30.9 + or - 4.5 keV) implies a white dwarf mass in excess of 0.6 solar mass. An emission feature at 6.5 + or - 0.15 keV and equivalent width of 0.8 + or - 0.1 keV is confirmed; it is thought that this might be due to fluorescence from the white dwarf by the bremsstrahlung from a small thin shocked region. It is noted that the continuum could also have been steepened at high energy in scattering in the accretion column, but the line photons cannot have gone through the same optical depths.

  6. 3.5 keV X-ray line signal from dark matter decay in local U(1) B- L extension of Zee-Babu model

    NASA Astrophysics Data System (ADS)

    Baek, Seungwon

    2015-08-01

    We consider a local U(1) B- L extension of Zee-Babu model to explain the recently observed 3.5 keV X-ray line signal. The model has three Standard model (SM)-singlet Dirac fermions with different U(1) B- L charges. A complex scalar field charged under U(1) B- L is introduced to break the U(1) B- L symmetry. After U(1) B- L symmetry breaking a remnant discrete symmetry stabilizes the lightest state of the Dirac fermions, which can be a stable dark matter (DM). The second lightest state, if mass splitting with the stable DM is about 3.5 keV, decays dominantly to the stable DM and 3.5 keV photon through two-loop diagrams, explaining the X-ray line signal. Two-loop suppression of the decay amplitude makes its lifetime much longer than the age of the universe and it can be a decaying DM candidate in large parameter region. We also introduce a real scalar field which is singlet under both the SM and U(1) B- L and can explain the current relic abundance of the Dirac fermionic DMs. If the mixing with the SM Higgs boson is small, it does not contribute to DM direct detection. The main contribution to the scattering of DM off atomic nuclei comes from the exchange of U(1) B- L gauge boson, Z ', and is suppressed below current experimental bound when Z' mass is heavy (≳10 TeV). If the singlet scalar mass is about 0.1-10 MeV, DM self-interaction can be large enough to solve small scale structure problems in simulations with the cold DM, such as, the core-vs-cusp problem and too-big-to-fail problem.

  7. Magnetically Assisted Remote-controlled Endovascular Catheter for Interventional MR Imaging: In Vitro Navigation at 1.5 T versus X-ray Fluoroscopy

    PubMed Central

    Losey, Aaron D.; Lillaney, Prasheel; Martin, Alastair J.; Cooke, Daniel L.; Wilson, Mark W.; Thorne, Bradford R. H.; Sincic, Ryan S.; Arenson, Ronald L.; Saeed, Maythem

    2014-01-01

    Purpose To compare in vitro navigation of a magnetically assisted remote-controlled (MARC) catheter under real-time magnetic resonance (MR) imaging with manual navigation under MR imaging and standard x-ray guidance in endovascular catheterization procedures in an abdominal aortic phantom. Materials and Methods The 2-mm-diameter custom clinical-grade microcatheter prototype with a solenoid coil at the distal tip was deflected with a foot pedal actuator used to deliver 300 mA of positive or negative current. Investigators navigated the catheter into branch vessels in a custom cryogel abdominal aortic phantom. This was repeated under MR imaging guidance without magnetic assistance and under conventional x-ray fluoroscopy. MR experiments were performed at 1.5 T by using a balanced steady-state free precession sequence. The mean procedure times and percentage success data were determined and analyzed with a linear mixed-effects regression analysis. Results The catheter was clearly visible under real-time MR imaging. One hundred ninety-two (80%) of 240 turns were successfully completed with magnetically assisted guidance versus 144 (60%) of 240 turns with nonassisted guidance (P < .001) and 119 (74%) of 160 turns with standard x-ray guidance (P = .028). Overall mean procedure time was shorter with magnetically assisted than with nonassisted guidance under MR imaging (37 seconds ± 6 [standard error of the mean] vs 55 seconds ± 3, P < .001), and time was comparable between magnetically assisted and standard x-ray guidance (37 seconds ± 6 vs 44 seconds ± 3, P = .045). When stratified by angle of branch vessel, magnetic assistance was faster than nonassisted MR guidance at turns of 45°, 60°, and 75°. Conclusion In this study, a MARC catheter for endovascular navigation under real-time MR imaging guidance was developed and tested. For catheterization of branch vessels arising at large angles, magnetically assisted catheterization was faster than manual catheterization

  8. 2-20 ns interframe time 2-frame 6.151 keV x-ray imaging on the recently upgraded Z Accelerator: A progress report

    NASA Astrophysics Data System (ADS)

    Bennett, G. R.; Smith, I. C.; Shores, J. E.; Sinars, D. B.; Robertson, G.; Atherton, B. W.; Jones, M. C.; Porter, J. L.

    2008-10-01

    When used for the production of an x-ray imaging backlighter source on Sandia National Laboratories' recently upgraded 26MA Z Accelerator, the terawatt-class, multikilojoule, 526.57nm Z-Beamlet laser (ZBL) [P. K. Rambo et al., Appl. Opt. 44, 2421 (2005)], in conjunction with the 6.151keV (1s2-1s2p triplet line of He-like Mn) curved-crystal imager [D. B. Sinars et al., Rev. Sci. Instrum. 75, 3672 (2004); G. R. Bennett et al., Rev. Sci. Instrum. 77, 10E322 (2006)], is capable of providing a high quality x radiograph per Z shot for inertial confinement fusion (ICF), complex hydrodynamics, and other high-energy-density physics experiments. For example, this diagnostic has recently afforded microgram-scale mass perturbation measurements on an imploding ignition-scale 1mg ICF capsule [G. R. Bennett et al., Phys. Rev. Lett. 99, 205003 (2007)], where the perturbation was initiated by a surrogate deuterium-tritium (DT) fuel fill tube. Using an angle-time multiplexing technique, ZBL now has the capability to provide two spatially and temporally separated foci in the Z chamber, allowing "two-frame" imaging to be performed, with an interframe time range of 2-20ns. This multiplexing technique allows the full area of the four-pass amplifiers to be used for the two pulses, rather than split the amplifiers effectively into two rectangular sections, with one leg delayed with respect to the other, which would otherwise double the power imposed onto the various optics thereby halving the damage threshold, for the same irradiance on target. The 6.151keV two frame technique has recently been used to image imploding wire arrays, using a 7.3ns interframe time. The diagnostic will soon be converted to operate with p-rather than s-polarized laser light for enhanced laser absorption in the Mn foil, plus other changes (e.g., operation at the possibly brighter 6.181keV Mn 1s2-1s2p singlet line), to increase x-ray yields. Also, a highly sensitive inline multiframe ultrafast (1ns gate time

  9. 2-20 ns interframe time 2-frame 6.151 keV x-ray imaging on the recently upgraded Z Accelerator: A progress report

    SciTech Connect

    Bennett, G. R.; Smith, I. C.; Shores, J. E.; Sinars, D. B.; Robertson, G.; Atherton, B. W.; Jones, M. C.; Porter, J. L.

    2008-10-15

    When used for the production of an x-ray imaging backlighter source on Sandia National Laboratories' recently upgraded 26 MA Z Accelerator, the terawatt-class, multikilojoule, 526.57 nm Z-Beamlet laser (ZBL) [P. K. Rambo et al., Appl. Opt. 44, 2421 (2005)], in conjunction with the 6.151 keV (1s{sup 2}-1s2p triplet line of He-like Mn) curved-crystal imager [D. B. Sinars et al., Rev. Sci. Instrum. 75, 3672 (2004); G. R. Bennett et al., Rev. Sci. Instrum. 77, 10E322 (2006)], is capable of providing a high quality x radiograph per Z shot for inertial confinement fusion (ICF), complex hydrodynamics, and other high-energy-density physics experiments. For example, this diagnostic has recently afforded microgram-scale mass perturbation measurements on an imploding ignition-scale 1 mg ICF capsule [G. R. Bennett et al., Phys. Rev. Lett. 99, 205003 (2007)], where the perturbation was initiated by a surrogate deuterium-tritium (DT) fuel fill tube. Using an angle-time multiplexing technique, ZBL now has the capability to provide two spatially and temporally separated foci in the Z chamber, allowing 'two-frame' imaging to be performed, with an interframe time range of 2-20 ns. This multiplexing technique allows the full area of the four-pass amplifiers to be used for the two pulses, rather than split the amplifiers effectively into two rectangular sections, with one leg delayed with respect to the other, which would otherwise double the power imposed onto the various optics thereby halving the damage threshold, for the same irradiance on target. The 6.151 keV two frame technique has recently been used to image imploding wire arrays, using a 7.3 ns interframe time. The diagnostic will soon be converted to operate with p-rather than s-polarized laser light for enhanced laser absorption in the Mn foil, plus other changes (e.g., operation at the possibly brighter 6.181 keV Mn 1s{sup 2}-1s2p singlet line), to increase x-ray yields. Also, a highly sensitive inline multiframe ultrafast

  10. 2-20 ns interframe time 2-frame 6.151 keV x-ray imaging on the recently upgraded Z Accelerator: a progress report.

    PubMed

    Bennett, G R; Smith, I C; Shores, J E; Sinars, D B; Robertson, G; Atherton, B W; Jones, M C; Porter, J L

    2008-10-01

    When used for the production of an x-ray imaging backlighter source on Sandia National Laboratories' recently upgraded 26 MA Z Accelerator, the terawatt-class, multikilojoule, 526.57 nm Z-Beamlet laser (ZBL) [P. K. Rambo et al., Appl. Opt. 44, 2421 (2005)], in conjunction with the 6.151 keV (1s(2)-1s2p triplet line of He-like Mn) curved-crystal imager [D. B. Sinars et al., Rev. Sci. Instrum. 75, 3672 (2004); G. R. Bennett et al., Rev. Sci. Instrum. 77, 10E322 (2006)], is capable of providing a high quality x radiograph per Z shot for inertial confinement fusion (ICF), complex hydrodynamics, and other high-energy-density physics experiments. For example, this diagnostic has recently afforded microgram-scale mass perturbation measurements on an imploding ignition-scale 1 mg ICF capsule [G. R. Bennett et al., Phys. Rev. Lett. 99, 205003 (2007)], where the perturbation was initiated by a surrogate deuterium-tritium (DT) fuel fill tube. Using an angle-time multiplexing technique, ZBL now has the capability to provide two spatially and temporally separated foci in the Z chamber, allowing "two-frame" imaging to be performed, with an interframe time range of 2-20 ns. This multiplexing technique allows the full area of the four-pass amplifiers to be used for the two pulses, rather than split the amplifiers effectively into two rectangular sections, with one leg delayed with respect to the other, which would otherwise double the power imposed onto the various optics thereby halving the damage threshold, for the same irradiance on target. The 6.151 keV two frame technique has recently been used to image imploding wire arrays, using a 7.3 ns interframe time. The diagnostic will soon be converted to operate with p-rather than s-polarized laser light for enhanced laser absorption in the Mn foil, plus other changes (e.g., operation at the possibly brighter 6.181 keV Mn 1s(2)-1s2p singlet line), to increase x-ray yields. Also, a highly sensitive inline multiframe ultrafast (1 ns

  11. Zone plate tilt study in transmission x-ray microscope system at 8-11 keV

    NASA Astrophysics Data System (ADS)

    Chao, Fu-Han; Yin, Gung-Chian; Liang, Keng S.; Lai, Yin-Chieh

    2009-08-01

    Zone plate [1] has been used as a focal lens in transmission X-ray microscope (TXM) optical system in recent decades [2, 3]. In TXM of NSRRC[4,5], the thickness of zone plate is about 900nm and the width of its out most zones is 50nm, which has a high aspect ratio 18. When zone plate is tilted, the image quality will be affected by aberration. Since the aspect ratio of zone plate is large, for incident beam, the shape of zone plate's transmission function will look different when zone plate is tilted. The both experimental and simulation result will be shown in this present. A five axes stage is designed and manufactured for the zone plate holder for three dimensional movement, tip and tilt. According to Fourier theory, we can calculate the wave distribution on image plane, if we know the original wave function, the distances between each element, and the transparencies of the sample and zone plate. A parallel simulation process code in MATLAB is developed in workstation cluster with up to 128Gbytes memory. The effects of aberration generated by tilt effect are compared from the experimental data and simulation result. A maximum tilt angle within the acceptable image quality is calculated by simulation and will be verified by experiment.

  12. The X-ray outburst of the Galactic Centre magnetar SGR J1745-2900 during the first 1.5 year

    NASA Astrophysics Data System (ADS)

    Coti Zelati, F.; Rea, N.; Papitto, A.; Viganò, D.; Pons, J. A.; Turolla, R.; Esposito, P.; Haggard, D.; Baganoff, F. K.; Ponti, G.; Israel, G. L.; Campana, S.; Torres, D. F.; Tiengo, A.; Mereghetti, S.; Perna, R.; Zane, S.; Mignani, R. P.; Possenti, A.; Stella, L.

    2015-05-01

    In 2013 April a new magnetar, SGR 1745-2900, was discovered as it entered an outburst, at only 2.4 arcsec angular distance from the supermassive black hole at the centre of the Milky Way, Sagittarius A*. SGR 1745-2900 has a surface dipolar magnetic field of ˜2 × 1014 G, and it is the neutron star closest to a black hole ever observed. The new source was detected both in the radio and X-ray bands, with a peak X-ray luminosity LX ˜ 5 × 1035 erg s-1. Here we report on the long-term Chandra (25 observations) and XMM-Newton (eight observations) X-ray monitoring campaign of SGR 1745-2900 from the onset of the outburst in 2013 April until 2014 September. This unprecedented data set allows us to refine the timing properties of the source, as well as to study the outburst spectral evolution as a function of time and rotational phase. Our timing analysis confirms the increase in the spin period derivative by a factor of ˜2 around 2013 June, and reveals that a further increase occurred between 2013 October 30 and 2014 February 21. We find that the period derivative changed from 6.6 × 10-12 to 3.3 × 10-11 s s-1 in 1.5 yr. On the other hand, this magnetar shows a slow flux decay compared to other magnetars and a rather inefficient surface cooling. In particular, starquake-induced crustal cooling models alone have difficulty in explaining the high luminosity of the source for the first ˜200 d of its outburst, and additional heating of the star surface from currents flowing in a twisted magnetic bundle is probably playing an important role in the outburst evolution.

  13. Measurement of the x-ray mass attenuation coefficient of copper using 8.85-20 keV synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Chantler, C. T.; Tran, C. Q.; Barnea, Z.; Paterson, D.; Cookson, D. J.; Balaic, D. X.

    2001-12-01

    This work presents the x-ray extended range technique for measuring x-ray mass attenuation coefficients. This technique includes the use of multiple foil attenuators at each energy investigated, allowing independent tests of detector linearity and of the harmonic contributions to the monochromated synchrotron beam. Measurements over a wide energy range allow the uncertainty of local foil thickness to be minimized by the calibration of thin sample measurements to those of thick samples. The use of an extended criterion for sample thickness selection allows direct determination of dominant systematics, with an improvement of accuracies compared to previous measurements by up to factors of 20. Resulting accuracies for attenuation coefficients of copper (8.84 to 20 keV) are 0.27-0.5 %, with reproducibility of 0.02%. We also extract the imaginary component of the form factor from the data with the same accuracy. Results are compared to theoretical calculations near and away from the absorption edge. The accuracy challenges available theoretical calculations, and observed discrepancies of 10% between current theory and experiments can now be addressed.

  14. 3.5 keV X-ray line signal from decay of right-handed neutrino due to transition magnetic moment

    NASA Astrophysics Data System (ADS)

    Modak, Kamakshya Prasad

    2015-03-01

    We consider the dark matter model with radiative neutrino mass generation where the Standard Model is extended with three right-handed singlet neutrinos ( N 1, N 2 and N 3) and one additional SU(2) L doublet scalar η. One of the right-handed neutrinos ( N 1), being lightest among them, is a leptophilic fermionic dark matter candidate whose stability is ensured by the imposed symmetry on this model. The second lightest right-handed neutrino ( N 2) is assumed to be nearly degenerated in mass with the lightest one enhancing the co-annihilation between them. The effective interaction term among the lightest, second lightest right-handed neutrinos and photon containing transition magnetic moment is responsible for the decay of heavier right-handed neutrino to the lightest one and a photon ( N 2 → N 1 + γ). This radiative decay of heavier right-handed neutrino with charged scalar and leptons in internal lines could explain the X-ray line signal ˜ 3 .5 keV recently claimed by XMM-Newton X-ray observatory from different galaxy clusters and Andromeda galaxy (M31). The value of the transition magnetic moment is computed and found to be several orders of magnitude below the current reach of various direct dark matter searches. The other parameter space in this framework in the light of the observed signal is further investigated.

  15. The Origin of the Local 1/4-KeV X-Ray Flux in Both Charge Exhange and a Hot Bubble

    NASA Technical Reports Server (NTRS)

    Galeazzi, M.; Chiao, M.; Collier, M. R.; Cravens, T.; Koutroumpa, D.; Kuntz, K. D.; Lallement, R.; Lepri, S. T.; McCammon, D.; Morgan, K.; Porter, F. S.; Robertson, I. P.; Snowden, S. L.; Thomas, N. E.; Uprety, Y.; Ursino, E.; Walsh, B. M.

    2014-01-01

    The solar neighbourhood is the closest and most easily studied sample of the Galactic interstellar medium, an understanding of which is essential for models of star formation and galaxy evolution. Observations of an unexpectedly intense diffuse flux of easily absorbed 1/4-kiloelectronvolt X-rays coupled with the discovery that interstellar space within about a hundred parsecs of the Sun is almost completely devoid of cool absorbing gas, led to a picture of a 'local cavity' filled with X-ray-emitting hot gas, dubbed the local hot bubble. This model was recently challenged by suggestions that the emission could instead be readily produced within the Solar System by heavy solar-wind ions exchanging electrons with neutral H and He in interplanetary space, potentially removing the major piece of evidence for the local existence of million-degree gas within the Galactic disk. Here we report observations showing that the total solar wind charge-exchange contribution is approximately 40 percent of the 1/4-keV flux in the Galactic plane. The fact that the measured flux is not dominated by charge exchange supports the notion of a million-degree hot bubble extending about a hundred parsecs from the Sun.

  16. Hidden axion dark matter decaying through mixing with QCD axion and the 3.5 keV X-ray line

    SciTech Connect

    Higaki, Tetsutaro; Kitajima, Naoya; Takahashi, Fuminobu E-mail: kitajima@tuhep.phys.tohoku.ac.jp

    2014-12-01

    Hidden axions may be coupled to the standard model particles through a kinetic or mass mixing with QCD axion. We study a scenario in which a hidden axion constitutes a part of or the whole of dark matter and decays into photons through the mixing, explaining the 3.5 keV X-ray line signal. Interestingly, the required long lifetime of the hidden axion dark matter can be realized for the QCD axion decay constant at an intermediate scale, if the mixing is sufficiently small. In such a two component dark matter scenario, the primordial density perturbations of the hidden axion can be highly non-Gaussian, leading to a possible dispersion in the X-ray line strength from various galaxy clusters and near-by galaxies. We also discuss how the parallel and orthogonal alignment of two axions affects their couplings to gauge fields. In particular, the QCD axion decay constant can be much larger than the actual Peccei-Quinn symmetry breaking.

  17. The origin of the local 1/4-keV X-ray flux in both charge exchange and a hot bubble.

    PubMed

    Galeazzi, M; Chiao, M; Collier, M R; Cravens, T; Koutroumpa, D; Kuntz, K D; Lallement, R; Lepri, S T; McCammon, D; Morgan, K; Porter, F S; Robertson, I P; Snowden, S L; Thomas, N E; Uprety, Y; Ursino, E; Walsh, B M

    2014-08-14

    The solar neighbourhood is the closest and most easily studied sample of the Galactic interstellar medium, an understanding of which is essential for models of star formation and galaxy evolution. Observations of an unexpectedly intense diffuse flux of easily absorbed 1/4-kiloelectronvolt X-rays, coupled with the discovery that interstellar space within about a hundred parsecs of the Sun is almost completely devoid of cool absorbing gas, led to a picture of a 'local cavity' filled with X-ray-emitting hot gas, dubbed the local hot bubble. This model was recently challenged by suggestions that the emission could instead be readily produced within the Solar System by heavy solar-wind ions exchanging electrons with neutral H and He in interplanetary space, potentially removing the major piece of evidence for the local existence of million-degree gas within the Galactic disk. Here we report observations showing that the total solar-wind charge-exchange contribution is approximately 40 per cent of the 1/4-keV flux in the Galactic plane. The fact that the measured flux is not dominated by charge exchange supports the notion of a million-degree hot bubble extending about a hundred parsecs from the Sun. PMID:25079321

  18. Note: On the generation of sub-300 keV flash-X-rays using rod-pinch diode: an experimental investigation.

    PubMed

    Satyanarayana, N; Rajawat, R K; Basu, Shibaji; Rao, A Durga Prasad; Mittal, K C

    2014-09-01

    Generation of flash X-rays (FXRs) at less than 500 keV is described with emphasis on experimental investigation. The pulser is a Tesla transformer-Water transmission line based pulsed power generator operating in double resonance mode to power a rod-pinch diode. The configuration of aspect ratio reported here falls much below the normally reported ratios for the rod-pinch diode operation. Experimental investigation at such low pulsed voltage has revealed "flowering" of the anode tip and "pitting" of the perspex window. A possible explanation in terms of Lorentz body force is discussed rather than the pinch mechanism generally suggested in literature. The experimental investigation for the FXR generation is corroborated by measuring the radiation dose using CaSO4 (Dy) thermo luminescent dosimeters. PMID:25273793

  19. Note: On the generation of sub-300 keV flash-X-rays using rod-pinch diode: An experimental investigation

    NASA Astrophysics Data System (ADS)

    Satyanarayana, N.; Rajawat, R. K.; Basu, Shibaji; Rao, A. Durga Prasad; Mittal, K. C.

    2014-09-01

    Generation of flash X-rays (FXRs) at less than 500 keV is described with emphasis on experimental investigation. The pulser is a Tesla transformer-Water transmission line based pulsed power generator operating in double resonance mode to power a rod-pinch diode. The configuration of aspect ratio reported here falls much below the normally reported ratios for the rod-pinch diode operation. Experimental investigation at such low pulsed voltage has revealed "flowering" of the anode tip and "pitting" of the perspex window. A possible explanation in terms of Lorentz body force is discussed rather than the pinch mechanism generally suggested in literature. The experimental investigation for the FXR generation is corroborated by measuring the radiation dose using CaSO4 (Dy) thermo luminescent dosimeters.

  20. Note: On the generation of sub-300 keV flash-X-rays using rod-pinch diode: An experimental investigation

    SciTech Connect

    Satyanarayana, N.; Rajawat, R. K.; Basu, Shibaji; Rao, A. Durga Prasad; Mittal, K. C.

    2014-09-15

    Generation of flash X-rays (FXRs) at less than 500 keV is described with emphasis on experimental investigation. The pulser is a Tesla transformer-Water transmission line based pulsed power generator operating in double resonance mode to power a rod-pinch diode. The configuration of aspect ratio reported here falls much below the normally reported ratios for the rod-pinch diode operation. Experimental investigation at such low pulsed voltage has revealed “flowering” of the anode tip and “pitting” of the perspex window. A possible explanation in terms of Lorentz body force is discussed rather than the pinch mechanism generally suggested in literature. The experimental investigation for the FXR generation is corroborated by measuring the radiation dose using CaSO{sub 4} (Dy) thermo luminescent dosimeters.

  1. Common origin of the 3.55 keV x-ray line and the Galactic Center gamma-ray excess in a radiative neutrino mass model

    NASA Astrophysics Data System (ADS)

    Borah, Debasish; Dasgupta, Arnab; Adhikari, Rathin

    2015-10-01

    We attempt to simultaneously explain the recently observed 3.55 keV x-ray line in the analysis of XMM-Newton telescope data and the Galactic Center gamma ray excess observed by the Fermi Gamma Ray Space Telescope within an Abelian gauge extension of the standard model. We consider a two component dark matter scenario with tree level mass difference 3.55 keV such that the heavier one can decay into the lighter one and a photon with energy 3.55 keV. The lighter dark matter candidate is protected from decaying into the standard model particles by a remnant Z2 symmetry into which the Abelian gauge symmetry gets spontaneously broken. If the mass of the dark matter particle is chosen to be within 31-40 GeV, then this model can also explain the Galactic Center gamma ray excess if the dark matter annihilation into b b ¯ pairs has a cross section of ⟨σ v ⟩≃(1.4 -2.0 )×1 0-26 cm3/s . We constrain the model from the requirement of producing correct dark matter relic density, 3.55 keV x-ray line flux, and Galactic Center gamma ray excess. We also impose the bounds coming from dark matter direct detection experiments as well as collider limits on additional gauge boson mass and gauge coupling. We also briefly discuss how this model can give rise to subelectron volt neutrino masses at tree level as well as the one-loop level while keeping the dark matter mass at a few tens of giga-electron volts. We also constrain the model parameters from the requirement of keeping the one-loop mass difference between two dark matter particles below a kilo-electron volt. We find that the constraints from light neutrino mass and kilo-electron volt mass splitting between two dark matter components show more preference for opposite C P eigenvalues of the two fermion singlet dark matter candidates in the model.

  2. X-ray absorption measurements of charge-ordered La{sub 0.5}Sr{sub 1.5}MnO{sub 4}

    SciTech Connect

    Saitoh, T.; Villella, P.M.; Dessau, D.S.

    1997-04-01

    Perovskite and {open_quotes}layered perovskite{close_quotes}-type manganese oxides show a variety of electronic and magnetic properties such as the colossal magnetoresistance (CMR) or the charge ordering. Among them, La{sub 0.5}Sr{sub 1.5}MnO{sub 4} (K{sub 2}NiF{sub 4} structure) which has 0.5 holes per Mn site (d{sup 3.5}) shows the charge-order transition at {approximately}220 K below which Mn{sup 3+} and Mn{sup 4+} sites are believed to order in the CE-type. Although the charge ordering phenomenon has also been observed in the perovskite manganites Pr{sub 0.5}Sr{sub 1.5}MnO{sub 3} or Pr{sub 0.5}Ca{sub 1.5}MnO{sub 3}, the present system has another advantage that it has a layered structure. This enables the authors to address the issue of the orbital symmetry which should be directly related to the charge ordering. In this report, they present the results of x-ray absorption spectroscopy (XAS) on La{sub 0.5}Sr{sub 1.5}MnO{sub 4}, for two polarization angles and two (above and below the transition temperature T{sub CO}) temperatures.

  3. Phase transition kinetics of LiNi0.5Mn1.5O4 analyzed by temperature-controlled operando X-ray absorption spectroscopy.

    PubMed

    Takahashi, Ikuma; Arai, Hajime; Murayama, Haruno; Sato, Kenji; Komatsu, Hideyuki; Tanida, Hajime; Koyama, Yukinori; Uchimoto, Yoshiharu; Ogumi, Zempachi

    2016-01-21

    LiNi0.5Mn1.5O4 (LNMO) is a promising positive electrode material for lithium ion batteries because it shows a high potential of 4.7 V vs. Li/Li(+). Its charge-discharge reaction includes two consecutive phase transitions between LiNi0.5Mn1.5O4 (Li1) ↔ Li0.5Ni0.5Mn1.5O4 (Li0.5) and Li0.5 ↔ Ni0.5Mn1.5O4 (Li0) and the complex transition kinetics that governs the rate capability of LNMO can hardly be analyzed by simple electrochemical techniques. Herein, we apply temperature-controlled operando X-ray absorption spectroscopy to directly capture the reacting phases from -20 °C to 40 °C under potential step (chronoamperometric) conditions and evaluate the phase transition kinetics using the apparent first-order rate constants at various temperatures. The constant for the Li1 ↔ Li0.5 transition (process 1) is larger than that for the Li0.5 ↔ Li0 transition (process 2) at all the measured temperatures, and the corresponding activation energies are 29 and 46 kJ mol(-1) for processes 1 and 2, respectively. The results obtained are discussed to elucidate the limiting factor in this system as well as in other electrode systems. PMID:26686382

  4. Compact focusing spectrometer: Visible (1 eV) to hard x-rays (200 keV)

    NASA Astrophysics Data System (ADS)

    Baronova, E. O.; Stepanenko, A. M.; Pereira, N. R.

    2014-11-01

    A low-cost spectrometer that covers a wide range of photon energies can be useful to teach spectroscopy, and for simple, rapid measurements of the photon spectrum produced by small plasma devices. The spectrometer here achieves its wide range, nominally from 1 eV to 200 keV, with a series of spherically and cylindrically bent gratings or crystals that all have the same shape and the same radius of curvature; they are complemented by matching apertures and diagnostics on the Rowland circle that serves as the circular part of the spectrometer's vacuum vessel. Spectral lines are easily identified with software that finds their positions from the dispersion of each diffractive element and the known energies of the lines.

  5. Synthesis, X-ray crystal structure and fluorescent spectra of novel pyrazolo[1,5- a]pyrazin-4(5 H)-one derivatives

    NASA Astrophysics Data System (ADS)

    Zheng, Liang-Wen; Gong, Zhong-Liang; Liu, Wen-Long; Liu, Ying-Rui; Zhao, Bao-Xiang

    2011-10-01

    A series of fluorescent compounds, containing pyrazolo[1,5- a]pyrazin-4(5 H)-one moiety, were designed and synthesized from ethyl 1-(2-oxo-2-phenylethyl)-3-phenyl-1 H-pyrazole-5-carboxylates. The structures of the compounds have been confirmed by IR, 1H NMR, HRMS and X-ray crystal diffraction. The optical properties of the compounds were investigated by UV-vis absorption and fluorescence spectroscopy. The effect of pH on the UV-vis absorption of compound 2a in methanol-H 2O solutions was studied and interpreted by theory calculation. The p Ka value of compound 2a was determined by the absorption spectra.

  6. New constraints on the 2-10 keV X-ray luminosity function from the Chandra COSMOS Legacy Survey

    NASA Astrophysics Data System (ADS)

    Marchesi, Stefano; Civano, Francesca M.; Elvis, Martin; Urry, C. Megan; Comastri, Andrea; Chandra Cosmos Legacy Team

    2015-01-01

    In this talk, we present new results on number counts and luminosity function in the 0.5-2 and 2-10 keV bands, obtained in the Chandra COSMOS Legacy Survey. The COSMOS field is the largest (2 deg2) field with a complete coverage at any wavelength, and the Chandra COSMOS-Legacy survey uniformly covers the 1.7 deg2 COSMOS/HST field to ~160 ksec depth, with a total of 2.8 Ms exposure time. This triples the area of the earlier deep C-COSMOS survey (limiting flux ~3e-16 ergs/cm2/s in the 0.5-2 keV band), and together these two projects cover a total area of 2.2 deg2, yielding a sample of ~4100 X-ray sources, ~2300 of which have been detected in the new observations. We describe how the survey improves our knowledge in the galaxy-super massive black hole co-evolution.

  7. Structure formation in a mixed dark matter model with decaying sterile neutrino: the 3.5 keV X-ray line and the Galactic substructure

    NASA Astrophysics Data System (ADS)

    Harada, Akira; Kamada, Ayuki

    2016-01-01

    We perform a set of cosmological simulations of structure formation in a mixed dark matter (MDM) model. Our model is motivated by the recently identified 3.5 keV X-ray line, which can be explained by the decay of non-resonantly produced sterile neutrinos accounting for 20-60% of the dark matter in the Universe. These non-resonantly produced sterile neutrinos have a sizable free-streaming length and hence behave effectively as warm dark matter (WDM). Assuming the rest of dark matter is composed of some cold dark matter (CDM) particles, we follow the coevolution of a mixed WDM plus CDM cosmology. Specifically, we consider the models with the warm component fraction of rwarm=0.25 and 0.50. Our MDM models predict that the comoving Jeans length at the matter-radiation equality is close to that of the thermally produced warm dark matter model with particle mass mWDM=2.4 keV, but the suppression in the fluctuation power spectrum is weaker. We perform large N-body simulations to study the structure of non-linear dark halos in the MDM models. The abundance of substructure is significantly reduced in the MDM models, and hence the so-called small-scale crisis is mitigated. The cumulative maximum circular velocity function (CVF) of at least one halo in the MDM models is in good agreement with the CVFs of the observed satellites in the Milky Way and the Andromeda galaxy. We argue that the MDM models open an interesting possibility to reconcile the reported 3.5 keV line and the internal structure of galaxies.

  8. 3.5 keV x rays as the "21 cm line" of dark atoms, and a link to light sterile neutrinos

    NASA Astrophysics Data System (ADS)

    Cline, James M.; Liu, Zuowei; Moore, Guy D.; Farzan, Yasaman; Xue, Wei

    2014-06-01

    The recently discovered 3.5 keV x-ray line from extragalactic sources may be evidence of dark matter scatterings or decays. We show that dark atoms can be the source of the emission, through their hyperfine transitions, which would be the analog of 21 cm radiation from a dark sector. We identify two families of dark atom models that match the x-ray observations and are consistent with other constraints. In the first, the hyperfine excited state is long lived compared to the age of the Universe, and the dark atom mass is relatively unconstrained; dark atoms could be strongly self-interacting in this case. In the second, the excited state is short lived, and viable models are parametrized by the value of the dark proton-to-electron mass ratio R: for R =102-104, the dark atom mass is predicted to be in the range 350-1300 GeV, with fine structure constant α'≅0.1-0.6. In either class of models, the dark photon is expected to be massive with mγ'˜1 MeV and decay into e+e-. Evidence for the model could come from direct detection of the dark atoms. In a natural extension of this framework, the dark photon could decay predominantly into invisible particles, for example, ˜0.5 eV sterile neutrinos, explaining the extra radiation degree of freedom recently suggested by data from BICEP2, while remaining compatible with big bang nucleosynthesis.

  9. X-shooter reveals powerful outflows in z ˜ 1.5 X-ray selected obscured quasi-stellar objects

    NASA Astrophysics Data System (ADS)

    Brusa, M.; Bongiorno, A.; Cresci, G.; Perna, M.; Marconi, A.; Mainieri, V.; Maiolino, R.; Salvato, M.; Lusso, E.; Santini, P.; Comastri, A.; Fiore, F.; Gilli, R.; La Franca, F.; Lanzuisi, G.; Lutz, D.; Merloni, A.; Mignoli, M.; Onori, F.; Piconcelli, E.; Rosario, D.; Vignali, C.; Zamorani, G.

    2015-01-01

    We present X-shooter at Very Large Telescope observations of a sample of 10 luminous, X-ray obscured quasi-stellar objects (QSOs) at z ˜ 1.5 from the XMM-COSMOS survey, expected to be caught in the transitioning phase from starburst to active galactic nucleus (AGN)-dominated systems. The main selection criterion is X-ray detection at bright fluxes (LX ≳ 1044 erg s-1) coupled to red optical-to-near-infrared-to-mid-infrared colours. Thanks to its large wavelength coverage, X-shooter allowed us to determine accurate redshifts from the presence of multiple emission lines for five out of six targets for which we had only a photometric redshift estimate, with an 80 per cent success rate, significantly larger than what is observed in similar programs of spectroscopic follow-up of red QSOs. We report the detection of broad and shifted components in the [O III] λλ5007, 4959 complexes for six out of eight sources with these lines observable in regions free from strong atmospheric absorptions. The full width at half-maximum (FWHM) associated with the broad components are in the range FWHM ˜ 900-1600 km s-1, larger than the average value observed in Sloan Digital Sky Survey type 2 AGN samples at similar observed [O III] luminosity, but comparable to those observed for QSO/ultraluminous infrared galaxies systems for which the presence of kpc scale outflows has been revealed through integral field unit spectroscopy. Although the total outflow energetics (inferred under reasonable assumptions) may be consistent with winds accelerated by stellar processes, we favour an AGN origin for the outflows given the high outflow velocities observed (v > 1000 km s-1) and the presence of strong winds also in objects undetected in the far-infrared.

  10. LiNi(0.5)Mn(1.5)O4 high-voltage cathode coated with Li4Ti5O12: a hard X-ray photoelectron spectroscopy (HAXPES) study.

    PubMed

    Sachs, Malte; Gellert, Michael; Chen, Min; Drescher, Hans-Jörg; Kachel, Stefan Renato; Zhou, Han; Zugermeier, Malte; Gorgoi, Mihaela; Roling, Bernhard; Gottfried, J Michael

    2015-12-21

    A Li4Ti5O12 (LTO) film was coated as buffer layer onto a LiNi0.5Mn1.5O4 (LNMO) high-voltage cathode, and after cycling of the cathode in a battery electrolyte, the LTO film was investigated by means of synchrotron radiation based hard X-ray photoelectron spectroscopy (HAXPES). By tuning the photon energy between 2 keV and 6 keV, we obtained non-destructive depth profiles of the coating material with probing depths ranging from 6 nm to 20 nm. The coating was found to be covered by a few nanometers thin surface layer resulting from electrolyte decomposition. This layer consisted predominantly of organic polymers as well as metal fluorides and fluorophosphates. A positive influence of the Li4Ti5O12 coating with regard to the size and stability of the surface layer was found. The coating itself consisted of a uniform mixture of Li(I), Ti(IV), Ni(II) and Mn(IV) oxides that most likely adopted a spinel structure by forming a solid solution of the two spinels LiNi0.5Mn1.5O4 and Li4Ti5O12 with Li, Mn, Ni and Ti cations mixing on the spinel octahedral sites. The diffusion of Ni and Mn ions into the Li4Ti5O12 lattice occurred during the heat treatment when preparing the cathode. The doping of Li4Ti5O12 with the open d-shell ions Ni(2+) (d(8)) and Mn(4+) (d(3)) should increase the electronic conductivity of the coating significantly, as was found in previous studies. The complex signal structure of the Ti 2p, Ni 2p and Mn 2p core levels provides insight into the chemical nature of the transition metal ions. PMID:26563554

  11. Overproduction, crystallization and preliminary X-ray characterization of Abn2, an endo-1,5-α-arabinanase from Bacillus subtilis

    SciTech Connect

    Sanctis, Daniele de Bento, Isabel; Inácio, José Manuel; Custódio, Sónia; Sá-Nogueira, Isabel de; Carrondo, Maria Arménia

    2008-07-01

    Native and selenomethionine-derivative Abn2 have been expressed, purified and crystallized. Solution of the selenium substructure allowed the calculation of an initial experimental map at 2.7 Å resolution. Two Bacillus subtilis extracellular endo-1,5-α-l-arabinanases, AbnA and Abn2, belonging to glycoside hydrolase family 43 have been identified. The recently characterized Abn2 protein hydrolyzes arabinan and has low identity to other reported 1,5-α-l-arabinanases. Abn2 and its selenomethionine (SeMet) derivative have been purified and crystallized. Crystals appeared in two different space groups: P1, with unit-cell parameters a = 51.9, b = 57.6, c = 86.2 Å, α = 82.3, β = 87.9, γ = 63.6°, and P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 57.9, b = 163.3, c = 202.0 Å. X-ray data have been collected for the native and the SeMet derivative to 1.9 and 2.7 Å resolution, respectively. An initial model of Abn2 is being built in the SeMet-phased map.

  12. Ionic Liquids as a Reference Material Candidate for the Quick Performance Check of Energy Dispersive X-ray Spectrometers for the Low Energy Range below 1 keV

    PubMed Central

    2016-01-01

    Ionic liquids (ILs) are proposed as simple and efficient test materials to evaluate the performance of energy dispersive X-ray spectrometers (EDS) in the low energy range below 1 keV. By only one measurement, C Kα, N Kα, O Kα, and F Kα X-ray lines can be excited. Additionally, the S Kα line at 2.3 keV and, particularly, the S L series at 149 eV complete the picture with X-ray lines offered by the selected ILs. The well-known (certifiable) elemental composition of the ILs selected in the present study can be used to check the accuracy of results produced with the available EDS quantification routines in the low energy range, simultaneously, for several low atomic number elements. A comparison with other reference materials in use for testing the performance of EDS in the low energy range is included. PMID:27336962

  13. New-Generation Laser-lithographed Dual-Axis Magnetically Assisted Remote-controlled Endovascular Catheter for Interventional MR Imaging: In Vitro Multiplanar Navigation at 1.5 T and 3 T versus X-ray Fluoroscopy

    PubMed Central

    Moftakhar, Parham; Lillaney, Prasheel; Losey, Aaron D.; Cooke, Daniel L.; Martin, Alastair J.; Thorne, Bradford R. H.; Arenson, Ronald L.; Saeed, Maythem; Wilson, Mark W.

    2015-01-01

    Purpose To assess the feasibility of multiplanar vascular navigation with a new magnetically assisted remote-controlled (MARC) catheter with real-time magnetic resonance (MR) imaging at 1.5 T and 3 T and to compare it with standard x-ray guidance in simulated endovascular catheterization procedures. Materials and Methods A 1.6-mm–diameter custom clinical-grade microcatheter prototype with lithographed double-saddle coils at the distal tip was deflected with real-time MR imaging. Two inexperienced operators and two experienced operators catheterized anteroposterior (celiac, superior mesenteric, and inferior mesenteric arteries) and mediolateral (renal arteries) branch vessels in a cryogel abdominal aortic phantom. This was repeated with conventional x-ray fluoroscopy by using clinical catheters and guidewires. Mean procedure times and percentage success data were analyzed with linear mixed-effects regression. Results The MARC catheter tip was visible at 1.5 T and 3 T. Among inexperienced operators, MARC MR imaging guidance was not statistically different from x-ray guidance at 1.5 T (67% successful vessel selection turns with MR imaging vs 76% with x-ray guidance, P = .157) and at 3 T (75% successful turns with MR imaging vs 76% with x-ray guidance, P = .869). Experienced operators were more successful in catheterizing vessels with x-ray guidance (98% success within 60 seconds) than with 1.5-T (65%, P < .001) or 3-T (75%) MR imaging. Among inexperienced operators, mean procedure time was nearly equivalent by using MR imaging (31 seconds) and x-ray guidance (34 seconds, P = .436). Among experienced operators, catheterization was faster with x-ray guidance (20 seconds) compared with 1.5-T MR imaging (42 seconds, P < .001), but MARC guidance improved at 3 T (31 seconds). MARC MR imaging guidance at 3 T was not significantly different from x-ray guidance for the celiac (P = .755), superior mesenteric (P = .358), and inferior mesenteric (P = .065) arteries. Conclusion

  14. A New Measurement of the Cosmic X-ray Background

    SciTech Connect

    Moretti, A.

    2009-05-11

    I present a new analytical description of the cosmic X-ray background (CXRB) spectrum in the 1.5-200 keV energy band, obtained by combining the new measurement performed by the Swift X-ray telescope (XRT) with the recently published Swift burst alert telescope (BAT) measurement. A study of the cosmic variance in the XRT band (1.5-7 keV) is also presented. I find that the expected cosmic variance (expected from LogN-LogS) scales as {omega}{sup -0.3}(where {omega} is the surveyed area) in very good agreement with XRT data.

  15. Subattosecond keV beats of the high-harmonic x-ray field produced with few-cycle mid-IR laser pulses: Magnetic-field effects

    NASA Astrophysics Data System (ADS)

    Emelina, A. S.; Emelin, M. Yu.; Ryabikin, M. Yu.

    2016-04-01

    Using the theoretical description beyond the dipole approximation, we examine the impact of the electron magnetic drift caused by a strong midinfrared laser field on the feasibility and ultimate limitations of the method proposed recently [C. Hernández-García et al., Phys. Rev. Lett. 111, 033002 (2013), 10.1103/PhysRevLett.111.033002] as a route to the generation of zeptosecond x-ray waveforms; this method relies on the interference of high-harmonic emission from multiple reencounters of the electron wave packet with the ion. We show that the electron magnetic drift serves as the spectral filter changing the relative weights of the contributions to the high-harmonic signal from different rescattering events. For a range of driving wavelengths in the midinfrared, the use of the control of the carrier-envelope phase, occasionally in combination with the spectral filtering, to cope with the magnetic drift effect is shown to facilitate the production of intense high-contrast keV beats of durations shorter than 0.8 attosecond. The limitations on the laser wavelengths usable for implementing this approach are determined by the growing unamendable imbalance between the contributions of interfering paths and by an overall decline in the efficiency of high-harmonic generation at longer driving wavelengths.

  16. The symbiosis of variable absorption and blurred reflection in the X-ray-absorbed Seyfert 1.5 galaxy NGC 4151

    NASA Astrophysics Data System (ADS)

    Beuchert, T.; Markowitz, A.; Dauser, T.; García, J.; Keck, M.; Brenneman, L.; Zdziarski, A.; Wilms, J.; Kadler, M.

    2016-06-01

    We present results on time resolved spectroscopy of the Seyfert 1.5 galaxy NGC 4151. Suzaku, NuSTAR and XMM-Newton observations from mid 2011 until the end of 2012 reveal significant variability in absorption by intermediately ionized gas on various time-scales. The soft X-rays, on the other hand, stay rather constant, favoring emission from large-scale, diffuse gas. The soft emission lines are consistent with high resolution spectroscopic studies of the extended emission resolved with Chandra gratings. We extend on recent work by Keck et al., who modeled relativistically blurred, reflected disk emission in a 150 ks Suzaku/NuSTAR observation from 2012. They explored multiple emitting/reflecting components in the context of the "lamppost" geometry. We perform additional testing of blurred disk reflection in NGC 4151, using Suzaku and XMM-Newton observations. We use the latest version of RELXILL, which incorporates a fully angle-resolved treatment of ionized reflection in combination with a thermal Comptonization continuum.

  17. The X-ray outburst of the Galactic Centre magnetar SGR 1745-2900 during the first 1.5 year

    NASA Astrophysics Data System (ADS)

    Coti Zelati, F.; Rea, N.

    2016-06-01

    At a projected separation of 0.1 pc from the supermassive black hole at the Center of the Milky Way, Sgr A*, the transient magnetar SGR J1745-2900 holds the record as the closest neutron star to a black hole ever observed. SGR J1745-2900 has been the object of an intensive monitoring campaign in the X-rays for about 1.5 years since the outburst onset, from April 2013 until September 2014. Detailed analysis of the data has revealed an extremely slow flux decay compared to the other known transient magnetars, making this source rather unique. The extremely slow cooling is currently challenging the state-of-the art neutron star crustal cooling models. If the outburst evolution is indeed due to crustal cooling, as predicted and observed for all other magnetar outbursts in the past 10 years, then magnetic energy injection needs to be continuous over at least the first ˜200 days, something so far never observed for sources of the class. Alternatively, heating of the star surface may result from strong magnetospheric currents confined within a gradually shrinking magnetic bundle which impact upon the surface. However detailed numerical simulations are needed to confirm this possibility.

  18. Effect of external magnetic field on the Kβ/Kα X-ray intensity ratios of TixNi1-x alloys excited by 59.54 and 22.69keV photons.

    PubMed

    Perişanoğlu, Ufuk; Alım, Bünyamin; Uğurlu, Mine; Demir, Lütfü

    2016-09-01

    The effects of external magnetic field and exciting photon energies on the Kβ/Kα X-ray intensity ratios of various alloy compositions of Ti-Ni transition metal alloys have been investigated in this work using X-ray fluorescence spectroscopy. The spectrum of characteristic K-X-ray photons from pure Ti, pure Ni and TixNi1-x (x=0.30; 0.40; 0.50; 0.60; 0.70) alloys were detected with a high resolution Si (Li) solid-state detector. Firstly, Kβ/Kα X-ray intensity ratios of pure Ti, pure Ni and TixNi1-x alloys were measured following excitation by 59.54keV γ-rays from a 200mCi (241)Am radioactive point source without any magnetic field and under 0.5 and 1T external magnetic fields, separately. Later, the same measurements were repeated under the same experimental conditions for 22.69keV X-rays from a 370 MBq(1)(0)(9)Cd radioactive point source. The results obtained for Kβ/Kα X-ray intensity ratios of pure Ti, pure Ni, Ti and Ni in various Ti-Ni alloys were evaluated in terms of both external magnetic field effect and exciting photon energy effect. When the results obtained for both exciting photon energies are evaluated in terms of changing of Kβ/Kα X-ray intensity ratios depending on the alloy composition, the tendency of these changes are observed to be similar. Also, Kβ/Kα X-ray intensity ratios for all samples examined have changed with increasing external magnetic field. Therefore, the results obtained have shown that Kβ/Kα X-ray intensity ratios of Ti and Ni in TixNi1-x alloys are connected with the external magnetic field. The present study makes it possible to perform reliable interpretation of experimental Kβ/Kα X-ray intensity ratios for Ti, Ni and TixNi1-x alloys and can also provide quantitative information about the changes of the Kβ/Kα X-ray intensity ratios of these metals with alloy composition. PMID:27395003

  19. Monitoring X-Ray Emission from X-Ray Bursters

    NASA Technical Reports Server (NTRS)

    Kaaret, Philip

    1998-01-01

    The goal of this investigation was to use the All-Sky Monitor on the Rossi X-Ray Timing Explorer (RXTE) in combination with the Burst and Transient Source Experiment on the Compton Gamma-Ray Observatory to simultaneously measure the x-ray (2-12 keV) and hard x-ray (20-100 keV) emission from x-ray bursters. The investigation was successful. We made the first simultaneous measurement of hard and soft x-ray emission and found a strong anticorrelation of hard and soft x-ray emission from the X-Ray Burster 4U 0614+091. The monitoring performed under this investigation was also important in triggering target of opportunity observations of x-ray bursters made under the investigation hard x-ray emission of x-ray bursters approved for RXTE cycles 1 and 2. These observations lead to a number of papers on high-frequency quasi-periodic oscillations and on hard x-ray emission from the x-ray bursters 4U 0614+091 and 4U 1705-44.

  20. Energy dependence of photon-induced Kα and Kβ x-ray production cross-sections for some elements with 42≤Z≤68 in the energy range 38-80 keV

    NASA Astrophysics Data System (ADS)

    Seven, Sabriye; Erdoğan, Hasan

    2015-12-01

    The energy dependence of photon-induced Kα and Kβ x-ray production cross-sections for Mo, Ru, Pd, In, Sb, Cs, La, Pr, Sm, Tb and Er elements has been studied in the energy range of 38-80 keV with secondary excitation method. K x-ray intensities were measured using Energy Dispersive X-Ray Fluorescence (EDXRF) Spectrometry. The measurements have been made by observing the x-ray emissions, with the help of HPGe detector coupled with a multichannel analyzer. The areas of the Kα and Kβ spectral peaks, as well as the net peak areas, have been determined by a fitting process. The measured Kα and Kβ x-ray production cross-sections have been compared with calculated theoretical values in this energy regime. The results have been plotted versus excitation energy. The present experimental Kα and Kβ x-ray production cross-section values for all the elements were in general agreement with the theoretical values calculated using photoionization cross-sections, fluorescence yields and fractional rates based on Hartree-Slater potentials.

  1. The ROSAT X-ray background dipole

    NASA Astrophysics Data System (ADS)

    Plionis, M.; Georgantopoulos, I.

    1999-06-01

    We estimate the dipole of the diffuse 1.5-keV X-ray background from the ROSAT all-sky survey map of Snowden et al. We first subtract the diffuse Galactic emission by fitting an exponential scaleheight, finite-radius, disc model to the data. We further exclude regions of low galactic latitudes, of local X-ray emission (e.g. the North Polar Spur) and model them using two different methods. We find that the ROSAT X-ray background dipole points towards (l,b) ~ (288 deg 25 deg) +/- 19 deg in consistency with the cosmic microwave background (within ~ 30 deg) its direction is also in good agreement with the HEAO-1 X-ray dipole at harder energies. The normalized amplitude of the ROSAT XRB dipole is ~ 1.7 per cent. Subtracting from the ROSAT map the expected X-ray background dipole resulting from the reflex motion of the observer with respect to the cosmic rest frame (Compton-Getting effect) we find the large-scale dipole of the X-ray emitting extragalactic sources having an amplitude D_LSS ~ 0.9 D_XRB, in general agreement with the predictions of Lahav et al. We finally estimate that the Virgo cluster is responsible for ~ 20 per cent of the total measured XRB dipole amplitude.

  2. Scattering of x rays from low-Z materials

    SciTech Connect

    Gaines, J.L.; Kissel, L.D.; Catron, H.C.; Hansen, R.A.

    1980-08-01

    X rays incident on thin beryllium, boron, carbon, and other low-Z materials undergo both elastic and inelastic scattering as well as diffraction from the crystalline or crystalline-like structure of the material. Unpolarized monoenergetic x rays in the 1.5 to 8.0-keV energy range were used to determine the absolute scattering efficiency of thin beryllium, carbon, and boron foils. These measurements are compared to calculated scattering efficiencies predicted by single-atom theories. In addition, the relative scattering efficiency versus x-ray energy was measured for other low-Z foils using unpolarized bremsstrahlung x rays. In all the low-Z foils examined, we observed Bragg-like x-ray diffraction due to the ordered structure of the materials.

  3. Dynamical coherent illumination for X-ray microscopy at 3rd generation synchrotron radiation sources: First results with X-rays at the Ca-K edge (4 keV)

    NASA Astrophysics Data System (ADS)

    Oestreich, S.; Rostaing, G.; Niemann, B.; Kaulich, B.; Salomé, M.; Susini, J.; Barrett, R.

    2000-05-01

    Dynamical coherent illumination is a way to deal with the illumination problems which emerge from the use of low emittance sources at recent synchrotron radiation sources for a transmission X-ray microscope (TXM). An illumination system, which uses two rotating mirrors to provide dynamical coherent illumination has been realized and tested at the TXM at ESRF's ID 21 Beamline. First results are presented and compared to results obtained with partial coherent illumination.

  4. X-ray lithography source

    DOEpatents

    Piestrup, Melvin A.; Boyers, David G.; Pincus, Cary

    1991-01-01

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and elminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an exellent moderate-priced X-ray source for lithography.

  5. X-ray lithography source

    DOEpatents

    Piestrup, M.A.; Boyers, D.G.; Pincus, C.

    1991-12-31

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits is disclosed. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and eliminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an excellent moderate-priced X-ray source for lithography. 26 figures.

  6. Simulation study of optimizing the 3-5 keV x-ray emission from pure Ar K-shell vs. Ag L-shell targets on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Kemp, G. E.; Colvin, J. D.; Fournier, K. B.; Patel, M. V.; Scott, H. A.; Marinak, M.; Fisher, J. H.; Davis, J. F.

    2014-10-01

    High-flux x-ray sources are desirable for testing the radiation hardness of materials used in various civilian, space and military applications. For this study, there is an interest to design a source with primarily mid-energy (~ 3 keV) but limited soft (< 1 keV) x-ray contributions; we focus on optimizing the 3--5 keV non-LTE emission from targets consisting of pure Ar (K-shell) or Ag (L-shell) at sub-critical densities (~nc / 10) to ensure supersonic, volumetric laser heating with minimal losses to kinetic energy and thermal x rays. However, K and L-shell sources are expected to optimize at different temperatures and densities and it is a priori unclear under what target and laser conditions this will occur. Using HYDRA, a multi-dimensional, arbitrary Lagrangian-Eulerian, radiation-hydrodynamics code, we performed a simulation study by varying initial target density and laser parameters for each material as it would perform on the National Ignition Facility (NIF). We employ a model, benchmarked against Kr data collected on the NIF, that uses flux-limited Lee-More thermal conductivity and implicit Monte-Carlo photonics with non-LTE, detailed configuration accounting opacities from CRETIN. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  7. Intense nanosecond duration source of 10-250 keV x rays suitable for imaging projectile-induced cavitation in human cadaver tissue

    SciTech Connect

    Boyer, Craig N.; Holland, Glenn E.; Seely, John F.

    2005-03-01

    The design, fabrication, and performance of a repetitive nanosecond x-ray source having a pumped field-emission x-ray tube are described. A compact Marx generator, 61 cm in length and storing 12 J energy, directly drives the field-emission tube with voltage pulses >380 kV and with <4 ns rise time from an equivalent generator impedance of 52 {omega}. The x-ray dose is 520 {mu}Sv at a distance of 30.5 cm. A numerical simulation model is used in which the x-ray tube's cathode width and anode-cathode gap spacing are permitted to change with time, while electron flow between the cathode and anode is space charge limited and nonrelativistic. The x-ray tube model is coupled to an equivalent circuit representation of the Marx generator that includes the capacitance variation with charging voltage of the BaTiO{sub 3} capacitors. The capabilities of the x-ray source for flash radiography have been demonstrated by the study of the evolution of cavitation in human cadaver legs induced by high-velocity projectiles.

  8. Intense nanosecond duration source of 10-250 keV x rays suitable for imaging projectile-induced cavitation in human cadaver tissue

    NASA Astrophysics Data System (ADS)

    Boyer, Craig N.; Holland, Glenn E.; Seely, John F.

    2005-03-01

    The design, fabrication, and performance of a repetitive nanosecond x-ray source having a pumped field-emission x-ray tube are described. A compact Marx generator, 61 cm in length and storing 12 J energy, directly drives the field-emission tube with voltage pulses >380kV and with <4ns rise time from an equivalent generator impedance of 52Ω. The x-ray dose is 520 μSv at a distance of 30.5 cm. A numerical simulation model is used in which the x-ray tube's cathode width and anode-cathode gap spacing are permitted to change with time, while electron flow between the cathode and anode is space charge limited and nonrelativistic. The x-ray tube model is coupled to an equivalent circuit representation of the Marx generator that includes the capacitance variation with charging voltage of the BaTiO3 capacitors. The capabilities of the x-ray source for flash radiography have been demonstrated by the study of the evolution of cavitation in human cadaver legs induced by high-velocity projectiles.

  9. Simulation study of 3-5 keV x-ray conversion efficiency from Ar K-shell vs. Ag L-shell targets on the National Ignition Facility laser

    NASA Astrophysics Data System (ADS)

    Kemp, G. E.; Colvin, J. D.; Fournier, K. B.; May, M. J.; Barrios, M. A.; Patel, M. V.; Scott, H. A.; Marinak, M. M.

    2015-05-01

    Tailored, high-flux, multi-keV x-ray sources are desirable for studying x-ray interactions with matter for various civilian, space and military applications. For this study, we focus on designing an efficient laser-driven non-local thermodynamic equilibrium 3-5 keV x-ray source from photon-energy-matched Ar K-shell and Ag L-shell targets at sub-critical densities (˜nc/10) to ensure supersonic, volumetric laser heating with minimal losses to kinetic energy, thermal x rays and laser-plasma instabilities. Using Hydra, a multi-dimensional, arbitrary Lagrangian-Eulerian, radiation-hydrodynamics code, we performed a parameter study by varying initial target density and laser parameters for each material using conditions readily achievable on the National Ignition Facility (NIF) laser. We employ a model, benchmarked against Kr data collected on the NIF, that uses flux-limited Lee-More thermal conductivity and multi-group implicit Monte-Carlo photonics with non-local thermodynamic equilibrium, detailed super-configuration accounting opacities from Cretin, an atomic-kinetics code. While the highest power laser configurations produced the largest x-ray yields, we report that the peak simulated laser to 3-5 keV x-ray conversion efficiencies of 17.7% and 36.4% for Ar and Ag, respectively, occurred at lower powers between ˜100-150 TW. For identical initial target densities and laser illumination, the Ag L-shell is observed to have ≳10× higher emissivity per ion per deposited laser energy than the Ar K-shell. Although such low-density Ag targets have not yet been demonstrated, simulations of targets fabricated using atomic layer deposition of Ag on silica aerogels (˜20% by atomic fraction) suggest similar performance to atomically pure metal foams and that either fabrication technique may be worth pursuing for an efficient 3-5 keV x-ray source on NIF.

  10. Polarization evidence for the isotropy of electrons responsible for the production of 5-20 keV X-rays in solar flares

    NASA Astrophysics Data System (ADS)

    Tramiel, L. J.; Novick, R.; Chanan, G. A.

    1984-05-01

    We have flown a solar flare X-ray polarimeter on the third flight (STS 3) of the Space Shuttle Columbia as part of the OSS-1 pallet of instruments. We observed eight solar flares in the 5-20 keV band on 1982 March 28. The signal-to-background ratio in all cases exceeded 25. A preflight contamination problem invalidated the earlier laboratory calibration, and the instrument had to be calibrated in-flight against two flares near the center of the solar disk, which are expected to be unpolarized on geometric grounds in a variety of models. No statistically significant polarization was then detected in any of the other six flares. Upper limits (99% confidence level) range from 2.5% to 12.7%. For two of the observed flares these results disagree with the predictions of a simple radially beamed, linear bremsstrahlung model at greater than 99% confidence. One of these flares had a hard impulsive burst; the measured upper limit on this burst (10%) also disagrees with the predictions of the beamed hypothesis. If the calibration flares were polarized, then the above upper limits can be interpreted as limits on the changes in polarization from flare to flare. Because the observed flares spanned a large longitude range and because the predictions of the beamed models depend fairly sensitively on viewing angle, the small relative polarizations are still difficult to reconcile with simple beamed models. The results are also compared with recent, more sophisticated models of Leach and Petrosian, which generally predict lower polarizations. We find that the observations are marginally inconsistent with a model in which the electrons are initially strongly beamed, but subsequently become largely isotropic as a result of the effects of a converging magnetic field; they are consistent with a model in which the electrons are injected isotropically, but in which the preference for motion along the magnetic field lines is explicitly taken into account. The results are also consistent

  11. X-ray observations of the Seyfert 1 galaxies AKN120 and MCG8-11-11

    NASA Technical Reports Server (NTRS)

    Mushotzky, R.; Marshall, F. E.

    1980-01-01

    A new X-ray source, H0523-00, with the optically variable Seyfert 1 galaxy AKN 120 is identified. The source has a 2-10 keV X-ray flux of 2 x 10 to the -11th ergs/sq cm s which corresponds to a 2-10 keV X-ray luminosity of 10 to the 44th ergs/s. X-ray observations over a 1.5 year time span combined with contemporaneous optical photometry show a decrease in the optical with no corresponding decrease in the X-ray. In contrast, similar observations of MCG 8-11-11 show a contemporaneous decrease in optical and X-ray fluxes. It is noted that the infrared and X-ray spectral slopes for these two objects are similar, with the optical being steeper by roughly one unit.

  12. Quiet-time Suprathermal (~0.1-1.5 keV) Electrons in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Tao, Jiawei; Wang, Linghua; Zong, Qiugang; Li, Gang; Salem, Chadi S.; Wimmer-Schweingruber, Robert F.; He, Jiansen; Tu, Chuanyi; Bale, Stuart D.

    2016-03-01

    We present a statistical survey of the energy spectrum of solar wind suprathermal (˜0.1-1.5 keV) electrons measured by the WIND 3DP instrument at 1 AU during quiet times at the minimum and maximum of solar cycles 23 and 24. After separating (beaming) strahl electrons from (isotropic) halo electrons according to their different behaviors in the angular distribution, we fit the observed energy spectrum of both strahl and halo electrons at ˜0.1-1.5 keV to a Kappa distribution function with an index κ and effective temperature Teff. We also calculate the number density n and average energy Eavg of strahl and halo electrons by integrating the electron measurements between ˜0.1 and 1.5 keV. We find a strong positive correlation between κ and Teff for both strahl and halo electrons, and a strong positive correlation between the strahl n and halo n, likely reflecting the nature of the generation of these suprathermal electrons. In both solar cycles, κ is larger at solar minimum than at solar maximum for both strahl and halo electrons. The halo κ is generally smaller than the strahl κ (except during the solar minimum of cycle 23). The strahl n is larger at solar maximum, but the halo n shows no difference between solar minimum and maximum. Both the strahl n and halo n have no clear association with the solar wind core population, but the density ratio between the strahl and halo roughly anti-correlates (correlates) with the solar wind density (velocity).

  13. Investigation of pulsed X-ray radiation of a plasma focus in a broad energy range

    SciTech Connect

    Savelov, A. S. Salakhutdinov, G. Kh.; Koltunov, M. V.; Lemeshko, B. D.; Yurkov, D. I.; Sidorov, P. P.

    2011-12-15

    The results of the experimental investigations of the spectral composition of plasma focus X-ray radiation in the photon energy range of 1.5 keV-400 keV are presented. Three regions in the radiation spectrum where the latter is of a quasi-thermal nature with a corresponding effective temperature are distinguished.

  14. NuSTAR Hard X-Ray Survey of the Galactic Center Region. II. X-Ray Point Sources

    NASA Astrophysics Data System (ADS)

    Hong, JaeSub; Mori, Kaya; Hailey, Charles J.; Nynka, Melania; Zhang, Shuo; Gotthelf, Eric; Fornasini, Francesca M.; Krivonos, Roman; Bauer, Franz; Perez, Kerstin; Tomsick, John A.; Bodaghee, Arash; Chiu, Jeng-Lun; Clavel, Maïca; Stern, Daniel; Grindlay, Jonathan E.; Alexander, David M.; Aramaki, Tsuguo; Baganoff, Frederick K.; Barret, Didier; Barrière, Nicolas; Boggs, Steven E.; Canipe, Alicia M.; Christensen, Finn E.; Craig, William W.; Desai, Meera A.; Forster, Karl; Giommi, Paolo; Grefenstette, Brian W.; Harrison, Fiona A.; Hong, Dooran; Hornstrup, Allan; Kitaguchi, Takao; Koglin, Jason E.; Madsen, Kristen K.; Mao, Peter H.; Miyasaka, Hiromasa; Perri, Matteo; Pivovaroff, Michael J.; Puccetti, Simonetta; Rana, Vikram; Westergaard, Niels J.; Zhang, William W.; Zoglauer, Andreas

    2016-07-01

    We present the first survey results of hard X-ray point sources in the Galactic Center (GC) region by NuSTAR. We have discovered 70 hard (3–79 keV) X-ray point sources in a 0.6 deg{}2 region around Sgr A* with a total exposure of 1.7 Ms, and 7 sources in the Sgr B2 field with 300 ks. We identify clear Chandra counterparts for 58 NuSTAR sources and assign candidate counterparts for the remaining 19. The NuSTAR survey reaches X-ray luminosities of ˜4× and ˜8 × 10{}32 erg s{}-1 at the GC (8 kpc) in the 3–10 and 10–40 keV bands, respectively. The source list includes three persistent luminous X-ray binaries (XBs) and the likely run-away pulsar called the Cannonball. New source-detection significance maps reveal a cluster of hard (>10 keV) X-ray sources near the Sgr A diffuse complex with no clear soft X-ray counterparts. The severe extinction observed in the Chandra spectra indicates that all the NuSTAR sources are in the central bulge or are of extragalactic origin. Spectral analysis of relatively bright NuSTAR sources suggests that magnetic cataclysmic variables constitute a large fraction (>40%–60%). Both spectral analysis and logN–logS distributions of the NuSTAR sources indicate that the X-ray spectra of the NuSTAR sources should have kT > 20 keV on average for a single temperature thermal plasma model or an average photon index of Γ = 1.5–2 for a power-law model. These findings suggest that the GC X-ray source population may contain a larger fraction of XBs with high plasma temperatures than the field population.

  15. NuSTAR Hard X-Ray Survey of the Galactic Center Region. II. X-Ray Point Sources

    NASA Astrophysics Data System (ADS)

    Hong, JaeSub; Mori, Kaya; Hailey, Charles J.; Nynka, Melania; Zhang, Shuo; Gotthelf, Eric; Fornasini, Francesca M.; Krivonos, Roman; Bauer, Franz; Perez, Kerstin; Tomsick, John A.; Bodaghee, Arash; Chiu, Jeng-Lun; Clavel, Maïca; Stern, Daniel; Grindlay, Jonathan E.; Alexander, David M.; Aramaki, Tsuguo; Baganoff, Frederick K.; Barret, Didier; Barrière, Nicolas; Boggs, Steven E.; Canipe, Alicia M.; Christensen, Finn E.; Craig, William W.; Desai, Meera A.; Forster, Karl; Giommi, Paolo; Grefenstette, Brian W.; Harrison, Fiona A.; Hong, Dooran; Hornstrup, Allan; Kitaguchi, Takao; Koglin, Jason E.; Madsen, Kristen K.; Mao, Peter H.; Miyasaka, Hiromasa; Perri, Matteo; Pivovaroff, Michael J.; Puccetti, Simonetta; Rana, Vikram; Westergaard, Niels J.; Zhang, William W.; Zoglauer, Andreas

    2016-07-01

    We present the first survey results of hard X-ray point sources in the Galactic Center (GC) region by NuSTAR. We have discovered 70 hard (3–79 keV) X-ray point sources in a 0.6 deg{}2 region around Sgr A* with a total exposure of 1.7 Ms, and 7 sources in the Sgr B2 field with 300 ks. We identify clear Chandra counterparts for 58 NuSTAR sources and assign candidate counterparts for the remaining 19. The NuSTAR survey reaches X-ray luminosities of ∼4× and ∼8 × 10{}32 erg s{}-1 at the GC (8 kpc) in the 3–10 and 10–40 keV bands, respectively. The source list includes three persistent luminous X-ray binaries (XBs) and the likely run-away pulsar called the Cannonball. New source-detection significance maps reveal a cluster of hard (>10 keV) X-ray sources near the Sgr A diffuse complex with no clear soft X-ray counterparts. The severe extinction observed in the Chandra spectra indicates that all the NuSTAR sources are in the central bulge or are of extragalactic origin. Spectral analysis of relatively bright NuSTAR sources suggests that magnetic cataclysmic variables constitute a large fraction (>40%–60%). Both spectral analysis and logN–logS distributions of the NuSTAR sources indicate that the X-ray spectra of the NuSTAR sources should have kT > 20 keV on average for a single temperature thermal plasma model or an average photon index of Γ = 1.5–2 for a power-law model. These findings suggest that the GC X-ray source population may contain a larger fraction of XBs with high plasma temperatures than the field population.

  16. Measurement of the x-ray mass attenuation coefficient and determination of the imaginary component of the atomic form factor of molybdenum over the 13.5-41.5-keV energy range

    NASA Astrophysics Data System (ADS)

    de Jonge, Martin D.; Tran, Chanh Q.; Chantler, Christopher T.; Barnea, Zwi; Dhal, Bipin B.; Cookson, David J.; Lee, Wah-Keat; Mashayekhi, Ali

    2005-03-01

    We use the x-ray extended-range technique (XERT) [Chantler , Phys. Rev. A 64, 062506 (2001)] to measure the mass attenuation coefficients of molybdenum in the x-ray energy range of 13.5-41.5keV to 0.02-0.15 % accuracy. Measurements made over an extended range of the measurement parameter space are critically examined to identify, quantify, and correct where necessary a number of experimental systematic errors. These results represent the most extensive experimental data set for molybdenum and include absolute mass attenuation coefficients in the regions of the x-ray absorption fine structure (XAFS) and x-ray-absorption near-edge structure (XANES). The imaginary component of the atomic form-factor f2 is derived from the photoelectric absorption after subtracting calculated Rayleigh and Compton scattering cross sections from the total attenuation. Comparison of the result with tabulations of calculated photoelectric absorption coefficients indicates that differences of 1-15 % persist between the calculated and observed values.

  17. Hard X-Ray Emission of X-Ray Bursters

    NASA Technical Reports Server (NTRS)

    Kaaret, P.

    1999-01-01

    The primary goal of this proposal was to perform an accurate measurement of the broadband x-ray spectrum of a neutron-star low-mass x-ray binary found in a hard x-ray state. This goal was accomplished using data obtained under another proposal, which has provided exciting new information on the hard x-ray emission of neutron-star low-mass x-ray binaries. In "BeppoSAX Observations of the Atoll X-Ray Binary 4U0614+091", we present our analysis of the spectrum of 4U0614+091 over the energy band from 0.3-150 keV. Our data confirm the presence of a hard x-ray tail that can be modeled as thermal Comptonization of low-energy photons on electrons having a very high temperature, greater than 220 keV, or as a non-thermal powerlaw. Such a very hard x-ray spectrum has not been previously seen from neutron-star low-mass x-ray binaries. We also detected a spectral feature that can be interpreted as reprocessing, via Compton reflection, of the direct emission by an optically-thick disk and found a correlation between the photon index of the power-law tail and the fraction of radiation reflected which is similar to the correlation found for black hole candidate x-ray binaries and Seyfert galaxies. A secondary goal was to measure the timing properties of the x-ray emission from neutronstar low-mass x-ray binaries in their low/hard states.

  18. Ground-based x-ray calibration of the Astro-H soft x-ray telescopes

    NASA Astrophysics Data System (ADS)

    Iizuka, Ryo; Hayashi, Takayuki; Maeda, Yoshitomo; Ishida, Manabu; Tomikawa, Kazuki; Sato, Toshiki; Kikuchi, Naomichi; Okajima, Takashi; Soong, Yang; Serlemitsos, Peter J.; Mori, Hideyuki; Izumiya, Takanori; Minami, Sari

    2014-07-01

    The X-ray astronomy satellite Astro-H, planned to be launched in 2015, will have several instruments for covering a wide energy band from a few hundreds eV to 600 keV. There are four X-ray telescopes, and two of them are soft X-ray telescopes (SXTs) covering up to about 15 keV. One is for an X-ray micro-calorimeter detector (SXS) and the other is for an X-ray CCD detector (SXI). The design of the SXTs is a conical approximation of the Wolter Type-I optics, which is also adopted for the telescopes on the previous mission Suzaku launched in 2005. It consists 203 thin-foil reflectors coated with gold monolayer (2000 Å) on the aluminum substrate (101.6 mm length) with the thickness of 0.15, 0.23 and 0.31 mm. These are nested confocally within the radius of 58 to 225 mm. The focal length of SXTs is 5.6 m. The weight is as light as ~ 43 kg per telescope. We present the current status of the calibration activity of two SXTs (SXT-1 and SXT-2). The developments of two SXTs were completed by NASA's Goddard Space Flight Center (GSFC). First X-ray measurements with a diverging beam at the GSFC 100m beamline found an angular resolution at 8.0 keV to be 1.1 and 1.0 arcmin (HPD) for SXT-1 and SXT-2, respectively. The full characterization of the X-ray performance has been now continuously calibrated with the 30m X-ray beamline facility at the Institute of Space and Astronautical Science (ISAS) of Japan Aerospace eXploration Agency (JAXA) in Japan. We adopted a raster scan method with a narrow X-ray pencil beam with the divergence of ~ 15". X-ray characterization of the two SXTs has been measured from May and December 2013, respectively. In the case of SXT-1, the on-axis effective area was approximately 580, 445, 370, 270, 185 and 90 cm2 at energies of 1.5, 4.5, 8.0, 9.4, 11.1 and 12.9 keV respectively. The effective area of SXT-2 is 2% larger than that of SXT-1 irrespective to X-ray energy. The on-axis angular resolution of SXT-1 was evaluated as 1.3 - 1.5 arcmin (HPD) in the 1.5

  19. Discovery of Diffuse Hard X-ray Emission Around Jupiter

    NASA Astrophysics Data System (ADS)

    Ezoe, Yuichiro; Ishikawa, K.; Ohashi, T.; Terada, N.; Miyoshi, Y.; Uchiyama, Y.

    2009-09-01

    Our discovery of diffuse hard (1-5 keV) X-ray emission around Jupiter is reported. Recent Chandra and XMM-Newton observations revealed several types of X-rays in the vicinity of Jupiter such as auroral and disk emission from Jupiter and faint diffuse X-rays from the Io Plasma Torus (see Bhardwaj et al. 2007 for review). To investigate possible diffuse hard X-ray emission around Jupiter with the highest sensitivity, we conducted data analysis of Suzaku XIS observations of Jupiter on Feb 2006. After removing satellite and planetary orbital motions, we detected a significant diffuse X-ray emission extending to 6 x 3 arcmin with the 1-5 keV X-ray luminosity of 3e15 erg/s. The emitting region very well coincided with the Jupiter's radiation belts and the bright spot seemed to move according to the Io's motion. The 1-5 keV X-ray spectrum was represented by a simple power law model with a photon index of 1.4. Such a flat continuum strongly suggests non-thermal origin. We hence examined three mechanisms: bremsstrahlung by keV electrons, synchrotron emission by TeV electrons, and inverse Compton scattering of solar photons by MeV electrons. The former two can be rejected because of the X-ray spectral shape and implausible existence of TeV electrons around Jupiter, respectively. The last possibility was found to be possible because tens MeV electrons, which have been confirmed in inner radiation belts (Bolton et al. 2002), can kick solar photons to the keV energy range and provide a simple power-law continuum. We estimated an average electron density from the X-ray luminosity assuming the oblate spheroid shaped emitting region with 8 x 8 x 4 Jovian radii. The necessary density was 0.02 1/cm3 for 50 MeV electrons. Hence, our results may suggest a new particle acceleration phenomenon related to Io.

  20. Hard X-rays from hybrid X pinches

    SciTech Connect

    Shelkovenko, T. A. Pikuz, S. A.; Hoyt, C. L.; Cahill, A. D.; Hammer, D. A.; Tilikin, I. N.; Mingaleev, A. R.; Agafonov, A. V.

    2014-12-15

    X pinches are well known to produce very small, dense plasma pinches (“hot spots”) that emit short bursts of 1.5–8 keV radiation. Hard X-ray radiation in the 8–100 keV range is also emitted, only a small portion of which is associated with the X-pinch hot spot. In hybrid X-pinches, the “long” X-ray pulse is terminated by fast closure of the gap between the two conical electrodes by rapidly expanding electrode plasmas. The temporal, spectral, and spatial properties of this higher energy radiation, 10 – 60 keV, have been studied. This radiation was used for point-projection imaging with magnification between 1.5 and 3, and spatial resolution less than100 micrometers was demonstrated.

  1. L-Shell X-Ray Production Cross Sections of Copper -29, GERMANIUM-32, RUBIDIUM-37, STRONTIUM-38, and Yttrium -39 and M-Shell X-Ray Production Cross Sections of Gold -79, LEAD-82, BISMUTH-83, THORIUM-90, and URANIUM-92 by 70-200 KEV Protons

    NASA Astrophysics Data System (ADS)

    Gressett, John David

    L-shell x-ray production cross sections have been measured for thin targets of _{29} Cu, _{32}Ge, _{37}Rb, _{38 }Sr, and _{39}Y. M -shell x-ray production cross sections have been measured for thin targets of _{79}Au, _{82}Pb, _ {83}Bi, _{90} Th, and _{92}U. All targets were irradiated with a beam of H^ {+} ions with energies in a range from 70 to 200 keV. Experimental cross sections are compared to other measurements at higher energies and to first Born (Plane Wave Born Approximation for direct ionization and Oppenheimer-Brinkman-Kramers-Nikolaev approximation for electron capture) and the ECPSSR (Energy loss, Coulomb deflection, Perturbed Stationary State calculations with Relativistic effects) theoretical cross sections.

  2. Electron beam parallel X-ray generator

    NASA Technical Reports Server (NTRS)

    Payne, P.

    1967-01-01

    Broad X ray source produces a highly collimated beam of low energy X rays - a beam with 2 to 5 arc minutes of divergence at energies between 1 and 6 keV in less than 5 feet. The X ray beam is generated by electron bombardment of a target from a large area electron gun.

  3. ANS hard X-ray experiment development program. [emission from X-ray sources

    NASA Technical Reports Server (NTRS)

    Parsignault, D.; Gursky, H.; Frank, R.; Kubierschky, K.; Austin, G.; Paganetti, R.; Bawdekar, V.

    1974-01-01

    The hard X-ray (HXX) experiment is one of three experiments included in the Dutch Astronomical Netherlands Satellite, which was launched into orbit on 30 August 1974. The overall objective of the HXX experiment is the detailed study of the emission from known X-ray sources over the energy range 1.5-30keV. The instrument is capable of the following measurements: (1) spectral content over the full energy range with an energy resolution of approximately 20% and time resolution down to 4 seconds; (2) source time variability down to 4 milliseconds; (3) silicon emission lines at 1.86 and 2.00keV; (4) source location to a limit of one arc minute in ecliptic latitude; and (5) spatial structure with angular resolution of the arc minutes. Scientific aspects of experiment, engineering design and implementation of the experiment, and program history are included.

  4. Fragmentation of H2O by 1 -- 5 keV He^2+ ions: Experiment and Theory

    NASA Astrophysics Data System (ADS)

    Stolterfoht, N.; Hellhammer, R.; Sobocinski, P.; Cabrera-Trujillo, R.; Ohrn, Y.; Deumens, E.; Sabin, J.

    2006-05-01

    Fragmentation of H2O molecules induced by ^3He^2+ impact was investigated experimentally as a function of the energy in the range from 1-5 keV. Collisions at large impact parameters are found to produce fragment protons with energies centered around peaks at 6 eV and 15 eV. The H^+ fragments were detected in the angular range from 25 to 135 with respect to the incident beam direction. Absolute fragmentation cross sections dσ/dφ, differential in the emission angle are found to be anisotropic, with protons preferentially emitted at angles near 90 . In addition to the experiments, we performed quantum-mechanical calculations to understand the fragmentation mechanisms producing protons at preferred energies and angles. The theoretical results are obtained using the Electron-Nuclear Dynamics formalism (END), which solves the time-dependent Schr"odinger equation.

  5. Chest x-ray

    MedlinePlus

    ... Images Aortic rupture, chest x-ray Lung cancer, frontal chest x-ray Adenocarcinoma - chest x-ray Coal ... cancer - chest x-ray Lung nodule, right middle lobe - chest x-ray Lung mass, right upper lung - ...

  6. Observations of celestial X-ray sources above 20 keV with the high-energy scintillation spectrometer on board OSO 8

    NASA Technical Reports Server (NTRS)

    Crannell, C. J.; Dennis, B. R.; Dolan, J. H.; Frost, K. J.; Orwig, L. E.; Beall, J. H.; Maurer, G. S.

    1977-01-01

    High-energy X-ray spectra of the Crab Nebula, Cyg- XR-1, and Cen A were determined from observations with the scintillation spectrometer on board the OSO-8 satellite, launched in June, 1975. Each of these sources was observed over two periods of 8 days or more, enabling a search for day-to-day and year to year variations in the spectral and temporal characteristics of the X-ray emission. No variation in the light curve of the Crab pulsar was found from observations which span a 15-day period in March 1976, with demonstrable phase stability. Transitions associated with the binary phase of Cyg XR-1 and a large change in the emission from Con A are reported.

  7. Hard X-ray emission from X-ray bursters.

    NASA Astrophysics Data System (ADS)

    Tavani, M.; Liang, E.

    1996-11-01

    Hard X-ray emission from compact objects has been considered a spectral signature of black hole candidates. However, SIGMA and BATSE recently detected transient emission in the energy range 30-200keV from several X-ray bursters (XRBs) believed to contain weakly magnetized neutron stars. At least seven XRBs (including Aquila X-1 and 4U 1608-52) are currently known to produce erratic hard X-ray outbursts with typical durations of several weeks. These results lead us to reconsider theoretical models of high-energy emission from compact objects, and in particular thermal Comptonization models vs. non-thermal models of particle energization and X-ray emission from weakly magnetized neutron stars. We summarize here recent results for magnetic field reconnection models of non-thermal particle acceleration and high-energy emission of accretion disks. For intermediate soft X-ray luminosities below the Eddington limit, non-thermal hard X-ray emission is predicted to have a (broken) power-law spectrum with intensity anticorrelated with the soft X-ray luminosity. Recent GINGA/BATSE data for the XRB 4U 1608-52 are in agreement with the mechanism of emission proposed here: transient hard X-ray emission consistent with a broken power-law spectrum was detected for a sub-Eddington soft X-ray luminosity.

  8. The X-ray measurements at picosecond laser facility PROGRESS-P

    SciTech Connect

    Zapysov, A. L.; Gilev, O. N.; Izrailev, I. M.; Krasov, S. V.; Lykov, V. A.; Ostashev, V. I.; Pokrovski, V. G.; Potapov, A. V.; Pronin, V. A.; Saprykin, V. N.; Khavronin, N. A.; Borodin, V. G.; Komarov, V. M.; Malinov, V. A.; Migel, V. M.; Nikitin, N. V.; Charukchev, A. V.; Chernov, V. V.

    1997-04-15

    The results of recent laser-solid interaction experiments carried out at the PROGRESS-P facility are described for the following parameters of laser radiation: {lambda}=1.053 {mu}m, energy up to 500 mJ, pulse duration {approx}2 ps, focal spot diameter of 20 {mu}m. The spectrum of soft X-ray ({epsilon}<1.5 keV) and the hard X-ray ({epsilon}=5 divide 80 keV) were measured for solid targets from Al, glass, Ta used in these experiments. The fast electrons temperature is estimated to be about of 10 keV. The soft X-ray spot size about of 20 {mu}m was measured by pinhole camera. The X-ray lines of He-like Al ions were registered by the spectrometer using plane gypsum crystal.

  9. Detection of soft X-rays from Alpha Lyrae and Eta Bootis with an imaging X-ray telescope

    NASA Technical Reports Server (NTRS)

    Topka, K.; Fabricant, D.; Harnden, F. R., Jr.; Gorenstein, P.; Rosner, R.

    1979-01-01

    Results are presented for observations of Alpha Lyr (Vega) and Eta Boo with an imaging X-ray telescope during two rocket flights. It is found that Vega and Eta Boo are soft X-ray sources with respective luminosities of approximately 3 x 10 to the 28th erg/s (0.15-0.8 keV) and 1 x 10 to the 29th erg/s (0.15-1.5 keV). Surface X-ray luminosities of about 640,000 erg/sq cm per sec for Vega and 300,000 erg/sq cm per sec for Eta Boo are estimated and shown to fall within the range of solar coronal X-ray emission. It is concluded that in view of the substantially larger surface areas of these stars, the relatively large total soft X-ray luminosity (as compared with that of the sun) can in both cases be understood as resulting from a moderately active corona, although the Vega observation is in severe conflict with simple models for X-ray emission from single main-sequence stars.

  10. Absolute Energy Calibration of X-ray TESs with 0.04 eV Uncertainty at 6.4 keV in a Hadron-Beam Environment

    NASA Astrophysics Data System (ADS)

    Tatsuno, H.; Doriese, W. B.; Bennett, D. A.; Curceanu, C.; Fowler, J. W.; Gard, J.; Gustafsson, F. P.; Hashimoto, T.; Hayano, R. S.; Hays-Wehle, J. P.; Hilton, G. C.; Iliescu, M.; Ishimoto, S.; Itahashi, K.; Iwasaki, M.; Kuwabara, K.; Ma, Y.; Marton, J.; Noda, H.; O'Neil, G. C.; Okada, S.; Outa, H.; Reintsema, C. D.; Sato, M.; Schmidt, D. R.; Shi, H.; Suzuki, K.; Suzuki, T.; Uhlig, J.; Ullom, J. N.; Widmann, E.; Yamada, S.; Zmeskal, J.; Swetz, D. S.

    2016-01-01

    A performance evaluation of superconducting transition-edge sensors (TESs) in the environment of a pion beam line at a particle accelerator is presented. Averaged across the 209 functioning sensors in the array, the achieved energy resolution is 5.2 eV FWHM at Co K_{α } (6.9 keV) when the pion beam is off and 7.3 eV at a beam rate of 1.45 MHz. Absolute energy uncertainty of ± 0.04 eV is demonstrated for Fe K_{α } (6.4 keV) with in-situ energy calibration obtained from other nearby known X-ray lines. To achieve this small uncertainty, it is essential to consider the non-Gaussian energy response of the TESs and thermal cross-talk pile-up effects due to charged particle hits in the silicon substrate of the TES array.

  11. Absolute Energy Calibration of X-ray TESs with 0.04 eV Uncertainty at 6.4 keV in a Hadron-Beam Environment

    NASA Astrophysics Data System (ADS)

    Tatsuno, H.; Doriese, W. B.; Bennett, D. A.; Curceanu, C.; Fowler, J. W.; Gard, J.; Gustafsson, F. P.; Hashimoto, T.; Hayano, R. S.; Hays-Wehle, J. P.; Hilton, G. C.; Iliescu, M.; Ishimoto, S.; Itahashi, K.; Iwasaki, M.; Kuwabara, K.; Ma, Y.; Marton, J.; Noda, H.; O'Neil, G. C.; Okada, S.; Outa, H.; Reintsema, C. D.; Sato, M.; Schmidt, D. R.; Shi, H.; Suzuki, K.; Suzuki, T.; Uhlig, J.; Ullom, J. N.; Widmann, E.; Yamada, S.; Zmeskal, J.; Swetz, D. S.

    2016-08-01

    A performance evaluation of superconducting transition-edge sensors (TESs) in the environment of a pion beam line at a particle accelerator is presented. Averaged across the 209 functioning sensors in the array, the achieved energy resolution is 5.2 eV FWHM at Co K_{α } (6.9 keV) when the pion beam is off and 7.3 eV at a beam rate of 1.45 MHz. Absolute energy uncertainty of ± 0.04 eV is demonstrated for Fe K_{α } (6.4 keV) with in-situ energy calibration obtained from other nearby known X-ray lines. To achieve this small uncertainty, it is essential to consider the non-Gaussian energy response of the TESs and thermal cross-talk pile-up effects due to charged particle hits in the silicon substrate of the TES array.

  12. High angular resolution cosmic X-ray astronomy observations in the energy range 0.15-2 keV and XUV observations of nearby stars from an attitude controlled rocket

    NASA Technical Reports Server (NTRS)

    Garmire, G. P.

    1974-01-01

    The construction of a two dimensional focusing Wolter Type I mirror system for X-ray and XUV astronomical observations from an Astrobee F sounding rocket is described. The mirror design goal will have a one degree field, a 20-arc seconds resolution, an effective area of about 50 sq cm at 1 keV and 10 sq cm at 0.25 keV on axis. A star camera provides aspect data to about 15-arc seconds. Two detectors are placed at the focus with an interchange mechanism to allow a detector change during flight. The following specific developments are reported: (1) position sensitive proportional counter development; (2) channel plate multiplier development; (3) telescope mirror development and payload structure; (4) Australian rocket flight results; (5) Comet Kohoutek He I observation; and (6) Vela, Puppis A, and Gem-Mon bright patch observations.

  13. X-ray continuum and iron K emission line from the radio galaxy 3C 390.3

    NASA Technical Reports Server (NTRS)

    Inda, M.; Makishima, K.; Kohmura, Y.; Tashiro, M.; Ohashi, T.; Barr, P.; Hayashida, K.; Palumbo, G. G. C.; Trinchieri, G.; Elvis, M.

    1994-01-01

    X-ray properties of the radio galaxy 3C 390.3 were investigated using the European X-ray Observatory Satellite (EXOSAT) and Ginga satellites. Long-term, large-amplitude X-ray intensity changes were detected over a period extending from 1984 through 1991, and high-quality X-ray spectra were obtained especially with Ginga. The X-ray continuum spectra were described with power-law model with photon slope in the range 1.5-1.8, and the slope flattened as the 2-20 keV luminosity decreased by 40%. There was a first detection of the iron emission line from this source at the 90% confidence level. An upper limit was derived on the thermal X-ray component. X-ray emission mechanisms and possible origins of the long-term variation are discussed.

  14. DIOS: An X-ray mission to survey missing baryons

    NASA Astrophysics Data System (ADS)

    Ohashi, T.

    2009-09-01

    A small X-ray mission DIOS (Diffuse Intergalactic Oxygen Surveyor) is proposed to JAXA. It consists of a 4-stage X-ray telescope and an array of TES microcalorimeters cooled by mechanical coolers, with a total weight of about 400 kg. The mission will perform survey observations of warm-hot intergalactic medium using OVII and OVIII emission lines, with an energy coverage up to 1.5 keV and a wide field of view of about 50' diameter and an energy resolution close to 2 eV FWHM.

  15. X-ray mass attenuation coefficients and imaginary components of the atomic form factor of zinc over the energy range of 7.2-15.2 keV

    SciTech Connect

    Rae, Nicholas A.; Chantler, Christopher T.; Barnea, Zwi; Jonge, Martin D. de; Tran, Chanh Q.; Hester, James R.

    2010-02-15

    The x-ray mass attenuation coefficients of zinc are measured in a high-accuracy experiment between 7.2 and 15.2 keV with an absolute accuracy of 0.044% and 0.197%. This is the most accurate determination of any attenuation coefficient on a bending-magnet beamline and reduces the absolute uncertainty by a factor of 3 compared to earlier work by advances in integrated column density determination and the full-foil mapping technique described herein. We define a relative accuracy of 0.006%, which is not the same as either the precision or the absolute accuracy. Relative accuracy is the appropriate parameter for standard implementation of analysis of near-edge spectra. Values of the imaginary components f'' of the x-ray form factor of zinc are derived. Observed differences between the measured mass attenuation coefficients and various theoretical calculations reach a maximum of about 5% at the absorption edge and up to 2% further than 1 keV away from the edge. The measurements invite improvements in the theoretical calculations of mass attenuation coefficients of zinc.

  16. Alloying effect on K shell X-ray fluorescence cross-sections and intensity ratios of Cu and Sn in Cu1Sn1-x alloys using the 59.5 keV gamma rays

    NASA Astrophysics Data System (ADS)

    Dogan, M.; Olgar, M. A.; Cengiz, E.; Tıraşoglu, E.

    2016-09-01

    Kβ/Kα, intensity ratios and σKα,β production cross-sections of Cu and Sn were measured in pure metals and in different alloys which have different compositions (CuxSn1-x x=0.48, 0.41, 0.14 and 0.06). The samples were excited by 59.5 keV γ-rays from 241Am annular radioactive source. K X-rays emitted by samples were counted by an Ultra-LEGe detector with a resolution of 150 eV at 5.9 keV. Comparison of the σKβ production cross-sections and Kβ/Kα X-ray intensity ratio values for Cu and Sn with the theoretical and semi-empirical calculations indicates that they are in the inverse direction with concentration of constituent element in the alloys. The results show that variations in these parameters can be explained with the charge transfer process between the elements which constitute the alloys.

  17. Study of the single cluster response of a helium-isobutane drift chamber prototype using 8 keV X-rays

    NASA Astrophysics Data System (ADS)

    Cavoto, G.; Dabagov, S.; Hampai, D.; Piredda, G.; Renga, F.; Ripiccini, E.; Voena, C.; Zullo, A.

    2015-03-01

    The identification of single clusters in the electronic signals produced by ionizing particles within a drift chamber is expected to significantly improve the performances of this kind of detectors in terms of particle identification capabilities and space resolution. In order to develop refined cluster recognition algorithms, it is essential to measure the response of the chamber and its electronics to single ionization clusters. This can be done by irradiating the chamber with X-rays. We report here on the studies performed on a drift chamber prototype for the MEG-II experiment at the X-ray facility of the INFN Frascati's National Laboratories ``XLab Frascati''. The prototype is operated with a helium-isobutane mixture and instrumented with high bandwidth custom pre-amplifiers. The results of this study have been used to develop an innovative method for cluster recognition, based on the Wiener filter technique, which has been tested on data collected at the Frascati's Beam Test Facility. As a side measurement, we also performed a study of the gas gain in a configuration which is similar to that of the MEG-II experiment.

  18. X-ray Spectrometer

    NASA Technical Reports Server (NTRS)

    Porter, F. Scott

    2004-01-01

    The X-ray Spectrometer (XRS) instrument is a revolutionary non-dispersive spectrometer that will form the basis for the Astro-E2 observatory to be launched in 2005. We have recently installed a flight spare X R S microcalorimeter spectrometer at the EBIT-I facility at LLNL replacing the XRS from the earlier Astro-E mission and providing twice the resolution. The X R S microcalorimeter is an x-ray detector that senses the heat deposited by the incident photon. It achieves a high energy resolution by operating at 0.06K and by carefully controlling the heat capacity and thermal conductance. The XRS/EBIT instrument has 32 pixels in a square geometry and achieves an energy resolution of 6 eV at 6 keV, with a bandpass from 0.1 to 12 keV (or more at higher operating temperature). The instrument allows detailed studies of the x-ray line emission of laboratory plasmas. The XRS/EBIT also provides an extensive calibration "library" for the Astro-E2 observatory.

  19. 2D-NMR, X-ray crystallography and theoretical studies of the reaction mechanism for the synthesis of 1,5-benzodiazepines from dehydroacetic acid derivatives and o-phenylenediamines

    NASA Astrophysics Data System (ADS)

    Rabahi, Amal; Hamdi, Safouane M.; Rachedi, Yahia; Hamdi, Maamar; Talhi, Oualid; Almeida Paz, Filipe A.; Silva, Artur S. M.; Fadila, Balegroune; Malika, Hamadène; Kamel, Taïbi

    2014-03-01

    The synthesis of 1,5-benzodiazepines by the reaction of o-phenylenediamines (o-PDAs) with dehydroacetic acid DHAA [3-acetyl-4-hydroxy-6-methyl-2H-pyran-2-one] or conjugate analogues is largely reported in the literature, but still with uncontrolled stereochemistry. In this work, a comprehensive mechanistic study on the formation of some synthesized 1,5-benzodiazepine models following different organic routes is established based on liquid-state 2D NMR, single-crystal X-ray diffraction and theoretical calculations allowing the classification of two prototropic forms A (enaminopyran-2,4-dione) and B (imino-4-hydroxypyran-2-one). Evidences are presented to show that most of the reported 1,5-benzodiazepine structures arising from DHAA and derivatives preferentially adopt the (E)-enaminopyran-2,4-diones A.

  20. Soft x-ray (0.2keV) imager for z-pinch plasma radiation sources

    SciTech Connect

    Failor, B.H.; Qi, N.; Levine, J.S.; Sze, H.; Gullickson, E.M.

    2004-10-01

    Z-pinches can produce intense fluxes of argon K-shell (3 keV) radiation, but typically only a fraction of the load mass near the axis of the pinch radiates in this spectral range. The majority of the mass does not get hot or dense enough to radiate efficiently in the K-shell. We have designed, built, and tested an instrument to image pinch emission, specifically the radial emission profile, at energies below the K-shell in order to track the location of the cooler mass. A gold mirror provides a high-energy cut-off at 2 keV while a transmission grating disperses the incoming radiation and provides a low-energy cutoff at 0.1 keV. A vertical slit images the pinch radiation in the radial direction and the emission profile is recorded with either an extreme ultraviolet-sensitive charge-coupled device camera (time-integrated) or a linear photodiode array ({approx}1 ns time resolution). We present results for the mirror, grating, and system characterization obtained at the Advanced Light Source synchrotron located at Lawrence Berkeley National Laboratory (Berkeley, CA)

  1. Detailed Tabulation of Atomic Form Factors, Photoelectric Absorption and Scattering Cross Section, and Mass Attenuation Coefficients in the Vicinity of Absorption Edges in the Soft X-Ray (Z=30-36, Z=60-89, E=0.1 keV-10 keV), Addressing Convergence Issues of Earlier Work

    NASA Astrophysics Data System (ADS)

    Chantler, C. T.

    2000-07-01

    Reliable knowledge of the complex x-ray form factor [Re(f ) and f″] and the photoelectric attenuation coefficient (σPE) is required for crystallography, medical diagnosis, radiation safety, and XAFS studies. Discrepancies between currently used theoretical approaches of 200% exist for numerous elements from 1 to 3 keV x-ray energies. The key discrepancies are due to the smoothing of edge structure, the use of nonrelativistic wave functions, and the lack of appropriate convergence of wave functions. This paper addresses these key discrepancies and derives new theoretical results of substantially higher accuracy in near-edge soft x-ray regions. The high-energy limitations of the current approach are also illustrated. The energy range covered is 0.1 to 10 keV. The associated figures and tabulation demonstrate the current comparison with alternate theory and with available experimental data. In general, experimental data are not sufficiently accurate to establish the errors and inadequacies of theory at this level. However, the best experimental data and the observed experimental structure as a function of energy are strong indicators of the validity of the current approach. New developments in experimental measurement hold great promise in making critical comparisons with theory in the near future.

  2. The Swift X-ray Telescope

    NASA Astrophysics Data System (ADS)

    Hill, J. E.; Burrows, D. N.; Nousek, J. A.; Wells, A.; Turner, M.; Willingale, R.; Holland, A.; Citterio, O.; Chincarini, G.; Campana, S.; Tagliaferri, G.; Swift XRT Team

    1999-12-01

    The Swift Gamma Ray Burst Explorer will be launched in 2003 to observe hundreds of gamma ray bursts per year and study their X-ray and optical afterglows, using a multiwavelength complement of three instruments: a wide-field Burst Alert Telescope (BAT), an X-Ray Telescope (XRT), and a UV/Optical Telescope (UVOT). The XRT is designed to study X-ray counterparts of the gamma ray bursts and their afterglows, beginning 20--70 s from the time of the burst, and continuing for days or weeks. The XRT utilizes a superb mirror set built for JET-X (Citterio et al. 1996) and a state-of-the-art XMM/EPIC CCD detector to provide a sensitive broad-band (0.2-10 keV) X-ray imager with effective area of 110 cm2 at 1.5 keV, field of view of 23.6 x 23.6 arcminutes, and angular resolution of 15 arcsec HPD. The sensitivity is 2 x 10-14 erg cm-2 s-1 in 104 seconds. The telescope electronics will be designed to provide automated source detection and position reporting, with a position good to 2.5 arcseconds transmitted to the ground within two minutes of the burst detection. The XRT will operate in an auto-exposure mode, adjusting the CCD readout mode automatically to optimize the science return for each frame as the source fades. The XRT will measure spectra and lightcurves of the GRB afterglow beginning within about a minute after the burst and will follow each burst until it fades from view, typically monitoring 2-3 ``old'' bursts at a time while waiting for a new burst to be detected. This work is supported at Penn State by NASA grant NAG5-8401 and at Leicester University by funding from PPARC.

  3. X-ray emission from the galactic disk.

    NASA Technical Reports Server (NTRS)

    Bleach, R. D.; Boldt, E. A.; Holt, S. S.; Schwartz, D. A.; Serlemitsos, P. J.

    1972-01-01

    A search was made for a diffuse component of greater than 1.5 keV X rays associated with an interarm region of the Galaxy at galactic longitudes in the vicinity of 60 degrees. A statistically significant excess associated with a narrow disk component was detected. The angular extent of this component has a most probable value of 2 degrees. The best-fit spectrum yields an intensity of 2.9 photons/sq cm per sec per sterad over the 2-10 keV range. The 3-sigma upper limit to any emission in a 1.5 keV band centered at 7 keV from galactic latitudes not greater than 3.5 deg is 0.3 photons/sq cm per sec per sterad. Several possible emission models are evaluated, with the most likely choice being a population of unresolvable low-luminosity sources.

  4. Cosmic X-ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, D.; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1985-01-01

    A progress report of research activities carried out in the area of cosmic X-ray physics is presented. The Diffuse X-ray Spectrometer DXS which has been flown twice as a rocket payload is described. The observation times proved to be too small for meaningful X-ray data to be obtained. Data collection and reduction activities from the Ultra-Soft X-ray background (UXT) instrument are described. UXT consists of three mechanically-collimated X-ray gas proportional counters with window/filter combinations which allow measurements in three energy bands, Be (80-110 eV), B (90-187 eV), and O (e84-532 eV). The Be band measurements provide an important constraint on local absorption of X-rays from the hot component of the local interstellar medium. Work has also continued on the development of a calorimetric detector for high-resolution spectroscopy in the 0.1 keV - 8keV energy range.

  5. Calibration of the Solar-B x-ray optics

    NASA Astrophysics Data System (ADS)

    Cosmo, Mario L.; DeLuca, Edward E.; Golub, Leon; Austin, Gerald K.; Chappell, Jon H.; Barbera, Marco; Bookbinder, Jay A.; Cheimets, Peter N.; Cirtain, Jonathan; Podgorski, William A.; Davis, William; Varisco, Salvatore; Weber, Mark A.

    2005-08-01

    The Solar-B X-ray telescope (XRT) is a grazing-incidence modified Wolter I X-ray telescope, of 35 cm inner diameter and 2.7 m focal length. XRT, designed for full sun imaging over the wavelength 6-60 Angstroms, will be the highest resolution solar X-Ray telescope ever flown. Images will be recorded by a 2048 X 2048 back-illuminated CCD with 13.5 μm pixels (1 arc-sec/pixel ) with full sun field of view. XRT will have a wide temperature sensitivity in order to observe and discriminate both the high (5-10 MK) and low temperature (1-5 MK) phenomena in the coronal plasma. This paper presents preliminary results of the XRT mirror calibration performed at the X-ray Calibration Facility, NASA-MSFC, Huntsville, Alabama during January and February 2005. We discuss the methods and the most significant results of the XRT mirror performance, namely: characteristics of the point response function (PSF), the encircled energy and the effective area. The mirror FWHM is 0.8" when corrected for 1-g, finite source distance, and CCD pixelization. With the above corrections the encircled energy at 27 μm and 1keV is 52%. The effective area is greater than 2cm2 at 0.5keV and greater than 1.7cm2 at 1.0keV.

  6. Transmission images and evaluation of tomographic imaging based scattered radiation from biological materials using 10, 15, 20 and 25 keV synchrotron X-rays: An analysis in terms of optimum energy

    SciTech Connect

    Rao, Donepudi V.; Akatsuka, Takao; Tromba, Giuliana

    2004-05-12

    Transmission images and tomographic imaging based scattered radiation is evaluated from biological materials, for example, Polyethylene, Poly carbonate, Plexiglas and Nylon using 10, 15, 20 and 25 keV synchrotron X-rays. The SYRMEP facility at Elettra,Trieste, Italy and the associated detection system has been used for the image acquisition. The scattered radiation is detected for each sample at three energies at an angle of 90 deg. using Si-Pin detector coupled to a multi-channel analyzer. The contribution of transmitted, Compton and fluorescence photons are assessed for a test phantom of small dimensions. The optimum analysis is performed with the use of the dimensions of the sample and detected radiation at various energies.

  7. Time-resolved x-ray transmission grating spectrometer for studying laser-produced plasmas.

    PubMed

    Ceglio, N M; Kauffman, R L; Hawryluk, A M; Medecki, H

    1983-01-15

    The development of a new time-resolved x-ray spectrometer is reported in which a free-standing x-ray transmission grating is coupled to a soft x-ray streak camera. The instrument measures continuous x-ray spectra with 20-psec temporal resolution and moderate spectral resolution (deltalambda >/= 1 A) over a broad spectral range (0.1-5 keV) with high sensitivity and large information recording capacity. Its capabilities are well suited to investigation of laser-generated plasmas, and they nicely complement the characteristics of other time-resolved spectroscopic techniques presently in use. The transmission grating spectrometer has been used on a variety of laser-plasma experiments. We report the first measurements of the temporal variation of continuous low-energy x-ray spectra from laser-irradiated disk targets. PMID:18195786

  8. The 2-79 keV X-ray spectrum of the Circinus galaxy with NuSTAR, XMM-Newton, and Chandra: a fully Compton-thick active galactic nucleus

    SciTech Connect

    Arévalo, P.; Bauer, F. E.; Puccetti, S.; Walton, D. J.; Fuerst, F.; Grefenstette, B. W.; Harrison, F. A.; Madsen, K. K.; Koss, M.; Boggs, S. E.; Craig, W. W.; Brandt, W. N.; Luo, B.; Brightman, M.; Christensen, F. E.; Comastri, A.; Gandhi, P.; Hailey, C. J.; Madejski, G.; and others

    2014-08-20

    The Circinus galaxy is one of the closest obscured active galactic nuclei (AGNs), making it an ideal target for detailed study. Combining archival Chandra and XMM-Newton data with new NuSTAR observations, we model the 2-79 keV spectrum to constrain the primary AGN continuum and to derive physical parameters for the obscuring material. Chandra's high angular resolution allows a separation of nuclear and off-nuclear galactic emission. In the off-nuclear diffuse emission, we find signatures of strong cold reflection, including high equivalent-width neutral Fe lines. This Compton-scattered off-nuclear emission amounts to 18% of the nuclear flux in the Fe line region, but becomes comparable to the nuclear emission above 30 keV. The new analysis no longer supports a prominent transmitted AGN component in the observed band. We find that the nuclear spectrum is consistent with Compton scattering by an optically thick torus, where the intrinsic spectrum is a power law of photon index Γ = 2.2-2.4, the torus has an equatorial column density of N {sub H} = (6-10) × 10{sup 24} cm{sup –2}, and the intrinsic AGN 2-10 keV luminosity is (2.3-5.1) × 10{sup 42} erg s{sup –1}. These values place Circinus along the same relations as unobscured AGNs in accretion rate versus Γ and L{sub X} versus L {sub IR} phase space. NuSTAR's high sensitivity and low background allow us to study the short timescale variability of Circinus at X-ray energies above 10 keV for the first time. The lack of detected variability favors a Compton-thick absorber, in line with the spectral fitting results.

  9. The 2-79 keV X-Ray Spectrum of the Circinus Galaxy with NuSTAR, XMM-Newton, and Chandra: A Fully Compton-thick Active Galactic Nucleus

    NASA Astrophysics Data System (ADS)

    Arévalo, P.; Bauer, F. E.; Puccetti, S.; Walton, D. J.; Koss, M.; Boggs, S. E.; Brandt, W. N.; Brightman, M.; Christensen, F. E.; Comastri, A.; Craig, W. W.; Fuerst, F.; Gandhi, P.; Grefenstette, B. W.; Hailey, C. J.; Harrison, F. A.; Luo, B.; Madejski, G.; Madsen, K. K.; Marinucci, A.; Matt, G.; Saez, C.; Stern, D.; Stuhlinger, M.; Treister, E.; Urry, C. M.; Zhang, W. W.

    2014-08-01

    The Circinus galaxy is one of the closest obscured active galactic nuclei (AGNs), making it an ideal target for detailed study. Combining archival Chandra and XMM-Newton data with new NuSTAR observations, we model the 2-79 keV spectrum to constrain the primary AGN continuum and to derive physical parameters for the obscuring material. Chandra's high angular resolution allows a separation of nuclear and off-nuclear galactic emission. In the off-nuclear diffuse emission, we find signatures of strong cold reflection, including high equivalent-width neutral Fe lines. This Compton-scattered off-nuclear emission amounts to 18% of the nuclear flux in the Fe line region, but becomes comparable to the nuclear emission above 30 keV. The new analysis no longer supports a prominent transmitted AGN component in the observed band. We find that the nuclear spectrum is consistent with Compton scattering by an optically thick torus, where the intrinsic spectrum is a power law of photon index Γ = 2.2-2.4, the torus has an equatorial column density of N H = (6-10) × 1024 cm-2, and the intrinsic AGN 2-10 keV luminosity is (2.3-5.1) × 1042 erg s-1. These values place Circinus along the same relations as unobscured AGNs in accretion rate versus Γ and LX versus L IR phase space. NuSTAR's high sensitivity and low background allow us to study the short timescale variability of Circinus at X-ray energies above 10 keV for the first time. The lack of detected variability favors a Compton-thick absorber, in line with the spectral fitting results.

  10. In situ X-ray diffraction study of structural evaluation in Fe73Cu1.5Nd3Si13.5B9 amorphous alloy at high temperature

    NASA Astrophysics Data System (ADS)

    Li, Gong; Xu, Tao; Gao, Yunpeng; Liu, Riping

    2008-04-01

    The thermodynamics structural relaxation of Fe73Cu1.5Nd3Si13.5B9 amorphous alloy from room temperature to 400°C has been investigated by measuring the structure factor with in situ X-ray diffraction. The structural information of the atomic configuration such as radial distribution function (RDF) and neighbor atomic distance was gained by Fourier transformation. The research result shows that the amorphous structure remains stable in the temperature range of 30 to 400°C but exhibits distinct changes in local atomic configuration with the increase of temperature. The quantitative determination of the neighbor atomic distance suggests that the degree of short-range order changes by the temperature altering the second nearest neighbor local atomic configuration of the amorphous when structural relaxation occurs.

  11. Resonant soft x-ray scattering investigation of orbital and magnetic ordering in La{sub 0.5}Sr{sub 1.5}MnO{sub 4}

    SciTech Connect

    Wilkins, S.B.; Stojic, N.; Binggeli, N.; Beale, T.A.W.; Hatton, P.D.; Castleton, C.W.M.; Prabhakaran, D.; Boothroyd, A.T.; Altarelli, M.

    2005-06-15

    We report resonant x-ray scattering data of the orbital and magnetic ordering at low temperatures at the Mn L{sub 2,3} edges in La{sub 0.5}Sr{sub 1.5}MnO{sub 4}. The orderings display complex energy features close to the Mn absorption edges. Systematic modeling with atomic multiplet crystal field calculations was used to extract meaningful information regarding the interplay of spin, orbital, and Jahn-Teller order. These calculations provide a good general agreement with the observed energy dependence of the scattered intensity for a dominant orbital ordering of the d{sub x{sup 2}}{sub -z{sup 2}}/d{sub y{sup 2}}{sub -z{sup 2}} type. In addition, the origins of various spectral features are identified. The temperature dependence of the orbital and magnetic ordering was measured and suggests a strong interplay between the magnetic and orbital order parameters.

  12. Future directions in X-ray/gamma-ray observations

    NASA Technical Reports Server (NTRS)

    Kniffen, D. A.

    1982-01-01

    Facilities available for X ray and gamma ray astronomical observations in the late 1980s are described, with an emphasis on NASA programs. Current European programs for launching Rosat and Exosat will provide coverage in the 0.4-60 keV energy range. The proposed NASA advanced X ray astrophysics facility is intended to cover the 0.1-8 keV range with higher than 0.5 arcsec resolution. The Japanese Astro-B, scheduled for launch in 1983, observes in the 1-60 keV range. X ray and gamma ray observations are also scheduled for Spacelab flights. The French-Soviet Gamma-1 spark chamber high energy gamma ray telescope is intended for LEO orbit and observations in the energy range above 50 MeV with a 2 deg, 1-5 arcmin resolution. The NASA gamma ray observatory is set for 1988 launch and will feature four instruments to monitor the 60 keV-300 GeV range. Balloon-borne instrumentation will also be launched, with attention given to the medium gamma ray energy range from 1-30 MeV.

  13. Future directions in X-ray/gamma-ray observations

    NASA Astrophysics Data System (ADS)

    Kniffen, D. A.

    Facilities available for X ray and gamma ray astronomical observations in the late 1980s are described, with an emphasis on NASA programs. Current European programs for launching Rosat and Exosat will provide coverage in the 0.4-60 keV energy range. The proposed NASA advanced X ray astrophysics facility is intended to cover the 0.1-8 keV range with higher than 0.5 arcsec resolution. The Japanese Astro-B, scheduled for launch in 1983, observes in the 1-60 keV range. X ray and gamma ray observations are also scheduled for Spacelab flights. The French-Soviet Gamma-1 spark chamber high energy gamma ray telescope is intended for LEO orbit and observations in the energy range above 50 MeV with a 2 deg, 1-5 arcmin resolution. The NASA gamma ray observatory is set for 1988 launch and will feature four instruments to monitor the 60 keV-300 GeV range. Balloon-borne instrumentation will also be launched, with attention given to the medium gamma ray energy range from 1-30 MeV.

  14. SAS-3 observations of an X-ray flare from Cygnus X-1

    NASA Technical Reports Server (NTRS)

    Canizares, C. R.; Bradt, H.; Buff, J.; Laufer, B.

    1976-01-01

    Preliminary results are presented for the SAS-3 observation of an X-ray flare from Cygnus X-1. The 1.5 to 6 keV intensity rose by a factor of four and exhibited variability on several time scales from seconds to hours. The 6 to 15 keV intensity showed less activity. The event is similar to that observed by ANS and Ariel 5, but lasted less than two weeks.

  15. Hard X-ray astrophysics

    NASA Technical Reports Server (NTRS)

    Rothschild, R. E.

    1981-01-01

    Past hard X-ray and lower energy satellite instruments are reviewed and it is shown that observation above 20 keV and up to hundreds of keV can provide much valuable information on the astrophysics of cosmic sources. To calculate possible sensitivities of future arrays, the efficiencies of a one-atmosphere inch gas counter (the HEAO-1 A-2 xenon filled HED3) and a 3 mm phoswich scintillator (the HEAO-1 A-4 Na1 LED1) were compared. Above 15 keV, the scintillator was more efficient. In a similar comparison, the sensitivity of germanium detectors did not differ much from that of the scintillators, except at high energies where the sensitivity would remain flat and not rise with loss of efficiency. Questions to be addressed concerning the physics of active galaxies and the diffuse radiation background, black holes, radio pulsars, X-ray pulsars, and galactic clusters are examined.

  16. X-Rays

    MedlinePlus

    X-rays are a type of radiation called electromagnetic waves. X-ray imaging creates pictures of the inside of ... different amounts of radiation. Calcium in bones absorbs x-rays the most, so bones look white. Fat ...

  17. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1990-01-01

    The annual progress report on Cosmic X Ray Physics is presented. Topics studied include: the soft x ray background, proportional counter and filter calibrations, the new sounding rocket payload: X Ray Calorimeter, and theoretical studies.

  18. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1991-01-01

    The annual progress report on Cosmic X Ray Physics for the period 1 Jan. to 31 Dec. 1990 is presented. Topics studied include: soft x ray background, new sounding rocket payload: x ray calorimeter, and theoretical studies.

  19. Joint x-ray

    MedlinePlus

    X-ray - joint; Arthrography; Arthrogram ... x-ray technologist will help you position the joint to be x-rayed on the table. Once in place, pictures are taken. The joint may be moved into other positions for more ...

  20. The very soft X-ray emission of X-ray-faint early-type galaxies

    NASA Technical Reports Server (NTRS)

    Pellegrini, S.; Fabbiano, G.

    1994-01-01

    A recent reanaylsis of Einstein data, and new ROSAT observations, have revealed the presence of at least two components in the X-ray spectra of X-ray faint early-type galaxies: a relatively hard component (kT greater than 1.5 keV), and a very soft component (kT approximately 0.2-0.3 keV). In this paper we address the problem of the nature of the very soft component and whether it can be due to a hot interstellar medium (ISM), or is most likely originated by the collective emission of very soft stellar sources. To this purpose, hydrodynamical evolutionary sequences for the secular behavior of gas flows in ellipticals have been performed, varying the Type Ia supernovae rate of explosion, and the dark matter amount and distribution. The results are compared with the observational X-ray data: the average Einstein spectrum for six X-ray faint early-type galaxies (among which are NGC 4365 and NGC 4697), and the spectrum obtained by the ROSAT pointed observation of NGC 4365. The very soft component could be entirely explained with a hot ISM only in galaxies such as NGC 4697, i.e., when the depth of the potential well-on which the average ISM temperature strongly depends-is quite shallow; in NGC 4365 a diffuse hot ISM would have a temperature larger than that of the very soft component, because of the deeper potential well. So, in NGC 4365 the softest contribution to the X-ray emission comes certainly from stellar sources. As stellar soft X-ray emitters, we consider late-type stellar coronae, supersoft sources such as those discovered by ROSAT in the Magellanic Clouds and M31, and RS CVn systems. All these candidates can be substantial contributors to the very soft emission, though none of them, taken separately, plausibly accounts entirely for its properties. We finally present a model for the X-ray emission of NGC 4365, to reproduce in detail the results of the ROSAT pointed observation, including the Position Sensitive Proportional Counter (PSPC) spectrum and radial

  1. Four-channel X-ray microscope for plasma investigations on the Sokol-P laser facility

    SciTech Connect

    Vikhlyaev, D A; Gavrilov, D S; Kakshin, A G; Potapov, A V; Safronov, K V

    2011-03-31

    The design, assembly, and alignment of a Kirkpatrick - Baez X-ray microscope are described. A technique for the experimental evaluation of the resolving power of the microscope is outlined. This microscope permits obtaining simultaneous images of laser target plasmas in narrow energy regions belonging to the 0.3 - 1.5-keV X-ray range with a resolution of {approx}2 {mu}m. (interaction of laser radiation with matter)

  2. Gas-scintillation proportional counters for X-ray astronomy satellites

    NASA Astrophysics Data System (ADS)

    Inoue, H.; Koyama, K.; Matsuoka, M.; Ohashi, T.; Tanaka, Y.; Waki, I.

    Gas-scintillation proportional counters (GSPCs), which have twice better energy resolution than conventional proportional counters, have manifested their potential for X-ray astronomy in recent rocket experiments, and are now in the phase of satellite-born use for observing cosmic X-rays. The first satellite-born GSPC is on board HINOTORI, the Japanese solar X-ray flare observatory satellite, launched in February, 1981. It has an effective area of 1 sq cm, and is obtaining detailed energy spectra of solar X-ray flares. A large area, sealed GSPC with 100 sq cm effective area, has also been developed achieving an energy resolution of 10.5 percent for 5.9 keV X-ray illuminated over the full area. Ten modules of these GSPCs will be on board the second Japanese X-ray astronomy satellite, Astro-B, due for launch in February, 1983. The configuration and the performance characteristics are described in this paper. These detectors will provide qualitatively new information on the energy spectra of the cosmic X-ray sources in the energy range 1.5 - 60 keV.

  3. Is selective absorption of ultrasoft x-rays biologically important in mammalian cells?

    PubMed

    Goodhead, D T; Thacker, J; Cox, R

    1981-11-01

    This paper tests whether photon absorption processes in particular atomic element(s) may be responsible for the observed high relative biological effectiveness (RBE) of ultrasoft X-rays. The effectiveness of titanium K characteristic X-rays (4.55 keV) is compared with previous observations for aluminium (1.5 keV) and carbon (0.28 keV) K ultrasoft X-rays. For a given absorbed dose, five times more Ti K than Al K photons are absorbed in phosphorus; since Al K X-rays are observed to be more effective in killing human and hamster cells it is concluded that absorption in phosphorus does not play a dominant lethal role. This is supported by the observation that the absolute number of Al K photons absorbed in phosphorus of DNA of human fibroblasts is less than 1 per lethal event. For no element is the relative number of absorbed photons of the three X-ray energies even approximately proportional to their observed RBEs. The effectiveness of ultrasoft X-rays is apparently not due to selective absorption but rather to the secondary electrons; consequently the mechanism of action should be common to the large numbers of low energy secondary electrons produced by most other ionising radiations, including gamma-rays. PMID:7323149

  4. The Swift X-ray Telescope Cluster Survey. II. X-ray spectral analysis

    NASA Astrophysics Data System (ADS)

    Tozzi, P.; Moretti, A.; Tundo, E.; Liu, T.; Rosati, P.; Borgani, S.; Tagliaferri, G.; Campana, S.; Fugazza, D.; D'Avanzo, P.

    2014-07-01

    Aims: We present a spectral analysis of a new, flux-limited sample of 72 X-ray selected clusters of galaxies identified with the X-ray Telescope (XRT) on board the Swift satellite down to a flux limit of ~10-14 erg s-1 cm-2 (SWXCS). We carry out a detailed X-ray spectral analysis with the twofold aim of measuring redshifts and characterizing the properties of the intracluster medium (ICM) for the majority of the SWXCS sources. Methods: Optical counterparts and spectroscopic or photometric redshifts for some of the sources are obtained with a cross-correlation with the NASA/IPAC Extragalactic Database. Additional photometric redshifts are computed with a dedicated follow-up program with the Telescopio Nazionale Galileo and a cross-correlation with the SDSS. In addition, we also blindly search for the Hydrogen-like and He-like iron Kα emission line complex in the X-ray spectrum. We detect the iron emission lines in 35% of the sample, and hence obtain a robust measure of the X-ray redshift zX with typical rms error 1-5%. We use zX whenever the optical redshift is not available. Finally, for all the sources with measured redshift, background-subtracted spectra are fitted with a single-temperature mekal model to measure global temperature, X-ray luminosity and iron abundance of the ICM. We perform extensive spectral simulations to accounts for fitting bias, and to assess the robustness of our results. We derive a criterion to select reliable best-fit models and an empirical formula to account for fitting bias. The bias-corrected values are then used to investigate the scaling properties of the X-ray observables. Results: Overall, we are able to characterize the ICM of 46 sources with redshifts (64% of the sample). The sample is mostly constituted by clusters with temperatures between 3 and 10 keV, plus 14 low-mass clusters and groups with temperatures below 3 keV. The redshift distribution peaks around z ~ 0.25 and extends up to z ~ 1, with 60% of the sample at 0.1 < z

  5. The PERCIVAL soft X-ray imager

    NASA Astrophysics Data System (ADS)

    Wunderer, C. B.; Marras, A.; Bayer, M.; Correa, J.; Göttlicher, P.; Lange, S.; Shevyakov, I.; Smoljanin, S.; Tennert, M.; Viti, M.; Xia, Q.; Zimmer, M.; Das, D.; Guerrini, N.; Marsh, B.; Sedgwick, I.; Turchetta, R.; Cautero, G.; Gianoncelli, A.; Giuressi, D.; Menk, R.; Stebel, L.; Yousef, H.; Marchal, J.; Rees, N.; Tartoni, N.; Graafsma, H.

    2015-02-01

    With the increased brilliance of state-of-the-art Synchrotron radiation sources and the advent of Free Electron Lasers enabling revolutionary science on atomic length and time scales with EUV to X-ray photons comes an urgent need for suitable photon imaging detectors. Requirements include high frame rates, very large dynamic range, single-photon counting capability with low probability of false positives, and (multi)-megapixels. PERCIVAL (``Pixelated Energy Resolving CMOS Imager, Versatile And Large'') is currently being developed by a collaboration of DESY, RAL, Elettra, DLS and Pohang to address this need for the soft X-ray regime. PERCIVAL is a monolithic active pixel sensor (MAPS), i.e. based on CMOS technology. It will be back-thinned to access its primary energy range of 250 eV to 1 keV with target efficiencies above 90%. According to its preliminary specifications, the roughly 10 × 10 cm2, 3.5k × 3.7k monolithic ``PERCIVAL13M'' sensor will operate at frame rates up to 120 Hz (commensurate with most FELs) and use multiple gains within its 27 μm pixels to measure 1 to ~ 105 (500 eV) simultaneously-arriving photons. A smaller ``PERCIVAL2M'' with ~ 1.4k × 1.5k pixels is also planned. Currently, small-scale back-illuminated prototype systems (160 × 210 pixels of 25 μm pitch) are undergoing detailed testing with X-rays and optical photons. In March 2014, a prototype sensor was tested at 350 eV-2 keV at Elettra's TwinMic beamline. The data recorded include diffraction patterns at 350 eV and 400 eV, knife edge and sub-pixel pinhole illuminations, and comparisons of different pixel types. Another prototype chip will be submitted in fall 2014, first larger sensors could be in hand in late 2015.

  6. Ultraviolet Channeling Dynamics in Gaseous Media for X -- Ray Production

    NASA Astrophysics Data System (ADS)

    McCorkindale, John Charters

    The development of a coherent high brightness / short duration X -- ray source has been of considerable interest to the scientific community as well as various industries since the invention of the technology. Possible applications include X -- ray lithography, biological micro-imaging and the probing of molecular and atomic dynamics. One such source under investigation involves the interaction of a high pulsed power KrF UV laser with a noble gas target (krypton or xenon), producing a photon energy from 1 -- 5 keV. Amplification in this regime requires materials with very special properties found in spatially organized hollow atom clusters. One of the driving forces behind X -- ray production is the UV laser. Theoretical analysis shows that above a critical laser power, the formation of a stable plasma channel in the gaseous medium will occur which can act as a guide for the X-ray pulse and co-propagating UV beam. These plasma channels are visualized with a triple pinhole camera, axial and transverse von Hamos spectrometers and a Thomson scattering setup. In order to understand observed channel morphologies, full characterization of the drive laser was achieved using a Transient Grating -- Frequency Resolved Optical Gating (TG-FROG) technique which gives a full temporal representation of the electric field and associated phase of the ultrashort pulse. Insights gleaned from the TG -- FROG data as well as analysis of photodiode diagnostics placed along the UV laser amplification chain provide explanations for the plasma channel morphology and X -- ray output.

  7. X-ray emission from two nearby millisecond pulsars

    NASA Technical Reports Server (NTRS)

    Thorsett, S. E.

    1994-01-01

    This grant, titled 'X-Ray Emission from Two Nearby Millisecond Pulsars,' included ROSAT observations of the nearby pulsars PSR J2322+20 and PSR J2019+24. Neither was detected, although the observations were among the most sensitive ever made towards millisecond pulsars, reaching 1.5 x 10(exp 29) and 2.7 x 10(exp 29) erg s(exp -1) (0.1-2.4 keV), respectively. This is about, or slightly below, the predicted level of emission from the Seward and Wang empirical prediction, based on an extrapolation from slower pulsars. To understand the significance of this result, we have compared these limits with observations of four other millisecond pulsars, taken from the ROSAT archives. Except for the case of PSR B1821-21, where we identified a possible x-ray counterpart, only upper limits on x-ray flux were obtained. From these results, we conclude that x-ray emission beaming does not follow the same dependence on pulsar period as that of radio emission: while millisecond pulsars have beaming fractions near unity in the radio, x-ray emission is observed only for favorable viewing geometries.

  8. Magnetic excitations and phonons simultaneously studied by resonant inelastic x-ray scattering in optimally doped Bi1.5Pb0.55Sr1.6La0.4CuO6 +δ

    NASA Astrophysics Data System (ADS)

    Peng, Y. Y.; Hashimoto, M.; Sala, M. Moretti; Amorese, A.; Brookes, N. B.; Dellea, G.; Lee, W.-S.; Minola, M.; Schmitt, T.; Yoshida, Y.; Zhou, K.-J.; Eisaki, H.; Devereaux, T. P.; Shen, Z.-X.; Braicovich, L.; Ghiringhelli, G.

    2015-08-01

    Magnetic excitations in the optimally doped high-Tc superconductor Bi1.5Pb0.55Sr1.6La0.4CuO6 +δ (OP-Bi2201, Tc≃34 K) are investigated by Cu L3 edge resonant inelastic x-ray scattering (RIXS), below and above the pseudogap opening temperature. At both temperatures the broad spectral distribution disperses along the (1,0) direction up to ˜350 meV at zone boundary, similar to other hole-doped cuprates. However, above ˜0.22 reciprocal lattice units, we observe a concurrent intensity decrease for magnetic excitations and quasielastic signals with weak temperature dependence. This anomaly seems to indicate a coupling between magnetic, lattice, and charge modes in this compound. We also compare the magnetic excitation spectra near the antinodal zone boundary in the single layer OP-Bi2201 and in the bilayer optimally doped Bi1.5Pb0.6Sr1.54CaCu2O8 +δ (OP-Bi2212, Tc≃96 K). The strong similarities in the paramagnon dispersion and in their energy at zone boundary indicate that the strength of the superexchange interaction and the short-range magnetic correlation cannot be directly related to Tc, not even within the same family of cuprates.

  9. Examination of the structure in solid state of amino analogs of 4,4‧-[1,5-pentanediylbis(oxy)]bisbenzonitrile by means of X-ray diffraction, 13C CP/MAS NMR, and theoretical calculations

    NASA Astrophysics Data System (ADS)

    Maciejewska, Dorota; Wolska, Irena; Żabiński, Jerzy

    2008-05-01

    A single crystal of X-ray diffraction structures is presented for 4,4'-[1,5-(3-oxapentanediylbis(amino))]bisbenzonitrile 2 and 4,4'-[1,5-( N-methyl-3-azapentane-diylbis(oxy))]bisbenzonitrile 3. The molecular structures of these derivatives differ especially in conformations of the central linker: in 2 this linker adopts a trans/ gauche conformation, whereas in 3 - a fully extended conformation. The N atoms in various positions of the aliphatic linker change dramatically the molecular packing mode of both bisnitriles. But in both cases the nitrile groups take part in intermolecular hydrogen bonds: a type of N sbnd H···N in 2 and of C sbnd H···N in 3. Various conformations of both molecules were reflected in 13C CP/MAS NMR spectra in solid state as single and double resonance patterns for 2 and 3, respectively. A preliminary anticancer assay against 60 cell lines of 3 reveals strong growth inhibition of leukemia, melanoma, and renal cancer cells.

  10. New X-ray microprobe system for trace heavy element analysis using ultraprecise X-ray mirror optics of long working distance

    NASA Astrophysics Data System (ADS)

    Terada, Yasuko; Yumoto, Hirokatsu; Takeuchi, Akihisa; Suzuki, Yoshio; Yamauchi, Kazuto; Uruga, Tomoya

    2010-05-01

    A new X-ray microprobe system for trace heavy element analysis using ultraprecise X-ray mirror optics of 300 mm long working distance has been developed at beamline 37XU of SPring-8. A focusing test has been performed in the X-ray energy range 20-37.7 keV. A focused beam size of 1.3 μm ( V)×1.5 μm ( H) has been achieved at an X-ray energy of 30 keV, and a total photon flux of the focused beam was about 2.7×10 10 photons/s. Micro-X-ray fluorescence (μ-XRF) analysis of eggplant roots has been carried out using the developed microprobe. It is clearly observed in the XRF images that cadmium is highly accumulated in the endodermis, exodermis and epidermis of roots. This study demonstrates the potential of scanning microscopy for heavy elements analysis in the high-energy X-ray region.

  11. X-ray streak crystal spectography

    SciTech Connect

    Kauffman, R.L.; Brown, T.; Medecki, H.

    1983-07-01

    We have built an x-ray streaked crystal spectrograph for making time-resolved x-ray spectral measurements. This instrument can access Bragg angles from 11/sup 0/ to 38/sup 0/ and x-ray spectra from 200 eV to greater than 10 keV. We have demonstrated resolving powers, E/..delta..E > 200 at 1 keV and time resolution less than 20 psec. A description of the instrument and an example of the data is given.

  12. Differential cross sections for scattering of 0.5-, 1.5-, and 5.0 keV oxygen atoms by He, N2, and O2

    NASA Technical Reports Server (NTRS)

    Schafer, D. A.; Newman, J. H.; Smith, K. A.; Stebbings, R. F.

    1987-01-01

    This paper reports measurements of absolute scattering cross sections, differential in angle, for collisions of ground-state oxygen atoms with He, N2, and O2. Data are presented for scattering of 0.5-, 1.5-, and 5.0-keV oxygen-atom projectiles in the range of laboratory frame angles between 0.06 and 5 deg. These measurements provide information relevant to calculations of the aeronomic consequences of O(+) precipitation in the earth's upper atmosphere.

  13. Chest x-ray

    MedlinePlus

    Chest radiography; Serial chest x-ray; X-ray - chest ... You stand in front of the x-ray machine. You will be told to hold your breath when the x-ray is taken. Two images are usually taken. You will ...

  14. Characterization and cross calibration of Agfa D4, D7, and D8 and Kodak SR45 x-ray films against direct exposure film at 4.0-5.5 keV

    SciTech Connect

    Lanier, N.E.; Cowan, J.S.; Workman, J.

    2006-04-15

    Kodak direct exposure film (DEF) [B. L. Henke et al., J. Opt. Soc. Am. B 3, 1540 (1986)] has been the standard for moderate energy (1-10 keV) x-ray diagnostic applications among the high-energy-density and inertial confinement fusion research communities. However, market forces have prompted Kodak to discontinue production of DEF, leaving these specialized communities searching for a replacement. We have conducted cross-calibration experiments and film characterizations on five possible substitutes for Kodak DEF. The film types studied were Kodak's Biomax MR (BMR) and SR45 along with Agfa's D8, D7, and D4sc. None of the films tested matched the speed of DEF. BMR and D8 were closest but D8 exhibited lower noise, with superior resolution and dynamic range. Agfa D7, Agfa D4sc, and Kodak SR45 were significantly less sensitive than BMR and D8, however, the improvements they yielded in resolution and dynamic range warrant their use if experimental constraints allow.

  15. Characterization and cross calibration of Agfa D4, D7, and D8 and Kodak SR45 x-ray films against direct exposure film at 4.0-5.5 keV

    NASA Astrophysics Data System (ADS)

    Lanier, N. E.; Cowan, J. S.; Workman, J.

    2006-04-01

    Kodak direct exposure film (DEF) [B. L. Henke et al., J. Opt. Soc. Am. B 3, 1540 (1986)] has been the standard for moderate energy (1-10keV) x-ray diagnostic applications among the high-energy-density and inertial confinement fusion research communities. However, market forces have prompted Kodak to discontinue production of DEF, leaving these specialized communities searching for a replacement. We have conducted cross-calibration experiments and film characterizations on five possible substitutes for Kodak DEF. The film types studied were Kodak's Biomax MR (BMR) and SR45 along with Agfa's D8, D7, and D4sc. None of the films tested matched the speed of DEF. BMR and D8 were closest but D8 exhibited lower noise, with superior resolution and dynamic range. Agfa D7, Agfa D4sc, and Kodak SR45 were significantly less sensitive than BMR and D8, however, the improvements they yielded in resolution and dynamic range warrant their use if experimental constraints allow.

  16. Measurement of mass attenuation coefficients of Rhizophora spp. binderless particleboards in the 16.59-25.26 keV photon energy range and their density profile using x-ray computed tomography.

    PubMed

    Marashdeh, M W; Bauk, S; Tajuddin, A A; Hashim, R

    2012-04-01

    The mass attenuation coefficients of Rhizophora spp. binderless particleboard with four different particle sizes (samples A, B, C and D) and natural raw Rhizophora spp. wood (sample E) were determined using single-beam photon transmission in the energy range between 16.59 and 25.26 keV. This was done by determining the attenuation of K(α1) X-ray fluorescent (XRF) photons from niobium, molybdenum, palladium, silver and tin targets. The results were compared with theoretical values of young-age breast (Breast 1) and water calculated using a XCOM computer program. It was found that the mass attenuation coefficient of Rhizophora spp. binderless particleboards to be close to the calculated XCOM values in water than natural Rhizophora spp. wood. Computed tomography (CT) scans were then used to determine the density profile of the samples. The CT scan results showed that the Rhizophora spp. binderless particleboard has uniform density compared to natural Rhizophora spp. wood. In general, the differences in the variability of the profile density decrease as the particle size of the pellet samples decreases. PMID:22304963

  17. Discovery of Diffuse Hard X-ray Emission associated with Jupiter

    NASA Astrophysics Data System (ADS)

    Ezoe, Y.; Miyoshi, Y.; Ishikawa, K.; Ohashi, T.; Terada, N.; Uchiyama, Y.; Negoro, H.

    2009-12-01

    Our discovery of diffuse hard (1-5 keV) X-ray emission around Jupiter is reported. Recent Chandra and XMM-Newton observations revealed several types of X-rays in the vicinity of Jupiter such as auroral and disk emission from Jupiter and faint diffuse X-rays from the Io Plasma Torus (see Bhardwaj et al. 2007 for review). To investigate possible diffuse hard X-ray emission around Jupiter with the highest sensitivity, we conducted data analysis of Suzaku XIS observations of Jupiter on Feb 2006. After removing satellite and planetary orbital motions, we detected a significant diffuse X-ray emission extending to ~6 x 3 arcmin with the 1-5 keV X-ray luminosity of ~3e15 erg/s. The emitting region very well coincided with the Jupiter's radiation belts. The 1-5 keV X-ray spectrum was represented by a simple power law model with a photon index of 1.4. Such a flat continuum strongly suggests non-thermal origin. Although such an emission can be originated from multiple background point sources, its possibility is quite low. We hence examined three mechanisms, assuming that the emission is truly diffuse: bremsstrahlung by keV electrons, synchrotron emission by TeV electrons, and inverse Compton scattering of solar photons by MeV electrons. The former two can be rejected because of the X-ray spectral shape and implausible existence of TeV electrons around Jupiter, respectively. The last possibility was found to be possible because tens MeV electrons, which have been confirmed in inner radiation belts (Bolton et al. 2002), can kick solar photons to the keV energy range and provide a simple power-law continuum. We estimated an average electron density from the X-ray luminosity assuming the oblate spheroid shaped emitting region with 8 x 8 x 4 Jovian radii. The necessary density was 0.02 1/cm3 for 50 MeV electrons. Hence, our results may suggest a new particle acceleration phenomenon around Jupiter.

  18. X-ray diffraction and Mössbauer spectroscopy studies of LiFe 0.5Ti 1.5O 4 - A new primitive cubic ordered spinel

    NASA Astrophysics Data System (ADS)

    Avdeev, Georgi; Petrov, Kostadin; Mitov, Ivan

    2007-12-01

    LiFe 0.5Ti 1.5O 4 was synthesized by solid-state reaction carried out at 900 °C in flowing argon atmosphere, followed by rapid quenching of the reaction product to room temperature. The compound has been characterized by X-ray powder diffraction (XRD) and 57Fe Mössbauer effect spectroscopy (MES). It crystallizes in the space group P4 332, a = 8.4048(1) Å. Results from Rietveld structural refinement indicated 1:3 cation ordering on the octahedral sites: Li occupies the octahedral (4 b) sites, Ti occupies the octahedral (12 d) sites, while the tetrahedral (8 c) sites have mixed (Fe/Li) occupancy. A small, about 5%, inversion of Fe on the (4 b) sites has been detected. The MES data is consistent with cation distribution and oxidation state of Fe, determined from the structural data. The title compound is thermally unstable in air atmosphere. At 800 °C it transforms to a mixture of two Fe 3+ containing phases - a face centred cubic spinel Li (1+ y)/2 Fe (5-3 y)/2 Ti yO 4 and a Li ( z-1)/2 Fe (7-3 z)/2 Ti zO 5 - pseudobrookite. The major product of thermal treatment at 1000 °C is a ramsdellite type lithium titanium iron(III) oxide, accompanied by traces of rutile and pseudobrookite.

  19. Comparative studies of the phase evolution in M-doped LixMn1.5Ni0.5O4 (M = Co, Al, Cu and Mg) by in-situ X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Liu, D.; Trottier, J.; Gagnon, C.; Guerfi, A.; Julien, C. M.; Mauger, A.; Zaghib, K.

    2014-10-01

    A series of metal-doped LiMn1.5Ni0.5O4 (metal = Co, Al, Cu and Mg) positive electrode materials for lithium ion batteries were synthesized and their structural changes during the galvanostatic charge/discharge process at C/24 rate were investigated by using in situ X-ray diffraction (XRD) measurements. The phase diagram shows that similar series of first-order phase transitions with two regions of two-phase coexistence are observed during intercalation/de-intercalation of lithium among all the doped cathode materials. However, minor differences of the phase evolution and the electrochemical properties point to the different roles of the dopant ions. The phase diagram is analyzed and discussed, together with the differences among different results reported in the literature to distinguish between general intrinsic properties of spinel and sample-dependent properties due to the degree of cation ordering, out-of-equilibrium effects, electro-negativity and radii of the dopant ions. Among the metal-substituted samples, we argue that the Co-doping is the most promising approach with improved electrochemical property.

  20. Soft X-ray transients in quiescence - Observations of AQL X-1 and CEN X-4

    NASA Astrophysics Data System (ADS)

    van Paradijs, J.; Verbunt, F.; Shafer, R. A.; Arnaud, K. A.

    1987-08-01

    The authors observed the soft X-ray transients Aql X-1 and Cen X-4 during quiescence with EXOSAT. For Aql X-1 they obtain a 3σ upper limit to the X-ray luminosity Lx (in the energy range between 0.5 and 4.5 keV) of <3.0×1033erg s-1, Cen X-4 was detected at Lx (0.5 - 4.5 keV) ≅ 1.5 to 4.2×1033erg s-1. An optical spectrum of Cen X-4 obtained two years after its 1979 outburst shows a K3 V continuum with Balmer emission lines. Combining their EXOSAT observations with a previous EINSTEIN detection the authors argue that the X-ray luminosity of Cen X-4 is due to continued accretion, and not to thermal radiation of a cooling neutron star.

  1. X-ray lithography using holographic images

    DOEpatents

    Howells, Malcolm R.; Jacobsen, Chris

    1995-01-01

    A non-contact X-ray projection lithography method for producing a desired X-ray image on a selected surface of an X-ray-sensitive material, such as photoresist material on a wafer, the desired X-ray image having image minimum linewidths as small as 0.063 .mu.m, or even smaller. A hologram and its position are determined that will produce the desired image on the selected surface when the hologram is irradiated with X-rays from a suitably monochromatic X-ray source of a selected wavelength .lambda.. On-axis X-ray transmission through, or off-axis X-ray reflection from, a hologram may be used here, with very different requirements for monochromaticity, flux and brightness of the X-ray source. For reasonable penetration of photoresist materials by X-rays produced by the X-ray source, the wavelength X, is preferably chosen to be no more than 13.5 nm in one embodiment and more preferably is chosen in the range 1-5 nm in the other embodiment. A lower limit on linewidth is set by the linewidth of available microstructure writing devices, such as an electron beam.

  2. Compact tunable Compton x-ray source from laser wakefield accelerator and plasma mirror

    NASA Astrophysics Data System (ADS)

    Tsai, Hai-En; Wang, Xiaoming; Shaw, Joseph; Li, Zhengyan; Zgadzaj, Rafal; Arefiev, Alex; Downer, Mike; InstituteFusion Studies, University of Texas at Austin Team

    2014-10-01

    Compton backscatter (CBS) x-rays have been generated from laser wakefield accelerator (LWFA) electron beams by retro-reflecting the LWFA drive pulse with a plasma mirror (PM) and by backscattering a secondary pulse split from the driver pulse. However, tunable quasi-monoenergetic CBS x-rays have been produced only by the latter method, which requires challenging alignment. Here we demonstrate quasi-monoenergetic (~50% FWHM), bright (5 × 106 photon per shot) CBS x-rays with central energy tunability from 75 KeV to 200 KeV by combining a PM with a tunable LWFA. 30 TW, 30-fs (FWHM), laser pulses from the UT3 laser system were focused (f/12) to spot diameter 11 micron, intensity ~6 × 1018 W/cm2 (a = 1.5) at a 1-mm long Helium gas jet, yielding quasi-monoenergetic relativistic electrons. A thin plastic film near the gas jet exit efficiently retro-reflected the LWFA driving pulse into oncoming electrons to produce CBS x-rays without detecting bremsstrahlung background. By changing gas jet backing pressure, electron energy was tuned from 60 to 90 MeV, thereby tuning the CBS x-ray energy, which was determined by measuring transmission through a metal filter pack. The x-ray beam profiles recorded on an image plate had 5-10-mrad divergence.

  3. SAS 3 observations of two X-ray transient events with precursors

    NASA Technical Reports Server (NTRS)

    Hoffman, J. A.; Lewin, W. H. G.; Doty, J.; Jernigan, J. G.; Haney, M.; Richardson, J. A.

    1978-01-01

    SAS 3 has observed two unusual fast transient X-ray events from different sources, one lasting about 150 s and one, approximately 1500 s. Both events were preceded by precursor pulses which lasted a few seconds and which rose and fell in less than 0.4 s. The precursors were separated from the 'main' events by several seconds, during which no X-rays were detected. There are similarities between the two main events and X-ray bursts in both their temporal and spectral evolution. The spectra of the main events started out much softer than the spectra of the precursors, became harder as they approached maximum intensity, and softened as they decayed. In the 1500-s event, X-rays with energies greater than 10 keV were delayed by about 80 s compared with 1.5-6-keV X-rays. A blackbody fit to the spectral data of the main event of approximately 1500-s duration gives a maximum temperature of 29 million K and a radius for the emitting region of at least about 9 km (at a distance of 10 kpc); this is similar to the temperature and sizes found for several X-ray burst sources.

  4. Dental x-rays

    MedlinePlus

    X-ray - teeth; Radiograph - dental; Bitewings; Periapical film; Panoramic film ... dentist's office. There are many types of dental x-rays. Some are: Bitewing Periapical Palatal (also called occlusal) ...

  5. X-ray (image)

    MedlinePlus

    X-rays are a form of ionizing radiation that can penetrate the body to form an image on ... will be shades of gray depending on density. X-rays can provide information about obstructions, tumors, and other ...

  6. X-Ray Lasers

    ERIC Educational Resources Information Center

    Chapline, George; Wood, Lowell

    1975-01-01

    Outlines the prospects of generating coherent x rays using high-power lasers and indentifies problem areas in their development. Indicates possible applications for coherent x rays in the fields of chemistry, biology, and crystallography. (GS)

  7. X Ray Topography

    ERIC Educational Resources Information Center

    Balchin, A. A.

    1974-01-01

    Discusses some aspects in X-ray topography, including formation of dislocations, characteristics of stacking faults, x-ray contrast in defect inspection, Berg-Barrett technique, and Lang traversing crystal and Borrmann's methods. (CC)

  8. Extremity x-ray

    MedlinePlus

    ... degenerative) Bone tumor Broken bone (fracture) Dislocated bone Osteomyelitis (infection) Other conditions for which the test may ... Bone tumor Bone x-ray Broken bone Clubfoot Osteomyelitis X-ray Update Date 10/22/2014 Updated ...

  9. Advanced X-ray Astrophysics Facility (AXAF): An overview

    NASA Technical Reports Server (NTRS)

    Weisskopf, M. C.; ODell, S. L.; Elsner, R. F.; VanSpeybroeck, L. P.

    1995-01-01

    The Advanced X-ray Astrophysics Facility (AXAF) is the x-ray component of NASA's Great Observatories. To be launched in late 1998, AXAF will provide unprecedented capabilities for high-resolution imaging, spectrometric imaging, and high-resolution disperse spectroscopy, over the x-ray band from about 0.1 keV to 10 keV. With these capabilities, AXAF observations will address many of the outstanding questions in astronomy, astrophysics, and cosmology.

  10. The soft X-ray diffuse background observed with the HEAO 1 low-energy detectors

    NASA Technical Reports Server (NTRS)

    Garmire, G. P.; Nousek, J. A.; Apparao, K. M. V.; Burrows, D. N.; Fink, R. L.; Kraft, R. P.

    1992-01-01

    Results of a study of the diffuse soft-X-ray background as observed by the low-energy detectors of the A-2 experiment aboard the HEAO 1 satellite are reported. The observed sky intensities are presented as maps of the diffuse X-ray background sky in several energy bands covering the energy range 0.15-2.8 keV. It is found that the soft X-ray diffuse background (SXDB) between 1.5 and 2.8 keV, assuming a power law form with photon number index 1.4, has a normalization constant of 10.5 +/- 1.0 photons/sq cm s sr keV. Below 1.5 keV the spectrum of the SXDB exceeds the extrapolation of this power law. The low-energy excess for the NEP can be fitted with emission from a two-temperature equilibrium plasma model with the temperatures given by log I1 = 6.16 and log T2 = 6.33. It is found that this model is able to account for the spectrum below 1 keV, but fails to yield the observed Galactic latitude variation.

  11. DISCOVERY OF DIFFUSE HARD X-RAY EMISSION AROUND JUPITER WITH SUZAKU

    SciTech Connect

    Ezoe, Y.; Ishikawa, K.; Ohashi, T.; Miyoshi, Y.; Terada, N.; Uchiyama, Y.; Negoro, H.

    2010-02-01

    We report the discovery of diffuse hard (1-5 keV) X-ray emission around Jupiter in a deep 160 ks Suzaku X-ray Imaging Spectrometer data. The emission is distributed over {approx}16 x 8 Jovian radius and spatially associated with the radiation belts and the Io Plasma Torus (IPT). It shows a flat power-law spectrum with a photon index of 1.4 {+-} 0.2 with the 1-5 keV X-ray luminosity of (3.3 {+-} 0.5)x10{sup 15} erg s{sup -1}. We discussed its origin and concluded that it seems to be truly diffuse, although a possibility of multiple background point sources cannot be completely rejected with a limited angular resolution. If it is diffuse, the flat continuum indicates that X-rays arise by the nonthermal electrons in the radiation belts and/or the IPT. The synchrotron and bremsstrahlung models can be rejected from the necessary electron energy and X-ray spectral shape, respectively. The inverse-Compton scattering off solar photons by ultra-relativistic (several tens MeV) electrons can explain the energy and the spectrum but the necessary electron density is {approx}>10 times larger than the value estimated from the empirical model of Jovian charge particles.

  12. Images of single X-ray photons from X-ray phosphor screens

    NASA Technical Reports Server (NTRS)

    Fishman, G. J.

    1981-01-01

    Photographs show the efficiency and resolution characteristics of single X-ray photons converted to optical photons in a variety of commercial X-ray phosphor screens. The recording system uses a cooled, two-stage image intensifier system with fiber optics coupling to the phosphor screen. High efficiencies in the energy range 20-100 keV with position resolution of the order 200 microns are readily achievable, although the sensitive area is presently limited. Potential applications include X-ray astronomy, high-speed X-ray diffractometry, and extremely low dose radiography.

  13. Soft X-ray results from the Wisconsin experiment on OSO-8

    NASA Technical Reports Server (NTRS)

    Bunner, A. N.

    1978-01-01

    Design features and capabilities of a soft X-ray instrument aboard OSO 8 are discussed, and results are presented for observations of AM Her, Her X-1, and Eta Car. The observations of AM Her indicate that: (1) the spectrum is composite, with a very steep or very-low-temperature component plus a rather flat or very-high-temperature component; (2) the relative phase of soft X-ray minimum and optical V-band primary minimum has remained stable over the interval between 1975 'high-state' observations and 1976 'low-state' observations; and (3) the times of soft X-ray minima and hard X-ray maxima coincide, to within the accuracy of the observations. For Her X-1, soft X-ray turn-on is found to lag behind hard X-ray turn-on by no more than 3 hr. It is suggested that little or no absorption of the soft X-ray component occurs during the on state by cool gas within the Her X-1 system. A strong source with a spectrum peaked between 0.4 and 1.5 keV has been detected which is consistent with a point source at the position of Eta Car.

  14. X-Ray Imaging

    MedlinePlus

    ... Brain Surgery Imaging Clinical Trials Basics Patient Information X-Ray Imaging Print This Page X-ray imaging is perhaps the most familiar type of imaging. Images produced by X-rays are due to the different absorption rates of ...

  15. X-Rays

    MedlinePlus

    X-rays are a type of radiation called electromagnetic waves. X-ray imaging creates pictures of the inside of your ... different amounts of radiation. Calcium in bones absorbs x-rays the most, so bones look white. Fat and ...

  16. Hand x-ray

    MedlinePlus

    X-ray - hand ... A hand x-ray is taken in a hospital radiology department or your health care provider's office by an ... technician. You will be asked to place your hand on the x-ray table, and keep it ...

  17. Sinus x-ray

    MedlinePlus

    Paranasal sinus radiography; X-ray - sinuses ... sinus x-ray is taken in a hospital radiology department. Or the x-ray may be taken ... Brown J, Rout J. ENT, neck, and dental radiology. In: Adam A, Dixon AK, Gillard JH Schaefer- ...

  18. Preliminary designs for X-ray source modifications for the Marshall Space Flight Center's X-ray calibration facility

    NASA Technical Reports Server (NTRS)

    Croft, W. L.

    1986-01-01

    The objective of this investigation is to develop preliminary designs for modifications to the X-ray source of the MSFC X-Ray Calibration Facility. Recommendations are made regarding: (1) the production of an unpolarized X-ray beam, (2) modification of the source to provide characteristic X-rays with energies up to 40 keV, and (3) addition of the capability to calibrate instruments in the extreme ultraviolet wavelength region.

  19. X-ray source for mammography

    DOEpatents

    Logan, C.M.

    1994-12-20

    An x-ray source is described utilizing anode material which shifts the output spectrum to higher energy and thereby obtains higher penetrating ability for screening mammography application, than the currently utilized anode material. The currently used anode material (molybdenum) produces an energy x-ray spectrum of 17.5/19.6 keV, which using the anode material of this invention (e.g. silver, rhodium, and tungsten) the x-ray spectrum would be in the 20-35 keV region. Thus, the anode material of this invention provides for imaging of breasts with higher than average x-ray opacity without increase of the radiation dose, and thus reduces the risk of induced breast cancer due to the radiation dose administered for mammograms. 6 figures.

  20. X-ray source for mammography

    DOEpatents

    Logan, Clinton M.

    1994-01-01

    An x-ray source utilizing anode material which shifts the output spectrum to higher energy and thereby obtains higher penetrating ability for screening mammography application, than the currently utilized anode material. The currently used anode material (molybdenum) produces an energy x-ray spectrum of 17.5/19.6 keV, which using the anode material of this invention (e.g. silver, rhodium, and tungsten) the x-ray spectrum would be in the 20-35 keV region. Thus, the anode material of this invention provides for imaging of breasts with higher than average x-ray opacity without increase of the radiation dose, and thus reduces the risk of induced breast cancer due to the radiation dose administered for mammograms.

  1. Solar flare hard X-ray observations

    NASA Technical Reports Server (NTRS)

    Dennis, Brian R.

    1988-01-01

    Recent hard X-ray observations of solar flares are reviewed with emphasis on results obtained with instruments on the solar maximum satellite. Flares with three sets of characteristics, designated as Type A, Type B, and Type C, are discussed and hard X-ray temporal, spatial spectral, and polarization measurements are reviewed in this framework. Coincident observations are reviewed at other wavelengths including the UV, microwaves, and soft X-rays, with discussions of their interpretations. In conclusion, a brief outline is presented of the potential of future hard X-ray observations with sub-second time resolution, arcsecond spatial resolution, and keV energy resolution, and polarization measurements at the few percent level up to 100 keV.

  2. X-ray microbeam for speech research

    NASA Astrophysics Data System (ADS)

    Thompson, Murray A.; Robl, Phillip E.

    A steerable X-ray beam system is being built for use in speech research. A beam of 150 keV to 600 keV electrons will be steered by a computer and the resulting X-rays will be selected by a pinhole to give a beam with a width of 0.6 mm. The X-ray beam will be used to follow about 8 gold pellets on tongue and throat surfaces at sampling frequencies of about 125 frames/s. The pattern recognition system and X-ray energies have been chosen to allow the tracking of pellets behind some teeth fillings of mercury amalgam and gold caps.

  3. Germanium x-ray phase plates for the production of circularly polarized x-rays

    SciTech Connect

    Yahnke, C.J.; Srajer, G.; Haeffner, D.R.; Mills, D.M.; Assoufid, L.

    1993-10-01

    The authors have constructed an x-ray phase plate to produce both linearly and circularly polarized x-rays at discrete energies between 20 keV and 88 keV. The plate is a monolithic two-crystal design, constructed from germanium, which increases the resultant degree of circular polarization of the output beam. They have measured the degree of circular polarization at 65 keV to be 90% {+-} 4%, significantly better than that produced by silicon phase plates. This radiation was used to measure the magnetic Compton profile for Fe, which was found to be in good agreement with theory and previous work. The underlying x-ray optics and the characterization of the device between 62 keV and 93 keV at the Cornell High Energy Synchrotron Source are presented.

  4. For the detection of subkiloelectron-volt X-rays

    NASA Technical Reports Server (NTRS)

    Hailey, C. J.; Ku, W. H.-M.; Vartanian, M. H.

    1982-01-01

    A large-area, imaging gas scintillation proportional counter (IGSPC) has been constructed for use in X-ray astronomy. The IGSPC consists of a gas scintillation proportional counter (GSPC) with a 1-micron polypropylene window coupled to a multiwire proportional counter (MWPC) via a calcium fluoride window. The MWPC, filled with a mixture of argon, methane, and tetrakis (dimethylamino) ethylene, detects the UV photons emitted by the xenon gas in the GSPC. Over a sensitive area of 21 sq cm, the instrument has a measured energy resolution of 17.5% (FWHM) and 1.9 mm (FWHM) spatial resolution at 1.5 keV.

  5. Performance of a hard x-ray undulator at CHESS

    SciTech Connect

    Bilderback, D. H.; Batterman, B. W.; Bedzyk, M. J.; Finkelstein, K.; Henderson, C.; Merlini, A.; Schildkamp, W.; Shen, Q.; White, J.; Blum, E. B.; and others

    1989-07-01

    A 3.3-cm period Nd-Fe-B hybrid undulator has been designed and successfully operated in the Cornell Electron Storage Ring (CESR). This 2-m-long, 123-pole insertion device is a prototype of one of the undulators planned for the Advanced Photon Source. In dedicated operation, the undulator produced the expected brightness at 5.437 GeV with the fundamental x-ray energy ranging from 4.3 to 7.9 keV corresponding to a change in gap from 1.5 to 2.8 cm.

  6. X-ray emission from normal galaxies

    NASA Technical Reports Server (NTRS)

    Long, K. S.; Van Speybroeck, L. P.

    1983-01-01

    The results of Einstein Observatory studies of X-ray emission from normal galaxies, including the LMC and SMC, M31, M33, M101, NGC 247, M81 and M100, and N253 are surveyed. The X-ray luminosity of normal galaxies is proportional to their optical luminosity, revealing no strong dependence on galaxy type. The number of individual sources detected are comparable to the number of sources expected on mass considerations. There are substantial numbers of X-ray sources in the Magellanic Clouds with luminosities in the range 10 to the 35th-36th ergs/s, lower than most X-ray binaries but higher than known uncollapsed stellar systems. About seven X-ray sources with luminosities of at least 10 to the 39th ergs/s in the 0.5-3.0 keV band have been found in the arms of nearby spiral galaxies.

  7. Quasar x-ray spectra revisited

    NASA Technical Reports Server (NTRS)

    Shastri, P.; Wilkes, B. J.; Elvis, M.; Mcdowell, J.

    1992-01-01

    A sample of 45 quasars observed by the Imaging Proportional Counter (IPC) on the Einstein satellite is used to re-examine the relationship between the soft (0.2-3.5 keV) X-ray energy index and radio-loudness. We found the following: (1) the tendency for radio-loud quasars to have systematically flatter X-ray slopes than radio-quiet quasars (RQQ's) is confirmed with the soft X-ray excess having negligible effect; (2) there is a tendency for the flatness of the X-ray slope to correlate with radio core-dominance for radio-loud quasars, suggesting that a component of the X-ray emission is relativistically beamed; (3) for the RQQ's the soft X-ray slopes, with a mean of approximately 1.0, are consistent with the slopes found at higher energies (2-10 keV) although steeper than those observed for Seyfert 1 galaxies (also 2-10 keV) where the reflection model gives a good fit to the data; (4) the correlation of FeII emission line strength with X-ray energy index is confirmed for radio-quiet quasars using a subset of 18 quasars. The radio-loud quasars show no evidence for a correlation. This relation suggests a connection between the ionizing continuum and the line emission from the broad emission line region (BELR) of radio-quiet quasars, but in the opposite sense to that predicted by current photoionization models; and (5) the correlations of X-ray slope with radio core dominance and FeII equivalent width within the radio-loud and radio-quiet sub-classes respectively imply that the observed wide range of X-ray spectral slopes is real rather than due to the large measuring uncertainties for individual objects.

  8. X-Ray Diffractive Optics

    NASA Technical Reports Server (NTRS)

    Dennis, Brian; Li, Mary; Skinner, Gerald

    2013-01-01

    X-ray optics were fabricated with the capability of imaging solar x-ray sources with better than 0.1 arcsecond angular resolution, over an order of magnitude finer than is currently possible. Such images would provide a new window into the little-understood energy release and particle acceleration regions in solar flares. They constitute one of the most promising ways to probe these regions in the solar atmosphere with the sensitivity and angular resolution needed to better understand the physical processes involved. A circular slit structure with widths as fine as 0.85 micron etched in a silicon wafer 8 microns thick forms a phase zone plate version of a Fresnel lens capable of focusing approx. =.6 keV x-rays. The focal length of the 3-cm diameter lenses is 100 microns, and the angular resolution capability is better than 0.1 arcsecond. Such phase zone plates were fabricated in Goddard fs Detector Development Lab. (DDL) and tested at the Goddard 600-microns x-ray test facility. The test data verified that the desired angular resolution and throughput efficiency were achieved.

  9. An X-ray study of gravitational lenses

    NASA Astrophysics Data System (ADS)

    Dai, Xinyu

    2004-11-01

    Gravitational lensing of distant quasars by intervening galaxies is a spectacular phenomenon in the universe. With the advent of Chandra, it is possible to resolve for the first time in the X-ray band lensed quasar images with separations greater than about 0.35 arcsec. We use lensing as a tool to study AGN and Cosmology with Chandra and XMM-Newton. First, we present results from a mini-survey of relatively high redshift (1.7 < z < 4) gravitationally lensed radio-quiet quasars observed with the Chandra X-ray Observatory and with XMM-Newton. The lensing magnification effect allows us to search for changes in quasar spectroscopic and flux variability properties with redshift over three orders of magnitude in intrinsic X-ray luminosity. It extends the study of quasar properties to unlensed X-ray flux levels as low as a few times 10 -15 erg cm -2 s -1 in the observed 0.4-8 keV band. For the first time, these observations of lensed quasars have provided medium to high signal-to-noise ratio X-ray spectra of a sample of relatively high-redshift and low X-ray luminosity quasars. We find a possible correlation between the X-ray powerlaw photon index and X-ray luminosity of the gravitationally lensed radio-quiet quasar sample. The X-ray spectral slope steepens as the X-ray luminosity increases. This correlation is still signific ant when we combine our data with other samples of radio-quiet quasars with z > 1.5, especially in the low luminosity range between 10^43 -10^45.5 erg s -1 . This result is surprising considering that such a correlation is not found for quasars with redshifts below 1.5. We suggest that this correlation can be understood in the context of the hot-corona model for X-ray emission from quasar accretion disks, under the hypothesis that the quasars in our sample accrete very close to their Eddington limits and the observed luminosity range is set by the range of black hole masses (this hypothesis is consistent with recent predictions of semi

  10. GEMS X-ray Polarimeter Performance Simulations

    NASA Technical Reports Server (NTRS)

    Baumgartner, Wayne H.; Strohmayer, Tod; Kallman, Tim; Black, J. Kevin; Hill, Joanne; Swank, Jean

    2012-01-01

    The Gravity and Extreme Magnetism Small explorer (GEMS) is an X-ray polarization telescope selected as a NASA small explorer satellite mission. The X-ray Polarimeter on GEMS uses a Time Projection Chamber gas proportional counter to measure the polarization of astrophysical X-rays in the 2-10 keV band by sensing the direction of the track of the primary photoelectron excited by the incident X-ray. We have simulated the expected sensitivity of the polarimeter to polarized X-rays. We use the simulation package Penelope to model the physics of the interaction of the initial photoelectron with the detector gas and to determine the distribution of charge deposited in the detector volume. We then model the charge diffusion in the detector,and produce simulated track images. Within the track reconstruction algorithm we apply cuts on the track shape and focus on the initial photoelectron direction in order to maximize the overall sensitivity of the instrument, using this technique we have predicted instrument modulation factors nu(sub 100) for 100% polarized X-rays ranging from 10% to over 60% across the 2-10 keV X-ray band. We also discuss the simulation program used to develop and model some of the algorithms used for triggering, and energy measurement of events in the polarimeter.

  11. Indus-2 X-ray lithography beamline for X-ray optics and material science applications

    SciTech Connect

    Dhamgaye, V. P. Lodha, G. S.

    2014-04-24

    X-ray lithography is an ideal technique by which high aspect ratio and high spatial resolution micro/nano structures are fabricated using X-rays from synchrotron radiation source. The technique has been used for fabricating optics (X-ray, visible and infrared), sensors and actuators, fluidics and photonics. A beamline for X-ray lithography is operational on Indus-2. The beamline offers wide lithographic window from 1-40keV photon energy and wide beam for producing microstructures in polymers upto size ∼100mm × 100mm. X-ray exposures are possible in air, vacuum and He gas environment. The air based exposures enables the X-ray irradiation of resist for lithography and also irradiation of biological and liquid samples.

  12. X-ray emission from starburst galaxies

    NASA Technical Reports Server (NTRS)

    Rephaeli, Yoel; Gruber, Duane; Macdonald, Dan; Persic, Massimo

    1991-01-01

    The results are reported of an investigation of X-ray emission from a sample of 53 IRAS-selected candidate starburst galaxies. Superposed soft and hard X-ray emission from these galaxies in the Einstein-IPC and HEAO-1 A-2 and A-4 energy bands, which span 0.5 to 160 keV, is detected at the 99.6 percent confidence level, after allowing for confusion noise in the HEAO-1 data. Above 15 keV the confidence level is 97 percent. The combined spectrum is flat, with a (photon) power-law index of 1.0 +/- 0.3. The contribution of the population of sources represented by this sample to the 3-50 keV residual cosmic X-ray background is estimated to be at least about 4 percent assuming no evolution. Moderate evolution, for which there is some observational evidence, increases this fractional contribution to about 26 percent.

  13. Fundamental x-ray interaction limits in diagnostic imaging detectors: spatial resolution.

    PubMed

    Hajdok, G; Battista, J J; Cunningham, I A

    2008-07-01

    The practice of diagnostic x-ray imaging has been transformed with the emergence of digital detector technology. Although digital systems offer many practical advantages over conventional film-based systems, their spatial resolution performance can be a limitation. The authors present a Monte Carlo study to determine fundamental resolution limits caused by x-ray interactions in four converter materials: Amorphous silicon (a-Si), amorphous selenium, cesium iodide, and lead iodide. The "x-ray interaction" modulation transfer function (MTF) was determined for each material and compared in terms of the 50% MTF spatial frequency and Wagner's effective aperture for incident photon energies between 10 and 150 keV and various converter thicknesses. Several conclusions can be drawn from their Monte Carlo study. (i) In low-Z (a-Si) converters, reabsorption of Compton scatter x rays limits spatial resolution with a sharp MTF drop at very low spatial frequencies (< 0.3 cycles/mm), especially above 60 keV; while in high-Z materials, reabsorption of characteristic x rays plays a dominant role, resulting in a mid-frequency (1-5 cycles/mm) MTF drop. (ii) Coherent scatter plays a minor role in the x-ray interaction MTF. (iii) The spread of energy due to secondary electron (e.g., photoelectrons) transport is significant only at very high spatial frequencies. (iv) Unlike the spread of optical light in phosphors, the spread of absorbed energy from x-ray interactions does not significantly degrade spatial resolution as converter thickness is increased. (v) The effective aperture results reported here represent fundamental spatial resolution limits of the materials tested and serve as target benchmarks for the design and development of future digital x-ray detectors. PMID:18697543

  14. Fundamental x-ray interaction limits in diagnostic imaging detectors: Spatial resolution

    SciTech Connect

    Hajdok, G.; Battista, J. J.; Cunningham, I. A.

    2008-07-15

    The practice of diagnostic x-ray imaging has been transformed with the emergence of digital detector technology. Although digital systems offer many practical advantages over conventional film-based systems, their spatial resolution performance can be a limitation. The authors present a Monte Carlo study to determine fundamental resolution limits caused by x-ray interactions in four converter materials: Amorphous silicon (a-Si), amorphous selenium, cesium iodide, and lead iodide. The ''x-ray interaction'' modulation transfer function (MTF) was determined for each material and compared in terms of the 50% MTF spatial frequency and Wagner's effective aperture for incident photon energies between 10 and 150 keV and various converter thicknesses. Several conclusions can be drawn from their Monte Carlo study. (i) In low-Z (a-Si) converters, reabsorption of Compton scatter x rays limits spatial resolution with a sharp MTF drop at very low spatial frequencies (<0.3 cycles/mm), especially above 60 keV; while in high-Z materials, reabsorption of characteristic x rays plays a dominant role, resulting in a mid-frequency (1-5 cycles/mm) MTF drop. (ii) Coherent scatter plays a minor role in the x-ray interaction MTF. (iii) The spread of energy due to secondary electron (e.g., photoelectrons) transport is significant only at very high spatial frequencies. (iv) Unlike the spread of optical light in phosphors, the spread of absorbed energy from x-ray interactions does not significantly degrade spatial resolution as converter thickness is increased. (v) The effective aperture results reported here represent fundamental spatial resolution limits of the materials tested and serve as target benchmarks for the design and development of future digital x-ray detectors.

  15. X-ray rocking curve measurements of bent crystals. [used in High Resolution Spectrometer in Advanced X-ray Astrophysics Facility

    NASA Technical Reports Server (NTRS)

    Hakim, M. B.; Muney, W. S.; Fowler, W. B.; Woodgate, B. E.

    1988-01-01

    A three-crystal laboratory X-ray spectrometer is used to measure the Bragg reflection from concave cylindrically curved crystals to be used in the high-resolution X-ray spectrometer of the NASA Advanced X-ray Astrophysics Facility (AXAF). The first two crystals, in the dispersive (1.1) arrangement, select a narrow collimated monochromatic beam in the Cu K-alpha(1) line at 1.5 A (8.1 keV), which illuminates the test crystal. The angular centroids of rocking curves measured along the surface provide a measure of the conformity of the crystal to the desired radius of curvature. Individual and combined rocking-curve widths and areas provide a measure of the resolution and efficiency at 1.54 A. The crystals analyzed included LiF(200), PET, and acid phthalates such as TAP.

  16. Symbiotic stars in X-rays

    NASA Astrophysics Data System (ADS)

    Luna, G. J. M.; Sokoloski, J. L.; Mukai, K.; Nelson, T.

    2013-11-01

    Until recently, symbiotic binary systems in which a white dwarf accretes from a red giant were thought to be mainly a soft X-ray population. Here we describe the detection with the X-ray Telescope (XRT) on the Swift satellite of nine white dwarf symbiotics that were not previously known to be X-ray sources and one that had previously been detected as a supersoft X-ray source. The nine new X-ray detections were the result of a survey of 41 symbiotic stars, and they increase the number of symbiotic stars known to be X-ray sources by approximately 30%. The Swift/XRT telescope detected all of the new X-ray sources at energies greater than 2 keV. Their X-ray spectra are consistent with thermal emission and fall naturally into three distinct groups. The first group contains those sources with a single, highly absorbed hard component that we identify as probably coming from an accretion-disk boundary layer. The second group is composed of those sources with a single, soft X-ray spectral component that probably originates in a region where low-velocity shocks produce X-ray emission, i.e., a colliding-wind region. The third group consists of those sources with both hard and soft X-ray spectral components. We also find that unlike in the optical, where rapid, stochastic brightness variations from the accretion disk typically are not seen, detectable UV flickering is a common property of symbiotic stars. Supporting our physical interpretation of the two X-ray spectral components, simultaneous Swift UV photometry shows that symbiotic stars with harder X-ray emission tend to have stronger UV flickering, which is usually associated with accretion through a disk. To place these new observations in the context of previous work on X-ray emission from symbiotic stars, we modified and extended the α/β/γ classification scheme for symbiotic-star X-ray spectra that was introduced by Muerset et al. based upon observations with the ROSAT satellite, to include a new δ classification

  17. Symbiotic Stars in X-rays

    NASA Technical Reports Server (NTRS)

    Luna, G. J. M.; Sokoloski, J. L.; Mukai, K.; Nelson, T.

    2014-01-01

    Until recently, symbiotic binary systems in which a white dwarf accretes from a red giant were thought to be mainly a soft X-ray population. Here we describe the detection with the X-ray Telescope (XRT) on the Swift satellite of 9 white dwarf symbiotics that were not previously known to be X-ray sources and one that was previously detected as a supersoft X-ray source. The 9 new X-ray detections were the result of a survey of 41 symbiotic stars, and they increase the number of symbiotic stars known to be X-ray sources by approximately 30%. Swift/XRT detected all of the new X-ray sources at energies greater than 2 keV. Their X-ray spectra are consistent with thermal emission and fall naturally into three distinct groups. The first group contains those sources with a single, highly absorbed hard component, which we identify as probably coming from an accretion-disk boundary layer. The second group is composed of those sources with a single, soft X-ray spectral component, which likely arises in a region where low-velocity shocks produce X-ray emission, i.e. a colliding-wind region. The third group consists of those sources with both hard and soft X-ray spectral components. We also find that unlike in the optical, where rapid, stochastic brightness variations from the accretion disk typically are not seen, detectable UV flickering is a common property of symbiotic stars. Supporting our physical interpretation of the two X-ray spectral components, simultaneous Swift UV photometry shows that symbiotic stars with harder X-ray emission tend to have stronger UV flickering, which is usually associated with accretion through a disk. To place these new observations in the context of previous work on X-ray emission from symbiotic stars, we modified and extended the alpha/beta/gamma classification scheme for symbiotic-star X-ray spectra that was introduced by Muerset et al. based upon observations with the ROSAT satellite, to include a new sigma classification for sources with

  18. Ultrashort X-ray pulse science

    SciTech Connect

    Chin, Alan Hap

    1998-05-01

    A variety of phenomena involves atomic motion on the femtosecond time-scale. These phenomena have been studied using ultrashort optical pulses, which indirectly probe atomic positions through changes in optical properties. Because x-rays can more directly probe atomic positions, ultrashort x-ray pulses are better suited for the study of ultrafast structural dynamics. One approach towards generating ultrashort x-ray pulses is by 90{sup o} Thomson scattering between terawatt laser pulses and relativistic electrons. Using this technique, the author generated {approx} 300 fs, 30 keV (0.4 {angstrom}) x-ray pulses. These x-ray pulses are absolutely synchronized with ultrashort laser pulses, allowing femtosecond optical pump/x-ray probe experiments to be performed. Using the right-angle Thomson scattering x-ray source, the author performed time-resolved x-ray diffraction studies of laser-perturbated InSb. These experiments revealed a delayed onset of lattice expansion. This delay is due to the energy relaxation from a dense electron-hole plasma to the lattice. The dense electron-hole plasma first undergoes Auger recombination, which reduces the carrier concentration while maintaining energy content. Longitudinal-optic (LO) phonon emission then couples energy to the lattice. LO phonon decay into acoustic phonons, and acoustic phonon propagation then causes the growth of a thermally expanded layer. Source characterization is instrumental in utilizing ultrashort x-ray pulses in time-resolved x-ray spectroscopies. By measurement of the electron beam diameter at the generation point, the pulse duration of the Thomson scattered x-rays is determined. Analysis of the Thomson scattered x-ray beam properties also provides a novel means of electron bunch characterization. Although the pulse duration is inferred for the Thomson scattering x-ray source, direct measurement is required for other x-ray pulse sources. A method based on the laser-assisted photoelectric effect (LAPE) has

  19. Backscatter, anisotropy, and polarization of solar hard X-rays

    NASA Technical Reports Server (NTRS)

    Bai, T.; Ramaty, R.

    1978-01-01

    The problems of anisotropy, polarization, center-to-limb variation of the X-ray spectrum, and Compton backscatter are investigated in a study of solar hard X-rays. Effect of backscatter are found particularly important for anisotropic sources which emit hard X-rays predominantly toward the photosphere; for such anisotropic primary X-ray sources, the observed X-ray flux near 30 keV does not depend significantly on the position of the flare. In addition, the degree of polarization of the sum of the primary and reflected X-rays with energies in the 15 to 30 keV range may be as high as 30%. Determination of the height and anisotropy of the primary X-ray sources from study of the albedo patch is also discussed.

  20. Development of scanning electron and x-ray microscope

    NASA Astrophysics Data System (ADS)

    Matsumura, Tomokazu; Hirano, Tomohiko; Suyama, Motohiro

    2016-01-01

    We have developed a new type of microscope possessing a unique feature of observing both scanning electron and X-ray images under one unit. Unlike former X-ray microscopes using SEM [1, 2], this scanning electron and X-ray (SELX) microscope has a sample in vacuum, thus it enables one to observe a surface structure of a sample by SEM mode, to search the region of interest, and to observe an X-ray image which transmits the region. For the X-ray observation, we have been focusing on the soft X-ray region from 280 eV to 3 keV to observe some bio samples and soft materials. The resolutions of SEM and X-ray modes are 50 nm and 100 nm, respectively, at the electron energy of 7 keV.

  1. A hard X-ray view of the soft excess in AGN

    NASA Astrophysics Data System (ADS)

    Boissay, Rozenn; Ricci, Claudio; Paltani, Stéphane

    2016-04-01

    An excess of X-ray emission below 1 keV, called soft excess, is detected in a large fraction of Seyfert 1-1.5s. The origin of this feature remains debated, as several models have been suggested to explain it, including warm Comptonization and blurred ionized reflection. In order to constrain the origin of this component, we exploit the different behaviors of these models above 10 keV. Ionized reflection covers a broad energy range, from the soft X-rays to the hard X-rays, while Comptonization drops very quickly in the soft X-rays. We present here the results of a study done on 102 Seyfert 1s (Sy 1.0, 1.2, 1.5 and NLSy1) from the Swift BAT 70-Month Hard X-ray Survey catalog. The joint spectral analysis of Swift/BAT and XMM-Newton data allows a hard X-ray view of the soft excess that is present in about 80% of the objects of our sample. We discuss how the soft-excess strength is linked to the reflection at high energy, to the photon index of the primary continuum and to the Eddington ratio. In particular, we find a positive dependence of the soft excess intensity on the Eddington ratio. We compare our results to simulations of blurred ionized-reflection models and show that they are in contradiction. By stacking both XMM-Newton and Swift/BAT spectra per soft-excess strength, we see that the shape of reflection at hard X-rays stays constant when the soft excess varies, showing an absence of link between reflection and soft excess. We conclude that the ionized-reflection model as the origin of the soft excess is disadvantaged in favor of the warm Comptonization model in our sample of Seyfert 1s.

  2. High Resolution X-Ray Absorption Spectroscopy: Distribution of Matter in and around Galaxies

    NASA Astrophysics Data System (ADS)

    Schulz, Norbert; MIT/CAT Team

    2015-10-01

    The chemical evolution of the Universe embraces aspects that reachdeep into modern astrophysics and cosmology. We want to know how present and past matter is affected by various levels and types of nucleo-synthesis and stellar evolution. Three major categories were be identified: 1. The study of pre-mordial star formation including periods of super-massive black hole formation, 2. The embedded evolution of the intergalactic medium IGM, 3. The status and evolution of stars and the interstellar medium ISM in galaxies. Today a fourth category relates to our understanding of dark matter in relationwith these three categories. The X-ray band is particularly sensitive to K- and L-shell absorption and scattering from high abundant elements like C, N, O, Ne, Mg, Si, S,Ar, Ca, Fe, and Ni. Like the Lyman alpha forest in the optical band, absorbers in the IGM produce an X-ray line forest along the line of sight in the X-rayspectrum of a background quasar. Similary bright X-ray sources within galaxies and the Milky Way produce a continuum, which is being absorbed by elements invarious phases of the ISM. High resolution X-ray absorption surveys are possible with technologies ready for flight within decade. == high efficiency X-ray optics with optical performance 3== high resolution X-ray gratings with R 3000 for E 1.5 keV== X-ray micro-calorimeters with R 2000 for E 1.5 keV. The vision for the next decade needs to lead to means and strategies which allows us to perform such absorption surveys as effectively as surveys are now or in very near future quite common in astronomy pursued in other wave length bands such as optical, IR, and sub-mm.

  3. Nonthermal X-ray Microflares

    NASA Astrophysics Data System (ADS)

    Christe, S.; Rauscher, E.; Krucker, S.; Lin, R. P.

    2004-12-01

    The Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) provides unique sensitivity in the 3-15 keV energy range, with an effective area ˜100 times larger than similar past instruments. Along with its high spectral resolution (1 keV) RHESSI is uniquely suited to study small events. Microflares have been observed by Benz & Grigis (2002) and Krucker et al. (2002) to have anomalously steep spectra ( spectral index between -5 and -8) extending down to ˜ 7 keV. Thermal emission is found to dominate below ˜ 7 keV. In many other respects, microflares show properties similar to larger flares. We present single event studies of different types of x-ray microflares. RHESSI observations during quiet times (04-May 10-14; GOES level low B class) reveal a set 5 microflares (>=A Class). These microflares show power law spectra (spectral index of ˜4-8) with little or no thermal emission in the 3- ˜7 keV energy range above the nonthermal part of the spectrum. Other microflares in the same GOES class range, however, have been found which show extremely hard spectra with emission up to 50 keV (power law index ˜2). At lower energies, emission is dominated by a hot thermal component (20 MK). This work was supported by NASA contract NAS5-98033.

  4. Panoramic Dental X-Ray

    MedlinePlus

    ... X-ray? What is Panoramic X-ray? Panoramic radiography , also called panoramic x-ray , is a two- ... Exams Dental Cone Beam CT X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety About this Site ...

  5. Imaging plates calibration to X-rays

    NASA Astrophysics Data System (ADS)

    Curcio, A.; Andreoli, P.; Cipriani, M.; Claps, G.; Consoli, F.; Cristofari, G.; De Angelis, R.; Giulietti, D.; Ingenito, F.; Pacella, D.

    2016-05-01

    The growing interest for the Imaging Plates, due to their high sensitivity range and versatility, has induced, in the last years, to detailed characterizations of their response function in different energy ranges and kind of radiation/particles. A calibration of the Imaging Plates BAS-MS, BAS-SR, BAS-TR has been performed at the ENEA-Frascati labs by exploiting the X-ray fluorescence of different targets (Ca, Cu, Pb, Mo, I, Ta) and the radioactivity of a BaCs source, in order to cover the X-ray range between few keV to 80 keV.

  6. Flat Field Anomalies in an X-Ray CCD Camera Measured Using a Manson X-Ray Source

    SciTech Connect

    Michael Haugh

    2008-03-01

    The Static X-ray Imager (SXI) is a diagnostic used at the National Ignition Facility (NIF) to measure the position of the X-rays produced by lasers hitting a gold foil target. It determines how accurately NIF can point the laser beams and is critical to proper NIF operation. Imagers are located at the top and the bottom of the NIF target chamber. The CCD chip is an X-ray sensitive silicon sensor, with a large format array (2k x 2k), 24 μm square pixels, and 15 μm thick. A multi-anode Manson X-ray source, operating up to 10kV and 2mA, was used to characterize and calibrate the imagers. The output beam is heavily filtered to narrow the spectral beam width, giving a typical resolution E/ΔE≈12. The X-ray beam intensity was measured using an absolute photodiode that has accuracy better than 1% up to the Si K edge and better than 5% at higher energies. The X-ray beam provides full CCD illumination and is flat, within ±1.5% maximum to minimum. The spectral efficiency was measured at 10 energy bands ranging from 930 eV to 8470 eV. The efficiency pattern follows the properties of Si. The maximum quantum efficiency is 0.71. We observed an energy dependent pixel sensitivity variation that showed continuous change over a large portion of the CCD. The maximum sensitivity variation was >8% at 8470 eV. The geometric pattern did not change at lower energies, but the maximum contrast decreased and was less than the measurement uncertainty below 4 keV. We were also able to observe debris on the CCD chip. The debris showed maximum contrast at the lowest energy used, 930 eV, and disappeared by 4 keV. The Manson source is a powerful tool for characterizing the imaging errors of an X-ray CCD imager. These errors are quite different from those found in a visible CCD imager.

  7. X-ray binaries

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Satellite X-ray experiments and ground-based programs aimed at observation of X-ray binaries are discussed. Experiments aboard OAO-3, OSO-8, Ariel 5, Uhuru, and Skylab are included along with rocket and ground-based observations. Major topics covered are: Her X-1, Cyg X-3, Cen X-3, Cyg X-1, the transient source A0620-00, other possible X-ray binaries, and plans and prospects for future observational programs.

  8. An imaging gas scintillation proportional counter for the detection of subkiloelectron-volt X-rays

    NASA Technical Reports Server (NTRS)

    Hailey, C. J.; Ku, W. H. M.; Vartanian, M. H.

    1981-01-01

    A large area imaging gas scintillation proportional counter (IGSPC) was constructed for use in X-ray astronomy. The IGSPC consists of a gas scintillation proportional counted (GSPC) with a micron polyprotylene window coupled to a multiwire proportional counter (MWPC) via a calcium fluoride window. Over a sensitive area of 21 cu cm the instrument has a measured energy resolution of 17.5% (FWHM) and 1.9 mm (FWHM) spatial resolution at 1.5 keV.

  9. BEaTriX, expanded x-ray beam facility for testing modular elements of telescope optics: an update

    NASA Astrophysics Data System (ADS)

    Pelliciari, C.; Spiga, D.; Bonnini, E.; Buffagni, E.; Ferrari, C.; Pareschi, G.; Tagliaferri, G.

    2015-09-01

    We present in this paper an update on the design of BEaTriX (Beam Expander Testing X-ray facility), an X-ray apparatus to be realized at INAF/OAB and that will generate an expanded, uniform and parallel beam of soft X-rays. BEaTriX will be used to perform the functional tests of X-ray focusing modules of large X-ray optics such as those for the ATHENA X-ray observatory, using the Silicon Pore Optics (SPO) as a baseline technology, and Slumped Glass Optics (SGO) as a possible alternative. Performing the tests in X-rays provides the advantage of an in-situ, at-wavelength quality control of the optical modules produced in series by the industry, performing a selection of the modules with the best angular resolution, and, in the case of SPOs, there is also the interesting possibility to align the parabolic and the hyperbolic stacks directly under X-rays, to minimize the aberrations. However, a parallel beam with divergence below 2 arcsec is necessary in order to measure mirror elements that are expected to reach an angular resolution of about 4 arcsec, since the ATHENA requirement for the entire telescope is 5 arcsec. Such a low divergence over the typical aperture of modular optics would require an X-ray source to be located in a several kilometers long vacuum tube. In contrast, BEaTriX will be compact enough (5 m x 14 m) to be housed in a small laboratory, will produce an expanded X-ray beam 60 mm x 200 mm broad, characterized by a very low divergence (1.5 arcsec HEW), strong polarization, high uniformity, and X-ray energy selectable between 1.5 keV and 4.5 keV. In this work we describe the BEaTriX layout and show a performance simulation for the X-ray energy of 4.5 keV.

  10. Curved focusing crystals for hard X-ray astronomy

    SciTech Connect

    Ferrari, C. Buffagni, E.; Bonnini, E.; Korytar, D.

    2013-12-15

    A lens made by a properly arranged array of crystals can be used to focus x-rays of energy ranging from 30 to 500 keV for x-ray astronomy. Mosaic or curved crystals can be employed as x-ray optical elements. In this work self standing curved focusing Si and GaAs crystals in which the lattice bending is induced by a controlled damaging process on one side of planar crystals are characterized. Diffraction profiles in Laue geometry have been measured in crystals at x-ray energies E = 17, 59 and 120 keV. An enhancement of diffraction efficiency is found in asymmetric geometries.

  11. The materials science X-ray beamline BL8 at the DELTA storage ring

    SciTech Connect

    Luetzenkirchen-Hecht, D.; Wagner, R.; Frahm, R.; Herdt, A.

    2010-06-23

    The instrumentation of the hard X-ray beamline BL8 at the 1.5 GeV Dortmund Electron Accelerator DELTA is described, and the properties of the X-ray optical elements are presented together with experimental data of different fields of research. The beamline, which makes use of the photons emitted by a superconducting asymmetric wiggler, is dedicated to X-ray studies--especially X-ray absorption spectroscopy (XAS)--in the spectral range from about 1 keV to ca. 25 keV photon energy using three different monochromators, namely YB{sub 66}(400), Si(111) and Si(311). The endstation comprises a 6-axis diffractometer that is capable of carrying heavy loads related to non-ambient sample environments such as high pressure cells, cryostats or even complete ultrahigh vacuum systems. X-ray absorption spectra from several reference compounds illustrate the performance of the beamline optics concerning e.g. energy range, energy resolution and beam stability. Fluorescence detection enables the investigation of dilute sample systems, and surface sensitive reflection mode experiments are possible for thin film studies.

  12. Chandra Observations of Diffuse Gas and Luminous X-Ray Sources around the X-Ray-bright Elliptical Galaxy NGC 1600

    NASA Astrophysics Data System (ADS)

    Sivakoff, Gregory R.; Sarazin, Craig L.; Carlin, Jeffrey L.

    2004-12-01

    We observed the X-ray-bright E3 galaxy NGC 1600 and nearby members of the NGC 1600 group with the Chandra X-Ray Observatory ACIS-S3 to study their X-ray properties. Unresolved emission dominates the observation; however, we resolved some of the emission into 71 sources, most of which are low-mass X-ray binaries associated with NGC 1600. Twenty-one of the sources have LX>2×1039 ergs s-1 (0.3-10.0 keV; assuming they are at the distance of NGC 1600), marking them as ultraluminous X-ray point source (ULX) candidates; we expect that only 11+/-2 are unrelated foreground/background sources. NGC 1600 may have the largest number of ULX candidates in an early-type galaxy to date; however, cosmic variance in the number of background active galactic nuclei cannot be ruled out. The spectrum and luminosity function (LF) of the resolved sources are more consistent with sources found in other early-type galaxies than with sources found in star-forming regions of galaxies. The source LF and the spectrum of the unresolved emission both indicate that there are a large number of unresolved point sources. We propose that these sources are associated with globular clusters (GCs) and that NGC 1600 has a large GC specific frequency. Observations of the GC population in NGC 1600 would be very useful for testing this prediction. Approximately 50%-75% of the unresolved flux comes from diffuse gaseous emission. The spectral fits, hardness ratios, and X-ray surface brightness profile all point to two gas components. We interpret the soft inner component (a<~25'', kT~0.85 keV) as the interstellar medium of NGC 1600 and the hotter outer component (a>~25'', kT~1.5 keV) as the intragroup medium of the NGC 1600 group. The X-ray image shows several interesting structures. First, there is a central region of excess emission that is roughly cospatial with Hα and dust filaments immediately west of the center of NGC 1600. There appear to be holes in the X-ray emission to the north and south of the

  13. X-Ray Monitoring of GRBs with Lobster Eye Telescopes

    SciTech Connect

    Sveda, L.; Pina, L.; Hudec, R.; Inneman, A.; Pizzichini, G.

    2004-09-28

    We present here the soft X-ray All-Sky Monitor (ASM). It is based on the current technological capabilities, sensitive in the {approx} 0.1 - 10.0 keV range with angular resolution of {approx} 3 - 4 arcmin, and has a limiting detectable flux {approx} 10-12 erg/s/cm2 for daily scans in the mentioned energy range. The ASM will play a key role in studying transient X-ray sources like XRBs, GRBs, XRFs, X-ray novae, as well as in the study of the long term variability of X-ray sources like XRBs, AGN, or stellar X-ray flares.

  14. X-RAY EMISSION FROM THE WOLF-RAYET BUBBLE S 308

    SciTech Connect

    Toala, J. A.; Guerrero, M. A.; Arthur, S. J.; Smith, R. C.

    2012-08-10

    The Wolf-Rayet (WR) bubble S 308 around the WR star HD 50896 is one of the only two WR bubbles known to possess X-ray emission. We present XMM-Newton observations of three fields of this WR bubble that, in conjunction with an existing observation of its northwest quadrant, map most of the nebula. The X-ray emission from S 308 displays a limb-brightened morphology, with a central cavity {approx}22' in size and a shell thickness of {approx}8'. This X-ray shell is confined by the optical shell of ionized material. The spectrum is dominated by the He-like triplets of N VI at 0.43 keV and O VII at 0.57 keV, and declines toward high energies, with a faint tail up to 1 keV. This spectrum can be described by a two-temperature optically thin plasma emission model (T{sub 1} {approx} 1.1 Multiplication-Sign 10{sup 6} K, T{sub 2} {approx} 13 Multiplication-Sign 10{sup 6} K), with a total X-ray luminosity {approx}2 Multiplication-Sign 10{sup 33} erg s{sup -1} at the assumed distance of 1.5 kpc.

  15. BROADBAND SPECTRAL ANALYSIS OF THE GALACTIC RIDGE X-RAY EMISSION

    SciTech Connect

    Yuasa, Takayuki; Makishima, Kazuo; Nakazawa, Kazuhiro

    2012-07-10

    Detailed spectral analysis of the Galactic X-ray background emission, or the Galactic Ridge X-ray Emission (GRXE), is presented. To study the origin of the emission, broadband and high-quality GRXE spectra were produced from 18 pointing observations with Suzaku in the Galactic bulge region, with a total exposure of 1 Ms. The spectra were successfully fitted by a sum of two major spectral components: a spectral model of magnetic accreting white dwarfs with a mass of 0.66{sup +0.09}{sub -0.07} M{sub Sun} and a softer optically thin thermal emission with a plasma temperature of 1.2-1.5 keV that is attributable to coronal X-ray sources. When combined with previous studies that employed high spatial resolution of the Chandra satellite, the present spectroscopic result gives stronger support to the scenario that the GRXE is essentially an assembly of numerous discrete faint X-ray stars. The detected GRXE flux in the hard X-ray band was used to estimate the number density of the unresolved hard X-ray sources. When integrated over a luminosity range of {approx}10{sup 30}-10{sup 34} erg s{sup -1}, the result is consistent with a value that was reported previously by directly resolving faint point sources.

  16. Quantitative Measurements of X-ray Intensity

    SciTech Connect

    Haugh, M. J., Schneider, M.

    2011-09-01

    This chapter describes the characterization of several X-ray sources and their use in calibrating different types of X-ray cameras at National Security Technologies, LLC (NSTec). The cameras are employed in experimental plasma studies at Lawrence Livermore National Laboratory (LLNL), including the National Ignition Facility (NIF). The sources provide X-rays in the energy range from several hundred eV to 110 keV. The key to this effort is measuring the X-ray beam intensity accurately and traceable to international standards. This is accomplished using photodiodes of several types that are calibrated using radioactive sources and a synchrotron source using methods and materials that are traceable to the U.S. National Institute of Standards and Technology (NIST). The accreditation procedures are described. The chapter begins with an introduction to the fundamental concepts of X-ray physics. The types of X-ray sources that are used for device calibration are described. The next section describes the photodiode types that are used for measuring X-ray intensity: power measuring photodiodes, energy dispersive photodiodes, and cameras comprising photodiodes as pixel elements. Following their description, the methods used to calibrate the primary detectors, the power measuring photodiodes and the energy dispersive photodiodes, as well as the method used to get traceability to international standards are described. The X-ray source beams can then be measured using the primary detectors. The final section then describes the use of the calibrated X-ray beams to calibrate X-ray cameras. Many of the references are web sites that provide databases, explanations of the data and how it was generated, and data calculations for specific cases. Several general reference books related to the major topics are included. Papers expanding some subjects are cited.

  17. Disentangling the Hard X-ray Background ROSAT HRI

    NASA Technical Reports Server (NTRS)

    Murray, Stephen S.

    1999-01-01

    The goal of our investigation was to improve our understanding of the properties of the discrete X-ray sources that produce the X-ray background (XRB). Many surveys have shown that the XRB at energies of 0.5-3.0 keV is dominated by emission from extragalactic point sources and that a significant fraction of the XRB at higher energies also is produced by discrete sources. In spite of the fact that the bulk of the 0.5-10 keV XRB was demonstrated to arise from extragalactic point sources, the spectral shape of the background presented a difficulty, referred to as the "spectral paradox". Spectra for classes of individual sources generally have been found to be incompatible with the observed energy index, alpha = 0.4 of the XRB over the 2-10 keV energy range. For the 0.3-3.0 keV Einstein band, Macca'caro et al. (1988) derived a mean energy spectral index of a approx. 0.95 for 599 extragalactic sources and for a subset of X-ray selected AGN, found alpha = 1.03(sup +0-05, sub -0.06) . Wilkes and Elvis showed that radio "loudness" was strongly correlated with the source spectrum, such that radio-load quasars exhibited flatter spectra (alpha approx. 0.5), while radio-quiet quasars had steeper spectra (alpha approx. 1). Studies of moderately faint sources in the 0.1-2.0 keV ROSAT band also found rather steep spectra (alpha = 0.96 +/- 0.11 for sources with an average flux of 1.5 x 10(exp -14) ergs/sq cm sec). At higher energies and much higher fluxes, energy spectra of individual AGN suggested a "canonical" alpha = 0.7 energy spectrum. Thus, the best evidence suggested that known classes of AGN could not readily explain the observed X-ray background spectrum. In our ROSAT PSPC analysis, we studied not only the traditional log N - log S, but also the spectral properties of the sources. We computed hardness ratios for individual sources and performed spectral fits to the summed source spectra, averaged in flux bins from 10(exp -15) to 10(exp -12) ergs/sq cm sec. We found that

  18. The HEAO A-1 X-ray source catalog

    NASA Technical Reports Server (NTRS)

    Wood, K. S.; Meekins, J. F.; Yentis, D. J.; Smathers, H. W.; Mcnutt, D. P.; Bleach, R. D.; Friedman, H.; Byram, E. T.; Chubb, T. A.; Meidav, M.

    1984-01-01

    The catalog of X-ray sources detected during the NRL Large Area Sky Survey (LASS) with the HEAO 1 satellite is presented. The catalog is derived from the first six months of data from HEAO 1 and includes sources detected during one full scan. Positions and intensities for a total of 842 different sources are included, with a limiting flux of 250 nJy at 5 keV. The catalog is more than 90 percent complete at a flux level equivalent to 1.5 microjoules at 5 keV for a Crab-like spectrum. Cross-references with published literature are provided and coincidental identifications are proposed for some of the sources which have been never studied before. A cross-sectional line drawing of the sensor module of HEAO I is also provided.

  19. Sub-Picosecond Tunable Hard X-Ray Undulator Source for Laser/X-Ray Pump-Probe Experiments

    SciTech Connect

    Ingold, G.; Beaud, P.; Johnson, S.; Streun, A.; Schmidt, T.; Abela, R.; Al-Adwan, A.; Abramsohn, D.; Boege, M.; Grolimund, D.; Keller, A.; Krasniqi, F.; Rivkin, L.; Rohrer, M.; Schilcher, T.; Schmidt, T.; Schlott, V.; Schulz, L.; Veen, F. van der; Zimoch, D.

    2007-01-19

    The FEMTO source under construction at the {mu}XAS beamline is designed to enable tunable time-resolved laser/x-ray absorption and diffraction experiments in photochemistry and condensed matter with ps- and sub-ps resolution. The design takes advantage of (1) the highly stable operation of the SLS storage ring, (2) the reliable high harmonic operation of small gap, short period undulators to generate hard x-rays with energy 3-18 keV at 2.4 GeV beam energy, and (3) the progress in high power, high repetition rate fs solid-state laser technology to employ laser/e-beam 'slicing' to reach a time resolution of ultimately 100 fs. The source will profit from the inherently synchronized pump (laser I: 100 fs, 2 mJ, 1 kHz) and probe (sliced X-rays, laser II: 50 fs, 5 mJ, 1 kHz) pulses, and from the excellent stability of the SLS storage ring which is operated in top-up mode and controlled by a fast orbit feedback (FOFB). Coherent radiation emitted at THz frequencies by the sliced 100 fs electron bunches will be monitored as on-line cross-correlation signal to keep the laser-electron beam interaction at optimum. The source is designed to provide at 8 keV (100 fs) a monochromized flux of 104 ph/s/0.01% bw (Si crystal monochromator) and 106 ph/s/1.5% bw (multilayer monochromator) at the sample. It is operated in parasitic mode using a hybrid bunch filling pattern. Because of the low intensity measurements are carried out repetitively over many shots using refreshing samples and gated detectors. 'Diffraction gating' experiments will be used to characterize the sub-ps X-ray pulses.

  20. X-ray beamsplitter

    DOEpatents

    Ceglio, Natale M.; Stearns, Daniel S.; Hawryluk, Andrew M.; Barbee, Jr., Troy W.

    1989-01-01

    An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5-50 pairs of alternate Mo/Si layers with a period of 20-250 A. The support membrane is 10-200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window.

  1. X-ray beamsplitter

    DOEpatents

    Ceglio, N.M.; Stearns, D.G.; Hawryluk, A.M.; Barbee, T.W. Jr.

    1987-08-07

    An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5--50 pairs of alternate Mo/Si layers with a period of 20--250 A. The support membrane is 10--200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window. 6 figs.

  2. X-ray - skeleton

    MedlinePlus

    A skeletal x-ray is an imaging test used to look at the bones. It is used to detect fractures , tumors, or ... in the health care provider's office by an x-ray technologist. You will lie on a table or ...

  3. Extremity x-ray

    MedlinePlus

    An extremity x-ray is an image of the hands, wrist, feet, ankle, leg, thigh, forearm humerus or upper arm, hip, shoulder ... term "extremity" often refers to a human limb. X-rays are a form of radiation that passes through ...

  4. X-ray Spectrometry.

    ERIC Educational Resources Information Center

    Markowicz, Andrzej A.; Van Grieken, Rene E.

    1984-01-01

    Provided is a selective literature survey of X-ray spectrometry from late 1981 to late 1983. Literature examined focuses on: excitation (photon and electron excitation and particle-induced X-ray emission; detection (wavelength-dispersive and energy-dispersive spectrometry); instrumentation and techniques; and on such quantitative analytical…

  5. Periodicity Analysis of X-ray Light Curves of SS 433

    NASA Astrophysics Data System (ADS)

    Wang, J. Y.; Lu, X. L.; Zhao, Q. W.; Dong, D. Q.; Lao, B. Q.; Lu, Y.; Wei, Y. H.; Wu, X. C.; An, T.

    2016-03-01

    SS 433 is the only X-ray binary to date that was detected to have a pair of well-collimated jets, and its orbital period, super orbital period, and nutation period were all detected at the same time. The study on the periodic X-ray variabilities is helpful for understanding its dynamic process of the central engine and the correlation with other bands. In the present paper, two time series analysis techniques, Lomb-Scargle periodogram and weighted wavelet Z-transform, are employed to search for the periodicities from the Swift/BAT (Burst Alert Telescope)(15--50 keV) and RXTE/ASM (Rossi X-Ray Timing Explorer/All-Sky Monitor)(1.5--3, 3--5 and 5--12 keV) light curves of SS 433, and the Monte Carlo simulation is performed. For the 15--50 keV energy band, five significant periodic signals are detected, which are P_1(˜6.29 d), P_2 (˜6.54 d), P_3 (˜13.08 d), P_4 (˜81.50 d), and P_5 (˜162.30 d). For the 3--5 and 5--12 keV energy bands, periodic signals P_3 (˜13 d) and P_5 (˜162 d) are detected in both energy bands. However, for the 1.5--3 keV energy band, no significant periodic signal is detected. P_5 has the strongest periodic signal in the power spectrum for all the energy bands of 3--5, 5--12, and 15--50 keV, and it is consistent with that obtained by previous study in optical band. Further, due to the existence of relativistic radio jets, the X-ray and optical band variability of P_5 (˜162 d) is probably related to the precession of the relativistic jets. High coherence between X-ray and optical light curves may also imply that the X-ray and optical emissions are of the same physical origin. P_3 shows a good agreement with the orbital period (˜13.07 d) first obtained by previous study, and P_2 and P_4 are the high frequency harmonic components of P_3 and P_5, respectively. P_1 is detected from the power spectrum of 15--50 keV energy band only, and it is consistent with the systematic nutation period. As the power of energy band decreases (from hard X-ray to

  6. The X-ray emission of subflares

    NASA Astrophysics Data System (ADS)

    Valnichek, B. I.; Likin, O. B.; Morozova, E. I.; Pisarenko, N. F.; Farnik, F.

    1983-08-01

    Optical observations of subflares in the active region Mc Math 14553 in the period 8-15 December, 1976 are compared with the X-ray emission bursts measured during the same period by the X-ray photometer on board the Prognoz-5 automatic observatory. X-ray emissions with energies 2-7 and 6-10 keV are used in the analysis presented here. It is found that energy release in the X-ray emissions is directly proportional to the area of the H-alpha flare events over a wide range of flare intensities, i.e., from subflares to high-power flares of the class 3B.

  7. X-ray monochromator

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B. (Inventor)

    1992-01-01

    An x-ray monochromator is described, wherin a housing supports a plurality of mirrors forming a plurality of opposed mirror faces in parallel with each other and having thereon multilayer coatings, with each of said pairs of mirror faces being provided with identical coatings which are different from the coatings on the other pairs of mirror faces such that each pair of mirror faces has a peak x-ray reflection at a different wavelength regime. The housing is moveable to bring into a polychromatic x-ray beam that pair of mirror faces having the best x-ray reflection for the desired wavelength, with the mirrors being pivotable to move the mirror faces to that angle of incidence at which the peak reflectivity of the desired wavelength x-rays occurs.

  8. Development of Si-APD Timing Detectors for Nuclear Resonant Scattering using High-energy Synchrotron X-rays

    SciTech Connect

    Kishimoto, Shunji; Zhang Xiaowei

    2007-01-19

    A timing detector with silicon avalanche photodiodes (Si-APDs) has been developed for nuclear resonant scattering using synchrotron x-rays. The detector had four pairs of a germanium plate 0.1mm thick and a Si-APD (3 mm in dia., a depletion layer of 30-{mu}m thickness). Using synchrotron x-rays of 67.4 keV, the efficiency increased to 1.5% for the incident beam, while the efficiency was 0.76 % without the germanium converters. A measurement of SR-PAC on Ni-61 was executed by using the detector. Some other types of timing detectors are planned for x-rays of E>20 keV.

  9. X-ray monitoring for astrophysical applications

    NASA Astrophysics Data System (ADS)

    Pina, L.; Burrows, D.; Cash, W.; Cerna, D.; Gorenstein, P.; Hudec, R.; Inneman, A.; Jakubek, J.; Marsikova, V.; Sieger, L.; Tichy, V.

    2014-09-01

    This work addresses the issue of X-ray monitoring for astrophysical applications. The proposed wide-field optical system has not been used in space yet. The proposed novel approach is based on the use of 1D "Lobster eye" optics in combination with Timepix X-ray detector in the energy range 3 - 40 keV. The proposed project includes theoretical study and a functional sample of the Timepix X-ray detector with multifoil wide-field X-ray "Lobster eye" optics. Using optics to focus X-rays on a detector is the only solution in cases the intensity of impinging X-ray radiation is below the sensitivity of the detector, e.g. while monitoring astrophysical objects in space, or phenomena in the Earth's atmosphere. The optical system could be used in a student rocket experiment at University of Colorado. Ideal opportunity is to extend the CubeSat of Pennsylvania State University with the hard X-ray telescope demonstrator consisting of an optical module and Timepix detector.

  10. Nanofocusing Parabolic Refractive X-Ray Lenses

    SciTech Connect

    Schroer, C.G.; Kuhlmann, M.; Hunger, U.T.; Guenzler, T.F.; Kurapova, O.; Feste, S.; Lengeler, B.; Drakopoulos, M.; Somogyi, A.; Simionovici, A. S.; Snigirev, A.; Snigireva, I.

    2004-05-12

    Parabolic refractive x-ray lenses with short focal distance can generate intensive hard x-ray microbeams with lateral extensions in the 100nm range even at short distance from a synchrotron radiation source. We have fabricated planar parabolic lenses made of silicon that have a focal distance in the range of a few millimeters at hard x-ray energies. In a crossed geometry, two lenses were used to generate a microbeam with a lateral size of 330nm by 110nm at 25keV in a distance of 41.8m from the synchrotron radiation source. First microdiffraction and fluorescence microtomography experiments were carried out with these lenses. Using diamond as lens material, microbeams with lateral size down to 20nm and below are conceivable in the energy range from 10 to 100keV.

  11. X-ray generator

    DOEpatents

    Dawson, John M.

    1976-01-01

    Apparatus and method for producing coherent secondary x-rays that are controlled as to direction by illuminating a mixture of high z and low z gases with an intense burst of primary x-rays. The primary x-rays are produced with a laser activated plasma, and these x-rays strip off the electrons of the high z atoms in the lasing medium, while the low z atoms retain their electrons. The neutral atoms transfer electrons to highly excited states of the highly striped high z ions giving an inverted population which produces the desired coherent x-rays. In one embodiment, a laser, light beam provides a laser spark that produces the intense burst of coherent x-rays that illuminates the mixture of high z and low z gases, whereby the high z atoms are stripped while the low z ones are not, giving the desired mixture of highly ionized and neutral atoms. To this end, the laser spark is produced by injecting a laser light beam, or a plurality of beams, into a first gas in a cylindrical container having an adjacent second gas layer co-axial therewith, the laser producing a plasma and the intense primary x-rays in the first gas, and the second gas containing the high and low atomic number elements for receiving the primary x-rays, whereupon the secondary x-rays are produced therein by stripping desired ions in a neutral gas and transfer of electrons to highly excited states of the stripped ions from the unionized atoms. Means for magnetically confining and stabilizing the plasma are disclosed for controlling the direction of the x-rays.

  12. Bone cartilage imaging with x-ray interferometry using a practical x-ray tube

    NASA Astrophysics Data System (ADS)

    Kido, Kazuhiro; Makifuchi, Chiho; Kiyohara, Junko; Itou, Tsukasa; Honda, Chika; Momose, Atsushi

    2010-04-01

    The purpose of this study was to design an X-ray Talbot-Lau interferometer for the imaging of bone cartilage using a practical X-ray tube and to develop that imaging system for clinical use. Wave-optics simulation was performed to design the interferometer with a practical X-ray tube, a source grating, two X-ray gratings, and an X-ray detector. An imaging system was created based on the results of the simulation. The specifications were as follows: the focal spot size was 0.3 mm of an X-ray tube with a tungsten anode (Toshiba, Tokyo, Japan). The tube voltage was set at 40 kVp with an additive aluminum filter, and the mean energy was 31 keV. The pixel size of the X-ray detector, a Condor 486 (Fairchild Imaging, California, USA), was 15 μm. The second grating was a Ronchi-type grating whose pitch was 5.3 μm. Imaging performance of the system was examined with X-ray doses of 0.5, 3 and 9 mGy so that the bone cartilage of a chicken wing was clearly depicted with X-ray doses of 3 and 9 mGy. This was consistent with the simulation's predictions. The results suggest that X-ray Talbot-Lau interferometry would be a promising tool in detecting soft tissues in the human body such as bone cartilage for the X-ray image diagnosis of rheumatoid arthritis. Further optimization of the system will follow to reduce the X-ray dose for clinical use.

  13. X-ray emission from the galactic disk

    NASA Technical Reports Server (NTRS)

    Bleach, R. D.; Boldt, E. A.; Holt, S. S.; Schwartz, D. A.; Serlemitsos, P. J.

    1972-01-01

    A search was made of a diffuse component of X-rays 1.5 keV associated with an interarm region of the galaxy at galactic longitudes in the vicinity of 60 deg. A statistically significant excess associated with a narrow disk component was detected. The angular extent of this component has a most probable value of 2 deg and may be as large as 7 deg at 90% confidence. The best fit spectrum yields an intensity of 2.9 photons 1/(cm2-sec-ster) over the 2 to 10 keV range. The 3 sigma upper limit to any emission (e.g. iron line) in a 1.5 keV band centered at 7 keV from galactic latitudes h or = 3.5 deg is .3 photons 1/(cm2-sec-ster). Several possible emission models are discussed, with the most likely candidate being a population of unresolvable low luminosity discrete sources.

  14. Stellar contribution to the galactic soft x-ray background

    SciTech Connect

    Rosner, R.; Avni, Y.; Bookbinder, J. R.,Giacconi; Golub, L.; Harnden, F.R. Jr.; Maxson, C.W.; Topka, K.; Vaiana, G.S.

    1981-10-01

    We construct log N-log S relations for stars based on medium x-ray luminosities for dF, dG, and dK stars previously reported for the Einstein Observatory/Center for Astrophysics stellar survey and on a detailed x-ray luminosity function derived here for dM stars, and investigate the stellar contribution to the diffuse soft x-ray background. The principal results are that stars provide approx.20% of the soft x-ray background in the 0.28--1.0 keV passband and therefore contribute significantly to the soft x-ray background in this energy range (with dM stars constituting the dominant contributing class), and that the stellar contribution to the diffuse x-ray background in the 0.15--0.28 keV passband is < or approx. =3%.

  15. Fabrication process for a gradient index x-ray lens

    DOEpatents

    Bionta, R.M.; Makowiecki, D.M.; Skulina, K.M.

    1995-01-17

    A process is disclosed for fabricating high efficiency x-ray lenses that operate in the 0.5-4.0 keV region suitable for use in biological imaging, surface science, and x-ray lithography of integrated circuits. The gradient index x-ray optics fabrication process broadly involves co-sputtering multi-layers of film on a wire, followed by slicing and mounting on block, and then ion beam thinning to a thickness determined by periodic testing for efficiency. The process enables the fabrication of transmissive gradient index x-ray optics for the 0.5-4.0 keV energy range. This process allows the fabrication of optical elements for the next generation of imaging and x-ray lithography instruments in the soft x-ray region. 13 figures.

  16. Fabrication process for a gradient index x-ray lens

    DOEpatents

    Bionta, Richard M.; Makowiecki, Daniel M.; Skulina, Kenneth M.

    1995-01-01

    A process for fabricating high efficiency x-ray lenses that operate in the 0.5-4.0 keV region suitable for use in biological imaging, surface science, and x-ray lithography of integrated circuits. The gradient index x-ray optics fabrication process broadly involves co-sputtering multi-layers of film on a wire, followed by slicing and mounting on block, and then ion beam thinning to a thickness determined by periodic testing for efficiency. The process enables the fabrication of transmissive gradient index x-ray optics for the 0.5-4.0 keV energy range. This process allows the fabrication of optical elements for the next generation of imaging and x-ray lithography instruments m the soft x-ray region.

  17. Different X-ray spectral evolution for black hole X-ray binaries in dual tracks of radio-X-ray correlation

    SciTech Connect

    Cao, Xiao-Feng; Wu, Qingwen; Dong, Ai-Jun

    2014-06-10

    Recently, an 'outlier' track of radio-X-ray correlation was found, which is much steeper than the former universal correlation, where dual tracks were speculated to be triggered by different accretion processes. In this work, we test this issue by exploring hard X-ray spectral evolution in four black-hole X-ray binaries with multiple, quasi-simultaneous radio and X-ray observations. First, we find that hard X-ray photon indices, Γ, are negatively and positively correlated with X-ray fluxes when the X-ray flux, F{sub 3-9} {sub keV}, is below and above a critical flux, F{sub X,} {sub crit}, which are consistent with predictions of the advection-dominated accretion flow and the disk-corona model, respectively. Second, and most importantly, we find that the radio-X-ray correlations are also clearly different when the X-ray fluxes are higher and lower than the critical flux as defined by X-ray spectral evolution. The data points with F{sub 3-9} {sub keV} ≳ F{sub X,} {sub crit} have a steeper radio-X-ray correlation (F{sub X}∝F{sub R}{sup b} and b ∼ 1.1-1.4), which roughly forms the ''outlier'' track. However, the data points with anti-correlation of Γ – F{sub 3-9} {sub keV} either stay in the universal track with b ∼ 0.61 or stay in the transition track (from the universal to 'outlier' tracks or vice versa). Therefore, our results support that the universal and ''outlier'' tracks of radio-X-ray correlations are regulated by radiatively inefficient and radiatively efficient accretion model, respectively.

  18. The X-ray spectral evolution and radio-X-ray correlation in radiatively efficient black-hole sources

    NASA Astrophysics Data System (ADS)

    Dong, Ai-Jun; Wu, Qingwen; Cao, Xiao-Feng

    2016-02-01

    We explore X-ray spectral evolution and radio-X-ray correlation simultaneously for four X-ray binaries (XRBs). We find that hard X-ray photon indices, Γ, are anti- and positively correlated to X-ray fluxes when the X-ray flux, F 3-9keV, is below and above a critical flux, F X,crit, which may be regulated by ADAF and disk-corona respectively. We find that the data points with anti-correlation of Γ-F 3-9keV follow the universal radio-X-ray correlation of F R ~ F X b (b ~ 0.5-0.7), while the data points with positive X-ray spectral evolution follow a steeper radio-X-ray correlation (b ~ 1.4, the so-called `outliers track'). The bright active galactic nuclei (AGNs) share similar X-ray spectral evolution and radio-X-ray correlation as XRBs in `outliers' track, and we present a new fundamental plane of log L R=1.59+0.28 -0.22 log L X-0.22+0.19 -0.20 log M BH-28.97+0.45 -0.45 for these radiatively efficient BH sources.

  19. The Hard X-ray experiment on the Astronomical Netherlands Satellite

    NASA Technical Reports Server (NTRS)

    Gursky, H.; Schnopper, H.; Parsignault, D.

    1975-01-01

    The Hard X-ray Experiment flown on the Astronomical Netherlands Satellite is described. The instrument consists of two parts. One is a large-area detector of about 60 sq cm in total area, sensitive in the energy range between 1.5 and 30 keV. Two counters comprise this detector, each collimated 10 min by 3 deg and offset in the narrow direction by 4 min. The other part is a Bragg-crystal assembly consisting of two PET crystals and counters aligned to search for the silicon emission lines near 2 keV. Instrument characteristics and orbital operations are described.

  20. Balloon observations of hard X-rays from some galactic X-ray sources

    NASA Technical Reports Server (NTRS)

    Damle, S. V.; Kunte, P. K.; Naranan, S.; Sreekantan, B. V.; Leahy, D. A.; Venkatesan, D.

    1985-01-01

    An X-ray telescope consisting of 400 cm phoswich detectors (NaI(T1)/CsI(Na)) was flown from Hyderabad (India) on 18 December 1984. The field of view was 5 deg x 5 deg FWHM. In a 10 hour float at 4 MB several galactic X-ray sources were tracked by the telescope using an on-board microprocessor. Fluxes and spectra in 18-120 keV X-rays for SCO X-1, GX 1+4, Gx 5-1, GX 17+2, SCT X-1, CYC X-1 an CYG X-3 will be presented.

  1. An X-ray survey of clusters of galaxies. IV - A survey of southern clusters and a compilation of upper limits for both Abell and southern clusters

    NASA Technical Reports Server (NTRS)

    Kowalski, M. P.; Cruddace, R. G.; Wood, K. S.; Ulmer, M. P.

    1984-01-01

    The results of the HEAO 1 A-1 X-ray survey of galaxy clusters are reported. X-ray error boxes and intensities are presented for all clusters in the Abell catalog and for the catalog of southern clusters and groups compiled by Duus and Newell (1977). A correlation is derived on the basis of the X-ray luminosity function for 2-6 keV which may be used to calculate the contribution of clusters to the diffuse X-ray background at different energies. The cluster X-ray is estimated to be 9.3 percent (+ 1.9 or - 1.5 percent). Correlations between X-ray luminosity and other cluster properties are exmained, and it is found that the distribution of upper limits may be applied to obtaining a more precise estimate of the average X-ray luminosity of clusters. The Abell richness class and southern cluster concentrations were strongly correlated with X-ray luminosity. Correlations between optical x-ray luminosity and optical radius velocity dispersion, spiral fraction, and radio power are analyzed. The evidence for all these correlations was considered to be weak because of poor scatter in the data.

  2. Broadband high resolution X-ray spectral analyzer

    DOEpatents

    Silver, Eric H.; Legros, Mark; Madden, Norm W.; Goulding, Fred; Landis, Don

    1998-01-01

    A broad bandwidth high resolution x-ray fluorescence spectrometer has a performance that is superior in many ways to those currently available. It consists of an array of 4 large area microcalorimeters with 95% quantum efficiency at 6 keV and it produces x-ray spectra between 0.2 keV and 7 keV with an energy resolution of 7 to 10 eV. The resolution is obtained at input count rates per array element of 10 to 50 Hz in real-time, with analog pulse processing and thermal pile-up rejection. This performance cannot be matched by currently available x-ray spectrometers. The detectors are incorporated into a compact and portable cryogenic refrigerator system that is ready for use in many analytical spectroscopy applications as a tool for x-ray microanalysis or in research applications such as laboratory and astrophysical x-ray and particle spectroscopy.

  3. Broadband high resolution X-ray spectral analyzer

    DOEpatents

    Silver, E.H.; Legros, M.; Madden, N.W.; Goulding, F.; Landis, D.

    1998-07-07

    A broad bandwidth high resolution X-ray fluorescence spectrometer has a performance that is superior in many ways to those currently available. It consists of an array of 4 large area microcalorimeters with 95% quantum efficiency at 6 keV and it produces X-ray spectra between 0.2 keV and 7 keV with an energy resolution of 7 to 10 eV. The resolution is obtained at input count rates per array element of 10 to 50 Hz in real-time, with analog pulse processing and thermal pile-up rejection. This performance cannot be matched by currently available X-ray spectrometers. The detectors are incorporated into a compact and portable cryogenic refrigerator system that is ready for use in many analytical spectroscopy applications as a tool for X-ray microanalysis or in research applications such as laboratory and astrophysical X-ray and particle spectroscopy. 6 figs.

  4. OSO-8 X-ray observations of AM Herculis

    NASA Technical Reports Server (NTRS)

    Swank, J. H.; Lampton, M.; Boldt, E.; Holt, S. S.; Serlemitsos, P. J.

    1977-01-01

    Hard X-ray observations of the binary system AM Her were coincident with soft X-ray and ground-based optical measurements. In the 2-60 KeV band, variability was detected with an eclipse during phases 0.5 to 0.7 with respect to the 0. d 12892 period optical minima, synchronous with the known soft X-ray eclipse. The 2-60 KeV uneclipsed flux was 9.5 x 10 to the minus 10th power erg sq cm/sec, of which 86% lies above 10 keV. Thus AM Her contains a hard source located near the similarly eclipsed soft X-ray source. The X-ray data are interpreted in terms of thermal bremsstrahlung from accretion onto a white dwarf.

  5. X-ray crystallography

    NASA Technical Reports Server (NTRS)

    2001-01-01

    X-rays diffracted from a well-ordered protein crystal create sharp patterns of scattered light on film. A computer can use these patterns to generate a model of a protein molecule. To analyze the selected crystal, an X-ray crystallographer shines X-rays through the crystal. Unlike a single dental X-ray, which produces a shadow image of a tooth, these X-rays have to be taken many times from different angles to produce a pattern from the scattered light, a map of the intensity of the X-rays after they diffract through the crystal. The X-rays bounce off the electron clouds that form the outer structure of each atom. A flawed crystal will yield a blurry pattern; a well-ordered protein crystal yields a series of sharp diffraction patterns. From these patterns, researchers build an electron density map. With powerful computers and a lot of calculations, scientists can use the electron density patterns to determine the structure of the protein and make a computer-generated model of the structure. The models let researchers improve their understanding of how the protein functions. They also allow scientists to look for receptor sites and active areas that control a protein's function and role in the progress of diseases. From there, pharmaceutical researchers can design molecules that fit the active site, much like a key and lock, so that the protein is locked without affecting the rest of the body. This is called structure-based drug design.

  6. Lumbosacral spine x-ray

    MedlinePlus

    X-ray - lumbosacral spine; X-ray - lower spine ... The test is done in a hospital x-ray department or your health care provider's office by an x-ray technician. You will be asked to lie on the x-ray table ...

  7. Thoracic spine x-ray

    MedlinePlus

    Vertebral radiography; X-ray - spine; Thoracic x-ray; Spine x-ray; Thoracic spine films; Back films ... The test is done in a hospital radiology department or in the health care provider's office. You will lie on the x-ray table in different positions. If the x-ray ...

  8. X-ray laser

    DOEpatents

    Nilsen, Joseph

    1991-01-01

    An X-ray laser (10) that lases between the K edges of carbon and oxygen, i.e. between 44 and 23 Angstroms, is provided. The laser comprises a silicon (12) and dysprosium (14) foil combination (16) that is driven by two beams (18, 20) of intense line focused (22, 24) optical laser radiation. Ground state nickel-like dysprosium ions (34) are resonantly photo-pumped to their upper X-ray laser state by line emission from hydrogen-like silicon ions (32). The novel X-ray laser should prove especially useful for the microscopy of biological specimens.

  9. MODEL-INDEPENDENT LIMITS ON THE LINE-OF-SIGHT DEPTH OF CLUSTERS OF GALAXIES USING X-RAY AND SUNYAEV-ZEL'DOVICH DATA

    SciTech Connect

    Mahdavi, Andisheh; Chang Weihan

    2011-07-01

    We derive a model-independent expression for the minimum line-of-sight extent of the hot plasma in a cluster of galaxies. The only inputs are the 1-5 keV X-ray surface brightness and the Comptonization from Sunyaev-Zel'dovich (SZ) data. No a priori assumptions regarding equilibrium or geometry are required. The method applies when the X-ray emitting material has temperatures anywhere between 0.3 keV and 20 keV and metallicities between 0 and twice solar-conditions fulfilled by nearly all intracluster plasma. Using this method, joint APEX-SZ and Chandra X-ray Observatory data on the Bullet Cluster yield a lower limit of 400 {+-} 56 kpc on the half-pressure depth of the main component, limiting it to being at least spherical, if not cigar-shaped primarily along the line of sight.

  10. Tokamak T-10 soft x-ray imaging diagnostic

    NASA Astrophysics Data System (ADS)

    Bobrovskij, G. A.; Kislov, D. A.; Lyadina, E. S.; Savrukhin, P. V.

    1991-04-01

    Three arrays of silicon surface-barrier diodes were recently installed on T-10 (R=1.5 m, a=0.3 m). The detectors view the plasma cross section along 58 chords spaced in the poloidal direction at one toroidal location. The tomographic reconstruction technique allows one to obtain the time evolution of the two-dimensional soft x-ray intensity profiles in the energy range of 2.5-15 keV. The field of view covered the main part of the plasma (r/a<0.7) with a spatial resolution as small as 2 cm, which is consistent with the scale of the processes under study. The signals are digitized at rates up to 100 kHz and stored in 464K (total) memory (8K per channel). The measured soft x-ray emission was applicable for investigation of the magnetohydrodynamic instabilities, heat and particle transport, and plasma position control. Studies of the evolution of soft x-ray perturbations were made in ohmically and ECRH heated plasmas. It was shown that the effect of ECRH on the plasma parameters (transport coefficients, sawtooth activity, modification of the electron temperature profiles) depends on the position of the EC resonance zone within the plasma cross section. The tomographic reconstruction revealed the different mechanisms of sawtooth crashes in the T-10 plasma.

  11. Flat-response x-ray-diode-detector development

    SciTech Connect

    Tirsell, G.

    1982-10-01

    In this report we discuss the design of an improved sub-nanosecond flat response x-ray diode detector needed for ICF diagnostics. This device consists of a high Z cathode and a complex filter tailored to flatten the response so that the total x-ray energy below 1.5 keV can be measured using a single detector. Three major problems have become evident as a result of our work with the original LLNL design including deviation from flatness due to a peak in the response below 200 eV, saturation at relatively low x-ray fluences, and long term gold cathode instability. We are investigating grazing incidence reflection to reduce the response below 200 eV, new high Z cathode materials for long term stability, and a new complex filter for improved flatness. Better saturation performance will require a modified XRD detector under development with reduced anode to cathode spacing and increased anode bias voltage.

  12. Self-modulated laser wakefield accelerators as x-ray sources

    NASA Astrophysics Data System (ADS)

    Lemos, N.; Martins, J. L.; Tsung, F. S.; Shaw, J. L.; Marsh, K. A.; Albert, F.; Pollock, B. B.; Joshi, C.

    2016-03-01

    The development of a directional, small-divergence, and short-duration picosecond x-ray probe beam with an energy greater than 50 keV is desirable for high energy density science experiments. We therefore explore through particle-in-cell (PIC) computer simulations the possibility of using x-rays radiated by betatron-like motion of electrons from a self-modulated laser wakefield accelerator as a possible candidate to meet this need. Two OSIRIS 2D PIC simulations with mobile ions are presented, one with a normalized vector potential a 0  =  1.5 and the other with an a 0  =  3. We find that in both cases direct laser acceleration (DLA) is an important additional acceleration mechanism in addition to the longitudinal electric field of the plasma wave. Together these mechanisms produce electrons with a continuous energy spectrum with a maximum energy of 300 MeV for a 0  =  3 case and 180 MeV in the a 0  =  1.5 case. Forward-directed x-ray radiation with a photon energy up to 100 keV was calculated for the a 0  =  3 case and up to 12 keV for the a 0  =  1.5 case. The x-ray spectrum can be fitted with a sum of two synchrotron spectra with critical photon energies of 13 and 45 keV for the a 0 of 3 and critical photon energies of 0.3 and 1.4 keV for a 0 of 1.5 in the plane of polarization of the laser. The full width at half maximum divergence angle of the x-rays was 62  ×  1.9 mrad for a 0  =  3 and 77  ×  3.8 mrad for a 0  =  1.5.

  13. THE LONG-TERM X-RAY VARIABILITY OF BROAD ABSORPTION LINE QUASARS

    SciTech Connect

    Saez, C.; Brandt, W. N.; Garmire, G. P.; Gallagher, S. C.; Bauer, F. E.

    2012-11-01

    We analyze the long-term (rest-frame 3-30 yr) X-ray variability of 11 broad absorption line (BAL) quasars, mainly to constrain the variation properties of the X-ray absorbing shielding gas that is thought to play a critical role in BAL wind launching. Our BAL quasar sample has coverage with multiple X-ray observatories including Chandra, XMM-Newton, BeppoSAX, ASCA, ROSAT, and Einstein; 3-11 observations are available for each source. For seven of the eleven sources we have obtained and analyzed new Chandra observations suitable for searching for any strong X-ray variability. We find highly significant X-ray variability in three sources (PG 1001+054, PG 1004+130, and PG 2112+059). The maximum observed amplitude of the 2-8 keV variability is a factor of 3.8 {+-} 1.3, 1.5 {+-} 0.2, and 9.9 {+-} 2.3 for PG 1001+054, PG 1004+130, and PG 2112+059, respectively, and these sources show detectable variability on rest-frame timescales down to 5.8, 1.4, and 0.5 yr. For PG 1004+130 and PG 2112+059 we also find significant X-ray spectral variability associated with the flux variability. Considering our sample as a whole, we do not find that BAL quasars exhibit exceptional long-term X-ray variability when compared to the quasar population in general. We do not find evidence for common strong changes in the shielding gas owing to physical rearrangement or accretion-disk rotation, although some changes are found; this has implications for modeling observed ultraviolet BAL variability. Finally, we report for the first time an X-ray detection of the highly polarized and well-studied BAL quasar IRAS 14026+4341 in its new Chandra observation.

  14. TU-A-9A-07: X-Ray Acoustic Computed Tomography (XACT): 100% Sensitivity to X-Ray Absorption

    SciTech Connect

    Xiang, L; Ahmad, M; Nikoozadeh, A; Pratx, G; Khuri-Yakub, B; Xing, L

    2014-06-15

    Purpose: To assess whether X-ray acoustic computed tomography (XACT) is more sensitive to X-ray absorption than that of the conventional X-ray imaging. Methods: First, a theoretical model was built to analyze the X-ray absorption sensitivity of XACT imaging and conventional X-ray imaging. Second, an XACT imaging system was developed to evaluate the X-ray induced acoustic signal generation as well as the sensitivity improvement over transmission x-ray imaging. Ultra-short x-ray pulses (60-nanosecond) were generated from an X-ray source operated at the energy of 150 kVp with a 10-Hz repetition rate. The X-ray pulse was synchronized with the acoustic detection via a x-ray scintillation triggering to acquire the X-ray induced acoustic signal. Results: Theoretical analysis shows that X-ray induced acoustic signal is sensitive only to the X-ray absorption, while completely insensitive to out the X-ray scattering and fluorescence. XACT has reduced background and increased contrast-to-noise ratio, and therefore has increased sensitivity compared to transmission x-ray imaging. For a 50-μm size, gadolinium insertion in tissue exposed to 40 keV X-rays; the sensitivity of XACT imaging is about 28.9 times higher than that of conventional X-ray imaging. Conclusion: X-ray acoustic computer tomography (XACT) as a new imaging modality combines X-ray absorption contrast and high ultrasonic resolution in a single modality. It is feasible to improve the imaging sensitivity with XACT imaging compared with conventional X-ray imaging. Taking advantage of the high ultrasonic resolution, it is possible to perform 3-D imaging with a single x-ray pulse with arrays of transducers without any mechanical motion of the imaging system. This single-shot capability offers the potential of reducing radiation dose by a factor of 1000, and imaging 100 times faster when compared to the conventional X-ray CT, and thus revolutionizing x-ray imaging applications in medicine and biology. The authors

  15. Imaging and nondispersive spectroscopy of soft X rays using a laboratory X-ray charge-coupled-device system

    NASA Technical Reports Server (NTRS)

    Luppino, Gerard A.; Doty, John P.; Ricker, George R.; Vallerga, John V.; Ceglio, Natale M.

    1987-01-01

    This paper describes the design and performance of a laboratory instrument for imaging and nondispersive spectroscopy of soft X-rays (300 eV to 10 keV) utilizing a virtual-phase CCD. This instrument has achieved a spatial resolution of 22 microns (limited by pixel size) with an overall array area of 584 x 390 pixels. It has achieved an energy resolution of about 140 eV FWHM for single-pixel Fe-55 X-ray events (5.9 keV) with the CCD operated at -30 C. The CCD has been operated in photon-counting mode at room temperature, and X-ray spectra with an energy resolution of about 450 eV at 5.9 keV have been obtained. The low energy X-ray sensitivity of the CCD also has been demonstrated by detecting carbon K-alpha X-rays (277eV).

  16. High-resolution x-ray characterization of mosaic crystals for hard x-ray astronomy

    NASA Astrophysics Data System (ADS)

    Ferrari, Claudio; Buffagni, Elisa; Marchini, Laura; Zappettini, Andrea

    2012-04-01

    GaAs, Cu, CdTe, and CdZnTe crystals have been studied as optical elements for lenses for hard x-ray astronomy. High-resolution x-ray diffraction at 8 keV in Bragg geometry and at synchrotron at energies up to 500 keV in Laue geometry has been used. A good agreement was found between the mosaicity evaluated in Bragg geometry at 8 keV with x-ray penetration of the order of few tens of micrometers and that derived at synchrotron in transmission Laue geometry at higher x-ray energies. Mosaicity values in a range between a few to 150 arcsec were found in all the samples but, due to the presence of crystal grains in the cm range, CdTe and CdZnTe crystals were found not suitable. Cu crystals exhibit a mosaicity of the order of several arcmin; they indeed were found to be severely affected by cutting damage which could only be removed with a very deep etching. The full width at half maximum of the diffraction peaks decreased at higher x-ray energies showing that the peak broadening is affected by crystallite size. GaAs crystals grown by Czochralski method showed a mosaic spread up to 30 arcsec and good diffraction efficiency up to energies of 500 keV. The use of thermal treatments as a possible method to increase the mosaic spread was also evaluated.

  17. X-Rays from Saturn and its Rings

    NASA Technical Reports Server (NTRS)

    Bhardwaj, Anil; Elsner, Ron F.; Waite, J. Hunter; Gladstone, G. Randall; Cravens, Tom E.; Ford, Peter G.

    2005-01-01

    In January 2004 Saturn was observed by Chandra ACIS-S in two exposures, 00:06 to 11:00 UT on 20 January and 14:32 UT on 26 January to 01:13 UT on 27 January. Each continuous observation lasted for about one full Saturn rotation. These observations detected an X-ray flare from the Saturn's disk and indicate that the entire Saturnian X-ray emission is highly variable -- a factor of $\\sim$4 variability in brightness in a week time. The Saturn X-ray flare has a time and magnitude matching feature with the solar X-ray flare, which suggests that the disk X-ray emission of Saturn is governed by processes happening on the Sun. These observations also unambiguously detected X-rays from Saturn's rings. The X-ray emissions from rings are present mainly in the 0.45-0.6 keV band centered on the atomic OK$\\alpha$ fluorescence line at 525 eV: indicating the production of X-rays due to oxygen atoms in the water icy rings. The characteristics of X-rays from Saturn's polar region appear to be statistically consistent with those from its disk X-rays, suggesting that X-ray emission from the polar cap region might be an extension of the Saturn disk X-ray emission.

  18. Coded Aperture Imaging for Fluorescent X-rays-Biomedical Applications

    SciTech Connect

    Haboub, Abdel; MacDowell, Alastair; Marchesini, Stefano; Parkinson, Dilworth

    2013-06-01

    Employing a coded aperture pattern in front of a charge couple device pixilated detector (CCD) allows for imaging of fluorescent x-rays (6-25KeV) being emitted from samples irradiated with x-rays. Coded apertures encode the angular direction of x-rays and allow for a large Numerical Aperture x- ray imaging system. The algorithm to develop the self-supported coded aperture pattern of the Non Two Holes Touching (NTHT) pattern was developed. The algorithms to reconstruct the x-ray image from the encoded pattern recorded were developed by means of modeling and confirmed by experiments. Samples were irradiated by monochromatic synchrotron x-ray radiation, and fluorescent x-rays from several different test metal samples were imaged through the newly developed coded aperture imaging system. By choice of the exciting energy the different metals were speciated.

  19. Technology development for soft X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Törmä, P. T.; Sipilä, H. J.; Koskinen, T.; Mattila, M.

    2016-05-01

    X-ray spectroscopy instruments lose part of their performance due to the lack of suitable components for soft X-ray region below 1 keV. Therefore, in the analysis of low atomic number elements including lithium, beryllium, boron and carbon instrument sensitivity is often limited. In this work we describe how the performance of the spectroscopy of soft X-rays is significantly improved when all devices integrated in the spectroscopic instrument are suitable for both soft and hard X-rays. This concept is based on utilizing ultra-thin SiN X-ray windows with proven performance not only as a detector window but also as an X-ray source window. By including a soft-X-ray-sensitive silicon drift detector with efficient surface charge collection in this concept the sensitivity and performance of the instrument is significantly increased.

  20. Characterization of a Prototype TES-Based Anti-coincidence Detector for Use with Future X-ray Calorimeter Arrays

    NASA Astrophysics Data System (ADS)

    Busch, S. E.; Yoon, W. S.; Adams, J. S.; Bailey, C. N.; Bandler, S. R.; Chervenak, J. A.; Eckart, M. E.; Ewin, A. J.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; Lee, S.-J.; Porst, J.-P.; Porter, F. S.; Sadleir, J. E.; Smith, S. J.; Sultana, M.

    2015-12-01

    For future X-ray observatories utilizing transition-edge sensor (TES) microcalorimeters, an anti-coincidence detector (anti-co) is required to discriminate X-ray (˜ 0.1-10 keV) signals from non-X-ray background events, such as ionizing particles. We have developed a prototype anti-co that utilizes TESs, which will be compatible with the TES focal-plane arrays planned for future X-ray observatories. This anti-co is based upon the cryogenic dark matter search II detector design. It is a silicon wafer covered with superconducting collection fins and TES microcalorimeters. Minimum ionizing particles deposit energy while passing through the silicon. The athermal phonons produced by these events are absorbed in the superconducting fins, breaking Cooper pairs. The resulting quasiparticles diffuse along the superconducting fin, producing a signal when they reach the TES. By determining a correlation between detections in the anti-co and the X-ray detector one can identify and flag these background events. We have fabricated and tested a single-channel prototype anti-co device on a 1.5 × 1.9 cm^2 chip. We have measured the signals in this device from photons of several energies between 1.5 and 60 keV, as well as laboratory background events, demonstrating a threshold ˜ 100 times lower than is needed to detect minimum ionizing particles.

  1. Characterization of a Prototype TES-Based Anti-coincidence Detector for Use with Future X-ray Calorimeter Arrays

    NASA Astrophysics Data System (ADS)

    Busch, S. E.; Yoon, W. S.; Adams, J. S.; Bailey, C. N.; Bandler, S. R.; Chervenak, J. A.; Eckart, M. E.; Ewin, A. J.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; Lee, S.-J.; Porst, J.-P.; Porter, F. S.; Sadleir, J. E.; Smith, S. J.; Sultana, M.

    2016-07-01

    For future X-ray observatories utilizing transition-edge sensor (TES) microcalorimeters, an anti-coincidence detector (anti-co) is required to discriminate X-ray (˜ 0.1-10 keV) signals from non-X-ray background events, such as ionizing particles. We have developed a prototype anti-co that utilizes TESs, which will be compatible with the TES focal-plane arrays planned for future X-ray observatories. This anti-co is based upon the cryogenic dark matter search II detector design. It is a silicon wafer covered with superconducting collection fins and TES microcalorimeters. Minimum ionizing particles deposit energy while passing through the silicon. The athermal phonons produced by these events are absorbed in the superconducting fins, breaking Cooper pairs. The resulting quasiparticles diffuse along the superconducting fin, producing a signal when they reach the TES. By determining a correlation between detections in the anti-co and the X-ray detector one can identify and flag these background events. We have fabricated and tested a single-channel prototype anti-co device on a 1.5 × 1.9 cm^2 chip. We have measured the signals in this device from photons of several energies between 1.5 and 60 keV, as well as laboratory background events, demonstrating a threshold ˜ 100 times lower than is needed to detect minimum ionizing particles.

  2. Depth Probing Soft X-ray Microprobe (DPSXRM) for High Resolution Probing of Earth's Microstructural Samples

    NASA Astrophysics Data System (ADS)

    Dikedi, P. N.

    2015-12-01

    The Cambrian explosion; occurrence of landslides in very dry weather conditions; rockslides; dead, shriveled-up and crumbled leaves possessing fossil records with the semblance of well preserved, flat leaves; abundance of trilobite tracks in lower and higher rock layers; and sailing stones are enigmas demanding demystifications. These enigmas could be elucidated when data on soil structure, texture and strength are provided by some device with submicrometre accuracy; for these and other reasons, the design of a Depth Probing Soft X-ray Microprobe (DPSXRM), is being proposed; it is expected to deliver soft X-rays, at spatial resolution, ϛ≥600nm and to probe at the depth of 0.5m in 17s. The microprobe is portable compared to a synchrotron radiation facility (Diamond Light Source has land size of 43,300m2); spatial resolution,ϛ , of the DPSXRM surpasses those of the X-ray Fluorescence microanalysis (10µm), electron microprobe (1-3µm) and ion microprobe (5->30µm); the DPSXRM has allowance for multiple targets. Vanadium and Manganese membranes are proposed owing to respective 4.952KeV VKα1 and 5.899KeV MnKα1 X-rays emitted, which best suits micro-probing of Earth's microstructural samples. Compound systems like the Kirk-Patrick and Baez and Wolter optics, aspheric mirrors like elliptical and parabolic optics, small apertures and Abbe sine condition are employed to reduce or remove astigmatism, obliquity, comatic and spherical aberrations—leading to good image quality. Results show that 5.899KeV MnKα1 and 4.952KeV VKα1 soft X-rays will travel a distance of 2.75mm to form circular patches of radii 2.2mm and 2.95mm respectively. Zone plate with nth zone radius of 1.5mm must be positioned 1.5mm and 2mm from the electron gun if circular patches must be formed from 4.952KeV VKα1 and 5.899KeV MnKα1 soft X-rays respectively. The focal lengths of 0.25μm≤ƒ≤1.50μm and 0.04μm≤ƒ≤0.2μm covered by 4.952KeV VKα1 and 5.899KeV Mn Kα1 soft X-Rays, will

  3. Medical X-Rays

    MedlinePlus

    ... Diagnostic X-Ray Equipment Compliance Program Guidance Manual CP 7386.003 Field Compliance Testing of Diagnostic (Medical) ... and Exporting Electronic Products Compliance Program Guidance Manual CP 7386.003 Field Compliance Testing of Diagnostic (Medical) ...

  4. Dental x-rays

    MedlinePlus

    ... or impacted teeth The presence and extent of dental caries (cavities) Bone damage (such as from periodontitis ) Abscessed ... Dental x-rays can reveal dental cavities (tooth decay) before they ... take yearly bitewings for the early development of cavities.

  5. X-ray - skeleton

    MedlinePlus

    ... is used to look for: Fractures or broken bone Cancer that has spread to other areas of the ... 2014:chap 8. Read More Bone tumor Broken bone Cancer Metastasis Osteomyelitis X-ray Update Date 5/9/ ...

  6. X-Ray Diffraction.

    ERIC Educational Resources Information Center

    Smith, D. K.; Smith, K. L.

    1980-01-01

    Reviews applications in research and analytical characterization of compounds and materials in the field of X-ray diffraction, emphasizing new developments in applications and instrumentation in both single crystal and powder diffraction. Cites 414 references. (CS)

  7. Abdominal x-ray

    MedlinePlus

    An abdominal x-ray is an imaging test to look at organs and structures in the abdomen. Organs include the spleen, stomach, and intestines. When the test is done to look at the bladder and kidney structures, ...

  8. X-Ray Spectrometry.

    ERIC Educational Resources Information Center

    Macdonald, G. L.

    1980-01-01

    Reviews instrumental developments and technique improvements in X-ray spectrometry, grouped into major topic areas of excitation, dispersion and detection, instrumentation and techniques, and quantitative analyses. Cites 162 references. (CS)

  9. Bone x-ray

    MedlinePlus

    ... or broken bone Bone tumors Degenerative bone conditions Osteomyelitis (inflammation of the bone caused by an infection) ... Multiple myeloma Osgood-Schlatter disease Osteogenesis imperfecta Osteomalacia Osteomyelitis Paget disease of the bone Rickets X-ray ...

  10. Hard x-ray spectrometers for NIF (abstract)

    NASA Astrophysics Data System (ADS)

    Seely, John; Holland, Glenn; Brown, Charles; Deslattes, Richard; Hudson, Lawrence; Bell, Perry; Miller, Michael; Back, Christina

    2001-01-01

    A National Ignition Facility (NIF) core diagnostic instrument has been designed and will be fabricated to record x-ray spectra in the 1.2-20 keV energy range. The high-energy electronic x-ray instrument has four reflection crystals with overlapping coverage of 1.2-10.9 keV and one transmission crystal covering 8.6-20 keV. The spectral resolving power varies from approximately 1000 at low energies to 315 at 20 keV. The spectrum produced by each crystal is recorded by a modified commercial dental x-ray charge coupled device (CCD) detector. The scintillators on the CCD detectors are optimized for the energy ranges. A one-channel x-ray spectrometer, using one transmission crystal covering 12-60 keV, will be fabricated for the OMEGA laser facility. The transmission crystal spectrometers are based on instruments originally designed at National Institute for Standards and Technology for the purpose of characterizing the x-ray flux from medical radiography sources. Utilizing one of those instruments and a commercial dental x-ray CCD detector, x-ray images were recorded using a single pulse from a laboratory x-ray source with a peak charging voltage of 200 kV. A resolving power of 300 was demonstrated by recording on film the Kα1 and Kα2 characteristic x-ray lines near 17 keV from a molybdenum anode. The continuum radiation from a tungsten anode was recorded in the 20-50 keV energy range. The transmission crystal spectrometer has sufficient spectral resolution and sensitivity to record the line and continuum radiation from high-Z targets irradiated by the NIF laser and the OMEGA laser.

  11. Refractive optical elements and optical system for high energy x-ray microscopy

    SciTech Connect

    Simon, M.; Altapova, V.; Baumbach, T.; Kluge, M.; Last, A.; Marschall, F.; Mohr, J.; Nazmov, V.; Vogt, H.

    2012-05-17

    In material science, X-ray radiation with photon energies above 25 keV is used because of its penetration into high density materials. Research of the inner structure of novel materials, such as electrodes in high power batteries for engines, require X-ray microscopes operating in the hard X-ray energy range. A flexible X-ray microscope for hard X-rays with photon energies higher than 25 keV will be realized at the synchrotron source ANKA in Karlsruhe, Germany. The device will use refractive X-ray lenses as condenser as well as objective lenses.

  12. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1992-01-01

    This final report covers the period 1 January 1985 - 31 March 1992. It is divided into the following sections: the soft x-ray background; proportional counter and filter calibrations; sounding rocket flight preparations; new sounding rocket payload: x-ray calorimeter; and theoretical studies. Staff, publications, conference proceedings, invited talks, contributed talks, colloquia and seminars, public service lectures, and Ph. D. theses are listed.

  13. Thoracic spine x-ray

    MedlinePlus

    Vertebral radiography; X-ray - spine; Thoracic x-ray; Spine x-ray; Thoracic spine films; Back films ... Gillard JH, Schaefer-Prokop CM, eds. Grainger & Allison's Diagnostic Radiology: A Textbook of Medical Imaging . 6th ed. New ...

  14. Prognoz 6 observations of x-ray sources I. A flare of the transient source A0535+26

    SciTech Connect

    Rakhamimov, S.Y.; Estulin, I.V.; Vedrenne, G.; Niel, M.

    1980-01-01

    Observations of the x-ray source A0535+26 by the Sneg 2 MP instrument on the Prognoz 6 spacecraft are reported. The source was monitored both in its quiescent state and during a flare. The x-ray light curve for 1977 December 8--31 is given. Flux densities and energy spectra are determined for radiation in the 27--132 keV energy range, where the source would have a luminosity L/sub x/approx. =2.7 x 10/sup 36/erg/sec if its distance is approx. = 1.5 kpc.

  15. Low Energy X-Ray Spectrometer

    NASA Astrophysics Data System (ADS)

    Woodruff, Wayne R.

    1981-10-01

    A subkilovolt spectrometer has been produced to permit high-energy-resolution, time-dependent x-ray intensity measurements. The diffracting element is a curved mica (d=9.95Å) crystal. To preclude higher order (n≳1) diffractions, a carbon x-ray mirror that reflects only photons with energies less than ˜1.1 keV is utilized ahead of the diffracting element. The nominal energy range of interest is 800 to 900 eV. The diffracted photons are detected by a gold-surfaced photoelectric diode designed to have a very good frequency response, and whose current is recorded on an oscilloscope. A thin, aluminum light barrier is placed between the diffracting crystal and the photoelectric diode detector to keep any UV generated on or scattered by the crystal from illuminating the detector. High spectral enegy resolution is provided by many photocathodes between 8- and 50-eV wide placed serially along the diffracted x-ray beam at the detector position. The spectrometer was calibrated for energy and energy dispersion using the Ni Lα1,2 lines produced in the LLNL IONAC accelerator and in third order using a molybdenum target x-ray tube. For the latter calibration the carbon mirror was replaced by one surfaced with rhodium to raise the cut-off energy to about 3 keV. The carbon mirror reflection dependence on energy was measured using one of our Henke x-ray sources. The curved mica crystal diffraction efficiency was measured on our Low-Energy X-ray (LEX) machine. The spectrometer performs well although some changes in the way the x-ray mirror is held are desirable.

  16. Low energy x-ray spectrometer

    SciTech Connect

    Woodruff, W.R.

    1981-06-05

    A subkilovolt spectrometer has been produced to permit high-energy-resolution, time-dependent x-ray intensity measurements. The diffracting element is a curved mica (d = 9.95A) crystal. To preclude higher order (n > 1) diffractions, a carbon x-ray mirror that reflects only photons with energies less than approx. 1.1 keV is utilized ahead of the diffracting element. The nominal energy range of interest is 800 to 900 eV. The diffracted photons are detected by a gold-surface photoelectric diode designed to have a very good frequency response, and whose current is recorded on an oscilloscope. A thin, aluminium light barrier is placed between the diffracting crystal and the photoelectric diode detector to keep any uv generated on or scattered by the crystal from illuminating the detector. High spectral energy resolution is provided by many photocathodes between 8- and 50-eV wide placed serially along the diffracted x-ray beam at the detector position. The spectrometer was calibrated for energy and energy dispersion using the Ni L..cap alpha../sub 1/ /sub 2/ lines produced in the LLNL IONAC accelerator and in third order using a molybdenum target x-ray tube. For the latter calibration the carbon mirror was replaced by one surfaced with rhodium to raise the cut-off energy to about 3 keV. The carbon mirror reflection dependence on energy was measured using one of our Henke x-ray sources. The curved mica crystal diffraction efficiency was measured on our Low-Energy x-ray (LEX) machine. The spectrometer performs well although some changes in the way the x-ray mirror is held are desirable. 16 figures.

  17. Soft X-Ray Emissions from Planets and Moons

    NASA Technical Reports Server (NTRS)

    Bhardwaj, A.; Gladstone, G. R.; Elsner, R. F.; Waite, J. H., Jr.; Grodent, D.; Lewis, W. S.; Crary, F. J.; Weisskopf, M. C.; Howell, R. R.; Johnson, R. E.; Six, N. Frank (Technical Monitor)

    2002-01-01

    The soft x-ray energy band (less than 4 keV) is an important spectral regime for planetary remote sensing, as a wide variety of solar system objects are now known to shine at these wavelengths. These include Earth, Jupiter, comets, moons, Venus, and the Sun. Earth and Jupiter, as magnetic planets, are observed to emanate strong x-ray emissions from their auroral (polar) regions, thus providing vital information on the nature of precipitating particles and their energization processes in planetary magnetospheres. X rays from low latitudes have also been observed on these planets, resulting largely from atmospheric scattering and fluorescence of solar x-rays. Cometary x-rays are now a well established phenomena, more than a dozen comets have been observed at soft x-ray energies, with the accepted production mechanism being charge-exchange between heavy solar wind ions and cometary neutrals. Also, Lunar x-rays have been observed and are thought to be produced by scattering and fluorescence of solar x-rays from the Moon's surface. With the advent of sophisticated x-ray observatories, e.g., Chandra and XMM-Newton, the field of planetary x-ray astronomy is advancing at a much faster pace. The Chandra X-ray Observatory (CXO) has recently captured soft x-rays from Venus. Venusian x-rays are most likely produced through fluorescence of solar x-rays by C and O atoms in the upper atmosphere. Very recently, using CXO we have discovered soft x-rays from the moons of Jupiter-Io, Europa, and probably Ganymede. The plausible source of the x-rays from the Galilean satellites is bombardment of their surfaces by energetic (greater than 10 KeV) ions from the inner magnetosphere of Jupiter. The Io plasma Torus (IPT) is also discovered by CXO to be a source of soft x-rays by CXO have revealed a mysterious pulsating (period approx. 45 minutes) x-ray hot spot is fixed in magnetic latitude and longitude and is magnetically connected to a region in the outer magnetosphere of Jupiter. These

  18. Solar X-ray polarimetry and spectrometry instrument PING-M for the Interhelioprobe mission

    NASA Astrophysics Data System (ADS)

    Kotov, Yu. D.; Yurov, V. N.; Glyanenko, A. S.; Lupar, E. E.; Kochemasov, A. V.; Trofimov, Yu. A.; Zakharov, M. S.; Faradzhaev, R. M.; Tyshkevich, V. G.; Rubtsov, I. V.; Dergachev, V. A.; Kruglov, E. M.; Lazutkov, V. P.; Savchenko, M. I.; Skorodumov, D. V.

    2016-08-01

    The PING-M experiment is designed to investigate solar X-ray activity. The instrument includes a hard X-ray polarimeter (PING-P), a hard X-ray spectrometer (HXRS) and a soft X-ray spectrometer (SXRS). PING-P has the energy range of 20-150 keV and an effective area of about 2.5 cm2. It uses three organic scintillation detectors as active scatterers, which work in coincidence with six absorber detectors, based on CsI(Tl) scintillator. This technique allows us to considerably improve the polarimeter sensitivity. HXRS has the energy range of 20-600 keV and an effective area of about 15 cm2. It is based on a fast inorganic scintillator (LaBr3(Ce) or CeBr3) with a relatively high energy resolution of 3.5-4.5% at 662 keV. The SXRS energy range is 1.5-25 keV, and its aperture is ø0.1 mm, which provides the registration of solar flares in the range from C1 to X20 class of GOES scale. It is based on a SDD semiconductor detector with an energy resolution better than 200 eV at 5.9 keV line. The experiment will be performed onboard the Russian interplanetary mission Interhelioprobe which is planned for launch after 2025. The instrument will allow us to investigate angular and energy distributions of accelerated electrons, plasma heating processes, etc. Stereoscopic polarimetry and spectrometric observations will be possible if a similar instrument is installed onboard a near Earth satellite, or the second probe of the Interhelioprobe mission.

  19. X-ray nanotomography in a SEM

    NASA Astrophysics Data System (ADS)

    Pauwels, Bart; Liu, Xuan; Sasov, Alexander

    2010-09-01

    We have developed an x-ray computer tomography (CT) add-on to perform X-ray micro- and nanotomography in any scanning electron microscope (SEM). The electron beam inside the SEM is focused on a metal target to generate x-rays. Part of the X-rays pass through the object that is installed on a rotation stage. Shadow X-ray images are collected by a CCD camera with direct photon detection mounted on the external wall of the SEM specimen chamber. An extensive description on the working principles of this micro/nano-CT add-on together with some examples of CT-scans will be given in this paper. The resolution that can be obtained with this set-up and the influence of the shape of the electron beam are discussed. Furthermore, possible improvements on this SEM-CT set-up will be discussed: replacing the backilluminated CCD with a fully depleted CCD with improved quantum efficiency (QE) for higher energies, reduces the exposure time by 6 when using metal targets with x-ray characteristic lines around 10 keV.

  20. The SAS-3 X-ray observatory

    NASA Technical Reports Server (NTRS)

    Mayer, W. F.

    1975-01-01

    The experiment section of the Small Astronomy Satellite-3 (SAS-3) launched in May 1975 is an X-ray observatory intended to determine the location of bright X-ray sources to an accuracy of 15 arc-seconds; to study a selected set of sources over a wide energy range, from 0.1 to 55 keV, while performing very specific measurements of the spectra and time variability of known X-ray sources; and to monitor the sky continuously for X-ray novae, flares, and unexpected phenomena. The improvements in SAS-3 spacecraft include a clock accurate to 1 part in 10 billion, rotatable solar panels, a programmable data format, and improved nutation damper, a delayed command system, improved magnetic trim and azimuth control systems. These improvements enable SAS-3 to perform three-axis stabilized observations of any point on the celestial sphere at any time of the year. The description of the experiment section and the SAS-3 operation is followed by a synopsis of scientific results obtained from the observations of X-ray sources, such as Vela X-1 (supposed to be an accreting neutron star), a transient source of hard X-ray (less than 36 min in duration) detected by SAS-3, the Crab Nebula pulsar, the Perseus cluster of galaxies, and the Vela supernova remnant.

  1. Lithium metal for x-ray refractive optics

    NASA Astrophysics Data System (ADS)

    Pereira, Nino R.; Arms, Dohn A.; Clarke, Roy; Dierker, Steve B.; Dufresne, Eric; Foster, D.

    2001-12-01

    Lithium is the best material for refractive x-ray lenses, with peak performance around 8 keV. To date we have built a prototype of Cederstrom's so-called alligator lens, and have tested the lens with beamline 7ID's 10 keV x-rays on the Advanced Photon Source at Argonne National Laboratories. To date we have attained only a threefold gain, most likely limited by surface roughness that is avoidable with more careful manufacturing techniques.

  2. Design studies for ITER x-ray diagnostics

    SciTech Connect

    Hill, K.W.; Bitter, M.; von Goeler, S.; Hsuan, H.

    1995-01-01

    Concepts for adapting conventional tokamak x-ray diagnostics to the harsh radiation environment of ITER include use of grazing-incidence (GI) x-ray mirrors or man-made Bragg multilayer (ML) elements to remove the x-ray beam from the neutron beam, or use of bundles of glass-capillary x-ray ``light pipes`` embedded in radiation shields to reduce the neutron/gamma-ray fluxes onto the detectors while maintaining usable x-ray throughput. The x-ray optical element with the broadest bandwidth and highest throughput, the GI mirror, can provide adequate lateral deflection (10 cm for a deflected-path length of 8 m) at x-ray energies up to 12, 22, or 30 keV for one, two, or three deflections, respectively. This element can be used with the broad band, high intensity x-ray imaging system (XIS), the pulseheight analysis (PHA) survey spectrometer, or the high resolution Johann x-ray crystal spectrometer (XCS), which is used for ion-temperature measurement. The ML mirrors can isolate the detector from the neutron beam with a single deflection for energies up to 50 keV, but have much narrower bandwidth and lower x-ray power throughput than do the GI mirrors; they are unsuitable for use with the XIS or PHA, but they could be used with the XCS; in particular, these deflectors could be used between ITER and the biological shield to avoid direct plasma neutron streaming through the biological shield. Graded-d ML mirrors have good reflectivity from 20 to 70 keV, but still at grazing angles (<3 mrad). The efficiency at 70 keV for double reflection (10 percent), as required for adequate separation of the x-ray and neutron beams, is high enough for PHA requirements, but not for the XIS. Further optimization may be possible.

  3. A Comprehensive X-Ray and Multiwavelength Study of the Colliding Galaxy Pair NGC 2207/IC 2163

    NASA Astrophysics Data System (ADS)

    Mineo, S.; Rappaport, S.; Levine, A.; Pooley, D.; Steinhorn, B.; Homan, J.

    2014-12-01

    We present a comprehensive study of the total X-ray emission from the colliding galaxy pair NGC 2207/IC 2163, based on Chandra, Spitzer, and GALEX data. We detect 28 ultraluminous X-ray sources (ULXs), 7 of which were not detected previously because of X-ray variability. Twelve sources show significant long-term variability, with no correlated spectral changes. Seven sources are transient candidates. One ULX coincides with an extremely blue star cluster (B - V = -0.7). We confirm that the global relation between the number and luminosity of ULXs and the integrated star-formation rate (SFR) of the host galaxy also holds on local scales. We investigate the effects of dust extinction and age on the X-ray binary (XRB) population on subgalactic scales. The distributions of N X and L X are peaked at L IR/L NUV ~ 1, which may be associated with an age of ~10 Myr for the underlying stellar population. We find that approximately one-third of the XRBs are located in close proximity to young star complexes. The luminosity function of the XRBs is consistent with that typical for high-mass XRBs and appears unaffected by variability. We disentangle and compare the X-ray diffuse spectrum with that of the bright XRBs. The hot interstellar medium dominates the diffuse X-ray emission at E <~ 1 keV and has a temperature kT=0.28+0.05-0.04 keV and intrinsic 0.5-2 keV luminosity of 7.9× 1040 {erg} {s}-1, a factor of ~2.3 higher than the average thermal luminosity produced per unit SFR in local star-forming galaxies. The total X-ray output of NGC 2207/IC 2163 is 1.5× 1041 {erg} {s}-1, and the corresponding total integrated SFR is 23.7 M ⊙ yr-1.

  4. ROSAT PSPC observations of two X-ray-faint early-type galaxies: NGC 4365 and NGC 4382

    NASA Technical Reports Server (NTRS)

    Fabbiano, G.; Kim, D.-W.; Trinchieri, G.

    1994-01-01

    We present the results of ROSAT Positive Sensitive Proportional Counter (PSPC) observations of the two early-type galaxies NGC 4365 and NGC 4382. These galaxies are among those observed with Einstein to have the lowest X-ray to optical flux ratios of early-type galaxies. The PSCP data show that for radii r greater than 50 arcsec the radial distributions of the X-ray surface brightness are consistent with the optical distributions of King (1978). We also find that these galaxies have X-ray spectra significantly different from those observed in X-ray-bright ellipticals, with a relative excess of counts detected in the softest spectral channels. This confirms earlier Einstein results. The characteristics of the ROSAT PSPC do not allow us to discriminate between possible spectral models. If we adopt a two-component thermal model on the grounds of physical plausibility, we find that the spectral data can be fitted with a very soft optically thin component, with kT approximately 0.2 keV, and a hard component with kT greater than (1.0-1.5) keV. The hard component has a luminosity consistent with that expected from the integrated emission of a population of low mass-X-ray binaries in these galaxies; the nature of the very soft component is more speculative. Candidates include the coronal emission of late-type stars, supersoft X-ray sources, RS CVn, and perhaps a hot Interstellar Medium (ISM). Alternatively, the spectal data may be fitted with a 0.6-1 keV bremsstrahlung spectrum (expontential plus Gaunt), and may suggest the presence of a totally new population of X-ray sources.

  5. Pixellated Cd(Zn)Te high-energy X-ray instrument

    PubMed Central

    Seller, P.; Bell, S.; Cernik, R.J.; Christodoulou, C.; Egan, C.K.; Gaskin, J.A.; Jacques, S.; Pani, S.; Ramsey, B.D.; Reid, C.; Sellin, P.J.; Scuffham, J.W.; Speller, R.D.; Wilson, M.D.; Veale, M.C.

    2012-01-01

    We have developed a pixellated high energy X-ray detector instrument to be used in a variety of imaging applications. The instrument consists of either a Cadmium Zinc Telluride or Cadmium Telluride (Cd(Zn)Te) detector bump-bonded to a large area ASIC and packaged with a high performance data acquisition system. The 80 by 80 pixels each of 250 μm by 250 μm give better than 1 keV FWHM energy resolution at 59.5 keV and 1.5 keV FWHM at 141 keV, at the same time providing a high speed imaging performance. This system uses a relatively simple wire-bonded interconnection scheme but this is being upgraded to allow multiple modules to be used with very small dead space. The readout system and the novel interconnect technology is described and how the system is performing in several target applications. PMID:22737179

  6. Infrared and X-Ray Spectroscopy of the KES 75 Supernova Remnant Shell: Characterizing the Dust and Gas Properties

    NASA Technical Reports Server (NTRS)

    Temim, Tea; Dwek, Eli; Slane, Patrick; Arendt, Richard G.

    2009-01-01

    We present deep Chandra observations and Spitzer Space Telescope infrared (IR) spectroscopy of the shell in the composite supernova remnant (SNR) Kes 75 (G29.7-0.3). The remnant is composed of a central pulsar wind nebula and a bright partial shell in the south that is visible at radio, IR, and X-ray wavelengths. The X-ray emission can be modeled by either a single thermal component with a temperature of 1.5 keV, or with two thermal components with temperatures of 1.5 and 0.2 keV. Previous studies suggest that the hot component may originate from reverse-shocked SN ejecta. However, our new analysis shows no definitive evidence for enhanced abundances of Si, S, Ar, Mg, and Fe, as expected from supernova (SN) ejecta, or for the IR spectral signatures characteristic of confirmed SN condensed dust, thus favoring a circumstellar or interstellar origin for the X-ray and IR emission. The X-ray and ill emission in the shell are spatially correlated, suggesting that the dust particles are collisionally heated by the X-ray emitting gas. The IR spectrum of the shell is dominated by continuum emission from dust with little, or no line emission. Modeling the IR spectrum shows that the dust is heated to a temperature of 140 K by a relatively dense, hot plasma, that also gives rise to the hot X-ray emission component. The density inferred from the IR emission is significantly higher than the density inferred from the X-ray models, suggesting a low filling factor for this X-ray emitting gas. The total mass of the warm dust component is at least 1.3 x 10(exp -2) solar mass, assuming no significant dust destruction has occurred in the shell. The IR data also reveal the presence of an additional plasma component with a cooler temperature, consistent with the 0.2 keV gas component. Our IR analysis therefore provides an independent verification of the cooler component of the X-ray emission. The complementary analyses of the X-ray and IR emission provide quantitative estimates of

  7. An imaging gas scintillation proportional counter for use in X-ray astronomy

    NASA Technical Reports Server (NTRS)

    Hailey, C. J.; Ku, W. H.-M.; Vartanian, M. H.

    1983-01-01

    An imaging gas scintillation proportional counter (GSPC) has been constructed for use in X-ray astronomy. The IGSPC consists of a gas scintillation proportional counter (GSPC) with a 1 micron polypropylene window coupled to a multiwire proportional counter (MWPC) via a calcium fluoride window. The MWPC, filled with a mixture of argon, methane, and tetrakis (dimethylamino) ethylene, detects the UV photons emitted by the xenon gas in the GSPC. The measured energy resolution is 17.0 percent (fwhm) and 8.0 percent (fwhm) at 1.5 keV and 5.9 keV, respectively. The measured position resolution is 1.9 mm (fwhm) and 0.9 mm (fwhm) at 1.5 and 5.9 keV, respectively. Possible astrophysical observations which can be performed with an IGSPC at the focal plane of a grazing incidence telescope are also discussed.

  8. An X-ray image of the Seyfert galaxy NGC 1068

    NASA Technical Reports Server (NTRS)

    Wilson, A. S.; Elvis, M.; Lawrence, A.; Bland-Hawthorn, J.

    1992-01-01

    An image of NGC 1068 with 4-5 arcsec obtained with the High Resolution Imager on the Rosat X-ray Observatory in the energy band 0.1-2.4 keV is presented and discussed. The map reveals an unresolved nuclear source, extended (about 1.5 kpc) emission around the nucleus, and extended (about 13 kpc) emission from the starburst disk. The extended circumnuclear emission aligns toward the NE, the same direction as found for the resolved emission of the active nucleus in several other wavebands. Thermal emission from a hot wind is argued to be the source of the steep-spectrum, nuclear, and circumnuclear emission. The disk of NGC 1068 has ratios of soft X-ray to B band and soft X-ray to 60-micron luminosities which are similar to those found for other starburst systems. The X-ray spectrum of the starburst disk is harder than that of the nuclear emission. By adopting a plausible spectrum and extrapolating the present measured flux, it is concluded that the starburst disk contributes most of the hard component seen in the 2-10 keV band.

  9. The Cambridge-Cambridge X-ray Serendipity Survey: I X-ray luminous galaxies

    NASA Technical Reports Server (NTRS)

    Boyle, B. J.; Mcmahon, R. G.; Wilkes, B. J.; Elvis, M.

    1994-01-01

    We report on the first results obtained from a new optical identification program of 123 faint X-ray sources with S(0.5-2 keV) greater than 2 x 10(exp -14) erg/s/sq cm serendipitously detected in ROSAT PSPC pointed observations. We have spectroscopically identified the optical counterparts to more than 100 sources in this survey. Although the majority of the sample (68 objects) are QSO's, we have also identified 12 narrow emission line galaxies which have extreme X-ray luminosities (10(exp 42) less than L(sub X) less than 10(exp 43.5) erg/s). Subsequent spectroscopy reveals them to be a mixture of star-burst galaxies and Seyfert 2 galaxies in approximately equal numbers. Combined with potentially similar objects identified in the Einstein Extended Medium Sensitivity Survey, these X-ray luminous galaxies exhibit a rate of cosmological evolution, L(sub X) varies as (1 + z)(exp 2.5 +/- 1.0), consistent with that derived for X-ray QSO's. This evolution, coupled with the steep slope determined for the faint end of the X-ray luminosity function (Phi(L(sub X)) varies as L(sub X)(exp -1.9)), implies that such objects could comprise 15-35% of the soft (1-2 keV) X-ray background.

  10. First Terrestrial Soft X-Ray Auroral Observation by the Chandra X-Ray Observatory

    NASA Technical Reports Server (NTRS)

    Bhardwaj, Anil; Gladstone, G. Randall; Elsner, Ronald F.; Oestgaard, Nikolai; Waite, J. Hunter, Jr.; Cravens, Thomas E.; Chang, Shen-Wu; Majeed, Tariq; Metzger, Albert E.

    2007-01-01

    Northern auroral regions of Earth were imaged with energetic photons in the 0.1-10keV range using the High-Resolution Camera (HRC-I) aboard the Chandra X-ray Observatory at 10 epochs (each approx.20 min duration) between mid- December 2003 and mid-April 2004. These observations aimed at searching for Earth's soft (< 2 keV) X-ray aurora in a comparative study with Jupiter's X-ray aurora, where a pulsating X-ray "hot-spot" has been previously observed by Chandra. The first Chandra soft X-ray observations of Earth's aurora show that it is highly variable 0ntense arcs, multiple arcs, diffuse patches, at times absent). In at least one of the observations an isolated blob of emission is observed near the expected cusp location. A fortuitous overflight of DMSP satellite F13 provided SSJ/4 energetic particle measurements above a bright arc seen by Chandra on 24 January 2004, 20:01-20:22 UT. A model of the emissions expected strongly suggests that the observed soft X-ray signal is bremsstrahlung and characteristic K-shell line emissions of nitrogen and oxygen in the atmosphere produced by electrons.

  11. Hard X-ray polarimetry with Astrosat-CZTI

    NASA Astrophysics Data System (ADS)

    Vadawale, S. V.; Chattopadhyay, T.; Rao, A. R.; Bhattacharya, D.; Bhalerao, V. B.; Vagshette, N.; Pawar, P.; Sreekumar, S.

    2015-06-01

    X-ray polarimetry is largely an unexplored area of an otherwise mature field of X-ray astronomy. Except for a few early attempts during the 1970s, no dedicated X-ray polarimeter has been flown during the past four decades. On the other hand, the scientific value of X-ray polarization measurement has been well known for a long time, and there has been significant technical progress in developing sensitive X-ray polarimeters in recent years. But there are no approved dedicated X-ray polarimetric experiments to be flown in the near future, so it is important to explore the polarimetric capabilities of other existing or planned instruments and examine whether they can provide significant astrophysical polarization measurements. In this paper, we present experimental results to show that the CZTI instrument onboard the forthcoming Indian astronomy mission, Astrosat, will be able to provide sensitive measurements of X-ray polarization in the energy range of 100-300 keV. CZTI will be able to constrain any intrinsic polarization greater than ~40% for bright X-ray sources (>500 mCrab) within a short exposure of ~100 ks with a 3-sigma confidence level. We show that this seemingly "modest" sensitivity can play a very significant role in addressing long pending questions, such as the contribution of relativistic jets to hard X-rays in black hole binaries and X-ray emission mechanism and geometry in X-ray pulsars.

  12. Coded aperture imaging for fluorescent x-rays

    SciTech Connect

    Haboub, A.; MacDowell, A. A.; Marchesini, S.; Parkinson, D. Y.

    2014-06-15

    We employ a coded aperture pattern in front of a pixilated charge couple device detector to image fluorescent x-rays (6–25 KeV) from samples irradiated with synchrotron radiation. Coded apertures encode the angular direction of x-rays, and given a known source plane, allow for a large numerical aperture x-ray imaging system. The algorithm to develop and fabricate the free standing No-Two-Holes-Touching aperture pattern was developed. The algorithms to reconstruct the x-ray image from the recorded encoded pattern were developed by means of a ray tracing technique and confirmed by experiments on standard samples.

  13. Quick, cheap, and beautiful x-ray polarimeter

    NASA Astrophysics Data System (ADS)

    Weisskopf, Martin C.; Elsner, Ronald F.; Joy, Marshall K.; O'dell, Stephen L.; Ramsey, Brian D.; Garmire, Gordon P.; Meszaros, Peter; Sunyaev, Rashid

    1994-11-01

    The use of x-ray polarimeters for the study of cosmic sources has been severely limited by the lack of launch opportunities. Thus far, the most significant x-ray-polarimetry experiment was performed by a device aboard the Orbiting Solar Observatory (OSO)-8 satellite in the 1970s. The next polarimetry experiment will be the Stellar X-Ray Polarimeter (SXRP), to be flown on the Russian Spectrum-X satellite in the next few years. Here we describe a simple experiment designed as a dedicated x-ray-polarimetry mission to operate in the 10 - 20 keV band and to complement scientifically the SXRP.

  14. X-rays from the eclipsing pulsar 1957+20

    NASA Technical Reports Server (NTRS)

    Fruchter, A. S.; Bookbinder, J.; Garcia, M. R.; Bailyn, C. D.

    1992-01-01

    The detection of soft X-rays of about 1 keV energy from the eclipsing pulsar PSR1957+20 is reported. This high-energy radiation should be a valuable diagnostic of the wind in this recycled pulsar system. Possible sources of the X-ray emission are the interstellar nebula driven by the pulsar wind, the interaction between the pulsar and its evaporating companion, and the pulsar itself. The small apparent size of the X-ray object argues against the first of these possibilities and suggests that the X-rays are produced within the binary.

  15. The X-ray background and the evolution of quasars

    NASA Technical Reports Server (NTRS)

    Tucker, W. H.; Schwartz, D. A.

    1986-01-01

    The contribution of QSOs and active galaxies to the 2-10-keV X-ray background is calculated theoretically, assuming that the X-ray luminosity of each GSO has a power-law time evolution (dL/dt = AL exp alpha) and applying the continuity equation to derive the X-ray luminosity function at arbitrary redshift. The observed X-ray background is shown to require alpha greater than 1.2, ruling out pure luminosity evolution (alpha = 1).

  16. The SWIFT Gamma-Ray Burst X-Ray Telescope

    NASA Technical Reports Server (NTRS)

    Hill, J. E.; Burrows, D. N.; Nousek, J. A.; Wells, A.; Chincarini, G.; Abbey, A. F.; Angelini, L.; Beardmore, A.; Brauninger, H. W.; Chang, W.

    2006-01-01

    The Swift Gamma-Ray Burst Explorer is designed to make prompt multi-wavelength observations of Gamma-Ray Bursts and GRB afterglows. The X-ray Telescope enables Swift to determine GRB positions with a few arcseconds accuracy within 100 seconds of the burst onset. The XRT utilizes a mirror set built for JET-X and an XMM-Newton/ EPIC MOS CCD detector to provide a sensitive broad-band (0.2-10 keV) X-ray imager with an effective area of more than 120 sq cm at 1.5 keV, a field of view of 23.6 x 23.6 arcminutes, and an angular resolution of 18 arcseconds (HPD). The detection sensitivity is 2x10(exp 14) erg/sq cm/s in 10(exp 4) seconds. The instrument provides automated source detection and position reporting within 5 seconds of target acquisition. It can also measure the redshifts of GRBs with Iron line emission or other spectral features. The XRT operates in an auto-exposure mode, adjusting the CCD readout mode automatically to optimize the science return as the source intensity fades. The XRT measures spectra and lightcurves of the GRB afterglow beginning about a minute after the burst and follows each burst for days or weeks. We provide an overview of the X-ray Telescope scientific background from which the systems engineering requirements were derived, with specific emphasis on the design and qualification aspects from conception through to launch. We describe the impact on cleanliness and vacuum requirements for the instrument low energy response and to maintain the high sensitivity to the fading signal of the Gamma-ray Bursts.

  17. X-ray nanotomography

    NASA Astrophysics Data System (ADS)

    Sasov, Alexander

    2004-10-01

    A compact laboratory x-ray "nano-CT" scanner has been created for 3D non-invasive imaging with 150-200 nanometers 3D spatial resolution, using advanced x-ray technologies and specific physical phenomena for signal detection. This spatial resolution in volume terms is 3 orders better than can be achieved in synchrotron tomography, 5 orders better then in existing laboratory micro-CT instruments and 10-12 orders better in comparison to clinical CT. The instrument employs an x-ray source with a 300-400nm x-ray spot size and uses small-angle scattering to attain a detail detectability of 150-200nm. An object manipulator allows positioning and rotation with an accuracy of 150nm. The x-ray detector is based on an intensified CCD with single-photon sensitivity. A typical acquisition cycle for 3D reconstruction of the full object volume takes from 10 to 60 minutes, with the collection of several hundred angular views. Subsequent volumetric reconstruction produces results as a set of cross sections with isotropic voxel size down to 140 x 140 x 140nm, or as a 3D-model, which can be virtually manipulated and measured. This unique spatial resolution in non-invasive investigations gives previously unattainable 3D images in several application areas, such as composite materials, paper and wood microstructure, biomedical applications and others.

  18. RX J0045.4+4154: A recurrent supersoft x-ray transient in M31

    NASA Technical Reports Server (NTRS)

    White, N. E.; Giommi, P.; Heise, J.; Angelini, L.; Fantasia, S.

    1995-01-01

    Using data extracted from the ROSAT archive we have discovered a recurrent supersoft X-ray transient RX J0045.4+4154 in M31. The first outburst began on 1992 February 2 and continued for at least 4 days, until the end of the observation sequence. A second outburst that lasted more than 6 days was seen to begin on 1993 January 7. The X-ray spectrum on both occasions yields a characteristic blackbody temperature of approximately 90 eV. For a range of plausible continuum models, the hydrogen column density is (0.8-1.5) x 10(exp 21)/sq cm and is consistent with the source being located in M31. This implies an unabsorbed 0.1-2.0 keV peak luminosity of approximately 10(exp 38) ergs/sec. This is the first recurrent X-ray transient to be found in M31 and is particularly notable because it is much softer than the bright X-ray transients seen in our Galaxy. The spectrum is characteristic of the supersoft class of X-ray sources, which are thought to be accreting white dwarfs that have a hydrogen-burning surface layer. A fit to a white dwarf model atmosphere gives a temperature of 10(exp 6)K, the hottest found so far. This high temperature is consistent with a white dwarf mass of 1.3-1.4 solar mass, approaching the Chandrasekhar limit, and burning close to the nuclear stability limit.

  19. Start of Eta Car's X-ray Minimum

    NASA Technical Reports Server (NTRS)

    Corcoran, Michael F.; Liburd, Jamar; Hamaguchi, Kenji; Gull, Theodore; Madura, Thomas; Teodoro, Mairan; Moffat, Anthony; Richardson, Noel; Russell, Chris; Pollock, Andrew; Owocki, Stan

    2014-01-01

    Analysis of Eta Car's X-ray spectrum in the 2-10 keV band using quicklook data from the XRay Telescope on Swift shows that the flux on July 30, 2014 was 4.9 plus or minus 2.0×10(exp-12) ergs s(exp-1)cm(exp-2). This flux is nearly equal to the X-ray minimum flux seen by RXTE in 2009, 2003.5, and 1998, and indicates that Eta Car has reached its X-ray minimum, as expected based on the 2024-day period derived from previous 2-10 keV observations with RXTE.

  20. The Jefferson Lab Sub-picosecond X-ray Program

    NASA Astrophysics Data System (ADS)

    Boyce, J. R.; Benson, S. V.; Bohn, C. L.; Douglas, D. R.; Dylla, H. F.; Gubeli, J. F.; Happek, U.; Jordan, K.; Krafft, G. A.; Neil, G. R.; Piot, P.; Shinn, M. D.; Williams, G. P.

    2003-08-01

    The kW-class infrared (IR) Free Electron Laser (FEL) at Jefferson Lab had the capability of producing intracavity Thomson scattering of the IR off the electron beam thus producing high average flux, sub-picosecond x-rays. We have measured these x-rays and demonstrated the energy tuneability range from 3.5 keV to 18 keV. The corresponding flux and brightness has been estimated and will be discussed. This year, 2002, the FEL was disassembled and has been reconfigured to produce 10 kW average power IR. We present the estimated x-ray capabilities for the new FEL and discuss potential applications.

  1. Parametric X-Ray Radiation

    NASA Astrophysics Data System (ADS)

    Shchagin, Alexander

    1997-10-01

    The main PXR properties [1,2] are considered in the paper: energy, width, smooth tuning of monochromatic PXR spectral line; fine structure and absolute differential yields of PXR in the vicinity of and at angular distances from Brag directions; angular spread of the PXR beam; the influence of incident electron energy and of the density effect on the PXR properties; linear polarization of PXR; background in PXR spectra. Experimental setups for linacs and the results of measurements are discussed. Experimental data are compared to theoretical calculations at PXR energies between 5 and 400 keV for incident electron energies ranging from 15 to 1200 MeV. Possible applications of PXR as a new source of a bright, tunable X-ray beam in science and industry are discussed. [1] A.V. Shchagin and N.A. Khizhnyak, NIM B119, 115-122 (1996). [2] A.V. Shchagin and X.K. Maruyama, "Parametric X-rays", a chapter in the book "Accelerator-based Atomic Physics Techniques and Applications", edited by S.M. Shafroth and J.C. Austin, AIP Press, 1997, pp 279-307.

  2. Soft X-Ray Emissions from Planets and Moons

    NASA Technical Reports Server (NTRS)

    Bhardwaj, A.; Gladstone, G. R.; Elsner, R. F.; Waite, J. H., Jr.; Grodent, D.; Cravens, T. E.; Howell, R. R.; Metzger, A. E.; Ostgaard, N.; Maurellis, A.; Six, N. Frank (Technical Monitor)

    2002-01-01

    A wide variety of solar system planetary bodies are now known to radiate in the soft x-ray energy (<5 keV) regime. These include planets (Earth, Jupiter, Venus, Saturn): bodies having thick atmosphere and with/without intrinsic magnetic field; planetary satellites (Moon, Io, Europa, Ganymede): bodies with no/thin atmosphere; and comets and Io plasma torus: bodies having extended tenuous atmosphere. Several different mechanisms have been proposed to explain the generation of soft x-rays from these objects. whereas in the hard x-ray energy range (>10 keV) x-rays mainly result from electron bremsstrahlung process. In this paper we present a brief review of the x-ray observations on each of the planetary bodies and discuss their characteristics and proposed source mechanisms.

  3. A laboratory-based hard x-ray monochromator for high-resolution x-ray emission spectroscopy and x-ray absorption near edge structure measurements.

    PubMed

    Seidler, G T; Mortensen, D R; Remesnik, A J; Pacold, J I; Ball, N A; Barry, N; Styczinski, M; Hoidn, O R

    2014-11-01

    We report the development of a laboratory-based Rowland-circle monochromator that incorporates a low power x-ray (bremsstrahlung) tube source, a spherically bent crystal analyzer, and an energy-resolving solid-state detector. This relatively inexpensive, introductory level instrument achieves 1-eV energy resolution for photon energies of ∼5 keV to ∼10 keV while also demonstrating a net efficiency previously seen only in laboratory monochromators having much coarser energy resolution. Despite the use of only a compact, air-cooled 10 W x-ray tube, we find count rates for nonresonant x-ray emission spectroscopy comparable to those achieved at monochromatized spectroscopy beamlines at synchrotron light sources. For x-ray absorption near edge structure, the monochromatized flux is small (due to the use of a low-powered x-ray generator) but still useful for routine transmission-mode studies of concentrated samples. These results indicate that upgrading to a standard commercial high-power line-focused x-ray tube or rotating anode x-ray generator would result in monochromatized fluxes of order 10(6)-10(7) photons/s with no loss in energy resolution. This work establishes core technical capabilities for a rejuvenation of laboratory-based hard x-ray spectroscopies that could have special relevance for contemporary research on catalytic or electrical energy storage systems using transition-metal, lanthanide, or noble-metal active species. PMID:25430123

  4. A laboratory-based hard x-ray monochromator for high-resolution x-ray emission spectroscopy and x-ray absorption near edge structure measurements

    SciTech Connect

    Seidler, G. T. Mortensen, D. R.; Remesnik, A. J.; Pacold, J. I.; Ball, N. A.; Barry, N.; Styczinski, M.; Hoidn, O. R.

    2014-11-15

    We report the development of a laboratory-based Rowland-circle monochromator that incorporates a low power x-ray (bremsstrahlung) tube source, a spherically bent crystal analyzer, and an energy-resolving solid-state detector. This relatively inexpensive, introductory level instrument achieves 1-eV energy resolution for photon energies of ∼5 keV to ∼10 keV while also demonstrating a net efficiency previously seen only in laboratory monochromators having much coarser energy resolution. Despite the use of only a compact, air-cooled 10 W x-ray tube, we find count rates for nonresonant x-ray emission spectroscopy comparable to those achieved at monochromatized spectroscopy beamlines at synchrotron light sources. For x-ray absorption near edge structure, the monochromatized flux is small (due to the use of a low-powered x-ray generator) but still useful for routine transmission-mode studies of concentrated samples. These results indicate that upgrading to a standard commercial high-power line-focused x-ray tube or rotating anode x-ray generator would result in monochromatized fluxes of order 10{sup 6}–10{sup 7} photons/s with no loss in energy resolution. This work establishes core technical capabilities for a rejuvenation of laboratory-based hard x-ray spectroscopies that could have special relevance for contemporary research on catalytic or electrical energy storage systems using transition-metal, lanthanide, or noble-metal active species.

  5. X-ray detectors of the CAST experiment

    NASA Astrophysics Data System (ADS)

    Yildiz, S. C.

    2014-03-01

    CERN Axion Solar Telescope (CAST) is an experiment probing hypothetical particles: the axions, created in the solar core. Inside the transverse magnetic field of the CAST magnet, axions can be converted into x-rays, and be detected by four x-ray detectors at CAST. The expected x-ray signal in CAST is in 1-10 keV range, intensity depending strongly on the coupling constant of axion-photon conversion gaγ, which is expected to be low. This requires CAST to have detectors with very low background levels. The CAST Experiment makes use of three Micromesh Gaseous Structure (micromegas) detectors, which are gaseous detectors, derived from ideas of Multiwire Proportional Chambers (MWPC). CAST Micromegas detectors show perfect stability, good spatial and energy resolution. The intense study on Micromegas has enabled CAST to understand the nature of its background level, and improve it by a factor of 102 over ten years. New detector design, new readout system, better cosmic veto and addition of x-ray telescope will further improve the background in the next data taking of the experiment. The Charge-Coupled Device (CCD) of CAST is a pn-CCD detector with 200 × 64 pixels. The CAST CCD is coupled to an X-ray telescope, focusing all the parallel x-rays into a 9 mm diameter spot. The CCD will be replaced by the InGrid detector, a special manufactured micromegas detector. It is able to detect single electrons, and the low energy capabilities will open new frontiers on search of axions and other exotic particles. Another option is the Silicon Drift Detector (SDD), which is being tested in 2013, and has an energy threshold as low as 250 eV. The CAST experiment is the pioneering helioscope that excludes an important part of axion mass-coupling constant parameter space, and expects to exclude more in the following years. To succeed CAST, a new experiment, the International AXion Observatory (IAXO) is being designed and optimised, comprising the construction of a magnet specially built

  6. The superconducting high-resolution soft X-ray spectrometer at the advanced biological and environmental X-ray facility

    NASA Astrophysics Data System (ADS)

    Friedrich, S.; Drury, O. B.; George, S. J.; Cramer, S. P.

    2007-11-01

    We have built a 36-pixel superconducting tunnel junction X-ray spectrometer for chemical analysis of dilute samples in the soft X-ray band. It offers an energy resolution of ˜10-20 eV FWHM below 1 keV, a solid angle coverage of ˜10 -3, and can be operated at total rates of up to ˜10 6 counts/s. Here, we describe the spectrometer performance in speciation measurements by fluorescence-detected X-ray absorption spectroscopy at the Advanced Biological and Environmental X-ray facility at the ALS synchrotron.

  7. [The X-Ray Fluorescence Spectrometer Based on Pyroelectric Effect].

    PubMed

    Dong, Yi-fan; Fan, Rui-rui; Guo, Dong-ya; Zhang, Chun-lei; Gao, Min; Wang, Jin-zhou; Liu, Ya-qing; Zhou, Da-wei; Wang, Huan-yu

    2016-02-01

    Pyroelectric X-ray generator is implemented, and an X-ray fluorescence spectrometer is accomplished by combining the pyroelectric X-ray generator with a high energy resolution silicon drift detector. Firstly, the parameters of the X-ray generator are decided by analyzing and calculating the influence of the thickness of the pyroelectriccrystal and the thickness of the target on emitted X-ray. Secondly, the emitted X-ray is measured. The energy of emitted X-ray is from 1 to 27 keV, containing the characteristic X-ray of Cu and Ta, and the max counting rate is more than 3 000 per second. The measurement also proves that the detector of the spectrometer has a high energy resolution which the FWMH is 210 eV at 8. 05 keV. Lastly, samples of Fe, Ti, Cr and high-Ti basalt are analyzed using the spectrometer, and the results are agreed with the elements of the samples. It shows that the spectrometer consisting of a pyroelectric X-ray generator and a silicon drift detector is effective for element analysis. Additionally, because each part of the spectrometer has a small volume, it can be easily modified to a portable one which is suitable for non-destructive, on-site and quick element analysis. PMID:27209767

  8. Filtered fluorescer x-ray detector

    SciTech Connect

    Bruns, H.C.; Emig, J.A.; Thoe, R.S.; Springer, P.T.; Hernandez, J.A.

    1995-04-01

    Recently, an instrument capable of measuring x-rays between 8 and 90 keV was conceived to help understand conditions pertaining to pulsed power research. This resulted in the development of a versatile device that would incrementally detect x-rays emitted at predetermined energy bands over this range. To accomplish this, an array of well characterized filter-fluorescer combinations were produced which would allow fluoresced x-rays to be observed by time resolved electro-optical devices. As many as sixteen channels could be utilized with each channel having a corresponding background channel. Upon completion of the device, a three week series of experiments was then successfully carried out.

  9. Development of cosmic x-ray polarimeter

    NASA Astrophysics Data System (ADS)

    Hayato, Asami; Tamagawa, Toru; Tsunoda, Naoko; Hashimoto, Shigehira; Miyamoto, Masao; Kohama, Mitsuhiro; Tokanai, Fuyuki; Hamagaki, Hideki; Inuzuka, Masahide; Miyasaka, Hiromasa; Sakurai, Ikuya; Makishima, Kazuo

    2006-06-01

    We present a performance study of a cosmic X-ray polarimeter which is based on the photoelectric effect in gas, and sensitive to a few to 30 keV range. In our polarimeter, the key device would be the 50 μm pitch Gas Electron Multiplier (GEM). We have evaluated the modulation factor using highly polarized X-ray, provided by a synchrotron accelerator. In the analysis, we selected events by the eccentricity of the charge cloud of the photoelectron track. As a result, we obtained the relationship between the selection criteria for the eccentricity and the modulation factors; for example, when we selected the events which have their eccentricity of > 0.95, the polarimeter exhibited with the modulation factor of 0.32. In addition, we estimated the Minimum Detectable Polarization degree (MDP) of Crab Nebula with our polarimeter and found 10 ksec observation is enough to detect the polarization, if we adopt suitable X-ray mirrors.

  10. Instrumentation for X-ray Astronomy

    NASA Technical Reports Server (NTRS)

    Ramsey, Brian D.; Austin, Robert A.; Decher, Rudolf

    1994-01-01

    Less than five decades ago, the first X-ray observations of the sky were made using simple devices such as film and geiger counters with crude collimators. These instruments were carried aloft by sounding rockets and made observations lasting only a few minutes at most. Today, orbiting observatories, utilizing high-resolution charged coupled devices (CCD's) at the focus of arc sec optics, have lifetimes measured in years. To maintain the pace of discovery in X-ray astronomy, detectors must continue to evolve into devices of ever increasing sensitivity and sophistication. Further progress depends upon a host of technologies: grazing incidence optics, proportional counters, semiconductors, calorimeters, etc. In this article we present a brief qualitative overview of these technologies and of the principles behind them, as well as some examples of how they are employed in scientific missions for X-ray observations at energies up to 100 keV.

  11. Explorer Program: X-ray Timing Explorer

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This booklet describes the X-ray Timing Explorer (XTE), one in a series of Explorer missions administered by the National Aeronautics and Space Administration's (NASA) Office of Space Science and managed by the NASA Goddard Space Flight Center (GSFC). The X-ray astronomy observatory is scheduled for launch into low-Earth orbit by Delta 2 expendable launch vehicle in late summer of 1995. The mission is expected to operate for at least 2 years and will carry out in-depth timing and spectral studies of the X-ray sources in the 2 to 200 kilo-electron Volt (keV) range. XTE is intended to study the temporal and broad-band spectral phenomena associated with stellar and galactic systems containing compact objects, including neutron stars, white dwarfs, and black holes.

  12. Lumbosacral spine x-ray

    MedlinePlus

    X-ray - lumbosacral spine; X-ray - lower spine ... be placed over the lower part of your spine. You will be asked to hold your breath ... x-ray. The most common reason for lumbosacral spine x-ray is to look for the cause ...

  13. X-Ray Emission from the Soft X-Ray Transient Aquila X-1

    NASA Technical Reports Server (NTRS)

    Tavani, Marco

    1998-01-01

    Aquila X-1 is the most prolific of soft X-ray transients. It is believed to contain a rapidly spinning neutron star sporadically accreting near the Eddington limit from a low-mass companion star. The interest in studying the repeated X-ray outbursts from Aquila X-1 is twofold: (1) studying the relation between optical, soft and hard X-ray emission during the outburst onset, development and decay; (2) relating the spectral component to thermal and non-thermal processes occurring near the magnetosphere and in the boundary layer of a time-variable accretion disk. Our investigation is based on the BATSE monitoring of Aquila X-1 performed by our group. We observed Aquila X-1 in 1997 and re-analyzed archival information obtained in April 1994 during a period of extraordinary outbursting activity of the source in the hard X-ray range. Our results allow, for the first time for this important source, to obtain simultaneous spectral information from 2 keV to 200 keV. A black body (T = 0.8 keV) plus a broken power-law spectrum describe accurately the 1994 spectrum. Substantial hard X-ray emission is evident in the data, confirming that the accretion phase during sub-Eddington limit episodes is capable of producing energetic hard emission near 5 x 10(exp 35) ergs(exp -1). A preliminary paper summarizes our results, and a more comprehensive account is being written. We performed a theoretical analysis of possible emission mechanisms, and confirmed that a non-thermal emission mechanism triggered in a highly sheared magnetosphere at the accretion disk inner boundary can explain the hard X-ray emission. An anticorrelation between soft and hard X-ray emission is indeed prominently observed as predicted by this model.

  14. Beyond hard x-ray photoelectron spectroscopy: Simultaneous combination with x-ray diffraction

    SciTech Connect

    Rubio-Zuazo, Juan; Castro, German R.

    2013-05-15

    Hard x-ray photoelectron spectroscopy (HAXPES) is a powerful and novel emerging technique for the nondestructive determination of electronic properties and chemical composition of bulk, buried interfaces and surfaces. It benefits from the exceptionally large escape depth of high kinetic energy photoelectrons, increasing the information depth up to several tens of nanometers. Complementing HAXPES with an atomic structure sensitive technique (such as x-ray diffraction) opens a new research field with major applications for materials science. At SpLine, the Spanish CRG beamline at the European Synchrotron Radiation Facility, we have developed a novel experimental set-up that combines HAXPES and x-ray diffraction (x-ray reflectivity, surface x-ray diffraction, grazing incidence x-ray diffraction, and reciprocal space maps). Both techniques can be operated simultaneously on the same sample and using the same excitation source. The set-up includes a robust 2S + 3D diffractometer hosting a ultrahigh vacuum chamber equipped with a unique photoelectron spectrometer (few eV < electron kinetic energy < 15 keV), x-ray tube (Mg/Ti), 15 keV electron gun, and auxiliary standard surface facilities (molecular beam epitaxy evaporator, ion gun, low energy electron diffraction, sample heating/cooling system, leak valves, load-lock sample transfer, etc.). This end-station offers the unique possibility of performing simultaneous HAXPES + x-ray diffraction studies. In the present work, we describe the experimental set-up together with two experimental examples that emphasize its outstanding capabilities: (i) nondestructive characterization of the Si/Ge and HfO{sub 2}/SiO{sub 2} interfaces on Ge-based CMOS devices, and (ii) strain study on La{sub 0.7}Ca{sub 0.3}MnO{sub 3} ultrathin films grown on SrTiO{sub 3}(001) substrate.

  15. Small, Fast TES Microcalorimeters with Unprecedented X-ray Spectral Performance

    NASA Technical Reports Server (NTRS)

    Eckart, M. E.; Adams, J. S.; Bailey, C. N.; Bandler, S. R.; Chervenak, J. A.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; Porter, F. S.; Sadleir, J. E.; Smith, S. J.; Hilton, G. C.; Irwin, K. D.; Vale, L. R.

    2011-01-01

    Driven initially by the desire for X-ray microcalorimeter arrays suitable for imaging the dynamic solar corona, we have developed a transition-edge-sensor (TES) microcalorimeter optimization that exhibits a unique combination of high spectral resolving power and a wide X-ray bandpass. These devices have achieved spectral performance of dE approximately 1.3 eV FWHM at 1.5 keV, 1.6 eV at 6 keV, and 2.0 eV at 8 keV, using small TESs (e.g., approximately 35 micron x 35 micron) that operate in a regime in which the superconducting transition is highly current dependent. In order to accommodate high X-ray count rates, the devices sit directly on a solid substrate instead of on membranes, and we use an embedded heatsinking layer to reduce pixel-to-pixel crosstalk. We will present results from devices with a range of TES and absorber sizes, and from device wafers with varied embedded heatsink materials. This contribution will focus on count-rate capabilities, including a discussion of the trade-off between count rate and energy resolution, and the heatsinking design. We will also present preliminary tests of array readout using a code-division multiplexed SQUID readout scheme, which may be necessary to enable large arrays of these fast devices.

  16. Multi-Absorber Transition-Edge Sensors for X-Ray Astronomy Applications

    NASA Technical Reports Server (NTRS)

    Smith, S. J.; Adams, J. S.; Bandler, S. R.; Busch, S. E.; Chervenak, J. A.; Eckart, M. E.; Ewin, A. J.; Finkbeiner, F. M.; Kelley, R. L.; Kelly, D. P.; Kilbourne, C. A.; Porst, J. P.; Porter, F. S.; Sadleir, J. E.; Wassell, E. J.

    2012-01-01

    We are developing multi-absorber Transition-Edge Sensors (TESs) for applications in x-ray astronomy. These position-sensitive devices consist of multiple x-ray absorbers each with a different thermal coupling to a single readout TES. Heat diffusion between the absorbers and the TES gives rise to a characteristic pulse shape corresponding to each absorber element and enables position discrimination. The development of these detectors is motivated by a desire to maximize focal plane arrays with the fewest number of readout channels. In this contribution we report on the first results from devices consisting of nine) 65 X 65 sq. microns Au x-ray absorbers) 5 microns thick. These are coupled to a single 35 X 35 sq. microns Mo/Au bilayer TES. These devices have demonstrated full-width-half-maximum (FWHM) energy resolution of 2.1 eV at 1.5 keV) 2.5 eV at 5.9 keV and 3.3 eV at 8 keV. This is coupled with position discrimination from pulse shape over the same energy range. We use a finite-element model to reproduce the measured pulse shapes and investigate the detector non-linearity with energy) which impacts on the devices position sensitivity and energy resolution.

  17. A comparison of the X-ray performance of TlBr crystals grown by the Bridgeman-Stockbarger and travelling molten zone methods

    NASA Astrophysics Data System (ADS)

    Gostilo, V.; Owens, A.; Bavdaz, M.; Lisjutin, I.; Peacock, A.; Sipila, H.; Zatoloka, S.

    2003-08-01

    We have investigated at optimal temperature the X-ray detection characteristics of two TlBr crystals by the Traveling Molten Zone (TMZ) technique. The resistivities were typically 1.5×10 10 Ω cm at room temperature, increasing to (1.1-1.7)×10 12 Ω cm at -15°C. In the temperature range -0°C to -50°C, both crystals exhibited mobility-lifetime products of ˜8×10 -5 cm 2V -1 and ˜1.5×10 -5 cm 2V -1, for electrons and holes respectively. From these crystals, two detectors were packaged and X-ray metrology carried out. For the best detector, the measured energy resolutions at an operating temperature of -15°C and 500 V bias were 1.0 keV at 5.9 keV; 1.1 at 13.9 keV; 2.5 at 59.54 keV; 3.3 keV at 88 keV; 4 keV at 122 keV and 27.7 keV at 662 keV.A comparative analysis of the characteristics of detectors grown by TMZ to those grown by the Bridgeman-Stockbarger method is given.

  18. X-Ray Calorimeter Arrays for Astrophysics

    NASA Technical Reports Server (NTRS)

    Kilbourne, Caroline A.

    2009-01-01

    High-resolution x-ray spectroscopy is a powerful tool for studying the evolving universe. The grating spectrometers on the XMM and Chandra satellites started a new era in x-ray astronomy, but there remains a need for instrumentation that can provide higher spectral resolution with high throughput in the Fe-K band (around 6 keV) and can enable imaging spectroscopy of extended sources, such as supernova remnants and galaxy clusters. The instrumentation needed is a broad-band imaging spectrometer - basically an x-ray camera that can distinguish tens of thousands of x-ray colors. The potential benefits to astrophysics of using a low-temperature calorimeter to determine the energy of an incident x-ray photon via measurement of a small change in temperature was first articulated by S. H. Moseley over two decades ago. In the time since, technological progress has been steady, though full realization in an orbiting x-ray telescope is still awaited. A low-temperature calorimeter can be characterized by the type of thermometer it uses, and three types presently dominate the field. The first two types are temperature-sensitive resistors - semiconductors in the metal-insulator transition and superconductors operated in the superconducting-normal transition. The third type uses a paramagnetic thermometer. These types can be considered the three generations of x-ray calorimeters; by now each has demonstrated a resolving power of 2000 at 6 keV, but only a semiconductor calorimeter system has been developed to spaceflight readiness. The Soft X-ray Spectrometer on Astro-H, expected to launch in 2013, will use an array of silicon thermistors with I-IgTe x-ray absorbers that will operate at 50 mK. Both the semiconductor and superconductor calorimeters have been implemented in small arrays, kilo-pixel arrays of the superconducting calorimeters are just now being produced, and it is anticipated that much larger arrays will require the non-dissipative advantage of magnetic thermometers.

  19. Observing soft X-ray line emission from the interstellar medium with X-ray calorimeter on a sounding rocket

    NASA Technical Reports Server (NTRS)

    Zhang, J.; Edwards, B.; Juda, M.; Mccammon, D.; Skinner, M.; Kelley, R.; Moseley, H.; Schoelkopf, R.; Szymkowiak, A.

    1990-01-01

    For an X-ray calorimeter working at 0.1 K, the energy resolution ideally can be as good as one eV for a practical detector. A detector with a resolution of 17 eV FWHM at 6 keV has been constructed. It is expected that this can be improved by a factor of two or more. With X-ray calorimeters flown on a sounding rocket, it should be possible to observe soft X-ray line emission from the interstellar medium over the energy range 0.07 to 1 keV. Here, a preliminary design for an X-ray calorimeter rocket experiment and the spectrum which might be observed from an equilibrium plasma are presented. For later X-ray calorimeter sounding rocket experiments, it is planned to add an aluminum foil mirror with collecting area of about 400 sq cm to observe line features from bright supernova remnants.

  20. CMOS APS detector characterization for quantitative X-ray imaging

    NASA Astrophysics Data System (ADS)

    Endrizzi, Marco; Oliva, Piernicola; Golosio, Bruno; Delogu, Pasquale

    2013-03-01

    An X-ray Imaging detector based on CMOS Active Pixel Sensor and structured scintillator is characterized for quantitative X-ray imaging in the energy range 11-30 keV. Linearity, dark noise, spatial resolution and flat-field correction are the characteristics of the detector subject of investigation. The detector response, in terms of mean Analog-to-Digital Unit and noise, is modeled as a function of the energy and intensity of the X-rays. The model is directly tested using monochromatic X-ray beams and it is also indirectly validated by means of polychromatic X-ray-tube spectra. Such a characterization is suitable for quantitative X-ray imaging and the model can be used in simulation studies that take into account the actual performance of the detector.

  1. Moon: lunar albedo for soft x-rays

    NASA Astrophysics Data System (ADS)

    Ibadov, Subhon

    2016-07-01

    Albedo of the Moon for soft X-rays (0.1-2 keV photons) is determined on the basis of the X-ray luminosity of the Moon detected and measured for the first time by orbital space telescope ROSAT in 1990. It is found that the lunar albedo for the solar soft X-rays is less than the lunar visual region albedo almost thousand times. The data allow to estimate more correctly X-ray luminosity of dusty comets like Hyakutake C/1996 B2 and Hale-Bopp C/1995 O1 due to scattering of solar soft X-rays and to reveal thus the dominant mechanism for production of X-rays in dusty comets.

  2. X-ray beam finder

    DOEpatents

    Gilbert, H.W.

    1983-06-16

    An X-ray beam finder for locating a focal spot of an X-ray tube includes a mass of X-ray opaque material having first and second axially-aligned, parallel-opposed faces connected by a plurality of substantially identical parallel holes perpendicular to the faces and a film holder for holding X-ray sensitive film tightly against one face while the other face is placed in contact with the window of an X-ray head.

  3. X-ray astronomical spectroscopy

    NASA Technical Reports Server (NTRS)

    Holt, Stephen S.

    1987-01-01

    The contributions of the Goddard group to the history of X-ray astronomy are numerous and varied. One role that the group has continued to play involves the pursuit of techniques for the measurement and interpretation of the X-ray spectra of cosmic sources. The latest development is the selection of the X-ray microcalorimeter for the Advanced X-ray Astrophysics Facility (AXAF) study payload. This technology is likely to revolutionize the study of cosmic X-ray spectra.

  4. INTEGRAL Observations of the Be/X-ray binary EX0 2030+375 During Outburst

    NASA Technical Reports Server (NTRS)

    Arranz, A. Camero; Wilson, C. A.; Connell, P.; Nunez, S. Martinez; Blay, P.; Beckmann, V.; Reglero, V.

    2005-01-01

    We present a type-I outburst of the high-mass X-ray binary EX0 2030+375, detected during INTEGRAL'S Performance and Verification phase in December 2002 (on-source time about 10(exp 6) seconds). In addition, six more outbursts have been observed during INTEGRAL'S Galactic Plane Scans. X-ray pulsations have been detected with a pulse period of 41.691798 plus or minus 0.000016 s. The X-ray luminosity in the 5-300 keV energy range was 9.7 x 10 (exp 36) erg per second, for a distance of 7.1 kpc. Two unusual features were found in the light curve, with an initial peak before the main outburst and another possible spike after the maximum. RXTE observations confirm only the existence of the initial spike. Although the initial peak appears to be a recurrent feature, the physical mechanisms producing it and the possible second spike are unknown. Moreover, a four-day delay between periastron passage and the peak of the outburst is observed. We present for the first time a 5-300 keV broad-band spectrum of this source. It can be modelled by the sum of a disk black body (kT(sub BB) approximately 8 keV) and either with a power law model with Gamma=2.04 plus or minus 0.11 keV or a Comptonized component (spherical geometry, kT(sub e).=30 keV, tau = 2.64, kT(sub w)=1.5 keV).

  5. γ Cassiopeiae: an X-ray Be star with personality

    NASA Astrophysics Data System (ADS)

    Lopes de Oliveira, R.; Smith, M. A.; Motch, C.

    2010-03-01

    An exciting unsolved problem in the study of high energy processes of early type stars concerns the physical mechanism for producing X-rays near the Be star γ Cassiopeiae. By now we know that this source and several “γ Cas analogs” exhibit an unusual hard thermal X-ray spectrum, compared both to normal massive stars and the non-thermal emission of known Be/X-ray binaries. Also, its light curve is variable on almost all conceivable timescales. In this study we reanalyze a high dispersion spectrum obtained by Chandra in 2001 and combine it with the analysis of a new (2004) spectrum and light curve obtained by XMM-Newton. We find that both spectra can be fit well with 3-4 optically thin, thermal components consisting of a hot component having a temperature kTQ ˜ 12-14 keV, perhaps one with a value of ~2.4 keV, and two with well defined values near 0.6 keV and 0.11 keV. We argue that these components arise in discrete (almost monothermal) plasmas. Moreover, they cannot be produced within an integral gas structure or by the cooling of a dominant hot process. Consistent with earlier findings, we also find that the Fe abundance arising from K-shell ions is significantly subsolar and less than the Fe abundance from L-shell ions. We also find novel properties not present in the earlier Chandra spectrum, including a dramatic decrease in the local photoelectric absorption of soft X-rays, a decrease in the strength of the Fe and possibly of the Si K fluorescence features, underpredicted lines in two ions each of Ne and N (suggesting abundances that are ~1.5-3× and ~4× solar, respectively), and broadening of the strong Ne X Lyα and O VIII Lyα lines. In addition, we note certain traits in the γ Cas spectrum that are different from those of the fairly well studied analog HD 110432 - in this sense the stars have different “personalities.” In particular, for γ Cas the hot X-ray component remains nearly constant in temperature, and the photoelectric absorption of

  6. N-(4-Nitrobenzoyl)-N'-(1,5-dimethyl-3-oxo-2-phenyl-1H-3(2H)-pyrazolyl)-thiourea hydrate: Synthesis, spectroscopic characterization, X-ray structure and DFT studies

    NASA Astrophysics Data System (ADS)

    Arslan, N. Burcu; Kazak, Canan; Aydın, Fatma

    2012-04-01

    The title molecule (C19H17N5O4S·H2O) was synthesized and characterized by IR-NMR spectroscopy, MS and single-crystal X-ray diffraction. The molecular geometry, vibrational frequencies and gauge-independent atomic orbital (GIAO) 1H and 13C NMR chemical shift values of the compound in the ground state have been calculated by using the density functional theory (DFT) method with 6-31G(d) basis set, and compared with the experimental data. All the assignments of the theoretical frequencies were performed by potential energy distributions using VEDA 4 program. The calculated results show that the optimized geometries can well reproduce the crystal structural parameters, and the theoretical vibrational frequencies and 1H and 13C NMR chemical shift values show good agreement with experimental data. To determine conformational flexibility, the molecular energy profile of the title compound was obtained with respect to the selected torsion angle, which was varied from -180° to +180° in steps of 10°. Besides, molecular electrostatic potential (MEP), frontier molecular orbitals (FMO) analysis and thermodynamic properties of the compound were investigated by theoretical calculations.

  7. X-ray

    MedlinePlus

    ... Most experts feel that the benefits of appropriate x-ray imaging greatly outweigh any risks. Young children and babies ... be pregnant. Alternative Names ... CM, eds. Grainger & Allison's Diagnostic Radiology: A Textbook of Medical Imaging . 6th ed. Philadelphia, PA: Elsevier Churchill Livingstone; 2014: ...

  8. Are There Intrinsically X-Ray Quiet Quasars

    NASA Technical Reports Server (NTRS)

    Gallagher, S. C.; Brandt, W. N.; Laor, A.; Elvis, Martin; Mathur, S.; Wills, Beverly J.; Iyomoto, N.; White, Nicholas (Technical Monitor)

    2000-01-01

    Recent ROSAT studies have identified a significant population of Active Galactic Nuclei (AGN) that are notably faint in soft X-rays relative to their optical fluxes. Are these AGN intrinsically X-ray weak or are they just highly absorbed? Brandt, Laor & Wills have systematically examined the optical and UV spectral properties of a well-defined sample of these soft X-ray weak (SXW) AGN drawn from the Boroson & Green sample of all the Palomar Green AGN 00 with z < 0.5. We present ASCA observations of three of these SXW AGN: PG 1011-040, PG 1535+547 (Mrk 486), and PG 2112+059. In general, our ASCA observations support the intrinsic absorption scenario for explaining soft X-ray weakness; both PG 1535+547 and PG 2112+059 show significant column densities (NH is approximately 10(exp 22) - 10(exp 23)/sq cm) of absorbing gas. Interestingly, PG 1011-040 shows no spectral evidence for X-ray absorption. The weak X-ray emission may result from very strong absorption of a partially covered source, or this AGN may be intrinsically X-ray weak. PG 2112+059 is a Broad Absorption Line (BAL) QSO, and we find it to have the highest X-ray flux known of this class. It shows a typical power-law X-ray continuum above 3 keV; this is the first direct evidence that BAL QSOs indeed have normal X-ray continua underlying their intrinsic absorption. Finally, marked variability between the ROSAT and ASCA observations of PG 1535+547 and PG 2112+059 suggests that the soft X-ray weak designation may be transient, and multi-epoch 0.1-10.0 KeV X-ray observations are required to constrain variability of the absorber and continuum.

  9. X-ray absorption near-edge structures of LiMn2O4 and LiNi0.5Mn1.5O4 spinel oxides for lithium-ion batteries: the first-principles calculation study.

    PubMed

    Okumura, Toyoki; Yamaguchi, Yoichi; Kobayashi, Hironori

    2016-07-21

    Experimental Mn and Ni K-edge X-ray absorption near-edge structure (XANES) spectra were well reproduced for 5 V-class LixNi0.5Mn1.5O4 spinels as well as 4 V-class LixMn2O4 spinels using density functional theory. Local environmental changes around the Mn or Ni centres due to differences in the locations of Li ions and/or phase transitions in the spinel oxides were found to be very important contributors to the XANES shapes, in addition to the valence states of the metal ions. PMID:27333155

  10. Thin Shell, Segmented X-Ray Mirrors

    NASA Technical Reports Server (NTRS)

    Petre, Robert

    2010-01-01

    Thin foil mirrors were introduced as a means of achieving high throughput in an X-ray astronomical imaging system in applications for which high angular resolution were not necessary. Since their introduction, their high filling factor, modest mass, relative ease of construction, and modest cost have led to their use in numerous X-ray observatories, including the Broad Band X-ray Telescope, ASCA, and Suzaku. The introduction of key innovations, including epoxy replicated surfaces, multilayer coatings, and glass mirror substrates, has led to performance improvements, and in their becoming widely used for X-ray astronomical imaging at energies above 10 keV. The use of glass substrates has also led to substantial improvement in angular resolution, and thus their incorporation into the NASA concept for the International X-ray Observatory with a planned 3 in diameter aperture. This paper traces the development of foil mirrors from their inception in the 1970's through their current and anticipated future applications.

  11. X-ray irradiation of yeast cells

    NASA Astrophysics Data System (ADS)

    Masini, Alessandra; Batani, Dimitri; Previdi, Fabio; Conti, Aldo; Pisani, Francesca; Botto, Cesare; Bortolotto, Fulvia; Torsiello, Flavia; Turcu, I. C. Edmond; Allott, Ric M.; Lisi, Nicola; Milani, Marziale; Costato, Michele; Pozzi, Achille; Koenig, Michel

    1997-10-01

    Saccharomyces Cerevisiae yeast cells were irradiated using the soft X-ray laser-plasma source at Rutherford Laboratory. The aim was to produce a selective damage of enzyme metabolic activity at the wall and membrane level (responsible for fermentation) without interfering with respiration (taking place in mitochondria) and with nuclear and DNA activity. The source was calibrated by PIN diodes and X-ray spectrometers. Teflon stripes were chosen as targets for the UV laser, emitting X-rays at about 0.9 keV, characterized by a very large decay exponent in biological matter. X-ray doses to the different cell compartments were calculated following a Lambert-Bouguet-Beer law. After irradiation, the selective damage to metabolic activity at the membrane level was measured by monitoring CO2 production with pressure silicon detectors. Preliminary results gave evidence of pressure reduction for irradiated samples and non-linear response to doses. Also metabolic oscillations were evidenced in cell suspensions and it was shown that X-ray irradiation changed the oscillation frequency.

  12. X-ray properties of quasars

    NASA Technical Reports Server (NTRS)

    Ku, W. H.-M.; Helfand, D. J.; Lucy, L. B.

    1980-01-01

    The X-ray properties of 111 catalogued quasars have been examined with the imaging proportional counter on board the Einstein Observatory. Thirty-five of the objects, of redshift between 0.064 and 3.53, were detected as X-ray sources. The 0.5-4.5-keV X-ray properties of these quasars are correlated with their optical and radio continuum properties and with their redshifts and variability characteristics. The X-ray luminosity of quasars tends to be highest for those objects which are bright in the optical and radio regimes and which exhibit optically violent variability. These observations suggest that quasars should be divided into two classes on the basis of radio luminosities, spectra, evolution and underlying morphology and that quasars can make up a significant portion of the diffuse soft X-ray background only if the slope of the optical quasar log N-log S relation is steeper than 2 to m sub b of about 21.5.

  13. Advanced X-ray diffractive optics

    NASA Astrophysics Data System (ADS)

    Vila-Comamala, J.; Jefimovs, K.; Pilvi, T.; Ritala, M.; Sarkar, S. S.; Solak, H. H.; Guzenko, V. A.; Stampanoni, M.; Marone, F.; Raabe, J.; Tzvetkov, G.; Fink, R. H.; Grolimund, D.; Borca, C. N.; Kaulich, B.; David, C.

    2009-09-01

    X-ray microscopy greatly benefits from the advances in x-ray optics. At the Paul Scherrer Institut, developments in x-ray diffractive optics include the manufacture and optimization of Fresnel zone plates (FZPs) and diffractive optical elements for both soft and hard x-ray regimes. In particular, we demonstrate here a novel method for the production of ultra-high resolution FZPs. This technique is based on the deposition of a zone plate material (iridium) onto the sidewalls of a prepatterned template structure (silicon) by atomic layer deposition. This approach overcomes the limitations due to electron-beam writing of dense patterns in FZP fabrication and provides a clear route to push the resolution into sub-10 nm regime. A FZP fabricated by this method was used to resolve test structures with 12 nm lines and spaces at the scanning transmission x-ray microscope of the PolLux beamline of the Swiss Light Source at 1.2 keV photon energy.

  14. A Hot Envelope Around the Southern Coalsack: X-ray and Far-Ultraviolet Observations

    NASA Technical Reports Server (NTRS)

    Anderson, B.-G.; Knauth, David C.; Snowden, S. L.; Shelton, Robin; Wanner, Peter G.

    2004-01-01

    We present Far Ultraviolet Spectroscopic Explorer and ROSAT X-ray observations toward the Southern Coalsack. An almost complete X-ray halo can be seen around the cloud in the 0.75 and 1.5 keV images, and most of the observed stars show O VI absorption. Both the cloud and the stars have highly accurate distance determinations, allowing us to reliably place the stars and the cloud relative to each other. Using these distance determinations, we find no O VI-bearing gas in the foreground of the Coalsack, while for stars in the background of the cloud, O VI absorption is the norm. The column density of O VI correlates with the 0.75 and 1.5 keV intensities. These results suggest that the X-ray-emitting hot plasma is associated with the dense cloud. We propose that the heating of the Coalsack envelope is due to the hot gas in the interior of the Upper Cen-Lup superbubble. The Coalsack interaction region provides a nearby example of the hot-cold gas interfaces thought to be responsible for the O VI absorptions seen on many sight lines throughout the Galaxy.

  15. Silicon Absolute X-Ray Detectors

    SciTech Connect

    Seely, John F.; Korde, Raj; Sprunck, Jacob; Medjoubi, Kadda; Hustache, Stephanie

    2010-06-23

    The responsivity of silicon photodiodes having no loss in the entrance window, measured using synchrotron radiation in the 1.75 to 60 keV range, was compared to the responsivity calculated using the silicon thickness measured using near-infrared light. The measured and calculated responsivities agree with an average difference of 1.3%. This enables their use as absolute x-ray detectors.

  16. Transmission hard X-ray microscope with increased view field using planar refractive objectives and condensers made of SU-8 polymer

    NASA Astrophysics Data System (ADS)

    Reznikova, Elena; Weitkamp, Timm; Nazmov, Vladimir; Simon, Markus; Last, Arndt; Saile, Volker

    2009-09-01

    Planar X-ray refractive lenses in crossed geometry providing 2D focusing are fabricated from SU-8 polymer using tilted deep X-ray lithography. The profiles of the objective lens elements are parabolic. The lens elements for the condensers were designed with a power of the surface function of 1.5, 1.7 and 2 to vary the field of views for a transmission X-ray microscope (TXM). With these lenses a TXM was set up at the ESRF beamline BM-5 for a photon energy of 15 keV. Different test nanostructures were imaged with this TXM using inline phase-contrast, with X-ray magnification factors of 29, demonstrated spatial detail resolution of 100 nm (half-period of lines and spaces) and exposure times around 10 s. Further improvement of a TXM based on the SU-8 lenses using refractive condensers with large apertures is considered with the aim to reduce exposure times.

  17. X-RAY POINT-SOURCE POPULATIONS CONSTITUTING THE GALACTIC RIDGE X-RAY EMISSION

    SciTech Connect

    Morihana, Kumiko; Tsujimoto, Masahiro; Ebisawa, Ken; Yoshida, Tessei

    2013-03-20

    Apparently diffuse X-ray emission has been known to exist along the central quarter of the Galactic Plane since the beginning of X-ray astronomy; this is referred to as the Galactic Ridge X-ray emission (GRXE). Recent deep X-ray observations have shown that numerous X-ray point sources account for a large fraction of the GRXE in the hard band (2-8 keV). However, the nature of these sources is poorly understood. Using the deepest X-ray observations made in the Chandra bulge field, we present the result of a coherent photometric and spectroscopic analysis of individual X-ray point sources for the purpose of constraining their nature and deriving their fractional contributions to the hard-band continuum and Fe K line emission of the GRXE. Based on the X-ray color-color diagram, we divided the point sources into three groups: A (hard), B (soft and broad spectrum), and C (soft and peaked spectrum). The group A sources are further decomposed spectrally into thermal and non-thermal sources with different fractions in different flux ranges. From their X-ray properties, we speculate that the group A non-thermal sources are mostly active galactic nuclei and the thermal sources are mostly white dwarf (WD) binaries such as magnetic and non-magnetic cataclysmic variables (CVs), pre-CVs, and symbiotic stars, whereas the group B and C sources are X-ray active stars in flares and quiescence, respectively. In the log N-log S curve of the 2-8 keV band, the group A non-thermal sources are dominant above Almost-Equal-To 10{sup -14} erg cm{sup -2} s{sup -1}, which is gradually taken over by Galactic sources in the fainter flux ranges. The Fe K{alpha} emission is mostly from the group A thermal (WD binaries) and the group B (X-ray active stars) sources.

  18. NIS tunnel junction as an x-ray photon sensor

    NASA Astrophysics Data System (ADS)

    Azgui, Fatma; Mears, Carl A.; Labov, Simon E.; Frank, Matthias A.; Sadoulet, Bernard; Brunet, E.; Hiller, Lawrence J.; Lindeman, Mark A.; Netel, Harrie

    1995-09-01

    This work presents the first results of our development of normal-insulating-superconducting tunnel junctions used as energy dispersive detectors for low energy particles. The device described here is a Ag/Al(subscript 2)O(subscript 3)/Al tunnel junction of area 1.5 multiplied by 10(superscript 4) micrometer squared with thicknesses of 200 nm for the normal Ag strip and 100 nm for the superconducting Al film. Two different high-speed SQUID systems manufactured by quantum magnetics and HYPRES, respectively, were used for the readout of this device. At 80 mK bath temperature we obtained an energy resolution DeltaE(subscript FWHM) equals 250 eV for 5.89 keV x rays absorbed directly in the normal metal. This energy resolution appears to be limited in large part by the observed strong position dependence of the device response.

  19. The Cambridge-Cambridge x-ray serendipity survey. 2: Classification of x-ray luminous galaxies

    NASA Technical Reports Server (NTRS)

    Boyle, B. J.; Mcmahon, R. G.; Wilkes, B. J.; Elvis, Martin

    1994-01-01

    We present the results of an intermediate-resolution (1.5 A) spectroscopic study of 17 x-ray luminous narrow emission-line galaxies previously identified in the Cambridge-Cambridge ROSAT Serendipity Survey and the Einstein Extended Medium Sensitivity Survey. Emission-line ratios reveal that the sample is composed of ten Seyfert and seven starburst galaxies. Measured linewidths for the narrow H alpha emission lines lie in the range 170 - 460 km s(exp -1). Five of the objects show clear evidence for asymmetry in the (OIII) lambda 5007 emission-line profile. Broad H alpha emission is detected in six of the Seyfert galaxies, which range in type from Seyfert 1.5 to 2. Broad H beta emission is only detected in one Seyfert galaxy. The mean full width at half maximum for the broad lines in the Seyfert galaxies is FWHM = 3900 +/- 1750 km s(exp -1). Broad (FWHM = 2200 +/- 600 km s(exp -1) H alpha emission is also detected in three of the starburst galaxies, which could originate from stellar winds or supernovae remnants. The mean Balmer decrement for the sample is H alpha / H beta = 3, consistent with little or no reddening for the bulk of the sample. There is no evidence for any trend with x-ray luminosity in the ratio of starburst galaxies to Seyfert galaxies. Based on our previous observations, it is therefore likely that both classes of object comprise approximately 10 percent of the 2 keV x-ray background.

  20. Infrared and X-Ray Spectroscopy of the Kes 75 Supernova Shell Characterizing the Dust and Gas Properties

    NASA Technical Reports Server (NTRS)

    Temim, Tea; Arendt, Richard G.; Dwek, Eli; Slane, Patrick

    2012-01-01

    We present deep Chandra observations and Spitzer Space Telescope infrared (IR) spectroscopy of the shell in the composite supernova remnant (SNR) Kes 75 (G29.7-0.3). The remnant is composed of a central pulsar wind nebula and a bright partial shell in the south that is visible at radio, IR, and X-ray wavelengths. The X-ray emission can be modeled by either a single thermal component with a temperature of approx 1.5 keV, or with two thermal components with temperatures of 1.5 and 0.2 keY. Previous studies suggest that the hot component may originate from reverse-shocked SN ejecta. However, our new analysis shows no definitive evidence for enhanced abundances of Si, S, Ar, Mg, and Fe, as expected from supernova (SN) ejecta, or for the IR spectral signatures characteristic of confirmed SN condensed dust, thus favoring a circumstellar or interstellar origin for the X-ray and IR emission. The X-ray and IR emission in the shell are spatially correlated, suggesting that the dust particles are collisionally heated by the X-ray emitting gas. The IR spectrum of the shell is dominated by continuum emission from dust with little, or no line emission. Modeling the IR spectrum shows that the dust is heated to a temperature of approx 140 K by a relatively dense, hot plasma, that also gives rise to the hot X-ray emission component. The density inferred from the IR emission is significantly higher than the density inferred from the X-ray models, suggesting a low filling factor for this X-ray emitting gas. The total mass of the warm dust component is at least 1.3 x 10(exp -2) Solar Mass, assuming no significant dust destruction has occurred in the shell. The IR data also reveal the presence of an additional plasma component with a cooler temperature, consistent with the 0.2 keV gas component. Our IR analysis therefore provides an independent verification of the cooler component of the X-ray emission. The complementary analyses of the X-ray and IR emission provide quantitative

  1. A soft X-ray lag detected in Centaurus A

    NASA Astrophysics Data System (ADS)

    Tachibana, Yutaro; Kawamuro, Taiki; Ueda, Yoshihiro; Shidatsu, Megumi; Arimoto, Makoto; Yoshii, Taketoshi; Yatsu, Yoichi; Saito, Yoshihiko; Pike, Sean; Kawai, Nobuyuki

    2016-06-01

    We performed time-lag analysis on the X-ray light curves of Centaurus A (Cen A) obtained by the Gas Slit Camera (GSC) aboard the Monitor of All-sky X-ray Image (MAXI) in three energy bands (2-4 keV, 4-10 keV, and 10-20 keV). We discovered a soft X-ray lag relative to higher energies (soft lag) on a timescale of days in a flaring episode by employing the discrete correlation function (DCF) and the z-transformed discrete correlation function (ZDCF) method. In the episode, a peak and a centroid in the DCF and the ZDCF was observed at a soft lag of ˜ 5 d in 2-4 keV versus 4-10 keV and in 4-10 keV versus 10-20 keV, and ˜ 10 d in 2-4 keV versus 10-20 keV. We found it difficult to explain the observed X-ray variation by a single energy injection with the one-zone synchrotron self-Compton (SSC) model, in which the soft lags in these three energy bands reflect the different cooling times of the relativistic electrons, by assuming the magnetic field and minimum Lorentz factor estimated from a broad-band spectral energy distribution. Alternatively, if the phenomenon is interpreted as cooling of Comptonizing electrons in a corona covering the accretion disk, the temperature of the corona producing the variable X-rays should be ˜ 10 keV for reconciliation with the soft lag in the energy range of 2-20 keV.

  2. A soft X-ray lag detected in Centaurus A

    NASA Astrophysics Data System (ADS)

    Tachibana, Yutaro; Kawamuro, Taiki; Ueda, Yoshihiro; Shidatsu, Megumi; Arimoto, Makoto; Yoshii, Taketoshi; Yatsu, Yoichi; Saito, Yoshihiko; Pike, Sean; Kawai, Nobuyuki

    2016-03-01

    We performed time-lag analysis on the X-ray light curves of Centaurus A (Cen A) obtained by the Gas Slit Camera (GSC) aboard the Monitor of All-sky X-ray Image (MAXI) in three energy bands (2-4 keV, 4-10 keV, and 10-20 keV). We discovered a soft X-ray lag relative to higher energies (soft lag) on a timescale of days in a flaring episode by employing the discrete correlation function (DCF) and the z-transformed discrete correlation function (ZDCF) method. In the episode, a peak and a centroid in the DCF and the ZDCF was observed at a soft lag of ˜ 5 d in 2-4 keV versus 4-10 keV and in 4-10 keV versus 10-20 keV, and ˜ 10 d in 2-4 keV versus 10-20 keV. We found it difficult to explain the observed X-ray variation by a single energy injection with the one-zone synchrotron self-Compton (SSC) model, in which the soft lags in these three energy bands reflect the different cooling times of the relativistic electrons, by assuming the magnetic field and minimum Lorentz factor estimated from a broad-band spectral energy distribution. Alternatively, if the phenomenon is interpreted as cooling of Comptonizing electrons in a corona covering the accretion disk, the temperature of the corona producing the variable X-rays should be ˜ 10 keV for reconciliation with the soft lag in the energy range of 2-20 keV.

  3. X-ray interferometry development at the Advanced Photon Source.

    SciTech Connect

    Fezzaa, K.; Lee, W.-K.

    1999-11-22

    In this paper, we report initial test results of a four-bounce Bragg reflection X-ray interferometer at 7.46 keV and, for the first time to our knowledge, at the higher energy of 14.91 keV where the spectral acceptance is much smaller.

  4. Spectral unfolds of PITHON Flash X-ray source.

    SciTech Connect

    Zarick, Thomas Andrew; Sheridan, Timothy J.; Hartman, E. Frederick; Riordan, John C.

    2007-11-01

    Using a differential absorption spectrometer we obtained experimental spectral information for the PITHON Flash X-ray Machine located in San Leandro, California at L-3 Communications. Spectral information we obtained pertained to the 200 keV to 800 keV endpoint operation of PITHON. We also obtained data on the temporal behavior of high energy and low energy spectral content.

  5. X-ray supermirrors for BESSY II

    SciTech Connect

    Erko, A.; Schaefers, F.; Vidal, B.; Yakshin, A.; Pietsch, U.; Mahler, W.

    1995-10-01

    X-ray multilayer supermirrors for the energy range up to 20 keV have been theoretically studied and experimentally measured with synchrotron radiation. A multilayer mirror with 50 W/Si bilayers with different thicknesses on the Si substrate has a smooth reflectivity of up to 32% in the whole energy range from 5 to 22 keV at a grazing incidence angle of 0.32{degree} which is considerably larger than using total external reflection. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  6. RS Ophiuchi in Quiescence: Why Is It X-ray Faint?

    NASA Technical Reports Server (NTRS)

    Mukai, Koji

    2007-01-01

    The short interval between successive outbursts of RS Oph strongly suggests that it has a high mass white dwarf accreting at a high rate. This, in turn, suggests the possibility of prominent X-ray emission from RS Oph in quiescence. However, archival quiescent X-ray observations of RS Oph show it to be a modest soft X-ray source but not a strong 2-10 keV X-ray source. In this aspect, RS Oph differs markedly from T CrB. We speculate on the possible mechanisms that could significantly suppress the 2-10 keV X-ray emission in RS Oph.

  7. DETECTION OF X-RAY PERIODICITY FROM A NEW ECLIPSING POLAR CANDIDATE XGPS-I J183251-100106

    SciTech Connect

    Hui, C. Y.; Seo, K. A.; Hu, C. P.; Chou, Y.; Lin, L. C. C.

    2012-11-10

    We report the results from a detailed analysis of an archival XMM-Newton observation of the X-ray source XGPS-I J183251-100106, which has been suggested as a promising magnetic cataclysmic variable (CV) candidate based on its optical properties. A single periodic signal of {approx}1.5 hr is detected from all EPIC instruments on board XMM-Newton. The phase-averaged X-ray spectrum can be well modeled with a thermal bremsstrahlung temperature of kT {approx} 50 keV. Both the X-ray spectral and temporal behavior of this system suggest that it is an eclipsing CV of the AM Herculis (or polar) type.

  8. X-ray emission from the Wolf-Rayet bubble NGC 6888. I. Chandra ACIS-S observations

    SciTech Connect

    Toalá, J. A.; Guerrero, M. A.

    2014-02-01

    We analyze Chandra observations of the Wolf-Rayet (W-R) bubble NGC 6888. This W-R bubble presents similar spectral and morphological X-ray characteristics to those of S 308, the only other W-R bubble also showing X-ray emission. The observed spectrum is soft, peaking at the N VII line emission at 0.5 keV, with additional line emission at 0.7-0.9 keV and a weak tail of harder emission up to ∼1.5 keV. This spectrum can be described by a two-temperature optically thin plasma emission model (T {sub 1} ∼ 1.4 × 10{sup 6} K, T {sub 2} ∼ 7.4 × 10{sup 6} K). We confirm the results of previous X-ray observations that no noticeable temperature variations are detected in the nebula. The X-ray-emitting plasma is distributed in three apparent morphological components: two caps along the tips of the major axis and an extra contribution toward the northwest blowout not reported in previous analyses of the X-ray emission toward this W-R nebula. Using the plasma model fits of the Chandra ACIS spectra for the physical properties of the hot gas and the ROSAT PSPC image to account for the incomplete coverage of Chandra observations, we estimate a luminosity of L {sub X} = (7.7 ± 0.1) ×10{sup 33} erg s{sup –1} for NGC 6888 at a distance of 1.26 kpc. The average rms electron density of the X-ray-emitting gas is ≳ 0.4 cm{sup –3} for a total mass ≳ 1.2 M {sub ☉}.

  9. Comparison of structure in solid state of new 1,5- bis(4-cyano-2,6-dimethoxyphenoxy)alkanes by means of 13C CP/MAS NMR and X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Żabiński, Jerzy; Wolska, Irena; Maciejewska, Dorota

    2007-05-01

    The synthesis and structural studies in solid state of new 1,5- bis(4-cyano-2,6-dimethoxyphenoxy)-3-oxapentane 1 and 1,5- bis(4-cyano-2,6-methoxyphenoxy)pentane 2 are presented. The observed complicated network of intermolecular interaction with participation of nitrile groups could play a role in their interaction with the biological target. In vitro screen against 60 human tumor cell lines revealed that compound 1 has promising growth inhibitory power GI 50 against SR (leukemia) and HOP-92 (non-small lung cancer) equal to 4.33 ×10 -6 and 1.03 ×10 -5 M, respectively.

  10. Long-term variability of AGN at hard X-rays

    NASA Astrophysics Data System (ADS)

    Soldi, S.; Beckmann, V.; Baumgartner, W. H.; Ponti, G.; Shrader, C. R.; Lubiński, P.; Krimm, H. A.; Mattana, F.; Tueller, J.

    2014-03-01

    Aims: Variability at all observed wavelengths is a distinctive property of active galactic nuclei (AGN). Hard X-rays provide us with a view of the innermost regions of AGN, mostly unbiased by absorption along the line of sight. Characterizing the intrinsic hard X-ray variability of a large AGN sample and comparing it to the results obtained at lower X-ray energies can significantly contribute to our understanding of the mechanisms underlying the high-energy radiation. Methods: Swift/BAT provides us with the unique opportunity to follow, on time scales of days to years and with regular sampling, the 14-195 keV emission of the largest AGN sample available up to date for this kind of investigation. As a continuation of an early work using the first 9 months of BAT data, we study the amplitude of the variations and their dependence on subclass and on energy, for a sample of 110 radio quiet and radio loud AGN selected from the BAT 58-month survey. Results: About 80% of the AGN in the sample are found to exhibit significant variability on month-to-year time scales. In particular, radio loud sources are the most variable, and Seyfert 1.5-2 galaxies are slightly more variable than Seyfert 1, while absorbed and unabsorbed objects show similar timing properties. The amplitude of the variations and their energy dependence are incompatible with variability being driven at hard X-rays by changes in the absorption column density. In general, the variations in the 14-24 and 35-100 keV bands are correlated well, suggesting a common origin to the variability across the BAT energy band. However, radio quiet AGN display on average 10% larger variations at 14-24 keV than at 35-100 keV, and a softer-when-brighter behavior for most of the Seyfert galaxies with detectable spectral variability on a time scale of a month. In addition, sources with harder spectra are found to be more variable than softer ones, unlike what it is observed below 10 keV. These properties are generally

  11. The hard X-ray perspective on the soft X-ray excess

    SciTech Connect

    Vasudevan, Ranjan V.; Mushotzky, Richard F.; Reynolds, Christopher S.; Lohfink, Anne M.; Zoghbi, Abderahmen; Fabian, Andrew C.; Gallo, Luigi C.; Walton, Dominic

    2014-04-10

    The X-ray spectra of many active galactic nuclei exhibit a 'soft excess' below 1 keV, whose physical origin remains unclear. Diverse models have been suggested to account for it, including ionized reflection of X-rays from the inner part of the accretion disk, ionized winds/absorbers, and Comptonization. The ionized reflection model suggests a natural link between the prominence of the soft excess and the Compton reflection hump strength above 10 keV, but it has not been clear what hard X-ray signatures, if any, are expected from the other soft X-ray candidate models. Additionally, it has not been possible up until recently to obtain high-quality simultaneous measurements of both soft and hard X-ray emission necessary to distinguish these models but upcoming joint XMM-NuSTAR programs provide precisely this opportunity. In this paper, we present an extensive analysis of simulations of XMM-NuSTAR observations, using two candidate soft excess models as inputs, to determine whether such campaigns can disambiguate between them by using hard and soft X-ray observations in tandem. The simulated spectra are fit with the simplest 'observer's model' of a blackbody and neutral reflection to characterize the strength of the soft and hard excesses. A plot of the strength of the hard excess against the soft excess strength provides a diagnostic plot which allows the soft excess production mechanism to be determined in individual sources and samples using current state-of-the-art and next generation hard X-ray enabled observatories. This approach can be straightforwardly extended to other candidate models for the soft excess.

  12. Discovery of Soft X-Ray Emission From Io, Europa and the Io Plasma Torus

    NASA Technical Reports Server (NTRS)

    Elsner, R. F.; Gladstone, G. R.; Waite, J. H.; Crary, F. J.; Howell, R. R.; Johnson, R. E.; Ford, P. G.; Metzger, A. E.; Hurley, K. C.; Feigelson, E. D.; Six, N. Frank (Technical Monitor)

    2001-01-01

    We report the discovery of soft (0.25 - 2 keV) x-ray emission from the moons Io and Europa, probably Ganymede, and from the Io Plasma Torus (IPT). Bombardment by energetic (greater than 10 keV) H, O, and S ions from the region of the IPT seems the likely source of the x-ray emission from the Galilean moons. According to our estimates, fluorescent x-ray emission excited by solar x-rays, even during flares from the active Sun, charge-exchange processes, previously invoked to explain Jupiter's x-ray aurora and cometary x-ray emission, and ion stripping by dust grains fall to account for the observed emission. On the other hand, bremsstrahlung emission of soft X-rays from non-thermal electrons in the few hundred to few thousand eV range may account for a substantial fraction of the observed x-ray flux from the IPT.

  13. First Terrestrial Soft X-ray Auroral Observation by the Chandra X-Ray Observatory

    NASA Technical Reports Server (NTRS)

    Bhardwaj, Anil; Elsner, Ronald F.; Gladstone, G. Randall; Ostegaard, Nikolai; Waite, J. Hunter, Jr.; Cravens, Thomas E.; Chang, Shen-Wu; Majeed, Tariq; Metzger, Albert E.

    2004-01-01

    Northern auroral regions of Earth were imaged using the High-Resolution Camera (HRC-1) aboard the Chandra X-Ray Observatory (CXO) at 10 epochs (each approx.20 min duration) between mid-December 2003 and mid-April 2004. These observations aimed at searching for Earth s soft (<2 keV) x-ray aurora in a comparative study with Jupiter s x-ray aurora, where a pulsating x-ray "hot-spot" has been previously observed by Chandra. The first Chandra soft x-ray observations of Earth s aurora show that it is highly variable (intense arcs, multiple arcs, diffuse patches, at times absent). In at least one of the observations an isolated blob of emission is observed near the expected cusp location. A fortuitous overflight of DMSP satellite F13 provided SSJ/4 energetic particle measurements above a bright arc seen by Chandra on 24 January 2004, 20:01-20:22 UT. A model of the emissions expected strongly suggests that the observed soft x-ray signal is produced by electron bremsstrahlung.

  14. A transmissive x-ray polarimeter design for hard x-ray focusing telescopes

    NASA Astrophysics Data System (ADS)

    Li, Hong; Feng, Hua; Ji, Jianfeng; Deng, Zhi; He, Li; Zeng, Ming; Li, Tenglin; Liu, Yinong; Heng, Peiying; Wu, Qiong; Han, Dong; Dong, Yongwei; Lu, Fangjun; Zhang, Shuangnan

    2015-08-01

    The X-ray Timing and Polarization (XTP) is a mission concept for a future space borne X-ray observatory and is currently selected for early phase study. We present a new design of X-ray polarimeter based on the time projection gas chamber. The polarimeter, placed above the focal plane, has an additional rear window that allows hard X-rays to penetrate (a transmission of nearly 80% at 6 keV) through it and reach the detector on the focal plane. Such a design is to compensate the low detection efficiency of gas detectors, at a low cost of sensitivity, and can maximize the science return of multilayer hard X-ray telescopes without the risk of moving focal plane instruments. The sensitivity in terms of minimum detectable polarization, based on current instrument configuration, is expected to be 3% for a 1mCrab source given an observing time of 105 s. We present preliminary test results, including photoelectron tracks and modulation curves, using a test chamber and polarized X-ray sources in the lab.

  15. The Detection of Circumnuclear X-Ray Emission from the Seyfert Galaxy NGC 3516

    NASA Technical Reports Server (NTRS)

    George, I. M.; Turner, T. J.; Netzer, H.; Kraemer, S. B.; Ruiz, J.; Chelouche, D.; Crenshaw, D. M.; Yaqoob, T.; Nandra, K.; Mushotzky, R. F.; White, Nicholas E. (Technical Monitor)

    2001-01-01

    We present the first high-resolution, X-ray image of the circumnuclear regions of the Seyfert 1 galaxy NGC 3516, using the Chandra X-ray Observatory (CXO). All three of the CXO observations reported were performed with one of the two grating assemblies in place, and here we restrict our analysis to undispersed photons (i.e. those detected in the zeroth-order). A previously-unknown X-ray source is detected approximately 6 arcsec (1.1h(sub 75)(exp -1) kpc) NNE of the nucleus (position angle approximately 29 degrees) which we designate CXOU 110648.1 + 723412. Its spectrum can be characterized as a power law with a photon index (Gamma) approximately 1.8 - 2.6, or as thermal emission with a temperature kT approximately 0.7 - 3 keV. Assuming a location within NGC 3516, isotropic emission implies a luminosity L approximately 2 - 8 x 10(exp 39)h(sub 75)(exp-2) erg s(exp -1) in the 0.4 - 2 keV band. If due to a single point source, the object is super-Eddington for a 1.4 solar mass neutron star. However, multiple sources or a small, extended source cannot be excluded using the current data. Large-scale extended S-ray emission is also detected out to approximately 10 arcsec (approximately 2h(sub 75)(exp -1) kpc) from the nucleus to the NE and SW, and is approximately aligned with the morphologies of the radio emission and extended narrow emission line region (ENLR). The mean luminosity of this emission is 1 - 5 x 10(exp 37)h(sub 75)(exp -2) erg s(exp -1) arcsec(exp -2), in the 0.4 - 2 keV band. Unfortunately the current data cannot usefully constrain its spectrum. These results are consistent with earlier suggestions of circumnuclear X-ray emissi in NGC 3516 based on ROSAT observations, and thus provide the first clear detection of extended X-ray emission in a Seyfert 1.0 galaxy. If the extended emission is due to scattering of the nuclear X-ray continuum, then the pressure in the X-ray emitting gas is at least two orders of magnitude too small to provide the confining

  16. X-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    2000-01-01

    Dr. S. N. Zhang has lead a seven member group (Dr. Yuxin Feng, Mr. XuejunSun, Mr. Yongzhong Chen, Mr. Jun Lin, Mr. Yangsen Yao, and Ms. Xiaoling Zhang). This group has carried out the following activities: continued data analysis from space astrophysical missions CGRO, RXTE, ASCA and Chandra. Significant scientific results have been produced as results of their work. They discovered the three-layered accretion disk structure around black holes in X-ray binaries; their paper on this discovery is to appear in the prestigious Science magazine. They have also developed a new method for energy spectral analysis of black hole X-ray binaries; four papers on this topics were presented at the most recent Atlanta AAS meeting. They have also carried Monte-Carlo simulations of X-ray detectors, in support to the hardware development efforts at Marshall Space Flight Center (MSFC). These computation-intensive simulations have been carried out entirely on the computers at UAH. They have also carried out extensive simulations for astrophysical applications, taking advantage of the Monte-Carlo simulation codes developed previously at MSFC and further improved at UAH for detector simulations. One refereed paper and one contribution to conference proceedings have been resulted from this effort.

  17. Development of high resolution imaging detectors for x ray astronomy

    NASA Technical Reports Server (NTRS)

    Murray, S. S.; Schwartz, D. A.

    1992-01-01

    This final report summarizes our past activities and discusses the work performed over the period of 1 April 1990 through 1 April 1991 on x-ray optics, soft x-ray (0.1 - 10 KeV) imaging detectors, and hard x-ray (10 - 300 KeV) imaging detectors. If microchannel plates (MCPs) can be used to focus x-rays with a high efficiency and good angular resolution, they will revolutionize the field of x-ray optics. An x-ray image of a point source through an array of square MCP pores compared favorably with our ray tracing model for the MCP. Initial analysis of this image demonstrates the feasibility of MCPs for soft x-rays. Our work continues with optimizing the performance of our soft x-ray MCP imaging detectors. This work involves readout technology that should provide improved MCP readout devices (thin film crossed grid, curved, and resistive sheets), defect removal in MCPs, and photocathode optimization. In the area of hard x-ray detector development we have developed two different techniques for producing a CsI photocathode thickness of 10 to 100 microns, such that it is thick enough to absorb the high energy x-rays and still allow the photoelectrons to escape to the top MCP of a modified soft x-ray imaging detector. The methods involve vacuum depositing a thick film of CsI on a strong back, and producing a converter device that takes the place of the photocathode.

  18. Upper limits for X-ray emission from Jupiter as measured from the Copernicus satellite

    NASA Technical Reports Server (NTRS)

    Vesecky, J. F.; Culhane, J. L.; Hawkins, F. J.

    1975-01-01

    X-ray telescopic observations are made by the Copernicus satellite for detecting X-ray emission from Jupiter analogous to X-rays from terrestrial aurorae. Values of X-ray fluxes recorded by three Copernicus detectors covering the 0.6 to 7.5 keV energy range are reported. The detectors employed are described and the times at which the observations were made are given. Resulting upper-limit spectra are compared with previous X-ray observations of Jupiter. The upper-limit X-ray fluxes are discussed in terms of magnetospheric activity on Jupiter.

  19. One-dimensional focusing X-ray telescope for stellar X-ray astronomy

    NASA Technical Reports Server (NTRS)

    Helava, H.; Mitchell, D.; Novick, R.; Weisskopf, M. C.; Wolff, R. S.

    1975-01-01

    A one-dimensional X-ray telescope of the Kirkpatrick-Baez design is described. The instrument consists of a grazing-incidence X-ray telescope and a multiwire proportional counter. The optics were provided with a gold reflecting surface to yield an energy response from below 0.25 to above 4.0 keV. The angular resolution of the system is 6 min by 9.5 deg over a 1.1 deg by 9.5 deg field of view.

  20. Gemini-Monoceros X-ray enhancement: A giant X-ray ring

    SciTech Connect

    Nousek, J.A.; Cowie, L.L.; Hu, E.; Lindblad, C.J.; Garmire, G.P.

    1981-08-15

    A 1/sup 0/.5 spatial resolution map of the 1/4 keV diffuse X-ray background enhancement in the Gemini and Monoceros constellations shows a striking, circular, ring-shaped emission feature with a diameter of about 20/sup 0/. At a distance of 300 pc, the region has a radius of 50 pc and, for a spectral temperature of 3 x 10/sup 6/ K, an emitting electron density of 0.01 cm/sup -3/. We discuss this feature and, also, the possible X-ray contribution from the Mon OB1 association and neighboring supernova remnants.

  1. Discovery of hard X-ray outbursts from the soft X-ray transient Aquila X-1.

    NASA Astrophysics Data System (ADS)

    Harmon, B. A.; Wilson, C. A.; Tavani, M.; Zhang, S. N.; Rubin, B. C.; Paciesas, W. S.; Ford, E. C.; Kaaret, P.

    1996-11-01

    We report the BATSE discovery of hard X-ray outbursts from the soft X-ray transient Aquila X-1 (Aql X-1). Aql X-1 is the most prolific of the soft X-ray transient sources and it has been known to produce large outbursts near the Eddington limit in the 1-10keV energy band. The typical recurrence time of outbursts is about 1-year. Aql X-1 shows type I X-ray bursts during the decay phase of the X-ray outbursts and is believed to contain a neutron star. These characteristics of Aql X-1 make it an ideal system to study time variable hard X-ray emission from accreting neutron stars. BATSE has monitored Aql X-1 continuously since the Compton Observatory mission began in April 1991. Several episodes of hard X-ray emission with durations of weeks to months have been detected in 1991-1994. These episodes are coincident with substantial brightening of the optical counterpart and to a lesser degree with observations of soft X-ray emission by ROSAT, EURECA/WATCH and ASCA. We find fluxes in the 20-100mCrab range with hard spectra extending to above 100keV and power law spectral fits yielding photon indices between -2 and -3.

  2. Chandra HRC Observations of X-Rays from the Jupiter System

    NASA Technical Reports Server (NTRS)

    Gladstone, G. R.; Waite, J. H., Jr.; Grodent, D.; Crary, F. J.; Elsner, R. F.; Weisskopf, M. C.; Lewis, W. S.; Jahn, J.-M.; Bhardwaj, A.; Clarke, J. T.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    In support of the Cassini fly-by of Jupiter, the Chandra X-Ray Observatory's High Resolution Camera (HRC) was used to observe the Jovian system for a complete rotation of Jupiter on December 18, 2000, from 10-20 UT (Universal Time). The HRC is most sensitive to x-rays in the 0.1-10 keV range, with a peak sensitivity in the 1-1.5 keV range, and is a direct descendant of the imagers on the Einstein and ROSAT (Roentgen Satellite) satellites. Chandra differs from other x-ray observatories primarily by virtue of its remarkable 0.5 inch half-power PSF (Point Spread Function), which provides ten times the acuity of its nearest rival. Preliminary analysis of the December 18 data has yielded the following results: 1) a strong, high-latitude northern auroral 'hot spot,' which is relatively fixed near 60-70 degrees north latitude and 160-180 degrees system III longitude, and which pulsates with a period of about 40 minutes and has an average emitted power of about 1 GW; 2) relatively uniform low-latitude emissions, with a total power output of about 2 GW; 3) the first detection of x-ray emissions from the Io Plasma Torus, with a dusk/dawn brightness ratio of about 2.2 and a total emitted power of about 0.7 GW; and 4) the first detection of x-ray emissions from Io itself, with an emitted power of about 0.06 GW. These power estimates are based on an assumed emission wavelength of 653 eV (corresponding to the Lyman alpha line of OVIII ions), and is subject to revision as Chandra spectra of Jupiter are analyzed further. We will present these and other results from this unique data set.

  3. Soft X-ray observation of the Rho Ophiuchus dark cloud region

    NASA Technical Reports Server (NTRS)

    Apparao, K. M. V.; Hayakawa, S.; Hearn, D. R.

    1979-01-01

    Soft X-rays (0.1-0.8 keV) from the region including the Rho Oph dark cloud were observed with the SAS-3 low-energy X-ray telescope. No X-ray absorption by the cloud was observed. This indicates that the diffuse component of soft X-rays in this region is mostly from the foreground of the Rho Oph cloud which is located at a distance of 160-200 pc.

  4. Suzaku observations of the diffuse X-ray emission across the Fermi bubbles' edges

    SciTech Connect

    Kataoka, J.; Tahara, M.; Takahashi, Y.; Takeuchi, Y.; Totani, T.; Sofue, Y.; Stawarz, Ł.; Kimura, M.; Takei, Y.; Tsunemi, H.; Cheung, C. C.; Inoue, Y.; Nakamori, T.

    2013-12-10

    We present Suzaku X-ray observations along two edge regions of the Fermi Bubbles, with eight ≅ 20 ks pointings across the northern part of the North Polar Spur (NPS) surrounding the north bubble and six across the southernmost edge of the south bubble. After removing compact X-ray features, diffuse X-ray emission is clearly detected and is well reproduced by a three-component spectral model consisting of unabsorbed thermal emission (temperature kT ≅ 0.1 keV) from the Local Bubble, absorbed kT ≅ 0.3 keV thermal emission related to the NPS and/or Galactic halo (GH), and a power-law component at a level consistent with the cosmic X-ray background. The emission measure (EM) of the 0.3 keV plasma decreases by ≅ 50% toward the inner regions of the northeast bubble, with no accompanying temperature change. However, such a jump in the EM is not clearly seen in the south bubble data. While it is unclear whether the NPS originates from a nearby supernova remnant or is related to previous activity within or around the Galactic center, our Suzaku observations provide evidence that suggests the latter scenario. In the latter framework, the presence of a large amount of neutral matter absorbing the X-ray emission as well as the existence of the kT ≅ 0.3 keV gas can be naturally interpreted as a weak shock driven by the bubbles' expansion in the surrounding medium, with velocity v {sub exp} ∼ 300 km s{sup –1} (corresponding to shock Mach number M≃1.5), compressing the GH gas to form the NPS feature. We also derived an upper limit for any non-thermal X-ray emission component associated with the bubbles and demonstrate that, in agreement with the aforementioned findings, the non-thermal pressure and energy estimated from a one-zone leptonic model of its broadband spectrum, are in rough equilibrium with that of the surrounding thermal plasma.

  5. Fluctuation X-Ray Scattering

    SciTech Connect

    Saldin, PI: D. K.; Co-I's: J. C. H. Spence and P. Fromme

    2013-01-25

    The work supported by the grant was aimed at developing novel methods of finding the structures of biomolecules using x-rays from novel sources such as the x-ray free electron laser and modern synchrotrons

  6. High Resolution X-ray Imaging

    NASA Technical Reports Server (NTRS)

    Cash, Webster

    2002-01-01

    NAG5-5020 covered a period of 7.5 years during which a great deal of progress was made in x-ray optical techniques under this grant. We survived peer review numerous times during the effort to keep the grant going. In 1994, when the grant started we were actively pursuing the application of spherical mirrors to improving x-ray telescopes. We had found that x-ray detectors were becoming rapidly more sophisticated and affordable, but that x-ray telescopes were only being improved through the intense application of money within the AXAF program. Clearly new techniques for the future were needed. We were successful in developing and testing at the HELSTF facility in New Mexico a four reflection coma-corrected telescope made from spheres. We were able to demonstrate 0.3 arcsecond resolution, almost to the diffraction limit of the system. The community as a whole was, at that time, not particularly interested in looking past AXAF (Chandra) and the effort needed to evolve. Since we had reached the diffraction limit using non-Wolter optics we then decided to see if we could build an x-ray interferometer in the laboratory. In the lab the potential for improved resolution was substantial. If synthetic aperture telescopes could be built in space, then orders of magnitude improvement would become feasible. In 1998 NASA, under the direction of Dr. Nick White of Goddard, started a study to assess the potential and feasibility of x-ray interferometry in space. My work became of central interest to the committee because it indicated that such was possible. In early 1999 we had the breakthrough that allowed us build a practical interferometer. By using flats and hooking up with the Marshall Space Flight Center facilities we were able to demonstrate fringes at 1.25keV on a one millimeter baseline. This actual laboratory demonstration provided the solid proof of concept that NASA needed.

  7. Refractive Optics for Hard X-ray Transmission Microscopy

    SciTech Connect

    Simon, M.; Last, A.; Mohr, J.; Nazmov, V.; Reznikova, E.; Ahrens, G.; Voigt, A.

    2011-09-09

    For hard x-ray transmission microscopy at photon energies higher than 15 keV we design refractive condenser and imaging elements to be used with synchrotron light sources as well as with x-ray tube sources. The condenser lenses are optimized for low x-ray attenuation--resulting in apertures greater than 1 mm--and homogeneous intensity distribution on the detector plane, whereas the imaging enables high-resolution (<100 nm) full-field imaging. To obtain high image quality at reasonable exposure times, custom-tailored matched pairs of condenser and imaging lenses are being developed. The imaging lenses (compound refractive lenses, CRLs) are made of SU-8 negative resist by deep x-ray lithography. SU-8 shows high radiation stability. The fabrication technique enables high-quality lens structures regarding surface roughness and arrangement precision with arbitrary 2D geometry. To provide point foci, crossed pairs of lenses are used. Condenser lenses have been made utilizing deep x-ray lithographic patterning of thick SU-8 layers, too, whereas in this case, the aperture is limited due to process restrictions. Thus, in terms of large apertures, condenser lenses made of structured and rolled polyimide film are more attractive. Both condenser types, x-ray mosaic lenses and rolled x-ray prism lenses (RXPLs), are considered to be implemented into a microscope setup. The x-ray optical elements mentioned above are characterized with synchrotron radiation and x-ray laboratory sources, respectively.

  8. Impact of x-ray dose on the response of CR-39 to 1–5.5 MeV alphas

    SciTech Connect

    Rojas-Herrera, J.; Rinderknecht, H. G.; Zylstra, A. B.; Gatu Johnson, M.; Orozco, D.; Rosenberg, M. J.; Sio, H.; Seguin, F. H.; Frenje, J. A.; Li, C. K.; Petrasso, R. D.

    2015-03-01

    The CR-39 nuclear track detector is used in many nuclear diagnostics fielded at inertial confinement fusion (ICF) facilities. Large x-ray uences generated by ICF experiments may impact the CR-39 response to incident charged particles. To determine the impact of x-ray exposure on the CR-39 response to alpha particles, a thick-target bremsstrahlung x-ray generator was used to expose CR-39 to various doses of 8 keV Cu-Kα and Kβ x-rays. The CR-39 detectors were then exposed to 1-5.5 MeV alphas from an Am-241 source. The regions of the CR-39 exposed to x-rays showed a smaller track diameter than those not exposed to x-rays: for example, a dose of 3.0 ± 0.1 Gy causes a decrease of (19 ± 2)% in the track diameter of a 5.5 MeV alpha particle, while a dose of 60.0 ± 1.3 Gy results in a decrease of (45 ± 5)% in the track diameter. The reduced track diameters were found to be predominantly caused by a comparable reduction in the bulk etch rate of the CR-39 with x-ray dose. A residual effect depending on alpha particle energy is characterized using an empirical formula.

  9. Impact of x-ray dose on the response of CR-39 to 1–5.5 MeV alphas

    DOE PAGESBeta

    Rojas-Herrera, J.; Rinderknecht, H. G.; Zylstra, A. B.; Gatu Johnson, M.; Orozco, D.; Rosenberg, M. J.; Sio, H.; Seguin, F. H.; Frenje, J. A.; Li, C. K.; et al

    2015-03-01

    The CR-39 nuclear track detector is used in many nuclear diagnostics fielded at inertial confinement fusion (ICF) facilities. Large x-ray uences generated by ICF experiments may impact the CR-39 response to incident charged particles. To determine the impact of x-ray exposure on the CR-39 response to alpha particles, a thick-target bremsstrahlung x-ray generator was used to expose CR-39 to various doses of 8 keV Cu-Kα and Kβ x-rays. The CR-39 detectors were then exposed to 1-5.5 MeV alphas from an Am-241 source. The regions of the CR-39 exposed to x-rays showed a smaller track diameter than those not exposed tomore » x-rays: for example, a dose of 3.0 ± 0.1 Gy causes a decrease of (19 ± 2)% in the track diameter of a 5.5 MeV alpha particle, while a dose of 60.0 ± 1.3 Gy results in a decrease of (45 ± 5)% in the track diameter. The reduced track diameters were found to be predominantly caused by a comparable reduction in the bulk etch rate of the CR-39 with x-ray dose. A residual effect depending on alpha particle energy is characterized using an empirical formula.« less

  10. X-ray Crystallography Facility

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Edward Snell, a National Research Council research fellow at NASA's Marshall Space Flight Center (MSFC), prepares a protein crystal for analysis by x-ray crystallography as part of NASA's structural biology program. The small, individual crystals are bombarded with x-rays to produce diffraction patterns, a map of the intensity of the x-rays as they reflect through the crystal.

  11. Tunable X-ray source

    DOEpatents

    Boyce, James R.

    2011-02-08

    A method for the production of X-ray bunches tunable in both time and energy level by generating multiple photon, X-ray, beams through the use of Thomson scattering. The method of the present invention simultaneously produces two X-ray pulses that are tunable in energy and/or time.

  12. Population of post-nova supersoft X-ray sources

    NASA Astrophysics Data System (ADS)

    Soraisam, Monika D.; Gilfanov, Marat; Wolf, William M.; Bildsten, Lars

    2016-01-01

    Novae undergo a supersoft X-ray phase of varying duration after the optical outburst. Such transient post-nova supersoft X-ray sources (SSSs) are the majority of the observed SSSs in M31. In this paper, we use the post-nova evolutionary models of Wolf et al. to compute the expected population of post-nova SSSs in M31. We predict that depending on the assumptions about the white dwarf (WD) mass distribution in novae, at any instant there are about 250-600 post-nova SSSs in M31 with (unabsorbed) 0.2-1.0 keV luminosity Lx ≥ 1036 erg s-1. Their combined unabsorbed luminosity is of the order of ˜1039 erg s-1. Their luminosity distribution shows significant steepening around log (Lx) ˜ 37.7-38 and becomes zero at Lx ≈ 2 × 1038 erg s-1, the maximum Lx achieved in the post-nova evolutionary tracks. Their effective temperature distribution has a roughly power-law shape with differential slope of ≈4-6 up to the maximum temperature of Teff ≈ 1.5 × 106 K. We compare our predictions with the results of the XMM-Newton monitoring of the central field of M31 between 2006 and 2009. The predicted number of post-nova SSSs exceeds the observed number by a factor of ≈2-5, depending on the assumed WD mass distribution in novae. This is good agreement, considering the number and magnitude of uncertainties involved in calculations of the post-nova evolutionary models and their X-ray output. Furthermore, only a moderate circumstellar absorption, with hydrogen column density of the order of ˜1021 cm-2, will remove the discrepancy.

  13. Normal incidence x-ray mirror for chemical microanalysis

    DOEpatents

    Carr, M.J.; Romig, A.D. Jr.

    1987-08-05

    An x-ray mirror for both electron column instruments and micro x-ray fluorescence instruments for making chemical, microanalysis comprises a non-planar mirror having, for example, a spherical reflecting surface for x-rays comprised of a predetermined number of alternating layers of high atomic number material and low atomic number material contiguously formed on a substrate and whose layers have a thickness which is a multiple of the wavelength being reflected. For electron column instruments, the wavelengths of interest lie above 1.5nm, while for x-ray fluorescence instruments, the range of interest is below 0.2nm. 4 figs.

  14. X-Ray Spectroscopy of Gold Nanoparticles

    NASA Astrophysics Data System (ADS)

    Nahar, Sultana N.; Montenegro, M.; Pradhan, A. K.; Pitzer, R.

    2009-06-01

    Inner shell transitions, such as 1s-2p, in heavy elements can absorb or produce hard X-rays, and hence are widely used in nanoparticles. Bio-medical research for cancer treatment has been using heavy element nanoparticles, embeded in malignant tumor, for efficient absorption of irradiated X-rays and leading emission of hard X-rays and energetic electrons to kill the surrounding cells. Ejection of a 1s electron during ionization of the element by absorption of a X-ray photon initiates the Auger cascades of emission of photons and electrons. We have investigated gold nanoparticles for the optimal energy range, below the K-edge (1s) ionization threshold, that corresponds to resonant absorption of X-rays with large attenuation coefficients, orders of magnitude higher over the background as well as to that at K-edge threshold. We applied these attenuation coefficients in Monte Carlo simulation to study the intensities of emission of photons and electrons by Auger cascades. The numerical experiments were carried out in a phantom of water cube with a thin layer, 0.1mm/g, of gold nanoparticles 10 cm inside from the surface using the well-known code Geant4. We will present results on photon and electron emission spectra from passing monochromatic X-ray beams at 67 keV, which is the resonant energy for resonant K_{α} lines, at 82 keV, the K-shell ionization threshold, and at 2 MeV where the resonant effect is non-existent. Our findings show a high peak in the gold nanoparticle absorption curve indicating complete absorption of radiation within the gold layer. The photon and electron emission spectra show resonant features. Acknowledgement: Partially supported by a Large Interdisciplinary Grant award of the Ohio State University and NASA APRA program (SNN). The computational work was carried out on the Cray X1 and Itanium 4 cluster at the Ohio Supercomputer Center, Columbus Ohio. "Resonant X-ray Irradiation of High-Z Nanoparticles For Cancer Theranostics" (refereed

  15. New active galactic nuclei among the INTEGRAL and SWIFT X-ray sources

    NASA Astrophysics Data System (ADS)

    Burenin, R. A.; Mescheryakov, A. V.; Revnivtsev, M. G.; Sazonov, S. Yu.; Bikmaev, I. F.; Pavlinsky, M. N.; Sunyaev, R. A.

    2008-06-01

    We present the results of our optical identifications of a set of X-ray sources from the INTEGRAL and SWIFT all-sky surveys. The optical data have been obtained with the 1.5-m Russian-Turkish Telescope (RTT-150). Nine X-ray sources have been identified with active galactic nuclei (AGNs). Two of them are located in the nearby spiral galaxies MCG-01-05-047 and NGC 973 seen almost edge-on. One source, IGR J16562-3301, is probably a BL Lac object (blazar). The remaining AGNs are observed as the starlike nuclei of spiral galaxies whose spectra exhibit broad emission lines. The relation between the hard X-ray (17-60 keV) luminosity and the [O III] 5007 line luminosity, log L x/ L [O III] ≈ 2.1, holds good for most of the AGNs detected in hard X rays. However, the luminosities of some AGNs deviate from this relation. The fraction of such objects can reach ˜20%. In particular, the [O III] line flux is lower for two nearby edge-on spiral galaxies. This can be explained by the effect of absorption in the galactic disks.

  16. Broad-band soft x-ray diagnostic instruments at the LLNL Novette laser facility

    SciTech Connect

    Tirsell, K.G.; Lee, P.H.Y.; Nilson, D.G.; Medecki, H.

    1983-09-15

    Complementary broad-band instruments have been developed to measure time dependent, absolute soft x-ray spectra at the Lawrence Livermore National Laboratory (LLNL) Nd glass laser irradiation facilities. Absolute flux measurements of x rays emitted from laser-produced plasmas are important for understanding laser absorption and energy transport. We will describe two new 10-channel XRD systems that have been installed at the LLNL Novette facility for use in the 0.15- to 1.5-keV range. Since XRD channel time response is limited by available oscilloscope performance to 120 ps, a soft x-ray streak camera has been developed for better time resolution (20 ps) and greater dynamic range (approx.10/sup 3/) in the same x-ray energy region. Using suitable filters, grazing incidence mirrors, and a gold or cesium-iodide transmission cathode, this streak camera instrument has been installed at Novette to provide one broad and four relatively narrow channels. It can also be used in a single channel, spatially discriminating mode by means of pinhole imaging. The complementary nature of these instruments has been enhanced by locating them in close proximity and matching their channel energy responses. As an example of the use of these instruments, we present results from Novette 2..omega..(0.53 ..mu..m) gold disk irradiations at 1 ns and 10/sup 14/ to 10/sup 15/ W/cm/sup 2/.

  17. An X-ray survey of nine historical novae

    NASA Technical Reports Server (NTRS)

    Becker, R. H.; Marshall, F. E.

    1981-01-01

    The Einstein Observatory Imaging Proportional Counter has been used to search for X-ray emission from nine nearby historical novae. Six of the novae have been detected with estimated X-ray intensities between 0.1 and 4 keV of 10 to the -13th to 10 to the -11th erg/sq cm-sec, comparable to the intensities of previously detected cataclysmic variables. The X-ray intensity of one of the novae, V603 Aql, varies over times of several hundred seconds. The data suggest a correlation between the decay rate of the historical outburst and the current X-ray luminosity. Alternatively, the X-ray luminosity may be related to the inclination of the binary system.

  18. X-ray emission from high temperature plasmas

    NASA Technical Reports Server (NTRS)

    Harries, W. L.

    1974-01-01

    X-rays from a 25-hJ plasma focus apparatus were observed with pinhole cameras. The cameras consist of 0.4 mm diameter pinholes in 2 cm thick lead housing enclosing an X-ray intensifying screen at the image plane. Pictures recorded through thin aluminum foils or plastic sheets for X-ray energies sub gamma smaller than 15 keV show distributed X-ray emissions from the focussed plasma and from the anode surface. However, when thick absorbers are used, radial filamentary structure in the X-ray emission from the anode surface is revealed. Occasionally larger structures are observed in addition to the filaments. Possible mechanisms for the filamentary structure are discussed.

  19. X-ray characterization by energy-resolved powder diffraction

    NASA Astrophysics Data System (ADS)

    Cheung, G.; Hooker, S. M.

    2016-08-01

    A method for single-shot, nondestructive characterization of broadband x-ray beams, based on energy-resolved powder diffraction, is described. Monte-Carlo simulations are used to simulate data for x-ray beams in the keV range with parameters similar to those generated by betatron oscillations in a laser-driven plasma accelerator. The retrieved x-ray spectra are found to be in excellent agreement with those of the input beams for realistic numbers of incident photons. It is demonstrated that the angular divergence of the x rays can be deduced from the deviation of the detected photons from the Debye-Scherrer rings which would be produced by a parallel beam. It is shown that the angular divergence can be measured as a function of the photon energy, yielding the angularly resolved spectrum of the input x-ray beam.

  20. The High Energy Astronomy Observatory X-ray Telescope

    NASA Technical Reports Server (NTRS)

    Miller, R.; Austin, G.; Koch, D.; Jagoda, N.; Kirchner, T.; Dias, R.

    1978-01-01

    The High Energy Astronomy Observatory-Mission B (HEAO-B) is a satellite observatory for the purpose of performing a detailed X-ray survey of the celestial sphere. Measurements will be made of stellar radiation in the range 0.2 through 20 keV. The primary viewing requirement is to provide final aspect solution and internal alignment information to correlate an observed X-ray image with the celestial sphere to within one-and-one-half arc seconds. The Observatory consists of the HEAO Spacecraft together with the X-ray Telescope. The Spacecraft provides the required attitude control and determination system, data telemetry system, space solar power system, and interface with the launch vehicle. The X-ray Telescope includes a high resolution mirror assembly, optical bench metering structure, X-ray detectors, detector positioning system, detector electronics and aspect sensing system.