Science.gov

Sample records for 1-5 kev x-ray

  1. Applications of “Tender” Energy (1-5 keV) X-ray Absorption Spectroscopy in Life Sciences

    SciTech Connect

    Northrup, Paul; Leri, Alessandra; Tappero, Ryan

    2016-02-15

    The “tender” energy range of 1 to 5 keV, between the energy ranges of most “hard” (>5 keV) and “soft” (<1 keV) synchrotron X-ray facilities, offers some unique opportunities for synchrotron-based X-ray absorption fine structure spectroscopy in life sciences. In particular the K absorption edges of Na through Ca offer opportunities to study local structure, speciation, and chemistry of many important biological compounds, structures and processes. This is an area of largely untapped science, in part due to a scarcity of optimized facilities. Such measurements also entail unique experimental challenges. Lastly, this brief review describes the technique, its experimental challenges, recent progress in development of microbeam measurement capabilities, and several highlights illustrating applications in life sciences.

  2. Applications of “Tender” Energy (1-5 keV) X-ray Absorption Spectroscopy in Life Sciences

    DOE PAGES

    Northrup, Paul; Leri, Alessandra; Tappero, Ryan

    2016-02-15

    The “tender” energy range of 1 to 5 keV, between the energy ranges of most “hard” (>5 keV) and “soft” (<1 keV) synchrotron X-ray facilities, offers some unique opportunities for synchrotron-based X-ray absorption fine structure spectroscopy in life sciences. In particular the K absorption edges of Na through Ca offer opportunities to study local structure, speciation, and chemistry of many important biological compounds, structures and processes. This is an area of largely untapped science, in part due to a scarcity of optimized facilities. Such measurements also entail unique experimental challenges. Lastly, this brief review describes the technique, its experimental challenges,more » recent progress in development of microbeam measurement capabilities, and several highlights illustrating applications in life sciences.« less

  3. Absolute calibration of Kodak Biomax-MS film response to x rays in the 1.5- to 8-keV energy range

    SciTech Connect

    Marshall, F. J.; Knauer, J. P.; Anderson, D.; Schmitt, B. L

    2006-10-15

    The absolute response of Kodak Biomax-MS film to x rays in the range from 1.5- to 8-keV has been measured using a laboratory electron-beam generated x-ray source. The measurements were taken at specific line energies by using Bragg diffraction to produce monochromatic beams of x rays. Multiple exposures were taken on Biomax MS film up to levels exceeding optical densities of 2 as measured by a microdensitometer. The absolute beam intensity for each exposure was measured with a Si(Li) detector. Additional response measurements were taken with Kodak direct exposure film (DEF) so as to compare the results of this technique to previously published calibrations. The Biomax-MS results have been fitted to a semiempirical mathematical model (Knauer et al., these proceedings). Users of the model can infer absolute fluences from observed exposure levels at either interpolated or extrapolated energies. To summarize the results: Biomax MS has comparable sensitivity to DEF film below 3 keV but has reduced sensitivity above 3 keV ({approx}50%). The lower exposure results from thinner emulsion layers, designed for use with phosphor screens. The ease with which Biomax-MS can be used in place of DEF (same format film, same developing process, and comparable sensitivity) makes it a good replacement.

  4. Absolute K-shell ionization cross sections and L{alpha} and L{beta}{sub 1} x-ray production cross sections of Ga and As by 1.5-39-keV electrons

    SciTech Connect

    Merlet, C.; Llovet, X.; Fernandez-Varea, J. M.

    2006-06-15

    Absolute K-shell ionization and L{alpha} and L{beta}{sub 1} x-ray production cross sections for Ga and As have been measured for incident electrons in the energy range from 1.5 to 39 keV. The cross sections were deduced from K{alpha}, L{alpha}, and L{beta}{sub 1} x-ray intensities emitted from ultrathin GaAs samples deposited onto self-supporting carbon films. The x-ray intensities were measured on an electron microprobe equipped with several wavelength-dispersive spectrometers and were converted into absolute cross sections by using estimated values of the target thickness, spectrometer efficiency, and number of incident electrons. Experimental results are compared with cross sections calculated from the plane-wave and distorted-wave Born approximations, the relativistic binary-encounter-Bethe model, the results of two widely used simple analytical formulas, and, whenever possible, experimental data from the literature.

  5. The 2-10 keV X-Ray Background Dipole and Its Cosmological Implications

    NASA Astrophysics Data System (ADS)

    Scharf, C. A.; Jahoda, K.; Treyer, M.; Lahav, O.; Boldt, E.; Piran, T.

    2000-11-01

    The hard X-ray (>2 keV) emission of the local and distant universe as observed with the HEAO 1 A-2 experiment is reconsidered in the context of large-scale cosmic structure. Using all-sky X-ray samples of active galactic nuclei (AGNs) and galaxy clusters, we remove the dominant local X-ray flux from within a redshift of ~0.02. We evaluate the dipolar and higher order harmonic structure in four X-ray colors. The estimated dipole anisotropy of the unresolved flux appears to be consistent with a combination of the Compton-Getting effect due to the Local Group motion (dipole amplitude Δ=0.0042) and remaining large-scale structure (0.0023<~Δ<~0.0085), in good agreement with the expectations of cold dark matter models. The observed anisotropy does, however, also suggest a nonnegligible Galactic contribution that is more complex than current, simple models of >2 keV Galactic X-ray emission. Comparison of the soft and hard color maps with a harmonic analysis of the 1.5 keV ROSAT all-sky data qualitatively suggests that at least a third of the faint, unresolved ~18° scale structure in the HEAO 1 A-2 data may be Galactic in origin. However, the effect on measured flux dipoles is small (<~3%). We derive an expression for dipole anisotropy and acceleration and demonstrate how the dipole anisotropy of the distant X-ray frame can constrain the amplitude of bulk motions of the universe. From observed bulk motions over a local ~50 h-1 Mpc radius volume, we determine 0.14<~Ω0.60/bX(0)<~0.59, where Ω0 is the universal density parameter and bX(0) is the present-epoch bias parameter, defined as the ratio of fluctuations in the X-ray source density and the mass density.

  6. A study of 2-20 KeV X-rays from the Cygnus region

    NASA Technical Reports Server (NTRS)

    Bleach, R. D.

    1972-01-01

    Two rocket-borne proportional counters, each with 650 sq c, met area and 1.8 x 7.1 deg FWHM rectangular mechanical collimation, surveyed the Cygnus region in the 2 to 20 keV energy range on two occasions. X-ray spectral data gathered on 21 September 1970 from discrete sources in Cygnus are presented. The data from Cyg X-1, Cyg X-2, and Cyg X-3 have sufficient statistical significance to indicate mutually exclusive spectral forms for the three. Upper limits are presented for X-ray intensities above 2 keV for Cyg X-4 and Cyg X-5 (Cygnus loop). A search was made on 9 August 1971 for a diffuse component of X-rays 1.5 keV associated with an interarm region of the galaxy at galactic longitudes in the vicinity of 60 degrees. A statistically significant excess associated with a narrow disk component was detected. Several possible emission models are discussed, with the most likely candidate being a population of unresolvable low luminosity discrete sources.

  7. Characteristic 8 keV X rays possess radiobiological properties of higher-LET radiation.

    PubMed

    Shridhar, Ravi; Estabrook, William; Yudelev, Mark; Rakowski, Joseph; Burmeister, Jay; Wilson, George D; Joiner, Michael C

    2010-03-01

    Electronic brachytherapy systems are being developed that can deliver X rays of varying energy depending on the material of a secondary target. A copper target produces characteristic 8 keV X rays. Our aim was to determine whether 8 keV X rays might deliver greater biological effectiveness than megavoltage photons. Cells of the U251 human glioma cell line were used to compare the biological effects of 8 keV X rays and (60)Co gamma rays in terms of relative biological effectiveness (RBE), oxygen enhancement ratio (OER), and DNA damage. The RBE at 50% and 10% survival was 2.6 and 1.9, respectively. At 50% survival, the OER for cells treated with 8 keV X rays was 1.6 compared with 3.0 for (60)Co gamma rays. The numbers of H2AX foci per Gy after treatment with 8 keV X rays and (60)Co gamma rays were similar; however, the size of the foci generated at 8 keV was significantly larger, possibly indicating more complex DNA damage. The mean area of H2AX foci generated by 8 keV X rays was 0.785 microm(2) (95% CI: 0.756-0.814) compared with 0.491 microm(2) (95% CI: 0.462-0.520) for (60)Co gamma rays (P < 0.0001). Characteristic 8 keV X rays produce two to three times the biological effectiveness of megavoltage photons, with a radiobiological profile similar to higher-LET radiations.

  8. Measurement of 2-5 keV x-ray emission from laser-target interactions by using fluor-MCP and CsI-XRD detectors

    SciTech Connect

    Lee, P.H.Y.; Tirsell, K.G.; Leipelt, G.R.; Laird, W.B.

    1981-09-29

    For inertial confinement fusion plasma diagnostics, x-ray diode (XRD) detectors using conventional cathodes are not sensitive enough to measure x-rays above approx. 1.5 keV. However, for laser driver fusion targets, x-rays in the range of 2 to 5 keV are important because of their mobility in the target. We have successfully used fluor-microchannel plate (MCP) detectors to obtain absolute x-ray measurements in the 2 to 5 keV range. Recent data obtained from experiments on the Shiva laser system are presented. In addition, designs for a variety of channels in the range using fluor-MCP and CsI-XRD's above 1.5 keV will be discussed.

  9. Compton polarimeter for 10-30 keV x rays

    NASA Astrophysics Data System (ADS)

    Weber, S.; Beilmann, C.; Shah, C.; Tashenov, S.

    2015-09-01

    We present a simple and versatile polarimeter for x rays in the energy range of 10-30 keV. It uses Compton scattering in low-Z materials such as beryllium or boron carbide. The azimuthal distribution of the scattered x rays is sampled by an array of 12 silicon PIN diodes operated at room temperature. We evaluated the polarimetry performance using Monte-Carlo simulations and show experimental results.

  10. Compton polarimeter for 10–30 keV x rays

    SciTech Connect

    Weber, S.; Beilmann, C.; Shah, C.; Tashenov, S.

    2015-09-15

    We present a simple and versatile polarimeter for x rays in the energy range of 10–30 keV. It uses Compton scattering in low-Z materials such as beryllium or boron carbide. The azimuthal distribution of the scattered x rays is sampled by an array of 12 silicon PIN diodes operated at room temperature. We evaluated the polarimetry performance using Monte-Carlo simulations and show experimental results.

  11. Microchannel plate pinhole camera for 20 to 100 keV x-ray imaging

    SciTech Connect

    Wang, C.L.; Leipelt, G.R.; Nilson, D.G.

    1984-10-03

    We present the design and construction of a sensitive pinhole camera for imaging suprathermal x-rays. Our device is a pinhole camera consisting of four filtered pinholes and microchannel plate electron multiplier for x-ray detection and signal amplification. We report successful imaging of 20, 45, 70, and 100 keV x-ray emissions from the fusion targets at our Novette laser facility. Such imaging reveals features of the transport of hot electrons and provides views deep inside the target.

  12. The Morphology of the X-ray Emission above 2 keV from Jupiter's Aurorae

    NASA Technical Reports Server (NTRS)

    Elsner, R.; Branduardi-Raymont, G.; Galand, M.; Grodent, D.; Waite, J. H.; Cravens, T.; Ford, P.

    2007-01-01

    The discovery in XMM-Newton X-ray data of X-ray emission above 2 keV from Jupiter's aurorae has led us to reexamine the Chandra ACIS-S observations taken in Feb 2003. Chandra's superior spatial resolution has revealed that the auroral X-rays with E > 2 keV are emitted from the periphery of the region emitting those with E < 1 keV. We are presently exploring the relationship of this morphology to that of the FUV emission from the main auroral oval and the polar cap. The low energy emission has previously been established as due to charge exchange between energetic precipitating ions of oxygen and either sulfur or carbon. It seems likely to us that the higher energy emission is due to precipitation of energetic electrons, possibly the same population of electrons responsible for the FUV emission. We discuss our analysis and interpretation.

  13. Full characterization of a laser-produced keV x-ray betatron source

    NASA Astrophysics Data System (ADS)

    Albert, F.; Phuoc, K. Ta; Shah, R.; Corde, S.; Fitour, R.; Tafzi, A.; Burgy, F.; Douillet, D.; Lefrou, T.; Rousse, A.

    2008-12-01

    This paper presents the complete characterization of a kilo-electron-volt laser-based x-ray source. The main parameters of the electron motion (amplitude of oscillations and initial energy) in the laser wakefield have been investigated using three independent methods relying on spectral and spatial properties of this betatron x-ray source. First we will show studies on the spectral correlation between electrons and x-rays that is analyzed using a numerical code to calculate the expected photon spectra from the experimentally measured electron spectra. High-resolution x-ray spectrometers have been used to characterize the x-ray spectra within 0.8-3 keV and to show that the betatron oscillations lie within 1 µm. Then we observed Fresnel edge diffraction of the x-ray beam. The observed diffraction at the center energy of 4 keV agrees with the Gaussian incoherent source profile of full width half maximum <5 µm, meaning that the amplitude of the betatron oscillations is less than 2.5 µm. Finally, by measuring the far field spatial profile of the radiation, we have been able to characterize the electron's trajectories inside the plasma accelerator structure with a resolution better than 0.5 µm.

  14. Laboratory source based full-field x-ray microscopy at 9 keV

    SciTech Connect

    Fella, C.; Balles, A.; Wiest, W.; Zabler, S.; Hanke, R.

    2016-01-28

    In the past decade, hard x-ray transmission microscopy experienced tremendous developments. With the avail-ability of efficient Fresnel zone plates, even set-ups utilizing laboratory sources were developed [1]. In order to improve the performance of these x-ray microscopes, novel approaches to fabricate optical elements [2] and brighter x-ray tubes [3] are promising candidates. We are currently building a laboratory transmission x-ray microscope for 9.25 keV, using an electron impact liquid-metal-jet anode source. Up to now, the further elements of our setup are: a polycapillary condenser, a tungsten zone plate, and a scintillator which is optically coupled to a CMOS camera. However, further variations in terms of optical elements are intended. Here we present the current status of our work, as well as first experimental results.

  15. The Morphology of the X-ray Emission above 2 keV from Jupiter's Aurorae

    NASA Technical Reports Server (NTRS)

    Elsner, R.; Branduardi-Raymont, G.; Galand, M.; Grodent, D.; Gladstone, G. R.; Waite, J. H.; Cravens, T.; Ford, P.

    2007-01-01

    The discovery in XMM-Newton X-ray data of X-ray emission above 2 keY from Jupiter's aurorae has led us to reexamine the Chandra ACIS-S observations taken in Feb 2003. Chandra's superior spatial resolution has revealed that the auroral X-rays with E > 2 keV are emitted from the periphery of the region emitting those with E < 1 keV. We are presently exploring the relationship of this morphology to that of the FUV emission from the main auroral oval and the polar cap. The low energy emission has previously been established as due to charge exchange between energetic precipitating ions of oxygen and either sulfur or carbon. It seems likely to us that the higher energy emission is due to precipitation of energetic electrons, possibly the same population of electrons responsible for the FUV emission. We discuss our analysis and interpretation.

  16. Demonstration of a 13-keV Kr K-shell x-ray source at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Fournier, K. B.; May, M. J.; Colvin, J. D.; Barrios, M. A.; Patterson, J. R.; Regan, S. P.

    2013-09-01

    We report 3% conversion efficiency of laser energy into Kr K-shell (≈13 keV) radiation, consistent with theoretical predictions. This is ≈10× greater than previous work. The emission was produced from a 4.1-mm-diameter, 4-mm-tall gas pipe target filled with 1.2 or 1.5 atm of Kr gas. 160 of the National Ignition Facility laser beams deposited ≈700 kJ of 3ω light into the target in an ≈140 TW, 5.0-ns-duration square pulse. The Dante diagnostics measured ≈5 TW into 4π solid angle of ≥12 keV x rays for ≈4 ns, which includes both continuum emission and flux in the Kr Heα line at 13 keV.

  17. A Review of X-ray Diagnostic Calibrations in the 2 to 100 keV Region Using the High Energy X-ray Calibration Facility (HEX)

    SciTech Connect

    Ali, Zaheer; Pond, T; Buckles, R A; Maddox, B R; Chen, C D; DeWald, E L; Izumi, N; Stewart, R

    2010-05-19

    The precise and accurate measurement of X-rays in the 2 keV to 100 keV region is crucial to the understanding of HED plasmas and warm dense matter in general. With the emergence of inertially confined plasma facilities as the premier platforms for ICF, laboratory astrophysics, and national security related plasma experiments, the need to calibrate diagnostics in the high energy X-ray regime has grown. At National Security Technologies High Energy X-ray Calibration Facility (HEX) in Livermore, California, X-ray imagers, filter-fluorescer spectrometers, crystal spectrometers, image plates, and nuclear diagnostics are calibrated. The HEX can provide measurements of atomic line radiation, X-ray flux (accuracy within 10%), and X-ray energy (accuracy within 1%). The HEX source is comprised of a commercial 160 kV X-ray tube, a fluorescer wheel, a filter wheel, and a lead encasement. The X-ray tube produces a Tungsten bremsstrahlung spectrum which causes a foil to fluoresce line radiation. To minimize bremsstrahlung in the radiation for calibration we also provide various foils as filters. For experimental purposes, a vacuum box capable of 10{sup -7} Torr, as well as HPGe and CdTe radiation detectors, are provided on an optical table. Most geometries and arrangements can be changed to meet experimental needs.

  18. Interferometric phase-contrast X-ray CT imaging of VX2 rabbit cancer at 35keV X-ray energy

    SciTech Connect

    Takeda, Tohoru; Wu Jin; Tsuchiya, Yoshinori; Lwin, Thet-Thet; Itai, Yuji; Yoneyama, Akio; Hyodo, Kazuyuki

    2004-05-12

    Imaging of large objects at 17.7-keV low x-ray energy causes huge x-ray exposure to the objects even using interferometric phase-contrast x-ray CT (PCCT). Thus, we tried to obtain PCCT images at high x-ray energy of 35keV and examined the image quality using a formalin-fixed VX2 rabbit cancer specimen with 15-mm in diameter. The PCCT system consisted of an asymmetrically cut silicon (220) crystal, a monolithic x-ray interferometer, a phase-shifter, an object cell and an x-ray CCD camera. The PCCT at 35 keV clearly visualized various inner structures of VX2 rabbit cancer such as necrosis, cancer, the surrounding tumor vessels, and normal liver tissue. Besides, image-contrast was not degraded significantly. These results suggest that the PCCT at 35 KeV is sufficient to clearly depict the histopathological morphology of VX2 rabbit cancer specimen.

  19. New Observations of Soft X-ray (0.5-5 keV) Solar Spectra

    NASA Astrophysics Data System (ADS)

    Caspi, A.; Woods, T. N.; Mason, J. P.; Jones, A. R.; Warren, H. P.

    2013-12-01

    The solar corona is the brightest source of X-rays in the solar system, and the X-ray emission is highly variable on many time scales. However, the actual solar soft X-ray (SXR) (0.5-5 keV) spectrum is not well known, particularly during solar quiet periods, as, with few exceptions, this energy range has not been systematically studied in many years. Previous observations include high-resolution but very narrow-band spectra from crystal spectrometers (e.g., Yohkoh/BCS), or integrated broadband irradiances from photometers (e.g., GOES/XRS, TIMED/XPS, etc.) that lack detailed spectral information. In recent years, broadband measurements with moderate energy resolution (~0.5-0.7 keV FWHM) were made by SphinX on CORONAS-Photon and SAX on MESSENGER, although they did not extend to energies below ~1 keV. We present observations of solar SXR emission obtained using new instrumentation flown on recent SDO/EVE calibration rocket underflights. The photon-counting spectrometer, a commercial Amptek X123 with a silicon drift detector and an 8 μm Be window, measures the solar disk-integrated SXR emission from ~0.5 to >10 keV with ~0.15 keV FWHM resolution and 1 s cadence. A novel imager, a pinhole X-ray camera using a cooled frame-transfer CCD (15 μm pixel pitch), Ti/Al/C filter, and 5000 line/mm Au transmission grating, images the full Sun in multiple spectral orders from ~0.1 to ~5 nm with ~10 arcsec/pixel and ~0.01 nm/pixel spatial and spectral detector scales, respectively, and 10 s cadence. These instruments are prototypes for future CubeSat missions currently being developed. We present new results of solar observations on 04 October 2013 (NASA sounding rocket 36.290). We compare with previous results from 23 June 2012 (NASA sounding rocket 36.286), during which solar activity was low and no signal was observed above ~4 keV. We compare our spectral and imaging measurements with spectra and broadband irradiances from other instruments, including SDO/EVE, GOES/XRS, TIMED

  20. Sub-arcsec X-Ray Telescope for Imaging The Solar Corona In the 0.25 - 1.2 keV Band

    NASA Technical Reports Server (NTRS)

    Gallagher, Dennis; Cash, Webster; Jelsma, Schuyler; Farmer, Jason

    1996-01-01

    We have developed an X-ray telescope that uses a new technique for focusing X-rays with grazing incidence optics. The telescope was built with spherical optics for all of its components, utilizing the high quality surfaces obtainable when polishing spherical (as opposed to aspherical) optics. We tested the prototype X-ray telescope in the 300 meter vacuum pipe at White Sands Missile Range, NM. The telescope features 2 degee graze angles with tungsten coatings, yielding a bandpass of 0.25-1.5 keV with a peak effective area of 0.8 sq cm at 0.83 keV. Results from X-ray testing at energies of 0.25 keV and 0.93 keV (C-K and Cu-L) verify 0.5 arcsecond performance at 0.93 keV. Results from modeling the X-ray telescope's response to the Sun show that the current design would be capable of recording 10 half arcsecond images of a solar active region during a 300 second NASA sounding rocket flight.

  1. Demonstration of a 13 keV Kr K-shell X-Ray Source at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Fournier, K. B.; May, M. J.; Colvin, J. D.; Barrios, M. A.; Patterson, J. R.; Regan, S. P.

    2013-10-01

    We report 3% conversion efficiency of laser energy into Kr K-shell (~13 keV) radiation, consistent with theoretical predictions. This is ~10 × greater than previous work. The emission was produced from a 4.1 mm diameter, 4 mm tall gas pipe target filled with 1.2 or 1.5 atm of Kr gas. 160 of the NIF laser beams deposited ~700 kJ of 3 ω light into the target in a ~140 TW, 5.0 ns duration square pulse. This laser configuration sufficiently heated the targets to optimize the K-shell x-ray emission. The Dante diagnostics measured ~5 TW into 4 π solid angle of >=12 keV x rays for ~4 ns, which includes both continuum emission and flux in the Kr Heα line at 13 keV. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This work was supported by the Defense Threat Reduction Agency under the intera- gency agreements 10027-1420 and 10027-6167.

  2. Hyper-filter-fluorescer spectrometer for x-rays above 120 keV

    DOEpatents

    Wang, Ching L.

    1983-01-01

    An apparatus utilizing filter-fluorescer combinations is provided to measure short bursts of high fluence x-rays above 120 keV energy, where there are no practical absorption edges available for conventional filter-fluorescer techniques. The absorption edge of the prefilter is chosen to be less than that of the fluorescer, i.e., E.sub.PRF E.sub.F. In this way, the response function is virtually zero between E.sub.PRF and E.sub.F and well defined and enhanced in an energy band of less than 1000 keV above the 120 keV energy.

  3. Static and time-resolved 10-1000 keV x-ray imaging detector options for NIF

    SciTech Connect

    Landen, O.L.; Bell, P.M.; McDonald, J.W.; Park, H.-S.; Weber, F.; Moody, J.D.; Lowry, M.E.; Stewart, R.E.

    2004-10-01

    High energy (>10 keV) x-ray self-emission imaging and radiography will be essential components of many NIF high energy density physics experiments. In preparation for such experiments, we have evaluated the pros and cons of various static [x-ray film, bare charge-coupled device (CCD), and scintillator + CCD] and time-resolved (streaked and gated) 10-1000 keV detectors.

  4. Extension to Low Energies (<7keV) of High Pressure X-Ray Absorption Spectroscopy

    SciTech Connect

    Itie, J.-P.; Flank, A.-M.; Lagarde, P.; Idir, M.; Polian, A.; Couzinet, B.

    2007-01-19

    High pressure x-ray absorption has been performed down to 3.6 keV, thanks to the new LUCIA beamline (SLS, PSI) and to the use of perforated diamonds or Be gasket. Various experimental geometries are proposed, depending on the energy of the edge and on the concentration of the studied element. A few examples will be presented: BaTiO3 at the titanium K edge, Zn0.95 Mn0.05O at the manganese K edge, KCl at the potassium K edge.

  5. High-energy (>70 keV) x-ray conversion efficiency measurement on the ARC laser at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Chen, Hui; Hermann, M. R.; Kalantar, D. H.; Martinez, D. A.; Di Nicola, P.; Tommasini, R.; Landen, O. L.; Alessi, D.; Bowers, M.; Browning, D.; Brunton, G.; Budge, T.; Crane, J.; Di Nicola, J.-M.; Döppner, T.; Dixit, S.; Erbert, G.; Fishler, B.; Halpin, J.; Hamamoto, M.; Heebner, J.; Hernandez, V. J.; Hohenberger, M.; Homoelle, D.; Honig, J.; Hsing, W.; Izumi, N.; Khan, S.; LaFortune, K.; Lawson, J.; Nagel, S. R.; Negres, R. A.; Novikova, L.; Orth, C.; Pelz, L.; Prantil, M.; Rushford, M.; Shaw, M.; Sherlock, M.; Sigurdsson, R.; Wegner, P.; Widmayer, C.; Williams, G. J.; Williams, W.; Whitman, P.; Yang, S.

    2017-03-01

    The Advanced Radiographic Capability (ARC) laser system at the National Ignition Facility (NIF) is designed to ultimately provide eight beamlets with a pulse duration adjustable from 1 to 30 ps, and energies up to 1.5 kJ per beamlet. Currently, four beamlets have been commissioned. In the first set of 6 commissioning target experiments, the individual beamlets were fired onto gold foil targets with energy up to 1 kJ per beamlet at 20-30 ps pulse length. The x-ray energy distribution and pulse duration were measured, yielding energy conversion efficiencies of 4-9 × 10-4 for x-rays with energies greater than 70 keV. With greater than 3 J of such x-rays, ARC provides a high-precision x-ray backlighting capability for upcoming inertial confinement fusion and high-energy-density physics experiments on NIF.

  6. High-energy (> 70 KeV) x-ray conversion efficiency measurement on the ARC laser at the National Ignition Facility

    DOE PAGES

    Chen, Hui; Hermann, M. R.; Kalantar, D. H.; ...

    2017-03-16

    Here, the Advanced Radiographic Capability (ARC) laser system at the National Ignition Facility (NIF) is designed to ultimately provide eight beamlets with a pulse duration adjustable from 1 to 30 ps, and energies up to 1.5 kJ per beamlet. Currently, four beamlets have been commissioned. In the first set of 6 commissioning target experiments, the individual beamlets were fired onto gold foil targets with energy up to 1 kJ per beamlet at 20–30 ps pulse length. The x-ray energy distribution and pulse duration were measured, yielding energy conversion efficiencies of 4–9 × 10–4 for x-rays with energies greater than 70more » keV. With greater than 3 J of such x-rays, ARC provides a high-precision x-ray backlighting capability for upcoming inertial confinement fusion and high-energy-density physics experiments on NIF.« less

  7. Microbeam of 100 keV x ray with a sputtered-sliced Fresnel zone plate

    NASA Astrophysics Data System (ADS)

    Kamijo, Nagao; Suzuki, Yoshio; Takano, Hidekazu; Tamura, Shigeharu; Yasumoto, Masato; Takeuchi, Akihisa; Awaji, Mitsuhiro

    2003-12-01

    Microfocusing of 100 keV x ray with a sputtered-sliced Fresnel zone plate (ss-FZP) has been performed at the 250-m-long beamline (20XU) of SPring-8. The ss-FZP with an outermost zone width 0.16 μm which is composed of 70 layers of alternating Cu and Al layers and having thickness ˜180 μm was fabricated and characterized. The minimum focal spot size attained for the first order focal beam was 0.5 μm with a focal distance 900 mm at a photon energy 100 keV. The total flux of the microprobe was ˜2×106 photons s-1 μm-2.

  8. Efficient focusing of 8 keV X-rays with multilayer Fresnel zone plates fabricated by atomic layer deposition and focused ion beam milling.

    PubMed

    Mayer, Marcel; Keskinbora, Kahraman; Grévent, Corinne; Szeghalmi, Adriana; Knez, Mato; Weigand, Markus; Snigirev, Anatoly; Snigireva, Irina; Schütz, Gisela

    2013-05-01

    Fresnel zone plates (FZPs) recently showed significant improvement by focusing soft X-rays down to ~10 nm. In contrast to soft X-rays, generally a very high aspect ratio FZP is needed for efficient focusing of hard X-rays. Therefore, FZPs had limited success in the hard X-ray range owing to difficulties of manufacturing high-aspect-ratio zone plates using conventional techniques. Here, employing a method of fabrication based on atomic layer deposition (ALD) and focused ion beam (FIB) milling, FZPs with very high aspect ratios were prepared. Such multilayer FZPs with outermost zone widths of 10 and 35 nm and aspect ratios of up to 243 were tested for their focusing properties at 8 keV and shown to focus hard X-rays efficiently. This success was enabled by the outstanding layer quality thanks to ALD. Via the use of FIB for slicing the multilayer structures, desired aspect ratios could be obtained by precisely controlling the thickness. Experimental diffraction efficiencies of multilayer FZPs fabricated via this combination reached up to 15.58% at 8 keV. In addition, scanning transmission X-ray microscopy experiments at 1.5 keV were carried out using one of the multilayer FZPs and resolved a 60 nm feature size. Finally, the prospective of different material combinations with various outermost zone widths at 8 and 17 keV is discussed in the light of the coupled wave theory and the thin-grating approximation. Al2O3/Ir is outlined as a promising future material candidate for extremely high resolution with a theoretical efficiency of more than 20% for as small an outermost zone width as 10 nm at 17 keV.

  9. Study of 1–8 keV K-α x-ray emission from high intensity femtosecond laser produced plasma

    SciTech Connect

    Arora, V. Naik, P. A.; Chakera, J. A.; Bagchi, S.; Tayyab, M.; Gupta, P. D.

    2014-04-15

    We report an experimental study on the optimization of a laser plasma based x-ray source of ultra-short duration K-α line radiation. The interaction of pulses from a CPA based Ti:sapphire laser (10 TW, 45 fs, 10 Hz) system with magnesium, titanium, iron and copper solid target generates bright 1-8 keV K-α x-ray radiation. The x-ray yield was optimized with the laser pulse duration (at fixed fluence) which is varied in the range of 45 fs to 1.4 ps. It showed a maximum at laser pulse duration of ∼740 fs, 420 fs, 350 and 250 fs for Mg (1.3 keV), Ti (4.5 keV), Fe (6.4 keV) and Cu (8.05 keV) respectively. The x-ray yield is observed to be independent of the sign of the chirp. The scaling of the K-α yield (I{sub x} ∝ I{sub L}{sup β}) for 45 fs and optimized pulse duration were measured for laser intensities in the region of 3 × 10{sup 14} – 8 × 10{sup 17}. The x-ray yield shows a much faster scaling exponent β = 1.5, 2.1, 2.4 and 2.6 for Mg, Ti, Fe and Cu respectively at optimized pulse duration compared to scaling exponent of 0.65, 1.3, 1.5, and 1.7 obtained for 45 fs duration laser pulses. The laser to x-ray energy conversion efficiencies obtained for different target materials are η{sub Mg} = 1.2 × 10{sup −5}, η{sub Ti} = 3.1 × 10{sup −5}, η{sub Fe} = 2.7 × 10{sup −5}, η{sub Cu} = 1.9 × 10{sup −5}. The results have been explained from the efficient generation of optimal energy hot electrons at longer laser pulse duration. The faster scaling observed at optimal pulse duration indicates that the x-ray source is generated at the target surface and saturation of x-ray emission would appear at larger laser fluence. An example of utilization of the source for measurement of shock-wave profiles in a silicon crystal by time resolved x-ray diffraction is also presented.

  10. An X-ray Raman spectrometer for EXAFS studies on minerals: bent Laue spectrometer with 20 keV X-rays.

    PubMed

    Hiraoka, N; Fukui, H; Tanida, H; Toyokawa, H; Cai, Y Q; Tsuei, K D

    2013-03-01

    An X-ray Raman spectrometer for studies of local structures in minerals is discussed. Contrary to widely adopted back-scattering spectrometers using ≤10 keV X-rays, a spectrometer utilizing ~20 keV X-rays and a bent Laue analyzer is proposed. The 20 keV photons penetrate mineral samples much more deeply than 10 keV photons, so that high intensity is obtained owing to an enhancement of the scattering volume. Furthermore, a bent Laue analyzer provides a wide band-pass and a high reflectivity, leading to a much enhanced integrated intensity. A prototype spectrometer has been constructed and performance tests carried out. The oxygen K-edge in SiO(2) glass and crystal (α-quartz) has been measured with energy resolutions of 4 eV (EXAFS mode) and 1.3 eV (XANES mode). Unlike methods previously adopted, it is proposed to determine the pre-edge curve based on a theoretical Compton profile and a Monte Carlo multiple-scattering simulation before extracting EXAFS features. It is shown that the obtained EXAFS features are reproduced fairly well by a cluster model with a minimal set of fitting parameters. The spectrometer and the data processing proposed here are readily applicable to high-pressure studies.

  11. The Hard X-ray 20-40 keV AGN Luminosity Function

    NASA Technical Reports Server (NTRS)

    Beckmann, V.; Soldi, S.; Shrader, C. R.; Gehrels, N.; Produit, N.

    2006-01-01

    We have compiled a complete, significance limited extragalactic sample based on approximately 25,000 deg(sup 2) to a limiting flux of 3 x 10(exp -11) ergs per square centimeter per second. (approximately 7,000 deg(sup 2)) to a flux limit of 10(exp -11) ergs per square centimeter per second)) in the 20 - 40 keV band with INTEGRAL. We have constructed a detailed exposure map to compensate for effects of non-uniform exposure. The flux-number relation is best described by a power-law with a slope of alpha = 1.66 plus or minus 0.11. The integration of the cumulative flux per unit area leads to f(sub 20-40 keV) = 2.6 x 10(exp -10) ergs per square centimeter per second per sr(sup -1) which is about 1% of the known 20-40 keV X-ray background. We present the first luminosity function of AGN in the 20-40 keV energy range, based on 68 extragalactic objects detected by the imager IBIS/ISGRI on-board INTEGRAL. The luminosity function shows a smoothly connected two power-law form, with an index of gamma (sub 1) = 0.9 below, and gamma (sub 2) = 2.2 above the turn-over luminosity of L(sub *), = 4.6 x 10(sup 43) ergs per second. The emissivity of all INTEGRAL AGNs per unit volume is W(sub 20-40keV)(greater than 10(sup 41) ergs per second) = 2.8 x 10(sup 38) ergs per second h(sup 3)(sub 70) Mpc(sup -3). These results are consistent with those derived in the 2-20keV energy band and do not show a significant contribution by Compton-thick objects. Because the sample used in this study is truly local (z(raised bar) = 0.022)), only limited conclusions can be drawn for the evolution of AGNs in this energy band. But the objects explaining the peak in the cosmic X-ray background are likely to be either low luminosity AGN (L(sub x) less than 10(sup 41) ergs per second) or of other type, such as intermediate mass black holes, clusters, and star forming regions.

  12. High-efficiency multilevel zone plates for keV X-rays

    NASA Astrophysics Data System (ADS)

    di Fabrizio, E.; Romanato, F.; Gentili, M.; Cabrini, S.; Kaulich, B.; Susini, J.; Barrett, R.

    1999-10-01

    The development of high brilliance X-ray sources coupled with advances in manufacturing technologies has led to significant improvements in submicrometre probes for spectroscopy, diffraction and imaging applications. The generation of a small beam spot size is commonly based on three principles: total reflection (as used in optical elements involving mirrors or capillaries), refraction (such as in refractive lenses) and diffraction. The latter effect is employed in Bragg-Fresnel or Soret lenses, commonly known as Fresnel zone plate lenses. These lenses currently give the best spatial resolution, but are traditionally limited to rather soft X-rays-at high energies, their use is still limited by their efficiency. Here we report the fabrication of high-efficiency, high-contrast gold and nickel multistep (quaternary) Fresnel zone plates using electron beam lithography. We achieve a maximum efficiency of 55% for the nickel plate at 7keV. In addition to their high efficiency, the lenses offer the advantages of low background signal and effective reduction of unwanted diffraction orders. We anticipate that these lenses should have a significant impact on techniques such as microscopy, micro-fluorescence and micro-diffraction, which require medium resolution (500-100nm) and high flux at fixed energies.

  13. SOLEX: a tunable monochromatic X-ray source in the 1-20 keV energy range for metrology

    NASA Astrophysics Data System (ADS)

    Bonnelle, C.; Jonnard, P.; André, J.-M.; Avila, A.; Laporte, D.; Ringuenet, H.; Lépy, M. C.; Plagnard, J.; Ferreux, L.; Protas, J. C.

    2004-01-01

    A tunable monochromatic X-ray source covering the 1-20 keV energy range is described. The initial X-ray beam is obtained from a dedicated windowless X-ray tube. The energy selection is performed through a cylindrically bent crystal, used either in the reflection (Johann geometry) or in the transmission (Cauchois geometry) mode, by rotating the crystal holder by a 90° angle. Contrary to conventional geometries where the X-ray tube is fixed, here the direction of the exit beam impinging the X-ray detector is fixed. This setup is shown to be useful for various studies: high-resolution spectrometry, characterization of the response function and the efficiency of detectors and optical components, determination of transmission characteristics of different materials. Observations of the Lα line and Kα doublet from a copper anode are presented, that demonstrate the performance of this new setup.

  14. High order reflectivity of graphite (HOPG) crystals for x ray energies up to 22 keV

    SciTech Connect

    Doeppner, T; Neumayer, P; Girard, F; Kugland, N L; Landen, O L; Niemann, C; Glenzer, S H

    2008-04-30

    We used Kr K{alpha} (12.6 keV) and Ag K{alpha} (22.1 keV) x-rays, produced by petawatt class laser pulses interacting with a Kr gas jet and a silver foil, to measure the integrated crystal reflectivity of flat Highly Oriented Pyrolytic Graphite (HOPG) up to fifth order. The reflectivity in fourth order is lower by a factor of 50 when compared to first order diffraction. In second order the integrated reflectivity decreases from 1.3 mrad at 12.6 keV to 0.5 mrad at 22.1 keV. The current study indicates that HOPG crystals are suitable for measuring scattering signals from high energy x ray sources (E {ge} 20 keV). These energies are required to penetrate through the high density plasma conditions encountered in inertial confinement fusion capsule implosions on the National Ignition Facility.

  15. NEW OBSERVATIONS OF THE SOLAR 0.5–5 KEV SOFT X-RAY SPECTRUM

    SciTech Connect

    Caspi, Amir; Woods, Thomas N.; Warren, Harry P.

    2015-03-20

    The solar corona is orders of magnitude hotter than the underlying photosphere, but how the corona attains such high temperatures is still not understood. Soft X-ray (SXR) emission provides important diagnostics for thermal processes in the high-temperature corona, and is also an important driver of ionospheric dynamics at Earth. There is a crucial observational gap between ∼0.2 and ∼4 keV, outside the ranges of existing spectrometers. We present observations from a new SXR spectrometer, the Amptek X123-SDD, which measured the spatially integrated solar spectral irradiance from ∼0.5 to ∼5 keV, with ∼0.15 keV FWHM resolution, during sounding rocket flights on 2012 June 23 and 2013 October 21. These measurements show that the highly variable SXR emission is orders of magnitude greater than that during the deep minimum of 2009, even with only weak activity. The observed spectra show significant high-temperature (5–10 MK) emission and are well fit by simple power-law temperature distributions with indices of ∼6, close to the predictions of nanoflare models of coronal heating. Observations during the more active 2013 flight indicate an enrichment of low first-ionization potential elements of only ∼1.6, below the usually observed value of ∼4, suggesting that abundance variations may be related to coronal heating processes. The XUV Photometer System Level 4 data product, a spectral irradiance model derived from integrated broadband measurements, significantly overestimates the spectra from both flights, suggesting a need for revision of its non-flare reference spectra, with important implications for studies of Earth ionospheric dynamics driven by solar SXRs.

  16. Understanding Bright 13 keV Kr K-shell X-ray Sources at the NIF

    NASA Astrophysics Data System (ADS)

    May, M. J.; Colvin, J. D.; Kemp, G. E.; Fournier, K. B.; Scott, H.; Patel, M.; Barrios, Widmann; Widmann, K.

    2015-11-01

    High x-ray conversion efficiency (CE) K-shell Kr sources are being investigated for High Energy Density experiments. These sources are 4.1 mm in diameter 4.4 mm tall hollow epoxy tubes having a 40 μm thick wall holding either 1.2 or 1.5 atm of Kr gas. The CE of K-shell Kr is dependent upon the peak electron temperature in the radiating plasma. In the NIF experiments, the available energy heats the source to Te = 6-7 keV, well below the temperature of Te ~25 keV needed to optimize the Kr CE. The CE is a steep function of the peak electron temperature. A spatially averaged electron temperature can be estimated from measured He(α) and Ly(α) line ratios. Some disagreement has been observed in the simulated and measured line ratios for some of these K-shell sources. Disagreements have been observed between the simulated and measured line ratios for some of these K-shell sources. To help understand this issue, Kr gas pipes have been shot with 3 ω light at ?750 kJ at ~210, ~140 TW and ~120 TW power levels with 3.7, 5.2 and 6.7 ns pulses, respectively. The power and pulse length scaling of the measured CE and K-shell line ratios and their comparison to simulations will be discussed. This work was performed under the auspic

  17. Efficient laser-induced 6-8 keV x-ray production from iron oxide aerogel and foil-lined cavity targets

    SciTech Connect

    Pérez, F.; Kay, J. J.; Patterson, J. R.; Kane, J.; Villette, B.; Girard, F.; Reverdin, C.; May, M.; Emig, J.; Sorce, C.; Colvin, J.; Gammon, S.; Jaquez, J.; Satcher, J. H.; Fournier, K. B.

    2012-08-01

    The performance of new iron-based laser-driven x-ray sources has been tested at the OMEGA laser facility for production of x rays in the 6.5–8.5 keV range. Two types of targets were experimentally investigated: low-density iron oxide aerogels (density 6-16 mg/cm36-16 mg/cm3) and stainless steel foil-lined cavity targets (steel thickness 1-5 μm1-5 μm). The targets were irradiated by 40 beams of the OMEGA laser (500 J/beam, 1 ns pulse, wavelength 351 nm). All targets showed good coupling with the laser, with <5%<5% of the incident laser light backscattered by the resulting plasma in all cases (typically <2.5%<2.5%). The aerogel targets produced Te=2Te=2 to 3 keV, ne=0.12-0.2ne=0.12-0.2 critical density plasmas yielding a 40%–60% laser-to-x-ray total conversion efficiency (CE) (1.2%–3% in the Fe K-shell range). The foil cavity targets produced Te~2 keV, Te~2 keV, ne~0.15ne~0.15 critical density plasmas yielding a 60%–75% conversion efficiency (1.6%–2.2% in the Fe K-shell range). Time-resolved images illustrate that the volumetric heating of low-density aerogels allow them to emit a higher K-shell x-ray yield even though they contain fewer Fe atoms. However, their challenging fabrication process leads to a larger shot-to-shot variation than cavity targets.

  18. High resolution spectrometer for extended x-ray absorption fine structure measurements in the 6 keV to 15 keV energy range

    NASA Astrophysics Data System (ADS)

    Seely, J. F.; Hudson, L. T.; Henins, Albert; Feldman, U.

    2016-11-01

    A Cauchois transmission-crystal spectrometer has been developed with high crystal resolving power in the 6 keV-15 keV energy range and sufficient sensitivity to record single-shot spectra from the Lawrence Livermore National Laboratory (LLNL) Titan laser and other comparable or more energetic lasers. The spectrometer capabilities were tested by recording the W L transitions from a laboratory source and the extended x-ray absorption fine structure (EXAFS) spectrum through a Cu foil.

  19. X-ray filament with a strong 6.7-keV line in the Galactic center region

    NASA Astrophysics Data System (ADS)

    Yamauchi, Shigeo; Shimizu, Miku; Nakashima, Shinya; Nobukawa, Masayoshi; Tsuru, Takeshi Go; Koyama, Katsuji

    2014-12-01

    An elongated X-ray source with a strong K-shell line from He-like iron (Fe XXVI) is found at (RA, Dec)J2000.0 = (17h44m00{s.}0, - 29°13'40{^''.}9) in the Galactic center region. The position coincides with the X-ray thread, G359.55+0.16, which is aligned with the radio non-thermal filament. The X-ray spectrum is well fitted with an absorbed thin thermal plasma (apec) model. The best-fitting temperature, metal abundance, and column density are 4.1^{+2.7}_{-1.8} keV, 0.58^{+0.41}_{-0.32} solar, and 6.1^{+2.5}_{-1.3} × 10^{22} cm-2, respectively. These values are similar to those of the largely extended Galactic center X-ray emission.

  20. Diagnostics for the optimization of an 11 keV inverse Compton scattering x-ray source

    NASA Astrophysics Data System (ADS)

    Chauchat, A.-S.; Brasile, J.-P.; Le Flanchec, V.; Nègre, J.-P.; Binet, A.; Ortega, J.-M.

    2013-04-01

    In a scope of a collaboration between Thales Communications & Security and CEA DAM DIF, 11 keV Xrays were produced by inverse Compton scattering on the ELSA facility. In this type of experiment, X-ray observation lies in the use of accurate electron and laser beam interaction diagnostics and on fitted X-ray detectors. The low interaction probability between < 100 μm width, 12 ps [rms] length electron and photon pulses requires careful optimization of pulse spatial and temporal covering. Another issue was to observe 11 keV X-rays in the ambient radioactive noise of the linear accelerator. For that, we use a very sensitive detection scheme based on radio luminescent screens.

  1. The diffuse X-ray spectrum from 14-200 keV as measured on OSO-5

    NASA Technical Reports Server (NTRS)

    Dennis, B. R.; Suri, A. N.; Frost, K. J.

    1973-01-01

    The measurement of energy spectrum of the diffuse component of cosmic X-ray flux made on the OSO-5 spacecraft is described. The contributions to the total counting rate of the actively shielded X-ray detector are considered in some detail and the techniques used to eliminate the non-cosmic components are described. Positive values for the cosmic flux are obtained in seven energy channels between 14 and 200 keV and two upper limits are obtained between 200 and 254 keV. The results can be fitted by a power law spectrum. A critical comparison is made with the OSO-3 results. Conclusions show that the reported break in the energy spectrum at 40 keV is probably produced by an erroneous correction for the radioactivity induced in the detector on each passage through the intense charged particle fluxes in the South Atlantic anomaly.

  2. Possible contributions of supernova remnants to the soft X-ray diffuse background (0.1 - 1keV)

    NASA Technical Reports Server (NTRS)

    Sanders, W. T.; Burrows, D. N.; Mccammon, D.; Kraushaar, W. L.

    1982-01-01

    Almost all of the B band (0.10-0.19 keV) and C band (0.15-0.28 keV) X-rays probably originate in a hot region surrounding the Sun, which Cox and Anderson modeled as a supernova remnant. This same region may account for a significant fraction of the M band (0.5-1 keV) X-rays if the nonequilibrium models of Cox and Anderson are applicable. A population of distant SNR similar to the local region, with center-to-center spacing of about 300 pc, could provide enough galactic M band emission to fill in the dip in the count rate in the galactic plane that would otherwise be present due to absorption of both the extra galactic power law flux and any large-scale-height stellar (or galactic halo) emission.

  3. An Einstein survey of the 1 keV soft X-ray background in the Galactic plane

    NASA Technical Reports Server (NTRS)

    Stanford, John M.; Caillault, Jean-Pierre

    1994-01-01

    We have analyzed 56 Einstein Observatory Imaging Proportional Counter (IPC) observations within +/- 3 deg of the Galactic plane in order to determine the low-latitude soft X-ray background flux in the 0.56-1.73 keV band. Any detected X-ray point source which fell within our regions of study was removed from the image, enabling us to present maps of the background flux as a function of Galactic latitude along 18 meridians. These maps reveal considerable structure to the background in the Galactic plane on an angular scale of approximately 1 deg. Our results are compared with those of an earlier study of the 1 keV X-ray background along l = 25 deg by Kahn & Caillault. The double-peaked structure they found is not discernible in our results, possibly because of the presence of solar backscattered flux in their data. A model which takes into account contributions to the background by extragalactic and stellar sources, the distribution of both atomic and molecular absorbing material with the Galaxy, the energy dependence of the cross section for absorption of X-rays, and the energy dependence of the detector has been constructed and fitted to these new data to derive constraints on the scale height, temperature, and volume emissivity of the unaccounted-for X-ray-emitting material. The results of this model along l = 25 deg are roughly similar to those of the model of Kahn & Caillault along the same meridian.

  4. Sub-second variations of high energy ( 300 keV) hard X-ray emission from solar flares

    NASA Technical Reports Server (NTRS)

    Bai, Taeil

    1986-01-01

    Subsecond variations of hard X-ray emission from solar flares were first observed with a balloon-borne detector. With the launch of the Solar Maximum Mission (SMM), it is now well known that subsecond variations of hard X-ray emission occur quite frequently. Such rapid variations give constraints on the modeling of electron energization. Such rapid variations reported until now, however, were observed at relatively low energies. Fast mode data obtained by the Hard X-ray Burst Spectrometer (HXRBS) has time resolution of approximately 1 ms but has no energy resolution. Therefore, rapid fluctuations observed in the fast-mode HXRBS data are dominated by the low energy hard X-rays. It is of interest to know whether rapid fluctuations are observed in high-energy X-rays. The highest energy band at which subsecond variations were observed is 223 to 1057 keV. Subsecond variations observed with HXRBS at energies greater than 300 keV are reported, and the implications discussed.

  5. Relative detection efficiency of back- and front-illuminated charge-coupled device cameras for X-rays between 1 keV and 18 keV.

    PubMed

    Szlachetko, J; Dousse, J-Cl; Hoszowska, J; Berset, M; Cao, W; Szlachetko, M; Kavcic, M

    2007-09-01

    High-resolution x-ray measurements were performed with a von Hamos-type bent crystal spectrometer using for the detection of the diffracted photons either a back-illuminated charge-coupled device (CCD) camera or a front-illuminated one. For each CCD the main x-ray emission lines (e.g., Kalpha, Kbeta, Lalpha, and Lbeta) of a variety of elements were measured in order to probe the performances of the two detectors between 1 and 18 keV. From the observed x-ray lines the linearity of the energy response, the noise level, the energy resolution, and the quantum efficiency ratio of the two CCDs were determined.

  6. 20-100 keV K(alpha) X-Ray Source Generation by Short Pulse High Intensity Lasers

    SciTech Connect

    Park, H-S; Koch, J A; Landen, O L; Phillips, T W; Goldsack, T

    2003-08-22

    We are studying the feasibility of utilizing K{alpha} x-ray sources in the range of 20 to 100 keV as a backlighters for imaging various stages of implosions and high areal density planar samples driven by the NIF laser facility. The hard x-ray K{alpha} sources are created by relativistic electron plasma interactions in the target material after a radiation by short pulse high intensity lasers. In order to understand K{alpha} source characteristics such as production efficiency and brightness as a function of laser parameters, we have performed experiments using the 10 J, 100 fs JanUSP laser. We utilized single-photon counting spectroscopy and x-ray imaging diagnostics to characterize the K{alpha} source. We find that the K{alpha} conversion efficiency from the laser energy is {approx} 3 x 10{sup -4}.

  7. Efficient laser-induced 6-8 keV x-ray production from iron oxide aerogel and foil-lined cavity targets

    NASA Astrophysics Data System (ADS)

    Pérez, F.; Kay, J. J.; Patterson, J. R.; Kane, J.; Villette, B.; Girard, F.; Reverdin, C.; May, M.; Emig, J.; Sorce, C.; Colvin, J.; Gammon, S.; Jaquez, J.; Satcher, J. H.; Fournier, K. B.

    2012-08-01

    The performance of new iron-based laser-driven x-ray sources has been tested at the OMEGA laser facility for production of x rays in the 6.5-8.5 keV range. Two types of targets were experimentally investigated: low-density iron oxide aerogels (density 6-16 mg/cm3) and stainless steel foil-lined cavity targets (steel thickness 1-5 μm). The targets were irradiated by 40 beams of the OMEGA laser (500 J/beam, 1 ns pulse, wavelength 351 nm). All targets showed good coupling with the laser, with <5% of the incident laser light backscattered by the resulting plasma in all cases (typically <2.5%). The aerogel targets produced Te=2 to 3 keV, ne=0.12-0.2 critical density plasmas yielding a 40%-60% laser-to-x-ray total conversion efficiency (CE) (1.2%-3% in the Fe K-shell range). The foil cavity targets produced Te˜ 2 keV, ne˜ 0.15 critical density plasmas yielding a 60%-75% conversion efficiency (1.6%-2.2% in the Fe K-shell range). Time-resolved images illustrate that the volumetric heating of low-density aerogels allow them to emit a higher K-shell x-ray yield even though they contain fewer Fe atoms. However, their challenging fabrication process leads to a larger shot-to-shot variation than cavity targets.

  8. High Resolution, 20-100 keV X-ray Backlighters for ICF and HEDS Experiments

    NASA Astrophysics Data System (ADS)

    Park, Hye-Sook; Koch, J. A.; Landen, O. L.; Phillips, T. W.; Schmid, G. J.

    2002-11-01

    We are studying the feasibility of high resolution radiography using short pulse high intensity lasers. Specifically we wish to better characterize and optimize the Kalpha X-ray production and brightness created by relativistic electron plasma interactions in the target material. We plan to utilize this Kalpha source as a backlighter to image various stages of implosions and planar driven high Z materials. Particularly interesting are the production of Kalpha's in the range 20 100 keV. In order to assess in detail the characteristics of such high energy X-ray backlighters, we are performing experiments using the 10 J, 100 fs JanUSP laser at LLNL. We will measure Kalpha source generation efficiency as function of laser beam parameters such as pulse duration, spot size and laser beam energy. We are also developing a high resolution hard X-ray imaging detector system. This paper will present initial results from the JanUSP experiments. Reference:D.K. Bradley, O.L. Landen, A.B. Bullock, S.G. Glendinning, and R.E. Turner, "Efficient, High Spatial-Temporal Resolution, 1-100 keV X-ray Radiography," Opt. Lett. 27(2002) 134.

  9. Systematic search for spherical crystal X-ray microscopes matching 1-25 keV spectral line sources.

    PubMed

    Schollmeier, Marius S; Loisel, Guillaume P

    2016-12-01

    Spherical-crystal microscopes are used as high-resolution imaging devices for monochromatic x-ray radiography or for imaging the source itself. Crystals and Miller indices (hkl) have to be matched such that the resulting lattice spacing d is close to half the spectral wavelength used for imaging, to fulfill the Bragg equation with a Bragg angle near 90(∘) which reduces astigmatism. Only a few suitable crystal and spectral-line combinations have been identified for applications in the literature, suggesting that x-ray imaging using spherical crystals is constrained to a few chance matches. In this article, after performing a systematic, automated search over more than 9 × 10(6) possible combinations for x-ray energies between 1 and 25 keV, for six crystals with arbitrary Miller-index combinations hkl between 0 and 20, we show that a matching, efficient crystal and spectral-line pair can be found for almost every Heα or Kα x-ray source for the elements Ne to Sn. Using the data presented here it should be possible to find a suitable imaging combination using an x-ray source that is specifically selected for a particular purpose, instead of relying on the limited number of existing crystal imaging systems that have been identified to date.

  10. Bent-crystal Laue spectrograph for measuring x-ray spectra (15keV)

    NASA Astrophysics Data System (ADS)

    Failor, B. H.; Wong, S.; Riordan, J. C.; Hudson, L. T.; O'Brien, C. M.; Seltzer, S. M.; Seiler, S.; Pressley, L.; Lojewski, D. Y.

    2006-10-01

    A bent-crystal Laue {or Cauchois [J. Phys. Radium 3, 320 (1932)] geometry} spectrograph is a good compromise between sensitivity and spectral resolution for measuring x-ray spectra (15keV) from large area x-ray sources because source-size spectral broadening is mitigated. We have designed, built, and tested such a spectrograph for measuring the spectra from electron-beam x-ray sources with diameters as large as 30cm. The same spectrograph geometry has also been used to diagnose (with higher spectral resolution) smaller sources, such as x-ray tubes for mammography and laser-driven inertial fusion targets. We review our spectrograph design and describe the performance of different components. We have compared the reflectivity and spectral resolution of LiF, and Ge diffracting crystals. We have also measured the differences in sensitivity and spectral resolution using different x-ray to light converters (plastic scintillator, CsI, and Gd2O2S) fiber optically coupled to an intensified charge-coupled device camera. We have also coupled scintillating fibers to photomultiplier tubes to obtain temporal records for discrete energy channels.

  11. Systematic search for spherical crystal X-ray microscopes matching 1–25 keV spectral line sources

    SciTech Connect

    Schollmeier, Marius S.; Loisel, Guillaume P.

    2016-12-29

    Spherical-crystal microscopes are used as high-resolution imaging devices for monochromatic x-ray radiography or for imaging the source itself. Crystals and Miller indices (hkl) have to be matched such that the resulting lattice spacing d is close to half the spectral wavelength used for imaging, to fulfill the Bragg equation with a Bragg angle near 90° which reduces astigmatism. Only a few suitable crystal and spectral-line combinations have been identified for applications in the literature, suggesting that x-ray imaging using spherical crystals is constrained to a few chance matches. In this paper, after performing a systematic, automated search over more than 9 × 106 possible combinations for x-ray energies between 1 and 25 keV, for six crystals with arbitrary Miller-index combinations hkl between 0 and 20, we show that a matching, efficient crystal and spectral-line pair can be found for almost every Heα or Kα x-ray source for the elements Ne to Sn. Finally, using the data presented here it should be possible to find a suitable imaging combination using an x-ray source that is specifically selected for a particular purpose, instead of relying on the limited number of existing crystal imaging systems that have been identified to date.

  12. Systematic search for spherical crystal X-ray microscopes matching 1–25 keV spectral line sources

    DOE PAGES

    Schollmeier, Marius S.; Loisel, Guillaume P.

    2016-12-29

    Spherical-crystal microscopes are used as high-resolution imaging devices for monochromatic x-ray radiography or for imaging the source itself. Crystals and Miller indices (hkl) have to be matched such that the resulting lattice spacing d is close to half the spectral wavelength used for imaging, to fulfill the Bragg equation with a Bragg angle near 90° which reduces astigmatism. Only a few suitable crystal and spectral-line combinations have been identified for applications in the literature, suggesting that x-ray imaging using spherical crystals is constrained to a few chance matches. In this paper, after performing a systematic, automated search over more thanmore » 9 × 106 possible combinations for x-ray energies between 1 and 25 keV, for six crystals with arbitrary Miller-index combinations hkl between 0 and 20, we show that a matching, efficient crystal and spectral-line pair can be found for almost every Heα or Kα x-ray source for the elements Ne to Sn. Finally, using the data presented here it should be possible to find a suitable imaging combination using an x-ray source that is specifically selected for a particular purpose, instead of relying on the limited number of existing crystal imaging systems that have been identified to date.« less

  13. keV electron heating in laser-cluster interaction probed by X-ray and electron spectroscopy

    NASA Astrophysics Data System (ADS)

    Yin, H.; Wachter, G.; Deiss, C.; Lemell, C.; Burgdörfer, J.; Lamour, E.; Prigent, C.; Ramond, C.; Rozet, J. P.; Steydli, S.; Trassinelli, M.; Vernhet, D.

    2014-04-01

    The interaction of intense laser pulses with nanoscopic rare-gas clusters provides a testing ground for laser-atom interaction at solid-state densities. We investigate the driven electronic dynamics on the femtosecond time scale both experimentally and theoretically using two complementary observables: the laser intensity dependence of characteristic X-ray emission and of high-energy (keV) electron spectra.

  14. Anomalous X-ray galactic signal from 7.1 keV spin-3/2 dark matter decay

    SciTech Connect

    Dutta, Sukanta; Goyal, Ashok; Kumar, Sanjeev E-mail: agoyal45@yahoo.com

    2016-02-01

    In order to explain the recently reported peak at 3.55 keV in the galactic X-ray spectrum, we propose a simple model. In this model, the Standard Model is extended by including a neutral spin-3/2 vector-like fermion that transforms like a singlet under SM gauge group. This 7.1 keV spin-3/2 fermion is considered to comprise a portion of the observed dark matter. Its decay into a neutrino and a photon with decay life commensurate with the observed data, fits the relic dark matter density and obeys the astrophysical constraints from the supernova cooling.

  15. Dosimetric properties of high energy current (HEC) detector in keV x-ray beams

    NASA Astrophysics Data System (ADS)

    Zygmanski, Piotr; Shrestha, Suman; Elshahat, Bassem; Karellas, Andrew; Sajo, Erno

    2015-04-01

    We introduce a new x-ray radiation detector. The detector employs high-energy current (HEC) formed by secondary electrons consisting predominantly of photoelectrons and Auger electrons, to directly convert x-ray energy to detector signal without externally applied power and without amplification. The HEC detector is a multilayer structure composed of thin conducting layers separated by dielectric layers with an overall thickness of less than a millimeter. It can be cut to any size and shape, formed into curvilinear surfaces, and thus can be designed for a variety of QA applications. We present basic dosimetric properties of the detector as function of x-ray energy, depth in the medium, area and aspect ratio of the detector, as well as other parameters. The prototype detectors show similar dosimetric properties to those of a thimble ionization chamber, which operates at high voltage. The initial results obtained for kilovoltage x-rays merit further research and development towards specific medical applications.

  16. A new grating X-ray spectrometer for 2-4 keV enabling a separate observation of In-Lβ and Sn-Lα emissions of indium tin oxide.

    PubMed

    Terauchi, Masami; Takahashi, Hideyuki; Handa, Nobuo; Murano, Takanori; Koike, Masato; Kawachi, Tetsuya; Imazono, Takashi; Hasegawa, Noboru; Koeda, Masaru; Nagano, Tetsuya; Sasai, Hiroyuki; Oue, Yuki; Yonezawa, Zeno; Kuramoto, Satoshi

    2013-06-01

    A new multilayer-coated varied line-spaced grating, JS4000, was fabricated and tested for extending the upper limit of a grating X-ray spectrometer for electron microscopy. This grating was designed for 2-3.8 keV at a grazing incidence angle of 1.35°. It was revealed that this new multilayer structure enables us to take soft-X-ray emission spectra continuously from 1.5 to 4.3 keV at the same optical setting. The full-width at half maximum of Te-L(α1,2) (3.8 keV) emission peak was 27 eV. This spectrometer was applied to indium tin oxide particles and clearly resolved Sn-L(α) (3444 eV) and In-L(β1) (3487 eV) peaks, which could not be resolved by a widely used energy-dispersive X-ray spectrometer.

  17. Multi-Kev X-Ray Emission from High-Z Gas Targets Fielded at Omega and NIF

    NASA Astrophysics Data System (ADS)

    May, Mark; Fournier, Kevin; Colvin, Jeff; Kane, Jave

    2010-11-01

    We report on the measured X-ray flux from gas-filled targets shot at both the OMEGA and NIF laser facilities. The OMEGA targets were 1.8 mm long, 1.95 mm in diameter Be cans filled with either a 50:50 Ar:Xe mixture, pure Ar, pure Kr or pure Xe at ˜ 1 atm. The OMEGA experiments heated the gas with 20 kJ of 3φ (˜350 nm) laser energy delivered in a 1 ns square pulse. The NIF targets were thin walled (25 μm), 4 mm long, 4 mm inner-diameter epoxy pipes filled with 1.2 atm of a 65:35 Ar:Xe mixture. The NIF experiments heated these targets with 350 kJ of 3φ (˜350 nm) laser energy delivered in a 5 ns square pulse at up to 75 TW of laser power. The emitted X-ray flux was monitored with the X-ray diode based DANTE instruments in the sub-keV range. Two-dimensional X-ray images (for energies 3-5 keV) of the targets were recorded with gated X-ray detectors. The X-ray spectra were recorded with the HENWAY crystal spectrometer at OMEGA. The results from both experiments will be compared. This work performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  18. X-ray backlighting sources of 4 to 10 keV for laser-fusion targets

    SciTech Connect

    Rupert, V.C.; Matthews, D.L.; Koppel, L.N.

    1981-05-12

    High-intensity, short-duration x-ray pulses are necessary to diagnose the compression of laser film targets. Present target designs are such that backlighting sources ranging from a few thousand electron volts to 100 keV will be necessary. The desired source durations range from a few tens of picoseconds for flash radiography to several nanoseconds for streaked backlighting, and the source occurrence must be tightly synchronized to that of the target-irradiating laser pulse. For the latter reason, a laser-induced x-ray pulse is preferred. An initial study of the K lines of Ti, Ni, and Zn as possible backlighting sources was conducted. The conversion efficiency of laser light into line radiation was obtained as a function of laser intensity, pulse length, and wavelength. A threshold laser intensity for x-ray line production was identified. Information was obtained on the size and duration of the x-ray emission source, in relation to laser parameters. The experimental results, and their impact on backlighting capability for high-density laser function targets, are discussed.

  19. Laboratory Measurements Compellingly Support a Charge-exchange Mechanism for the ’Dark Matter’ ~3.5 keV X-Ray Line

    NASA Astrophysics Data System (ADS)

    Shah, Chintan; Dobrodey, Stepan; Bernitt, Sven; Steinbrügge, René; Crespo López-Urrutia, José R.; Gu, Liyi; Kaastra, Jelle

    2016-12-01

    The reported observations of an unidentified X-ray line feature at ∼3.5 keV have driven a lively discussion about its possible dark matter origin. Motivated by this, we have measured the K-shell X-ray spectra of highly ionized bare sulfur ions following charge exchange with gaseous molecules in an electron beam ion trap, as a source of or a contributor to this X-ray line. We produced S16+ and S15+ ions and let them capture electrons in collision with those molecules with the electron beam turned off while recording X-ray spectra. We observed a charge-exchange-induced X-ray feature at the Lyman series limit (3.47 ± 0.06 keV). The inferred X-ray energy is in full agreement with the reported astrophysical observations and supports the novel scenario proposed by Gu et al.

  20. Characterizations of MCP performance in the hard x-ray range (6–25 keV)

    SciTech Connect

    Wu, Ming Rochau, Greg; Moy, Ken; Kruschwitz, Craig

    2014-11-15

    MCP detector performance at hard x-ray energies from 6 to 25 keV was recently investigated using NSLS beamline X15A at BNL. Measurements were made with an NSTec Gen-II (H-CA-65) framing camera, based on a Photonis MCP with ∼10 μm in diameter pores, ∼12 μm center-center spacing, an L/D ratio of 46, and a bias angle of 8°. The MCP characterizations were focused on (1) energy and angle dependent sensitivity, (2) energy and angle dependent spatial resolution, (3) energy dependent gain performance, and (4) energy dependent dynamic range. These measurement corroborated simulation results using a Monte Carlo model that included hard x-ray interactions and the subsequent electron cascade in the MCP.

  1. Accretion Properties of a Sample of Hard X-Ray (<60 keV) Selected Seyfert 1 Galaxies

    NASA Astrophysics Data System (ADS)

    Wang, J.; Mao, Y. F.; Wei, J. Y.

    2009-02-01

    We examine the accretion properties in a sample of 42 hard (3-60 keV) X-ray selected nearby broad-line active galactic nuclei (AGNs). The energy range in the sample is harder than that usually used in similar previous studies. These AGNs are mainly complied from the RXTE All Sky Survey, and complemented by the released INTEGRAL AGN catalog. The black hole masses, bolometric luminosities of AGN, and Eddington ratios are derived from their optical spectra in terms of the broad Hβ emission line. The tight correlation between the hard X-ray (3-20 keV) and bolometric/line luminosity is well identified in our sample. Also identified is a strong inverse Baldwin relationship of the Hβ emission line. In addition, all of these hard X-ray AGNs are biased toward luminous objects with a high Eddington ratio (mostly between 0.01 and 0.1) and a low column density (<1022 cm-2), which is most likely due to the selection effect of the surveys. The hard X-ray luminosity is consequently found to be strongly correlated with the black hole mass. We believe the sample completeness will be improved in the next few years by the ongoing Swift and the International Gamma-Ray Astrophysics Laboratory missions, and by the next advanced missions, such as NuSTAR, Simbol-X, and NeXT. Finally, the correlation between RFe (= optical Fe II/Hβ) and disk temperature as assessed by T vprop (L/L Edd)M -1 BH leads us to suggest that the strength of the Fe II emission is mainly determined by the shape of the ionizing spectrum.

  2. A New Observation of the Quiet Sun Soft X-ray (0.5-5 keV) Spectrum

    NASA Astrophysics Data System (ADS)

    Caspi, A.; Woods, T. N.; Stone, J.

    2012-12-01

    The solar corona is the brightest source of X-rays in the solar system, and the X-ray emission is highly variable with solar activity. While this is particularly true during solar flares, when emission can be enhanced by many orders of magnitude up to gamma-ray energies, even the so-called "quiet Sun" is bright in soft X-rays (SXRs), as the ~1-2 MK ambient plasma of the corona emits significant thermal bremsstrahlung up to ~5 keV. However, the actual solar SXR (0.5-5 keV) spectrum is not well known, particularly during quiet periods, as, with few exceptions, this energy range has not been systematically studied in many years. Previous observations include ultra-high-resolution but very narrow-band spectra from crystral spectrometers (e.g. Yohkoh/BCS), or integrated broadband irradiances from photometers (e.g. GOES/XRS, TIMED/XPS, etc.) that lack detailed spectral information. In recent years, broadband measurements with fair energy resolution (~0.5-0.7 keV FWHM) were made by SphinX on CORONAS-Photon and XRS on MESSENGER, although they did not extend below ~1 keV. We present observations of the quiet Sun SXR emission obtained using a new SXR spectrometer flown on the third SDO/EVE underflight calibration rocket (NASA 36.286). The commercial off-the-shelf Amptek X123 silicon drift detector, with an 8-micron Be window and custom aperture, measured the solar SXR emission from ~0.5 to >10 keV with ~0.15 keV FWHM resolution (though, due to hardware limitations, with only ~0.12 keV binning) and 2-sec cadence over ~5 minutes on 23 June 2012. Despite the rising solar cycle, activity on 23 June 2012 was abnormally low, with no visible active regions and GOES XRS emission near 2010 levels; we measured no solar counts above ~4 keV during the observation period. We compare our X123 measurements with spectra and broadband irradiances from other instruments, including the SphinX observations during the deep solar minimum of 2009, and with upper limits of >3 keV quiet Sun emission

  3. Simulations of Microchannel Plate Sensitivity to <20 keV X-rays as a Function of Energy and Incident Angle

    SciTech Connect

    Kruschwitz, Craig; Wu, M.; Rochau, G. A.

    2013-06-13

    We present results of Monte Carlo simulations of microchannel plate (MCP) response to x-rays in the 250 eV to 20 keV energy range as a function of both x-ray energy and impact angle. The model is based on the model presented in Rochau et al. (2006). However, while the Rochau et al. (2006) model was two-dimensional, and their results only went to 5 keV, our results have been expanded to 20 keV, and our model has been incorporated into a three-dimensional Monte Carlo MCP model that we have developed over the past several years (Kruschwitz et al. 2011). X-ray penetration through multiple MCP pore walls is increasingly important above 5 keV. The effect of x-ray penetration through multiple pores on MCP performance was studied and is presented.

  4. 0.5-keV Soft X-ray attosecond continua

    PubMed Central

    Teichmann, S. M.; Silva, F.; Cousin, S. L.; Hemmer, M.; Biegert, J.

    2016-01-01

    Attosecond light pulses in the extreme ultraviolet have drawn a great deal of attention due to their ability to interrogate electronic dynamics in real time. Nevertheless, to follow charge dynamics and excitations in materials, element selectivity is a prerequisite, which demands such pulses in the soft X-ray region, above 200 eV, to simultaneously cover several fundamental absorption edges of the constituents of the materials. Here, we experimentally demonstrate the exploitation of a transient phase matching regime to generate carrier envelope controlled soft X-ray supercontinua with pulse energies up to 2.9±0.1 pJ and a flux of (7.3±0.1) × 107 photons per second across the entire water window and attosecond pulses with 13 as transform limit. Our results herald attosecond science at the fundamental absorption edges of matter by bridging the gap between ultrafast temporal resolution and element specific probing. PMID:27167525

  5. High-resolution 22-52 keV backlighter sources and application to X-ray radiography

    NASA Astrophysics Data System (ADS)

    Vaughan, K.; Moore, A. S.; Smalyuk, V.; Wallace, K.; Gate, D.; Glendinning, S. G.; McAlpin, S.; Park, H. S.; Sorce, C.; Stevenson, R. M.

    2013-09-01

    The requirement for sources of hard X-rays suitable for high resolution radiography through large ρR targets is prominent in many aspects of current laser-driven plasma physics research. In recent work using the OMEGA EP laser facility [L. J. Waxer, M. J. Guardalben, J. H. Kelly et al., CLEO/QELS, Optical Society of America, San Jose, CA, IEEE (2008)] at the Laboratory for Laser Energetics (LLE) in Rochester, NY, experiments have been performed to measure characteristics of 22-52 keV X-ray sources using high intensity short-pulse lasers. High quality point projection, two-dimensional radiography was demonstrated by irradiating microwire targets with laser intensities of 1016 W cm-2-1019 W cm-2. Microwire targets were manufactured to dimensions of 10 μm × 10 μm × 300 μm and were supported by a 100 μm × 300 μm × 6 μm low-Z substrate. Measurements of the k-α conversion efficiency and X-ray source-size are discussed and, of particular importance for radiography, the spectral purity of the backlighter is characterized to assess the relative importance of the Kα emission to bremsstrahlung background.

  6. Comparison of simulated and measured spectra from an X-ray tube for the energies between 20 and 35 keV

    NASA Astrophysics Data System (ADS)

    Yücel, M.; Emirhan, E.; Bayrak, A.; Ozben, C. S.; Yücel, E. Barlas

    2015-11-01

    Design and production of a simple and low cost X-ray imaging system that can be used for light industrial applications was targeted in the Nuclear Physics Laboratory of Istanbul Technical University. In this study, production, transmission and detection of X-rays were simulated for the proposed imaging device. OX/70-P dental tube was used and X-ray spectra simulated by Geant4 were validated by comparison with X-ray spectra measured between 20 and 35 keV. Relative detection efficiency of the detector was also determined to confirm the physics processes used in the simulations. Various time optimization tools were performed to reduce the simulation time.

  7. A Catalog of Soft X-Ray Shadows, and More Contemplation of the 1/4 KeV Background

    NASA Technical Reports Server (NTRS)

    Snowden, S. L.; Freyberg, M. J.; Kuntz, K. D.; Sanders, W. T.

    1999-01-01

    This paper presents a catalog of shadows in the 1/4 keV soft X-ray diffuse background 4 (SXRB) that were identified by a comparison between ROSAT All-Sky Survey maps and DIRB&corrected IRAS 100 micron maps. These "shadows" are the negative correlations between the surface brightness of the SXRB and the column density of the Galactic interstellar medium (ISIM) over limited angular regions (a few degrees in extent). We have compiled an extensive but not exhaustive set of 378 shadows in the polar regions of the Galaxy (Absolute value (beta) > and approximately equal 20 deg.), and determined their foreground and background X-ray intensities (relative to the absorbing features), and the respective hardness ratios of that emission. The portion of the sky that was examined to find these shadows was restricted in general to regions where the minimum column density is less than and approximately equal to 4 x 10(exp 20) H/square cm, i.e., relatively high Galactic latitudes, and to regions away from distinct extended features in the SXRB such as supernova remnants and superbubbles. The results for the foreground intensities agree well with the recent results of a general analysis of the local 1/4 KeV emission while the background intensities show additional. but not unexpected scatter. The results also confirm the existence of a gradient in the hardness of the local 1/4 keV emission along a Galactic center/ anticenter axis with a temperature that varies from 10(exp 6.13) K to 10(exp 6.02) K, respectively. The average temperature of the foreground component from this analysis is 10(exp 6.08) K, compared to 10(exp 6.06) K in the previous analysis. Likewise, the average temperature for the distant component for the current and previous analyses are 10(exp 6.06) K and 10(exp 6.02) K, respectively. Finally, the results for the 1/4 keV halo emission are compared to the observed fluxes at 3/4 keV, where the lack of correlation suggests that the Galactic halo's 1/4 keV and 3/4 keV

  8. The Solar Flare 4: 10 keV X-ray Spectrum

    NASA Technical Reports Server (NTRS)

    Phillips, K. J. H.

    2004-01-01

    The 4-10 keV solar flare spectrum includes highly excited lines of stripped Ca, Fe, and Ni ions as well as a continuum steeply falling with energy. Groups of lines at approximately 7 keV and approximately 8 keV, observed during flares by the broad-band RHESSI spectrometer and called here the Fe-line and Fe/Ni-line features, are formed mostly of Fe lines but with Ni lines contributing to the approximately 8 keV feature. Possible temperature indicators of these line features are discussed - the peak or centroid energies of the Fe-line feature, the line ratio of the Fe-line to the Fe/Ni-line features, and the equivalent width of the Fe-line feature. The equivalent width is by far the most sensitive to temperature. However, results will be confused if, as is commonly believed, the abundance of Fe varies from flare to flare, even during the course of a single flare. With temperature determined from the thermal continuum, the Fe-line feature becomes a diagnostic of the Fe abundance in flare plasmas. These results are of interest for other hot plasmas in coronal ionization equilibrium such as stellar flare plasmas, hot gas in galaxies, and older supernova remnants.

  9. Learning to Apply Metrology Principles to the Measurement of X-ray Intensities in the 500 eV to 110 keV Energy Range

    SciTech Connect

    Haugh, M. J.; Pond, T.; Silbernagel, C.; Torres, P.; Marlett, K.; Goldin, F.; Cyr, S.

    2011-02-08

    National Security Technologies, LLC (NSTec), Livermore Operations, has two optical radiation calibration laboratories accredited by “the National Voluntary Laboratories Accreditation Program (NVLAP) which is the accrediting body of” the National Institute of Standards and Technology (NIST), and is now working towards accreditation for its X-ray laboratories. NSTec operates several laboratories with X-ray sources that generate X-rays in the energy range from 50 eV to 115 keV. These X-ray sources are used to characterize and calibrate diagnostics and diagnostic components used by the various national laboratories, particularly for plasma analysis on the Lawrence Livermore National Laboratory (LLNL) National Ignition Facility (NIF). Because X-ray photon flux measurement methods that can be accredited, i.e., traceable to NIST, have not been developed for sources operating in these energy ranges, NSTec, NIST, and the National Voluntary Accreditation Program (NVLAP) together have defined a path toward the development and validation of accredited metrology methods for X-ray energies. The methodology developed for the high energy X-ray (HEX) Laboratory was NSTec’s starting point for X-ray metrology accreditation and will be the basis for the accredited processes in the other X-ray laboratories. This paper will serve as a teaching tool, by way of this example using the NSTec X-ray sources, for the process and methods used in developing an accredited traceable metrology.

  10. THE X-RAY LINE FEATURE AT 3.5 KeV IN GALAXY CLUSTER SPECTRA

    SciTech Connect

    Phillips, K. J. H.; Sylwester, B.; Sylwester, J. E-mail: bs@cbk.pan.wroc.pl

    2015-08-10

    Recent work by Bulbul et al. and Boyarsky et al. has suggested that a line feature at ∼3.5 keV in the X-ray spectra of galaxy clusters and individual galaxies seen with XMM-Newton is due to the decay of sterile neutrinos, a dark matter candidate. This identification has been criticized by Jeltema and Profumo on the grounds that model spectra suggest that atomic transitions in helium-like potassium (K xviii) and chlorine (Cl xvi) are more likely to be the emitters. Here it is pointed out that the K xviii lines have been observed in numerous solar flare spectra at high spectral resolution with the RESIK crystal spectrometer and also appear in Chandra HETG spectra of the coronally active star σ Gem. In addition, the solar flare spectra at least indicate a mean coronal potassium abundance, which is a factor between 9 and 11 higher than the solar photospheric abundance. This fact, together with the low statistical quality of the XMM-Newton spectra, completely account for the ∼3.5 keV feature and there is therefore no need to invoke a sterile neutrino interpretation of the observed line feature at ∼3.5 keV.

  11. Identification of the Hard X-Ray Source Dominating the E > 25 keV Emission of the Nearby Galaxy M31

    NASA Astrophysics Data System (ADS)

    Yukita, M.; Ptak, A.; Hornschemeier, A. E.; Wik, D.; Maccarone, T. J.; Pottschmidt, K.; Zezas, A.; Antoniou, V.; Ballhausen, R.; Lehmer, B. D.; Lien, A.; Williams, B.; Baganoff, F.; Boyd, P. T.; Enoto, T.; Kennea, J.; Page, K. L.; Choi, Y.

    2017-03-01

    We report the identification of a bright hard X-ray source dominating the M31 bulge above 25 keV from a simultaneous NuSTAR–Swift observation. We find that this source is the counterpart to Swift J0042.6+4112, which was previously detected in the Swift BAT All-sky Hard X-ray Survey. This Swift BAT source had been suggested to be the combined emission from a number of point sources; our new observations have identified a single X-ray source from 0.5 to 50 keV as the counterpart for the first time. In the 0.5–10 keV band, the source had been classified as an X-ray Binary candidate in various Chandra and XMM-Newton studies; however, since it was not clearly associated with Swift J0042.6+4112, the previous E < 10 keV observations did not generate much attention. This source has a spectrum with a soft X-ray excess (kT ∼ 0.2 keV) plus a hard spectrum with a power law of {{Γ }}∼ 1 and a cutoff around 15–20 keV, typical of the spectral characteristics of accreting pulsars. Unfortunately, any potential pulsation was undetected in the NuSTAR data, possibly due to insufficient photon statistics. The existing deep HST images exclude high-mass (>3 {M}ȯ ) donors at the location of this source. The best interpretation for the nature of this source is an X-ray pulsar with an intermediate-mass (<3 {M}ȯ ) companion or a symbiotic X-ray binary. We discuss other possibilities in more detail.

  12. Analysis of 20 KEV Electron Induced X-Ray Production in Skull, Femur/tibia Bones of Rats

    NASA Astrophysics Data System (ADS)

    Mehta, Rahul; Watson, Alec; Ali, Nawab; Soulsby, Michael; Chowdhury, Parimal

    2010-04-01

    Hind-limb suspension (HLS) of rats is a NASA validated model of simulated weightlessness. This study examines the effects of microgravity on the skeletal system of rats to assess whether or not exposure of rats to HLS for one week will induce alteration of structural features in selected bones. Four groups of rats were used: two unsuspended controls and two suspended groups. Body weight, food, and water intake were monitored daily before and after suspension. X-rays were measured by a liquid nitrogen cooled Si(li) detector on a Scanning Electron Microscope (SEM) that provided the 20 keV electron beam. X-ray data were collected from square cross sections between 100 μm2 and 104 μm2. The bones were measured for elemental levels of calcium, phosphorus, oxygen and carbon from both control and HLS rats. The average body weight of all HLS groups decreased compared to their respective unsuspended controls. Food and water intake was also lower in both suspended groups. A correlation among HLS and control samples in terms of the distribution of the primary elements was found in the bone tissue when analyzed as a function of position along the hind-leg and within the cross sections.

  13. TOPICAL REVIEW The solar UV-x-ray spectrum from 1.5 to 2000 Å

    NASA Astrophysics Data System (ADS)

    Doschek, G. A.; Feldman, U.

    2010-12-01

    This review illustrates the potential of UV-x-ray spectroscopy for determining the physical conditions in the solar chromosphere, transition region and corona, and how spectroscopy can be used as a tool to understand the physical mechanisms governing the atmosphere. It also illustrates the potential for understanding transient events such as solar flares. This is a vast topic, and therefore the review is necessarily not complete, but we have tried to be as general as possible in showing in particular how solar spectra are currently being used to understand the solar upper atmosphere. The review is intended for non-solar physicists with an interest in spectroscopy as well as for solar physicists who are not specialists in spectroscopy.

  14. Enhanced room temperature oxidation in silicon and porous silicon under 10 keV x-ray irradiation

    SciTech Connect

    Ryckman, Judson D.; Reed, Robert A.; Weller, Robert A.; Fleetwood, D. M.; Weiss, S. M.

    2010-12-01

    We report the observation of enhanced oxidation on silicon and porous silicon samples exposed in air ambient to high-dose-rate 10 keV x-ray radiation at room temperature. The evolution of the radiation-induced oxide growth is monitored by ellipsometry and interferometric reflectance spectroscopy. Fourier transform infrared (FTIR) spectroscopy shows the emergence of Si-O-Si stretching modes and corresponding suppression of SiH{sub x} and Si-Si modes in the porous silicon samples. The radiation response depends strongly on initial native oxide thickness and Si-H surface species. The enhanced oxidation mechanism is attributed to photoinduced oxidation processes wherein energetic photons are used to dissociate molecular oxygen and promote the formation of more reactive oxygen species.

  15. Synthetic multilayer x-ray dispersion elements for 200 A (62 eV) to 0. 62 A (20 keV) radiation. Final report

    SciTech Connect

    Barbee, T.W. Jr.

    1983-11-01

    This final report concerns research performed at Stanford University on a program sponsored by the Department of Energy through Lawrence Livermore National Laboratory and the Regents of the University of California (Subcontract No. 2695501) entitled Synthetic Multilayer X-ray Dispersion Elements for 200 A (62 eV) to 0.62 A (20 keV) Radiation. The thrust of the research was to investigate the synthesis process parameter dependence of the nature of the interfaces between constituent adjacent layers, the uniformity of layers, and the reflectivity for light of wavelengths 0.62 A to 200 A of synthetic multilayer crystals. Additionally, device development was to be undertaken with emphasis on spectrum analyzing dispersion elements, high energy Kirkpatrick-Baez X-ray microscope mirrors, multi-keV (1 to 5 keV) X-ray applications, X-ray beam splitters and synthetic multilayers fabricated from adjoining elements in the periodic table.

  16. Image information transfer properties of x-ray intensifying screens in the energy range from 17 to 320 keV.

    PubMed

    Ginzburg, A; Dick, C E

    1993-01-01

    The image information transfer properties of a number of x-ray fluorescent screens have been measured for x-ray energies from 17 to 320 keV. The detective quantum efficiency of the screens at each x-ray energy has been determined by separate measurements of the x-ray absorption efficiency and the statistical factor associated with the emission of optical photons upon absorption of an incident x-ray. Data have been recorded for both rare-earth phosphor screens and calcium tungstate screens. The value of the statistical factor for optical photon emission tends toward a constant value as the incident energy increases. Comparisons of the image information transfer properties are presented for several screens, which have been measured over a ten year interval. The utility of the screens for high-energy radiography is discussed.

  17. Position detection of 17-25 keV x-rays in krypton and xenon with a resolution of 18-50 m (FWHM)

    SciTech Connect

    Fischer, J.; Radeka, V.; Smith, G.C.

    1985-10-01

    Measurements have been made of x-ray position resolution in a proportional chamber with both Kr/10% CO2 and Xe/10% CO2, for the x-ray energy region 17 to 25 keV. Position resolutions in the range of 18 to 50 m (FWHM) are obtained in krypton, and in the range 50 to 100 m (FWHM) for xenon. These results are interpreted in terms of the physical limitation to resolution due to the range of photoelectrons and Auger electrons emitted from the x-ray absorbing atom.

  18. X-Ray Attenuation Coefficients from 10 Kev to 100 Mev,

    DTIC Science & Technology

    1957-04-30

    fig. 1). A well- shielded detector measures the shells account for most of the absorption by this intensity of the trinsmitted beam, and any photon...narrow-beam measurements ----------------- 2 1.4. Combination of attenuation coefficients -------------------- 2 1.5. Energy absorption...thickness is increased measures the unlikely to be absorbed. Consequently, the ab- total probability of the interaction processes. sorption coefficient

  19. Comparison between MCNP and PENELOPE for the simulation of X-ray spectra in electron microscopy in the keV range

    NASA Astrophysics Data System (ADS)

    Roet, D.; Ceballos, C.; Van Espen, P.

    2006-10-01

    In this paper two Monte Carlo codes, MCNP (version 4C2) and PENELOPE (version 2001), were used in a cluster environment to simulate the X-ray spectra emerging from bombarding pure element bulk targets with mono energetic electrons in the keV range (30 keV). The simulation results were compared to experimental data measured on a JEOL-6300 electron microscope with energy dispersive X-ray detector. The results from both codes were compared amongst each other as to find the best in terms of accuracy, ease of use and speed of the calculations.

  20. New Observations of the Solar 0.5-5 keV Soft X-Ray Spectrum

    NASA Astrophysics Data System (ADS)

    Caspi, Amir; Woods, Thomas N.; Warren, Harry P.

    2015-03-01

    The solar corona is orders of magnitude hotter than the underlying photosphere, but how the corona attains such high temperatures is still not understood. Soft X-ray (SXR) emission provides important diagnostics for thermal processes in the high-temperature corona, and is also an important driver of ionospheric dynamics at Earth. There is a crucial observational gap between ˜0.2 and ˜4 keV, outside the ranges of existing spectrometers. We present observations from a new SXR spectrometer, the Amptek X123-SDD, which measured the spatially integrated solar spectral irradiance from ˜0.5 to ˜5 keV, with ˜0.15 keV FWHM resolution, during sounding rocket flights on 2012 June 23 and 2013 October 21. These measurements show that the highly variable SXR emission is orders of magnitude greater than that during the deep minimum of 2009, even with only weak activity. The observed spectra show significant high-temperature (5-10 MK) emission and are well fit by simple power-law temperature distributions with indices of ˜6, close to the predictions of nanoflare models of coronal heating. Observations during the more active 2013 flight indicate an enrichment of low first-ionization potential elements of only ˜1.6, below the usually observed value of ˜4, suggesting that abundance variations may be related to coronal heating processes. The XUV Photometer System Level 4 data product, a spectral irradiance model derived from integrated broadband measurements, significantly overestimates the spectra from both flights, suggesting a need for revision of its non-flare reference spectra, with important implications for studies of Earth ionospheric dynamics driven by solar SXRs.

  1. Detection of 1 - 100 keV x-rays from high intensity, 500 fs laser- produced plasmas using charge-coupled devices

    SciTech Connect

    Dunn, J.; Young, B.K.F.; Conder, A.D.; Stewart, R.E.

    1996-01-01

    We describe a compact, vacuum compatible, large format, charge- coupled device (CCD) camera for scientific imaging and detection of 1- 100 keV x rays in experiments at LLNL JANUS-1ps laser. A standard, front-illuminated, multi-pin phase device with 250 k electron full well capacity, low dark current (10 pA/cm{sup 2} at 20 C) and low read noise (5 electron rms) is cooled to -35 C to give the camera excellent 15-bit dynamic range and signal-to-noise response. Intensity and x-ray energy linear response were determined for optical and x-ray (<65 keV) photons and are in excellent agreement. Departure from linearity was less than 0.7%. Inherent linearity and energy dispersive characteristics of CCD cameras are well suited for hard x-ray photon counting. X-rays absorbed within the depletion and field-free regions can be distinguished by studying the pulse height spectrum. Results are presented for the detection of 1-100 keV Bremsstrahlung continuum, K-shell and L-shell fluorescence spectra emitted from high intensity (10{sup 18}W cm{sup -2}), 500 fs laser- produced plasmas.

  2. High resolution X-ray scattering measurements

    NASA Technical Reports Server (NTRS)

    Zombeck, M. V.; Braeuninger, H.; Ondrusch, A.; Predehl, P.

    1982-01-01

    The results of high angular resolution grazing incidence scattering measurements of highly polished, coated optical flats in the X-ray spectral range of 1.5 to 6.4 keV are reported. The interpretation of these results in terms of surface microtopography is presented and the implications for grazing incidence X-ray imaging are discussed.

  3. 1-to 10-keV x-ray backlighting of annular wire arrays on the Sandia Z-machine using bent-crystal imaging techniques.

    SciTech Connect

    Rambo, Patrick K.; Wenger, David Franklin; Bennett, Guy R.; Sinars, Daniel Brian; Smith, Ian Craig; Porter, John Larry, Jr.; Cuneo, Michael Edward; Rovang, Dean Curtis; Anderson, Jessica E.

    2003-07-01

    Annular wire array implosions on the Sandia Z-machine can produce >200 TW and 1-2 MJ of soft x rays in the 0.1-10 keV range. The x-ray flux and debris in this environment present significant challenges for radiographic diagnostics. X-ray backlighting diagnostics at 1865 and 6181 eV using spherically-bent crystals have been fielded on the Z-machine, each with a {approx}0.6 eVspectral bandpass, 10 {micro}m spatial resolution, and a 4 mm by 20mm field of view. The Z-Beamlet laser, a 2-TW, 2-kJ Nd:glass laser({lambda} = 527 nm), is used to produce 0.1-1 J x-ray sources for radiography. The design, calibration, and performance of these diagnostics is presented.

  4. A laboratory 8 keV transmission full-field x-ray microscope with a polycapillary as condenser for bright and dark field imaging

    SciTech Connect

    Baumbach, S. Wilhein, T.; Kanngießer, B.; Malzer, W.; Stiel, H.

    2015-08-15

    This article introduces a laboratory setup of a transmission full-field x-ray microscope at 8 keV photon energy. The microscope operates in bright and dark field imaging mode with a maximum field of view of 50 μm. Since the illumination geometry determines whether the sample is illuminated homogeneously and moreover, if different imaging methods can be applied, the condenser optic is one of the most significant parts. With a new type of x-ray condenser, a polycapillary optic, we realized bright field imaging and for the first time dark field imaging at 8 keV photon energy in a laboratory setup. A detector limited spatial resolution of 210 nm is measured on x-ray images of Siemens star test patterns.

  5. A laboratory 8 keV transmission full-field x-ray microscope with a polycapillary as condenser for bright and dark field imaging

    NASA Astrophysics Data System (ADS)

    Baumbach, S.; Kanngießer, B.; Malzer, W.; Stiel, H.; Wilhein, T.

    2015-08-01

    This article introduces a laboratory setup of a transmission full-field x-ray microscope at 8 keV photon energy. The microscope operates in bright and dark field imaging mode with a maximum field of view of 50 μm. Since the illumination geometry determines whether the sample is illuminated homogeneously and moreover, if different imaging methods can be applied, the condenser optic is one of the most significant parts. With a new type of x-ray condenser, a polycapillary optic, we realized bright field imaging and for the first time dark field imaging at 8 keV photon energy in a laboratory setup. A detector limited spatial resolution of 210 nm is measured on x-ray images of Siemens star test patterns.

  6. Cross calibration of AGFA-D7 x-ray film against direct exposure film from 2 to 8.5 keV using laser generated x-rays

    SciTech Connect

    Kyrala, George A.

    2006-05-15

    Direct exposure film (DEF) is being discontinued. DEF film has been the workhorse in inertial confinement fusion (ICF) research and is used to record x-ray images and spectra. A previous search for a replacement [K. M. Chandler et al., Rev. Sci. Instrum. 76, 113111 (2005)] did not consider AGFA film. We present comparisons using the results of measurements using AGFA-D7 film, XAR, TMG, and Biomax-MS films in the same spectrometer recording a gold spectrum in the 2-4 keV range and the iron spectrum in the 5-8.5 keV range. AGFA film was found to have some unique properties useful in x-ray spectroscopy and imaging, especially when signal strength is not a concern.

  7. Cross calibration of AGFA-D7 x-ray film against direct exposure film from 2 to 8.5 keV using laser generated x-rays

    NASA Astrophysics Data System (ADS)

    Kyrala, George A.

    2006-05-01

    Direct exposure film (DEF) is being discontinued. DEF film has been the workhorse in inertial confinement fusion (ICF) research and is used to record x-ray images and spectra. A previous search for a replacement [K. M. Chandler et al., Rev. Sci. Instrum. 76, 113111 (2005)] did not consider AGFA film. We present comparisons using the results of measurements using AGFA-D7 film, XAR, TMG, and Biomax-MS films in the same spectrometer recording a gold spectrum in the 2-4keV range and the iron spectrum in the 5-8.5keV range. AGFA film was found to have some unique properties useful in x-ray spectroscopy and imaging, especially when signal strength is not a concern.

  8. Dust Scattering Halo from an Eclipsing X-ray Binary at 1.5 arcmin from Sgr A*

    NASA Astrophysics Data System (ADS)

    Jin, Chichuan; Haberl, Frank; Ponti, Gabriele

    2016-07-01

    AX J1745.6-2901 is an eclipsing neutron star low mass X-ray binary. This source is bright in X-rays and it has a high column density of absorbing gas along the line of sight, showcasing a strong dust scattering halo. Moreover, the dust scattering halo shows time evolution during the eclipsing phase. The combination of these phenomena can provide important information about the location of the neutron star and the dust properties along the line of sight. In this talk, I will show that based on a large set of XMM-Newton and Chandra data, we can conduct, for the first time, a powerful combined analysis of the radial profile of the dust scattering halo and the time evolution of the halo during the eclipsing phase. Our study can put constraints on the location of the source, the distribution and composition of the dust, and the metal abundance towards the source. Due to the proximity of the source to Sgr A* (only 1.5 arcmin), these properties are highly relevant to the dust in the Galactic centre, and are likely to be similar as the dust properties on the line of sight towards Sgr A*.

  9. High aspect ratio hard x-ray (> 100 keV) imager to measure hot electron preheat for indirectly driven capsule implosions on the National Ignition Facility

    SciTech Connect

    Doppner, T; Dewald, E; Divol, L; Burns, S; Izumi, N; Kline, J; LaCaille, G; McNaney, J; Prasad, R; Thomas, C A; Glenzer, S H; Landen, O; Author, A; Author, S G; Author, T

    2012-05-01

    We have fielded a multi-pinhole, hard x-ray (> 100 keV) imager to measure the spatially-resolved bremsstrahlung emission from energetic electrons slowing in a plastic ablator shell during indirectly driven implosions at the National Ignition Facility. These electrons are generated in laser plasma interactions, and are a source of preheat to the deuterium-tritium fuel that could limit the compressibility required for ignition and burn. Our hard x-ray imaging measurements allow to set an upper limit to the DT fuel preheat, which we find is acceptable in current capsule implosions on the NIF.

  10. Reduction in the intensity of solar X-ray emission in the 2- to 15-keV photon energy range and heating of the solar corona

    SciTech Connect

    Mirzoeva, I. K.

    2013-04-15

    The time profiles of the energy spectra of low-intensity flares and the structure of the thermal background of the soft X-ray component of solar corona emission over the period of January-February, 2003, are investigated using the data of the RHESSI project. A reduction in the intensity of X-ray emission of the solar flares and the corona thermal background in the 2- to 15-keV photon energy range is revealed. The RHESSI data are compared with the data from the Interball-Geotail project. A new mechanism of solar corona heating is proposed on the basis of the results obtained.

  11. Measurement of the x-ray mass attenuation coefficients of gold in the 38-50-keV energy range

    SciTech Connect

    Islam, M T; Rae, N A; Glover, J L; Barnea, Z; de Jonge, M D; Tran, C Q; Wang, J; Chantler, C T

    2010-11-12

    We used synchrotron x rays to measure the x-ray mass attenuation coefficients of gold at nine energies from 38 to 50 keV with accuracies of 0.1%. Our results are much more accurate than previous measurements in this energy range. A comparison of our measurements with calculated mass attenuation coefficients shows that our measurements fall almost exactly midway between the XCOM and FFAST calculated theoretical values, which differ from one another in this energy region by about 4%, even though the range includes no absorption edge. The consistency and accuracy of these measurements open the way to investigations of the x-ray attenuation in the region of the L absorption edge of gold.

  12. Close-packed Arrays of Transition-edge X-ray Microcalorimeters with High Spectral Resolution at 5.9 keV

    NASA Technical Reports Server (NTRS)

    Iyomoto, N.; Bandler, S. R.; Brekosky, R. P.; Brown, A.-D.; Chervenak, J. A.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; Porter, F. S.; Sadleir, J. E.; Smith, S. J.; Figueroa-Feliciano, E.

    2007-01-01

    We present measurements of high fill-factor arrays of superconducting transition-edge x-ray microcalorimeters designed to provide rapid thermalization of the x-ray energy. We designed an x-ray absorber that is cantilevered over the sensitive part of the thermometer itself, making contact only at normal metal-features. With absorbers made of electroplated gold, we have demonstrated an energy resolution between 2.4 and 3.1 eV at 5.9 keV on 13 separate pixels. We have determined the thermal and electrical parameters of the devices throughout the superconducting transition, and, using these parameters, have modeled all aspects of the detector performance.

  13. Improved hard x-ray (50-80 keV) imaging of hohlraum implosion experiments at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Bachmann, B.; Chow, R.; Palmer, N. E.; Hoover, M.; Huffman, E.; Lee, J. J.; Romano, E.; Kumar, C.; Hulbert, R. D.; Albert, F.; Dewald, E. L.; Divol, L.; Hohenberger, M.; Landen, O. L.; Warrick, A.; Döppner, T.

    2016-09-01

    We recently designed, built and commissioned a new pinhole / filter assembly for the equatorial hard x-ray imager (eHXI) at the National Ignition Facility (NIF). In this paper we describe the design and metrology of the new diagnostic as well as the spectral and spatial response of the hard x-ray detector. The new eHXI assembly has improved the photon collection efficiency along with spectral and spatial resolution by making use of 1D imaging channels and various hard x-ray filters. In addition we added a Ross pair filter set for Au K-alpha emission (67-69 keV). The new eHXI design will improve our understanding of the sourcing of hot electrons, generated in laser-plasma-instabilities, along the vertical hohlraum axis. This information is an important input for simulating and eventually limiting the DT fuel preheat in ICF implosions.

  14. Close-packed arrays of transition-edge x-ray microcalorimeters with high spectral resolution at 5.9 keV

    SciTech Connect

    Iyomoto, N.; Bandler, S. R.; Brekosky, R. P.; Brown, A.-D.; Chervenak, J. A.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; Porter, F. S.; Sadleir, J. E.; Smith, S. J.; Figueroa-Feliciano, E.

    2008-01-07

    We present measurements of high fill-factor arrays of superconducting transition-edge x-ray microcalorimeters designed to provide rapid thermalization of the x-ray energy. We designed an x-ray absorber that is cantilevered over the sensitive part of the thermometer itself, making contact only at normal-metal features. With absorbers made of electroplated gold, we have demonstrated an energy resolution between 2.4 and 3.1 eV at 5.9 keV on 13 separate pixels. We have determined the thermal and electrical parameters of the devices throughout the superconducting transition and, using these parameters, have modeled all aspects of the detector performance.

  15. Development of 4.5 keV monochromatic X-ray radiography using the high-energy, picosecond LFEX laser

    NASA Astrophysics Data System (ADS)

    Sawada, H.; Fujioka, S.; Hosoda, T.; Zhang, Z.; Arikawa, Y.; Nagatomo, H.; Nishimura, H.; Sunahara, A.; Theobald, W.; Patel, P. K.; Beg, F. N.

    2016-05-01

    Development of a monochromatic x-ray imaging system using a high-energy short- pulse laser LFEX and a spherical crystal is reported. Irradiation of the intense short-pulse laser produces a flash of 4.51 keV Ti K-alpha x-ray while the spherically bent quartz crystal provides a narrow spectral bandwidth and high spatial resolution. This high spatiotemporal imaging technique was applied for recording 2-D monochromatic x-ray images of laser-driven Fast Ignition targets. The results show a sufficiently high spatial resolution to characterize the implosion core, suggesting that the core information extracted from the radiograph images can be used to benchmark a 2-D radiation-hydrodynamic code for accurate hydrodynamic modelling and optimization of FI fuel assembly in the asymmetrical implosion.

  16. Absolute measurements of short-pulse, long-pulse, and capsule-implosion backlighter sources at x-ray energies greater than 10 keV

    NASA Astrophysics Data System (ADS)

    Maddox, Brian

    2010-11-01

    Laser-generated x-ray backlighters with x-ray energies > 10 keV are becoming essential diagnostic tools for many high energy density experiments. Examples include studies of high areal density cores for ignition designs, mid- to high-Z capsule implosion experiments, absolute equation of state experiments, dynamic diffraction under extreme pressures, and the study of material strength. Significant progress has been made recently using short pulse lasers, coupled to metal foil targets [1], and imploding capsules for producing high energy backlighters. Measuring the absolute x-ray flux and spectra from these sources is required for quantitative analysis of experimental data and for the design and planning of future experiments. We have performed an extensive series of experiments to measure the absolute x-ray flux and spectra on the Titan, Omega, Omega-EP, and NIF laser systems, employing single-photon-counting detectors, crystal spectrometers, and multichannel differential filtering (Ross-pair) and filter stack bremsstrahlung spectrometers. Calibrations were performed on these instruments [2] enabling absolute measurements of backlighter spectra to be made from 10 keV to 1 MeV. Various backlighter techniques that generate either quasi-monochromatic sources or broadband continuum sources will be presented and compared. For Molybdenum Kα backlighters at x-ray energy of ˜17 keV we measure conversion efficiencies of 1.3x10-4 using 1 μm wavelength short-pulse lasers at an intensity of ˜1x10^17 W/cm^2. This is a factor of ˜2 high than using 0.3 μm wavelength long-pulse lasers at an intensity of ˜1x10^16 W/cm^2. Other types of backlighter targets include capsule implosion backlighters that can generate a very bright ``white-light'' continuum x-ray source and high-Z gas filled capsules that generate a quasi-line-source of x rays. We will present and compare the absolute laser energy to x-ray conversion efficiencies for these different backlighter techniques and give

  17. Bragg diffraction using a 100ps 17.5 keV x-ray backlighter and the Bragg Diffraction Imager

    SciTech Connect

    Maddox, B R; Park, H; Hawreliak, J; Comley, A; Elsholz, A; Van Maren, R; Remington, B A; Wark, J

    2010-05-13

    A new diagnostic for measuring Bragg diffraction from a laser-driven crystal using a 100ps 17.5 kV x-ray backlighter source is designed and tested successfully at the Omega EP laser facility on static Mo and Ta single crystal samples using a Mo Ka backlighter. The Bragg Diffraction Imager (BDI) consists of a heavily shielded enclosure and a precisely positioned beam block, attached to the main enclosure by an Aluminum arm. Image plate is used as the x-ray detector. The diffraction lines from Mo and Ta <222> planes are clearly detected with a high signal-to-noise using the 17.5 keV and 19.6 keV characteristic lines generated by a petawatt-driven Mo foil. This technique will be applied to shock and ramp-loaded single crystals on the Omega EP laser. Pulsed x-ray diffraction of shock- and ramp-compressed materials is an exciting new technique that can give insight into the dynamic behavior of materials at ultra-high pressure not achievable by any other means to date. X-ray diffraction can be used to determine not only the phase and compression of the lattice at high pressure, but by probing the lattice compression on a timescale equal to the 3D relaxation time of the material, information about dislocation mechanics, including dislocation multiplication rate and velocity, can also be derived. Both Bragg, or reflection, and Laue, or transmission, diffraction have been developed for shock-loaded low-Z crystalline structures such as Cu, Fe, and Si using nano-second scale low-energy implosion and He-{alpha} x-ray backlighters. However, higher-Z materials require higher x-ray probe energies to penetrate the samples, such as in Laue, or probe deep enough into the target, as in the case of Bragg diffraction. Petawatt laser-generated K{alpha} x-ray backlighters have been developed for use in high-energy radiography of dense targets and other HED applications requiring picosecond-scale burst of hard x-rays. While short pulse lasers are very efficient at producing high-energy x-rays

  18. Performance of a reflection-type polarizer by use of muscovite mica crystal in the soft x-ray region of 1 keV

    SciTech Connect

    Imazono, Takashi; Ishino, Masahiko; Koike, Masato; Kimura, Hiroaki; Hirono, Toko; Sano, Kazuo

    2005-02-01

    To develop the polarizer functioning in the soft x-ray region of 1 keV, the polarization performance of muscovite mica has been investigated theoretically with a simulation code based on dynamical theory. As the result of calculation, muscovite mica is found to be a promising candidate as a reflection-type polarizer with the reflectivity for s polarization of 0.03 at approximately 0.9 keV at the angle of incidence of 45 deg. In order to verify the polarization performance of muscovite mica experimentally, a symmetric Bragg reflection measurement of muscovite mica(002) was carried out using a linearly polarized undulator radiation. As a result, the maximum reflectivity for s polarization and the extinction ratio of muscovite mica were approximately 0.018 and 200 at 878 eV, respectively. This result indicates that muscovite mica works as a practical polarizer in the soft x-ray region.

  19. Spatial coherence properties of a compact and ultrafast laser-produced plasma keV x-ray source

    SciTech Connect

    Boschetto, D.; Mourou, G.; Rousse, A.; Mordovanakis, A.; Hou, Bixue; Nees, J.; Kumah, D.; Clarke, R.

    2007-01-01

    The authors use Fresnel diffraction from knife-edges to demonstrate the spatial coherence of a tabletop ultrafast x-ray source produced by laser-plasma interaction. Spatial coherence is achieved in the far field by producing micrometer-scale x-ray spot dimensions. The results show an x-ray source size of 6 {mu}m that leads to a transversal coherence length of 20 {mu}m at a distance of 60 cm from the source. Moreover, they show that the source size is limited by the spatial spread of the absorbed laser energy.

  20. Hard x-ray (>100 keV) imager to measure hot electron preheat for indirectly driven capsule implosions on the NIF.

    PubMed

    Döppner, T; Dewald, E L; Divol, L; Thomas, C A; Burns, S; Celliers, P M; Izumi, N; Kline, J L; LaCaille, G; McNaney, J M; Prasad, R R; Robey, H F; Glenzer, S H; Landen, O L

    2012-10-01

    We have fielded a hard x-ray (>100 keV) imager with high aspect ratio pinholes to measure the spatially resolved bremsstrahlung emission from energetic electrons slowing in a plastic ablator shell during indirectly driven implosions at the National Ignition Facility. These electrons are generated in laser plasma interactions and are a source of preheat to the deuterium-tritium fuel. First measurements show that hot electron preheat does not limit obtaining the fuel areal densities required for ignition and burn.

  1. Hard x-ray (>100 keV) imager to measure hot electron preheat for indirectly driven capsule implosions on the NIFa)

    NASA Astrophysics Data System (ADS)

    Döppner, T.; Dewald, E. L.; Divol, L.; Thomas, C. A.; Burns, S.; Celliers, P. M.; Izumi, N.; Kline, J. L.; LaCaille, G.; McNaney, J. M.; Prasad, R. R.; Robey, H. F.; Glenzer, S. H.; Landen, O. L.

    2012-10-01

    We have fielded a hard x-ray (>100 keV) imager with high aspect ratio pinholes to measure the spatially resolved bremsstrahlung emission from energetic electrons slowing in a plastic ablator shell during indirectly driven implosions at the National Ignition Facility. These electrons are generated in laser plasma interactions and are a source of preheat to the deuterium-tritium fuel. First measurements show that hot electron preheat does not limit obtaining the fuel areal densities required for ignition and burn.

  2. Generalized spectra model for 1-100 keV X-ray emission from Cygnus X-3 based on EXOSAT data

    NASA Astrophysics Data System (ADS)

    Rajeev, M. R.; Chitnis, V. R.; Rao, A. R.; Singh, K. P.

    1994-03-01

    The X-ray spectrum of the highly variable X-ray source, Cyg X-3, has so far defied a consistent explanation based on simple emission models. We have extracted two of the best data sets from the EXOSAT archives and performed a detailed spectral analysis for its 'high' and 'low' states. The analysis of the less frequently occurring 'low' state is presented for the first time for the EXOSAT data. Combining data from the medium-energy argon and xenon detectors and the gas scintillation proportional counter, with a better energy resolution, and carrying out a simultaneous fit, we find that the X-ray continuum in both the 'high' and 'low' state can be explained as a sum of a blackbody emission and emission from a Comptonized plasma cloud with a common absorption. The Comptonization model is sufficient as well as preferable to many other models, in explaining the observed X-ray emission up to 100 keV. In addition, we find an emission-line feature due to ionized iron (Fe XX-Fe XXVI) and absorption features due to cold iron (Fe I) as well as highly ionized iron (Fe XXV-Fe XXXVI). The presence of absorption due to Fe I has been shown for the first time here. This is the simplest and the most generalized spectral model for the 1-100 keV X-ray emission from Cyg X-3, to date. We find that the blackbody temperature derived in the 'high ' state (1.47 keV) is much lower than that derived for the 'low' state (2.40 keV) and is associated with an increase in the blackbodly radius in the 'high' state. The ratio of blackbody flux to the total flux is approximately 0.61 in the 'high' state and approximately 0.44 in the 'low' state. The Fe line energy is significantly higher in the 'high' state (approximately 6.95 keV) compared to the 'low' state (approximately 6.56 keV). The Comptonization parameter changes from 2 to approximately 15 in going from the 'high' to the 'low' state implying a highly saturated Comptonization in the 'low' state. The Comptonized region has high electron

  3. Atomic inner-shell laser at 1.5-ångström wavelength pumped by an X-ray free-electron laser

    NASA Astrophysics Data System (ADS)

    Yoneda, Hitoki; Inubushi, Yuichi; Nagamine, Kazunori; Michine, Yurina; Ohashi, Haruhiko; Yumoto, Hirokatsu; Yamauchi, Kazuto; Mimura, Hidekazu; Kitamura, Hikaru; Katayama, Tetsuo; Ishikawa, Tetsuya; Yabashi, Makina

    2015-08-01

    Since the invention of the first lasers in the visible-light region, research has aimed to produce short-wavelength lasers that generate coherent X-rays; the shorter the wavelength, the better the imaging resolution of the laser and the shorter the pulse duration, leading to better temporal resolution in probe measurements. Recently, free-electron lasers based on self-amplified spontaneous emission have made it possible to generate a hard-X-ray laser (that is, the photon energy is of the order of ten kiloelectronvolts) in an ångström-wavelength regime, enabling advances in fields from ultrafast X-ray spectrosopy to X-ray quantum optics. An atomic laser based on neon atoms and pumped by a soft-X-ray (that is, a photon energy of less than one kiloelectronvolt) free-electron laser has been achieved at a wavelength of 14 nanometres. Here, we use a copper target and report a hard-X-ray inner-shell atomic laser operating at a wavelength of 1.5 ångströms. X-ray free-electron laser pulses with an intensity of about 1019 watts per square centimetre tuned to the copper K-absorption edge produced sufficient population inversion to generate strong amplified spontaneous emission on the copper Kα lines. Furthermore, we operated the X-ray free-electron laser source in a two-colour mode, with one colour tuned for pumping and the other for the seed (starting) light for the laser.

  4. Atomic inner-shell laser at 1.5-ångström wavelength pumped by an X-ray free-electron laser.

    PubMed

    Yoneda, Hitoki; Inubushi, Yuichi; Nagamine, Kazunori; Michine, Yurina; Ohashi, Haruhiko; Yumoto, Hirokatsu; Yamauchi, Kazuto; Mimura, Hidekazu; Kitamura, Hikaru; Katayama, Tetsuo; Ishikawa, Tetsuya; Yabashi, Makina

    2015-08-27

    Since the invention of the first lasers in the visible-light region, research has aimed to produce short-wavelength lasers that generate coherent X-rays; the shorter the wavelength, the better the imaging resolution of the laser and the shorter the pulse duration, leading to better temporal resolution in probe measurements. Recently, free-electron lasers based on self-amplified spontaneous emission have made it possible to generate a hard-X-ray laser (that is, the photon energy is of the order of ten kiloelectronvolts) in an ångström-wavelength regime, enabling advances in fields from ultrafast X-ray spectrosopy to X-ray quantum optics. An atomic laser based on neon atoms and pumped by a soft-X-ray (that is, a photon energy of less than one kiloelectronvolt) free-electron laser has been achieved at a wavelength of 14 nanometres. Here, we use a copper target and report a hard-X-ray inner-shell atomic laser operating at a wavelength of 1.5 ångströms. X-ray free-electron laser pulses with an intensity of about 10(19) watts per square centimetre tuned to the copper K-absorption edge produced sufficient population inversion to generate strong amplified spontaneous emission on the copper Kα lines. Furthermore, we operated the X-ray free-electron laser source in a two-colour mode, with one colour tuned for pumping and the other for the seed (starting) light for the laser.

  5. Measurement of high-energy (10–60 keV) x-ray spectral line widths with eV accuracy

    SciTech Connect

    Seely, J. F. Feldman, U.; Glover, J. L.; Hudson, L. T.; Ralchenko, Y.; Henins, Albert; Pereira, N.; Di Stefano, C. A.; Kuranz, C. C.; Drake, R. P.; Chen, Hui; Williams, G. J.; Park, J.

    2014-11-15

    A high resolution crystal spectrometer utilizing a crystal in transmission geometry has been developed and experimentally optimized to measure the widths of emission lines in the 10–60 keV energy range with eV accuracy. The spectrometer achieves high spectral resolution by utilizing crystal planes with small lattice spacings (down to 2d = 0.099 nm), a large crystal bending radius and Rowland circle diameter (965 mm), and an image plate detector with high spatial resolution (60 μm in the case of the Fuji TR image plate). High resolution W L-shell and K-shell laboratory test spectra in the 10–60 keV range and Ho K-shell spectra near 47 keV recorded at the LLNL Titan laser facility are presented. The Ho K-shell spectra are the highest resolution hard x-ray spectra recorded from a solid target irradiated by a high-intensity laser.

  6. Saturated ablation in metal hydrides and acceleration of protons and deuterons to keV energies with a soft-x-ray laser

    NASA Astrophysics Data System (ADS)

    Andreasson, J.; Iwan, B.; Andrejczuk, A.; Abreu, E.; Bergh, M.; Caleman, C.; Nelson, A. J.; Bajt, S.; Chalupsky, J.; Chapman, H. N.; Fäustlin, R. R.; Hajkova, V.; Heimann, P. A.; Hjörvarsson, B.; Juha, L.; Klinger, D.; Krzywinski, J.; Nagler, B.; Pálsson, G. K.; Singer, W.; Seibert, M. M.; Sobierajski, R.; Toleikis, S.; Tschentscher, T.; Vinko, S. M.; Lee, R. W.; Hajdu, J.; Tîmneanu, N.

    2011-01-01

    Studies of materials under extreme conditions have relevance to a broad area of research, including planetary physics, fusion research, materials science, and structural biology with x-ray lasers. We study such extreme conditions and experimentally probe the interaction between ultrashort soft x-ray pulses and solid targets (metals and their deuterides) at the FLASH free-electron laser where power densities exceeding 1017 W/cm2 were reached. Time-of-flight ion spectrometry and crater analysis were used to characterize the interaction. The results show the onset of saturation in the ablation process at power densities above 1016 W/cm2. This effect can be linked to a transiently induced x-ray transparency in the solid by the femtosecond x-ray pulse at high power densities. The measured kinetic energies of protons and deuterons ejected from the surface reach several keV and concur with predictions from plasma-expansion models. Simulations of the interactions were performed with a nonlocal thermodynamic equilibrium code with radiation transfer. These calculations return critical depths similar to the observed crater depths and capture the transient surface transparency at higher power densities.

  7. Saturated ablation in metal hydrides and acceleration of protons and deuterons to keV energies with a soft-x-ray laser.

    PubMed

    Andreasson, J; Iwan, B; Andrejczuk, A; Abreu, E; Bergh, M; Caleman, C; Nelson, A J; Bajt, S; Chalupsky, J; Chapman, H N; Fäustlin, R R; Hajkova, V; Heimann, P A; Hjörvarsson, B; Juha, L; Klinger, D; Krzywinski, J; Nagler, B; Pálsson, G K; Singer, W; Seibert, M M; Sobierajski, R; Toleikis, S; Tschentscher, T; Vinko, S M; Lee, R W; Hajdu, J; Tîmneanu, N

    2011-01-01

    Studies of materials under extreme conditions have relevance to a broad area of research, including planetary physics, fusion research, materials science, and structural biology with x-ray lasers. We study such extreme conditions and experimentally probe the interaction between ultrashort soft x-ray pulses and solid targets (metals and their deuterides) at the FLASH free-electron laser where power densities exceeding 10(17) W/cm(2) were reached. Time-of-flight ion spectrometry and crater analysis were used to characterize the interaction. The results show the onset of saturation in the ablation process at power densities above 10(16) W/cm(2). This effect can be linked to a transiently induced x-ray transparency in the solid by the femtosecond x-ray pulse at high power densities. The measured kinetic energies of protons and deuterons ejected from the surface reach several keV and concur with predictions from plasma-expansion models. Simulations of the interactions were performed with a nonlocal thermodynamic equilibrium code with radiation transfer. These calculations return critical depths similar to the observed crater depths and capture the transient surface transparency at higher power densities.

  8. Non-abelian dark matter solutions for Galactic gamma-ray excess and Perseus 3.5 keV X-ray line

    SciTech Connect

    Cheung, Kingman; Huang, Wei-Chih; Tsai, Yue-Lin Sming

    2015-05-26

    We attempt to explain simultaneously the Galactic center gamma-ray excess and the 3.5 keV X-ray line from the Perseus cluster based on a class of non-abelian SU(2) DM models, in which the dark matter and an excited state comprise a “dark” SU(2) doublet. The non-abelian group kinetically mixes with the standard model gauge group via dimensions-5 operators. The dark matter particles annihilate into standard model fermions, followed by fragmentation and bremsstrahlung, and thus producing a continuous spectrum of gamma-rays. On the other hand, the dark matter particles can annihilate into a pair of excited states, each of which decays back into the dark matter particle and an X-ray photon, which has an energy equal to the mass difference between the dark matter and the excited state, which is set to be 3.5 keV. The large hierarchy between the required X-ray and γ-ray annihilation cross-sections can be achieved by a very small kinetic mixing between the SM and dark sector, which effectively suppresses the annihilation into the standard model fermions but not into the excited state.

  9. Measurement of angular dependence of M X-ray production cross-sections in Re, Bi and U at 5.96 keV

    NASA Astrophysics Data System (ADS)

    Apaydın, G.; Tıraşoǧlu, E.; Söǧüt, Ã.-.

    2008-03-01

    The M X-ray production differential cross sections in Re, Bi and U elements have been measured at the 5.96 keV incident photon energy in an angular range 135° 155°. The measurements were performed using a 55Fe source and a Si(Li) detector. The present results contradict the predictions of Cooper and Zare [ Atomic Collision Processes, Gordon and Breach, New York (1969)] and experimental results of Kumar et al. [J. Phys. B: At. Mol. Opt. 34, 613 (2001)]. that, after photoionization of inner shells, the vacancy state has equal population of magnetic substates and the subsequent X-ray emission is isotropic, but confirm the predictions of the calculations of Flügge et al. [Phys. Rev. Lett. 29, 7 (1972)] and experimental results of Sharma and Allawadhi [J. Phys. B: At. Mol. Opt. 32, 2343 (1999)] and Ertugrul [Nucl. Instrum. Meth. B 119, 345 (1996)]. Total M X-ray production cross sections from the decay at the 5.96 keV photon energies are found to be in good agreement with the calculated theoretical results using the theoretical values of M shell photoionization cross section.

  10. Validation of modelled imaging plates sensitivity to 1-100 keV x-rays and spatial resolution characterisation for diagnostics for the "PETawatt Aquitaine Laser"

    NASA Astrophysics Data System (ADS)

    Boutoux, G.; Batani, D.; Burgy, F.; Ducret, J.-E.; Forestier-Colleoni, P.; Hulin, S.; Rabhi, N.; Duval, A.; Lecherbourg, L.; Reverdin, C.; Jakubowska, K.; Szabo, C. I.; Bastiani-Ceccotti, S.; Consoli, F.; Curcio, A.; De Angelis, R.; Ingenito, F.; Baggio, J.; Raffestin, D.

    2016-04-01

    Thanks to their high dynamic range and ability to withstand electromagnetic pulse, imaging plates (IPs) are commonly used as passive detectors in laser-plasma experiments. In the framework of the development of the diagnostics for the Petawatt Aquitaine Laser facility, we present an absolute calibration and spatial resolution study of five different available types of IP (namely, MS-SR-TR-MP-ND) performed by using laser-induced K-shell X-rays emitted by a solid silver target irradiated by the laser ECLIPSE at CEntre Lasers Intenses et Applications. In addition, IP sensitivity measurements were performed with a 160 kV X-ray generator at CEA DAM DIF, where the absolute response of IP SR and TR has been calibrated to X-rays in the energy range 8-75 keV with uncertainties of about 15%. Finally, the response functions have been modeled in Monte Carlo GEANT4 simulations in order to reproduce experimental data. Simulations enable extrapolation of the IP response functions to photon energies from 1 keV to 1 GeV, of interest, e.g., for laser-driven radiography.

  11. Non-abelian dark matter solutions for Galactic gamma-ray excess and Perseus 3.5 keV X-ray line

    SciTech Connect

    Cheung, Kingman; Huang, Wei-Chih; Tsai, Yue-Lin Sming E-mail: wei-chih.huang@ucl.ac.uk

    2015-05-01

    We attempt to explain simultaneously the Galactic center gamma-ray excess and the 3.5 keV X-ray line from the Perseus cluster based on a class of non-abelian SU(2) DM models, in which the dark matter and an excited state comprise a ''dark'' SU(2) doublet. The non-abelian group kinetically mixes with the standard model gauge group via dimensions-5 operators. The dark matter particles annihilate into standard model fermions, followed by fragmentation and bremsstrahlung, and thus producing a continuous spectrum of gamma-rays. On the other hand, the dark matter particles can annihilate into a pair of excited states, each of which decays back into the dark matter particle and an X-ray photon, which has an energy equal to the mass difference between the dark matter and the excited state, which is set to be 3.5 keV. The large hierarchy between the required X-ray and γ-ray annihilation cross-sections can be achieved by a very small kinetic mixing between the SM and dark sector, which effectively suppresses the annihilation into the standard model fermions but not into the excited state.

  12. Development and Characterization of a 16.3 keV X-Ray Source at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Fournier, K. B.; Barrios, M. A.; Schneider, M. B.; Khan, S.; Chen, H.; Coppari, F.; Rygg, R.; Hohenberger, M.; Albert, F.; Moody, J.; Ralph, J.; Kemp, G. E.; Regan, S. P.

    2014-10-01

    X-ray sources at the National Ignition Facility are needed for radiography of in-flight capsules in inertial confinement fusion experiments and for diffraction studies of materials at high pressures. In the former case, we want to optimize signal to noise and signal over background ratios for the radiograph, in the latter case, we want to minimize high-energy emission from the backlighter that creates background on the diffraction data. Four interleaved shots at NIF were taken in one day, with laser irradiances on a Zr backlighter target ranging from 5 to 14 × 1015 W/cm2. Two shots were for source optimization as a function of laser irradiance. X-ray fluxes were measured with the time-resolved NIF X-ray Spectrometer (NXS) and the DANTE array of calibrated, filtered diodes. Two shots were optimized to make backscatter measurements with the FABS and NBI optical power systems. The backscatter levels are investigated to look for correlation with hot electron populations inferred from high-energy x rays measured with the FFLEX broadband spectrometer. Results from all shots are presented and compared with models. Work performed under the auspices of the U.S. DOE by LLNL under Contract No. DE-AC52-07NA27344.

  13. Bragg diffraction using a 100 ps 17.5 keV x-ray backlighter and the Bragg diffraction imagera)

    NASA Astrophysics Data System (ADS)

    Maddox, B. R.; Park, H.-S.; Hawreliak, J.; Elsholz, A.; Van Maren, R.; Remington, B. A.; Comley, A.; Wark, J. S.

    2010-10-01

    A new diagnostic for measuring Bragg diffraction of petawatt-generated high-energy x rays off a laser-compressed crystal was designed and tested successfully at the Omega EP laser facility on static Mo and Ta (111) oriented single crystal samples using a 17.5 keV Mo Kα backlighter. The Bragg diffraction imager consists of a heavily shielded enclosure and a precisely positioned beam block attached to the enclosure by an aluminum arm. Fuji image plates are used as the x-ray detectors. The diffraction from Mo and Ta (222) crystal planes was clearly detected with a high signal-to-noise. This technique will be applied to shock- and quasi-isentropically loaded single crystals on the Omega EP laser.

  14. X-ray production cross sections at incident photon energies across the M{sub i} (i=1-5) edges of {sub 90}Th

    SciTech Connect

    Kaur, Rajnish; Shehla,; Kumar, Anil; Puri, Sanjiv

    2015-08-28

    The X-ray production cross sections for the M{sub k} (k= ξ, δ, α, β, ζ, γ, m{sub 1}, m{sub 2}) groups of X-rays have been evaluated at incident photon energies across the M{sub i} (i =1-5) edges of {sub 90}Th using the relativistic Hartree-Fock-Slater model based photoionisation cross sections and recently reported values of the M-shell X-ray emission rates, fluorescence and Coster Kronig yields. Further, the energies of the prominent (M{sub i}-S{sub j}) (S{sub j}=N{sub j}, O{sub j} and i =1-3, j =1-7) resonant Raman scattered (RRS) peaks at different incident photon energies have also been evaluated using the neutral-atom electron binding energies (E{sub sj}) based on the relaxed orbital relativistic Hartree-Fock-Slater model.

  15. Zernike-type phase contrast X-ray microscopy at 4 keV photon energy with 60 nm resolution

    NASA Astrophysics Data System (ADS)

    Neuhäusler, Ulrich; Schneider, Gerd

    2004-05-01

    X-ray microscopy in the multi-keV photon energy range offers unique possibilities to study thick dense samples with high spatial resolution. When employing a high numerical aperture (N.A.) condenser zone plate sample illumination in combination with a high resolution micro zone plate objective lens, a spatial resolution of currently 60 nm is achieved. Since the absorption becomes smaller with increasing photon energy, phase contrast imaging overcomes the limitation for imaging weakly absorbing structures in amplitude contrast mode. We report here on X-ray microscopy of advanced microelectronic devices imaged in Zernike phase contrast mode. While the amplitude contrast between copper and silicon dioxide in these samples is only 7 %, negative as well as positive phase contrast were demonstrated with a contrast of 40 % and 45 %, respectively.

  16. YIELDS OF IONS AND EXCITED STATES IN NONPOLAR LIQUIDS EXPOSED TO X-RAYS OF 1 TO 30 KEV ENERGY

    SciTech Connect

    HOLROYD,R.A.

    1999-08-18

    When x-rays from a synchrotron source are absorbed in a liquid, the x-ray energy (E{sub x}) is converted by the photoelectric effect into the kinetic energy of the electrons released. For hydrocarbons, absorption by the K-electrons of carbon dominates. Thus the energy of the photoelectron (E{sub pe}) is E{sub x}-E{sub b}, where E{sub b} is the K-shell binding energy of carbon. Additional electrons with energy equal to E{sub b} is released in the Auger process that fills the hole in the K-shell. These energetic electrons will produce many ionizations, excitations and products. The consequences of the high density of ionizations and excitations along the track of the photoelectron and special effects near the K-edge are examined here.

  17. New route to synthesis of unexpected 1,5-bis(1-benzofuran-2-yl) pentane-1,5-dione derivatives: Their structure determination with spectroscopic and X-ray methods

    NASA Astrophysics Data System (ADS)

    Coskun, Demet

    2017-02-01

    The new 1,5-bis(1-benzofuran-2-yl)-1,5-dione derivatives were obtained by the reaction of 2-acetyl benzofuran derivatives (1a-b) and suitable aromatic aldehyde derivatives (2-pyridinecarboxaldehyde, 2-fluoro and 3-fluorobenzaldehyde) in the presence of sodium hydroxide as the base. Importantly, a new process was explored for the synthesis of new bis benzofuran dione derivatives. The structures of the compounds was identified with infrared (IR), 1H-NMR, 13C-NMR, HSQC and HMBC spectroscopic methods and elemental analysis. A representative X-ray crystallographic analysis of 3c was given, and its X-ray data were discussed in detail.

  18. Mercuric iodide X-ray camera

    NASA Astrophysics Data System (ADS)

    Patt, B. E.; del Duca, A.; Dolin, R.; Ortale, C.

    1986-02-01

    A prototype X-ray camera utilizing a 1.5- by 1.5-in., 1024-element, thin mercuric iodide detector array has been tested and evaluated. The microprocessor-based camera is portable and operates at room temperature. Events can be localized within 1-2 mm at energies below 60 keV and within 5-6 mm at energies on the order of 600 keV.

  19. Measurement of the x-ray mass energy-absorption coefficient of air using 3 keV to 10 keV synchrotron radiation.

    PubMed

    Büermann, L; Grosswendt, B; Kramer, H-M; Selbach, H-J; Gerlach, M; Hoffmann, M; Krumrey, M

    2006-10-21

    For the first time absolute photon mass energy-absorption coefficients of air in the energy range 3 keV to 10 keV have been measured with relative standard uncertainties less than 1%, significantly smaller than those of up to 5% assumed hitherto for calculated data. Monochromatized synchrotron radiation was used to measure both the total radiant energy by means of silicon photodiodes calibrated against a cryogenic radiometer and the fraction of radiant energy that is deposited in dry air by means of a free air ionization chamber. The measured ionization charge was converted into energy absorbed in air by calculated effective W values of photons as a function of their energy based on new measurements of the W values in dry air for electron kinetic energies between 1 keV and 7 keV, also presented in this work. The measured absorption coefficients were compared with state-of-the art calculations and found to agree within 0.7% with data calculated earlier by Hubbell at energies above 4 keV but were found to differ by values up to 2.1% at 10 keV from more recent calculations of Seltzer.

  20. Continuous emission of keV x-rays from low-pressure, low-field, low-power-RF plasma columns and significance to mirror confinement

    NASA Astrophysics Data System (ADS)

    Jandovitz, P.; Swanson, C.; Glasser, A.; Cohen, S. A.

    2016-10-01

    We report on observations of a continuous stream of 0.8-6.0 keV x-rays emitted from cool (bulk Te 4 eV), tenuous (ne 1010 cm-3), 4-cm-diameter hydrogen or argon plasma columns generated in an axisymmetric, high-mirror-ratio, tandem mirror machine heated in one end cell by an external RF (27 MHz) antenna operating at low power, 20-600 W. The continuous emission of x-rays is evidence of the steady production of energetic electrons. The source appears to be ion-induced secondary electron emission from a floating carbon cup in the vacuum system about 2 cm from the RF antenna. The cup is charged to a high negative potential, perhaps by other secondary electrons emitted from the self-biased Pyrex vessel under the antenna. X-ray emission in the central cell increases as the mirror ratio increases, an effect we attribute to increased trapping of passing particles due to non-adiabatic scattering at the midplane of the central cell. This work was supported, in part, by DOE Contract Number DE-AC02-09CH11466.

  1. An in-vacuum x-ray diffraction microscope for use in the 0.7-2.9 keV range

    SciTech Connect

    Vine, D. J.; Williams, G. J.; Clark, J. N.; Putkunz, C. T.; Abbey, B.; Nugent, K. A.; Pfeifer, M. A.; Legnini, D.; Roehrig, C.; Wrobel, E.; McNulty, I.; Huwald, E.; Riessen, G. van; Peele, A. G.; Beetz, T.; Irwin, J.; Feser, M.; Hornberger, B.

    2012-03-15

    A dedicated in-vacuum coherent x-ray diffraction microscope was installed at the 2-ID-B beamline of the Advanced Photon Source for use with 0.7-2.9 keV x-rays. The instrument can accommodate three common implementations of diffractive imaging; plane wave illumination; defocused-probe (Fresnel diffractive imaging) and scanning (ptychography) using either a pinhole, focused or defocused probe. The microscope design includes active feedback to limit motion of the optics with respect to the sample. Upper bounds on the relative optics-to-sample displacement have been measured to be 5.8 nm(v) and 4.4 nm(h) rms/h using capacitance micrometry and 27 nm/h using x-ray point projection imaging. The stability of the measurement platform and in-vacuum operation allows for long exposure times, high signal-to-noise and large dynamic range two-dimensional intensity measurements to be acquired. Finally, we illustrate the microscope's stability with a recent experimental result.

  2. A search for a keV signature of radiatively decaying dark matter with Suzaku XIS observations of the X-ray diffuse background

    NASA Astrophysics Data System (ADS)

    Sekiya, Norio; Yamasaki, Noriko Y.; Mitsuda, Kazuhisa

    2016-06-01

    We performed the deepest search for an X-ray emission line at between 0.5 and 7 keV from non-baryonic dark matter by the Suzaku XIS. Dark matter associated with the Milky Way was selected as the target to obtain the best signal-to-noise ratio. From the Suzaku archive, we selected 187 data sets of blank-sky regions that were dominated by the X-ray diffuse background. The data sets were from 2005 to 2013. The instrumental responses were adjusted by multiple calibration data sets of the Crab Nebula. We also improved the technique of subtracting lines of instrumental origin. These energy spectra were well described by X-ray emission due to charge exchange around the Solar System, hot plasma in and around the Milky Way, and the superposition of extra-galactic point sources. A signal of a narrow emission-line was searched for, and the significance of detection was evaluated in consideration of the blind search method (the Look-elsewhere Effect). Our results exhibited no significant detection of an emission line feature from dark matter. The 3 σ upper limit for the emission line intensity between 1 and 7 keV was ˜ 10-2 photons cm-2 s-1 sr-1, or ˜ 5 × 10-4 photons cm-2 s-1 sr-1 per M⊙ pc-2, assuming a dark matter distribution with the Galactic rotation curve. The parameters of sterile neutrinos as candidates of dark-matter were also constrained.

  3. The Nature of Hard X-Ray (3–24 keV) Detected Luminous Infrared Galaxies in the COSMOS Field

    NASA Astrophysics Data System (ADS)

    Matsuoka, Kenta; Ueda, Yoshihiro

    2017-04-01

    We investigate the nature of far-infrared (70 μm) and hard X-ray (3–24 keV) selected galaxies in the COSMOS field detected with both Spitzer and the Nuclear Spectroscopic Telescope Array (NuSTAR). By matching the Spitzer-COSMOS catalog with the NuSTAR-COSMOS catalog, we obtain a sample consisting of a hyperluminous infrared galaxy with {log}({L}{IR}/{L}ȯ )≥slant 13, 12 ultraluminous infrared galaxies with 12≤slant {log} ({L}{IR}/{L}ȯ )≤slant 13, and 10 luminous infrared galaxies with 11≤slant {log} ({L}{IR}/{L}ȯ )≤slant 12, i.e., 23 Hy/U/LIRGs in total. Using their X-ray hardness ratios, we find that 12 sources are obscured active galactic nuclei (AGNs) with absorption column densities of {N}{{H}}> {10}22 cm‑2, including several Compton-thick ({N}{{H}}∼ {10}24 cm‑2) AGN candidates. On the basis of the infrared (60 μm) and intrinsic X-ray luminosities, we examine the relation between star formation (SF) and AGN luminosities of the 23 Hy/U/LIRGs. We find that the correlation is similar to that of the optically selected AGNs reported by Netzer, whereas local, far-infrared selected U/LIRGs show higher SF-to-AGN luminosity ratios than the average of our sample. This result suggests that our Hy/U/LIRGs detected both with Spitzer and NuSTAR are likely situated in a transition epoch between AGN-rising and cold-gas diminishing phases in SF-AGN evolutional sequences. The nature of a Compton-thick AGN candidate newly detected above 8 keV with NuSTAR (ID 245 in Civano et al.) is briefly discussed.

  4. 2-20 ns interframe time 2-frame 6.151 keV x-ray imaging on the recently upgraded Z Accelerator: A progress report

    NASA Astrophysics Data System (ADS)

    Bennett, G. R.; Smith, I. C.; Shores, J. E.; Sinars, D. B.; Robertson, G.; Atherton, B. W.; Jones, M. C.; Porter, J. L.

    2008-10-01

    When used for the production of an x-ray imaging backlighter source on Sandia National Laboratories' recently upgraded 26MA Z Accelerator, the terawatt-class, multikilojoule, 526.57nm Z-Beamlet laser (ZBL) [P. K. Rambo et al., Appl. Opt. 44, 2421 (2005)], in conjunction with the 6.151keV (1s2-1s2p triplet line of He-like Mn) curved-crystal imager [D. B. Sinars et al., Rev. Sci. Instrum. 75, 3672 (2004); G. R. Bennett et al., Rev. Sci. Instrum. 77, 10E322 (2006)], is capable of providing a high quality x radiograph per Z shot for inertial confinement fusion (ICF), complex hydrodynamics, and other high-energy-density physics experiments. For example, this diagnostic has recently afforded microgram-scale mass perturbation measurements on an imploding ignition-scale 1mg ICF capsule [G. R. Bennett et al., Phys. Rev. Lett. 99, 205003 (2007)], where the perturbation was initiated by a surrogate deuterium-tritium (DT) fuel fill tube. Using an angle-time multiplexing technique, ZBL now has the capability to provide two spatially and temporally separated foci in the Z chamber, allowing "two-frame" imaging to be performed, with an interframe time range of 2-20ns. This multiplexing technique allows the full area of the four-pass amplifiers to be used for the two pulses, rather than split the amplifiers effectively into two rectangular sections, with one leg delayed with respect to the other, which would otherwise double the power imposed onto the various optics thereby halving the damage threshold, for the same irradiance on target. The 6.151keV two frame technique has recently been used to image imploding wire arrays, using a 7.3ns interframe time. The diagnostic will soon be converted to operate with p-rather than s-polarized laser light for enhanced laser absorption in the Mn foil, plus other changes (e.g., operation at the possibly brighter 6.181keV Mn 1s2-1s2p singlet line), to increase x-ray yields. Also, a highly sensitive inline multiframe ultrafast (1ns gate time

  5. 2-20 ns interframe time 2-frame 6.151 keV x-ray imaging on the recently upgraded Z Accelerator: a progress report.

    PubMed

    Bennett, G R; Smith, I C; Shores, J E; Sinars, D B; Robertson, G; Atherton, B W; Jones, M C; Porter, J L

    2008-10-01

    When used for the production of an x-ray imaging backlighter source on Sandia National Laboratories' recently upgraded 26 MA Z Accelerator, the terawatt-class, multikilojoule, 526.57 nm Z-Beamlet laser (ZBL) [P. K. Rambo et al., Appl. Opt. 44, 2421 (2005)], in conjunction with the 6.151 keV (1s(2)-1s2p triplet line of He-like Mn) curved-crystal imager [D. B. Sinars et al., Rev. Sci. Instrum. 75, 3672 (2004); G. R. Bennett et al., Rev. Sci. Instrum. 77, 10E322 (2006)], is capable of providing a high quality x radiograph per Z shot for inertial confinement fusion (ICF), complex hydrodynamics, and other high-energy-density physics experiments. For example, this diagnostic has recently afforded microgram-scale mass perturbation measurements on an imploding ignition-scale 1 mg ICF capsule [G. R. Bennett et al., Phys. Rev. Lett. 99, 205003 (2007)], where the perturbation was initiated by a surrogate deuterium-tritium (DT) fuel fill tube. Using an angle-time multiplexing technique, ZBL now has the capability to provide two spatially and temporally separated foci in the Z chamber, allowing "two-frame" imaging to be performed, with an interframe time range of 2-20 ns. This multiplexing technique allows the full area of the four-pass amplifiers to be used for the two pulses, rather than split the amplifiers effectively into two rectangular sections, with one leg delayed with respect to the other, which would otherwise double the power imposed onto the various optics thereby halving the damage threshold, for the same irradiance on target. The 6.151 keV two frame technique has recently been used to image imploding wire arrays, using a 7.3 ns interframe time. The diagnostic will soon be converted to operate with p-rather than s-polarized laser light for enhanced laser absorption in the Mn foil, plus other changes (e.g., operation at the possibly brighter 6.181 keV Mn 1s(2)-1s2p singlet line), to increase x-ray yields. Also, a highly sensitive inline multiframe ultrafast (1 ns

  6. Hidden axion dark matter decaying through mixing with QCD axion and the 3.5 keV X-ray line

    NASA Astrophysics Data System (ADS)

    Higaki, Tetsutaro; Kitajima, Naoya; Takahashi, Fuminobu

    2014-12-01

    Hidden axions may be coupled to the standard model particles through a kinetic or mass mixing with QCD axion. We study a scenario in which a hidden axion constitutes a part of or the whole of dark matter and decays into photons through the mixing, explaining the 3.5 keV X-ray line signal. Interestingly, the required long lifetime of the hidden axion dark matter can be realized for the QCD axion decay constant at an intermediate scale, if the mixing is sufficiently small. In such a two component dark matter scenario, the primordial density perturbations of the hidden axion can be highly non-Gaussian, leading to a possible dispersion in the X-ray line strength from various galaxy clusters and near-by galaxies. We also discuss how the parallel and orthogonal alignment of two axions affects their couplings to gauge fields. In particular, the QCD axion decay constant can be much larger than the actual Peccei-Quinn symmetry breaking.

  7. The Origin of the Local 1/4-KeV X-Ray Flux in Both Charge Exhange and a Hot Bubble

    NASA Technical Reports Server (NTRS)

    Galeazzi, M.; Chiao, M.; Collier, M. R.; Cravens, T.; Koutroumpa, D.; Kuntz, K. D.; Lallement, R.; Lepri, S. T.; McCammon, D.; Morgan, K.; Porter, F. S.; Robertson, I. P.; Snowden, S. L.; Thomas, N. E.; Uprety, Y.; Ursino, E.; Walsh, B. M.

    2014-01-01

    The solar neighbourhood is the closest and most easily studied sample of the Galactic interstellar medium, an understanding of which is essential for models of star formation and galaxy evolution. Observations of an unexpectedly intense diffuse flux of easily absorbed 1/4-kiloelectronvolt X-rays coupled with the discovery that interstellar space within about a hundred parsecs of the Sun is almost completely devoid of cool absorbing gas, led to a picture of a 'local cavity' filled with X-ray-emitting hot gas, dubbed the local hot bubble. This model was recently challenged by suggestions that the emission could instead be readily produced within the Solar System by heavy solar-wind ions exchanging electrons with neutral H and He in interplanetary space, potentially removing the major piece of evidence for the local existence of million-degree gas within the Galactic disk. Here we report observations showing that the total solar wind charge-exchange contribution is approximately 40 percent of the 1/4-keV flux in the Galactic plane. The fact that the measured flux is not dominated by charge exchange supports the notion of a million-degree hot bubble extending about a hundred parsecs from the Sun.

  8. Measurement of L X-ray fluorescence cross-sections for elements with 45 ⩽ Z ⩽ 50 using synchrotron radiation at 8 keV

    NASA Astrophysics Data System (ADS)

    Bonzi, Edgardo V.; Badiger, Nagappa M.; Grad, Gabriela B.; Barrea, Raúl A.; Figueroa, Rodolfo G.

    2011-10-01

    The L shell fluorescence cross-sections of the elements in range 45 ⩽ Z ⩽ 50 have been determined at 8 keV using Synchrotron radiation. The individual L X-ray photons, Ll, Lα, LβI, LβII, LγI and LγII produced in the target were measured with high resolution Si( Li) detector. The experimental set-up provided a low background by using linearly polarized monoenergetic photon beam, improving the signal-to-noise ratio. The experimental cross-sections obtained in this work were compared with available experimental data from Scofield [1,2] Krause [3,4] and Scofield and Puri et al. [5,6]. These experimental values closely agree with the theoretical values calculated using Scofield and Krause data, except for the case of Lγ, where values measured of this work are slighter higher.

  9. Note: On the generation of sub-300 keV flash-X-rays using rod-pinch diode: An experimental investigation

    NASA Astrophysics Data System (ADS)

    Satyanarayana, N.; Rajawat, R. K.; Basu, Shibaji; Rao, A. Durga Prasad; Mittal, K. C.

    2014-09-01

    Generation of flash X-rays (FXRs) at less than 500 keV is described with emphasis on experimental investigation. The pulser is a Tesla transformer-Water transmission line based pulsed power generator operating in double resonance mode to power a rod-pinch diode. The configuration of aspect ratio reported here falls much below the normally reported ratios for the rod-pinch diode operation. Experimental investigation at such low pulsed voltage has revealed "flowering" of the anode tip and "pitting" of the perspex window. A possible explanation in terms of Lorentz body force is discussed rather than the pinch mechanism generally suggested in literature. The experimental investigation for the FXR generation is corroborated by measuring the radiation dose using CaSO4 (Dy) thermo luminescent dosimeters.

  10. Note: On the generation of sub-300 keV flash-X-rays using rod-pinch diode: an experimental investigation.

    PubMed

    Satyanarayana, N; Rajawat, R K; Basu, Shibaji; Rao, A Durga Prasad; Mittal, K C

    2014-09-01

    Generation of flash X-rays (FXRs) at less than 500 keV is described with emphasis on experimental investigation. The pulser is a Tesla transformer-Water transmission line based pulsed power generator operating in double resonance mode to power a rod-pinch diode. The configuration of aspect ratio reported here falls much below the normally reported ratios for the rod-pinch diode operation. Experimental investigation at such low pulsed voltage has revealed "flowering" of the anode tip and "pitting" of the perspex window. A possible explanation in terms of Lorentz body force is discussed rather than the pinch mechanism generally suggested in literature. The experimental investigation for the FXR generation is corroborated by measuring the radiation dose using CaSO4 (Dy) thermo luminescent dosimeters.

  11. Note: On the generation of sub-300 keV flash-X-rays using rod-pinch diode: An experimental investigation

    SciTech Connect

    Satyanarayana, N.; Rajawat, R. K.; Basu, Shibaji; Rao, A. Durga Prasad; Mittal, K. C.

    2014-09-15

    Generation of flash X-rays (FXRs) at less than 500 keV is described with emphasis on experimental investigation. The pulser is a Tesla transformer-Water transmission line based pulsed power generator operating in double resonance mode to power a rod-pinch diode. The configuration of aspect ratio reported here falls much below the normally reported ratios for the rod-pinch diode operation. Experimental investigation at such low pulsed voltage has revealed “flowering” of the anode tip and “pitting” of the perspex window. A possible explanation in terms of Lorentz body force is discussed rather than the pinch mechanism generally suggested in literature. The experimental investigation for the FXR generation is corroborated by measuring the radiation dose using CaSO{sub 4} (Dy) thermo luminescent dosimeters.

  12. Determination of transition metal ion distribution in cubic spinel Co{sub 1.5}Fe{sub 1.5}O{sub 4} using anomalous x-ray diffraction

    SciTech Connect

    Singh, M. N.; Sinha, A. K. Ghosh, Haranath

    2015-08-15

    We report anomalous x-ray diffraction studies on Co ferrite with composition Co{sub 1.5}Fe{sub 1.5}O{sub 4} to obtain the distribution of transition metal ions in tetrahedral and octahedral sites. We synthesize spinel oxide (Co{sub 1.5}Fe{sub 1.5}O{sub 4}) through co-precipitation and subsequent annealing route. The imaginary part (absorption) of the energy dependent anomalous form factor is measured and the real part is calculated theoretically through Kramers–Krönig transformation to analyze anomalous x-ray diffraction peak intensities. Fe and Co K-edge x-ray absorption near edge structure (XANES) spectra are used to estimate charge states of transition metals. Our analysis, within experimental errors, suggests 44% of the tetrahedral sites contain Co in +2 oxidation state and the rest 56% sites contain Fe in +2 and +3 oxidation states. Similarly, 47% of the octahedral sites contain Fe in +3 oxidation states, whereas, the rest of the sites contain Co in +2 and +3 oxidation states. While a distinct pre-edge feature in the Fe K-edge XANES is observed, Co pre-edge remains featureless. Implications of these results to magnetism are briefly discussed.

  13. Calculations of photo-induced X-ray production cross-sections in the energy range 1-150 keV and average fluorescence yields for Zn, Cd and Hg

    NASA Astrophysics Data System (ADS)

    Sampaio, J. M.; Guerra, M.; Parente, F.; Madeira, T. I.; Indelicato, P.; Santos, J. P.; Marques, J. P.

    2016-09-01

    In this paper, we calculate the K-, L- and M-shells X-ray production, and X-ray fluorescence cross-sections after photo-induced ionization, for Zn, Cd, and Hg, and for incident photon energy range from 1 to 150 keV. For this purpose, the corresponding average fluorescence yields for Zn, Cd, and Hg as well as the photoionization cross-sections were calculated using the Dirac-Fock method. Subshell fluorescence, intrashell and intershell yields are obtained consistently from radiative and radiationless transitions calculated in the exact same method. A comprehensive account of the relations between the X-ray production, X-ray fluorescence cross-sections and the photoionization cross-sections and these yields is presented. Comparisons are made with results from other authors. The obtained values for the photoionization cross-sections are in good agreement with the widely used data of Scofield in the studied energy range. However our results for the X-ray fluorescence cross sections seem to favor some data relatively to others. The energy dependence of the average fluorescence yields is discussed, in particular, the reliability of extrapolated data for lighter elements from measurements and calculations in heavier elements above the inner shell absorption edges is questioned. Tabulated data on photoionization and X-ray production cross-sections are presented for the incident photon energy range 1-150 keV in steps of 1 keV.

  14. Magnetically Assisted Remote-controlled Endovascular Catheter for Interventional MR Imaging: In Vitro Navigation at 1.5 T versus X-ray Fluoroscopy

    PubMed Central

    Losey, Aaron D.; Lillaney, Prasheel; Martin, Alastair J.; Cooke, Daniel L.; Wilson, Mark W.; Thorne, Bradford R. H.; Sincic, Ryan S.; Arenson, Ronald L.; Saeed, Maythem

    2014-01-01

    Purpose To compare in vitro navigation of a magnetically assisted remote-controlled (MARC) catheter under real-time magnetic resonance (MR) imaging with manual navigation under MR imaging and standard x-ray guidance in endovascular catheterization procedures in an abdominal aortic phantom. Materials and Methods The 2-mm-diameter custom clinical-grade microcatheter prototype with a solenoid coil at the distal tip was deflected with a foot pedal actuator used to deliver 300 mA of positive or negative current. Investigators navigated the catheter into branch vessels in a custom cryogel abdominal aortic phantom. This was repeated under MR imaging guidance without magnetic assistance and under conventional x-ray fluoroscopy. MR experiments were performed at 1.5 T by using a balanced steady-state free precession sequence. The mean procedure times and percentage success data were determined and analyzed with a linear mixed-effects regression analysis. Results The catheter was clearly visible under real-time MR imaging. One hundred ninety-two (80%) of 240 turns were successfully completed with magnetically assisted guidance versus 144 (60%) of 240 turns with nonassisted guidance (P < .001) and 119 (74%) of 160 turns with standard x-ray guidance (P = .028). Overall mean procedure time was shorter with magnetically assisted than with nonassisted guidance under MR imaging (37 seconds ± 6 [standard error of the mean] vs 55 seconds ± 3, P < .001), and time was comparable between magnetically assisted and standard x-ray guidance (37 seconds ± 6 vs 44 seconds ± 3, P = .045). When stratified by angle of branch vessel, magnetic assistance was faster than nonassisted MR guidance at turns of 45°, 60°, and 75°. Conclusion In this study, a MARC catheter for endovascular navigation under real-time MR imaging guidance was developed and tested. For catheterization of branch vessels arising at large angles, magnetically assisted catheterization was faster than manual catheterization

  15. Measurement of L X-ray fluorescence cross-sections for 74W at excitation energies 12, 14, 15 and 16.5 keV with synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Kumar, R.; Rani, A.; Singh, R. M.; Tiwari, M. K.; Singh, A. K.

    2017-02-01

    Ll, Lα, Lβ and Lγ1 X-ray fluorescence cross-sections for 74W have been measured at excitation energies of 12, 14, 15 and 16.5 keV using synchrotron radiations. A Peltier cooled Vortex solid state detector (SII Nano Technology, USA) with an energy resolution of 138 eV at 5.96 keV X-rays was employed for analysis. The experimental results were compared with the theoretical estimates of Krause (1979), Campbell (2003) and Puri et al. (1993) and also compared with existing experimental results (Barrea and Bonzi, 2001b) of L XRF cross sections at the excitation energy of 12 and 14 keV. Present results were found to be closer to the Puri's data in comparison to existing experimental results. For the first time, to our knowledge, L XRF cross section for 74W at energies 15 and 16.5 keV are also being reported here.

  16. Determination of natural line widths of Kα X-ray lines for some elements in the atomic range 50≤Z≤65 at 59.5 keV

    NASA Astrophysics Data System (ADS)

    Kündeyi, Kadriye; Aylıkcı, Nuray Küp; Tıraşoǧlu, Engin; Kahoul, Abdelhalim; Aylıkcı, Volkan

    2017-02-01

    The semi-empirical determination of natural widths of Kα X-ray lines (Kα1 and Kα2) were performed for Sn, Sb, Te, I, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd and Tb. For the semi-empirical determination of the line widths, K shell fluorescence yields of elements were measured. The samples were excited by 59.5 keV γ rays from a 241Am annular radioactive source in order to measure the K shell fluorescence yields. The emitted K X-rays from the samples were counted by an Ultra-LEGe detector with a resolution of 150 eV at 5.9 keV. The measured K shell fluorescence yields were used for the calculation of K shell level widths. Finally, the natural widths of K X-ray lines were determined as the sums of levels which involved in the transition. The obtained values were compared with earlier studies.

  17. Ionic Liquids as a Reference Material Candidate for the Quick Performance Check of Energy Dispersive X-ray Spectrometers for the Low Energy Range below 1 keV

    PubMed Central

    2016-01-01

    Ionic liquids (ILs) are proposed as simple and efficient test materials to evaluate the performance of energy dispersive X-ray spectrometers (EDS) in the low energy range below 1 keV. By only one measurement, C Kα, N Kα, O Kα, and F Kα X-ray lines can be excited. Additionally, the S Kα line at 2.3 keV and, particularly, the S L series at 149 eV complete the picture with X-ray lines offered by the selected ILs. The well-known (certifiable) elemental composition of the ILs selected in the present study can be used to check the accuracy of results produced with the available EDS quantification routines in the low energy range, simultaneously, for several low atomic number elements. A comparison with other reference materials in use for testing the performance of EDS in the low energy range is included. PMID:27336962

  18. Measurement of mass attenuation coefficients of Eremurus-Rhizophora spp. particleboards for X-ray in the 16.63-25.30 keV energy range

    NASA Astrophysics Data System (ADS)

    Tousi, E. T.; Bauk, S.; Hashim, R.; Jaafar, M. S.; Abuarra, A.; Aldroobi, K. S. A.; Al-Jarrah, A. M.

    2014-10-01

    The roots of Eremurus spp. were used as a bio-adhesive in the fabrication of Rhizophora spp. particleboards. The mass attenuation coefficients of Eremurus-Rhizophora spp. particleboard of six samples with two different weight percentages of the Eremurus spp. root (6% and 12%) and three various Rhizophora spp. particle sizes (≤149 μm, 149-500 μm and 500-1000 μm) were determined by using X-ray fluorescence (XRF) photons in 16.63 keV and 25.30 keV of the photon energy range. The results were compared with theoretically calculated mass attenuations using the XCOM computer program for younger-age (breast 1: 75% muscle+25% fat), middle-age (breast 2: 50% muscle+50% fat), and old-age (breast 3: 25% muscle+75% fat) breasts. The results indicated that Eremurus-Rhizophora spp. particleboard is the appropriate suitable phantom in the diagnostic energy region. The mass attenuation coefficient in the low weight percentage of the bio-adhesive and the large Rhizophora spp. particle size were found very close to breast 1. Moreover the mass attenuation coefficient of the sample with high weight percentage of the bio-adhesive and small Rhizophora spp. particle size was found very close to water as a standard material phantom. In addition, the viscosity of dissolved Eremurus spp. root in water could be considerably higher than that of formaldehyde-based adhesives, which affects on some properties such as high strength and high binding.

  19. Subattosecond keV beats of the high-harmonic x-ray field produced with few-cycle mid-IR laser pulses: Magnetic-field effects

    NASA Astrophysics Data System (ADS)

    Emelina, A. S.; Emelin, M. Yu.; Ryabikin, M. Yu.

    2016-04-01

    Using the theoretical description beyond the dipole approximation, we examine the impact of the electron magnetic drift caused by a strong midinfrared laser field on the feasibility and ultimate limitations of the method proposed recently [C. Hernández-García et al., Phys. Rev. Lett. 111, 033002 (2013), 10.1103/PhysRevLett.111.033002] as a route to the generation of zeptosecond x-ray waveforms; this method relies on the interference of high-harmonic emission from multiple reencounters of the electron wave packet with the ion. We show that the electron magnetic drift serves as the spectral filter changing the relative weights of the contributions to the high-harmonic signal from different rescattering events. For a range of driving wavelengths in the midinfrared, the use of the control of the carrier-envelope phase, occasionally in combination with the spectral filtering, to cope with the magnetic drift effect is shown to facilitate the production of intense high-contrast keV beats of durations shorter than 0.8 attosecond. The limitations on the laser wavelengths usable for implementing this approach are determined by the growing unamendable imbalance between the contributions of interfering paths and by an overall decline in the efficiency of high-harmonic generation at longer driving wavelengths.

  20. High-temperature X-ray analysis of phase evolution in lithium ion conductor Li{sub 1.5}Al{sub 0.5}Ge{sub 1.5}(PO{sub 4}){sub 3}

    SciTech Connect

    He, Kun Wang, Yanhang; Zu, Chengkui Liu, Yonghua; Zhao, Huifeng; Chen, Jiang; Han, Bin; Ma, Juanrong

    2013-06-15

    Series of Li{sub 1.5}Al{sub 0.5}Ge{sub 1.5}(PO{sub 4}){sub 3} glass ceramic samples were prepared in this work through the change of heat treatment temperature from 650 to 1050 °C. The structures of glass ceramic samples were characterized by means of high temperature X-ray diffraction and Field Emission Scanning Electron Microscope. And the lithium ionic conductivity was analyzed through AC impedance spectroscopy. Through heat treatment at 850 °C for 4 h for the base glass sample, we obtained a maximum conductivity of 5.8 × 10{sup −4} S/cm at room temperature. - Graphical Abstract: High temperature X-ray diffraction (HT-XRD) and Rietveld refinement of Li{sub 1.5}Al{sub 0.5}Ge{sub 1.5}(PO{sub 4}){sub 3} (LAGP) glass-ceramics were recorded to investigate the phase transformation, cell parameters and the mass fraction of each crystal phase, which occur in the glass to glass-ceramics process during different crystallization temperatures. The relationship between the average grain size and conductivity that originate from and relate to the crystallization temperature was analyzed by SEM micrograph and AC impedance spectroscopy. - Highlights: • Li{sub 1.5}Al{sub 0.5}Ge{sub 1.5}(PO{sub 4}){sub 3} glass-ceramics were prepared from as-prepared glass. • The phases decomposition and mass fraction of each phase were analyzed by HT-XRD. • Conductivity is relate to grain size that influenced by crystallization temperature.

  1. X-ray absorption measurements of charge-ordered La{sub 0.5}Sr{sub 1.5}MnO{sub 4}

    SciTech Connect

    Saitoh, T.; Villella, P.M.; Dessau, D.S.

    1997-04-01

    Perovskite and {open_quotes}layered perovskite{close_quotes}-type manganese oxides show a variety of electronic and magnetic properties such as the colossal magnetoresistance (CMR) or the charge ordering. Among them, La{sub 0.5}Sr{sub 1.5}MnO{sub 4} (K{sub 2}NiF{sub 4} structure) which has 0.5 holes per Mn site (d{sup 3.5}) shows the charge-order transition at {approximately}220 K below which Mn{sup 3+} and Mn{sup 4+} sites are believed to order in the CE-type. Although the charge ordering phenomenon has also been observed in the perovskite manganites Pr{sub 0.5}Sr{sub 1.5}MnO{sub 3} or Pr{sub 0.5}Ca{sub 1.5}MnO{sub 3}, the present system has another advantage that it has a layered structure. This enables the authors to address the issue of the orbital symmetry which should be directly related to the charge ordering. In this report, they present the results of x-ray absorption spectroscopy (XAS) on La{sub 0.5}Sr{sub 1.5}MnO{sub 4}, for two polarization angles and two (above and below the transition temperature T{sub CO}) temperatures.

  2. Effect of external magnetic field on the Kβ/Kα X-ray intensity ratios of TixNi1-x alloys excited by 59.54 and 22.69keV photons.

    PubMed

    Perişanoğlu, Ufuk; Alım, Bünyamin; Uğurlu, Mine; Demir, Lütfü

    2016-09-01

    The effects of external magnetic field and exciting photon energies on the Kβ/Kα X-ray intensity ratios of various alloy compositions of Ti-Ni transition metal alloys have been investigated in this work using X-ray fluorescence spectroscopy. The spectrum of characteristic K-X-ray photons from pure Ti, pure Ni and TixNi1-x (x=0.30; 0.40; 0.50; 0.60; 0.70) alloys were detected with a high resolution Si (Li) solid-state detector. Firstly, Kβ/Kα X-ray intensity ratios of pure Ti, pure Ni and TixNi1-x alloys were measured following excitation by 59.54keV γ-rays from a 200mCi (241)Am radioactive point source without any magnetic field and under 0.5 and 1T external magnetic fields, separately. Later, the same measurements were repeated under the same experimental conditions for 22.69keV X-rays from a 370 MBq(1)(0)(9)Cd radioactive point source. The results obtained for Kβ/Kα X-ray intensity ratios of pure Ti, pure Ni, Ti and Ni in various Ti-Ni alloys were evaluated in terms of both external magnetic field effect and exciting photon energy effect. When the results obtained for both exciting photon energies are evaluated in terms of changing of Kβ/Kα X-ray intensity ratios depending on the alloy composition, the tendency of these changes are observed to be similar. Also, Kβ/Kα X-ray intensity ratios for all samples examined have changed with increasing external magnetic field. Therefore, the results obtained have shown that Kβ/Kα X-ray intensity ratios of Ti and Ni in TixNi1-x alloys are connected with the external magnetic field. The present study makes it possible to perform reliable interpretation of experimental Kβ/Kα X-ray intensity ratios for Ti, Ni and TixNi1-x alloys and can also provide quantitative information about the changes of the Kβ/Kα X-ray intensity ratios of these metals with alloy composition.

  3. A New Measurement of the Cosmic X-ray Background

    SciTech Connect

    Moretti, A.

    2009-05-11

    I present a new analytical description of the cosmic X-ray background (CXRB) spectrum in the 1.5-200 keV energy band, obtained by combining the new measurement performed by the Swift X-ray telescope (XRT) with the recently published Swift burst alert telescope (BAT) measurement. A study of the cosmic variance in the XRT band (1.5-7 keV) is also presented. I find that the expected cosmic variance (expected from LogN-LogS) scales as {omega}{sup -0.3}(where {omega} is the surveyed area) in very good agreement with XRT data.

  4. X-Ray Background from Early Binaries

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-11-01

    What impact did X-rays from the first binary star systems have on the universe around them? A new study suggests this radiation may have played an important role during the reionization of our universe.Ionizing the UniverseDuring the period of reionization, the universe reverted from being neutral (as it was during recombination, the previous period)to once again being ionized plasma a state it has remained in since then. This transition, which occurred between 150 million and one billion years after the Big Bang (redshift of 6 z 20), was caused by the formation of the first objects energetic enough to reionize the universes neutral hydrogen.ROSAT image of the soft X-ray background throughout the universe. The different colors represent different energy bands: 0.25 keV (red), 0.75 keV (green), 1.5 keV (blue). [NASA/ROSAT Project]Understanding this time period in particular, determining what sources caused the reionization, and what the properties were of the gas strewn throughout the universe during this time is necessary for us to be able to correctly interpret cosmological observations.Conveniently, the universe has provided us with an interesting clue: the large-scale, diffuse X-ray background we observe all around us. What produced these X-rays, and what impact did this radiation have on the intergalactic medium long ago?The First BinariesA team of scientists led by Hao Xu (UC San Diego) has suggested that the very first generation of stars might be an important contributor to these X-rays.This hypothetical first generation, Population III stars, are thought to have formed before and during reionization from large clouds of gas containing virtually no metals. Studies suggest that a large fraction of Pop III stars formed in binaries and when those stars ended their lives as black holes, ensuing accretion from their companions could produceX-ray radiation.The evolution with redshift of the mean X-ray background intensities. Each curve represents a different

  5. X-shooter reveals powerful outflows in z ˜ 1.5 X-ray selected obscured quasi-stellar objects

    NASA Astrophysics Data System (ADS)

    Brusa, M.; Bongiorno, A.; Cresci, G.; Perna, M.; Marconi, A.; Mainieri, V.; Maiolino, R.; Salvato, M.; Lusso, E.; Santini, P.; Comastri, A.; Fiore, F.; Gilli, R.; La Franca, F.; Lanzuisi, G.; Lutz, D.; Merloni, A.; Mignoli, M.; Onori, F.; Piconcelli, E.; Rosario, D.; Vignali, C.; Zamorani, G.

    2015-01-01

    We present X-shooter at Very Large Telescope observations of a sample of 10 luminous, X-ray obscured quasi-stellar objects (QSOs) at z ˜ 1.5 from the XMM-COSMOS survey, expected to be caught in the transitioning phase from starburst to active galactic nucleus (AGN)-dominated systems. The main selection criterion is X-ray detection at bright fluxes (LX ≳ 1044 erg s-1) coupled to red optical-to-near-infrared-to-mid-infrared colours. Thanks to its large wavelength coverage, X-shooter allowed us to determine accurate redshifts from the presence of multiple emission lines for five out of six targets for which we had only a photometric redshift estimate, with an 80 per cent success rate, significantly larger than what is observed in similar programs of spectroscopic follow-up of red QSOs. We report the detection of broad and shifted components in the [O III] λλ5007, 4959 complexes for six out of eight sources with these lines observable in regions free from strong atmospheric absorptions. The full width at half-maximum (FWHM) associated with the broad components are in the range FWHM ˜ 900-1600 km s-1, larger than the average value observed in Sloan Digital Sky Survey type 2 AGN samples at similar observed [O III] luminosity, but comparable to those observed for QSO/ultraluminous infrared galaxies systems for which the presence of kpc scale outflows has been revealed through integral field unit spectroscopy. Although the total outflow energetics (inferred under reasonable assumptions) may be consistent with winds accelerated by stellar processes, we favour an AGN origin for the outflows given the high outflow velocities observed (v > 1000 km s-1) and the presence of strong winds also in objects undetected in the far-infrared.

  6. Overproduction, crystallization and preliminary X-ray characterization of Abn2, an endo-1,5-α-arabinanase from Bacillus subtilis

    SciTech Connect

    Sanctis, Daniele de Bento, Isabel; Inácio, José Manuel; Custódio, Sónia; Sá-Nogueira, Isabel de; Carrondo, Maria Arménia

    2008-07-01

    Native and selenomethionine-derivative Abn2 have been expressed, purified and crystallized. Solution of the selenium substructure allowed the calculation of an initial experimental map at 2.7 Å resolution. Two Bacillus subtilis extracellular endo-1,5-α-l-arabinanases, AbnA and Abn2, belonging to glycoside hydrolase family 43 have been identified. The recently characterized Abn2 protein hydrolyzes arabinan and has low identity to other reported 1,5-α-l-arabinanases. Abn2 and its selenomethionine (SeMet) derivative have been purified and crystallized. Crystals appeared in two different space groups: P1, with unit-cell parameters a = 51.9, b = 57.6, c = 86.2 Å, α = 82.3, β = 87.9, γ = 63.6°, and P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 57.9, b = 163.3, c = 202.0 Å. X-ray data have been collected for the native and the SeMet derivative to 1.9 and 2.7 Å resolution, respectively. An initial model of Abn2 is being built in the SeMet-phased map.

  7. Dual crystal x-ray spectrometer at 1.8 keV for high repetition-rate single-photon counting spectroscopy experiments

    DOE PAGES

    Gamboa, E. J.; Bachmann, B.; Kraus, D.; ...

    2016-08-01

    The recent development of high-repetition rate x-ray free electron lasers (FEL), makes it possible to perform x-ray scattering and emission spectroscopy measurements from thin foils or gasses heated to high-energy density conditions by integrating over many experimental shots. Since the expected signal may be weaker than the typical CCD readout noise over the region-of-interest, it is critical to the success of this approach to use a detector with high-energy resolution so that single x-ray photons may be isolated. We describe a dual channel x-ray spectrometer developed for the Atomic and Molecular Optics endstation at the Linac Coherent Light Source (LCLS)more » for x-ray spectroscopy near the K-edge of aluminum. The spectrometer is based on a pair of curved PET (002) crystals coupled to a single pnCCD detector which simultaneously measures x-ray scattering and emission in the forward and backward directions. Furthermore, the signals from single x-ray photons are accumulated permitting continuous single-shot acquisition at 120 Hz.« less

  8. Dual crystal x-ray spectrometer at 1.8 keV for high repetition-rate single-photon counting spectroscopy experiments

    SciTech Connect

    Gamboa, E. J.; Bachmann, B.; Kraus, D.; MacDonald, M. J.; Bucher, M.; Carron, S.; Coffee, R. N.; Drake, R. P.; Emig, J.; Ferguson, K. R.; Fletcher, L. B.; Glenzer, S. H.; Gorkhover, T.; Hau-Riege, S. P.; Krzywinski, J.; Levitan, A. L.; Meiwes-Broer, K. -H.; Osipov, T.; Pardini, T.; Peltz, C.; Skruszewicz, S.; Bostedt, C.; Fennel, T.; Döppner, T.

    2016-08-01

    The recent development of high-repetition rate x-ray free electron lasers (FEL), makes it possible to perform x-ray scattering and emission spectroscopy measurements from thin foils or gasses heated to high-energy density conditions by integrating over many experimental shots. Since the expected signal may be weaker than the typical CCD readout noise over the region-of-interest, it is critical to the success of this approach to use a detector with high-energy resolution so that single x-ray photons may be isolated. We describe a dual channel x-ray spectrometer developed for the Atomic and Molecular Optics endstation at the Linac Coherent Light Source (LCLS) for x-ray spectroscopy near the K-edge of aluminum. The spectrometer is based on a pair of curved PET (002) crystals coupled to a single pnCCD detector which simultaneously measures x-ray scattering and emission in the forward and backward directions. Furthermore, the signals from single x-ray photons are accumulated permitting continuous single-shot acquisition at 120 Hz.

  9. New-Generation Laser-lithographed Dual-Axis Magnetically Assisted Remote-controlled Endovascular Catheter for Interventional MR Imaging: In Vitro Multiplanar Navigation at 1.5 T and 3 T versus X-ray Fluoroscopy

    PubMed Central

    Moftakhar, Parham; Lillaney, Prasheel; Losey, Aaron D.; Cooke, Daniel L.; Martin, Alastair J.; Thorne, Bradford R. H.; Arenson, Ronald L.; Saeed, Maythem; Wilson, Mark W.

    2015-01-01

    Purpose To assess the feasibility of multiplanar vascular navigation with a new magnetically assisted remote-controlled (MARC) catheter with real-time magnetic resonance (MR) imaging at 1.5 T and 3 T and to compare it with standard x-ray guidance in simulated endovascular catheterization procedures. Materials and Methods A 1.6-mm–diameter custom clinical-grade microcatheter prototype with lithographed double-saddle coils at the distal tip was deflected with real-time MR imaging. Two inexperienced operators and two experienced operators catheterized anteroposterior (celiac, superior mesenteric, and inferior mesenteric arteries) and mediolateral (renal arteries) branch vessels in a cryogel abdominal aortic phantom. This was repeated with conventional x-ray fluoroscopy by using clinical catheters and guidewires. Mean procedure times and percentage success data were analyzed with linear mixed-effects regression. Results The MARC catheter tip was visible at 1.5 T and 3 T. Among inexperienced operators, MARC MR imaging guidance was not statistically different from x-ray guidance at 1.5 T (67% successful vessel selection turns with MR imaging vs 76% with x-ray guidance, P = .157) and at 3 T (75% successful turns with MR imaging vs 76% with x-ray guidance, P = .869). Experienced operators were more successful in catheterizing vessels with x-ray guidance (98% success within 60 seconds) than with 1.5-T (65%, P < .001) or 3-T (75%) MR imaging. Among inexperienced operators, mean procedure time was nearly equivalent by using MR imaging (31 seconds) and x-ray guidance (34 seconds, P = .436). Among experienced operators, catheterization was faster with x-ray guidance (20 seconds) compared with 1.5-T MR imaging (42 seconds, P < .001), but MARC guidance improved at 3 T (31 seconds). MARC MR imaging guidance at 3 T was not significantly different from x-ray guidance for the celiac (P = .755), superior mesenteric (P = .358), and inferior mesenteric (P = .065) arteries. Conclusion

  10. Measurement of the x-ray mass attenuation coefficient and determination of the imaginary component of the atomic form factor of tin over the energy range of 29-60keV

    NASA Astrophysics Data System (ADS)

    de Jonge, Martin D.; Tran, Chanh Q.; Chantler, Christopher T.; Barnea, Zwi; Dhal, Bipin B.; Paterson, David; Kanter, Elliot P.; Southworth, Stephen H.; Young, Linda; Beno, Mark A.; Linton, Jennifer A.; Jennings, Guy

    2007-03-01

    We use the x-ray extended-range technique (XERT) [C. T. Chantler , Phys. Rev. A 64, 062506 (2001)] to measure the mass attenuation coefficients of tin in the x-ray energy range of 29-60keV to 0.04-3% accuracy, and typically in the range 0.1-0.2% . Measurements made over an extended range of the measurement parameter space are critically examined to identify, quantify, and correct a number of potential experimental systematic errors. These results represent the most extensive experimental data set for tin and include absolute mass attenuation coefficients in the regions of x-ray absorption fine structure, extended x-ray absorption fine structure, and x-ray absorption near-edge structure. The imaginary component of the atomic form factor f2 is derived from the photoelectric absorption after subtracting calculated Rayleigh and Compton scattering cross sections from the total attenuation. Comparison of the result with tabulations of calculated photoelectric absorption coefficients indicates that differences of 1-2% persist between calculated and observed values.

  11. Simulation study of optimizing the 3-5 keV x-ray emission from pure Ar K-shell vs. Ag L-shell targets on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Kemp, G. E.; Colvin, J. D.; Fournier, K. B.; Patel, M. V.; Scott, H. A.; Marinak, M.; Fisher, J. H.; Davis, J. F.

    2014-10-01

    High-flux x-ray sources are desirable for testing the radiation hardness of materials used in various civilian, space and military applications. For this study, there is an interest to design a source with primarily mid-energy (~ 3 keV) but limited soft (< 1 keV) x-ray contributions; we focus on optimizing the 3--5 keV non-LTE emission from targets consisting of pure Ar (K-shell) or Ag (L-shell) at sub-critical densities (~nc / 10) to ensure supersonic, volumetric laser heating with minimal losses to kinetic energy and thermal x rays. However, K and L-shell sources are expected to optimize at different temperatures and densities and it is a priori unclear under what target and laser conditions this will occur. Using HYDRA, a multi-dimensional, arbitrary Lagrangian-Eulerian, radiation-hydrodynamics code, we performed a simulation study by varying initial target density and laser parameters for each material as it would perform on the National Ignition Facility (NIF). We employ a model, benchmarked against Kr data collected on the NIF, that uses flux-limited Lee-More thermal conductivity and implicit Monte-Carlo photonics with non-LTE, detailed configuration accounting opacities from CRETIN. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  12. Simulation study of 3-5 keV x-ray conversion efficiency from Ar K-shell vs. Ag L-shell targets on the National Ignition Facility laser

    NASA Astrophysics Data System (ADS)

    Kemp, G. E.; Colvin, J. D.; Fournier, K. B.; May, M. J.; Barrios, M. A.; Patel, M. V.; Scott, H. A.; Marinak, M. M.

    2015-05-01

    Tailored, high-flux, multi-keV x-ray sources are desirable for studying x-ray interactions with matter for various civilian, space and military applications. For this study, we focus on designing an efficient laser-driven non-local thermodynamic equilibrium 3-5 keV x-ray source from photon-energy-matched Ar K-shell and Ag L-shell targets at sub-critical densities (˜nc/10) to ensure supersonic, volumetric laser heating with minimal losses to kinetic energy, thermal x rays and laser-plasma instabilities. Using Hydra, a multi-dimensional, arbitrary Lagrangian-Eulerian, radiation-hydrodynamics code, we performed a parameter study by varying initial target density and laser parameters for each material using conditions readily achievable on the National Ignition Facility (NIF) laser. We employ a model, benchmarked against Kr data collected on the NIF, that uses flux-limited Lee-More thermal conductivity and multi-group implicit Monte-Carlo photonics with non-local thermodynamic equilibrium, detailed super-configuration accounting opacities from Cretin, an atomic-kinetics code. While the highest power laser configurations produced the largest x-ray yields, we report that the peak simulated laser to 3-5 keV x-ray conversion efficiencies of 17.7% and 36.4% for Ar and Ag, respectively, occurred at lower powers between ˜100-150 TW. For identical initial target densities and laser illumination, the Ag L-shell is observed to have ≳10× higher emissivity per ion per deposited laser energy than the Ar K-shell. Although such low-density Ag targets have not yet been demonstrated, simulations of targets fabricated using atomic layer deposition of Ag on silica aerogels (˜20% by atomic fraction) suggest similar performance to atomically pure metal foams and that either fabrication technique may be worth pursuing for an efficient 3-5 keV x-ray source on NIF.

  13. Theory of K-edge resonant inelastic x-ray scattering and its application for La0.5Sr1.5MnO4

    NASA Astrophysics Data System (ADS)

    Seman, T. F.; Liu, X.; Hill, J. P.; van Veenendaal, M.; Ahn, K. H.

    2013-03-01

    We present a formula based on tight-binding approach for the calculation of K-edge resonant inelastic x-ray scattering spectrum for transition metal oxides, by extending the previous result [K. H. Ahn, A. J. Fedro, and M. van Veenendaal, Phys. Rev. B 79, 045103 (2009).] to include explicit momentum dependence and a basis with multiple core hole sites. We apply this formula to layered charge, orbital, and spin ordered manganites, La0.5Sr1.5MnO4. The K-edge RIXS spectrum is found not periodic with respect to the actual reciprocal lattice, but approximately periodic with respect to the reciprocal lattice for the hypothetical unit cell with one core hole site. With experimental strcuture and reasonable tight-binding parameters, we obtain good agreement with experimental data, in particular, with regards to the large variation of the intensity with momentum. We find that the screening in La0.5Sr1.5MnO4 is highly localized around the core hole site and demonstrate the potential of K-edge RIXS as a probe for the screening dynamics in materials. Work supported by US.DOE Contr. DE-AC02-98CH10886 (X.L.,J.H.), US.DOE Award DE-FG02-03ER46097 (M.v.V.), CMCSN under Grants DE-FG02-08ER46540 & DE-SC0007091 (T.S.,K.A.,M.v.V.), Argonne XSD Visitor Prog.(K.A.), US.DOE Contr. DE-AC02-06CH11357 (X.L.,J.H).

  14. Enhanced soft X-ray detection efficiencies for imaging microchannel plate detectors

    NASA Astrophysics Data System (ADS)

    Fraser, G. W.; Barstow, M. A.; Whiteley, M. J.; Wells, A.

    1982-12-01

    Although the microchannel plate (MCP) electron multipliers used in X-ray astronomy facilitate X-ray imaging with high spatial resolution, their intrinsic soft X-ray detection efficiencies of 1-10 percent are much lower than the near-unity values available with competing gas proportional counters. A high photoelectric yield material may be deposited on the MCP front surface and channel walls in order to enhance X-ray sensitivity at energies below a few keV. High 0.18-1.5 keV X-ray detection efficiencies are reported for MCPs bearing CsI deposition photocathodes, by which efficiency enhancement factors of up to 15 have been obtained. These results are especially pertinent to the sensitivity of such future X-ray astronomy experiments as the Roentgensatellit (Rosat) Wide Field Camera.

  15. X-ray lithography source

    DOEpatents

    Piestrup, Melvin A.; Boyers, David G.; Pincus, Cary

    1991-01-01

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and elminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an exellent moderate-priced X-ray source for lithography.

  16. X-ray lithography source

    DOEpatents

    Piestrup, M.A.; Boyers, D.G.; Pincus, C.

    1991-12-31

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits is disclosed. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and eliminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an excellent moderate-priced X-ray source for lithography. 26 figures.

  17. The SMC SNR 1E0102.2-7219 as a calibration standard for X-ray astronomy in the 0.3 - 2.5 keV bandpass

    NASA Astrophysics Data System (ADS)

    Plucinsky, P.

    2009-09-01

    The flight calibration of the spectral response of CCD instruments below 1.5 keV is difficult in general because of the lack of strong lines in the on-board calibration sources typically available. We have been using E0102, the brightest supernova remnant in the Small Magellanic Cloud, to evaluate the response models of the ACIS CCDs on the Chandra X-ray Observatory (CXO), the EPIC CCDs on the XMM-Newton Observatory, the XIS CCDs on the Suzaku Observatory, and the XRT CCD on the Swift Observatory. E0102 has strong lines of O, Ne, and Mg below 1.5 keV and little or no Fe emission to complicate the spectrum. The spectrum of E0102 has been well characterized using high-resolution grating instruments, namely the XMM-Newton RGS and the CXO HETG, through which a consistent spectral model has been developed that can then be used to fit the lower- resolution CCD spectra. Fits with this model are sensitive to any problems with the gain calibration and the spectral redistribution model of the CCD instruments. We have also used the measured intensities of the lines to investigate the consistency of the effective area models for the various instruments around the bright O (570 eV and 654 eV) and Ne (910 eV and 1022 eV) lines. We find that the measured fluxes of the O VII triplet, the O VIII Ly-a line, the Ne IX triplet, and the Ne X Ly-a line generally agree to within +/-10% for all instruments, with 28 of our 32 fitted normalizations within +/-10% of the RGS-determined value. The maximum discrepancies, computed as the percentage difference between the lowest and highest normalization for any instrument pair, are 23% for the O VII triplet, 24% for the O VIII Ly-a line, 13% for the Ne IX triplet, and 19% for the Ne X Ly-a line. If only the CXO and XMM are compared, the maximum discrepancies are 22% for the O VII triplet, 16% for the O VIII Ly-a line, 4% for the Ne IX triplet, and 12% for the Ne X Ly-a line.

  18. The SMC SNR 1E0102.2-7219 as a calibration standard for x-ray astronomy in the 0.3-2.5 keV bandpass

    NASA Astrophysics Data System (ADS)

    Plucinsky, Paul P.; Haberl, Frank; Dewey, Daniel; Beardmore, Andrew P.; DePasquale, Joseph M.; Godet, Olivier; Grinberg, Victoria; Miller, Eric D.; Pollock, A. M. T.; Sembay, Steven; Smith, Randall K.

    2008-07-01

    The flight calibration of the spectral response of CCD instruments below 1.5 keV is difficult in general because of the lack of strong lines in the on-board calibration sources typically available. We have been using E0102, the brightest supernova remnant in the Small Magellanic Cloud, to evaluate the response models of the ACIS CCDs on the Chandra X-ray Observatory (CXO), the EPIC CCDs on the XMM-Newton Observatory, the XIS CCDs on the Suzaku Observatory, and the XRT CCD on the Swift Observatory. E0102 has strong lines of O, Ne, and Mg below 1.5 keV and little or no Fe emission to complicate the spectrum. The spectrum of E0102 has been well characterized using high-resolution grating instruments, namely the XMM-Newton RGS and the CXO HETG, through which a consistent spectral model has been developed that can then be used to fit the lower-resolution CCD spectra. Fits with this model are sensitive to any problems with the gain calibration and the spectral redistribution model of the CCD instruments. We have also used the measured intensities of the lines to investigate the consistency of the effective area models for the various instruments around the bright O (570 eV and 654 eV) and Ne (910 eV and 1022 eV) lines. We find that the measured fluxes of the O VII triplet, the O VIII Ly-a line, the Ne IX triplet, and the Ne X Ly-a line generally agree to within +/-10% for all instruments, with 28 of our 32 fitted normalizations within +/-10% of the RGS-determined value. The maximum discrepancies, computed as the percentage difference between the lowest and highest normalization for any instrument pair, are 23% for the O VII triplet, 24% for the O VIII Ly-a line, 13% for the Ne IX~triplet, and 19% for the Ne X Ly-a line. If only the CXO and XMM are compared, the maximum discrepancies are 22% for the O VII triplet, 16% for the O VIII Ly-a line, 4% for the Ne IX triplet, and 12% for the Ne X Ly-a line.

  19. X-Ray Telescope Onboard Astro-E. II. Ground-Based X-Ray Characterization.

    PubMed

    Shibata, R; Ishida, M; Kunieda, H; Endo, T; Honda, H; Misaki, K; Ishida, J; Imamura, K; Hidaka, Y; Maeda, M; Tawara, Y; Ogasaka, Y; Furuzawa, A; Watanabe, M; Terashima, Y; Yoshioka, T; Okajima, T; Yamashita, K; Serlemitsos, P J; Soong, Y; Chan, K W

    2001-08-01

    X-ray characterization measurements of the x-ray telescope (XRT) onboard the Astro-E satellite were carried out at the Institute of Space and Astronautical Science (Japan) x-ray beam facility by means of a raster scan with a narrow x-ray pencil beam. The on-axis half-power diameter (HPD) was evaluated to be 1.8?-2.2?, irrespective of the x-ray energy. The on-axis effective areas of the XRTs for x-ray imaging spectrometers (XISs) were approximately 440, 320, 240, and 170 cm(2) at energies of 1.49, 4.51, 8.04, and 9.44 keV, respectively. Those of the x-ray spectrometer (XRS) were larger by 5-10%. The replication method introduced for reflector production significantly improved the imaging capability of the Advanced Satellite for Cosmology and Astrophyics (ASCA) XRT, whose HPD is ~3.6?. The increase in the effective area by a factor of 1.5-2.5, depending upon the x-ray energy, compared with that of the ASCA, was brought about by mechanical scale up and longer focal lengths. The off-axis HPDs were almost the same as those obtained on the optical axis. The field of view is defined as the off-axis angle at which the effective area becomes half of the on-axis value. The diameter of the field of view was ~19? at 1.49 keV, decreasing with increasing x-ray energy, and became ~13? at 9.44 keV. The intensity of stray light and the distribution of this kind of light on the focal plane were measured at the large off-axis angles 30? and 60?. In the entire XIS field of view (25.4 mm x 25.4 mm), the intensity of the stray light caused by a pointlike x-ray source became at most 1% of the same pointlike source that was on the optical axis.

  20. L-Shell X-Ray Production Cross Sections of Copper -29, GERMANIUM-32, RUBIDIUM-37, STRONTIUM-38, and Yttrium -39 and M-Shell X-Ray Production Cross Sections of Gold -79, LEAD-82, BISMUTH-83, THORIUM-90, and URANIUM-92 by 70-200 KEV Protons

    NASA Astrophysics Data System (ADS)

    Gressett, John David

    L-shell x-ray production cross sections have been measured for thin targets of _{29} Cu, _{32}Ge, _{37}Rb, _{38 }Sr, and _{39}Y. M -shell x-ray production cross sections have been measured for thin targets of _{79}Au, _{82}Pb, _ {83}Bi, _{90} Th, and _{92}U. All targets were irradiated with a beam of H^ {+} ions with energies in a range from 70 to 200 keV. Experimental cross sections are compared to other measurements at higher energies and to first Born (Plane Wave Born Approximation for direct ionization and Oppenheimer-Brinkman-Kramers-Nikolaev approximation for electron capture) and the ECPSSR (Energy loss, Coulomb deflection, Perturbed Stationary State calculations with Relativistic effects) theoretical cross sections.

  1. Electroformed grazing incidence X-ray mirrors for a mirror array telescope

    NASA Technical Reports Server (NTRS)

    Ulmer, Melville P.; Matsui, Yutaka; Bedford, D. K.; Simnett, G. M.; Takacs, Peter Z.

    1987-01-01

    Grazing incidence Wolter type I mirrors for higher-energy X-rays have been replicated from two superpolished mandrels by electroforming. Single mirrors and a nested pair were tested with 1.5- and 6.4-keV X-rays, and their subminute of arc resolution and reflectivity close to the theoretical values are confirmed. The design of the mandrels, the mirror mounting scheme, and results of the X-ray test are presented. The microroughnesses of the mirrors measured using an optical profilometer were compared with the X-ray test results.

  2. Hard X-Ray Emission of X-Ray Bursters

    NASA Technical Reports Server (NTRS)

    Kaaret, P.

    1999-01-01

    The primary goal of this proposal was to perform an accurate measurement of the broadband x-ray spectrum of a neutron-star low-mass x-ray binary found in a hard x-ray state. This goal was accomplished using data obtained under another proposal, which has provided exciting new information on the hard x-ray emission of neutron-star low-mass x-ray binaries. In "BeppoSAX Observations of the Atoll X-Ray Binary 4U0614+091", we present our analysis of the spectrum of 4U0614+091 over the energy band from 0.3-150 keV. Our data confirm the presence of a hard x-ray tail that can be modeled as thermal Comptonization of low-energy photons on electrons having a very high temperature, greater than 220 keV, or as a non-thermal powerlaw. Such a very hard x-ray spectrum has not been previously seen from neutron-star low-mass x-ray binaries. We also detected a spectral feature that can be interpreted as reprocessing, via Compton reflection, of the direct emission by an optically-thick disk and found a correlation between the photon index of the power-law tail and the fraction of radiation reflected which is similar to the correlation found for black hole candidate x-ray binaries and Seyfert galaxies. A secondary goal was to measure the timing properties of the x-ray emission from neutronstar low-mass x-ray binaries in their low/hard states.

  3. INTEGRAL/IBIS observations of a hard X-ray outburst in high-mass X-ray binary 4U 2206+54

    NASA Astrophysics Data System (ADS)

    Wang, W.

    2010-09-01

    Aims: 4U 2206+54 is a wind-fed high-mass X-ray binary with a main-sequence donor star. The nature of its compact object has been recently identified as a slow-pulsation magnetized neutron star. Methods: INTEGRAL/IBIS observations have a long-term hard X-ray monitoring of 4U 2206+54 and detected a hard X-ray outburst around 15 December 2005 combined with the RXTE/ASM data. Results: The hard X-ray outburst had a double-flare feature with a duration of ~2 days. The first flare showed a fast rise and long-term decaying light curve about 15 h with a peak luminosity of ~4 × 1036 erg s-1 from 1.5-12 keV and a hard spectrum (only significantly seen above 5 keV). The second one had the mean hard X-ray luminosity of 1.3 × 1036 erg s-1 from 20-150 keV with a modulation period at ~5550 s which is the pulse period of the neutron star in 4U 2206+54. Its hard X-ray spectrum from 20-300 keV can be fitted by a broken power-law model with the photon indexes Γ1 ~ 2.3, and Γ2 ~ 3.3, and the break energy is Eb ~ 31 keV or by a bremsstrahlung model of kT ~ 23 keV. Conclusions: We suggest that the hard X-ray flare could be induced by suddenly enhanced accreting dense materials from stellar winds hitting the polar cap region of the neutron star. This hard X-ray outburst may be a link to supergiant fast X-ray transients though 4U 2206+54 has a different type of companion.

  4. QUIET-TIME SUPRATHERMAL (∼0.1–1.5 keV) ELECTRONS IN THE SOLAR WIND

    SciTech Connect

    Tao, Jiawei; Wang, Linghua; Zong, Qiugang; He, Jiansen; Tu, Chuanyi; Li, Gang; Salem, Chadi S.; Bale, Stuart D.; Wimmer-Schweingruber, Robert F.

    2016-03-20

    We present a statistical survey of the energy spectrum of solar wind suprathermal (∼0.1–1.5 keV) electrons measured by the WIND 3DP instrument at 1 AU during quiet times at the minimum and maximum of solar cycles 23 and 24. After separating (beaming) strahl electrons from (isotropic) halo electrons according to their different behaviors in the angular distribution, we fit the observed energy spectrum of both strahl and halo electrons at ∼0.1–1.5 keV to a Kappa distribution function with an index κ and effective temperature T{sub eff}. We also calculate the number density n and average energy E{sub avg} of strahl and halo electrons by integrating the electron measurements between ∼0.1 and 1.5 keV. We find a strong positive correlation between κ and T{sub eff} for both strahl and halo electrons, and a strong positive correlation between the strahl n and halo n, likely reflecting the nature of the generation of these suprathermal electrons. In both solar cycles, κ is larger at solar minimum than at solar maximum for both strahl and halo electrons. The halo κ is generally smaller than the strahl κ (except during the solar minimum of cycle 23). The strahl n is larger at solar maximum, but the halo n shows no difference between solar minimum and maximum. Both the strahl n and halo n have no clear association with the solar wind core population, but the density ratio between the strahl and halo roughly anti-correlates (correlates) with the solar wind density (velocity)

  5. Observations of celestial X-ray sources above 20 keV with the high-energy scintillation spectrometer on board OSO 8

    NASA Technical Reports Server (NTRS)

    Crannell, C. J.; Dennis, B. R.; Dolan, J. H.; Frost, K. J.; Orwig, L. E.; Beall, J. H.; Maurer, G. S.

    1977-01-01

    High-energy X-ray spectra of the Crab Nebula, Cyg- XR-1, and Cen A were determined from observations with the scintillation spectrometer on board the OSO-8 satellite, launched in June, 1975. Each of these sources was observed over two periods of 8 days or more, enabling a search for day-to-day and year to year variations in the spectral and temporal characteristics of the X-ray emission. No variation in the light curve of the Crab pulsar was found from observations which span a 15-day period in March 1976, with demonstrable phase stability. Transitions associated with the binary phase of Cyg XR-1 and a large change in the emission from Con A are reported.

  6. Electron beam parallel X-ray generator

    NASA Technical Reports Server (NTRS)

    Payne, P.

    1967-01-01

    Broad X ray source produces a highly collimated beam of low energy X rays - a beam with 2 to 5 arc minutes of divergence at energies between 1 and 6 keV in less than 5 feet. The X ray beam is generated by electron bombardment of a target from a large area electron gun.

  7. Development of soft X-ray multilayer laminar-type plane gratings and varied-line-spacing spherical grating for flat-field spectrograph in the 1-8 keV region

    NASA Astrophysics Data System (ADS)

    Koike, Masato; Ishino, Masahiko; Imazono, Takashi; Sano, Kazuo; Sasai, Hiroyuki; Hatayama, Masatoshi; Takenaka, Hisataka; Heimann, Philip A.; Gullikson, Eric M.

    2009-08-01

    W/C and Co/SiO 2 multilayer laminar-type holographic plane gratings (groove density 1/σ = 1200 lines/mm) in the 1-8 keV region are developed. For the Co/SiO 2 grating the diffraction efficiencies of 0.41 and 0.47 at 4 and 6 keV, respectively, and for the W/C grating 0.38 at 8 keV are observed. Taking advantage of the outstanding high diffraction efficiencies into practical soft X-ray spectrographs a Mo/SiO 2 multilayer varied-line-spacing (VLS) laminar-type spherical grating (1/σ = 2400 lines/mm) is also developed for use with a flat field spectrograph in the region of 1.7 keV. For the Mo/SiO 2 multilayer grating the diffraction efficiencies of 0.05-0.20 at 0.9-1.8 keV are observed. The FWHMs of the measured line profiles of Hf-Mα 1(1644.6 eV), Si-Kα 1(1740.0 eV), and W-Mα 1 (1775.4 eV) are 13.7 eV, 8.0 eV, and 8.7 eV, respectively.

  8. ANS hard X-ray experiment development program. [emission from X-ray sources

    NASA Technical Reports Server (NTRS)

    Parsignault, D.; Gursky, H.; Frank, R.; Kubierschky, K.; Austin, G.; Paganetti, R.; Bawdekar, V.

    1974-01-01

    The hard X-ray (HXX) experiment is one of three experiments included in the Dutch Astronomical Netherlands Satellite, which was launched into orbit on 30 August 1974. The overall objective of the HXX experiment is the detailed study of the emission from known X-ray sources over the energy range 1.5-30keV. The instrument is capable of the following measurements: (1) spectral content over the full energy range with an energy resolution of approximately 20% and time resolution down to 4 seconds; (2) source time variability down to 4 milliseconds; (3) silicon emission lines at 1.86 and 2.00keV; (4) source location to a limit of one arc minute in ecliptic latitude; and (5) spatial structure with angular resolution of the arc minutes. Scientific aspects of experiment, engineering design and implementation of the experiment, and program history are included.

  9. High angular resolution cosmic X-ray astronomy observations in the energy range 0.15-2 keV and XUV observations of nearby stars from an attitude controlled rocket

    NASA Technical Reports Server (NTRS)

    Garmire, G. P.

    1974-01-01

    The construction of a two dimensional focusing Wolter Type I mirror system for X-ray and XUV astronomical observations from an Astrobee F sounding rocket is described. The mirror design goal will have a one degree field, a 20-arc seconds resolution, an effective area of about 50 sq cm at 1 keV and 10 sq cm at 0.25 keV on axis. A star camera provides aspect data to about 15-arc seconds. Two detectors are placed at the focus with an interchange mechanism to allow a detector change during flight. The following specific developments are reported: (1) position sensitive proportional counter development; (2) channel plate multiplier development; (3) telescope mirror development and payload structure; (4) Australian rocket flight results; (5) Comet Kohoutek He I observation; and (6) Vela, Puppis A, and Gem-Mon bright patch observations.

  10. Absolute Energy Calibration of X-ray TESs with 0.04 eV Uncertainty at 6.4 keV in a Hadron-Beam Environment

    NASA Astrophysics Data System (ADS)

    Tatsuno, H.; Doriese, W. B.; Bennett, D. A.; Curceanu, C.; Fowler, J. W.; Gard, J.; Gustafsson, F. P.; Hashimoto, T.; Hayano, R. S.; Hays-Wehle, J. P.; Hilton, G. C.; Iliescu, M.; Ishimoto, S.; Itahashi, K.; Iwasaki, M.; Kuwabara, K.; Ma, Y.; Marton, J.; Noda, H.; O'Neil, G. C.; Okada, S.; Outa, H.; Reintsema, C. D.; Sato, M.; Schmidt, D. R.; Shi, H.; Suzuki, K.; Suzuki, T.; Uhlig, J.; Ullom, J. N.; Widmann, E.; Yamada, S.; Zmeskal, J.; Swetz, D. S.

    2016-08-01

    A performance evaluation of superconducting transition-edge sensors (TESs) in the environment of a pion beam line at a particle accelerator is presented. Averaged across the 209 functioning sensors in the array, the achieved energy resolution is 5.2 eV FWHM at Co K_{α } (6.9 keV) when the pion beam is off and 7.3 eV at a beam rate of 1.45 MHz. Absolute energy uncertainty of ± 0.04 eV is demonstrated for Fe K_{α } (6.4 keV) with in-situ energy calibration obtained from other nearby known X-ray lines. To achieve this small uncertainty, it is essential to consider the non-Gaussian energy response of the TESs and thermal cross-talk pile-up effects due to charged particle hits in the silicon substrate of the TES array.

  11. Non-invasive deep tissue imaging of iodine modified poly(caprolactone-co-1-4-oxepan-1,5-dione) using X-ray.

    PubMed

    Olsen, Timothy R; Davis, Lundy L; Nicolau, Samantha E; Duncan, Caroline C; Whitehead, Daniel C; Van Horn, Brooke A; Alexis, Frank

    2015-07-01

    When biodegradable polyester devices, like sutures and screws, are implanted into the body, it is very challenging to image them in deep tissue, monitor their degradation, and detect defects. We report our recent findings on non-invasive deep tissue imaging of polyester degradation, stability and integrity using an iodinated-polycaprolactone (i-P(CLcoOPD)) X-ray imaging contrast agent. The results of experiments performed with i-P(CLcoOPD) demonstrate the feasibility to quantify in-situ polyester degradation in vitro and in vivo using rats. We also demonstrate that X-ray imaging could be used to identify and quantify physical defects, such as cracks, in polymeric implants using rabbit animal models. This approach enables non-invasive monitoring of polyester materials and is expected to become an important technology for improving the imaging of polymers at clinically relevant depths.

  12. Alloying effect on K shell X-ray fluorescence cross-sections and intensity ratios of Cu and Sn in Cu1Sn1-x alloys using the 59.5 keV gamma rays

    NASA Astrophysics Data System (ADS)

    Dogan, M.; Olgar, M. A.; Cengiz, E.; Tıraşoglu, E.

    2016-09-01

    Kβ/Kα, intensity ratios and σKα,β production cross-sections of Cu and Sn were measured in pure metals and in different alloys which have different compositions (CuxSn1-x x=0.48, 0.41, 0.14 and 0.06). The samples were excited by 59.5 keV γ-rays from 241Am annular radioactive source. K X-rays emitted by samples were counted by an Ultra-LEGe detector with a resolution of 150 eV at 5.9 keV. Comparison of the σKβ production cross-sections and Kβ/Kα X-ray intensity ratio values for Cu and Sn with the theoretical and semi-empirical calculations indicates that they are in the inverse direction with concentration of constituent element in the alloys. The results show that variations in these parameters can be explained with the charge transfer process between the elements which constitute the alloys.

  13. Detection of soft X-rays from Alpha Lyrae and Eta Bootis with an imaging X-ray telescope

    NASA Technical Reports Server (NTRS)

    Topka, K.; Fabricant, D.; Harnden, F. R., Jr.; Gorenstein, P.; Rosner, R.

    1979-01-01

    Results are presented for observations of Alpha Lyr (Vega) and Eta Boo with an imaging X-ray telescope during two rocket flights. It is found that Vega and Eta Boo are soft X-ray sources with respective luminosities of approximately 3 x 10 to the 28th erg/s (0.15-0.8 keV) and 1 x 10 to the 29th erg/s (0.15-1.5 keV). Surface X-ray luminosities of about 640,000 erg/sq cm per sec for Vega and 300,000 erg/sq cm per sec for Eta Boo are estimated and shown to fall within the range of solar coronal X-ray emission. It is concluded that in view of the substantially larger surface areas of these stars, the relatively large total soft X-ray luminosity (as compared with that of the sun) can in both cases be understood as resulting from a moderately active corona, although the Vega observation is in severe conflict with simple models for X-ray emission from single main-sequence stars.

  14. X-ray Spectrometer

    NASA Technical Reports Server (NTRS)

    Porter, F. Scott

    2004-01-01

    The X-ray Spectrometer (XRS) instrument is a revolutionary non-dispersive spectrometer that will form the basis for the Astro-E2 observatory to be launched in 2005. We have recently installed a flight spare X R S microcalorimeter spectrometer at the EBIT-I facility at LLNL replacing the XRS from the earlier Astro-E mission and providing twice the resolution. The X R S microcalorimeter is an x-ray detector that senses the heat deposited by the incident photon. It achieves a high energy resolution by operating at 0.06K and by carefully controlling the heat capacity and thermal conductance. The XRS/EBIT instrument has 32 pixels in a square geometry and achieves an energy resolution of 6 eV at 6 keV, with a bandpass from 0.1 to 12 keV (or more at higher operating temperature). The instrument allows detailed studies of the x-ray line emission of laboratory plasmas. The XRS/EBIT also provides an extensive calibration "library" for the Astro-E2 observatory.

  15. Magnetic fan structures in Ba0.5Sr1.5Zn2Fe12O22 hexaferrite revealed by resonant soft x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Hearmon, Alexander J.; Johnson, R. D.; Beale, T. A. W.; Dhesi, S. S.; Luo, X.; Cheong, S.-W.; Steadman, P.; Radaelli, Paolo G.

    2013-11-01

    The hexaferrites are known to exhibit a wide range of magnetic structures, some of which are connected to important technological applications and display magnetoelectric properties. We present data on the low magnetic field structures stabilized in a Y-type hexaferrite as observed by resonant soft x-ray diffraction. The helical spin block arrangement that is present in zero applied magnetic field becomes fanlike as a field is applied in plane. The propagation vectors associated with each fan structure are studied as a function of magnetic field, and a new magnetic phase is reported. Mean field calculations indicate this phase should stabilize close to the boundary of the previously reported phases.

  16. Fragmentation of H2O by 1 -- 5 keV He^2+ ions: Experiment and Theory

    NASA Astrophysics Data System (ADS)

    Stolterfoht, N.; Hellhammer, R.; Sobocinski, P.; Cabrera-Trujillo, R.; Ohrn, Y.; Deumens, E.; Sabin, J.

    2006-05-01

    Fragmentation of H2O molecules induced by ^3He^2+ impact was investigated experimentally as a function of the energy in the range from 1-5 keV. Collisions at large impact parameters are found to produce fragment protons with energies centered around peaks at 6 eV and 15 eV. The H^+ fragments were detected in the angular range from 25 to 135 with respect to the incident beam direction. Absolute fragmentation cross sections dσ/dφ, differential in the emission angle are found to be anisotropic, with protons preferentially emitted at angles near 90 . In addition to the experiments, we performed quantum-mechanical calculations to understand the fragmentation mechanisms producing protons at preferred energies and angles. The theoretical results are obtained using the Electron-Nuclear Dynamics formalism (END), which solves the time-dependent Schr"odinger equation.

  17. On the existence of low-energy photons (<150 keV) in the unflattened x-ray beam from an ordinary radiotherapeutic target in a medical linear accelerator.

    PubMed

    Tsechanski, A; Krutman, Y; Faermann, S

    2005-12-07

    Low-energy photons (<150 keV) are essential for obtaining high quality x-ray radiographs. These photons are usually produced in the accelerator target, but are effectively absorbed by the flattening filter and, at least partially, by the target itself. Experimental proof is presented for the existence of low-energy photons in the unflattened x-ray beam produced by a 6 MeV electron beam normally incident on the thinner of the two existing ports of the all-Cu radiotherapeutic target of a Clinac 18 (Varian Associates) linear accelerator. A number of one-shot absorption measurements were carried out with 12 foils of Pb absorbers with thicknesses varying from 0.25 to 3 mm in steps of 0.25 mm arranged symmetrically around the central axis on a 7.2 cm radius circumference. A Kodak ECL film-screen-cassette combination was used as a detector in the absorption measurements, in which optical density was measured as a function of the thickness of the Pb absorbers. Two sets of absorption measurements were carried out: the first one with the Clinac 18 6 MV unflattened beam and the second one with the Clinac 600C 6 MV therapeutic counterpart beam. There is a striking difference between the two sets: the optical density versus Pb-absorber thickness curve shows a sharp increase in optical density at small absorber thicknesses in the case of the unflattened 6 MV x-ray beam as compared with a gently sloping dependence in the case of the 6 MV therapeutic beam. A semi-quantitative assessment of the low-energy photon contribution to the whole optical density/contrast is presented. A 0.85 mm thick Pb absorber intercepting the 6 MV unflattened x-ray beam eliminates almost totally the sharp peak in the optical density curve at small Pb-absorber thicknesses. This constitutes additional evidence for the existence of low-energy photons (<150 keV) in the unflattened 6 MV beam from the Cu therapeutic target.

  18. a New Method for the Growth of CdTe Crystals for RT X-Ray Photon Detectors in the 1-100 keV Range

    NASA Astrophysics Data System (ADS)

    Lovergine, N.; Mancini, A. M.; Cola, A.; Prete, P.; Mazzer, M.; Quaranta, F.; Tapfer, L.

    2000-12-01

    We report on the growth of thick CdTe layers on ZnTe/(100)GaAs hybrid substrates by the novel H2 transport vapour phase epitaxy (H2T-VPE) method. High crystalline quality (100)-oriented CdTe single crystal epilayers can be fabricated under atmospheric pressure and at growth temperatures (TD) in the 600-800°C interval. Double crystal X-ray diffraction measurements performed on epilayers thicker than 30 μm show CdTe (400) peaks with FWHM<59 arcsec. CdTe samples grown under optimised conditions have mirror-like surfaces. Epilayers grown below 650°C are p-type and low resistive, but they turn n-type above 650°C, likely as a result of donor diffusion from the substrate. RT resistivities (ρ) ~ 106 Ω·cm are obtained for 675°C < TD < 700°C, but ρ decreases for higher temperatures and thinner samples. Layers grown under these conditions show RT electron concentrations in the 1014-1011 cm-3 range. The detection capability of H2T-VPE grown CdTe is demonstrated by the results of time-of-flight measurements performed at RT on Au/n-CdTe/n+-GaAs diode structures under reverse bias conditions.

  19. Measurement of the mass energy-absorption coefficient of air for x-rays in the range from 3 to 60 keV.

    PubMed

    Buhr, H; Büermann, L; Gerlach, M; Krumrey, M; Rabus, H

    2012-12-21

    For the first time the absolute photon mass energy-absorption coefficient of air in the energy range of 10 to 60 keV has been measured with relative standard uncertainties below 1%, considerably smaller than those of up to 2% assumed for calculated data. For monochromatized synchrotron radiation from the electron storage ring BESSY II both the radiant power and the fraction of power deposited in dry air were measured using a cryogenic electrical substitution radiometer and a free air ionization chamber, respectively. The measured absorption coefficients were compared with state-of-the art calculations and showed an average deviation of 2% from calculations by Seltzer. However, they agree within 1% with data calculated earlier by Hubbell. In the course of this work, an improvement of the data analysis of a previous experimental determination of the mass energy-absorption coefficient of air in the range of 3 to 10 keV was found to be possible and corrected values of this preceding study are given.

  20. X-ray variability patterns and radio/X-ray correlations in Cyg X-1

    NASA Astrophysics Data System (ADS)

    Zdziarski, Andrzej A.; Skinner, Gerald K.; Pooley, Guy G.; Lubiński, Piotr

    2011-09-01

    We have studied the X-ray variability patterns and correlations of the radio and X-ray fluxes in all spectral states of Cyg X-1 using X-ray data from the All-Sky Monitor onboard the Rossi X-ray Timing Explorer, Burst And Transient Source Experiment onboard the Compton Gamma Ray Observatory and the Burst Alert Telescope onboard Swift. In the hard state, the dominant spectral variability is a changing of normalization with a fixed spectral shape, while in the intermediate state, the slope changes, with a pivot point around 10 keV. In the soft state, the low-energy X-ray emission dominates the bolometric flux which is only loosely correlated with the high-energy emission. In black hole binaries in the hard state, the radio flux is generally found to depend on a power of the X-ray flux, FR∝FpX. We confirm this for Cyg X-1. Our new finding is that this correlation extends to the intermediate and soft states, provided the broad-band X-ray flux in the Comptonization part of the spectrum (excluding the blackbody component) is considered instead of a narrow-band medium-energy X-ray flux. We find an index p≃ 1.7 ± 0.1 for 15-GHz radio emission, decreasing to p≃ 1.5 ± 0.1 at 2.25 GHz. We conclude that the higher value at 15 GHz is due to the effect of free-free absorption in the wind from the companion. The intrinsic correlation index remains uncertain. However, based on a theoretical model of the wind in Cyg X-1, it may to be close to ≃1.3, which, in the framework of accretion/jet models, would imply that the accretion flow in Cyg X-1 is radiatively efficient. The correlation with the flux due to Comptonization emission indicates that the radio jet is launched by the hot electrons in the accretion flow in all spectral states of Cyg X-1. On the other hand, we are able to rule out the X-ray jet model. Finally, we find that the index of the correlation, when measured using the X-ray flux in a narrow energy band, strongly depends on the band chosen and is, in general

  1. Structure formation in a mixed dark matter model with decaying sterile neutrino: the 3.5 keV X-ray line and the Galactic substructure

    SciTech Connect

    Harada, Akira; Kamada, Ayuki E-mail: ayuki.kamada@ucr.edu

    2016-01-01

    We perform a set of cosmological simulations of structure formation in a mixed dark matter (MDM) model. Our model is motivated by the recently identified 3.5 keV X-ray line, which can be explained by the decay of non-resonantly produced sterile neutrinos accounting for 20–60% of the dark matter in the Universe. These non-resonantly produced sterile neutrinos have a sizable free-streaming length and hence behave effectively as warm dark matter (WDM). Assuming the rest of dark matter is composed of some cold dark matter (CDM) particles, we follow the coevolution of a mixed WDM plus CDM cosmology. Specifically, we consider the models with the warm component fraction of r{sub warm}=0.25 and 0.50. Our MDM models predict that the comoving Jeans length at the matter-radiation equality is close to that of the thermally produced warm dark matter model with particle mass m{sub WDM}=2.4 keV, but the suppression in the fluctuation power spectrum is weaker. We perform large N-body simulations to study the structure of non-linear dark halos in the MDM models. The abundance of substructure is significantly reduced in the MDM models, and hence the so-called small-scale crisis is mitigated. The cumulative maximum circular velocity function (CVF) of at least one halo in the MDM models is in good agreement with the CVFs of the observed satellites in the Milky Way and the Andromeda galaxy. We argue that the MDM models open an interesting possibility to reconcile the reported 3.5 keV line and the internal structure of galaxies.

  2. Performance of NICER flight x-ray concentrator

    NASA Astrophysics Data System (ADS)

    Okajima, Takashi; Soong, Yang; Balsamo, Erin R.; Enoto, Teruaki; Olsen, Larry; Koenecke, Richard; Lozipone, Larry; Kearney, John; Fitzsimmons, Sean; Numata, Ai; Kenyon, Steven J.; Arzoumanian, Zaven; Gendreau, Keith

    2016-07-01

    Neutron star Interior Composition ExploreR (NICER) is a NASA instrument to be onboard International Space Station, which is equipped with 56 pairs of an X-ray concentrator (XRC) and a silicon drift detector for high timing observations. The XRC is based on an epoxy replicated thin aluminum foil X-ray mirror, similar to those of Suzaku and ASTRO-H (Hitomi), but only a single stage parabolic grazing incidence optic. Each has a focal length of 1.085m and a diameter of 105 mm, with 24 confocally aligned parabolic shells. Grazing incident angles to individual shells range from 0.4 to 1.4 deg. The flight 56 XRCs have been completed and successfully delivered to the payload integration. All the XRC was characterized at the NASA/GSFC 100-m X-ray beamline using 1.5 keV X-rays (some of them are also at 4.5 keV). The XRC performance, effective area and point spread function, was measured by a CCD camera and a proportional counter. The average effective area is about 44 cm2 at 1.5 keV and about 18 cm2 at 4.5 keV, which is consistent with a micro-roughness of 0.5nm from individual shell reflectivity measurements. The XRC focuses about 91% of X-rays into a 2mm aperture at the focal plane, which is the NICER detector window size. Each XRC weighs only 325 g. These performance met the project requirement. In this paper, we will present summary of the flight XRC performance as well as co-alignment results of the 56 XRCs on the flight payload as it is important to estimate the total effective for astronomical observations.

  3. The 2-79 keV X-ray spectrum of the Circinus galaxy with NuSTAR, XMM-Newton, and Chandra: a fully Compton-thick active galactic nucleus

    SciTech Connect

    Arévalo, P.; Bauer, F. E.; Puccetti, S.; Walton, D. J.; Fuerst, F.; Grefenstette, B. W.; Harrison, F. A.; Madsen, K. K.; Koss, M.; Boggs, S. E.; Craig, W. W.; Brandt, W. N.; Luo, B.; Brightman, M.; Christensen, F. E.; Comastri, A.; Gandhi, P.; Hailey, C. J.; Madejski, G.; and others

    2014-08-20

    The Circinus galaxy is one of the closest obscured active galactic nuclei (AGNs), making it an ideal target for detailed study. Combining archival Chandra and XMM-Newton data with new NuSTAR observations, we model the 2-79 keV spectrum to constrain the primary AGN continuum and to derive physical parameters for the obscuring material. Chandra's high angular resolution allows a separation of nuclear and off-nuclear galactic emission. In the off-nuclear diffuse emission, we find signatures of strong cold reflection, including high equivalent-width neutral Fe lines. This Compton-scattered off-nuclear emission amounts to 18% of the nuclear flux in the Fe line region, but becomes comparable to the nuclear emission above 30 keV. The new analysis no longer supports a prominent transmitted AGN component in the observed band. We find that the nuclear spectrum is consistent with Compton scattering by an optically thick torus, where the intrinsic spectrum is a power law of photon index Γ = 2.2-2.4, the torus has an equatorial column density of N {sub H} = (6-10) × 10{sup 24} cm{sup –2}, and the intrinsic AGN 2-10 keV luminosity is (2.3-5.1) × 10{sup 42} erg s{sup –1}. These values place Circinus along the same relations as unobscured AGNs in accretion rate versus Γ and L{sub X} versus L {sub IR} phase space. NuSTAR's high sensitivity and low background allow us to study the short timescale variability of Circinus at X-ray energies above 10 keV for the first time. The lack of detected variability favors a Compton-thick absorber, in line with the spectral fitting results.

  4. The 2-79 keV X-Ray Spectrum of the Circinus Galaxy with NuSTAR, XMM-Newton, and Chandra: A Fully Compton-thick Active Galactic Nucleus

    NASA Astrophysics Data System (ADS)

    Arévalo, P.; Bauer, F. E.; Puccetti, S.; Walton, D. J.; Koss, M.; Boggs, S. E.; Brandt, W. N.; Brightman, M.; Christensen, F. E.; Comastri, A.; Craig, W. W.; Fuerst, F.; Gandhi, P.; Grefenstette, B. W.; Hailey, C. J.; Harrison, F. A.; Luo, B.; Madejski, G.; Madsen, K. K.; Marinucci, A.; Matt, G.; Saez, C.; Stern, D.; Stuhlinger, M.; Treister, E.; Urry, C. M.; Zhang, W. W.

    2014-08-01

    The Circinus galaxy is one of the closest obscured active galactic nuclei (AGNs), making it an ideal target for detailed study. Combining archival Chandra and XMM-Newton data with new NuSTAR observations, we model the 2-79 keV spectrum to constrain the primary AGN continuum and to derive physical parameters for the obscuring material. Chandra's high angular resolution allows a separation of nuclear and off-nuclear galactic emission. In the off-nuclear diffuse emission, we find signatures of strong cold reflection, including high equivalent-width neutral Fe lines. This Compton-scattered off-nuclear emission amounts to 18% of the nuclear flux in the Fe line region, but becomes comparable to the nuclear emission above 30 keV. The new analysis no longer supports a prominent transmitted AGN component in the observed band. We find that the nuclear spectrum is consistent with Compton scattering by an optically thick torus, where the intrinsic spectrum is a power law of photon index Γ = 2.2-2.4, the torus has an equatorial column density of N H = (6-10) × 1024 cm-2, and the intrinsic AGN 2-10 keV luminosity is (2.3-5.1) × 1042 erg s-1. These values place Circinus along the same relations as unobscured AGNs in accretion rate versus Γ and LX versus L IR phase space. NuSTAR's high sensitivity and low background allow us to study the short timescale variability of Circinus at X-ray energies above 10 keV for the first time. The lack of detected variability favors a Compton-thick absorber, in line with the spectral fitting results.

  5. X-Ray Vision

    NASA Technical Reports Server (NTRS)

    Ramsey, B. D.; Elsner, R. F.; Engelhaupt, D.; Kolodziejczak, J. J.; ODell, S. L.; Speegle, C. O.; Weisskopf, M. C.

    2004-01-01

    We are fabricating optics for the hard-x-ray region using electroless nickel replication. The attraction of this process, which has been widely used elsewhere, is that the resulting full shell optics are inherently stable and thus can have very good angular resolution. The challenge with this process is to develop lightweight optics (nickel has a relatively high density of 8.9 g/cu cm), and to keep down the costs of mandrel fabrication. We accomplished the former through the development of high-strength nickel alloys that permit very thin shells without fabrication- and handling-induced deformations. For the latter, we have utilized inexpensive grinding and diamond turning to figure the mandrels and then purpose-built polishing machines to finish the surface. In-house plating tanks and a simple water-bath separation system complete the process. To date we have built shells ranging in size from 5 cm diameter to 50 cm, and with thickness down to 100 micron. For our HERO balloon program, we are fabricating over 200 iridium-coated shells, 250 microns thick, for hard-x-ray imaging up to 75 keV. Early test results on these have indicated half-power-diameters of 15 arcsec. The status of these and other hard-x-ray optics will be reviewed.

  6. 2D-NMR, X-ray crystallography and theoretical studies of the reaction mechanism for the synthesis of 1,5-benzodiazepines from dehydroacetic acid derivatives and o-phenylenediamines

    NASA Astrophysics Data System (ADS)

    Rabahi, Amal; Hamdi, Safouane M.; Rachedi, Yahia; Hamdi, Maamar; Talhi, Oualid; Almeida Paz, Filipe A.; Silva, Artur S. M.; Fadila, Balegroune; Malika, Hamadène; Kamel, Taïbi

    2014-03-01

    The synthesis of 1,5-benzodiazepines by the reaction of o-phenylenediamines (o-PDAs) with dehydroacetic acid DHAA [3-acetyl-4-hydroxy-6-methyl-2H-pyran-2-one] or conjugate analogues is largely reported in the literature, but still with uncontrolled stereochemistry. In this work, a comprehensive mechanistic study on the formation of some synthesized 1,5-benzodiazepine models following different organic routes is established based on liquid-state 2D NMR, single-crystal X-ray diffraction and theoretical calculations allowing the classification of two prototropic forms A (enaminopyran-2,4-dione) and B (imino-4-hydroxypyran-2-one). Evidences are presented to show that most of the reported 1,5-benzodiazepine structures arising from DHAA and derivatives preferentially adopt the (E)-enaminopyran-2,4-diones A.

  7. X-ray lithography for micro- and nano-fabrication at ELETTRA for interdisciplinary applications

    NASA Astrophysics Data System (ADS)

    Di Fabrizio, E.; Fillipo, R.; Cabrini, S.; Kumar, R.; Perennes, F.; Altissimo, M.; Businaro, L.; Cojac, D.; Vaccari, L.; Prasciolu, M.; Candeloro, P.

    2004-08-01

    ELETTRA (http://www.elettra.trieste.it/index.html) is a third generation synchrotron radiation source facility operating at Trieste, Italy, and hosts a wide range of research activities in advanced materials analysis and processing, biology and nano-science at several various beam lines. The energy spectrum of ELETTRA allows x-ray nano-lithography using soft (1.5 keV) and hard x-ray (10 keV) wavelengths. The Laboratory for Interdisciplinary Lithography (LIILIT) was established in 1998 as part of an Italian national initiative on micro- and nano-technology project of INFM and is funded and supported by the Italian National Research Council (CNR), INFM and ELETTRA. LILIT had developed two dedicated lithographic beam lines for soft (1.5 keV) and hard x-ray (10 keV) for micro- and nano-fabrication activities for their applications in engineering, science and bio-medical applications. In this paper, we present a summary of our research activities in micro- and nano-fabrication involving x-ray nanolithography at LILIT's soft and hard x-ray beam lines.

  8. Hard X-ray astrophysics

    NASA Technical Reports Server (NTRS)

    Rothschild, R. E.

    1981-01-01

    Past hard X-ray and lower energy satellite instruments are reviewed and it is shown that observation above 20 keV and up to hundreds of keV can provide much valuable information on the astrophysics of cosmic sources. To calculate possible sensitivities of future arrays, the efficiencies of a one-atmosphere inch gas counter (the HEAO-1 A-2 xenon filled HED3) and a 3 mm phoswich scintillator (the HEAO-1 A-4 Na1 LED1) were compared. Above 15 keV, the scintillator was more efficient. In a similar comparison, the sensitivity of germanium detectors did not differ much from that of the scintillators, except at high energies where the sensitivity would remain flat and not rise with loss of efficiency. Questions to be addressed concerning the physics of active galaxies and the diffuse radiation background, black holes, radio pulsars, X-ray pulsars, and galactic clusters are examined.

  9. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1990-01-01

    The annual progress report on Cosmic X Ray Physics is presented. Topics studied include: the soft x ray background, proportional counter and filter calibrations, the new sounding rocket payload: X Ray Calorimeter, and theoretical studies.

  10. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1991-01-01

    The annual progress report on Cosmic X Ray Physics for the period 1 Jan. to 31 Dec. 1990 is presented. Topics studied include: soft x ray background, new sounding rocket payload: x ray calorimeter, and theoretical studies.

  11. Chest X-Ray

    MedlinePlus

    ... by Image/Video Gallery Your radiologist explains chest x-ray. Transcript Welcome to Radiology Info dot org! Hello, ... you about chest radiography also known as chest x-rays. Chest x-rays are the most commonly performed ...

  12. Joint x-ray

    MedlinePlus

    X-ray - joint; Arthrography; Arthrogram ... x-ray technologist will help you position the joint to be x-rayed on the table. Once in place, pictures are taken. The joint may be moved into other positions for more ...

  13. Systematic survey of the dose enhancement in tissue-equivalent materials facing medium- and high-Z backscatterers exposed to X-rays with energies from 5 to 250 keV.

    PubMed

    Seidenbusch, M; Harder, D; Regulla, D

    2014-05-01

    The present study has been inspired by the results of earlier dose measurements in tissue-equivalent materials adjacent to thin foils of aluminum, copper, tin, gold, and lead. Large dose enhancements have been observed in low-Z materials near the interface when this ensemble was irradiated with X-rays of qualities known from diagnostic radiology. The excess doses have been attributed to photo-, Compton, and Auger electrons released from the metal surfaces. Correspondingly, high enhancements of biological effects have been observed in single cell layers arranged close to gold surfaces. The objective of the present work is to systematically survey, by calculation, the values of the dose enhancement in low-Z media facing backscattering materials with a variety of atomic numbers and over a large range of photon energies. Further parameters to be varied are the distance of the point of interest from the interface and the kind of the low-Z material. The voluminous calculations have been performed using the PHOTCOEF algorithm, a proven set of interpolation functions fitted to long-established Monte Carlo results, for primary photon energies between 5 and 250 keV and for atomic numbers varying over the periodic system up to Z = 100. The calculated results correlate well with our previous experimental results. It is shown that the values of the dose enhancement (a) vary strongly in dependence upon Z and photon energy; (b) have maxima in the energy region from 40 to 60 keV, determined by the K and L edges of the backscattering materials; and (c) are valued up to about 130 for "International Commission on Radiological Protection (ICRP) soft tissue" (soft tissue composition recommended by the ICRP) as the adjacent low-Z material. Maximum dose enhancement associated with the L edge occurs for materials with atomic numbers between 50 and 60, e.g., barium (Z = 56) and iodine (Z = 53). Such materials typically serve as contrast media in medical X-ray diagnostics. The gradual

  14. SAS-3 observations of an X-ray flare from Cygnus X-1

    NASA Technical Reports Server (NTRS)

    Canizares, C. R.; Bradt, H.; Buff, J.; Laufer, B.

    1976-01-01

    Preliminary results are presented for the SAS-3 observation of an X-ray flare from Cygnus X-1. The 1.5 to 6 keV intensity rose by a factor of four and exhibited variability on several time scales from seconds to hours. The 6 to 15 keV intensity showed less activity. The event is similar to that observed by ANS and Ariel 5, but lasted less than two weeks.

  15. Preliminary X-ray crystallographic study of wild-type and mutant ribulose-1,5-bisphosphate carboxylase/oxygenase from Chlamydomonas reinhardtii.

    PubMed

    Yen, A; Haas, E J; Selbo, K M; Ross 2nd, C R; Spreitzer, R J; Stezowski, J J

    1998-07-01

    Ribulose-1,5-bisphosphate carboxylase/oxygenase is the key enzyme for photosynthesis. The wild-type and mutant (amino-acid substitutions in the catalytically important loop 6 region) enzymes from Chlamydomonas reinhardtii, a unicellular green alga, were crystallized. Wild-type, single-mutant (V331A) and two double-mutant (V331A/T342I and V331A/G344S) proteins were activated with cofactors CO2 and Mg2+, complexed with the substrate analog 2'-carboxyarabinitol-1,5-bisphosphate, and crystallized in apparently isomorphous forms. Unit-cell determinations have been completed for three of the enzymes. They display orthorhombic symmetry with similar cell parameters: wild type a = 130.4, b = 203. 3, c = 208.5 A; single mutant (V331A) a = 128.0, b = 203.0, c = 207. 0A; and double mutant (V331A/T342I) a = 130.0, b = 202.1, c = 209.7 A. Crystals of the wild-type and single-mutant (V331A) enzymes diffracted to approximately 2.8 A. A small crystal of the double-mutant (V331A/T342I) enzyme diffracted to approximately 6 A. A partial data set (68% complete) of the wild-type protein has been collected at room temperature to about 3.5 A.

  16. GIANT H II REGIONS IN M101. I. X-RAY ANALYSIS OF HOT GAS

    SciTech Connect

    Sun Wei; Chen Yang; Feng Li; Chu, You-Hua; Chen, C.-H. Rosie; Wang, Q. Daniel; Li Jiangtao

    2012-11-20

    We performed a Chandra X-ray study of three giant H II regions (GHRs), NGC 5461, NGC 5462, and NGC 5471, in the spiral galaxy M101. The X-ray spectra of the three GHRs all contain a prominent thermal component with a temperature of {approx}0.2 keV. In NGC 5461, the spatial distribution of the soft (<1.5 keV) X-ray emission is generally in agreement with the extent of H1105, the most luminous H II region therein, but extends beyond its southern boundary, which could be attributed to outflows from the star cloud between H1105 and H1098. In NGC 5462, the X-ray emission is displaced from the H II regions and a ridge of blue stars; the H{alpha} filaments extending from the ridge of star cloud to the diffuse X-rays suggest that hot gas outflows have occurred. The X-rays from NGC 5471 are concentrated at the B-knot, a 'hypernova remnant' candidate. Assuming a Sedov-Taylor evolution, the derived explosion energy, on the order of 10{sup 52} erg, is consistent with a hypernova origin. In addition, a bright source in the field of NGC 5462 has been identified as a background active galactic nucleus, instead of a black hole X-ray binary in M101.

  17. Self-modulated laser wakefield accelerators as x-ray sources

    SciTech Connect

    Lemos, N.; Martins, J. L.; Tsung, F. S.; Shaw, J. L.; Marsh, K. A.; Albert, F.; Pollock, B. B.; Joshi, C.

    2016-02-17

    The development of a directional, small-divergence, and short-duration picosecond x-ray probe beam with an energy greater than 50 keV is desirable for high energy density science experiments. We therefore explore through particle-in-cell (PIC) computer simulations the possibility of using x-rays radiated by betatron-like motion of electrons from a self-modulated laser wakefield accelerator as a possible candidate to meet this need. Two OSIRIS 2D PIC simulations with mobile ions are presented, one with a normalized vector potential a 0 = 1.5 and the other with an a 0 = 3. We find that in both cases direct laser acceleration (DLA) is an important additional acceleration mechanism in addition to the longitudinal electric field of the plasma wave. Together these mechanisms produce electrons with a continuous energy spectrum with a maximum energy of 300 MeV for a 0 = 3 case and 180 MeV in the a 0 = 1.5 case. Forward-directed x-ray radiation with a photon energy up to 100 keV was calculated for the a 0 = 3 case and up to 12 keV for the a 0 = 1.5 case. The x-ray spectrum can be fitted with a sum of two synchrotron spectra with critical photon energies of 13 and 45 keV for the a 0 of 3 and critical photon energies of 0.3 and 1.4 keV for a 0 of 1.5 in the plane of polarization of the laser. As a result, the full width at half maximum divergence angle of the x-rays was 62 × 1.9 mrad for a 0 = 3 and 77 × 3.8 mrad for a 0 = 1.5.

  18. Self-modulated laser wakefield accelerators as x-ray sources

    DOE PAGES

    Lemos, N.; Martins, J. L.; Tsung, F. S.; ...

    2016-02-17

    The development of a directional, small-divergence, and short-duration picosecond x-ray probe beam with an energy greater than 50 keV is desirable for high energy density science experiments. We therefore explore through particle-in-cell (PIC) computer simulations the possibility of using x-rays radiated by betatron-like motion of electrons from a self-modulated laser wakefield accelerator as a possible candidate to meet this need. Two OSIRIS 2D PIC simulations with mobile ions are presented, one with a normalized vector potential a 0 = 1.5 and the other with an a 0 = 3. We find that in both cases direct laser acceleration (DLA) ismore » an important additional acceleration mechanism in addition to the longitudinal electric field of the plasma wave. Together these mechanisms produce electrons with a continuous energy spectrum with a maximum energy of 300 MeV for a 0 = 3 case and 180 MeV in the a 0 = 1.5 case. Forward-directed x-ray radiation with a photon energy up to 100 keV was calculated for the a 0 = 3 case and up to 12 keV for the a 0 = 1.5 case. The x-ray spectrum can be fitted with a sum of two synchrotron spectra with critical photon energies of 13 and 45 keV for the a 0 of 3 and critical photon energies of 0.3 and 1.4 keV for a 0 of 1.5 in the plane of polarization of the laser. As a result, the full width at half maximum divergence angle of the x-rays was 62 × 1.9 mrad for a 0 = 3 and 77 × 3.8 mrad for a 0 = 1.5.« less

  19. Characterization and cross calibration of Agfa D4, D7, and D8 and Kodak SR45 x-ray films against direct exposure film at 4.0-5.5 keV

    SciTech Connect

    Lanier, N.E.; Cowan, J.S.; Workman, J.

    2006-04-15

    Kodak direct exposure film (DEF) [B. L. Henke et al., J. Opt. Soc. Am. B 3, 1540 (1986)] has been the standard for moderate energy (1-10 keV) x-ray diagnostic applications among the high-energy-density and inertial confinement fusion research communities. However, market forces have prompted Kodak to discontinue production of DEF, leaving these specialized communities searching for a replacement. We have conducted cross-calibration experiments and film characterizations on five possible substitutes for Kodak DEF. The film types studied were Kodak's Biomax MR (BMR) and SR45 along with Agfa's D8, D7, and D4sc. None of the films tested matched the speed of DEF. BMR and D8 were closest but D8 exhibited lower noise, with superior resolution and dynamic range. Agfa D7, Agfa D4sc, and Kodak SR45 were significantly less sensitive than BMR and D8, however, the improvements they yielded in resolution and dynamic range warrant their use if experimental constraints allow.

  20. Characterization and cross calibration of Agfa D4, D7, and D8 and Kodak SR45 x-ray films against direct exposure film at 4.0-5.5 keV

    NASA Astrophysics Data System (ADS)

    Lanier, N. E.; Cowan, J. S.; Workman, J.

    2006-04-01

    Kodak direct exposure film (DEF) [B. L. Henke et al., J. Opt. Soc. Am. B 3, 1540 (1986)] has been the standard for moderate energy (1-10keV) x-ray diagnostic applications among the high-energy-density and inertial confinement fusion research communities. However, market forces have prompted Kodak to discontinue production of DEF, leaving these specialized communities searching for a replacement. We have conducted cross-calibration experiments and film characterizations on five possible substitutes for Kodak DEF. The film types studied were Kodak's Biomax MR (BMR) and SR45 along with Agfa's D8, D7, and D4sc. None of the films tested matched the speed of DEF. BMR and D8 were closest but D8 exhibited lower noise, with superior resolution and dynamic range. Agfa D7, Agfa D4sc, and Kodak SR45 were significantly less sensitive than BMR and D8, however, the improvements they yielded in resolution and dynamic range warrant their use if experimental constraints allow.

  1. Planetary X-rays: Relationship with solar X-rays and solar wind

    NASA Astrophysics Data System (ADS)

    Bhardwaj, A.

    Recently X-ray flares are observed from the low-latitude disk of giant planets Jupiter and Saturn in the energy range of 0.2-2 keV. These flares are found to occur in tandem with the occurrence of solar X-ray flare, when light travel time delay is accounted. These studies suggest that disk of outer planets Jupiter and Saturn acts as "diffuse mirror" for solar X-rays and that X-rays from these planets can be used to study flaring on the hemisphere of the Sun that in invisible to near-Earth space weather satellites. Also by proper modeling of the observed planetary X-rays the solar soft X-ray flux can be derived. X-ray flares are also observed on the Mars. On the other hand, X-rays from comets are produced mainly in charge exchange interaction between highly ionized heavy solar wind ions and cometary neutrals. Thus cometary X-rays provide a diagnostics of the solar wind properties. X-rays from Martian exosphere is also dominantly produced via charge exchange interaction between Martian corona and solar wind, providing proxy for solar wind. This paper provides a brief overview on the X-rays from some of the planets and comets and their connection with solar X-rays and solar wind, and how planetary X-rays can be used to study the Sun.

  2. New X-ray microprobe system for trace heavy element analysis using ultraprecise X-ray mirror optics of long working distance

    NASA Astrophysics Data System (ADS)

    Terada, Yasuko; Yumoto, Hirokatsu; Takeuchi, Akihisa; Suzuki, Yoshio; Yamauchi, Kazuto; Uruga, Tomoya

    2010-05-01

    A new X-ray microprobe system for trace heavy element analysis using ultraprecise X-ray mirror optics of 300 mm long working distance has been developed at beamline 37XU of SPring-8. A focusing test has been performed in the X-ray energy range 20-37.7 keV. A focused beam size of 1.3 μm ( V)×1.5 μm ( H) has been achieved at an X-ray energy of 30 keV, and a total photon flux of the focused beam was about 2.7×10 10 photons/s. Micro-X-ray fluorescence (μ-XRF) analysis of eggplant roots has been carried out using the developed microprobe. It is clearly observed in the XRF images that cadmium is highly accumulated in the endodermis, exodermis and epidermis of roots. This study demonstrates the potential of scanning microscopy for heavy elements analysis in the high-energy X-ray region.

  3. Ultraviolet Channeling Dynamics in Gaseous Media for X -- Ray Production

    NASA Astrophysics Data System (ADS)

    McCorkindale, John Charters

    The development of a coherent high brightness / short duration X -- ray source has been of considerable interest to the scientific community as well as various industries since the invention of the technology. Possible applications include X -- ray lithography, biological micro-imaging and the probing of molecular and atomic dynamics. One such source under investigation involves the interaction of a high pulsed power KrF UV laser with a noble gas target (krypton or xenon), producing a photon energy from 1 -- 5 keV. Amplification in this regime requires materials with very special properties found in spatially organized hollow atom clusters. One of the driving forces behind X -- ray production is the UV laser. Theoretical analysis shows that above a critical laser power, the formation of a stable plasma channel in the gaseous medium will occur which can act as a guide for the X-ray pulse and co-propagating UV beam. These plasma channels are visualized with a triple pinhole camera, axial and transverse von Hamos spectrometers and a Thomson scattering setup. In order to understand observed channel morphologies, full characterization of the drive laser was achieved using a Transient Grating -- Frequency Resolved Optical Gating (TG-FROG) technique which gives a full temporal representation of the electric field and associated phase of the ultrashort pulse. Insights gleaned from the TG -- FROG data as well as analysis of photodiode diagnostics placed along the UV laser amplification chain provide explanations for the plasma channel morphology and X -- ray output.

  4. 1-[(5-Benzyl-1,3-thiazol-2-yl)diazenyl]naphthalene-2-ol: X-ray structure, spectroscopic characterization, dissociation studies and application in mercury(II) detection

    NASA Astrophysics Data System (ADS)

    Tupys, Andrii; Kalembkiewicz, Jan; Bazel, Yaroslav; Zapała, Lidia; Dranka, Maciej; Ostapiuk, Yurii; Tymoshuk, Oleksandr; Woźnicka, Elżbieta

    2017-01-01

    A new thiazolylazo reagent, 1-[(5-benzyl-1,3-thiazol-2-yl)diazenyl]naphthalene-2-ol, has been synthesized for the first time. Single crystals of the azo dye were grown from a saturated solution by the vapour diffusion technique. The compound was analyzed using the single-crystal X-ray diffraction technique, and the chemical structure was also confirmed by ATR-IR, 1H, 13C, COSY and HSQC NMR spectra. The pKa dissociation constant of the substance was determined in volumes of methanol (MeOH), dioxane and acetonitrile (MeCN)] by means of the potentiometric method. The Yasuda-Shedlovsky extrapolation procedure was employed to obtain the value of pKa in aqueous solution. The chelate complex of the azo dye with mercury(II) was studied spectrophotometrically. A method for Hg(II) ion determination with the new reagent was elaborated and the limit of detection calculated.

  5. Resonant soft x-ray scattering investigation of orbital and magnetic ordering in La{sub 0.5}Sr{sub 1.5}MnO{sub 4}

    SciTech Connect

    Wilkins, S.B.; Stojic, N.; Binggeli, N.; Beale, T.A.W.; Hatton, P.D.; Castleton, C.W.M.; Prabhakaran, D.; Boothroyd, A.T.; Altarelli, M.

    2005-06-15

    We report resonant x-ray scattering data of the orbital and magnetic ordering at low temperatures at the Mn L{sub 2,3} edges in La{sub 0.5}Sr{sub 1.5}MnO{sub 4}. The orderings display complex energy features close to the Mn absorption edges. Systematic modeling with atomic multiplet crystal field calculations was used to extract meaningful information regarding the interplay of spin, orbital, and Jahn-Teller order. These calculations provide a good general agreement with the observed energy dependence of the scattered intensity for a dominant orbital ordering of the d{sub x{sup 2}}{sub -z{sup 2}}/d{sub y{sup 2}}{sub -z{sup 2}} type. In addition, the origins of various spectral features are identified. The temperature dependence of the orbital and magnetic ordering was measured and suggests a strong interplay between the magnetic and orbital order parameters.

  6. The Gemini-Monoceros X-ray enhancement - A giant X-ray ring

    NASA Technical Reports Server (NTRS)

    Nousek, J. A.; Lindblad, C. J.; Garmire, G. P.; Cowie, L. L.; Hu, E.

    1981-01-01

    A 1.5 deg spatial resolution map of the 1/4 KeV diffuse X-ray background enhancement in the Gemini and Monoceros constellations is found to show a circular ring-shaped emission feature with a diameter of 20 deg. The feature and possible X-ray contributions from the Mon OB1 association and neighboring supernova remnants are discussed. From 300 pc, the region has a radius of 50 pc, with an emitting electron density of 0.01 per cu cm. A shell of expanding neutral hydrogen and nonthermal radio spur is observed outside the ring with the X-ray emitting pulsar PSR 0656 + 14 lying close to the center of the ring. Origins of the ring are discussed, ruling out formation by the association Mon OB1. The ring is considered to be a field supernova remnant formed by the progenitor of the central pulsar, and providing constraints on theories of remnant evolution. This conclusion is found to agree with estimated supernova rates, and the absence of additional examples of this stage of evolution is an observational selection effect.

  7. The first back-side illuminated types of Kyoto's X-ray astronomy SOIPIX

    NASA Astrophysics Data System (ADS)

    Itou, Makoto; Tsuru, Takeshi Go; Tanaka, Takaaki; Takeda, Ayaki; Matsumura, Hideaki; Ohmura, Shunichi; Uchida, Hiroyuki; Nakashima, Shinya; Arai, Yasuo; Kurachi, Ikuo; Mori, Koji; Takenaka, Ryota; Nishioka, Yusuke; Kohmura, Takayoshi; Tamasawa, Koki; Tindall, Craig

    2016-09-01

    We have been developing Kyoto's X-ray astronomy SOI pixel sensors, called "XRPIX", aiming to extend the frontiers of X-ray astronomy with the wide-band imaging spectroscopy in the 0.5-40 keV band. A dead layer on the X-ray incident surface should ideally be as thin as possible to achieve a high sensitivity below 1 keV, and the depletion layer is required to be thick enough to detect 40 keV X-rays. Thus, we have started developing fully-depleted back-side illuminated (BI) types of XRPIXs. This paper reports on our first two BI devices and their X-ray evaluation (2.6-12 keV). The device named "XRPIX2b-FZ-LA" successfully reaches a full depletion with a thickness of 500 μm. On the other hand, it has a dead layer with a thickness of 1.1-1.5 μm and struggles to achieve the requirement of 1.0 μm. The other device named "XRPIX2b-CZ-PZ", which is applied with a thin Si sensor-layer and an improved back-side process, is found to satisfy the requirement with its thickness of 0.9-1.0 μm, including Al optical blocking filter of 0.2 μm, although the Si sensor-layer is rather thin with 62 μm. We also describe in this paper the X-ray calibration system that we have built for the X-ray evaluation of XRPIXs.

  8. Performance and Characterization of X-ray Detection Devices for Laboratory Astrophysics Research

    NASA Astrophysics Data System (ADS)

    Lowenstern, Mariano; Drake, R. Paul; Lanier, Nicholas; Harding, Eric; Huntington, Channing; Mucino, J. Eduardo; Visco, Anthony

    2008-11-01

    Various detection tools are utilized in laser driven experiments with a focus on Inertial Confinement Fusion and Astrophysics. Amongst them are framing cameras (devices that convert incident x-rays into electrons that are in turn amplified by a microchannel plate (MCP) and detected by a phosphor material) and x-ray films. We have implemented a detached Au transmission photocathode (160 å thick) on a MCP. We have evaluated it using a 1.5 keV Al K-alpha x-ray source, finding an improvement in the effective quantum efficiency combined with a modest decrease in the overall resolution of the detection system. We will also report results of the characterization of AGFA-D7 film using laser generated x-rays.

  9. Magnetic excitations and phonons simultaneously studied by resonant inelastic x-ray scattering in optimally doped Bi1.5Pb0.55Sr1.6La0.4CuO6+δ

    DOE PAGES

    Peng, Y. Y.; Hashimoto, M.; Sala, M. Moretti; ...

    2015-08-24

    In this paper, magnetic excitations in the optimally doped high-Tc superconductor Bi1.5Pb0.55Sr1.6La0.4CuO6+δ (OP-Bi2201, Tc ≃ 34 K) are investigated by Cu L3 edge resonant inelastic x-ray scattering (RIXS), below and above the pseudogap opening temperature. At both temperatures the broad spectral distribution disperses along the (1,0) direction up to ~350 meV at zone boundary, similar to other hole-doped cuprates. However, above ~0.22 reciprocal lattice units, we observe a concurrent intensity decrease for magnetic excitations and quasielastic signals with weak temperature dependence. This anomaly seems to indicate a coupling between magnetic, lattice, and charge modes in this compound. We also comparemore » the magnetic excitation spectra near the antinodal zone boundary in the single layer OP-Bi2201 and in the bilayer optimally doped Bi1.5Pb0.6Sr1.54CaCu2O8+δ (OP-Bi2212, Tc ≃ 96 K). Finally, the strong similarities in the paramagnon dispersion and in their energy at zone boundary indicate that the strength of the superexchange interaction and the short-range magnetic correlation cannot be directly related to Tc, not even within the same family of cuprates.« less

  10. Advanced X-ray Astrophysics Facility (AXAF): An overview

    NASA Technical Reports Server (NTRS)

    Weisskopf, M. C.; ODell, S. L.; Elsner, R. F.; VanSpeybroeck, L. P.

    1995-01-01

    The Advanced X-ray Astrophysics Facility (AXAF) is the x-ray component of NASA's Great Observatories. To be launched in late 1998, AXAF will provide unprecedented capabilities for high-resolution imaging, spectrometric imaging, and high-resolution disperse spectroscopy, over the x-ray band from about 0.1 keV to 10 keV. With these capabilities, AXAF observations will address many of the outstanding questions in astronomy, astrophysics, and cosmology.

  11. SAS 3 observations of two X-ray transient events with precursors

    NASA Technical Reports Server (NTRS)

    Hoffman, J. A.; Lewin, W. H. G.; Doty, J.; Jernigan, J. G.; Haney, M.; Richardson, J. A.

    1978-01-01

    SAS 3 has observed two unusual fast transient X-ray events from different sources, one lasting about 150 s and one, approximately 1500 s. Both events were preceded by precursor pulses which lasted a few seconds and which rose and fell in less than 0.4 s. The precursors were separated from the 'main' events by several seconds, during which no X-rays were detected. There are similarities between the two main events and X-ray bursts in both their temporal and spectral evolution. The spectra of the main events started out much softer than the spectra of the precursors, became harder as they approached maximum intensity, and softened as they decayed. In the 1500-s event, X-rays with energies greater than 10 keV were delayed by about 80 s compared with 1.5-6-keV X-rays. A blackbody fit to the spectral data of the main event of approximately 1500-s duration gives a maximum temperature of 29 million K and a radius for the emitting region of at least about 9 km (at a distance of 10 kpc); this is similar to the temperature and sizes found for several X-ray burst sources.

  12. X-ray lithography using holographic images

    DOEpatents

    Howells, Malcolm R.; Jacobsen, Chris

    1995-01-01

    A non-contact X-ray projection lithography method for producing a desired X-ray image on a selected surface of an X-ray-sensitive material, such as photoresist material on a wafer, the desired X-ray image having image minimum linewidths as small as 0.063 .mu.m, or even smaller. A hologram and its position are determined that will produce the desired image on the selected surface when the hologram is irradiated with X-rays from a suitably monochromatic X-ray source of a selected wavelength .lambda.. On-axis X-ray transmission through, or off-axis X-ray reflection from, a hologram may be used here, with very different requirements for monochromaticity, flux and brightness of the X-ray source. For reasonable penetration of photoresist materials by X-rays produced by the X-ray source, the wavelength X, is preferably chosen to be no more than 13.5 nm in one embodiment and more preferably is chosen in the range 1-5 nm in the other embodiment. A lower limit on linewidth is set by the linewidth of available microstructure writing devices, such as an electron beam.

  13. X-Ray Lasers

    ERIC Educational Resources Information Center

    Chapline, George; Wood, Lowell

    1975-01-01

    Outlines the prospects of generating coherent x rays using high-power lasers and indentifies problem areas in their development. Indicates possible applications for coherent x rays in the fields of chemistry, biology, and crystallography. (GS)

  14. X-ray (image)

    MedlinePlus

    X-rays are a form of ionizing radiation that can penetrate the body to form an image on ... will be shades of gray depending on density. X-rays can provide information about obstructions, tumors, and other ...

  15. Bone x-ray

    MedlinePlus

    ... not being scanned. Alternative Names X-ray - bone Images Skeleton Skeletal spine Osteogenic sarcoma - x-ray References ... urac.org). URAC's accreditation program is an independent audit to verify that A.D.A.M. follows ...

  16. X-ray

    MedlinePlus

    ... think you might be pregnant. Alternative Names Radiography Images X-ray X-ray References Geleijns J, Tack ... urac.org). URAC's accreditation program is an independent audit to verify that A.D.A.M. follows ...

  17. Extremity x-ray

    MedlinePlus

    ... sensitive to the risks of an x-ray. Images X-ray References Kelly DM. Congenital anomalies of ... urac.org). URAC's accreditation program is an independent audit to verify that A.D.A.M. follows ...

  18. X-Ray Toolkit

    SciTech Connect

    2015-10-20

    Radiographic Image Acquisition & Processing Software for Security Markets. Used in operation of commercial x-ray scanners and manipulation of x-ray images for emergency responders including State, Local, Federal, and US Military bomb technicians and analysts.

  19. X-ray source for mammography

    DOEpatents

    Logan, Clinton M.

    1994-01-01

    An x-ray source utilizing anode material which shifts the output spectrum to higher energy and thereby obtains higher penetrating ability for screening mammography application, than the currently utilized anode material. The currently used anode material (molybdenum) produces an energy x-ray spectrum of 17.5/19.6 keV, which using the anode material of this invention (e.g. silver, rhodium, and tungsten) the x-ray spectrum would be in the 20-35 keV region. Thus, the anode material of this invention provides for imaging of breasts with higher than average x-ray opacity without increase of the radiation dose, and thus reduces the risk of induced breast cancer due to the radiation dose administered for mammograms.

  20. X-ray source for mammography

    DOEpatents

    Logan, C.M.

    1994-12-20

    An x-ray source is described utilizing anode material which shifts the output spectrum to higher energy and thereby obtains higher penetrating ability for screening mammography application, than the currently utilized anode material. The currently used anode material (molybdenum) produces an energy x-ray spectrum of 17.5/19.6 keV, which using the anode material of this invention (e.g. silver, rhodium, and tungsten) the x-ray spectrum would be in the 20-35 keV region. Thus, the anode material of this invention provides for imaging of breasts with higher than average x-ray opacity without increase of the radiation dose, and thus reduces the risk of induced breast cancer due to the radiation dose administered for mammograms. 6 figures.

  1. Preliminary designs for X-ray source modifications for the Marshall Space Flight Center's X-ray calibration facility

    NASA Technical Reports Server (NTRS)

    Croft, W. L.

    1986-01-01

    The objective of this investigation is to develop preliminary designs for modifications to the X-ray source of the MSFC X-Ray Calibration Facility. Recommendations are made regarding: (1) the production of an unpolarized X-ray beam, (2) modification of the source to provide characteristic X-rays with energies up to 40 keV, and (3) addition of the capability to calibrate instruments in the extreme ultraviolet wavelength region.

  2. A hybrid X-ray imaging spectrometer for NeXT and the next generation X-ray satellite

    NASA Astrophysics Data System (ADS)

    Tsuru, T. G.; Tanimori, T.; Bamba, A.; Imanishi, K.; Koyama, K.; Kubo, H.; Matsumoto, H.; Miuchi, K.; Nagayoshi, M.; Orito, R.; Takada, A.; Takagi, S.; Tsujimoto, M.; Ueno, M.; Tsunemi, H.; Hayashida, K.; Miyata, E.

    2004-01-01

    We propose a new type of wide band X-ray imaging spectrometer as a focal plane detector of the super mirror onboard on future X-ray missions including post Astro-E2. This camera is realized by the hybrid of back illumination CCDs and a back supportless CCD for 0.05-10 keV band, and a Micro Pixel Gas Chamber detecting X-rays at 10-80 keV.

  3. Sinus x-ray

    MedlinePlus

    Paranasal sinus radiography; X-ray - sinuses ... sinus x-ray is taken in a hospital radiology department. Or the x-ray may be taken ... Brown J, Rout J. ENT, neck, and dental radiology. In: Adam A, Dixon AK, Gillard JH Schaefer- ...

  4. Hand x-ray

    MedlinePlus

    X-ray - hand ... A hand x-ray is taken in a hospital radiology department or your health care provider's office by an ... technician. You will be asked to place your hand on the x-ray table, and keep it ...

  5. The soft X-ray diffuse background observed with the HEAO 1 low-energy detectors

    NASA Technical Reports Server (NTRS)

    Garmire, G. P.; Nousek, J. A.; Apparao, K. M. V.; Burrows, D. N.; Fink, R. L.; Kraft, R. P.

    1992-01-01

    Results of a study of the diffuse soft-X-ray background as observed by the low-energy detectors of the A-2 experiment aboard the HEAO 1 satellite are reported. The observed sky intensities are presented as maps of the diffuse X-ray background sky in several energy bands covering the energy range 0.15-2.8 keV. It is found that the soft X-ray diffuse background (SXDB) between 1.5 and 2.8 keV, assuming a power law form with photon number index 1.4, has a normalization constant of 10.5 +/- 1.0 photons/sq cm s sr keV. Below 1.5 keV the spectrum of the SXDB exceeds the extrapolation of this power law. The low-energy excess for the NEP can be fitted with emission from a two-temperature equilibrium plasma model with the temperatures given by log I1 = 6.16 and log T2 = 6.33. It is found that this model is able to account for the spectrum below 1 keV, but fails to yield the observed Galactic latitude variation.

  6. Low-luminosity X-ray sources and the Galactic ridge X-ray emission

    NASA Astrophysics Data System (ADS)

    Warwick, R.

    2014-07-01

    We make a new determination of the hard-band (2-10 keV) X-ray luminosity function (XLF) of relative low-luminosity Galactic X-ray sources based on a source sample derived from the XMM Slew Survey (XSS). The source population is comprised of coronally-active late-type stars and binaries with hard-band X-ray luminosities in the range 10^{28-32} erg s^{-1} and cataclysmic variables (magnetic and non-magnetic) with X-ray luminosities spanning the range 10^{30-34} erg s^{-1}. We use this new estimate of the XLF, to predict the 2-10 keV X-ray source counts on the Galactic Plane at faint fluxes and show that the result is fully consistent with the available observational constraints. Similarly the predicted surface brightness, both in the full 2-10 keV band and in a restricted 6-10 keV bandpass, due to the integrated emission of faint unresolved Galactic sources, is well matched to the observed intensity of the Galactic ridge X-ray emission (GRXE). We find that the coronally-active sources make the dominant contribution to both the faint Galactic X-ray source counts and the GRXE.

  7. Quasar x-ray spectra revisited

    NASA Technical Reports Server (NTRS)

    Shastri, P.; Wilkes, B. J.; Elvis, M.; Mcdowell, J.

    1992-01-01

    A sample of 45 quasars observed by the Imaging Proportional Counter (IPC) on the Einstein satellite is used to re-examine the relationship between the soft (0.2-3.5 keV) X-ray energy index and radio-loudness. We found the following: (1) the tendency for radio-loud quasars to have systematically flatter X-ray slopes than radio-quiet quasars (RQQ's) is confirmed with the soft X-ray excess having negligible effect; (2) there is a tendency for the flatness of the X-ray slope to correlate with radio core-dominance for radio-loud quasars, suggesting that a component of the X-ray emission is relativistically beamed; (3) for the RQQ's the soft X-ray slopes, with a mean of approximately 1.0, are consistent with the slopes found at higher energies (2-10 keV) although steeper than those observed for Seyfert 1 galaxies (also 2-10 keV) where the reflection model gives a good fit to the data; (4) the correlation of FeII emission line strength with X-ray energy index is confirmed for radio-quiet quasars using a subset of 18 quasars. The radio-loud quasars show no evidence for a correlation. This relation suggests a connection between the ionizing continuum and the line emission from the broad emission line region (BELR) of radio-quiet quasars, but in the opposite sense to that predicted by current photoionization models; and (5) the correlations of X-ray slope with radio core dominance and FeII equivalent width within the radio-loud and radio-quiet sub-classes respectively imply that the observed wide range of X-ray spectral slopes is real rather than due to the large measuring uncertainties for individual objects.

  8. A hard X-ray view of the soft-excess in AGN

    NASA Astrophysics Data System (ADS)

    Boissay, R.; Paltani, S.; Ricci, C.

    2015-07-01

    The origin of the soft-excess in many Seyfert 1-1.5s spectra remains debated, as several models have been suggested to explain it, including warm Comptonization and blurred ionized reflection. In order to constrain the origin of this component, we use the fact that these models predict different behaviors in the hard X-rays. Ionized reflection indeed covers a broad energy range, from the soft X-rays to the hard X-rays around a few tens of keV, while Comptonization from a warm plasma drops very quickly above a few keV. We present here the results of a study done on 102 Seyfert 1s (Sy 1.0, 1.2, 1.5, and NLSy1) from the Swift BAT 70-Month Hard X-ray Survey catalog. The joint spectral analysis of Swift/BAT and XMM-Newton PN and MOS data allows a hard X-ray view of the soft-excess that is present in about 80% of the objects of our sample. We discuss how the soft-excess strength is linked to the reflection at high energy and to the photon index of the primary continuum, and show that our results are in contradiction with those obtained from simulations of blurred ionized-reflection models.

  9. DISCOVERY OF DIFFUSE HARD X-RAY EMISSION AROUND JUPITER WITH SUZAKU

    SciTech Connect

    Ezoe, Y.; Ishikawa, K.; Ohashi, T.; Miyoshi, Y.; Terada, N.; Uchiyama, Y.; Negoro, H.

    2010-02-01

    We report the discovery of diffuse hard (1-5 keV) X-ray emission around Jupiter in a deep 160 ks Suzaku X-ray Imaging Spectrometer data. The emission is distributed over {approx}16 x 8 Jovian radius and spatially associated with the radiation belts and the Io Plasma Torus (IPT). It shows a flat power-law spectrum with a photon index of 1.4 {+-} 0.2 with the 1-5 keV X-ray luminosity of (3.3 {+-} 0.5)x10{sup 15} erg s{sup -1}. We discussed its origin and concluded that it seems to be truly diffuse, although a possibility of multiple background point sources cannot be completely rejected with a limited angular resolution. If it is diffuse, the flat continuum indicates that X-rays arise by the nonthermal electrons in the radiation belts and/or the IPT. The synchrotron and bremsstrahlung models can be rejected from the necessary electron energy and X-ray spectral shape, respectively. The inverse-Compton scattering off solar photons by ultra-relativistic (several tens MeV) electrons can explain the energy and the spectrum but the necessary electron density is {approx}>10 times larger than the value estimated from the empirical model of Jovian charge particles.

  10. Diffractive Imaging Using Partially Coherent X Rays

    SciTech Connect

    Whitehead, L. W.; Williams, G. J.; Quiney, H. M.; Vine, D. J.; Dilanian, R. A.; Flewett, S.; Nugent, K. A.; Peele, A. G.; Balaur, E.; McNulty, I.

    2009-12-11

    The measured spatial coherence characteristics of the illumination used in a diffractive imaging experiment are incorporated in an algorithm that reconstructs the complex transmission function of an object from experimental x-ray diffraction data using 1.4 keV x rays. Conventional coherent diffractive imaging, which assumes full spatial coherence, is a limiting case of our approach. Even in cases in which the deviation from full spatial coherence is small, we demonstrate a significant improvement in the quality of wave field reconstructions. Our formulation is applicable to x-ray and electron diffraction imaging techniques provided that the spatial coherence properties of the illumination are known or can be measured.

  11. GEMS X-ray Polarimeter Performance Simulations

    NASA Technical Reports Server (NTRS)

    Baumgartner, Wayne H.; Strohmayer, Tod; Kallman, Tim; Black, J. Kevin; Hill, Joanne; Swank, Jean

    2012-01-01

    The Gravity and Extreme Magnetism Small explorer (GEMS) is an X-ray polarization telescope selected as a NASA small explorer satellite mission. The X-ray Polarimeter on GEMS uses a Time Projection Chamber gas proportional counter to measure the polarization of astrophysical X-rays in the 2-10 keV band by sensing the direction of the track of the primary photoelectron excited by the incident X-ray. We have simulated the expected sensitivity of the polarimeter to polarized X-rays. We use the simulation package Penelope to model the physics of the interaction of the initial photoelectron with the detector gas and to determine the distribution of charge deposited in the detector volume. We then model the charge diffusion in the detector,and produce simulated track images. Within the track reconstruction algorithm we apply cuts on the track shape and focus on the initial photoelectron direction in order to maximize the overall sensitivity of the instrument, using this technique we have predicted instrument modulation factors nu(sub 100) for 100% polarized X-rays ranging from 10% to over 60% across the 2-10 keV X-ray band. We also discuss the simulation program used to develop and model some of the algorithms used for triggering, and energy measurement of events in the polarimeter.

  12. Biological responses of human solid tumor cells to X-ray irradiation within a 1.5-Tesla magnetic field generated by a magnetic resonance imaging-linear accelerator.

    PubMed

    Wang, Li; Hoogcarspel, Stan Jelle; Wen, Zhifei; van Vulpen, Marco; Molkentine, David P; Kok, Jan; Lin, Steven H; Broekhuizen, Roel; Ang, Kie-Kian; Bovenschen, Niels; Raaymakers, Bas W; Frank, Steven J

    2016-10-01

    Devices that combine magnetic resonance imaging with linear accelerators (MRL) represent a novel tool for MR-guided radiotherapy. However, whether magnetic fields (MFs) generated by these devices affect the radiosensitivity of tumors is unknown. We investigated the influence of a 1.5-T MF on cell viability and radioresponse of human solid tumors. Human head/neck cancer and lung cancer cells were exposed to single or fractionated 6-MV X-ray radiation; effects of the MF on cell viability were determined by cell plating efficiency and on radioresponsiveness by clonogenic cell survival. Doses needed to reduce the fraction of surviving cells to 37% of the initial value (D0s) were calculated for multiple exposures to MF and radiation. Results were analyzed using Student's t-tests. Cell viability was no different after single or multiple exposures to MRL than after exposure to a conventional linear accelerator (Linac, without MR-generated MF) in 12 of 15 experiments (all P > 0.05). Single or multiple exposures to MF had no influence on cell radioresponse (all P > 0.05). Cells treated up to four times with an MRL or a Linac further showed no changes in D0s with MF versus without MF (all P > 0.05). In conclusion, MF within the MRL does not seem to affect in vitro tumor radioresponsiveness as compared with a conventional Linac. Bioelectromagnetics. 37:471-480, 2016. © 2016 Wiley Periodicals, Inc.

  13. Two crystal x-ray spectrometers for OMEGA experiments

    NASA Astrophysics Data System (ADS)

    Reverdin, C.; Casner, A.; Girard, F.; Lecherbourg, L.; Loupias, B.; Tassin, V.; Philippe, F.

    2016-11-01

    Two x-ray spectrometers have been built for x-ray spectroscopy of laser-produced plasmas on OMEGA at the Laboratory for Laser Energetics (LLE) by Commissariat a ̀ l'Energie Atomique et aux énergies alternatives (CEA). The accessible photon energy range is from 1.5 to 20 keV. The first spectrometer, called X-ray CEA Crystal Spectrometer with a Charge-Injection Device (XCCS-CID), records three spectra with three crystals coupled to a time integrated CID camera. The second one, called X-ray CEA Crystal Spectrometer (XCCS) with a framing camera, is time resolved and records four spectra with two crystals on the four frames of a framing camera. Cylindrical crystals are used in Johan geometry. Each spectrometer is positioned with a ten-inch manipulator inside the OMEGA target chamber. In each experiment, after choosing a spectral window, a specific configuration is designed and concave crystals are precisely positioned on a board with angled wedges and spacers. Slits on snouts enable 1D spatial resolution to distinguish spectra emitted from different parts of the target.

  14. For the detection of subkiloelectron-volt X-rays

    NASA Technical Reports Server (NTRS)

    Hailey, C. J.; Ku, W. H.-M.; Vartanian, M. H.

    1982-01-01

    A large-area, imaging gas scintillation proportional counter (IGSPC) has been constructed for use in X-ray astronomy. The IGSPC consists of a gas scintillation proportional counter (GSPC) with a 1-micron polypropylene window coupled to a multiwire proportional counter (MWPC) via a calcium fluoride window. The MWPC, filled with a mixture of argon, methane, and tetrakis (dimethylamino) ethylene, detects the UV photons emitted by the xenon gas in the GSPC. Over a sensitive area of 21 sq cm, the instrument has a measured energy resolution of 17.5% (FWHM) and 1.9 mm (FWHM) spatial resolution at 1.5 keV.

  15. Indus-2 X-ray lithography beamline for X-ray optics and material science applications

    SciTech Connect

    Dhamgaye, V. P. Lodha, G. S.

    2014-04-24

    X-ray lithography is an ideal technique by which high aspect ratio and high spatial resolution micro/nano structures are fabricated using X-rays from synchrotron radiation source. The technique has been used for fabricating optics (X-ray, visible and infrared), sensors and actuators, fluidics and photonics. A beamline for X-ray lithography is operational on Indus-2. The beamline offers wide lithographic window from 1-40keV photon energy and wide beam for producing microstructures in polymers upto size ∼100mm × 100mm. X-ray exposures are possible in air, vacuum and He gas environment. The air based exposures enables the X-ray irradiation of resist for lithography and also irradiation of biological and liquid samples.

  16. X-ray imaging with compound refractive lens and microfocus x-ray tube

    NASA Astrophysics Data System (ADS)

    Pina, Ladislav; Dudchik, Yury; Jelinek, Vaclav; Sveda, Libor; Marsik, Jiri; Horvath, Martin; Petr, Ondrej

    2008-08-01

    Compound refractive lenses (CRL), consisting of a lot number in-line concave microlenses made of low-Z material were studied. Lenses with focal length 109 mm and 41 mm for 8-keV X-rays, microfocus X-ray tube and X-ray CCD camera were used in experiments. Obtained images show intensity distribution of magnified microfocus X-ray source focal spot. Within the experiments, one lens was also used as an objective lens of the X-ray microscope, where the copper anode X-ray microfocus tube served as a source. Magnified images of gold mesh with 5 microns bars were obtained. Theoretical limits of CRL and experimental results are discussed.

  17. A computational study of x-ray emission from high-Z x-ray sources on the National Ignition Facility laser

    NASA Astrophysics Data System (ADS)

    Colvin, Jeffrey D.; Fournier, Kevin B.; Kane, Jave; Langer, Steven; May, Mark J.; Scott, Howard A.

    2011-12-01

    We have begun to use 350-500 kJ of 1/3-micron laser light from the National Ignition Facility (NIF) laser to create millimeter-scale, bright multi-keV x-ray sources. In the first set of shots we achieved 15%-18% x-ray conversion efficiency into Xe M-shell (˜1.5-2.5 keV), Ar K-shell (˜3 keV) and Xe L-shell (˜4-5.5 keV) emission (Fournier et al., Phys. Plasmas 17, 082701, 2010), in good agreement with the emission modeled using a 2D radiation-hydrodynamics code incorporating a modern Detailed Configuration Accounting atomic model in non-LTE (Colvin et al., Phys. Plasmas, 17, 073111, 2010). In this paper we first briefly review details of the computational model and comparisons of the simulations with the Ar/Xe NIF data. We then discuss a computational study showing sensitivity of the x-ray emission to various beam illumination details (beam configuration, pointing, peak power, pulse shape, etc.) and target parameters (size, initial density, etc.), and finally make some predictions of how the x-ray conversion efficiency expected from NIF shots scales with atomic number of the emitting plasma.

  18. A Computational Study of X-ray Emissions from High-Z X-ray Sources on the National Ignition Facility Laser

    NASA Astrophysics Data System (ADS)

    Colvin, Jeffrey; Fournier, Kevin; Kane, Jave; May, Mark

    2010-11-01

    We have begun to use 350-500 kJ of 1/3-micron laser light from the National Ignition Facility (NIF) laser to create millimeter-scale, bright multi-keV x-ray sources. In the first set of shots we achieved 15% -18% x-ray conversion efficiency into Xe M-shell (˜1.5-2.5 keV), Ar K-shell (˜3 keV) and Xe L-shell (˜4-5.5 keV) emission (Fournier et al., Phys. Plasmas July 2010), in good agreement with the emission modeled using a 2D radiation-hydrodynamics code incorporating a modern Detailed Configuration Accounting atomic model in non-LTE (Colvin et al., Phys. Plasmas, July 2010). In this presentation we first briefly review details of the computational model and comparisons of the simulations with the Ar/Xe NIF data. We then discuss a computational study showing sensitivity of the x-ray emission to various beam illumination details (beam configuration, pointing, peak power, pulse shape, etc.) and target parameters (size, initial density, etc.), and finally make some predictions of how the x-ray conversion efficiency expected from NIF shots scales with atomic number of the emitting plasma.

  19. Development of scanning electron and x-ray microscope

    SciTech Connect

    Matsumura, Tomokazu Hirano, Tomohiko Suyama, Motohiro

    2016-01-28

    We have developed a new type of microscope possessing a unique feature of observing both scanning electron and X-ray images under one unit. Unlike former X-ray microscopes using SEM [1, 2], this scanning electron and X-ray (SELX) microscope has a sample in vacuum, thus it enables one to observe a surface structure of a sample by SEM mode, to search the region of interest, and to observe an X-ray image which transmits the region. For the X-ray observation, we have been focusing on the soft X-ray region from 280 eV to 3 keV to observe some bio samples and soft materials. The resolutions of SEM and X-ray modes are 50 nm and 100 nm, respectively, at the electron energy of 7 keV.

  20. Imaging plates calibration to X-rays

    NASA Astrophysics Data System (ADS)

    Curcio, A.; Andreoli, P.; Cipriani, M.; Claps, G.; Consoli, F.; Cristofari, G.; De Angelis, R.; Giulietti, D.; Ingenito, F.; Pacella, D.

    2016-05-01

    The growing interest for the Imaging Plates, due to their high sensitivity range and versatility, has induced, in the last years, to detailed characterizations of their response function in different energy ranges and kind of radiation/particles. A calibration of the Imaging Plates BAS-MS, BAS-SR, BAS-TR has been performed at the ENEA-Frascati labs by exploiting the X-ray fluorescence of different targets (Ca, Cu, Pb, Mo, I, Ta) and the radioactivity of a BaCs source, in order to cover the X-ray range between few keV to 80 keV.

  1. Ultrashort X-ray pulse science

    SciTech Connect

    Chin, Alan Hap

    1998-05-01

    A variety of phenomena involves atomic motion on the femtosecond time-scale. These phenomena have been studied using ultrashort optical pulses, which indirectly probe atomic positions through changes in optical properties. Because x-rays can more directly probe atomic positions, ultrashort x-ray pulses are better suited for the study of ultrafast structural dynamics. One approach towards generating ultrashort x-ray pulses is by 90° Thomson scattering between terawatt laser pulses and relativistic electrons. Using this technique, the author generated ~ 300 fs, 30 keV (0.4 Å) x-ray pulses. These x-ray pulses are absolutely synchronized with ultrashort laser pulses, allowing femtosecond optical pump/x-ray probe experiments to be performed. Using the right-angle Thomson scattering x-ray source, the author performed time-resolved x-ray diffraction studies of laser-perturbated InSb. These experiments revealed a delayed onset of lattice expansion. This delay is due to the energy relaxation from a dense electron-hole plasma to the lattice. The dense electron-hole plasma first undergoes Auger recombination, which reduces the carrier concentration while maintaining energy content. Longitudinal-optic (LO) phonon emission then couples energy to the lattice. LO phonon decay into acoustic phonons, and acoustic phonon propagation then causes the growth of a thermally expanded layer. Source characterization is instrumental in utilizing ultrashort x-ray pulses in time-resolved x-ray spectroscopies. By measurement of the electron beam diameter at the generation point, the pulse duration of the Thomson scattered x-rays is determined. Analysis of the Thomson scattered x-ray beam properties also provides a novel means of electron bunch characterization. Although the pulse duration is inferred for the Thomson scattering x-ray source, direct measurement is required for other x-ray pulse sources. A method based on the laser-assisted photoelectric effect (LAPE) has been demonstrated as a

  2. Symbiotic Stars in X-rays

    NASA Technical Reports Server (NTRS)

    Luna, G. J. M.; Sokoloski, J. L.; Mukai, K.; Nelson, T.

    2014-01-01

    Until recently, symbiotic binary systems in which a white dwarf accretes from a red giant were thought to be mainly a soft X-ray population. Here we describe the detection with the X-ray Telescope (XRT) on the Swift satellite of 9 white dwarf symbiotics that were not previously known to be X-ray sources and one that was previously detected as a supersoft X-ray source. The 9 new X-ray detections were the result of a survey of 41 symbiotic stars, and they increase the number of symbiotic stars known to be X-ray sources by approximately 30%. Swift/XRT detected all of the new X-ray sources at energies greater than 2 keV. Their X-ray spectra are consistent with thermal emission and fall naturally into three distinct groups. The first group contains those sources with a single, highly absorbed hard component, which we identify as probably coming from an accretion-disk boundary layer. The second group is composed of those sources with a single, soft X-ray spectral component, which likely arises in a region where low-velocity shocks produce X-ray emission, i.e. a colliding-wind region. The third group consists of those sources with both hard and soft X-ray spectral components. We also find that unlike in the optical, where rapid, stochastic brightness variations from the accretion disk typically are not seen, detectable UV flickering is a common property of symbiotic stars. Supporting our physical interpretation of the two X-ray spectral components, simultaneous Swift UV photometry shows that symbiotic stars with harder X-ray emission tend to have stronger UV flickering, which is usually associated with accretion through a disk. To place these new observations in the context of previous work on X-ray emission from symbiotic stars, we modified and extended the alpha/beta/gamma classification scheme for symbiotic-star X-ray spectra that was introduced by Muerset et al. based upon observations with the ROSAT satellite, to include a new sigma classification for sources with

  3. Fundamental x-ray interaction limits in diagnostic imaging detectors: Spatial resolution

    SciTech Connect

    Hajdok, G.; Battista, J. J.; Cunningham, I. A.

    2008-07-15

    The practice of diagnostic x-ray imaging has been transformed with the emergence of digital detector technology. Although digital systems offer many practical advantages over conventional film-based systems, their spatial resolution performance can be a limitation. The authors present a Monte Carlo study to determine fundamental resolution limits caused by x-ray interactions in four converter materials: Amorphous silicon (a-Si), amorphous selenium, cesium iodide, and lead iodide. The ''x-ray interaction'' modulation transfer function (MTF) was determined for each material and compared in terms of the 50% MTF spatial frequency and Wagner's effective aperture for incident photon energies between 10 and 150 keV and various converter thicknesses. Several conclusions can be drawn from their Monte Carlo study. (i) In low-Z (a-Si) converters, reabsorption of Compton scatter x rays limits spatial resolution with a sharp MTF drop at very low spatial frequencies (<0.3 cycles/mm), especially above 60 keV; while in high-Z materials, reabsorption of characteristic x rays plays a dominant role, resulting in a mid-frequency (1-5 cycles/mm) MTF drop. (ii) Coherent scatter plays a minor role in the x-ray interaction MTF. (iii) The spread of energy due to secondary electron (e.g., photoelectrons) transport is significant only at very high spatial frequencies. (iv) Unlike the spread of optical light in phosphors, the spread of absorbed energy from x-ray interactions does not significantly degrade spatial resolution as converter thickness is increased. (v) The effective aperture results reported here represent fundamental spatial resolution limits of the materials tested and serve as target benchmarks for the design and development of future digital x-ray detectors.

  4. Fundamental x-ray interaction limits in diagnostic imaging detectors: spatial resolution.

    PubMed

    Hajdok, G; Battista, J J; Cunningham, I A

    2008-07-01

    The practice of diagnostic x-ray imaging has been transformed with the emergence of digital detector technology. Although digital systems offer many practical advantages over conventional film-based systems, their spatial resolution performance can be a limitation. The authors present a Monte Carlo study to determine fundamental resolution limits caused by x-ray interactions in four converter materials: Amorphous silicon (a-Si), amorphous selenium, cesium iodide, and lead iodide. The "x-ray interaction" modulation transfer function (MTF) was determined for each material and compared in terms of the 50% MTF spatial frequency and Wagner's effective aperture for incident photon energies between 10 and 150 keV and various converter thicknesses. Several conclusions can be drawn from their Monte Carlo study. (i) In low-Z (a-Si) converters, reabsorption of Compton scatter x rays limits spatial resolution with a sharp MTF drop at very low spatial frequencies (< 0.3 cycles/mm), especially above 60 keV; while in high-Z materials, reabsorption of characteristic x rays plays a dominant role, resulting in a mid-frequency (1-5 cycles/mm) MTF drop. (ii) Coherent scatter plays a minor role in the x-ray interaction MTF. (iii) The spread of energy due to secondary electron (e.g., photoelectrons) transport is significant only at very high spatial frequencies. (iv) Unlike the spread of optical light in phosphors, the spread of absorbed energy from x-ray interactions does not significantly degrade spatial resolution as converter thickness is increased. (v) The effective aperture results reported here represent fundamental spatial resolution limits of the materials tested and serve as target benchmarks for the design and development of future digital x-ray detectors.

  5. X-ray spectroscopy for chemistry in the 2-4 keV energy regime at the XMaS beamline: ionic liquids, Rh and Pd catalysts in gas and liquid environments, and Cl contamination in γ-Al2O3.

    PubMed

    Thompson, Paul B J; Nguyen, Bao N; Nicholls, Rachel; Bourne, Richard A; Brazier, John B; Lovelock, Kevin R J; Brown, Simon D; Wermeille, Didier; Bikondoa, Oier; Lucas, Christopher A; Hase, Thomas P A; Newton, Mark A

    2015-11-01

    The 2-4 keV energy range provides a rich window into many facets of materials science and chemistry. Within this window, P, S, Cl, K and Ca K-edges may be found along with the L-edges of industrially important elements from Y through to Sn. Yet, compared with those that cater for energies above ca. 4-5 keV, there are relatively few resources available for X-ray spectroscopy below these energies. In addition, in situ or operando studies become to varying degrees more challenging than at higher X-ray energies due to restrictions imposed by the lower energies of the X-rays upon the design and construction of appropriate sample environments. The XMaS beamline at the ESRF has recently made efforts to extend its operational energy range to include this softer end of the X-ray spectrum. In this report the resulting performance of this resource for X-ray spectroscopy is detailed with specific attention drawn to: understanding electrostatic and charge transfer effects at the S K-edge in ionic liquids; quantification of dilution limits at the Cl K- and Rh L3-edges and structural equilibria in solution; in vacuum deposition and reduction of [Rh(I)(CO)2Cl]2 to γ-Al2O3; contamination of γ-Al2O3 by Cl and its potential role in determining the chemical character of supported Rh catalysts; and the development of chlorinated Pd catalysts in `green' solvent systems. Sample environments thus far developed are also presented, characterized and their overall performance evaluated.

  6. X-ray rocking curve measurements of bent crystals. [used in High Resolution Spectrometer in Advanced X-ray Astrophysics Facility

    NASA Technical Reports Server (NTRS)

    Hakim, M. B.; Muney, W. S.; Fowler, W. B.; Woodgate, B. E.

    1988-01-01

    A three-crystal laboratory X-ray spectrometer is used to measure the Bragg reflection from concave cylindrically curved crystals to be used in the high-resolution X-ray spectrometer of the NASA Advanced X-ray Astrophysics Facility (AXAF). The first two crystals, in the dispersive (1.1) arrangement, select a narrow collimated monochromatic beam in the Cu K-alpha(1) line at 1.5 A (8.1 keV), which illuminates the test crystal. The angular centroids of rocking curves measured along the surface provide a measure of the conformity of the crystal to the desired radius of curvature. Individual and combined rocking-curve widths and areas provide a measure of the resolution and efficiency at 1.54 A. The crystals analyzed included LiF(200), PET, and acid phthalates such as TAP.

  7. A hard X-ray view of the soft excess in AGN

    NASA Astrophysics Data System (ADS)

    Boissay, Rozenn; Ricci, Claudio; Paltani, Stéphane

    2016-04-01

    An excess of X-ray emission below 1 keV, called soft excess, is detected in a large fraction of Seyfert 1-1.5s. The origin of this feature remains debated, as several models have been suggested to explain it, including warm Comptonization and blurred ionized reflection. In order to constrain the origin of this component, we exploit the different behaviors of these models above 10 keV. Ionized reflection covers a broad energy range, from the soft X-rays to the hard X-rays, while Comptonization drops very quickly in the soft X-rays. We present here the results of a study done on 102 Seyfert 1s (Sy 1.0, 1.2, 1.5 and NLSy1) from the Swift BAT 70-Month Hard X-ray Survey catalog. The joint spectral analysis of Swift/BAT and XMM-Newton data allows a hard X-ray view of the soft excess that is present in about 80% of the objects of our sample. We discuss how the soft-excess strength is linked to the reflection at high energy, to the photon index of the primary continuum and to the Eddington ratio. In particular, we find a positive dependence of the soft excess intensity on the Eddington ratio. We compare our results to simulations of blurred ionized-reflection models and show that they are in contradiction. By stacking both XMM-Newton and Swift/BAT spectra per soft-excess strength, we see that the shape of reflection at hard X-rays stays constant when the soft excess varies, showing an absence of link between reflection and soft excess. We conclude that the ionized-reflection model as the origin of the soft excess is disadvantaged in favor of the warm Comptonization model in our sample of Seyfert 1s.

  8. High Resolution X-Ray Absorption Spectroscopy: Distribution of Matter in and around Galaxies

    NASA Astrophysics Data System (ADS)

    Schulz, Norbert; MIT/CAT Team

    2015-10-01

    The chemical evolution of the Universe embraces aspects that reachdeep into modern astrophysics and cosmology. We want to know how present and past matter is affected by various levels and types of nucleo-synthesis and stellar evolution. Three major categories were be identified: 1. The study of pre-mordial star formation including periods of super-massive black hole formation, 2. The embedded evolution of the intergalactic medium IGM, 3. The status and evolution of stars and the interstellar medium ISM in galaxies. Today a fourth category relates to our understanding of dark matter in relationwith these three categories. The X-ray band is particularly sensitive to K- and L-shell absorption and scattering from high abundant elements like C, N, O, Ne, Mg, Si, S,Ar, Ca, Fe, and Ni. Like the Lyman alpha forest in the optical band, absorbers in the IGM produce an X-ray line forest along the line of sight in the X-rayspectrum of a background quasar. Similary bright X-ray sources within galaxies and the Milky Way produce a continuum, which is being absorbed by elements invarious phases of the ISM. High resolution X-ray absorption surveys are possible with technologies ready for flight within decade. == high efficiency X-ray optics with optical performance 3== high resolution X-ray gratings with R 3000 for E 1.5 keV== X-ray micro-calorimeters with R 2000 for E 1.5 keV. The vision for the next decade needs to lead to means and strategies which allows us to perform such absorption surveys as effectively as surveys are now or in very near future quite common in astronomy pursued in other wave length bands such as optical, IR, and sub-mm.

  9. Curved focusing crystals for hard X-ray astronomy

    SciTech Connect

    Ferrari, C. Buffagni, E.; Bonnini, E.; Korytar, D.

    2013-12-15

    A lens made by a properly arranged array of crystals can be used to focus x-rays of energy ranging from 30 to 500 keV for x-ray astronomy. Mosaic or curved crystals can be employed as x-ray optical elements. In this work self standing curved focusing Si and GaAs crystals in which the lattice bending is induced by a controlled damaging process on one side of planar crystals are characterized. Diffraction profiles in Laue geometry have been measured in crystals at x-ray energies E = 17, 59 and 120 keV. An enhancement of diffraction efficiency is found in asymmetric geometries.

  10. X-ray binaries

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Satellite X-ray experiments and ground-based programs aimed at observation of X-ray binaries are discussed. Experiments aboard OAO-3, OSO-8, Ariel 5, Uhuru, and Skylab are included along with rocket and ground-based observations. Major topics covered are: Her X-1, Cyg X-3, Cen X-3, Cyg X-1, the transient source A0620-00, other possible X-ray binaries, and plans and prospects for future observational programs.

  11. Elastic and inelastic processes in H{sup +}+CH{sub 2} collisions between 0.5 and 1.5 keV

    SciTech Connect

    Suno, Hiroya; Rai, Sachchida N.; Liebermann, Heinz-Peter; Buenker, Robert J.; Kimura, Mineo; Janev, R.K.

    2004-09-01

    Electron capture and direct elastic scattering in collisions of H{sup +} ions with CH{sub 2} molecules between 0.5 and 1.5 keV are theoretically investigated. A molecular representation is adopted within a fully quantum-mechanical approach. We consider the following four different molecular configurations for collision dynamics: (I) the proton approaches the C atom along the bisector of the H--C--H bond angle, passing the midpoint of the H-H line (II) it comes along the same line as in (I), but in the opposite direction (III) the proton approaches the C atom in the H-C-H plane and perpendicularly to the bisector of the H-C-H bond angle, and (IV) the proton approaches the C atom perpendicularly to the H-C-H plane. Differential cross sections for elastic scattering and electron capture are calculated at 1.5 and 0.5 keV for these different molecular orientations. Total cross sections for these four orientations as well as orientation-averaged total cross sections are also calculated. Our results indicate that electron capture dynamics and corresponding electron-capture cross sections depend substantially on the molecular configuration, thus revealing a strong steric effect.

  12. Elastic and inelastic processes in H{sup +}+NH{sub 2} collisions between 0.5 and 1.5 keV

    SciTech Connect

    Suno, Hiroya; Rai, Sachchida N.; Liebermann, Heinz-Peter; Buenker, Robert J.; Kimura, Mineo; Pichl, Lukas

    2006-07-15

    Electron capture and direct elastic scattering in collisions of H{sup +} ions with NH{sub 2} molecules between 0.5 and 1.5 keV are theoretically investigated. A molecular representation is adopted within a fully quantum-mechanical approach. We consider the following four different molecular configurations for collision dynamics: (I) the proton approaches the N atom along the bisector of the H-N-H bond angle, passing the midpoint of the H-H line (II) it comes along the same line as in (I), but in the opposite direction (III) the proton approaches the N atom in the H-N-H plane and perpendicularly to the bisector of the H-N-H bond angle, and (IV) the proton approaches the N atom perpendicularly to the H-N-H plane. Differential cross sections for elastic scattering and electron capture are calculated at 1.5 and 0.5 keV for these different molecular orientations. Total cross sections for these four orientations as well as orientation-averaged total cross sections are also calculated. Our results indicate that electron-capture dynamics and corresponding electron-capture cross sections depend substantially on the molecular configuration, thus revealing a strong steric effect.

  13. Flat Field Anomalies in an X-Ray CCD Camera Measured Using a Manson X-Ray Source

    SciTech Connect

    Michael Haugh

    2008-03-01

    The Static X-ray Imager (SXI) is a diagnostic used at the National Ignition Facility (NIF) to measure the position of the X-rays produced by lasers hitting a gold foil target. It determines how accurately NIF can point the laser beams and is critical to proper NIF operation. Imagers are located at the top and the bottom of the NIF target chamber. The CCD chip is an X-ray sensitive silicon sensor, with a large format array (2k x 2k), 24 μm square pixels, and 15 μm thick. A multi-anode Manson X-ray source, operating up to 10kV and 2mA, was used to characterize and calibrate the imagers. The output beam is heavily filtered to narrow the spectral beam width, giving a typical resolution E/ΔE≈12. The X-ray beam intensity was measured using an absolute photodiode that has accuracy better than 1% up to the Si K edge and better than 5% at higher energies. The X-ray beam provides full CCD illumination and is flat, within ±1.5% maximum to minimum. The spectral efficiency was measured at 10 energy bands ranging from 930 eV to 8470 eV. The efficiency pattern follows the properties of Si. The maximum quantum efficiency is 0.71. We observed an energy dependent pixel sensitivity variation that showed continuous change over a large portion of the CCD. The maximum sensitivity variation was >8% at 8470 eV. The geometric pattern did not change at lower energies, but the maximum contrast decreased and was less than the measurement uncertainty below 4 keV. We were also able to observe debris on the CCD chip. The debris showed maximum contrast at the lowest energy used, 930 eV, and disappeared by 4 keV. The Manson source is a powerful tool for characterizing the imaging errors of an X-ray CCD imager. These errors are quite different from those found in a visible CCD imager.

  14. Effects on hard x-ray response of a double-sided Si strip detector caused by interstrip surface charge

    NASA Astrophysics Data System (ADS)

    Miyake, Katsuma; Saito, Shinya; Nakano, Toshio; Hagino, Koichi; Kobayashi, Shogo B.; Okuda, Kazufumi; Miura, Taketo; Sato, Goro; Watanabe, Shin; Kokubun, Motohide; Nakazawa, Kazuhiro; Takeda, Shinichiro; Tajima, Hiroyasu; Fukazawa, Yasushi; Takahashi, Tadayuki

    2016-09-01

    We studied a surface effect of Double-sided Si Strip Detectors (DSSDs) in order to apply it for imaging spectroscopy of X-ray photons down to 5 keV for the first time. The Japanese cosmic X-ray satellite Hitomi, launched in February 2016, is equipped with the Hard X-ray Imager (HXI), which employs the DSSDs in 5-80 keV. In such a low energy band, the surface effect is non-negligible. When interstrip regions of p-side are irradiated, the DSSD sometimes show signals with negative pulse heights, presumably caused by positive surface charges between Si and SiO2 layers.1{5 The effect modifies the X-ray response of the HXI towards its low-energy end, below 10 keV. By irradiating the DSSD with uncollimated mono-energetic X-rays of different energies, we measured the fraction of the negative events to be 2% at 26.4 keV and 30% at 6.0 keV. Using an 8 keV colli- mated X-ray beam, we directly verified that the negative events originated from the interstrip gaps on the p-side where the SiO2 layers exist. The measured energy- and position- dependences can be modeled by assuming that the negative events are produced in approximately 25 μm deep and 120 μm wide interstrip regions. When the bias voltage are halved (from 350 V to 180 V), fraction of the negative events increased by a factor of 1:7, qualitatively consistent with this picture.

  15. X-Ray Monitoring of GRBs with Lobster Eye Telescopes

    SciTech Connect

    Sveda, L.; Pina, L.; Hudec, R.; Inneman, A.; Pizzichini, G.

    2004-09-28

    We present here the soft X-ray All-Sky Monitor (ASM). It is based on the current technological capabilities, sensitive in the {approx} 0.1 - 10.0 keV range with angular resolution of {approx} 3 - 4 arcmin, and has a limiting detectable flux {approx} 10-12 erg/s/cm2 for daily scans in the mentioned energy range. The ASM will play a key role in studying transient X-ray sources like XRBs, GRBs, XRFs, X-ray novae, as well as in the study of the long term variability of X-ray sources like XRBs, AGN, or stellar X-ray flares.

  16. The materials science X-ray beamline BL8 at the DELTA storage ring

    SciTech Connect

    Luetzenkirchen-Hecht, D.; Wagner, R.; Frahm, R.; Herdt, A.

    2010-06-23

    The instrumentation of the hard X-ray beamline BL8 at the 1.5 GeV Dortmund Electron Accelerator DELTA is described, and the properties of the X-ray optical elements are presented together with experimental data of different fields of research. The beamline, which makes use of the photons emitted by a superconducting asymmetric wiggler, is dedicated to X-ray studies--especially X-ray absorption spectroscopy (XAS)--in the spectral range from about 1 keV to ca. 25 keV photon energy using three different monochromators, namely YB{sub 66}(400), Si(111) and Si(311). The endstation comprises a 6-axis diffractometer that is capable of carrying heavy loads related to non-ambient sample environments such as high pressure cells, cryostats or even complete ultrahigh vacuum systems. X-ray absorption spectra from several reference compounds illustrate the performance of the beamline optics concerning e.g. energy range, energy resolution and beam stability. Fluorescence detection enables the investigation of dilute sample systems, and surface sensitive reflection mode experiments are possible for thin film studies.

  17. An ultra-compact hard X-ray superconducting light source for biotechnology and industrial use

    NASA Astrophysics Data System (ADS)

    Cline, David B.; Garren, Al; Green, Mike; Kolonko, Jim; Lee, Kevin

    1998-04-01

    We describe the design of a 1.5-GeV ultra-compact storage ring that uses 7-T superconducting magnets. The aim of this source is to provide intense 10-30 keV X-rays of moderate brilliance for commercial application. The first prototype is being designed for the UCLA Science and Technology Research Building (STRB) in Westwood, California.

  18. An imaging gas scintillation proportional counter for the detection of subkiloelectron-volt X-rays

    NASA Technical Reports Server (NTRS)

    Hailey, C. J.; Ku, W. H. M.; Vartanian, M. H.

    1981-01-01

    A large area imaging gas scintillation proportional counter (IGSPC) was constructed for use in X-ray astronomy. The IGSPC consists of a gas scintillation proportional counted (GSPC) with a micron polyprotylene window coupled to a multiwire proportional counter (MWPC) via a calcium fluoride window. Over a sensitive area of 21 cu cm the instrument has a measured energy resolution of 17.5% (FWHM) and 1.9 mm (FWHM) spatial resolution at 1.5 keV.

  19. Quantitative Measurements of X-ray Intensity

    SciTech Connect

    Haugh, M. J., Schneider, M.

    2011-09-01

    This chapter describes the characterization of several X-ray sources and their use in calibrating different types of X-ray cameras at National Security Technologies, LLC (NSTec). The cameras are employed in experimental plasma studies at Lawrence Livermore National Laboratory (LLNL), including the National Ignition Facility (NIF). The sources provide X-rays in the energy range from several hundred eV to 110 keV. The key to this effort is measuring the X-ray beam intensity accurately and traceable to international standards. This is accomplished using photodiodes of several types that are calibrated using radioactive sources and a synchrotron source using methods and materials that are traceable to the U.S. National Institute of Standards and Technology (NIST). The accreditation procedures are described. The chapter begins with an introduction to the fundamental concepts of X-ray physics. The types of X-ray sources that are used for device calibration are described. The next section describes the photodiode types that are used for measuring X-ray intensity: power measuring photodiodes, energy dispersive photodiodes, and cameras comprising photodiodes as pixel elements. Following their description, the methods used to calibrate the primary detectors, the power measuring photodiodes and the energy dispersive photodiodes, as well as the method used to get traceability to international standards are described. The X-ray source beams can then be measured using the primary detectors. The final section then describes the use of the calibrated X-ray beams to calibrate X-ray cameras. Many of the references are web sites that provide databases, explanations of the data and how it was generated, and data calculations for specific cases. Several general reference books related to the major topics are included. Papers expanding some subjects are cited.

  20. SNR 1E 0102.2-7219 as an X-ray calibration standard in the 0.5-1.0 keV bandpass and its application to the CCD instruments aboard Chandra, Suzaku, Swift and XMM-Newton

    NASA Astrophysics Data System (ADS)

    Plucinsky, Paul P.; Beardmore, Andrew P.; Foster, Adam; Haberl, Frank; Miller, Eric D.; Pollock, Andrew M. T.; Sembay, Steve

    2017-01-01

    Context. The flight calibration of the spectral response of charge-coupled device (CCD) instruments below 1.5 keV is difficult in general because of the lack of strong lines in the on-board calibration sources typically available. This calibration is also a function of time due to the effects of radiation damage on the CCDs and/or the accumulation of a contamination layer on the filters or CCDs. Aims: We desire a simple comparison of the absolute effective areas of the current generation of CCD instruments onboard the following observatories: Chandra ACIS-S3, XMM-Newton (EPIC-MOS and EPIC-pn), Suzaku XIS, and Swift XRT and a straightforward comparison of the time-dependent response of these instruments across their respective mission lifetimes. Methods: We have been using 1E 0102.2-7219, the brightest supernova remnant in the Small Magellanic Cloud, to evaluate and modify the response models of these instruments. 1E 0102.2-7219 has strong lines of O, Ne, and Mg below 1.5 keV and little or no Fe emission to complicate the spectrum. The spectrum of 1E 0102.2-7219 has been well-characterized using the RGS gratings instrument on XMM-Newton and the HETG gratings instrument on Chandra. As part of the activities of the International Astronomical Consortium for High Energy Calibration (IACHEC), we have developed a standard spectral model for 1E 0102.2-7219 and fit this model to the spectra extracted from the CCD instruments. The model is empirical in that it includes Gaussians for the identified lines, an absorption component in the Galaxy, another absorption component in the SMC, and two thermal continuum components with different temperatures. In our fits, the model is highly constrained in that only the normalizations of the four brightest lines/line complexes (the O vii Heα triplet, O viii Lyα line, the Ne ix Heα triplet, and the Ne x Lyα line) and an overall normalization are allowed to vary, while all other components are fixed. We adopted this approach to

  1. X-Ray

    MedlinePlus

    ... of gray. For some types of X-ray tests, a contrast medium — such as iodine or barium — is introduced into your body to provide greater detail on the images. X-ray technology is used to examine many parts of the ...

  2. Chest X-Ray

    MedlinePlus Videos and Cool Tools

    ... Site Index A-Z Spotlight Recently posted: Anal Cancer Facet Joint Block Video: Lung Cancer Screening Video: Upper GI Tract X-ray Video: ... of lung conditions such as pneumonia, emphysema and cancer. A chest x-ray requires no special preparation. ...

  3. X-ray Spectrometry.

    ERIC Educational Resources Information Center

    Markowicz, Andrzej A.; Van Grieken, Rene E.

    1984-01-01

    Provided is a selective literature survey of X-ray spectrometry from late 1981 to late 1983. Literature examined focuses on: excitation (photon and electron excitation and particle-induced X-ray emission; detection (wavelength-dispersive and energy-dispersive spectrometry); instrumentation and techniques; and on such quantitative analytical…

  4. X-ray beamsplitter

    DOEpatents

    Ceglio, Natale M.; Stearns, Daniel S.; Hawryluk, Andrew M.; Barbee, Jr., Troy W.

    1989-01-01

    An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5-50 pairs of alternate Mo/Si layers with a period of 20-250 A. The support membrane is 10-200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window.

  5. Dental x-rays

    MedlinePlus

    ... X-rays are a form of high energy electromagnetic radiation. The x-rays penetrate the body to form ... for detecting cavities, unless the decay is very advanced and deep. Many ... The amount of radiation given off during the procedure is less than ...

  6. X-ray beamsplitter

    DOEpatents

    Ceglio, N.M.; Stearns, D.G.; Hawryluk, A.M.; Barbee, T.W. Jr.

    1987-08-07

    An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5--50 pairs of alternate Mo/Si layers with a period of 20--250 A. The support membrane is 10--200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window. 6 figs.

  7. The HEAO A-1 X-ray source catalog

    NASA Technical Reports Server (NTRS)

    Wood, K. S.; Meekins, J. F.; Yentis, D. J.; Smathers, H. W.; Mcnutt, D. P.; Bleach, R. D.; Friedman, H.; Byram, E. T.; Chubb, T. A.; Meidav, M.

    1984-01-01

    The catalog of X-ray sources detected during the NRL Large Area Sky Survey (LASS) with the HEAO 1 satellite is presented. The catalog is derived from the first six months of data from HEAO 1 and includes sources detected during one full scan. Positions and intensities for a total of 842 different sources are included, with a limiting flux of 250 nJy at 5 keV. The catalog is more than 90 percent complete at a flux level equivalent to 1.5 microjoules at 5 keV for a Crab-like spectrum. Cross-references with published literature are provided and coincidental identifications are proposed for some of the sources which have been never studied before. A cross-sectional line drawing of the sensor module of HEAO I is also provided.

  8. X-ray monitoring for astrophysical applications

    NASA Astrophysics Data System (ADS)

    Pina, L.; Burrows, D.; Cash, W.; Cerna, D.; Gorenstein, P.; Hudec, R.; Inneman, A.; Jakubek, J.; Marsikova, V.; Sieger, L.; Tichy, V.

    2014-09-01

    This work addresses the issue of X-ray monitoring for astrophysical applications. The proposed wide-field optical system has not been used in space yet. The proposed novel approach is based on the use of 1D "Lobster eye" optics in combination with Timepix X-ray detector in the energy range 3 - 40 keV. The proposed project includes theoretical study and a functional sample of the Timepix X-ray detector with multifoil wide-field X-ray "Lobster eye" optics. Using optics to focus X-rays on a detector is the only solution in cases the intensity of impinging X-ray radiation is below the sensitivity of the detector, e.g. while monitoring astrophysical objects in space, or phenomena in the Earth's atmosphere. The optical system could be used in a student rocket experiment at University of Colorado. Ideal opportunity is to extend the CubeSat of Pennsylvania State University with the hard X-ray telescope demonstrator consisting of an optical module and Timepix detector.

  9. Periodicity Analysis of X-ray Light Curves of SS 433

    NASA Astrophysics Data System (ADS)

    Wang, J. Y.; Lu, X. L.; Zhao, Q. W.; Dong, D. Q.; Lao, B. Q.; Lu, Y.; Wei, Y. H.; Wu, X. C.; An, T.

    2016-03-01

    SS 433 is the only X-ray binary to date that was detected to have a pair of well-collimated jets, and its orbital period, super orbital period, and nutation period were all detected at the same time. The study on the periodic X-ray variabilities is helpful for understanding its dynamic process of the central engine and the correlation with other bands. In the present paper, two time series analysis techniques, Lomb-Scargle periodogram and weighted wavelet Z-transform, are employed to search for the periodicities from the Swift/BAT (Burst Alert Telescope)(15--50 keV) and RXTE/ASM (Rossi X-Ray Timing Explorer/All-Sky Monitor)(1.5--3, 3--5 and 5--12 keV) light curves of SS 433, and the Monte Carlo simulation is performed. For the 15--50 keV energy band, five significant periodic signals are detected, which are P_1(˜6.29 d), P_2 (˜6.54 d), P_3 (˜13.08 d), P_4 (˜81.50 d), and P_5 (˜162.30 d). For the 3--5 and 5--12 keV energy bands, periodic signals P_3 (˜13 d) and P_5 (˜162 d) are detected in both energy bands. However, for the 1.5--3 keV energy band, no significant periodic signal is detected. P_5 has the strongest periodic signal in the power spectrum for all the energy bands of 3--5, 5--12, and 15--50 keV, and it is consistent with that obtained by previous study in optical band. Further, due to the existence of relativistic radio jets, the X-ray and optical band variability of P_5 (˜162 d) is probably related to the precession of the relativistic jets. High coherence between X-ray and optical light curves may also imply that the X-ray and optical emissions are of the same physical origin. P_3 shows a good agreement with the orbital period (˜13.07 d) first obtained by previous study, and P_2 and P_4 are the high frequency harmonic components of P_3 and P_5, respectively. P_1 is detected from the power spectrum of 15--50 keV energy band only, and it is consistent with the systematic nutation period. As the power of energy band decreases (from hard X-ray to

  10. Periodicity Analysis of X-ray Light Curves of SS 433

    NASA Astrophysics Data System (ADS)

    Jun-yi, Wang; Xiang-long, Lu; Qiu-wen, Zhao; Dian-qiao, Dong; Bao-qiang, Lao; Yang, Lu; Yan-heng, Wei; Xiao-cong, Wu; Tao, An

    2017-01-01

    SS 433 is sofar the unique X-ray binary that has the simultaneously detected orbital period, super-orbital period, and nutation period, as well as a bidirectional spiral jet. The study on its X-ray light variability is helpful for understanding the dynamic process of the system, and the correlations between the different wavebands. In this paper, two time-series analysis techniques, i.e., the Lomb-Scargle periodogram and weighted wavelet Z-transform, are employed to search for the periods in the Swift/BAT (Burst Alert Telescope) (15-50 keV) and RXTE/ASM (Rose X-ray Timing Explorer/All Sky Monitor) (1.5-3, 3- 4, and 5-12 keV) light curves of SS 433, and the Monte Carlo simulation is performed for the obtained periodical components. For the 15-50 keV energy band, five significant periodical components are detected, which are P1(∼6.29 d), P2 (∼6.54 d), P3 (∼13.08 d), P4 (∼81.50 d), and P5 (∼162.30 d). For the 3-5 and 5-12 keV energy bands, the periodical components P3 (∼13 d) and P5 (∼162 d) are detected in both energy bands. However, for the 1.5-3 keV energy band, no significant periodic signal is detected. P5 is the strongest periodic signal in the power spectrum for all the energy bands of 3-5, 5-12, and 15-50 keV, and it is consistent with the previous result obtained from the study of optical light curves. Furthermore, in combination with the radio spiral jet of SS 433, it is suggested that the X-ray and optical variability of P5 (∼162 d) is probably related to the precession of its relativistic jet. The high correlation between the X-ray and optical light curves may also imply that the X-ray and optical radiations are of the same physical origin. P3 shows a good agreement with the orbital period (∼13.07 d) obtained by the previous study, and P2 and P4 are respectively the high-frequency harmonics of P3 and P5. P1 is detected only in the power spectrum of the 15-50 keV energy band, and it is consistent with the nutation period of the system. As

  11. X-ray generator

    DOEpatents

    Dawson, John M.

    1976-01-01

    Apparatus and method for producing coherent secondary x-rays that are controlled as to direction by illuminating a mixture of high z and low z gases with an intense burst of primary x-rays. The primary x-rays are produced with a laser activated plasma, and these x-rays strip off the electrons of the high z atoms in the lasing medium, while the low z atoms retain their electrons. The neutral atoms transfer electrons to highly excited states of the highly striped high z ions giving an inverted population which produces the desired coherent x-rays. In one embodiment, a laser, light beam provides a laser spark that produces the intense burst of coherent x-rays that illuminates the mixture of high z and low z gases, whereby the high z atoms are stripped while the low z ones are not, giving the desired mixture of highly ionized and neutral atoms. To this end, the laser spark is produced by injecting a laser light beam, or a plurality of beams, into a first gas in a cylindrical container having an adjacent second gas layer co-axial therewith, the laser producing a plasma and the intense primary x-rays in the first gas, and the second gas containing the high and low atomic number elements for receiving the primary x-rays, whereupon the secondary x-rays are produced therein by stripping desired ions in a neutral gas and transfer of electrons to highly excited states of the stripped ions from the unionized atoms. Means for magnetically confining and stabilizing the plasma are disclosed for controlling the direction of the x-rays.

  12. Bone cartilage imaging with x-ray interferometry using a practical x-ray tube

    NASA Astrophysics Data System (ADS)

    Kido, Kazuhiro; Makifuchi, Chiho; Kiyohara, Junko; Itou, Tsukasa; Honda, Chika; Momose, Atsushi

    2010-04-01

    The purpose of this study was to design an X-ray Talbot-Lau interferometer for the imaging of bone cartilage using a practical X-ray tube and to develop that imaging system for clinical use. Wave-optics simulation was performed to design the interferometer with a practical X-ray tube, a source grating, two X-ray gratings, and an X-ray detector. An imaging system was created based on the results of the simulation. The specifications were as follows: the focal spot size was 0.3 mm of an X-ray tube with a tungsten anode (Toshiba, Tokyo, Japan). The tube voltage was set at 40 kVp with an additive aluminum filter, and the mean energy was 31 keV. The pixel size of the X-ray detector, a Condor 486 (Fairchild Imaging, California, USA), was 15 μm. The second grating was a Ronchi-type grating whose pitch was 5.3 μm. Imaging performance of the system was examined with X-ray doses of 0.5, 3 and 9 mGy so that the bone cartilage of a chicken wing was clearly depicted with X-ray doses of 3 and 9 mGy. This was consistent with the simulation's predictions. The results suggest that X-ray Talbot-Lau interferometry would be a promising tool in detecting soft tissues in the human body such as bone cartilage for the X-ray image diagnosis of rheumatoid arthritis. Further optimization of the system will follow to reduce the X-ray dose for clinical use.

  13. Fabrication process for a gradient index x-ray lens

    DOEpatents

    Bionta, R.M.; Makowiecki, D.M.; Skulina, K.M.

    1995-01-17

    A process is disclosed for fabricating high efficiency x-ray lenses that operate in the 0.5-4.0 keV region suitable for use in biological imaging, surface science, and x-ray lithography of integrated circuits. The gradient index x-ray optics fabrication process broadly involves co-sputtering multi-layers of film on a wire, followed by slicing and mounting on block, and then ion beam thinning to a thickness determined by periodic testing for efficiency. The process enables the fabrication of transmissive gradient index x-ray optics for the 0.5-4.0 keV energy range. This process allows the fabrication of optical elements for the next generation of imaging and x-ray lithography instruments in the soft x-ray region. 13 figures.

  14. Fabrication process for a gradient index x-ray lens

    DOEpatents

    Bionta, Richard M.; Makowiecki, Daniel M.; Skulina, Kenneth M.

    1995-01-01

    A process for fabricating high efficiency x-ray lenses that operate in the 0.5-4.0 keV region suitable for use in biological imaging, surface science, and x-ray lithography of integrated circuits. The gradient index x-ray optics fabrication process broadly involves co-sputtering multi-layers of film on a wire, followed by slicing and mounting on block, and then ion beam thinning to a thickness determined by periodic testing for efficiency. The process enables the fabrication of transmissive gradient index x-ray optics for the 0.5-4.0 keV energy range. This process allows the fabrication of optical elements for the next generation of imaging and x-ray lithography instruments m the soft x-ray region.

  15. Two Eclipsing Ultraluminous X-Ray Sources in M51

    NASA Astrophysics Data System (ADS)

    Urquhart, R.; Soria, R.

    2016-11-01

    We present the discovery, from archival Chandra and XMM-Newton data, of X-ray eclipses in two ultraluminous X-ray sources (ULXs), located in the same region of the galaxy M51: CXOM51 J132940.0+471237 (ULX-1, for simplicity) and CXOM51 J132939.5+471244 (ULX-2). Three eclipses were detected for ULX-1 and two for ULX-2. The presence of eclipses puts strong constraints on the viewing angle, suggesting that both ULXs are seen almost edge-on and are certainly not beamed toward us. Despite the similar viewing angles and luminosities ({L}{{X}}≈ 2× {10}39 erg s-1 in the 0.3-8 keV band for both sources), their X-ray properties are different. ULX-1 has a soft spectrum, well fitted by Comptonization emission from a medium with electron temperature {{kT}}e≈ 1 {keV}. ULX-2 is harder, well fitted by a slim disk with {{kT}}{in}≈ 1.5-1.8 keV and normalization consistent with a ˜10 M ⊙ black hole. ULX-1 has a significant contribution from multi-temperature thermal-plasma emission ({L}{{X},{mekal}}≈ 2× {10}38 erg s-1). About 10% of this emission remains visible during the eclipses, proving that the emitting gas comes from a region slightly more extended than the size of the donor star. From the sequence and duration of the Chandra observations in and out of eclipse, we constrain the binary period of ULX-1 to be either ≈ 6.3 days, or ≈12.5-13 days. If the donor star fills its Roche lobe (a plausible assumption for ULXs), both cases require an evolved donor, most likely a blue supergiant, given the young age of the stellar population in that Galactic environment.

  16. Hard x-ray monochromator with milli-electron volt bandwidth for high-resolution diffraction studies of diamond crystals

    SciTech Connect

    Stoupin, Stanislav; Shvyd'ko, Yuri; Shu Deming; Khachatryan, Ruben; Xiao, Xianghui; DeCarlo, Francesco; Goetze, Kurt; Roberts, Timothy; Roehrig, Christian; Deriy, Alexey

    2012-02-15

    We report on design and performance of a high-resolution x-ray monochromator with a spectral bandwidth of {Delta}E{sub X}{approx_equal} 1.5 meV, which operates at x-ray energies in the vicinity of the backscattering (Bragg) energy E{sub H} = 13.903 keV of the (008) reflection in diamond. The monochromator is utilized for high-energy-resolution diffraction characterization of diamond crystals as elements of advanced x-ray crystal optics for synchrotrons and x-ray free-electron lasers. The monochromator and the related controls are made portable such that they can be installed and operated at any appropriate synchrotron beamline equipped with a pre-monochromator.

  17. Hard x-ray monochromator with milli-electron volt bandwidth for high-resolution diffraction studies of diamond crystals.

    PubMed

    Stoupin, Stanislav; Shvyd'ko, Yuri; Shu, Deming; Khachatryan, Ruben; Xiao, Xianghui; DeCarlo, Francesco; Goetze, Kurt; Roberts, Timothy; Roehrig, Christian; Deriy, Alexey

    2012-02-01

    We report on design and performance of a high-resolution x-ray monochromator with a spectral bandwidth of ΔE(X) ≃ 1.5 meV, which operates at x-ray energies in the vicinity of the backscattering (Bragg) energy E(H) = 13.903 keV of the (008) reflection in diamond. The monochromator is utilized for high-energy-resolution diffraction characterization of diamond crystals as elements of advanced x-ray crystal optics for synchrotrons and x-ray free-electron lasers. The monochromator and the related controls are made portable such that they can be installed and operated at any appropriate synchrotron beamline equipped with a pre-monochromator.

  18. Hard x-ray monochromator with milli-electron volt bandwidth for high-resolution diffraction studies of diamond crystals.

    SciTech Connect

    Stoupin, S.; Shvydko, Y.; Shu, D.; Khachatryan, R.; Xiao, X.

    2012-01-01

    We report on design and performance of a high-resolution x-ray monochromator with a spectral bandwidth of {Delta}E{sub x} {approx_equal} 1.5 meV, which operates at x-ray energies in the vicinity of the backscattering (Bragg) energy E{sub H} = 13.903 keV of the (008) reflection in diamond. The monochromator is utilized for high-energy-resolution diffraction characterization of diamond crystals as elements of advanced x-ray crystal optics for synchrotrons and x-ray free-electron lasers. The monochromator and the related controls are made portable such that they can be installed and operated at any appropriate synchrotron beamline equipped with a pre-monochromator.

  19. Different X-ray spectral evolution for black hole X-ray binaries in dual tracks of radio-X-ray correlation

    SciTech Connect

    Cao, Xiao-Feng; Wu, Qingwen; Dong, Ai-Jun

    2014-06-10

    Recently, an 'outlier' track of radio-X-ray correlation was found, which is much steeper than the former universal correlation, where dual tracks were speculated to be triggered by different accretion processes. In this work, we test this issue by exploring hard X-ray spectral evolution in four black-hole X-ray binaries with multiple, quasi-simultaneous radio and X-ray observations. First, we find that hard X-ray photon indices, Γ, are negatively and positively correlated with X-ray fluxes when the X-ray flux, F{sub 3-9} {sub keV}, is below and above a critical flux, F{sub X,} {sub crit}, which are consistent with predictions of the advection-dominated accretion flow and the disk-corona model, respectively. Second, and most importantly, we find that the radio-X-ray correlations are also clearly different when the X-ray fluxes are higher and lower than the critical flux as defined by X-ray spectral evolution. The data points with F{sub 3-9} {sub keV} ≳ F{sub X,} {sub crit} have a steeper radio-X-ray correlation (F{sub X}∝F{sub R}{sup b} and b ∼ 1.1-1.4), which roughly forms the ''outlier'' track. However, the data points with anti-correlation of Γ – F{sub 3-9} {sub keV} either stay in the universal track with b ∼ 0.61 or stay in the transition track (from the universal to 'outlier' tracks or vice versa). Therefore, our results support that the universal and ''outlier'' tracks of radio-X-ray correlations are regulated by radiatively inefficient and radiatively efficient accretion model, respectively.

  20. OSO-8 X-ray observations of AM Herculis

    NASA Technical Reports Server (NTRS)

    Swank, J. H.; Lampton, M.; Boldt, E.; Holt, S. S.; Serlemitsos, P. J.

    1977-01-01

    Hard X-ray observations of the binary system AM Her were coincident with soft X-ray and ground-based optical measurements. In the 2-60 KeV band, variability was detected with an eclipse during phases 0.5 to 0.7 with respect to the 0. d 12892 period optical minima, synchronous with the known soft X-ray eclipse. The 2-60 KeV uneclipsed flux was 9.5 x 10 to the minus 10th power erg sq cm/sec, of which 86% lies above 10 keV. Thus AM Her contains a hard source located near the similarly eclipsed soft X-ray source. The X-ray data are interpreted in terms of thermal bremsstrahlung from accretion onto a white dwarf.

  1. Broadband high resolution X-ray spectral analyzer

    DOEpatents

    Silver, Eric H.; Legros, Mark; Madden, Norm W.; Goulding, Fred; Landis, Don

    1998-01-01

    A broad bandwidth high resolution x-ray fluorescence spectrometer has a performance that is superior in many ways to those currently available. It consists of an array of 4 large area microcalorimeters with 95% quantum efficiency at 6 keV and it produces x-ray spectra between 0.2 keV and 7 keV with an energy resolution of 7 to 10 eV. The resolution is obtained at input count rates per array element of 10 to 50 Hz in real-time, with analog pulse processing and thermal pile-up rejection. This performance cannot be matched by currently available x-ray spectrometers. The detectors are incorporated into a compact and portable cryogenic refrigerator system that is ready for use in many analytical spectroscopy applications as a tool for x-ray microanalysis or in research applications such as laboratory and astrophysical x-ray and particle spectroscopy.

  2. Broadband high resolution X-ray spectral analyzer

    DOEpatents

    Silver, E.H.; Legros, M.; Madden, N.W.; Goulding, F.; Landis, D.

    1998-07-07

    A broad bandwidth high resolution X-ray fluorescence spectrometer has a performance that is superior in many ways to those currently available. It consists of an array of 4 large area microcalorimeters with 95% quantum efficiency at 6 keV and it produces X-ray spectra between 0.2 keV and 7 keV with an energy resolution of 7 to 10 eV. The resolution is obtained at input count rates per array element of 10 to 50 Hz in real-time, with analog pulse processing and thermal pile-up rejection. This performance cannot be matched by currently available X-ray spectrometers. The detectors are incorporated into a compact and portable cryogenic refrigerator system that is ready for use in many analytical spectroscopy applications as a tool for X-ray microanalysis or in research applications such as laboratory and astrophysical X-ray and particle spectroscopy. 6 figs.

  3. Direct x-ray sensing CCD array for intraoral dental x-ray imaging system

    NASA Astrophysics Data System (ADS)

    Cox, John D.; Williams, Donald W.; Langford, D. S.

    1994-05-01

    A commercial prototype electronic intraoral dental x-ray imaging system employing a direct sensing CCD array has been developed. Image quality parameters were measured using x-ray sources at the National Institute of Standard and Technology radiation physical department in Gaithersburg, MD. Detector response to x-rays in the 10 to 70 keV energy range was measured. The beam hardening effects of human anatomy on a typical 70 kVp spectra was measured using a tissue-equivalent dental phantom.

  4. Hard x-ray nanoprobe based on refractive x-ray lenses

    SciTech Connect

    Schroer, C.G.; Kurapova, O.; Patommel, J.; Boye, P.; Feldkamp, J.; Lengeler, B.; Burghammer, M.; Riekel, C.; Vincze, L.; Hart, A. van der; Kuechler, M.

    2005-09-19

    Based on nanofocusing refractive x-ray lenses a hard x-ray scanning microscope is currently being developed and is being implemented at beamline ID13 of the European Synchrotron Radiation Facility (Grenoble, France). It can be operated in transmission, fluorescence, and diffraction mode. Tomographic scanning allows one to determine the inner structure of a specimen. In this device, a monochromatic (E=21 keV) hard x-ray nanobeam with a lateral extension of 47x55 nm{sup 2} was generated. Further reduction of the beam size to below 20 nm is targeted.

  5. The X-ray spectral evolution and radio-X-ray correlation in radiatively efficient black-hole sources

    NASA Astrophysics Data System (ADS)

    Dong, Ai-Jun; Wu, Qingwen; Cao, Xiao-Feng

    2016-02-01

    We explore X-ray spectral evolution and radio-X-ray correlation simultaneously for four X-ray binaries (XRBs). We find that hard X-ray photon indices, Γ, are anti- and positively correlated to X-ray fluxes when the X-ray flux, F 3-9keV, is below and above a critical flux, F X,crit, which may be regulated by ADAF and disk-corona respectively. We find that the data points with anti-correlation of Γ-F 3-9keV follow the universal radio-X-ray correlation of F R ~ F X b (b ~ 0.5-0.7), while the data points with positive X-ray spectral evolution follow a steeper radio-X-ray correlation (b ~ 1.4, the so-called `outliers track'). The bright active galactic nuclei (AGNs) share similar X-ray spectral evolution and radio-X-ray correlation as XRBs in `outliers' track, and we present a new fundamental plane of log L R=1.59+0.28 -0.22 log L X-0.22+0.19 -0.20 log M BH-28.97+0.45 -0.45 for these radiatively efficient BH sources.

  6. X-ray emission from the galactic disk

    NASA Technical Reports Server (NTRS)

    Bleach, R. D.; Boldt, E. A.; Holt, S. S.; Schwartz, D. A.; Serlemitsos, P. J.

    1972-01-01

    A search was made of a diffuse component of X-rays 1.5 keV associated with an interarm region of the galaxy at galactic longitudes in the vicinity of 60 deg. A statistically significant excess associated with a narrow disk component was detected. The angular extent of this component has a most probable value of 2 deg and may be as large as 7 deg at 90% confidence. The best fit spectrum yields an intensity of 2.9 photons 1/(cm2-sec-ster) over the 2 to 10 keV range. The 3 sigma upper limit to any emission (e.g. iron line) in a 1.5 keV band centered at 7 keV from galactic latitudes h or = 3.5 deg is .3 photons 1/(cm2-sec-ster). Several possible emission models are discussed, with the most likely candidate being a population of unresolvable low luminosity discrete sources.

  7. X-ray crystallography

    NASA Technical Reports Server (NTRS)

    2001-01-01

    X-rays diffracted from a well-ordered protein crystal create sharp patterns of scattered light on film. A computer can use these patterns to generate a model of a protein molecule. To analyze the selected crystal, an X-ray crystallographer shines X-rays through the crystal. Unlike a single dental X-ray, which produces a shadow image of a tooth, these X-rays have to be taken many times from different angles to produce a pattern from the scattered light, a map of the intensity of the X-rays after they diffract through the crystal. The X-rays bounce off the electron clouds that form the outer structure of each atom. A flawed crystal will yield a blurry pattern; a well-ordered protein crystal yields a series of sharp diffraction patterns. From these patterns, researchers build an electron density map. With powerful computers and a lot of calculations, scientists can use the electron density patterns to determine the structure of the protein and make a computer-generated model of the structure. The models let researchers improve their understanding of how the protein functions. They also allow scientists to look for receptor sites and active areas that control a protein's function and role in the progress of diseases. From there, pharmaceutical researchers can design molecules that fit the active site, much like a key and lock, so that the protein is locked without affecting the rest of the body. This is called structure-based drug design.

  8. Computer-controlled Cauchois-type x-ray spectrometer

    NASA Astrophysics Data System (ADS)

    André, J. M.; Kefi, M.; Avila, A.; Couillaux, P.; Bonnelle, C.

    1987-03-01

    A laboratory x-ray spectrometer designed for routine analysis in the 15-60-keV spectral range is described. It consists of a 40-cm bent-crystal transmission spectrometer in the Cauchois geometry, controlled by a microcomputer. The choice of the crystal analyzer and of the detection system is discussed. The instrument is well suited for large spectral range x-ray absorption and emission spectroscopy (XAS, XES) and x-ray source diagnostics.

  9. The Hard X-ray experiment on the Astronomical Netherlands Satellite

    NASA Technical Reports Server (NTRS)

    Gursky, H.; Schnopper, H.; Parsignault, D.

    1975-01-01

    The Hard X-ray Experiment flown on the Astronomical Netherlands Satellite is described. The instrument consists of two parts. One is a large-area detector of about 60 sq cm in total area, sensitive in the energy range between 1.5 and 30 keV. Two counters comprise this detector, each collimated 10 min by 3 deg and offset in the narrow direction by 4 min. The other part is a Bragg-crystal assembly consisting of two PET crystals and counters aligned to search for the silicon emission lines near 2 keV. Instrument characteristics and orbital operations are described.

  10. X-ray laser

    DOEpatents

    Nilsen, Joseph

    1991-01-01

    An X-ray laser (10) that lases between the K edges of carbon and oxygen, i.e. between 44 and 23 Angstroms, is provided. The laser comprises a silicon (12) and dysprosium (14) foil combination (16) that is driven by two beams (18, 20) of intense line focused (22, 24) optical laser radiation. Ground state nickel-like dysprosium ions (34) are resonantly photo-pumped to their upper X-ray laser state by line emission from hydrogen-like silicon ions (32). The novel X-ray laser should prove especially useful for the microscopy of biological specimens.

  11. X-ray superbubbles

    NASA Technical Reports Server (NTRS)

    Cash, W.

    1983-01-01

    Four regions of the galaxy, the Cygnus Superbubble, the Eta Carina complex, the Orion/Eridanus complex, and the Gum Nebula, are discussed as examples of collective effects in the interstellar medium. All four regions share certain features, indicating a common structure. The selection effects which determine the observable X-ray properties of the superbubbles are discussed, and it is demonstrated that only a very few more in our Galaxy can be detected in X rays. X-ray observation of extragalactic superbubbles is shown to be possible but requires the capabilities of a large, high quality, AXAF class observatory.

  12. Lumbosacral spine x-ray

    MedlinePlus

    X-ray - lumbosacral spine; X-ray - lower spine ... The test is done in a hospital x-ray department or your health care provider's office by an x-ray technician. You will be asked to lie on the x-ray table ...

  13. Thoracic spine x-ray

    MedlinePlus

    Vertebral radiography; X-ray - spine; Thoracic x-ray; Spine x-ray; Thoracic spine films; Back films ... The test is done in a hospital radiology department or in the health care provider's office. You will lie on the x-ray table in different positions. If the x-ray ...

  14. Coded Aperture Imaging for Fluorescent X-rays-Biomedical Applications

    SciTech Connect

    Haboub, Abdel; MacDowell, Alastair; Marchesini, Stefano; Parkinson, Dilworth

    2013-06-01

    Employing a coded aperture pattern in front of a charge couple device pixilated detector (CCD) allows for imaging of fluorescent x-rays (6-25KeV) being emitted from samples irradiated with x-rays. Coded apertures encode the angular direction of x-rays and allow for a large Numerical Aperture x- ray imaging system. The algorithm to develop the self-supported coded aperture pattern of the Non Two Holes Touching (NTHT) pattern was developed. The algorithms to reconstruct the x-ray image from the encoded pattern recorded were developed by means of modeling and confirmed by experiments. Samples were irradiated by monochromatic synchrotron x-ray radiation, and fluorescent x-rays from several different test metal samples were imaged through the newly developed coded aperture imaging system. By choice of the exciting energy the different metals were speciated.

  15. Technology development for soft X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Törmä, P. T.; Sipilä, H. J.; Koskinen, T.; Mattila, M.

    2016-05-01

    X-ray spectroscopy instruments lose part of their performance due to the lack of suitable components for soft X-ray region below 1 keV. Therefore, in the analysis of low atomic number elements including lithium, beryllium, boron and carbon instrument sensitivity is often limited. In this work we describe how the performance of the spectroscopy of soft X-rays is significantly improved when all devices integrated in the spectroscopic instrument are suitable for both soft and hard X-rays. This concept is based on utilizing ultra-thin SiN X-ray windows with proven performance not only as a detector window but also as an X-ray source window. By including a soft-X-ray-sensitive silicon drift detector with efficient surface charge collection in this concept the sensitivity and performance of the instrument is significantly increased.

  16. TU-A-9A-07: X-Ray Acoustic Computed Tomography (XACT): 100% Sensitivity to X-Ray Absorption

    SciTech Connect

    Xiang, L; Ahmad, M; Nikoozadeh, A; Pratx, G; Khuri-Yakub, B; Xing, L

    2014-06-15

    Purpose: To assess whether X-ray acoustic computed tomography (XACT) is more sensitive to X-ray absorption than that of the conventional X-ray imaging. Methods: First, a theoretical model was built to analyze the X-ray absorption sensitivity of XACT imaging and conventional X-ray imaging. Second, an XACT imaging system was developed to evaluate the X-ray induced acoustic signal generation as well as the sensitivity improvement over transmission x-ray imaging. Ultra-short x-ray pulses (60-nanosecond) were generated from an X-ray source operated at the energy of 150 kVp with a 10-Hz repetition rate. The X-ray pulse was synchronized with the acoustic detection via a x-ray scintillation triggering to acquire the X-ray induced acoustic signal. Results: Theoretical analysis shows that X-ray induced acoustic signal is sensitive only to the X-ray absorption, while completely insensitive to out the X-ray scattering and fluorescence. XACT has reduced background and increased contrast-to-noise ratio, and therefore has increased sensitivity compared to transmission x-ray imaging. For a 50-μm size, gadolinium insertion in tissue exposed to 40 keV X-rays; the sensitivity of XACT imaging is about 28.9 times higher than that of conventional X-ray imaging. Conclusion: X-ray acoustic computer tomography (XACT) as a new imaging modality combines X-ray absorption contrast and high ultrasonic resolution in a single modality. It is feasible to improve the imaging sensitivity with XACT imaging compared with conventional X-ray imaging. Taking advantage of the high ultrasonic resolution, it is possible to perform 3-D imaging with a single x-ray pulse with arrays of transducers without any mechanical motion of the imaging system. This single-shot capability offers the potential of reducing radiation dose by a factor of 1000, and imaging 100 times faster when compared to the conventional X-ray CT, and thus revolutionizing x-ray imaging applications in medicine and biology. The authors

  17. X ray spectra of cataclysmic variables

    NASA Technical Reports Server (NTRS)

    Patterson, Joseph; Halpern, Jules

    1990-01-01

    X ray spectral parameters of cataclysmic variables observed with the 'Einstein' imaging proportional counter were determined by fitting an optically thin, thermal bremsstrahlung spectrum to the raw data. Most of the sources show temperatures of order a few keV, while a few sources exhibit harder spectra with temperatures in excess of 10 keV. Estimated 0.1 to 3.5 keV luminosities are generally in the range from 10(exp 30) to 10(exp 32) erg/sec. The results are consistent with the x rays originating in a disk/white dwarf boundary layer of non-magnetic systems, or in a hot, post-shock region in the accretion column of DQ Her stars, with a negligible contribution from the corona of the companion. In a few objects column densities were found that are unusually high for interstellar material. It was suggested that the absorption occurs in the system itself.

  18. X-Rays from Saturn and its Rings

    NASA Technical Reports Server (NTRS)

    Bhardwaj, Anil; Elsner, Ron F.; Waite, J. Hunter; Gladstone, G. Randall; Cravens, Tom E.; Ford, Peter G.

    2005-01-01

    In January 2004 Saturn was observed by Chandra ACIS-S in two exposures, 00:06 to 11:00 UT on 20 January and 14:32 UT on 26 January to 01:13 UT on 27 January. Each continuous observation lasted for about one full Saturn rotation. These observations detected an X-ray flare from the Saturn's disk and indicate that the entire Saturnian X-ray emission is highly variable -- a factor of $\\sim$4 variability in brightness in a week time. The Saturn X-ray flare has a time and magnitude matching feature with the solar X-ray flare, which suggests that the disk X-ray emission of Saturn is governed by processes happening on the Sun. These observations also unambiguously detected X-rays from Saturn's rings. The X-ray emissions from rings are present mainly in the 0.45-0.6 keV band centered on the atomic OK$\\alpha$ fluorescence line at 525 eV: indicating the production of X-rays due to oxygen atoms in the water icy rings. The characteristics of X-rays from Saturn's polar region appear to be statistically consistent with those from its disk X-rays, suggesting that X-ray emission from the polar cap region might be an extension of the Saturn disk X-ray emission.

  19. Refractive optical elements and optical system for high energy x-ray microscopy

    SciTech Connect

    Simon, M.; Altapova, V.; Baumbach, T.; Kluge, M.; Last, A.; Marschall, F.; Mohr, J.; Nazmov, V.; Vogt, H.

    2012-05-17

    In material science, X-ray radiation with photon energies above 25 keV is used because of its penetration into high density materials. Research of the inner structure of novel materials, such as electrodes in high power batteries for engines, require X-ray microscopes operating in the hard X-ray energy range. A flexible X-ray microscope for hard X-rays with photon energies higher than 25 keV will be realized at the synchrotron source ANKA in Karlsruhe, Germany. The device will use refractive X-ray lenses as condenser as well as objective lenses.

  20. X-ray - skeleton

    MedlinePlus

    ... medlineplus.gov/ency/article/003381.htm X-ray - skeleton To use the sharing features on this page, ... ray views may be uncomfortable. If the whole skeleton is being imaged, the test usually takes 1 ...

  1. Depth Probing Soft X-ray Microprobe (DPSXRM) for High Resolution Probing of Earth's Microstructural Samples

    NASA Astrophysics Data System (ADS)

    Dikedi, P. N.

    2015-12-01

    The Cambrian explosion; occurrence of landslides in very dry weather conditions; rockslides; dead, shriveled-up and crumbled leaves possessing fossil records with the semblance of well preserved, flat leaves; abundance of trilobite tracks in lower and higher rock layers; and sailing stones are enigmas demanding demystifications. These enigmas could be elucidated when data on soil structure, texture and strength are provided by some device with submicrometre accuracy; for these and other reasons, the design of a Depth Probing Soft X-ray Microprobe (DPSXRM), is being proposed; it is expected to deliver soft X-rays, at spatial resolution, ϛ≥600nm and to probe at the depth of 0.5m in 17s. The microprobe is portable compared to a synchrotron radiation facility (Diamond Light Source has land size of 43,300m2); spatial resolution,ϛ , of the DPSXRM surpasses those of the X-ray Fluorescence microanalysis (10µm), electron microprobe (1-3µm) and ion microprobe (5->30µm); the DPSXRM has allowance for multiple targets. Vanadium and Manganese membranes are proposed owing to respective 4.952KeV VKα1 and 5.899KeV MnKα1 X-rays emitted, which best suits micro-probing of Earth's microstructural samples. Compound systems like the Kirk-Patrick and Baez and Wolter optics, aspheric mirrors like elliptical and parabolic optics, small apertures and Abbe sine condition are employed to reduce or remove astigmatism, obliquity, comatic and spherical aberrations—leading to good image quality. Results show that 5.899KeV MnKα1 and 4.952KeV VKα1 soft X-rays will travel a distance of 2.75mm to form circular patches of radii 2.2mm and 2.95mm respectively. Zone plate with nth zone radius of 1.5mm must be positioned 1.5mm and 2mm from the electron gun if circular patches must be formed from 4.952KeV VKα1 and 5.899KeV MnKα1 soft X-rays respectively. The focal lengths of 0.25μm≤ƒ≤1.50μm and 0.04μm≤ƒ≤0.2μm covered by 4.952KeV VKα1 and 5.899KeV Mn Kα1 soft X-Rays, will

  2. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1992-01-01

    This final report covers the period 1 January 1985 - 31 March 1992. It is divided into the following sections: the soft x-ray background; proportional counter and filter calibrations; sounding rocket flight preparations; new sounding rocket payload: x-ray calorimeter; and theoretical studies. Staff, publications, conference proceedings, invited talks, contributed talks, colloquia and seminars, public service lectures, and Ph. D. theses are listed.

  3. Self-modulated laser wakefield accelerators as x-ray sources

    NASA Astrophysics Data System (ADS)

    Lemos, N.; Martins, J. L.; Tsung, F. S.; Shaw, J. L.; Marsh, K. A.; Albert, F.; Pollock, B. B.; Joshi, C.

    2016-03-01

    The development of a directional, small-divergence, and short-duration picosecond x-ray probe beam with an energy greater than 50 keV is desirable for high energy density science experiments. We therefore explore through particle-in-cell (PIC) computer simulations the possibility of using x-rays radiated by betatron-like motion of electrons from a self-modulated laser wakefield accelerator as a possible candidate to meet this need. Two OSIRIS 2D PIC simulations with mobile ions are presented, one with a normalized vector potential a 0  =  1.5 and the other with an a 0  =  3. We find that in both cases direct laser acceleration (DLA) is an important additional acceleration mechanism in addition to the longitudinal electric field of the plasma wave. Together these mechanisms produce electrons with a continuous energy spectrum with a maximum energy of 300 MeV for a 0  =  3 case and 180 MeV in the a 0  =  1.5 case. Forward-directed x-ray radiation with a photon energy up to 100 keV was calculated for the a 0  =  3 case and up to 12 keV for the a 0  =  1.5 case. The x-ray spectrum can be fitted with a sum of two synchrotron spectra with critical photon energies of 13 and 45 keV for the a 0 of 3 and critical photon energies of 0.3 and 1.4 keV for a 0 of 1.5 in the plane of polarization of the laser. The full width at half maximum divergence angle of the x-rays was 62  ×  1.9 mrad for a 0  =  3 and 77  ×  3.8 mrad for a 0  =  1.5.

  4. Low-luminosity X-ray sources and the Galactic ridge X-ray emission

    NASA Astrophysics Data System (ADS)

    Warwick, R. S.

    2014-11-01

    Using the XMM-Newton slew survey, we construct a hard-band selected sample of low-luminosity Galactic X-ray sources. Two source populations are represented, namely coronally active stars and binaries (ASBs) and cataclysmic variables (CVs), with X-ray luminosities collectively spanning the range 1028-34 erg s-1 (2-10 keV). We derive the 2-10 keV X-ray luminosity function (XLF) and volume emissivity of each population. Scaled to the local stellar mass density, the latter is found to be 1.08 ± 0.16 × 1028 and 2.5 ± 0.6 × 10^{27} {erg s}^{-1} M_{{⊙}}^{-1}, for the ASBs and CVs, respectively, which in total is a factor of 2 higher than previous estimates. We employ the new XLFs to predict the X-ray source counts on the Galactic plane at l = 28.5° and show that the result is consistent with current observational constraints. The X-ray emission of faint, unresolved ASBs and CVs can account for a substantial fraction of the Galactic ridge X-ray emission (GRXE). We discuss a model in which ˜80 per cent of the 6-10 keV GRXE intensity is produced in this way, with the remainder attributable to X-ray scattering in the interstellar medium and/or young Galactic source populations. Much of the hard X-ray emission attributed to the ASBs is likely to be produced during flaring episodes.

  5. A source of hard X-ray radiation based on hybrid X pinches

    NASA Astrophysics Data System (ADS)

    Shelkovenko, T. A.; Pikuz, S. A.; Hoyt, C. L.; Cahill, A. D.; Atoyan, L.; Hammer, D. A.; Tilikin, I. N.; Mingaleev, A. R.; Romanova, V. M.; Agafonov, A. V.

    2016-10-01

    X pinches are well known to produce very small, dense plasma pinches ("hot spots") that emit sub-nanosecond bursts of 1-8 keV radiation. Hard X-ray radiation in the range from 8 to 300 keV or more is also emitted, and only a small portion of which is associated with the X-pinch hot spot. In hybrid X-pinches (HXP), the 10 ns hard X-ray pulse is terminated by fast closure of the gap between the two conical electrodes of the HXP by rapidly expanding electrode plasmas. The temporal, spectral, and spatial properties of this higher energy radiation have been studied. This radiation was used for point-projection imaging with magnification between 1.5 and 6, and spatial resolution of 20-100 μm was demonstrated.

  6. Lithium metal for x-ray refractive optics

    NASA Astrophysics Data System (ADS)

    Pereira, Nino R.; Arms, Dohn A.; Clarke, Roy; Dierker, Steve B.; Dufresne, Eric; Foster, D.

    2001-12-01

    Lithium is the best material for refractive x-ray lenses, with peak performance around 8 keV. To date we have built a prototype of Cederstrom's so-called alligator lens, and have tested the lens with beamline 7ID's 10 keV x-rays on the Advanced Photon Source at Argonne National Laboratories. To date we have attained only a threefold gain, most likely limited by surface roughness that is avoidable with more careful manufacturing techniques.

  7. X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Lewin, Walter H. G.; van Paradijs, Jan; van den Heuvel, Edward Peter Jacobus

    1997-01-01

    Preface; 1. The properties of X-ray binaries, N. E. White, F. Nagase and A. N. Parmar; 2. Optical and ultraviolet observations of X-ray binaries J. van Paradijs and J. E. McClintock; 3. Black-hole binaries Y. Tanaka and W. H. G. Lewin; 4. X-ray bursts Walter H. G. Lewin, Jan Van Paradijs and Ronald E. Taam; 5. Millisecond pulsars D. Bhattacharya; 6. Rapid aperiodic variability in binaries M. van der Klis; 7. Radio properties of X-ray binaries R. M. Hjellming and X. Han; 8. Cataclysmic variable stars France Anne-Dominic Córdova; 9. Normal galaxies and their X-ray binary populations G. Fabbiano; 10. Accretion in close binaries Andrew King; 11. Formation and evolution of neutron stars and black holes in binaries F. Verbunt and E. P. J. van den Heuvel; 12. The magnetic fields of neutron stars and their evolution D. Bhattacharya and G. Srinivasan; 13. Cosmic gamma-ray bursts K. Hurley; 14. A catalogue of X-ray binaries Jan van Paradijs; 15. A compilation of cataclysmic binaries with known or suspected orbital periods Hans Ritter and Ulrich Kolb; References; Index.

  8. Simultaneous radio and X-ray observations of the X-ray burst source MXB 1636-53

    NASA Technical Reports Server (NTRS)

    Thomas, R. M.; Duldig, M. L.; Haynes, R. F.; Simons, L. W.; Murdin, P.; Hoffman, J. A.; Lewin, W. H. G.; Wheaton, W. A.; Doty, J.

    1979-01-01

    On June 17, 1977, the X-ray burst source MXB 1636-53 was simultaneously monitored for about 4 hr with the Parkes 64-m radio telescope at a frequency of 14.7 GHz and the SAS 3 X-ray satellite (1.3-12 keV). One X-ray burst was observed; an upper limit (2 sigmas) of 200 mJy is reported for any radio burst coincident with the X-ray event. During the X-ray burst the radio/X-ray time-integrated flux ratio was no more than 375 with a 90 percent confidence. An upper limit (2 sigmas) of 22 mJy was determined for any steady 14.7-GHz source coincident with the X-ray position.

  9. Characterization of a Prototype TES-Based Anti-coincidence Detector for Use with Future X-ray Calorimeter Arrays

    NASA Astrophysics Data System (ADS)

    Busch, S. E.; Yoon, W. S.; Adams, J. S.; Bailey, C. N.; Bandler, S. R.; Chervenak, J. A.; Eckart, M. E.; Ewin, A. J.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; Lee, S.-J.; Porst, J.-P.; Porter, F. S.; Sadleir, J. E.; Smith, S. J.; Sultana, M.

    2016-07-01

    For future X-ray observatories utilizing transition-edge sensor (TES) microcalorimeters, an anti-coincidence detector (anti-co) is required to discriminate X-ray (˜ 0.1-10 keV) signals from non-X-ray background events, such as ionizing particles. We have developed a prototype anti-co that utilizes TESs, which will be compatible with the TES focal-plane arrays planned for future X-ray observatories. This anti-co is based upon the cryogenic dark matter search II detector design. It is a silicon wafer covered with superconducting collection fins and TES microcalorimeters. Minimum ionizing particles deposit energy while passing through the silicon. The athermal phonons produced by these events are absorbed in the superconducting fins, breaking Cooper pairs. The resulting quasiparticles diffuse along the superconducting fin, producing a signal when they reach the TES. By determining a correlation between detections in the anti-co and the X-ray detector one can identify and flag these background events. We have fabricated and tested a single-channel prototype anti-co device on a 1.5 × 1.9 cm^2 chip. We have measured the signals in this device from photons of several energies between 1.5 and 60 keV, as well as laboratory background events, demonstrating a threshold ˜ 100 times lower than is needed to detect minimum ionizing particles.

  10. Multilayer Fresnel zone plates for high energy radiation resolve 21 nm features at 1.2 keV.

    PubMed

    Keskinbora, Kahraman; Robisch, Anna-Lena; Mayer, Marcel; Sanli, Umut T; Grévent, Corinne; Wolter, Christian; Weigand, Markus; Szeghalmi, Adriana; Knez, Mato; Salditt, Tim; Schütz, Gisela

    2014-07-28

    X-ray microscopy is a successful technique with applications in several key fields. Fresnel zone plates (FZPs) have been the optical elements driving its success, especially in the soft X-ray range. However, focusing of hard X-rays via FZPs remains a challenge. It is demonstrated here, that two multilayer type FZPs, delivered from the same multilayer deposit, focus both hard and soft X-rays with high fidelity. The results prove that these lenses can achieve at least 21 nm half-pitch resolution at 1.2 keV demonstrated by direct imaging, and sub-30 nm FWHM (full-pitch) resolution at 7.9 keV, deduced from autocorrelation analysis. Reported FZPs had more than 10% diffraction efficiency near 1.5 keV.

  11. The SAS-3 X-ray observatory

    NASA Technical Reports Server (NTRS)

    Mayer, W. F.

    1975-01-01

    The experiment section of the Small Astronomy Satellite-3 (SAS-3) launched in May 1975 is an X-ray observatory intended to determine the location of bright X-ray sources to an accuracy of 15 arc-seconds; to study a selected set of sources over a wide energy range, from 0.1 to 55 keV, while performing very specific measurements of the spectra and time variability of known X-ray sources; and to monitor the sky continuously for X-ray novae, flares, and unexpected phenomena. The improvements in SAS-3 spacecraft include a clock accurate to 1 part in 10 billion, rotatable solar panels, a programmable data format, and improved nutation damper, a delayed command system, improved magnetic trim and azimuth control systems. These improvements enable SAS-3 to perform three-axis stabilized observations of any point on the celestial sphere at any time of the year. The description of the experiment section and the SAS-3 operation is followed by a synopsis of scientific results obtained from the observations of X-ray sources, such as Vela X-1 (supposed to be an accreting neutron star), a transient source of hard X-ray (less than 36 min in duration) detected by SAS-3, the Crab Nebula pulsar, the Perseus cluster of galaxies, and the Vela supernova remnant.

  12. The X-ray imager on AXO

    NASA Astrophysics Data System (ADS)

    Budtz-Jørgensen, C.; Kuvvetli, I.; Westergaard, N. J.; Jonasson, P.; Reglero, V.; Eyles, C.

    2001-02-01

    DSRI has initiated a development program of CZT X-ray and gamma-ray detectors employing strip readout techniques. A dramatic improvement of the energy response was found operating the detectors as the so-called drift detectors. For the electronic readout, modern ASIC chips were investigated. Modular design and the low-power electronics will make large area detectors using the drift strip method feasible. The performance of a prototype CZT system will be presented and discussed. One such detector system has been proposed for future space missions: the X-Ray Imager (XRI) on the Atmospheric X-ray Observatory (AXO), which is a mission proposed to the Danish Small Satellite Program and is dedicated to observations of X-ray generating processes in the Earth's atmosphere. Of special interest will be simultaneous optical and X-ray observations of sprites that are flashes appearing directly above an active thunderstorm system. Additional objective is a detailed mapping of the auroral X-ray and optical emission. XRI comprises a coded mask and a 20×40 cm 2 CZT detector array covering an energy range from 5 to 200 keV.

  13. Soft X-Ray Emissions from Planets and Moons

    NASA Technical Reports Server (NTRS)

    Bhardwaj, A.; Gladstone, G. R.; Elsner, R. F.; Waite, J. H., Jr.; Grodent, D.; Lewis, W. S.; Crary, F. J.; Weisskopf, M. C.; Howell, R. R.; Johnson, R. E.; Six, N. Frank (Technical Monitor)

    2002-01-01

    The soft x-ray energy band (less than 4 keV) is an important spectral regime for planetary remote sensing, as a wide variety of solar system objects are now known to shine at these wavelengths. These include Earth, Jupiter, comets, moons, Venus, and the Sun. Earth and Jupiter, as magnetic planets, are observed to emanate strong x-ray emissions from their auroral (polar) regions, thus providing vital information on the nature of precipitating particles and their energization processes in planetary magnetospheres. X rays from low latitudes have also been observed on these planets, resulting largely from atmospheric scattering and fluorescence of solar x-rays. Cometary x-rays are now a well established phenomena, more than a dozen comets have been observed at soft x-ray energies, with the accepted production mechanism being charge-exchange between heavy solar wind ions and cometary neutrals. Also, Lunar x-rays have been observed and are thought to be produced by scattering and fluorescence of solar x-rays from the Moon's surface. With the advent of sophisticated x-ray observatories, e.g., Chandra and XMM-Newton, the field of planetary x-ray astronomy is advancing at a much faster pace. The Chandra X-ray Observatory (CXO) has recently captured soft x-rays from Venus. Venusian x-rays are most likely produced through fluorescence of solar x-rays by C and O atoms in the upper atmosphere. Very recently, using CXO we have discovered soft x-rays from the moons of Jupiter-Io, Europa, and probably Ganymede. The plausible source of the x-rays from the Galilean satellites is bombardment of their surfaces by energetic (greater than 10 KeV) ions from the inner magnetosphere of Jupiter. The Io plasma Torus (IPT) is also discovered by CXO to be a source of soft x-rays by CXO have revealed a mysterious pulsating (period approx. 45 minutes) x-ray hot spot is fixed in magnetic latitude and longitude and is magnetically connected to a region in the outer magnetosphere of Jupiter. These

  14. X-ray spectrum of Kepler's SNR

    NASA Technical Reports Server (NTRS)

    Becker, R. H.; Boldt, E. A.; Holt, S. S.; Serlemitsos, P. J.; White, N. E.

    1980-01-01

    Observations made with the solid state spectrometer aboard the Einstein Observatory confirm Kepler's SNR as an X-ray source with an intensity between 1-3 KeV of 7.2 x 10 to the-11th power ergs/sq cm-s. The X-ray spectrum is similar to those of Cas A and Tycho, with strong line emission from the helium-like species of Si, S, and Ar. Direct comparisons to Tycho's SNR suggest a distance of Kepler's SNR of greater than or equal to 5 kpc.

  15. Hard X-ray Laue monochromator

    NASA Astrophysics Data System (ADS)

    Kocharyan, V. R.; Gogolev, A. S.; Kiziridi, A. A.; Batranin, A. V.; Muradyan, T. R.

    2016-06-01

    Experimental studies of X-ray diffraction from reflecting atomic planes (10¯11) of X-cut quartz single crystal in Laue geometry influenced by the temperature gradient were carried out. It is shown that by using the temperature gradient it is possible to reflect a hard X- ray beam with photon energy near the 100 keV with high efficiency. It has been experimentally proved that the intensity of the reflected beam can be increased by more than order depending on the value of the temperature gradient.

  16. Design studies for ITER x-ray diagnostics

    SciTech Connect

    Hill, K.W.; Bitter, M.; von Goeler, S.; Hsuan, H.

    1995-01-01

    Concepts for adapting conventional tokamak x-ray diagnostics to the harsh radiation environment of ITER include use of grazing-incidence (GI) x-ray mirrors or man-made Bragg multilayer (ML) elements to remove the x-ray beam from the neutron beam, or use of bundles of glass-capillary x-ray ``light pipes`` embedded in radiation shields to reduce the neutron/gamma-ray fluxes onto the detectors while maintaining usable x-ray throughput. The x-ray optical element with the broadest bandwidth and highest throughput, the GI mirror, can provide adequate lateral deflection (10 cm for a deflected-path length of 8 m) at x-ray energies up to 12, 22, or 30 keV for one, two, or three deflections, respectively. This element can be used with the broad band, high intensity x-ray imaging system (XIS), the pulseheight analysis (PHA) survey spectrometer, or the high resolution Johann x-ray crystal spectrometer (XCS), which is used for ion-temperature measurement. The ML mirrors can isolate the detector from the neutron beam with a single deflection for energies up to 50 keV, but have much narrower bandwidth and lower x-ray power throughput than do the GI mirrors; they are unsuitable for use with the XIS or PHA, but they could be used with the XCS; in particular, these deflectors could be used between ITER and the biological shield to avoid direct plasma neutron streaming through the biological shield. Graded-d ML mirrors have good reflectivity from 20 to 70 keV, but still at grazing angles (<3 mrad). The efficiency at 70 keV for double reflection (10 percent), as required for adequate separation of the x-ray and neutron beams, is high enough for PHA requirements, but not for the XIS. Further optimization may be possible.

  17. Hard X-Ray Emission of the Luminous Infrared Galaxy NGC 6240 as Observed by Nustar

    NASA Technical Reports Server (NTRS)

    Puccetti, S.; Comastri, A.; Bauer, F. E.; Brandt, W. N.; Fiore, F.; Harrison, F. A.; Luo, B.; Stern, D.; Urry, C. M.; Alexander, D. M.; Annuar, A.; Arévalo, P.; Balokovic, M.; Boggs, S. E.; Brightman, M.; Christensen, F. E.; Craig, W. W.; Gandhi, P.; Hailey, C. J.; Koss, M. J.; La Massa, S.; Marinucci, A.; Ricci, C.; Walton, D. J.; Zappacosta, L.; Zhang, W.

    2016-01-01

    We present a broadband (approx.0.3-70 keV) spectral and temporal analysis of NuSTAR observations of the luminous infrared galaxy NGC 6240 combined with archival Chandra, XMM-Newton, and BeppoSAX data. NGC 6240 is a galaxy in a relatively early merger state with two distinct nuclei separated by approx.1.5. Previous Chandra observations resolved the two nuclei and showed that they are both active and obscured by Compton-thick material. Although they cannot be resolved by NuSTAR, we were able to clearly detect, for the first time, both the primary and the reflection continuum components thanks to the unprecedented quality of the NuSTAR data at energies >10 keV. The NuSTAR hard X-ray spectrum is dominated by the primary continuum piercing through an absorbing column density which is mildly optically thick to Compton scattering (tau approx. = 1.2, NH approx. 1.5×10(exp 24)/sq cm. We detect moderately hard X-ray (>10 keV) flux variability up to 20% on short (15-20 ks) timescales. The amplitude of the variability is largest at approx..30 keV and is likely to originate from the primary continuum of the southern nucleus. Nevertheless, the mean hard X-ray flux on longer timescales (years) is relatively constant. Moreover, the two nuclei remain Compton-thick, although we find evidence of variability in the material along the line of sight with column densities NH < or = 2×10(exp 23)/sq cm over long (approx.3-15 yr) timescales. The observed X-ray emission in the NuSTAR energy range is fully consistent with the sum of the best-fit models of the spatially resolved Chandra spectra of the two nuclei.

  18. Pixellated Cd(Zn)Te high-energy X-ray instrument

    NASA Astrophysics Data System (ADS)

    Seller, P.; Bell, S.; Cernik, R. J.; Christodoulou, C.; Egan, C. K.; Gaskin, J. A.; Jacques, S.; Pani, S.; Ramsey, B. D.; Reid, C.; Sellin, P. J.; Scuffham, J. W.; Speller, R. D.; Wilson, M. D.; Veale, M. C.

    2011-12-01

    We have developed a pixellated high energy X-ray detector instrument to be used in a variety of imaging applications. The instrument consists of either a Cadmium Zinc Telluride or Cadmium Telluride (Cd(Zn)Te) detector bump-bonded to a large area ASIC and packaged with a high performance data acquisition system. The 80 by 80 pixels each of 250 μm by 250 μm give better than 1 keV FWHM energy resolution at 59.5 keV and 1.5 keV FWHM at 141 keV, at the same time providing a high speed imaging performance. This system uses a relatively simple wire-bonded interconnection scheme but this is being upgraded to allow multiple modules to be used with very small dead space. The readout system and the novel interconnect technology is described and how the system is performing in several target applications.

  19. Pixellated Cd(Zn)Te high-energy X-ray instrument

    PubMed Central

    Seller, P.; Bell, S.; Cernik, R.J.; Christodoulou, C.; Egan, C.K.; Gaskin, J.A.; Jacques, S.; Pani, S.; Ramsey, B.D.; Reid, C.; Sellin, P.J.; Scuffham, J.W.; Speller, R.D.; Wilson, M.D.; Veale, M.C.

    2012-01-01

    We have developed a pixellated high energy X-ray detector instrument to be used in a variety of imaging applications. The instrument consists of either a Cadmium Zinc Telluride or Cadmium Telluride (Cd(Zn)Te) detector bump-bonded to a large area ASIC and packaged with a high performance data acquisition system. The 80 by 80 pixels each of 250 μm by 250 μm give better than 1 keV FWHM energy resolution at 59.5 keV and 1.5 keV FWHM at 141 keV, at the same time providing a high speed imaging performance. This system uses a relatively simple wire-bonded interconnection scheme but this is being upgraded to allow multiple modules to be used with very small dead space. The readout system and the novel interconnect technology is described and how the system is performing in several target applications. PMID:22737179

  20. X-ray scattering from dense plasmas

    NASA Astrophysics Data System (ADS)

    McSherry, Declan Joseph

    Dense plasmas were studied by probing them with kilovolt x-rays and measuring those scattered at various angles. The laser produced x-ray source emitted Ti He alpha 4.75 keV x-rays. Two different plasma types were explored. The first was created by laser driven shocks on either side of a sample foil consisting of 2 micron thickness of Al, sandwiched between two 1 micron CH layers. We have observed a peak in the x-ray scattering cross section, indicating diffraction from the plasma. However, the experimentally inferred plasma density, did not always agree broadly with the hydrodynamic simulation MEDX (A modified version of MEDUSA). The second plasma type that we studied was created by soft x-ray heating on either side of a sample foil, this time consisting of 1 micron thickness of Al, sandwiched between two 0.2 micron CH layers. Two foil targets, each consisting of a 0.1 micron thick Au foil mounted on 1 micron of CH, were placed 4 mm from the sample foil. The soft x-rays were produced by laser irradiating these two foil targets. We found that, 0.5 ns after the peak of the laser heating pulses, that the measured cross sections more closely matched those simulated using the Thomas Fermi model than the Inferno model. Later in time, at 2 ns, the plasma is approaching a weakly coupled state. This is the first time x-ray scattering cross sections have been measured from dense plasmas generated by radiatively heating both sides of the sample. Moreover, these are absolute values typically within a factor of two of expectation for early x-ray probe times.

  1. First Terrestrial Soft X-Ray Auroral Observation by the Chandra X-Ray Observatory

    NASA Technical Reports Server (NTRS)

    Bhardwaj, Anil; Gladstone, G. Randall; Elsner, Ronald F.; Oestgaard, Nikolai; Waite, J. Hunter, Jr.; Cravens, Thomas E.; Chang, Shen-Wu; Majeed, Tariq; Metzger, Albert E.

    2007-01-01

    Northern auroral regions of Earth were imaged with energetic photons in the 0.1-10keV range using the High-Resolution Camera (HRC-I) aboard the Chandra X-ray Observatory at 10 epochs (each approx.20 min duration) between mid- December 2003 and mid-April 2004. These observations aimed at searching for Earth's soft (< 2 keV) X-ray aurora in a comparative study with Jupiter's X-ray aurora, where a pulsating X-ray "hot-spot" has been previously observed by Chandra. The first Chandra soft X-ray observations of Earth's aurora show that it is highly variable 0ntense arcs, multiple arcs, diffuse patches, at times absent). In at least one of the observations an isolated blob of emission is observed near the expected cusp location. A fortuitous overflight of DMSP satellite F13 provided SSJ/4 energetic particle measurements above a bright arc seen by Chandra on 24 January 2004, 20:01-20:22 UT. A model of the emissions expected strongly suggests that the observed soft X-ray signal is bremsstrahlung and characteristic K-shell line emissions of nitrogen and oxygen in the atmosphere produced by electrons.

  2. The Cambridge-Cambridge X-ray Serendipity Survey: I X-ray luminous galaxies

    NASA Technical Reports Server (NTRS)

    Boyle, B. J.; Mcmahon, R. G.; Wilkes, B. J.; Elvis, M.

    1994-01-01

    We report on the first results obtained from a new optical identification program of 123 faint X-ray sources with S(0.5-2 keV) greater than 2 x 10(exp -14) erg/s/sq cm serendipitously detected in ROSAT PSPC pointed observations. We have spectroscopically identified the optical counterparts to more than 100 sources in this survey. Although the majority of the sample (68 objects) are QSO's, we have also identified 12 narrow emission line galaxies which have extreme X-ray luminosities (10(exp 42) less than L(sub X) less than 10(exp 43.5) erg/s). Subsequent spectroscopy reveals them to be a mixture of star-burst galaxies and Seyfert 2 galaxies in approximately equal numbers. Combined with potentially similar objects identified in the Einstein Extended Medium Sensitivity Survey, these X-ray luminous galaxies exhibit a rate of cosmological evolution, L(sub X) varies as (1 + z)(exp 2.5 +/- 1.0), consistent with that derived for X-ray QSO's. This evolution, coupled with the steep slope determined for the faint end of the X-ray luminosity function (Phi(L(sub X)) varies as L(sub X)(exp -1.9)), implies that such objects could comprise 15-35% of the soft (1-2 keV) X-ray background.

  3. ROSAT PSPC observations of two X-ray-faint early-type galaxies: NGC 4365 and NGC 4382

    NASA Technical Reports Server (NTRS)

    Fabbiano, G.; Kim, D.-W.; Trinchieri, G.

    1994-01-01

    We present the results of ROSAT Positive Sensitive Proportional Counter (PSPC) observations of the two early-type galaxies NGC 4365 and NGC 4382. These galaxies are among those observed with Einstein to have the lowest X-ray to optical flux ratios of early-type galaxies. The PSCP data show that for radii r greater than 50 arcsec the radial distributions of the X-ray surface brightness are consistent with the optical distributions of King (1978). We also find that these galaxies have X-ray spectra significantly different from those observed in X-ray-bright ellipticals, with a relative excess of counts detected in the softest spectral channels. This confirms earlier Einstein results. The characteristics of the ROSAT PSPC do not allow us to discriminate between possible spectral models. If we adopt a two-component thermal model on the grounds of physical plausibility, we find that the spectral data can be fitted with a very soft optically thin component, with kT approximately 0.2 keV, and a hard component with kT greater than (1.0-1.5) keV. The hard component has a luminosity consistent with that expected from the integrated emission of a population of low mass-X-ray binaries in these galaxies; the nature of the very soft component is more speculative. Candidates include the coronal emission of late-type stars, supersoft X-ray sources, RS CVn, and perhaps a hot Interstellar Medium (ISM). Alternatively, the spectal data may be fitted with a 0.6-1 keV bremsstrahlung spectrum (expontential plus Gaunt), and may suggest the presence of a totally new population of X-ray sources.

  4. 'HEXE' - X-ray observatory in space

    NASA Astrophysics Data System (ADS)

    1987-06-01

    An overview is given of the design concept and scientific goals of the High-Energy X-ray Experiment (HEXE), developed in the FRG (by the Max Planck Institute for Extraterrestrial Physics and the Astronomical Institute of Tuebingen University) for operation on the Soviet space station Mir. HEXE was launched to LEO using a Kvant vehicle on March 31, 1987; after initial docking problems, it was joined to Mir by two cosmonauts in a 3-hour EVA on April 12. HEXE has dimensions 45 x 45 x 75 cm and weight 180 kg; it employs an 800-sq-cm Tl-doped NaI/CsI phoswich detector for 15-250-keV X-rays, complementing the other Mir instruments: the ESTEC high-pressure gas-scintillation proportional counter (3-100 keV), the Soviet high-energy detector (20-800 keV), and the Dutch-British X-ray camera (2-30 keV). The Mir observations are intended to explore the energy spectra and time evolution of compact galactic and extragalactic objects.

  5. Search for X-ray emission from Nova Cygni 1975

    NASA Technical Reports Server (NTRS)

    Hoffman, J. A.; Lewin, W. H. G.; Brecher, K.; Buff, J.; Clark, G. W.; Joss, P. C.; Matilsky, T.

    1976-01-01

    A search for X-rays from Nova Cygni 1975 was carried out before, during, and after the time of optical maximum. No X-rays were detected over the spectral range 0.1-50 keV. On the basis of these results a strong upper limit of .0001 has been placed on the ratio of X-ray to optical luminosity for this nova, consistent with effective temperatures of about 10,000 K. If Nova Cygni 1975 is a virgin nova, its low mass exchange rate would imply that any associated X-ray emission would not be detectable by present techniques.

  6. Coded aperture imaging for fluorescent x-rays

    SciTech Connect

    Haboub, A.; MacDowell, A. A.; Marchesini, S.; Parkinson, D. Y.

    2014-06-15

    We employ a coded aperture pattern in front of a pixilated charge couple device detector to image fluorescent x-rays (6–25 KeV) from samples irradiated with synchrotron radiation. Coded apertures encode the angular direction of x-rays, and given a known source plane, allow for a large numerical aperture x-ray imaging system. The algorithm to develop and fabricate the free standing No-Two-Holes-Touching aperture pattern was developed. The algorithms to reconstruct the x-ray image from the recorded encoded pattern were developed by means of a ray tracing technique and confirmed by experiments on standard samples.

  7. Start of Eta Car's X-ray Minimum

    NASA Technical Reports Server (NTRS)

    Corcoran, Michael F.; Liburd, Jamar; Hamaguchi, Kenji; Gull, Theodore; Madura, Thomas; Teodoro, Mairan; Moffat, Anthony; Richardson, Noel; Russell, Chris; Pollock, Andrew; Owocki, Stan

    2014-01-01

    Analysis of Eta Car's X-ray spectrum in the 2-10 keV band using quicklook data from the XRay Telescope on Swift shows that the flux on July 30, 2014 was 4.9 plus or minus 2.0×10(exp-12) ergs s(exp-1)cm(exp-2). This flux is nearly equal to the X-ray minimum flux seen by RXTE in 2009, 2003.5, and 1998, and indicates that Eta Car has reached its X-ray minimum, as expected based on the 2024-day period derived from previous 2-10 keV observations with RXTE.

  8. An imaging gas scintillation proportional counter for use in X-ray astronomy

    NASA Technical Reports Server (NTRS)

    Hailey, C. J.; Ku, W. H.-M.; Vartanian, M. H.

    1983-01-01

    An imaging gas scintillation proportional counter (GSPC) has been constructed for use in X-ray astronomy. The IGSPC consists of a gas scintillation proportional counter (GSPC) with a 1 micron polypropylene window coupled to a multiwire proportional counter (MWPC) via a calcium fluoride window. The MWPC, filled with a mixture of argon, methane, and tetrakis (dimethylamino) ethylene, detects the UV photons emitted by the xenon gas in the GSPC. The measured energy resolution is 17.0 percent (fwhm) and 8.0 percent (fwhm) at 1.5 keV and 5.9 keV, respectively. The measured position resolution is 1.9 mm (fwhm) and 0.9 mm (fwhm) at 1.5 and 5.9 keV, respectively. Possible astrophysical observations which can be performed with an IGSPC at the focal plane of a grazing incidence telescope are also discussed.

  9. Infrared and X-Ray Spectroscopy of the KES 75 Supernova Remnant Shell: Characterizing the Dust and Gas Properties

    NASA Technical Reports Server (NTRS)

    Temim, Tea; Dwek, Eli; Slane, Patrick; Arendt, Richard G.

    2009-01-01

    We present deep Chandra observations and Spitzer Space Telescope infrared (IR) spectroscopy of the shell in the composite supernova remnant (SNR) Kes 75 (G29.7-0.3). The remnant is composed of a central pulsar wind nebula and a bright partial shell in the south that is visible at radio, IR, and X-ray wavelengths. The X-ray emission can be modeled by either a single thermal component with a temperature of 1.5 keV, or with two thermal components with temperatures of 1.5 and 0.2 keV. Previous studies suggest that the hot component may originate from reverse-shocked SN ejecta. However, our new analysis shows no definitive evidence for enhanced abundances of Si, S, Ar, Mg, and Fe, as expected from supernova (SN) ejecta, or for the IR spectral signatures characteristic of confirmed SN condensed dust, thus favoring a circumstellar or interstellar origin for the X-ray and IR emission. The X-ray and ill emission in the shell are spatially correlated, suggesting that the dust particles are collisionally heated by the X-ray emitting gas. The IR spectrum of the shell is dominated by continuum emission from dust with little, or no line emission. Modeling the IR spectrum shows that the dust is heated to a temperature of 140 K by a relatively dense, hot plasma, that also gives rise to the hot X-ray emission component. The density inferred from the IR emission is significantly higher than the density inferred from the X-ray models, suggesting a low filling factor for this X-ray emitting gas. The total mass of the warm dust component is at least 1.3 x 10(exp -2) solar mass, assuming no significant dust destruction has occurred in the shell. The IR data also reveal the presence of an additional plasma component with a cooler temperature, consistent with the 0.2 keV gas component. Our IR analysis therefore provides an independent verification of the cooler component of the X-ray emission. The complementary analyses of the X-ray and IR emission provide quantitative estimates of

  10. An X-ray image of the Seyfert galaxy NGC 1068

    NASA Technical Reports Server (NTRS)

    Wilson, A. S.; Elvis, M.; Lawrence, A.; Bland-Hawthorn, J.

    1992-01-01

    An image of NGC 1068 with 4-5 arcsec obtained with the High Resolution Imager on the Rosat X-ray Observatory in the energy band 0.1-2.4 keV is presented and discussed. The map reveals an unresolved nuclear source, extended (about 1.5 kpc) emission around the nucleus, and extended (about 13 kpc) emission from the starburst disk. The extended circumnuclear emission aligns toward the NE, the same direction as found for the resolved emission of the active nucleus in several other wavebands. Thermal emission from a hot wind is argued to be the source of the steep-spectrum, nuclear, and circumnuclear emission. The disk of NGC 1068 has ratios of soft X-ray to B band and soft X-ray to 60-micron luminosities which are similar to those found for other starburst systems. The X-ray spectrum of the starburst disk is harder than that of the nuclear emission. By adopting a plausible spectrum and extrapolating the present measured flux, it is concluded that the starburst disk contributes most of the hard component seen in the 2-10 keV band.

  11. Microwave and hard X-ray imaging of a solar flare on 1980 November 5

    NASA Technical Reports Server (NTRS)

    Hoyng, P.; Marsh, K. A.; Zirin, H.; Dennis, B. R.

    1983-01-01

    VLA and SMM hard X ray data on the solar flares of November 5, 1980 are analyzed and compared with data from other sources. The VLA provided measurements at 15 GHz at 10 sec intervals, using left and right circular polarizations with a 0.6 arcsec resolution. The hard X ray imaging spectrometer on the SMM obtained data in six bands from 3.5-30 keV, with 8 x 8 arcsec resolution and 1.5 sec separation. The data were examined for a possible nonthermal source for the microwave component of the emissions detected, the origin of 16-30 keV excess fluxes, the relation between the X ray and microwave sources, the magnetic connection between observed loops, and the physical characteristics of the radiating loop. The data were consistent with a model that assumes fast electrons are accelerated to a single power-law energy distribution and freely stream along the magnetic field. The data also agreed with a thick-target model for solar flare X ray emission.

  12. Statistical Study of Hard X-ray Footpoint Region

    NASA Astrophysics Data System (ADS)

    Sato, J.

    2003-12-01

    We show statistical characteristics of hard X-ray footpoint sources derived from THE YOHKOH FLARE IMAGE CATALOGUE. We use many hard X-ray images over the whole YOHKOH mission period (1991/08 - 2001/12) and the study is concentrated on following two points. 1) Average height of hard X-ray footpoint sources in the four HXT(Hard X-ray Telescope) energy bands (14-23, 23-33, 33-53, 53-93 keV). 2) Spectral characteristics of hard X-ray footpoint sources. We mainly revealed that A) the hard X-ray emission comes from just above the Hα emitting region and the accelerated electrons loose their energy within 1000 km length leading to the high density around footpoints, and that B) Many hard X-ray footpoint sources show a broken power-law spectrum with very hard spectrum in the low energy range (20-30 keV), suggesting a cut off energy of accelerated electrons is around 20 keV - 30 keV at least.

  13. Soft X-Ray Emissions from Planets and Moons

    NASA Technical Reports Server (NTRS)

    Bhardwaj, A.; Gladstone, G. R.; Elsner, R. F.; Waite, J. H., Jr.; Grodent, D.; Cravens, T. E.; Howell, R. R.; Metzger, A. E.; Ostgaard, N.; Maurellis, A.; Six, N. Frank (Technical Monitor)

    2002-01-01

    A wide variety of solar system planetary bodies are now known to radiate in the soft x-ray energy (<5 keV) regime. These include planets (Earth, Jupiter, Venus, Saturn): bodies having thick atmosphere and with/without intrinsic magnetic field; planetary satellites (Moon, Io, Europa, Ganymede): bodies with no/thin atmosphere; and comets and Io plasma torus: bodies having extended tenuous atmosphere. Several different mechanisms have been proposed to explain the generation of soft x-rays from these objects. whereas in the hard x-ray energy range (>10 keV) x-rays mainly result from electron bremsstrahlung process. In this paper we present a brief review of the x-ray observations on each of the planetary bodies and discuss their characteristics and proposed source mechanisms.

  14. X-ray emission from LINERs observed with ASCA

    NASA Astrophysics Data System (ADS)

    Terashima, Y.

    We searched for evidence of the presence of AGN in LINERs using X-ray images and spectra up to 10 keV obtained with ASCA. We detected hard point-like nuclear sources with X-ray luminosities of 1040 - 1041 ergs s-1 from LINER 1s. Their Hα luminosities are positively correlated with the X-ray luminosities. These facts strongly support that these LINER 1s are ionized by low luminosity AGN. LINER 2s in the present sample have systematically lower X-ray to Hα luminosity ratio (LXLHα) suggesting that there exist other ionizing source or that the AGN is heavily obscured even at energies above 2 keV. X-ray properties of low luminosity AGNs are also discussed.

  15. The SWIFT Gamma-Ray Burst X-Ray Telescope

    NASA Technical Reports Server (NTRS)

    Hill, J. E.; Burrows, D. N.; Nousek, J. A.; Wells, A.; Chincarini, G.; Abbey, A. F.; Angelini, L.; Beardmore, A.; Brauninger, H. W.; Chang, W.

    2006-01-01

    The Swift Gamma-Ray Burst Explorer is designed to make prompt multi-wavelength observations of Gamma-Ray Bursts and GRB afterglows. The X-ray Telescope enables Swift to determine GRB positions with a few arcseconds accuracy within 100 seconds of the burst onset. The XRT utilizes a mirror set built for JET-X and an XMM-Newton/ EPIC MOS CCD detector to provide a sensitive broad-band (0.2-10 keV) X-ray imager with an effective area of more than 120 sq cm at 1.5 keV, a field of view of 23.6 x 23.6 arcminutes, and an angular resolution of 18 arcseconds (HPD). The detection sensitivity is 2x10(exp 14) erg/sq cm/s in 10(exp 4) seconds. The instrument provides automated source detection and position reporting within 5 seconds of target acquisition. It can also measure the redshifts of GRBs with Iron line emission or other spectral features. The XRT operates in an auto-exposure mode, adjusting the CCD readout mode automatically to optimize the science return as the source intensity fades. The XRT measures spectra and lightcurves of the GRB afterglow beginning about a minute after the burst and follows each burst for days or weeks. We provide an overview of the X-ray Telescope scientific background from which the systems engineering requirements were derived, with specific emphasis on the design and qualification aspects from conception through to launch. We describe the impact on cleanliness and vacuum requirements for the instrument low energy response and to maintain the high sensitivity to the fading signal of the Gamma-ray Bursts.

  16. Glass Monocapillary X-ray Optics And Their Applications In X-ray Microscopy

    NASA Astrophysics Data System (ADS)

    Zeng, X.; Feser, M.; Huang, E.; Lyon, A.; Yun, W.

    2010-04-01

    Elliptical, parabolic and Wolter type glass monocapillaries were fabricated for use as x-ray condensers in the energy range of 250 eV to 20 keV. On a routine basis a diameter error of +/-0.4 μm and straightness error of 0.8 μm (peak to valley) can be reached. The final test of condensers was performed at-wavelength by imaging the far field x-ray reflection intensity distribution using a laboratory microfocus x-ray source. For medium length condensers with a total length <80 mm, a total slope error of 40 μrad rms was obtained. The applications in full-field x-ray microscopes and the future effort in developing capillary Wolter mirrors based on this technology are reported.

  17. Clocking femtosecond X rays.

    PubMed

    Cavalieri, A L; Fritz, D M; Lee, S H; Bucksbaum, P H; Reis, D A; Rudati, J; Mills, D M; Fuoss, P H; Stephenson, G B; Kao, C C; Siddons, D P; Lowney, D P; Macphee, A G; Weinstein, D; Falcone, R W; Pahl, R; Als-Nielsen, J; Blome, C; Düsterer, S; Ischebeck, R; Schlarb, H; Schulte-Schrepping, H; Tschentscher, Th; Schneider, J; Hignette, O; Sette, F; Sokolowski-Tinten, K; Chapman, H N; Lee, R W; Hansen, T N; Synnergren, O; Larsson, J; Techert, S; Sheppard, J; Wark, J S; Bergh, M; Caleman, C; Huldt, G; van der Spoel, D; Timneanu, N; Hajdu, J; Akre, R A; Bong, E; Emma, P; Krejcik, P; Arthur, J; Brennan, S; Gaffney, K J; Lindenberg, A M; Luening, K; Hastings, J B

    2005-03-25

    Linear-accelerator-based sources will revolutionize ultrafast x-ray science due to their unprecedented brightness and short pulse duration. However, time-resolved studies at the resolution of the x-ray pulse duration are hampered by the inability to precisely synchronize an external laser to the accelerator. At the Sub-Picosecond Pulse Source at the Stanford Linear-Accelerator Center we solved this problem by measuring the arrival time of each high energy electron bunch with electro-optic sampling. This measurement indirectly determined the arrival time of each x-ray pulse relative to an external pump laser pulse with a time resolution of better than 60 fs rms.

  18. Hard x-ray phase contrast imaging using a tabletop Talbot-Lau interferometer with multiline embedded x-ray targets.

    PubMed

    Shimura, Takayoshi; Morimoto, Naoki; Fujino, Sho; Nagatomi, Takaharu; Oshima, Keni-chi; Harada, Jimpei; Omote, Kazuhiko; Osaka, Naohisa; Hosoi, Takuji; Watanabe, Heiji

    2013-01-15

    We demonstrate hard x-ray phase contrast imaging (XPCI) using a tabletop Talbot-Lau interferometer in which the x-ray source and source grating are replaced with an x-ray source with multiline metal targets embedded in a diamond substrate. This source realizes an array of linear x-ray sources of a few micrometers width without fabrication difficulty because of the shallow penetration depth of electrons irradiated to the metal targets. This enhances the coherence of x rays from each linear source and allows XPCI within 45 cm source-detector distance under 1.2 W input power for 8 keV x rays.

  19. Explorer Program: X-ray Timing Explorer

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This booklet describes the X-ray Timing Explorer (XTE), one in a series of Explorer missions administered by the National Aeronautics and Space Administration's (NASA) Office of Space Science and managed by the NASA Goddard Space Flight Center (GSFC). The X-ray astronomy observatory is scheduled for launch into low-Earth orbit by Delta 2 expendable launch vehicle in late summer of 1995. The mission is expected to operate for at least 2 years and will carry out in-depth timing and spectral studies of the X-ray sources in the 2 to 200 kilo-electron Volt (keV) range. XTE is intended to study the temporal and broad-band spectral phenomena associated with stellar and galactic systems containing compact objects, including neutron stars, white dwarfs, and black holes.

  20. Instrumentation for X-ray Astronomy

    NASA Technical Reports Server (NTRS)

    Ramsey, Brian D.; Austin, Robert A.; Decher, Rudolf

    1994-01-01

    Less than five decades ago, the first X-ray observations of the sky were made using simple devices such as film and geiger counters with crude collimators. These instruments were carried aloft by sounding rockets and made observations lasting only a few minutes at most. Today, orbiting observatories, utilizing high-resolution charged coupled devices (CCD's) at the focus of arc sec optics, have lifetimes measured in years. To maintain the pace of discovery in X-ray astronomy, detectors must continue to evolve into devices of ever increasing sensitivity and sophistication. Further progress depends upon a host of technologies: grazing incidence optics, proportional counters, semiconductors, calorimeters, etc. In this article we present a brief qualitative overview of these technologies and of the principles behind them, as well as some examples of how they are employed in scientific missions for X-ray observations at energies up to 100 keV.

  1. X-Ray Emission from the Soft X-Ray Transient Aquila X-1

    NASA Technical Reports Server (NTRS)

    Tavani, Marco

    1998-01-01

    Aquila X-1 is the most prolific of soft X-ray transients. It is believed to contain a rapidly spinning neutron star sporadically accreting near the Eddington limit from a low-mass companion star. The interest in studying the repeated X-ray outbursts from Aquila X-1 is twofold: (1) studying the relation between optical, soft and hard X-ray emission during the outburst onset, development and decay; (2) relating the spectral component to thermal and non-thermal processes occurring near the magnetosphere and in the boundary layer of a time-variable accretion disk. Our investigation is based on the BATSE monitoring of Aquila X-1 performed by our group. We observed Aquila X-1 in 1997 and re-analyzed archival information obtained in April 1994 during a period of extraordinary outbursting activity of the source in the hard X-ray range. Our results allow, for the first time for this important source, to obtain simultaneous spectral information from 2 keV to 200 keV. A black body (T = 0.8 keV) plus a broken power-law spectrum describe accurately the 1994 spectrum. Substantial hard X-ray emission is evident in the data, confirming that the accretion phase during sub-Eddington limit episodes is capable of producing energetic hard emission near 5 x 10(exp 35) ergs(exp -1). A preliminary paper summarizes our results, and a more comprehensive account is being written. We performed a theoretical analysis of possible emission mechanisms, and confirmed that a non-thermal emission mechanism triggered in a highly sheared magnetosphere at the accretion disk inner boundary can explain the hard X-ray emission. An anticorrelation between soft and hard X-ray emission is indeed prominently observed as predicted by this model.

  2. [The X-Ray Fluorescence Spectrometer Based on Pyroelectric Effect].

    PubMed

    Dong, Yi-fan; Fan, Rui-rui; Guo, Dong-ya; Zhang, Chun-lei; Gao, Min; Wang, Jin-zhou; Liu, Ya-qing; Zhou, Da-wei; Wang, Huan-yu

    2016-02-01

    Pyroelectric X-ray generator is implemented, and an X-ray fluorescence spectrometer is accomplished by combining the pyroelectric X-ray generator with a high energy resolution silicon drift detector. Firstly, the parameters of the X-ray generator are decided by analyzing and calculating the influence of the thickness of the pyroelectriccrystal and the thickness of the target on emitted X-ray. Secondly, the emitted X-ray is measured. The energy of emitted X-ray is from 1 to 27 keV, containing the characteristic X-ray of Cu and Ta, and the max counting rate is more than 3 000 per second. The measurement also proves that the detector of the spectrometer has a high energy resolution which the FWMH is 210 eV at 8. 05 keV. Lastly, samples of Fe, Ti, Cr and high-Ti basalt are analyzed using the spectrometer, and the results are agreed with the elements of the samples. It shows that the spectrometer consisting of a pyroelectric X-ray generator and a silicon drift detector is effective for element analysis. Additionally, because each part of the spectrometer has a small volume, it can be easily modified to a portable one which is suitable for non-destructive, on-site and quick element analysis.

  3. The High Energy X-ray Probe (HEX-P)

    NASA Astrophysics Data System (ADS)

    Harrison, Fiona; HEX-P Collaboration Collaboration

    2017-01-01

    The High-Energy X-ray Probe (HEX-P) is a probe-class ( 500M) next-generation high-energy X-ray observatory with broadband (2-200 keV) response and 40 times the sensitivity of any previous mis-sion in the 10-80 keV band, and >500 times the sensitivity of any previous mission in the 80-200 keV band. Intended to launch contemporaneously with Athena, HEX-P will provide fundamental new discoveries that range from resolving 90% of the X-ray background at its peak, to measuring the cosmic evolution of black hole spin, to studying faint X-ray populations in nearby galaxies. Based on NuSTAR heritage, HEX-P requires only modest technology development, and could easily be executed within the next decade.

  4. Beyond hard x-ray photoelectron spectroscopy: Simultaneous combination with x-ray diffraction

    SciTech Connect

    Rubio-Zuazo, Juan; Castro, German R.

    2013-05-15

    Hard x-ray photoelectron spectroscopy (HAXPES) is a powerful and novel emerging technique for the nondestructive determination of electronic properties and chemical composition of bulk, buried interfaces and surfaces. It benefits from the exceptionally large escape depth of high kinetic energy photoelectrons, increasing the information depth up to several tens of nanometers. Complementing HAXPES with an atomic structure sensitive technique (such as x-ray diffraction) opens a new research field with major applications for materials science. At SpLine, the Spanish CRG beamline at the European Synchrotron Radiation Facility, we have developed a novel experimental set-up that combines HAXPES and x-ray diffraction (x-ray reflectivity, surface x-ray diffraction, grazing incidence x-ray diffraction, and reciprocal space maps). Both techniques can be operated simultaneously on the same sample and using the same excitation source. The set-up includes a robust 2S + 3D diffractometer hosting a ultrahigh vacuum chamber equipped with a unique photoelectron spectrometer (few eV < electron kinetic energy < 15 keV), x-ray tube (Mg/Ti), 15 keV electron gun, and auxiliary standard surface facilities (molecular beam epitaxy evaporator, ion gun, low energy electron diffraction, sample heating/cooling system, leak valves, load-lock sample transfer, etc.). This end-station offers the unique possibility of performing simultaneous HAXPES + x-ray diffraction studies. In the present work, we describe the experimental set-up together with two experimental examples that emphasize its outstanding capabilities: (i) nondestructive characterization of the Si/Ge and HfO{sub 2}/SiO{sub 2} interfaces on Ge-based CMOS devices, and (ii) strain study on La{sub 0.7}Ca{sub 0.3}MnO{sub 3} ultrathin films grown on SrTiO{sub 3}(001) substrate.

  5. Observing soft X-ray line emission from the interstellar medium with X-ray calorimeter on a sounding rocket

    NASA Technical Reports Server (NTRS)

    Zhang, J.; Edwards, B.; Juda, M.; Mccammon, D.; Skinner, M.; Kelley, R.; Moseley, H.; Schoelkopf, R.; Szymkowiak, A.

    1990-01-01

    For an X-ray calorimeter working at 0.1 K, the energy resolution ideally can be as good as one eV for a practical detector. A detector with a resolution of 17 eV FWHM at 6 keV has been constructed. It is expected that this can be improved by a factor of two or more. With X-ray calorimeters flown on a sounding rocket, it should be possible to observe soft X-ray line emission from the interstellar medium over the energy range 0.07 to 1 keV. Here, a preliminary design for an X-ray calorimeter rocket experiment and the spectrum which might be observed from an equilibrium plasma are presented. For later X-ray calorimeter sounding rocket experiments, it is planned to add an aluminum foil mirror with collecting area of about 400 sq cm to observe line features from bright supernova remnants.

  6. [X-ray dosimetry using a charge injection type condenser].

    PubMed

    Yoshimura, A

    1988-11-01

    An X-ray dosimeter has been investigated with the use of a charge injection type condenser. The detector is small size and is housed in an epoxy resin approximately 4.5 X 2.5 X 1.5 mm. The X-ray dose can be determined by decreasing the amount of electron injected into floating gate through X-ray irradiation. The X-ray irradiation dose can be measured by decreasing of the capacitance. This dosimeter shows good linearity but the X-ray energy response for low energy region is higher than high energy region.

  7. X-Ray Calorimeter Arrays for Astrophysics

    NASA Technical Reports Server (NTRS)

    Kilbourne, Caroline A.

    2009-01-01

    High-resolution x-ray spectroscopy is a powerful tool for studying the evolving universe. The grating spectrometers on the XMM and Chandra satellites started a new era in x-ray astronomy, but there remains a need for instrumentation that can provide higher spectral resolution with high throughput in the Fe-K band (around 6 keV) and can enable imaging spectroscopy of extended sources, such as supernova remnants and galaxy clusters. The instrumentation needed is a broad-band imaging spectrometer - basically an x-ray camera that can distinguish tens of thousands of x-ray colors. The potential benefits to astrophysics of using a low-temperature calorimeter to determine the energy of an incident x-ray photon via measurement of a small change in temperature was first articulated by S. H. Moseley over two decades ago. In the time since, technological progress has been steady, though full realization in an orbiting x-ray telescope is still awaited. A low-temperature calorimeter can be characterized by the type of thermometer it uses, and three types presently dominate the field. The first two types are temperature-sensitive resistors - semiconductors in the metal-insulator transition and superconductors operated in the superconducting-normal transition. The third type uses a paramagnetic thermometer. These types can be considered the three generations of x-ray calorimeters; by now each has demonstrated a resolving power of 2000 at 6 keV, but only a semiconductor calorimeter system has been developed to spaceflight readiness. The Soft X-ray Spectrometer on Astro-H, expected to launch in 2013, will use an array of silicon thermistors with I-IgTe x-ray absorbers that will operate at 50 mK. Both the semiconductor and superconductor calorimeters have been implemented in small arrays, kilo-pixel arrays of the superconducting calorimeters are just now being produced, and it is anticipated that much larger arrays will require the non-dissipative advantage of magnetic thermometers.

  8. X-ray fluorescence experiment

    NASA Technical Reports Server (NTRS)

    Adler, I.; Trombka, J. I.; Gerard, J.; Schmadebeck, R.; Lowman, P.; Blodgett, H.; Yin, L.; Eller, E.; Lamothe, R.; Gorenstein, P.

    1972-01-01

    The preliminary results from the Sco X-1 and Cyg X-1 obtained from the Apollo 15 X-ray detector data are presented along with preliminary results of the X-ray fluorescence spectrometric data of the lunar surface composition. The production of the characteristic X-rays following the interaction of solar X-rays with the lunar surface is described along with the X-ray spectrometer. Preliminary analyses of the astronomical X-ray observation and the X-ray fluorescence data are presented.

  9. Moon: lunar albedo for soft x-rays

    NASA Astrophysics Data System (ADS)

    Ibadov, Subhon

    2016-07-01

    Albedo of the Moon for soft X-rays (0.1-2 keV photons) is determined on the basis of the X-ray luminosity of the Moon detected and measured for the first time by orbital space telescope ROSAT in 1990. It is found that the lunar albedo for the solar soft X-rays is less than the lunar visual region albedo almost thousand times. The data allow to estimate more correctly X-ray luminosity of dusty comets like Hyakutake C/1996 B2 and Hale-Bopp C/1995 O1 due to scattering of solar soft X-rays and to reveal thus the dominant mechanism for production of X-rays in dusty comets.

  10. INTEGRAL Observations of the Be/X-ray binary EX0 2030+375 During Outburst

    NASA Technical Reports Server (NTRS)

    Arranz, A. Camero; Wilson, C. A.; Connell, P.; Nunez, S. Martinez; Blay, P.; Beckmann, V.; Reglero, V.

    2005-01-01

    We present a type-I outburst of the high-mass X-ray binary EX0 2030+375, detected during INTEGRAL'S Performance and Verification phase in December 2002 (on-source time about 10(exp 6) seconds). In addition, six more outbursts have been observed during INTEGRAL'S Galactic Plane Scans. X-ray pulsations have been detected with a pulse period of 41.691798 plus or minus 0.000016 s. The X-ray luminosity in the 5-300 keV energy range was 9.7 x 10 (exp 36) erg per second, for a distance of 7.1 kpc. Two unusual features were found in the light curve, with an initial peak before the main outburst and another possible spike after the maximum. RXTE observations confirm only the existence of the initial spike. Although the initial peak appears to be a recurrent feature, the physical mechanisms producing it and the possible second spike are unknown. Moreover, a four-day delay between periastron passage and the peak of the outburst is observed. We present for the first time a 5-300 keV broad-band spectrum of this source. It can be modelled by the sum of a disk black body (kT(sub BB) approximately 8 keV) and either with a power law model with Gamma=2.04 plus or minus 0.11 keV or a Comptonized component (spherical geometry, kT(sub e).=30 keV, tau = 2.64, kT(sub w)=1.5 keV).

  11. Small, Fast TES Microcalorimeters with Unprecedented X-ray Spectral Performance

    NASA Technical Reports Server (NTRS)

    Eckart, M. E.; Adams, J. S.; Bailey, C. N.; Bandler, S. R.; Chervenak, J. A.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; Porter, F. S.; Sadleir, J. E.; Smith, S. J.; Hilton, G. C.; Irwin, K. D.; Vale, L. R.

    2011-01-01

    Driven initially by the desire for X-ray microcalorimeter arrays suitable for imaging the dynamic solar corona, we have developed a transition-edge-sensor (TES) microcalorimeter optimization that exhibits a unique combination of high spectral resolving power and a wide X-ray bandpass. These devices have achieved spectral performance of dE approximately 1.3 eV FWHM at 1.5 keV, 1.6 eV at 6 keV, and 2.0 eV at 8 keV, using small TESs (e.g., approximately 35 micron x 35 micron) that operate in a regime in which the superconducting transition is highly current dependent. In order to accommodate high X-ray count rates, the devices sit directly on a solid substrate instead of on membranes, and we use an embedded heatsinking layer to reduce pixel-to-pixel crosstalk. We will present results from devices with a range of TES and absorber sizes, and from device wafers with varied embedded heatsink materials. This contribution will focus on count-rate capabilities, including a discussion of the trade-off between count rate and energy resolution, and the heatsinking design. We will also present preliminary tests of array readout using a code-division multiplexed SQUID readout scheme, which may be necessary to enable large arrays of these fast devices.

  12. Multi-Absorber Transition-Edge Sensors for X-Ray Astronomy Applications

    NASA Technical Reports Server (NTRS)

    Smith, S. J.; Adams, J. S.; Bandler, S. R.; Busch, S. E.; Chervenak, J. A.; Eckart, M. E.; Ewin, A. J.; Finkbeiner, F. M.; Kelley, R. L.; Kelly, D. P.; Kilbourne, C. A.; Porst, J. P.; Porter, F. S.; Sadleir, J. E.; Wassell, E. J.

    2012-01-01

    We are developing multi-absorber Transition-Edge Sensors (TESs) for applications in x-ray astronomy. These position-sensitive devices consist of multiple x-ray absorbers each with a different thermal coupling to a single readout TES. Heat diffusion between the absorbers and the TES gives rise to a characteristic pulse shape corresponding to each absorber element and enables position discrimination. The development of these detectors is motivated by a desire to maximize focal plane arrays with the fewest number of readout channels. In this contribution we report on the first results from devices consisting of nine) 65 X 65 sq. microns Au x-ray absorbers) 5 microns thick. These are coupled to a single 35 X 35 sq. microns Mo/Au bilayer TES. These devices have demonstrated full-width-half-maximum (FWHM) energy resolution of 2.1 eV at 1.5 keV) 2.5 eV at 5.9 keV and 3.3 eV at 8 keV. This is coupled with position discrimination from pulse shape over the same energy range. We use a finite-element model to reproduce the measured pulse shapes and investigate the detector non-linearity with energy) which impacts on the devices position sensitivity and energy resolution.

  13. X-ray beam finder

    DOEpatents

    Gilbert, H.W.

    1983-06-16

    An X-ray beam finder for locating a focal spot of an X-ray tube includes a mass of X-ray opaque material having first and second axially-aligned, parallel-opposed faces connected by a plurality of substantially identical parallel holes perpendicular to the faces and a film holder for holding X-ray sensitive film tightly against one face while the other face is placed in contact with the window of an X-ray head.

  14. X-ray imaging with grazing-incidence microscopes developed for the LIL program.

    PubMed

    Rosch, R; Boutin, J Y; le Breton, J P; Gontier, D; Jadaud, J P; Reverdin, C; Soullié, G; Lidove, G; Maroni, R

    2007-03-01

    This article describes x-ray imaging with grazing-incidence microscopes, developed for the experimental program carried out on the Ligne d'Integration Laser (LIL) facility [J. P. Le Breton et al., Inertial Fusion Sciences and Applications 2001 (Elsevier, Paris, 2002), pp. 856-862] (24 kJ, UV-0.35 nm). The design includes a large target-to-microscope (400-700 mm) distance required by the x-ray ablation issues anticipated on the Laser MégaJoule facility [P. A. Holstein et al., Laser Part. Beams 17, 403 (1999)] (1.8 MJ) which is under construction. Two eight-image Kirkpatrick-Baez microscopes [P. Kirkpatrick and A. V. Baez J. Opt. Soc. Am. 38, 766 (1948)] with different spectral wavelength ranges and with a 400 mm source-to-mirror distance image the target on a custom-built framing camera (time resolution of approximately 80 ps). The soft x-ray version microscope is sensitive below 1 keV and its spatial resolution is better than 30 microm over a 2-mm-diam region. The hard x-ray version microscope has a 10 microm resolution over an 800-microm-diam region and is sensitive in the 1-5 keV energy range. Two other x-ray microscopes based on an association of toroidal/spherical surfaces (T/S microscopes) produce an image on a streak camera with a spatial resolution better than 30 microm over a 3 mm field of view in the direction of the camera slit. Both microscopes have been designed to have, respectively, a maximum sensitivity in the 0.1-1 and 1-5 keV energy range. We present the original design of these four microscopes and their test on a dc x-ray tube in the laboratory. The diagnostics were successfully used on LIL first experiments early in 2005. Results of soft x-ray imaging of a radiative jet during conical shaped laser interaction are shown.

  15. Development of heavy mineral and heavy element database of soil sediments in Japan using synchrotron radiation X-ray powder diffraction and high-energy (116 keV) X-ray fluorescence analysis: 1. Case study of Kofu and Chiba region.

    PubMed

    Bong, Willy Shun Kai; Nakai, Izumi; Furuya, Shunsuke; Suzuki, Hiroko; Abe, Yoshinari; Osaka, Keiichi; Matsumoto, Takuya; Itou, Masayoshi; Imai, Noboru; Ninomiya, Toshio

    2012-07-10

    We have started the construction of a nationwide forensic soil sediment database for Japan based on the heavy mineral and trace heavy element compositions of stream sediments collected at 3024 points all over Japan obtained by high-resolution synchrotron X-ray powder diffraction (SR-XRD) and high-energy synchrotron X-ray fluorescence analysis (HE-SR-XRF). In this study, the performance of both techniques was demonstrated by analyzing soil sediments from two different geological regions, the Kofu and Chiba regions in Kanto province, to construct database that can be applied in the future to provenance analysis of soil evidence from a crime scene. The sediments from the quaternary volcanic lithology of the Chiba region were found to be dominated by heavy minerals of volcanic origin - orthopyroxene, clinopyroxene, and amphibole, and the REEs (rare earth elements) within the region showed similar geochemical behavior. On the other hand, four distinct heavy mineral groups were identified in the sediments of the Kofu region, where there is a great variety of underlying bedrock, and the geochemical behavior of the REEs in the sediments also varied accordingly to their geological origins. As such, our study shows that high-resolution SR-XRD data can provide information on the spatial distribution patterns of heavy minerals in stream sediments, playing an important role in determining their likely geographical origin. Meanwhile, the highly sensitive HE-SR-XRF data allow us to study the geochemical behavior of trace heavy elements, especially the REEs in the sediments, providing additional support to further constrain the likely geographical origin of the sediments determined by heavy minerals.

  16. Neck x-ray

    MedlinePlus

    ... look at cervical vertebrae. These are the 7 bones of the spine in the neck. ... A neck x-ray can detect: Bone joint that is out of position (dislocation) Breathing in a foreign object Broken bone (fracture) Disk problems (disks ...

  17. Abdominal x-ray

    MedlinePlus

    ... a kidney stone Identify blockage in the intestine Locate an object that has been swallowed Help diagnose diseases, such as tumors or other conditions Normal Results The x-ray will show normal structures for a person your age. What Abnormal Results Mean Abnormal findings ...

  18. γ Cassiopeiae: an X-ray Be star with personality

    NASA Astrophysics Data System (ADS)

    Lopes de Oliveira, R.; Smith, M. A.; Motch, C.

    2010-03-01

    An exciting unsolved problem in the study of high energy processes of early type stars concerns the physical mechanism for producing X-rays near the Be star γ Cassiopeiae. By now we know that this source and several “γ Cas analogs” exhibit an unusual hard thermal X-ray spectrum, compared both to normal massive stars and the non-thermal emission of known Be/X-ray binaries. Also, its light curve is variable on almost all conceivable timescales. In this study we reanalyze a high dispersion spectrum obtained by Chandra in 2001 and combine it with the analysis of a new (2004) spectrum and light curve obtained by XMM-Newton. We find that both spectra can be fit well with 3-4 optically thin, thermal components consisting of a hot component having a temperature kTQ ˜ 12-14 keV, perhaps one with a value of ~2.4 keV, and two with well defined values near 0.6 keV and 0.11 keV. We argue that these components arise in discrete (almost monothermal) plasmas. Moreover, they cannot be produced within an integral gas structure or by the cooling of a dominant hot process. Consistent with earlier findings, we also find that the Fe abundance arising from K-shell ions is significantly subsolar and less than the Fe abundance from L-shell ions. We also find novel properties not present in the earlier Chandra spectrum, including a dramatic decrease in the local photoelectric absorption of soft X-rays, a decrease in the strength of the Fe and possibly of the Si K fluorescence features, underpredicted lines in two ions each of Ne and N (suggesting abundances that are ~1.5-3× and ~4× solar, respectively), and broadening of the strong Ne X Lyα and O VIII Lyα lines. In addition, we note certain traits in the γ Cas spectrum that are different from those of the fairly well studied analog HD 110432 - in this sense the stars have different “personalities.” In particular, for γ Cas the hot X-ray component remains nearly constant in temperature, and the photoelectric absorption of

  19. Are There Intrinsically X-Ray Quiet Quasars

    NASA Technical Reports Server (NTRS)

    Gallagher, S. C.; Brandt, W. N.; Laor, A.; Elvis, Martin; Mathur, S.; Wills, Beverly J.; Iyomoto, N.; White, Nicholas (Technical Monitor)

    2000-01-01

    Recent ROSAT studies have identified a significant population of Active Galactic Nuclei (AGN) that are notably faint in soft X-rays relative to their optical fluxes. Are these AGN intrinsically X-ray weak or are they just highly absorbed? Brandt, Laor & Wills have systematically examined the optical and UV spectral properties of a well-defined sample of these soft X-ray weak (SXW) AGN drawn from the Boroson & Green sample of all the Palomar Green AGN 00 with z < 0.5. We present ASCA observations of three of these SXW AGN: PG 1011-040, PG 1535+547 (Mrk 486), and PG 2112+059. In general, our ASCA observations support the intrinsic absorption scenario for explaining soft X-ray weakness; both PG 1535+547 and PG 2112+059 show significant column densities (NH is approximately 10(exp 22) - 10(exp 23)/sq cm) of absorbing gas. Interestingly, PG 1011-040 shows no spectral evidence for X-ray absorption. The weak X-ray emission may result from very strong absorption of a partially covered source, or this AGN may be intrinsically X-ray weak. PG 2112+059 is a Broad Absorption Line (BAL) QSO, and we find it to have the highest X-ray flux known of this class. It shows a typical power-law X-ray continuum above 3 keV; this is the first direct evidence that BAL QSOs indeed have normal X-ray continua underlying their intrinsic absorption. Finally, marked variability between the ROSAT and ASCA observations of PG 1535+547 and PG 2112+059 suggests that the soft X-ray weak designation may be transient, and multi-epoch 0.1-10.0 KeV X-ray observations are required to constrain variability of the absorber and continuum.

  20. Development of long-duration, laser driven, cold x-ray sources on the National Ignition Facility laser

    NASA Astrophysics Data System (ADS)

    Kemp, G. Elijah; May, M. J.; Blue, B. E.; Colvin, J. D.; Fournier, K. B.; Moore, A. S.; Thorn, D. B.; Brown, C. G.; Fisher, J. H.; Newlander, C. D.; Davis, J. F.; Seiler, S. W.

    2016-10-01

    We present experimental and simulation results from an x-ray source development campaign on the National Ignition Facility laser that focused on temporally and spectrally tailoring the non-equilibrium x-ray emission from laser driven Xe gas-pipe targets. The goal of this work was to create a long-duration (> 10ns) x-ray environment that emulates 1keV blackbody emission. In one experiment, we investigated the use of sequentially driven 6ns trapezoidal pulses - which deliver more optimized laser performance than equivalent single pulse configurations - to create a 13ns total emission duration. While a successful demonstration of x-ray pulse shaping control, these sources resulted in too much low-photon-energy emission along the desired line-of-sight. Several filtering schemes were explored in subsequent experiments to remove the sub- 1.5keV emission, where we commissioned a new DIM-based, 16 channel, filtered x-ray diode array, SENTINEL, to assess line-of-sight filtering effectiveness. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  1. Thin Shell, Segmented X-Ray Mirrors

    NASA Technical Reports Server (NTRS)

    Petre, Robert

    2010-01-01

    Thin foil mirrors were introduced as a means of achieving high throughput in an X-ray astronomical imaging system in applications for which high angular resolution were not necessary. Since their introduction, their high filling factor, modest mass, relative ease of construction, and modest cost have led to their use in numerous X-ray observatories, including the Broad Band X-ray Telescope, ASCA, and Suzaku. The introduction of key innovations, including epoxy replicated surfaces, multilayer coatings, and glass mirror substrates, has led to performance improvements, and in their becoming widely used for X-ray astronomical imaging at energies above 10 keV. The use of glass substrates has also led to substantial improvement in angular resolution, and thus their incorporation into the NASA concept for the International X-ray Observatory with a planned 3 in diameter aperture. This paper traces the development of foil mirrors from their inception in the 1970's through their current and anticipated future applications.

  2. X-ray irradiation of yeast cells

    NASA Astrophysics Data System (ADS)

    Masini, Alessandra; Batani, Dimitri; Previdi, Fabio; Conti, Aldo; Pisani, Francesca; Botto, Cesare; Bortolotto, Fulvia; Torsiello, Flavia; Turcu, I. C. Edmond; Allott, Ric M.; Lisi, Nicola; Milani, Marziale; Costato, Michele; Pozzi, Achille; Koenig, Michel

    1997-10-01

    Saccharomyces Cerevisiae yeast cells were irradiated using the soft X-ray laser-plasma source at Rutherford Laboratory. The aim was to produce a selective damage of enzyme metabolic activity at the wall and membrane level (responsible for fermentation) without interfering with respiration (taking place in mitochondria) and with nuclear and DNA activity. The source was calibrated by PIN diodes and X-ray spectrometers. Teflon stripes were chosen as targets for the UV laser, emitting X-rays at about 0.9 keV, characterized by a very large decay exponent in biological matter. X-ray doses to the different cell compartments were calculated following a Lambert-Bouguet-Beer law. After irradiation, the selective damage to metabolic activity at the membrane level was measured by monitoring CO2 production with pressure silicon detectors. Preliminary results gave evidence of pressure reduction for irradiated samples and non-linear response to doses. Also metabolic oscillations were evidenced in cell suspensions and it was shown that X-ray irradiation changed the oscillation frequency.

  3. A soft X-ray lag detected in Centaurus A

    NASA Astrophysics Data System (ADS)

    Tachibana, Yutaro; Kawamuro, Taiki; Ueda, Yoshihiro; Shidatsu, Megumi; Arimoto, Makoto; Yoshii, Taketoshi; Yatsu, Yoichi; Saito, Yoshihiko; Pike, Sean; Kawai, Nobuyuki

    2016-06-01

    We performed time-lag analysis on the X-ray light curves of Centaurus A (Cen A) obtained by the Gas Slit Camera (GSC) aboard the Monitor of All-sky X-ray Image (MAXI) in three energy bands (2-4 keV, 4-10 keV, and 10-20 keV). We discovered a soft X-ray lag relative to higher energies (soft lag) on a timescale of days in a flaring episode by employing the discrete correlation function (DCF) and the z-transformed discrete correlation function (ZDCF) method. In the episode, a peak and a centroid in the DCF and the ZDCF was observed at a soft lag of ˜ 5 d in 2-4 keV versus 4-10 keV and in 4-10 keV versus 10-20 keV, and ˜ 10 d in 2-4 keV versus 10-20 keV. We found it difficult to explain the observed X-ray variation by a single energy injection with the one-zone synchrotron self-Compton (SSC) model, in which the soft lags in these three energy bands reflect the different cooling times of the relativistic electrons, by assuming the magnetic field and minimum Lorentz factor estimated from a broad-band spectral energy distribution. Alternatively, if the phenomenon is interpreted as cooling of Comptonizing electrons in a corona covering the accretion disk, the temperature of the corona producing the variable X-rays should be ˜ 10 keV for reconciliation with the soft lag in the energy range of 2-20 keV.

  4. Silicon Absolute X-Ray Detectors

    SciTech Connect

    Seely, John F.; Korde, Raj; Sprunck, Jacob; Medjoubi, Kadda; Hustache, Stephanie

    2010-06-23

    The responsivity of silicon photodiodes having no loss in the entrance window, measured using synchrotron radiation in the 1.75 to 60 keV range, was compared to the responsivity calculated using the silicon thickness measured using near-infrared light. The measured and calculated responsivities agree with an average difference of 1.3%. This enables their use as absolute x-ray detectors.

  5. Spectral unfolds of PITHON Flash X-ray source.

    SciTech Connect

    Zarick, Thomas Andrew; Sheridan, Timothy J.; Hartman, E. Frederick; Riordan, John C.

    2007-11-01

    Using a differential absorption spectrometer we obtained experimental spectral information for the PITHON Flash X-ray Machine located in San Leandro, California at L-3 Communications. Spectral information we obtained pertained to the 200 keV to 800 keV endpoint operation of PITHON. We also obtained data on the temporal behavior of high energy and low energy spectral content.

  6. Evidence for a Neutron Star in the non-pulsating massive X-ray binary 4U2206+54

    NASA Astrophysics Data System (ADS)

    Torrejón, J. M.; Kreykenbohm, I.; Orr, A.; Titarchuk, L.; Negueruela, I.

    2004-08-01

    We present an analysis of archival RXTE and BeppoSAX data of the X-ray source 4U2206+54. For the first time, high energy data (≥30 keV) are analyzed for this source. The data are well described by comptonization models (CompTT and BMC) in which seed photons with temperatures between 1.1 keV and 1.5 keV are comptonized by a hot plasma at 50 keV thereby producing a hard tail which extends up to, at least, 100 keV. We offer a new method of identification of neutron star systems using a temperature - luminosity relation. If a given X-ray source is characterized by a low bolometric luminosity and a relatively high color blackbody temperature (>1 keV) it has necessarily to be a neutron star rather than a black hole. From these arguments it is shown that the area of the soft photon source must be small (r≈ 1 km) and that the accretion disk, if present, must be truncated very far from the compact object. Here we report on the possible existence of a cyclotron line around 30 keV. The presence of a neutron star in the system is strongly favored by the available data.

  7. Ethyl 3-[1-(5,5-dimethyl-2-oxo-1,3,2-dioxaphosphorin-2-yl)propan-2-ylidene]carbazate: a combined X-ray and density functional theory (DFT) study.

    PubMed

    Arfaoui, Youssef; Kouass, Salah; Salah, Nesrine; Ben Akacha, Azaiez; Guesmi, Abderrahmen

    2010-07-01

    In the title compound, C(11)H(21)N(2)O(5)P, one of the two carbazate N atoms is involved in the C=N double bond and the H atom of the second N atom is engaged in an intramolecular hydrogen bond with an O atom from the dimethylphosphorin-2-yl group, which is in an uncommon cis position with respect to the carbamate group. The cohesion of the crystal structure is also reinforced by weak intermolecular hydrogen bonds. Density functional theory (DFT) calculations at the B3LYP/6-311++g(2d,2p) level revealed the lowest energy structure to have a Z configuration at the C=N bond, which is consistent with the configuration found in the X-ray crystal structure, as well as a less stable E counterpart which lies 2.0 kcal mol(-1) higher in potential energy. Correlations between the experimental and computational studies are discussed.

  8. Mapping of auroral x-rays from rocket overflights

    SciTech Connect

    Goldberg, R.A.; Barcus, J.R.; Treinish, L.A.; Vondrak, R.R.

    1982-04-01

    In March 1978, two Nike Tomahawk payloads were launched from Poker Flat, Alaska, to observe the structure of bremsstrhlung x rays and precipitating particles during both nighttime and daytime observe x rays in four spectral ranges (5--10 keV, 10--20 keV, 20--40 keV, and >40 keV). Particle contamination of the detectors was avoided with broom magnet shielding techniques. By virtue of the payloads' approximate 20/sup 0/ coning angle (about 10.5-s period), the detectors scanned wide regions on either side of the trajectory paths. This has permitted construction (using computer color graphics) of the time averaged (approx.4 min) x ray source regions near 100 km, a height consistent with Chatanika radar electron density maps obtained during each flight period. X ray image maps for both flights exhibit enhanced source regions well outside the rocket trajectory planes. For the nighttime overflight, Chatanika radar scan data and Fort Yukon riometer data were used to verify the presence of an x ray imaged enhancement of electron precipitation, approximately 30 km to the east of the rocket trajectory plane. The daytime x ray data also exhibited several regions of enhanced emission, but outside the region scanned by Chatanika radar. A comparison of the x ray emissions from the two events shows the daytime x ray spectral distributions to be significantly harder but less intense that the nighttime distributions. Furthermore, for both events, spectra compared within and nearby each enhanced emitting region exhibit characteristics of a two component spectrum, such that the bright regions show an increased flux primarily in the low-energy component. Electron fluxes measured on each of the two flights with Geiger tubes are mainly isotropic over the downward hemisphere at night but show anisotropic pitch angle characteristics by day, consistent with the concept that the enhancement of the low-energy x ray flux component is predominantly induced by electrons filling the loss cone.

  9. Compact Laser-Compton X-ray Source at LLNL

    NASA Astrophysics Data System (ADS)

    Hwang, Yoonwoo; Marsh, Roark; Gibson, David; Anderson, Gerald; Barty, Christopher; Tajima, Toshiki

    2016-10-01

    The scaling of laser-Compton X-ray and gamma-ray sources is dependent upon high-current, low-emittance accelerator operation and implementation of efficient laser-electron interaction architectures. Laser-Compton X-rays have been produced using the unique compact X-band linear accelerator at LLNL operated in a novel multibunch mode, and results agree extremely well with modeling predictions. An Andor X-ray CCD camera and image plates have been calibrated and used to characterize the 30 keV laser-Compton X-ray beam. The X-ray source size and the effect of scintillator blur have been measured. K-edge absorption measurements using thin metallic foils confirm the production of narrow energy spread X-rays and results validate X-ray image simulations. Future plans for medically relevant imaging will be discussed with facility upgrades to enable 250 keV X-ray production. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  10. The hard X-ray perspective on the soft X-ray excess

    SciTech Connect

    Vasudevan, Ranjan V.; Mushotzky, Richard F.; Reynolds, Christopher S.; Lohfink, Anne M.; Zoghbi, Abderahmen; Fabian, Andrew C.; Gallo, Luigi C.; Walton, Dominic

    2014-04-10

    The X-ray spectra of many active galactic nuclei exhibit a 'soft excess' below 1 keV, whose physical origin remains unclear. Diverse models have been suggested to account for it, including ionized reflection of X-rays from the inner part of the accretion disk, ionized winds/absorbers, and Comptonization. The ionized reflection model suggests a natural link between the prominence of the soft excess and the Compton reflection hump strength above 10 keV, but it has not been clear what hard X-ray signatures, if any, are expected from the other soft X-ray candidate models. Additionally, it has not been possible up until recently to obtain high-quality simultaneous measurements of both soft and hard X-ray emission necessary to distinguish these models but upcoming joint XMM-NuSTAR programs provide precisely this opportunity. In this paper, we present an extensive analysis of simulations of XMM-NuSTAR observations, using two candidate soft excess models as inputs, to determine whether such campaigns can disambiguate between them by using hard and soft X-ray observations in tandem. The simulated spectra are fit with the simplest 'observer's model' of a blackbody and neutral reflection to characterize the strength of the soft and hard excesses. A plot of the strength of the hard excess against the soft excess strength provides a diagnostic plot which allows the soft excess production mechanism to be determined in individual sources and samples using current state-of-the-art and next generation hard X-ray enabled observatories. This approach can be straightforwardly extended to other candidate models for the soft excess.

  11. Discovery of Soft X-Ray Emission From Io, Europa and the Io Plasma Torus

    NASA Technical Reports Server (NTRS)

    Elsner, R. F.; Gladstone, G. R.; Waite, J. H.; Crary, F. J.; Howell, R. R.; Johnson, R. E.; Ford, P. G.; Metzger, A. E.; Hurley, K. C.; Feigelson, E. D.; Six, N. Frank (Technical Monitor)

    2001-01-01

    We report the discovery of soft (0.25 - 2 keV) x-ray emission from the moons Io and Europa, probably Ganymede, and from the Io Plasma Torus (IPT). Bombardment by energetic (greater than 10 keV) H, O, and S ions from the region of the IPT seems the likely source of the x-ray emission from the Galilean moons. According to our estimates, fluorescent x-ray emission excited by solar x-rays, even during flares from the active Sun, charge-exchange processes, previously invoked to explain Jupiter's x-ray aurora and cometary x-ray emission, and ion stripping by dust grains fall to account for the observed emission. On the other hand, bremsstrahlung emission of soft X-rays from non-thermal electrons in the few hundred to few thousand eV range may account for a substantial fraction of the observed x-ray flux from the IPT.

  12. The Cambridge-Cambridge x-ray serendipity survey. 2: Classification of x-ray luminous galaxies

    NASA Technical Reports Server (NTRS)

    Boyle, B. J.; Mcmahon, R. G.; Wilkes, B. J.; Elvis, Martin

    1994-01-01

    We present the results of an intermediate-resolution (1.5 A) spectroscopic study of 17 x-ray luminous narrow emission-line galaxies previously identified in the Cambridge-Cambridge ROSAT Serendipity Survey and the Einstein Extended Medium Sensitivity Survey. Emission-line ratios reveal that the sample is composed of ten Seyfert and seven starburst galaxies. Measured linewidths for the narrow H alpha emission lines lie in the range 170 - 460 km s(exp -1). Five of the objects show clear evidence for asymmetry in the (OIII) lambda 5007 emission-line profile. Broad H alpha emission is detected in six of the Seyfert galaxies, which range in type from Seyfert 1.5 to 2. Broad H beta emission is only detected in one Seyfert galaxy. The mean full width at half maximum for the broad lines in the Seyfert galaxies is FWHM = 3900 +/- 1750 km s(exp -1). Broad (FWHM = 2200 +/- 600 km s(exp -1) H alpha emission is also detected in three of the starburst galaxies, which could originate from stellar winds or supernovae remnants. The mean Balmer decrement for the sample is H alpha / H beta = 3, consistent with little or no reddening for the bulk of the sample. There is no evidence for any trend with x-ray luminosity in the ratio of starburst galaxies to Seyfert galaxies. Based on our previous observations, it is therefore likely that both classes of object comprise approximately 10 percent of the 2 keV x-ray background.

  13. Infrared and X-Ray Spectroscopy of the Kes 75 Supernova Shell Characterizing the Dust and Gas Properties

    NASA Technical Reports Server (NTRS)

    Temim, Tea; Arendt, Richard G.; Dwek, Eli; Slane, Patrick

    2012-01-01

    We present deep Chandra observations and Spitzer Space Telescope infrared (IR) spectroscopy of the shell in the composite supernova remnant (SNR) Kes 75 (G29.7-0.3). The remnant is composed of a central pulsar wind nebula and a bright partial shell in the south that is visible at radio, IR, and X-ray wavelengths. The X-ray emission can be modeled by either a single thermal component with a temperature of approx 1.5 keV, or with two thermal components with temperatures of 1.5 and 0.2 keY. Previous studies suggest that the hot component may originate from reverse-shocked SN ejecta. However, our new analysis shows no definitive evidence for enhanced abundances of Si, S, Ar, Mg, and Fe, as expected from supernova (SN) ejecta, or for the IR spectral signatures characteristic of confirmed SN condensed dust, thus favoring a circumstellar or interstellar origin for the X-ray and IR emission. The X-ray and IR emission in the shell are spatially correlated, suggesting that the dust particles are collisionally heated by the X-ray emitting gas. The IR spectrum of the shell is dominated by continuum emission from dust with little, or no line emission. Modeling the IR spectrum shows that the dust is heated to a temperature of approx 140 K by a relatively dense, hot plasma, that also gives rise to the hot X-ray emission component. The density inferred from the IR emission is significantly higher than the density inferred from the X-ray models, suggesting a low filling factor for this X-ray emitting gas. The total mass of the warm dust component is at least 1.3 x 10(exp -2) Solar Mass, assuming no significant dust destruction has occurred in the shell. The IR data also reveal the presence of an additional plasma component with a cooler temperature, consistent with the 0.2 keV gas component. Our IR analysis therefore provides an independent verification of the cooler component of the X-ray emission. The complementary analyses of the X-ray and IR emission provide quantitative

  14. X-ray emission from the Wolf-Rayet bubble NGC 6888. I. Chandra ACIS-S observations

    SciTech Connect

    Toalá, J. A.; Guerrero, M. A.

    2014-02-01

    We analyze Chandra observations of the Wolf-Rayet (W-R) bubble NGC 6888. This W-R bubble presents similar spectral and morphological X-ray characteristics to those of S 308, the only other W-R bubble also showing X-ray emission. The observed spectrum is soft, peaking at the N VII line emission at 0.5 keV, with additional line emission at 0.7-0.9 keV and a weak tail of harder emission up to ∼1.5 keV. This spectrum can be described by a two-temperature optically thin plasma emission model (T {sub 1} ∼ 1.4 × 10{sup 6} K, T {sub 2} ∼ 7.4 × 10{sup 6} K). We confirm the results of previous X-ray observations that no noticeable temperature variations are detected in the nebula. The X-ray-emitting plasma is distributed in three apparent morphological components: two caps along the tips of the major axis and an extra contribution toward the northwest blowout not reported in previous analyses of the X-ray emission toward this W-R nebula. Using the plasma model fits of the Chandra ACIS spectra for the physical properties of the hot gas and the ROSAT PSPC image to account for the incomplete coverage of Chandra observations, we estimate a luminosity of L {sub X} = (7.7 ± 0.1) ×10{sup 33} erg s{sup –1} for NGC 6888 at a distance of 1.26 kpc. The average rms electron density of the X-ray-emitting gas is ≳ 0.4 cm{sup –3} for a total mass ≳ 1.2 M {sub ☉}.

  15. Subgroup report on hard x-ray microprobes

    SciTech Connect

    Ice, G.E.; Barbee, T.; Bionta, R.; Howells, M.; Thompson, A.C.; Yun, W.

    1994-09-01

    The increasing availability of synchrotron x-ray sources has stimulated the development of advanced hard x-ray (E{>=}5 keV) microprobes. New x-ray optics have been demonstrated which show promise for achieving intense submicron hard x-ray probes. These probes will be used for extraordinary elemental detection by x-ray fluorescence/absorption and for microdiffraction to identify phase and strain. The inherent elemental and crystallographic sensitivity of an x-ray microprobe and its inherently nondestructive and penetrating nature makes the development of an advanced hard x-ray microprobe an important national goal. In this workshop state-of-the-art hard x-ray microprobe optics were described and future directions were discussed. Gene Ice, Oak Ridge National Laboratory (ORNL), presented an overview of the current status of hard x-ray microprobe optics and described the use of crystal spectrometers to improve minimum detectable limits in fluorescent microprobe experiments. Al Thompson, Lawrence Berkeley Laboratory (LBL), described work at the Center for X-ray Optics to develop a hard x-ray microprobe based on Kirkpatrick-Baez (KB) optics. Al Thompson also showed the results of some experimental measurements with their KB optics. Malcolm Howells presented a method for bending elliptical mirrors and Troy Barbee commented on the use of graded d spacings to achieve highest efficiency in KB multilayer microfocusing. Richard Bionta, Lawrence Livermore National Laboratory (LLNL), described the development of the first hard x-ray zone plates and future promise of so called {open_quotes}jelly roll{close_quotes} or sputter slice zone plates. Wenbing Yun, Argonne National Laboratory (ANL), described characterization of jelly roll and lithographically produced zone plates and described the application of zone plates to focus extremely narrow bandwidths by nuclear resonance. This report summarizes the presentations of the workshop subgroup on hard x-ray microprobes.

  16. First Terrestrial Soft X-ray Auroral Observation by the Chandra X-Ray Observatory

    NASA Technical Reports Server (NTRS)

    Bhardwaj, Anil; Elsner, Ronald F.; Gladstone, G. Randall; Ostegaard, Nikolai; Waite, J. Hunter, Jr.; Cravens, Thomas E.; Chang, Shen-Wu; Majeed, Tariq; Metzger, Albert E.

    2004-01-01

    Northern auroral regions of Earth were imaged using the High-Resolution Camera (HRC-1) aboard the Chandra X-Ray Observatory (CXO) at 10 epochs (each approx.20 min duration) between mid-December 2003 and mid-April 2004. These observations aimed at searching for Earth s soft (<2 keV) x-ray aurora in a comparative study with Jupiter s x-ray aurora, where a pulsating x-ray "hot-spot" has been previously observed by Chandra. The first Chandra soft x-ray observations of Earth s aurora show that it is highly variable (intense arcs, multiple arcs, diffuse patches, at times absent). In at least one of the observations an isolated blob of emission is observed near the expected cusp location. A fortuitous overflight of DMSP satellite F13 provided SSJ/4 energetic particle measurements above a bright arc seen by Chandra on 24 January 2004, 20:01-20:22 UT. A model of the emissions expected strongly suggests that the observed soft x-ray signal is produced by electron bremsstrahlung.

  17. Parabolic refractive X-ray lenses: a breakthrough in X-ray optics

    NASA Astrophysics Data System (ADS)

    Lengeler, Bruno; Schroer, Christian G.; Benner, Boris; Günzler, Til Florian; Kuhlmann, Marion; Tümmler, Johannes; Simionovici, Alexandre S.; Drakopoulos, Michael; Snigirev, Anatoly; Snigireva, Irina

    2001-07-01

    Refractive X-ray lenses, considered for a long time as unfeasible, have been realized with a rotational parabolic profile at our institute: The main features of the new lenses are: they focus in two directions and are free of spherical aberration. By varying the number of individual lenses in the stack the focal length can be chosen in a typical range from 0.5 to 2 m for photon energies between about 6 and 60 keV. The aperture of the lens is about 1 mm matching the angular divergence of undulator beams at 3d generation synchrotron radiation sources. They cope without problems with the heat load from the white beam of an undulator. Finally, they are easy to align and to operate. Refractive X-ray lenses can be used with hard X-rays in the same way as glass lenses can be used for visible light, if it is take into account that the numerical aperture is small (of the order 10 -4). Being high-quality optical elements, the refractive X-ray lenses can be used for generating a focal spot in the μm range with a gain of a factor 1000 and more, or for imaging purposes as in a hard X-ray microscope. Recent examples from microanalysis, microtomography, fluorescence tomography, X-ray microscopy will be shown to demonstrate the state of the art. Possible new developments will be discussed.

  18. X-ray luminosity functions of different morphological and X-ray type AGN populations

    NASA Astrophysics Data System (ADS)

    Pović, M.; Pérez García, A. M.; Sánchez-Portal, M.; Bongiovanni, A.; Cepa, J.; Fernández Lorenzo, M.; Lara-López, M. A.; Gallego, J.; Ederoclite, A.; Márquez, I.; Masegosa, J.; Alfaro, E.; Castañeda, H.; González-Serrano, J. I.; González, J. J.

    2013-03-01

    Luminosity functions are one of the most important observational clues when studying galaxy evolution over cosmic time. In this paper we present the X-ray luminosity functions for X-ray detected AGN in the SXDS and GWS fields. The limiting fluxes of our samples are 9.0 ×10-15 and 4.8 ×10-16 erg cm-2 s-1 in the 0.5-7.0 keV band in the two fields, respectively. We carried out analysis in three X-ray bands and in two redshift intervals up to z≤1.4. Moreover, we derive the luminosity functions for different optical morphologies and X-ray types. We confirm strong luminosity evolution in all three bands, finding the most luminous objects at higher redshift. However, no signs of density evolution are found in any tested X-ray band. We obtain similar results for compact and early-type objects. Finally, we observe the ``Steffen effect'', where X-ray type-1 sources are more numerous at higher luminosities in comparison with type-2 sources.

  19. X-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    2000-01-01

    Dr. S. N. Zhang has lead a seven member group (Dr. Yuxin Feng, Mr. XuejunSun, Mr. Yongzhong Chen, Mr. Jun Lin, Mr. Yangsen Yao, and Ms. Xiaoling Zhang). This group has carried out the following activities: continued data analysis from space astrophysical missions CGRO, RXTE, ASCA and Chandra. Significant scientific results have been produced as results of their work. They discovered the three-layered accretion disk structure around black holes in X-ray binaries; their paper on this discovery is to appear in the prestigious Science magazine. They have also developed a new method for energy spectral analysis of black hole X-ray binaries; four papers on this topics were presented at the most recent Atlanta AAS meeting. They have also carried Monte-Carlo simulations of X-ray detectors, in support to the hardware development efforts at Marshall Space Flight Center (MSFC). These computation-intensive simulations have been carried out entirely on the computers at UAH. They have also carried out extensive simulations for astrophysical applications, taking advantage of the Monte-Carlo simulation codes developed previously at MSFC and further improved at UAH for detector simulations. One refereed paper and one contribution to conference proceedings have been resulted from this effort.

  20. Development of high resolution imaging detectors for x ray astronomy

    NASA Technical Reports Server (NTRS)

    Murray, S. S.; Schwartz, D. A.

    1992-01-01

    This final report summarizes our past activities and discusses the work performed over the period of 1 April 1990 through 1 April 1991 on x-ray optics, soft x-ray (0.1 - 10 KeV) imaging detectors, and hard x-ray (10 - 300 KeV) imaging detectors. If microchannel plates (MCPs) can be used to focus x-rays with a high efficiency and good angular resolution, they will revolutionize the field of x-ray optics. An x-ray image of a point source through an array of square MCP pores compared favorably with our ray tracing model for the MCP. Initial analysis of this image demonstrates the feasibility of MCPs for soft x-rays. Our work continues with optimizing the performance of our soft x-ray MCP imaging detectors. This work involves readout technology that should provide improved MCP readout devices (thin film crossed grid, curved, and resistive sheets), defect removal in MCPs, and photocathode optimization. In the area of hard x-ray detector development we have developed two different techniques for producing a CsI photocathode thickness of 10 to 100 microns, such that it is thick enough to absorb the high energy x-rays and still allow the photoelectrons to escape to the top MCP of a modified soft x-ray imaging detector. The methods involve vacuum depositing a thick film of CsI on a strong back, and producing a converter device that takes the place of the photocathode.

  1. X-ray lithography masking

    NASA Technical Reports Server (NTRS)

    Smith, Henry I. (Inventor); Lim, Michael (Inventor); Carter, James (Inventor); Schattenburg, Mark (Inventor)

    1998-01-01

    X-ray masking apparatus includes a frame having a supporting rim surrounding an x-ray transparent region, a thin membrane of hard inorganic x-ray transparent material attached at its periphery to the supporting rim covering the x-ray transparent region and a layer of x-ray opaque material on the thin membrane inside the x-ray transparent region arranged in a pattern to selectively transmit x-ray energy entering the x-ray transparent region through the membrane to a predetermined image plane separated from the layer by the thin membrane. A method of making the masking apparatus includes depositing back and front layers of hard inorganic x-ray transparent material on front and back surfaces of a substrate, depositing back and front layers of reinforcing material on the back and front layers, respectively, of the hard inorganic x-ray transparent material, removing the material including at least a portion of the substrate and the back layers of an inside region adjacent to the front layer of hard inorganic x-ray transparent material, removing a portion of the front layer of reinforcing material opposite the inside region to expose the surface of the front layer of hard inorganic x-ray transparent material separated from the inside region by the latter front layer, and depositing a layer of x-ray opaque material on the surface of the latter front layer adjacent to the inside region.

  2. DETECTION OF X-RAY PERIODICITY FROM A NEW ECLIPSING POLAR CANDIDATE XGPS-I J183251-100106

    SciTech Connect

    Hui, C. Y.; Seo, K. A.; Hu, C. P.; Chou, Y.; Lin, L. C. C.

    2012-11-10

    We report the results from a detailed analysis of an archival XMM-Newton observation of the X-ray source XGPS-I J183251-100106, which has been suggested as a promising magnetic cataclysmic variable (CV) candidate based on its optical properties. A single periodic signal of {approx}1.5 hr is detected from all EPIC instruments on board XMM-Newton. The phase-averaged X-ray spectrum can be well modeled with a thermal bremsstrahlung temperature of kT {approx} 50 keV. Both the X-ray spectral and temporal behavior of this system suggest that it is an eclipsing CV of the AM Herculis (or polar) type.

  3. Large X-ray flares on stars detected with MAXI/GSC: A universal correlation between the duration of a flare and its X-ray luminosity

    NASA Astrophysics Data System (ADS)

    Tsuboi, Yohko; Yamazaki, Kyohei; Sugawara, Yasuharu; Kawagoe, Atsushi; Kaneto, Soichiro; Iizuka, Ryo; Matsumura, Takanori; Nakahira, Satoshi; Higa, Masaya; Matsuoka, Masaru; Sugizaki, Mutsumi; Ueda, Yoshihiro; Kawai, Nobuyuki; Morii, Mikio; Serino, Motoko; Mihara, Tatehiro; Tomida, Hiroshi; Ueno, Shiro; Negoro, Hitoshi; Daikyuji, Arata; Ebisawa, Ken; Eguchi, Satoshi; Hiroi, Kazuo; Ishikawa, Masaki; Isobe, Naoki; Kawasaki, Kazuyoshi; Kimura, Masashi; Kitayama, Hiroki; Kohama, Mitsuhiro; Kotani, Taro; Nakagawa, Yujin E.; Nakajima, Motoki; Ozawa, Hiroshi; Shidatsu, Megumi; Sootome, Tetsuya; Sugimori, Kousuke; Suwa, Fumitoshi; Tsunemi, Hiroshi; Usui, Ryuichi; Yamamoto, Takayuki; Yamaoka, Kazutaka; Yoshida, Atsumasa

    2016-10-01

    Twenty-three giant flares from thirteen active stars (eight RS CVn systems, one Algol system, three dMe stars, and one young stellar object) were detected during the first two years of our all-sky X-ray monitoring with the gas propotional counters (GSC) of the Monitor of All-sky X-ray Image (MAXI). The observed parameters of all these MAXI/GSC flares are found to be at the upper ends for stellar flares with the luminosity of 1031-34 erg s-1 in the 2-20 keV band, the emission measure of 1054-57 cm-3, the e-folding time of 1 hr to 1.5 d, and the total radiative energy released during the flare of 1034-39 erg. Notably, the peak X-ray luminosity of 5^{+4}_{-2} × 10^{33}erg s-1 in the 2-20 keV band was detected in one of the flares on II Peg, which is one of the, or potentially the, largest-ever-observed in stellar flares. X-ray flares were detected from GT Mus, V841 Cen, SZ Psc, and TWA-7 for the first time in this survey. Whereas most of our detected sources are multiple-star systems, two of them are single stars (YZ CMi and TWA-7). Among the stellar sources within 100 pc distance, the MAXI/GSC sources have larger rotation velocities than the other sources. This suggests that the rapid rotation velocity may play a key role in generating large flares. Combining the X-ray flare data of nearby stars and the sun, taken from literature and our own data, we discovered a universal correlation of τ ∝ L_X^{0.2} for the flare duration τ and the intrinsic X-ray luminosity LX in the 0.1-100 keV band, which holds for 5 and 12 orders of magnitude in τ and LX, respectively. The MAXI/GSC sample is located at the highest ends of the correlation.

  4. The Detection of Circumnuclear X-Ray Emission from the Seyfert Galaxy NGC 3516

    NASA Technical Reports Server (NTRS)

    George, I. M.; Turner, T. J.; Netzer, H.; Kraemer, S. B.; Ruiz, J.; Chelouche, D.; Crenshaw, D. M.; Yaqoob, T.; Nandra, K.; Mushotzky, R. F.; White, Nicholas E. (Technical Monitor)

    2001-01-01

    We present the first high-resolution, X-ray image of the circumnuclear regions of the Seyfert 1 galaxy NGC 3516, using the Chandra X-ray Observatory (CXO). All three of the CXO observations reported were performed with one of the two grating assemblies in place, and here we restrict our analysis to undispersed photons (i.e. those detected in the zeroth-order). A previously-unknown X-ray source is detected approximately 6 arcsec (1.1h(sub 75)(exp -1) kpc) NNE of the nucleus (position angle approximately 29 degrees) which we designate CXOU 110648.1 + 723412. Its spectrum can be characterized as a power law with a photon index (Gamma) approximately 1.8 - 2.6, or as thermal emission with a temperature kT approximately 0.7 - 3 keV. Assuming a location within NGC 3516, isotropic emission implies a luminosity L approximately 2 - 8 x 10(exp 39)h(sub 75)(exp-2) erg s(exp -1) in the 0.4 - 2 keV band. If due to a single point source, the object is super-Eddington for a 1.4 solar mass neutron star. However, multiple sources or a small, extended source cannot be excluded using the current data. Large-scale extended S-ray emission is also detected out to approximately 10 arcsec (approximately 2h(sub 75)(exp -1) kpc) from the nucleus to the NE and SW, and is approximately aligned with the morphologies of the radio emission and extended narrow emission line region (ENLR). The mean luminosity of this emission is 1 - 5 x 10(exp 37)h(sub 75)(exp -2) erg s(exp -1) arcsec(exp -2), in the 0.4 - 2 keV band. Unfortunately the current data cannot usefully constrain its spectrum. These results are consistent with earlier suggestions of circumnuclear X-ray emissi in NGC 3516 based on ROSAT observations, and thus provide the first clear detection of extended X-ray emission in a Seyfert 1.0 galaxy. If the extended emission is due to scattering of the nuclear X-ray continuum, then the pressure in the X-ray emitting gas is at least two orders of magnitude too small to provide the confining

  5. Discovery of slow X-ray pulsations in the high-mass X-ray binary 4U 2206+54

    NASA Astrophysics Data System (ADS)

    Reig, P.; Torrejón, J. M.; Negueruela, I.; Blay, P.; Ribó, M.; Wilms, J.

    2009-02-01

    Context: The source 4U 2206+54 is one of the most enigmatic high-mass X-ray binaries. In spite of intensive searches, X-ray pulsations have not been detected in the time range 10-3-103 s. A cyclotron line at ~30 keV has been suggested by various authors but never detected with significance. The stellar wind of the optical companion is abnormally slow. The orbital period, initially reported to be 9.6 days, disappeared and a new periodicity of 19.25 days emerged. Aims: The main objective of our RXTE monitoring of 4U 2206+54 is to study the X-ray orbital variability of the spectral and timing parameters. The new long and uninterrupted RXTE observations allow us to search for long (~1 h) pulsations for the first time. Methods: We divided the ~7-day observation into five intervals and obtained time-averaged energy spectra and power spectral density for each observation interval. We also searched for pulsations using various algorithms. Results: We have discovered 5560-s pulsations in the light curve of 4U 2206+54. Initially detected in RXTE data, these pulsations are also present in INTEGRAL and EXOSAT observations. The average X-ray luminosity in the energy range 2-10 keV is 1.5 × 1035 erg s-1 with a ratio F_max/F_min ≈ 5. This ratio implies an eccentricity of ~0.4, somewhat higher than previously suggested. The power spectrum is dominated by red noise that can be fitted with a single power law whose index and strength decrease with X-ray flux. The source also shows a soft excess at low energies. If the soft excess is modelled with a blackbody component, then the size and temperature of the emitting region agrees with its interpretation in terms of a hot spot on the neutron star surface. Conclusions: The discovery of X-ray pulsations in 4U 2206+54 confirms the neutron star nature of the compact companion and definitively rules out the presence of a black hole. The source displays variability on time scales of days, presumably due to changes in the mass accretion

  6. Panoramic Dental X-Ray

    MedlinePlus

    ... Physician Resources Professions Site Index A-Z Panoramic Dental X-ray Panoramic dental x-ray uses a ... Your e-mail address: Personal message (optional): Bees: Wax: Notice: RadiologyInfo respects your privacy. Information entered here ...

  7. Fluctuation X-Ray Scattering

    SciTech Connect

    Saldin, PI: D. K.; Co-I's: J. C. H. Spence and P. Fromme

    2013-01-25

    The work supported by the grant was aimed at developing novel methods of finding the structures of biomolecules using x-rays from novel sources such as the x-ray free electron laser and modern synchrotrons

  8. Abdomen X-Ray (Radiography)

    MedlinePlus

    ... examined, an x-ray machine produces a small burst of radiation that passes through the body, recording ... tissue shows up in shades of gray and air appears black. Until recently, x-ray images were ...

  9. Dual X-ray absorptiometry

    NASA Astrophysics Data System (ADS)

    Altman, Albert; Aaron, Ronald

    2012-07-01

    Dual X-ray absorptiometry is widely used in analyzing body composition and imaging. Both the method and its limitations are related to the Compton and photoelectric contributions to the X-ray attenuation coefficients of materials.

  10. Encapsulating X-Ray Detectors

    NASA Technical Reports Server (NTRS)

    Conley, Joseph M.; Bradley, James G.

    1987-01-01

    Vapor-deposited polymer shields crystals from environment while allowing X rays to pass. Polymer coating transparental to X rays applied to mercuric iodide detector in partial vacuum. Coating protects crystal from sublimation, chemical attack, and electrical degradation.

  11. Proton induced quasi-monochromatic x-ray beams for soft x-ray spectroscopy studies and selective x-ray fluorescence analysis

    SciTech Connect

    Sokaras, D.; Zarkadas, Ch.; Fliegauf, R.; Beckhoff, B.; Karydas, A. G.

    2012-12-15

    We present the analytical features and performance of an x-ray spectroscopy end station of moderate energy resolution operating with proton-induced quasi-monochromatic x-ray beams. The apparatus was designed, installed and operated at the 5.5 MV Tandem VdG Accelerator Laboratory of the Institute of Nuclear Physics, N.C.S.R. 'Demokritos,' Athens. The setup includes a two-level ultrahigh vacuum chamber that hosts in the lower level up to six primary targets in a rotatable holder; there, the irradiation of pure element materials-used as primary targets-with few-MeV high current ({approx}{mu}A) proton beams produces intense quasi-monochromatic x-ray beams of selectable energy. In the chamber's upper level, a six-position rotatable sample holder hosts the targets considered for x-ray spectroscopy studies. The proton-induced x-ray beam, after proper collimation, is guided to the sample position whereas various filters can be also inserted along the beam's path to eliminate the backscattered protons or/and to absorb selectively components of the x-ray beam. The apparatus incorporates an ultrathin window Si(Li) spectrometer (FWHM 136 eV at 5.89 keV) coupled with low-noise electronics capable of efficiently detecting photons down to carbon K{alpha}. Exemplary soft x-ray spectroscopy studies and results of selective x-ray fluorescence analysis are presented.

  12. High Resolution X-ray Imaging

    NASA Technical Reports Server (NTRS)

    Cash, Webster

    2002-01-01

    NAG5-5020 covered a period of 7.5 years during which a great deal of progress was made in x-ray optical techniques under this grant. We survived peer review numerous times during the effort to keep the grant going. In 1994, when the grant started we were actively pursuing the application of spherical mirrors to improving x-ray telescopes. We had found that x-ray detectors were becoming rapidly more sophisticated and affordable, but that x-ray telescopes were only being improved through the intense application of money within the AXAF program. Clearly new techniques for the future were needed. We were successful in developing and testing at the HELSTF facility in New Mexico a four reflection coma-corrected telescope made from spheres. We were able to demonstrate 0.3 arcsecond resolution, almost to the diffraction limit of the system. The community as a whole was, at that time, not particularly interested in looking past AXAF (Chandra) and the effort needed to evolve. Since we had reached the diffraction limit using non-Wolter optics we then decided to see if we could build an x-ray interferometer in the laboratory. In the lab the potential for improved resolution was substantial. If synthetic aperture telescopes could be built in space, then orders of magnitude improvement would become feasible. In 1998 NASA, under the direction of Dr. Nick White of Goddard, started a study to assess the potential and feasibility of x-ray interferometry in space. My work became of central interest to the committee because it indicated that such was possible. In early 1999 we had the breakthrough that allowed us build a practical interferometer. By using flats and hooking up with the Marshall Space Flight Center facilities we were able to demonstrate fringes at 1.25keV on a one millimeter baseline. This actual laboratory demonstration provided the solid proof of concept that NASA needed.

  13. Suzaku observations of the diffuse X-ray emission across the Fermi bubbles' edges

    SciTech Connect

    Kataoka, J.; Tahara, M.; Takahashi, Y.; Takeuchi, Y.; Totani, T.; Sofue, Y.; Stawarz, Ł.; Kimura, M.; Takei, Y.; Tsunemi, H.; Cheung, C. C.; Inoue, Y.; Nakamori, T.

    2013-12-10

    We present Suzaku X-ray observations along two edge regions of the Fermi Bubbles, with eight ≅ 20 ks pointings across the northern part of the North Polar Spur (NPS) surrounding the north bubble and six across the southernmost edge of the south bubble. After removing compact X-ray features, diffuse X-ray emission is clearly detected and is well reproduced by a three-component spectral model consisting of unabsorbed thermal emission (temperature kT ≅ 0.1 keV) from the Local Bubble, absorbed kT ≅ 0.3 keV thermal emission related to the NPS and/or Galactic halo (GH), and a power-law component at a level consistent with the cosmic X-ray background. The emission measure (EM) of the 0.3 keV plasma decreases by ≅ 50% toward the inner regions of the northeast bubble, with no accompanying temperature change. However, such a jump in the EM is not clearly seen in the south bubble data. While it is unclear whether the NPS originates from a nearby supernova remnant or is related to previous activity within or around the Galactic center, our Suzaku observations provide evidence that suggests the latter scenario. In the latter framework, the presence of a large amount of neutral matter absorbing the X-ray emission as well as the existence of the kT ≅ 0.3 keV gas can be naturally interpreted as a weak shock driven by the bubbles' expansion in the surrounding medium, with velocity v {sub exp} ∼ 300 km s{sup –1} (corresponding to shock Mach number M≃1.5), compressing the GH gas to form the NPS feature. We also derived an upper limit for any non-thermal X-ray emission component associated with the bubbles and demonstrate that, in agreement with the aforementioned findings, the non-thermal pressure and energy estimated from a one-zone leptonic model of its broadband spectrum, are in rough equilibrium with that of the surrounding thermal plasma.

  14. N-(4-Nitrobenzoyl)-N'-(1,5-dimethyl-3-oxo-2-phenyl-1H-3(2H)-pyrazolyl)-thiourea hydrate: Synthesis, spectroscopic characterization, X-ray structure and DFT studies

    NASA Astrophysics Data System (ADS)

    Arslan, N. Burcu; Kazak, Canan; Aydın, Fatma

    2012-04-01

    The title molecule (C19H17N5O4S·H2O) was synthesized and characterized by IR-NMR spectroscopy, MS and single-crystal X-ray diffraction. The molecular geometry, vibrational frequencies and gauge-independent atomic orbital (GIAO) 1H and 13C NMR chemical shift values of the compound in the ground state have been calculated by using the density functional theory (DFT) method with 6-31G(d) basis set, and compared with the experimental data. All the assignments of the theoretical frequencies were performed by potential energy distributions using VEDA 4 program. The calculated results show that the optimized geometries can well reproduce the crystal structural parameters, and the theoretical vibrational frequencies and 1H and 13C NMR chemical shift values show good agreement with experimental data. To determine conformational flexibility, the molecular energy profile of the title compound was obtained with respect to the selected torsion angle, which was varied from -180° to +180° in steps of 10°. Besides, molecular electrostatic potential (MEP), frontier molecular orbitals (FMO) analysis and thermodynamic properties of the compound were investigated by theoretical calculations.

  15. X-ray Conversion Efficiency of high-Z hohlraum wall materials for indirect drive ignition

    SciTech Connect

    Dewald, E; Rosen, M; Glenzer, S H; Suter, L J; Girard, F; Jadaud, J P; Schein, J; Constantin, C G; Neumayer, P; Landen, O

    2008-02-22

    We measure the conversion efficiency of 351 nm laser light to soft x-rays (0.1-5 keV) for Au, U and high Z mixtures 'cocktails' used for hohlraum wall materials in indirect drive ICF. We use spherical targets in a direct drive geometry, flattop laser pulses and laser smoothing with phase plates to achieve constant and uniform laser intensities of 10{sup 14} and 10{sup 15} W/cm{sup 2} over the target surface that are relevant for the future ignition experiments on NIF. The absolute time and spectrally-resolved radiation flux is measured with a multichannel soft x-ray power diagnostic. The conversion efficiency is then calculated by dividing the measured x-ray power by the incident laser power from which the measured laser backscattering losses is subtracted. After {approx}0.5 ns, the time resolved x-ray conversion efficiency reaches a slowly increasing plateau of 95% at 10{sup 14} W/cm{sup 2} laser intensity and of 80% at 10{sup 15} W/cm{sup 2}. The M-band flux (2-5 keV) is negligible at 10{sup 14} W/cm{sup 2} reaching {approx}1% of the total x-ray flux for all target materials. In contrast, the M-band flux is significant and depends on the target material at 10{sup 15} W/cm{sup 2} laser intensity, reaching values between 10% of the total flux for U and 27% for Au. Our LASNEX simulations show good agreement in conversion efficiency and radiated spectra with data when using XSN atomic physics model and a flux limiter of 0.15, but they underestimate the generated M-band flux.

  16. X-ray conversion efficiency of high-Z hohlraum wall materials for indirect drive ignition

    NASA Astrophysics Data System (ADS)

    Dewald, E. L.; Rosen, M.; Glenzer, S. H.; Suter, L. J.; Girard, F.; Jadaud, J. P.; Schein, J.; Constantin, C.; Wagon, F.; Huser, G.; Neumayer, P.; Landen, O. L.

    2008-07-01

    The conversion efficiency of 351nm laser light to soft x rays (0.1-5keV) was measured for Au, U, and high Z mixture "cocktails" used as hohlraum wall materials in indirect drive fusion experiments. For the spherical targets in a direct drive geometry, flattop laser pulses and laser smoothing with phase plates are employed to achieve constant and uniform laser intensities of 1014 and 1015W/cm2 over the target surface that are relevant for the future ignition experiments at the National Ignition Facility [G. H. Miller, E. I. Moses, and C. R. Wuest, Nucl. Fusion 44, 228 (2004)]. The absolute time and spectrally resolved radiation flux is measured with a multichannel soft x-ray power diagnostic. The conversion efficiency is then calculated by dividing the measured x-ray power by the incident laser power from which the measured laser backscattering losses are subtracted. After ˜0.5ns, the time resolved x-ray conversion efficiency reaches a slowly increasing plateau of 95% at 1014W/cm2 laser intensity and of 80% at 1015W/cm2. The M-band flux (2-5keV) is negligible at 1014W/cm2 reaching ˜1% of the total x-ray flux for all target materials. In contrast, the M-band flux is significant and depends on the target material at 1015W/cm2 laser intensity, reaching values between 10% of the total flux for U and 27% for Au. LASNEX simulations [G. B. Zimmerman and W. L. Kruer, Comm. Plasma Phys. Contr. Fusion 2, 51 (1975)] show good agreement in conversion efficiency and radiated spectra with data when using XSN atomic physics model and a flux limiter of 0.15, but they underestimate the generated M-band flux.

  17. Refractive Optics for Hard X-ray Transmission Microscopy

    SciTech Connect

    Simon, M.; Last, A.; Mohr, J.; Nazmov, V.; Reznikova, E.; Ahrens, G.; Voigt, A.

    2011-09-09

    For hard x-ray transmission microscopy at photon energies higher than 15 keV we design refractive condenser and imaging elements to be used with synchrotron light sources as well as with x-ray tube sources. The condenser lenses are optimized for low x-ray attenuation--resulting in apertures greater than 1 mm--and homogeneous intensity distribution on the detector plane, whereas the imaging enables high-resolution (<100 nm) full-field imaging. To obtain high image quality at reasonable exposure times, custom-tailored matched pairs of condenser and imaging lenses are being developed. The imaging lenses (compound refractive lenses, CRLs) are made of SU-8 negative resist by deep x-ray lithography. SU-8 shows high radiation stability. The fabrication technique enables high-quality lens structures regarding surface roughness and arrangement precision with arbitrary 2D geometry. To provide point foci, crossed pairs of lenses are used. Condenser lenses have been made utilizing deep x-ray lithographic patterning of thick SU-8 layers, too, whereas in this case, the aperture is limited due to process restrictions. Thus, in terms of large apertures, condenser lenses made of structured and rolled polyimide film are more attractive. Both condenser types, x-ray mosaic lenses and rolled x-ray prism lenses (RXPLs), are considered to be implemented into a microscope setup. The x-ray optical elements mentioned above are characterized with synchrotron radiation and x-ray laboratory sources, respectively.

  18. Development of miniaturized electron probe X-ray microanalyzer.

    PubMed

    Imashuku, Susumu; Imanishi, Akira; Kawai, Jun

    2011-11-15

    A miniaturized electron probe X-ray microanalyzer (EPMA) with a small chamber including the electron source and the sample stage was realized using a pyroelectric crystal as an electron source. The EPMA we propose is the smallest reported so far. Performance of the EPMA was evaluated by investigating energy of obtained continuous X-rays and lower detection limits of transition metals (titanium, iron, and nickel). End point energy (Duane-Hunt limit) of continuous X-rays of 45 keV was obtained. However, it is expected that the EPMA can analyze characteristic X-rays with energy less than 20 keV. The EPMA was able to measure titanium, iron, and nickel wires whose projected areas were more than 0.03 mm(2).

  19. Non-equilibrium x-ray emission from young supernova remnants

    SciTech Connect

    Nugent, J.J. Jr.

    1983-01-01

    A computer model (NIE model) has been developed to predict the x-ray spectra from the hot (10/sup 6 -8/K), shock-heated plasmas that are found in the remnants of supernovae. The model accounts for the lack of collisional ionization equilibrium and for the possible lack of thermal equilibrium between the electrons and ions behind the shock fronts. Both of these effects are potentially important in determining the emergent x-ray spectrum of young (keV. Spectral resolution is varied over this range. For example, ..delta..E/E = 32% FWHM at 1.5 keV, and ..delta..E/E = 15% FWHM at 7 keV. The data for RCW 103 was obtained using the Solid State Spectrometer (SSS) on board the HEAO-2 spacecraft. This data set had a more limited spectral range than above (0.8 -2.5 keV) but enhanced spectral resolution (..delta..E/E approx. = 10%). In addition, the data had limited spatial resolution.

  20. X-Ray Exam: Hip

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old X-Ray Exam: Hip KidsHealth > For Parents > X-Ray Exam: Hip A A A What's in this ... español Radiografía: cadera What It Is A hip X-ray is a safe and painless test that uses ...

  1. X-Ray Exam: Wrist

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old X-Ray Exam: Wrist KidsHealth > For Parents > X-Ray Exam: Wrist A A A What's in this ... español Radiografía: muñeca What It Is A wrist X-ray is a safe and painless test that uses ...

  2. X-Ray Exam: Ankle

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old X-Ray Exam: Ankle KidsHealth > For Parents > X-Ray Exam: Ankle A A A What's in this ... español Radiografía: tobillo What It Is An ankle X-ray is a safe and painless test that uses ...

  3. X-Ray Exam: Foot

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old X-Ray Exam: Foot KidsHealth > For Parents > X-Ray Exam: Foot A A A What's in this ... español Radiografía: pie What It Is A foot X-ray is a safe and painless test that uses ...

  4. X-Ray Exam: Finger

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old X-Ray Exam: Finger KidsHealth > For Parents > X-Ray Exam: Finger Print A A A What's in ... español Radiografía: dedo What It Is A finger X-ray is a safe and painless test that uses ...

  5. X-Ray Exam: Foot

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old X-Ray Exam: Foot KidsHealth > For Parents > X-Ray Exam: Foot Print A A A What's in ... español Radiografía: pie What It Is A foot X-ray is a safe and painless test that uses ...

  6. X-Ray Exam: Ankle

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old X-Ray Exam: Ankle KidsHealth > For Parents > X-Ray Exam: Ankle Print A A A What's in ... español Radiografía: tobillo What It Is An ankle X-ray is a safe and painless test that uses ...

  7. X-Ray Exam: Pelvis

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old X-Ray Exam: Pelvis KidsHealth > For Parents > X-Ray Exam: Pelvis Print A A A What's in ... español Radiografía: pelvis What It Is A pelvis X-ray is a safe and painless test that uses ...

  8. Tunable X-ray source

    DOEpatents

    Boyce, James R [Williamsburg, VA

    2011-02-08

    A method for the production of X-ray bunches tunable in both time and energy level by generating multiple photon, X-ray, beams through the use of Thomson scattering. The method of the present invention simultaneously produces two X-ray pulses that are tunable in energy and/or time.

  9. X-ray emission from high temperature plasmas

    NASA Technical Reports Server (NTRS)

    Harries, W. L.

    1976-01-01

    The physical processes occurring in plasma focus devices were studied. These devices produce dense high temperature plasmas, which emit X rays of hundreds of KeV energy and one to ten billion neutrons per pulse. The processes in the devices seem related to solar flare phenomena, and would also be of interest for controlled thermonuclear fusion applications. The high intensity, short duration bursts of X rays and neutrons could also possibly be used for pumping nuclear lasers.

  10. X-ray emission from high temperature plasmas

    NASA Technical Reports Server (NTRS)

    Harries, W. L.

    1974-01-01

    X-rays from a 25-hJ plasma focus apparatus were observed with pinhole cameras. The cameras consist of 0.4 mm diameter pinholes in 2 cm thick lead housing enclosing an X-ray intensifying screen at the image plane. Pictures recorded through thin aluminum foils or plastic sheets for X-ray energies sub gamma smaller than 15 keV show distributed X-ray emissions from the focussed plasma and from the anode surface. However, when thick absorbers are used, radial filamentary structure in the X-ray emission from the anode surface is revealed. Occasionally larger structures are observed in addition to the filaments. Possible mechanisms for the filamentary structure are discussed.

  11. An X-Ray Survey of Colliding Wind Binaries

    NASA Astrophysics Data System (ADS)

    Gagné, M.; Fehon, G.; Savoy, M. R.; Cartagena, C. A.; Cohen, D. H.; Owocki, S. P.

    2012-12-01

    We have compiled a list of 35 O + O binaries and 86 Wolf-Rayet (WR) binaries in the Milky Way and Magellanic clouds detected with the Chandra, XMM-Newton, and ROSAT satellites to probe the connection between their X-ray properties and their system characteristics. Of the WR binaries with published model parameters, all have log LX > 32, kT > 1 keV and log LX/Lbol > -7. The most X-ray luminous WR binaries are typically very long period systems. The WR binaries show a nearly four-order of magnitude spread in X-ray luminosity, even among among systems with very similar WR primaries. Among the O + O binaries, short-period systems have soft X-ray spectra and longer period systems show harder X-ray spectra again with a large spread in LX/Lbol.

  12. Burning DT Plasmas with Ultrafast Soft X-Ray Pulses

    NASA Astrophysics Data System (ADS)

    Hu, S. X.; Goncharov, V. N.; Skupsky, S.

    2012-10-01

    Fast ignition with narrowband, coherent ultrafast soft x-ray pulsesfootnotetextS. X. Hu, V. N. Goncharov, and S. Skupsky, ``Burning Plasmas with Ultrashort Soft-X-Ray Flashing,'' to be published in Physics of Plasmas. has been investigated for cryogenic deuterium--tritium (DT) plasma conditions achieved on the OMEGA Laser System. In contrast to using hard x-rays (hν = 3 to 6 keV) proposed in the original x-ray fast-ignition proposal, we find that soft x-ray sources with hν 500-eV photons can be more suitable for igniting the dense DT plasmas. Two-dimensional radiation--hydrodynamics simulations have identified the breakeven conditions for realizing such a ``hybrid'' ignition scheme (direct-drive compression with soft x-ray heating) with 50-μm-offset targets: an ˜10-ps soft x-ray pulse (hν 500 eV) with a total energy of 500 to 1000 J to be focused into a 10-μm spot size. A variety of x-ray pulse parameters have also been investigated for optimization. It is noted that an order of magnitude increase in neutron yield has been predicted even with x-ray energy as low as ˜50 J. Scaling this idea to a 1-MJ large-scale NIF target, a gain above ˜30 can be reached with the same soft x-ray pulse at 1.65-kJ energy. Even though such energetic x-ray sources do not currently exist, we hope that the proposed ignition scheme may stimulate efforts on generating powerful soft x-ray sources in future. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-08NA28302.

  13. The Scanning X-Ray Microprobe at the Esrf ``X-Ray Microscopy'' Beamline

    NASA Astrophysics Data System (ADS)

    Susini, J.; Salomé, M.; Fayard, B.; Ortega, R.; Kaulich, B.

    The development of high brilliance X-ray sources coupled with advances in manufacturing technologies of focusing optics has led to significant improvements in submicrometer probes for spectroscopy, diffraction and imaging applications. For instance, X-ray microscopy in the 1-10 keV energy range is better-suited for analyzing trace elements in fluorescence yield. This article will be biased towards submicron fluorescence microscopy developed on the ID21 beamline at the ESRF. The main technical developments, involving new focusing lenses or novel phase contrast method, are presented. Strengths and weaknesses of X-ray microscopy and spectromicroscopy techniques are discussed and illustrated by examples in biology, materials science and geology.

  14. X-ray satellite

    NASA Technical Reports Server (NTRS)

    1985-01-01

    An overview of the second quarter 1985 development of the X-ray satellite project is presented. It is shown that the project is proceeding according to plan and that the projected launch date of September 9, 1987 is on schedule. An overview of the work completed and underway on the systems, subsystems, payload, assembly, ground equipment and interfaces is presented. Problem areas shown include cost increases in the area of focal instrumentation, the star sensor light scattering requirements, and postponements in the data transmission subsystems.

  15. SMM x ray polychromator

    NASA Technical Reports Server (NTRS)

    Saba, J. L. R.

    1993-01-01

    The objective of the X-ray Polychromator (XRP) experiment was to study the physical properties of solar flare plasma and its relation to the parent active region to understand better the flare mechanism and related solar activity. Observations were made to determine the temperature, density, and dynamic structure of the pre-flare and flare plasma as a function of wavelength, space and time, the extent to which the flare plasma departs from thermal equilibrium, and the variation of this departure with time. The experiment also determines the temperature and density structure of active regions and flare-induced changes in the regions.

  16. Optimizing RHESSI X-ray Imaging

    NASA Technical Reports Server (NTRS)

    Dennis, Brian R.; Liu, Chang; Schwartz, Richard A.; Tolbert, A. Kimberley

    2007-01-01

    RHESSI X-ray imaging is possible with angular resolution as fine as 2 arcsec (FWHM) at energies from as low as 3 keV to >100 keV. However, taking full advantage of this capability has proven to be challenging given the Fourier-transform imaging technique that is used, specific instrumental considerations that must be taken into account, and the many different options of the available image reconstruction algorithms. Such considerations as the best reconstruction algorithm to use, the optimal weighting of the different Fourier components, deciding between short image integration times and rapid imaging cadence, the different energy ranges covered by the 9 detectors, the effect of pulse pile-up and albedo, etc. must all be taken into account in obtaining and interpreting RHESSI X-ray images. This poster describes different techniques for optimizing the image reconstruction depending on the science objectives - identifying compact or extended sources, searching for source motion, obtaining the best photometry, determining the believability of different features in an image, etc. The emphasis is on making full use of data from all the RHESSI detectors, including the ones behind the finest grids when warranted by the source structure. This is the case for the hard X-ray emission along the ribbons of the flare on 2005 May 13 reported by Liu et al. (2007) and this event will be used as an example.

  17. Population of post-nova supersoft X-ray sources

    NASA Astrophysics Data System (ADS)

    Soraisam, Monika D.; Gilfanov, Marat; Wolf, William M.; Bildsten, Lars

    2016-01-01

    Novae undergo a supersoft X-ray phase of varying duration after the optical outburst. Such transient post-nova supersoft X-ray sources (SSSs) are the majority of the observed SSSs in M31. In this paper, we use the post-nova evolutionary models of Wolf et al. to compute the expected population of post-nova SSSs in M31. We predict that depending on the assumptions about the white dwarf (WD) mass distribution in novae, at any instant there are about 250-600 post-nova SSSs in M31 with (unabsorbed) 0.2-1.0 keV luminosity Lx ≥ 1036 erg s-1. Their combined unabsorbed luminosity is of the order of ˜1039 erg s-1. Their luminosity distribution shows significant steepening around log (Lx) ˜ 37.7-38 and becomes zero at Lx ≈ 2 × 1038 erg s-1, the maximum Lx achieved in the post-nova evolutionary tracks. Their effective temperature distribution has a roughly power-law shape with differential slope of ≈4-6 up to the maximum temperature of Teff ≈ 1.5 × 106 K. We compare our predictions with the results of the XMM-Newton monitoring of the central field of M31 between 2006 and 2009. The predicted number of post-nova SSSs exceeds the observed number by a factor of ≈2-5, depending on the assumed WD mass distribution in novae. This is good agreement, considering the number and magnitude of uncertainties involved in calculations of the post-nova evolutionary models and their X-ray output. Furthermore, only a moderate circumstellar absorption, with hydrogen column density of the order of ˜1021 cm-2, will remove the discrepancy.

  18. The X-ray spectra of the Vela and Puppis supernova remnants and the shock-wave model of supernova remnants

    NASA Technical Reports Server (NTRS)

    Gorenstein, P.; Harnden, F. R., Jr.; Tucker, W. H.

    1974-01-01

    The structure and spectrum of the Vela and Puppis supernova remnants (SNRs) were observed in soft (0.1 to 1.5 keV) X rays from a rocket. The spectral data of both objects below 1.5 keV are consistent with thermal radiation from a hot plasma and are not consistent with a simple power-law function. Fitting the data to a Tucker-Koren model results in values of T = (4.3 plus or minus 0.3) x 1,000,000 K for Vela and T = (7 plus or minus 1) x 1,000,000 K for Puppis. The present data, earlier data from the Cygnus Loop, and results on Cas A and Tycho reported by others are considered within the context of a simple model in which X rays are thermally produced as a result of a shock wave expanding into the interstellar medium. X-ray data on the temperature, intrinsic diameter, and intrinsic luminosity of the five SNRs are used to compute the age, energy release, and initial interstellar density for each one. From measurements of X-ray absorption along the line of sight, and also from shock-wave model interpretations of temperature-diameter-luminosity relations, it is concluded that the average density of interstellar material is about 0.1 per cu cm between the sun and the nearest X-ray emitting SNR, Vela.

  19. X-Ray Spectroscopy of Rapidly Heated Buried-Aluminum Layers

    NASA Astrophysics Data System (ADS)

    Stillman, C. R.; Nilson, P. M.; Mileham, C.; Meyerhofer, D. D.; Froula, D. H.; Martin, M. E.; London, R. A.

    2015-11-01

    The thermal x-ray emission spectrum from rapidly heated solid targets containing a buried-aluminum layer was measured. The targets were driven by high-contrast 1 ω or 2 ω laser pulses at focused intensities up to 1 ×1019 W/cm2. Aluminum thermal lines in the 1.5- to 2-keV spectral range were measured with time-integrated and time-resolved spectrometers. The average plasma conditions in the buried layer were inferred by fitting x-ray spectra from a collisional-radiative atomic physics model to the measured data. The achievement of dense, high-temperature plasma conditions with an intense 2 ω drive will be discussed. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944 and the Stewardship Science Graduate Fellowship Grant Number DE-NA0002135.

  20. Impact of x-ray dose on the response of CR-39 to 1–5.5 MeV alphas

    DOE PAGES

    Rojas-Herrera, J.; Rinderknecht, H. G.; Zylstra, A. B.; ...

    2015-03-01

    The CR-39 nuclear track detector is used in many nuclear diagnostics fielded at inertial confinement fusion (ICF) facilities. Large x-ray uences generated by ICF experiments may impact the CR-39 response to incident charged particles. To determine the impact of x-ray exposure on the CR-39 response to alpha particles, a thick-target bremsstrahlung x-ray generator was used to expose CR-39 to various doses of 8 keV Cu-Kα and Kβ x-rays. The CR-39 detectors were then exposed to 1-5.5 MeV alphas from an Am-241 source. The regions of the CR-39 exposed to x-rays showed a smaller track diameter than those not exposed tomore » x-rays: for example, a dose of 3.0 ± 0.1 Gy causes a decrease of (19 ± 2)% in the track diameter of a 5.5 MeV alpha particle, while a dose of 60.0 ± 1.3 Gy results in a decrease of (45 ± 5)% in the track diameter. The reduced track diameters were found to be predominantly caused by a comparable reduction in the bulk etch rate of the CR-39 with x-ray dose. A residual effect depending on alpha particle energy is characterized using an empirical formula.« less

  1. Impact of x-ray dose on the response of CR-39 to 1–5.5 MeV alphas

    SciTech Connect

    Rojas-Herrera, J.; Rinderknecht, H. G.; Zylstra, A. B.; Gatu Johnson, M.; Orozco, D.; Rosenberg, M. J.; Sio, H.; Seguin, F. H.; Frenje, J. A.; Li, C. K.; Petrasso, R. D.

    2015-03-01

    The CR-39 nuclear track detector is used in many nuclear diagnostics fielded at inertial confinement fusion (ICF) facilities. Large x-ray uences generated by ICF experiments may impact the CR-39 response to incident charged particles. To determine the impact of x-ray exposure on the CR-39 response to alpha particles, a thick-target bremsstrahlung x-ray generator was used to expose CR-39 to various doses of 8 keV Cu-Kα and Kβ x-rays. The CR-39 detectors were then exposed to 1-5.5 MeV alphas from an Am-241 source. The regions of the CR-39 exposed to x-rays showed a smaller track diameter than those not exposed to x-rays: for example, a dose of 3.0 ± 0.1 Gy causes a decrease of (19 ± 2)% in the track diameter of a 5.5 MeV alpha particle, while a dose of 60.0 ± 1.3 Gy results in a decrease of (45 ± 5)% in the track diameter. The reduced track diameters were found to be predominantly caused by a comparable reduction in the bulk etch rate of the CR-39 with x-ray dose. A residual effect depending on alpha particle energy is characterized using an empirical formula.

  2. Cryogenic X-Ray Diffraction Microscopy for Biological Samples

    SciTech Connect

    Lima, Enju; Wiegart, Lutz; Pernot, Petra; Howells, Malcolm; Timmins, Joanna; Zontone, Federico; Madsen, Anders

    2009-11-06

    X-ray diffraction microscopy (XDM) is well suited for nondestructive, high-resolution biological imaging, especially for thick samples, with the high penetration power of x rays and without limitations imposed by a lens. We developed nonvacuum, cryogenic (cryo-) XDM with hard x rays at 8 keV and report the first frozen-hydrated imaging by XDM. By preserving samples in amorphous ice, the risk of artifacts associated with dehydration or chemical fixation is avoided, ensuring the imaging condition closest to their natural state. The reconstruction shows internal structures of intact D. radiodurans bacteria in their natural contrast.

  3. X-ray phase imaging with a grating interferometer.

    PubMed

    Weitkamp, Timm; Diaz, Ana; David, Christian; Pfeiffer, Franz; Stampanoni, Marco; Cloetens, Peter; Ziegler, Eric

    2005-08-08

    Using a high-efficiency grating interferometer for hard X rays (10-30 keV) and a phase-stepping technique, separate radiographs of the phase and absorption profiles of bulk samples can be obtained from a single set of measurements. Tomographic reconstruction yields quantitative three-dimensional maps of the X-ray refractive index, with a spatial resolution down to a few microns. The method is mechanically robust, requires little spatial coherence and monochromaticity, and can be scaled up to large fields of view, with a detector of correspondingly moderate spatial resolution. These are important prerequisites for use with laboratory X-ray sources.

  4. Two dimensional x-ray phase imaging using single grating interferometer with embedded x-ray targets.

    PubMed

    Morimoto, Naoki; Fujino, Sho; Yamazaki, Amane; Ito, Yasuhiro; Hosoi, Takuji; Watanabe, Heiji; Shimura, Takayoshi

    2015-06-29

    Using multidot metal targets embedded in a diamond substrate, we created a single-grating Talbot-Lau interferometer and used it to capture two dimensional (2D) x-ray phase images. The ensemble of these targets constitutes a tiny virtual array of x-ray source and enables x-ray phase-contrast imaging with no source or absorption grating within a 1 m source-detector distance for 8 keV x-rays. We directly resolved a dot-pattern self-image of the phase grating with 6 µm pitch by using an x-ray image detector with 24 µm pixels and obtained 2D differential-phase and dark-field images from a single-exposure. Using the 2D differential-phase images, we also obtained a phase image with no streak artifacts.

  5. SUZAKU X-RAY SPECTRA AND PULSE PROFILE VARIATIONS DURING THE SUPERORBITAL CYCLE OF LMC X-4

    SciTech Connect

    Hung Liwei; Hickox, Ryan C.; Boroson, Bram S.; Vrtilek, Saeqa D. E-mail: rhickox@cfa.harvard.ed E-mail: svrtilek@cfa.harvard.ed

    2010-09-10

    We present results from spectral and temporal analyses of Suzaku and RXTE observations of the high-mass X-ray binary LMC X-4. Using the full 13 years of available RXTE/all-sky monitor data, we apply the ANOVA and Lomb Normalized Periodogram methods to obtain an improved superorbital period measurement of 30.32 {+-} 0.04 days. The phase-averaged X-ray spectra from Suzaku observations during the high state of the superorbital period can be modeled in the 0.6-50 keV band as the combination of a power law with {Gamma} {approx} 0.6 and a high-energy cutoff at {approx}25 keV, a blackbody with kT {sub BB} {approx} 0.18 keV, and emission lines from Fe K{sub {alpha}}, O VIII, and Ne IX (X Ly{alpha}). Assuming a distance of 50 kpc, the source has luminosity L {sub X} {approx} 3 x 10{sup 38} erg s{sup -1} in the 2-50 keV band, and the luminosity of the soft (blackbody) component is L {sub BB} {approx} 1.5 x 10{sup 37} erg s{sup -1}. The energy-resolved pulse profiles show single-peaked soft (0.5-1 keV) and hard (6-10 keV) pulses but a more complex pattern of medium (2-10 keV) pulses; cross-correlation of the hard with the soft pulses shows a phase shift that varies between observations. We interpret these results in terms of a picture in which a precessing disk reprocesses the hard X-rays and produces the observed soft spectral component, as has been suggested for the similar sources Her X-1 and SMC X-1.

  6. Broad-band soft x-ray diagnostic instruments at the LLNL Novette laser facility

    SciTech Connect

    Tirsell, K.G.; Lee, P.H.Y.; Nilson, D.G.; Medecki, H.

    1983-09-15

    Complementary broad-band instruments have been developed to measure time dependent, absolute soft x-ray spectra at the Lawrence Livermore National Laboratory (LLNL) Nd glass laser irradiation facilities. Absolute flux measurements of x rays emitted from laser-produced plasmas are important for understanding laser absorption and energy transport. We will describe two new 10-channel XRD systems that have been installed at the LLNL Novette facility for use in the 0.15- to 1.5-keV range. Since XRD channel time response is limited by available oscilloscope performance to 120 ps, a soft x-ray streak camera has been developed for better time resolution (20 ps) and greater dynamic range (approx.10/sup 3/) in the same x-ray energy region. Using suitable filters, grazing incidence mirrors, and a gold or cesium-iodide transmission cathode, this streak camera instrument has been installed at Novette to provide one broad and four relatively narrow channels. It can also be used in a single channel, spatially discriminating mode by means of pinhole imaging. The complementary nature of these instruments has been enhanced by locating them in close proximity and matching their channel energy responses. As an example of the use of these instruments, we present results from Novette 2..omega..(0.53 ..mu..m) gold disk irradiations at 1 ns and 10/sup 14/ to 10/sup 15/ W/cm/sup 2/.

  7. Detection and Analysis of X Ray Emission from the Princeton-Field-Reversed Configuration (PFRC-2)

    NASA Astrophysics Data System (ADS)

    Bosh, Alexandra; Swanson, Charles; Jandovitz, Peter; Cohen, Samuel

    2016-10-01

    The PFRC is an odd-parity rotating-magnetic-field-driven field-reversed-configuration magnetic confinement experiment. Studying X rays produced via electron Bremsstrahlung with neutral particles is crucial to the further understanding of the energy and particle confinement of the PFRC. The data on the x rays are collected using a detector system comprised of two, spatially scannable Amptek XR-100 CR detectors and a Amptek XR-100 SDD detector that view the plasma column at two axial locations, one in the divertor and one near the axial midplane. These provide X-ray energy and arrival-time information. (Data analysis requires measurement of each detector's efficiency, a parameter that is modified by window transmission. Detector calibrations were performed with a custom-made X-ray tube that impinged 1-microamp 1-5 kV electron beams onto a carbon target.) From the analyzed data, the average electron energy, effective temperature, and electron density can be extracted. Spatial scans then allow the FRC's internal energy to be measured. We present recent measurements of the Bremsstrahlung spectrum from 0.8 to 6 keV and the inferred electron temperature in the PFRC device as functions of heating power, magnetic field and fill gas pressure. This work was supported, in part, by DOE Contract Number DE-AC02-09CH11466.

  8. Performance and Characterization of Magnetic Penetration Thermometer Devices for X-Ray Spectroscopy

    NASA Technical Reports Server (NTRS)

    Porst, J. -P.; Adams, J. S.; Bandler, S. R.; Balvin, M.; Busch, S. E.; Denis, K. L.; Kelly, D.; Nagler, P.; Sadleir, J. E.; Seidel, G. M.; Smith, S.; Stevenson, T. R.

    2012-01-01

    We are developing magnetic penetration thermometers (MPTs) for applications in X-ray astronomy. These non-dissipative devices consist of an X-ray absorber in good thermal contact to a superconducting thin film with a transition temperature around T=100mK. A microfabricated superconducting planar inductor underneath is used to store a persistent current and couple the superconductor's diamagnetic response to a readout SQUID. The strong temperature dependence of the diamagnetic response make these devices suitable for highly sensitive macroscopic thermometers that are capable of achieving very high energy resolution. We present results achieved with MPTs consisting of MoAu bilayer sensors attached to overhanging square 250 micron by 250 micron gold absorbers that have demonstrated an energy resolution of delta E_FWHM=2.3eV at an X-ray energy of 5.9keV. A similar device has shown delta E_FWHM=2.0eV at 1.5 keV. Under certain conditions and for specific device geometries, the temperature responsivity of the MPTs can vary on long timescales degrading the spectral performance. We present the characterization of different inductor geometries to optimize the design for the highest possible temperature sensitivity and compare different device designs with respect to responsivity stability.

  9. Tomographic Hard X-ray Phase Contrast Micro- and Nano-imaging at TOMCAT

    NASA Astrophysics Data System (ADS)

    Stampanoni, M.; Marone, F.; Modregger, P.; Pinzer, B.; Thüring, T.; Vila-Comamala, J.; David, C.; Mokso, R.

    2010-07-01

    This article illustrates the phase contrast instrumentation installed at the Tomographic Microscopy and Coherent Radiology beamline (TOMCAT) of the Swiss Light Source. Our experimental framework has been designed to extract phase information at spatial resolutions covering three orders of magnitude. For moderate (5-10 microns) resolutions we implemented a two-gratings interferometer, operated at energies between 14 and 40 keV. For high resolution (1-5 microns) we obtain phase information thanks to a modified transport of intensity approach. For very high-resolutions (0.1-0.5 microns) we developed a broadband hard X-ray full-field microscope operated in Zernike-phase contrast.

  10. Hard X ray imaging telescope

    NASA Astrophysics Data System (ADS)

    Lubin, P.

    1990-03-01

    This final report covers the work carried out under the LLNL Contract Number B063682, Subcontractor Regents University of California at Santa Barbara. The research carried out under this contract involves the construction of a telemetry, target acquisition and guidance system, and of a light-weight gondola to house an x ray spectrometer. This work is part of the design and construction of the balloon experiment, GRATIS, which will perform the first arcminute imaging of cosmic sources in the 30 to 200 keV energy band. Observations conducted with GRATIS are expected to provide data relevant to several key problems in high energy astrophysics including the physical processes responsible for the high energy tail observed in the soft gamma-ray spectra of clusters of galaxies and the origin of both the diffuse and point source components of the gamma-ray emission from the Galactic Center. This report discusses the scientific motivations for this experiment, presents several aspects of the design and construction of the hardware components, gives an overview of the stabilized platform, and demonstrates the expected performance and sensitivity.

  11. Foil X-ray Mirrors

    NASA Astrophysics Data System (ADS)

    Serlemitsos, Peter J.; Soong, Yang

    1996-09-01

    Nested thin foil reflectors have made possible light weight, inexpensive and fast grazing incidence X-ray mirrors for astronomical spectroscopy over a broad band. These mirrors were developed at Goddard for the US Shuttle program and were flown on NASA's shuttleborne Astro-l mission in December 1990. Presently, the Japan/US collaborative spectroscopic mission ASCA, nearing its third year of successful operation in earth orbit, carries, four such mirrors, weighing less than 40 kg and giving total effective areas of ˜ 1200 and 420 cm2 at l and 8 keV respectively. The ˜ 420 kg observatory is the best possible example of how conical foil mirrors opened areas of research that could not have been otherwise addressed with available resources. In this paper, we will briefly review the development and performance of our first generation foil mirrors. We will also describe progress toward improving their imaging capability to prime them for use in future instruments. Such a goal is highly desirable, if not necessary for this mirror technology to remain competitive for future applications.

  12. Hard X-ray delays

    NASA Technical Reports Server (NTRS)

    Schwartz, Richard A.

    1986-01-01

    High time resolution hard X-ray rates with good counting statistics over 5 energy intervals were obtained using a large area balloon-borne scintillation detector during the 27 June 1980 solar flare. The impulsive phase of the flare was comprised of a series of major bursts of several to several tens of seconds long. Superimposed on these longer bursts are numerous smaller approximately 0.5 to 1.0 second spikes. The time profiles for different energies were cross-correlated for the major bursts. The rapid burst decay rates and the simultaneous peaks below 120 keV both indicate a rapid electron energy loss process. Thus, the flux profiles reflect the electron acceleration/injection process. The fast rate data was obtained by a burst memory in 8 and 32 msec resolution over the entire main impulsive phase. These rates will be cross-correlated to look for short time delays and to find rapid fluctuations. However, a cursory examination shows that almost all fluctuations, down to the 5% level, were resolved with 256 msec bins.

  13. Normal incidence x-ray mirror for chemical microanalysis

    DOEpatents

    Carr, M.J.; Romig, A.D. Jr.

    1987-08-05

    An x-ray mirror for both electron column instruments and micro x-ray fluorescence instruments for making chemical, microanalysis comprises a non-planar mirror having, for example, a spherical reflecting surface for x-rays comprised of a predetermined number of alternating layers of high atomic number material and low atomic number material contiguously formed on a substrate and whose layers have a thickness which is a multiple of the wavelength being reflected. For electron column instruments, the wavelengths of interest lie above 1.5nm, while for x-ray fluorescence instruments, the range of interest is below 0.2nm. 4 figs.

  14. Hard x-ray imaging polarimeter for PolariS

    NASA Astrophysics Data System (ADS)

    Hayashida, Kiyoshi; Kim, Juyong; Sadamoto, Masaaki; Yoshinaga, Keigo; Gunji, Shuichi; Mihara, Tatehiro; Kishimoto, Yuji; Kubo, Hidetoshi; Mizuno, Tsunefumi; Takahashi, Hiromitsu; Dotani, Tadayasu; Yonetoku, Daisuke; Nakamori, Takeshi; Yoneyama, Tomokage; Ikeyama, Yuki; Kamitsukasa, Fumiyoshi

    2016-07-01

    Hard X-ray imaging polarimeters are developed for the X-ray γ-ray polaeimtery satellite PolariS. The imaging polarimter is scattering type, in which anisotropy in the direction of Compton scattering is employed to measure the hard X-ray (10-80 keV) polarization, and is installed on the focal planes of hard X-ray telescopes. We have updated the design of the model so as to cover larger solid angles of scattering direction. We also examine the event selection algorithm to optimize the detection efficiency of recoiled electrons in plastic scintillators. We succeed in improving the efficiency by factor of about 3-4 from the previous algorithm and criteria for 18-30 keV incidence. For 23 keV X-ray incidence, the recoiled electron energy is about 1 keV. We measured the efficiency to detect recoiled electrons in this case, and found about half of the theoretical limit. The improvement in this efficiency directly leads to that in the detection efficiency. In other words, however, there is still a room for improvement. We examine various process in the detector, and estimate the major loss is primarily that of scintillation light in a plastic scintillator pillar with a very small cross section (2.68mm squared) and a long length (40mm). Nevertheless, the current model provides the MDP of 6% for 10mCrab sources, which are the targets of PolariS.

  15. Comparison of structure in solid state of new 1,5- bis(4-cyano-2,6-dimethoxyphenoxy)alkanes by means of 13C CP/MAS NMR and X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Żabiński, Jerzy; Wolska, Irena; Maciejewska, Dorota

    2007-05-01

    The synthesis and structural studies in solid state of new 1,5- bis(4-cyano-2,6-dimethoxyphenoxy)-3-oxapentane 1 and 1,5- bis(4-cyano-2,6-methoxyphenoxy)pentane 2 are presented. The observed complicated network of intermolecular interaction with participation of nitrile groups could play a role in their interaction with the biological target. In vitro screen against 60 human tumor cell lines revealed that compound 1 has promising growth inhibitory power GI 50 against SR (leukemia) and HOP-92 (non-small lung cancer) equal to 4.33 ×10 -6 and 1.03 ×10 -5 M, respectively.

  16. The microchannel x-ray telescope status

    NASA Astrophysics Data System (ADS)

    Götz, D.; Meuris, A.; Pinsard, F.; Doumayrou, E.; Tourrette, T.; Osborne, J. P.; Willingale, R.; Sykes, J. M.; Pearson, J. F.; Le Duigou, J. M.; Mercier, K.

    2016-07-01

    We present design status of the Microchannel X-ray Telescope, the focussing X-ray telescope on board the Sino- French SVOM mission dedicated to Gamma-Ray Bursts. Its optical design is based on square micro-pore optics (MPOs) in a Lobster-Eye configuration. The optics will be coupled to a low-noise pnCCD sensitive in the 0.2{10 keV energy range. With an expected point spread function of 4.5 arcmin (FWHM) and an estimated sensitivity adequate to detect all the afterglows of the SVOM GRBs, MXT will be able to provide error boxes smaller than 60 (90% c.l.) arc sec after five minutes of observation.

  17. Hard X-Ray Radio Galaxies

    NASA Astrophysics Data System (ADS)

    Panessa, Francesca; Bassani, L.; Venturi, T.; Molina, M.; Dallacasa, D.; Ubertini, P.; Bazzano, A.; Malizia, A.; La Franca, F.; Landi, R.

    2016-10-01

    In order to investigate the role of absorption in AGN with jets, we have studied the column density distribution of a hard X-ray selected sample of radio galaxies, derived from the INTEGRAL/IBIS and Swift/BAT AGN catalogues. They represent 7-10% of the total AGN population and are characterized by high 20-100 keV luminosities and high Eddington ratios. The radio morphology is typical of FRII galaxies and all of them have an optical classification and a measure of the column density. The observed fraction of absorbed AGN is around 40% among the total sample, and 75% among type 2 AGN. The observed fraction of Compton thick AGN is 2-3%. In this talk we will discuss the obscuration characteristics of radio galaxies compared to non-radio galaxies selected at hard X-rays.

  18. Bone densitometry using x-ray spectra.

    PubMed

    Krmar, M; Shukla, S; Ganezer, K

    2010-10-21

    In contrast to the two distinct energy regions that are involved in dual-energy x-ray absorptiometry for bone densitometry, the complete spectrum of a beam transmitted through two layers of different materials is utilized in this study to calculate the areal density of each material. Test objects constructed from aluminum and Plexiglas were used to simulate cortical bone and soft tissue, respectively. Solid-state HPGe (high-purity germanium) detectors provided high-resolution x-ray spectra over an energy range of approximately 20-80 keV. Areal densities were obtained from spectra using two methods: a system of equations for two spectral regions and a nonlinear fit of the entire spectrum. Good agreement with the known areal densities of aluminum was obtained over a wide range of PMMA thicknesses. The spectral method presented here can be used to decrease beam hardening at a small number of bodily points selected for examination.

  19. Chandra Observation of the Shell of Nova Persei 1901 (GK Persei): Detection of Localized Nonthermal X-Ray Emission from a Miniature Supernova Remnant

    NASA Astrophysics Data System (ADS)

    Balman, Şölen

    2005-07-01

    I present data on the shell of classical Nova Persei (1901) obtained by the Advanced CCD Imaging Spectrometer S3 detector on board the Chandra X-Ray Observatory. The X-ray nebula is affected mostly by the complex interstellar medium around the nova and has not developed a regular shell. The X-ray nebula is lumpy and asymmetric, with the bulk of the emission coming from the southwestern quadrant. The brightest X-ray emission is detected as an arc that covers the region from the west to the south of the central source. Part of this feature, which is cospatial with the brightest nonthermal radio emission region, is found to be a source of nonthermal (synchrotron) X-ray emission with a power-law photon index of 2.3+1.5-0.9 and α=0.68+0.03-0.15 at about a flux of 1.7×10-13 ergs cm-2 s-1. This confirms that the shell is a site of particle acceleration, mainly in the reverse shock zone. There are strong indications for nonlinear diffusive shock acceleration occurring in the forward shock/transition zone with an upper limit on the nonthermal X-ray flux of 1.0×10-14 ergs cm-2 s-1. The total X-ray spectrum of the nebula consists of two prominent components of emission (other than the resolved synchrotron X-ray emission). The component dominant below 2 keV is most likely a nonequilibrium ionization thermal plasma of kTs=0.1-0.3 keV with an X-ray flux of 1.6×10-11 ergs cm-2 s-1. There is also a higher temperature, kTs=0.5-2.6 keV, embedded, NH=(4.0-22.0)×1022 cm-2 emission component prominent above 2 keV. The unabsorbed X-ray flux from this component is 1.5×10-10 ergs cm-2 s-1. The X-ray-emitting plasma is of solar composition except for enhancement in the elemental abundances (mean abundances over the remnant) of Ne/Nesolar and N/Nsolar in the ranges 13-21 and 1-5, respectively. A distinct emission line of neon, He-like Ne IX, is detected, which reveals a distribution of several emission knots/blobs and shows a conelike structure with wings extending toward the

  20. X-ray/UV variability and the origin of soft X-ray excess emission from II Zw 177

    NASA Astrophysics Data System (ADS)

    Pal, Main

    We study a detailed broad-band X-ray/UV emission from the narrow line Seyfert 1 galaxy II Zw 177 based on two XMM-Newton and single Swift/XRT observations. Both XMM-Newton observations show the soft X-ray excess emission below 2 keV when the best-fit 2 - 10 keV power law is extrapolated down to 0.3 keV. We find the blurred reflection from an ionized accretion disc and Comptonized disc emission both describe the observed soft excess well. We find a remarkable trend of decreasing UV flux with increasing soft X-ray excess and power law emission. We suggest that this could be due to that the external edge of corona hide a fraction of accretion disk. Co-Author: Prof. Gulab C. Dewangan (IUCAA), Prof. Ranjeev Misra (IUCAA), Pramod Kumar (Nanded university)

  1. X-ray scalpel—a new device for targeted x-ray brachytherapy and stereotactic radiosurgery

    NASA Astrophysics Data System (ADS)

    Gutman, George; Strumban, Emil; Sozontov, Evgeny; Jenrow, Kenneth

    2007-03-01

    The basic design and performance of a novel x-ray scalpel device for interstitial radiosurgery are reported. The x-ray scalpel is comprised of a capillary optics collimator conjugated with a high brilliance microfocus x-ray tube and a thin hollow needle (tip) attached to the collimator. The device is capable of producing a high dose rate (about 140 Gy min-1 in water-like absorber at the exit window), 0.7 mm diameter, quasi-parallel beam that can be delivered to a targeted site by a minimally invasive procedure. Contrary to insertable x-ray tubes or radionuclides used in brachytherapy and complying with the 1/r2 radiation attenuation law, the dose rate for a quasi-parallel beam decreases with distance as μ exp(-μr), where μ is the energy-dependent linear attenuation coefficient in the exposed medium. Moreover, the shape, energy and the dose attenuation curve of the x-ray beam can be adjusted. Two versions of the x-ray scalpel device (5.4 keV and 20.2 keV) are described. We present results from our first test of the x-ray scalpel as a controllable source of focal radiation for producing radiation necrosis in rat brain tissue. Irradiation was transdurally delivered to the rat cerebral cortex for 10 min at a dose rate of 20 Gy min-1.

  2. Monochromatic X-ray imaging using a combination of doubly curved crystal and polycapillary X-ray lens.

    PubMed

    Sun, Tianxi; MacDonald, C A

    2015-01-01

    A monochromatic X-ray imaging setup based on a combination of a doubly curved crystal and a polycapillary focusing X-ray lens was designed. In this setup, the bent crystal optic was used not only to monochromatize but also to focus the divergent X-ray beam from a conventional X-ray source to form a monochromatic X-ray focal spot with a size of 426 × 467 μm2 at 17.5 keV. The beam expanding from this focal point was focused by the polycapillary optic to obtain a focal spot which was then used as the monochromatic X-ray imaging virtual source. The output focal spot size of the focusing polycapillary optic at 17.5 keV was 97 μm. Compared with the beam expansion after the focal spot of the bent crystal optic, the beam expansion after the focal spot of the focusing polycapillary optic was relatively large. This was helpful for magnifying the X-ray image of the sample. The focused beam was helpful to decrease the exposure time for imaging small samples.

  3. Li metal for x-ray refractive optics

    SciTech Connect

    Pereira, Nino R.; Arms, Dohn A.; Clarke, Roy; Dierker, Steve B.; Dufresne, Eric; Foster, D.

    2004-01-27

    Lithium metal is the best material for refractive lenses that must focus x-rays with energies below 15 keV, but to date no lens from Li has been reported. This letter demonstrates focusing of 10 keV x-rays with a one-dimensional sawtooth lens made from Li. The lens theoretical gain is 4.5, with manufacturing imperfections likely responsible for the threefold gain that is observed. Despite the Li reactivity the lens is stable over months of operation if kept under vacuum.

  4. A hard X-ray polarimeter utilizing Compton scattering

    NASA Technical Reports Server (NTRS)

    Sakurai, H.; Noma, M.; Niizeki, H.

    1991-01-01

    The paper describes a 50-cm-diam prototype of a novel Compton-scattering-type polarimeter for hard X-rays in the energy range 30-100 keV. The characteristics of the prototype polarimeter were investigated for various conditions. It was found that, with polarized X-rays from a simple polarizer, the detection efficiency and the modulation factor of the polarimeter with a 40-mm thick scatterer were 3.2 percent and 0.57 percent, respectively, at about 60 keV.

  5. Measurements of the hard-x-ray reflectivity of iridium

    SciTech Connect

    Romaine, S.; Bruni, R.; Gorenstein, P.; Zhong, Z

    2007-01-10

    In connection with the design of a hard-x-ray telescope for the Constellation X-Ray Observatory we measured the reflectivity of an iridium-coated zerodur substrate as a function of angle at 55, 60, 70, and 80 keV at the National Synchrotron Light Source of Brookhaven National Laboratory. The optical constants were derived from the reflectivity data. The real component of the index of refraction is in excellent agreement with theoretical values at all four energies. However, the imaginary component, which is related to the mass attenuation coefficient, is 50% to 70% larger at 55, 60, and 70 keV than theoretical values.

  6. Bent diamond-crystal x-ray spectrographs for x-ray free-electron laser noninvasive diagnostics

    NASA Astrophysics Data System (ADS)

    Terentyev, Sergey; Blank, Vladimir; Kolodziej, Tomasz; Shvyd'ko, Yuri

    2016-09-01

    We report on the manufacturing and X-ray tests of bent diamond-crystal X-ray spectrographs, designed for noninvasive diagnostics of the X-ray free-electron laser (XFEL) spectra in the spectral range from 5 to 15 keV. The key component is a curved, 20-μm thin, single crystalline diamond triangular plate in the (110) orientation. The radius of curvature can be varied between R = 0:6 m and R = 0:1 m in a controlled fashion, ensuring imaging in a spectral window of up to 60 eV for 8 keV X-rays. All of the components of the bending mechanism (about 10 parts) are manufactured from diamond, thus ensuring safe operations in intense XFEL beams. The spectrograph is transparent to 88% for 5-keV photons, and to 98% for 15-keV photons. Therefore, it can be used for noninvasive diagnostics of the X-ray spectra during XFEL operations.

  7. X-ray attenuation properties of stainless steel (u)

    SciTech Connect

    Wang, Lily L; Berry, Phillip C

    2009-01-01

    Stainless steel vessels are used to enclose solid materials for studying x-ray radiolysis that involves gas release from the materials. Commercially available stainless steel components are easily adapted to form a static or a dynamic condition to monitor the gas evolved from the solid materials during and after the x-ray irradiation. Experimental data published on the x-ray attenuation properties of stainless steel, however, are very scarce, especially over a wide range of x-ray energies. The objective of this work was to obtain experimental data that will be used to determine how a poly-energetic x-ray beam is attenuated by the stainless steel container wall. The data will also be used in conjunction with MCNP (Monte Carlos Nuclear Particle) modeling to develop an accurate method for determining energy absorbed in known solid samples contained in stainless steel vessels. In this study, experiments to measure the attenuation properties of stainless steel were performed for a range of bremsstrahlung x-ray beams with a maximum energy ranging from 150 keV to 10 MeV. Bremsstrahlung x-ray beams of these energies are commonly used in radiography of engineering and weapon components. The weapon surveillance community has a great interest in understanding how the x-rays in radiography affect short-term and long-term properties of weapon materials.

  8. Application of X-ray imaging techniques to auroral monitoring

    NASA Technical Reports Server (NTRS)

    Rust, D. M.; Burstein, P.

    1981-01-01

    The precipitation of energetic particles into the ionosphere produces bremsstrahlung X-rays and K-alpha line emission from excited oxygen and nitrogen. If viewed from a spacecraft in a highly elliptical polar orbit, this soft (0.3 - 3.0 keV) X-radiation will provide an almost uninterrupted record of dayside and nightside auroras. A grazing incidence X-ray telescope especially designed for such auroral monitoring is described. High photon collection efficiency will permit exposure times of approximately 100 seconds during substorms. Spectrophotometry will allow users to derive the energy spectrum of the precipitating particles. If placed in a 15 earth-radius orbit, the telescope can produce auroral X-ray images with 30 km resolution. Absolute position of X-ray auroras can be established with a small optical telescope co-aligned with the X-ray telescope. Comparison of X-ray and optical images will establish the height and global distribution of X-ray aurorae, relative to well-known optical auroras, thus melding the new X-ray results with knowledge of optical auroras.

  9. Soft X-ray spectral observations of quasars and high X-ray luminosity Seyfert galaxies

    NASA Technical Reports Server (NTRS)

    Petre, R.; Mushotzky, R. F.; Krolik, J. H.; Holt, S. S.

    1983-01-01

    Results of the analysis of 28 Einstein SSS observations of 15 high X-ray luminosity (L(x) 10 to the 435 power erg/s) quasars and Seyfert type 1 nuclei are presented. The 0.75-4.5 keV spectra are in general well fit by a simple model consisting of a power law plus absorption by cold gas. The averager spectral index alpha is 0.66 + or - .36, consistent with alpha for the spectrum of these objects above 2 keV. In all but one case, no evidence was found for intrinsic absorption, with an upper limit of 2 x 10 to the 21st power/sq cm. Neither was evidence found for partial covering of the active nucleus by dense, cold matter (N(H) 10 to the 22nd power/sq cm; the average upper limit on the partial covering fraction is 0.5. There is no obvious correlation between spectral index and 0175-4.5 keV X-ray luminosity (which ranges from 3 x 10 to the 43rd to 47th powers erg/s or with other source properties. The lack of intrinsic X-ray absorption allows us to place constraints on the density and temperature of the broad-line emission region, and narrow line emission region, and the intergalactic medium.

  10. Complete Hard X-Ray Surveys, AGN Luminosity Functions and the X-Ray Background

    NASA Technical Reports Server (NTRS)

    Tueller, Jack

    2011-01-01

    AGN are believed to make up most of the Cosmic X-Ray Background (CXB) above a few keV, but this background cannot be fully resolved at energies less than 10 keV due to absorption. The Swift/BAT and INTEGRAL missions are performing the first complete hard x-ray surveys with minimal bias due to absorption. The most recent results for both missions will be presented. Although the fraction of the CXB resolved by these surveys is small, it is possible to derive unbiased number counts and luminosity functions for AGN in the local universe. The survey energy range from 15-150 keV contains the important reflection and cutoff spectral features dominate the shape of the AGN contribution to the CXB. Average spectral characteristics of survey detected AGN will be presented and compared with model distributions. The numbers of hard x-ray blazars detected in these surveys are finally sufficient to estimate this important component's contribution the cosmic background. Constraints on CXB models and their significance will be discussed.

  11. Monolithic CMOS imaging x-ray spectrometers

    NASA Astrophysics Data System (ADS)

    Kenter, Almus; Kraft, Ralph; Gauron, Thomas; Murray, Stephen S.

    2014-07-01

    The Smithsonian Astrophysical Observatory (SAO) in collaboration with SRI/Sarnoff is developing monolithic CMOS detectors optimized for x-ray astronomy. The goal of this multi-year program is to produce CMOS x-ray imaging spectrometers that are Fano noise limited over the 0.1-10keV energy band while incorporating the many benefits of CMOS technology. These benefits include: low power consumption, radiation "hardness", high levels of integration, and very high read rates. Small format test devices from a previous wafer fabrication run (2011-2012) have recently been back-thinned and tested for response below 1keV. These devices perform as expected in regards to dark current, read noise, spectral response and Quantum Efficiency (QE). We demonstrate that running these devices at rates ~> 1Mpix/second eliminates the need for cooling as shot noise from any dark current is greatly mitigated. The test devices were fabricated on 15μm, high resistivity custom (~30kΩ-cm) epitaxial silicon and have a 16 by 192 pixel format. They incorporate 16μm pitch, 6 Transistor Pinned Photo Diode (6TPPD) pixels which have ~40μV/electron sensitivity and a highly parallel analog CDS signal chain. Newer, improved, lower noise detectors have just been fabricated (October 2013). These new detectors are fabricated on 9μm epitaxial silicon and have a 1k by 1k format. They incorporate similar 16μm pitch, 6TPPD pixels but have ~ 50% higher sensitivity and much (3×) lower read noise. These new detectors have undergone preliminary testing for functionality in Front Illuminated (FI) form and are presently being prepared for back thinning and packaging. Monolithic CMOS devices such as these, would be ideal candidate detectors for the focal planes of Solar, planetary and other space-borne x-ray astronomy missions. The high through-put, low noise and excellent low energy response, provide high dynamic range and good time resolution; bright, time varying x-ray features could be temporally and

  12. Imaging of X rays for magnetospheric investigations

    NASA Astrophysics Data System (ADS)

    Imhof, William L.; Voss, Henry D.; Datlowe, Dayton W.

    1992-06-01

    Precipitation of energetic electrons from the magnetosphere into the auroral zone produces x- ray bremsstrahlung. Although in-situ electron spectrometers can provide detailed information at the point of observation, only x-ray imagers can provide large scale maps of the 1 to 300 keV energy electron precipitation. X-ray imaging provides complete day and night coverage of the electron energy spectra at each position. Early x-ray images, such as those obtained from 1979 - 1983, served to demonstrate the importance of narrow elongated arcs of energetic electron precipitation in the auroral zone. They also characterized the spectral parameters and precipitation rates required for understanding source and loss mechanisms in the magnetosphere, but they were limited in field of view and to one map for each pass over the emitting regions. The Magnetospheric Atmospheric X-ray Imaging Experiment (MAXIE), soon to be launched on a TIROS satellite, will make time-space mappings by scanning a 16 pixel pinhole camera. These data will distinguish intensity variations of a fixed auroral feature from motion of a steadily radiating features. However, the spatial deconvolution is complex and features stay in the field of view for only approximately 10 minutes. These problems will be resolved by a high altitude (approximately 9 Re) imaging spectrometer PIXIE on the ISTP/GGS Polar Satellite to be launched in 1994. PIXIE's position sensitive proportional counter will continuously image the entire auroral zone for periods of hours. The resulting images will be important for understanding how the electrons are accelerated in the magnetosphere and why and where they precipitate into the atmosphere. Future needs and plans for next generation imagers will be discussed.

  13. Burning plasmas with ultrashort soft-x-ray flashing

    NASA Astrophysics Data System (ADS)

    Hu, S. X.; Goncharov, V. N.; Skupsky, S.

    2012-07-01

    Fast ignition with narrow-band coherent x-ray pulses has been revisited for cryogenic deuterium-tritium (DT) plasma conditions achieved on the OMEGA Laser System. In contrast to using hard-x-rays (hv = 3-6 keV) proposed in the original x-ray fast-ignition proposal, we find that soft-x-ray sources with hv ≈ 500 eV photons can be suitable for igniting the dense DT-plasmas achieved on OMEGA. Two-dimensional radiation-hydrodynamics simulations have identified the break-even conditions for realizing such a "hybrid" ignition scheme (direct-drive compression with soft-x-ray heating) with 50-μm-offset targets: ˜10 ps soft-x-ray pulse (hv ≈ 500 eV) with a total energy of 500-1000 J to be focused into a 10 μm spot-size. A variety of x-ray pulse parameters have also been investigated for optimization. It is noted that an order of magnitude increase in neutron yield has been predicted even with x-ray energy as low as ˜50 J. Scaling this idea to a 1 MJ large-scale target, a gain above ˜30 can be reached with the same soft-x-ray pulse at 1.65 kJ energy. Even though such energetic x-ray sources do not currently exist, we hope that the proposed ignition scheme may stimulate efforts on generating powerful soft-x-ray sources in the near future.

  14. New micro pore optics for x-ray pulsar navigation

    NASA Astrophysics Data System (ADS)

    Jin, Ge; Zhang, Qindong; Xu, Zhao; Zhang, Zhengjun; Zhang, Zhiyong; Xu, Wei; Li, Jingwen; Wang, Jian

    2016-01-01

    Solutions of focusing pulsars X-ray is a key factor in improving the accuracy of pulsar navigation. Based on the focusing principle of lobster eye grazing incidence, new micro pore optics (MPO) for pulsar navigation which is glass-substrated X-ray MPO is researched and developed. The effective areas on MPO when single grazing incidence or double grazing incidence happens are analyzed in detail and the first generation of MPO is produced. By illumination of parallel X-ray beam with 1.49keV and 8.05keV on the MPO, it is found that the crossing focusing image can be clearly visible, and the arm of cross image of 1.49keV and 8.05keV are is respectively 30mm and 17mm in length. Moreover, the center intensity was significantly higher than the cross arm which is consistent with theoretical calculation. Besides, the angular resolution of first generation of MPO with 8.05keV parallel X-ray beam illuminated is 4.19'.

  15. Tomographic analysis of the nonthermal x-ray bursts during disruption instability in the T-10 tokamak

    SciTech Connect

    Savrukhin, P. V.; Ermolaeva, A. I.; Shestakov, E. A.; Khramenkov, A. V.

    2014-10-01

    Non-thermal x-ray radiation (E{sub γ} up to 150 keV) is measured in the T-10 tokamaks during disruption instability using two sets of CdTe detectors (10 vertical and 7 horizontal view detectors). Special narrow cupper tubes collimators with lead screening and CdTe detectors integrated with amplifiers inside metallic containers provides enhanced spatial resolution of the system (r ~ 3 cm) and assures protection from the parasitic hard x-ray (E{sub γ} up to 1.5 MeV) and electromagnetic loads during disruption. Spatial localization of the nonthermal x-ray emissivity is reconstructed using tomographic Cormack technique with SVD matrix inversion. Analysis indicated appearance of an intensive non-thermal x-ray bursts during initial stage of the disruptions at high density. The bursts are characterized by repetitive spikes (2–3 kHz) of the x-ray emissivity from the plasma core area. Analysis indicated that the spikes can be connected with acceleration of the non-thermal electrons in enhanced longitudinal electric fields induced during energy quench at the disruption instability.

  16. Tomographic analysis of the nonthermal x-ray bursts during disruption instability in the T-10 tokamak.

    PubMed

    Savrukhin, P V; Ermolaeva, A I; Shestakov, E A; Khramenkov, A V

    2014-10-01

    Non-thermal x-ray radiation (Eγ up to 150 keV) is measured in the T-10 tokamaks during disruption instability using two sets of CdTe detectors (10 vertical and 7 horizontal view detectors). Special narrow cupper tubes collimators with lead screening and CdTe detectors integrated with amplifiers inside metallic containers provides enhanced spatial resolution of the system (r ∼ 3 cm) and assures protection from the parasitic hard x-ray (Eγ up to 1.5 MeV) and electromagnetic loads during disruption. Spatial localization of the nonthermal x-ray emissivity is reconstructed using tomographic Cormack technique with SVD matrix inversion. Analysis indicated appearance of an intensive non-thermal x-ray bursts during initial stage of the disruptions at high density. The bursts are characterized by repetitive spikes (2-3 kHz) of the x-ray emissivity from the plasma core area. Analysis indicated that the spikes can be connected with acceleration of the non-thermal electrons in enhanced longitudinal electric fields induced during energy quench at the disruption instability.

  17. Miniature x-ray source

    DOEpatents

    Trebes, James E.; Stone, Gary F.; Bell, Perry M.; Robinson, Ronald B.; Chornenky, Victor I.

    2002-01-01

    A miniature x-ray source capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature x-ray source comprises a compact vacuum tube assembly containing a cathode, an anode, a high voltage feedthru for delivering high voltage to the anode, a getter for maintaining high vacuum, a connection for an initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is highly x-ray transparent and made, for example, from boron nitride. The compact size and potential for remote operation allows the x-ray source, for example, to be placed adjacent to a material sample undergoing analysis or in proximity to the region to be treated for medical applications.

  18. British X-ray astronomy

    NASA Astrophysics Data System (ADS)

    Pounds, K. A.

    1986-09-01

    The development of solar and cosmic X-ray studies in the UK, in particular the Skylark and Ariel programs, is discussed. The characteristics and capabilities of the X-ray emulsion detector developed to monitor the solar X-radiation in the Skylark program, and of the proportional counter spectrometer developed for solar X-ray measurements on the Ariel I satellite are described. The designs and functions of the pin-hole camera, the Bragg crystal spectrometer, and the X-ray spectroheliograph are exmained. The Skylark observations of cosmic X-ray sources and high-resolution solar spectra, and the Ariel 5 data on cosmic X-ray sources are presented. Consideration is given to the Ariel 6, the U.S. Einstein Observatory, Exosat, and ASTRO-C.

  19. Solar X-ray physics

    SciTech Connect

    Bornmann, P.L. )

    1991-01-01

    Research on solar X-ray phenomena performed by American scientists during 1987-1990 is reviewed. Major topics discussed include solar images observed during quiescent times, the processes observed during solar flares, and the coronal, interplanetary, and terrestrial phenomena associated with solar X-ray flares. Particular attention is given to the hard X-ray emission observed at the start of the flare, the energy transfer to the soft X-ray emitting plasma, the late resolution of the flare as observed in soft X-ray, and the rate of occurrence of solar flares as a function of time and latitude. Pertinent aspects of nonflaring, coronal X-ray emission and stellar flares are also discussed. 175 refs.

  20. Quasimonochromatic x-ray computed tomography by the balanced filter method using a conventional x-ray source.

    PubMed

    Saito, Masatoshi

    2004-12-01

    A quasimonochromatic x-ray computed tomography (CT) system utilizing balanced filters has recently been developed for acquiring quantitative CT images. This system consisted of basic components such as a conventional x-ray generator for radiography, a stage for mounting and rotating objects, and an x-ray line sensor camera. Metallic sheets of Er and Yb were used as the balanced filters for obtaining quasimonochromatic incident x rays that include the characteristic lines of the W Kalpha doublet from a tungsten target. The mean energy and energy width of the quasimonochromatic x rays were determined to be 59.0 and 1.9 keV, respectively, from x-ray spectroscopic measurements using a high-purity Ge detector. The usefulness of the present x-ray CT system was demonstrated by obtaining spatial distributions of the linear attenuation coefficients of three selected samples--a 20 cm diameter cylindrical water phantom, a 3.5 cm diameter aluminum rod, and a human head phantom. The results clearly indicate that this apparatus is surprisingly effective for estimating the distribution of the linear attenuation coefficients without any correction of the beam-hardening effect. Thus, implementing the balanced filter method on an x-ray CT scanner has promise in producing highly quantitative CT images.

  1. Plasma x-ray radiation source.

    PubMed

    Popkov, N F; Kargin, V I; Ryaslov, E A; Pikar', A S

    1995-01-01

    This paper gives the results of studies on a plasma x-ray source, which enables one to obtain a 2.5-krad radiation dose per pulse over an area of 100 cm2 in the quantum energy range from 20 to 500 keV. Pulse duration is 100 ns. Spectral radiation distributions from a diode under various operation conditions of a plasma are obtained. A Marx generator served as an initial energy source of 120 kJ with a discharge time of T/4 = 10-6 s. A short electromagnetic pulse (10-7 s) was shaped using plasma erosion opening switches.

  2. Topological X-Rays Revisited

    ERIC Educational Resources Information Center

    Lynch, Mark

    2012-01-01

    We continue our study of topological X-rays begun in Lynch ["Topological X-rays and MRI's," iJMEST 33(3) (2002), pp. 389-392]. We modify our definition of a topological magnetic resonance imaging and give an affirmative answer to the question posed there: Can we identify a closed set in a box by defining X-rays to probe the interior and without…

  3. X-Ray Polarization Imaging

    DTIC Science & Technology

    2006-07-01

    anatomic structures. Johns and Yaffe (2), building on the work of Alvarez and Macovski (3) and that of Lehmann et al (4), discuss a method for...sources of contrast related to both the wave and par- ticulate nature of x rays. References 1. Johns PC, Yaffe MJ. X-ray characterization of normal and...application to mammography. Med Phys 1985; 12:289–296. 3. Alvarez RE, Macovski A. Energy-selective reconstructions in x-ray computerized tomography. Phys

  4. X-Rays from Hybrid Stars

    NASA Astrophysics Data System (ADS)

    Ayres, Thomas R.

    2005-01-01

    The late-type giants and supergiants of the ``hybrid chromosphere'' class display signatures of cool (T<~2×104 K) winds together with hot emission lines from species like C IV (T~105 K). A survey of such stars by Reimers et al. using ROSAT reported numerous X-ray detections (T~106 K), strengthening the (then heretical) idea that hot coronae and cool winds can coexist in luminous giants. However, several of the candidate sources were offset from the predicted stellar coordinates, calling into question the identifications. In an effort to secure better knowledge of the X-ray luminosities of the hybrids, the ROSAT fields from the Reimers et al. survey were reexamined, exploiting the USNO-A2.0 astrometric catalog to register the pointings to a few arcseconds accuracy. On the basis of positional mismatches, at least two of the previously reported detections of key hybrid stars-γ Dra (K5 III) and β Aqr (G0 Ib)-must be rejected. The new X-ray upper limits for these stars, combined with the remaining candidate detections (and nondetections) from the original survey, place the hybrids into the same ``X-ray deficient'' category as the ``noncoronal'' red giants like Arcturus (α Boo: K1.5 III) and Aldebaran (α Tau: K5 III). A few of the hybrid X-ray sources are exceptional, however. The archetype α TrA (K2 II-III), in particular, is securely detected in terms of positional coincidence, but its anomalous, contradictory coronal properties suggest that an unseen companion-a young hyperactive G dwarf-might dominate the X-ray emission.

  5. X-ray Absorption Spectroscopy

    SciTech Connect

    Yano, Junko; Yachandra, Vittal K.

    2009-07-09

    This review gives a brief description of the theory and application of X-ray absorption spectroscopy, both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), especially, pertaining to photosynthesis. The advantages and limitations of the methods are discussed. Recent advances in extended EXAFS and polarized EXAFS using oriented membranes and single crystals are explained. Developments in theory in understanding the XANES spectra are described. The application of X-ray absorption spectroscopy to the study of the Mn4Ca cluster in Photosystem II is presented.

  6. X-ray photonics: Bending X-rays with nanochannels

    NASA Astrophysics Data System (ADS)

    Pelliccia, Daniele

    2016-02-01

    X-ray counterparts of visible light optical elements are notoriously difficult to realize because the refractive index of all materials is close to unity. It has now been demonstrated that curved waveguides fabricated on a silicon chip can channel and deflect X-ray beams by consecutive grazing reflections.

  7. Hard x-ray photoelectron spectroscopy and x-ray standing waves

    NASA Astrophysics Data System (ADS)

    Lee, Tien-Lin

    2006-03-01

    Using the brilliant undulator radiation available from the third generation synchrotron sources, hard x-ray photoelectron spectroscopy (HAXPES) has become an emerging field in the recent years. With the excitation energy used in HAXPES one can benefits from the large mean free path of fast electrons (˜ 5 nm for electrons of 6 keV kinetic energy) in probing the bulk electronic properties of materials. For high-resolution studies, photon energy bandwidth narrower than 100 meV is also readily achievable in the hard x-ray range with crystal monochromators. In addition, working with hard x-ray offers the possibility for combining photoelectron spectroscopy with x-ray standing wave (XSW) method. With the high spatial resolution from XSWs, this unique combination can provide site-specific, chemical and electronic information for studying surfaces, buried interfaces, thin films and bulk crystals. In this talk, I will briefly mention some HAXPES experiments detecting electrons up to 14.5 keV [1,2]. I will then sketch the principle of combining XSWs with HAXPES and present results from some recent applications using this combination: (1) chemical state-specific surface structure determination with core-level photoemission, (2) site-specific valence x-ray photoelectron spectroscopy and (3) XSW imaging with core-level photoemission. [1] S. Thiess, C. Kunz, B.C.C. Cowie, T.-L. Lee, M. Renier, and J. Zegenhagen. Solid State Communications 132, 589 (2004) [2] C. Kunz, S. Thiess, B.C.C. Cowie, T.-L. Lee, and J. Zegenhagen, Nuclear Instruments and Methods A 547, 73 (2005).

  8. Cryogenic, high-resolution x-ray detector with high count rate capability

    DOEpatents

    Frank, Matthias; Mears, Carl A.; Labov, Simon E.; Hiller, Larry J.; Barfknecht, Andrew T.

    2003-03-04

    A cryogenic, high-resolution X-ray detector with high count rate capability has been invented. The new X-ray detector is based on superconducting tunnel junctions (STJs), and operates without thermal stabilization at or below 500 mK. The X-ray detector exhibits good resolution (.about.5-20 eV FWHM) for soft X-rays in the keV region, and is capable of counting at count rates of more than 20,000 counts per second (cps). Simple, FET-based charge amplifiers, current amplifiers, or conventional spectroscopy shaping amplifiers can provide the electronic readout of this X-ray detector.

  9. New developments in high pressure x-ray spectroscopy beamline at High Pressure Collaborative Access Team

    SciTech Connect

    Xiao, Y. M. Chow, P.; Boman, G.; Bai, L. G.; Rod, E.; Bommannavar, A.; Kenney-Benson, C.; Sinogeikin, S.; Shen, G. Y.

    2015-07-15

    The 16 ID-D (Insertion Device - D station) beamline of the High Pressure Collaborative Access Team at the Advanced Photon Source is dedicated to high pressure research using X-ray spectroscopy techniques typically integrated with diamond anvil cells. The beamline provides X-rays of 4.5-37 keV, and current available techniques include X-ray emission spectroscopy, inelastic X-ray scattering, and nuclear resonant scattering. The recent developments include a canted undulator upgrade, 17-element analyzer array for inelastic X-ray scattering, and an emission spectrometer using a polycapillary half-lens. Recent development projects and future prospects are also discussed.

  10. Note: Application of laser produced plasma K alpha x-ray probe in radiation biology.

    PubMed

    Nishikino, Masaharu; Sato, Katsutoshi; Hasegawa, Noboru; Ishino, Masahiko; Ohshima, Shinsuke; Okano, Yasuaki; Kawachi, Tetsuya; Numasaki, Hodaka; Teshima, Tetruki; Nishimura, Hiroaki

    2010-02-01

    A dedicated radiation biology x-ray generation and exposure system has been developed. 8.0 keV in energy x-ray pulses generated with a femtosecond-laser pulse was used to irradiate sample cells through a custom-made culture dish with a silicon nitride membrane. The x-ray irradiation resulted in DNA double-strand breaks in the nucleus of a culture cell that were similar to those obtained with a conventional x-ray source, thus demonstrating the feasibility of radiobiological studies utilizing a single burst of x-rays focused on single cell specimens.

  11. Observation of soft X-rays from extended sources. [such as Perseus star cluster

    NASA Technical Reports Server (NTRS)

    Catura, R. C.; Acton, L. W.

    1974-01-01

    Efforts were directed toward surveying several supernova remnants for the emission of soft X-rays. Rather than attempt to detect such faint X-ray emission, the program was redirected to observe the spectrum and angular structure of the extended X-ray source in the Perseus cluster of galaxies and the super-nova remnant Puppis A. An attempt was made to detect X-ray line emission from Puppis A with a Bragg crystal spectrometer. Observations provide evidence for the presence of X-ray line emission in the spectrum of Puppis A near .65 keV.

  12. The X-ray Fluorescence Microscopy Beamline at the Australian Synchrotron

    SciTech Connect

    Paterson, D.; Jonge, M. D. de; Howard, D. L.; Lewis, W.; McKinlay, J.; Starritt, A.; Kusel, M.; Ryan, C. G.; Kirkham, R.; Moorhead, G.; Siddons, D. P.

    2011-09-09

    A hard x-ray micro-nanoprobe has commenced operation at the Australian Synchrotron providing versatile x-ray fluorescence microscopy across an incident energy range from 4 to 25 keV. Two x-ray probes are used to collect {mu}-XRF and {mu}-XANES for elemental and chemical microanalysis: a Kirkpatrick-Baez mirror microprobe for micron resolution studies and a Fresnel zone plate nanoprobe capable of 60-nm resolution. Some unique aspects of the beamline design and operation are discussed. An advanced energy dispersive x-ray fluorescence detection scheme named Maia has been developed for the beamline, which enables ultrafast x-ray fluorescence microscopy.

  13. Soft X-Ray Pulsations in Solar Flares

    NASA Astrophysics Data System (ADS)

    Simões, P. J. A.; Hudson, H. S.; Fletcher, L.

    2015-12-01

    The soft X-ray emissions ( hν>1.5 keV) of solar flares mainly come from the bright coronal loops at the highest temperatures normally achieved in the flare process. Their ubiquity has led to their use as a standard measure of flare occurrence and energy, although the overwhelming bulk of the total flare energy goes elsewhere. Recently Dolla et al. ( Astrophys. J. Lett. 749, L16, 2012) noted quasi-periodic pulsations (QPP) in the soft X-ray signature of the X-class flare SOL2011-02-15, as observed by the standard photometric data from the GOES ( Geostationary Operational Environmental Satellite) spacecraft. In this article we analyse the suitability of the GOES data for this type of analysis and find them to be generally valuable after September, 2010 (GOES-15). We then extend the result of Dolla et al. to a complete list of X-class flares from Cycle 24 and show that most of them (80 %) display QPPs in the impulsive phase. The pulsations show up cleanly in both channels of the GOES data, making use of time-series of irradiance differences (the digital time derivative on the 2-s sampling). We deploy different techniques to characterise the periodicity of GOES pulsations, considering the red-noise properties of the flare signals, finding a range of characteristic time scales of the QPPs for each event, but usually with no strong signature of a single period dominating in the power spectrum. The QPP may also appear on somewhat longer time scales during the later gradual phase, possibly with a greater tendency towards coherence, but the sampling noise in GOES difference data for high irradiance values (X-class flares) makes these more uncertain. We show that there is minimal phase difference between the differenced GOES energy channels, or between them and the hard X-ray variations on short time scales. During the impulsive phase, the footpoints of the newly forming flare loops may also contribute to the observed soft X-ray variations.

  14. The detection and X-ray view of the changing look AGN HE 1136-2304

    NASA Astrophysics Data System (ADS)

    Parker, M. L.; Komossa, S.; Kollatschny, W.; Walton, D. J.; Schartel, N.; Santos-Lleó, M.; Harrison, F. A.; Fabian, A. C.; Zetzl, M.; Grupe, D.; Rodríguez-Pascual, P. M.; Vasudevan, R. V.

    2016-09-01

    We report the detection of high-amplitude X-ray flaring of the AGN HE 1136-2304, which is accompanied by a strong increase in the flux of the broad Balmer lines, changing its Seyfert type from almost type 2 in 1993 down to 1.5 in 2014. HE 1136-2304 was detected by the XMM-Newton slew survey at >10 times the flux it had in the ROSAT all-sky survey, and confirmed with Swift follow-up after increasing in X-ray flux by a factor of ˜30. Optical spectroscopy with SALT shows that the AGN has changed from a Seyfert 1.95 to a Seyfert 1.5 galaxy, with greatly increased broad line emission and an increase in blue continuum AGN flux by a factor of >4. The X-ray spectra from XMM-Newton and NuSTAR reveal moderate intrinsic absorption and a high energy cutoff at ˜100 keV. We consider several different physical scenarios for a flare, such as changes in obscuring material, tidal disruption events, and an increase in the accretion rate. We find that the most likely cause of the increased flux is an increase in the accretion rate, although it could also be due to a change in obscuration.

  15. X-rays from a microsecond X-pinch

    SciTech Connect

    Appartaim, R. K.

    2013-08-28

    The characteristics of x-rays emitted by X-pinches driven by discharging a current of ∼320 kA with a quarter period of 1 μs in crossed 25 μm wires have been investigated. The x-ray emissions are studied using filtered silicon photodiodes, diamond radiation detectors, and pinhole cameras. The results show that predominantly x-rays from the microsecond X-pinch tend to be emitted in two distinct sets of bursts. The first is predominantly “soft,” i.e., with photon energy hν < 5 keV, followed by a second set of bursts beginning up to 100 ns following the initial bursts, and usually consisting of higher photon energies. Our results show, however, that the x-ray emissions do not contain a significant component with hν > 10 keV as might be expected from electron beam activity within the plasma or from the X-pinch diode. High-resolution images obtained with the observed x-rays suggest a well-defined small source of soft x-rays that demonstrates the potential of the microsecond X-pinch.

  16. Hard X-ray emission of the luminous infrared galaxy NGC 6240 as observed by NuSTAR

    NASA Astrophysics Data System (ADS)

    Puccetti, S.; Comastri, A.; Bauer, F. E.; Brandt, W. N.; Fiore, F.; Harrison, F. A.; Luo, B.; Stern, D.; Urry, C. M.; Alexander, D. M.; Annuar, A.; Arévalo, P.; Baloković, M.; Boggs, S. E.; Brightman, M.; Christensen, F. E.; Craig, W. W.; Gandhi, P.; Hailey, C. J.; Koss, M. J.; La Massa, S.; Marinucci, A.; Ricci, C.; Walton, D. J.; Zappacosta, L.; Zhang, W.

    2016-01-01

    We present a broadband (~0.3-70 keV) spectral and temporal analysis of NuSTAR observations of the luminous infrared galaxy NGC 6240 combined with archival Chandra, XMM-Newton, and BeppoSAX data. NGC 6240 is a galaxy in a relatively early merger state with two distinct nuclei separated by ~1.̋5. Previous Chandra observations resolved the two nuclei and showed that they are both active and obscured by Compton-thick material. Although they cannot be resolved by NuSTAR, we were able to clearly detect, for the first time, both the primary and the reflection continuum components thanks to the unprecedented quality of the NuSTAR data at energies >10 keV. The NuSTAR hard X-ray spectrum is dominated by the primary continuum piercing through an absorbing column density which is mildly optically thick to Compton scattering (τ ≃ 1.2, NH ~ 1.5 × 1024 cm-2). We detect moderately hard X-ray (>10 keV) flux variability up to 20% on short (15-20 ks) timescales. The amplitude of the variability is largest at ~30 keV and is likely to originate from the primary continuum of the southern nucleus. Nevertheless, the mean hard X-ray flux on longer timescales (years) is relatively constant. Moreover, the two nuclei remain Compton-thick, although we find evidence of variability in the material along the line of sight with column densities NH ≤ 2 × 1023 cm-2 over long (~3-15 yr) timescales. The observed X-ray emission in the NuSTAR energy range is fully consistent with the sum of the best-fit models of the spatially resolved Chandra spectra of the two nuclei.

  17. Probing the X-Ray Binary Populations of the Ring Galaxy NGC 1291

    NASA Technical Reports Server (NTRS)

    Luo, B.; Fabbiano, G.; Fragos, T.; Kim, D. W.; Belczynski, K.; Brassington, N. J.; Pellegrini, S.; Tzanavaris, P.; Wang, J.; Zezas, A.

    2012-01-01

    We present Chandra studies of the X-ray binary (XRB) populations in the bulge and ring regions of the ring galaxy NGC 1291. We detect 169 X-ray point sources in the galaxy, 75 in the bulge and 71 in the ring, utilizing the four available Chandra observations totaling an effective exposure of 179 ks. We report photometric properties of these sources in a point-source catalog. There are approx. 40% of the bulge sources and approx. 25% of the ring sources showing > 3(sigma) long-term variability in their X-ray count rate. The X-ray colors suggest that a significant fraction of the bulge (approx. 75%) and ring (approx. 65%) sources are likely low-mass X-ray binaries (LMXBs). The spectra of the nuclear source indicate that it is a low-luminosity AGN with moderate obscuration; spectral variability is observed between individual observations. We construct 0.3-8.0 keV X-ray luminosity functions (XLFs) for the bulge and ring XRB populations, taking into account the detection incompleteness and background AGN contamination. We reach 90% completeness limits of approx.1.5 x 10(exp 37) and approx. 2.2 x 10(exp 37) erg/s for the bulge and ring populations, respectively. Both XLFs can be fit with a broken power-law model, and the shapes are consistent with those expected for populations dominated by LMXBs. We perform detailed population synthesis modeling of the XRB populations in NGC 1291 , which suggests that the observed combined XLF is dominated by aD old LMXB population. We compare the bulge and ring XRB populations, and argue that the ring XRBs are associated with a younger stellar population than the bulge sources, based on the relative over-density of X-ray sources in the ring, the generally harder X-ray color of the ring sources, the overabundance of luminous sources in the combined XLF, and the flatter shape of the ring XLF.

  18. An X-ray study of five supernova remnants in the Carina spiral arm

    NASA Technical Reports Server (NTRS)

    Hwang, Una; Markert, Thomas H.

    1994-01-01

    The ROSAT Position Sensitive Proportional Counter (PSPC) is used to perform an exploratory study of four fields in the Carina spiral arm containing five radio supernova remnants, only one of which has previously been studied in X-rays. We present upper limits for the detection in X-rays of G298.5 - 0.3, G298.6 - 0.0, and G299.0+0.2, and report a 4 sigma detection of G296.8-0.3. In addition, we present detailed spatial and spectral analysis of the bright X-ray remnant G296.1-0.7, which has previously been studied by both the Einstein IPC and EXOSAT LE/CMA. We detect relatively slight, but statistically significant, variations in the spectrum across the remnant via spatially resolved spectral fits and a study of the spatial variation of hardness ratios. In general, the spectrum is characteristic of a thermal plasma with kT about 0.2 keV and N(sub H) about 1.5 x 10(exp 21/sq. cm). The total X-ray emitting mass is estimated to be about 250 solar mass for an optically estimated distance of 4 kpc to the remnant. At this distance, the linear dimensions of the remnant are roughly 35 - 50 pc, implying an age on the order of 20,000 yr. Assuming that X-ray and radio brightnesses are related by SIGMA(sub R) proportional to SIGMA(exp 0.69)(sub X) and that the four radio remnants have X-ray spectral characteristics similar to G296.1-0.7, we find that the column densities to these sources must be several times 10(exp 22)/sq cm in order to explain their low X-ray count rates. This column density is considerably in excess of the X-ray fitted column density to G296.1-0.7, but is comparable to the total column densities in H I measured via the 21 cm line in the directions to all five remnants. This implies that G296.1 - 0.7 is at a significantly smaller distance than the other remnants.

  19. Measurement and simulations of hollow atom X-ray spectra of solid-density relativistic plasma created by high-contrast PW optical laser pulses

    NASA Astrophysics Data System (ADS)

    Pikuz, S. A.; Faenov, A. Ya.; Colgan, J.; Dance, R. J.; Abdallah, J.; Wagenaars, E.; Booth, N.; Culfa, O.; Evans, R. G.; Gray, R. J.; Kaempfer, T.; Lancaster, K. L.; McKenna, P.; Rossall, A. L.; Skobelev, I. Yu.; Schulze, K. S.; Uschmann, I.; Zhidkov, A. G.; Woolsey, N. C.

    2013-09-01

    K-shell spectra of solid Al excited by petawatt picosecond laser pulses have been investigated at the Vulcan PW facility. Laser pulses of ultrahigh contrast with an energy of 160 J on the target allow studies of interactions between the laser field and solid state matter at 1020 W/cm2. Intense X-ray emission of KK hollow atoms (atoms without n = 1 electrons) from thin aluminum foils is observed from optical laser plasma for the first time. Specifically for 1.5 μm thin foil targets the hollow atom yield dominates the resonance line emission. It is suggested that the hollow atoms are predominantly excited by the impact of X-ray photons generated by radiation friction to fast electron currents in solid-density plasma due to Thomson scattering and bremsstrahlung in the transverse plasma fields. Numerical simulations of Al hollow atom spectra using the ATOMIC code confirm that the impact of keV photons dominates the atom ionization. Our estimates demonstrate that solid-density plasma generated by relativistic optical laser pulses provide the source of a polychromatic keV range X-ray field of 1018 W/cm2 intensity, and allows the study of excited matter in the radiation-dominated regime. High-resolution X-ray spectroscopy of hollow atom radiation is found to be a powerful tool to study the properties of high-energy density plasma created by intense X-ray radiation.

  20. Performance of the PRAXyS X-ray polarimeter

    NASA Astrophysics Data System (ADS)

    Iwakiri, W. B.; Black, J. K.; Cole, R.; Enoto, T.; Hayato, A.; Hill, J. E.; Jahoda, K.; Kaaret, P.; Kitaguchi, T.; Kubota, M.; Marlowe, H.; McCurdy, R.; Takeuchi, Y.; Tamagawa, T.

    2016-12-01

    The performance of the Time Projection Chamber (TPC) polarimeter for the Polarimeter for Relativistic Astrophysical X-ray Sources (PRAXyS) Small Explorer was evaluated using polarized and unpolarized X-ray sources. The PRAXyS mission will enable exploration of the universe through X-ray polarimetry in the 2-10 keV energy band. We carried out performance tests of the polarimeter at the Brookhaven National Laboratory, National Synchrotron Light Source (BNL-NSLS) and at NASA's Goddard Space Flight Center. The polarimeter was tested with linearly polarized, monochromatic X-rays at 11 different energies between 2.5 and 8.0 keV. At maximum sensitivity, the measured modulation factors at 2.7, 4.5 and 8.0 keV are 27%, 43% and 59%, respectively and the measured angle of polarization is consistent with the expected value at all energies. Measurements with a broadband, unpolarized X-ray source placed a limit of less than 1% on false polarization in the PRAXyS polarimeter.

  1. Performance of the PRAXyS X-Ray Polarimeter

    NASA Technical Reports Server (NTRS)

    Iwakiri, W.B.; Black, J. K.; Cole, R.; Enoto, T.; Hayato, A.; Hill, J. E.; Jahoda, K.; Kaaret, P.; Kitaguchi, T.; Kubota, M.; Marlowe, H.; McCurdy, R.; Takeuchi, Y.; Tamagawa, T.

    2016-01-01

    The performance of the Time Projection Chamber (TPC) polarimeter for the Polarimeter for Relativistic Astrophysical X-ray Sources (PRAXyS) Small Explorer was evaluated using polarized and unpolarized X-ray sources. The PRAXyS mission will enable exploration of the universe through X-ray polarimetry in the 2-10 keV energy band. We carried out performance tests of the polarimeter at the Brookhaven National Laboratory, National Synchrotron Light Source (BNL-NSLS) and at NASA's Goddard Space Flight Center. The polarimeter was tested with linearly polarized, monochromatic X-rays at 11 different energies between 2.5 and 8.0 keV. At maximum sensitivity, the measured modulation factors at 2.7, 4.5 and 8.0 keV are 27%, 43% and 59%, respectively and the measured angle of polarization is consistent with the expected value at all energies. Measurements with a broadband, unpolarized X-ray source placed a limit of less than 1% on false polarization in the PRAXyS polarimeter.

  2. An upgraded x-ray spectroscopy diagnostic on MSTa)

    NASA Astrophysics Data System (ADS)

    Clayton, D. J.; Almagri, A. F.; Burke, D. R.; Forest, C. B.; Goetz, J. A.; Kaufman, M. C.; O'Connell, R.

    2010-10-01

    An upgraded x-ray spectroscopy diagnostic is used to measure the distribution of fast electrons in MST and to determine Zeff and the particle diffusion coefficient Dr. A radial array of 12 CdZnTe hard-x-ray detectors measures 10-150 keV Bremsstrahlung from fast electrons, a signature of reduced stochasticity and improved confinement in the plasma. A new Si soft-x-ray detector measures 2-10 keV Bremsstrahlung from thermal and fast electrons. The shaped output pulses from both detector types are digitized and the resulting waveforms are fit with Gaussians to resolve pileup and provide good time and energy resolution. Lead apertures prevent detector saturation and provide a well-known etendue, while lead shielding prevents pickup from stray x-rays. New Be vacuum windows transmit >2 keV x-rays, and additional Al and Be filters are sometimes used to reduce low energy flux for better resolution at higher energies. Measured spectra are compared to those predicted by the Fokker-Planck code CQL3D to deduce Zeff and Dr.

  3. Neutron and X-ray Detectors

    SciTech Connect

    Carini, Gabriella; Denes, Peter; Gruener, Sol; Lessner, Elianne

    2012-08-01

    (and two computing hurdles that result from the corresponding increase in data volume) for the detector community to overcome in order to realize the full potential of BES neutron and X-ray facilities. Resolving these detector impediments will improve scientific productivity both by enabling new types of experiments, which will expand the scientific breadth at the X-ray and neutron facilities, and by potentially reducing the beam time required for a given experiment. These research priorities are summarized in the table below. Note that multiple, simultaneous detector improvements are often required to take full advantage of brighter sources. High-efficiency hard X-ray sensors: The fraction of incident particles that are actually detected defines detector efficiency. Silicon, the most common direct-detection X-ray sensor material, is (for typical sensor thicknesses) 100% efficient at 8 keV, 25%efficient at 20 keV, and only 3% efficient at 50 keV. Other materials are needed for hard X-rays. Replacement for 3He for neutron detectors: 3He has long been the neutron detection medium of choice because of its high cross section over a wide neutron energy range for the reaction 3He + n —> 3H + 1H + 0.764 MeV. 3He stockpiles are rapidly dwindling, and what is available can be had only at prohibitively high prices. Doped scintillators hold promise as ways to capture neutrons and convert them into light, although work is needed on brighter, more efficient scintillator solutions. Neutron detectors also require advances in speed and resolution. Fast-framing X-ray detectors: Today’s brighter X-ray sources make time-resolved studies possible. For example, hybrid X-ray pixel detectors, initially developed for particle physics, are becoming fairly mature X-ray detectors, with considerable development in Europe. To truly enable time-resolved studies, higher frame rates and dynamic range are required, and smaller pixel sizes are desirable. High-speed spectroscopic X-ray detectors

  4. A novel one-pot synthesis of heterocyclic compound (4-benzoyl-5-phenyl-2-(pyridin-2-yl)-3,3a-dihydropyrazolo[1,5-c]pyrimidin-7(6H)-one): Structural (X-ray and DFT) and spectroscopic (FT-IR, NMR, UV-Vis and Mass) characterization Studies

    NASA Astrophysics Data System (ADS)

    Özdemir, Mecit; Sönmez, Mehmet; Şen, Fatih; Dinçer, Muharrem; Özdemir, Namık

    2015-02-01

    In this study, the title compound named as 4-benzoyl-5-phenyl-2-(pyridin-2-yl)-3,3a-dihydropyrazolo[1,5-c]pyrimidin-7(6H)-one (C24H18N4O2) was both experimentally and theoretically investigated. The compound was synthesized and characterized by FT-IR, NMR (1H NMR, 13C NMR and HETCOR-NMR), Mass spectroscopies and single-crystal X-ray diffraction methods. The compound crystallizes in the monoclinic space group P21/n with a = 6.1402 (3) Å, b = 21.4470 (15) Å, c = 15.0049 (8) Å and β = 97.407 (4)°. The molecular geometry was obtained from the X-ray structure determination optimized using density functional theory (DFT/B3LYP) method with the 6-31+G(d, p) basis set in ground state. From the optimized structure, geometric parameters, vibrational wavenumbers and chemical shifts of molecule were obtained. Experimental measurements were compared with its corresponding the calculated data. An excellent harmony between the two data was ascertained. Besides, molecular electrostatic potential (MEP), frontier molecular orbitals (FMOs) and non-linear optical (NLO) properties of the title molecule were investigated by theoretical calculations at the B3LYP/6-31+G(d, p) level.

  5. The X-ray spectrum of δ Orionis observed by LETGS aboard Chandra

    NASA Astrophysics Data System (ADS)

    Raassen, A. J. J.; Pollock, A. M. T.

    2013-02-01

    Aims: We analyze the high-resolution X-ray spectrum of the supergiant O-star δ Orionis (O9.5II) with line ratios of He-like ions and a thermal plasma model, and we examine its variability. Methods: The O-supergiant δ Ori was observed in the wavelength range 5-175 Å by the X-ray detector HRC-S in combination with the grating LETG aboard Chandra. We studied the He-like ions in combination with the UV-radiation field to determine local plasma temperatures and to establish the distance of the X-ray emitting ions to the stellar surface. We measured individual lines by means of Gaussian profiles, folded through the response matrix, to obtain wavelengths, line fluxes, half widths at half maximum (HWHM) and line shifts to characterize the plasma. We consider multitemperature models in collisional ionization equilibrium (CIE) to determine temperatures, emission measures, and abundances. Results: Analysis of the He-like triplets extended to N vi and C v implies ionization stratification with the hottest plasma to be found within a few stellar radii 3 R∗ (Mg xi) and the coolest farther out, far beyond the acceleration zone, up to 49 R∗ (N vi) and 75 R∗ (C v). The observed temperatures cover a range from about 0.1 to 0.7 keV, i.e., 1-8 MK. The X-ray luminosity (Lx) is ~1.5 × 1032 erg/s in the range from 0.07 to 3 keV covered by LETGS. Velocity widths of about 1040 km s-1 have been determined.

  6. X-RAY NONLINEAR OPTICAL PROCESSES IN ATOMS USING A SELF-AMPLIFIED SPONTANEOUS EMISSION FREE-ELECTRON LASER

    SciTech Connect

    Rohringer, N

    2008-08-08

    core-hole excited 1s{sup -1} 3p state is embedded in the continuum and decays via Auger-process on the timescale of approximately 5 fs. Increasing the x-ray intensity above 1.5 x 10{sup 18} W/cm{sup 2}, a peak intensity accessible with xFEL sources in the near future, x-ray induced emission from 3p back to 1s becomes possible, i.e. Rabi oscillations between these two levels can be induced. For the numerical analysis of this process, an effective two-level model, including a description of the resonant Auger decay process, is employed. The observation of x-ray-driven atomic populations dynamics in the time domain is challenging for chaotic xFEL pulses. In addition to requiring single-shot measurements, sub-femtosecond temporal resolution would be needed. The Rabi oscillations will, however, be imprinted on the kinetic energy distribution of the resonant Auger electron (see Fig. 1). Measuring the resonant Auger-electron line profile will provide information on both atomic population dynamics and x-ray pulse properties.

  7. Solar Hard X-ray Observations with NuSTAR

    NASA Astrophysics Data System (ADS)

    Marsh, Andrew; Smith, D. M.; Krucker, S.; Hudson, H. S.; Hurford, G. J.; White, S. M.; Mewaldt, R. A.; Harrison, F. A.; Grefenstette, B. W.; Stern, D.

    2012-05-01

    High-sensitivity imaging of coronal hard X-rays allows detection of freshly accelerated nonthermal electrons at the acceleration site. A few such observations have been made with Yohkoh and RHESSI, but a leap in sensitivity could help pin down the time, place, and manner of reconnection. Around the time of this meeting, the Nuclear Spectroscopic Telescope ARray (NuSTAR), a NASA Small Explorer for high energy astrophysics that uses grazing-incidence optics to focus X-rays up to 80 keV, will be launched. Three weeks will be dedicated to solar observing during the baseline two-year mission. NuSTAR will be 200 times more sensitive than RHESSI in the hard X-ray band. This will allow the following new observations, among others: 1) Extrapolation of the micro/nanoflare distribution by two orders of magnitude down in flux; 2) Search for hard X-rays from network nanoflares (soft X-ray bright points) and evaluation of their role in coronal heating; 3) Discovery of hard X-ray bremsstrahlung from the electron beams driving type III radio bursts, and measurement of their electron spectrum; 4) Hard X-ray studies of polar soft X-ray jets and impulsive solar energetic particle events at the edge of coronal holes; 5) Study of coronal bremsstrahlung from particles accelerated by coronal mass ejections as they are first launched; 6) Study of particles at the coronal reconnection site when flare footpoints and loops are occulted; 7) Search for weak high-temperature coronal plasmas in active regions that are not flaring; and 8) Search for hypothetical axion particles created in the solar core via the hard X-ray signal from their conversion to X-rays in the coronal magnetic field. NuSTAR will also serve as a pathfinder for a future dedicated space mission with enhanced capabilities, such as a satellite version of the FOXSI sounding rocket.

  8. Solar Hard X-ray Observations with NuSTAR

    NASA Astrophysics Data System (ADS)

    Smith, David M.; Krucker, S.; Hudson, H. S.; Hurford, G. J.; White, S. M.; Mewaldt, R. A.; Stern, D.; Grefenstette, B. W.; Harrison, F. A.

    2011-05-01

    High-sensitivity imaging of coronal hard X-rays allows detection of freshly accelerated nonthermal electrons at the acceleration site. A few such observations have been made with Yohkoh and RHESSI, but a leap in sensitivity could help pin down the time, place, and manner of reconnection. In 2012, the Nuclear Spectroscopic Telescope Array (NuSTAR), a NASA Small Explorer for high energy astrophysics that uses grazing-incidence optics to focus X-rays up to 80 keV, will be launched. NuSTAR is capable of solar pointing, and three weeks will be dedicated to solar observing during the baseline two-year mission. NuSTAR will be 200 times more sensitive than RHESSI in the hard X-ray band. This will allow the following new observations, among others: 1) Extrapolation of the micro/nanoflare distribution by two orders of magnitude down in flux 2) Search for hard X-rays from network nanoflares (soft X-ray bright points) and evaluation of their role in coronal heating 3) Discovery of hard X-ray bremsstrahlung from the electron beams driving type III radio bursts, and measurement of their electron spectrum 4) Hard X-ray studies of polar soft X-ray jets and impulsive solar energetic particle events at the edge of coronal holes, and comparison of these events with observations of 3He and other particles in interplanetary space 5) Study of coronal bremsstrahlung from particles accelerated by coronal mass ejections as they are first launched 6) Study of particles at the coronal reconnection site when flare footpoints are occulted; and 7) Search for hypothetical axion particles created in the solar core via the hard X-ray signal from their conversion to X-rays in the coronal magnetic field. NuSTAR will also serve as a pathfinder for a future dedicated space mission with enhanced capabilities, such as a satellite version of the FOXSI sounding rocket.

  9. A new technique for measuring the polarization from celestial X-ray sources

    NASA Astrophysics Data System (ADS)

    Austin, Robert A.; Minamitani, Takahisa; Ramsey, Brian D.

    1993-09-01

    The detection of polarized X-rays from cosmic X-ray sources will give useful information about the magnetic fields and matter surrounding these sources. Up to now only one experiment, OSO-8, has measured the degree of polarization from a cosmic X-ray source. In the past we demonstrated a novel new technique using an intensified camera coupled to a gas-filled proportional counter which can be used to measure X-ray polarization by imaging the tracks of photoelectrons ejected when X-rays are absorbed in the detector volume. These tracks contain information about the location of the X-ray interaction point and its polarization. In the lab we have obtained modulation factors of about 30 percent for 60 keV polarized X-rays. Here we discuss preliminary work done towards building a large-area hard X-ray imaging polarimeter which will be able to measure X-ray polarization from bright cosmic X-ray sources at energies between 40 keV and 100 keV.

  10. High Resolution X-ray Imaging

    NASA Technical Reports Server (NTRS)

    Cash, Webster

    2002-01-01

    NAG5-5020 covered a period of 7.5 years during which a great deal of progress was made in x-ray optical techniques under this grant. We survived peer review numerous times during the effort to keep the grant going. In 1994, when the grant started we were actively pursuing the application of spherical mirrors to improving x-ray telescopes. We had found that x-ray detectors were becoming rapidly more sophisticated and affordable, but that x-ray telescopes were only being improved through the intense application of money within the AXAF program. Clearly new techniques for the future were needed. We were successful in developing and testing at the HELSTF facility in New Mexico a four reflection coma-corrected telescope made from spheres. We were able to demonstrate 0.3 arcsecond resolution, almost to the diffraction limit of the system. The community as a whole was, at that time, not particularly interested in looking past AXAF (Chandra) and the effort needed to evolve. Since we had reached the diffraction limit using non-Wolter optics we then decided to see if we could build an x-ray interferometer in the laboratory. In the lab the potential for improved resolution was substantial. If synthetic aperture telescopes could be built in space, then orders of magnitude improvement would become feasible. In 1998 NASA, under the direction of Dr Nick White of Goddard, started a study to assess the potential and feasibility of x-ray interferometry in space. My work became of central interest to the committee because it indicated that such was possible. In early 1999 we had the breakthrough that allowed us build a practical interferometer. By using flats and hooking up with the Marshall Space Flight Center facilities we were able to demonstrate fringes at 1.25keV on a one millimeter baseline. This actual laboratory demonstration provided the solid proof of concept that NASA needed. As the year progressed the future of x-ray astronomy jelled around the Maxim program. Maxim is a

  11. The x-ray telescope of CAST

    NASA Astrophysics Data System (ADS)

    Kuster, M.; Bräuninger, H.; Cebrián, S.; Davenport, M.; Eleftheriadis, C.; Englhauser, J.; Fischer, H.; Franz, J.; Friedrich, P.; Hartmann, R.; Heinsius, F. H.; Hoffmann, D. H. H.; Hoffmeister, G.; Joux, J. N.; Kang, D.; Königsmann, K.; Kotthaus, R.; Papaevangelou, T.; Lasseur, C.; Lippitsch, A.; Lutz, G.; Morales, J.; Rodríguez, A.; Strüder, L.; Vogel, J.; Zioutas

    2007-06-01

    The CERN Axion Solar Telescope (CAST) has been in operation and taking data since 2003. The main objective of the CAST experiment is to search for a hypothetical pseudoscalar boson, the axion, which might be produced in the core of the sun. The basic physics process CAST is based on is the time inverted Primakoff effect, by which an axion can be converted into a detectable photon in an external electromagnetic field. The resulting x-ray photons are expected to be thermally distributed between 1 and 7 keV. The most sensitive detector system of CAST is a pn-CCD detector combined with a Wolter I type x-ray mirror system. With the x-ray telescope of CAST a background reduction of more than 2 orders of magnitude is achieved, such that for the first time the axion photon coupling constant gaγγ can be probed beyond the best astrophysical constraints gaγγ < 1 × 10-10 GeV-1.

  12. NuSTAR Hard X-Ray Survey of the Galactic Center Region I: Hard X-Ray Morphology and Spectroscopy of the Diffuse Emission

    NASA Astrophysics Data System (ADS)

    Mori, Kaya; Hailey, Charles J.; Krivonos, Roman; Hong, Jaesub; Ponti, Gabriele; Bauer, Franz; Perez, Kerstin; Nynka, Melania; Zhang, Shuo; Tomsick, John A.; Alexander, David M.; Baganoff, Frederick K.; Barret, Didier; Barrière, Nicolas; Boggs, Steven E.; Canipe, Alicia M.; Christensen, Finn E.; Craig, William W.; Forster, Karl; Giommi, Paolo; Grefenstette, Brian W.; Grindlay, Jonathan E.; Harrison, Fiona A.; Hornstrup, Allan; Kitaguchi, Takao; Koglin, Jason E.; Luu, Vy; Madsen, Kristen K.; Mao, Peter H.; Miyasaka, Hiromasa; Perri, Matteo; Pivovaroff, Michael J.; Puccetti, Simonetta; Rana, Vikram; Stern, Daniel; Westergaard, Niels J.; Zhang, William W.; Zoglauer, Andreas

    2015-12-01

    We present the first sub-arcminute images of the Galactic Center above 10 keV, obtained with NuSTAR. NuSTAR resolves the hard X-ray source IGR J17456-2901 into non-thermal X-ray filaments, molecular clouds, point sources, and a previously unknown central component of hard X-ray emission (CHXE). NuSTAR detects four non-thermal X-ray filaments, extending the detection of their power-law spectra with Γ ˜ 1.3-2.3 up to ˜50 keV. A morphological and spectral study of the filaments suggests that their origin may be heterogeneous, where previous studies suggested a common origin in young pulsar wind nebulae (PWNe). NuSTAR detects non-thermal X-ray continuum emission spatially correlated with the 6.4 keV Fe Kα fluorescence line emission associated with two Sgr A molecular clouds: MC1 and the Bridge. Broadband X-ray spectral analysis with a Monte-Carlo based X-ray reflection model self-consistently determined their intrinsic column density (˜1023 cm-2), primary X-ray spectra (power-laws with Γ ˜ 2) and set a lower limit of the X-ray luminosity of Sgr A* flare illuminating the Sgr A clouds to LX ≳ 1038 erg s-1. Above ˜20 keV, hard X-ray emission in the central 10 pc region around Sgr A* consists of the candidate PWN G359.95-0.04 and the CHXE, possibly resulting from an unresolved population of massive CVs with white dwarf masses MWD ˜ 0.9 M⊙. Spectral energy distribution analysis suggests that G359.95-0.04 is likely the hard X-ray counterpart of the ultra-high gamma-ray source HESS J1745-290, strongly favoring a leptonic origin of the GC TeV emission.

  13. X-Ray Exam: Wrist

    MedlinePlus

    ... tissues and the ends of the forearm bones (radius and ulna) and eight small wrist bones (carpal bones). The X-ray image is black and white. Dense structures that block the passage of the X-ray beam through the body, such as the bones, appear white on the image. Softer ...

  14. X-ray based extensometry

    NASA Technical Reports Server (NTRS)

    Jordan, E. H.; Pease, D. M.

    1988-01-01

    A totally new method of extensometry using an X-ray beam was proposed. The intent of the method is to provide a non-contacting technique that is immune to problems associated with density variations in gaseous environments that plague optical methods. X-rays are virtually unrefractable even by solids. The new method utilizes X-ray induced X-ray fluorescence or X-ray induced optical fluorescence of targets that have melting temperatures of over 3000 F. Many different variations of the basic approaches are possible. In the year completed, preliminary experiments were completed which strongly suggest that the method is feasible. The X-ray induced optical fluorescence method appears to be limited to temperatures below roughly 1600 F because of the overwhelming thermal optical radiation. The X-ray induced X-ray fluorescence scheme appears feasible up to very high temperatures. In this system there will be an unknown tradeoff between frequency response, cost, and accuracy. The exact tradeoff can only be estimated. It appears that for thermomechanical tests with cycle times on the order of minutes a very reasonable system may be feasible. The intended applications involve very high temperatures in both materials testing and monitoring component testing. Gas turbine engines, rocket engines, and hypersonic vehicles (NASP) all involve measurement needs that could partially be met by the proposed technology.

  15. Dual x-ray absorptiometry

    NASA Astrophysics Data System (ADS)

    Altman, Albert; Aaron, Ronald

    2011-04-01

    Dual x-ray absorptiometry is widely used in analyzing body composition and imaging. We discuss the physics of the method and exhibit its limitations and show it is related to the Compton and photoelectric contributions to the x-ray absorption coefficients of materials.

  16. X-Ray Analysis of a Pulsating Source in the 3XMM Catalogue with a Period of 6.8 Minutes

    NASA Astrophysics Data System (ADS)

    Qiu, Hao; Zhou, Ping; Yu, Wenfei; Li, Xiangdong; Xu, Xiaojie

    2017-01-01

    The 3XMM Serendipitous Source Catalogue (3XMM-SSC) contains over 500 thousand source detections from the XMM-Newton EPIC instruments. Along with a database search of the catalogue for unidentified objects of interest, we carry out a detailed study on one pulsating source, which was previously suggested to be a slow pulsar with an approximate period of 400s. We refine the period of the source to 407.88575(1) seconds based on the phase-connection analysis from the XMM-Newton and Swift observations spanning across nine years. The source shows stable X-ray properties (temperature and flux) during the observation epochs, the X-ray spectra is best described by a 2 keV blackbody emission plus 2 faint Fe lines at 6.4 keV and 6.7 keV, respectively. We also search for a possible counterpart in multi-wavebands. The low-mass counterpart candidate, together with the X-ray properties, suggests that the source is probably a low-mass X-ray binary at a distance around 1.5 kpc.

  17. Pinhole interferometry with coherent hard X-rays.

    PubMed

    Leitenberger, Wolfram; Wendrock, Horst; Bischoff, Lothar; Weitkamp, Timm

    2004-03-01

    This paper discusses the experimental realisation of two types of X-ray interferometer based on pinhole diffraction. In both interferometers the beam splitter was a thin metal foil containing micrometer pinholes to divide the incident X-ray wave into two coherent waves. The interference pattern was studied using an energy-dispersive detector to simultaneously investigate in a large spectral range the diffraction properties of the white synchrotron radiation. For a highly absorbing pinhole mask the interference fringes from the classical Young's double-pinhole experiment were recorded and the degree of coherence of X-rays could be determined. In the case of low absorption of the metal foil at higher X-ray energies (>15 keV) the interference pattern of a point diffraction interferometer was observed using the same set-up. The spectral refraction index of the metal foil was determined.

  18. Development of Cell Staining Technique for X-Ray Microscopy

    SciTech Connect

    Tseng, P. Y.; Shih, Y. T.; Liu, C. J.; Hsu, T.; Chien, C. C.; Leng, W. H.; Liang, K. S.; Yin, G. C.; Chen, F. R.; Je, J. H.; Margaritondo, G.; Hwu, Y.

    2007-01-19

    We report a technique for detection of sub-cellular organelles and proteins with hard x-ray microscopy. Several metals were used for enhancing contrast for x-ray microscopy. Osmium tetroxide provides an excellent stain for lipid and can delineate cell membrane. Uranyl acetate has high affinity for nucleotide and can stain nucleus. Immunolocalization of specific proteins and sub-cellular organelles was achieved by 3'3 diaminobenzidine (DAB) with nickel enhancement and nanogold-conjugated secondary antibody with silver enhancement. The x-rays emitted from synchrotron source was monochromatized by double crystal monochromator, the photon energy was fixed at 8 keV to optimize the focusing efficiency of the zone plates. The estimated resolution is about 60 nm. When compared with visible light and conventional confocal microscopy, the X-ray microscopy provides a superior resolution to both conventional optical microscopes.

  19. X-Ray Sources in the Dwarf Spheroidal Galaxy Draco

    NASA Astrophysics Data System (ADS)

    Sonbas, E.; Rangelov, B.; Kargaltsev, O.; Dhuga, K. S.; Hare, J.; Volkov, I.

    2016-04-01

    We present the spectral analysis of an 87 ks XMM-Newton observation of Draco, a nearby dwarf spheroidal galaxy. Of the approximately 35 robust X-ray source detections, we focus our attention on the brightest of these sources, for which we report X-ray and multiwavelength parameters. While most of the sources exhibit properties consistent with active galactic nuclei, few of them possess the characteristics of low-mass X-ray binaries (LMXBs) and cataclysmic variable (CVs). Our analysis places constraints on the population of X-ray sources with LX > 3 × 1033 erg s-1 in Draco, suggesting that there are no actively accreting black hole and neutron star binaries. However, we find four sources that could be quiescent state LMXBs/CVs associated with Draco. We also place constraints on the central black hole luminosity and on a dark matter decay signal around 3.5 keV.

  20. Streaked x-ray microscopy of laser-fusion targets

    SciTech Connect

    Price, R.H.; Campbell, E.M.; Rosen, M.D.; Auerbach, J.M.; Phillion, D.W.; Whitlock, R.R.; Obenshain, S.P.; McLean, E.A.; Ripin, B.H.

    1982-08-01

    An ultrafast soft x-ray streak camera has been coupled to a Wolter axisymmetric x-ray microscope. This system was used to observe the dynamics of laser fusion targets both in self emission and backlit by laser produced x-ray sources. Spatial resolution was 7 ..mu..m and temporal resolution was 20 ps. Data is presented showing the ablative acceleration of foils to velocities near 10/sup 7/ cm/sec and the collision of an accelerated foil with a second foil, observed using 3 keV streaked x-ray backlighting. Good agreement was found between hydrocode simulations, simple models of the ablative acceleration and the observed velocities of the carbon foils.