Science.gov

Sample records for 1-alkyl-3-methylimidazolium ionic liquids

  1. Computational approach to nuclear magnetic resonance in 1-Alkyl-3-methylimidazolium ionic liquids.

    PubMed

    Palomar, Jose; Ferro, Victor R; Gilarranz, Miguel A; Rodriguez, Juan J

    2007-01-11

    A quantum-chemical computational approach to accurately predict the nuclear magnetic resonance (NMR) properties of 1-alkyl-3-methylimidazolium ionic liquids has been performed by the gauge-including atomic orbitals method at the B3LYP/6-31++G** level using different simulated ionic liquid environments. The first molecular model chosen to describe the ionic liquid system includes the gas-phase optimized structures of ion pairs and separated ions of a series of imidazolium salts containing methyl, butyl, and octyl substituents and PF6-, BF4-, and Br- anions. In addition, a continuum polarizable model of solvation has been applied to predict the effects of the medium polarity on the molecular properties of 1,3-dimethylimidazolium hexafluorophosphate (MmimPF6). Furthermore, the specific acidic and basic solute-solvent interactions have been simulated by a discrete solvation model based on molecular clusters formed by MmimPF6 species and a discrete number of water molecules. The computational prediction of the NMR spectra allows a consistent interpretation of the dispersed experimental evidence in the literature. The following are main contributions of this work: (a) Theoretical results state the presence of a chemical equilibrium between ion-pair aggregates and solvent-separated counterions of 1-alkyl-3-methylimidazolium salts which is tuned by the solvent environment; thus, strong specific (acidic and basic) and nonspecific (polarity and polarizability) solvent interactions are predicted favoring the dissociated ionic species. (b) The calculated 1H and 13C NMR properties of these ionic liquids are revealed as highly dependent on the nature of solute-solvent interactions. Thus, the chemical shift of the hydrogen atom in position two of the imidazolium ring is deviated to high values by the specific interactions with water molecules, whereas nonspecific interaction with water (as a solvent) affects, in the opposite direction, this 1H NMR parameter. (c) Last, current

  2. Efficient adsorption of 1-alkyl-3-methylimidazolium chloride ionic liquids onto modified cellulose microspheres.

    PubMed

    Xu, Min; Ao, Yinyong; Wang, Shuojue; Peng, Jing; Li, Jiuqiang; Zhai, Maolin

    2015-09-01

    A novel sulfonated cellulose microsphere adsorbent (CGS) was prepared by pre-irradiation induced emulsion grafting of glycidyl methacrylate (GMA) onto the cellulose microsphere, followed by sulfonation. The resulting CGS exhibited superior adsorption ability toward 1-alkyl-3-methylimidazolium chloride ([CnMIM]Cl) ionic liquids (ILs). The adsorption equilibrium could be attained rapidly within 40 min for representative 1-butyl-3-methylimidazolium chloride ([C4MIM]Cl) using CGS with different amounts of SO3H group. The adsorption behavior of CGS toward [C4MIM]Cl was well described by the pseudo-second-order model and the Langmuir model. The maximum adsorption capacity toward [C4MIM]Cl was 1.08 mmol/g in the wide range of pH (4.8-10.1). In addition, the adsorption capacity of CGS toward [CnMIM]Cl increased with the alkyl length of cations of [CnMIM]Cl due to the hydrophobic interaction and cation exchange adsorption. Spent CGS could be easily regenerated by 0.1 mol/L HCl or NaCl. The results indicated that this new adsorbent is useful in removing ILs from wastewater.

  3. Unraveling heterogeneous microviscosities of the 1-alkyl-3-methylimidazolium hexafluorophosphate ionic liquids with different chain lengths.

    PubMed

    Li, Boxuan; Qiu, Meng; Long, Saran; Wang, Xuefei; Guo, Qianjin; Xia, Andong

    2013-10-14

    The rotational dynamics of coumarin 153 (C153) have been investigated in a series of 1-alkyl-3-methylimidazolium hexafluorophosphate ionic liquids with different alkyl chain lengths (alkyl = butyl, pentyl, hexyl, heptyl, octyl) ([Cnmim][PF6], n = 4-8) to examine the alkyl chain length dependent local viscosity of the microenvironment surrounding the probe molecules. The excimer-to-monomer fluorescence emission intensity ratio (IE/IM) of a well-known microviscosity probe, 1,3-bis(1-pyrenyl)propane (BPP), is also employed to study the microviscosity of [Cnmim][PF6] as a complementary measurement. The rotational dynamics of C153 show that at a certain length of the alkyl chain there are incompact and compact domains within [Cnmim][PF6], resulting in fast and slow components of C153 rotational dynamics. The microviscosities in different structural domains of [Cnmim][PF6] with different alkyl chain lengths are investigated by studying the fluorescence anisotropy decay of probe molecules. The obtained average rotation time constants show that with an increase in the length of the alkyl chain, the microviscosity of [Cnmim][PF6] is obviously increased first and then slightly decreased. The steady state fluorescence measurements with the microviscosity probe of BPP further prove that the microviscosity is not increased as much as expected when ionic liquids [Cnmim][PF6] have a relatively long alkyl chain. The different heterogeneous structures of [Cnmim][PF6] with different lengths of the alkyl chain are proposed to interpret the unusual microviscosity behaviors.

  4. Isolation and Characterisation of 1-Alkyl-3-Methylimidazolium Chloride Ionic Liquid-Tolerant and Biodegrading Marine Bacteria

    PubMed Central

    Megaw, Julianne; Busetti, Alessandro; Gilmore, Brendan F.

    2013-01-01

    The aim of this study was to isolate and identify marine-derived bacteria which exhibited high tolerance to, and an ability to biodegrade, 1-alkyl-3-methylimidazolium chloride ionic liquids. The salinity and hydrocarbon load of some marine environments may induce selective pressures which enhance the ability of microbes to grow in the presence of these liquid salts. The isolates obtained in this study generally showed a greater ability to grow in the presence of the selected ionic liquids compared to microorganisms described previously, with two marine-derived bacteria, Rhodococcus erythropolis and Brevibacterium sanguinis growing in concentrations exceeding 1 M 1-ethyl-3-methylimidazolium chloride. The ability of these bacteria to degrade the selected ionic liquids was assessed using High Performance Liquid Chromatography (HPLC), and three were shown to degrade the selected ionic liquids by up to 59% over a 63-day test period. These bacterial isolates represent excellent candidates for further potential applications in the bioremediation of ionic liquid-containing waste or following accidental environmental exposure. PMID:23560109

  5. Enantioselective toxicities of chiral ionic liquids 1-alkyl-3-methylimidazolium lactate to aquatic algae.

    PubMed

    Chen, Hui; Zou, Yuqin; Zhang, Lijuan; Wen, Yuezhong; Liu, Weiping

    2014-09-01

    With the wide application of chiral ionic liquids (CILs) as green solvents, their threats to the aquatic environment cannot be ignored. Thus, risk assessment and the prospective design of inherently safe CILs have become more urgent. However, whether enantioselectivity is a feature of the aquatic toxicity of CILs is poorly understood. Herein, we describe the first investigation into the ecotoxicities of CILs toward green algae Scenedesmus obliquus and Euglena gracilis. A series of methylimidazolium lactic ionic liquids, which cation parts with different alkyl chains and anion part is enantiomers of lactate, are used as representative CILs. The results of S. obliquus showed that the EC50 value of L-(+)-1-ethyl-3-methylimidazolium lactate (L-(+)-EMIM L) was more than 5000 μM, while the EC50 value of D-(-)-1-ethyl-3-methylimidazolium lactate (D-(-)-EMIM L) was 2255.21 μM. Such a distinct difference indicates the enantioselective toxicity of CILs to algae. This enantioselectivity initially persisted with increasing carbon chain length, but no longer exhibited when with greater carbon chain lengths, due to changes in the toxicity weightings of the cation parts. Further research showed that the enantioselective effects of CILs resulted from the differences in the production of reactive oxygen species, the damage to cell membrane integrity and cell wall after exposure to CILs. Results from this study showed that monitoring for the racemate CILs will give an inadequate or misleading environmental risk assessment. Thus, we should improve our ability to predict their effects in natural environments. In the meantime, non-selective use of CILs will do harm to aquatic organisms. Therefore, to minimize their potential for environmental impact, the enantioselective toxicities of CILs with short alkyl chains should be taken into consideration.

  6. Galleria mellonella as a novel in vivo model for assessment of the toxicity of 1-alkyl-3-methylimidazolium chloride ionic liquids.

    PubMed

    Megaw, Julianne; Thompson, Thomas P; Lafferty, Ryan A; Gilmore, Brendan F

    2015-11-01

    The larval form of the Greater Wax Moth (Galleria mellonella) was evaluated as a model system for the study of the acute in vivo toxicity of 1-alkyl-3-methylimidazolium chloride ionic liquids. 24-h median lethal dose (LD50) values for nine of these ionic liquids bearing alkyl chain substituents ranging from 2 to 18 carbon atoms were determined. The in vivo toxicity of the ionic liquids was found to correlate directly with the length of the alkyl chain substituent, and the pattern of toxicity observed was in accordance with previous studies of ionic liquid toxicity in other living systems, including a characteristic toxicity 'cut-off' effect. However, G. mellonella appeared to be more susceptible to the toxic effects of the ionic liquids tested, possibly as a result of their high body fat content. The results obtained in this study indicate that G. mellonella represents a sensitive, reliable and robust in vivo model organism for the evaluation of ionic liquid toxicity.

  7. Ultrasonic Relaxation Study of 1-Alkyl-3-methylimidazolium-Based Room-Temperature Ionic Liquids: Probing the Role of Alkyl Chain Length in the Cation.

    PubMed

    Zorębski, Michał; Zorębski, Edward; Dzida, Marzena; Skowronek, Justyna; Jężak, Sylwia; Goodrich, Peter; Jacquemin, Johan

    2016-04-14

    Ultrasound absorption spectra of four 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imides were determined as a function of the alkyl chain length on the cation from 1-propyl to 1-hexyl from 293.15 to 323.15 K at ambient pressure. Herein, the ultrasound absorption measurements were carried out using a standard pulse technique within a frequency range from 10 to 300 MHz. Additionally, the speed of sound, density, and viscosity have been measured. The presence of strong dissipative processes during the ultrasound wave propagation was found experimentally, i.e., relaxation processes in the megahertz range were observed for all compounds over the whole temperature range. The relaxation spectra (both relaxation amplitude and relaxation frequency) were shown to be dependent on the alkyl side chain length of the 1-alkyl-3-methylimidazolium ring. In most cases, a single-Debye model described the absorption spectra very well. However, a comparison of the determined spectra with the spectra of a few other imidazolium-based ionic liquids reported in the literature (in part recalculated in this work) shows that the complexity of the spectra increases rapidly with the elongation of the alkyl chain length on the cation. This complexity indicates that both the volume viscosity and the shear viscosity are involved in relaxation processes even in relatively low frequency ranges. As a consequence, the sound velocity dispersion is present at relatively low megahertz frequencies.

  8. Ultrasonic Relaxation Study of 1-Alkyl-3-methylimidazolium-Based Room-Temperature Ionic Liquids: Probing the Role of Alkyl Chain Length in the Cation.

    PubMed

    Zorębski, Michał; Zorębski, Edward; Dzida, Marzena; Skowronek, Justyna; Jężak, Sylwia; Goodrich, Peter; Jacquemin, Johan

    2016-04-14

    Ultrasound absorption spectra of four 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imides were determined as a function of the alkyl chain length on the cation from 1-propyl to 1-hexyl from 293.15 to 323.15 K at ambient pressure. Herein, the ultrasound absorption measurements were carried out using a standard pulse technique within a frequency range from 10 to 300 MHz. Additionally, the speed of sound, density, and viscosity have been measured. The presence of strong dissipative processes during the ultrasound wave propagation was found experimentally, i.e., relaxation processes in the megahertz range were observed for all compounds over the whole temperature range. The relaxation spectra (both relaxation amplitude and relaxation frequency) were shown to be dependent on the alkyl side chain length of the 1-alkyl-3-methylimidazolium ring. In most cases, a single-Debye model described the absorption spectra very well. However, a comparison of the determined spectra with the spectra of a few other imidazolium-based ionic liquids reported in the literature (in part recalculated in this work) shows that the complexity of the spectra increases rapidly with the elongation of the alkyl chain length on the cation. This complexity indicates that both the volume viscosity and the shear viscosity are involved in relaxation processes even in relatively low frequency ranges. As a consequence, the sound velocity dispersion is present at relatively low megahertz frequencies. PMID:26982480

  9. Binding of the ionic liquid cation 1-alkyl-3-methylimidazolium to p-tetranitrocalix[4]arene probed by fluorescent indicator displacement.

    PubMed

    Pandey, Shubha; Ali, Maroof; Kamath, Ganesh; Pandey, Siddharth; Baker, Sheila N; Baker, Gary A

    2012-06-01

    Acridine orange (AO) was used as a fluorescent probe molecule to study the encapsulation of an alkylimidazolium cation from a water-soluble ionic liquid (IL) within two cavitand species, p-tetranitrocalix[4]arene (1) and calix[4]resorcinarene (2), both in alkaline aqueous media. The addition of IL to the preformed [1·AO] adduct resulted in significantly increased fluorescence due to the expulsion of AO from the inclusion complex to the aqueous phase by competitive recognition of the 1-alkyl-3-methylimidazolium cation ([C(n)mim](+), n = 4 and 6) by 1. Conversely, the fluorescence signal dropped upon the addition of IL to the [2·AO] host-guest complex due to unfavorable binding between [C(n)mim](+) and 2. The formation of these postulated adducts is corroborated using ab initio calculations, which also provide evidence for the location of [bmim](+) at the lower external rim of [2·AO], providing an explanation for the observed luminescence quenching in the latter case. These results point to a number of different paths for exploration, ranging from the fluorescence monitoring of IL contamination in groundwater to the "daisy chaining" of macrocyles toward supramolecular ionic networks. They also broadly encourage the exploration of ILs in host-guest-based optical and mass spectrometric sensory systems.

  10. Determination of the enthalpy of vaporization and prediction of surface tension for ionic liquid 1-alkyl-3-methylimidazolium propionate [C(n)mim][Pro](n = 4, 5, 6).

    PubMed

    Tong, Jing; Yang, Hong-Xu; Liu, Ru-Jing; Li, Chi; Xia, Li-Xin; Yang, Jia-Zhen

    2014-11-13

    With the use of isothermogravimetrical analysis, the enthalpies of vaporization, Δ(g)lH(o)m(T(av)), at the average temperature, T(av) = 445.65 K, for the ionic liquids (ILs) 1-alkyl-3-methylimidazolium propionate [C(n)mim][Pro](n = 4, 5, 6) were determined. Using Verevkin's method, the difference of heat capacities between the vapor phase and the liquid phase, Δ(g)lC(p)(o)m, for [C(n)mim][Pro](n = 2, 3, 4, 5, 6), were calculated based on the statistical thermodynamics. Therefore, with the use of Δ(g)lC(p)(o)m, the values of Δ(g)lH(o)m(T(av)) were transformed into Δ(g)lH(o)m(298), 126.8, 130.3, and 136.5 for [C(n)mim][Pro](n = 4, 5, 6), respectively. In terms of the new scale of polarity for ILs, the order of the polarity of [C(n)mim][Pro](n = 2, 3, 4, 5, 6) was predicted, that is, the polarity decreases with increasing methylene. A new model of the relationship between the surface tension and the enthalpy of vaporization for aprotic ILs was put forward and used to predict the surface tension for [C(n)mim][Pro](n = 2, 3, 4, 5, 6) and others. The predicted surface tension for the ILs is in good agreement with the experimental one.

  11. Studies of structural, dynamical, and interfacial properties of 1-alkyl-3-methylimidazolium iodide ionic liquids by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Ghatee, Mohammad Hadi; Zolghadr, Amin Reza; Moosavi, Fatemeh; Ansari, Younes

    2012-03-01

    Bulk and surface properties of the ionic liquids 1-alkyl-3-methyl-imidazolium iodides ([Cnmim]I) were simulated by classical molecular dynamics using all atom non-polarizable force field (n = 4, butyl; 6, hexyl; 8, octyl). The structure of ionic liquids were initially optimized by density functional theory and atomic charges obtained by CHELPG method. Reduction of partial atomic charges (by 20% for simulation of density and surface tension, and by 10% for viscosity) found to improve the accuracy, while a non-polarizable force field was applied. Additionally, the simulation ensembles approach the equilibrium faster when the charge reduction is applied. By these refined force field parameters, simulated surface tensions in the range of 323-393 k are quite in agreement with the experiments. Simulation of temperature dependent surface tension of [C4mim]I well beyond room temperature (up to 700 K) permits prediction of the critical temperature in agreement with that predicted from experimental surface tension data. Simulated densities in the range of 298-450 K for the three ionic liquids are within 0.8% of the experimental data. Structural properties for [C4mim]I were found to be in agreement with the results of Car-Parrinello molecular dynamics simulation we performed, which indicates a rather well-structured cation-anion interaction and occurs essentially through the imidazolium ring cation. Diffusion coefficient changes with alkyl chain length in the order of [C8mim]I > [C6mim]I > [C4mim]I for the cation and the anion. Formation of a dense domain in subsurface region is quite evident, and progressively becomes denser as the alkyl chain length increases. Bivariate orientational analysis was used to determine the average orientation of molecule in ionic liquids surface, subsurface, and bulk regions. Dynamic bisector-wise and side-wise movement of the imodazolium ring cation in the surface region can be deduced from the bivariate maps. Atom-atom density profile and

  12. Salt-free catanionic surface active ionic liquids 1-alkyl-3-methylimidazolium alkylsulfate: aggregation behavior in aqueous solution.

    PubMed

    Jiao, Jingjing; Han, Bing; Lin, Meijia; Cheng, Ni; Yu, Li; Liu, Min

    2013-12-15

    A series of salt-free catanionic surface active ionic liquids (SAILs), 1-alkyl-3-methylimidazolim alkyl sulfates (denoted as [Cnmim][CmSO4], n=6, 8, 10; m=12 and n=4; m=10, 14) were synthesized by an ion exchange reaction and their surface properties in aqueous solution were examined systematically by surface tension, fluorescence and electrical conductivity measurements. As catanionic surfactants, these SAILs exhibit notably higher surface activity, compared to the cationic or anionic analogues. Increment in both cationic and anionic alkyl chain lengths for [Cnmim][CmSO4] can both improve the amphiphilic character remarkably. This can be ascribed to cooperative interactions as formation of catanionic pairs between alkyl-substituted imidazolium cations and alkyl sulfate anions. The negative micellization Gibbs free energy values prove that the micellization of all the 1-alkyl-3-methylimidazolim alkyl sulfates investigated is a spontaneous process. Any additional CH2 group makes the micellization process easier regardless if it is on a cation or an anion. When keeping the total carbon atom number constant, we find that the [Cnmim][CmSO4] molecules with greater asymmetric alkyl chains display superior surface activity. This work indicates that the self-assembly of these imidazolium-based salt-free catanionic SAILs can be tailored by adjusting the mismatch of alkyl chains. These SAILs are expected to have potential applications in the fields of colloidal and interface and nanomaterial synthesis.

  13. Structural and Rotational Dynamics of Carbon Dioxide in 1-Alkyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide Ionic Liquids: The Effect of Chain Length.

    PubMed

    Giammanco, Chiara H; Yamada, Steven A; Kramer, Patrick L; Tamimi, Amr; Fayer, Michael D

    2016-07-14

    Ionic liquids (ILs) have been proposed as possible carbon dioxide (CO2) capture media; thus, it is useful to understand the dynamics of both the dissolved gas and its IL environment as well as how altering an IL affects these dynamics. With increasing alkyl chain length, it is well-established that ILs obtain a mesoscopic structural feature assigned to polar-apolar segregation, and the change in structure with chain length affects the dynamics. Here, the dynamics of CO2 in a series of 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ILs, in which the alkyl group is ethyl, butyl, hexyl, or decyl, were investigated using ultrafast infrared spectroscopy by measuring the reorientation and spectral diffusion of carbon dioxide in the ILs. It was found that reorientation of the carbon dioxide occurs on three time scales, which correspond to two different time scales of restricted wobbling-in-a-cone motions and a long-time complete diffusive reorientation. Complete reorientation slows with increasing chain length but less than the increases in viscosity of the bulk liquids. Spectral diffusion, measured with two-dimensional IR spectroscopy, is caused by a combination of the liquids' structural fluctuations and reorientation of the CO2. The data were analyzed using a recent theory that takes into account both contributions to spectral diffusion and extracts the structural spectral diffusion. Different components of the structural fluctuations have distinct dependences on the alkyl chain length. All of the dynamics are fast compared to the complete orientational randomization of the bulk ILs, as measured with optical heterodyne-detected optical Kerr effect measurements. The results indicate a hierarchy of constraint releases in the liquids that give rise to increasingly slower dynamics. PMID:27264965

  14. Simultaneous determination of fangchinoline and tetrandrine in Stephania tetrandra S. Moore by using 1-alkyl-3-methylimidazolium-based ionic liquids as the RP-HPLC mobile phase additives.

    PubMed

    Tang, Yan; Sun, Ailing; Liu, Renmin; Zhang, Yongqing

    2013-03-12

    A reversed phase high performance liquid chromatography (RP-HPLC) method for simultaneous determination of fangchinoline (FAN) and tetrandrine (TET) in Stephania tetrandra S. Moore was established by using 1-hexyl-3-methylimidazolium tetrafluoroborate as the mobile phase additives in this paper. Four types of 1-alkyl-3-methylimidazolium-based ionic liquids (ILs) were used as additives of the mobile phase to separate FAN and TET by RP-HPLC. The effects of the length of the alkyl group on the imidazolium ring and its counterion, the concentrations of IL and the pH of the mobile phase, which influenced the chromatographic behaviors of FAN and TET, were investigated in detail. The linearity, sensitivity, accuracy and repeatability of the proposed method were also investigated. The probable mechanism of the separation with ILs as the mobile phase additives was explored and discussed. PMID:23452799

  15. Critical behaviour and vapour-liquid coexistence of 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ionic liquids via Monte Carlo simulations.

    PubMed

    Rai, Neeraj; Maginn, Edward J

    2012-01-01

    Atomistic Monte Carlo simulations are used to compute vapour-liquid coexistence properties of a homologous series of [C(n)mim][NTf2] ionic liquids, with n = 1, 2, 4, 6. Estimates of the critical temperatures range from 1190 K to 1257 K, with longer cation alkyl chains serving to lower the critical temperature. Other quantities such as critical density, critical pressure, normal boiling point, and accentric factor are determined from the simulations. Vapour pressure curves and the temperature dependence of the enthalpy of vapourisation are computed and found to have a weak dependence on the length of the cation alkyl chain. The ions in the vapour phase are predominately in single ion pairs, although a significant number of ions are found in neutral clusters of larger sizes as temperature is increased. It is found that previous estimates of the critical point obtained from extrapolating experimental surface tension data agree reasonably well with the predictions obtained here, but group contribution methods and primitive models of ionic liquids do not capture many of the trends observed in the present study

  16. Solubility of n-butane and 2-methylpropane (isobutane) in 1-alkyl-3-methylimidazolium-based ionic liquids with linear and branched alkyl side-chains.

    PubMed

    Pison, Laure; Shimizu, Karina; Tamas, George; Lopes, José Nuno Canongia; Quitevis, Edward L; Gomes, Margarida F Costa

    2015-11-11

    The solubility of n-butane and 2-methylpropane (isobutane) in three ionic liquids - 1-(2-methylpropyl)-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [(2mC3)C1im][Ntf2], 1-(3-methylbutyl)-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [(3mC4)C1im][Ntf2] and 1-methyl-3-pentylimidazolium bis(trifluoromethylsulfonyl)imide [C5C1im][Ntf2] - has been measured at atmospheric pressure from 303 to 343 K. Isobutane is less soluble than n-butane in all the ionic liquids. Henry's constant values range from 13.8 × 10(5) Pa for n-butane in [C5C1im][Ntf2] at 303 K to 64.5 × 10(5) Pa for isobutane in [(2mC3)C1im][Ntf2] at 343 K. The difference in solubility between the two gases can be explained by a more negative enthalpy of solvation for n-butane. A structural analysis of the pure solvents and of the solutions of the gases, probed by molecular dynamics simulations, could explain the differences found in the systems: (i) the nonpolar domains of the ionic liquids accommodate better the long and more flexible n-butane solute; (ii) the small differences in solubility of each gas in the ionic liquids with the same number of carbon atoms in the alkyl side-chains are explained by the absence of large structural differences in the pure solvents. In all cases, the structural analysis of the four ionic liquids confirms that the studied gases can act as probes of the molecular structure of the ionic liquids, the simulations being always compatible with the experimental solubility data.

  17. Solubility of n-butane and 2-methylpropane (isobutane) in 1-alkyl-3-methylimidazolium-based ionic liquids with linear and branched alkyl side-chains.

    PubMed

    Pison, Laure; Shimizu, Karina; Tamas, George; Lopes, José Nuno Canongia; Quitevis, Edward L; Gomes, Margarida F Costa

    2015-11-11

    The solubility of n-butane and 2-methylpropane (isobutane) in three ionic liquids - 1-(2-methylpropyl)-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [(2mC3)C1im][Ntf2], 1-(3-methylbutyl)-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [(3mC4)C1im][Ntf2] and 1-methyl-3-pentylimidazolium bis(trifluoromethylsulfonyl)imide [C5C1im][Ntf2] - has been measured at atmospheric pressure from 303 to 343 K. Isobutane is less soluble than n-butane in all the ionic liquids. Henry's constant values range from 13.8 × 10(5) Pa for n-butane in [C5C1im][Ntf2] at 303 K to 64.5 × 10(5) Pa for isobutane in [(2mC3)C1im][Ntf2] at 343 K. The difference in solubility between the two gases can be explained by a more negative enthalpy of solvation for n-butane. A structural analysis of the pure solvents and of the solutions of the gases, probed by molecular dynamics simulations, could explain the differences found in the systems: (i) the nonpolar domains of the ionic liquids accommodate better the long and more flexible n-butane solute; (ii) the small differences in solubility of each gas in the ionic liquids with the same number of carbon atoms in the alkyl side-chains are explained by the absence of large structural differences in the pure solvents. In all cases, the structural analysis of the four ionic liquids confirms that the studied gases can act as probes of the molecular structure of the ionic liquids, the simulations being always compatible with the experimental solubility data. PMID:26506981

  18. Effect of alkyl chain length on the rotational diffusion of nonpolar and ionic solutes in 1-alkyl-3-methylimidazolium-bis(trifluoromethylsulfonyl)imides.

    PubMed

    Gangamallaiah, V; Dutt, G B

    2013-10-10

    Rotational diffusion of a nonpolar solute 9-phenylanthracene (9-PA) and a cationic solute rhodamine 110 (R110) has been examined in a series of 1-alkyl-3-methylimidazolium (alkyl = octyl, decyl, dodecyl, tetradecyl, hexadecyl, and octadecyl) bis(trifluoromethylsulfonyl)imides to understand the influence of alkyl chain length on solute rotation. In this study, reorientation times (τr) have been measured as a function of viscosity (η) by varying the temperature (T) of the solvents. These results have been analyzed using the Stokes-Einstein-Debye (SED) hydrodynamic theory along with the ones obtained for the same solutes in 1-alkyl-3-methylimidazolium (alkyl = methyl, ethyl, propyl, butyl, and hexyl) bis(trifluoromethylsulfonyl)imides (Gangamallaiah and Dutt, J. Phys. Chem. B 2012, 116, 12819-12825). It has been noticed that the data for 9-PA and R110 follows the relation τr = A(η/T)(n) with A being the ratio of hydrodynamic volume of the solute to the Boltzmann constant and n = 1 as envisaged by the SED theory. However, upon increasing the alkyl chain length from methyl to octadecyl significant deviations from the SED theory have been observed especially from the octyl derivative onward. From methyl to octadecyl derivatives, the value of A decreases by a factor of 3 for both the solutes and n by a factor of 1.4 and 1.6 for 9-PA and R110, respectively. These observations have been rationalized by taking into consideration the organized structure of the ionic liquids, whose influence appears to be pronounced when the number of carbon atoms in the alkyl chain attached to the imidazolium cation exceeds eight.

  19. X-Ray absorption spectroscopy investigation of 1-alkyl-3-methylimidazolium bromide salts

    SciTech Connect

    D'Angelo, Paola; Zitolo, Andrea; Migliorati, Valentina; Bodo, Enrico; Caminiti, Ruggero; Aquilanti, Giuliana; Hazemann, Jean Louis; Testemale, Denis; Mancini, Giordano

    2011-08-21

    X-ray absorption spectroscopy (XAS) has been used to unveil the bromide ion local coordination structure in 1-alkyl-3-methylimidazolium bromide [C{sub n}mim]Br ionic liquids (ILs) with different alkyl chains. The XAS spectrum of 1-ethyl-3-methylimidazolium bromide has been found to be different from those of the other members of the series, from the butyl to the decyl derivatives, that have all identical XAS spectra. This result indicates that starting from 1-buthyl-3-methylimidazolium bromide the local molecular arrangement around the bromide anion is the same independently from the length of the alkyl chain, and that the imidazolium head groups in the liquid ILs with long alkyl chains assume locally the same orientation as in the [C{sub 4}mim]Br crystal. With this study we show that the XAS technique is an effective direct tool for unveiling the local structural arrangements around selected atoms in ILs.

  20. Influence of the organized structure of 1-alkyl-3-methylimidazolium tetrafluoroborates on the rotational diffusion of structurally similar nondipolar solutes.

    PubMed

    Gangamallaiah, V; Dutt, G B

    2014-11-26

    To understand how the organized structure of the ionic liquids influences the location and mobility of nondipolar solutes, rotational diffusion of 2,5-dimethyl-1,4-dioxo-3,6-diphenylpyrrolo[3,4-c]pyrrole (DMDPP) and 1,4-dioxo-3,6-diphenylpyrrolo[3,4-c]pyrrole (DPP) has been examined in 1-alkyl-3-methylimidazolium (alkyl = ethyl, butyl, hexyl, and octyl) tetrafluoroborates. Both the solutes are structurally similar-the sole difference being the two NCH3 groups of DMDPP are replaced by two NH groups in DPP. The rotational diffusion of DPP is found to be significantly slower than DMDPP due to specific interactions between the NH groups of the solute and the anion of the ionic liquid. It has been observed that for a given viscosity and temperature, the rotational diffusion of DMDPP becomes progressively faster with an increase in the length of the alkyl chain on the imidazolium cation. DMDPP resides in the nonpolar domains of these ionic liquids whose sizes increase with an increase in the length of the alkyl chain, and as a result it experiences microviscosity that is lower than the bulk viscosity. However, an increase in the length of the alkyl chain has no apparent effect on the rotational diffusion of DPP because specific interactions with tetrafluoroborate necessitate the solute to be located in the vicinity of the anion. The results of this work exemplify that despite having similar size and shape, the rotational diffusion of DMDPP and DPP is quite contrasting as their sites of solubilization and the nature of interactions with the surroundings are vastly different owing to subtle variations in their chemical structures.

  1. Distribution of 1-alkyl-3-methylimidazolium ions and their ion pairs between dichloromethane and water.

    PubMed

    Katsuta, Shoichi; Yamaguchi, Naoko; Ogawa, Ryuji; Kudo, Yoshihiro; Takeda, Yasuyuki

    2008-10-01

    The distribution behavior of the salts of a series of 1-alkyl-3-methylimidazolium cations (RMeIm(+); R = butyl, hexyl, and octyl) with tetrafluoroborate (BF(4)(-)), hexafluorophosphate (PF(6)(-)), bis(trifluoromethanesulfonyl)amide (NTf(2)(-)), and 2,4,6-trinitrophenolate (Pic(-)) anions has been investigated in a dichloromethane-water system at 25 degrees C. The distribution constants (K(D)) of the ion pairs and the transfer activity coefficients ((o)gamma(w)) of the single ions were determined. For the ion pairs with a given anion, the log K(D) value increases linearly with the number of methylene groups (N(CH2)) in the cation, which can be explained by using the regular solution theory. A similar relationship was observed between log (o)gamma(w) and N(CH2) for the free RMeIm(+) ions, and the result was discussed by decomposing the transfer activity coefficient into the Born-type electrostatic contribution and the non-electrostatic one. For the free anions and their ion pairs with a given cation, the (o)gamma(w) and K(D) values increase with increasing molar volume of the anion: i.e., BF(4)(-) < PF(6)(-) < Pic(-) < NTf(2)(-). The features of the RMeIm(+) salts in the liquid-liquid distribution and the ion-pair formation in water are also discussed by comparing the present results with those of tetraalkylammonium salts previously reported.

  2. IONIC LIQUID-CATALYZED ALKYLATION OF ISOBUTANE WITH 2-BUTENE

    EPA Science Inventory

    A detailed study of the alkylation of isobutane with 2-butene in ionic liquid media has been conducted using 1-alkyl-3-methylimidazolium halides?aluminum chloride encompassing various alkyl groups (butyl-, hexyl-, and octyl-) and halides (Cl, Br, and I) on its cations and anions,...

  3. Temperature dependence of the electrical conductivity of imidazolium ionic liquids.

    PubMed

    Leys, Jan; Wübbenhorst, Michael; Preethy Menon, Chirukandath; Rajesh, Ravindran; Thoen, Jan; Glorieux, Christ; Nockemann, Peter; Thijs, Ben; Binnemans, Koen; Longuemart, Stéphane

    2008-02-14

    The electrical conductivities of 1-alkyl-3-methylimidazolium tetrafluoroborate ionic liquids and of 1-hexyl-3-methylimidazolium ionic liquids with different anions were determined in the temperature range between 123 and 393 K on the basis of dielectric measurements in the frequency range from 1 to 10(7) Hz. Most of the ionic liquids form a glass and the conductivity values obey the Vogel-Fulcher-Tammann equation. The glass transition temperatures are increasing with increasing length of the alkyl chain. The fragility is weakly dependent on the alkyl chain length but is highly sensitive to the structure of the anion.

  4. Structure of room temperature ionic liquids

    NASA Astrophysics Data System (ADS)

    Yethiraj, Arun

    2016-10-01

    The structure of room temperature ionic liquids is studied using molecular dynamics simulations and integral equation theory. Three ionic liquids 1-alkyl-3-methylimidazolium hexfluorophosphate, [C n MIM] [PF6], for n  =  1, 4, and 8, are studied using a united atom model of the ions. The primary interest is a study of the pair correlation functions and a test of the reference interaction site model theory. There is liquid-like ordering in the liquid that arises from electrostatic attractions and steric packing considerations. The theory is not in quantitative agreement with the simulation results and underestimates the degree of liquid-like order. A pre-peak in the static structure factor is seen in both simulations and theory, suggesting that this is a geometric effect arising from a packing of the alkyl chains.

  5. A New Volume-Based Approach for Predicting Thermophysical Behavior of Ionic Liquids and Ionic Liquid Crystals.

    PubMed

    Nelyubina, Yulia V; Shaplov, Alexander S; Lozinskaya, Elena I; Buzin, Mikhail I; Vygodskii, Yakov S

    2016-08-17

    Volume-based prediction of melting points and other properties of ionic liquids (ILs) relies on empirical relations with volumes of ions in these low-melting organic salts. Here we report an accurate way to ionic volumes by Bader's partitioning of electron densities from X-ray diffraction obtained via a simple database approach. For a series of 1-tetradecyl-3-methylimidazolium salts, the volumes of different anions are found to correlate linearly with melting points; larger anions giving lower-melting ILs. The volume-based concept is transferred to ionic liquid crystals (ILs that adopt liquid crystalline mesophases, ILCs) for predicting the domain of their existence from the knowledge of their constituents. For 1-alkyl-3-methylimidazolium ILCs, linear correlations of ionic volumes with the occurrence of LC mesophase and its stability are revealed, thus paving the way to rational design of ILCs by combining suitably sized ions.

  6. A New Volume-Based Approach for Predicting Thermophysical Behavior of Ionic Liquids and Ionic Liquid Crystals.

    PubMed

    Nelyubina, Yulia V; Shaplov, Alexander S; Lozinskaya, Elena I; Buzin, Mikhail I; Vygodskii, Yakov S

    2016-08-17

    Volume-based prediction of melting points and other properties of ionic liquids (ILs) relies on empirical relations with volumes of ions in these low-melting organic salts. Here we report an accurate way to ionic volumes by Bader's partitioning of electron densities from X-ray diffraction obtained via a simple database approach. For a series of 1-tetradecyl-3-methylimidazolium salts, the volumes of different anions are found to correlate linearly with melting points; larger anions giving lower-melting ILs. The volume-based concept is transferred to ionic liquid crystals (ILs that adopt liquid crystalline mesophases, ILCs) for predicting the domain of their existence from the knowledge of their constituents. For 1-alkyl-3-methylimidazolium ILCs, linear correlations of ionic volumes with the occurrence of LC mesophase and its stability are revealed, thus paving the way to rational design of ILCs by combining suitably sized ions. PMID:27479022

  7. Solvent Extraction Separation of La3+ and Ba2+ using Imidazolium Ionic Liquids and TODGA Extractant

    SciTech Connect

    Bell, Jason R; Dai, Sheng; Luo, Huimin

    2012-01-01

    Solvent extractions of La3+ and Ba2+ by N,N,N ,N -tetra(n-octyl)diglycolamide (TODGA) from aqueous solutions in twelve imidazolium-based ionic liquids (ILs), 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide / bis(perfluoroethylsulfonyl)imide ([Cnmim][NTf2]/[BETI], n = 2,3, 4, 6, 8, 10) were investigated. The corresponding extraction efficiencies were found to be dependent on concentration of TODGA used, the acidity of aqueous phase, alkyl chain length on IL cation, and IL anion as well.

  8. Hg⁰ removal from flue gas by ionic liquid/H₂O₂.

    PubMed

    Cheng, Guangwen; Bai, Bofeng; Zhang, Qiang; Cai, Ming

    2014-09-15

    1-Alkyl-3-methylimidazolium chloride ionic liquids ([Cnmim] Cl, n=4, 6, 8) were prepared. The ionic liquid was then mixed with hydrogen peroxide (H2O2) to form an absorbent. The Hg(0) removal performance of the absorbent was investigated in a gas/liquid scrubber using simulated flue gas. It was found that the ionic liquid/H2O2 mixture was an excellent absorbent and could be used to remove Hg(0) from flue gas. When the mass ratio of H2O2 to ionic liquid was 0.5, the absorbent showed high Hg(0) removal efficiency (up to 98%). The Hg(0) removal efficiency usually increased with the absorption temperature, while decreased with the increase of alkyl chain length in ionic liquid molecule. The Hg(0) removal mechanism involved with Hg(0) oxidation by H2O2 and Hg(2+) transfer from aqueous phase to ionic liquid phase.

  9. Revisiting ether-derivatized imidazolium-based ionic liquids.

    PubMed

    Fei, Zhaofu; Ang, Wee Han; Zhao, Dongbin; Scopelliti, Rosario; Zvereva, Elena E; Katsyuba, Sergey A; Dyson, Paul J

    2007-08-30

    A series of ether-derivatized imidazolium halides have been prepared and characterized. Contrary to literature reports, they are all crystalline solids and have melting points well above room temperature (50-100 degrees C). Single crystals of the imidazolium salts, obtained in situ by slow cooling from their molten state to room temperature, were analyzed by X-ray crystallography, revealing various anion-cation interactions in the solid state. Exchange of the halides with [Tf(2)N]- yielded room temperature ionic liquids with viscosities that are comparable to related 1-alkyl-3-methylimidazolium ionic liquids. Density functional theory combined with IR spectroscopy has been used to analyze the role of functionalization of the imidazolium side chain on the formation of the molecular and supramolecular structure of the compounds and its possible impact on their physical properties. PMID:17676796

  10. Morphology of Imidazolium-Based Ionic Liquids as Deposited by Vapor Deposition: Micro-/Nanodroplets and Thin Films.

    PubMed

    Costa, José C S; Mendes, Adélio; Santos, Luís M N B F

    2016-07-18

    The morphology of micro- and nanodroplets and thin films of ionic liquids (ILs) prepared through physical vapor deposition is presented. The morphology of droplets deposited on indium-tin-oxide-coated glass is presented for the extended 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([Cn C1 im][Ntf2 ]; n=1-8) series, and the results show the nanostructuration of ILs. The use of in-vacuum energetic particles enhances/increases the nanodroplets mobility/coalescence mechanisms and can be a pathway to the fabrication of thin IL films. PMID:27028765

  11. Application of Ionic Liquids in the Microwave-Assisted Extraction of Proanthocyanidins from Larix gmelini Bark

    PubMed Central

    Yang, Lei; Sun, Xiaowei; Yang, Fengjian; Zhao, Chunjian; Zhang, Lin; Zu, Yuangang

    2012-01-01

    Ionic liquid based, microwave-assisted extraction (ILMAE) was successfully applied to the extraction of proanthocyanidins from Larix gmelini bark. In this work, in order to evaluate the performance of ionic liquids in the microwave-assisted extraction process, a series of 1-alkyl-3-methylimidazolium ionic liquids with different cations and anions were evaluated for extraction yield, and 1-butyl-3-methylimidazolium bromide was selected as the optimal solvent. In addition, the ILMAE procedure for the proanthocyanidins was optimized and compared with other conventional extraction techniques. Under the optimized conditions, satisfactory extraction yield of the proanthocyanidins was obtained. Relative to other methods, the proposed approach provided higher extraction yield and lower energy consumption. The Larix gmelini bark samples before and after extraction were analyzed by Thermal gravimetric analysis, Fourier-transform infrared spectroscopy and characterized by scanning electron microscopy. The results showed that the ILMAE method is a simple and efficient technique for sample preparation. PMID:22606036

  12. Solubilization of benzene, toluene, and xylene (BTX) in aqueous micellar solutions of amphiphilic imidazolium ionic liquids.

    PubMed

    Łuczak, Justyna; Jungnickel, Christian; Markiewicz, Marta; Hupka, Jan

    2013-05-01

    Water-soluble ionic liquids may be considered analogues to cationic surfactants with a corresponding surface activity and ability to create organized structures in aqueous solutions. For the first time, the enhanced solubility of the aromatic hydrocarbons, benzene, toluene, and xylene, in aqueous micellar systems of 1-alkyl-3-methylimidazolium chlorides was investigated. Above a critical micelle concentration, a gradual increase in the concentration of aromatic hydrocarbons in the miceller solution was observed. This phenomenon was followed by means of the molar solubilization ratio, the micellar/water partition coefficient, and the number of solubilizate molecules per IL micelle. The molar solubilization ratio for ionic liquid micelles was found to be significantly higher when compared to that of ionic surfactants of similar chain length. The incorporation of the hydrocarbon into the micelle affects also an increase of the aggregation number. PMID:23570459

  13. How polar are ionic liquids? Determination of the static dielectric constant of an imidazolium-based ionic liquid by microwave dielectric spectroscopy.

    PubMed

    Wakai, Chihiro; Oleinikova, Alla; Ott, Magnus; Weingärtner, Hermann

    2005-09-15

    In a pilot study of the dielectric constant of room-temperature ionic liquids, we use dielectric spectroscopy in the megahertz/gigahertz regime to determine the complex dielectric function of five 1-alkyl-3-methylimidazolium salts, from which the static dielectric constant epsilon is obtained by zero-frequency extrapolation. The results classify the salts as moderately polar solvents. The observed epsilon-values at 298.15 K fall between 15.2 and 8.8, and epsilon decreases with increasing chain length of the alkyl residue of the cation. The anion sequence is trifluoromethylsulfonate > tetrafluoroborate approximately tetrafluorophosphate. The results indicate markedly lower polarities than found by spectroscopy with polarity-sensitive solvatochromic dyes.

  14. Inclusion complex formation of ionic liquids with 4-sulfonatocalixarenes studied by competitive binding of berberine alkaloid fluorescent probe

    NASA Astrophysics Data System (ADS)

    Miskolczy, Zsombor; Biczók, László

    2009-07-01

    A clinically important natural isoquinoline alkaloid, berberine, was used as a fluorescent probe to study the encapsulation of 1-alkyl-3-methylimidazolium (C nMIm +) type ionic liquids in 4-sulfonato-substituted calix[4]arene (SCX4) and calix[6]arene (SCX6) at pH 2. Addition of ionic liquids to the aqueous solution of berberine-SCXn inclusion complexes brought about considerable fluorescence intensity diminution due to the extrusion of berberine from the macrocycle into the aqueous phase by the competitive inclusion of C nMIm + cation. The lengthening of the aliphatic side chain of the imidazolium moiety diminished the equilibrium constant of complexation with SCX4, but enhanced the stability of SCX6 complexes. Larger binding strength was found for SCX4.

  15. Glass transition of ionic liquids under high pressure.

    PubMed

    Ribeiro, Mauro C C; Pádua, Agílio A H; Gomes, Margarida F Costa

    2014-06-28

    The glass transition pressure at room temperature, pg, of six ionic liquids based on 1-alkyl-3-methylimidazolium cations and the anions [BF4](-), [PF6](-), and bis(trifluromethanesulfonyl)imide, [NTf2](-), has been obtained from the pressure dependence of the bandwidth of the ruby fluorescence line in diamond anvil cells. Molar volume, Vm(pg), has been estimated by a group contribution model (GCM) developed for the ionic liquids. A density scaling relation, TV(γ), has been considered for the states Vm(pg, 295 K) and Vm(Tg, 0.1 MPa) using the simplifying condition that the viscosity at the glass transition is the same at pg at room temperature and at atmospheric pressure at Tg. Assuming a constant γ over this range of density, a reasonable agreement has been found for the γ determined herein and that of a previous density scaling analysis of ionic liquids viscosities under moderate conditions. Further support for the appropriateness of extrapolating the GCM equation of state to the GPa pressure range is provided by comparing the GCM and an equation of state previously derived in the power law density-scaling regime.

  16. Glass transition of ionic liquids under high pressure

    NASA Astrophysics Data System (ADS)

    Ribeiro, Mauro C. C.; Pádua, Agílio A. H.; Gomes, Margarida F. Costa

    2014-06-01

    The glass transition pressure at room temperature, pg, of six ionic liquids based on 1-alkyl-3-methylimidazolium cations and the anions [BF4]-, [PF6]-, and bis(trifluromethanesulfonyl)imide, [NTf2]-, has been obtained from the pressure dependence of the bandwidth of the ruby fluorescence line in diamond anvil cells. Molar volume, Vm(pg), has been estimated by a group contribution model (GCM) developed for the ionic liquids. A density scaling relation, TVγ, has been considered for the states Vm(pg, 295 K) and Vm(Tg, 0.1 MPa) using the simplifying condition that the viscosity at the glass transition is the same at pg at room temperature and at atmospheric pressure at Tg. Assuming a constant γ over this range of density, a reasonable agreement has been found for the γ determined herein and that of a previous density scaling analysis of ionic liquids viscosities under moderate conditions. Further support for the appropriateness of extrapolating the GCM equation of state to the GPa pressure range is provided by comparing the GCM and an equation of state previously derived in the power law density-scaling regime.

  17. Influence of Water on the Interfacial Nanostructure and Wetting of [Rmim][NTf2] Ionic Liquids at Mica Surfaces.

    PubMed

    Wang, Zhantao; Li, Hua; Atkin, Rob; Priest, Craig

    2016-09-01

    The effect of water concentration on the interfacial nanostructure and wetting behavior of a family of ionic liquids (ILs), 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, [Rmim][NTf2], at the surface of mica was investigated by contact angle measurement and atomic force microscopy (AFM). AFM reveals that interfacial layers of ILs observed at the surface of mica for "dry" ILs are not present for water-saturated ILs. The interaction of the IL ions of [Rmim][NTf2] with water molecules through hydrogen bonding is suspected to disrupt IL ion layering and precursor film growth on mica. Without the IL precursor film, contact angle relaxation of "wet" ILs on mica is less significant and ambient vapor adsorption becomes more important in determining the macroscopic wetting behavior. PMID:27486675

  18. Influence of Water on the Interfacial Nanostructure and Wetting of [Rmim][NTf2] Ionic Liquids at Mica Surfaces.

    PubMed

    Wang, Zhantao; Li, Hua; Atkin, Rob; Priest, Craig

    2016-09-01

    The effect of water concentration on the interfacial nanostructure and wetting behavior of a family of ionic liquids (ILs), 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, [Rmim][NTf2], at the surface of mica was investigated by contact angle measurement and atomic force microscopy (AFM). AFM reveals that interfacial layers of ILs observed at the surface of mica for "dry" ILs are not present for water-saturated ILs. The interaction of the IL ions of [Rmim][NTf2] with water molecules through hydrogen bonding is suspected to disrupt IL ion layering and precursor film growth on mica. Without the IL precursor film, contact angle relaxation of "wet" ILs on mica is less significant and ambient vapor adsorption becomes more important in determining the macroscopic wetting behavior.

  19. The microwave assisted synthesis of 1-alkyl-3-methylimidazolium bromide as potential corrosion inhibitor toward carbon steel in 1 M HCl solution saturated with carbon dioxide

    SciTech Connect

    Pasasa, Norman Vincent A. Bundjali, Bunbun; Wahyuningrum, Deana

    2015-09-30

    Injection of corrosion inhibitor into the fluid current of oil and gas pipelines is an effective way to mitigate corrosion rate on the inner-surface parts of pipelines, especially carbon steel pipelines. In this research, two alkylimidazolium ionic liquids, 1-decyl-3-methylimidazolium bromide (IL1) and 1-dodecyl-3-methylimidazolium bromide (IL2) have been synthesized and studied as a potential corrosion inhibitor towards carbon steel in 1 M HCl solution saturated with carbon dioxide. IL1 and IL2 were synthesized using microwave assisted organic synthesis (MAOS) method. Mass Spectrometry analysis of IL1 and IL2 showed molecular mass [M-H+] peak at 223.2166 and 251.2484, respectively. The FTIR,{sup 1}H-NMR and {sup 13}C-NMR spectra confirmed that IL1 and IL2 were successfully synthesized. Corrosion inhibition activity of IL1 and IL2 were determined using weight loss method. The results showed that IL1 and IL2 have the potential as good corrosion inhibitors with corrosion inhibition efficiency of IL1 and IL2 are 96.00% at 100 ppm (343 K) and 95.60% at 50 ppm (343 K), respectively. The increase in the concentration of IL1 and IL2 tends to improve their corrosion inhibition activities. Analysis of the data obtained from the weight loss method shows that the adsorption of IL1 and IL2 on carbon steel is classified into chemisorption which obeys Langmuir’s adsorption isotherm.

  20. Application of ionic liquids based enzyme-assisted extraction of chlorogenic acid from Eucommia ulmoides leaves.

    PubMed

    Liu, Tingting; Sui, Xiaoyu; Li, Li; Zhang, Jie; Liang, Xin; Li, Wenjing; Zhang, Honglian; Fu, Shuang

    2016-01-15

    A new approach for ionic liquid based enzyme-assisted extraction (ILEAE) of chlorogenic acid (CGA) from Eucommia ulmoides is presented in which enzyme pretreatment was used in ionic liquids aqueous media to enhance extraction yield. For this purpose, the solubility of CGA and the activity of cellulase were investigated in eight 1-alkyl-3-methylimidazolium ionic liquids. Cellulase in 0.5 M [C6mim]Br aqueous solution was found to provide better performance in extraction. The factors of ILEAE procedures including extraction time, extraction phase pH, extraction temperatures and enzyme concentrations were investigated. Moreover, the novel developed approach offered advantages in term of yield and efficiency compared with other conventional extraction techniques. Scanning electronic microscopy of plant samples indicated that cellulase treated cell wall in ionic liquid solution was subjected to extract, which led to more efficient extraction by reducing mass transfer barrier. The proposed ILEAE method would develope a continuous process for enzyme-assisted extraction including enzyme incubation and solvent extraction process. In this research, we propose a novel view for enzyme-assisted extraction of plant active component, besides concentrating on enzyme facilitated cell wall degradation, focusing on improvement of bad permeability of ionic liquids solutions. PMID:26709302

  1. Application of ionic liquids based enzyme-assisted extraction of chlorogenic acid from Eucommia ulmoides leaves.

    PubMed

    Liu, Tingting; Sui, Xiaoyu; Li, Li; Zhang, Jie; Liang, Xin; Li, Wenjing; Zhang, Honglian; Fu, Shuang

    2016-01-15

    A new approach for ionic liquid based enzyme-assisted extraction (ILEAE) of chlorogenic acid (CGA) from Eucommia ulmoides is presented in which enzyme pretreatment was used in ionic liquids aqueous media to enhance extraction yield. For this purpose, the solubility of CGA and the activity of cellulase were investigated in eight 1-alkyl-3-methylimidazolium ionic liquids. Cellulase in 0.5 M [C6mim]Br aqueous solution was found to provide better performance in extraction. The factors of ILEAE procedures including extraction time, extraction phase pH, extraction temperatures and enzyme concentrations were investigated. Moreover, the novel developed approach offered advantages in term of yield and efficiency compared with other conventional extraction techniques. Scanning electronic microscopy of plant samples indicated that cellulase treated cell wall in ionic liquid solution was subjected to extract, which led to more efficient extraction by reducing mass transfer barrier. The proposed ILEAE method would develope a continuous process for enzyme-assisted extraction including enzyme incubation and solvent extraction process. In this research, we propose a novel view for enzyme-assisted extraction of plant active component, besides concentrating on enzyme facilitated cell wall degradation, focusing on improvement of bad permeability of ionic liquids solutions.

  2. Using FT-IR Spectroscopy to Measure Charge Organization in Ionic Liquids

    PubMed Central

    Burba, Christopher M.; Janzen, Jonathan; Butson, Eric D.; Coltrain, Gage L.

    2013-01-01

    A major goal in the field of ionic liquids is correlating transport property trends with the underlying liquid structure of the compounds, such as the degree of charge organization among the constituent ions. Traditional techniques for experimentally assessing charge organization are specialized and not readily available for routine measurements. This represents a significant roadblock in elucidating these correlations. We use a combination of transmission and polarized-ATR infrared spectroscopy to measure the degree of charge organization for ionic liquids. The technique is illustrated with a family of 1-alkyl-3-methylimidazolium trifluoromethansulfonate ionic liquids at 30°C. As expected, the amount of charge organization decreases as the alkyl side chain is lengthened, highlighting the important role of short-range repulsive interactions in defining quasilattice structure. Inherent limitations of the method are identified and discussed. The quantitative measurements of charge organization are then correlated with trends in the transport properties of the compounds to highlight the relationship between charge and momentum transport and the underlying liquid structure. Most research laboratories possess infrared spectrometers capable of conducting these measurements, thus, the proposed method may represent a cost-effective solution for routinely measuring charge organization in ionic liquids. PMID:23781877

  3. Water in Room Temperature Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Fayer, Michael

    2014-03-01

    Room temperature ionic liquids (or RTILs, salts with a melting point below 25 °C) have become a subject of intense study over the last several decades. Currently, RTIL application research includes synthesis, batteries, solar cells, crystallization, drug delivery, and optics. RTILs are often composed of an inorganic anion paired with an asymmetric organic cation which contains one or more pendant alkyl chains. The asymmetry of the cation frustrates crystallization, causing the salt's melting point to drop significantly. In general, RTILs are very hygroscopic, and therefore, it is of interest to examine the influence of water on RTIL structure and dynamics. In addition, in contrast to normal aqueous salt solutions, which crystallize at low water concentration, in an RTIL it is possible to examine isolated water molecules interacting with ions but not with other water molecules. Here, optical heterodyne-detected optical Kerr effect (OHD-OKE) measurements of orientational relaxation on a series of 1-alkyl-3-methylimidazolium tetrafluoroborate RTILs as a function of chain length and water concentration are presented. The addition of water to the longer alkyl chain RTILs causes the emergence of a long time bi-exponential orientational anisotropy decay. Such decays have not been seen previously in OHD-OKE experiments on any type of liquid and are analyzed here using a wobbling-in-a-cone model. The orientational relaxation is not hydrodynamic, with the slowest relaxation component becoming slower as the viscosity decreases for the longest chain, highest water content samples. The dynamics of isolated D2O molecules in 1-butyl-3-methylimidazolium hexafluorophosphate (BmImPF6) were examined using two dimensional infrared (2D IR) vibrational echo spectroscopy. Spectral diffusion and incoherent and coherent transfer of excitation between the symmetric and antisymmetric modes are examined. The coherent transfer experiments are used to address the nature of inhomogeneous

  4. Ionic liquids: differential scanning calorimetry as a new indirect method for determination of vaporization enthalpies.

    PubMed

    Verevkin, Sergey P; Emel'yanenko, Vladimir N; Zaitsau, Dzmitry H; Ralys, Ricardas V; Schick, Christoph

    2012-04-12

    Differential scanning calorimetry (DSC) has been used to measure enthalpies of synthesis reactions of the 1-alkyl-3-methylimidazolium bromide [C(n)mim][Br] ionic liquids from 1-methylimidazole and n-alkyl bromides (with n = 4, 5, 6, 7, and 8). The optimal experimental conditions have been elaborated. Enthalpies of formation of these ionic liquids in the liquid state have been determined using the DSC results according to the Hess Law. The ideal-gas enthalpies of formation of [C(n)mim][Br] were calculated using the methods of quantum chemistry. They were used together with the DSC results to derive indirectly the enthalpies of vaporization of the ionic liquids under study. In order to validate the indirect determination, the experimental vaporization enthalpy of [C(4)mim][Br] was measured by using a quartz crystal microbalance (QCM). The combination of reaction enthalpy measurements by DSC with modern high-level first-principles calculations opens valuable indirect thermochemical options to obtain values of vaporization enthalpies of ionic liquids. PMID:22435356

  5. Stable ferrofluids of magnetite nanoparticles in hydrophobic ionic liquids

    NASA Astrophysics Data System (ADS)

    Mestrom, Luuk; Lenders, Jos J. M.; de Groot, Rick; Hooghoudt, Tonnis; Sommerdijk, Nico A. J. M.; Vilaplana Artigas, Marcel

    2015-07-01

    Ferrofluids (FFs) of metal oxide nanoparticles in ionic liquids (ILs) are a potentially useful class of magnetic materials for many applications because of their properties related to temperature/pressure stability, hydrophobicity, viscosity and recyclability. In this work, the screening of several designer surfactants for their stabilizing capabilities has resulted in the synthesis of stable FFs of superparamagnetic 7 ± 2 nm magnetite (Fe3O4) nanoparticles in the hydrophobic IL 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([CRMIM][NTf2]). The designed and synthesized 1-butyl-3-(10-carboxydecyl)-1H-imidazol-3-ium bromide (ILC10-COOH) surfactant that combines the same imidazole moiety as the IL with a long alkyl chain ensured compatibility with the IL and increased the steric repulsion between the magnetite nanoparticles sufficiently such that stable dispersions of up to 50 wt% magnetite were obtained according to stability tests in the presence of a magnetic field (0.5-1 Tesla). Cryo-transmission electron microscopy (cryo-TEM) of the IL-based FFs allowed direct visualization of the surfactant-stabilized nanoparticles in the ILs and the native, hardly aggregated state of their dispersion.

  6. Stable ferrofluids of magnetite nanoparticles in hydrophobic ionic liquids.

    PubMed

    Mestrom, Luuk; Lenders, Jos J M; de Groot, Rick; Hooghoudt, Tonnis; Sommerdijk, Nico A J M; Artigas, Marcel Vilaplana

    2015-07-17

    Ferrofluids (FFs) of metal oxide nanoparticles in ionic liquids (ILs) are a potentially useful class of magnetic materials for many applications because of their properties related to temperature/pressure stability, hydrophobicity, viscosity and recyclability. In this work, the screening of several designer surfactants for their stabilizing capabilities has resulted in the synthesis of stable FFs of superparamagnetic 7 ± 2 nm magnetite (Fe3O4) nanoparticles in the hydrophobic IL 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C(R)MIM][NTf2]). The designed and synthesized 1-butyl-3-(10-carboxydecyl)-1H-imidazol-3-ium bromide (ILC10-COOH) surfactant that combines the same imidazole moiety as the IL with a long alkyl chain ensured compatibility with the IL and increased the steric repulsion between the magnetite nanoparticles sufficiently such that stable dispersions of up to 50 wt% magnetite were obtained according to stability tests in the presence of a magnetic field (0.5-1 Tesla). Cryo-transmission electron microscopy (cryo-TEM) of the IL-based FFs allowed direct visualization of the surfactant-stabilized nanoparticles in the ILs and the native, hardly aggregated state of their dispersion. PMID:26118409

  7. Ionic Liquids as Electrolytes for Electrochemical Double-Layer Capacitors: Structures that Optimize Specific Energy.

    PubMed

    Mousavi, Maral P S; Wilson, Benjamin E; Kashefolgheta, Sadra; Anderson, Evan L; He, Siyao; Bühlmann, Philippe; Stein, Andreas

    2016-02-10

    Key parameters that influence the specific energy of electrochemical double-layer capacitors (EDLCs) are the double-layer capacitance and the operating potential of the cell. The operating potential of the cell is generally limited by the electrochemical window of the electrolyte solution, that is, the range of applied voltages within which the electrolyte or solvent is not reduced or oxidized. Ionic liquids are of interest as electrolytes for EDLCs because they offer relatively wide potential windows. Here, we provide a systematic study of the influence of the physical properties of ionic liquid electrolytes on the electrochemical stability and electrochemical performance (double-layer capacitance, specific energy) of EDLCs that employ a mesoporous carbon model electrode with uniform, highly interconnected mesopores (3DOm carbon). Several ionic liquids with structurally diverse anions (tetrafluoroborate, trifluoromethanesulfonate, trifluoromethanesulfonimide) and cations (imidazolium, ammonium, pyridinium, piperidinium, and pyrrolidinium) were investigated. We show that the cation size has a significant effect on the electrolyte viscosity and conductivity, as well as the capacitance of EDLCs. Imidazolium- and pyridinium-based ionic liquids provide the highest cell capacitance, and ammonium-based ionic liquids offer potential windows much larger than imidazolium and pyridinium ionic liquids. Increasing the chain length of the alkyl substituents in 1-alkyl-3-methylimidazolium trifluoromethanesulfonimide does not widen the potential window of the ionic liquid. We identified the ionic liquids that maximize the specific energies of EDLCs through the combined effects of their potential windows and the double-layer capacitance. The highest specific energies are obtained with ionic liquid electrolytes that possess moderate electrochemical stability, small ionic volumes, low viscosity, and hence high conductivity, the best performing ionic liquid tested being 1-ethyl-3

  8. Influence of Nanosegregation on the Surface Tension of Fluorinated Ionic Liquids.

    PubMed

    Luís, Andreia; Shimizu, Karina; Araújo, João M M; Carvalho, Pedro J; Lopes-da-Silva, José A; Canongia Lopes, José N; Rebelo, Luís Paulo N; Coutinho, João A P; Freire, Mara G; Pereiro, Ana B

    2016-06-21

    We have investigated, both theoretically and experimentally, the balance between the presence of alkyl and perfluoroalkyl side chains on the surface organization and surface tension of fluorinated ionic liquids (FILs). A series of ionic liquids (ILs) composed of 1-alkyl-3-methylimidazolium cations ([CnC1im] with n = 2, 4, 6, 8, 10, or 12) combined with the perfluorobutanesulfonate anion was used. The surface tensions of the investigated liquid salts are considerably lower than those reported for non-fluorinated ionic liquids. The most surprising and striking feature is the identification, for the first time, of a minimum at n = 8 in the surface tension versus the length of the IL cation alkyl side chain. Supported by molecular dynamics (MD) simulations, it was found that this trend is a result of the competition between the two nonpolar domains (perfluorinated and aliphatic) pointing toward the gas-liquid interface, a phenomenon which occurs in ILs with perfluorinated anions. Furthermore, these ILs present the lowest surface entropy reported to date. PMID:27218210

  9. Molecular simulations of imidazolium-based tricyanomethanide ionic liquids using an optimized classical force field.

    PubMed

    Vergadou, Niki; Androulaki, Eleni; Hill, Jörg-Rüdiger; Economou, Ioannis G

    2016-03-01

    Imidazolium-based ionic liquids (ILs) incorporating the tricyanomethanide ([TCM(-)]) anion are studied using an optimized classical force field. These ILs are very promising candidates for use in a wide range of cutting-edge technologies and, to our knowledge, it is the first time that this IL family is subject to a molecular simulation study with the use of a classical atomistic force field. The [C4mim(+)][TCM(-)] ionic liquid at 298.15 K and at atmospheric pressure was used as the basis for force field optimization which primarily involved the determination of the Lennard-Jones parameters of [TCM(-)] and the implementation of three quantum mechanical schemes for the calculation of the partial charge distribution and the identification of the appropriate scaling factor for the reduction of the total ionic charge. The optimized force field was validated by performing simulations of the 1-alkyl-3-methylimidazolium tricyanomethanide ([Cnmim(+)][TCM(-)], n = 2, 4, 6, and 8) IL family at various temperatures. The results for density, self-diffusivity and viscosity are in very good agreement with the available experimental data for all ILs verifying that the force field reliably reproduces the behaviour of the imidazolium-based [TCM(-)] IL family in a wide temperature range. Furthermore, a detailed analysis of the microscopic structure and the complex dynamic behaviour of the ILs under study was performed. PMID:26878611

  10. Phase behaviour, interactions, and structural studies of (amines+ionic liquids) binary mixtures.

    PubMed

    Jacquemin, Johan; Bendová, Magdalena; Sedláková, Zuzana; Blesic, Marijana; Holbrey, John D; Mullan, Claire L; Youngs, Tristan G A; Pison, Laure; Wagner, Zdeněk; Aim, Karel; Costa Gomes, Margarida F; Hardacre, Christopher

    2012-05-14

    We present a study on the phase equilibrium behaviour of binary mixtures containing two 1-alkyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}imide-based ionic liquids, [C(n)mim] [NTf(2)] (n=2 and 4), mixed with diethylamine or triethylamine as a function of temperature and composition using different experimental techniques. Based on this work, two systems showing an LCST and one system with a possible hourglass shape are measured. Their phase behaviours are then correlated and predicted by using Flory-Huggins equations and the UNIQUAC method implemented in Aspen. The potential of the COSMO-RS methodology to predict the phase equilibria was also tested for the binary systems studied. However, this methodology is unable to predict the trends obtained experimentally, limiting its use for systems involving amines in ionic liquids. The liquid-state structure of the binary mixture ([C(2)mim] [NTf(2)]+diethylamine) is also investigated by molecular dynamics simulation and neutron diffraction. Finally, the absorption of gaseous ethane by the ([C(2)mim][NTf(2)]+diethylamine) binary mixture is determined and compared with that observed in the pure solvents.

  11. Correlation between the fluorescent response of microfluidity probes and the water content and viscosity of ionic liquid and water mixtures.

    PubMed

    Pandey, Siddharth; Fletcher, Kristin A; Baker, Sheila N; Baker, Gary A

    2004-07-01

    Accurate data on transport properties such as viscosity are essential in plant and process design involving ionic liquids. In this study, we determined the absolute viscosity of the ionic liquid + water system at water mole fractions from 0 to 0.25 for three 1-alkyl-3-methylimidazolium ionic liquids: 1-butyl-3-methylimidazolium hexafluorophosphate, 1-butyl-3-methylimidazolium bis(trifluoromethane sulfonyl)imide and 1-ethyl-3-methylimidazolium bis(trifluoromethane sulfonyl)imide. In each case, the excimer to monomer ratio for 1,m-bis(1-pyrenyl)alkanes (m= 3 or 10) was found to increase linearly with the mole fraction of water. Of the probes studied only PRODAN and rhodamine 6G, both of which have the ability to participate in hydrogen bonding, exhibited Perrin hydrodynamic behavior in the lower viscosity bis(trifluoromethane sulfonyl)imides. As a result, these probes allow for the extrapolation of the absolute viscosity of the ionic liquid mixture from the experimental fluorescence steady-state polarization values.

  12. Effects of imidazolium chloride ionic liquids and their toxicity to Scenedesmus obliquus.

    PubMed

    Liu, Huijun; Zhang, Xiaoqiang; Chen, Caidong; Du, Shaoting; Dong, Ying

    2015-12-01

    The low volatility of ionic liquids effectively eliminates a major pathway for environmental release and contamination; however, the good solubility, low degree of environmental degradation and biodegradation of ILs may pose a potential threat to the aquatic environment. The growth inhibition of the green alga Scenedesmus obliquus by five 1-alkyl-3-methylimidazolium chloride ionic liquids (ILs) ([Cnmim]Cl, n=6, 8, 10, 12, 16) was investigated, and the effect on cellular membrane permeability and the ultrastructural morphology by ILs ([Cnmim]Cl, n=8, 12, 16) were studied. The results showed that the growth inhibition rate increased with increasing IL concentration and increasing alkyl chain lengths. The relative toxicity was determined to be [C6mim]Cl<[C8mim]Cl<[C10mim]Cl<[C12mim]Cl<[C16mim]Cl. The algae were most sensitive to imidazolium chloride ILs at 48 h according to the results from the growth inhibition rate and cellular membrane permeability tests. The ultrastructural morphology showed that the ILs had negative effects on the cellular morphology and structure of the algae. The cell wall of treated algae became wavy and separated from the cell membrane. Chloroplast grana lamellae became obscure and loose, osmiophilic material was deposited in the chloroplast, and mitochondria and their cristae swelled. Additionally, electron-dense deposits were observed in the vacuoles. PMID:26218552

  13. Photoisomerization dynamics of 3,3'-diethyloxadicarbocyanine iodide in ionic liquids: Breakdown of hydrodynamic Kramers model

    SciTech Connect

    Gangamallaiah, V.; Dutt, G. B.

    2011-11-07

    Photoisomerization dynamics of 3,3{sup '}-diethyloxadicarbocyanine iodide (DODCI) has been examined in a series of 1-alkyl-3-methylimidazolium (alkyl = methyl, ethyl, propyl, butyl, and hexyl) bis(trifluoromethylsulfonyl)imides by measuring its fluorescence lifetimes and quantum yields. This study has essentially been undertaken to find out whether the process of photoisomerization of DODCI in ionic liquids is different compared to that observed in conventional solvents such as alcohols. Activation energy of the reaction has been attained with the aid of isoviscosity plots and was found to be 22 {+-} 3 kJ mol{sup -1}, which is a factor of two higher compared to that obtained in alcohols. The significantly higher activation energy obtained in bis(trifluoromethylsulfonyl)imides compared to alcohols is probably due to the highly ordered nature of the ionic liquids, which hinders the twisting process. Kramers theory has been applied to understand the reduced isomerization rate constants in terms of solvent friction. As in case of alcohols, the isomerization data could not be explained by the Kramers model. However, a power law relation, which is a phenomenological functional form, could mimic the observed trend.

  14. Photoisomerization dynamics of 3,3'-diethyloxadicarbocyanine iodide in ionic liquids: Breakdown of hydrodynamic Kramers model

    NASA Astrophysics Data System (ADS)

    Gangamallaiah, V.; Dutt, G. B.

    2011-11-01

    Photoisomerization dynamics of 3,3'-diethyloxadicarbocyanine iodide (DODCI) has been examined in a series of 1-alkyl-3-methylimidazolium (alkyl = methyl, ethyl, propyl, butyl, and hexyl) bis(trifluoromethylsulfonyl)imides by measuring its fluorescence lifetimes and quantum yields. This study has essentially been undertaken to find out whether the process of photoisomerization of DODCI in ionic liquids is different compared to that observed in conventional solvents such as alcohols. Activation energy of the reaction has been attained with the aid of isoviscosity plots and was found to be 22 ± 3 kJ mol-1, which is a factor of two higher compared to that obtained in alcohols. The significantly higher activation energy obtained in bis(trifluoromethylsulfonyl)imides compared to alcohols is probably due to the highly ordered nature of the ionic liquids, which hinders the twisting process. Kramers theory has been applied to understand the reduced isomerization rate constants in terms of solvent friction. As in case of alcohols, the isomerization data could not be explained by the Kramers model. However, a power law relation, which is a phenomenological functional form, could mimic the observed trend.

  15. Self-assembly of imidazolium-based surfactants in magnetic room-temperature ionic liquids: binary mixtures.

    PubMed

    Klee, Andreas; Prevost, Sylvain; Gradzielski, Michael

    2014-12-15

    The phase behaviour of binary mixtures of ionic surfactants (1-alkyl-3-imidazolium chloride, C(n)mimCl with n=14, 16 and 18) and imidazolium-based ionic liquids (1-alkyl-3-methylimidazolium tetrachloroferrate, C(n)mimFeCl4, with n=2 and 4) over a broad temperature range and the complete range of compositions is described. By using many complementary methods including differential scanning calorimetry (DSC), polarised microscopy, small-angle neutron and X-ray scattering (SANS/SAXS), and surface tension, the ability of this model system to support self-assembly is described quantitatively and this behaviour is compared with common water systems. The existence of micelles swollen by the solvent can be deduced from SANS experiments and represent a possible model for aggregates, which has barely been considered for ionic-liquid systems until now, and can be ascribed to the rather low solvophobicity of the surfactants. Our investigation shows that, in general, C(n)mimCl is a rather weak amphiphile in these ionic liquids. The amphiphilic strength increases systematically with the length of the alkyl chain, as seen from the phase behaviour, the critical micelle concentration, and also the level of definition of the aggregates formed.

  16. Inelastic neutron scattering study on boson peaks of imidazolium-based ionic liquids

    DOE PAGES

    Kofu, Maiko; Inamura, Yasuhiro; Podlesnyak, Andrey A.; Ehlers, Georg; Yamamuro, Osamu; Moriya, Yosuke

    2015-07-26

    Low energy excitations of 1-alkyl-3-methylimidazolium ionic liquids (ILs) have been investigated by means of neutron spectroscopy. In the spectra of inelastic scattering, a broad excitation peak referred to as a “boson peak” appeared at 1–3 meV in all of the ILs measured. The intensity of the boson peak was enhanced at the Q positions corresponding to the diffraction peaks, reflecting the in-phase vibrational nature of the boson peak. Furthermore the boson peak energy (EBP) was insensitive to the length of the alkyl-chain but changed depending on the radius of the anion. From the correlation among EBP, the anion radius, andmore » the glass transition temperature Tg, we conclude that both EBP and Tg in ILs are predominantly governed by the inter-ionic Coulomb interaction which is less influenced by the alkyl-chain length. Furthermore, we also found that the EBP is proportional to the inverse square root of the molecular weight as observed in molecular glasses.« less

  17. Inelastic neutron scattering study on boson peaks of imidazolium-based ionic liquids

    SciTech Connect

    Kofu, Maiko; Inamura, Yasuhiro; Podlesnyak, Andrey A.; Ehlers, Georg; Yamamuro, Osamu; Moriya, Yosuke

    2015-07-26

    Low energy excitations of 1-alkyl-3-methylimidazolium ionic liquids (ILs) have been investigated by means of neutron spectroscopy. In the spectra of inelastic scattering, a broad excitation peak referred to as a “boson peak” appeared at 1–3 meV in all of the ILs measured. The intensity of the boson peak was enhanced at the Q positions corresponding to the diffraction peaks, reflecting the in-phase vibrational nature of the boson peak. Furthermore the boson peak energy (EBP) was insensitive to the length of the alkyl-chain but changed depending on the radius of the anion. From the correlation among EBP, the anion radius, and the glass transition temperature Tg, we conclude that both EBP and Tg in ILs are predominantly governed by the inter-ionic Coulomb interaction which is less influenced by the alkyl-chain length. Furthermore, we also found that the EBP is proportional to the inverse square root of the molecular weight as observed in molecular glasses.

  18. O(3P) atoms as a chemical probe of surface ordering in ionic liquids.

    PubMed

    Waring, Carla; Bagot, Paul A J; Slattery, John M; Costen, Matthew L; McKendrick, Kenneth G

    2010-04-15

    The reactivity of photolytically generated, gas-phase, ground-state atomic oxygen, O((3)P), with the surfaces of a series of 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([NTf(2)]) ionic liquids has been investigated. The liquids differ only in the length of the linear C(n)H(2n+1) alkyl side chain on the cation, with n = 2, 4, 5, 8, and 12. Laser-induced fluorescence was used to detect gas-phase OH v' = 0 radicals formed at the gas-liquid interface. The reactivity of the ionic liquids increases nonlinearly with n, in a way that cannot simply be explained by stoichiometry. We infer that the alkyl chains must be preferentially exposed at the interface to a degree that is dependent on chain length. A relatively sharp onset of surface segregation is apparent in the region of n = 4. The surface specificity of the method is confirmed through the nonthermal characteristics of both the translational and rotational distributions of the OH v' = 0. These reveal that the dynamics are dominated by a direct, impulsive scattering mechanism at the outer layers of the liquid. The OH v' = 0 yield is effectively independent of the bulk temperature of the longest-chain ionic liquid in the range 298-343 K, also consistent with a predominantly direct mechanism. These product attributes are broadly similar to those of the benchmark pure hydrocarbon liquid, squalane, but a more detailed analysis suggests that the interface may be microscopically smoother for the ionic liquids.

  19. Vibrational dephasing in ionic liquids as a signature of hydrogen bonding.

    PubMed

    Chatzipapadopoulos, Susana; Zentel, Tobias; Ludwig, Ralf; Lütgens, Matthias; Lochbrunner, Stefan; Kühn, Oliver

    2015-08-24

    Understanding both structure and dynamics is crucial for producing tailor-made ionic liquids (ILs). We studied the vibrational and structural dynamics of medium versus weakly hydrogen-bonded CH groups of the imidazolium ring in ILs of the type [1-alkyl-3-methylimidazolium][bis(trifluoromethanesulfonyl)imide] ([Cn mim][NTf2 ]), with n=1, 2, and 8, by time-resolved coherent anti-Stokes Raman scattering (CARS) and quantum-classical hybrid (QCH) simulations. From the time series of the CARS spectra, dephasing times were extracted by modeling the full nonlinear response. From the QCH calculations, pure dephasing times were obtained by analyzing the distribution of transition frequencies. Experiments and calculations reveal larger dephasing rates for the vibrational stretching modes of C(2)H compared with the more weakly hydrogen-bonded C(4,5)H. This finding can be understood in terms of different H-bonding motifs and the fast interconversion between them. Differences in population relaxation rates are attributed to Fermi resonance interactions.

  20. Study of nanostructural organization of ionic liquids by electron paramagnetic resonance spectroscopy.

    PubMed

    Merunka, Dalibor; Peric, Mirna; Peric, Miroslav

    2015-02-19

    The X-band electron paramagnetic resonance spectroscopy (EPR) of a stable, spherical nitroxide spin probe, perdeuterated 2,2,6,6-tetramethyl-4-oxopiperidine-1-oxyl (pDTO) has been used to study the nanostructural organization of a series of 1-alkyl-3-methylimidazolium tetrafluoroborate ionic liquids (ILs) with alkyl chain lengths from two to eight carbons. By employing nonlinear least-squares fitting of the EPR spectra, we have obtained values of the rotational correlation time and hyperfine coupling splitting of pDTO to high precision. The rotational correlation time of pDTO in ILs and squalane, a viscous alkane, can be fit very well to a power law functionality with a singular temperature, which often describes a number of physical quantities measured in supercooled liquids. The viscosity of the ILs and squalane, taken from the literature, can also be fit to the same power law expression, which means that the rotational correlation times and the ionic liquid viscosities have similar functional dependence on temperature. The apparent activation energy of both the rotational correlation time of pDTO and the viscous flow of ILs and squalane increases with decreasing temperature; in other words, they exhibit strong non-Arrhenius behavior. The rotational correlation time of pDTO as a function of η/T, where η is the shear viscosity and T is the temperature, is well described by the Stokes-Einstein-Debye (SED) law, while the hydrodynamic probe radii are solvent dependent and are smaller than the geometric radius of the probe. The temperature dependence of hyperfine coupling splitting is the same in all four ionic liquids. The value of the hyperfine coupling splitting starts decreasing with increasing alkyl chain length in the ionic liquids in which the number of carbons in the alkyl chain is greater than four. This decrease together with the decrease in the hydrodynamic radius of the probe indicates a possible existence of nonpolar nanodomains.

  1. Prominent roles of impurities in ionic liquid for catalytic conversion of carbohydrates

    SciTech Connect

    Zhao, Haibo; Brown, Heather M.; Holladay, Johnathan E.; Zhang, Z. Conrad

    2012-02-07

    In the last two decades, ionic liquids have emerged as new and versatile solvents, and many of them are also catalysts for a broad range of catalytic reactions. Certain ionic liquids have been found to possess the unique capability of dissolving cellulosic biomass. The potential of such ionic liquids as solvent to enable catalytic conversion of cellulosic polymers was first explored and demonstrated by Zhao et al. This field of research has since experienced a rapid growth. Most ionic liquids have negligible vapor pressure and excellent thermal stability over a wide temperature range. For example, ionic liquids composed of 1-ethyl-3-methylimidazolium (EMIM+) cation and Cl- anion was reported to be stable up to 285 C, while salts of the same cation with other anions such as BF4- and PF6- are thermally stable above 380 C under inert atmosphere. It is well known that presence of impurities in ionic liquids typically causes changes in physical properties, e.g. decreasing in melting point and viscosity. Addition of Lewis acidic metal chlorides, e.g. AlCl3 to 1-alkyl-3-methylimidazolium chloride, [AMIM]Cl, is an exothermic reaction and considerably reduces the melting point by forming [AMIM]AlCl4 or [AMIM]Al2Cl7 that are also ionic liquids but have much lower melting point than the parent [AMIM]Cl. While most early research on catalysis of ionic liquids involving metallohalide anions were typically conducted from stoichiometric ratio of such anions to organic cations, e.g. [AMIM]+, the use of pure ionic liquids only as a solvent to carry out catalysis by a catalytic amount of a metal halide as catalyst truly displayed the solvent property of such ionic liquids.4 In such reaction systems, catalytic amounts of metal halides were used to catalyze the conversion of glucose and cellulose.4,11,12 The metal chloride catalyst concentration was in the order of 10-3 M. The presence of another metal chloride in the ionic liquids, even in the order of 10-5 M concentration was found

  2. Special Effect of Ionic Liquids on the Extraction of Flavonoid Glycosides from Chrysanthemum morifolium Ramat by Microwave Assistance.

    PubMed

    Zhou, Ying; Wu, Datong; Cai, Pengfei; Cheng, Guifang; Huang, Chaobiao; Pan, Yuanjiang

    2015-01-01

    A microwave-assisted extraction approach based on ionic liquids of different chain lengths was successfully applied to the extraction of ten flavonoid glycosides from the flowering heads of Chrysanthemum morifolium Ramat. The pretreated sample was quantified by HPLC-ESI-MSn. The main components were identified as flavonoid glycosides, including three luteolin glycosides, three apigenin glycosides, three kaempferide glycosides, and one acacetin glycoside according to the characteristics of the corresponding CID mass spectrometric patterns. Eight ionic liquids from the imidazolium family with different chain lengths, namely, 1-alkyl-3-methylimidazolium bromide, [Cnmim]Br, (n=2-16) were studied as extraction medium in water. Results indicated that alkyl chain length had an irregular impact on the extraction efficiency. Moreover, the best extraction efficiency was achieved by 1-dodecyl-3-methylimidazolium bromide aqueous solution ([C12mim]Br). Besides the alkyl chain length of the cations, other factors influencing extraction efficiency were systematically investigated, including concentration of the IL solutions, extraction time, matrix-to-solvent ratio and irradiation power. PMID:25927899

  3. Alkyl Chain Length Dependence of the Dynamics and Structure in the Ionic Regions of Room-Temperature Ionic Liquids.

    PubMed

    Tamimi, Amr; Bailey, Heather E; Fayer, Michael D

    2016-08-01

    The dynamics of four 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide room-temperature ionic liquids (RTILs) with carbon chain lengths of 2, 4, 6, and 10 were studied by measuring the orientational and spectral diffusion dynamics of the vibrational probe SeCN(-). Vibrational absorption spectra, two-dimensional infrared (2D IR), and polarization-selective pump-probe (PSPP) experiments were performed on the CN stretch. In addition, optical heterodyne-detected optical Kerr effect (OHD-OKE) experiments were performed on the bulk liquids. The PSPP experiments yielded triexponential anisotropy decays, which were analyzed with the wobbling-in-a-cone model. The slowest decay, the complete orientational randomization, slows with increasing chain length in a hydrodynamic trend consistent with the increasing viscosity. The shortest time scale wobbling motions are insensitive to chain length, while the intermediate time scale wobbling slows mildly as the chain length increases. The 2D IR spectra measured in parallel (⟨XXXX⟩) and perpendicular (⟨XXYY⟩) polarization configurations gave different decays, showing that reorientation-induced spectral diffusion (RISD) contributes to the dynamics. The spectral diffusion caused by the RTIL structural fluctuations was obtained by removing the RISD contributions. The faster structural fluctuations are relatively insensitive to chain length. The slowest structural fluctuations slow substantially when going from Emim (2 carbon chain) to Bmim (4 carbon chain) and slow further, but more gradually, as the chain length is increased. It was shown previously that K(+) causes local ion clustering in the Emim RTIL. The K(+) effect increases with increasing chain length. The OHD-OKE measured complete structural randomization times slow substantially with increasing chain length and are much slower than the dynamics experienced by the SeCN(-) located in the ionic regions of the RTILs.

  4. Aqueous two-phase based on ionic liquid liquid-liquid microextraction for simultaneous determination of five synthetic food colourants in different food samples by high-performance liquid chromatography.

    PubMed

    Sha, Ou; Zhu, Xiashi; Feng, Yanli; Ma, Weixing

    2015-05-01

    A rapid and effective method of aqueous two-phase systems based on ionic liquid microextraction for the simultaneous determination of five synthetic food colourants (tartrazine, sunset yellow, amaranth, ponceau 4R and brilliant blue) in food samples was established. High-performance liquid chromatography coupled with an ultraviolet detector of variable wavelength was used for the determinations. 1-alkyl-3-methylimidazolium bromide was selected as the extraction reagent. The extraction efficiency of the five colourants in the proposed system is influenced by the types of salts, concentrations of salt and [CnMIM]Br, as well as the extracting time. Under the optimal conditions, the extraction efficiencies for these five colourants were above 95%. The phase behaviours of aqueous two-phase system and extraction mechanism were investigated by UV-vis spectroscopy. This method was applied to the analysis of the five colourants in real food samples with the detection limit of 0.051-0.074 ng/mL. Good spiked recoveries from 93.2% to 98.9% were obtained.

  5. Aqueous two-phase based on ionic liquid liquid-liquid microextraction for simultaneous determination of five synthetic food colourants in different food samples by high-performance liquid chromatography.

    PubMed

    Sha, Ou; Zhu, Xiashi; Feng, Yanli; Ma, Weixing

    2015-05-01

    A rapid and effective method of aqueous two-phase systems based on ionic liquid microextraction for the simultaneous determination of five synthetic food colourants (tartrazine, sunset yellow, amaranth, ponceau 4R and brilliant blue) in food samples was established. High-performance liquid chromatography coupled with an ultraviolet detector of variable wavelength was used for the determinations. 1-alkyl-3-methylimidazolium bromide was selected as the extraction reagent. The extraction efficiency of the five colourants in the proposed system is influenced by the types of salts, concentrations of salt and [CnMIM]Br, as well as the extracting time. Under the optimal conditions, the extraction efficiencies for these five colourants were above 95%. The phase behaviours of aqueous two-phase system and extraction mechanism were investigated by UV-vis spectroscopy. This method was applied to the analysis of the five colourants in real food samples with the detection limit of 0.051-0.074 ng/mL. Good spiked recoveries from 93.2% to 98.9% were obtained. PMID:25529695

  6. Development of an ionic liquid-based microwave-assisted method for the extraction and determination of taxifolin in different parts of Larix gmelinii.

    PubMed

    Liu, Zaizhi; Jia, Jia; Chen, Fengli; Yang, Fengjian; Zu, Yuangang; Yang, Lei

    2014-01-01

    An ionic liquid-based microwave-assisted extraction method (ILMAE) was successfully applied for the extraction of taxifolin from Larix gmelinii. Different kinds of 1-alkyl-3-methylimidazolium ionic liquids with different kinds of cations and anions were studied and 1-butyl-3-methylimidazolium bromide was chosen as the optimal solvent for taxifolin extraction. The optimal conditions of ILMAE were determined by single factor experiments and Box-Behnken design as follows: [C4mim]Br concentration of 1.00 M, soaking time of 2 h, liquid-solid ratio of 15:1 mL/g, microwave irradiation power of 406 W, microwave irradiation time of 14 min. No degradation of taxifolin had been observed under the optimum conditions as evidenced from the stability studies performed with standard taxifolin. Compared with traditional solvent and methods, ILMAE provided higher extraction yield, lower energy and time consumption. The distribution of taxifolin in different parts of larch and the influences of age, orientation, and season on the accumulation of taxifolin were analyzed for the sufficient utilization of L. gmelinii.

  7. Aggregation behavior and antimicrobial activity of ester-functionalized imidazolium- and pyridinium-based ionic liquids in aqueous solution.

    PubMed

    Garcia, M Teresa; Ribosa, Isabel; Perez, Lourdes; Manresa, Angeles; Comelles, Francesc

    2013-02-26

    Two series of long chain imidazolium- and pyridinium-based ionic liquids containing an ester functional group in the alkyl side chain, 3-methyl-1-alkyloxycarbonylmethylimidazolium bromides (C(n)EMeImBr) and 1-alkyloxycarbonylmethylpyridinium bromides (C(n)EPyrBr), were synthesized and their thermal stability, aggregation behavior in aqueous medium, and antimicrobial activity investigated. The introduction of an ester group decreased the thermal stability of the functionalized ILs compared to simple alkyl chain containing ILs (1-alkyl-3-methylimidazolium bromides and 1-alkylpyridinium bromides). Tensiometry, conductimetry, and spectrofluorimetry were applied to study the self-aggregation of the amphiphilic ILs in aqueous solution. The ILs investigated displayed surface activity and the characteristic chain length dependence of the micellization process of surfactants. As compared to simple alkyl chain containing ILs bearing the same hydrocarbon chain, ester-functionalized ILs possess higher adsorption efficiency (pC(20)) and significantly lower critical micelle concentration (cmc) and surface tension at the cmc (γ(cmc)), indicating that the incorporation of an ester group promotes adsorption at the air/water interface and micelle formation. The antimicrobial activity was evaluated against Gram-negative and Gram-positive bacteria and fungi. ILs containing more than eight carbon atoms in the alkyl chain showed antimicrobial activity. Their efficiency as antimicrobial agents increased with the hydrophobicity of the amphiphilic cation being the C(12) homologous the most active compounds. The incorporation of an ester group particularly increased the biological activity against fungi.

  8. Blocking the entrance of AMP pocket results in hormetic stimulation of imidazolium-based ionic liquids to firefly luciferase.

    PubMed

    Chen, Fu; Liu, Shu-Shen; Yu, Mo; Qu, Rui; Wang, Meng-Chao

    2015-08-01

    The hormesis characterized by low-concentration stimulation and high-concentration inhibition has gained significant interest over the past decades. Some organic solvents and ionic liquids (ILs) have hormetic concentration responses (HCR) to bioluminescence such as firefly luciferase and Vibrio qinghaiensis sp.-Q67. In this study, we determine the effects of 1-alkyl-3-methylimidazolium chlorine ILs ([Cnmim]Cl, n=2, 4, 6, 8, 10 and 12) to firefly luciferase in order to verify the mechanism of hormesis. The luminescence inhibition toxicity tests show that the stimulation effects of [C8mim]Cl and [C10mim]Cl are obvious, [C6mim]Cl and [C12mim]Cl are minor, and [C2mim]Cl and [C4mim]Cl are rare. The enzyme kinetics show that [C8mim]Cl and [C10mim]Cl are the competitive inhibitors with ATP while [C2mim]Cl and [C4mim]Cl are the noncompetitive ones. Molecular dynamics simulation results reveal that imidazolium rings of [C8mim] and [C10mim] locate at the entrance of luciferin pocket which is adjacent to AMP pocket, while alkyl-chains insert into the bottom of the luciferin pocket. Combining the results from inhibition test, kinetics assay and molecular simulation, we can deduce that occupying AMP pocket by imidazolium ring is responsible for hormetic stimulation.

  9. Effects of polarizability on the structural and thermodynamics properties of [C{sub n}mim][Gly] ionic liquids (n = 1–4) using EEM/MM molecular dynamic simulations

    SciTech Connect

    Wu, Yang; Hu, Na; Yue, Lili; Wei, Lihong; Guan, Wei

    2015-02-14

    An extended electronegativity equalization method/molecular mechanics (EEM/MM) model for ionic liquids is used to investigate the structures and properties of 1-alkyl-3-methylimidazolium glycine ionic liquids [C{sub n}mim][Gly] (n = 1–4) with alkyl substituents of different lengths. The EEM/MM model describes the electrostatic interactions of atoms and their changes in different ambient environments. This property is the most outstanding characteristic of the model. EEM parameters (i.e., valence electronegativities and valence hardness parameters) are calibrated using linear regression and least-squares methods, which can accurately predict the gas-phase properties of [C{sub n}mim]{sup +}, [Gly]{sup −}, and [C{sub n}mim][Gly] ion pairs. We utilize the EEM/MM force field to systematically investigate the effects of polarizability on the accuracy of [C{sub n}mim][Gly] properties predicted through the molecular dynamic simulations. EEM/MM explicitly describes the atom-based polarizability of [C{sub n}mim][Gly]; thus, the densities, enthalpies of vaporization, self-diffusion coefficients, and conductivities of the [C{sub n}mim][Gly] are consistent with the experimental values. The calculated radial distribution functions provide a mechanistic understanding of the effects of polarizability on ionic aggregations in amino acid ionic liquids. The effects of alkyl chain length on the diffusion coefficient and conductivity are also discussed.

  10. High-accuracy vapor pressure data of the extended [C(n)C1im][Ntf2] ionic liquid series: trend changes and structural shifts.

    PubMed

    Rocha, Marisa A A; Lima, Carlos F R A C; Gomes, Lígia R; Schröder, Bernd; Coutinho, João A P; Marrucho, Isabel M; Esperança, José M S S; Rebelo, Luís P N; Shimizu, Karina; Lopes, José N Canongia; Santos, Luís M N B F

    2011-09-22

    For the first time, two distinct trends are clearly evidenced for the enthalpies and entropies of vaporization along the [Cnmim][Ntf2] ILs series. The trend shifts observed for Δ(l)(g)H(m)(o) and Δ(l)(g)S(m)(o), which occur at [C6mim][Ntf2], are related to structural modifications. The thermodynamic results reported in the present article constitute the first quantitative experimental evidence of the structural percolation phenomenon and make a significant contribution to better understanding of the relationship among cohesive energies, volatilities, and liquid structures of ionic liquids. A new Knudsen effusion apparatus, combined with a quartz crystal microbalance, was used for the high-accuracy volatility study of the 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide series ([Cnmim][Ntf2], where n = 2, 3, 4, 5, 6, 7, 8, 10, 12). Vapor pressures in the (450–500) K temperature range were measured, and the molar standard enthalpies, entropies, and Gibbs energies of vaporization were derived. The thermodynamic parameters of vaporization were reported, along with molecular dynamic simulations of the liquid phase structure, allowing the establishment of a link between the thermodynamic properties and the percolation phenomenon in ILs.

  11. Task-specific ionic liquids incorporating novel cations for the coordination and extraction of Hg2+ and Cd2+: synthesis, characterization, and extraction studies.

    PubMed

    Visser, Ann E; Swatloski, Richard P; Reichert, W Matthew; Mayton, Rebecca; Sheff, Sean; Wierzbicki, Andrzej; Davis, James H; Rogers, Robin D

    2002-06-01

    A series of hydrophobic task-specific ionic liquids designed to extract Hg2+ and Cd2+ from water were prepared by appending urea-, thiourea-, and thioether-substituted alkyl groups to imidazoles and combining the resulting cationic species with PF6-. The new ionic liquids were characterized and investigated for their metal ion extraction capabilities. When used in liquid/liquid extraction of Hg2+ and Cd2+ from aqueous solutions, the metal ion distribution ratios increased several orders of magnitude, regardless of whether the ionic liquids were used as the sole extracting phase or doped into a series of [1-alkyl-3-methylimidazolium][PF6] (alkyl = n-C4-C8) ionic liquids to form a 1:1 solution. In the 1:1 mixtures, as the length of the alkyl chain increased from butyl to hexyl to octyl, the metal ion distribution ratios increased. Increasing the ratio TSIL/[C4mim][PF6] resulted in higher distribution ratios for both Hg2+ and Cd2+. Overall, the thiourea- and urea-derivatized cations yielded the highest distribution ratios, and those for Hg2+ were higher than those for Cd2+; however, a change in aqueous-phase pH does not promote the stripping of metal ions from the extracting phase. The combination of these imidazolium cations and PF6- produced ionic liquids with decreased thermal stability in comparison to [C(n)mim]-[PF6]. Gaussian98 restricted Hartree-Fock geometry optimizations for one of the thiourea-appended cations shows the charge delocalization around the ring and suggests that the thiourea group may aid in deprotonating the imidazolium ring and may be responsible for the lowered thermal stability of these cations.

  12. Surface Tensions of Ionic Liquids: Non-Regular Trend Along the Number of Cyano Groups

    PubMed Central

    Almeida, Hugo F. D.; Carvalho, Pedro J.; Kurnia, Kiki A.; Lopes-da-Silva, José A.; Coutinho, João A. P.; Freire, Mara G.

    2016-01-01

    Ionic liquids (ILs) with cyano-functionalized anions are a set of fluids that are still poorly characterized despite their remarkably low viscosities and potential applications. Aiming at providing a comprehensive study on the influence of the number of –CN groups through the surface tension and surface organization of ILs, the surface tensions of imidazolium-based ILs with cyano-functionalized anions were determined at atmospheric pressure and in the (298.15 to 343.15) K temperature range. The ILs investigated are based on 1-alkyl-3-methylimidazolium cations (alkyl = ethyl, butyl and hexyl) combined with the [SCN]-, [N(CN)2]−, [C(CN)3]− and [B(CN)4]-anions. Although the well-known trend regarding the surface tension decrease with the increase of the size of the aliphatic moiety at the cation was observed, the order obtained for the anions is more intricate. For a common cation and at a given temperature, the surface tension decreases according to: [N(CN)2]- > [SCN]- > [C(CN)3]- > [B(CN)4]-. Therefore, the surface tension of this homologous series does not decrease with the increase of the number of –CN groups at the anion as has been previously shown by studies performed with a more limited matrix of ILs. A maximum in the surface tension and critical temperature was observed for [N(CN)2]-based ILs. Furthermore, a minimum in the surface entropy, indicative of a highly structured surface, was found for the same class of ILs. All these evidences seem to be a result of stronger hydrogen-bonding interactions occurring in [N(CN)2]-based ILs, when compared with the remaining CN-based counterparts, and as sustained by cation-anion interaction energies derived from the Conductor Like Screening Model for Real Solvents (COSMO-RS).

  13. Surface Tensions of Ionic Liquids: Non-Regular Trend Along the Number of Cyano Groups

    PubMed Central

    Almeida, Hugo F. D.; Carvalho, Pedro J.; Kurnia, Kiki A.; Lopes-da-Silva, José A.; Coutinho, João A. P.; Freire, Mara G.

    2016-01-01

    Ionic liquids (ILs) with cyano-functionalized anions are a set of fluids that are still poorly characterized despite their remarkably low viscosities and potential applications. Aiming at providing a comprehensive study on the influence of the number of –CN groups through the surface tension and surface organization of ILs, the surface tensions of imidazolium-based ILs with cyano-functionalized anions were determined at atmospheric pressure and in the (298.15 to 343.15) K temperature range. The ILs investigated are based on 1-alkyl-3-methylimidazolium cations (alkyl = ethyl, butyl and hexyl) combined with the [SCN]-, [N(CN)2]−, [C(CN)3]− and [B(CN)4]-anions. Although the well-known trend regarding the surface tension decrease with the increase of the size of the aliphatic moiety at the cation was observed, the order obtained for the anions is more intricate. For a common cation and at a given temperature, the surface tension decreases according to: [N(CN)2]- > [SCN]- > [C(CN)3]- > [B(CN)4]-. Therefore, the surface tension of this homologous series does not decrease with the increase of the number of –CN groups at the anion as has been previously shown by studies performed with a more limited matrix of ILs. A maximum in the surface tension and critical temperature was observed for [N(CN)2]-based ILs. Furthermore, a minimum in the surface entropy, indicative of a highly structured surface, was found for the same class of ILs. All these evidences seem to be a result of stronger hydrogen-bonding interactions occurring in [N(CN)2]-based ILs, when compared with the remaining CN-based counterparts, and as sustained by cation-anion interaction energies derived from the Conductor Like Screening Model for Real Solvents (COSMO-RS). PMID:27642224

  14. Can the scaling behavior of electric conductivity be used to probe the self-organizational changes in solution with respect to the ionic liquid structure? The case of [C8MIM][NTf2].

    PubMed

    Paluch, Marian; Wojnarowska, Zaneta; Goodrich, Peter; Jacquemin, Johan; Pionteck, Jürgen; Hensel-Bielowka, Stella

    2015-08-28

    Electrical conductivity of the supercooled ionic liquid [C8MIM][NTf2], determined as a function of temperature and pressure, highlights strong differences in its ionic transport behavior between low and high temperature regions. To date, the crossover effect which is very well known for low molecular van der Waals liquids has been rarely described for classical ionic liquids. This finding highlights that the thermal fluctuations could be dominant mechanisms driving the dramatic slowing down of ion motions near Tg. An alternative way to analyze separately low and high temperature dc-conductivity data using a density scaling approach was then proposed. Based on which a common value of the scaling exponent γ = 2.4 was obtained, indicating that the applied density scaling is insensitive to the crossover effect. By comparing the scaling exponent γ reported herein along with literature data for other ionic liquids, it appears that γ decreases by increasing the alkyl chain length on the 1-alkyl-3-methylimidazolium-based ionic liquids. This observation may be related to changes in the interaction between ions in solution driven by an increase in the van der Waals type interaction by increasing the alkyl chain length on the cation. This effect may be related to changes in the ionic liquid nanostructural organization with the alkyl chain length on the cation as previously reported in the literature based on molecular dynamic simulations. In other words, the calculated scaling exponent γ may be then used as a key parameter to probe the interaction and/or self-organizational changes in solution with respect to the ionic liquid structure.

  15. Molecular dynamics simulation of imidazolium-based ionic liquids. I. Dynamics and diffusion coefficient

    NASA Astrophysics Data System (ADS)

    Kowsari, M. H.; Alavi, Saman; Ashrafizaadeh, Mahmud; Najafi, Bijan

    2008-12-01

    Molecular dynamics simulations are used to study the dynamics and transport properties of 12 room-temperature ionic liquids of the 1-alkyl-3-methylimidazolium [amim]+ (alkyl=methyl, ethyl, propyl, and butyl) family with PF6-, NO3-, and Cl- counterions. The explicit atom transferable force field of Canongia Lopes et al. [J. Phys. Chem. B 108, 2038 (2004)] is used in the simulations. In this first part, the dynamics of the ionic liquids are characterized by studying the mean-square displacement (MSD) and the velocity autocorrelation function (VACF) for the centers of mass of the ions at 400 K. Trajectory averaging was employed to evaluate the diffusion coefficients at two temperatures from the linear slope of MSD(t) functions in the range of 150-300 ps and from the integration of the VACF(t) functions at 400 K. Detailed comparisons are made between the diffusion results from the MSD and VACF methods. The diffusion coefficients from the integration of the VACFs are closer to experimental values than the diffusion coefficients calculated from the slope of MSDs. Both methods can show good agreement with experiment in predicting relative trends in the diffusion coefficients and determining the role of the cation and anion structures on the dynamical behavior of this family of ionic liquids. The MSD and self-diffusion of relatively heavier imidazolium cations are larger than those of the lighter anions from the Einstein results, except for the case of [bmim][Cl]. The cationic transference number generally decreases with temperature, in good agreement with experiments. For the same anion, the cationic transference numbers decrease with increasing length of the alkyl chain, and for the same cation, the trends in the cationic transference numbers are [NO3]-<[Cl]-<[PF6]-. The trends in the diffusion coefficient in the series of cations with identical anions are [emim]+>[pmim]+>[bmim]+ and those for anions with identical cations are [NO3]->[PF6]->[Cl]-. The [dmim]+ has a

  16. Ionic Liquids Database- (ILThermo)

    National Institute of Standards and Technology Data Gateway

    SRD 147 Ionic Liquids Database- (ILThermo) (Web, free access)   IUPAC Ionic Liquids Database, ILThermo, is a free web research tool that allows users worldwide to access an up-to-date data collection from the publications on experimental investigations of thermodynamic, and transport properties of ionic liquids as well as binary and ternary mixtures containing ionic liquids.

  17. Thermodynamical and structural properties of binary mixtures of imidazolium chloride ionic liquids and alcohols from molecular simulation

    NASA Astrophysics Data System (ADS)

    Raabe, Gabriele; Köhler, Jürgen

    2008-10-01

    We have performed molecular dynamics simulations to determine the densities, excess energies of mixing, and structural properties of binary mixtures of the 1-alkyl-3-methylimidazolium chloride ionic liquids (ILs) [amim][Cl] and ethanol and 1-propanol in the temperature range from 298.15to363.15K. As in our previous work [J. Chem. Phys. 128, 154509 (2008)], our simulation studies are based on a united atom model from Liu et al. [Phys. Chem. Chem. Phys. 8, 1096 (2006)] for the 1-ethyl- and 1-butyl-3-methylimidazolium cations [emim+] and [bmim+], which we have extended to the 1-hexyl-3-methylimidazolium [hmim+] cation and combined with parameters of Canongia Lopes et al. [J. Phys. Chem. B 108, 2038 (2004)] for the chloride anion [Cl-] and the force field by Khare et al. for the alcohols [J. Phys. Chem. B 108, 10071 (2004)]. With this, we provide both prediction for the densities of the mixtures that have mostly not been investigated experimentally yet and a molecular picture of the interactions between the alcohol molecules and the ions. The negative excess energies of all mixtures indicate an energetically favorable mixing of [amim][Cl] ILs and alcohols. To gain insight into the nonideality of the mixtures on the molecular level, we analyzed their local structures by radial and spatial distribution functions. These analyses show that the local ordering in these mixtures is determined by strong hydrogen-bond interactions between the chloride anion and the hydroxyls of the alcohols, enhanced interactions between the anion and the charged domain of the cation, and an increasing aggregation of the nonpolar alkyl tails of the alcohols and the cations with increasing cation size, which results in a segregation of polar and nonpolar domains.

  18. Acidic Ionic Liquids.

    PubMed

    Amarasekara, Ananda S

    2016-05-25

    Ionic liquid with acidic properties is an important branch in the wide ionic liquid field and the aim of this article is to cover all aspects of these acidic ionic liquids, especially focusing on the developments in the last four years. The structural diversity and synthesis of acidic ionic liquids are discussed in the introduction sections of this review. In addition, an unambiguous classification system for various types of acidic ionic liquids is presented in the introduction. The physical properties including acidity, thermo-physical properties, ionic conductivity, spectroscopy, and computational studies on acidic ionic liquids are covered in the next sections. The final section provides a comprehensive review on applications of acidic ionic liquids in a wide array of fields including catalysis, CO2 fixation, ionogel, electrolyte, fuel-cell, membrane, biomass processing, biodiesel synthesis, desulfurization of gasoline/diesel, metal processing, and metal electrodeposition.

  19. Acidic Ionic Liquids.

    PubMed

    Amarasekara, Ananda S

    2016-05-25

    Ionic liquid with acidic properties is an important branch in the wide ionic liquid field and the aim of this article is to cover all aspects of these acidic ionic liquids, especially focusing on the developments in the last four years. The structural diversity and synthesis of acidic ionic liquids are discussed in the introduction sections of this review. In addition, an unambiguous classification system for various types of acidic ionic liquids is presented in the introduction. The physical properties including acidity, thermo-physical properties, ionic conductivity, spectroscopy, and computational studies on acidic ionic liquids are covered in the next sections. The final section provides a comprehensive review on applications of acidic ionic liquids in a wide array of fields including catalysis, CO2 fixation, ionogel, electrolyte, fuel-cell, membrane, biomass processing, biodiesel synthesis, desulfurization of gasoline/diesel, metal processing, and metal electrodeposition. PMID:27175515

  20. Molecular dynamics study of the effect of alkyl chain length on melting points of [CnMIM][PF6] ionic liquids

    SciTech Connect

    Zhang, Y; Maginn, EJ

    2014-01-01

    Based on molecular dynamics simulations, the melting points T-m of a series of 1-alkyl-3-methylimidazolium hexafluorophosphate ionic liquids [CnMIM][PF6] with n = 2, 4, 10, 12, and 14 were studied using the free energy-based pseudosupercritical path (PSCP) method. The experimental trend that the Tm decreases with increasing alkyl chain length for ILs with short alkyl chains and increases for the ones with long alkyl chains was correctly captured. Further analysis revealed that the different trends are the results of the balance between fusion enthalpy and fusion entropy. For the ILs with short alkyl chains (ethyl and butyl groups), fusion entropy plays the dominant role so that [C4MIM][PF6], which has a larger fusion entropy due to its higher liquid phase entropy has the lower melting temperature. As for the ILs with long alkyl chains, due to the enhanced van der Waals interactions brought about by the long non-polar alkyl chains, enthalpy becomes the deciding factor and the melting points increase when the alkyl chain goes from C10 to C14. While the melting points for [C2MIM][PF6] and [C4MIM][PF6] were quantitatively predicted and the trends for the long chain ILs were captured correctly, the absolute melting points for [C10MIM][PF6], [C12MIM][PF6] and [C14MIM][PF6] were systematically overestimated in the simulations. Three possible reasons for the overestimation were studied but all ruled out. Further simulation or experimental studies are needed to explain the difference.

  1. Molecular dynamics study of the effect of alkyl chain length on melting points of [CnMIM][PF6] ionic liquids.

    PubMed

    Zhang, Yong; Maginn, Edward J

    2014-07-14

    Based on molecular dynamics simulations, the melting points Tm of a series of 1-alkyl-3-methylimidazolium hexafluorophosphate ionic liquids [CnMIM][PF6] with n = 2, 4, 10, 12, and 14 were studied using the free energy-based pseudosupercritical path (PSCP) method. The experimental trend that the Tm decreases with increasing alkyl chain length for ILs with short alkyl chains and increases for the ones with long alkyl chains was correctly captured. Further analysis revealed that the different trends are the results of the balance between fusion enthalpy and fusion entropy. For the ILs with short alkyl chains (ethyl and butyl groups), fusion entropy plays the dominant role so that [C4MIM][PF6], which has a larger fusion entropy due to its higher liquid phase entropy has the lower melting temperature. As for the ILs with long alkyl chains, due to the enhanced van der Waals interactions brought about by the long non-polar alkyl chains, enthalpy becomes the deciding factor and the melting points increase when the alkyl chain goes from C10 to C14. While the melting points for [C2MIM][PF6] and [C4MIM][PF6] were quantitatively predicted and the trends for the long chain ILs were captured correctly, the absolute melting points for [C10MIM][PF6], [C12MIM][PF6] and [C14MIM][PF6] were systematically overestimated in the simulations. Three possible reasons for the overestimation were studied but all ruled out. Further simulation or experimental studies are needed to explain the difference.

  2. Multiple equilibria interaction pattern between the ionic liquids C(n)mimPF6 and β-cyclodextrin in aqueous solutions.

    PubMed

    Zhang, Jingjing; Shen, Xinghai

    2011-10-20

    The interactions of ionic liquids (ILs) 1-alkyl-3-methylimidazolium hexafluorophosphate (C(n)mimPF(6), n = 2, 4, 6, 8) with β-cyclodextrin (β-CD) in aqueous solutions are investigated in this article. The stoichiometry and apparent association constants were obtained by the competitive fluorescence method, NMR measurements, and isothermal titration calorimetry (ITC). The results showed that C(2)mimPF(6), C(4)mimPF(6), and C(6)mimPF(6) form 1:1 (guest:host) inclusion complexes with β-CD whereas the 1:2 inclusion complex can be formed between C(8)mimPF(6) and β-CD. We studied the existence state of the ILs and found that they exist mainly as separated ions with a minor percentage existing as associated ion pairs within the concentration studied. By ESI/HRMS, the coexistence of different complexes including C(n)mim(+)·PF(6)(-)-β-CD, C(n)mim(+)-β-CD (or C(n)mim(+)-β-CD(2)), and PF(6)(-)-β-CD was observed. It is also deduced that the intermediate complex, (β-CD-cation)·(anion-β-CD), may dissociate into cation-β-CD and anion-β-CD complexes. Thermodynamic parameters determined by ITC indicate that, while the inclusion process for C(6)mimPF(6)/β-CD complex is entropy and enthalpy driven, the interactions of other C(n)mimPF(6) (n = 2, 4, 8) with β-CD are enthalpy controlled. Based on these results, a more comprehensive pattern involving multiple equilibria on the interaction between C(n)mimPF(6) and β-CD in aqueous solutions is presented herein.

  3. Thermophysical properties of imidazolium tricyanomethanide ionic liquids: experiments and molecular simulation.

    PubMed

    Zubeir, Lawien F; Rocha, Marisa A A; Vergadou, Niki; Weggemans, Wilko M A; Peristeras, Loukas D; Schulz, Peter S; Economou, Ioannis G; Kroon, Maaike C

    2016-08-17

    The low-viscous tricyanomethanide ([TCM](-))-based ionic liquids (ILs) are gaining increasing interest as attractive fluids for a variety of industrial applications. The thermophysical properties (density, viscosity, surface tension, electrical conductivity and self-diffusion coefficient) of the 1-alkyl-3-methylimidazolium tricyanomethanide [Cnmim][TCM] (n = 2, 4 and 6-8) IL series were experimentally measured over the temperature range from 288 to 363 K. Moreover, a classical force field optimized for the imidazolium-based [TCM](-) ILs was used to calculate their thermodynamic, structural and transport properties (density, surface tension, self-diffusion coefficients, viscosity) in the temperature range from 300 to 366 K. The predictions were directly compared against the experimental measurements. The effects of anion and alkyl chain length on the structure and thermophysical properties have been evaluated. In cyano-based ILs, the density decreases with increasing molar mass, in contrast to the behavior of the fluorinated anions, being in agreement with the literature. The contribution per -CH2- group to the increase of the viscosity presents the following sequence: [PF6](-) > [BF4](-) > [Tf2N](-) > [DCA](-) > [TCB](-) > [TCM](-). [TCM](-)-based ILs show lower viscosity than dicyanamide ([DCA](-))- and tetracyanoborate ([TCB](-))-based ILs, while the latter two exhibit a crossover which depends both on temperature and the alkyl chain length of the cation. The surface tension of the investigated ILs decreases with increasing alkyl chain length. [C2mim][TCM] shows an outlier behavior compared to other members of the homologous series. The surface enthalpies and surface entropies for all the studied systems have been calculated based on the experimentally determined surface tensions. The relationship between molar conductivity and viscosity was analyzed using the Walden rule. The experimentally determined self-diffusion coefficients of the cations are in good

  4. Applications of ionic liquids.

    PubMed

    Patel, Divia Dinesh; Lee, Jong-Min

    2012-06-01

    Ionic liquids have recently gained popularity in the scientific community owing to their special properties and characteristics. One of the reasons why ionic liquids have been termed "green solvents" is due to their negligible vapour pressure. Their use in electrochemical, biological and metal extraction applications is discussed. Wide research has been carried out for their use in batteries, solar panels, fuel cells, drug deliveries and biomass pretreatments. This work aims to consolidate the various findings from previous works in these areas.

  5. Applications of ionic liquids.

    PubMed

    Patel, Divia Dinesh; Lee, Jong-Min

    2012-06-01

    Ionic liquids have recently gained popularity in the scientific community owing to their special properties and characteristics. One of the reasons why ionic liquids have been termed "green solvents" is due to their negligible vapour pressure. Their use in electrochemical, biological and metal extraction applications is discussed. Wide research has been carried out for their use in batteries, solar panels, fuel cells, drug deliveries and biomass pretreatments. This work aims to consolidate the various findings from previous works in these areas. PMID:22711528

  6. Maxwell-Stefan diffusivities in binary mixtures of ionic liquids with dimethyl sulfoxide (DMSO) and H2O.

    PubMed

    Liu, Xin; Vlugt, Thijs J H; Bardow, André

    2011-07-01

    Ionic liquids (ILs) are promising solvents for applications ranging from CO2 capture to the pretreatment of biomass. However, slow diffusion often restricts their applicability. A thorough understanding of diffusion in ILs is therefore highly desirable. Previous research largely focused on self-diffusion in ILs. For practical applications, mutual diffusion is by far more important than self-diffusion. For describing mutual diffusion in multicomponent systems, the Maxwell-Stefan (MS) approach is commonly used. Unfortunately, it is difficult to obtain MS diffusivities from experiments, but they can be directly extracted from molecular dynamics (MD) simulations. In this work, MS diffusivities were computed in binary systems containing 1-alkyl-3-methylimidazolium chloride (C(n)mimCl, n = 2, 4, 8), water, and/or dimethyl sulfoxide (DMSO) using MD. The dependence of self- and MS diffusivities on mixture composition was investigated. Our results show the following: (1) For solutions of ILs in water and DMSO, self-diffusivities decrease strongly with increasing IL concentration. For DMSO-IL, a single exponential decay is observed. (2) In both water-IL and DMSO-IL, MS diffusivities vary by a factor of 10 within the concentration range which is, however, still significantly smaller than the variation of the self-diffusion coefficients. (3) The MS diffusivities of the IL are almost independent of the alkyl chain length. (4) ILs stay in a form of isolated ions in C(n)mimCl-H2O mixtures; however, dissociation into ions is much less observed in C(n)mimCl-DMSO systems. This has a large effect on the concentration dependence of MS diffusivities. (5) Recently, we proposed a new model for predicting the MS diffusivity at infinite dilution, that is, Đ(ij)(x(k-->)1) (Ind. Eng. Chem. Res. 2011, 50, 4776-4782). This quantity describes the friction between components i and j when both are infinitely diluted in component k. In contrast to earlier empirical models, our model is based on

  7. Synthesis of ionic liquids

    DOEpatents

    Dai, Sheng [Knoxville, TN; Luo, Huimin [Knoxville, TN

    2008-09-09

    Ionic compounds which are liquids at room temperature are formed by the method of mixing a neutral organic liqand with the salt of a metal cation and its conjugate anion. The liquids are hydrophobic, conductive and stable and have uses as solvents and in electrochemical devices.

  8. Synthesis of ionic liquids

    DOEpatents

    Dai, Sheng; Luo, Huimin

    2011-11-01

    Ionic compounds which are liquids at room temperature are formed by the method of mixing a neutral organic ligand with the salt of a metal cation and its conjugate anion. The liquids are hydrophobic, conductive and stable and have uses as solvents and in electrochemical devices.

  9. Ionic liquids in chemical engineering.

    PubMed

    Werner, Sebastian; Haumann, Marco; Wasserscheid, Peter

    2010-01-01

    The development of engineering applications with ionic liquids stretches back to the mid-1990s when the first examples of continuous catalytic processes using ionic liquids and the first studies of ionic liquid-based extractions were published. Ever since, the use of ionic liquids has seen tremendous progress in many fields of chemistry and engineering, and the first commercial applications have been reported. The main driver for ionic liquid engineering applications is to make practical use of their unique property profiles, which are the result of a complex interplay of coulombic, hydrogen bonding and van der Waals interactions. Remarkably, many ionic liquid properties can be tuned in a wide range by structural modifications at their cation and anion. This review highlights specific examples of ionic liquid applications in catalysis and in separation technologies. Additionally, the application of ionic liquids as working fluids in process machines is introduced.

  10. Interionic Interactions in Imidazolium-Based Ionic Liquids: The Role of the C2-Position Revealed by Raman Scattering and Supported by IR and NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Noack, Kristina; Paape, Natalia; Kiefer, Johannes; Wasserscheid, Peter; Leipertz, Alfred

    2010-08-01

    Intermolecular interactions determine the state of aggregation of a substance at given temperature. Based on that, changes in intermolecular interactions can lead to microscopic reordering which may be observed macroscopically in terms of altered physicochemical properties. Especially, when chemicals are employed in technical processes, it is important to control and regulate their properties to guarantee product quality. A special group of chemical substances increasingly gaining interest in the field of chemical and process engineering are room temperature ionic liquids (RTILs). In general, RTILs are organic salts with melting points "below the boiling point of water". The variety of possible combinations of cations and anions lead to a wide range of chemical and thermo-physical properties. In fact, it is possible to tune their properties by adjusting the ratio of Coulomb and van der Waals interactions. However, because it is hardly possible to investigate a reasonable fraction of the potential cation-anion combinations, a molecular-based understanding of their properties is crucial to make a rational design possible. In this regard vibrational spectroscopy has proven to be very beneficial for structural analysis and the investigation of interionic and intermolecular interactions. Therein, especially Raman spectroscopy shows a significant advantage of being insensitive to water interference and it is widely applied in the field of ionic liquids. Among others the 1-alkyl-3-methylimidazolium [RMIM] based ILs have been employed as model ILs in structural analysis, and most vibrational studies available in literature have been carried out investigating this kind of ILs. In contrast, spectroscopic data and calculations of C2-methylated 1,2-dialkyl-3-methylimidazolium based ILs, are available to a much lesser extend. The substitution in the C2 position in those ILs disrupts the main hydrogen-bonding interaction between the cation and the anion and is expected to lead

  11. Ionic Liquid–Solute Interactions Studied by 2D NOE NMR Spectroscopy

    SciTech Connect

    Khatun, Sufia; Castner, Edward W.

    2014-11-26

    Intermolecular interactions between a Ru²⁺(bpy)₃ solute and the anions and cations of four different ionic liquids (ILs) are investigated by 2D NMR nuclear Overhauser effect (NOE) techniques, including {¹H-¹⁹F} HOESY and {¹H-¹H} ROESY. Four ILs are studied, each having the same bis(trifluoromethylsulfonyl)amide anion in common. Two of the ILs have aliphatic 1-alkyl-1-methylpyrrolidinium cations, while the other two ILs have aromatic 1-alkyl-3-methylimidazolium cations. ILs with both shorter (butyl) and longer (octyl or decyl) cationic alkyl substituents are studied. NOE NMR results suggest that the local environment of IL anions and cations near the Ru²⁺(bpy)₃ solute is rather different from the bulk IL structure. The solute-anion and solute-cation interactions are significantly different both for ILs with short vs long alkyl tails and for ILs with aliphatic vs aromatic cation polar head groups. In particular, the solute-anion interactions are observed to be about 3 times stronger for the cations with shorter alkyl tails relative to the ILs with longer alkyl tails. The Ru²⁺(bpy)₃ solute interacts with both the polar head and the nonpolar tail groups of the 1- butyl-1-methylpyrrolidinium cation but only with the nonpolar tail groups of the 1-decyl-1-methylpyrrolidinium cation.

  12. Ionic Liquid–Solute Interactions Studied by 2D NOE NMR Spectroscopy

    DOE PAGES

    Khatun, Sufia; Castner, Edward W.

    2014-11-26

    Intermolecular interactions between a Ru²⁺(bpy)₃ solute and the anions and cations of four different ionic liquids (ILs) are investigated by 2D NMR nuclear Overhauser effect (NOE) techniques, including {¹H-¹⁹F} HOESY and {¹H-¹H} ROESY. Four ILs are studied, each having the same bis(trifluoromethylsulfonyl)amide anion in common. Two of the ILs have aliphatic 1-alkyl-1-methylpyrrolidinium cations, while the other two ILs have aromatic 1-alkyl-3-methylimidazolium cations. ILs with both shorter (butyl) and longer (octyl or decyl) cationic alkyl substituents are studied. NOE NMR results suggest that the local environment of IL anions and cations near the Ru²⁺(bpy)₃ solute is rather different from the bulkmore » IL structure. The solute-anion and solute-cation interactions are significantly different both for ILs with short vs long alkyl tails and for ILs with aliphatic vs aromatic cation polar head groups. In particular, the solute-anion interactions are observed to be about 3 times stronger for the cations with shorter alkyl tails relative to the ILs with longer alkyl tails. The Ru²⁺(bpy)₃ solute interacts with both the polar head and the nonpolar tail groups of the 1- butyl-1-methylpyrrolidinium cation but only with the nonpolar tail groups of the 1-decyl-1-methylpyrrolidinium cation.« less

  13. 3-Methylpiperidinium ionic liquids.

    PubMed

    Belhocine, Tayeb; Forsyth, Stewart A; Gunaratne, H Q Nimal; Nieuwenhuyzen, Mark; Nockemann, Peter; Puga, Alberto V; Seddon, Kenneth R; Srinivasan, Geetha; Whiston, Keith

    2015-04-28

    A wide range of room temperature ionic liquids based on the 3-methylpiperdinium cation core were produced from 3-methylpiperidine, which is a derivative of DYTEK® A amine. First, reaction with 1-bromoalkanes or 1-bromoalkoxyalkanes generated the corresponding tertiary amines (Rmβpip, R = alkyl or alkoxyalkyl); further quaternisation reactions with the appropriate methylating agents yielded the quaternary [Rmmβpip]X salts (X(-) = I(-), [CF3CO2](-) or [OTf](-); Tf = -SO2CF3), and [Rmmβpip][NTf2] were prepared by anion metathesis from the corresponding iodides. All [NTf2](-) salts are liquids at room temperature. [Rmmβpip]X (X(-) = I(-), [CF3CO2](-) or [OTf](-)) are low-melting solids when R = alkyl, but room temperature liquids upon introduction of ether functionalities on R. Neither of the 3-methylpiperdinium ionic liquids showed any signs of crystallisation, even well below 0 °C. Some related non-C-substituted piperidinium and pyrrolidinium analogues were prepared and studied for comparison. Crystal structures of 1-hexyl-1,3-dimethylpiperidinium tetraphenylborate, 1-butyl-3-methylpiperidinium bromide, 1-(2-methoxyethyl)-1-methylpiperidinium chloride and 1-(2-methoxyethyl)-1-methylpyrrolidinium bromide are reported. Extensive structural and physical data are collected and compared to literature data, with special emphasis on the systematic study of the cation ring size and/or asymmetry effects on density, viscosity and ionic conductivity, allowing general trends to be outlined. Cyclic voltammetry shows that 3-methylpiperidinium ionic liquids, similarly to azepanium, piperidinium or pyrrolidinium counterparts, are extremely electrochemically stable; the portfolio of useful alternatives for safe and high-performing electrolytes is thus greatly extended. PMID:25669485

  14. Cyclic phosphonium ionic liquids

    PubMed Central

    Mukhlall, Joshua A; Romeo, Alicia R; Gohdo, Masao; Ramati, Sharon; Berman, Marc; Suarez, Sophia N

    2014-01-01

    Summary Ionic liquids (ILs) incorporating cyclic phosphonium cations are a novel category of materials. We report here on the synthesis and characterization of four new cyclic phosphonium bis(trifluoromethylsulfonyl)amide ILs with aliphatic and aromatic pendant groups. In addition to the syntheses of these novel materials, we report on a comparison of their properties with their ammonium congeners. These exemplars are slightly less conductive and have slightly smaller self-diffusion coefficients than their cyclic ammonium congeners. PMID:24605146

  15. Ionic liquids, electrolyte solutions including the ionic liquids, and energy storage devices including the ionic liquids

    SciTech Connect

    Gering, Kevin L.; Harrup, Mason K.; Rollins, Harry W.

    2015-12-08

    An ionic liquid including a phosphazene compound that has a plurality of phosphorus-nitrogen units and at least one pendant group bonded to each phosphorus atom of the plurality of phosphorus-nitrogen units. One pendant group of the at least one pendant group comprises a positively charged pendant group. Additional embodiments of ionic liquids are disclosed, as are electrolyte solutions and energy storage devices including the embodiments of the ionic liquid.

  16. N,N'-dialkylimidazolium chloroplatinate(II), chloroplatinate(IV), and chloroiridate(IV) salts and an N-heterocyclic carbene complex of platinum(II): synthesis in ionic liquids and crystal structures.

    PubMed

    Hasan, M; Kozhevnikov, I V; Siddiqui, M R; Femoni, C; Steiner, A; Winterton, N

    2001-02-12

    The first imidazole-type carbene complex of platinum(II), cis-(C2H4)(1-ethyl-3-methylimidazol-2-ylidene)PtCl2, has been obtained by reacting PtCl2 and PtCl4 with ethylene in the basic [EMIM]Cl/AlCl3 (1.3:1) ionic liquid (where [EMIM]+ = 1-ethyl-3-methylimidazolium) at 200 degrees C and structurally characterized (monoclinic P21/c space group, a = 10.416(2) A, b = 7.3421(9) A, c = 15.613(2) A, beta = 101.53(2) degrees, Z = 4). This complex can be regarded as a stable analogue of the pi-alkene-Pd(II)-carbene intermediate in the Heck reaction. In addition, a series of new N,N'-dialkylimidazolium salts of platinum group metals of the type [RMIM]2[MCln], where [RMIM+] = 1-alkyl-3-methylimidazolium and M = Pt(II), Pt(IV), or Ir(IV), have been prepared and characterized. The salts [EMIM]2[PtCl6] (1) and [EMIM]2[PtCl4] (2) were prepared in the ionic liquid [EMIM]Cl/AlCl3 and the salts [BMIM]2[PtCl4] (3) and [BMIM]2[PtCl6] (4) (where [BMIM]+ = 1-n-butyl-3-methylimidazolium) and [EMIM]2-[IrCl6] (5) in aqueous or acetonitrile media. From TGA measurements, salts 1-5 decompose in air in several steps eventually to form the corresponding metal, the onset of decomposition being observed at (degree C) 260 (1), 220 (2), 200 (3), 215 (4), and 210 (5). The structures of 1, 2, and 5 were determined by single-crystal X-ray analysis. The three salts crystallize in the monoclinic P21/n space group (1, a = 7.6433(9) A, b = 16.353(2) A, c = 9.213(1) A, beta = 113.56(1) degrees, Z = 2; 2, a = 8.601(1) A, b = 8.095(2) A, c = 13.977(2) A, beta = 91.75(2) degrees, Z = 2; 5, a = 10.353(2) A, b = 9.759(2) A, c = 10.371(2) A, beta = 92.98(3) degrees, Z = 2).

  17. Electrodeposition in Ionic Liquids.

    PubMed

    Zhang, Qinqin; Wang, Qian; Zhang, Suojiang; Lu, Xingmei; Zhang, Xiangping

    2016-02-01

    Due to their attractive physico-chemical properties, ionic liquids (ILs) are increasingly used as deposition electrolytes. This review summarizes recent advances in electrodeposition in ILs and focuses on its similarities and differences with that in aqueous solutions. The electrodeposition in ILs is divided into direct and template-assisted deposition. We detail the direct deposition of metals, alloys and semiconductors in five types of ILs, including halometallate ILs, air- and water-stable ILs, deep eutectic solvents (DESs), ILs with metal-containing cations, and protic ILs. Template-assisted deposition of nanostructures and macroporous structures in ILs is also presented. The effects of modulating factors such as deposition conditions (current density, current density mode, deposition time, temperature) and electrolyte components (cation, anion, metal salts, additives, water content) on the morphology, compositions, microstructures and properties of the prepared materials are highlighted.

  18. Hydrophobic ionic liquids

    DOEpatents

    Koch, Victor R.; Nanjundiah, Chenniah; Carlin, Richard T.

    1998-01-01

    Ionic liquids having improved properties for application in non-aqueous batteries, electrochemical capacitors, electroplating, catalysis and chemical separations are disclosed. Exemplary compounds have one of the following formulas: ##STR1## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4, R.sub.5, and R.sub.6 are either H; F; separate alkyl groups of from 1 to 4 carbon atoms, respectively, or joined together to constitute a unitary alkylene radical of from 2 to 4 carbon atoms forming a ring structure converging on N; or separate phenyl groups; and wherein the alkyl groups, alkylene radicals or phenyl groups may be substituted with electron withdrawing groups, preferably F--, Cl--, CF.sub.3 --, SF.sub.5 --, CF.sub.3 S--, (CF.sub.3).sub.2 CHS-- or (CF.sub.3).sub.3 CS--; and X.sup.- is a non-Lewis acid-containing polyatomic anion having a van der Waals volume exceeding 100 .ANG..sup.3.

  19. Hydrophobic ionic liquids

    DOEpatents

    Koch, V.R.; Nanjundiah, C.; Carlin, R.T.

    1998-10-27

    Ionic liquids having improved properties for application in non-aqueous batteries, electrochemical capacitors, electroplating, catalysis and chemical separations are disclosed. Exemplary compounds have one of the following formulas shown in a diagram wherein R{sub 1}, R{sub 2}, R{sub 3}, R{sub 4}, R{sub 5}, and R{sub 6} are either H; F; separate alkyl groups of from 1 to 4 carbon atoms, respectively, or joined together to constitute a unitary alkylene radical of from 2 to 4 carbon atoms forming a ring structure converging on N; or separate phenyl groups; and wherein the alkyl groups, alkylene radicals or phenyl groups may be substituted with electron withdrawing groups, preferably F-, Cl-, CF{sub 3}-, SF{sub 5}-, CF{sub 3}S-, (CF{sub 3}){sub 2}CHS- or (CF{sub 3}){sub 3}CS-; and X{sup {minus}} is a non-Lewis acid-containing polyatomic anion having a van der Waals volume exceeding 100 {angstrom}{sup 3}. 4 figs.

  20. Ionic Liquid Crystals: Versatile Materials.

    PubMed

    Goossens, Karel; Lava, Kathleen; Bielawski, Christopher W; Binnemans, Koen

    2016-04-27

    This Review covers the recent developments (2005-2015) in the design, synthesis, characterization, and application of thermotropic ionic liquid crystals. It was designed to give a comprehensive overview of the "state-of-the-art" in the field. The discussion is focused on low molar mass and dendrimeric thermotropic ionic mesogens, as well as selected metal-containing compounds (metallomesogens), but some references to polymeric and/or lyotropic ionic liquid crystals and particularly to ionic liquids will also be provided. Although zwitterionic and mesoionic mesogens are also treated to some extent, emphasis will be directed toward liquid-crystalline materials consisting of organic cations and organic/inorganic anions that are not covalently bound but interact via electrostatic and other noncovalent interactions.

  1. Ionic Liquid Epoxy Resin Monomers

    NASA Technical Reports Server (NTRS)

    Paley, Mark S. (Inventor)

    2013-01-01

    Ionic liquid epoxide monomers capable of reacting with cross-linking agents to form polymers with high tensile and adhesive strengths. Ionic liquid epoxide monomers comprising at least one bis(glycidyl) N-substituted nitrogen heterocyclic cation are made from nitrogen heterocycles corresponding to the bis(glycidyl) N-substituted nitrogen heterocyclic cations by a method involving a non-nucleophilic anion, an alkali metal cation, epichlorohydrin, and a strong base.

  2. Comparison of force fields on the basis of various model approaches--how to design the best model for the [CnMIM][NTf2] family of ionic liquids.

    PubMed

    Köddermann, Thorsten; Reith, Dirk; Ludwig, Ralf

    2013-10-01

    In this contribution, we present two new united-atom force fields (UA-FFs) for 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [C(n)MIM][NTf(2)] (n=1, 2, 4, 6, 8) ionic liquids (ILs). One is parametrized manually, and the other is developed with the gradient-based optimization workflow (GROW). By doing so, we wanted to perform a hard test to determine how researchers could benefit from semiautomated optimization procedures. As with our already published all-atom force field (AA-FF) for [C(n)MIM][NTf(2)] (T. Köddermann, D. Paschek, R. Ludwig, ChemPhysChem- 2007, 8, 2464), the new force fields were derived to fit experimental densities, self-diffusion coefficients, and NMR rotational correlation times for the IL cation and for water molecules dissolved in [C(2)MIM][NTf(2)]. In the manual force field, the alkyl chains of the cation and the CF3 groups of the anion were treated as united atoms. In the GROW force field, only the alkyl chains of the cation were united. All other parts of the structures of the ions remained unchanged to prevent any loss of physical information. Structural, dynamic, and thermodynamic properties such as viscosity, cation rotational correlation times, and heats of vaporization calculated with the new force fields were compared with values simulated with the previous AA-FF and the experimental data. All simulated properties were in excellent agreement with the experimental values. Altogether, the UA-FFs are slightly superior for speed-up reasons. The UA-FF speeds up the simulation by about 100 % and reduces the demanded disk space by about 78 %. More importantly, real time and efforts to generate force fields could be significantly reduced by utilizing GROW. The real time for the GROW parametrization in this work was 2 months. Manual parametrization, in contrast, may take up to 12 months, and this is, therefore, a significant increase in speed, though it is difficult to estimate the duration of manual parametrization.

  3. Hydrogen bonding in ionic liquids.

    PubMed

    Hunt, Patricia A; Ashworth, Claire R; Matthews, Richard P

    2015-03-01

    Ionic liquids (IL) and hydrogen bonding (H-bonding) are two diverse fields for which there is a developing recognition of significant overlap. Doubly ionic H-bonds occur when a H-bond forms between a cation and anion, and are a key feature of ILs. Doubly ionic H-bonds represent a wide area of H-bonding which has yet to be fully recognised, characterised or explored. H-bonds in ILs (both protic and aprotic) are bifurcated and chelating, and unlike many molecular liquids a significant variety of distinct H-bonds are formed between different types and numbers of donor and acceptor sites within a given IL. Traditional more neutral H-bonds can also be formed in functionalised ILs, adding a further level of complexity. Ab initio computed parameters; association energies, partial charges, density descriptors as encompassed by the QTAIM methodology (ρBCP), qualitative molecular orbital theory and NBO analysis provide established and robust mechanisms for understanding and interpreting traditional neutral and ionic H-bonds. In this review the applicability and extension of these parameters to describe and quantify the doubly ionic H-bond has been explored. Estimating the H-bonding energy is difficult because at a fundamental level the H-bond and ionic interaction are coupled. The NBO and QTAIM methodologies, unlike the total energy, are local descriptors and therefore can be used to directly compare neutral, ionic and doubly ionic H-bonds. The charged nature of the ions influences the ionic characteristics of the H-bond and vice versa, in addition the close association of the ions leads to enhanced orbital overlap and covalent contributions. The charge on the ions raises the energy of the Ylp and lowers the energy of the X-H σ* NBOs resulting in greater charge transfer, strengthening the H-bond. Using this range of parameters and comparing doubly ionic H-bonds to more traditional neutral and ionic H-bonds it is clear that doubly ionic H-bonds cover the full range of weak

  4. Nanoparticle enhanced ionic liquid heat transfer fluids

    SciTech Connect

    Fox, Elise B.; Visser, Ann E.; Bridges, Nicholas J.; Gray, Joshua R.; Garcia-Diaz, Brenda L.

    2014-08-12

    A heat transfer fluid created from nanoparticles that are dispersed into an ionic liquid is provided. Small volumes of nanoparticles are created from e.g., metals or metal oxides and/or alloys of such materials are dispersed into ionic liquids to create a heat transfer fluid. The nanoparticles can be dispersed directly into the ionic liquid during nanoparticle formation or the nanoparticles can be formed and then, in a subsequent step, dispersed into the ionic liquid using e.g., agitation.

  5. The hype with ionic liquids as solvents

    NASA Astrophysics Data System (ADS)

    Kunz, Werner; Häckl, Katharina

    2016-09-01

    In this mini review, we give our personal opinion about the present state of the art concerning Ionic Liquids, proposed as alternative solvents. In particular, we consider their different drawbacks and disadvantages and discuss the critical aspects of the research of Ionic Liquids as solvents. Finally, we point out some aspects on potentially promising Ionic Liquid solvents.

  6. On the concept of ionicity in ionic liquids.

    PubMed

    MacFarlane, Douglas R; Forsyth, Maria; Izgorodina, Ekaterina I; Abbott, Andrew P; Annat, Gary; Fraser, Kevin

    2009-07-01

    Ionic liquids are liquids comprised totally of ions. However, not all of the ions present appear to be available to participate in conduction processes, to a degree that is dependent on the nature of the ionic liquid and its structure. There is much interest in quantifying and understanding this 'degree of ionicity' phenomenon. In this paper we present transport data for a range of ionic liquids and evaluate the data firstly in terms of the Walden plot as an approximate and readily accessible approach to estimating ionicity. An adjusted Walden plot that makes explicit allowance for differences in ion sizes is shown to be an improvement to this approach for the series of ionic liquids described. In some cases, where diffusion measurements are possible, it is feasible to directly quantify ionicity via the Nernst-Einstein equation, confirming the validity of the adjusted Walden plot approach. Some of the ionic liquids studied exhibit ionicity values very close to ideal; this is discussed in terms of a model of a highly associated liquid in which the ion correlations have similar impact on both the diffusive and conductive motions. Ionicity, as defined, is thus a useful measure of adherence to the Nernst-Einstein equation, but is not necessarily a measure of ion availability in the chemical sense. PMID:19562126

  7. Nanoparticles in ionic liquids: interactions and organization.

    PubMed

    He, Zhiqi; Alexandridis, Paschalis

    2015-07-28

    Ionic liquids (ILs), defined as low-melting organic salts, are a novel class of compounds with unique properties and a combinatorially great chemical diversity. Ionic liquids are utilized as synthesis and dispersion media for nanoparticles as well as for surface functionalization. Ionic liquid and nanoparticle hybrid systems are governed by a combined effect of several intermolecular interactions between their constituents. For each interaction, including van der Waals, electrostatic, structural, solvophobic, steric, and hydrogen bonding, the characterization and quantitative calculation methods together with factors affecting these interactions are reviewed here. Various self-organized structures based on nanoparticles in ionic liquids are generated as a result of a balance of these intermolecular interactions. These structures, including colloidal glasses and gels, lyotropic liquid crystals, nanoparticle-stabilized ionic liquid-containing emulsions, ionic liquid surface-functionalized nanoparticles, and nanoscale ionic materials, possess properties of both ionic liquids and nanoparticles, which render them useful as novel materials especially in electrochemical and catalysis applications. This review of the interactions within nanoparticle dispersions in ionic liquids and of the structure of nanoparticle and ionic liquid hybrids provides guidance on the rational design of novel ionic liquid-based materials, enabling applications in broad areas.

  8. Application of Ionic Liquids in Hydrometallurgy

    PubMed Central

    Park, Jesik; Jung, Yeojin; Kusumah, Priyandi; Lee, Jinyoung; Kwon, Kyungjung; Lee, Churl Kyoung

    2014-01-01

    Ionic liquids, low temperature molten salts, have various advantages manifesting themselves as durable and environmentally friendly solvents. Their application is expanding into various fields including hydrometallurgy due to their unique properties such as non-volatility, inflammability, low toxicity, good ionic conductivity, and wide electrochemical potential window. This paper reviews previous literatures and our recent results adopting ionic liquids in extraction, synthesis and processing of metals with an emphasis on the electrolysis of active/light, rare earth, and platinum group metals. Because the research and development of ionic liquids in this area are still emerging, various, more fundamental approaches are expected to popularize ionic liquids in the metal manufacturing industry. PMID:25177864

  9. Ionic Liquids to Replace Hydrazine

    NASA Technical Reports Server (NTRS)

    Koelfgen, Syri; Sims, Joe; Forton, Melissa; Allan, Barry; Rogers, Robin; Shamshina, Julia

    2011-01-01

    A method for developing safe, easy-to-handle propellants has been developed based upon ionic liquids (ILs) or their eutectic mixtures. An IL is a binary combination of a typically organic cation and anion, which generally produces an ionic salt with a melting point below 100 deg C. Many ILs have melting points near, or even below, room temperature (room temperature ionic liquids, RTILs). More importantly, a number of ILs have a positive enthalpy of formation. This means the thermal energy released during decomposition reactions makes energetic ILs ideal for use as propellants. In this specific work, to date, a baseline set of energetic ILs has been identified, synthesized, and characterized. Many of the ILs in this set have excellent performance potential in their own right. In all, ten ILs were characterized for their enthalpy of formation, density, melting point, glass transition point (if applicable), and decomposition temperature. Enthalpy of formation was measured using a microcalorimeter designed specifically to test milligram amounts of energetic materials. Of the ten ILs characterized, five offer higher Isp performance than hydrazine, ranging between 10 and 113 seconds higher than the state-of-the-art propellant. To achieve this level of performance, the energetic cations 4- amino-l,2,4-triazolium and 3-amino-1,2,4-triazolium were paired with various anions in the nitrate, dicyanamide, chloride, and 3-nitro-l,2,4-triazole families. Protonation, alkylation, and butylation synthesis routes were used for creation of the different salts.

  10. Ultrastable Superbase-Derived Protic Ionic Liquids

    SciTech Connect

    Luo, Huimin; Baker, Gary A.; Lee, Je Seung; Pagni, Richard M.; Dai, Sheng

    2009-04-02

    Protic ionic liquids are synthesized via proton transfer from acids to organic bases. One of the key issues associated with conventional protic ionic liquids is the thermal instability resulting from temperature-induced decomposition via reverse proton transfer. This shortcoming significantly hampers the use of these protic ionic liquids in separations, electrochemical capacitors, fuel cells, and so forth. Herein we show that it is possible to prepare protic ionic liquids with thermal stabilities approaching those of common aprotic ionic liquids. Our new class of protic ionic liquids, derived via integrated neutralization and metathesis of superbasic phosphazenes or guanidines, exhibits exceptionally low vapor pressures at 150 °C while being stable to strong alkali agents such as aqueous KOH, suggesting potential in energy-related applications, including electrochemical capacitors and PEM-type fuel cells.

  11. Influence of ionic liquids on the syntheses and structures of Mn(II) coordination polymers based on multidentate N-heterocyclic aromatic ligands and bridging carboxylate ligands.

    PubMed

    Qin, Jian-Hua; Wang, Hua-Rui; Pan, Qi; Zang, Shuang-Quan; Hou, Hongwei; Fan, Yaoting

    2015-10-28

    Seven Mn(ii) coordination polymers, namely {[Mn2(ptptp)Cl2(H2O)3]·H2O}n (1), {[Mn(μ-ptptp)3]2[Mn3(μ3-Cl)]2}·2Cl·16H2O (2), {[Mn2(ptptp)(ip)2(H2O)3]·H2O}n (3), {[Mn2(ptptp)(5-CH3-ip)2(H2O)3]·H2O}n (4), {[Mn4(ptptp)(5-Br-ip)3(H2O)3]·4H2O}n (5), {[Mn2(ptptp)(Hbtc)(H2O)2]·2H2O}n (6) and {[Mn2(ptptp)(tdc)(H2O)2]·1.5H2O}n (7), have been prepared based on multidentate N-heterocyclic aromatic ligands and bridging carboxylate ligands (H2ptptp = 2-(5-{6-[5-(pyrazin-2-yl)-1H-1,2,4-triazol-3-yl]pyridin-2-yl}-1H-1,2,4-triazol-3-yl)pyrazine; R-isophthalic acids, H2ip-R: R = -H (3), -CH3 (4), -Br (5); H3btc = trimesic acid (6); H2tdc = thiophene-2,5-dicarboxylic acid (7)), in order to further probe the multiple roles of [RMI]Br ionic liquids in the hydro/solvothermal synthesis (RMI = 1-alkyl-3-methylimidazolium, R = ethyl, or propyl, or butyl). The successful syntheses of complexes 2-6 suggest that in hydro/solvothermal synthesis the addition of a small amount of [RMI]Br plays a crucial role. Complex 1 exhibits single right-handed helices constructed by ptptp ligands and Mn(ii) ions. Complex 2 possesses octanuclear helicate structures in which two propeller-shaped [Mn(μ-ptptp)3](4-) units embrace two [Mn3(μ3-Cl)](5+) cluster cores inside. Complexes 3 and 4 are isostructural and display a 1D double chain formed by two kinds of pseudo meso-helices: (Mn-ptptp)n and (Mn-5-R-ip)n. Complex 5 has a 2D structure containing 1D Mn(ii) ion chains formed through carboxylates and [ptptp](2-)-N,N bridges. Complex 6 shows a 2D structure formed by a meso-helix (Mn-ptptp)n and the partly deprotonated Hbtc ligands. Complex 7 features a heterochiral [2 + 2] coaxially nested double-helical column formed by using the outer double-helices (Mn-ptptp)n as a template to encapsulate the inner double-helices (Mn-tdc)n with opposite orientation. All complexes were characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis, single-crystal X-ray crystallography and powder X

  12. Early Events in Ionic Liquid Radiation Chemistry

    SciTech Connect

    Wishart, J.F.; Cook, A.; Rimmer, R.D.; Gohdo, M.

    2010-09-14

    Ionic liquids are interesting and useful materials whose solvation time scales are up to thousands of times longer than in conventional solvents. The extended lifetimes of pre-solvated electrons and other energetic species in ionic liquids has profound consequences for the radiolytic product distributions and reactivity patterns. We use a newly developed, multiplexed variation of pulse-probe spectroscopy to measure the kinetics of the early dynamical and reactive events in ionic liquids.

  13. Membrane separation of ionic liquid solutions

    SciTech Connect

    Campos, Daniel; Feiring, Andrew Edward; Majumdar, Sudipto; Nemser, Stuart

    2015-09-01

    A membrane separation process using a highly fluorinated polymer membrane that selectively permeates water of an aqueous ionic liquid solution to provide dry ionic liquid. Preferably the polymer is a polymer that includes polymerized perfluoro-2,2-dimethyl-1,3-dioxole (PDD). The process is also capable of removing small molecular compounds such as organic solvents that can be present in the solution. This membrane separation process is suitable for drying the aqueous ionic liquid byproduct from precipitating solutions of biomass dissolved in ionic liquid, and is thus instrumental to providing usable lignocellulosic products for energy consumption and other industrial uses in an environmentally benign manner.

  14. Ionic liquid tunes microemulsion curvature.

    PubMed

    Liu, Liping; Bauduin, Pierre; Zemb, Thomas; Eastoe, Julian; Hao, Jingcheng

    2009-02-17

    Middle-phase microemulsions formed from cationic dioctadecyldimethylammonium chloride (DODMAC), anionic sodium dodecylsulfate (SDS), n-butanol, and n-heptane were studied. An ionic liquid (IL), 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]), was employed as the electrolyte in the aqueous media instead of inorganic salts usually used in microemulsion formulation. Studies have been carried out as a function of the concentrations of [bmim][BF4], n-butanol, total surfactant (cDODMAC+SDS), and temperature on the phase behavior and the ultralow interfacial tensions in which the anionic component is present in excess in the catanionic film. Ultralow interfacial tension measurements confirmed the formation of middle-phase microemulsions and the necessary conditions for stabilizing middle-phase microemulsions. Electrical conductivity, small-angle X-ray scattering (SAXS), and small-angle neutron scattering (SANS) experiments were also performed, indicating that the typical heptane domain size has an average radius of 360 A and the ionic liquid induces softening of the charged catanionic film. Most interestingly, the IL concentration (cIL) is shown to act as an effective interfacial curvature-control parameter, representing a new approach to tuning the formulation of microemulsions and emulsions. The results expand the potential uses of ILs but also point to the design of new ILs that may achieve superefficient control over interfacial and self-assembly systems. PMID:19161325

  15. Quantized friction across ionic liquid thin films.

    PubMed

    Smith, Alexander M; Lovelock, Kevin R J; Gosvami, Nitya Nand; Welton, Tom; Perkin, Susan

    2013-10-01

    Ionic liquids - salts in the liquid state under ambient conditions - are of great interest as precision lubricants. Ionic liquids form layered structures at surfaces, yet it is not clear how this nano-structure relates to their lubrication properties. We measured the friction force between atomically smooth solid surfaces across ionic liquid films of controlled thickness in terms of the number of ion layers. Multiple friction-load regimes emerge, each corresponding to a different number of ion layers in the film. In contrast to molecular liquids, the friction coefficients differ for each layer due to their varying composition. PMID:23942943

  16. Engineered microorganisms having resistance to ionic liquids

    DOEpatents

    Ruegg, Thomas Lawrence; Thelen, Michael P.

    2016-03-22

    The present invention provides for a method of genetically modifying microorganisms to enhance resistance to ionic liquids, host cells genetically modified in accordance with the methods, and methods of using the host cells in a reaction comprising biomass that has been pretreated with ionic liquids.

  17. Ionic liquid-in-oil microemulsions.

    PubMed

    Eastoe, Julian; Gold, Sarah; Rogers, Sarah E; Paul, Alison; Welton, Tom; Heenan, Richard K; Grillo, Isabelle

    2005-05-25

    Phase stability and small-angle neutron scattering (SANS) data show that surfactant-stabilized nanodomains of a typical ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate [bmim][BF4]) may be dispersed by the nonionic surfactant Triton-X100 in cyclohexane. Analyses of these SANS data are consistent with the formation of ionic liquid-in-oil microemulsion droplets. PMID:15898765

  18. Chiral discrimination by ionic liquids: impact of ionic solutes.

    PubMed

    Brown, Christopher J; Hopkins, Todd A

    2015-04-01

    Chiral ionic liquids hold promise in many asymmetric applications. This study explores the impact of ionic solutes on the chiral discrimination of five amino acid methyl ester-based ionic liquids, including L- and D-alanine methyl ester, L-proline methyl ester, L-leucine methyl ester, and L-valine methyl ester cations combined with bis(trifluoromethanesulfonimide) anion. Circularly polarized luminescence spectroscopy was used to study the chiral discrimination by measuring the racemization equilibrium of a dissymmetric europium complex, Eu(dpa)3(3-) (where dpa = 2,6-pyridinedicarboxylate). The chiral discrimination measured was dependent on the concentration of Eu(dpa)3(3-) and this concentration-dependence was different in each of the ionic liquids. Ionic liquids with L-leucine methyl ester and L-valine methyl ester even switched enantiomeric preference based on the solute concentration. Changing the cation of the Eu(dpa)3(3-) salt from tetrabutylammonium to tetramethylammonium ion also affected the chiral discrimination demonstrated by the ionic liquids.

  19. Supported Ionic Liquid Membranes for Gas Separation

    SciTech Connect

    Myers, C.R.; Ilconich, J.B.; Pennline, H.W.; Luebke, D.R.

    2007-08-01

    Ionic liquids have been rapidly gaining attention for various applications including solvent separation and gas capture. These substances are noted for extremely low vapor pressure and high CO2 solubility making them ideal as transport or capture media for CO2 abatement in power generation applications. Ionic liquids, combined with various supports to form membranes, have been proven selective in CO2 separation. Several ionic liquids and a variety of polymer supports have been studied over a temperature range from 37°C to 300°C and have been optimized for stability. The membranes have demonstrated high permeability and high selectivity since the supported ionic liquid membranes incorporate functionality capable of chemically complexing CO2. A study aimed at improving supported ionic liquid membranes will examine their durability with greater transmembrane pressures and the effects on CO2 permeance, CO2/H2 selectivity and thermal stability.

  20. Ionic Liquids in Capillary Electrophoresis.

    PubMed

    Holzgrabe, Ulrike; Wahl, Joachim

    2016-01-01

    Recently, a great interest was drawn toward ionic liquids (ILs) in analytical separation techniques. ILs possess many properties making them excellent additives in capillary electrophoresis (CE) background electrolytes (BGE). The most important property is the charge of the dissolved ions in BGE enabling the cations to interact with deprotonated silanol groups on the capillary surface and thereby modifying the electroosmotic flow (EOF). Ionic and/or proton donor-acceptor interactions between analyte and IL are possible interactions facilitating new kinds of separation mechanisms in CE. Further advantages of ILs are the high conductivity, the environmentally friendliness, and the good solubility for organic and inorganic compounds. The most commonly used ILs in capillary electrophoresis are dialkylimidazolium-based ILs, whereas for enantioseparation a lot of innovative chiral cations and anions were investigated.ILs are reported to be additives to a normal CE background electrolyte or the sole electrolyte in CE, nonaqueous CE (NACE), micellar electrokinetic chromatography (MEKC), and in enantioseparation. An overview of applications and separation mechanisms reported in the literature is given here, in addition to the enantioseparation of pseudoephedrine using tetrabutylammonium chloride (TBAC) as IL additive to an ammonium formate buffer containing β-cyclodextrin (β-CD). PMID:27645735

  1. Fast Ignition and Sustained Combustion of Ionic Liquids

    NASA Technical Reports Server (NTRS)

    Joshi, Prakash B. (Inventor); Piper, Lawrence G. (Inventor); Oakes, David B. (Inventor); Sabourin, Justin L. (Inventor); Hicks, Adam J. (Inventor); Green, B. David (Inventor); Tsinberg, Anait (Inventor); Dokhan, Allan (Inventor)

    2016-01-01

    A catalyst free method of igniting an ionic liquid is provided. The method can include mixing a liquid hypergol with a HAN (Hydroxylammonium nitrate)-based ionic liquid to ignite the HAN-based ionic liquid in the absence of a catalyst. The HAN-based ionic liquid and the liquid hypergol can be injected into a combustion chamber. The HAN-based ionic liquid and the liquid hypergol can impinge upon a stagnation plate positioned at top portion of the combustion chamber.

  2. Lipid Biomembrane in Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Yoo, Brian; Jing, Benxin; Shah, Jindal; Maginn, Ed; Zhu, Y. Elaine; Department of Chemical and Biomolecular Engineering Team

    2014-03-01

    Ionic liquids (ILs) have been recently explored as new ``green'' chemicals in several chemical and biomedical processes. In our pursuit of understanding their toxicities towards aquatic and terrestrial organisms, we have examined the IL interaction with lipid bilayers as model cell membranes. Experimentally by fluorescence microscopy, we have directly observed the disruption of lipid bilayer by added ILs. Depending on the concentration, alkyl chain length, and anion hydrophobicity of ILs, the interaction of ILs with lipid bilayers leads to the formation of micelles, fibrils, and multi-lamellar vesicles for IL-lipid complexes. By MD computer simulations, we have confirmed the insertion of ILs into lipid bilayers to modify the spatial organization of lipids in the membrane. The combined experimental and simulation results correlate well with the bioassay results of IL-induced suppression in bacteria growth, thereby suggesting a possible mechanism behind the IL toxicity. National Science Foundation, Center for Research Computing at Notre Dame.

  3. Ionic liquids for rechargeable lithium batteries

    SciTech Connect

    Salminen, Justin; Papaiconomou, Nicolas; Kerr, John; Prausnitz,John; Newman, John

    2005-09-29

    We have investigated possible anticipated advantages of ionic-liquid electrolytes for use in lithium-ion batteries. Thermal stabilities and phase behavior were studied by thermal gravimetric analysis and differential scanning calorimetry. The ionic liquids studied include various imidazoliumTFSI systems, pyrrolidiniumTFSI, BMIMPF{sub 6}, BMIMBF{sub 4}, and BMIMTf. Thermal stabilities were measured for neat ionic liquids and for BMIMBF{sub 4}-LiBF{sub 4}, BMIMTf-LiTf, BMIMTFSI-LiTFSI mixtures. Conductivities have been measured for various ionic-liquid lithium-salt systems. We show the development of interfacial impedance in a Li|BMIMBF{sub 4} + LiBF{sub 4}|Li cell and we report results from cycling experiments for a Li|BMIMBF{sub 4} + 1 mol/kg LIBF{sub 4}|C cell. The interfacial resistance increases with time and the ionic liquid reacts with the lithium electrode. As expected, imidazolium-based ionic liquids react with lithium electrodes. We seek new ionic liquids that have better chemical stabilities.

  4. Ionic liquid lubrication at electrified interfaces

    NASA Astrophysics Data System (ADS)

    Kong, Lingling; Huang, Wei; Wang, Xiaolei

    2016-06-01

    The lubrication performances of ionic liquids at electrified interfaces have been investigated by using a reciprocating sliding tribometer. Experimental results indicated that the lubricity of the confined ionic liquids was markedly affected by the application of external electric field and strong interface electric field strength could result in high friction. The influence was more pronounced for the ionic liquid with a shorter alkyl side chain in particular. The main reason of the friction increment might be ascribed to the electrically influenced surface adsorption where the charged ions were structured to form robust and ordered layers.

  5. Lithium-Air and ionic Liquids

    SciTech Connect

    Kellar, Michael

    2015-09-01

    The final portion of this project was accomplished at Sandia National Labs, Livermore, with the overall goal being to optimize lithium-air cells with an ionic liquid electrolyte. Both of these are potential future routes for lithium-ion technology. Lithiumair presents the advantage of higher gravimetric energy density, and ionic liquids present the advantage of greater hydrophobicity and much lower volatility, along with a larger window of electrochemical stability. Ionic liquids however have several drawbacks for the battery industry. Currently they are not as cost effective as many organic solvents. Additionally, because of the added viscosity of ionic interactions compared to the typical dipole interactions of a solvent, the ionic conductivity is lower than for common organic solvents.

  6. Low frequency ionic conduction across liquid interfaces

    NASA Astrophysics Data System (ADS)

    Solis, Francisco J.; Guerrero, Guillermo Ivan; Olvera de La Cruz, Monica

    Ionic conduction in liquid media is a central component of many recently proposed technologies. As in the case of solid state systems, the presence of heterogeneous media gives rise to interesting nonlinear phenomena. We present simulations and theoretical analysis of the low frequency ionic conduction in a two-liquid system. In the case analyzed, the conduction is driven by an electric field perpendicular to the liquid-liquid interface. We show that the dielectric contrast between the liquids produces non-linear effects in the effective conductivity of the system and discuss the effects of the ion solubility in the media.

  7. Alkaline ionic liquids applied in supported ionic liquid catalyst for selective hydrogenation of citral to citronellal

    PubMed Central

    Salminen, Eero; Virtanen, Pasi; Mikkola, Jyri-Pekka

    2014-01-01

    The challenge in preparation of ionic liquids containing a strong alkaline anion is to identify a suitable cation which can tolerate the harsh conditions induced by the anion. In this study, a commercial quaternary ammonium compound (quat) benzalkonium [ADBA] (alkyldimethylbenzylammonium) was used as a cation in the synthesis of different alkaline ionic liquids. In fact, the precursor, benzalkonium chloride, is a mixture of alkyldimethylbenzylammonium chlorides of various alkyl chain lengths and is commonly used in the formulation of various antiseptic products. The prepared ionic liquids were utilized as Supported Ionic Liquid Catalysts (SILCAs). Typically, a SILCA contains metal nanoparticles, enzymes, or metal complexes in an ionic liquid layer which is immobilized on a solid carrier material such as an active carbon cloth (ACC). The catalysts were applied in the selective hydrogenation of citral to citronellal which is an important perfumery chemical. Interestingly, 70% molar yield toward citronellal was achieved over a catalyst containing the alkaline ionic liquid benzalkonium methoxide. PMID:24790972

  8. Alkaline ionic liquids applied in supported ionic liquid catalyst for selective hydrogenation of citral to citronellal

    NASA Astrophysics Data System (ADS)

    Salminen, Eero; Virtanen, Pasi; Mikkola, Jyri-Pekka

    2014-02-01

    The challenge in preparation of ionic liquids containing a strong alkaline anion is to identify a suitable cation which can tolerate the harsh conditions induced by the anion. In this study, a commercial quaternary ammonium compound (quat) benzalkonium [ADBA] (alkyldimethylbenzylammonium) was used as a cation in the synthesis of different alkaline ionic liquids. In fact, the precursor, benzalkonium chloride, is a mixture of alkyldimethylbenzylammonium chlorides of various alkyl chain lengths and is commonly used in the formulation of various antiseptic products. The prepared ionic liquids were utilized as Supported Ionic Liquid Catalysts (SILCAs). Typically, a SILCA contains metal nanoparticles, enzymes or metal complexes in an ionic liquid layer which is immobilized on a solid carrier material such as an active carbon cloth (ACC). The catalysts were applied in the selective hydrogenation of citral to citronellal which is an important perfumery chemical. Interestingly, 70 % molar yield towards citronellal was achieved over a catalyst containing the alkaline ionic liquid benzalkonium methoxide.

  9. Alkaline ionic liquids applied in supported ionic liquid catalyst for selective hydrogenation of citral to citronellal.

    PubMed

    Salminen, Eero; Virtanen, Pasi; Mikkola, Jyri-Pekka

    2014-01-01

    The challenge in preparation of ionic liquids containing a strong alkaline anion is to identify a suitable cation which can tolerate the harsh conditions induced by the anion. In this study, a commercial quaternary ammonium compound (quat) benzalkonium [ADBA] (alkyldimethylbenzylammonium) was used as a cation in the synthesis of different alkaline ionic liquids. In fact, the precursor, benzalkonium chloride, is a mixture of alkyldimethylbenzylammonium chlorides of various alkyl chain lengths and is commonly used in the formulation of various antiseptic products. The prepared ionic liquids were utilized as Supported Ionic Liquid Catalysts (SILCAs). Typically, a SILCA contains metal nanoparticles, enzymes, or metal complexes in an ionic liquid layer which is immobilized on a solid carrier material such as an active carbon cloth (ACC). The catalysts were applied in the selective hydrogenation of citral to citronellal which is an important perfumery chemical. Interestingly, 70% molar yield toward citronellal was achieved over a catalyst containing the alkaline ionic liquid benzalkonium methoxide.

  10. Ionic liquid polyoxometalates as light emitting materials

    SciTech Connect

    Ortiz-acosta, Denisse; Del Sesto, Rico E; Scott, Brian; Bennett, Bryan L; Purdy, Geraldine M; Muenchausen, Ross E; Mc Kigney, Edward; Gilbertson, Robert

    2008-01-01

    The low melting point, negligible vapor pressure, good solubility, and thermal and chemical stability make ionic liquids useful materials for a wide variety of applications. Polyoxometalates are early transition metal oxygen clusters that can be synthesized in many different sizes and with a variety of heterometals. The most attractive feature of POMs is that their physical properties, in particular electrical, magnetic, and optical properties, can be easily modified following known procedures. It has been shown that POMs can exhibit cooperative properties, as superconductivity and energy transfer. POM ionic liquids can be obtained by selecting the appropliate cation. Different alkyl ammonium and alkyl phosphonium salts are being used to produce new POM ionic liquids together with organic or inorganic luminescent centers to design light emitting materials. Ammonium and phosphonium cations with activated, polymerizable groups are being used to further polymerize the ionic liquid into transparent, solid materials with high metal density.

  11. IMPROVED SYNTHESIS OF ROOM TEMPERATURE IONIC LIQUIDS

    EPA Science Inventory

    Room temperature ionic liquids (RTILs), molten salts comprised of N-alkylimidazolium cations and various anions, have received significant attention due to their commercial potential in a variety of chemical applications especially as substitutes for conventional volatile organic...

  12. Phosphonium-based ionic liquids and uses

    DOEpatents

    Del Sesto, Rico E; Koppisch, Andrew T; Lovejoy, Katherine S; Purdy, Geraldine M

    2014-12-30

    Phosphonium-based room temperature ionic liquids ("RTILs") were prepared. They were used as matrices for Matrix-Assisted Laser Desorption Ionization (MALDI) mass spectrometry and also for preparing samples of dyes for analysis.

  13. Superbase-derived protic ionic liquids

    DOEpatents

    Dai, Sheng; Luo, Huimin; Baker, Gary A.

    2013-09-03

    Protic ionic liquids having a composition of formula (A.sup.-)(BH.sup.+) wherein A.sup.- is a conjugate base of an acid HA, and BH.sup.+ is a conjugate acid of a superbase B. In particular embodiments, BH.sup.+ is selected from phosphazenium species and guanidinium species encompassed, respectively, by the general formulas: ##STR00001## The invention is also directed to films and membranes containing these protic ionic liquids, with particular application as proton exchange membranes for fuel cells.

  14. Ionic liquids in the synthesis of nanoobjects

    NASA Astrophysics Data System (ADS)

    Tarasova, Natalia P.; Smetannikov, Yurii V.; Zanin, A. A.

    2010-08-01

    Data on the usage of the novel green solvents, ionic liquids, in the synthesis of nanoobjects and their stabilization are considered. The information is structured according to the resulting products of the synthetic processes: nanoparticles of noble metals, nanoparticles of non-metals, nanoparticles of metal oxides and chalcogenides, nanocomposites, and highly dispersed polymers. The conclusion is made that the ionic liquids might determine the structure and the properties of the nanoobjects, thus opening new fundamental and technological horizons in nanochemistry.

  15. Aqueous Solutions of Ionic Liquids: Microscopic Assembly.

    PubMed

    Vicent-Luna, Jose Manuel; Dubbeldam, David; Gómez-Álvarez, Paula; Calero, Sofia

    2016-02-01

    Aqueous solutions of ionic liquids are of special interest, due to the distinctive properties of ionic liquids, in particular, their amphiphilic character. A better understanding of the structure-property relationships of such systems is hence desirable. One of the crucial molecular-level interactions that influences the macroscopic behavior is hydrogen bonding. In this work, we conduct molecular dynamics simulations to investigate the effects of ionic liquids on the hydrogen-bond network of water in dilute aqueous solutions of ionic liquids with various combinations of cations and anions. Calculations are performed for imidazolium-based cations with alkyl chains of different lengths and for a variety of anions, namely, [Br](-), [NO3](-), [SCN](-) [BF4](-), [PF6](-), and [Tf2N](-). The structure of water and the water-ionic liquid interactions involved in the formation of a heterogeneous network are analyzed by using radial distribution functions and hydrogen-bond statistics. To this end, we employ the geometric criterion of the hydrogen-bond definition and it is shown that the structure of water is sensitive to the amount of ionic liquid and to the anion type. In particular, [SCN](-) and [Tf2N](-) were found to be the most hydrophilic and hydrophobic anions, respectively. Conversely, the cation chain length did not influence the results.

  16. Anomalous Wien Effects in Supercooled Ionic Liquids.

    PubMed

    Patro, L N; Burghaus, O; Roling, B

    2016-05-01

    We have measured conductivity spectra of several supercooled monocationic and dicationic ionic liquids in the nonlinear regime by applying ac electric fields with large amplitudes up to about 180  kV/cm. Thereby, higher harmonic ac currents up to the 7th order were detected. Our results point to the existence of anomalous Wien effects in supercooled ionic liquids. Most ionic liquids studied here exhibit a conductivity-viscosity relation, which is close to the predictions of the Nernst-Einstein and Stokes-Einstein equations, as observed for classical strong electrolytes like KCl. These "strong" ionic liquids show a much stronger nonlinearity of the conductivity than classical strong electrolytes. On the other hand, the conductivity-viscosity relation of the ionic liquid [P_{6,6,6,14}][Cl] points to ion association effects. This "weak" ionic liquid shows a strength of the nonlinear effect, which is comparable to classical weak electrolytes. However, the nonlinearity increases quadratically with the field. We suggest that a theory for explaining these anomalies will have to go beyond the level of Coulomb lattice gas models. PMID:27203333

  17. Anomalous Wien Effects in Supercooled Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Patro, L. N.; Burghaus, O.; Roling, B.

    2016-05-01

    We have measured conductivity spectra of several supercooled monocationic and dicationic ionic liquids in the nonlinear regime by applying ac electric fields with large amplitudes up to about 180 kV /cm . Thereby, higher harmonic ac currents up to the 7th order were detected. Our results point to the existence of anomalous Wien effects in supercooled ionic liquids. Most ionic liquids studied here exhibit a conductivity-viscosity relation, which is close to the predictions of the Nernst-Einstein and Stokes-Einstein equations, as observed for classical strong electrolytes like KCl. These "strong" ionic liquids show a much stronger nonlinearity of the conductivity than classical strong electrolytes. On the other hand, the conductivity-viscosity relation of the ionic liquid [P6 ,6 ,6 ,14][Cl ] points to ion association effects. This "weak" ionic liquid shows a strength of the nonlinear effect, which is comparable to classical weak electrolytes. However, the nonlinearity increases quadratically with the field. We suggest that a theory for explaining these anomalies will have to go beyond the level of Coulomb lattice gas models.

  18. Components of Dielectric Constants of Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Izgorodina, Ekaterina I.

    2010-03-01

    In this study ab initio-based methods were used to calculate electronic polarizability and dipole moment of ions comprising ionic liquids [1]. The test set consisted of a number of anions and cations routinely used in the ionic liquid field. As expected, in the first approximation electronic polarizability volume turned out to be proportional to the ion volume, also calculated by means of ab initio theory. For ionic liquid ions this means that their electronic polarizabilities are at least an order of magnitude larger than those of traditional molecular solvents like water and DMSO. On this basis it may seem surprising that most of ionic liquids actually possess modest dielectric constants, falling the narrow range between 10 and 15. The lower than first expected dielectric constants of ionic liquids has been explored in this work via explicit calculations of the electronic and orientation polarization contributions to the dielectric constant using the Clausius-Mossotti equation and the Onsager theory for polar dielectric materials. We determined that the electronic polarization contribution to the dielectric constant was rather small (between 1.9 and 2.2) and comparable to that of traditional molecular solvents. These findings were explained by the interplay between two quantities, increasing electronic polarizability of ions and decreasing number of ions present in the unit volume; although electronic polarizability is usually relatively large for ionic liquid ions, due to their size there are fewer ions present per unit volume (by a factor of 10 compared to traditional molecular solvents). For ionic liquids consisting of ions with zero (e.g. BF4) or negligible (e.g. NTf2) dipole moments the calculated orientation polarization does not contribute enough to account for the whole of the measured values of the dielectric constants. We suggest that in ionic liquids an additional type of polarization, ``ionic polarization'', originating from small movements of the

  19. Ionic liquids--an overview.

    PubMed

    Jenkins, Harry Donald Brooke

    2011-01-01

    A virtually unprecedented exponential burst of activity resulted following the publication, in 1998, of an article by Michael Freeman (Freemantle, M. Chemical & Engineering News, 1998, March 30, 32), which speculated on the role and contribution that ionic liquids (ILs) might make in the future on the development of clean technology. Up until that time only a handful of researchers were routinely engaged in the study of ILs but frenzied activity followed that continues until the present day. Scientists from all disciplines related to Chemistry have now embarked on studies, including theoreticians who are immersed in the aim of improving the "designer role" so that they can tailor ILs to deliver specified properties. This article, whilst not in any sense attempting to be exhaustive, highlights the main features which characterise ILs, presenting these in a form readily assimilated by newcomers to this area of research. An extensive glossary is featured in this article as well as a chronological list which charts the major areas of development. What follows consists of a number of sections briefly describing the role of lLs as solvents, hypergolic fuels, their use in some electrochemical devices such as solar cells and lithium batteries and their use in polymerisation reactions, followed by a concise summary of some of the other roles that they are capable of playing. The role of empirical, volume-based thermodynamics procedures, as well as large scale computational studies on ILs is also highlighted. These developments which are described are remarkable in that they have been achieved in less than a decade and a half although knowledge of these materials has existed for much longer.

  20. Dissolution of wood in ionic liquids.

    PubMed

    Kilpeläinen, Ilkka; Xie, Haibo; King, Alistair; Granstrom, Mari; Heikkinen, Sami; Argyropoulos, Dimitris S

    2007-10-31

    The present paper demonstrates that both hardwoods and softwoods are readily soluble in various imidazolium-based ionic liquids (ILs) under gentle conditions. More specifically, a variety of ionic liquids can only partially dissolve wood chips, whereas ionic liquids such as 1-butyl-3-methylimidazolium chloride and 1-allyl-3-methylimidazolium chloride have good solvating power for Norway spruce sawdust and Norway spruce and Southern pine thermomechanical pulp (TMP) fibers. Despite the fact that the obtained solutions were not fully clear, these ionic liquids provided solutions which permitted the complete acetylation of the wood. Alternatively, transparent amber solutions of wood could be obtained when the dissolution of the same lignocellulosic samples was attempted in 1-benzyl-3-methylimidazolium chloride. This realization was based on a designed augmented interaction of the aromatic character of the cation of the ionic liquid with the lignin in the wood. After dissolution, wood can be regenerated as an amorphous mixture of its original components. The cellulose of the regenerated wood can be efficiently digested to glucose by a cellulase enzymatic hydrolysis treatment. Furthermore, completely acetylated wood was found to be readily soluble in chloroform, allowing, for the first time, detailed proton nuclear magnetic resonance (NMR) spectra and NMR diffusion measurements to be made. It was thus demonstrated that the dissolution of wood in ionic liquids now offers a variety of new possibilities for its structural and macromolecular characterization, without the prior isolation of its individual components. Furthermore, considering the relatively wide solubility and compatibility of ionic liquids with many organic or inorganic functional chemicals or polymers, it is envisaged that this research could create a variety of new strategies for converting abundant woody biomass to valuable biofuels, chemicals, and novel functional composite biomaterials.

  1. Water Contaminant Mitigation in Ionic Liquid Propellant

    NASA Technical Reports Server (NTRS)

    Conroy, David; Ziemer, John

    2009-01-01

    Appropriate system and operational requirements are needed in order to ensure mission success without unnecessary cost. Purity requirements applied to thruster propellants may flow down to materials and operations as well as the propellant preparation itself. Colloid electrospray thrusters function by applying a large potential to a room temperature liquid propellant (such as an ionic liquid), inducing formation of a Taylor cone. Ions and droplets are ejected from the Taylor cone and accelerated through a strong electric field. Electrospray thrusters are highly efficient, precise, scaleable, and demonstrate low thrust noise. Ionic liquid propellants have excellent properties for use as electrospray propellants, but can be hampered by impurities, owing to their solvent capabilities. Of foremost concern is the water content, which can result from exposure to atmosphere. Even hydrophobic ionic liquids have been shown to absorb water from the air. In order to mitigate the risks of bubble formation in feed systems caused by water content of the ionic liquid propellant, physical properties of the ionic liquid EMI-Im are analyzed. The effects of surface tension, material wetting, physisorption, and geometric details of the flow manifold and electrospray emitters are explored. Results are compared to laboratory test data.

  2. Isotachophoretic separation of selected imidazolium ionic liquids.

    PubMed

    Kosobucki, Przemysław; Buszewski, Bogusław

    2008-02-15

    Results of determination of selected imidazolium ionic liquids by isotachophoresis (ITP) with conductometric detection was presented. The effects of the molar mass of different ionic liquids on electrophoretic mobility was observed. The presented method was validated and basic validation parameters were determined. Limit of detection (LOD) in a 10 and 25ng/L for anions and cations, respectively, is very satisfied. Thanks to its low cost and high rate, the presented method can be used in qualitative routine analysis as an alternative technique to liquid chromatography. PMID:18371834

  3. Key Developments in Ionic Liquid Crystals.

    PubMed

    Alvarez Fernandez, Alexandra; Kouwer, Paul H J

    2016-05-16

    Ionic liquid crystals are materials that combine the classes of liquid crystals and ionic liquids. The first one is based on the multi-billion-dollar flat panel display industry, whilst the latter quickly developed in the past decades into a family of highly-tunable non-volatile solvents. The combination yields materials with a unique set of properties, but also with many challenges ahead. In this review, we provide an overview of the key concepts in ionic liquid crystals, particularly from a molecular perspective. What are the important molecular parameters that determine the phase behavior? How should they be introduced into the molecules? Finally, which other tools does one have to realize specific properties in the material?

  4. Key Developments in Ionic Liquid Crystals

    PubMed Central

    Alvarez Fernandez, Alexandra; Kouwer, Paul H. J.

    2016-01-01

    Ionic liquid crystals are materials that combine the classes of liquid crystals and ionic liquids. The first one is based on the multi-billion-dollar flat panel display industry, whilst the latter quickly developed in the past decades into a family of highly-tunable non-volatile solvents. The combination yields materials with a unique set of properties, but also with many challenges ahead. In this review, we provide an overview of the key concepts in ionic liquid crystals, particularly from a molecular perspective. What are the important molecular parameters that determine the phase behavior? How should they be introduced into the molecules? Finally, which other tools does one have to realize specific properties in the material? PMID:27196890

  5. Dual Ionic and Organic Nature of Ionic Liquids

    PubMed Central

    Shi, Rui; Wang, Yanting

    2016-01-01

    Inherited the advantages of inorganic salts and organic solvents, ionic liquids (ILs) exhibit many superior properties allowing them promising green solvents for the future. Although it has been widely acknowledged that the unique features of ILs originate from their dual ionic and organic nature, its microscopic physical origin still remains blurry. In this work, by comparing the ion/molecule cage structures obtained from molecular dynamics simulations for seven prototypic liquids—a molten inorganic salt, four ILs, a strongly polar organic solvent, and a weakly polar organic solvent, we have revealed that the depth of the cage energy landscape characterizes the ionic nature of ILs, whereas the slope and curvature of its mimimum determine the organic nature of ILs. This finding advances our understanding of ILs and thus will help their efficient utilization as well as the systematic design of novel functionalized ILs. PMID:26782660

  6. Enzyme activity in dialkyl phosphate ionic liquids

    SciTech Connect

    Thomas, M.F.; Dunn, J.; Li, L.-L.; Handley-Pendleton, J. M.; van der lelie, D.; Wishart, J. F.

    2011-12-01

    The activity of four metagenomic enzymes and an enzyme cloned from the straw mushroom, Volvariellavolvacea were studied in the following ionic liquids, 1,3-dimethylimidazolium dimethyl phosphate, [mmim][dmp], 1-ethyl-3-methylimidazolium dimethyl phosphate, [emim][dmp], 1-ethyl-3-methylimidazolium diethyl phosphate, [emim][dep] and 1-ethyl-3-methylimidazolium acetate, [emim][OAc]. Activity was determined by analyzing the hydrolysis of para-nitrobenzene carbohydrate derivatives. In general, the enzymes were most active in the dimethyl phosphate ionic liquids, followed by acetate. Generally speaking, activity decreased sharply for concentrations of [emim][dep] above 10% v/v, while the other ionic liquids showed less impact on activity up to 20% v/v.

  7. TETRAALKYLPHOSPHONIUM POLYOXOMETALATES AS NOVEL IONIC LIQUIDS.

    SciTech Connect

    DIETZ,M.L.; RICKERT, P.G.; ANTONIO, M.R.; FIRESTONE, M.A.; WISHART, J.F.; SZREDER, T.

    2007-11-30

    The pairing of a Lindqvist or Keggin polyoxometalate (POM) anion with an appropriate tetraalkylphosphonium cation, [R{sub 3}R{prime}P]{sup +}, has been shown to yield an original family of ionic liquids (POM-ILs), among them salts liquid at or near ambient temperature. The physicochemical properties of several such 'inorganic liquids', in particular their thermal properties, suggests the possible application of these compounds as robust, thermally-stable solvents for liquid-liquid extraction. A preliminary evaluation of the potential of POM-ILs in this application is presented.

  8. Electrowetting based infrared lens using ionic liquids

    NASA Astrophysics Data System (ADS)

    Hu, Xiaodong; Zhang, Shiguo; Liu, Yu; Qu, Chao; Lu, Liujin; Ma, Xiangyuan; Zhang, Xiaoping; Deng, Youquan

    2011-11-01

    We demonstrated an infrared variable focus ionic liquids lens using electrowetting, which could overcome the problems caused by use of water, e.g., evaporation and poor thermostability, while keeping good optical transparency in visible light and near-infrared region. Besides, the type of lens (convex or concave) could be tuned by applied voltage or refractive index of ILs used, and the transmittance was measured to exceed 90% over the spectrum of visible light and near-infrared. We believe this infrared variable focus ionic liquids lens has a great application prospect in both visible light and infrared image systems.

  9. Unravelling nanoconfined films of ionic liquids

    SciTech Connect

    Lee, Alpha A.; Vella, Dominic; Goriely, Alain; Perkin, Susan

    2014-09-07

    The confinement of an ionic liquid between charged solid surfaces is treated using an exactly solvable 1D Coulomb gas model. The theory highlights the importance of two dimensionless parameters: the fugacity of the ionic liquid, and the electrostatic interaction energy of ions at closest approach, in determining how the disjoining pressure exerted on the walls depends on the geometrical confinement. Our theory reveals that thermodynamic fluctuations play a vital role in the “squeezing out” of charged layers as the confinement is increased. The model shows good qualitative agreement with previous experimental data, with all parameters independently estimated without fitting.

  10. VOC and HAP recovery using ionic liquids

    SciTech Connect

    Michael R. Milota : Kaichang Li

    2007-05-29

    During the manufacture of wood composites, paper, and to a lesser extent, lumber, large amounts of volatile organic compounds (VOCs) such as terpenes, formaldehyde, and methanol are emitted to air. Some of these compounds are hazardous air pollutants (HAPs). The air pollutants produced in the forest products industry are difficult to manage because the concentrations are very low. Presently, regenerative thermal oxidizers (RTOs and RCOs) are commonly used for the destruction of VOCs and HAPs. RTOs consume large amounts of natural gas to heat air and moisture. The combustion of natural gas generates increased CO2 and NOx, which have negative implications for global warming and air quality. The aforementioned problems are addressed by an absorption system containing a room-temperature ionic liquid (RTIL) as an absorbent. RTILs are salts, but are in liquid states at room temperature. RTILs, an emerging technology, are receiving much attention as replacements for organic solvents in industrial processes with significant cost and environmental benefits. Some of these processes include organic synthesis, extraction, and metal deposition. RTILs would be excellent absorbents for exhausts from wood products facilities because of their unique properties: no measurable vapor pressure, high solubility of wide range of organic compounds, thermal stability to 200°C (almost 400°F), and immisciblity with water. Room temperature ionic liquids were tested as possible absorbents. Four were imidizolium-based and were eight phosphonium-based. The imidizolium-based ionic liquids proved to be unstable at the conditions tested and in the presence of water. The phosphonium-based ionic liquids were stable. Most were good absorbents; however, cleaning the contaminates from the ionic liquids was problematic. This was overcome with a higher temperature (120°C) than originally proposed and a very low pressure (1 kPa. Absorption trials were conducted with tetradecy

  11. Ionic liquid electrolytes for reversible magnesium electrochemistry.

    PubMed

    Kar, Mega; Ma, Zheng; Azofra, Luis Miguel; Chen, Kun; Forsyth, Maria; MacFarlane, Douglas R

    2016-03-14

    Mg has great potential as the basis for a safe, low cost energy storage technology, however, cycling of magnesium is difficult to achieve in most electrolytes. We demonstrate cycling of Mg from a novel alkoxyammonium ionic liquid. DFT calculations highlight the role that Mg coordination with [BH4](-) ions plays in the mechanism.

  12. Solvation and Reaction in Ionic Liquids

    SciTech Connect

    Maroncelli, Mark

    2015-01-15

    The long-range goal of our DOE-sponsored research is to obtain a fundamental understanding of solvation effects on photo-induced charge transfer and related processes. Much of the focus during the past funding period has been on studies of ionic liquids and on characterizing various reactions with which to probe the nature of this interesting new solvent medium.

  13. Cellulose regeneration and spinnability from ionic liquids.

    PubMed

    Hauru, Lauri K J; Hummel, Michael; Nieminen, Kaarlo; Michud, Anne; Sixta, Herbert

    2016-02-01

    Ionic liquid solutions of cellulose or dopes can be spun into Lyocell-type textile fibers by dry-jet wet spinning. An extruded dope is drawn over an air gap into water, where the water hydrates the ionic liquid and cellulose is regenerated. Spinnability studies have concentrated on the deformation and failure modes in the air gap and thus the rheology of the unhydrated spinning dope. Herein, a breach in the bath, another failure mode, is discussed. Dopes are prepared from the good spinning solvents NMMO·H2O and [DBNH]OAc and the poor spinning solvents [emim]OAc and [TMGH]OAc. The diffusion constants for water diffusing inwards and for ionic liquid diffusing outwards the emerging filament are measured offline. The resiliences and strengths of cellulose-ionic liquid solutions with different hydration stoichiometries are measured by means of rheometry. By calculating the diffusion dynamics, the resilience distribution of the forming filament is simulated. Gel strength distribution accounts for the tendency of [emim]OAc dopes to undergo a telescope-type breach, whereas the gelatinous solution state of [TMGH]OAc dopes accounts for their poor spinnability. PMID:26660047

  14. Esterification of Starch in Ionic Liquids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We shall discuss the use of various ionic liquids in the preparation of starch esters. Starch was reacted with vinyl acetate in different 1-butyl-3-methylimidazolium (bmim) salts as solvents in an effort to produce starches with different acetylation patterns. Overall degree of substitution (DS) w...

  15. 1,2,3-triazolium ionic liquids

    DOEpatents

    Luebke, David; Nulwala, Hunaid; Tang, Chau

    2014-12-09

    The present invention relates to compositions of matter that are ionic liquids, the compositions comprising substituted 1,2,3-triazolium cations combined with any anion. Compositions of the invention should be useful in the separation of gases and, perhaps, as catalysts for many reactions.

  16. Catalytic Alkene Metathesis in Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Fischmeister, Cédric

    Olefin metathesis has found a tremendous number of application in the past 25 years. Immobilisation of olefin metathesis (pre)catalysts in room temperature ionic liquids (RTILs) offers the opportunity to recover and reuse the catalyst and also to reduce the level of ruthenium (Ru) contaminants in the products.

  17. Reactions of Starch in Ionic Liquids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We found that starches are found to be soluble at 80 ºC in ionic liquids such as 1-butyl-3-methylimidazolium chloride (BMIMCl) and 1-butyl-3-methylimidazolium dicyanamide (BMIMdca) in concentration up to 10% (w/w). Higher concentrations of biopolymers in these novel solvents resulted in solutions w...

  18. Carbon dioxide in ionic liquid microemulsions.

    PubMed

    Zhang, Jianling; Han, Buxing; Li, Jianshen; Zhao, Yueju; Yang, Guanying

    2011-10-10

    Tailor-made emulsion: a CO(2) -in-ionic-liquid microemulsion was produced for the first time. The CO(2)-swollen micelles are "tunable" because the micellar size can be easily adjusted by changing the pressure of CO(2). The microemulsion has potential applications in materials synthesis, chemical reactions, and extraction. PMID:21898733

  19. Application of Ionic Liquids in Amperometric Gas Sensors.

    PubMed

    Gębicki, Jacek; Kloskowski, Adam; Chrzanowski, Wojciech; Stepnowski, Piotr; Namiesnik, Jacek

    2016-01-01

    This article presents an analysis of available literature data on metrological parameters of the amperometric gas sensors containing ionic liquids as an electrolyte. Four mechanism types of signal generation in amperometric sensors with ionic liquid are described. Moreover, this article describes the influence of selected physico-chemical properties of the ionic liquids on the metrological parameters of these sensors. Some metrological parameters are also compared for amperometric sensors with GDE and SPE electrodes and with ionic liquids for selected analytes.

  20. Magnesium Battery Electrolytes in Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Watkins, Tylan Strike

    A lack of adequate energy storage technologies is arguably the greatest hindrance to a modern sustainable energy infrastructure. Chemical energy storage, in the form of batteries, is an obvious solution to the problem. Unfortunately, today's state of the art battery technologies fail to meet the desired metrics for full scale electric grid and/or electric vehicle role out. Considerable effort from scientists and engineers has gone into the pursuit of battery chemistries theoretically capable of far outperforming leading technologies like Li-ion cells. For instance, an anode of the relatively abundant and cheap metal, magnesium, would boost the specific energy by over 4.6 times that of the current Li-ion anode (LiC6). The work presented here explores the compatibility of magnesium electrolytes in TFSI---based ionic liquids with a Mg anode (TFSI = bis(trifluoromethylsulfonyl)imide). Correlations are made between the Mg2+ speciation conditions in bulk solutions (as determined via Raman spectroscopy) and the corresponding electrochemical behavior of the electrolytes. It was found that by creating specific chelating conditions, with an appropriate Mg salt, the desired electrochemical behavior could be obtained, i.e. reversible electrodeposition and dissolution. Removal of TFSI -- contact ion pairs from the Mg2+ solvation shell was found to be essential for reversible electrodeposition. Ionic liquids with polyethylene glycol chains pendent from a parent pyrrolidinium cation were synthesized and used to create the necessary complexes with Mg 2+, from Mg(BH4)2, so that reversible electrodeposition from a purely ionic liquid medium was achieved. The following document discusses findings from several electrochemical experiments on magnesium electrolytes in ionic liquids. Explanations for the failure of many of these systems to produce reversible Mg electrodeposition are provided. The key characteristics of ionic liquid systems that are capable of achieving reversible Mg

  1. Recent advances of ionic liquids and polymeric ionic liquids in capillary electrophoresis and capillary electrochromatography.

    PubMed

    Tang, Sheng; Liu, Shujuan; Guo, Yong; Liu, Xia; Jiang, Shengxiang

    2014-08-29

    Ionic liquids (ILs) and polymeric ionic liquids (PILs) with unique and fascinating properties have drawn considerable interest for their use in separation science, especially in chromatographic techniques. In this article, significant contributions of ILs and PILs in the improvement of capillary electrophoresis and capillary electrochromatography are described, and a specific overview of the most relevant examples of their applications in the last five years is also given. Accordingly, some general conclusions and future perspectives in these areas are discussed.

  2. Ionic liquid containing hydroxamate and N-alkyl sulfamate ions

    DOEpatents

    Friesen, Cody A.; Wolfe, Derek; Johnson, Paul Bryan

    2016-03-15

    Embodiments of the invention are related to ionic liquids and more specifically to ionic liquids used in electrochemical metal-air cells in which the ionic liquid includes a cation and an anion selected from hydroxamate and/or N-alkyl sulfamate anions.

  3. Synthesis of electroactive ionic liquids for flow battery applications

    SciTech Connect

    Anderson, Travis Mark; Ingersoll, David; Staiger, Chad; Pratt, Harry

    2015-09-01

    The present disclosure is directed to synthesizing metal ionic liquids with transition metal coordination cations, where such metal ionic liquids can be used in a flow battery. A cation of a metal ionic liquid includes a transition metal and a ligand coordinated to the transition metal.

  4. Ionic liquids in refinery desulfurization: comparison between biphasic and supported ionic liquid phase suspension processes.

    PubMed

    Kuhlmann, Esther; Haumann, Marco; Jess, Andreas; Seeberger, Andreas; Wasserscheid, Peter

    2009-01-01

    The desulfurization of fuel compounds in the presence of ionic liquids is reported. For this purpose, the desulfurization efficiency of a variety of imidazolium phosphate ionic liquids has been tested. Dibenzothiophene/dodecane and butylmercaptan/decane mixtures were used as model systems. Single-stage extractions reduced the sulfur content from 500 ppm to 200 ppm. In multistage extractions the sulfur content could be lowered to less than 10 ppm within seven stages. Regeneration of the ionic liquid was achieved by distillation or re-extraction procedures. Supported ionic liquid phase (SILP) materials, obtained by dispersing the ionic liquid as a thin film on highly porous silica, exhibited a significantly higher extraction performance owing to their larger surface areas, reducing the sulfur content to less than 100 ppm in one stage. Multistage extraction with these SILP materials reduced the sulfur level to 50 ppm in the second stage. The SILP technology offers very efficient utilization of ionic liquids and circumvents mass transport limitations because of the small film thickness and large surface area, and allows application of the simple packed-bed column extraction technique. PMID:19798713

  5. Correlation of three-liquid-phase equilibria involving ionic liquids.

    PubMed

    Rodríguez-Escontrela, I; Arce, A; Soto, A; Marcilla, A; Olaya, M M; Reyes-Labarta, J A

    2016-08-01

    The difficulty in achieving a good thermodynamic description of phase equilibria is finding a model that can be extended to a large variety of chemical families and conditions. This problem worsens in the case of systems containing more than two phases or involving complex compounds such as ionic liquids. However, there are interesting applications that involve multiphasic systems, and the promising features of ionic liquids suggest that they will play an important role in many future processes. In this work, for the first time, the simultaneous correlation of liquid-liquid and liquid-liquid-liquid equilibrium data for ternary systems involving ionic liquids has been carried out. To that end, the phase diagram of the water + [P6 6 6 14][DCA] + hexane system has been determined at 298.15 K and 323.15 K and atmospheric pressure. The importance of this system lies in the possibility of using the surface active ionic liquid to improve surfactant enhanced oil recovery methods. With those and previous measurements, thirteen sets of equilibrium data for water + ionic liquid + oil ternary systems have been correlated. The isoactivity equilibrium condition, using the NRTL model, and some pivotal strategies are proposed to correlate these complex systems. Good agreement has been found between experimental and calculated data in all the regions (one triphasic and two biphasic) of the diagrams. The geometric aspects related to the Gibbs energy of mixing function obtained using the model, together with the minor common tangent plane equilibrium condition, are valuable tools to check the consistency of the obtained correlation results.

  6. Correlation of three-liquid-phase equilibria involving ionic liquids.

    PubMed

    Rodríguez-Escontrela, I; Arce, A; Soto, A; Marcilla, A; Olaya, M M; Reyes-Labarta, J A

    2016-08-01

    The difficulty in achieving a good thermodynamic description of phase equilibria is finding a model that can be extended to a large variety of chemical families and conditions. This problem worsens in the case of systems containing more than two phases or involving complex compounds such as ionic liquids. However, there are interesting applications that involve multiphasic systems, and the promising features of ionic liquids suggest that they will play an important role in many future processes. In this work, for the first time, the simultaneous correlation of liquid-liquid and liquid-liquid-liquid equilibrium data for ternary systems involving ionic liquids has been carried out. To that end, the phase diagram of the water + [P6 6 6 14][DCA] + hexane system has been determined at 298.15 K and 323.15 K and atmospheric pressure. The importance of this system lies in the possibility of using the surface active ionic liquid to improve surfactant enhanced oil recovery methods. With those and previous measurements, thirteen sets of equilibrium data for water + ionic liquid + oil ternary systems have been correlated. The isoactivity equilibrium condition, using the NRTL model, and some pivotal strategies are proposed to correlate these complex systems. Good agreement has been found between experimental and calculated data in all the regions (one triphasic and two biphasic) of the diagrams. The geometric aspects related to the Gibbs energy of mixing function obtained using the model, together with the minor common tangent plane equilibrium condition, are valuable tools to check the consistency of the obtained correlation results. PMID:27427420

  7. Active chemisorption sites in functionalized ionic liquids for carbon capture.

    PubMed

    Cui, Guokai; Wang, Jianji; Zhang, Suojiang

    2016-07-25

    Development of novel technologies for the efficient and reversible capture of CO2 is highly desired. In the last decade, CO2 capture using ionic liquids has attracted intensive attention from both academia and industry, and has been recognized as a very promising technology. Recently, a new approach has been developed for highly efficient capture of CO2 by site-containing ionic liquids through chemical interaction. This perspective review focuses on the recent advances in the chemical absorption of CO2 using site-containing ionic liquids, such as amino-based ionic liquids, azolate ionic liquids, phenolate ionic liquids, dual-functionalized ionic liquids, pyridine-containing ionic liquids and so on. Other site-containing liquid absorbents such as amine-based solutions, switchable solvents, and functionalized ionic liquid-amine blends are also investigated. Strategies have been discussed for how to activate the existent reactive sites and develop novel reactive sites by physical and chemical methods to enhance CO2 absorption capacity and reduce absorption enthalpy. The carbon capture mechanisms of these site-containing liquid absorbents are also presented. Particular attention has been paid to the latest progress in CO2 capture in multiple-site interactions by amino-free anion-functionalized ionic liquids. In the last section, future directions and prospects for carbon capture by site-containing ionic liquids are outlined.

  8. Active chemisorption sites in functionalized ionic liquids for carbon capture.

    PubMed

    Cui, Guokai; Wang, Jianji; Zhang, Suojiang

    2016-07-25

    Development of novel technologies for the efficient and reversible capture of CO2 is highly desired. In the last decade, CO2 capture using ionic liquids has attracted intensive attention from both academia and industry, and has been recognized as a very promising technology. Recently, a new approach has been developed for highly efficient capture of CO2 by site-containing ionic liquids through chemical interaction. This perspective review focuses on the recent advances in the chemical absorption of CO2 using site-containing ionic liquids, such as amino-based ionic liquids, azolate ionic liquids, phenolate ionic liquids, dual-functionalized ionic liquids, pyridine-containing ionic liquids and so on. Other site-containing liquid absorbents such as amine-based solutions, switchable solvents, and functionalized ionic liquid-amine blends are also investigated. Strategies have been discussed for how to activate the existent reactive sites and develop novel reactive sites by physical and chemical methods to enhance CO2 absorption capacity and reduce absorption enthalpy. The carbon capture mechanisms of these site-containing liquid absorbents are also presented. Particular attention has been paid to the latest progress in CO2 capture in multiple-site interactions by amino-free anion-functionalized ionic liquids. In the last section, future directions and prospects for carbon capture by site-containing ionic liquids are outlined. PMID:27243042

  9. Interactions in ion pairs of protic ionic liquids: comparison with aprotic ionic liquids.

    PubMed

    Tsuzuki, Seiji; Shinoda, Wataru; Miran, Md Shah; Kinoshita, Hiroshi; Yasuda, Tomohiro; Watanabe, Masayoshi

    2013-11-01

    The stabilization energies for the formation (E(form)) of 11 ion pairs of protic and aprotic ionic liquids were studied by MP2/6-311G** level ab initio calculations to elucidate the difference between the interactions of ions in protic ionic liquids and those in aprotic ionic liquids. The interactions in the ion pairs of protic ionic liquids (diethylmethylammonium [dema] and dimethylpropylammonium [dmpa] based ionic liquids) are stronger than those of aprotic ionic liquids (ethyltrimethylammonium [etma] based ionic liquids). The E(form) for the [dema][CF3SO3] and [dmpa][CF3SO3] complexes (-95.6 and -96.4 kcal/mol, respectively) are significantly larger (more negative) than that for the [etma][CF3SO3] complex (-81.0 kcal/mol). The same trend was observed for the calculations of ion pairs of the three cations with the Cl(-), BF4(-), TFSA(-) anions. The anion has contact with the N-H bond of the dema(+) or dmpa(+) cations in the most stable geometries of the dema(+) and dmpa(+) complexes. The optimized geometries, in which the anions locate on the counter side of the cations, are 11.0-18.0 kcal/mol less stable, which shows that the interactions in the ions pairs of protic ionic liquids have strong directionality. The E(form) for the less stable geometries for the dema(+) and dmpa(+) complexes are close to those for the most stable etma(+) complexes. The electrostatic interaction, which is the major source of the attraction in the ion pairs, is responsible for the directionality of the interactions and determining the magnitude of the interaction energy. Molecular dynamic simulations of the [dema][TFSA] and [dmpa][TFSA] ionic liquids show that the N-H bonds of the cations have contact with the negatively charged (oxygen and nitrogen) atoms of TFSA(-) anion, while the strong directionality of the interactions was not suggested from the simulation of the [etma][CF3SO3] ionic liquid.

  10. Interactions in ion pairs of protic ionic liquids: Comparison with aprotic ionic liquids

    SciTech Connect

    Tsuzuki, Seiji; Shinoda, Wataru; Miran, Md. Shah; Kinoshita, Hiroshi; Yasuda, Tomohiro; Watanabe, Masayoshi

    2013-11-07

    The stabilization energies for the formation (E{sub form}) of 11 ion pairs of protic and aprotic ionic liquids were studied by MP2/6-311G{sup **} level ab initio calculations to elucidate the difference between the interactions of ions in protic ionic liquids and those in aprotic ionic liquids. The interactions in the ion pairs of protic ionic liquids (diethylmethylammonium [dema] and dimethylpropylammonium [dmpa] based ionic liquids) are stronger than those of aprotic ionic liquids (ethyltrimethylammonium [etma] based ionic liquids). The E{sub form} for the [dema][CF{sub 3}SO{sub 3}] and [dmpa][CF{sub 3}SO{sub 3}] complexes (−95.6 and −96.4 kcal/mol, respectively) are significantly larger (more negative) than that for the [etma][CF{sub 3}SO{sub 3}] complex (−81.0 kcal/mol). The same trend was observed for the calculations of ion pairs of the three cations with the Cl{sup −}, BF{sub 4}{sup −}, TFSA{sup −} anions. The anion has contact with the N–H bond of the dema{sup +} or dmpa{sup +} cations in the most stable geometries of the dema{sup +} and dmpa{sup +} complexes. The optimized geometries, in which the anions locate on the counter side of the cations, are 11.0–18.0 kcal/mol less stable, which shows that the interactions in the ions pairs of protic ionic liquids have strong directionality. The E{sub form} for the less stable geometries for the dema{sup +} and dmpa{sup +} complexes are close to those for the most stable etma{sup +} complexes. The electrostatic interaction, which is the major source of the attraction in the ion pairs, is responsible for the directionality of the interactions and determining the magnitude of the interaction energy. Molecular dynamic simulations of the [dema][TFSA] and [dmpa][TFSA] ionic liquids show that the N–H bonds of the cations have contact with the negatively charged (oxygen and nitrogen) atoms of TFSA{sup −} anion, while the strong directionality of the interactions was not suggested from the simulation

  11. Ionic liquids as surfactants in micellar liquid chromatography.

    PubMed

    Flieger, Jolanta; Siwek, Agata; Pizoń, Magdalena; Czajkowska-Żelazko, Anna

    2013-05-01

    This paper is devoted to application of ionic liquids as surfactants in LC of organic compounds, derivatives of 1,4-thiosemicarbazides. According to HPLC requirements the most advantageous conditions such as transparency for ultraviolet light, low CMC, additional inorganic salt additives, and appropriate organic solvent were established. The CMC was determined using conductivity measurements. Suitability of two different stationary phases: RP-C18 and cyanopropyl bonded phase was examined under micellar conditions. Chosen ionic liquid surfactant was compared to common traditional amphiphilic reagent - SDS. Elaborated on chromatographic micellar conditions were tested as a pilot technique for prediction of distribution coefficients of organic analytes in ionic liquid-based aqueous two-phase system. PMID:23609988

  12. Structural and Aggregation Study of Protic Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Mattedi, S.; Martin-Pastor, M.; Iglesias, M.

    2011-12-01

    In this work there were studied structural and agreggation aspects of ionic liquids formed by the reaction between ethanolamines with low chain organic acids using NMR techniques. Three ionic liquids composed of pentanoic acid and (mono-, di- and tri-) ethanol amine were studied by 1H, and 13C solution NMR methods. NMR assisted the chemical and quantitative characterization of these three ionic liquids and provided insight in their structural arrangement of their components in the ionic liquid medium. The obtained results could be used to understand the structure and aggregation pattern of these ionic liquids and helps in the development of possible industrial applications.

  13. Biocatalysis in ionic liquids - advantages beyond green technology.

    PubMed

    Park, Seongsoon; Kazlauskas, Romas J

    2003-08-01

    In recent years researchers have started to explore a particular class of organic solvents called room temperature ionic liquids - or simply ionic liquids - to identify their unique advantages for biocatalysis. Because they lack vapour pressure, ionic liquids hold potential as green solvents. Furthermore, unlike organic solvents of comparable polarity, they often do not inactivate enzymes, which simplifies reactions involving polar substrates such as sugars. Biocatalytic reactions in ionic liquids have also shown higher selectivity, faster rates and greater enzyme stability; however, these solvents present other challenges, among them difficulties in purifying ionic liquids and controlling water activity and pH, higher viscosity and problems with product isolation. PMID:12943854

  14. Biocatalysis in ionic liquids - advantages beyond green technology.

    PubMed

    Park, Seongsoon; Kazlauskas, Romas J

    2003-08-01

    In recent years researchers have started to explore a particular class of organic solvents called room temperature ionic liquids - or simply ionic liquids - to identify their unique advantages for biocatalysis. Because they lack vapour pressure, ionic liquids hold potential as green solvents. Furthermore, unlike organic solvents of comparable polarity, they often do not inactivate enzymes, which simplifies reactions involving polar substrates such as sugars. Biocatalytic reactions in ionic liquids have also shown higher selectivity, faster rates and greater enzyme stability; however, these solvents present other challenges, among them difficulties in purifying ionic liquids and controlling water activity and pH, higher viscosity and problems with product isolation.

  15. [Advances of poly (ionic liquid) materials in separation science].

    PubMed

    Liu, Cuicui; Guo, Ting; Su, Rina; Gu, Yuchen; Deng, Qiliang

    2015-11-01

    Ionic liquids, as novel ionization reagents, possess beneficial characteristics including good solubility, conductivity, thermal stability, biocompatibility, low volatility and non-flammability. Ionic liquids are attracting a mass of attention of analytical chemists. Poly (ionic liquid) materials have common performances of ionic liquids and polymers, and have been successfully applied in separation science area. In this paper, we discuss the interaction mechanisms between the poly(ionic liquid) materials and analytes including hydrophobic/hydrophilic interactions, hydrogen bond, ion exchange, π-π stacking and electrostatic interactions, and summarize the application advances of the poly(ionic liquid) materials in solid phase extraction, chromatographic separation and capillary electrophoresis. At last, we describe the future prospect of poly(ionic liquid) materials. PMID:26939357

  16. Comparing two tetraalkylammonium ionic liquids. I. Liquid phase structure.

    PubMed

    Lima, Thamires A; Paschoal, Vitor H; Faria, Luiz F O; Ribeiro, Mauro C C; Giles, Carlos

    2016-06-14

    X-ray scattering experiments at room temperature were performed for the ionic liquids n-butyl-trimethylammonium bis(trifluoromethanesulfonyl)imide, [N1114][NTf2], and methyl-tributylammonium bis(trifluoromethanesulfonyl)imide, [N1444][NTf2]. The peak in the diffraction data characteristic of charge ordering in [N1444][NTf2] is shifted to longer distances in comparison to [N1114][NTf2], but the peak characteristic of short-range correlations is shifted in [N1444][NTf2] to shorter distances. Molecular dynamics (MD) simulations were performed for these ionic liquids using force fields available from the literature, although with new sets of partial charges for [N1114](+) and [N1444](+) proposed in this work. The shifting of charge and adjacency peaks to opposite directions in these ionic liquids was found in the static structure factor, S(k), calculated by MD simulations. Despite differences in cation sizes, the MD simulations unravel that anions are allowed as close to [N1444](+) as to [N1114](+) because anions are located in between the angle formed by the butyl chains. The more asymmetric molecular structure of the [N1114](+) cation implies differences in partial structure factors calculated for atoms belonging to polar or non-polar parts of [N1114][NTf2], whereas polar and non-polar structure factors are essentially the same in [N1444][NTf2]. Results of this work shed light on controversies in the literature on the liquid structure of tetraalkylammonium based ionic liquids.

  17. Comparing two tetraalkylammonium ionic liquids. I. Liquid phase structure.

    PubMed

    Lima, Thamires A; Paschoal, Vitor H; Faria, Luiz F O; Ribeiro, Mauro C C; Giles, Carlos

    2016-06-14

    X-ray scattering experiments at room temperature were performed for the ionic liquids n-butyl-trimethylammonium bis(trifluoromethanesulfonyl)imide, [N1114][NTf2], and methyl-tributylammonium bis(trifluoromethanesulfonyl)imide, [N1444][NTf2]. The peak in the diffraction data characteristic of charge ordering in [N1444][NTf2] is shifted to longer distances in comparison to [N1114][NTf2], but the peak characteristic of short-range correlations is shifted in [N1444][NTf2] to shorter distances. Molecular dynamics (MD) simulations were performed for these ionic liquids using force fields available from the literature, although with new sets of partial charges for [N1114](+) and [N1444](+) proposed in this work. The shifting of charge and adjacency peaks to opposite directions in these ionic liquids was found in the static structure factor, S(k), calculated by MD simulations. Despite differences in cation sizes, the MD simulations unravel that anions are allowed as close to [N1444](+) as to [N1114](+) because anions are located in between the angle formed by the butyl chains. The more asymmetric molecular structure of the [N1114](+) cation implies differences in partial structure factors calculated for atoms belonging to polar or non-polar parts of [N1114][NTf2], whereas polar and non-polar structure factors are essentially the same in [N1444][NTf2]. Results of this work shed light on controversies in the literature on the liquid structure of tetraalkylammonium based ionic liquids. PMID:27306015

  18. Dissolution enthalpies of cellulose in ionic liquids.

    PubMed

    Parviainen, Helena; Parviainen, Arno; Virtanen, Tommi; Kilpeläinen, Ilkka; Ahvenainen, Patrik; Serimaa, Ritva; Grönqvist, Stina; Maloney, Thaddeus; Maunu, Sirkka Liisa

    2014-11-26

    In this work, interactions between cellulose and ionic liquids were studied calorimetrically and by optical microscopy. Two novel ionic liquids (1,5-Diazabicyclo[4.3.0]non-5-enium propionate and N-methyl-1,5-diazabicyclo[4.3.0]non-5-enium dimethyl phosphate) and 1-ethyl-3-methylimidazolium acetate-water mixtures were used as solvents. Optical microscopy served in finding the extent of dissolution and identifying the dissolution pattern of the cellulose sample. Calorimetric studies identified a peak relating to dissolution of cellulose in solvent. The transition did, however, not indicate complete dissolution, but rather dissolution inside fibre or fibrils. This method was used to study differences between four cellulose samples with different pretreatment or origins.

  19. Dissolution enthalpies of cellulose in ionic liquids.

    PubMed

    Parviainen, Helena; Parviainen, Arno; Virtanen, Tommi; Kilpeläinen, Ilkka; Ahvenainen, Patrik; Serimaa, Ritva; Grönqvist, Stina; Maloney, Thaddeus; Maunu, Sirkka Liisa

    2014-11-26

    In this work, interactions between cellulose and ionic liquids were studied calorimetrically and by optical microscopy. Two novel ionic liquids (1,5-Diazabicyclo[4.3.0]non-5-enium propionate and N-methyl-1,5-diazabicyclo[4.3.0]non-5-enium dimethyl phosphate) and 1-ethyl-3-methylimidazolium acetate-water mixtures were used as solvents. Optical microscopy served in finding the extent of dissolution and identifying the dissolution pattern of the cellulose sample. Calorimetric studies identified a peak relating to dissolution of cellulose in solvent. The transition did, however, not indicate complete dissolution, but rather dissolution inside fibre or fibrils. This method was used to study differences between four cellulose samples with different pretreatment or origins. PMID:25256460

  20. Nontoxic Ionic Liquid Fuels for Exploration Applications

    NASA Technical Reports Server (NTRS)

    Coil, Millicent

    2015-01-01

    The toxicity of propellants used in conventional propulsion systems increases not only safety risks to personnel but also costs, due to special handling required during the entire lifetime of the propellants. Orbital Technologies Corporation (ORBITEC) has developed and tested novel nontoxic ionic liquid fuels for propulsion applications. In Phase I of the project, the company demonstrated the feasibility of several ionic liquid formulations that equaled the performance of conventional rocket propellant monomethylhydrazine (MMH) and also provided low volatility and low toxicity. In Phase II, ORBITEC refined the formulations, conducted material property tests, and investigated combustion behavior in droplet and microreactor experiments. The company also explored the effect of injector design on performance and demonstrated the fuels in a small-scale thruster. The ultimate goal is to replace propellants such as MMH with fuels that are simultaneously high-performance and nontoxic. The fuels will have uses in NASA's propulsion applications and also in a range of military and commercial functions.

  1. Structural Transitions at Ionic Liquid Interfaces.

    PubMed

    Rotenberg, Benjamin; Salanne, Mathieu

    2015-12-17

    Recent advances in experimental and computational techniques have allowed for an accurate description of the adsorption of ionic liquids on metallic electrodes. It is now well-established that they adopt a multilayered structure and that the composition of the layers changes with the potential of the electrode. In some cases, potential-driven ordering transitions in the first adsorbed layer have been observed in experiments probing the interface on the molecular scale or by molecular simulations. This perspective gives an overview of the current understanding of such transitions and of their potential impact on the physical and (electro)chemical processes at the interface. In particular, peaks in the differential capacitance, slow dynamics at the interface, and changes in the reactivity have been reported in electrochemical studies. Interfaces between ionic liquids and metallic electrodes are also highly relevant for their friction properties, the voltage-dependence of which opens the way to exciting applications. PMID:26722704

  2. Furfural production using ionic liquids: A review.

    PubMed

    Peleteiro, Susana; Rivas, Sandra; Alonso, José Luis; Santos, Valentín; Parajó, Juan Carlos

    2016-02-01

    Furfural, a platform chemical with a bright future, is commercially obtained by acidic processing of xylan-containing biomass in aqueous media. Ionic liquids (ILs) can be employed in processed for furfural manufacture as additives, as catalysts and/or as reaction media. Depending on the IL utilized, externally added catalysts (usually, Lewis acids, Brönsted acids and/or solid acid catalysts) can be necessary to achieve high reaction yields. Oppositely, acidic ionic liquids (AILs) can perform as both solvents and catalysts, enabling the direct conversion of suitable substrates (pentoses, pentosans or xylan-containing biomass) into furfural. Operating in IL-containing media, the furfural yields can be improved when the product is continuously removed along the reaction (for example, by stripping or extraction), to avoid unwanted side-reactions leading to furfural consumption. These topics are reviewed, as well as the major challenges involved in the large scale utilization of ILs for furfural production.

  3. Supramolecular ionic liquid based on graphene oxide.

    PubMed

    Zeng, Chunfang; Tang, Zhenghai; Guo, Baochun; Zhang, Liqun

    2012-07-28

    For the purpose of preparing liquefied graphene oxide (GO), a process consisting of sulfonation with sodium sulfanilic acid and ionization with bulky amine-terminated Jeffamine® was designed and performed. The obtained hybrid fluid is actually a supramolecular ionic liquid (SIL) with sulfonated GO as the central anions and the terminal ammonium groups of Jeffamine® as the surrounding cations. The successful grafting of the GO sheets with Jeffamine®via an ionic structure was verified and the morphology of the SIL was characterized. The SIL based on GO (GO-SIL) exhibits excellent solubility and amphiphilicity. The rheological measurements confirm the essential viscoelasticity and the liquid-like behavior of GO-SIL. The present GO based SIL suggests promising applications in the fabrication of various GO or graphene based composite materials. In addition, the new functionalization method may guide the future work on acquiring derivatives with tunable properties by simply changing the bulky canopy.

  4. Ionic Liquid Membranes for Carbon Dioxide Separation

    SciTech Connect

    Myers, C.R.; Ilconich, J.B.; Luebke, D.R.; Pennline, H.W.

    2008-07-12

    Recent scientific studies are rapidly advancing novel technological improvements and engineering developments that demonstrate the ability to minimize, eliminate, or facilitate the removal of various contaminants and green house gas emissions in power generation. The Integrated Gasification Combined Cycle (IGCC) shows promise for carbon dioxide mitigation not only because of its higher efficiency as compared to conventional coal firing plants, but also due to a higher driving force in the form of high partial pressure. One of the novel technological concepts currently being developed and investigated is membranes for carbon dioxide (CO2) separation, due to simplicity and ease of scaling. A challenge in using membranes for CO2 capture in IGCC is the possibility of failure at elevated temperatures or pressures. Our earlier research studies examined the use of ionic liquids on various supports for CO2 separation over the temperature range, 37°C-300°C. The ionic liquid, 1-hexyl-3methylimidazolium Bis(trifluoromethylsulfonyl)imide, ([hmim][Tf2N]), was chosen for our initial studies with the following supports: polysulfone (PSF), poly(ether sulfone) (PES), and cross-linked nylon. The PSF and PES supports had similar performance at room temperature, but increasing temperature caused the supported membranes to fail. The ionic liquid with the PES support greatly affected the glass transition temperature, while with the PSF, the glass transition temperature was only slightly depressed. The cross-linked nylon support maintained performance without degradation over the temperature range 37-300°C with respect to its permeability and selectivity. However, while the cross-linked nylon support was able to withstand temperatures, the permeability continued to increase and the selectivity decreased with increasing temperature. Our studies indicated that further testing should examine the use of other ionic liquids, including those that form chemical complexes with CO2 based on

  5. Self-propelled chemotactic ionic liquid droplets.

    PubMed

    Francis, Wayne; Fay, Cormac; Florea, Larisa; Diamond, Dermot

    2015-02-11

    Herein we report the chemotactic behaviour of self-propelled droplets composed solely of the ionic liquid trihexyl(tetradecyl)phosphonium chloride ([P(6,6,6,14)][Cl]). These droplets spontaneously move along an aqueous-air boundary in the direction of chloride gradients to specific destinations due to asymmetric release of [P(6,6,6,14)](+) cationic surfactant from the droplet into the aqueous phase.

  6. Understanding SO2 Capture by Ionic Liquids.

    PubMed

    Mondal, Anirban; Balasubramanian, Sundaram

    2016-05-19

    Ionic liquids have generated interest for efficient SO2 absorption due to their low vapor pressure and versatility. In this work, a systematic investigation of the structure, thermodynamics, and dynamics of SO2 absorption by ionic liquids has been carried out through quantum chemical calculations and molecular dynamics (MD) simulations. MP2 level calculations of several ion pairs complexed with SO2 reveal its preferential interaction with the anion. Results of condensed phase MD simulations of SO2-IL mixtures manifested the essential role of both cations and anions in the solvation of SO2, where the solute is surrounded by the "cage" formed by the cations (primarily its alkyl tail) through dispersion interactions. These structural effects of gas absorption are substantiated by calculated Gibbs free energy of solvation; the dissolution is demonstrated to be enthalpy driven. The entropic loss of SO2 absorption in ionic liquids with a larger anion such as [NTf2](-) has been quantified and has been attributed to the conformational restriction of the anion imposed by its interaction with SO2. SO2 loading IL decreases its shear viscosity and enhances the electrical conductivity. This systematic study provides a molecular level understanding which can aid the design of task-specific ILs as electrolytes for efficient SO2 absorption.

  7. ESR spin probes in ionic liquids.

    PubMed

    Stoesser, Reinhard; Herrmann, Werner; Zehl, Andrea; Strehmel, Veronika; Laschewsky, André

    2006-05-12

    The spin probes 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL), and 2,2,6,6-tetramethyl-4-trimethylammoniumpiperidine-1-oxylIodide (CAT-1) are examined in a number of ionic liquids based on substituted imidazolium cations and tetrafluoroborate and hexafluorophosphate anions, respectively. The reorientation correlation times tau(R) of the spin probes in these systems have been determined by complete spectra simulation and, for rapid reortientation, by analysis of the intensities of the hyperfine lines of the electron spin resonance (ESR) spectra. A comparison of the results with those from the model system glycerol/water and selected organic solvents is made. Additions of diamagnetic and paramagnetic ions allow the conclusion that salt effects and spin exchange are present, and that both are superimposed by motional effects. Specific interactions in the ionic liquids, as well as between the spin-probe molecules and the constituents of the ionic liquids are reflected in the spectra of the spin probes, depending on their molecular structure.

  8. Fast Conversion of Ionic Liquids and Poly(Ionic Liquid)s into Porous Nitrogen-Doped Carbons in Air

    PubMed Central

    Men, Yongjun; Ambrogi, Martina; Han, Baohang; Yuan, Jiayin

    2016-01-01

    Ionic liquids and poly(ionic liquid)s have been successfully converted into nitrogen-doped porous carbons with tunable surface area up to 1200 m2/g at high temperatures in air. Compared to conventional carbonization process conducted under inert gas to produce nitrogen-doped carbons, the new production method was completed in a rather shorter time without noble gas protection. PMID:27070588

  9. Nanostructure self-organization of ionic liquids

    NASA Astrophysics Data System (ADS)

    Zherenkova, L. V.; Khalatur, P. G.

    2010-06-01

    The theory of integral equations was applied to investigate the formation of structures in ionic liquids (ILs). The effect of temperature and the length of the cation tails on the structural properties of a system was studied. An intermediate type of ordering in ILs as compared with common liquids was observed. The formation of polar and nonpolar domains was revealed, with the distribution of the polar domains having the shape of a three-dimensional net coexisting with nonpolar domains. The characteristic scale of intermediate ordering was shown to increase as a power function without disturbing the shape of the distribution of polar domains as the length of the cation tails grew.

  10. Polymer-supported ionic-liquid-like phases (SILLPs): transferring ionic liquid properties to polymeric matrices.

    PubMed

    Sans, Victor; Karbass, Naima; Burguete, M Isabel; Compañ, Vicente; García-Verdugo, Eduardo; Luis, Santiago V; Pawlak, Milena

    2011-02-01

    The physico-chemical properties of polymers with ionic-liquid-like moieties covalently bound to their surfaces (SILLPs) have been studied by thermal and spectroscopic techniques, as well as by direct impedance and dielectric measurements, and compared to those of the corresponding bulk ionic liquids. The effective transfer of properties from ionic liquids in solution to the supported species has thereby been demonstrated. The effects of the chemical nature of these tunable "solid solvents" on their macroscopic swelling and microwave heating, as well as the stabilities and activities of different catalytic moieties immobilized on the SILLPs, have been studied. Finally, the experimental effect observed in microwave heating can be directly correlated with the values of tan δ derived from dielectric measurements.

  11. Ionic liquid based multifunctional double network gel

    NASA Astrophysics Data System (ADS)

    Ahmed, Kumkum; Higashihara, Tomoya; Arafune, Hiroyuki; Kamijo, Toshio; Morinaga, Takashi; Sato, Takaya; Furukawa, Hidemitsu

    2015-04-01

    Gels are a promising class of soft and wet materials with diverse application in tissue engineering and bio-medical purpose. In order to accelerate the development of gels, it is required to synthesize multi-functional gels of high mechanical strength, ultra low surface friction and suitable elastic modulus with a variety of methods and new materials. Among many types of gel ionic gel made from ionic liquids (ILs) could be used for diverse applications in electrochemical devices and in the field of tribology. IL, a promising materials for lubrication, is a salt with a melting point lower than 100 °C. As a lubricant, ILs are characterized by an extremely low vapor pressure, high thermal stability and high ion conductivity. In this work a novel approach of making double network DN ionic gel using IL has been made utilizing photo polymerization process. A hydrophobic monomer Methyl methacrylate (MMA) has been used as a first network and a hydrophobic IL monomer, N,N-diethyl-N-(2-mthacryloylethyl)-N-methylammonium bistrifluoromethylsulfonyl)imide (DEMM-TFSI) has been used as a second network using photo initiator benzophenon and crosslinker triethylene glycol dimethacrylate (TEGDMA). The resulting DN ionic gel shows transparency, flexibility, high thermal stability, good mechanical toughness and low friction coefficient value which can be a potential candidate as a gel slider in different mechanical devices and can open a new area in the field of gel tribology.

  12. Use of ionic liquids as coordination ligands for organometallic catalysts

    DOEpatents

    Li, Zaiwei; Tang, Yongchun; Cheng; Jihong

    2009-11-10

    Aspects of the present invention relate to compositions and methods for the use of ionic liquids with dissolved metal compounds as catalysts for a variety of chemical reactions. Ionic liquids are salts that generally are liquids at room temperature, and are capable of dissolving a many types of compounds that are relatively insoluble in aqueous or organic solvent systems. Specifically, ionic liquids may dissolve metal compounds to produce homogeneous and heterogeneous organometallic catalysts. One industrially-important chemical reaction that may be catalyzed by metal-containing ionic liquid catalysts is the conversion of methane to methanol.

  13. Importance of liquid fragility for energy applications of ionic liquids.

    PubMed

    Sippel, P; Lunkenheimer, P; Krohns, S; Thoms, E; Loidl, A

    2015-01-01

    Ionic liquids (ILs) are salts that are liquid close to room temperature. Their possible applications are numerous, e.g., as solvents for green chemistry, in various electrochemical devices, and even for such "exotic" purposes as spinning-liquid mirrors for lunar telescopes. Here we concentrate on their use for new advancements in energy-storage and -conversion devices: Batteries, supercapacitors or fuel cells using ILs as electrolytes could be important building blocks for the sustainable energy supply of tomorrow. Interestingly, ILs show glassy freezing and the universal, but until now only poorly understood dynamic properties of glassy matter, dominate many of their physical properties. We show that the conductivity of ILs, an essential figure of merit for any electrochemical application, depends in a systematic way not only on their glass temperature but also on the so-called fragility, characterizing the non-canonical super-Arrhenius temperature dependence of their ionic mobility. PMID:26355037

  14. Importance of liquid fragility for energy applications of ionic liquids

    NASA Astrophysics Data System (ADS)

    Sippel, P.; Lunkenheimer, P.; Krohns, S.; Thoms, E.; Loidl, A.

    2015-09-01

    Ionic liquids (ILs) are salts that are liquid close to room temperature. Their possible applications are numerous, e.g., as solvents for green chemistry, in various electrochemical devices, and even for such “exotic” purposes as spinning-liquid mirrors for lunar telescopes. Here we concentrate on their use for new advancements in energy-storage and -conversion devices: Batteries, supercapacitors or fuel cells using ILs as electrolytes could be important building blocks for the sustainable energy supply of tomorrow. Interestingly, ILs show glassy freezing and the universal, but until now only poorly understood dynamic properties of glassy matter, dominate many of their physical properties. We show that the conductivity of ILs, an essential figure of merit for any electrochemical application, depends in a systematic way not only on their glass temperature but also on the so-called fragility, characterizing the non-canonical super-Arrhenius temperature dependence of their ionic mobility.

  15. Importance of liquid fragility for energy applications of ionic liquids

    PubMed Central

    Sippel, P.; Lunkenheimer, P.; Krohns, S.; Thoms, E.; Loidl, A.

    2015-01-01

    Ionic liquids (ILs) are salts that are liquid close to room temperature. Their possible applications are numerous, e.g., as solvents for green chemistry, in various electrochemical devices, and even for such “exotic” purposes as spinning-liquid mirrors for lunar telescopes. Here we concentrate on their use for new advancements in energy-storage and -conversion devices: Batteries, supercapacitors or fuel cells using ILs as electrolytes could be important building blocks for the sustainable energy supply of tomorrow. Interestingly, ILs show glassy freezing and the universal, but until now only poorly understood dynamic properties of glassy matter, dominate many of their physical properties. We show that the conductivity of ILs, an essential figure of merit for any electrochemical application, depends in a systematic way not only on their glass temperature but also on the so-called fragility, characterizing the non-canonical super-Arrhenius temperature dependence of their ionic mobility. PMID:26355037

  16. Evaporation from an ionic liquid emulsion.

    PubMed

    Friberg, Stig E

    2007-03-15

    The conditions during evaporation in a liquid crystal-in-ionic liquid microemulsion (LC/microEm) were estimated using the phase diagram of the system. The equations for selected tie lines were established and the coordinates calculated for the sites, at which the evaporation lines crossed the tie lines. These values combined with the coordinates for the phases connecting the tie lines were used to calculate the amounts and the composition of the fractions of the two phases present in the emulsion during the evaporation. One of the emulsion phases was a lamellar liquid crystal and high energy emulsification would lead to the liquid crystal being disrupted to form vesicles. Such a system tenders a unique opportunity to study the interaction between vesicles and normal micelles, which gradually change to inverse micelles over bi-continuous structures. The amount of vesicles in the liquid phase versus the fraction liquid crystal was calculated for two extreme cases of vesicle core size and shell thickness. The limit of evaporation while retaining the vesicle structure was calculated for emulsions of different original compositions assuming the minimum continuous liquid phase to be 50% of the emulsion.

  17. Evaporation from an ionic liquid emulsion.

    PubMed

    Friberg, Stig E

    2007-03-15

    The conditions during evaporation in a liquid crystal-in-ionic liquid microemulsion (LC/microEm) were estimated using the phase diagram of the system. The equations for selected tie lines were established and the coordinates calculated for the sites, at which the evaporation lines crossed the tie lines. These values combined with the coordinates for the phases connecting the tie lines were used to calculate the amounts and the composition of the fractions of the two phases present in the emulsion during the evaporation. One of the emulsion phases was a lamellar liquid crystal and high energy emulsification would lead to the liquid crystal being disrupted to form vesicles. Such a system tenders a unique opportunity to study the interaction between vesicles and normal micelles, which gradually change to inverse micelles over bi-continuous structures. The amount of vesicles in the liquid phase versus the fraction liquid crystal was calculated for two extreme cases of vesicle core size and shell thickness. The limit of evaporation while retaining the vesicle structure was calculated for emulsions of different original compositions assuming the minimum continuous liquid phase to be 50% of the emulsion. PMID:17207810

  18. A morpholinium ionic liquid for cellulose dissolution.

    PubMed

    Raut, Dilip G; Sundman, Ola; Su, Weiqing; Virtanen, Pasi; Sugano, Yasuhito; Kordas, Krisztian; Mikkola, Jyri-Pekka

    2015-10-01

    A series of substituted morpholinium ionic salts and allyl ammonium acetates were prepared. Amongst those, N-allyl-N-methylmorpholinium acetate ([AMMorp][OAc]) was found to dissolve cellulose readily without any pre-processing of native cellulose. At 120°C, [AMMorp][OAc] could dissolve 30 wt%, 28 wt% and 25 wt% of cellulose with degree of polymerization (DPn) - 789, 1644 and 2082 respectively, in 20 min. Importantly, SEC analysis indicated that no discernible changes occurred in terms of the degree of polymerization of the different celluloses after regeneration. Furthermore, when comparing the cellulose dissolution capability of these newly synthesized ionic liquids, it is evident that the combination of all three constituents - the morpholinium cation, the existence of an allyl group and choosing the acetate anion are essential for efficient cellulose dissolution. The structure and morphology of the regenerated cellulosic materials were characterized by SEM, XRD, TGA, CP/MAS (13)C NMR and FTIR, respectively. PMID:26076596

  19. A morpholinium ionic liquid for cellulose dissolution.

    PubMed

    Raut, Dilip G; Sundman, Ola; Su, Weiqing; Virtanen, Pasi; Sugano, Yasuhito; Kordas, Krisztian; Mikkola, Jyri-Pekka

    2015-10-01

    A series of substituted morpholinium ionic salts and allyl ammonium acetates were prepared. Amongst those, N-allyl-N-methylmorpholinium acetate ([AMMorp][OAc]) was found to dissolve cellulose readily without any pre-processing of native cellulose. At 120°C, [AMMorp][OAc] could dissolve 30 wt%, 28 wt% and 25 wt% of cellulose with degree of polymerization (DPn) - 789, 1644 and 2082 respectively, in 20 min. Importantly, SEC analysis indicated that no discernible changes occurred in terms of the degree of polymerization of the different celluloses after regeneration. Furthermore, when comparing the cellulose dissolution capability of these newly synthesized ionic liquids, it is evident that the combination of all three constituents - the morpholinium cation, the existence of an allyl group and choosing the acetate anion are essential for efficient cellulose dissolution. The structure and morphology of the regenerated cellulosic materials were characterized by SEM, XRD, TGA, CP/MAS (13)C NMR and FTIR, respectively.

  20. Magnetic microemulsions based on magnetic ionic liquids.

    PubMed

    Klee, Andreas; Prevost, Sylvain; Kunz, Werner; Schweins, Ralf; Kiefer, Klaus; Gradzielski, Michael

    2012-11-28

    Microemulsions with magnetic properties were formed by employing a magnetic room temperature ionic liquid (MRTIL) as polar phase, cyclohexane as oil, and an appropriate mixture of ionic surfactant and decanol as a cosurfactant. By means of small-angle neutron scattering (SANS) and electric conductivity the microemulsion structure could be confirmed, where the classical structural sequence of oil-continuous-bicontinuous-polar phase continuous is observed with increasing ratio [polar phase]/[oil]. Accordingly a maximum of the structural size is observed at about equal volumes of oil and MRTIL contained. Therefore this system is structurally the same as normal microemulsions but with the magnetic properties added to it by the incorporation into the systems formulation. PMID:23060241

  1. Employing ionic liquids to deposit cellulose on PET fibers.

    PubMed

    Textor, Torsten; Derksen, Leonie; Gutmann, Jochen S

    2016-08-01

    Several ionic liquids are excellent solvents for cellulose. Starting from that finishing of PET fabrics with cellulose dissolved in ionic liquids like 1-ethyl-3-methyl imidazolium acetate, diethylphosphate and chloride, or the chloride of butyl-methyl imidazolium has been investigated. Finishing has been carried out from solutions of different concentrations, using microcrystalline cellulose or cotton and by employing different cross-linkers. Viscosity of solutions has been investigated for different ionic liquids, concentrations, cellulose sources, linkers and temperatures. Since ionic liquids exhibit no vapor pressure, simple pad-dry-cure processes are excluded. Before drying the ionic liquid has to be removed by a rinsing step. Accordingly rinsing with fresh ionic liquid followed by water or the direct rinsing with water have been tested. The amount of cellulose deposited has been investigated by gravimetry, zinc chloride iodine test as well as reactive dyeing. Results concerning wettability, water up-take, surface resistance, wear-resistance or washing stability are presented.

  2. Surface structure of imidazolium-based ionic liquids: Quantitative comparison between simulations and high-resolution RBS measurements

    NASA Astrophysics Data System (ADS)

    Nakajima, Kaoru; Nakanishi, Shunto; Lísal, Martin; Kimura, Kenji

    2016-03-01

    Elemental depth profiles of 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([CnMIM][TFSI], n = 4, 6, 8) are measured using high-resolution Rutherford backscattering spectroscopy (HRBS). The profiles are compared with the results of molecular dynamics (MD) simulations. Both MD simulations and HRBS measurements show that the depth profiles deviate from the uniform stoichiometric composition in the surface region, showing preferential orientations of ions at the surface. The MD simulations qualitatively reproduce the observed HRBS profiles but the agreement is not satisfactory. The observed discrepancy is ascribed to the capillary waves. By taking account of the surface roughness induced by the capillary waves, the agreement becomes almost perfect.

  3. Electrotunable Lubricity with Ionic Liquid Nanoscale Films

    PubMed Central

    Fajardo, O. Y.; Bresme, F.; Kornyshev, A. A.; Urbakh, M.

    2015-01-01

    One of the main challenges in tribology is finding the way for an in situ control of friction without changing the lubricant. One of the ways for such control is via the application of electric fields. In this respect a promising new class of lubricants is ionic liquids, which are solvent-free electrolytes, and their properties should be most strongly affected by applied voltage. Based on a minimal physical model, our study elucidates the connection between the voltage effect on the structure of the ionic liquid layers and their lubricating properties. It reveals two mechanisms of variation of the friction force with the surface charge density, consistent with recent AFM measurements, namely via the (i) charge effect on normal and in-plane ordering in the film and (ii) swapping between anion and cation layers at the surfaces. We formulate conditions that would warrant low friction coefficients and prevent wear by resisting “squeezing-out” of the liquid under compression. These results give a background for controllable variation of friction. PMID:25572127

  4. Durable electrooptic devices comprising ionic liquids

    SciTech Connect

    Agrawal, Anoop; Cronin, John P.; Tonazzi, Juan C. L.; Warner, Benjamin P.; McCleskey, T. Mark; Burrell, Anthony K.

    2005-11-01

    Electrolyte solutions for electrochromic devices such as rear view mirrors and displays with low leakage currents are prepared using inexpensive, low conductivity conductors. Preferred electrolytes include bifunctional redox dyes and molten salt solvents with enhanced stability toward ultraviolet radiation. The solvents include lithium or quaternary ammonium cations, and perfluorinated sulfonylimide anions selected from trifluoromethylsulfonate (CF3SO3-), bis(trifluoromethylsulfonyl)imide ((CF3SO2)2N-), bis(perfluoroethylsulfonyl)imide ((CF3CF2SO2)2N-) and tris(trifluoromethylsulfonyl)methide ((CF3SO2)3C-). Electroluminescent, electrochromic and photoelectrochromic devices with nanostructured electrodes include ionic liquids with bifunctional redox dyes.

  5. Lipid extraction from microalgae using a single ionic liquid

    DOEpatents

    Salvo, Roberto Di; Reich, Alton; Dykes, Jr., H. Waite H.; Teixeira, Rodrigo

    2013-05-28

    A one-step process for the lysis of microalgae cell walls and separation of the cellular lipids for use in biofuel production by utilizing a hydrophilic ionic liquid, 1-butyl-3-methylimidazolium. The hydrophilic ionic liquid both lyses the microalgae cell walls and forms two immiscible layers, one of which consists of the lipid contents of the lysed cells. After mixture of the hydrophilic ionic liquid with a suspension of microalgae cells, gravity causes a hydrophobic lipid phase to move to a top phase where it is removed from the mixture and purified. The hydrophilic ionic liquid is recycled to lyse new microalgae suspensions.

  6. Highly luminescent and color-tunable salicylate ionic liquids

    DOE PAGES

    Campbell, Paul S.; Yang, Mei; Pitz, Demian; Cybinska, Joanna; Mudring, Anja -Verena

    2014-03-11

    High quantum yields of up to 40.5 % can be achieved in salicylate-bearing ionic liquids. A range of these ionic liquids have been synthesized and their photoluminescent properties studied in detail. The differences noted can be related back to the structure of the ionic liquid cation and possible interionic interactions. It is found that shifts of emission, particularly in the pyridinium-based ionic liquids, can be related to cation–anion pairing interactions. Furthermore, facile and controlled emission color mixing is demonstrated through combining different ILs, with emission colors ranging from blue to yellow.

  7. Determination of solubility parameters of ionic liquids and ionic liquid/solvent mixtures from intrinsic viscosity.

    PubMed

    Weerachanchai, Piyarat; Wong, Yuewen; Lim, Kok Hwa; Tan, Timothy Thatt Yang; Lee, Jong-Min

    2014-11-10

    The total and partial solubility parameters (dispersion, polar and hydrogen-bonding solubility parameters) of ten ionic liquids were determined. Intrinsic viscosity approaches were used that encompassed a one-dimensional method (1D-Method), and two different three-dimensional methods (3D-Method1 and 3D-Method2). The effect of solvent type, the dimethylacetamide (DMA) fraction in the ionic liquid, and dissolution temperature on solubility parameters were also investigated. For all types of effect, both the 1D-Method and 3D-Method2 present the same trend in the total solubility parameter. The partial solubility parameters are influenced by the cation and anion of the ionic liquid. Considering the effect on partial solubility parameters of the solvent type in the ionic liquid, it was observed that in both 3D methods, the dispersion and polar parameters of a 1-ethyl-3-methylimidazolium acetate/solvent (60:40 vol %) mixture tend to increase as the total solubility parameter of the solvent increases. PMID:25145759

  8. Aprotic Heterocyclic Anion Triazolide Ionic Liquids - A New Class of Ionic Liquid Anion Accessed by the Huisgen Cycloaddition Reaction

    SciTech Connect

    Thompson, Robert L; Damodaran, Krishnan; Luebke, David; Nulwala, Hunaid

    2013-06-01

    The triazole core is a highly versatile heterocyclic ring which can be accessed easily with the Cu(I)-catalyzed Huisgen cycloaddition reaction. Herein we present the preparation of ionic liquids that incorporate a 1,2,3-triazolide anion. These ionic liquids were prepared by a facile procedure utilizing a base-labile pivaloylmethyl group at the 1-position, which can act as precursors to 1H- 4-substituted 1,2,3-triazole. These triazoles were then subsequently converted into ionic liquids after deprotonation using an appropriate ionic liquid cation hydroxide. The densities and thermal decompositions of these ionic liquids were measured. These novel ionic liquids have potential applications in gas separations and in metal-free catalysis.

  9. Extraction of proteins with ionic liquid aqueous two-phase system based on guanidine ionic liquid.

    PubMed

    Zeng, Qun; Wang, Yuzhi; Li, Na; Huang, Xiu; Ding, Xueqin; Lin, Xiao; Huang, Songyun; Liu, Xiaojie

    2013-11-15

    Eight kinds of green ionic liquids were synthesized, and an ionic liquid aqueous two-phase system (ILATPS) based on 1,1,3,3-tetramethylguandine acrylate (TMGA) guanidine ionic liquid was first time studied for the extraction of proteins. Single factor experiments proved that the extraction efficiency of bovine serum albumin (BSA) was influenced by the mass of IL, K2HPO4 and BSA, also related to the separation time and temperature. The optimum conditions were determined through orthogonal experiment by the five factors described above. The results showed that under the optimum conditions, the extraction efficiency could reach up to 99.6243%. The relative standard deviations (RSD) of extraction efficiencies in precision experiment, repeatability experiment and stability experiment were 0.8156% (n=5), 1.6173% (n=5) and 1.6292% (n=5), respectively. UV-vis and FT-IR spectra confirmed that there were no chemical interactions between BSA and ionic liquid in the extraction process, and the conformation of the protein was not changed after extraction. The conductivity, DLS and TEM were combined to investigate the microstructure of the top phase and the possible mechanism for the extraction. The results showed that hydrophobic interaction, hydrogen bonding interaction and the salt out effect played important roles in the transferring process, and the aggregation and embrace phenomenon was the main driving force for the separation. All these results proved that guanidine ionic liquid-based ATPSs have the potential to offer new possibility in the extraction of proteins. PMID:24148423

  10. Predictive thermodynamics for ionic solids and liquids.

    PubMed

    Glasser, Leslie; Jenkins, H Donald Brooke

    2016-08-21

    The application of thermodynamics is simple, even if the theory may appear intimidating. We describe tools, developed over recent years, which make it easy to estimate often elusive thermodynamic parameter values, generally (but not exclusively) for ionic materials, both solid and liquid, as well as for their solid hydrates and solvates. The tools are termed volume-based thermodynamics (VBT) and thermodynamic difference rules (TDR), supplemented by the simple salt approximation (SSA) and single-ion values for volume, Vm, heat capacity, , entropy, , formation enthalpy, ΔfH°, and Gibbs formation energy, ΔfG°. These tools can be applied to provide values of thermodynamic and thermomechanical properties such as standard enthalpy of formation, ΔfH°, standard entropy, , heat capacity, Cp, Gibbs function of formation, ΔfG°, lattice potential energy, UPOT, isothermal expansion coefficient, α, and isothermal compressibility, β, and used to suggest the thermodynamic feasibility of reactions among condensed ionic phases. Because many of these methods yield results largely independent of crystal structure, they have been successfully extended to the important and developing class of ionic liquids as well as to new and hypothesised materials. Finally, these predictive methods are illustrated by application to K2SnCl6, for which known experimental results are available for comparison. A selection of applications of VBT and TDR is presented which have enabled input, usually in the form of thermodynamics, to be brought to bear on a range of topical problems. Perhaps the most significant advantage of VBT and TDR methods is their inherent simplicity in that they do not require a high level of computational expertise nor expensive high-performance computation tools - a spreadsheet will usually suffice - yet the techniques are extremely powerful and accessible to non-experts. The connection between formula unit volume, Vm, and standard thermodynamic parameters represents a

  11. Predictive thermodynamics for ionic solids and liquids.

    PubMed

    Glasser, Leslie; Jenkins, H Donald Brooke

    2016-08-21

    The application of thermodynamics is simple, even if the theory may appear intimidating. We describe tools, developed over recent years, which make it easy to estimate often elusive thermodynamic parameter values, generally (but not exclusively) for ionic materials, both solid and liquid, as well as for their solid hydrates and solvates. The tools are termed volume-based thermodynamics (VBT) and thermodynamic difference rules (TDR), supplemented by the simple salt approximation (SSA) and single-ion values for volume, Vm, heat capacity, , entropy, , formation enthalpy, ΔfH°, and Gibbs formation energy, ΔfG°. These tools can be applied to provide values of thermodynamic and thermomechanical properties such as standard enthalpy of formation, ΔfH°, standard entropy, , heat capacity, Cp, Gibbs function of formation, ΔfG°, lattice potential energy, UPOT, isothermal expansion coefficient, α, and isothermal compressibility, β, and used to suggest the thermodynamic feasibility of reactions among condensed ionic phases. Because many of these methods yield results largely independent of crystal structure, they have been successfully extended to the important and developing class of ionic liquids as well as to new and hypothesised materials. Finally, these predictive methods are illustrated by application to K2SnCl6, for which known experimental results are available for comparison. A selection of applications of VBT and TDR is presented which have enabled input, usually in the form of thermodynamics, to be brought to bear on a range of topical problems. Perhaps the most significant advantage of VBT and TDR methods is their inherent simplicity in that they do not require a high level of computational expertise nor expensive high-performance computation tools - a spreadsheet will usually suffice - yet the techniques are extremely powerful and accessible to non-experts. The connection between formula unit volume, Vm, and standard thermodynamic parameters represents a

  12. Oxygen Extraction from Regolith Using Ionic Liquids

    NASA Technical Reports Server (NTRS)

    Barrios, Elizabeth A.; Curreri, Peter A.; Karr, Laurel J.

    2011-01-01

    An important concern with long-duration manned space travel is the need to furnish enough materials to the vehicle, as well as the crew, for the duration of the mission. By extracting oxygen from the oxides present in regolith, propellant and life support could be supplied to the vehicle and the crew while in space, thereby limiting the amount of supplies needed prior to lift-off. Using a class of compounds known as ionic liquids, we have been able to lower the electrolysis operating temperature from 1600 C (molten oxide electrolysis) to less than 200 C, making this process much more feasible in terms of energy consumption and materials handling. To make this process ready for deployment into space, we have investigated what steps of the process would be affected by the low-gravity environment in space. In the lab, the solubilization of lunar regolith simulant in ionic liquid produces water vapor that is normally distilled out of solution and subsequently electrolyzed for oxygen production. This distillation is not possible in space, so we have tested a method known as pervaporation and have suggested a way this technique could be incorporated into a reactor design.

  13. Sulfonated Polymerized Ionic Liquid Block Copolymers.

    PubMed

    Meek, Kelly M; Elabd, Yossef A

    2016-07-01

    The successful synthesis of a new diblock copolymer, referred to as sulfonated polymerized ionic liquid (PIL) block copolymer, poly(SS-Li-b-AEBIm-TFSI), is reported, which contains both sulfonated blocks (sulfonated styrene: SS) and PIL blocks (1-[(2-acryloyloxy)ethyl]-3-butylimidazolium: AEBIm) with both mobile cations (lithium: Li(+) ) and mobile anions (bis(trifluoromethylsulfonyl)imide: TFSI(-) ). Synthesis consists of polymerization via reversible addition-fragmentation chain transfer, followed by post-functionalization reactions to covalently attach the imidazolium cations and sulfonic acid anions to their respective blocks, followed by ion exchange metathesis resulting in mobile Li(+) cations and mobile TFSI(-) anions. Solid-state films containing 1 m Li-TFSI salt dissolved in ionic liquid result in an ion conductivity of >1.5 mS cm(-1) at 70 °C, where small-angle X-ray scattering data indicate a weakly ordered microphase-separated morphology. These results demonstrate a new ion-conducting block copolymer containing both mobile cations and mobile anions. PMID:27125600

  14. Ionic liquid nanostructure enables alcohol self assembly.

    PubMed

    Murphy, Thomas; Hayes, Robert; Imberti, Silvia; Warr, Gregory G; Atkin, Rob

    2016-05-14

    Weakly structured solutions are formed from mixtures of one or more amphiphiles and a polar solvent (usually water), and often contain additional organic components. They contain solvophobic aggregates or association structures with incomplete segregation of components, which leads to a poorly defined interfacial region and significant contact between the solvent and aggregated hydrocarbon groups. The length scales, polydispersity, complexity and ill-defined structures in weakly structured solutions makes them difficult to probe experimentally, and obscures understanding of their formation and stability. In this work we probe the nanostructure of homogenous binary mixtures of the ionic liquid (IL) propylammonium nitrate (PAN) and octanol as a function of composition using neutron diffraction and atomistic empirical potential structure refinement (EPSR) fits. These experiments reveal why octanol forms weakly structured aggregates in PAN but not in water, the mechanism by which PAN stabilises the octanol assemblies, and how the aggregate morphologies evolve with octanol concentration. This new understanding provides insight into the general stabilisation mechanisms and structural features of weakly structured mixtures, and reveals new pathways for identifying molecular or ionic liquids that are likely to facilitate aggregation of non-traditional amphiphiles. PMID:27102801

  15. Toxicity of ionic liquids prepared from biomaterials.

    PubMed

    Gouveia, W; Jorge, T F; Martins, S; Meireles, M; Carolino, M; Cruz, C; Almeida, T V; Araújo, M E M

    2014-06-01

    In search of environmentally-friendly ionic liquids (ILs), 14 were prepared based on the imidazolium, pyridinium and choline cations, with bromide and several amino acids as anions. Good yields were obtained in the synthesis of pyridinium ILs and those prepared from choline and amino acids. Four of the ILs synthesized from choline and the amino acids arginine, glutamine, glutamic acid and cystine are described here for the first time. The toxicity of the synthesized ILs was checked against organisms of various levels of organization: the crustacean Artemia salina; Human cell HeLa (cervical carcinoma); and bacteria with different types of cell wall, Bacillus subtilis and Escherichia coli. The toxicity was observed to depend on both the cation and anion. Choline-amino acid ILs showed a remarkable low toxicity to A. salina and HeLa cell culture, ten times less than imidazolium and pyridinium ILs. None of ionic liquids exhibited marked toxicity to bacteria, and the effect was 2-3 orders of magnitude smaller than that of the antibiotic chloramphenicol.

  16. Boundary layer charge dynamics in ionic liquid-ionic polymer transducers

    NASA Astrophysics Data System (ADS)

    Davidson, Jacob D.; Goulbourne, N. C.

    2011-01-01

    Ionic polymer transducers (IPTs), also known as ionic polymer-metal composites, are soft sensors and actuators which operate through a coupling of microscale chemical, electrical, and mechanical interactions. The use of an ionic liquid as solvent for an IPT has been shown to dramatically increase transducer lifetime in free-air use, while also allowing for higher applied voltages without electrolysis. In this work, we apply Nernst-Planck/Poisson theory to model charge transport in an ionic liquid IPT by considering a certain fraction of the ionic liquid ions as mobile charge carriers, a phenomenon which is unique to ionic liquid IPTs compared to their water-based counterparts. Numerical simulations are performed using the finite element method to examine how the introduction of another pair of mobile ions affects boundary layer charge dynamics, concentration, and charge density distributions in the electric double layer, and the overall charge transferred and current response of the IPT. Due to interactions with the Nafion ionomer, not all of the ionic liquid ions will function as mobile charge carriers; only a certain fraction will exist as "free" ions. The presence of mobile ionic liquid ions in the transducer will increase the overall charge transferred when a voltage is applied, and cause the current in the transducer to decay more slowly. The additional mobile ions also cause the ionic concentration profiles to exhibit a nonlinear dynamic response, characterized by nonmonotonic ionic concentration profiles in space and time. Although the presence of mobile ionic liquid ions increases the overall amount of charge transferred, this additional charge transfer occurs in a somewhat symmetric manner. Therefore, the additional charge transferred due to the ionic liquid ions does not greatly increase the net bending moment of the transducer; in fact, it is possible that ionic liquid ion movement actually decreases the observed bending response. This suggests that an

  17. Absorption and Oxidation of Nitrogen Oxide in Ionic Liquids.

    PubMed

    Kunov-Kruse, Andreas J; Thomassen, Peter L; Riisager, Anders; Mossin, Susanne; Fehrmann, Rasmus

    2016-08-01

    A new strategy for capturing nitrogen oxide, NO, from the gas phase is presented. Dilute NO gas is removed from the gas phase by ionic liquids under ambient conditions. The nitrate anion of the ionic liquid catalyzes the oxidation of NO to nitric acid by atmospheric oxygen in the presence of water. The nitric acid is absorbed in the ionic liquid up to approximately one mole HNO3 per mole of the ionic liquid due to the formation of hydrogen bonds. The nitric acid can be desorbed by heating, thereby regenerating the ionic liquid with excellent reproducibility. Here, time-resolved in-situ spectroscopic investigations of the reaction and products are presented. The procedure reveals a new vision for removing the pollutant NO by absorption into a non-volatile liquid and converting it into a useful bulk chemical, that is, HNO3 . PMID:27384885

  18. Ionic Liquids and Green Chemistry: A Lab Experiment

    ERIC Educational Resources Information Center

    Stark, Annegret; Ott, Denise; Kralisch, Dana; Kreisel, Guenter; Ondruschka, Bernd

    2010-01-01

    Although ionic liquids have been investigated as solvents for many applications and are starting to be used in industrial processes, only a few lab experiments are available to introduce students to these materials. Ionic liquids have been discussed in the context of green chemistry, but few investigations have actually assessed the degree of…

  19. Brownian dynamics determine universality of charge transport in ionic liquids

    SciTech Connect

    Sangoro, Joshua R; Iacob, Ciprian; Mierzwa, Michal; Paluch, Marian; Kremer, Friedrich

    2012-01-01

    Broadband dielectric spectroscopy is employed to investigate charge transport in a variety of glass-forming ionic liquids over wide frequency, temperature and pressure ranges. Using a combination of Einstein, Einstein-Smoluchowski, and Langevin relations, the observed universal scaling of charge transport in ionic liquids is traced back to the dominant role of Brownian dynamics.

  20. Polarity of the interface in ionic liquid in oil microemulsions.

    PubMed

    Andújar-Matalobos, María; García-Río, Luis; López-García, Susana; Rodríguez-Dafonte, Pedro

    2011-11-01

    Ionic liquid based microemulsions were characterized by absorption solvatochromic shifts, (1)H NMR and kinetic measurements in order to investigate the properties of the ionic liquid within the restricted geometry provided by microemulsions and the interactions of the ionic liquid with the interface. Experimental results show a significant difference between the interfaces of normal water and the new ionic liquid microemulsions. Absorption solvatochromic shift experiments and kinetic studies on the aminolysis of 4-nitrophenyl laurate by n-decylamine show that the polarity at the interface of the ionic liquid in oil microemulsions (IL/O) is higher than at the interface of water in oil microemulsions (W/O) despite the fact that the polarity of [bmim][BF(4)(-)] is lower than the polarity of water. (1)H NMR experiments showed that an increase in the ionic liquid content of the microemulsion led to an increase in the interaction between [bmim][BF(4)(-)] and TX-100. The reason for the higher polarity of the microemulsions with the ionic liquid can be explained in terms of the incorporation of higher levels of the ionic liquid at the interface of the microemulsions, as compared to water in the traditional systems. PMID:21820124

  1. Exploring spectroscopic and physicochemical properties of new fluorescent ionic liquids.

    PubMed

    Marwani, Hadi M

    2013-03-01

    In the current study, spectroscopic and physicochemical properties of newly prepared ionic liquids were investigated. Ionic liquids were synthesized via a simple and straightforward route using a metathesis reaction of either N,N-diethyl-p-phenylenediamine monohydrochloride or N-phenacylpyridinium bromide with bis(trifluoromethane)sulfonimide lithium in water. High yield and purity were obtained for the resultant ionic liquids. Data acquired by use of (1)H NMR and FT-IR measurements were consistent with the chemical structures of newly prepared ionic liquids. Results of thermal gravimetric analysis also implied that these ionic liquids have good thermal stability. In addition, UV-vis and fluorescence spectroscopy measurements provided that new ionic liquids are good absorbent and fluorescent. Time-based fluorescence steady-state measurements showed that ionic liquids have high photostability against photobleaching. For a deeper mechanistic understanding of the analytical potential of newly synthesized ionic liquids, spectroscopic and physicochemical parameters, including singlet absorption, extinction coefficient, fluorescence quantum yield, Stokes shift, oscillator strength and dipole moment, were also investigated.

  2. Interactions between water and 1-butyl-1-methylpyrrolidinium ionic liquids

    SciTech Connect

    Fadeeva, Tatiana A.; DeVine, Jessalyn A.; Castner, Edward W.; Husson, Pascale; Costa Gomes, Margarida F.; Greenbaum, Steven G.

    2015-08-14

    We report experimental results on the diffusivity of water in two ionic liquids obtained using the pulsed-gradient spin-echo NMR method. Both ionic liquids have the same cation, 1-butyl-1-methylpyrrolidinium, but different trifluoromethyl-containing anions. One has a strongly hydrophobic anion, bis(trifluoromethylsulfonyl)amide, while the second has a hydrophilic anion, trifluoromethylsulfonate. Transport of water in these ionic liquids is much faster than would be predicted from hydrodynamic laws, indicating that the neutral water molecules experience a very different friction than the anions and cations at the molecular level. Temperature-dependent viscosities, conductivities, and densities are reported as a function of water concentration to further analyze the properties of the ionic liquid-water mixtures. These results on the properties of water in ionic liquids should be of interest to researchers in diverse areas ranging from separations, solubilizing biomass and energy technologies.

  3. Interactions between water and 1-butyl-1-methylpyrrolidinium ionic liquids.

    PubMed

    Fadeeva, Tatiana A; Husson, Pascale; DeVine, Jessalyn A; Costa Gomes, Margarida F; Greenbaum, Steven G; Castner, Edward W

    2015-08-14

    We report experimental results on the diffusivity of water in two ionic liquids obtained using the pulsed-gradient spin-echo NMR method. Both ionic liquids have the same cation, 1-butyl-1-methylpyrrolidinium, but different trifluoromethyl-containing anions. One has a strongly hydrophobic anion, bis(trifluoromethylsulfonyl)amide, while the second has a hydrophilic anion, trifluoromethylsulfonate. Transport of water in these ionic liquids is much faster than would be predicted from hydrodynamic laws, indicating that the neutral water molecules experience a very different friction than the anions and cations at the molecular level. Temperature-dependent viscosities, conductivities, and densities are reported as a function of water concentration to further analyze the properties of the ionic liquid-water mixtures. These results on the properties of water in ionic liquids should be of interest to researchers in diverse areas ranging from separations, solubilizing biomass and energy technologies. PMID:26277141

  4. Interactions between water and 1-butyl-1-methylpyrrolidinium ionic liquids.

    PubMed

    Fadeeva, Tatiana A; Husson, Pascale; DeVine, Jessalyn A; Costa Gomes, Margarida F; Greenbaum, Steven G; Castner, Edward W

    2015-08-14

    We report experimental results on the diffusivity of water in two ionic liquids obtained using the pulsed-gradient spin-echo NMR method. Both ionic liquids have the same cation, 1-butyl-1-methylpyrrolidinium, but different trifluoromethyl-containing anions. One has a strongly hydrophobic anion, bis(trifluoromethylsulfonyl)amide, while the second has a hydrophilic anion, trifluoromethylsulfonate. Transport of water in these ionic liquids is much faster than would be predicted from hydrodynamic laws, indicating that the neutral water molecules experience a very different friction than the anions and cations at the molecular level. Temperature-dependent viscosities, conductivities, and densities are reported as a function of water concentration to further analyze the properties of the ionic liquid-water mixtures. These results on the properties of water in ionic liquids should be of interest to researchers in diverse areas ranging from separations, solubilizing biomass and energy technologies.

  5. Recyclability of an ionic liquid for biomass pretreatment.

    PubMed

    Weerachanchai, Piyarat; Lee, Jong-Min

    2014-10-01

    This study investigated the possibility of reusing an ionic liquid for the pretreatment of biomass. The effects of lignin and water content in a pretreatment solvent on pretreatment products were examined, along with the recyclability of an ionic liquid for pretreatment. It was discovered that the presence of lignin and water within a pretreatment solvent resulted in a far less effective pretreatment process. 1-Ethyl-3-methylimidazolium acetate/ethanolamine (60/40 vol%) presents more promising properties than EMIM-AC, providing a small decrease in sugar conversion and also a small increase of lignin deposition with an increasing lignin amount in the pretreatment solvent. Deteriorations of the ionic liquid were observed from considerably low sugar conversions and lignin extraction after using the 5th and 7th batch, respectively. Furthermore, the changes of ionic liquid properties and lignin accumulation in ionic liquid were determined by analyzing their thermal decomposition behavior (TGA) and chemical functional groups (FTIR and (1)H NMR).

  6. Magnetic nanoparticles supported ionic liquids improve firefly luciferase properties.

    PubMed

    Noori, Ali Reza; Hosseinkhani, Saman; Ghiasi, Parisa; Akbari, Jafar; Heydari, Akbar

    2014-03-01

    Ionic liquids as neoteric solvents, microwave irradiation, and alternative energy source are becoming as a solvent for many enzymatic reactions. We recently showed that the incubation of firefly luciferase from Photinus pyralis with various ionic liquids increased the activity and stability of luciferase. Magnetic nanoparticles supported ionic liquids have been obtained by covalent bonding of ionic liquids-silane on magnetic silica nanoparticles. In the present study, the effects of [γ-Fe2O3@SiO2][BMImCl] and [γ-Fe2O3@SiO2][BMImI] were investigated on the structural properties and function of luciferase using circular dichroism, fluorescence spectroscopy, and bioluminescence assay. Enzyme activity and structural stability increased in the presence of magnetic nanoparticles supported ionic liquids. Furthermore, the effect of ingredients which were used was not considerable on K(m) value of luciferase for adenosine-5'-triphosphate and also K(m) value for luciferin.

  7. Retreating behavior of a charged ionic liquid droplet in a dielectric liquid under electric field

    NASA Astrophysics Data System (ADS)

    Ahn, Myung Mo; Im, Do Jin; Kang, In Seok

    2013-11-01

    Ionic liquids show great promise as excellent solvents or catalysts in energy and biological fields due to their unique chemical and physical properties. The ionic liquid droplets in microfluidic systems can also be used as a potential platform for chemical biological reactions. In order to control electrically the ionic liquid droplets in a microfluidic device, the charging characteristics of ionic liquid droplets need to be understood. In this work, the charging characteristics of various ionic liquids are investigated by using the parallel plate electrodes system. Under normal situation, a charged droplet shows bouncing motion between electrodes continuously. However, for some special ionic liquids, interesting retreating behavior of charged ionic liquid droplet has been observed. This retreating behavior of ionic liquid droplet has been analyzed experimentally by the image analysis and the electrometer signal analysis. Based on the hypothesis of charge leakage of the retreating ionic liquid droplets, FT-IR spectroscopy analysis has also been performed. The retreating behavior of ionic liquid droplet is discussed from the intermolecular point of view according to the species of ionic liquids. This research was supported by grant No. 2013R1A1A2011956 funded by the Ministry of Science, ICT and Future Planning (MSIP) and by grant No. 2013R1A1A2010483 funded by the Ministry of Education, Science and Technology (MEST) through the NRF.

  8. Metsulfuron-methyl-based herbicidal ionic liquids.

    PubMed

    Pernak, Juliusz; Niemczak, Michał; Shamshina, Julia L; Gurau, Gabriela; Głowacki, Grzegorz; Praczyk, Tadeusz; Marcinkowska, Katarzyna; Rogers, Robin D

    2015-04-01

    Ten sulfonylurea-based herbicidal ionic liquids (HILs) were prepared by combining the metsulfuron-methyl anion with various cation types including quaternary ammonium ([bis(2-hydroxyethyl)methyloleylammonium](+), [2-hydroxyethyltrimethylammonium](+)), pyridinium ([1-dodecylpyridinium](+)), piperidinium ([1-methyl-1-propylpiperidinium](+)), imidazolium ([1-allyl-3-methylimidazolium](+), [1-butyl-3-methylimidazolium](+)), pyrrolidinium ([1-butyl-1-methylpyrrolidinium](+)), morpholinium ([4-decyl-4-methylmorpholinium](+)), and phosphonium ([trihexyltetradecylphosphonium](+) and [tetrabutylphosphonium](+)). Their herbicidal efficacy was studied in both greenhouse tests and field trials. Preliminary results for the greenhouse tests showed at least twice the activity for all HILs when compared to the activity of commercial Galmet 20 SG, with HILs with phosphonium cations being the most effective. The results of two-year field studies showed significantly less enhancement of activity than observed in the greenhouse; nonetheless, it was found that the herbicidal efficacy was higher than that of the commercial analog, and efficacy varied depending on the plant species. PMID:25734891

  9. Durable electrooptic devices comprising ionic liquids

    DOEpatents

    Warner, Benjamin P.; McCleskey, T. Mark; Burrell, Anthony K.

    2006-10-10

    Electrolyte solutions for electrochromic devices such as rear view mirrors and displays with low leakage currents are prepared using inexpensive, low conductivity conductors. Preferred electrolytes include bifunctional redox dyes and molten salt solvents with enhanced stability toward ultraviolet radiation. The solvents include lithium or quaternary ammonium cations, and perfluorinated sulfonylimide anions selected from trifluoromethylsulfonate (CF.sub.3SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3SO.sub.2).sub.2N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3CF.sub.2SO.sub.2).sub.2N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3SO.sub.2).sub.3C.sup.-). Electroluminescent, electrochromic and photoelectrochromic devices with nanostructured electrodes include ionic liquids with bifunctional redox dyes.

  10. New triazolium based ionic liquid crystals

    SciTech Connect

    Stappert, Kathrin; Unal, Derya; Mallick, Bert; Mudring, Anja-Verena

    2014-01-01

    A set of novel 1,2,3-triazolium based ionic liquid crystals was synthesized and their mesomorphic behaviour studied by DSC (differential scanning calorimetry), POM (polarizing optical microscopy) and SAXS (small angle X-ray scattering). Beside the variation of the chain length (C10, C12 and C14) at the 1,2,3-triazolium cation also the anion has been varied (Br-, I-, I3-, BF4-, SbF6-, N(CN)2-, Tf2N-) to study the influence of ion size, symmetry and H-bonding capability on the mesophase formation. Interestingly, for the 1,3-didodecyl-1,2,3-triazolium cation two totally different conformations were found in the crystal structure of the bromide (U-shaped) and the triiodide (rod shaped).

  11. Microregion detection of ionic liquid microemulsions.

    PubMed

    Gao, Yanan; Wang, Suqing; Zheng, Liqiang; Han, Shuaibing; Zhang, Xuan; Lu, Deming; Yu, Li; Ji, Yongqiang; Zhang, Gaoyong

    2006-09-15

    Nonaqueous ionic liquid (IL) microemulsion consisting of IL, 1-butyl-3-methylimidazolium tetrafluoroborate (bmimBF(4)), surfactant TX-100, and toluene was prepared and the phase behavior of the ternary system was investigated. Electrical conductivity measurement was used for investigating the microregions of the nonaqueous IL microemulsions. On the basis of the percolation theory, the bmimBF(4)-in-toluene (IL/O), bicontinuous, and toluene-in-bmimBF(4) (O/IL) microregions of the microemulsions were successfully identified using insulative toluene as the titration phase. However, this method was invalid when conductive bmimBF(4) acted as the titration phase. The microregions obtained by conductivity measurements were further proved by electrochemical cyclic voltammetry experiments. The results indicated that the conductivity method was feasible for identifying microstructures of the nonaqueous IL microemulsions. PMID:16765365

  12. Durable Electrooptic Devices Comprising Ionic Liquids

    SciTech Connect

    Burrell, Anthony K.; Agrawal, Anoop; Cronin, John P.; Tonazzi, Juan C. L.; Warner, Benjamin P.; McCleskey, T. Mark

    2008-11-11

    Electrolyte solutions for electrochromic devices such as rear view mirrors and displays with low leakage currents are prepared using inexpensive, low conductivity conductors. Preferred electrolytes include bifunctional redox dyes and molten salt solvents with enhanced stability toward ultraviolet radiation. The solvents include lithium or quaternary ammonium cations, and perfluorinated sulfonylimide anions selected from trifluoromethylsulfonate (CF.sub.3SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3SO.sub.2).sub.2N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3CF.sub.2SO.sub.2).sub.2N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3SO.sub.2).sub.3C.sup.-). Electroluminescent, electrochromic and photoelectrochromic devices with nanostructured electrodes include ionic liquids with bifunctional redox dyes. Some of the electrolyte solutions color to red when devices employing the solutions are powered, leading to red or neutral electrooptic devices.

  13. Durable electrooptic devices comprising ionic liquids

    DOEpatents

    Burrell, Anthony K.; Agrawal, Anoop; Cronin; John P.; Tonazzi, Juan C. L.; Warner, Benjamin P.; McCleskey, T. Mark

    2009-12-15

    Electrolyte solutions for electrochromic devices such as rear view mirrors and displays with low leakage currents are prepared using inexpensive, low conductivity conductors. Preferred electrolytes include bifunctional redox dyes and molten salt solvents with enhanced stability toward ultraviolet radiation. The solvents include lithium or quaternary ammonium cations, and perfluorinated sulfonylimide anions selected from trifluoromethylsulfonate (CF.sub.3SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3SO.sub.2).sub.2N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3CF.sub.2SO.sub.2).sub.2N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3SO.sub.2).sub.3C.sup.-). Electroluminescent, electrochromic and photoelectrochromic devices with nanostructured electrodes include ionic liquids with bifunctional redox dyes. Some of the electrolyte solutions color to red when devices employing the solutions are powered, leading to red or neutral electrooptic devices.

  14. Energy storage materials synthesized from ionic liquids.

    PubMed

    Gebresilassie Eshetu, Gebrekidan; Armand, Michel; Scrosati, Bruno; Passerini, Stefano

    2014-12-01

    The advent of ionic liquids (ILs) as eco-friendly and promising reaction media has opened new frontiers in the field of electrochemical energy storage. Beyond their use as electrolyte components in batteries and supercapacitors, ILs have unique properties that make them suitable as functional advanced materials, media for materials production, and components for preparing highly engineered functional products. Aiming at offering an in-depth review on the newly emerging IL-based green synthesis processes of energy storage materials, this Review provides an overview of the role of ILs in the synthesis of materials for batteries, supercapacitors, and green electrode processing. It is expected that this Review will assess the status quo of the research field and thereby stimulate new thoughts and ideas on the emerging challenges and opportunities of IL-based syntheses of energy materials.

  15. Microwave-assisted synthesis using ionic liquids.

    PubMed

    Martínez-Palou, Rafael

    2010-02-01

    The research and application of green chemistry principles have led to the development of cleaner processes. In this sense, during the present century an ever-growing number of studies have been published describing the use of ionic liquids (ILs) as solvents, catalysts, or templates to develop more environmentally friendly and efficient chemical transformations for their use in both academia and industry. The conjugation of ILs and microwave irradiation as a non-conventional heating source has shown evident advantages when compared to conventional synthetic procedures for the generation of fast, efficient, and environmental friendly synthetic methodologies. This review focuses on the advances in the use of ILs in organic, polymers and materials syntheses under MW irradiation conditions.

  16. Carbon Dioxide and Ionic Liquid Refrigerants: Compact, Efficient Air Conditioning with Ionic Liquid-Based Refrigerants

    SciTech Connect

    2010-10-01

    BEETIT Project: Notre Dame is developing an air-conditioning system with a new ionic liquid and CO2 as the working fluid. Synthetic refrigerants used in air conditioning and refrigeration systems are potent GHGs and can trap 1,000 times more heat in the atmosphere than CO2 alone—making CO2 an attractive alternative for synthetic refrigerants in cooling systems. However, operating cooling systems with pure CO2 requires prohibitively high pressures and expensive hardware. Notre Dame is creating a new fluid made of CO2 and ionic liquid that enables the use of CO2 at low pressures and requires minimal changes to existing hardware and production lines. This new fluid also produces no harmful emissions and can improve the efficiency of air conditioning systems— enabling new use of CO2 as a refrigerant in cooling systems.

  17. Femtosecond solvation dynamics in a neat ionic liquid and ionic liquid microemulsion: excitation wavelength dependence.

    PubMed

    Adhikari, Aniruddha; Sahu, Kalyanasis; Dey, Shantanu; Ghosh, Subhadip; Mandal, Ujjwal; Bhattacharyya, Kankan

    2007-11-01

    Solvation dynamics in a neat ionic liquid, 1-pentyl-3-methyl-imidazolium tetra-flouroborate ([pmim][BF4]) and its microemulsion in Triton X-100 (TX-100)/benzene is studied using femtosecond up-conversion. In both the neat ionic liquid and the microemulsion, the solvation dynamics is found to depend on excitation wavelength (lambda(ex)). The lambda(ex) dependence is attributed to structural heterogeneity in neat ionic liquid (IL) and in IL microemulsion. In neat IL, the heterogeneity arises from clustering of the pentyl groups which are surrounded by a network of cation and anions. Such a nanostructural organization is predicted in many recent simulations and observed recently in an X-ray diffraction study. In an IL microemulsion, the surfactant (TX-100) molecules aggregate in form of a nonpolar peripheral shell around the polar pool of IL. The micro-environment in such an assembly varies drastically over a short distance. The dynamic solvent shift (and average solvation time) in neat IL as well as in IL microemulsions decreases markedly as lambda(ex) increases from 375 to 435 nm. In a [pmim][BF4]/water/TX-100/benzene quaternary microemulsion, the solvation dynamics is slower than that in a microemulsion without water. This is ascribed to the smaller size of the water containing microemulsion. The anisotropy decay in an IL microemulsion is found to be faster than that in neat IL. PMID:17944511

  18. Adsorption Kinetics at Silica Gel/Ionic Liquid Solution Interface.

    PubMed

    Flieger, Jolanta; Tatarczak-Michalewska, Małgorzata; Groszek, Anna; Blicharska, Eliza; Kocjan, Ryszard

    2015-12-10

    A series of imidazolium and pyridinium ionic liquids with different anions (Cl(-), Br(-), BF₄(-), PF₆(-)) has been evaluated for their adsorption activity on silica gel. Quantification of the ionic liquids has been performed by the use of RP-HPLC with organic-aqueous eluents containing an acidic buffer and a chaotropic salt. Pseudo-second order kinetic models were applied to the experimental data in order to investigate the kinetics of the adsorption process. The experimental data showed good fitting with this model, confirmed by considerably high correlation coefficients. The adsorption kinetic parameters were determined and analyzed. The relative error between the calculated and experimental amount of ionic liquid adsorbed at equilibrium was within 7%. The effect of various factors such as initial ionic liquid concentration, temperature, kind of solvent, kind of ionic liquid anion and cation on adsorption efficiency were all examined in a lab-scale study. Consequently, silica gel showed better adsorptive characteristics for imidazolium-based ionic liquids with chaotropic anions from aqueous solutions in comparison to pyridinium ionic liquids. The adsorption was found to decrease with the addition of organic solvents (methanol, acetonitrile) but it was not sensitive to the change of temperature in the range of 5-40 °C.

  19. Proton Transport in Nanostructured Block Copolymer/Ionic Liquid Membranes

    NASA Astrophysics Data System (ADS)

    Hoarfrost, Megan; Tyagi, Madhu; Reimer, Jeffrey; Segalman, Rachel

    2011-03-01

    Nanostructured block copolymer/ionic liquid mixtures are of interest for creating membranes having high proton conductivity coupled with high thermal stability. In these mixtures, it is anticipated that nanoconfinement to block copolymer domains will affect ionic liquid proton transport properties. Using pulsed-field gradient NMR and quasi-elastic neutron scattering, this relationship has been investigated for mixtures of poly(styrene-b- 2-vinylpyridine) (S2VP) with ionic liquids composed of imidazole and bis(trifluoromethane)sulfonimide (HTFSI), where the ionic liquids selectively reside in the P2VP domains of the block copolymer. Proton mobility is highest in the neat ionic liquids when there is an excess of imidazole compared to HTFSI due to proton hopping between hydrogen-bonded imidazoles. As predicted, the amount of proton hopping can be tuned by nanoconfinement, as evidenced by the finding that a lamellar mixture of an imidazole- excess ionic liquid with S2VP has greater proton mobility than a corresponding disordered mixture of the ionic liquid with P2VP homopolymer.

  20. Soft ionization of thermally evaporated hypergolic ionic liquid aerosols

    SciTech Connect

    University of California; ERC, Incorporated, Edwards Air Force Base; Air Force Research Laboratory, Edwards Air Force Base; National Synchrotron Radiation Research Center; Institute of Chemistry, Hebrew University; Koh, Christine J.; Liu, Chen-Lin; Harmon, Christopher W.; Strasser, Daniel; Golan, Amir; Kostko, Oleg; Chambreau, Steven D.; Vaghjiani, Ghanshyam L.; Leone, Stephen R.

    2011-07-19

    Isolated ion pairs of a conventional ionic liquid, 1-Ethyl-3-Methyl-Imidazolium Bis(trifluoromethylsulfonyl)imide ([Emim+][Tf2N?]), and a reactive hypergolic ionic liquid, 1-Butyl-3-Methyl-Imidazolium Dicyanamide ([Bmim+][Dca?]), are generated by vaporizing ionic liquid submicron aerosol particles for the first time; the vaporized species are investigated by dissociative ionization with tunable vacuum ultraviolet (VUV) light, exhibiting clear intact cations, Emim+ and Bmim+, presumably originating from intact ion pairs. Mass spectra of ion pair vapor from an effusive source of the hypergolic ionic liquid show substantial reactive decomposition due to the internal energy of the molecules emanating from the source. Photoionization efficiency curves in the near threshold ionization region of isolated ion pairs of [Emim+][Tf2N?]ionic liquid vapor are compared for an aerosol source and an effusive source, revealing changes in the appearance energy due to the amount of internal energy in the ion pairs. The aerosol source has a shift to higher threshold energy (~;;0.3 eV), attributed to reduced internal energy of the isolated ion pairs. The method of ionic liquid submicron aerosol particle vaporization, for reactive ionic liquids such as hypergolic species, is a convenient, thermally ?cooler? source of isolated intact ion pairs in the gas phase compared to effusive sources.

  1. Soft Ionization of Thermally Evaporated Hypergolic Ionic Liquid Aerosols

    SciTech Connect

    Koh, Christine J.; Liu, Chen-Lin; Harmon, Christopher W.; Strasser, Daniel; Golan, Amir; Kostko, Oleg; Chambreau, Steven D.; Vaghjiani, Ghanshyam L.; Leone, Stephen R.

    2011-04-20

    Isolated ion pairs of a conventional ionic liquid, 1-Ethyl-3-Methyl-Imidazolium Bis(trifluoromethylsulfonyl)imide ([Emim+][Tf2N–]), and a reactive hypergolic ionic liquid, 1-Butyl-3-Methyl-Imidazolium Dicyanamide ([Bmim+][Dca–]), are generated by vaporizing ionic liquid submicrometer aerosol particles for the first time; the vaporized species are investigated by dissociative ionization with tunable vacuum ultraviolet (VUV) light, exhibiting clear intact cations, Emim+ and Bmim+, presumably originating from intact ion pairs. Mass spectra of ion pair vapor from an effusive source of the hypergolic ionic liquid show substantial reactive decomposition due to the internal energy of the molecules emanating from the source. Also, hotoionization efficiency curves in the near threshold ionization region of isolated ion pairs of [Emim+][Tf2N] ionic liquid vapor are compared for an aerosol source and an effusive source, revealing changes in the appearance energy due to the amount of internal energy in the ion pairs. The aerosol source has a shift to higher threshold energy (~0.3 eV), attributed to reduced internal energy of the isolated ion pairs. Lastly, the method of ionic liquid submicrometer aerosol particle vaporization, for reactive ionic liquids such as hypergolic species, is a convenient, thermally “cooler” source of isolated intact ion pairs in the gas phase compared to effusive sources.

  2. Chelating ionic liquids for reversible zinc electrochemistry.

    PubMed

    Kar, Mega; Winther-Jensen, Bjorn; Forsyth, Maria; MacFarlane, Douglas R

    2013-05-21

    Advanced, high energy-density, metal-air rechargeable batteries, such as zinc-air, are of intense international interest due to their important role in energy storage applications such as electric and hybrid vehicles, and to their ability to deal with the intermittency of renewable energy sources such as solar and wind. Ionic liquids offer a number of ideal thermal and physical properties as potential electrolytes in such large-scale energy storage applications. We describe here the synthesis and characterisation of a family of novel "chelating" ILs designed to chelate and solubilize the zinc ions to create electrolytes for this type of battery. These are based on quaternary alkoxy alkyl ammonium cations of varying oligo-ether side chains and anions such as p-toluene sulfonate, bis(trifluoromethylsulfonyl)amide and dicyanoamides. This work shows that increasing the ether chain length in the cation from two to four oxygens can increase the ionic conductivity and reduce the melting point from 67 °C to 15 °C for the tosylate system. Changing the anion also plays a significant role in the nature of the zinc deposition electrochemistry. We show that zinc can be reversibly deposited from [N(222(20201))][NTf2] and [N(222(202020201))][NTf2] beginning at -1.4 V and -1.7 V vs. SHE, respectively, but not in the case of tosylate based ILs. This indicates that the [NTf2] is a weaker coordinating anion with the zinc cation, compared to the tosylate anion, allowing the coordination of the ether chain to dominate the behavior of the deposition and stripping of zinc ions. PMID:23558696

  3. Thermal boundary conductance of hydrophilic and hydrophobic ionic liquids

    NASA Astrophysics Data System (ADS)

    Oyake, Takafumi; Sakata, Masanori; Yada, Susumu; Shiomi, Junichiro

    2015-03-01

    A solid/liquid interface plays a critical role for understanding mechanisms of biological and physical science. Moreover, carrier density of the surface is dramatically enhanced by electric double layer with ionic liquid, salt in the liquid state. Here, we have measured the thermal boundary conductance (TBC) across an interface of gold thin film and ionic liquid by using time-domain thermoreflectance technique. Following the prior researches, we have identified the TBC of two interfaces. One is gold and hydrophilic ionic liquid, N,N-Diethyl-N-methyl-N-(2-methoxyethyl) ammonium tetrafluoroborate (DEME-BF4), which is a hydrophilic ionic liquid, and the other is N,N-Diethyl-N-methyl-N-(2-methoxyethyl) ammonium bis (trifluoromethanesulfonyl) imide (DEME-TFSI), which is a hydrophobic ionic liquid. We found that the TBC between gold and DEME-TFIS (19 MWm-2K-1) is surprisingly lower than the interface between gold and DEME-BF4 (45 MWm-2K-1). With these data, the importance of the wetting angle and ion concentration for the thermal transport at the solid/ionic liquid interface is discussed. Part of this work is financially supported by Japan Society for the Promotion of Science (JSPS) and Japan Science and Technology Agency. The author is financially supported by JSPS Fellowship.

  4. Quantum mechanical continuum solvation models for ionic liquids.

    PubMed

    Bernales, Varinia S; Marenich, Aleksandr V; Contreras, Renato; Cramer, Christopher J; Truhlar, Donald G

    2012-08-01

    The quantum mechanical SMD continuum universal solvation model can be applied to predict the free energy of solvation of any solute in any solvent following specification of various macroscopic solvent parameters. For three ionic liquids where these descriptors are readily available, the SMD solvation model exhibits a mean unsigned error of 0.48 kcal/mol for 93 solvation free energies of neutral solutes and a mean unsigned error of 1.10 kcal/mol for 148 water-to-IL transfer free energies. Because the necessary solvent parameters are not always available for a given ionic liquid, we determine average values for a set of ionic liquids over which measurements have been made in order to define a generic ionic liquid solvation model, SMD-GIL. Considering 11 different ionic liquids, the SMD-GIL solvation model exhibits a mean unsigned error of 0.43 kcal/mol for 344 solvation free energies of neutral solutes and a mean unsigned error of 0.61 kcal/mol for 431 water-to-IL transfer free energies. As these errors are similar in magnitude to those typically observed when applying continuum solvation models to ordinary liquids, we conclude that the SMD universal solvation model may be applied to ionic liquids as well as ordinary liquids.

  5. Morphology-enhanced conductivity in dry ionic liquids.

    PubMed

    Erbaş, Aykut; de la Cruz, Monica Olvera

    2016-03-01

    Ionic liquids exhibit fascinating nanoscale morphological phases and are promising materials for energy storage applications. Liquid crystalline order emerges in ionic liquids with specific chemical structures. Here, we investigate the phase behaviour and related ionic conductivities of dry ionic liquids, using extensive molecular dynamics simulations. Temperature dependence, properties of polymeric tail and excluded volume symmetry of the amphiphilic ionic liquid molecules are investigated in large scale systems with both short and long-range Coulomb interactions. Our results suggest that by adjusting stiffness and steric interactions of the amphiphilic molecules, lamellar or 3D continuous phases result in these molecular salts. The resulting phases are composed of ion rich and ion pure domains. In 3D phases, ion rich clusters form ionic channels and have significant effects on the conductive properties of the observed nano-phases. If there is no excluded-volume asymmetry along the molecules, mostly lamellar phases with anisotropic conductivities emerge. If the steric interactions become asymmetric, lamellar phases are replaced by complex 3D continuous phases. Within the temperature ranges for which morphological phases are observed, conductivities exhibit low-temperature maxima in accord with experiments on ionic liquid crystals. Stiffer molecules increase the high-conductivity interval and strengthen temperature-resistance of morphological phases. Increasing the steric interactions of cation leads to higher conductivities. Moreover, at low monomeric volume fractions and at low temperatures, cavities are observed in the nano-phases of flexible ionic liquids. We also demonstrate that, in the absence of electrostatic interactions, the morphology is distorted. Our findings inspire new design principles for room temperature ionic liquids and help explain previously-reported experimental data.

  6. Phase-Changing Ionic Liquids: CO2 Capture with Ionic Liquids Involving Phase Change

    SciTech Connect

    2010-07-01

    IMPACCT Project: Notre Dame is developing a new CO2 capture process that uses special ionic liquids (ILs) to remove CO2 from the gas exhaust of coal-fired power plants. ILs are salts that are normally liquid at room temperature, but Notre Dame has discovered a new class of ILs that are solid at room temperature and change to liquid when they bind to CO2. Upon heating, the CO2 is released for storage, and the ILs re-solidify and donate some of the heat generated in the process to facilitate further CO2 release. These new ILs can reduce the energy required to capture CO2 from the exhaust stream of a coal-fired power plant when compared to state-ofthe- art technology.

  7. Development of Practical Supported Ionic Liquid Membranes: A Systematic Approach

    SciTech Connect

    Luebke, D.R.; Ilconich, J.B.; Myers, C.R.; Pennline, H.W.

    2007-11-01

    Supported liquid membranes (SLMs) are a class of materials that allow the researcher to utilize the wealth of knowledge available on liquid properties to optimize membrane performance. These membranes also have the advantage of liquid phase diffusivities, which are higher than those observed in polymers and grant proportionally greater permeabilities. The primary shortcoming of the supported liquid membranes demonstrated in past research has been the lack of stability caused by volatilization of the transport liquid. Ionic liquids, which may possess high CO2 solubility relative to light gases such as H2, are excellent candidates for this type of membrane since they are stable at elevated temperatures and have negligible vapor pressure. A study has been conducted evaluating the use of a variety of ionic liquids in supported ionic liquid membranes for the capture of CO2 from streams containing H2. In a joint project, researchers at the University of Notre Dame synthesized and characterized ionic liquids, and researchers at the National Energy Technology Laboratory incorporated candidate ionic liquids into supports and evaluated membrane performance for the resulting materials. Several steps have been taken in the development of practical supported ionic liquid membranes. Proof-of-concept was established by showing that ionic liquids could be used as the transport media in SLMs. Results showed that ionic liquids are suitable media for gas transport, but the preferred polymeric supports were not stable at temperatures above 135oC. The use of cross-linked nylon66 supports was found to produce membranes mechanically stable at temperatures exceeding 300oC but CO2/H2 selectivity was poor. An ionic liquid whose selectivity does not decrease with increasing temperature was needed, and a functionalized ionic liquid that complexes with CO2 was used. An increase in CO2/H2 selectivity with increasing temperature over the range of 37 to 85oC was observed and the dominance of a

  8. Morphology-induced low temperature conductivity in ionic liquids

    NASA Astrophysics Data System (ADS)

    Erbas, Aykut; Olvera de La Cruz, Monica; Olvera de la Cruz Team

    Ionic liquids exhibit nano-scale liquid crystalline order depending on the polymeric details of salt molecules. The resulting morphology and temperature behavior are key factors in determining the room temperature conductivity of ionic liquids. Here we discuss the phase behavior and related ionic conductivities of dry ionic liquids with volume fractions close to unity by using extensive molecular dynamics simulations. Temperature dependence, effective persistence length of tails, and excluded volume symmetry of amphiphilic ionic liquid molecules are investigated in large scale systems with short and long-range electrostatics. Our results suggest that by adjusting stiffness of the amphiphilic molecules and excluded volume interactions, lamellar or interconnected 3D phases can be obtained. Resulting phases have significant effects on the conductive properties. If there is no excluded volume asymmetry along the molecules, mostly lamellar phases with anisotropic conductivities emerge. If the excluded volume interactions become asymmetric, lamellar phases are replaced by interconnected phases consist of charged groups. Within temperature ranges that morphological phases are observed, conductivities exhibit low-temperature maxima in accord with experiments of ionic liquid-based liquid Center of Bio-inspried Energy Center (CBES).

  9. Long-range electrostatic screening in ionic liquids.

    PubMed

    Gebbie, Matthew A; Dobbs, Howard A; Valtiner, Markus; Israelachvili, Jacob N

    2015-06-16

    Electrolyte solutions with high concentrations of ions are prevalent in biological systems and energy storage technologies. Nevertheless, the high interaction free energy and long-range nature of electrostatic interactions makes the development of a general conceptual picture of concentrated electrolytes a significant challenge. In this work, we study ionic liquids, single-component liquids composed solely of ions, in an attempt to provide a novel perspective on electrostatic screening in very high concentration (nonideal) electrolytes. We use temperature-dependent surface force measurements to demonstrate that the long-range, exponentially decaying diffuse double-layer forces observed across ionic liquids exhibit a pronounced temperature dependence: Increasing the temperature decreases the measured exponential (Debye) decay length, implying an increase in the thermally driven effective free-ion concentration in the bulk ionic liquids. We use our quantitative results to propose a general model of long-range electrostatic screening in ionic liquids, where thermally activated charge fluctuations, either free ions or correlated domains (quasiparticles), take on the role of ions in traditional dilute electrolyte solutions. This picture represents a crucial step toward resolving several inconsistencies surrounding electrostatic screening and charge transport in ionic liquids that have impeded progress within the interdisciplinary ionic liquids community. More broadly, our work provides a previously unidentified way of envisioning highly concentrated electrolytes, with implications for diverse areas of inquiry, ranging from designing electrochemical devices to rationalizing electrostatic interactions in biological systems.

  10. Long-range electrostatic screening in ionic liquids

    PubMed Central

    Gebbie, Matthew A.; Dobbs, Howard A.; Valtiner, Markus; Israelachvili, Jacob N.

    2015-01-01

    Electrolyte solutions with high concentrations of ions are prevalent in biological systems and energy storage technologies. Nevertheless, the high interaction free energy and long-range nature of electrostatic interactions makes the development of a general conceptual picture of concentrated electrolytes a significant challenge. In this work, we study ionic liquids, single-component liquids composed solely of ions, in an attempt to provide a novel perspective on electrostatic screening in very high concentration (nonideal) electrolytes. We use temperature-dependent surface force measurements to demonstrate that the long-range, exponentially decaying diffuse double-layer forces observed across ionic liquids exhibit a pronounced temperature dependence: Increasing the temperature decreases the measured exponential (Debye) decay length, implying an increase in the thermally driven effective free-ion concentration in the bulk ionic liquids. We use our quantitative results to propose a general model of long-range electrostatic screening in ionic liquids, where thermally activated charge fluctuations, either free ions or correlated domains (quasiparticles), take on the role of ions in traditional dilute electrolyte solutions. This picture represents a crucial step toward resolving several inconsistencies surrounding electrostatic screening and charge transport in ionic liquids that have impeded progress within the interdisciplinary ionic liquids community. More broadly, our work provides a previously unidentified way of envisioning highly concentrated electrolytes, with implications for diverse areas of inquiry, ranging from designing electrochemical devices to rationalizing electrostatic interactions in biological systems. PMID:26040001

  11. A structural investigation of ionic liquid mixtures.

    PubMed

    Matthews, Richard P; Villar-Garcia, Ignacio J; Weber, Cameron C; Griffith, Jeraime; Cameron, Fiona; Hallett, Jason P; Hunt, Patricia A; Welton, Tom

    2016-03-28

    The structures of mixtures of ionic liquids (ILs) featuring a common 1-butyl-3-methylimidazolium ([C4C1im](+)) cation but different anions have been investigated both experimentally and computationally. (1)H and (13)C NMR of the ILs and their mixtures has been performed both on the undiluted liquids and those diluted by CD2Cl2. These experiments have been complemented by quantum chemical density functional theory calculations and molecular dynamics simulations. These techniques have identified the formation of preferential interactions between H(2) of the imidazolium cation and the most strongly hydrogen bond (H-bond) accepting anion. In addition, a preference for the more weakly H-bond accepting anion to interact above the imidazolium ring through anion-π(+) interactions has been identified. The modelling of these data has identified that the magnitude of these preferences are small, of the order of only a few kJ mol(-1), for all IL mixtures. No clustering of the anions around a specific cation could be observed, indicating that these interactions arise from the reorientation of the cation within a randomly assigned network of anions. π(+)-π(+) stacking of the imidazolium cations was also studied and found to be promoted by ILs with a strong H-bond accepting anion. Stacking interactions are easily disrupted by the introduction of small proportions (<50 mol%) of a weakly coordinating anion due to their propensity to form anion-π(+) interactions. These results suggest that the formation of IL mixtures with different anions leads to subtle structural changes of much lower energy than the Coulombic ordering of ions, accounting for why most IL mixtures exhibit ideal, or nearly ideal, behaviour. PMID:26947103

  12. A structural investigation of ionic liquid mixtures.

    PubMed

    Matthews, Richard P; Villar-Garcia, Ignacio J; Weber, Cameron C; Griffith, Jeraime; Cameron, Fiona; Hallett, Jason P; Hunt, Patricia A; Welton, Tom

    2016-03-28

    The structures of mixtures of ionic liquids (ILs) featuring a common 1-butyl-3-methylimidazolium ([C4C1im](+)) cation but different anions have been investigated both experimentally and computationally. (1)H and (13)C NMR of the ILs and their mixtures has been performed both on the undiluted liquids and those diluted by CD2Cl2. These experiments have been complemented by quantum chemical density functional theory calculations and molecular dynamics simulations. These techniques have identified the formation of preferential interactions between H(2) of the imidazolium cation and the most strongly hydrogen bond (H-bond) accepting anion. In addition, a preference for the more weakly H-bond accepting anion to interact above the imidazolium ring through anion-π(+) interactions has been identified. The modelling of these data has identified that the magnitude of these preferences are small, of the order of only a few kJ mol(-1), for all IL mixtures. No clustering of the anions around a specific cation could be observed, indicating that these interactions arise from the reorientation of the cation within a randomly assigned network of anions. π(+)-π(+) stacking of the imidazolium cations was also studied and found to be promoted by ILs with a strong H-bond accepting anion. Stacking interactions are easily disrupted by the introduction of small proportions (<50 mol%) of a weakly coordinating anion due to their propensity to form anion-π(+) interactions. These results suggest that the formation of IL mixtures with different anions leads to subtle structural changes of much lower energy than the Coulombic ordering of ions, accounting for why most IL mixtures exhibit ideal, or nearly ideal, behaviour.

  13. Nanodroplet cluster formation in ionic liquid microemulsions.

    PubMed

    Gao, Yanan; Voigt, Andreas; Hilfert, Liane; Sundmacher, Kai

    2008-08-01

    A common ionic liquid (IL), 1-butyl-3-methylimidazolium tetrafluoroborate (bmimBF(4)), is used as polar solvent to induce the formation of a reverse bmimBF(4)-in-toluene IL microemulsion with the aid of the nonionic surfactant Triton X-100. The swelling process of the microemulsion droplets by increasing bmimBF(4) content is detected by dynamic light scattering (DLS), conductivity, UV/Vis spectroscopy, and freeze-fracture transmission electron microscopy (FF-TEM). The results show that the microemulsion droplets initially formed are enlarged by the addition of bmimBF(4). However, successive addition of bmimBF(4) lead to the appearance of large-sized microemulsion droplet clusters (200-400 nm). NMR spectroscopic analysis reveal that the special structures and properties of bmimBF(4) and Triton X-100 together with the polar nature of toluene contribute to the formation of such self-assemblies. These unique self-assembled structures of IL-based microemulsion droplet clusters may have some unusual and unique properties with a number of interesting possibilities for potential applications. PMID:18576451

  14. Ionic Liquid-Based Optical and Electrochemical Carbon Dioxide Sensors.

    PubMed

    Behera, Kamalakanta; Pandey, Shubha; Kadyan, Anu; Pandey, Siddharth

    2015-12-04

    Due to their unusual physicochemical properties (e.g., high thermal stability, low volatility, high intrinsic conductivity, wide electrochemical windows and good solvating ability), ionic liquids have shown immense application potential in many research areas. Applications of ionic liquid in developing various sensors, especially for the sensing of biomolecules, such as nucleic acids, proteins and enzymes, gas sensing and sensing of various important ions, among other chemosensing platforms, are currently being explored by researchers worldwide. The use of ionic liquids for the detection of carbon dioxide (CO₂) gas is currently a major topic of research due to the associated importance of this gas with daily human life. This review focuses on the application of ionic liquids in optical and electrochemical CO₂ sensors. The design, mechanism, sensitivity and detection limit of each type of sensor are highlighted in this review.

  15. Ionic Liquid-Based Optical and Electrochemical Carbon Dioxide Sensors

    PubMed Central

    Behera, Kamalakanta; Pandey, Shubha; Kadyan, Anu; Pandey, Siddharth

    2015-01-01

    Due to their unusual physicochemical properties (e.g., high thermal stability, low volatility, high intrinsic conductivity, wide electrochemical windows and good solvating ability), ionic liquids have shown immense application potential in many research areas. Applications of ionic liquid in developing various sensors, especially for the sensing of biomolecules, such as nucleic acids, proteins and enzymes, gas sensing and sensing of various important ions, among other chemosensing platforms, are currently being explored by researchers worldwide. The use of ionic liquids for the detection of carbon dioxide (CO2) gas is currently a major topic of research due to the associated importance of this gas with daily human life. This review focuses on the application of ionic liquids in optical and electrochemical CO2 sensors. The design, mechanism, sensitivity and detection limit of each type of sensor are highlighted in this review. PMID:26690155

  16. Radiation stability of some room temperature ionic liquids

    NASA Astrophysics Data System (ADS)

    Jagadeeswara Rao, Ch.; Venkatesan, K. A.; Tata, B. V. R.; Nagarajan, K.; Srinivasan, T. G.; Vasudeva Rao, P. R.

    2011-05-01

    Radiation stability of some room temperature ionic liquids (RTILs) that find useful electrochemical applications in nuclear fuel cycle has been evaluated. The ionic liquids such as protonated betaine bis(trifluoromethylsulfonyl)imide (HbetNTf 2), aliquat 336 (tri-n-octlymethylammonium chloride), 1-butyl-3-methylimidazolium chloride (bmimCl), 1-hexyl-3-methylimidazolium chloride (hmimCl), N-butyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (BMPyNTf 2) and N-methyl-N-propylpiperidinium bis(trifluoromethylsulfonyl)imide (MPPiNTf 2) have been irradiated to various absorbed dose levels, up to 700 kGy. The effect of gamma radiation on these ionic liquids has been evaluated by determining the variations in the physical properties such as color, density, viscosity, refractive index and electrochemical window. The changes in density, viscosity and refractive index of these ionic liquids upon irradiation were insignificant; however, the color and electrochemical window varied significantly with increase of absorbed dose.

  17. Electropolymerization of polypyrrole by bipolar electrochemistry in an ionic liquid.

    PubMed

    Kong, Shuwei; Fontaine, Olivier; Roche, Jérôme; Bouffier, Laurent; Kuhn, Alexander; Zigah, Dodzi

    2014-03-25

    Bipolar electrochemistry has been recently explored for the modification of conducting micro- and nanoobjects with various surface layers. So far, it has been assumed that such processes should be carried out in low-conductivity electrolytes in order to be efficient. We report here the first bipolar electrochemistry experiment carried out in an ionic liquid, which by definition shows a relatively high conductivity. Pyrrole has been electropolymerized on a bipolar electrode, either in ionic liquid or in acetonitrile. The resulting polymer films were characterized by scanning electron microscopy and by contact profilometry. We demonstrate that the films obtained in an ionic liquid are thinner and smoother than the films synthesized in acetonitrile. Furthermore, a well-defined band of polypyrrole can be obtained in ionic liquid, in contrast to acetonitrile for which the polypyrrole film is present on the whole anodic part of the bipolar electrode.

  18. Ionic Liquids Can Permanently Modify Porous Silicon Surface Chemistry.

    PubMed

    Trivedi, Shruti; Coombs, Sidney G; Wagle, Durgesh V; Bhawawet, Nakara; Baker, Gary A; Bright, Frank V

    2016-08-01

    To develop ionic liquid/porous silicon (IL/pSi) microarrays we have contact pin-printed 20 hydrophobic and hydrophilic ionic liquids onto as-prepared, hydrogen-passivated porous silicon (ap-pSi) and then determined the individual IL spot size, shape and associated pSi surface chemistry. The results reveal that the hydrophobic ionic liquids oxidize the ap-pSi slightly. In contrast, the hydrophilic ionic liquids lead to heavily oxidized pSi (i.e., ox-pSi). The strong oxidation arises from residual water within the hydrophilic ILs that is delivered from these ILs into the ap-pSi matrix causing oxidation. This phenomenon is less of an issue in the hydrophobic ILs because their water solubility is substantially lower.

  19. The radiation chemistry of ionic liquids: A review

    SciTech Connect

    Mincher, Bruce J.; Wishart, James F.

    2014-07-03

    Ionic liquids have received increasing attention as media for radiochemical separations. Recent literature includes examinations of the efficiencies and mechanisms of the solvent extraction of lanthanides, actinides and fission products into ionic liquid solutions. For radiochemical applications, including as replacement solvents for nuclear fuel reprocessing, a thorough understanding of the radiation chemistry of ionic liquids will be required. Such an understanding can be achieved based on a combination of steady-state radiolysis experiments coupled with post-irradiation product identification and pulse-radiolysis experiments to acquire kinetic information. These techniques allow for the elucidation of radiolytic mechanisms. This contribution reviews the current ionic liquid radiation chemistry literature as it affects separations, with these considerations in mind.

  20. Ionic Liquids Can Permanently Modify Porous Silicon Surface Chemistry.

    PubMed

    Trivedi, Shruti; Coombs, Sidney G; Wagle, Durgesh V; Bhawawet, Nakara; Baker, Gary A; Bright, Frank V

    2016-08-01

    To develop ionic liquid/porous silicon (IL/pSi) microarrays we have contact pin-printed 20 hydrophobic and hydrophilic ionic liquids onto as-prepared, hydrogen-passivated porous silicon (ap-pSi) and then determined the individual IL spot size, shape and associated pSi surface chemistry. The results reveal that the hydrophobic ionic liquids oxidize the ap-pSi slightly. In contrast, the hydrophilic ionic liquids lead to heavily oxidized pSi (i.e., ox-pSi). The strong oxidation arises from residual water within the hydrophilic ILs that is delivered from these ILs into the ap-pSi matrix causing oxidation. This phenomenon is less of an issue in the hydrophobic ILs because their water solubility is substantially lower. PMID:27405109

  1. The magic of aqueous solutions of ionic liquids: ionic liquids as a powerful class of catanionic hydrotropes†

    PubMed Central

    Cláudio, Ana Filipa M.; Neves, Márcia C.; Shimizu, Karina; Canongia Lopes, José N.; Freire, Mara G.; Coutinho, João A. P.

    2015-01-01

    Hydrotropes are compounds able to enhance the solubility of hydrophobic substances in aqueous media and therefore are widely used in the formulation of drugs, cleaning and personal care products. In this work, it is shown that ionic liquids are a new class of powerful catanionic hydrotropes where both the cation and the anion synergistically contribute to increase the solubility of biomolecules in water. The effects of the ionic liquid chemical structures, their concentration and the temperature on the solubility of two model biomolecules, vanillin and gallic acid were evaluated and compared with the performance of conventional hydrotropes. The solubility of these two biomolecules was studied in the entire composition range, from pure water to pure ionic liquids, and an increase in the solubility of up to 40-fold was observed, confirming the potential of ionic liquids to act as hydrotropes. Using dynamic light scattering, NMR and molecular dynamics simulations, it was possible to infer that the enhanced solubility of the biomolecule in the IL aqueous solutions is related to the formation of ionic-liquid–biomolecules aggregates. Finally, it was demonstrated that hydrotropy induced by ionic liquids can be used to recover solutes from aqueous media by precipitation, simply by using water as an anti-solvent. The results reported here have a significant impact on the understanding of the role of ionic liquid aqueous solutions in the extraction of value-added compounds from biomass as well as in the design of novel processes for their recovery from aqueous media. PMID:26379471

  2. Carbon nanoparticle ionic liquid hybrids and their photoluminescence properties.

    PubMed

    Wei, Ying; Liu, Yang; Li, Haitao; He, Xiaodie; Zhang, Qingguo; Kang, Zhenhui; Lee, Shuit-Tong

    2011-06-01

    A fluorescent carbon nanoparticle ionic liquid hybrids (CNPIL) with high conductivity is synthesized by a facile one-step microwave method from ionic liquid 1-butyl-3-methylimidazolium glutamine salt and Glucose. This CNPIL exhibits excellent PL properties: bright and colorful PL covering the entire visible-NIR spectral range, up conversion PL properties, pH dependent and can be controlled by the reaction condition.

  3. SYNTHESIS AND ANTIMICROBIAL PROPERTIES OF NEW MANDELATE IONIC LIQUIDS.

    PubMed

    Wiśniewska, Anna; Lipińsk, Piotr F J; Woźniak, Krzysztof; Sanjuan-Szklarz, Fabiola; Cieniecka-Rosłonkiewicz, Anna; Michalczyk, Alicja; Dabrowski, Zbigniew; Kulig-Adamiak, Anna; Matalińska, Joanna; Leś, Andrzej; Cybulski, Jacek

    2016-01-01

    Novel mandelate ionic liquids with quartenary ammonium cations were synthesized and characterized. The compounds exhibit antimicrobial activity and the most potent one is of similar efficacy against Gram+ bacteria as its counterpart chloride. On the other hand, the mandelates are much less active against Gram-bacteria and fungi. QSAR models suggest that, with respect to cation, their potency depends on lipophilicity. The synthesized ionic liquids are also quite cytotoxic against mammalian cells. PMID:27476289

  4. Membrane contactor assisted extraction/reaction process employing ionic liquids

    DOEpatents

    Lin, Yupo J.; Snyder, Seth W.

    2012-02-07

    The present invention relates to a functionalized membrane contactor extraction/reaction system and method for extracting target species from multi-phase solutions utilizing ionic liquids. One preferred embodiment of the invented method and system relates to an extraction/reaction system wherein the ionic liquid extraction solutions act as both extraction solutions and reaction mediums, and allow simultaneous separation/reactions not possible with prior art technology.

  5. Employing ionic liquids to deposit cellulose on PET fibers.

    PubMed

    Textor, Torsten; Derksen, Leonie; Gutmann, Jochen S

    2016-08-01

    Several ionic liquids are excellent solvents for cellulose. Starting from that finishing of PET fabrics with cellulose dissolved in ionic liquids like 1-ethyl-3-methyl imidazolium acetate, diethylphosphate and chloride, or the chloride of butyl-methyl imidazolium has been investigated. Finishing has been carried out from solutions of different concentrations, using microcrystalline cellulose or cotton and by employing different cross-linkers. Viscosity of solutions has been investigated for different ionic liquids, concentrations, cellulose sources, linkers and temperatures. Since ionic liquids exhibit no vapor pressure, simple pad-dry-cure processes are excluded. Before drying the ionic liquid has to be removed by a rinsing step. Accordingly rinsing with fresh ionic liquid followed by water or the direct rinsing with water have been tested. The amount of cellulose deposited has been investigated by gravimetry, zinc chloride iodine test as well as reactive dyeing. Results concerning wettability, water up-take, surface resistance, wear-resistance or washing stability are presented. PMID:27112860

  6. Thallium Transfer from Hydrochloric Acid Media into Pure Ionic Liquids.

    PubMed

    Tereshatov, Evgeny E; Boltoeva, Maria Yu; Mazan, Valerie; Volia, Merinda F; Folden, Charles M

    2016-03-10

    Pure hydrophobic ionic liquids are known to extract metallic species from aqueous solutions. In this work we have systematically investigated thallium (Tl) extraction from aqueous hydrochloric acid (HCl) solutions into six pure fluorinated ionic liquids, namely imidazolium- and pyrrolidinium-based ionic liquids with bis(trifluoromethanesulfonyl)imide and bis(fluorosulfonyl)-imide anions. The dependence of the Tl extraction efficiency on the structure and composition of the ionic liquid ions, metal oxidation state, and initial metal and aqueous acid concentrations have been studied. Tl concentrations were on the order of picomolar (analyzed using radioactive tracers) and millimolar (analyzed using inductively coupled plasma mass spectrometry). The extraction of the cationic thallium species Tl(+) is higher for ionic liquids with more hydrophilic cations, while for the TlX(z)(3-z) anionic species (where X = Cl(-) and/or Br(-)), the extraction efficiency is greater for ionic liquids with more hydrophobic cations. The highest distribution value of Tl(III) was approximately 2000. An improved mathematical model based on ion exchange and ion pair formation mechanisms has been developed to describe the coextraction of two different anionic species, and the relative contributions of each mechanism have been determined. PMID:26769597

  7. Novel applications of ionic liquids in materials processing

    NASA Astrophysics Data System (ADS)

    Reddy, Ramana G.

    2009-05-01

    Ionic liquids are mixtures of organic and inorganic salts which are liquids at room temperature. Several potential applications of ionic liquids in the field of materials processing are electrowinning and electrodeposition of metals and alloys, electrolysis of active metals at low temperature, liquid-liquid extraction of metals. Results using 1-butyl-3-methylimidazolium chloride with AlCl3 at low temperatures yielded high purity aluminium deposits (>99.9% pure) and current efficiencies >98%. Titanium and aluminium were co-deposited with/without the addition of TiCl4 with up to 27 wt% Ti in the deposit with current efficiencies in the range of 78-85 %. Certain ionic liquids are potential replacements for thermal oils and molten salts as heat transfer fluids in solar energy applications due to high thermal stability, very low corrosivity and substantial sensible heat retentivity. The calculated storage densities for several chloride and fluoride ionic liquids are in the range of 160-210 MJ/m3. A 3-D mathematical model was developed to simulate the large scale electrowinning of aluminium. Since ionic liquids processing results in their low energy consumption, low pollutant emissions many more materials processing applications are expected in future.

  8. Ion Transport in Nanostructured Block Copolymer/Ionic Liquid Membranes

    NASA Astrophysics Data System (ADS)

    Hoarfrost, Megan Lane

    Incorporating an ionic liquid into one block copolymer microphase provides a platform for combining the outstanding electrochemical properties of ionic liquids with a number of favorable attributes provided by block copolymers. In particular, block copolymers thermodynamically self-assemble into well-ordered nanostructures, which can be engineered to provide a durable mechanical scaffold and template the ionic liquid into continuous ion-conducting nanochannels. Understanding how the addition of an ionic liquid affects the thermodynamic self-assembly of block copolymers, and how the confinement of ionic liquids to block copolymer nanodomains affects their ion-conducting properties is essential for predictable structure-property control. The lyotropic phase behavior of block copolymer/ionic liquid mixtures is shown to be reminiscent of mixtures of block copolymers with selective molecular solvents. A variety of ordered microstructures corresponding to lamellae, hexagonally close-packed cylinders, body-centered cubic, and face-centered cubic oriented micelles are observed in a model system composed of mixtures of imidazolium bis(trifluoromethylsulfonyl)imide ([Im][TFSI]) and poly(styrene- b-2-vinyl pyridine) (PS-b-P2VP). In contrast to block copolymer/molecular solvent mixtures, the interfacial area occupied by each PS-b-P2VP chain decreases upon the addition of [Im][TFSI], indicating a considerable increase in the effective segregation strength of the PS-b-P2VP copolymer with ionic liquid addition. The relationship between membrane structure and ionic conductivity is illuminated through the development of scaling relationships that describe the ionic conductivity of block copolymer/ionic liquid mixtures as a function of membrane composition and temperature. It is shown that the dominant variable influencing conductivity is the overall volume fraction of ionic liquid in the mixture, which means there

  9. Modern ab initio valence bond theory calculations reveal charge shift bonding in protic ionic liquids.

    PubMed

    Patil, Amol Baliram; Bhanage, Bhalchandra Mahadeo

    2016-06-21

    The nature of bonding interactions between the cation and the anion of an ionic liquid is at the heart of understanding ionic liquid properties. A particularly interesting case is a special class of ionic liquids known as protic ionic liquids. The extent of proton transfer in protic ionic liquids has been observed to vary according to the interacting species. Back proton transfer renders protic ionic liquids volatile and to be considered as inferior ionic liquids. We try to address this issue by employing modern ab initio valence bond theory calculations. The results indicate that the bonding in the cation and the anion of a prototypical ionic liquid, ethylammonium nitrate, is fundamentally different. It is neither characteristic of covalent/polar covalent bonding nor ionic bonding but rather charge shift bonding as a resonance hybrid of two competing ionic molecular electronic structure configurations. An investigation of other analogous protic ionic liquids reveals that this charge shift bonding seems to be a typical characteristic of protic ionic liquids while the ionic solid analogue compound ammonium nitrate has less charge shift bonding character as compared to protic ionic liquids. Further the extent of charge shift bonding character has been found to be congruent with the trends in many physicochemical properties such as melting point, conductivity, viscosity, and ionicity of the studied ionic liquids indicating that percentage charge shift character may serve as a key descriptor for large scale computational screening of ionic liquids with desired properties.

  10. Modern ab initio valence bond theory calculations reveal charge shift bonding in protic ionic liquids.

    PubMed

    Patil, Amol Baliram; Bhanage, Bhalchandra Mahadeo

    2016-06-21

    The nature of bonding interactions between the cation and the anion of an ionic liquid is at the heart of understanding ionic liquid properties. A particularly interesting case is a special class of ionic liquids known as protic ionic liquids. The extent of proton transfer in protic ionic liquids has been observed to vary according to the interacting species. Back proton transfer renders protic ionic liquids volatile and to be considered as inferior ionic liquids. We try to address this issue by employing modern ab initio valence bond theory calculations. The results indicate that the bonding in the cation and the anion of a prototypical ionic liquid, ethylammonium nitrate, is fundamentally different. It is neither characteristic of covalent/polar covalent bonding nor ionic bonding but rather charge shift bonding as a resonance hybrid of two competing ionic molecular electronic structure configurations. An investigation of other analogous protic ionic liquids reveals that this charge shift bonding seems to be a typical characteristic of protic ionic liquids while the ionic solid analogue compound ammonium nitrate has less charge shift bonding character as compared to protic ionic liquids. Further the extent of charge shift bonding character has been found to be congruent with the trends in many physicochemical properties such as melting point, conductivity, viscosity, and ionicity of the studied ionic liquids indicating that percentage charge shift character may serve as a key descriptor for large scale computational screening of ionic liquids with desired properties. PMID:27229870

  11. Ionic structure in liquids confined by dielectric interfaces

    NASA Astrophysics Data System (ADS)

    Jing, Yufei; Jadhao, Vikram; Zwanikken, Jos W.; Olvera de la Cruz, Monica

    2015-11-01

    The behavior of ions in liquids confined between macromolecules determines the outcome of many nanoscale assembly processes in synthetic and biological materials such as colloidal dispersions, emulsions, hydrogels, DNA, cell membranes, and proteins. Theoretically, the macromolecule-liquid boundary is often modeled as a dielectric interface and an important quantity of interest is the ionic structure in a liquid confined between two such interfaces. The knowledge gleaned from the study of ionic structure in such models can be useful in several industrial applications, such as in the design of double-layer supercapacitors for energy storage and in the extraction of metal ions from wastewater. In this article, we compute the ionic structure in a model system of electrolyte confined by two planar dielectric interfaces using molecular dynamics simulations and liquid state theory. We explore the effects of high electrolyte concentrations, multivalent ions, dielectric contrasts, and external electric field on the ionic distributions. We observe the presence of non-monotonic ionic density profiles leading to a layered structure in the fluid which is attributed to the competition between electrostatic and steric (entropic) interactions. We find that thermal forces that arise from symmetry breaking at the interfaces can have a profound effect on the ionic structure and can oftentimes overwhelm the influence of the dielectric discontinuity. The combined effect of ionic correlations and inhomogeneous dielectric permittivity significantly changes the character of the effective interaction between the two interfaces.

  12. Ionic structure in liquids confined by dielectric interfaces.

    PubMed

    Jing, Yufei; Jadhao, Vikram; Zwanikken, Jos W; Olvera de la Cruz, Monica

    2015-11-21

    The behavior of ions in liquids confined between macromolecules determines the outcome of many nanoscale assembly processes in synthetic and biological materials such as colloidal dispersions, emulsions, hydrogels, DNA, cell membranes, and proteins. Theoretically, the macromolecule-liquid boundary is often modeled as a dielectric interface and an important quantity of interest is the ionic structure in a liquid confined between two such interfaces. The knowledge gleaned from the study of ionic structure in such models can be useful in several industrial applications, such as in the design of double-layer supercapacitors for energy storage and in the extraction of metal ions from wastewater. In this article, we compute the ionic structure in a model system of electrolyte confined by two planar dielectric interfaces using molecular dynamics simulations and liquid state theory. We explore the effects of high electrolyte concentrations, multivalent ions, dielectric contrasts, and external electric field on the ionic distributions. We observe the presence of non-monotonic ionic density profiles leading to a layered structure in the fluid which is attributed to the competition between electrostatic and steric (entropic) interactions. We find that thermal forces that arise from symmetry breaking at the interfaces can have a profound effect on the ionic structure and can oftentimes overwhelm the influence of the dielectric discontinuity. The combined effect of ionic correlations and inhomogeneous dielectric permittivity significantly changes the character of the effective interaction between the two interfaces. PMID:26590543

  13. Carbon Dioxide Separation with Supported Ionic Liquid Membranes

    SciTech Connect

    Luebke, D.R.; Ilconich, J.B.; Myers, C.R.; Pennline, H.W.

    2007-04-01

    Supported liquid membranes are a class of materials that allow the researcher to utilize the wealth of knowledge available on liquid properties as a direct guide in the development of a capture technology. These membranes also have the advantage of liquid phase diffusivities higher than those observed in polymeric membranes which grant proportionally greater permeabilities. The primary shortcoming of the supported liquid membranes demonstrated in past research has been the lack of stability caused by volatilization of the transport liquid. Ionic liquids, which possess high carbon dioxide solubility relative to light gases such as hydrogen, are an excellent candidate for this type of membrane since they have negligible vapor pressure and are not susceptible to evaporation. A study has been conducted evaluating the use of several ionic liquids, including 1-hexyl-3-methyl-imidazolium bis(trifuoromethylsulfonyl)imide, 1-butyl-3-methyl-imidazolium nitrate, and 1-ethyl-3-methyl-imidazolium sulfate in supported ionic liquid membranes for the capture of carbon dioxide from streams containing hydrogen. In a joint project, researchers at the University of Notre Dame lent expertise in ionic liquid synthesis and characterization, and researchers at the National Energy Technology Laboratory incorporated candidate ionic liquids into supports and evaluated the resulting materials for membrane performance. Initial results have been very promising with carbon dioxide permeabilities as high as 950 barrers and significant improvements in carbon dioxide/hydrogen selectivity over conventional polymers at 37C and at elevated temperatures. Results include a comparison of the performance of several ionic liquids and a number of supports as well as a discussion of innovative fabrication techniques currently under development.

  14. On the components of the dielectric constants of ionic liquids: ionic polarization?

    PubMed

    Izgorodina, Ekaterina I; Forsyth, Maria; Macfarlane, Douglas R

    2009-04-14

    According to dielectric spectroscopy measurements, ionic liquids (ILs) have rather modest dielectric constants that reflect contributions from distortion and electronic polarization caused by the molecular polarizability as well as the orientation polarization caused by the permanent dipole moment of the ions. To understand the relative importance of these various contributions, the electronic polarizabilities of 27 routinely used ionic liquid ions of different symmetry and size were calculated using ab initio-based methods such as HF and MP2. Using the Clausius-Mossotti equation, these polarizabilities were then used to obtain the electronic polarization contribution (epsilon(op)) to the dielectric constants of six ionic liquids, [C(2)mim][BF(4)], [C(2)mpyr][N(CN)(2)], [C(2)mim][CF(3)SO(3)], [EtNH(3)][NO(3)], [C(2)mim][NTf(2)] and [C(2)mim][EtSO(4)]. Theoretical epsilon(op) values were compared to experimental refractive indices of these ionic liquids as well as to those of traditional molecular solvents such as water, tetrahydrofuran (THF), dimethylsulfoxide (DMSO) and formamide. The dipole moments of the ions were also calculated, and from these it is shown that the molecular reorientation component of the dielectric constants of the ionic liquids consisting of ions with small or negligible dipole moments is quite small. Thus it is concluded that a contribution from a form of "ionic polarization" must be present.

  15. Ionic imbalance induced self-propulsion of liquid metals

    NASA Astrophysics Data System (ADS)

    Zavabeti, Ali; Daeneke, Torben; Chrimes, Adam F.; O'Mullane, Anthony P.; Zhen Ou, Jian; Mitchell, Arnan; Khoshmanesh, Khashayar; Kalantar-Zadeh, Kourosh

    2016-08-01

    Components with self-propelling abilities are important building blocks of small autonomous systems and the characteristics of liquid metals are capable of fulfilling self-propulsion criteria. To date, there has been no exploration regarding the effect of electrolyte ionic content surrounding a liquid metal for symmetry breaking that generates motion. Here we show the controlled actuation of liquid metal droplets using only the ionic properties of the aqueous electrolyte. We demonstrate that pH or ionic concentration gradients across a liquid metal droplet induce both deformation and surface Marangoni flow. We show that the Lippmann dominated deformation results in maximum velocity for the self-propulsion of liquid metal droplets and illustrate several key applications, which take advantage of such electrolyte-induced motion. With this finding, it is possible to conceive the propulsion of small entities that are constructed and controlled entirely with fluids, progressing towards more advanced soft systems.

  16. Ionic imbalance induced self-propulsion of liquid metals

    PubMed Central

    Zavabeti, Ali; Daeneke, Torben; Chrimes, Adam F.; O'Mullane, Anthony P.; Zhen Ou, Jian; Mitchell, Arnan; Khoshmanesh, Khashayar; Kalantar-zadeh, Kourosh

    2016-01-01

    Components with self-propelling abilities are important building blocks of small autonomous systems and the characteristics of liquid metals are capable of fulfilling self-propulsion criteria. To date, there has been no exploration regarding the effect of electrolyte ionic content surrounding a liquid metal for symmetry breaking that generates motion. Here we show the controlled actuation of liquid metal droplets using only the ionic properties of the aqueous electrolyte. We demonstrate that pH or ionic concentration gradients across a liquid metal droplet induce both deformation and surface Marangoni flow. We show that the Lippmann dominated deformation results in maximum velocity for the self-propulsion of liquid metal droplets and illustrate several key applications, which take advantage of such electrolyte-induced motion. With this finding, it is possible to conceive the propulsion of small entities that are constructed and controlled entirely with fluids, progressing towards more advanced soft systems. PMID:27488954

  17. Ionic imbalance induced self-propulsion of liquid metals.

    PubMed

    Zavabeti, Ali; Daeneke, Torben; Chrimes, Adam F; O'Mullane, Anthony P; Zhen Ou, Jian; Mitchell, Arnan; Khoshmanesh, Khashayar; Kalantar-Zadeh, Kourosh

    2016-01-01

    Components with self-propelling abilities are important building blocks of small autonomous systems and the characteristics of liquid metals are capable of fulfilling self-propulsion criteria. To date, there has been no exploration regarding the effect of electrolyte ionic content surrounding a liquid metal for symmetry breaking that generates motion. Here we show the controlled actuation of liquid metal droplets using only the ionic properties of the aqueous electrolyte. We demonstrate that pH or ionic concentration gradients across a liquid metal droplet induce both deformation and surface Marangoni flow. We show that the Lippmann dominated deformation results in maximum velocity for the self-propulsion of liquid metal droplets and illustrate several key applications, which take advantage of such electrolyte-induced motion. With this finding, it is possible to conceive the propulsion of small entities that are constructed and controlled entirely with fluids, progressing towards more advanced soft systems. PMID:27488954

  18. Ionic imbalance induced self-propulsion of liquid metals.

    PubMed

    Zavabeti, Ali; Daeneke, Torben; Chrimes, Adam F; O'Mullane, Anthony P; Zhen Ou, Jian; Mitchell, Arnan; Khoshmanesh, Khashayar; Kalantar-Zadeh, Kourosh

    2016-08-04

    Components with self-propelling abilities are important building blocks of small autonomous systems and the characteristics of liquid metals are capable of fulfilling self-propulsion criteria. To date, there has been no exploration regarding the effect of electrolyte ionic content surrounding a liquid metal for symmetry breaking that generates motion. Here we show the controlled actuation of liquid metal droplets using only the ionic properties of the aqueous electrolyte. We demonstrate that pH or ionic concentration gradients across a liquid metal droplet induce both deformation and surface Marangoni flow. We show that the Lippmann dominated deformation results in maximum velocity for the self-propulsion of liquid metal droplets and illustrate several key applications, which take advantage of such electrolyte-induced motion. With this finding, it is possible to conceive the propulsion of small entities that are constructed and controlled entirely with fluids, progressing towards more advanced soft systems.

  19. The radiation chemistry of ionic liquids: A review

    DOE PAGES

    Mincher, Bruce J.; Wishart, James F.

    2014-07-03

    Ionic liquids have received increasing attention as media for radiochemical separations. Recent literature includes examinations of the efficiencies and mechanisms of the solvent extraction of lanthanides, actinides and fission products into ionic liquid solutions. For radiochemical applications, including as replacement solvents for nuclear fuel reprocessing, a thorough understanding of the radiation chemistry of ionic liquids will be required. Such an understanding can be achieved based on a combination of steady-state radiolysis experiments coupled with post-irradiation product identification and pulse-radiolysis experiments to acquire kinetic information. These techniques allow for the elucidation of radiolytic mechanisms. This contribution reviews the current ionic liquidmore » radiation chemistry literature as it affects separations, with these considerations in mind.« less

  20. Liquid-liquid extraction of actinides, lanthanides, and fission products by use of ionic liquids: from discovery to understanding.

    PubMed

    Billard, Isabelle; Ouadi, Ali; Gaillard, Clotilde

    2011-06-01

    Liquid-liquid extraction of actinides and lanthanides by use of ionic liquids is reviewed, considering, first, phenomenological aspects, then looking more deeply at the various mechanisms. Future trends in this developing field are presented.

  1. Nonlinear capacitance and electrochemical response of ionic liquid-ionic polymers

    NASA Astrophysics Data System (ADS)

    Davidson, Jacob D.; Goulbourne, N. C.

    2011-04-01

    In this paper we present a physics-based model for the electrochemical response of ionic liquid-ionic polymer transducers (IPTs) and show how the mobile ionic liquid ions influence the charging characteristics and actuation performance of a device. It is assumed that a certain fraction of the ionic liquid ions exist as "free," making for a total of 3 mobile ions. This leads to predictions of distinctly different charging characteristics for ionic liquid versus water-based IPTs, since for the latter there is only a single mobile ion. The large ionic liquid ions are modeled by including steric effects in a set of modified Nernst-Planck/Poisson equations, and the resulting system of equations is solved using the method of matched asymptotic expansions (MAE). The inclusion of steric effects allows for a realistic description of boundary layer composition near actuator operating voltages (~1 V). Analytical expressions for the charge transferred and differential capacitance are derived as a function of the fraction of free ionic liquid ions, influence of steric effects in formation of the electric double layer, and applied voltage. It is shown that the presence of free ionic liquid ions tends to increase the overall amount of charge transferred, and also leads to a nonmonotonic capacitance-voltage curve. We suggest that these results could be used to experimentally identify the extent of free ionic liquid ion movement and to test the validity of the assumptions made in the underlying theory. A comparison with numerical results shows that while the MAE solution procedure gives valid results for capacitance and charge transferred, it cannot predict the dynamic response due to the presence of multiple time scales in the current decay. This is in contrast to previous results in analyzing water-based IPTs, where the MAE solution is in good agreement with numerical results at all times and applied voltages due to the presence of only a single mobile ion. By examining the

  2. Method and apparatus using an active ionic liquid for algae biofuel harvest and extraction

    DOEpatents

    Salvo, Roberto Di; Reich, Alton; Dykes, Jr., H. Waite H.; Teixeira, Rodrigo

    2012-11-06

    The invention relates to use of an active ionic liquid to dissolve algae cell walls. The ionic liquid is used to, in an energy efficient manner, dissolve and/or lyse an algae cell walls, which releases algae constituents used in the creation of energy, fuel, and/or cosmetic components. The ionic liquids include ionic salts having multiple charge centers, low, very low, and ultra low melting point ionic liquids, and combinations of ionic liquids. An algae treatment system is described, which processes wet algae in a lysing reactor, separates out algae constituent products, and optionally recovers the ionic liquid in an energy efficient manner.

  3. Carbon Dioxide Separation with Supported Ionic Liquid Membranes

    SciTech Connect

    Luebke, D.R.; Ilconich, J.B.; Pennline, H.W.; Myers, C.R.

    2007-05-01

    A practical form of CO2 capture at water-gas shift conditions in the IGCC process could serve the dual function of producing a pure CO2 stream for sequestration and forcing the equilibrium-limited shift reaction to completion enriching the stream in H2. The shift temperatures, ranging from the low temperature shift condition of 260°C to the gasification condition of 900°C, limit capture options by diminishing associative interactions which favor removal of CO2 from the gas stream. Certain sorption interactions, such as carbonate formation, remain available but generally involve exceptionally high sorbent regeneration energies that contribute heavily to parasitic power losses. Carbon dioxide selective membranes need only establish an equilibrium between the gas phase and sorption states in order to transport CO2, giving them a potential energetic advantage over other technologies. Supported liquid membranes take advantage of high, liquid phase diffusivities and a solution diffusion mechanism similar to that observed in polymeric membranes to achieve superior permeabilities and selectivites. The primary shortcoming of the supported liquid membranes demonstrated in past research has been the lack of stability caused by volatilization of the transport liquid. Ionic liquids, which possess high CO2 solubility relative to light gases such as H2, are excellent candidates for this type of membrane since they have negligible vapor pressure and are not susceptible to evaporation. A study has been conducted evaluating the use of ionic liquids including 1-hexyl-3-methyl-imidazolium bis(trifuoromethylsulfonyl)imide in supported ionic liquid membranes for the capture of CO2 from streams containing H2. In a joint project, researchers at the University of Notre Dame synthesized and characterized ionic liquids, and researchers at the National Energy Technology Laboratory incorporated candidate ionic liquids into supports and evaluated the resulting materials for membrane

  4. Structure of ionic liquids with cationic silicon-substitutions

    NASA Astrophysics Data System (ADS)

    Wu, Boning; Shirota, Hideaki; Lall-Ramnarine, Sharon; Castner, Edward W.

    2016-09-01

    Significantly lower viscosities result when a single alkyl carbon is replaced by a silicon atom on the side chain of an ionic liquid cation. To further explore this effect, we compare liquid structure factors measured using high-energy X-ray scattering and calculated using molecular dynamics simulations. Four ionic liquids are studied that each has a common anion, bis(trifluoromethylsulfonyl)amide ( NTf2 - ). The four cations for this series of NTf2 - -anion ionic liquids are 1-methyl-3-trimethylsilylmethylimidazolium (Si-mim+), 1-methyl-3-neopentylimidazolium (C-mim+), 1-methyl-3-pentamethyldisiloxymethylimidazolium (SiOSi-mim+), and 1-methyl-1-trimethylsilylmethylpyrrolidinium (Si-pyrr+). To achieve quantitative agreement between the structure factors measured using high-energy X-ray scattering and molecular dynamics simulations, new transferable parameters for silicon were calibrated and added to the existing force fields.

  5. Ionic liquids in electrochemical devices and processes: managing interfacial electrochemistry.

    PubMed

    MacFarlane, Douglas R; Forsyth, Maria; Howlett, Patrick C; Pringle, Jennifer M; Sun, Jiazeng; Annat, Gary; Neil, Wayne; Izgorodina, Ekaterina I

    2007-11-01

    Many ionic liquids offer a range of properties that make them attractive to the field of electrochemistry; indeed it was electrochemical research and applications that ushered in the modern era of interest in ionic liquids. In parallel with this, a variety of electrochemical devices including solar cells, high energy density batteries, fuel cells, and supercapacitors have become of intense interest as part of various proposed solutions to improve sustainability of energy supply in our societies. Much of our work over the last ten years has been motivated by such applications. Here we summarize the role of ionic liquids in these devices and the insights that the research provides for the broader field of interest of these fascinating liquids.

  6. Failure Mechanisms of Hollow Fiber Supported Ionic Liquid Membranes

    PubMed Central

    Zeh, Matthew; Wickramanayake, Shan; Hopkinson, David

    2016-01-01

    Hollow fiber supported ionic liquid membranes (SILMs) were tested using the bubble point method to investigate potential failure modes, including the maximum transmembrane pressure before loss of the ionic liquid from the support. Porous hollow fiber supports were fabricated with different pore morphologies using Matrimid® and Torlon® as the polymeric material and 1-hexyl-3-methylimidalzolium bis(trifluoromethylsulfonyl)imide ([C6mim][Tf2N]) as the ionic liquid (IL) component. Hollow fiber SILMs were tested for their maximum pressure before failure, with pressure applied either from the bore side or shell side. It was found that the membranes exhibited one or more of three different modes of failure when pressurized: liquid loss (occurring at the bubble point), rupture, and collapse. PMID:27023620

  7. Comparative Investigation of the Ionicity of Aprotic and Protic Ionic Liquids in Molecular Solvents by using Conductometry and NMR Spectroscopy.

    PubMed

    Thawarkar, Sachin; Khupse, Nageshwar D; Kumar, Anil

    2016-04-01

    Electrical conductivity (σ), viscosity (η), and self-diffusion coefficient (D) measurements of binary mixtures of aprotic and protic imidazolium-based ionic liquids with water, dimethyl sulfoxide, and ethylene glycol were measured from 293.15 to 323.15 K. The temperature dependence study reveals typical Arrhenius behavior. The ionicities of aprotic ionic liquids were observed to be higher than those of protic ionic liquids in these solvents. The aprotic ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate, [bmIm][BF4 ], displays 100 % ionicity in both water and ethylene glycol. The protic ionic liquids in both water and ethylene glycol are classed as good ionic candidates, whereas in DMSO they are classed as having a poor ionic nature. The solvation dynamics of the ionic species of the ionic liquids are illustrated on the basis of the (1) H NMR chemical shifts of the ionic liquids. The self-diffusion coefficients D of the cation and anion of [HmIm][CH3 COO] in D2 O and in [D6 ]DMSO are determined by using (1) H nuclei with pulsed field gradient spin-echo NMR spectroscopy.

  8. Physicochemical properties and toxicities of hydrophobicpiperidinium and pyrrolidinium ionic liquids

    SciTech Connect

    Salminen, Justin; Papaiconomou, Nicolas; Kumar, R. Anand; Lee,Jong-Min; Kerr, John; Newman, John; Prausnitz, John M.

    2007-06-25

    Some properties are reported for hydrophobic ionic liquids (IL) containing 1-methyl-1-propyl pyrrolidinium [MPPyrro]{sup +}, 1-methyl-1-butyl pyrrolidinium [MBPyrro]{sup +}, 1-methyl-1-propyl piperidinium [MPPip]{sup +}, 1-methyl-1-butyl piperidinium [MBPip]{sup +}, 1-methyl-1-octylpyrrolidinium [MOPyrro]{sup +} and 1-methyl-1-octylpiperidinium [MOPip]{sup +} cations. These liquids provide new alternatives to pyridinium and imidazolium ILs. High thermal stability of an ionic liquid increases safety in applications like rechargeable lithium-ion batteries and other electrochemical devices. Thermal properties, ionic conductivities, viscosities, and mutual solubilities with water are reported. In addition, toxicities of selected ionic liquids have been measured using a human cancer cell-line. The ILs studied here are sparingly soluble in water but hygroscopic. We show some structure-property relationships that may help to design green solvents for specific applications. While ionic liquids are claimed to be environmentally-benign solvents, as yet few data have been published to support these claims.

  9. Recyclability of an ionic liquid for biomass pretreatment.

    PubMed

    Weerachanchai, Piyarat; Lee, Jong-Min

    2014-10-01

    This study investigated the possibility of reusing an ionic liquid for the pretreatment of biomass. The effects of lignin and water content in a pretreatment solvent on pretreatment products were examined, along with the recyclability of an ionic liquid for pretreatment. It was discovered that the presence of lignin and water within a pretreatment solvent resulted in a far less effective pretreatment process. 1-Ethyl-3-methylimidazolium acetate/ethanolamine (60/40 vol%) presents more promising properties than EMIM-AC, providing a small decrease in sugar conversion and also a small increase of lignin deposition with an increasing lignin amount in the pretreatment solvent. Deteriorations of the ionic liquid were observed from considerably low sugar conversions and lignin extraction after using the 5th and 7th batch, respectively. Furthermore, the changes of ionic liquid properties and lignin accumulation in ionic liquid were determined by analyzing their thermal decomposition behavior (TGA) and chemical functional groups (FTIR and (1)H NMR). PMID:25063976

  10. Trace element partitioning between ionic crystal and liquid

    NASA Technical Reports Server (NTRS)

    Tsang, T.; Philpotts, J. A.; Yin, L.

    1978-01-01

    The partitioning of trace elements between ionic crystals and the melt has been correlated with lattice energy of the host. The solid-liquid partition coefficient has been expressed in terms of the difference in relative ionic radius of the trace element and the homogeneous and heterogeneous strain of the host lattice. Predictions based on this model appear to be in general agreement with data for alkali nitrates and for rare-earth elements in natural garnet phenocrysts.

  11. Methods for separating medical isotopes using ionic liquids

    DOEpatents

    Luo, Huimin; Boll, Rose Ann; Bell, Jason Richard; Dai, Sheng

    2014-10-21

    A method for extracting a radioisotope from an aqueous solution, the method comprising: a) intimately mixing a non-chelating ionic liquid with the aqueous solution to transfer at least a portion of said radioisotope to said non-chelating ionic liquid; and b) separating the non-chelating ionic liquid from the aqueous solution. In preferred embodiments, the method achieves an extraction efficiency of at least 80%, or a separation factor of at least 1.times.10.sup.4 when more than one radioisotope is included in the aqueous solution. In particular embodiments, the method is applied to the separation of medical isotopes pairs, such as Th from Ac (Th-229/Ac-225, Ac-227/Th-227), or Ra from Ac (Ac-225 and Ra-225, Ac-227 and Ra-223), or Ra from Th (Th-227 and Ra-223, Th-229 and Ra-225).

  12. Tuning the Carbon Dioxide Absorption in Amino Acid Ionic Liquids.

    PubMed

    Firaha, Dzmitry S; Kirchner, Barbara

    2016-07-01

    One of the possible solutions to prevent global climate change is the reduction of CO2 emissions, which is highly desired for the sustainable development of our society. In this work, the chemical absorption of carbon dioxide in amino acid ionic liquids was studied through first-principles methods. The use of readily accessible and biodegradable amino acids as building blocks for ionic liquids makes them highly promising replacements for the widely applied hazardous aqueous solutions of amines. A detailed insight into the reaction mechanism of the CO2 absorption was obtained through state-of-the-art theoretical methods. This allowed us to determine the reason for the specific CO2 capacities found experimentally. Moreover, we have also conducted a theoretical design of ionic liquids to provide valuable insights into the precise tuning of the energetic and kinetic parameters of the CO2 absorption.

  13. A recyclable enzymatic biodiesel production process in ionic liquids.

    PubMed

    De Diego, Teresa; Manjón, Arturo; Lozano, Pedro; Iborra, José L

    2011-05-01

    Immobilized Candida antarctica lipase B suspended in ionic liquids containing long alkyl-chain cations showed excellent synthetic activity and operational stability for biodiesel production. The interest of this process lies in the possibility of recycling the biocatalyst and the easy separation of the biodiesel from the reaction mixture. The ionic liquids used, 1-hexadecyl-3-methylimidazolium triflimide ([C(16)MIM][NTf(2)]) and 1-octadecyl-3-methylimidazolium triflimide ([C(18)MIM][NTf(2)]), produced homogeneous systems at the start of the reaction and, at the end of the same, formed a three-phase system, allowing the selective extraction of the products using straightforward separation techniques, and the recycling of both the ionic liquid and the enzyme. These are very important advantages which may be found useful in environmentally friendly production conditions.

  14. Stability of polypyrrole soft actuators in ionic liquids

    NASA Astrophysics Data System (ADS)

    Kaneto, Keiicgi; Takashima, Wataru

    2012-04-01

    Characteristics of electrochemomechanical deformation (ECMD) of polypyrrole films using ionic liquids are reported. The PPy film prepared by electrodeposition in an ionic liquid (1-Butyl-1-methylpyrrolidinium bis(trifluorometylsulfonyl)imide, BMPTFSI) was compact and high density. The other film prepared from LiTSFI/methyl benzoate and dimethyl phthalate mixed solvents was porous and low density. Both films demonstrated a stable ECMD in the ionic liquid. The strain of ECMD was 3-5% and superimposed on a creeping, showing a typical behaviour of cation movement. The Strains of ECMD in both films operated in a mixed electrolyte of BMPTFSI and propylene carbonate were enhanced up to 17- 25 %, showing anion movement. However, the large strain decreased upon several electrochemical cycles. The results were discussed in terms of swelling of the PPy film by solvents and loss of electrochemical activity.

  15. Thermophysical properties of phosphonium-based ionic liquids

    PubMed Central

    Bhattacharjee, Arijit; Lopes-da-Silva, José A.; Freire, Mara G.; Coutinho, João A. P.; Carvalho, Pedro J.

    2015-01-01

    Experimental data for density, viscosity, refractive index and surface tension of four phosphonium-based ionic liquids were measured in the temperature range between (288.15 and 353.15) K and at atmospheric pressure. The ionic liquids considered include tri(isobutyl) methylphosphonium tosylate, [Pi(444)1][Tos], tri(butyl)methylphosphonium methylsulfate, [P4441][CH3SO4], tri(butyl)ethylphosphonium diethylphosphate, [P4442][(C2H5O)2PO2], and tetraoctylphosphonium bromide, [P8888][Br]. Additionally, derivative properties, such as the isobaric thermal expansion coefficient, the surface thermodynamic properties and the critical temperatures for the investigated ionic liquids were also estimated and are presented and discussed. Group contribution methods were evaluated and fitted to the density, viscosity and refractive index experimental data. PMID:26435574

  16. Tuning the Carbon Dioxide Absorption in Amino Acid Ionic Liquids.

    PubMed

    Firaha, Dzmitry S; Kirchner, Barbara

    2016-07-01

    One of the possible solutions to prevent global climate change is the reduction of CO2 emissions, which is highly desired for the sustainable development of our society. In this work, the chemical absorption of carbon dioxide in amino acid ionic liquids was studied through first-principles methods. The use of readily accessible and biodegradable amino acids as building blocks for ionic liquids makes them highly promising replacements for the widely applied hazardous aqueous solutions of amines. A detailed insight into the reaction mechanism of the CO2 absorption was obtained through state-of-the-art theoretical methods. This allowed us to determine the reason for the specific CO2 capacities found experimentally. Moreover, we have also conducted a theoretical design of ionic liquids to provide valuable insights into the precise tuning of the energetic and kinetic parameters of the CO2 absorption. PMID:27214652

  17. Determination of sulfonamides in butter samples by ionic liquid magnetic bar liquid-phase microextraction high-performance liquid chromatography.

    PubMed

    Wu, Lijie; Song, Ying; Hu, Mingzhu; Xu, Xu; Zhang, Hanqi; Yu, Aimin; Ma, Qiang; Wang, Ziming

    2015-01-01

    A novel, simple, and environmentally friendly pretreatment method, ionic liquid magnetic bar liquid-phase microextraction, was developed for the determination of sulfonamides in butter samples by high-performance liquid chromatography. The ionic liquid magnetic bar was prepared by inserting a stainless steel wire into the hollow of a hollow fiber and immobilizing ionic liquid in the micropores of the hollow fiber. In the extraction process, the ionic liquid magnetic bars were used to stir the mixture of sample and extraction solvent and enrich the sulfonamides in the mixture. After extraction, the analyte-adsorbed ionic liquid magnetic bars were readily isolated with a magnet from the extraction system. It is notable that the present method was environmentally friendly since water and only several microliters of ionic liquid were used in the whole extraction process. Several parameters affecting the extraction efficiency were investigated and optimized, including the type of ionic liquid, sample-to-extraction solvent ratio, the number of ionic liquid magnetic bars, extraction temperature, extraction time, salt concentration, stirring speed, pH of the extraction solvent, and desorption conditions. The recoveries were in the range of 73.25-103.85 % and the relative standard deviations were lower than 6.84 %. The experiment results indicated that the present method was effective for the extraction of sulfonamides in high-fat content samples.

  18. Structural studies of ionic liquid-modified microemulsions.

    PubMed

    Rojas, Oscar; Koetz, Joachim; Kosmella, Sabine; Tiersch, Brigitte; Wacker, Philipp; Kramer, Markus

    2009-05-15

    This work is focused on the influence of an ionic liquid (IL), i.e. ethyl-methylimidazolium hexylsulfate, on the spontaneous formation of microemulsions with ionic surfactants. The influence of the ionic liquid on structure formation in the optically clear phase region in water/toluene/pentanol mixtures in presence of the cationic surfactant CTAB was studied in more detail. The results show a significant increase of the transparent phase region by adding the ionic liquid. Conductometric investigations demonstrate that adding the ionic liquid can drastically reduce the droplet-droplet interactions in the L(2) phase. (1)H nuclear magnetic resonance ((1)H NMR) diffusion coefficient measurements in combination with dynamic light scattering measurements clearly show that inverse microemulsion droplets still exist, but the droplet size is decreased to 2 nm. A more detailed characterisation of the isotropic phase channel by means of conductivity measurements, dynamic light scattering (DLS), (1)H NMR and cryo-scanning electron microscopy (SEM), allows the identification of a bicontinuous sponge phase between the L(1) and L(2) phase. When the poly(ethyleneimine) is added, the isotropic phase range is reduced drastically, but the inverse microemulsion range still exists. PMID:19278685

  19. Diphosphonium Ionic Liquids as Broad Spectrum Antimicrobial Agents

    PubMed Central

    O’Toole, George A.; Wathier, Michel; Zegans, Michael E.; Shanks, Robert M.Q.; Kowalski, Regis; Grinstaff, Mark W.

    2011-01-01

    Purpose One of the most disturbing trends in recent years is the growth of resistant strains of bacteria with the simultaneous dearth of new antimicrobial agents. Thus, new antimicrobial agents for use on the ocular surface are needed. Methods We synthesized a variety of ionic liquid compounds, which possess two positively charged phosphonium groups separated by ten methylene units in a “bola” type configuration. We tested these compounds for antimicrobial activity versus a variety of ocular pathogens, as well as their cytoxicity in vitro in a corneal cell line and in vivo in mice. Results The ionic liquid Di-Hex C10 demonstrated broad in vitro antimicrobial activity at the low micromolar concentrations versus Gram-negative and Gram-positive organisms, including methicillin-resistant Staphylococcus aureus strains, as well as ocular fungal pathogens. Treatment with Di-Hex C10 resulted in bacterial killing in as little as 15 minutes in vitro. Di-Hex C10 showed little cytotoxicity at 1 μM versus a corneal epithelial cell line or at 10 μM in a mouse corneal wound model. We also show that this bis-phosphonium ionic liquid structure is key, as a comparable mono phosphonium ionic liquid is cytotoxic to both bacteria and corneal epithelial cells. Conclusions Here we report the first use of dicationic bis-phosphonium ionic liquids as antimicrobial agents. Our data suggest that diphosphonium ionic liquids may represent a new class of broad-spectrum antimicrobial agents for use on the ocular surface. PMID:22236790

  20. Energy Efficient Electrochromic Windows Incorporating Ionic Liquids

    SciTech Connect

    Cheri Boykin; James Finley; Donald Anthony; Julianna Knowles; Richard Markovic; Michael Buchanan; Mary Ann Fuhry; Lisa Perrine

    2008-11-30

    One approach to increasing the energy efficiency of windows is to control the amount of solar radiation transmitted through a window by using electrochromic technology. What is unique about this project is that the electrochromic is based on the reduction/oxidation reactions of cathodic and anodic organic semi-conducting polymers using room temperature ionic liquids as ion transport electrolytes. It is believed that these types of coatings would be a lower cost alternative to traditional all inorganic thin film based electrochromic technologies. Although there are patents1 based on the proposed technology, it has never been reduced to practice and thoroughly evaluated (i.e. durability and performance) in a window application. We demonstrate that by using organic semi-conductive polymers, specific bands of the solar spectrum (specifically visible and near infrared) can be targeted for electrochemical variable transmittance responsiveness. In addition, when the technology is incorporated into an insulating glass unit, the energy parameters such as the solar heat gain coefficient and the light to solar gain ratio are improved over that of a typical insulating glass unit comprised of glass with a low emissivity coating. A minimum of {approx}0.02 quads of energy savings per year with a reduction of carbon emissions for electricity of {approx}320 MKg/yr benefit is achieved over that of a typical insulating glass unit including a double silver low-E coating. Note that these values include a penalty in the heating season. If this penalty is removed (i.e. in southern climates or commercial structures where cooling is predominate year-round) a maximum energy savings of {approx}0.05 quad per year and {approx}801 MKg/yr can be achieved over that of a typical insulating glass unit including a double silver low-E coating. In its current state, the technology is not durable enough for an exterior window application. The primary downfall is that the redox chemistry fails to

  1. Zwitterionic polymersomes in an ionic liquid: room temperature TEM characterization.

    PubMed

    Maddikeri, Raghavendra R; Colak, Semra; Gido, Samuel P; Tew, Gregory N

    2011-10-10

    Conventional transmission electron microscopy (TEM) was utilized to characterize vesicles formed by the spontaneous self-assembly of a novel zwitterionic block copolymer in the ionic liquid (2-hydroxyethyl)dimethylammonium methanesulfonate as well as in 0.1 M phosphate buffered saline (PBS). This block copolymer was synthesized via ring-opening metathesis polymerization (ROMP) of a norbornene-based sulfobetaine, followed by its end-functionalization with polystyrene to generate the necessary amphiphilic structure. The ionic liquid enabled the visualization of the vesicles in their swollen state by TEM, demonstrating a new method for improved characterization of polymer vesicles. PMID:21902263

  2. UV-laser ablation of ionic liquid matrices.

    PubMed

    Hellwig, Nils; Thrun, Alexander; Muskat, Tassilo; Grotemeyer, Jürgen

    2009-12-01

    Ionic liquid matrices are a new class of matrices used in MALDI mass spectrometry. The ablation process of several ionic liquid matrices was studied by determining the velocity distribution of ablated neutral matrix molecules. This was done by a postionization approach, where the neutrals were ionized in the ablation plume by a second laser pulse. It was found that a second, time-delayed ablation event occurs consisting completely of neutral molecules. To explain this, the reflected-shockwave model is used, which assumes that the shockwave emerging from the laser ablation is reflected at the sample holder surface. When the shockwave arrives at the sample surface it causes a second ablation.

  3. The evaporation study of silicon-containing ionic liquid

    NASA Astrophysics Data System (ADS)

    Chilingarov, Norbert S.; Medvedev, Artem A.; Deyko, Grigoriy S.; Kustov, Leonid M.; Chernikova, Elena A.; Glukhov, Lev M.; Polyakova, Marina V.; Ioutsi, Vitaliy A.; Markov, Vitaliy Yu.; Sidorov, Lev N.

    2016-07-01

    1,2-Dimethyl-3-(1‧,1‧,3‧,3‧-tetramethyl-3‧-phenyldisiloxanyl)methylimidazolium bis(trifluoromethanesulfonyl)amide ([PhC5OSi2MMIm+][Tf2N-]) is the first silicon-containing ionic liquid which was characterized with the vaporization enthalpy, (138.5 ± 1.8) kJ mol-1, and saturated vapor pressure, ln(p/Pa) = -(16656 ± 219)/(T/K) + (30.69 ± 0.92). This compound is a unique ionic liquid giving ions, retaining both cationic and anionic portions, in the electron impact ionization (EI) mass spectrum.

  4. Charge transport and glassy dynamics in ionic liquids.

    PubMed

    Sangoro, Joshua R; Kremer, Friedrich

    2012-04-17

    Ionic liquids (ILs) exhibit unique features such as low melting points, low vapor pressures, wide liquidus temperature ranges, high thermal stability, high ionic conductivity, and wide electrochemical windows. As a result, they show promise for use in variety of applications: as reaction media, in batteries and supercapacitors, in solar and fuel cells, for electrochemical deposition of metals and semiconductors, for protein extraction and crystallization, and many others. Because of the ease with which they can be supercooled, ionic liquids offer new opportunities to investigate long-standing questions regarding the nature of the dynamic glass transition and its possible link to charge transport. Despite the significant steps achieved from experimental and theoretical studies, no generally accepted quantitative theory of dynamic glass transition to date has been capable of reproducing all the experimentally observed features. In this Account, we discuss recent studies of the interplay between charge transport and glassy dynamics in ionic liquids as investigated by a combination of several experimental techniques including broadband dielectric spectroscopy, pulsed field gradient nuclear magnetic resonance, dynamic mechanical spectroscopy, and differential scanning calorimetry. Based on Einstein-Smoluchowski relations, we use dielectric spectra of ionic liquids to determine diffusion coefficients in quantitative agreement with independent pulsed field gradient nuclear magnetic resonance measurements, but spanning a broader range of more than 10 orders of magnitude. This approach provides a novel opportunity to determine the electrical mobility and effective number density of charge carriers as well as their types of thermal activation from the measured dc conductivity separately. We also unravel the origin of the remarkable universality of charge transport in different classes of glass-forming ionic liquids.

  5. Charge Transport and Glassy Dynamics in Ionic Liquids

    SciTech Connect

    Sangoro, Joshua R; Kremer, Friedrich

    2012-01-01

    Ionic liquids (ILs) exhibit unique features such as low melting points, low vapor pressures, wide liquidus temperature ranges, high thermal stability, high ionic conductivity, and wide electrochemical windows. As a result, they show promise for use in variety of applications: as reaction media, in batteries and supercapacitors, in solar and fuel cells, for electrochemical deposition of metals and semiconductors, for protein extraction and crystallization, and many others. Because of the ease with which they can be supercooled, ionic liquids offer new opportunities to investigate long-standing questions regarding the nature of the dynamic glass transition and its possible link to charge transport. Despite the significant steps achieved from experimental and theoretical studies, no generally accepted quantitative theory of dynamic glass transition to date has been capable of reproducing all the experimentally observed features. In this Account, we discuss recent studies of the interplay between charge transport and glassy dynamics in ionic liquids as investigated by a combination of several experimental techniques including broadband dielectric spectroscopy, pulsed field gradient nuclear magnetic resonance, dynamic mechanical spectroscopy, and differential scanning calorimetry. Based on EinsteinSmoluchowski relations, we use dielectric spectra of ionic liquids to determine diffusion coefficients in quantitative agreement with independent pulsed field gradient nuclear magnetic resonance measurements, but spanning a broader range of more than 10 orders of magnitude. This approach provides a novel opportunity to determine the electrical mobility and effective number density of charge carriers as well as their types of thermal activation from the measured dc conductivity separately. We also unravel the origin of the remarkable universality of charge transport in different classes of glass-forming ionic liquids.

  6. Ionic conductance behavior of polymeric gel electrolyte containing ionic liquid mixed with magnesium salt

    NASA Astrophysics Data System (ADS)

    Morita, Masayuki; Shirai, Takahiro; Yoshimoto, Nobuko; Ishikawa, Masashi

    A new polymeric gel electrolyte system conducting magnesium ion has been proposed. The gel electrolytes consisted of poly(ethylene oxide)-modified polymethacrylate (PEO-PMA) dissolving ionic liquid mixed with magnesium salt, Mg[(CF 3SO 2) 2N] 2. The polymeric gel films were self-standing, transparent and flexible with enough mechanical strength. The ionic conductance and the electrochemical properties of the gel films were investigated. Thermal analysis results showed that the polymeric gel is homogeneous and amorphous over a wide temperature range. The highest conductivity, 1.1 × 10 -4 S cm -1 at room temperature (20 °C), was obtained for the polymeric gel containing 50 wt.% of the ionic liquid in which the content of the magnesium salt was 20 mol%. The dc polarization of a Pt/Mg cell using the polymeric gel electrolyte proved that the magnesium ion (Mg 2+) is mobile in the present polymeric system.

  7. Fabrication of fiber supported ionic liquids and methods of use

    DOEpatents

    Luebke, David R; Wickramanayake, Shan

    2013-02-26

    One or more embodiments relates to the production of a fabricated fiber having an asymmetric polymer network and having an immobilized liquid such as an ionic liquid within the pores of the polymer network. The process produces the fabricated fiber in a dry-wet spinning process using a homogenous dope solution, providing significant advantage over current fabrication methods for liquid-supporting polymers. The fabricated fibers may be effectively utilized for the separation of a chemical species from a mixture based on the selection of the polymer, the liquid, and the solvent utilized in the dope.

  8. Liquid-Mercury-Supported Langmuir Films of Ionic Liquids: Isotherms, Structure, and Time Evolution.

    PubMed

    Elfassy, Eitan; Mastai, Yitzhak; Pontoni, Diego; Deutsch, Moshe

    2016-04-01

    Ionic liquids have been intensively developed for the last few decades and are now used in a wide range of applications, from electrochemistry to catalysis and nanotechnology. Many of these applications involve ionic liquid interfaces with other liquids and solids, the subnanometric experimental study of which is highly demanding, and has been little studied to date. We present here a study of mercury-supported Langmuir films of imidazolium-based ionic liquids by surface tensiometry and X-ray reflectivity. The charge-delocalized ionic liquids studied here exhibit no 2D lateral order but show diffuse surface-normal electron density profiles exhibiting gradual mercury penetration into the ionic liquid film, and surface-normal structure evolution over a period of hours. The effect of increasing the nonpolar alkyl chain length was also investigated. The results obtained provide insights into the interactions between these ionic liquids and liquid mercury and about the time evolution of the structure and composition of their interface. PMID:26963651

  9. Liquid-Mercury-Supported Langmuir Films of Ionic Liquids: Isotherms, Structure, and Time Evolution.

    PubMed

    Elfassy, Eitan; Mastai, Yitzhak; Pontoni, Diego; Deutsch, Moshe

    2016-04-01

    Ionic liquids have been intensively developed for the last few decades and are now used in a wide range of applications, from electrochemistry to catalysis and nanotechnology. Many of these applications involve ionic liquid interfaces with other liquids and solids, the subnanometric experimental study of which is highly demanding, and has been little studied to date. We present here a study of mercury-supported Langmuir films of imidazolium-based ionic liquids by surface tensiometry and X-ray reflectivity. The charge-delocalized ionic liquids studied here exhibit no 2D lateral order but show diffuse surface-normal electron density profiles exhibiting gradual mercury penetration into the ionic liquid film, and surface-normal structure evolution over a period of hours. The effect of increasing the nonpolar alkyl chain length was also investigated. The results obtained provide insights into the interactions between these ionic liquids and liquid mercury and about the time evolution of the structure and composition of their interface.

  10. Benzene solubility in ionic liquids: working toward an understanding of liquid clathrate formation.

    PubMed

    Pereira, Jorge F B; Flores, Luis A; Wang, Hui; Rogers, Robin D

    2014-11-17

    The solubility of benzene in 15 imidazolium, pyrrolidinium, pyridinium, and piperidinium ionic liquids has been determined; the resulting, benzene-saturated ionic liquid solutions, also known as liquid clathrates, were examined with (1) H and (19) F nuclear magnetic resonance spectroscopy to try and understand the molecular interactions that control liquid clathrate formation. The results suggest that benzene interacts primarily with the cation of the ionic liquid, and that liquid clathrate formation (and benzene solubility) is controlled by the strength of the cation-anion interactions, that is, the stronger the cation-anion interaction, the lower the benzene solubility. Other factors that were determined to be important in the final amount of benzene in any given liquid clathrate phase included attractive interactions between the anion and benzene (when significant), and larger steric or free volume demands of the ions, both of which lead to greater benzene solubility.

  11. Influence of the molecular-oriented structure of ionic liquids on the crystallinity of aluminum hydroxide prepared by a sol-gel process in ionic liquids.

    PubMed

    Kinoshita, K; Yanagimoto, H; Suzuki, T; Minami, H

    2015-07-28

    The influence of the structure of ionic liquids on the crystallinity of aluminum hydroxide (Al(OH)3) prepared by a sol-gel process with aluminum isopropoxide (Al(OPr(i))3) in imidazolium-based ionic liquids was investigated. When Al(OH)3 was prepared in ionic liquids having long alkyl chains, such as 1-butyl-3-methylimidazolium salts and 1-methyl-3-octylimidazolium salts, highly crystalline products were obtained. In contrast, Al(OH)3 obtained using the 1-ethyl-3-methylimidazolium salt was an amorphous material, indicating that hydrophobic interaction of the alkyl tail of the imidazolium cation of the ionic liquid strongly affects the crystallinity of sol-gel products and the local structure of the ionic liquid. Moreover, the crystallinity of Al(OH)3 prepared in ionic liquids increased relative to the amount of additional water (ionic liquid/water = 1.28/2.0-3.5/0.2, w/w). In the case of addition of a small amount of water (ionic liquid/water = 3.5/0.2, w/w), the product was amorphous. These results implied that the presence of an ionic liquid and a sufficient amount of water was crucial for the successful synthesis of sol-gel products with high crystallinity. (1)H NMR analyses revealed a shift of the peak associated with the imidazolium cation upon addition of water, which suggested that the molecular orientation of the ionic liquid was similar to that of a micelle. PMID:26118363

  12. Influence of the molecular-oriented structure of ionic liquids on the crystallinity of aluminum hydroxide prepared by a sol-gel process in ionic liquids.

    PubMed

    Kinoshita, K; Yanagimoto, H; Suzuki, T; Minami, H

    2015-07-28

    The influence of the structure of ionic liquids on the crystallinity of aluminum hydroxide (Al(OH)3) prepared by a sol-gel process with aluminum isopropoxide (Al(OPr(i))3) in imidazolium-based ionic liquids was investigated. When Al(OH)3 was prepared in ionic liquids having long alkyl chains, such as 1-butyl-3-methylimidazolium salts and 1-methyl-3-octylimidazolium salts, highly crystalline products were obtained. In contrast, Al(OH)3 obtained using the 1-ethyl-3-methylimidazolium salt was an amorphous material, indicating that hydrophobic interaction of the alkyl tail of the imidazolium cation of the ionic liquid strongly affects the crystallinity of sol-gel products and the local structure of the ionic liquid. Moreover, the crystallinity of Al(OH)3 prepared in ionic liquids increased relative to the amount of additional water (ionic liquid/water = 1.28/2.0-3.5/0.2, w/w). In the case of addition of a small amount of water (ionic liquid/water = 3.5/0.2, w/w), the product was amorphous. These results implied that the presence of an ionic liquid and a sufficient amount of water was crucial for the successful synthesis of sol-gel products with high crystallinity. (1)H NMR analyses revealed a shift of the peak associated with the imidazolium cation upon addition of water, which suggested that the molecular orientation of the ionic liquid was similar to that of a micelle.

  13. Recent Developments in Chemical Synthesis with Biocatalysts in Ionic Liquids.

    PubMed

    Potdar, Mahesh K; Kelso, Geoffrey F; Schwarz, Lachlan; Zhang, Chunfang; Hearn, Milton T W

    2015-01-01

    Over the past decade, a variety of ionic liquids have emerged as greener solvents for use in the chemical manufacturing industries. Their unique properties have attracted the interest of chemists worldwide to employ them as replacement for conventional solvents in a diverse range of chemical transformations including biotransformations. Biocatalysts are often regarded as green catalysts compared to conventional chemical catalysts in organic synthesis owing to their properties of low toxicity, biodegradability, excellent selectivity and good catalytic performance under mild reaction conditions. Similarly, a selected number of specific ionic liquids can be considered as greener solvents superior to organic solvents owing to their negligible vapor pressure, low flammability, low toxicity and ability to dissolve a wide range of organic and biological substances, including proteins. A combination of biocatalysts and ionic liquids thus appears to be a logical and promising opportunity for industrial use as an alternative to conventional organic chemistry processes employing organic solvents. This article provides an overview of recent developments in this field with special emphasis on the application of more sustainable enzyme-catalyzed reactions and separation processes employing ionic liquids, driven by advances in fundamental knowledge, process optimization and industrial deployment. PMID:26389873

  14. Mixing Enthalpy for Binary Mixtures Containing Ionic Liquids.

    PubMed

    Podgoršek, A; Jacquemin, J; Pádua, A A H; Costa Gomes, M F

    2016-05-25

    A complete review of the published data on the mixing enthalpies of mixtures containing ionic liquids, measured directly using calorimetric techniques, is presented in this paper. The field of ionic liquids is very active and a number of research groups in the world are dealing with different applications of these fluids in the fields of chemistry, chemical engineering, energy, gas storage and separation or materials science. In all these fields, the knowledge of the energetics of mixing is capital both to understand the interactions between these fluids and the different substrates and also to establish the energy and environmental cost of possible applications. Due to the relative novelty of the field, the published data is sometimes controversial and recent reviews are fragmentary and do not represent a set of reliable data. This fact can be attributed to different reasons: (i) difficulties in controlling the purity and stability of the ionic liquid samples; (ii) availability of accurate experimental techniques, appropriate for the measurement of viscous, charged, complex fluids; and (iii) choice of an appropriate clear thermodynamic formalism to be used by an interdisciplinary scientific community. In this paper, we address all these points and propose a critical review of the published data, advise on the most appropriate apparatus and experimental procedure to measure this type of physical-chemical data in ionic liquids as well as the way to treat the information obtained by an appropriate thermodynamic formalism.

  15. Thermoelectric Power in Bilayer Graphene Device with Ionic Liquid Gating.

    PubMed

    Chien, Yung-Yu; Yuan, Hongtao; Wang, Chang-Ran; Lee, Wei-Li

    2016-01-01

    The quest for materials showing large thermoelectric power has long been one of the important subjects in material science and technology. Such materials have great potential for thermoelectric cooling and also high figure of merit ZT thermoelectric applications. We have fabricated bilayer graphene devices with ionic-liquid gating in order to tune its band gap via application of a perpendicular electric field on a bilayer graphene. By keeping the Fermi level at charge neutral point during the cool-down, we found that the charge puddles effect can be greatly reduced and thus largely improve the transport properties at low T in graphene-based devices using ionic liquid gating. At (Vig, Vbg) = (-1 V, +23 V), a band gap of about 36.6 ± 3 meV forms, and a nearly 40% enhancement of thermoelectric power at T = 120 K is clearly observed. Our works demonstrate the feasibility of band gap tuning in a bilayer graphene using ionic liquid gating. We also remark on the significant influence of the charge puddles effect in ionic-liquid-based devices.

  16. Room-Temperature Ionic Liquids for Electrochemical Capacitors

    NASA Technical Reports Server (NTRS)

    Fireman, Heather; Yowell, Leonard; Moloney, Padraig G.; Arepalli, Sivaram; Nikolaev, P.; Huffman, C.; Ready, Jud; Higgins, C.D.; Turano, S. P.; Kohl, P.A.; Kim, K.

    2009-01-01

    A document discusses room-temperature ionic liquids (RTILs) used as electrolytes in carbon-nanotube-based, electrochemical, double-layer capacitors. Unlike the previous electrolyte (EtNB4 in acetonitrile), the RTIL used here does not produce cyanide upon thermal decomposition and does not have a moisture sensitivity.

  17. Stereoselective iron-catalyzed alkyne hydrogenation in ionic liquids.

    PubMed

    Gieshoff, Tim N; Welther, Alice; Kessler, Michael T; Prechtl, Martin H G; Jacobi von Wangelin, Axel

    2014-03-01

    Iron(0) nanoparticles in ionic liquids (ILs) have been shown to catalyse the semi-hydrogenation of alkynes. In the presence of a nitrile-functionalised IL or acetonitrile, stereoselective formation of (Z)-alkenes was observed. The biphasic solvent system allowed facile separation and re-use of the catalyst.

  18. Hydrolysis of cellulose catalyzed by novel acidic ionic liquids.

    PubMed

    Zhuo, Kelei; Du, Quanzhou; Bai, Guangyue; Wang, Congyue; Chen, Yujuan; Wang, Jianji

    2015-01-22

    The conversion of cellulosic biomass directly into valuable chemicals becomes a hot subject. Six novel acidic ionic liquids (ILs) based on 2-phenyl-2-imidazoline were synthesized and characterized by UV-VIS, TGA, and NMR. The novel acidic ionic liquids were investigated as catalysts for the hydrolysis of cellulose in 1-butyl-3-methylimidazolium chloride ([Bmim]Cl). The acidic ionic liquids with anions HSO4(-) and Cl(-) showed better catalytic performance for the hydrolysis of cellulose than those with H2PO4(-). The temperature and dosage of water affect significantly the yield of total reducing sugar (TRS). When the hydrolysis of cellulose was catalyzed by 1-propyl sulfonic acid-2-phenyl imidazoline hydrogensulfate (IL-1) and the dosage of water was 0.2g, the TRS yield was up to 85.1% within 60 min at 100°C. These new acidic ionic liquids catalysts are expected to have a wide application in the conversion of cellulose into valuable chemicals. PMID:25439867

  19. Thermal decomposition of carboxylate ionic liquids: trends and mechanisms.

    PubMed

    Clough, Matthew T; Geyer, Karolin; Hunt, Patricia A; Mertes, Jürgen; Welton, Tom

    2013-12-21

    The thermal stability of a series of dialkylimidazolium carboxylate ionic liquids has been investigated using a broad range of experimental and computational techniques. Ionic liquids incorporating fluoroalkyl carboxylate anions were found to have profoundly differing thermal stabilities and decomposition mechanisms compared with their non-fluorinated analogues. 1-Ethyl-3-methylimidazolium acetate was observed to largely decompose via an S(N)2 nucleophilic substitution reaction when under inert gas conditions, predominantly at the imidazolium methyl substituent. The Arrhenius equations for thermal decomposition of 1-ethyl-3-methylimidazolium acetate, and the C(2)-methylated analogue 1-ethyl-2,3-dimethylimidazolium acetate, were determined from isothermal Thermogravimetric Analysis experiments. The low thermal stability of 1-ethyl-3-methylimidazolium acetate has important implications for biomass experiments employing this ionic liquid. For these two ionic liquids, ion pair and transition state structures were optimised using Density Functional Theory. The activation barriers for the S(N)2 nucleophilic substitution mechanisms are in good agreement with the experimentally determined values. PMID:24173605

  20. How can a carbene be active in an ionic liquid?

    PubMed

    Thomas, Martin; Brehm, Martin; Hollóczki, Oldamur; Kirchner, Barbara

    2014-02-01

    The solvation of the carbene 1-ethyl-3-methylimidazole-2-ylidene in the ionic liquid 1-ethyl-3-methylimidazolium acetate was investigated by ab initio molecular dynamics simulations in order to reveal the interaction between these two highly important classes of materials: N-heterocyclic carbenes with superb catalytic activity and ionic liquids with advantageous properties as solvents and reaction media. In contrast to previously published data on analogous systems, no hydrogen bond is observed between the hypovalent carbon atom and the most acidic ring hydrogen atoms, as these interaction sites of the imidazolium ring are predominantly occupied by the acetate ions. Keeping the carbene away from the ring hydrogen atoms prevents stabilization of this reactive species, and hence any retarding effect on subsequent reactions, which explains the observed high reactivity of the carbene in acetate-based ionic liquids. Instead, the carbene exhibits a weaker interaction with the methyl group of the imidazolium cation by forming a hitherto unprecedented kind of C⋅⋅⋅H-C hydrogen bond. This unexpected finding not only indicates a novel kind of hydrogen bond for carbenes, but also shows that such interaction sites of the imidazolium cation are not limited to the ring hydrogen atoms. Thus, the results give the solute-solvent interactions within ionic liquids a new perspective, and provide a further, albeit weak, site of interaction to tune in order to achieve the desired environment for any dissolved active ingredient. PMID:24375892

  1. Recent Developments in Chemical Synthesis with Biocatalysts in Ionic Liquids.

    PubMed

    Potdar, Mahesh K; Kelso, Geoffrey F; Schwarz, Lachlan; Zhang, Chunfang; Hearn, Milton T W

    2015-09-15

    Over the past decade, a variety of ionic liquids have emerged as greener solvents for use in the chemical manufacturing industries. Their unique properties have attracted the interest of chemists worldwide to employ them as replacement for conventional solvents in a diverse range of chemical transformations including biotransformations. Biocatalysts are often regarded as green catalysts compared to conventional chemical catalysts in organic synthesis owing to their properties of low toxicity, biodegradability, excellent selectivity and good catalytic performance under mild reaction conditions. Similarly, a selected number of specific ionic liquids can be considered as greener solvents superior to organic solvents owing to their negligible vapor pressure, low flammability, low toxicity and ability to dissolve a wide range of organic and biological substances, including proteins. A combination of biocatalysts and ionic liquids thus appears to be a logical and promising opportunity for industrial use as an alternative to conventional organic chemistry processes employing organic solvents. This article provides an overview of recent developments in this field with special emphasis on the application of more sustainable enzyme-catalyzed reactions and separation processes employing ionic liquids, driven by advances in fundamental knowledge, process optimization and industrial deployment.

  2. EVALUATING THE GREENNESS OF IONIC LIQUIDS VIA LIFE CYCLE ASSESSMENT

    EPA Science Inventory

    Ionic Liquids have been suggested as "greener" replacements to traditional solvents. However, the environmental impacts of the life cycle phases have not been studied. Such a "cradle to gate" Life Cycle Assessment (LCA) for comparing the environmental impact of various solvents...

  3. Biodegradation of imidazolium ionic liquids by activated sludge microorganisms.

    PubMed

    Liwarska-Bizukojc, Ewa; Maton, Cedric; Stevens, Christian V

    2015-11-01

    Biological properties of ionic liquids (ILs) have been usually tested with the help of standard biodegradation or ecotoxicity tests. So far, several articles on the identification of intermediate metabolites of microbiological decay of ILs have been published. Simultaneously, the number of novel ILs with unrecognized characteristics regarding biodegradability and effect on organisms and environment is still increasing. In this work, seven imidazolium ionic liquids of different chemical structure were studied. Three of them are 1-alkyl-3-methyl-imidazolium bromides, while the other four are tetra- or completely substituted imidazolium iodides. This study focused on the identification of intermediate metabolites of the aforementioned ionic liquids subjected to biodegradation in a laboratory activated sludge system. Both fully substituted ionic liquids and 1-ethyl-3-methyl-imidazolium bromide were barely biodegradable. In the case of two of them, no biotransformation products were detected. The elongation of the alkyl side chain made the IL more susceptible for microbiological decomposition. 1-Decyl-3-methyl-imidazolium bromide was biotransformed most easily. Its primary biodegradation up to 100 % could be achieved. Nevertheless, the cleavage of the imidazolium ring has not been observed.

  4. Lunar Oxygen Production and Metals Extraction Using Ionic Liquids

    NASA Technical Reports Server (NTRS)

    Marone, Matthew; Paley, Mark Steven; Donovan, David N.; Karr, Laurel J.

    2009-01-01

    Initial results indicate that ionic liquids are promising media for the extraction of oxygen from lunar regolith. IL acid systems can solubilize regolith and produce water with high efficiency. IL electrolytes are effective for water electrolysis, and the spent IL acid media are capable of regeneration.

  5. Hypergolic ionic liquids with the 2,2-dialkyltriazanium cation.

    PubMed

    Gao, Haixiang; Joo, Young-Hyuk; Twamley, Brendan; Zhou, Zhiqiang; Shreeve, Jean'ne M

    2009-01-01

    No flame, no gain: A hypergolic mixture is composed of stable species that readily react/ignite on molecular contact. Both the anion and the cation in an ionic liquid play prominent roles in determining hypergolic properties as well as ignition delay times. With the 2,2-dialkyltriazanium cation, salts with nitrate, chloride, nitrocyanamide, and dicyanamide anions are hypergolic. PMID:19266508

  6. Ionic liquid-facilitated preparation of lignocellulosic composites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lignocellulosic composites (LCs) were prepared by partially dissolving cotton along with steam exploded Aspen wood and burlap fabric reinforcements utilizing an ionic liquid (IL) solvent. Two methods of preparation were employed. In the first method, a controlled amount of IL was added to preassembl...

  7. High performance ultracapacitors with carbon nanomaterials and ionic liquids

    DOEpatents

    Lu, Wen; Henry, Kent Douglas

    2012-10-09

    The present invention is directed to the use of carbon nanotubes and/or electrolyte structures in various electrochemical devices, such as ultracapacitors having an ionic liquid electrolyte. The carbon nanotubes are preferably aligned carbon nanotubes. Compared to randomly entangled carbon nanotubes, aligned carbon nanotubes can have better defined pore structures and higher specific surface areas.

  8. Method for synthesis of titanium dioxide nanotubes using ionic liquids

    DOEpatents

    Qu, Jun; Luo, Huimin; Dai, Sheng

    2013-11-19

    The invention is directed to a method for producing titanium dioxide nanotubes, the method comprising anodizing titanium metal in contact with an electrolytic medium containing an ionic liquid. The invention is also directed to the resulting titanium dioxide nanotubes, as well as devices incorporating the nanotubes, such as photovoltaic devices, hydrogen generation devices, and hydrogen detection devices.

  9. High performance batteries with carbon nanomaterials and ionic liquids

    DOEpatents

    Lu, Wen

    2012-08-07

    The present invention is directed to lithium-ion batteries in general and more particularly to lithium-ion batteries based on aligned graphene ribbon anodes, V.sub.2O.sub.5 graphene ribbon composite cathodes, and ionic liquid electrolytes. The lithium-ion batteries have excellent performance metrics of cell voltages, energy densities, and power densities.

  10. EXPEDITIOUS SOLVENT-FREE PREPARATION OF IONIC LIQUIDS USING MICROWAVES

    EPA Science Inventory

    Ambient temperature ionic liquids comprising 1,3-dialkylimidazolium cations have shown great promise as alternative solvents in view of their negligible vapor pressure, ease of handling and potential for recycling. An efficient solventless protocol for the preparation of a wide v...

  11. Fourier transform infrared studies in hypergolic ignition of ionic liquids.

    PubMed

    Chambreau, Steven D; Schneider, Stefan; Rosander, Michael; Hawkins, Tom; Gallegos, Christopher J; Pastewait, Matthew F; Vaghjiani, Ghanshyam L

    2008-08-28

    A class of room-temperature ionic liquids (RTILs) that exhibit hypergolic activity toward fuming nitric acid is reported. Fast ignition of dicyanamide ionic liquids when mixed with nitric acid is contrasted with the reactivity of the ionic liquid azides, which show high reactivity with nitric acid, but do not ignite. The reactivity of other potential salt fuels is assessed here. Rapid-scan, Fourier transform infrared (FTIR) spectroscopy of the preignition phase indicates the evolution of N 2O from both the dicyanamide and azide RTILs. Evidence for the evolution of CO 2 and isocyanic acid (HNCO) with similar temporal behavior to N 2O from reaction of the dicyanamide ionic liquids with nitric acid is presented. Evolution of HN 3 is detected from the azides. No evolution of HCN from the dicyanamide reactions was detected. From the FTIR observations, biuret reaction tests, and initial ab initio calculations, a mechanism is proposed for the formation of N 2O, CO 2, and HNCO from the dicyanamide reactions during preignition. PMID:18681416

  12. DESIGN AND EVALUATION OF IONIC LIQUIDS AS NOVEL CO2 ABSORBENTS

    SciTech Connect

    Edward J. Maginn

    2005-01-31

    Progress from the second quarter of activity on the project ''Design and Evaluation of Ionic Liquids as Novel CO2 Absorbents'' is provided. Major activities in three areas are reported: ''compound synthesis, property measurement and molecular modeling''. Two new ionic liquid compounds have been synthesized and characterized. Viscosities, densities and gas solubilities have been measured for several of the ionic liquids synthesized during Q1. Continued progress on computational modeling of the ionic liquids has been made.

  13. Thermoelectric Potential of Polymer-Scaffolded Ionic Liquid Membranes

    NASA Astrophysics Data System (ADS)

    Datta, R. S.; Said, S. M.; Sahamir, S. R.; Karim, M. R.; Sabri, M. F. M.; Nakajo, T.; Kubouchi, M.; Hayashi, K.; Miyazaki, Y.

    2014-06-01

    Organic thin films have been viewed as potential thermoelectric (TE) materials, given their ease of fabrication, flexibility, cost effectiveness, and low thermal conductivity. However, their intrinsically low electrical conductivity is a main drawback which results in a relatively lower TE figure of merit for polymer-based TE materials than for inorganic materials. In this paper, a technique to enhance the ion transport properties of polymers through the introduction of ionic liquids is presented. The polymer is in the form of a nanofiber scaffold produced using the electrospinning technique. These fibers were then soaked in different ionic liquids based on substituted imidazolium such as 1-ethyl-3-methylimidazolium chloride or 1-butyl-3-methylimidazolium bromide. This method was applied to electrospun polyacrylonitrile and a mixture of polyvinyl alcohol and chitosan polymers. The ion transport properties of the membranes have been observed to increase with increasing concentration of ionic liquid, with maximum electrical conductivity of 1.20 × 10-1 S/cm measured at room temperature. Interestingly, the maximum electrical conductivity value surpassed the value of pure ionic liquids. These results indicate that it is possible to significantly improve the electrical conductivity of a polymer membrane through a simple and cost-effective method. This may in turn boost the TE figures of merit of polymer materials, which are well known to be considerably lower than those of inorganic materials. Results in terms of the Seebeck coefficient of the membranes are also presented in this paper to provide an overall representation of the TE potential of the polymer-scaffolded ionic liquid membranes.

  14. Solvent extraction of rare-earth ions based on functionalized ionic liquids

    SciTech Connect

    Sun, Xiaoqi; Dai, Sheng; Luo, Huimin

    2012-01-01

    We herein report the achievement of enhanced extractabilities and selectivities for separation of rare earth elements based on functionalized ionic liquids. This work highlights the potential of developing a comprehensive ionic liquid-based extraction strategy for rare earth elements using ionic liquids as both extractant and diluent.

  15. Correlating morphology to dc conductivity in polymerized ionic liquids

    NASA Astrophysics Data System (ADS)

    Iacob, Ciprian; Matusmoto, Atsushi; Inoue, Tadashi; Runt, James

    Polymerized ionic liquids (PILs) combine the attractive mechanical characteristics of polymers and unique physico-chemical properties of low molecular weight ionic liquids in the same material. PILs have shown remarkable advantages when employed in electrochemical devices such as dye-sensitized solar cells and lithium batteries, among others. Understanding their ionic transport mechanism is the key for designing highly conductive PILs. In the current study, the correlation between morphology and charge transport in two homologous series of PILs with systematic variation of the alkyl chain length and anions is investigated using broadband dielectric spectroscopy, rheology, differential scanning calorimetry and X-ray scattering. As the alkyl chain length increases, the backbone-to-backbone separation increases, and dc-conductivity consequently decreases. The cations dominate structural dynamics since they are attached to the polymer chains, while the anions are smaller and more mobile ionic species thereby controlling the ionic conductivity. Further interpretation of decoupling of dc conductivity from the segmental relaxation enabled the correlation between polymer morphology and dc conductivity. Supported by the National Science Foundation, Polymers Program.

  16. Vaporisation and thermal decomposition of dialkylimidazolium halide ion ionic liquids.

    PubMed

    Lovelock, Kevin R J; Armstrong, James P; Licence, Peter; Jones, Robert G

    2014-01-28

    Vaporisation and liquid phase thermal decomposition, TD, of two halide ion ionic liquids, 1-octyl-3-methylimidazolium chloride, [C8C1Im]Cl, and 1-octyl-3-methylimidazolium iodide, [C8C1Im]I, are investigated using temperature programmed desorption (TPD) line of sight mass spectrometry (LOSMS) at ultra-high vacuum (UHV). The ability to use MS to distinguish between vaporisation and TD allows the thermodynamics/kinetics of both vaporisation and TD to be investigated within the same experiments. Vaporisation of both halide ion ionic liquids is demonstrated. For both [C8C1Im]Cl and [C8C1Im]I the vapour is shown to be composed of neutral ion pairs (NIPs). The enthalpy of vaporisation at temperature T, ΔvapHT, was experimentally determined as ΔvapH455 = 151 ± 10 kJ mol(-1) for [C8C1Im]Cl and ΔvapH480 = 149 ± 8 kJ mol(-1) for [C8C1Im]I. Extrapolation of ΔvapHT to the reference temperature, 298 K, gave ΔvapH298 = 166 ± 10 kJ mol(-1) for [C8C1Im]Cl and ΔvapH298 = 167 ± 8 kJ mol(-1) for [C8C1Im]I, higher than most ΔvapH298 values measured to date for other [C8C1Im](+)-containing ionic liquids. In addition, predictions of ΔvapH298 for other halide ion ionic liquids are made. Liquid phase TD is shown to proceed via nucleophilic substitution to give two sets of products: 1-octylimidazole and methylhalide, and 1-methylimidazole and 1-octylhalide. The activation energy of TD at a temperature T, Ea,TD,T, is measured for the nucleophilic substitution of [C8C1Im]I to give methyliodide; Ea,TD,480 = 136 ± 15 kJ mol(-1). Ea,TD,T is measured for the nucleophilic substitution of [C8C1Im]Cl to give methylchloride; Ea,TD,455 = 132 ± 10 kJ mol(-1). The fact that ΔvapHT and Ea,TD,T are the same (within error) for both ionic liquids is commented upon, and conclusions are drawn as to the thermal stability of these ionic liquids.

  17. Vaporisation and thermal decomposition of dialkylimidazolium halide ion ionic liquids.

    PubMed

    Lovelock, Kevin R J; Armstrong, James P; Licence, Peter; Jones, Robert G

    2014-01-28

    Vaporisation and liquid phase thermal decomposition, TD, of two halide ion ionic liquids, 1-octyl-3-methylimidazolium chloride, [C8C1Im]Cl, and 1-octyl-3-methylimidazolium iodide, [C8C1Im]I, are investigated using temperature programmed desorption (TPD) line of sight mass spectrometry (LOSMS) at ultra-high vacuum (UHV). The ability to use MS to distinguish between vaporisation and TD allows the thermodynamics/kinetics of both vaporisation and TD to be investigated within the same experiments. Vaporisation of both halide ion ionic liquids is demonstrated. For both [C8C1Im]Cl and [C8C1Im]I the vapour is shown to be composed of neutral ion pairs (NIPs). The enthalpy of vaporisation at temperature T, ΔvapHT, was experimentally determined as ΔvapH455 = 151 ± 10 kJ mol(-1) for [C8C1Im]Cl and ΔvapH480 = 149 ± 8 kJ mol(-1) for [C8C1Im]I. Extrapolation of ΔvapHT to the reference temperature, 298 K, gave ΔvapH298 = 166 ± 10 kJ mol(-1) for [C8C1Im]Cl and ΔvapH298 = 167 ± 8 kJ mol(-1) for [C8C1Im]I, higher than most ΔvapH298 values measured to date for other [C8C1Im](+)-containing ionic liquids. In addition, predictions of ΔvapH298 for other halide ion ionic liquids are made. Liquid phase TD is shown to proceed via nucleophilic substitution to give two sets of products: 1-octylimidazole and methylhalide, and 1-methylimidazole and 1-octylhalide. The activation energy of TD at a temperature T, Ea,TD,T, is measured for the nucleophilic substitution of [C8C1Im]I to give methyliodide; Ea,TD,480 = 136 ± 15 kJ mol(-1). Ea,TD,T is measured for the nucleophilic substitution of [C8C1Im]Cl to give methylchloride; Ea,TD,455 = 132 ± 10 kJ mol(-1). The fact that ΔvapHT and Ea,TD,T are the same (within error) for both ionic liquids is commented upon, and conclusions are drawn as to the thermal stability of these ionic liquids. PMID:24105256

  18. Fixed Junction Photovoltaic Devices Based On Polymerizable Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Limanek, Austin; Leger, Janelle, , Dr.

    Recently, polymer-based photovoltaic devices (PPVs) have received significant attention as a possible affordable, large area and flexible solar energy technology. In particular, research on chemically fixed p-i-n junctions in polymer photovoltaic devices has shown promising results. These devices are composed of ionic monomers in a polymer matrix sandwiched between two electrodes. When a potential is applied, the ionic monomers migrate towards their corresponding electrodes, enabling electrochemical doping of the polymer. This leads to the formation of bonds between the polymer and ionic monomers, resulting in the formation of a chemically fixed p-i-n junction. However, early devices suffered from long charging times and low overall response. This has been attributed to the low phase compatibility between the ionic monomers and the polymer. It has been shown for light-emitting electrochemical cells, replacing the ionic monomers with polymerizable ionic liquids (PILs) mitigates these challenges. We will present the use of PILs as the dopant in fixed junction PPV devices. Preliminary devices demonstrate significantly improved performance, decreased charging times, and high open circuit voltages. This research supported by the National Science Foundation DMR-1057209.

  19. Ionic liquid ion sources: characterization of externally wetted emitters.

    PubMed

    Lozano, Paulo; Martínez-Sánchez, Manuel

    2005-02-15

    The feasibility of electrostatically extracting and accelerating ions from room temperature ionic liquids in a high vacuum environment is investigated using externally wetted emitters similar to those manufactured for liquid metal ion sources, made out of tungsten wire and electrochemically treated to produce a sharp tip and to increase surface wettability. The ionic liquid EMI-BF4 is used as a prototypical example. The temperature dependence on emission current suggests that liquid flow over the metallic surface is limited by viscosity. Time-of-flight spectrometry indicates that the beam is composed of EMI+ and (EMI-BF4)EMI+ ions in the positive polarity and BF4- and (EMI-BF4)BF4- ions in the negative polarity, and that these ions are emitted with energies very close to their applied potentials. Angular distribution measurements in positive and negative polarities show that ions travel near the propagation axis, diverging by not more than 18 degrees from the centerline. Thanks to the extraordinary variety of ionic liquids it should be possible to generate a correspondingly large number of bipolar nonmetallic ion beams each with unique properties and applicability in fields as diverse as ion lithography, analytical equipment and space propulsion.

  20. Pretreatment of rice hulls by ionic liquid dissolution.

    PubMed

    Lynam, Joan G; Reza, M Toufiq; Vasquez, Victor R; Coronella, Charles J

    2012-06-01

    As a highly available waste product, rice hulls could be a starting block in replacing liquid fossil fuels. However, their silica covering can make further use difficult. This preliminary study investigates effects of dissolving rice hulls in the ionic liquids 1-ethyl-3-methylimidazolium acetate (EMIM Ac), 1-hexyl-3-methylimidazolium chloride, (HMIM Cl), and 1-allyl-3-methylimidazolium chloride (AMIM Cl), and what lignocellulosic components can be precipitated from the used ionic liquid with water and ethanol. EMIM Ac dissolution at 110 °C for 8 h was found to completely remove lignin from rice hulls, while ethanol was capable of precipitating lignin out of the used EMIM Ac. With 8h dissolution at 110 °C using HMIM Cl, approximately 20% of the cellulose in the rice hull sample can be precipitated out using water as co-solvent, while more than 60% of the hemicellulose can be precipitated with ethanol.

  1. Acrylate functionalized tetraalkylammonium salts with ionic liquid properties.

    PubMed

    Grothe, Dorian C; Meyer, Wolfdietrich; Janietz, Silvia

    2012-01-01

    Acrylate functionalized ionic liquids based on tetraalkylammonium salts with terminal acrylates- and methylacrylates were synthesized. Melting points and ionic conductivity of twenty compounds in six groups were determined. Within one group the effect of three different counterions was investigated and discussed. The groups differ in cationic structure elements because of their functional groups such as acrylate and methacrylate, alkyl residues at the nitrogen and number of quaternary ammonium atoms within the organic cation. The effect of these cationic structure elements has been examined concerning the compiled parameters with a view to qualifying them as components for solid state electrolytes. The newly synthesized ionic liquids were characterized by NMR and FTIR analysis. The exchange of halide ions like bromide as counter ions to weakly coordinating [PF₆]⁻, [OTf]⁻ or [TFSI]⁻ reduces the melting points significantly and leads to an ion conductivity of about 10⁻⁴ S/cm at room temperature. In the case of the dicationic ionic liquid, an ion conductivity of about 10⁻³ S/cm was observed.

  2. Polymerizable ionic liquid with state of the art transport properties.

    PubMed

    Jeremias, Sebastian; Kunze, Miriam; Passerini, Stefano; Schönhoff, Monika

    2013-09-12

    The physicochemical properties of diallyldimethylammonium-bis(trifluoromethanesulfonyl)imide (DADMATFSI) and its binary mixture with LiTFSI are presented herein, also showing this novel compound as a polymerizable room temperature ionic liquid with excellent transport properties for Li(+) ions. In particular, results of pulsed field gradient (PFG)-NMR diffusion experiments and impedance measurements show that DADMATFSI exhibits state of the art properties of ionic liquids. Similar ionic diffusion coefficients and a similarly high conductivity as seen in the benchmark compound N-butyl-N-methylpyrrolidinium-bis(trifluoromethanesulfonyl)imide (PYR14TFSI) are observed. In accordance, the Li transference number in the binary mixture matches the trend seen for PYR14TFSI-LiTFSI mixtures. In addition to these impressive properties as ionic liquid, DADMATFSI was polymerized by UV treatment. The polymerization is demonstrated and the ion conducting properties of the resulting gel polymer electrolyte are investigated, showing that DADMATFSI can be transformed into an ionogel and may have applications where polymerization is desirable.

  3. Determination of four heterocyclic insecticides by ionic liquid dispersive liquid-liquid microextraction in water samples.

    PubMed

    Liu, Yu; Zhao, Ercheng; Zhu, Wentao; Gao, Haixiang; Zhou, Zhiqiang

    2009-02-01

    A novel microextraction method termed ionic liquid dispersive liquid-liquid microextraction (IL-DLLME) combining high-performance liquid chromatography with diode array detection (HPLC-DAD) was developed for the determination of insecticides in water samples. Four heterocyclic insecticides (fipronil, chlorfenapyr, buprofezin, and hexythiazox) were selected as the model compounds for validating this new method. This technique combines extraction and concentration of the analytes into one step, and the ionic liquid was used instead of a volatile organic solvent as the extraction solvent. Several important parameters influencing the IL-DLLME extraction efficiency such as the volume of extraction solvent, the type and volume of disperser solvent, extraction time, centrifugation time, salt effect as well as acid addition were investigated. Under the optimized conditions, good enrichment factors (209-276) and accepted recoveries (79-110%) were obtained for the extraction of the target analytes in water samples. The calibration curves were linear with correlation coefficient ranged from 0.9947 to 0.9973 in the concentration level of 2-100 microg/L, and the relative standard deviations (RSDs, n=5) were 4.5-10.7%. The limits of detection for the four insecticides were 0.53-1.28 microg/L at a signal-to-noise ratio (S/N) of 3.

  4. Ionic Liquids: Radiation Chemistry, Solvation Dynamics and Reactivity Patterns

    SciTech Connect

    Wishart,J.F.

    2008-09-29

    Ionic liquids (ILs) are a rapidly expanding family of condensed-phase media with important applications in energy production, nuclear fuel and waste processing, improving the efficiency and safety of industrial chemical processes, and pollution prevention. ILs are generally nonvolatile, noncombustible, highly conductive, recyclable and capable of dissolving a wide variety of materials. They are finding new uses in chemical synthesis, catalysis, separations chemistry, electrochemistry and other areas. Ionic liquids have dramatically different properties compared to conventional molecular solvents, and they provide a new and unusual environment to test our theoretical understanding of charge transfer and other reactions. We are interested in how IL properties influence physical and dynamical processes that determine the stability and lifetimes of reactive intermediates and thereby affect the courses of chemical reactions and product distributions. Successful use of ionic liquids in radiation-filled environments, where their safety advantages could be significant, requires an understanding of ionic liquid radiation chemistry. For example, characterizing the primary steps of IL radiolysis will reveal radiolytic degradation pathways and suggest ways to prevent them or mitigate their effects on the properties of the material. An understanding of ionic liquid radiation chemistry will also facilitate pulse radiolysis studies of general chemical reactivity in ILs, which will aid in the development of applications listed above. Very early in our radiolysis studies it became evident that slow solvation dynamics of the excess electron in ILs (which vary over a wide viscosity range) increases the importance of pre-solvated electron reactivity and consequently alters product distributions. Parallel studies of IL solvation phenomena using coumarin-153 dynamic Stokes shifts and polarization anisotropy decay rates are done to compare with electron solvation studies and to evaluate

  5. Effect of gamma irradiation on gas-ionic liquid and water-ionic liquid interfacial stability.

    PubMed

    Howett, Susan E; Joseph, Jiju M; Noël, James J; Wren, J Clara

    2011-09-01

    The effect of γ-radiation on gas-ionic liquid (IL) and water-IL interfacial stability was investigated. Three phosphonium-based ILs, which vary considerably in their viscosity, conductivity and miscibility with water, were examined. The gas phase above the IL samples (headspace gas) was analyzed using gas chromatography with a mass spectrometer detector while the changes in the IL and aqueous phases were followed by conductivity measurements and Raman spectroscopy. For the gas-IL systems, the headspace samples showed trace amounts of the radiolytic decomposition products of the ILs that were small and volatile enough to become airborne. The type of cover gas, air or Ar, had no effect on the gas speciation. Negligible changes in the conductivity and the Raman spectra of the IL phase due to irradiation indicate that γ-irradiation induces negligible chemical changes in the IL phase when it is in contact with a gas phase. For the water-IL systems, the initially immiscible layers slowly developed an interfacial emulsion layer, even in the absence of radiation. This layer started at the water-IL interface and then grew downwards, eventually converting the entire IL phase to an emulsion. Gamma-irradiation accelerated the conversion of the IL phase to an emulsion. The development of the emulsion layer was accompanied by changes in the conductivity and the Raman spectra of both the IL and water phases. Based on these results, a mechanism involving the formation of micelles at, or near, the water-IL interface has been proposed to explain the development of an emulsion layer. We also suggest that radiolytic decomposition of ILs produces surfactants that can accumulate at the interface and, even at low concentrations, accelerate the emulsification process.

  6. High CO2 solubility, permeability and selectivity in ionic liquids with the tetracyanoborate anion

    SciTech Connect

    Mahurin, SM; Hillesheim, PC; Yeary, JS; Jiang, DE; Dai, S

    2012-01-01

    Five different ionic liquids containing the tetracyanoborate anion were synthesized and evaluated for CO2 separation performance. Measured CO2 solubility values were exceptionally high compared to analogous ionic liquids with different anions and ranged from 0.128 mol L-1 atm(-1) to 0.148 mol L-1 atm(-1). In addition, CO2 permeability and CO2/N-2 selectivity values were measured using a supported ionic liquid membrane architecture and the separations performance of the ionic liquid membranes exceeded the Robeson upper bound. These results establish the distinct potential of ionic liquids with the tetracyanoborate, [B(CN)(4)], anion for the separation of CO2.

  7. Can Ionic Liquids Be Used As Templating Agents For Controlled Design of Uranium-Containing Nanomaterials?

    SciTech Connect

    Visser, A.; Bridges, N.; Tosten, M.

    2013-04-09

    Nanostructured uranium oxides have been prepared in ionic liquids as templating agents. Using the ionic liquids as reaction media for inorganic nanomaterials takes advantage of the pre-organized structure of the ionic liquids which in turn controls the morphology of the inorganic nanomaterials. Variation of ionic liquid cation structure was investigated to determine the impact on the uranium oxide morphologies. For two ionic liquid cations, increasing the alkyl chain length increases the aspect ratio of the resulting nanostructured oxides. Understanding the resulting metal oxide morphologies could enhance fuel stability and design.

  8. Reduction of Metal Oxide to Metal using Ionic Liquids

    SciTech Connect

    Dr. Ramana Reddy

    2012-04-12

    A novel pathway for the high efficiency production of metal from metal oxide means of electrolysis in ionic liquids at low temperature was investigated. The main emphasis was to eliminate the use of carbon and high temperature application in the reduction of metal oxides to metals. The emphasis of this research was to produce metals such as Zn, and Pb that are normally produced by the application of very high temperatures. The reduction of zinc oxide to zinc and lead oxide to lead were investigated. This study involved three steps in accomplishing the final goal of reduction of metal oxide to metal using ionic liquids: 1) Dissolution of metal oxide in an ionic liquid, 2) Determination of reduction potential using cyclic voltammetry (CV) and 3) Reduction of the dissolved metal oxide. Ionic liquids provide additional advantage by offering a wide potential range for the deposition. In each and every step of the process, more than one process variable has been examined. Experimental results for electrochemical extraction of Zn from ZnO and Pb from PbO using eutectic mixtures of Urea ((NH2)2CO) and Choline chloride (HOC2H4N(CH3)3+Cl-) or (ChCl) in a molar ratio 2:1, varying voltage and temperatures were carried out. Fourier Transform Infra-Red (FTIR) spectroscopy studies of ionic liquids with and without metal oxide additions were conducted. FTIR and induction coupled plasma spectroscopy (ICPS) was used in the characterization of the metal oxide dissolved ionic liquid. Electrochemical experiments were conducted using EG&G potentiostat/galvanostat with three electrode cell systems. Cyclic voltammetry was used in the determination of reduction potentials for the deposition of metals. Chronoamperometric experiments were carried out in the potential range of -0.6V to -1.9V for lead and -1.4V to -1.9V for zinc. The deposits were characterized using XRD and SEM-EDS for phase, morphological and elemental analysis. The results showed that pure metal was deposited on the cathode

  9. SPECTROSCOPIC STUDIES OF STRUCTURE, DYNAMICS AND REACTIVITY IN IONIC LIQUIDS.

    SciTech Connect

    WISHART,J.F.

    2007-11-30

    Ionic liquids (ILs) are a rapidly expanding family of condensed-phase media with important applications in energy production, nuclear fuel and waste processing, improving the efficiency and safety of industrial chemical processes, and pollution prevention. ILs are generally nonvolatile, noncombustible, highly conductive, recyclable and capable of dissolving a wide variety of materials. They are finding new uses in chemical synthesis, catalysis, separations chemistry, electrochemistry and other areas. Ionic liquids have dramatically different properties compared to conventional molecular solvents, and they provide a new and unusual environment to test our theoretical understanding of charge transfer and other reactions. We are interested in how IL properties influence physical and dynamical processes that determine the stability and lifetimes of reactive intermediates and thereby affect the courses of chemical reactions and product distributions. Successful use of ionic liquids in radiation-filled environments, where their safety advantages could be significant, requires an understanding of ionic liquid radiation chemistry. For example, characterizing the primary steps of IL radiolysis will reveal radiolytic degradation pathways and suggest ways to prevent them or mitigate their effects on the properties of the material. An understanding of ionic liquid radiation chemistry will also facilitate pulse radiolysis studies of general chemical reactivity in ILs, which will aid in the development of applications listed above. Very early in our radiolysis studies it became evident that slow solvation dynamics of the excess electron in ILs (which vary over a wide viscosity range) increases the importance of pre-solvated electron reactivity and consequently alters product distributions. Parallel studies of IL solvation phenomena using coumarin-153 dynamic Stokes shifts and polarization anisotropy decay rates are done to compare with electron solvation studies and to evaluate

  10. Morphology and Ionic Conductivity of Humidity-Responsive Polymerized Ionic Liquid Block Copolymers

    NASA Astrophysics Data System (ADS)

    Sharick, Sharon; Meek, Kelly; Ye, Yuesheng; Elabd, Yossef A.; Winey, Karen I.

    2014-03-01

    We present the ionic conductivity and morphology of humidity-responsive polymerized ionic liquid block copolymers (PIL BCPs), poly(methyl methacrylate- b-1-[2-(methacryloyloxy)ethyl]-3-butylimidazolium-X), where X is a bromide (Br) or hydroxide (OH) anion, as a function of relative humidity (RH), temperature, and PIL composition (ϕPIL) . PIL BCPs were characterized by in situ small-angle X-ray scattering and electrochemical impedance spectroscopy. These PIL BCPs have microphase separated morphologies and long-range order increases as ϕPIL increases. Notably, ionic conductivity increases 3 to 4 orders of magnitude when RH increases from 30 to 90 percent. When ϕPIL is greater than 0.37, BCP ionic conductivity approaches or exceeds that of the homopolymer, suggesting that the dynamics in PIL microdomains mimic the homopolymer and long-range order aids ion transport. Moreover, over 60 percent of the BCP is nonconductive without a penalty in ion transport. When ϕPIL is less than 0.37, BCP conductivity is 1 to 2 orders of magnitude less than the homopolymer and non-conductive PMMA segments dominate ion transport, as expected. Ionic conductivities at 80 °C, 90 percent RH, are 7.6 mS/cm for the Br-containing BCP with ϕPIL = 0.53 and 25.0 mS/cm for the OH-containing BCP with ϕPIL = 0.50.

  11. Ionic Conductivity and Gas Permeability of Polymerized Ionic Liquid Block Copolymer Membranes

    NASA Astrophysics Data System (ADS)

    Evans, Christopher; Sanoja, Gabriel; Schneider, Yanika; Modestino, Miguel; Segalman, Rachel; Joint CenterArtificial Photosynthesis Team

    2014-03-01

    Polymer membranes for many energy applications, such as solar-to-hydrogen fuel production, require ionic conductivity while acting as gas diffusion barriers. We have synthesized a diblock copolymer consisting of poly(styrene-block-(4-(2-methacrylamidoethyl)-imidazolium trifluoroacetate) by treating poly(styrene-block-histamine methacrylamide) (PS- b-PHMA) with trifluoroacetic acid. The PS block serves as the structural support while the imidazolium derivative is an ion conducting polymerized ionic liquid (PIL). Small angle X-ray scattering and transmission electron microscopy demonstrate that the block copolymer self-assembles into well-ordered nanostructures, with lamellae and hexagonally packed cylindrical morphologies. The ionic conductivities of the PS-b-PHMA materials were as high as 2 x 10-4 S/cm while an order of magnitude increase in conductivity was observed upon conversion to PS-b-PIL. The ionic conductivity of the PS-b-PIL increased by a factor of ~ 4 up to 1.2 x 10-3 S/cm as the PIL domain size increased from 20 to 40 nm. These insights allow for the rational design of high performance ion conducting membranes with even greater conductivities via precise morphological control. Additionally, the role of thermal annealing on the ionic conductivity and gas permeability of copolymer membranes was investigated.

  12. Polymer--Ionic liquid Electrolytes for Electrochemical Capacitors

    NASA Astrophysics Data System (ADS)

    Ketabi, Sanaz

    Polymer electrolyte, comprised of ionic conductors, polymer matrix, and additives, is one of the key components that control the performance of solid flexible electrochemical capacitors (ECs). Ionic liquids (ILs) are highly promising ionic conductors for next generation polymer electrolytes due to their excellent electrochemical and thermal stability. Fluorinated ILs are the most commonly applied in polymer-IL electrolytes. Although possessing high conductivity, these ILs have low environmental favorability. The aim of this work was to develop environmentally benign polymer-ILs for both electrochemical double layer capacitors (EDLCs) and pseudocapacitors, and to provide insights into the influence of constituent materials on the ion conduction mechanism and the structural stability of the polymer-IL electrolytes. Solid polymer electrolytes composed of poly(ethylene oxide) (PEO) and 1-ethyl-3-methylimidazolium hydrogen sulfate (EMIHSO4) were investigated for ECs. The material system was optimized to achieve the two criteria for high performance polymer-ILs: high ionic conductivity and highly amorphous structure. Thermal and structural analyses revealed that EMIHSO4 acted as an ionic conductor and a plasticizer that substantially decreased the crystallinity of PEO. Two types of inorganic nanofillers were incorporated into these polymer electrolytes. The effects of SiO2 and TiO2 nanofillers on ionic conductivity, crystallinity, and dielectric properties of PEO-EMIHSO 4 were studied over a temperature range from -10 °C and 80 °C. Using an electrochemical capacitor model, impedance (complex capacitance) and dielectric analyses were performed to understand the ionic conduction process with and without fillers in both semi crystalline and amorphous states of the polymer electrolytes. Despite their different nanostructures, both SiO2 and TiO2 promoted an amorphous structure in PEO-EMIHSO 4 and increased the ionic conductivity 2-fold. While in the amorphous state, the

  13. Thermoreversible (Ionic-Liquid-Based) Aqueous Biphasic Systems.

    PubMed

    Passos, Helena; Luís, Andreia; Coutinho, João A P; Freire, Mara G

    2016-02-04

    The ability to induce reversible phase transitions between homogeneous solutions and biphasic liquid-liquid systems, at pre-defined and suitable operating temperatures, is of crucial relevance in the design of separation processes. Ionic-liquid-based aqueous biphasic systems (IL-based ABS) have demonstrated superior performance as alternative extraction platforms, and their thermoreversible behaviour is here disclosed by the use of protic ILs. The applicability of the temperature-induced phase switching is further demonstrated with the complete extraction of two value-added proteins, achieved in a single-step. It is shown that these temperature-induced mono(bi)phasic systems are significantly more versatile than classical liquid-liquid systems which are constrained by their critical temperatures. IL-based ABS allow to work in a wide range of temperatures and compositions which can be tailored to fit the requirements of a given separation process.

  14. Thermoreversible (Ionic-Liquid-Based) Aqueous Biphasic Systems

    PubMed Central

    Passos, Helena; Luís, Andreia; Coutinho, João A. P.; Freire, Mara G.

    2016-01-01

    The ability to induce reversible phase transitions between homogeneous solutions and biphasic liquid-liquid systems, at pre-defined and suitable operating temperatures, is of crucial relevance in the design of separation processes. Ionic-liquid-based aqueous biphasic systems (IL-based ABS) have demonstrated superior performance as alternative extraction platforms, and their thermoreversible behaviour is here disclosed by the use of protic ILs. The applicability of the temperature-induced phase switching is further demonstrated with the complete extraction of two value-added proteins, achieved in a single-step. It is shown that these temperature-induced mono(bi)phasic systems are significantly more versatile than classical liquid-liquid systems which are constrained by their critical temperatures. IL-based ABS allow to work in a wide range of temperatures and compositions which can be tailored to fit the requirements of a given separation process. PMID:26843320

  15. Thermoreversible (Ionic-Liquid-Based) Aqueous Biphasic Systems

    NASA Astrophysics Data System (ADS)

    Passos, Helena; Luís, Andreia; Coutinho, João A. P.; Freire, Mara G.

    2016-02-01

    The ability to induce reversible phase transitions between homogeneous solutions and biphasic liquid-liquid systems, at pre-defined and suitable operating temperatures, is of crucial relevance in the design of separation processes. Ionic-liquid-based aqueous biphasic systems (IL-based ABS) have demonstrated superior performance as alternative extraction platforms, and their thermoreversible behaviour is here disclosed by the use of protic ILs. The applicability of the temperature-induced phase switching is further demonstrated with the complete extraction of two value-added proteins, achieved in a single-step. It is shown that these temperature-induced mono(bi)phasic systems are significantly more versatile than classical liquid-liquid systems which are constrained by their critical temperatures. IL-based ABS allow to work in a wide range of temperatures and compositions which can be tailored to fit the requirements of a given separation process.

  16. Solvation structures of water in trihexyltetradecylphosphonium-orthoborate ionic liquids

    NASA Astrophysics Data System (ADS)

    Wang, Yong-Lei; Sarman, Sten; Kloo, Lars; Antzutkin, Oleg N.; Glavatskih, Sergei; Laaksonen, Aatto

    2016-08-01

    Atomistic molecular dynamics simulations have been performed to investigate effective interactions of isolated water molecules dispersed in trihexyltetradecylphosphonium-orthoborate ionic liquids (ILs). The intrinsic free energy changes in solvating one water molecule from gas phase into bulk IL matrices were estimated as a function of temperature, and thereafter, the calculations of potential of mean force between two dispersed water molecules within different IL matrices were performed using umbrella sampling simulations. The systematic analyses of local ionic microstructures, orientational preferences, probability and spatial distributions of dispersed water molecules around neighboring ionic species indicate their preferential coordinations to central polar segments in orthoborate anions. The effective interactions between two dispersed water molecules are partially or totally screened as their separation distance increases due to interference of ionic species in between. These computational results connect microscopic anionic structures with macroscopically and experimentally observed difficulty in completely removing water from synthesized IL samples and suggest that the introduction of hydrophobic groups to central polar segments and the formation of conjugated ionic structures in orthoborate anions can effectively reduce residual water content in the corresponding IL samples.

  17. Carbon dioxide in an ionic liquid: Structural and rotational dynamics.

    PubMed

    Giammanco, Chiara H; Kramer, Patrick L; Yamada, Steven A; Nishida, Jun; Tamimi, Amr; Fayer, Michael D

    2016-03-14

    Ionic liquids (ILs), which have widely tunable structural motifs and intermolecular interactions with solutes, have been proposed as possible carbon capture media. To inform the choice of an optimal ionic liquid system, it can be useful to understand the details of dynamics and interactions on fundamental time scales (femtoseconds to picoseconds) of dissolved gases, particularly carbon dioxide (CO2), within the complex solvation structures present in these uniquely organized materials. The rotational and local structural fluctuation dynamics of CO2 in the room temperature ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EmimNTf2) were investigated by using ultrafast infrared spectroscopy to interrogate the CO2 asymmetric stretch. Polarization-selective pump probe measurements yielded the orientational correlation function of the CO2 vibrational transition dipole. It was found that reorientation of the carbon dioxide occurs on 3 time scales: 0.91 ± 0.03, 8.3 ± 0.1, 54 ± 1 ps. The initial two are attributed to restricted wobbling motions originating from a gating of CO2 motions by the IL cations and anions. The final (slowest) decay corresponds to complete orientational randomization. Two-dimensional infrared vibrational echo (2D IR) spectroscopy provided information on structural rearrangements, which cause spectral diffusion, through the time dependence of the 2D line shape. Analysis of the time-dependent 2D IR spectra yields the frequency-frequency correlation function (FFCF). Polarization-selective 2D IR experiments conducted on the CO2 asymmetric stretch in the parallel- and perpendicular-pumped geometries yield significantly different FFCFs due to a phenomenon known as reorientation-induced spectral diffusion (RISD), revealing strong vector interactions with the liquid structures that evolve slowly on the (independently measured) rotation time scales. To separate the RISD contribution to the FFCF from the structural spectral

  18. Carbon dioxide in an ionic liquid: Structural and rotational dynamics

    NASA Astrophysics Data System (ADS)

    Giammanco, Chiara H.; Kramer, Patrick L.; Yamada, Steven A.; Nishida, Jun; Tamimi, Amr; Fayer, Michael D.

    2016-03-01

    Ionic liquids (ILs), which have widely tunable structural motifs and intermolecular interactions with solutes, have been proposed as possible carbon capture media. To inform the choice of an optimal ionic liquid system, it can be useful to understand the details of dynamics and interactions on fundamental time scales (femtoseconds to picoseconds) of dissolved gases, particularly carbon dioxide (CO2), within the complex solvation structures present in these uniquely organized materials. The rotational and local structural fluctuation dynamics of CO2 in the room temperature ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EmimNTf2) were investigated by using ultrafast infrared spectroscopy to interrogate the CO2 asymmetric stretch. Polarization-selective pump probe measurements yielded the orientational correlation function of the CO2 vibrational transition dipole. It was found that reorientation of the carbon dioxide occurs on 3 time scales: 0.91 ± 0.03, 8.3 ± 0.1, 54 ± 1 ps. The initial two are attributed to restricted wobbling motions originating from a gating of CO2 motions by the IL cations and anions. The final (slowest) decay corresponds to complete orientational randomization. Two-dimensional infrared vibrational echo (2D IR) spectroscopy provided information on structural rearrangements, which cause spectral diffusion, through the time dependence of the 2D line shape. Analysis of the time-dependent 2D IR spectra yields the frequency-frequency correlation function (FFCF). Polarization-selective 2D IR experiments conducted on the CO2 asymmetric stretch in the parallel- and perpendicular-pumped geometries yield significantly different FFCFs due to a phenomenon known as reorientation-induced spectral diffusion (RISD), revealing strong vector interactions with the liquid structures that evolve slowly on the (independently measured) rotation time scales. To separate the RISD contribution to the FFCF from the structural spectral

  19. Liquid-liquid equilibria of binary mixtures of a lipidic ionic liquid with hydrocarbons.

    PubMed

    Green, Blane D; Badini, Alexander J; O'Brien, Richard A; Davis, James H; West, Kevin N

    2016-01-28

    Although structurally diverse, many ionic liquids (ILs) are polar in nature due to the strong coulombic forces inherent in ionic compounds. However, the overall polarity of the IL can be tuned by incorporating significant nonpolar content into one or more of the constituent ions. In this work, the binary liquid-liquid equilibria of one such IL, 1-methyl-3-(Z-octadec-9-enyl)imidazolium bistriflimide, with several hydrocarbons (n-hexane, n-octane, n-decane, cyclohexane, methylcyclohexane, 1-octene) is measured over the temperature range 0-70 °C at ambient pressure using a combination of cloud point and gravimetric techniques. The phase behavior of the systems are similar in that they exhibit two phases: one that is 60-90 mole% hydrocarbon and a second phase that is nearly pure hydrocarbon. Each phase exhibits a weak dependence of composition on temperature (steep curve) above ∼10 °C, likely due to swelling and restructuring of the nonpolar nano-domains of the IL being limited by energetically unfavorable restructuring in the polar nano-domains. The solubility of the n-alkanes decreases with increasing size (molar volume), a trend that continues for the cyclic alkanes, for which upper critical solution temperatures are observed below 70 °C. 1-Octene is found to be more soluble than n-octane, attributable to a combination of its lower molar volume and slightly higher polarity. The COSMO-RS model is used to predict the T-x'-x'' diagrams and gives good qualitative agreement of the observed trends. This work presents the highest known solubility of n-alkanes in an IL to date and tuning the structure of the ionic liquid to maximize the size/shape trends observed may provide the basis for enhanced separations of nonpolar species.

  20. Predicting the viscosity and electrical conductivity of ionic liquids on the basis of theoretically calculated ionic volumes

    NASA Astrophysics Data System (ADS)

    Wileńska, Dorota; Anusiewicz, Iwona; Freza, Sylwia; Bobrowski, Maciej; Laux, Edith; Uhl, Stefanie; Keppner, Herbert; Skurski, Piotr

    2015-03-01

    Selected physical properties of the ionic liquids might be quantitatively predicted based on the volumes of the ions these systems are composed of. It is demonstrated that the ionic volumes calculated using relatively simple theoretical quantum chemistry methods can be utilised to estimate the viscosities and electrical conductivities of various commonly used ionic liquids. The fitting formulas of the exponential form are offered and their predictive usefulness is verified. The quality of such predictions is discussed on the basis of several ionic liquids involving [Tf2N]‑ and [BF4]‑ anions and 16 various cations. The dependence of the viscosity and electrical conductivity of the ionic liquids on the temperature is also investigated and the temperature-dependent equations are derived and compared to the experimentally measured values.

  1. Distinctive Nanoscale Organization of Dicationic versus Monocationic Ionic Liquids

    SciTech Connect

    Li, Song; Feng, Guang; Banuelos, Jose Leo; Rother, Gernot; Fulvio, Pasquale F; Dai, Sheng; Cummings, Peter T

    2013-01-01

    The distinctive structural organization of dicationic ionic liquids (DILs) with varying alkyl linkage chain lengths is systematically investigated using classical molecular dynamics (MD) simulations. In comparison with their counterparts, monocationic ionic liquids (MILs) with free alkyl chain, the DILs with short linkage chains exhibit almost identical structural features regardless of anion types, whereas the long-chain DILs display a relatively insignificant prepeak and low heterogeneity order parameter (HOP), which is accompanied by the less evident structural heterogeneity. Moreover, the predominant role of anion type in the structure of DILs was verified, similar to what is observed in MILs. Finally, the different nanoscale organizations in DILs and MILs are rationalized by the relatively unfavorable straight and folded chain models proposed for the nanoaggregates in DILs and the favorable micelle-like arrangement for those in MILs.

  2. Synthesis and Characterization of Tetramethylethylenediamine-Based Hypergolic Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Fei, Teng; Cai, Huiwu; Zhang, Yanqiang; Liu, Long; Zhang, Suojiang

    2016-04-01

    Four energetic salts (including two ionic liquids) based on 2-(dimethylamino)-N,N,N-trimethylethanaminium and N,N‧-dialkyl-N,N,N‧,N‧-tetramethylethane-1,2-diaminium was prepared and characterized by 1H- and 13C-NMR, infrared and Raman spectroscopies, and elemental analysis. Their physicochemical properties such as melting and decomposition temperatures, density, viscosity, heat of formation, detonation performance, and specific impulse were measured or calculated. With thermal stability up to 200°C, the resulting ionic liquids show densities from 1.02 to 1.19 g cm-3 and heats of formation from 85.1 to 154.4 kJ mol-1. Moreover, 2-(dimethylamino)-N,N,N-trimethylethanaminium dicyanamide is hypergolic with the oxidizer (100% HNO3) and exhibits potential as a green fuel for bipropellants.

  3. Carbon films produced from ionic liquid carbon precursors

    DOEpatents

    Dai, Sheng; Luo, Huimin; Lee, Je Seung

    2013-11-05

    The invention is directed to a method for producing a film of porous carbon, the method comprising carbonizing a film of an ionic liquid, wherein the ionic liquid has the general formula (X.sup.+a).sub.x(Y.sup.-b).sub.y, wherein the variables a and b are, independently, non-zero integers, and the subscript variables x and y are, independently, non-zero integers, such that ax=by, and at least one of X.sup.+ and Y.sup.- possesses at least one carbon-nitrogen unsaturated bond. The invention is also directed to a composition comprising a porous carbon film possessing a nitrogen content of at least 10 atom %.

  4. IONIC LIQUIDS: RADIATION CHEMISTRY, SOLVATION DYNAMICS AND REACTIVITY PATTERNS.

    SciTech Connect

    WISHART,J.F.

    2007-10-01

    energy production, nuclear fuel and waste processing, improving the efficiency and safety of industrial chemical processes, and pollution prevention. ILs are generally nonvolatile, noncombustible, highly conductive, recyclable and capable of dissolving a wide variety of materials. They are finding new uses in chemical synthesis, catalysis, separations chemistry, electrochemistry and other areas. Ionic liquids have dramatically different properties compared to conventional molecular solvents, and they provide a new and unusual environment to test our theoretical understanding of charge transfer and other reactions. We are interested in how IL properties influence physical and dynamical processes that determine the stability and lifetimes of reactive intermediates and thereby affect the courses of chemical reactions and product distributions. Successful use of ionic liquids in radiation-filled environments, where their safety advantages could be significant, requires an understanding of ionic liquid radiation chemistry. For example, characterizing the primary steps of IL radiolysis will reveal radiolytic degradation pathways and suggest ways to prevent them or mitigate their effects on the properties of the material. An understanding of ionic liquid radiation chemistry will also facilitate pulse radiolysis studies of general chemical reactivity in ILs, which will aid in the development of applications listed above. Very early in our radiolysis studies it became evident that slow solvation dynamics of the excess electron in ILs (which vary over a wide viscosity range) increases the importance of pre-solvated electron reactivity and consequently alters product distributions. Parallel studies of IL solvation phenomena using coumarin-153 dynamic Stokes shifts and polarization anisotropy decay rates are done to compare with electron solvation studies and to evaluate the influence of ILs on charge transport processes. Methods. Picosecond pulse radiolysis studies at BNL

  5. Ionic liquid-induced synthesis of selenium nanoparticles

    SciTech Connect

    Langi, Bhushan; Shah, Chetan; Singh, Krishankant; Chaskar, Atul; Kumar, Manmohan; Bajaj, Parma N.

    2010-06-15

    A simple wet chemical method has been used to synthesize selenium nanoparticles by the reaction of ionic liquid with sodium selenosulphate, a selenium precursor, in the presence of polyvinyl alcohol stabilizer, in aqueous medium. The method is capable of producing spherical selenium nanoparticles in the size range of 76-150 nm under ambient conditions. This is a first report on the production of nano-selenium assisted by an ionic liquid. The synthesized nanoparticles can be separated easily from the aqueous sol by a high-speed centrifuge machine, and can be re-dispersed in an aqueous medium. The synthesized selenium nanoparticles have been characterized by X-ray diffraction, energy dispersive X-ray analysis, differential scanning calorimetry and transmission electron microscopy techniques.

  6. Stable and water-tolerant ionic liquid ferrofluids.

    PubMed

    Jain, Nirmesh; Zhang, Xiaoli; Hawkett, Brian S; Warr, Gregory G

    2011-03-01

    Ionic liquid ferrofluids have been prepared containing both bare and sterically stabilized 8-12 nm diameter superparamagnetic iron oxide nanoparticles, which remain stable for several months in both protic ethylammonium and aprotic imidazolium room-temperature ionic liquids. These ferrofluids exhibit spiking in static magnetic fields similar to conventional aqueous and nonaqueous ferrofluids. Ferrofluid stability was verified by following the flocculation and settling behavior of dilute nanoparticle dispersions. Although bare nanoparticles showed excellent stability in some ILs, they were unstable in others, and exhibited limited water tolerance. Stability was achieved by incorporating a thin polymeric steric stabilization layer designed to be compatible with the IL. This confers the added benefit of imbuing the ILF with a high tolerance to water. PMID:21338083

  7. Betaine and Carnitine Derivatives as Herbicidal Ionic Liquids.

    PubMed

    Pernak, Juliusz; Niemczak, Michał; Chrzanowski, Łukasz; Ławniczak, Łukasz; Fochtman, Przemysław; Marcinkowska, Katarzyna; Praczyk, Tadeusz

    2016-08-16

    This study focused on the synthesis and subsequent characterization of herbicidal ionic liquids based on betaine and carnitine, two derivatives of amino acids, which were used as cations. Four commonly used herbicides (2,4-D, MCPA, MCPP and Dicamba) were used as anions in simple (single anion) and oligomeric (two anions) salts. The obtained salts were subjected to analyzes regarding physicochemical properties (density, viscosity, refractive index, thermal decomposition profiles and solubility) as well as evaluation of their herbicidal activity under greenhouse and field conditions, toxicity towards rats and biodegradability. The obtained results suggest that the synthesized herbicidal ionic liquids displayed low toxicity (classified as category 4 compounds) and showed similar or improved efficacy against weed compared to reference herbicides. The highest increase was observed during field trials for salts containing 2,4-D as the anion, which also exhibited the highest biodegradability (>75 %). PMID:27374836

  8. Ionic liquids for separation of olefin-paraffin mixtures

    DOEpatents

    Dai, Sheng; Luo, Huimin; Huang, Jing-Fang

    2013-09-17

    The invention is directed to an ionic liquid comprising (i) a cationic portion containing a complex of a silver (I) ion and one or more neutral ligands selected from organoamides, organoamines, olefins, and organonitriles, and (ii) an anionic portion having the chemical formula ##STR00001## wherein m and n are independently 0 or an integer of 1 or above, and p is 0 or 1, provided that when p is 0, the group --N--SO.sub.2--(CF.sub.2).sub.nCF.sub.3 subtended by p is replaced with an oxide atom connected to the shown sulfur atom. The invention is also directed to a method for separating an olefin from an olefin-paraffin mixture by passing the mixture through a layer of the ionic liquid described above.

  9. Ionic liquids for separation of olefin-paraffin mixtures

    DOEpatents

    Dai, Sheng; Luo, Huimin; Huang, Jing-Fang

    2014-07-15

    The invention is directed to an ionic liquid comprising (i) a cationic portion containing a complex of a silver (I) ion and one or more neutral ligands selected from organoamides, organoamines, olefins, and organonitriles, and (ii) an anionic portion having the chemical formula ##STR00001## wherein m and n are independently 0 or an integer of 1 or above, and p is 0 or 1, provided that when p is 0, the group --N--SO.sub.2--(CF.sub.2).sub.nCF.sub.3 subtended by p is replaced with an oxide atom connected to the shown sulfur atom. The invention is also directed to a method for separating an olefin from an olefin-paraffin mixture by passing the mixture through a layer of the ionic liquid described above.

  10. Reactions of Lignin Model Compounds in Ionic Liquids

    SciTech Connect

    Holladay, John E.; Binder, Joseph B.; Gray, Michel J.; White, James F.; Zhang, Z. Conrad

    2009-09-15

    Lignin, a readily available form of biomass, awaits novel chemistry for converting it to valuable aromatic chemicals. Recent work has demonstrated that ionic liquids are excellent solvents for processing woody biomass and lignin. Seeking to exploit ionic liquids as media for depolymerization of lignin, we investigated reactions of lignin model compounds in these solvents. Using Brønsted acid catalysts in 1-ethyl-3-methylimidazolium triflate at moderate temperatures, we obtained up to 11.6% yield of the dealkylation product guaiacol from the model compound eugenol and cleaved phenethyl phenyl ether, a model for lignin ethers. Despite these successes, acid catalysis failed in dealkylation of the unsaturated model compound 4-ethylguaiacol and did not produce monomeric products from organosolv lignin, demonstrating that further work is required to understand the complex chemistry of lignin depolymerization.

  11. Hopping conduction via ionic liquid induced silicon surface states

    NASA Astrophysics Data System (ADS)

    Nelson, J.; Reich, K. V.; Sammon, M.; Shklovskii, B. I.; Goldman, A. M.

    2015-08-01

    In order to clarify the physics of the gating of solids by ionic liquids (ILs) we have gated lightly doped p -Si, which is so well studied that it can be called the "hydrogen atom of solid state physics" and can be used as a test bed for ionic liquids. We explore the case where the concentration of induced holes at the Si surface is below 1012cm-2 , hundreds of times smaller than record values. We find that in this case an excess negative ion binds a hole on the interface between the IL and Si becoming a surface acceptor. We study the surface conductance of holes hopping between such nearest neighbor acceptors. Analyzing the acceptor concentration dependence of this conductivity, we find that the localization length of a hole is in reasonable agreement with our direct variational calculation of its binding energy. The observed hopping conductivity resembles that of well studied Na+ implanted Si MOSFETs.

  12. Clickable Poly(ionic liquids): A Materials Platform for Transfection.

    PubMed

    Freyer, Jessica L; Brucks, Spencer D; Gobieski, Graham S; Russell, Sebastian T; Yozwiak, Carrie E; Sun, Mengzhen; Chen, Zhixing; Jiang, Yivan; Bandar, Jeffrey S; Stockwell, Brent R; Lambert, Tristan H; Campos, Luis M

    2016-09-26

    The potential applications of cationic poly(ionic liquids) range from medicine to energy storage, and the development of efficient synthetic strategies to target innovative cationic building blocks is an important goal. A post-polymerization click reaction is reported that provides facile access to trisaminocyclopropenium (TAC) ion-functionalized macromolecules of various architectures, which are the first class of polyelectrolytes that bear a formal charge on carbon. Quantitative conversions of polymers comprising pendant or main-chain secondary amines were observed for an array of TAC derivatives in three hours using near equimolar quantities of cyclopropenium chlorides. The resulting TAC polymers are biocompatible and efficient transfection agents. This robust, efficient, and orthogonal click reaction of an ionic liquid, which we term ClickabIL, allows straightforward screening of polymeric TAC derivatives. This platform provides a modular route to synthesize and study various properties of novel TAC-based polymers. PMID:27578602

  13. Low Temperature Reduction of Alumina Using Fluorine Containing Ionic Liquids

    SciTech Connect

    Reddy, Ramana

    2009-01-31

    EXECUTIVE SUMMARY The major objective of the project is to establish the feasibility of using specific ionic liquids capable of sustaining aluminum electrolysis near room temperature at laboratory and batch recirculation scales. It will explore new technologies for aluminum and other valuable metal extraction and process methods. The new technology will overcome many of the limitations associated with high temperatures processes such as high energy consumption and corrosion attack. Furthermore, ionic liquids are non-toxic and could be recycled after purification, thus minimizing extraction reagent losses and environmental pollutant emissions. Ionic liquids are mixture of inorganic and organic salts which are liquid at room temperature and have wide operational temperature range. During the last several years, they were emerging as novel electrolytes for extracting and refining of aluminum metals and/or alloys, which are otherwise impossible using aqueous media. The superior high temperature characteristics and high solvating capabilities of ionic liquids provide a unique solution to high temperature organic solvent problems associated with device internal pressure build-up, corrosion, and thermal stability. However their applications have not yet been fully implemented due to the insufficient understanding of the electrochemical mechanisms involved in processing of aluminum with ionic liquids. Laboratory aluminum electrodeposition in ionic liquids has been investigated in chloride and bis (trifluoromethylsulfonyl) imide based ionic liquids. The electrowinning process yielded current density in the range of 200-500 A/m2, and current efficiency of about 90%. The results indicated that high purity aluminum (>99.99%) can be obtained as cathodic deposits. Cyclic voltammetry and chronoamperometry studies have shown that initial stages of aluminum electrodeposition in ionic liquid electrolyte at 30°C was found to be quasi-reversible, with the charge transfer coefficient

  14. Low Temperature Reduction of Alumina Using Fluorine Containing Ionic Liquids

    SciTech Connect

    Reddy, Ramana G

    2009-01-31

    EXECUTIVE SUMMARY The major objective of the project is to establish the feasibility of using specific ionic liquids capable of sustaining aluminum electrolysis near room temperature at laboratory and batch recirculation scales. It will explore new technologies for aluminum and other valuable metal extraction and process methods. The new technology will overcome many of the limitations associated with high temperatures processes such as high energy consumption and corrosion attack. Furthermore, ionic liquids are non-toxic and could be recycled after purification, thus minimizing extraction reagent losses and environmental pollutant emissions. Ionic liquids are mixture of inorganic and organic salts which are liquid at room temperature and have wide operational temperature range. During the last several years, they were emerging as novel electrolytes for extracting and refining of aluminum metals and/or alloys, which are otherwise impossible using aqueous media. The superior high temperature characteristics and high solvating capabilities of ionic liquids provide a unique solution to high temperature organic solvent problems associated with device internal pressure build-up, corrosion, and thermal stability. However their applications have not yet been fully implemented due to the insufficient understanding of the electrochemical mechanisms involved in processing of aluminum with ionic liquids. Laboratory aluminum electrodeposition in ionic liquids has been investigated in chloride and bis (trifluoromethylsulfonyl) imide based ionic liquids. The electrowinning process yielded current density in the range of 200-500 A/m2, and current efficiency of about 90%. The results indicated that high purity aluminum (>99.99%) can be obtained as cathodic deposits. Cyclic voltammetry and chronoamperometry studies have shown that initial stages of aluminum electrodeposition in ionic liquid electrolyte at 30°C was found to be quasi-reversible, with the charge transfer

  15. Low Temperature Reduction of Alumina Using Fluorine Containing Ionic Liquids

    SciTech Connect

    Dr. R. G. Reddy

    2007-09-01

    The major objective of the project is to establish the feasibility of using specific ionic liquids capable of sustaining aluminum electrolysis near room temperature at laboratory and batch recirculation scales. It will explore new technologies for aluminum and other valuable metal extraction and process methods. The new technology will overcome many of the limitations associated with high temperatures processes such as high energy consumption and corrosion attack. Furthermore, ionic liquids are non-toxic and could be recycled after purification, thus minimizing extraction reagent losses and environmental pollutant emissions. Ionic liquids are mixture of inorganic and organic salts which are liquid at room temperature and have wide operational temperature range. During the last several years, they were emerging as novel electrolytes for extracting and refining of aluminum metals and/or alloys, which are otherwise impossible using aqueous media. The superior high temperature characteristics and high solvating capabilities of ionic liquids provide a unique solution to high temperature organic solvent problems associated with device internal pressure build-up, corrosion, and thermal stability. However their applications have not yet been fully implemented due to the insufficient understanding of the electrochemical mechanisms involved in processing of aluminum with ionic liquids. Laboratory aluminum electrodeposition in ionic liquids has been investigated in chloride and bis (trifluoromethylsulfonyl) imide based ionic liquids. The electrowinning process yielded current density in the range of 200-500 A/m2, and current efficiency of about 90%. The results indicated that high purity aluminum (>99.99%) can be obtained as cathodic deposits. Cyclic voltammetry and chronoamperometry studies have shown that initial stages of aluminum electrodeposition in ionic liquid electrolyte at 30°C was found to be quasi-reversible, with the charge transfer coefficient (0.40). Nucleation

  16. The Interactions between Imidazolium-Based Ionic Liquids and Stable Nitroxide Radical Species: A Theoretical Study.

    PubMed

    Zhang, Shaoze; Wang, Guimin; Lu, Yunxiang; Zhu, Weiliang; Peng, Changjun; Liu, Honglai

    2016-08-01

    In this work, the interactions between imidazolium-based ionic liquids and some stable radicals based on 2,2,6,6-tetramethylpiperidine-1-yloxyl (TEMPO) have been systematically investigated using density functional theory calculations at the level of M06-2x. Several different substitutions, such as hydrogen bonding formation substituent (OH) and ionic substituents (N(CH3)3(+) and OSO3(-)), are presented at the 4-position of the spin probe, which leads to additional hydrogen bonds or ionic interactions between these substitutions and ionic liquids. The interactions in the systems of the radicals containing ionic substitutions with ionic liquids are predicted much stronger than those in the systems of neutral radicals, resulting in a significant reduction of the mobility of ionic radicals in ionic liquids. To further understand the nature of these interactions, the natural bond order, atoms in molecules, noncovalent interaction index, electron density difference, energy decomposition analysis, and charge decomposition analysis schemes were employed. The additional ionic interactions between ionic radicals and counterions in ionic liquids are dominantly contributed from the electrostatic term, while the orbital interaction plays a major role in other interactions. The results reported herein are important to understand radical processes in ionic liquids and will be very useful in the design of task-specific ionic liquids to make the processes more efficient.

  17. The Interactions between Imidazolium-Based Ionic Liquids and Stable Nitroxide Radical Species: A Theoretical Study.

    PubMed

    Zhang, Shaoze; Wang, Guimin; Lu, Yunxiang; Zhu, Weiliang; Peng, Changjun; Liu, Honglai

    2016-08-01

    In this work, the interactions between imidazolium-based ionic liquids and some stable radicals based on 2,2,6,6-tetramethylpiperidine-1-yloxyl (TEMPO) have been systematically investigated using density functional theory calculations at the level of M06-2x. Several different substitutions, such as hydrogen bonding formation substituent (OH) and ionic substituents (N(CH3)3(+) and OSO3(-)), are presented at the 4-position of the spin probe, which leads to additional hydrogen bonds or ionic interactions between these substitutions and ionic liquids. The interactions in the systems of the radicals containing ionic substitutions with ionic liquids are predicted much stronger than those in the systems of neutral radicals, resulting in a significant reduction of the mobility of ionic radicals in ionic liquids. To further understand the nature of these interactions, the natural bond order, atoms in molecules, noncovalent interaction index, electron density difference, energy decomposition analysis, and charge decomposition analysis schemes were employed. The additional ionic interactions between ionic radicals and counterions in ionic liquids are dominantly contributed from the electrostatic term, while the orbital interaction plays a major role in other interactions. The results reported herein are important to understand radical processes in ionic liquids and will be very useful in the design of task-specific ionic liquids to make the processes more efficient. PMID:27428048

  18. MINOR ACTINIDE SEPARATIONS USING ION EXCHANGERS OR IONIC LIQUIDS

    SciTech Connect

    Hobbs, D.; Visser, A.; Bridges, N.

    2011-09-20

    This project seeks to determine if (1) inorganic-based ion exchange materials or (2) electrochemical methods in ionic liquids can be exploited to provide effective Am and Cm separations. Specifically, we seek to understand the fundamental structural and chemical factors responsible for the selectivity of inorganic-based ion-exchange materials for actinide and lanthanide ions. Furthermore, we seek to determine whether ionic liquids can serve as the electrolyte that would enable formation of higher oxidation states of Am and other actinides. Experiments indicated that pH, presence of complexants and Am oxidation state exhibit significant influence on the uptake of actinides and lanthanides by layered sodium titanate and hybrid zirconium and tin phosphonate ion exchangers. The affinity of the ion exchangers increased with increasing pH. Greater selectivity among Ln(III) ions with sodium titanate materials occurs at a pH close to the isoelectric potential of the ion exchanger. The addition of DTPA decreased uptake of Am and Ln, whereas the addition of TPEN generally increases uptake of Am and Ln ions by sodium titanate. Testing confirmed two different methods for producing Am(IV) by oxidation of Am(III) in ionic liquids (ILs). Experimental results suggest that the unique coordination environment of ionic liquids inhibits the direct electrochemical oxidation of Am(III). The non-coordinating environment increases the oxidation potential to a higher value, while making it difficult to remove the inner coordination of water. Both confirmed cases of Am(IV) were from the in-situ formation of strong chemical oxidizers.

  19. Pretreatment of Lignocellulosic Biomass with Low-cost Ionic Liquids.

    PubMed

    Gschwend, Florence J V; Brandt, Agnieszka; Chambon, Clementine L; Tu, Wei-Chien; Weigand, Lisa; Hallett, Jason P

    2016-01-01

    A number of ionic liquids (ILs) with economically attractive production costs have recently received growing interest as media for the delignification of a variety of lignocellulosic feedstocks. Here we demonstrate the use of these low-cost protic ILs in the deconstruction of lignocellulosic biomass (Ionosolv pretreatment), yielding cellulose and a purified lignin. In the most generic process, the protic ionic liquid is synthesized by accurate combination of aqueous acid and amine base. The water content is adjusted subsequently. For the delignification, the biomass is placed into a vessel with IL solution at elevated temperatures to dissolve the lignin and hemicellulose, leaving a cellulose-rich pulp ready for saccharification (hydrolysis to fermentable sugars). The lignin is later precipitated from the IL by the addition of water and recovered as a solid. The removal of the added water regenerates the ionic liquid, which can be reused multiple times. This protocol is useful to investigate the significant potential of protic ILs for use in commercial biomass pretreatment/lignin fractionation for producing biofuels or renewable chemicals and materials. PMID:27583830

  20. A roadmap to uranium ionic liquids: anti-crystal engineering.

    PubMed

    Yaprak, Damla; Spielberg, Eike T; Bäcker, Tobias; Richter, Mark; Mallick, Bert; Klein, Axel; Mudring, Anja-Verena

    2014-05-19

    In the search for uranium-based ionic liquids, tris(N,N-dialkyldithiocarbamato)uranylates have been synthesized as salts of the 1-butyl-3-methylimidazolium (C4mim) cation. As dithiocarbamate ligands binding to the UO2(2+) unit, tetra-, penta-, hexa-, and heptamethylenedithiocarbamates, N,N-diethyldithiocarbamate, N-methyl-N-propyldithiocarbamate, N-ethyl-N-propyldithiocarbamate, and N-methyl-N-butyldithiocarbamate have been explored. X-ray single-crystal diffraction allowed unambiguous structural characterization of all compounds except N-methyl-N-butyldithiocarbamate, which is obtained as a glassy material only. In addition, powder X-ray diffraction as well as vibrational and UV/Vis spectroscopy, supported by computational methods, were used to characterize the products. Differential scanning calorimetry was employed to investigate the phase-transition behavior depending on the N,N-dialkyldithiocarbamato ligand with the aim to establish structure-property relationships regarding the ionic liquid formation capability. Compounds with the least symmetric N,N-dialkyldithiocarbamato ligand and hence the least symmetric anions, tris(N-methyl-N-propyldithiocarbamato)uranylate, tris(N-ethyl-N-propyldithiocarbamato)uranylate, and tris(N-methyl-N-butyldithiocarbamato)uranylate, lead to the formation of (room-temperature) ionic liquids, which confirms that low-symmetry ions are indeed suitable to suppress crystallization. These materials combine low melting points, stable complex formation, and hydrophobicity and are therefore excellent candidates for nuclear fuel purification and recovery.

  1. Application of Ionic Liquids in Pot-in-Pot Reactions.

    PubMed

    Çınar, Simge; Schulz, Michael D; Oyola-Reynoso, Stephanie; Bwambok, David K; Gathiaka, Symon M; Thuo, Martin

    2016-01-01

    Pot-in-pot reactions are designed such that two reaction media (solvents, catalysts and reagents) are isolated from each other by a polymeric membrane similar to matryoshka dolls (Russian nesting dolls). The first reaction is allowed to progress to completion before triggering the second reaction in which all necessary solvents, reactants, or catalysts are placed except for the starting reagent for the target reaction. With the appropriate trigger, in most cases unidirectional flux, the product of the first reaction is introduced to the second medium allowing a second transformation in the same glass reaction pot--albeit separated by a polymeric membrane. The basis of these reaction systems is the controlled selective flux of one reagent over the other components of the first reaction while maintaining steady-state catalyst concentration in the first "pot". The use of ionic liquids as tools to control chemical potential across the polymeric membranes making the first pot is discussed based on standard diffusion models--Fickian and Payne's models. Besides chemical potential, use of ionic liquids as delivery agent for a small amount of a solvent that slightly swells the polymeric membrane, hence increasing flux, is highlighted. This review highlights the critical role ionic liquids play in site-isolation of multiple catalyzed reactions in a standard pot-in-pot reaction. PMID:26927045

  2. A roadmap to uranium ionic liquids: Anti-crystal engineering

    SciTech Connect

    Yaprak, Damla; Spielberg, Eike T.; Bäcker, Tobias; Richter, Mark; Mallick, Bert; Klein, Axel; Mudring, Anja -Verena

    2014-04-15

    In the search for uranium-based ionic liquids, tris(N,N-dialkyldithiocarbamato)uranylates have been synthesized as salts of the 1-butyl-3-methylimidazolium (C4mim) cation. As dithiocarbamate ligands binding to the UO22+ unit, tetra-, penta-, hexa-, and heptamethylenedithiocarbamates, N,N-diethyldithiocarbamate, N-methyl-N-propyldithiocarbamate, N-ethyl-N-propyldithiocarbamate, and N-methyl-N-butyldithiocarbamate have been explored. X-ray single-crystal diffraction allowed unambiguous structural characterization of all compounds except N-methyl-N-butyldithiocarbamate, which is obtained as a glassy material only. In addition, powder X-ray diffraction as well as vibrational and UV/Vis spectroscopy, supported by computational methods, were used to characterize the products. Differential scanning calorimetry was employed to investigate the phase-transition behavior depending on the N,N-dialkyldithiocarbamato ligand with the aim to establish structure–property relationships regarding the ionic liquid formation capability. Compounds with the least symmetric N,N-dialkyldithiocarbamato ligand and hence the least symmetric anions, tris(N-methyl-N-propyldithiocarbamato)uranylate, tris(N-ethyl-N-propyldithiocarbamato)uranylate, and tris(N-methyl-N-butyldithiocarbamato)uranylate, lead to the formation of (room-temperature) ionic liquids, which confirms that low-symmetry ions are indeed suitable to suppress crystallization. As a result, these materials combine low melting points, stable complex formation, and hydrophobicity and are therefore excellent candidates for nuclear fuel purification and recovery.

  3. A roadmap to uranium ionic liquids: Anti-crystal engineering

    DOE PAGES

    Yaprak, Damla; Spielberg, Eike T.; Bäcker, Tobias; Richter, Mark; Mallick, Bert; Klein, Axel; Mudring, Anja -Verena

    2014-04-15

    In the search for uranium-based ionic liquids, tris(N,N-dialkyldithiocarbamato)uranylates have been synthesized as salts of the 1-butyl-3-methylimidazolium (C4mim) cation. As dithiocarbamate ligands binding to the UO22+ unit, tetra-, penta-, hexa-, and heptamethylenedithiocarbamates, N,N-diethyldithiocarbamate, N-methyl-N-propyldithiocarbamate, N-ethyl-N-propyldithiocarbamate, and N-methyl-N-butyldithiocarbamate have been explored. X-ray single-crystal diffraction allowed unambiguous structural characterization of all compounds except N-methyl-N-butyldithiocarbamate, which is obtained as a glassy material only. In addition, powder X-ray diffraction as well as vibrational and UV/Vis spectroscopy, supported by computational methods, were used to characterize the products. Differential scanning calorimetry was employed to investigate the phase-transition behavior depending on the N,N-dialkyldithiocarbamato ligand with the aim tomore » establish structure–property relationships regarding the ionic liquid formation capability. Compounds with the least symmetric N,N-dialkyldithiocarbamato ligand and hence the least symmetric anions, tris(N-methyl-N-propyldithiocarbamato)uranylate, tris(N-ethyl-N-propyldithiocarbamato)uranylate, and tris(N-methyl-N-butyldithiocarbamato)uranylate, lead to the formation of (room-temperature) ionic liquids, which confirms that low-symmetry ions are indeed suitable to suppress crystallization. As a result, these materials combine low melting points, stable complex formation, and hydrophobicity and are therefore excellent candidates for nuclear fuel purification and recovery.« less

  4. Understanding the impact of ionic liquid pretreatment on eucalyptus

    SciTech Connect

    Centikol, Ozgul; Dibble, Dean; Cheng, Gang; Kent, Michael S; Knierim, Manfred; Melnichenko, Yuri B

    2010-01-01

    The development of cost-competitive biofuels necessitates the realization of advanced biomass pretreatment technologies. Ionic liquids provide a basis for one of the most promising pretreatment technologies and are known to allow effective processing of cellulose and some biomass species. Here, we demonstrate that the ionic liquid 1-ethyl-3-methyl imidazolium acetate, [C2mim][OAc], induces structural changes at the molecular level in the cell wall of Eucalyptus globulus. Deacetylation of xylan, acetylation of the lignin units, selective removal of guaiacyl units (increasing the syringyl:guaiacyl ratio) and decreased {beta}-ether content were the most prominent changes observed. Scanning electron microscopy images of the plant cell wall sections reveal extensive swelling during [C2mim][OAc] pretreatment. X-ray diffraction measurements indicate a change in cellulose crystal structure from cellulose I to cellulose II after [C2mim][OAc] pretreatment. Enzymatic saccharification of the pretreated material produced increased sugar yields and improved hydrolysis kinetics after [C2mim][OAc] pretreatment. These results provide new insight into the mechanism of ionic liquid pretreatment and reaffirm that this approach may be promising for the production of cellulosic biofuels from woody biomass.

  5. Carbons, ionic liquids and quinones for electrochemical capacitors

    NASA Astrophysics Data System (ADS)

    Diaz, Raul; Doherty, Andrew

    2016-04-01

    Carbons are the main electrode materials used in electrochemical capacitors, which are electrochemical energy storage devices with high power densities and long cycling lifetimes. However, increasing their energy density will improve their potential for commercial implementation. In this regard, the use of high surface area carbons and high voltage electrolytes are well known strategies to increase the attainable energy density, and lately ionic liquids have been explored as promising alternatives to current state of the art acetonitrile-based electrolytes. Also, in terms of safety and sustainability ionic liquids are attractive electrolyte materials for electrochemical capacitors. In addition, it has been shown that the matching of the carbon pore size with the electrolyte ion size further increases the attainable electric double layer (EDL) capacitance and energy density. The use of pseudocapacitive reactions can significantly increase the attainable energy density, and quinonic-based materials offer a potentially sustainable and cost effective research avenue for both the electrode and the electrolyte. This perspective will provide an overview of the current state of the art research on electrochemical capacitors based on combinations of carbons, ionic liquids and quinonic compounds, highlighting performances and challenges and discussing possible future research avenues. In this regard, current interest is mainly focused on strategies which may ultimately lead to commercially competitive sustainable high performance electrochemical capacitors for different applications including those requiring mechanical flexibility and biocompatibility.

  6. The solvation structures of cellulose microfibrils in ionic liquids

    SciTech Connect

    Mostofian, Barmak; Smith, Jeremy C; Cheng, Xiaolin

    2011-01-01

    The use of ionic liquids for non-derivatized cellulose dissolution promises an alternative method for the thermochemical pretreatment of biomass that may be more efficient and environmentally acceptable than more conventional techniques in aqueous solution. Here, we performed equilibrium MD simulations of a cellulose microfibril in the ionic liquid 1-butyl-3-methylimidazolium chloride (BmimCl) and compared the solute structure and the solute-solvent interactions at the interface with those from corresponding simulations in water. The results indicate a higher occurrence of solvent-exposed orientations of cellulose surface hydroxymethyl groups in BmimCl than in water. Moreover, spatial and radial distribution functions indicate that hydrophilic surfaces are a preferred site of interaction between cellulose and the ionic liquid. In particular, hydroxymethyl groups on the hydrophilic fiber surface adopt a different conformation from their counterparts oriented towards the fiber s core. Furthermore, the glucose units with these solvent-oriented hydroxymethyls are surrounded by the heterocyclic organic cation in a preferred parallel orientation, suggesting a direct and distinct interaction scheme between cellulose and BmimCl.

  7. Application of Ionic Liquids in Pot-in-Pot Reactions.

    PubMed

    Çınar, Simge; Schulz, Michael D; Oyola-Reynoso, Stephanie; Bwambok, David K; Gathiaka, Symon M; Thuo, Martin

    2016-01-01

    Pot-in-pot reactions are designed such that two reaction media (solvents, catalysts and reagents) are isolated from each other by a polymeric membrane similar to matryoshka dolls (Russian nesting dolls). The first reaction is allowed to progress to completion before triggering the second reaction in which all necessary solvents, reactants, or catalysts are placed except for the starting reagent for the target reaction. With the appropriate trigger, in most cases unidirectional flux, the product of the first reaction is introduced to the second medium allowing a second transformation in the same glass reaction pot--albeit separated by a polymeric membrane. The basis of these reaction systems is the controlled selective flux of one reagent over the other components of the first reaction while maintaining steady-state catalyst concentration in the first "pot". The use of ionic liquids as tools to control chemical potential across the polymeric membranes making the first pot is discussed based on standard diffusion models--Fickian and Payne's models. Besides chemical potential, use of ionic liquids as delivery agent for a small amount of a solvent that slightly swells the polymeric membrane, hence increasing flux, is highlighted. This review highlights the critical role ionic liquids play in site-isolation of multiple catalyzed reactions in a standard pot-in-pot reaction.

  8. Tetraalkylphosphonium polyoxometalate ionic liquids: novel, organic-inorganic hybrid materials.

    PubMed

    Rickert, Paul G; Antonio, Mark R; Firestone, Millicent A; Kubatko, Karrie-Ann; Szreder, Tomasz; Wishart, James F; Dietz, Mark L

    2007-05-10

    Pairing of a Keggin or Lindqvist polyoxometalate (POM) anion with an appropriate tetraalkylphosphonium cation is shown to yield the first members of a new family of ionic liquids (ILs). Detailed characterization of one of them, an ambient-temperature "liquid POM" comprising the Lindqvist salt of the trihexyl(tetradecyl) phosphonium cation, by voltammetry, viscometry, conductimetry, and thermal analysis indicates that it exhibits conductivity and viscosity comparable to those of the one previously described inorganic-organic POM-IL hybrid but with substantially improved thermal stability.

  9. Preparation of AgX (X = Cl, I) nanoparticles using ionic liquids

    NASA Astrophysics Data System (ADS)

    Rodil, Eva; Aldous, Leigh; Hardacre, Christopher; Lagunas, M. Cristina

    2008-03-01

    Nanoparticles of silver halides have been prepared by mixing silver halide powder with a single liquid phase consisting of an ionic liquid, isooctane, n-decanol and water. Much higher nanoparticle concentrations may be formed with ionic liquids using this new simple method than are found with conventionally applied surfactants. This method also emphasizes the applicability of ionic liquids as versatile components in microemulsions and as solvents for the synthesis of nanomaterials. The effect on the nanoparticles of changing the composition of the liquid mixtures and the nature of the ionic liquid is analysed. High nanoparticle concentrations were only found with chloride based ionic liquids, indicating the importance of the ionic liquid anion in the mechanism of the reaction.

  10. Ionic liquids screening for desulfurization of natural gasoline by liquid-liquid extraction.

    PubMed

    Likhanova, Natalya V; Guzmán-Lucero, Diego; Flores, Eugenio A; García, Paloma; Domínguez-Aguilar, Marco A; Palomeque, Jorge; Martínez-Palou, Rafael

    2010-11-01

    Seventy five ionic liquids (ILs) were tested as a sequestering agent of sulfured compounds in natural gasoline (NG). Desulphurization of NG was performed by means of liquid-liquid extraction method at room temperature and atmospheric pressure. Experimental ILs containing imidazolium, pyridinium, and ammonium cations along with organic and inorganic anions were synthesized conventionally and under microwave and sonochemical conditions. The effect of the molecular structure of ILs on the desulfurization efficiency of NG with high sulfur content was evaluated. Analysis indicated that the anion type played a more important role than the cation on the desulphurization process. ILs based on halogen-ferrates and halogen-aluminates exhibited the highest efficiency in sulfur removal, and their efficiency is further improved when there is an excess of metallic salt in a ratio of at least 1:1.3 during the synthesis of the corresponding IL. An explanation for the ability of metallic ILs to remove sulfur-containing compounds from natural gasoline based on the ratio of the ionic charge to the atomic radius is proposed. Furthermore, a method to recover and reuse water-sensitive to halogenated precursors is described.

  11. Electromechanical performance and membrane stability of novel ionic polymer transducers constructed in the presence of ionic liquids

    NASA Astrophysics Data System (ADS)

    Duncan, Andrew J.; Leo, Donald J.; Long, Timothy E.; Akle, Barbar J.; Park, Jong K.; Moore, Robert B.

    2009-03-01

    Ionic polymer transducers (IPT) are a class of devices that leverage electroactive polymers (EAP), specifically electrolyte-swollen ionomeric membranes, to perform energy conversions. Energy transformation from input to output is referred to as transduction and occurs between the electrical and mechanical domains. The present study expands on IPT investigations with a novel series of sulfonated polysulfones (sBPS), with specific interest in the effect of polymer topology on actuator performance. A hydrophilic ionic liquid was combined with a series of sBPS through a casting method to create hydrated membranes that contained target uptakes (f) of the diluent. The ionic liquid's hydrophilic, yet organic nature raised the issue of its degree of compatibility and miscibility with the microphase separated domains of the host ionomeric membrane. Initial studies of the ionomer - ionic liquid morphology were performed with synchrotron small angle X-ray scattering (SAXS). The effective plasticization of the membranes was identified with dynamic mechanical analysis (DMA) in terms of varied storage modulus and thermal transitions with ionic liquid uptake. Electrical impedance spectroscopy (EIS) was employed to quantify the changes in ionic conductivity for each sBPS ionomer across a range of uptake. Combined results from these techniques implied that the presence of large amounts of ionic liquid swelled the hydrophilic domains of the ionomer and greatly increased the ionic conductivity. Decreases in storage modulus and the glass transition temperature were proportional to one another but of a lesser magnitude than changes in conductivity. The present range of ionic liquid uptake for sBPS was sufficient to identify the critical uptake (fc) for three of the four ionomers in the series. Future work to construct IPTs with these components will use the critical uptake as a minimum allowable content of ionic liquid to optimize the balance of electrical and mechanical properties for

  12. Imidazolium-based poly(ionic liquid)s as new alternatives for CO2 capture.

    PubMed

    Privalova, Elena I; Karjalainen, Erno; Nurmi, Mari; Mäki-Arvela, Päivi; Eränen, Kari; Tenhu, Heikki; Murzin, Dmitry Yu; Mikkola, Jyri-Pekka

    2013-08-01

    Solid imidazolium-based poly(ionic liquid)s with variable molecular weights that contain the poly[2-(1-butylimidazolium-3-yl)ethyl methacrylate] (BIEMA) cation and different counter anions were evaluated in terms of CO2 capture and compared with classical ionic liquids with similar counter anions. In addition to poly(ionic liquid)s with often-applied ions such as BF4 (-) , PF6 (-) , NTf2 (-) , trifluoromethanesulfonate (OTf(-) ) and Br(-) , for the first time [BIEMA][acetate] was synthesised, which revealed a remarkably high CO2 sorption performance that exceeded the poly(ionic liquid)s studied previously on average by a factor of four (12.46 mg gPIL (-1) ). This study provides an understanding of the factors that affect CO2 sorption and a comparison of the CO2 capture efficiency with the frequently used sorbents. Moreover, all the studied sorbents were reusable if regenerated under carefully selected conditions and can be considered as suitable candidates for CO2 sorption.

  13. Ionic liquid based dispersive liquid-liquid microextraction for the extraction of pesticides from bananas.

    PubMed

    Ravelo-Pérez, Lidia M; Hernández-Borges, Javier; Asensio-Ramos, María; Rodríguez-Delgado, Miguel Angel

    2009-10-23

    This paper describes a dispersive liquid-liquid microextraction (DLLME) procedure using room temperature ionic liquids (RTILs) coupled to high-performance liquid chromatography with diode array detection capable of quantifying trace amounts of eight pesticides (i.e. thiophanate-methyl, carbofuran, carbaryl, tebuconazole, iprodione, oxyfluorfen, hexythiazox and fenazaquin) in bananas. Fruit samples were first homogenized and extracted (1g) with acetonitrile and after suitable evaporation and reconstitution of the extract in 10 mL of water, a DLLME procedure using 1-hexyl-3-methylimidazolium hexafluorophosphate ([C(6)MIM][PF(6)]) as extraction solvent was used. Experimental conditions affecting the DLLME procedure (sample pH, sodium chloride percentage, ionic liquid amount and volume of disperser solvent) were optimized by means of an experimental design. In order to determine the presence of a matrix effect, calibration curves for standards and fortified banana extracts (matrix matched calibration) were studied. Mean recovery values of the extraction of the pesticides from banana samples were in the range of 69-97% (except for thiophanate-methyl and carbofuran, which were 53-63%) with a relative standard deviation lower than 8.7% in all cases. Limits of detection achieved (0.320-4.66 microg/kg) were below the harmonized maximum residue limits established by the European Union (EU). The proposed method, was also applied to the analysis of this group of pesticides in nine banana samples taken from the local markets of the Canary Islands (Spain). To the best of our knowledge, this is the first application of RTILs as extraction solvents for DLLME of pesticides from samples different than water.

  14. Homogeneous liquid-liquid extraction of rare earths with the betaine-betainium bis(trifluoromethylsulfonyl)imide ionic liquid system.

    PubMed

    Vander Hoogerstraete, Tom; Onghena, Bieke; Binnemans, Koen

    2013-01-01

    Several fundamental extraction parameters such as the kinetics and loading were studied for a new type of metal solvent extraction system with ionic liquids. The binary mixture of the ionic liquid betainium bis(trifluoromethylsulfonyl)imide and water shows thermomorphic behavior with an upper critical solution temperature (UCST), which can be used to avoid the slower mass transfer due to the generally higher viscosity of ionic liquids. A less viscous homogeneous phase and mixing on a molecular scale are obtained when the mixture is heated up above 55 °C. The influence of the temperature, the heating and cooling times, were studied for the extraction of neodymium(III) with betaine. A plausible and equal extraction mechanism is proposed in bis(trifluoromethylsulfonyl)imide, nitrate, and chloride media. After stripping of the metals from the ionic liquid phase, a higher recovery of the ionic liquid was obtained by salting-out of the ionic liquid fraction lost by dissolution in the aqueous phase. The change of the upper critical solution temperature by the addition of HCl or betaine was investigated. In addition, the viscosity was measured below and above the UCST as a function of the temperature. PMID:24169434

  15. Synthesis and characterization of new class of ionic liquids containing phenolate anion

    SciTech Connect

    Lethesh, Kallidanthiyil Chellappan; Wilfred, Cecilia Devi; Taha, M. F.; Thanabalan, M.

    2014-10-24

    In these manuscript novel ionic liquids containing a new class of 'phenolate' anions was synthesized and characterized. 1-methylmidazole with different alkyl chains such as butyl, hexyl and octyl groups was used as the cationic part. All the ionic liquids were obtained as liquids at room temperature. The synthesized ionic liquids were characterized using {sup 1}H NMR and {sup 13}C NMR spectroscopy. The thermal stability of the ionic liquids was studied using thermo gravimetric analysis (TGA). The effect of temperature on the density and viscosity of the ionic liquids were studied over a temperature range from 293.15 K to 373.15K at atmospheric pressure. From the experimental values of density, the molecular volume, standard molar entropy and the lattice energy of the ionic liquids were calculated.

  16. Predictive model for ionic liquid extraction solvents for rare earth elements

    SciTech Connect

    Grabda, Mariusz; Oleszek, Sylwia; Panigrahi, Mrutyunjay; Kozak, Dmytro; Shibata, Etsuro; Nakamura, Takashi; Eckert, Franck

    2015-12-31

    The purpose of our study was to select the most effective ionic liquid extraction solvents for dysprosium (III) fluoride using a theoretical approach. Conductor-like Screening Model for Real Solvents (COSMO-RS), based on quantum chemistry and the statistical thermodynamics of predefined DyF{sub 3}-ionic liquid systems, was applied to reach the target. Chemical potentials of the salt were predicted in 4,400 different ionic liquids. On the base of these predictions set of ionic liquids’ ions, manifesting significant decrease of the chemical potentials, were selected. Considering the calculated physicochemical properties (hydrophobicity, viscosity) of the ionic liquids containing these specific ions, the most effective extraction solvents for liquid-liquid extraction of DyF{sub 3} were proposed. The obtained results indicate that the COSMO-RS approach can be applied to quickly screen the affinity of any rare earth element for a large number of ionic liquid systems, before extensive experimental tests.

  17. Ionic liquid-based stable nanofluids containing gold nanoparticles.

    PubMed

    Wang, Baogang; Wang, Xiaobo; Lou, Wenjing; Hao, Jingcheng

    2011-10-01

    A one-phase and/or two-phase method were used to prepare the stable ionic liquid-based nanofluids containing same volume fraction but different sizes or surface states of gold nanoparticles (Au NPs) and their thermal conductivities were investigated in more detail. Five significant experiment parameters, i.e. temperature, dispersion condition, particle size and surface state, and viscosity of base liquid, were evaluated to supply experimental explanations for heat transport mechanisms. The conspicuously temperature-dependent and greatly enhanced thermal conductivity under high temperatures verify that Brownian motion should be one key effect factor in the heat transport processes of ionic liquid-based gold nanofluids. While the positive influences of proper aggregation and the optimized particle size on their thermal conductivity enhancements under some specific conditions demonstrate that clustering may be another critical effect factor in heat transport processes. Moreover, the remarkable difference of the thermal conductivity enhancements of the nanofluids containing Au NPs with different surface states could be attributed to the surface state which has a strong correlation with not only Brownian motion but also clustering. Whilst the close relationship between their thermal conductivity enhancements and the viscosity of base liquid further indicate Brownian motion must occupy the leading position among various influencing factors. Finally, a promisingly synergistic effect of Brownian motion and clustering based on experimental clues and theoretical analyses was first proposed, justifying different mechanisms are sure related. The results may shed lights on comprehensive understanding of heat transport mechanisms in nanofluids.

  18. Novel polymer electrolytes based on gelatin and ionic liquids

    NASA Astrophysics Data System (ADS)

    Leones, Rita; Sentanin, F.; Rodrigues, Luísa C.; Ferreira, Rute A. S.; Marrucho, Isabel M.; Esperança, José M. S. S.; Pawlicka, Agnieszka; Carlos, Luís D.; Manuela Silva, M.

    2012-12-01

    This study describes the results of the characterization of polymer electrolytes using gelatin matrix doped with europium triflate and/or different ionic liquids. Samples of solvent-free electrolytes were prepared and characterized by ionic conductivity measurements, thermal analysis, electrochemical stability, X-ray diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence spectroscopy. Electrolyte samples are thermally stable up to approximately 220 °C. All the materials synthesized are totally amorphous. The room temperature conductivity maximum of this electrolyte system is based on ionic liquid 1-ethyl-3-methylimidazolium acetate, (C2mim)(OAc) (1.18 × 10-4 S cm-1 at 30 °C). The electrochemical stability domain of all samples is about 2.0 V versus Li/Li+. This new series of materials represents a promising alternative in polymer electrolytes research field. The preliminary studies carried out with electrochromic devices (ECDs) incorporating optimized compositions have confirmed that these materials may perform as satisfactory multifunctional component layers in the field of "smart windows". This new materials, will open a land of promising applications in many areas: optics, energy, medicine for example as membranes and separation devices, ECD-based devices, sensors, etc.

  19. Ion-pair evaporation from ionic liquid clusters.

    PubMed

    Hogan, Christopher J; Fernandez de la Mora, Juan

    2010-08-01

    A differential mobility analyzer (DMA) is used in atmospheric pressure N(2) to select a narrow range of electrical mobilities from a complex mix of cluster ions of composition (CA)(n)(C(+))(z). The clusters are introduced into the N(2) gas by electrospraying concentrated (approximately 20 mM) acetonitrile solutions of ionic liquids (molten salts) of composition CA (C(+) = cation, A(-) = anion). Mass analysis of these mobility-selected ions reveals the occurrence of individual neutral ion-pair evaporation events from the smallest singly charged clusters: (CA)(n)C(+)-->(CA)(n-1)C(+)+CA. Although bulk ionic liquids are effectively involatile at room temperature, up to six sequential evaporation events are observed. Because this requires far more internal energy than available in the original clusters, substantial heating (approximately 10 eV) must take place in the ion guides leading to the mass analyzer. The observed increase in IL evaporation rate with decreasing size is drastic, in qualitative agreement with the exponential vapor pressure dependence predicted by Kelvin's formula. A single evaporation event is barely detectable at n = 13, while two or more are prominent for n < or = 9. Magic number clusters (CA)(4)C(+) with singularly low volatilities are found in three of the four ionic liquids studied. Like their recently reported liquid phase prenucleation cluster analogs, these magic number clusters could play a key role as gas-phase nucleation seeds. All the singularly involatile clusters seen are cations, which may help understand commonly observed sign effects in ion-induced nucleation. No other charge-sign asymmetry is seen on cluster evaporation. PMID:20447834

  20. New frontiers in materials science opened by ionic liquids.

    PubMed

    Torimoto, Tsukasa; Tsuda, Tetsuya; Okazaki, Ken-ichi; Kuwabata, Susumu

    2010-03-19

    Ionic liquids (ILs) including ambient-temperature molten salts, which exist in the liquid state even at room temperature, have a long research history. However, their applications were once limited because ILs were considered as highly moisture-sensitive solvents that should be handled in a glove box. After the first synthesis of moisture-stable ILs in 1992, their unique physicochemical properties became known in all scientific fields. ILs are composed solely of ions and exhibit several specific liquid-like properties, e.g., some ILs enable dissolution of insoluble bio-related materials and the use as tailor-made lubricants in industrial applications under extreme physicochemical conditions. Hybridization of ILs and other materials provides quasi-solid materials, which can be used to fabricate highly functional devices. ILs are also used as reaction media for electrochemical and chemical synthesis of nanomaterials. In addition, the negligible vapor pressure of ILs allows the fabrication of electrochemical devices that are operated under ambient conditions, and many liquid-vacuum technologies, such as X-ray photoelectron spectroscopy (XPS) analysis of liquids, electron microscopy of liquids, and sputtering and physical vapor deposition onto liquids. In this article, we review recent studies on ILs that are employed as functional advanced materials, advanced mediums for materials production, and components for preparing highly functional materials.

  1. Ion shape effect on dynamics of ionic liquids

    NASA Astrophysics Data System (ADS)

    Liu, Hongjun; Maginn, Edward

    2012-02-01

    Ionic liquids (ILs) are a group of salts composing of an organic cation and organic or inorganic anion with melting points below 100 ^oC and have many suitable properties, such as negligible vapor pressure, low flammability, high ionic conductivity and high thermal stability for various applications. Moreover, a great number of ILs with a variety of physical and chemical properties can be synthesized from a combination of different cations (most differently substituted imidazolium, pyridinium, and quaternary ammonium or phosphonium ions) and anions. One can judiciously select from a multitude of ILs to suit a specific application, where the concept of designer solvent comes from. To expedite the development process of target ILs, it is crucial to understand the relationship between ion shape and dynamics of ILs. We studied a wide range of ILs with different ion shape pairings and found the planar-planar paired ILs have a better dynamics as a whole.

  2. Mixtures of amino-acid based ionic liquids and water.

    PubMed

    Chaban, Vitaly V; Fileti, Eudes Eterno

    2015-09-01

    New ionic liquids (ILs) involving increasing numbers of organic and inorganic ions are continuously being reported. We recently developed a new force field; in the present work, we applied that force field to investigate the structural properties of a few novel imidazolium-based ILs in aqueous mixtures via molecular dynamics (MD) simulations. Using cluster analysis, radial distribution functions, and spatial distribution functions, we argue that organic ions (imidazolium, deprotonated alanine, deprotonated methionine, deprotonated tryptophan) are well dispersed in aqueous media, irrespective of the IL content. Aqueous dispersions exhibit desirable properties for chemical engineering. The ILs exist as ion pairs in relatively dilute aqueous mixtures (10 mol%), while more concentrated mixtures feature a certain amount of larger ionic aggregates.

  3. Low-melting mixtures based on choline ionic liquids.

    PubMed

    Rengstl, Doris; Fischer, Veronika; Kunz, Werner

    2014-11-01

    In this article a strategy is proposed for the design of low toxic, room temperature liquid low-melting mixtures (LMMs) which are entirely composed of natural materials. From literature it is well known that, in general, deep eutectic solvents based on choline chloride and dicarboxylic acids are LMMs, but not liquids at room temperature, with one exception: a 1 : 1 molar mixture of malonic acid and choline chloride. Therefore, the starting point of this study was the decrease of the melting point of one of the components, namely the dicarboxylic acid, which is succinic, glutaric or adipic acid. For this purpose, one of the two protons of the acidic group was exchanged by a bulky unsymmetrical choline cation. The resulting ionic liquids (ILs) were still solid at room temperature, but have a reduced melting temperature compared to the corresponding acids. In the second step, mixtures of these ILs with choline chloride were prepared. It turned out that choline glutarate-choline chloride mixtures are liquids at room temperature at compositions containing 95-98 wt% of choline glutarate. Finally, urea was added as another hydrogen bond donor. Density, conductivity and viscosity measurements were performed for all obtained mixtures. Moreover, a Walden plot was drawn which indicates that all mixtures are liquids with fully dissociated ions moving independently. Therefore, they are considered as "good" ionic liquids and, thus, for example they can be used to exchange more toxic or less biodegradable ILs in application processes. A brief outlook containing application possibilities is given. It is demonstrated that choline dodecylsulfate is readily soluble in these mixtures, forming aggregates in the LMM at temperatures exceeding 55 °C.

  4. Low-melting mixtures based on choline ionic liquids.

    PubMed

    Rengstl, Doris; Fischer, Veronika; Kunz, Werner

    2014-11-01

    In this article a strategy is proposed for the design of low toxic, room temperature liquid low-melting mixtures (LMMs) which are entirely composed of natural materials. From literature it is well known that, in general, deep eutectic solvents based on choline chloride and dicarboxylic acids are LMMs, but not liquids at room temperature, with one exception: a 1 : 1 molar mixture of malonic acid and choline chloride. Therefore, the starting point of this study was the decrease of the melting point of one of the components, namely the dicarboxylic acid, which is succinic, glutaric or adipic acid. For this purpose, one of the two protons of the acidic group was exchanged by a bulky unsymmetrical choline cation. The resulting ionic liquids (ILs) were still solid at room temperature, but have a reduced melting temperature compared to the corresponding acids. In the second step, mixtures of these ILs with choline chloride were prepared. It turned out that choline glutarate-choline chloride mixtures are liquids at room temperature at compositions containing 95-98 wt% of choline glutarate. Finally, urea was added as another hydrogen bond donor. Density, conductivity and viscosity measurements were performed for all obtained mixtures. Moreover, a Walden plot was drawn which indicates that all mixtures are liquids with fully dissociated ions moving independently. Therefore, they are considered as "good" ionic liquids and, thus, for example they can be used to exchange more toxic or less biodegradable ILs in application processes. A brief outlook containing application possibilities is given. It is demonstrated that choline dodecylsulfate is readily soluble in these mixtures, forming aggregates in the LMM at temperatures exceeding 55 °C. PMID:25242504

  5. Can ionic liquids be used as templating agents for controlled design of uranium-containing nanomaterials?

    SciTech Connect

    Visser, Ann E. Bridges, Nicholas J.; Tosten, Michael H.

    2013-09-01

    Graphical abstract: - Highlights: • Uranium oxides nanoparticles prepared using ionic liquids. • IL cation alkyl length impacts oxide morphology. • Low temperature UO{sub 2} synthesis. - Abstract: Nanostructured uranium oxides have been prepared in ionic liquids as templating agents. Using the ionic liquids as reaction media for inorganic nanomaterials takes advantage of the pre-organized structure of the ionic liquids which in turn controls the morphology of the inorganic nanomaterials. Variation of ionic liquid cation structure was investigated to determine the impact on the uranium oxide morphologies. For two ionic liquid cations, increasing the alkyl chain length increases the aspect ratio of the resulting nanostructured oxides. Understanding the resulting metal oxide morphologies could enhance fuel stability and design.

  6. Mechanism of graphene formation by graphite electro-exfoliation in ionic liquids-water mixtures

    NASA Astrophysics Data System (ADS)

    Xu, Junli; Shi, Zhongning; Zhang, Xia; Haarberg, Geir Martin

    2014-12-01

    Graphene was produced from graphite electrode by exfoliation in ionic liquid. The influences of process parameters such as ionic liquid concentration, electrolysis potential and the type of anions in the ionic liquid on the production of graphene were studied, and a new mechanism is proposed. The results show that the increase of ionic liquid concentration is beneficial for the formation of graphene, and it is easier to produce graphene by increasing the applied voltage. Ionic liquids anions have great effect on the production of graphene. Both graphite anode and graphite cathode can be modified to graphene during electrolysis. Gases formed inside of the electrode play an important role for the production of graphene, while ionic liquids serve to accelerate the switching rate of graphite to graphene.

  7. A novel ionic liquid-tolerant Fusarium oxysporum BN secreting ionic liquid-stable cellulase: consolidated bioprocessing of pretreated lignocellulose containing residual ionic liquid.

    PubMed

    Xu, Jiaxing; Wang, Xinfeng; Hu, Lei; Xia, Jun; Wu, Zhen; Xu, Ning; Dai, Benlin; Wu, Bin

    2015-04-01

    In this study, microbial communities from chemicals polluted microhabitats were cultured with the addition of imidazolium-based ionic liquid (IL) to enrich for IL-tolerant microbes. A strain of Fusarium oxysporum BN producing cellulase from these enrichments was capable of growing in 10% (w/v) 1-ethyl-3-methylimidazolium phosphinate, much higher than the normal IL concentrations in the lignocellulose regenerated from ILs. Cellulase secreted by the strain showed high resistance to ILs based on phosphate and sulfate radicals, evidencing of a high conformational stability in relevant media. Gratifyingly, F. oxysporum BN can directly convert IL-pretreated rice straw to bioethanol via consolidated bioprocessing (I-CBP). At optimum fermentation condition, a maximum ethanol yield of 0.125 g ethanol g(-1) of rice straw was finally obtained, corresponding to 64.2% of the theoretical yield. PMID:25625459

  8. A novel ionic liquid-tolerant Fusarium oxysporum BN secreting ionic liquid-stable cellulase: consolidated bioprocessing of pretreated lignocellulose containing residual ionic liquid.

    PubMed

    Xu, Jiaxing; Wang, Xinfeng; Hu, Lei; Xia, Jun; Wu, Zhen; Xu, Ning; Dai, Benlin; Wu, Bin

    2015-04-01

    In this study, microbial communities from chemicals polluted microhabitats were cultured with the addition of imidazolium-based ionic liquid (IL) to enrich for IL-tolerant microbes. A strain of Fusarium oxysporum BN producing cellulase from these enrichments was capable of growing in 10% (w/v) 1-ethyl-3-methylimidazolium phosphinate, much higher than the normal IL concentrations in the lignocellulose regenerated from ILs. Cellulase secreted by the strain showed high resistance to ILs based on phosphate and sulfate radicals, evidencing of a high conformational stability in relevant media. Gratifyingly, F. oxysporum BN can directly convert IL-pretreated rice straw to bioethanol via consolidated bioprocessing (I-CBP). At optimum fermentation condition, a maximum ethanol yield of 0.125 g ethanol g(-1) of rice straw was finally obtained, corresponding to 64.2% of the theoretical yield.

  9. Ionic liquid foam floatation coupled with ionic liquid dispersive liquid-liquid microextraction for the separation and determination of estrogens in water samples by high-performance liquid chromatography with fluorescence detection.

    PubMed

    Zhang, Rui; Wang, Chuanliu; Yue, Qiaohong; Zhou, Tiecheng; Li, Na; Zhang, Hanqi; Hao, Xiaoke

    2014-11-01

    An ionic liquid foam floatation coupled with ionic liquid dispersive liquid-liquid microextraction method was proposed for the extraction and concentration of 17-α-estradiol, 17-β-estradiol-benzoate, and quinestrol in environmental water samples by high-performance liquid chromatography with fluorescence detection. 1-Hexyl-3-methylimidazolium tetrafluoroborate was applied as foaming agent in the foam flotation process and dispersive solvent in microextraction. The introduction of the ion-pairing and salting-out agent NH4 PF6 was beneficial to the improvement of recoveries for the hydrophobic ionic liquid phase and analytes. Parameters of the proposed method including concentration of 1-hexyl-3-methylimidazolium tetrafluoroborate, flow rate of carrier gas, floatation time, types and concentration of ionic liquids, salt concentration in samples, extraction time, and centrifugation time were evaluated. The recoveries were between 98 and 105% with relative standard deviations lower than 7% for lake water and well water samples. The isolation of the target compounds from the water was found to be efficient, and the enrichment factors ranged from 4445 to 4632. This developing method is free of volatile organic solvents compared with regular extraction. Based on the unique properties of ionic liquids, the application of foam floatation, and dispersive liquid-liquid microextraction was widened.

  10. Thermodynamic studies of ionic hydration and interactions for amino acid ionic liquids in aqueous solutions at 298.15 K.

    PubMed

    Dagade, Dilip H; Madkar, Kavita R; Shinde, Sandeep P; Barge, Seema S

    2013-01-31

    Amino acid ionic liquids are a special class of ionic liquids due to their unique acid-base behavior, biological significance, and applications in different fields such as templates in synthetic chemistry, stabilizers for biological macromolecules, etc. The physicochemical properties of these ionic liquids can easily be altered by making the different combinations of amino acids as anion along with possible cation modification which makes amino acid ionic liquids more suitable to understand the different kinds of molecular and ionic interactions with sufficient depth so that they can provide fruitful information for a molecular level understanding of more complicated biological processes. In this context, volumetric and osmotic coefficient measurements for aqueous solutions containing 1-ethyl-3-methylimidazolium ([Emim]) based amino acid ionic liquids of glycine, alanine, valine, leucine, and isoleucine are reported at 298.15 K. From experimental osmotic coefficient data, mean molal activity coefficients of ionic liquids were estimated and analyzed using the Debye-Hückel and Pitzer models. The hydration numbers of ionic liquids in aqueous solutions were obtained using activity data. Pitzer ion interaction parameters are estimated and compared with other electrolytes reported in the literature. The nonelectrolyte contribution to the aqueous solutions containing ionic liquids was studied by calculating the osmotic second virial coefficient through an application of the McMillan-Mayer theory of solution. It has been found that the second osmotic virial coefficient which includes volume effects correlates linearly with the Pitzer ion interaction parameter estimated independently from osmotic data as well as the hydrophobicity of ionic liquids. The enthalpy-entropy compensation effect, explained using the Starikov-Nordén model of enthalpy-entropy compensation, and partial molar entropy analysis for aqueous [Emim][Gly] solutions are made by using experimental Gibb

  11. Development of Ionic Liquid Monopropellants for In-Space Propulsion

    NASA Technical Reports Server (NTRS)

    Blevins, John A.; Osborne, Robin; Drake, Gregory W.

    2005-01-01

    A family of new, low toxicity, high energy monopropellants is currently being evaluated at NASA Marshall Space Flight Center for in-space rocket engine applications such as reaction control engines. These ionic liquid monopropellants, developed in recent years by the Air Force Research Laboratory, could offer system simplification, less in-flight thermal management, and reduced handling precautions, while increasing propellant energy density as compared to traditional storable in-space propellants such as hydrazine and nitrogen tetroxide. However, challenges exist in identifying ignition schemes for these ionic liquid monopropellants, which are known to burn at much hotter combustion temperatures compared to traditional monopropellants such as hydrazine. The high temperature combustion of these new monopropellants make the use of typical ignition catalyst beds prohibitive since the catalyst cannot withstand the elevated temperatures. Current research efforts are focused on monopropellant ignition and burn rate characterization, parameters that are important in the fundamental understanding of the monopropellant behavior and the eventual design of a thruster. Laboratory studies will be conducted using alternative ignition techniques such as laser-induced spark ignition and hot wire ignition. Ignition delay, defined as the time between the introduction of the ignition source and the first sign of light emission from a developing flame kernel, will be measured using Schlieren visualization. An optically-accessible liquid monopropellant burner will be used to determine propellant burn rate as a function of pressure and initial propellant temperature. The burn rate will be measured via high speed imaging through the chamber s windows.

  12. Electrochemical transistors with ionic liquids for enzymatic sensing

    NASA Astrophysics Data System (ADS)

    Fraser, Kevin J.; Yang, Sang Yoon; Cicoira, Fabio; Curto, Vincenzo F.; Byrne, Robert; Benito-Lopez, Fernando; Khodagholy, Dion; Owens, Róisín M.; Malliaras, George G.; Diamond, Dermot

    2011-10-01

    Over the past decade conducting polymer electrodes have played an important role in bio-sensing and actuation. Recent developments in the field of organic electronics have made available a variety of devices that bring unique capabilities at the interface with biology. One example is organic electrochemical transistors (OECTs) that are being developed for a variety of bio-sensing applications, including the detection of ions, and metabolites, such as glucose and lactate. Room temperature ionic liquids (RTILs) are organic salts, which are liquid at ambient temperature. Their nonvolatile character and thermal stability makes them an attractive alternative to conventional organic solvents. Here we report an enzymatic sensor based on an organic electro-chemical transistor with RTIL's as an integral part of its structure and as an immobilization medium for the enzyme and the mediator. Further investigation shows that these platforms can be incorporated into flexible materials such as carbon cloth and can be utilized for bio-sensing. The aim is to incorporate the overall platform in a wearable sensor to improve athlete performance with regards to training. In this manuscript an introduction to ionic liquids (ILs), IL - enzyme mixtures and a combination of these novel materials being used on OECTs are presented.

  13. Radiation-induced intermediates in irradiated glassy ionic liquids at low temperature

    NASA Astrophysics Data System (ADS)

    Saenko, Elizaveta V.; Lukianova, Mariia A.; Shiryaeva, Ekaterina S.; Takahashi, Kenji; Feldman, Vladimir I.

    2016-07-01

    The primary radiation-induced processes in irradiated low-temperature pyrrolidinium- and piperidinium-type ionic liquids were investigated by EPR and optical absorption spectroscopy. A narrow singlet signal in the EPR spectra of irradiated ionic liquids was attributed to the physically stabilized electron. Broad absorption band in visible region was ascribed to "hole" species. Aromatic scavengers react with "hole" species in glassy irradiated ionic liquids at 77 K.

  14. Coordinating Chiral Ionic Liquids: Design, Synthesis, and Application in Asymmetric Transfer Hydrogenation under Aqueous Conditions

    PubMed Central

    Vasiloiu, Maria; Gaertner, Peter; Zirbs, Ronald; Bica, Katharina

    2015-01-01

    Hydrophilic coordinating chiral ionic liquids with an amino alcohol substructure were developed and efficiently applied to the asymmetric reduction of ketones. Their careful design and adaptability to the desired reaction conditions allow for these chiral ionic liquids to be used as the sole source of chirality in a ruthenium-catalyzed transfer hydrogenation reaction of aromatic ketones. When used in this reaction system, these chiral ionic liquids afforded excellent yields and high enantioselectivities. PMID:26279638

  15. Gelatin-ionic liquid based platform for glucose detection.

    PubMed

    Sharma, Anshu; Rawat, Kamla; Solanki, Pratima R; Bohidar, H B

    2015-01-01

    Herein, we have fabricated a novel platform consisting of gelatin B in ionic liquid [1-ethyl- 3-methylimidazolium chloride [C2mim][Cl] (ionic liquid, IL)] formed ionogels (Ig) by dissolution method and used it for glucose detection. The ionogels were deposited onto indium tin oxide (ITO) coated glass plate using drop casting technique. Glucose oxidase (GOx) was selected as a model enzyme to investigate its interaction with Ig/ITO electrode using electrochemical and optical methods. Structural and morphological studies of the Ig/ITO electrode were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy and cyclic voltmmetry before and after GOx immobilization. It was found that [C2mim][Cl] enhanced electrocatalytic behaviour of the fabricated electrode which provided electron transfer rate constant as Ks ≈ 0.113 s(-1). Response study of GOx/Ig/ITO bioelectrode as a function of glucose concentration was monitored. These gelatin-ionic liquid based bioelectrodes showed following results obtained from electrochemical technique linearity ≈ 1-20 mM, and low value of Michaelis-Menten constant, Km ≈ 0.174 mM with sensitivity ≈ 4.6µA mM(-1) cm(-2). In contrast, the optical detection of glucose exhibited linearity in the range of 6-20 mM, value of Km ≈ 3.8 mM with sensitivity 6.76 x 10(-3) Abs/mM cm(2). This clearly indicated that the prepared ionogel based electrodes will provide a promising platform for glucose detection. PMID:25858131

  16. Li(+) solvation in glyme-Li salt solvate ionic liquids.

    PubMed

    Ueno, Kazuhide; Tatara, Ryoichi; Tsuzuki, Seiji; Saito, Soshi; Doi, Hiroyuki; Yoshida, Kazuki; Mandai, Toshihiko; Matsugami, Masaru; Umebayashi, Yasuhiro; Dokko, Kaoru; Watanabe, Masayoshi

    2015-03-28

    Certain molten complexes of Li salts and solvents can be regarded as ionic liquids. In this study, the local structure of Li(+) ions in equimolar mixtures ([Li(glyme)]X) of glymes (G3: triglyme and G4: tetraglyme) and Li salts (LiX: lithium bis(trifluoromethanesulfonyl)amide (Li[TFSA]), lithium bis(pentafluoroethanesulfonyl)amide (Li[BETI]), lithium trifluoromethanesulfonate (Li[OTf]), LiBF4, LiClO4, LiNO3, and lithium trifluoroacetate (Li[TFA])) was investigated to discriminate between solvate ionic liquids and concentrated solutions. Raman spectra and ab initio molecular orbital calculations have shown that the glyme molecules adopt a crown-ether like conformation to form a monomeric [Li(glyme)](+) in the molten state. Further, Raman spectroscopic analysis allowed us to estimate the fraction of the free glyme in [Li(glyme)]X. The amount of free glyme was estimated to be a few percent in [Li(glyme)]X with perfluorosulfonylamide type anions, and thereby could be regarded as solvate ionic liquids. Other equimolar mixtures of [Li(glyme)]X were found to contain a considerable amount of free glyme, and they were categorized as traditional concentrated solutions. The activity of Li(+) in the glyme-Li salt mixtures was also evaluated by measuring the electrode potential of Li/Li(+) as a function of concentration, by using concentration cells against a reference electrode. At a higher concentration of Li salt, the amount of free glyme diminishes and affects the electrode reaction, leading to a drastic increase in the electrode potential. Unlike conventional electrolytes (dilute and concentrated solutions), the significantly high electrode potential found in the solvate ILs indicates that the solvation of Li(+) by the glyme forms stable and discrete solvate ions ([Li(glyme)](+)) in the molten state. This anomalous Li(+) solvation may have a great impact on the electrode reactions in Li batteries. PMID:25733406

  17. Development of ionic gels using thiol-based monomers in ionic liquid

    NASA Astrophysics Data System (ADS)

    Ahmed, Kumkum; Naga, Naofumi; Kawakami, Masaru; Furukawa, Hidemitsu

    2016-04-01

    Ionic gels (IGs) using ionic liquids (ILs) can propose diverse applications in the field of optics, sensors and separation have opened wide prospects in materials science. ILs have attracted remarkable interest for gel polymer electrolytes and batteries based on their useful properties such as non-volatility, non-flammability, a wide electrochemical window, high thermal stability and a high ionic conductivity. The formation of gel in IL media makes it possible to immobilize ILs within organic or inorganic matrices and to take advantage of their unique properties in the solid state, thus eliminating some shortcomings related to shaping and risk of leakage. In this work for the first time we used multifunctional thiol monomers having uniform structure and good compatibility with the IL of our interest. Therefore we focused on developing thiol monomer-based IGs using multifunctional thiol monomers and acrylate crosslinkers utilizing thiol-ene reaction between monomer and crosslinking molecules in an IL medium and characterize their physico-chemical properties like thermal, conductive, mechanical properties etc.. This work has been focused mainly to improve the mechanical strength of IGs and make prospects of IGs in tribology and lubricants.

  18. Influence of the ionic liquid cation on the solvent extraction of trivalent rare-earth ions by mixtures of Cyanex 923 and ionic liquids.

    PubMed

    Rout, Alok; Binnemans, Koen

    2015-01-21

    Trivalent rare-earth ions were extracted from nitric acid medium by the neutral phosphine oxide extractant Cyanex 923 into ionic liquid phases containing the bis(trifluoromethylsulfonyl)imide anion. Five different cations were considered: 1-butyl-3-methylimidazolium, 1-decyl-3-methylimidazolium, methyltributylammonium, methyltrioctylammonium and trihexyl(tetradecyl)phosphonium. The extraction behavior of neodymium(iii) was investigated as a function of various parameters: pH, extractant concentration, concentration of the neodymium(iii) ion in the aqueous feed and concentration of the salting-out agent. The loading capacity of the ionic liquid phase was studied. The extraction efficiency increased with increasing pH of the aqueous feed solution. The extraction occurred for all ionic liquids via an ion-exchange mechanism and the extraction efficiency could be related to the solubility of the ionic liquid cation in the aqueous phase: high distribution ratios for hydrophilic cations and low ones for hydrophobic cations. Addition of nitrate ions to the aqueous phase resulted in an increase in extraction efficiency for ionic liquids with hydrophobic cations due to extraction of neutral complexes. Neodymium(iii) could be stripped from the ionic liquid phase by 0.5-1.0 M nitric acid solutions and the extracting phase could be reused. The extractability of other rare earths present in the mixture was compared for the five ionic liquids.

  19. Hydrogen fluoride capture by imidazolium acetate ionic liquid

    NASA Astrophysics Data System (ADS)

    Chaban, Vitaly

    2015-04-01

    Extraction of hydrofluoric acid (HF) from oils is a drastically important problem in petroleum industry, since HF causes quick corrosion of pipe lines and brings severe health problems to humanity. Some ionic liquids (ILs) constitute promising scavenger agents thanks to strong binding to polar compounds and tunability. PM7-MD simulations and hybrid density functional theory are employed here to consider HF capture ability of ILs. Discussing the effects and impacts of the cation and the anion separately and together, we evaluate performance of imidazolium acetate and outline systematic search guidelines for efficient adsorption and extraction of HF.

  20. The role of ionic liquids in hydrogen storage.

    PubMed

    Sahler, Sebastian; Sturm, Sebastian; Kessler, Michael T; Prechtl, Martin H G

    2014-07-14

    Ionic liquid (IL) based H2 storage for H2 generation from NH3BH3 derivatives is shown. These systems promote H2 generation at low temperature, with good reaction rates and high total H2 yields. The effects of ILs and the H2 yield in correlation with the basicity, the cations of the ILs, and the role of carbenes are discussed. Furthermore, mechanistic findings on the dehydrogenation are described. IL material blends are competitive with conventional H2 storage materials with experimental efficiencies of at least 6.5 wt % H2.

  1. Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis

    SciTech Connect

    Zhao, Hua; Jones, Cecil L; Baker, Gary A; Xia, Shuqian; Olubajo, Olarongbe; Person, Vernecia

    2009-01-01

    The efficient conversion of lignocellulosic materials into fuel ethanol has become a research priority in producing affordable and renewable energy. The pretreatment of lignocelluloses is known to be key to the fast enzymatic hydrolysis of cellulose. Recently, certain ionic liquids (ILs)were found capable of dissolving more than 10 wt% cellulose. Preliminary investigations [Dadi, A.P., Varanasi, S., Schall, C.A., 2006. Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step. Biotechnol. Bioeng. 95, 904 910; Liu, L., Chen, H., 2006. Enzymatic hydrolysis of cellulose materials treated with ionic liquid [BMIM]Cl. Chin. Sci. Bull. 51, 2432 2436; Dadi, A.P., Schall, C.A., Varanasi, S., 2007. Mitigation of cellulose recalcitrance to enzymatic hydrolysis by ionic liquid pretreatment. Appl. Biochem. Biotechnol. 137 140, 407 421] suggest that celluloses regenerated from IL solutions are subject to faster saccharification than untreated substrates. These encouraging results offer the possibility of using ILs as alternative and nonvolatile solvents for cellulose pretreatment. However, these studies are limited to two chloride-based ILs: (a) 1-butyl-3-methylimidazolium chloride ([BMIM]Cl), which is a corrosive, toxic and extremely hygroscopic solid (m.p. 70 C), and (b) 1-allyl-3-methylimidazolium chloride ([AMIM]Cl), which is viscous and has a reactive side-chain. Therefore, more in-depth research involving other ILs is much needed to explore this promising pretreatment route. For this reason, we studied a number of chloride- and acetate-based ILs for cellulose regeneration, including several ILs newly developed in our laboratory. This will enable us to select inexpensive, efficient and environmentally benign solvents for processing cellulosic biomass. Our data confirm that all regenerated celluloses are less crystalline (58 75% lower) and more accessible to cellulase (>2 times) than untreated substrates. As a result, regenerated Avicel

  2. Synthesis of cellulose methylcarbonate in ionic liquids using dimethylcarbonate.

    PubMed

    Labafzadeh, Sara R; Helminen, K Juhani; Kilpeläinen, Ilkka; King, Alistair W T

    2015-01-01

    Dialkylcarbonates are viewed as low-cost, low-toxicity reagents, finding application in many areas of green chemistry. Homogeneous alkoxycarbonylation of cellulose was accomplished by applying dialkycarbonates (dimethyl and diethyl carbonate) in the ionic liquid-electrolyte trioctylphosphonium acetate ([P8881 ][OAc])/DMSO or 1-ethyl-3-methylimidazolium acetate ([emim][OAc]). Cellulose dialkylcarbonates with a moderate degree of substitution (DS∼1) are accessible via this procedure and cellulose methylcarbonate was thoroughly characterized for its chemical and physical properties after regeneration. This included HSQC & HMBC NMR, ATR-IR, molecular weight distribution, morphology, thermal properties, and barrier properties after film formation. PMID:25378289

  3. Microslips to "Avalanches" in Confined, Molecular Layers of Ionic Liquids.

    PubMed

    Espinosa-Marzal, R M; Arcifa, A; Rossi, A; Spencer, N D

    2014-01-01

    We have measured forces between mica surfaces across two hydrophobic ionic liquids with a surface forces apparatus. Both surface-adsorbed water and alkyl-chain length on the imidazolium cation influence the structure of the nanoconfined film and the dynamics of film-thickness transitions. Friction shows accumulative microslips as precursors to collective "avalanches" that abruptly reduce friction momentarily. This behavior is interpreted as a consequence of interlayer ion correlations within the 1 to 2 nm thick film; we identify this to be analogous to the friction response of crackling noise systems over a broad range of sizes.

  4. Useful halophilic, thermostable and ionic liquids tolerant cellulases

    DOEpatents

    Zhang, Tao; Datta, Supratim; Simmons, Blake A.; Rubin, Edward M.

    2016-06-28

    The present invention provides for an isolated or recombinant polypeptide comprising an amino acid sequence having at least 70% identity with the amino acid sequence of a Halorhabdus utahensis cellulase, such as Hu-CBH1, wherein said amino acid sequence has a halophilic thermostable and/or thermophilic cellobiohydrolase (CBH) activity. In some embodiments, the polypeptide has a CBH activity that is resistant to up to about 20% of ionic liquids. The present invention also provides for compositions comprising and methods using the isolated or recombinant polypeptide.

  5. An ionic liquid process for mercury removal from natural gas.

    PubMed

    Abai, Mahpuzah; Atkins, Martin P; Hassan, Amiruddin; Holbrey, John D; Kuah, Yongcheun; Nockemann, Peter; Oliferenko, Alexander A; Plechkova, Natalia V; Rafeen, Syamzari; Rahman, Adam A; Ramli, Rafin; Shariff, Shahidah M; Seddon, Kenneth R; Srinivasan, Geetha; Zou, Yiran

    2015-05-14

    Efficient scrubbing of mercury vapour from natural gas streams has been demonstrated both in the laboratory and on an industrial scale, using chlorocuprate(II) ionic liquids impregnated on high surface area porous solid supports, resulting in the effective removal of mercury vapour from natural gas streams. This material has been commercialised for use within the petroleum gas production industry, and has currently been running continuously for three years on a natural gas plant in Malaysia. Here we report on the chemistry underlying this process, and demonstrate the transfer of this technology from gram to ton scale.

  6. Understanding positive and negative deviations in polarity of ionic liquid mixtures by pseudo-solvent approach.

    PubMed

    Beniwal, Vijay; Kumar, Anil

    2016-08-24

    Physico-chemical properties of liquid mixtures in general display large deviations from linear behaviour, arising out of complex specific and non-specific intermolecular interactions. The polarity of liquid mixtures displaying large positive and negative deviations can be minimized and linear mixing can be achieved in liquids using a pseudo-solvent methodology. The work described herein is designed to investigate the influence of different physical parameters on the linear pseudo-solvent composition in ionic liquid mixtures. For this purpose, we have determined the deviations from linearity, ΔE values (defined as given by ) for binary mixtures of a variety of ionic liquids, including two molecular solvents, DMSO and formamide. Firstly, the investigations were carried out in three 1-butyl-3-methylimidazolium cation based aprotic ionic liquids and the roles of anionic structure and hydrogen bond acceptor basicities (β values) of the ionic liquids were determined. The influence of the cationic structure, i.e., the hydrogen bond donor acidity (α values) and non-associative nature of the ionic liquids, was determined using C2-methylated analogs, 1-butyl-2,3-dimethylimidazolium cation based ionic liquids. The role of the protic nature of ionic liquids was studied in two protic ionic liquids, viz., 1-methylimidazolium formate and 1-methylimidazolium acetate. The effects of the temperature, pseudo-solvent structure and solvatochromic probe structure on the ΔE values were also explored.

  7. Understanding positive and negative deviations in polarity of ionic liquid mixtures by pseudo-solvent approach.

    PubMed

    Beniwal, Vijay; Kumar, Anil

    2016-08-24

    Physico-chemical properties of liquid mixtures in general display large deviations from linear behaviour, arising out of complex specific and non-specific intermolecular interactions. The polarity of liquid mixtures displaying large positive and negative deviations can be minimized and linear mixing can be achieved in liquids using a pseudo-solvent methodology. The work described herein is designed to investigate the influence of different physical parameters on the linear pseudo-solvent composition in ionic liquid mixtures. For this purpose, we have determined the deviations from linearity, ΔE values (defined as given by ) for binary mixtures of a variety of ionic liquids, including two molecular solvents, DMSO and formamide. Firstly, the investigations were carried out in three 1-butyl-3-methylimidazolium cation based aprotic ionic liquids and the roles of anionic structure and hydrogen bond acceptor basicities (β values) of the ionic liquids were determined. The influence of the cationic structure, i.e., the hydrogen bond donor acidity (α values) and non-associative nature of the ionic liquids, was determined using C2-methylated analogs, 1-butyl-2,3-dimethylimidazolium cation based ionic liquids. The role of the protic nature of ionic liquids was studied in two protic ionic liquids, viz., 1-methylimidazolium formate and 1-methylimidazolium acetate. The effects of the temperature, pseudo-solvent structure and solvatochromic probe structure on the ΔE values were also explored. PMID:27523572

  8. Void-Assisted Ion-Paired Proton Transfer at Water-Ionic Liquid Interfaces.

    PubMed

    de Eulate, Eva Alvarez; Silvester, Debbie S; Arrigan, Damien W M

    2015-12-01

    At the water-trihexyl(tetradecyl)phosphonium tris(pentafluoroethyl)trifluorophosphate ([P14,6,6,6][FAP]) ionic liquid interface, the unusual electrochemical transfer behavior of protons (H(+)) and deuterium ions (D(+)) was identified. Alkali metal cations (such as Li(+), Na(+), K(+)) did not undergo this transfer. H(+)/D(+) transfers were assisted by the hydrophobic counter anion of the ionic liquid, [FAP](-), resulting in the formation of a mixed capacitive layer from the filling of the latent voids within the anisotropic ionic liquid structure. This phenomenon could impact areas such as proton-coupled electron transfers, fuel cells, and hydrogen storage where ionic liquids are used as aprotic solvents. PMID:26489692

  9. The Effect of Ionic Liquids on Protein Crystallization and X-ray Diffraction Resolution

    SciTech Connect

    Judge, Russell A.; Takahashi, Sumiko; Longenecker, Kenton L.; Fry, Elizabeth H.; Abad-Zapatero, Cele; Chiu, Mark L.

    2009-09-08

    Ionic liquids exhibit a variety of properties that make them attractive solvents for biomaterials. Given the potential for productive interaction between ionic liquids and biological macromolecules, we investigated the use of ionic liquids as precipitating agents and additives for protein crystallization for six model proteins (lysozyme, catalase, myoglobin, trypsin, glucose isomerase, and xylanase). The ionic liquids produced changes in crystal morphology and mediated significant increases in crystal size in some cases. Crystals grown using ionic liquids as precipitating agents or as additives provided X-ray diffraction resolution similar to or better than that obtained without ionic liquids. Based upon the experiments performed with model proteins, the ionic liquids were used as additives for the crystallization of the poorly diffracting monoclonal antibody 106.3 Fab in complex with the B-type natriuretic peptide (5-13). The ionic liquids improved the crystallization behavior and provided improved diffraction resulting in the determination of the structure. Ionic liquids should be considered as useful additives for the crystallization of other proteins.

  10. High CO2 Solubility, Permeability and Selectivity in Ionic Liquids with the Tetracyanoborate Anion

    SciTech Connect

    Mahurin, Shannon Mark; Hillesheim, Patrick C; Yeary, Joshua S; Jiang, Deen; Dai, Sheng

    2012-01-01

    Five different ionic liquids containing the tetracyanoborate anion were synthesized and evaluated for CO2 separation performance. Measured CO2 solubility values were exceptionally high compared to analogous ionic liquids with different anions and ranged from 0.128 mol L-1 atm-1 to 0.148 mol L-1 atm-1. In addition, CO2 permeability and CO2/N2 selectivity values were measured using a supported ionic liquid membrane architecture and the separations performance of the ionic liquid membranes exceeded the Robeson upper bound. These results establish the distinct potential of the tetracyanoborate, [B(CN)4], anion for the separation of CO2.

  11. Mechanical Properties of Composite SPEEK Polymer Membranes Modified with Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Sprugis, E.; Reinholds, I.; Vaivars, G.

    2015-03-01

    In this work, the mechanical properties of sulphonated polyetheretherketone (SPEEK) membranes impregnated with 3 different ionic liquids (1-butyl-2,3-dimethyl- imidazolium dimethylphosphate ([BMMIM][Me2PO4])), 1,2,3-trimethylimidazolium dimethylphosphate ([MMMIM][Me2PO4])), 1,3-dimethylimidazolium dimethylphosphate ([MMIM][Me2PO4])) have been investigated. Prepared SPEEK/ionic liquid composite membranes are characterized by mechanical testing both in room and elevated temperatures. It was found that the stiffness and tensile strength of composites decreased by increasing the content of ionic liquid and the length of alkyl radical in ionic liquid as well as by increasing the temperature.

  12. Design and Evaluation of Ionic Liquids as Novel CO2 Absorbents

    SciTech Connect

    Edward Maginn

    2007-07-15

    This is the final report for project DE-FG26-04NT42122 'Design and Evaluation of Ionic Liquids as Novel CO{sub 2} Absorbents'. The objective of this 'breakthrough concepts' project was to investigate the feasibility of using ionic liquids for post-combustion CO{sub 2} capture and obtain a fundamental understanding of the solubility of CO{sub 2} and other components present in flue gas in ionic liquids. Our plan was to obtain information on how composition and structure of ionic liquid molecules affected solubility and other important physical properties via two major efforts: synthesis and experimental measurements and molecular simulation. We also planned to perform preliminary systems modeling study to assess the economic viability of a process based on ionic liquids. We accomplished all the milestones and tasks specified in the original proposal. Specifically, we carried out extensive quantum and classical atomistic-level simulations of a range of ionic liquids. These calculations provided detailed information on how the chemical composition of ionic liquids affects physical properties. We also learned important factors that govern CO{sub 2} solubility. Using this information, we synthesized or acquired 33 new ionic liquids. Many of these had never been made before. We carried out preliminary tests on all of these compounds, and more extensive tests on those that looked most promising for CO{sub 2} capture. We measured CO{sub 2} solubility in ten of these ionic liquids. Through our efforts, we developed an ionic liquid that has a CO{sub 2} solubility 2.6 times greater than the 'best' ionic liquid available to us at the start of the project. Moreover, we demonstrated that SO{sub 2} is also extremely soluble in ionic liquids, opening up the possibility of using ionic liquids to remove both SO{sub 2} and CO{sub 2} from flue gas. In collaboration with Trimeric Inc., a preliminary systems analysis was conducted and the results used to help identify physical

  13. Methods of using ionic liquids having a fluoride anion as solvents

    SciTech Connect

    Pagoria, Philip; Maiti, Amitesh; Gash, Alexander; Han, Thomas Yong; Orme, Christine; Fried, Laurence

    2011-12-06

    A method in one embodiment includes contacting a strongly hydrogen bonded organic material with an ionic liquid having a fluoride anion for solubilizing the strongly hydrogen bonded organic material; and maintaining the ionic liquid at a temperature of about 90.degree. C. or less during the contacting. A method in another embodiment includes contacting a strongly hydrogen bonded organic material with an ionic liquid having an acetate or formate anion for solubilizing the strongly hydrogen bonded organic material; and maintaining the ionic liquid at a temperature of less than about 90.degree. C. during the contacting.

  14. Adsorption of alcohol from water by poly(ionic liquid)s.

    PubMed

    Bi, Wentao; Tang, Baokun; Row, Kyung Ho

    2013-06-01

    Bioethanol is used widely as a solvent and is considered a potential liquid fuel. Ethanol can be produced from biomass by fermentation, which results in low concentrations of alcohol in water. Conventional distillation is normally used to separate ethanol from water, but it required high energy consumption. Therefore, alternative approaches to this separation are being pursued. This study examined the potential use of poly(ionic liquid)s (PILs) for the extraction and separation of alcohols from the aqueous phase. Hydrophobic PILs were developed and evaluated by the adsorption of ethanol from ethanol/water solutions. All the necessary parameters, such as cations and anions of the ionic liquid, morphology of the polymer and processing conditions, were evaluated. PMID:23010726

  15. Polarizability versus mobility: atomistic force field for ionic liquids.

    PubMed

    Chaban, Vitaly

    2011-09-21

    Based on classical molecular dynamics simulations, we discuss the impact of Coulombic interactions on a comprehensive set of properties of room temperature ionic liquids (RTILs) containing 1,3-dimethylimidazolium (MMIM(+)), N-butylpyridinium (BPY(+)), and bis(trifluoromethane sulfonyl)imide (TFSI(-)) ions. Ionic transport is found to be noticeably hindered by the excessive Coulombic energy, originating from the neglect of electronic polarization in the condensed phase of these RTILs. Starting from the models, recently suggested by Lopes and Padua, we show that realistic ionic dynamics can be achieved by the uniform scaling of electrostatic charges on all interaction sites. The original model systematically overestimates density and heat of vaporization of RTILs. Since density linearly depends on charge scaling, it is possible to use it as a convenient beacon to promptly derive a correct scaling factor. Based on the simulations of [BPY][TFSI] and [MMIM][TFSI] over a wide temperature range, we conclude that the suggested technique is feasible to greatly improve quality of the already existing non-polarizable FFs for RTILs.

  16. Fast Measurement of Methanol Concentration in Ionic Liquids by Potential Step Method

    PubMed Central

    Hainstock, Michael L.; Tang, Yijun

    2015-01-01

    The development of direct methanol fuel cells required the attention to the electrolyte. A good electrolyte should not only be ionic conductive but also be crossover resistant. Ionic liquids could be a promising electrolyte for fuel cells. Monitoring methanol was critical in several locations in a direct methanol fuel cell. Conductivity could be used to monitor the methanol content in ionic liquids. The conductivity of 1-butyl-3-methylimidazolium tetrafluoroborate had a linear relationship with the methanol concentration. However, the conductivity was significantly affected by the moisture or water content in the ionic liquid. On the contrary, potential step could be used in sensing methanol in ionic liquids. This method was not affected by the water content. The sampling current at a properly selected sampling time was proportional to the concentration of methanol in 1-butyl-3-methylimidazolium tetrafluoroborate. The linearity still stood even when there was 2.4 M water present in the ionic liquid. PMID:25802522

  17. Redox-active cross-linkable poly(ionic liquid)s.

    PubMed

    Sui, Xiaofeng; Hempenius, Mark A; Vancso, G Julius

    2012-03-01

    The synthesis of a new class of cross-linkable redox-responsive poly(ferrocenylsilane)-based poly(ionic liquid)s (PFS-PILs) is reported. PFS-PILs self-cross-link at low concentrations into nanogels or form macroscopic hydrogel networks at higher concentrations. PFS-PILs proved to be efficient dispersants in the microemulsion polymerization of methyl methacrylate, producing stable PFS-poly(methyl methacrylate) latex suspensions. PMID:22353019

  18. Tandem dissolution of UO 3 in amide-based acidic ionic liquid and in situ electrodeposition of UO 2 with regeneration of the ionic liquid: a closed cycle

    DOE PAGES

    Wanigasekara, Eranda; Freiderich, John W.; Sun, Xiao-Guang; Meisner, Roberta A.; Luo, Huimin; Delmau, Lætitia H.; Dai, Sheng; Moyer, Bruce A.

    2016-05-19

    A closed cycle is demonstrated for the tandem dissolution and electroreduction of UO3 to UO2 with regeneration of the acidic ionic liquid. The dissolution is achieved by use of the acidic ionic liquid N,N-dimethylacetimidium bis(trifluoromethanesulfonimide) in 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonimide) serving as the diluent. Bulk electrolysis performed at 1.0 V vs. Ag reference yields a dark brown-black uranium deposit (UO2) on the cathode. Anodic oxidation of water in the presence of dimethylacetamide regenerates the acidic ionic liquid. We have demonstrated the individual steps in the cycle together with a sequential dissolution, electroreduction, and regeneration cycle.

  19. Dipolar motions and ionic conduction in an ibuprofen derived ionic liquid.

    PubMed

    Viciosa, M T; Santos, G; Costa, A; Danède, F; Branco, L C; Jordão, N; Correia, N T; Dionísio, M

    2015-10-01

    It was demonstrated that the combination of the almost water insoluble active pharmaceutical ingredient (API) ibuprofen with the biocompatible 1-ethanol-3-methylimidazolium [C2OHMIM] cation of an ionic liquid (IL) leads to a highly water miscible IL-API with a solubility increased by around 5 orders of magnitude. Its phase transformations, as crystallization and glass transition, are highly sensitive to the water content, the latter shifting to higher temperatures upon dehydration. By dielectric relaxation spectroscopy the dynamical behavior of anhydrous [C2OHMIM][Ibu] and with 18.5 and 3% of water content (w/w) was probed from well below the calorimetric glass transition (Tg) up to the liquid state. Multiple reorientational dipolar processes were detected which become strongly affected by conductivity and electrode polarization near above Tg. Therefore [C2OHMIM][Ibu] exhibits mixed behavior of a conventional molecular glass former and an ionic conductor being analysed in this work through conductivity, electrical modulus and complex permittivity. The dominant process, σα-process, originates by a coupling between both charge transport and dipolar mechanisms. The structural relaxation times were derived from permittivity analysis and confirmed by temperature modulated differential scanning calorimetry. The temperature dependence of the β-secondary relaxation is coherent with a Johari-Goldstein (βJG) process as detected in conventional glass formers.

  20. Dipolar motions and ionic conduction in an ibuprofen derived ionic liquid.

    PubMed

    Viciosa, M T; Santos, G; Costa, A; Danède, F; Branco, L C; Jordão, N; Correia, N T; Dionísio, M

    2015-10-01

    It was demonstrated that the combination of the almost water insoluble active pharmaceutical ingredient (API) ibuprofen with the biocompatible 1-ethanol-3-methylimidazolium [C2OHMIM] cation of an ionic liquid (IL) leads to a highly water miscible IL-API with a solubility increased by around 5 orders of magnitude. Its phase transformations, as crystallization and glass transition, are highly sensitive to the water content, the latter shifting to higher temperatures upon dehydration. By dielectric relaxation spectroscopy the dynamical behavior of anhydrous [C2OHMIM][Ibu] and with 18.5 and 3% of water content (w/w) was probed from well below the calorimetric glass transition (Tg) up to the liquid state. Multiple reorientational dipolar processes were detected which become strongly affected by conductivity and electrode polarization near above Tg. Therefore [C2OHMIM][Ibu] exhibits mixed behavior of a conventional molecular glass former and an ionic conductor being analysed in this work through conductivity, electrical modulus and complex permittivity. The dominant process, σα-process, originates by a coupling between both charge transport and dipolar mechanisms. The structural relaxation times were derived from permittivity analysis and confirmed by temperature modulated differential scanning calorimetry. The temperature dependence of the β-secondary relaxation is coherent with a Johari-Goldstein (βJG) process as detected in conventional glass formers. PMID:26315452

  1. Ultrafast diffusion of Ionic Liquids Confined in Carbon Nanotubes.

    PubMed

    Ghoufi, Aziz; Szymczyk, Anthony; Malfreyt, Patrice

    2016-01-01

    Over the past decade many works have focused on various aspects of the dynamics of liquids confined at the nanoscale such as e.g. water flow enhancement through carbon nanotubes (CNTs). Transport of room temperature ionic liquids (RTILs) through various nanochannels has also been explored and some conflicting findings about their translational dynamics have been reported. In this work, we focus on translational dynamics of RTILs confined in various CNTs. By means of molecular dynamics simulations we highlight a substantially enhanced diffusion of confined RTILs with an increase up to two orders of magnitude with respect to bulk-phase properties. This ultrafast diffusion of RTILs inside CNTs is shown to result from the combination of various factors such as low friction, molecular stacking, size, helicity, curvature and cooperative dynamics effects. PMID:27334208

  2. Controlled electrodeposition of Au monolayer film on ionic liquid

    NASA Astrophysics Data System (ADS)

    Ma, Qiang; Pang, Liuqing; Li, Man; Zhang, Yunxia; Ren, Xianpei; Liu, Shengzhong Frank

    2016-05-01

    Gold (Au) nanoparticles have been attractive for centuries for their vibrant appearance enhanced by their interaction with sunlight. Nowadays, there have been tremendous research efforts to develop them for high-tech applications including therapeutic agents, sensors, organic photovoltaics, medical applications, electronics and catalysis. However, there remains to be a challenge to fabricate a monolayer Au coating with complete coverage in controlled fashion. Here we present a facile method to deposit a uniform Au monolayer (ML) film on the [BMIM][PF6] ionic liquid substrate using an electrochemical deposition process. It demonstrates that it is feasible to prepare a solid phase coating on the liquid-based substrate. Moreover, the thickness of the monolayer coating can be controlled to a layer-by-layer accuracy.

  3. Furfural production from Eucalyptus wood using an Acidic Ionic Liquid.

    PubMed

    Peleteiro, Susana; Santos, Valentín; Garrote, Gil; Parajó, Juan Carlos

    2016-08-01

    Eucalyptus globulus wood samples were treated with hot, compressed water to separate hemicelluloses (as soluble saccharides) from a solid phase mainly made up of cellulose and lignin. The liquid phase was dehydrated, and the resulting solids (containing pentoses as well as poly- and oligo- saccharides made up of pentoses) were dissolved and reacted in media containing an Acidic Ionic Liquid (1-butyl-3-methylimidazolium hydrogen sulfate) and a co-solvent (dioxane). The effects of the reaction time on the product distribution were studied at temperatures in the range 120-170°C for reaction times up to 8h, and operational conditions leading to 59.1% conversion of the potential substrates (including pentoses and pentose structural units in oligo- and poly- saccharides) into furfural were identified. PMID:27112846

  4. Ultrafast diffusion of Ionic Liquids Confined in Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Ghoufi, Aziz; Szymczyk, Anthony; Malfreyt, Patrice

    2016-06-01

    Over the past decade many works have focused on various aspects of the dynamics of liquids confined at the nanoscale such as e.g. water flow enhancement through carbon nanotubes (CNTs). Transport of room temperature ionic liquids (RTILs) through various nanochannels has also been explored and some conflicting findings about their translational dynamics have been reported. In this work, we focus on translational dynamics of RTILs confined in various CNTs. By means of molecular dynamics simulations we highlight a substantially enhanced diffusion of confined RTILs with an increase up to two orders of magnitude with respect to bulk-phase properties. This ultrafast diffusion of RTILs inside CNTs is shown to result from the combination of various factors such as low friction, molecular stacking, size, helicity, curvature and cooperative dynamics effects.

  5. Ab Initio Force Fields for Imidazolium-Based Ionic Liquids.

    PubMed

    McDaniel, Jesse G; Choi, Eunsong; Son, Chang Yun; Schmidt, J R; Yethiraj, Arun

    2016-07-21

    We develop ab initio force fields for alkylimidazolium-based ionic liquids (ILs) that predict the density, heats of vaporization, diffusion, and conductivity that are in semiquantitative agreement with experimental data. These predictions are useful in light of the scarcity of and sometimes inconsistency in experimental heats of vaporization and diffusion coefficients. We illuminate physical trends in the liquid cohesive energy with cation chain length and anion. These trends are different than those based on the experimental heats of vaporization. Molecular dynamics prediction of the room temperature dynamics of such ILs is more difficult than is generally realized in the literature due to large statistical uncertainties and sensitivity to subtle force field details. We believe that our developed force fields will be useful for correctly determining the physics responsible for the structure/property relationships in neat ILs.

  6. Reverse dynamic calorimetry of a viscous ionic liquid.

    PubMed

    Huang, Wei; Richert, Ranko

    2009-11-14

    We compare the time scale of thermal relaxation with that of the electric modulus in the deeply supercooled regime of the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate. Thermal relaxation refers to the process of configurational temperatures of the slow degrees of freedom equilibrating toward the vibrational temperature, which is a reliable indicator for the time scale of structural relaxation. Energy is supplied to the sample by absorption from a sinusoidal electric field with amplitude as high as 387 kV/cm and frequencies in the 0.2 Hz-56 kHz range, analogous to microwave heating. The time resolved response of configurational temperature as well as the low field dielectric properties are measured in a single high field impedance setup. Near T(g), we find that the macroscopic field (or modulus M) relaxes considerably faster than the structure (in terms of thermal relaxation, solvation dynamics, and probe rotation), although the liquid is entirely composed of mobile ions.

  7. Ultrafast diffusion of Ionic Liquids Confined in Carbon Nanotubes

    PubMed Central

    Ghoufi, Aziz; Szymczyk, Anthony; Malfreyt, Patrice

    2016-01-01

    Over the past decade many works have focused on various aspects of the dynamics of liquids confined at the nanoscale such as e.g. water flow enhancement through carbon nanotubes (CNTs). Transport of room temperature ionic liquids (RTILs) through various nanochannels has also been explored and some conflicting findings about their translational dynamics have been reported. In this work, we focus on translational dynamics of RTILs confined in various CNTs. By means of molecular dynamics simulations we highlight a substantially enhanced diffusion of confined RTILs with an increase up to two orders of magnitude with respect to bulk-phase properties. This ultrafast diffusion of RTILs inside CNTs is shown to result from the combination of various factors such as low friction, molecular stacking, size, helicity, curvature and cooperative dynamics effects. PMID:27334208

  8. Furfural production from Eucalyptus wood using an Acidic Ionic Liquid.

    PubMed

    Peleteiro, Susana; Santos, Valentín; Garrote, Gil; Parajó, Juan Carlos

    2016-08-01

    Eucalyptus globulus wood samples were treated with hot, compressed water to separate hemicelluloses (as soluble saccharides) from a solid phase mainly made up of cellulose and lignin. The liquid phase was dehydrated, and the resulting solids (containing pentoses as well as poly- and oligo- saccharides made up of pentoses) were dissolved and reacted in media containing an Acidic Ionic Liquid (1-butyl-3-methylimidazolium hydrogen sulfate) and a co-solvent (dioxane). The effects of the reaction time on the product distribution were studied at temperatures in the range 120-170°C for reaction times up to 8h, and operational conditions leading to 59.1% conversion of the potential substrates (including pentoses and pentose structural units in oligo- and poly- saccharides) into furfural were identified.

  9. From molten salts to ionic liquids: a "nano" journey.

    PubMed

    Dupont, Jairton

    2011-11-15

    Ionic liquids (ILs), a special group of classical molten salts, are widely used in various fields of science. Historically, researchers have tested ILs out of curiosity or to improve a specific property in a particular system in many areas of chemistry or materials science. However, today, ILs are far from being simple chemical curiosities and sit at the center of various green industrial innovation processes, where they play important roles in materials extraction, reactive catalytic supports, spatial devices, and biotransformations. In this Account, we describe a journey into a nanostructured universe to better understand the unique properties of ionic liquids and their modern applications. Because molten salts have been known for centuries and have found limited uses, we try to explain why modern nonaqueous ILs deserve increased interest and curiosity. We discuss the characteristics that distinguish modern nonaqueous ILs and compare them with classical molten salts. One of the main differences between room temperature ILs, especially those based on imidazolium cations, and simple molten salts, is the molecular asymmetry built into at least one of the ions. This asymmetry in modern, nonaqueous ILs opposes the strong charge ordering due to ionic interactions that normally would cause the system to crystallize. In addition, the presence of a cooperative network of hydrogen bonds between the cations and anions induces structural directionality (the entropic effect). Therefore, modern ILs form preorganized structures, mainly through hydrogen bonding, that induce structural directionality. In contrast, classical salts form aggregates only through ionic bonds. In other words, weak interactions order the structures in modern ILs while charges order the structure within classical salts. ILs cannot be regarded as merely homogeneous solvents. In fact, ILs form extended hydrogen-bond networks with polar and nonpolar nano domains and therefore are by definition

  10. Tailored ionic liquid-based surfactants for the formation of microemulsions with water and a hydrophobic ionic liquid.

    PubMed

    Porada, Jan H; Zauser, Diana; Feucht, Birgit; Stubenrauch, Cosima

    2016-08-14

    Microemulsions (μe) with water and a hydrophobic ionic liquid (IL) usually require 45-60 wt% surfactant to solubilize equal amounts of water and IL. To increase the efficiency we designed a new class of surfactants by combining a hydrophilic but IL-ophobic carbohydrate-based part with a hydrophobic but IL-ophilic IL-based part. These surfactants allow formulating microemulsions with 20 wt% surfactant only which opens up a new arena for efficient water-IL μes. PMID:27405741

  11. Development of Ionic Liquid Monopropellants for In-Space Propulsion

    NASA Technical Reports Server (NTRS)

    Blevins, John A.; Drake, Gregory W.; Osborne, Robin J.

    2005-01-01

    A family of new, low toxicity, high energy monopropellants is currently being evaluated at NASA Marshall Space Flight Center for in-space rocket engine applications such as reaction control engines. These ionic liquid monopropellants, developed in recent years by the Air Force Research Laboratory, could offer system simplification, less in-flight thermal management, and reduced handling precautions, while increasing propellant energy density as compared to traditional storable in-space propellants such as hydrazine and nitrogen tetroxide. However, challenges exist in identifying ignition schemes for these ionic liquid monopropellants, which are known to burn at much hotter combustion temperatures compared to traditional monopropellants such as hydrazine. The high temperature combustion of these new monopropellants make the use of typical ignition catalyst beds prohibitive since the catalyst cannot withstand the elevated temperatures. Current research efforts are focused on monopropellant ignition and burn rate characterization, parameters that are important in the fundamental understanding of the monopropellant behavior and the eventual design of a thruster. Laboratory studies will be conducted using alternative ignition techniques such as laser-induced spark ignition and hot wire ignition. Ignition delay, defined as the time between the introduction of the ignition source and the first sign of light emission from a developing flame kernel, will be measured using Schlieren visualization. An optically-accessible liquid monopropellant burner, shown schematically in Figure 1 and similar in design to apparatuses used by other researchers to study solid and liquid monopropellants, will be used to determine propellant burn rate as a function of pressure and initial propellant temperature. The burn rate will be measured via high speed imaging through the chamber s windows.

  12. A computational approach to design energetic ionic liquids.

    PubMed

    Singh, Hari Ji; Mukherjee, Uttama

    2013-06-01

    The present work deals with the theoretical estimation of ion-pair binding energies and the energetic properties of four ion pairs formed by combining the 1-butyl-2,4-dinitro-3-methyl imidazolium ion with nitrate (I), perchlorate (II), dinitramide (III), or 3,5-dinitro-1,2,4-triazolate (IV) anions. The counterpoise-corrected ion-pair binding energies were calculated for each ion pair at the B3LYP/6-311+G(d,p) level of theory. Results show that the cation-anion interaction is strongest for ion pair I and weakest for IV, indicating that the nitrate (I) has a greater tendency to exist as a stable ionic salt whereas the 3,5-dinitro-1,2,4-triazolate (IV) may exist as an ionic liquid. Natural bond orbital (NBO) analysis and electrostatic potential (ESP) mapping revealed that charge transfer occurs in all of the ion pairs, but is greatest (0.25e) for ion pair I and smallest (0.03e) for IV, resulting in ion pair I being the least polarized. A nucleus-independent chemical shift (NICS) study revealed that the aromaticity of the 1-butyl-2,4-dinitro-3-methyl imidazolium ion significantly increases in ion pair IV, indicating that this has the greatest charge delocalization among all of the four ion pairs considered. Studies of thermodynamic and detonation properties showed that ion pair II is the most energetic ion pair in terms of its detonation velocity (D = 7.5 km s(-1)) and detonation pressure (P = 23.1 GPa). It is also envisaged that ion pair IV would exist as an energetic azolium azolate type ionic liquid that could be conveniently used as a secondary explosive characterized by detonation parameters D and P of 6.9 km s(-1) and 19.3 GPa, respectively. These values are comparable to those of conventional explosives such as TNT.

  13. Comparing two tetraalkylammonium ionic liquids. II. Phase transitions.

    PubMed

    Lima, Thamires A; Paschoal, Vitor H; Faria, Luiz F O; Ribeiro, Mauro C C; Ferreira, Fabio F; Costa, Fanny N; Giles, Carlos

    2016-06-14

    Phase transitions of the ionic liquids n-butyl-trimethylammonium bis(trifluoromethanesulfonyl)imide, [N1114][NTf2], and methyl-tributylammonium bis(trifluoromethanesulfonyl)imide, [N1444][NTf2], were investigated by differential scanning calorimetry (DSC), X-ray diffraction (XRD) measurements, and Raman spectroscopy. XRD and Raman spectra were obtained as a function of temperature at atmospheric pressure, and also under high pressure at room temperature using a diamond anvil cell (DAC). [N1444][NTf2] experiences glass transition at low temperature, whereas [N1114][NTf2] crystallizes or not depending on the cooling rate. Both the ionic liquids exhibit glass transition under high pressure. XRD and low-frequency Raman spectra provide a consistent physical picture of structural ordering-disordering accompanying the thermal events of crystallization, glass transition, cold crystallization, pre-melting, and melting. Raman spectra in the high-frequency range of some specific cation and anion normal modes reveal conformational changes of the molecular structures along phase transitions.

  14. Photoresponsive Self-Assembly of Surface Active Ionic Liquid.

    PubMed

    Wu, Aoli; Lu, Fei; Sun, Panpan; Gao, Xinpei; Shi, Lijuan; Zheng, Liqiang

    2016-08-16

    A novel photoresponsive surface active ionic liquid (SAIL) 1-(4-methyl azobenzene)-3-tetradecylimidazolium bromide ([C14mimAzo]Br) with azobenzene located in the headgroup was designed. Reversible vesicle formation and rupture can be finely controlled by photostimuli without any additives in the aqueous solution of the single-tailed ionic liquid. The photoisomerization of the azobenzene derivative was investigated by (1)H NMR and UV-vis spectroscopy. Density functional theory (DFT) calculations further demonstrate that trans-[C14mimAzo]Br has less negative interaction energy, which is beneficial to aggregate formation in water. The incorporation of trans-azobenzene group increases the hydrophobicity of the headgroup and reduces the electrostatic repulsion by delocalization of charge, which are beneficial to the formation of vesicles. However, the bend of cis-azobenzene makes the cis-isomers have no ability to accumulate tightly, which induces the rupture of vesicles. Our work paves a convenient way to achieve controlled topologies and self-assembly of single SAIL. PMID:27445115

  15. Imidazolium-based ionic liquid surfaces for biosensing.

    PubMed

    Ratel, Mathieu; Provencher-Girard, Audrey; Zhao, Sandy Shuo; Breault-Turcot, Julien; Labrecque-Carbonneau, Jérémie; Branca, Mathieu; Pelletier, Joelle N; Schmitzer, Andreea R; Masson, Jean-Francois

    2013-06-18

    Ionic liquid self-assembled monolayers (SAM) were designed and applied for binding streptavidin, promoting affinity biosensing and enzyme activity on gold surfaces of sensors. The synthesis of 1-((+)-biotin)pentanamido)propyl)-3-(12-mercaptododecyl)-imidazolium bromide, a biotinylated ionic liquid (IL-biotin), which self-assembles on gold film, afforded streptavidin sensing with surface plasmon resonance (SPR). The IL-biotin-SAM efficiently formed a full streptavidin monolayer. The synthesis of 1-(carboxymethyl)-3-(mercaptododecyl)-imidazoliumbromide, a carboxylated IL (IL-COOH), was used to immobilize anti-IgG to create an affinity biosensor. The IL-COOH demonstrated efficient detection of IgG in the nanomolar concentration range, similar to the alkylthiols SAM and PEG. In addition, the IL-COOH demonstrated low fouling in crude serum, to a level equivalent to PEG. The IL-COOH was further modified with N,N'-bis (carboxymethyl)-l-lysine hydrate to bind copper ions and then, chelate histidine-tagged biomolecules. Human dihydrofolate reductase (hDHFR) was chelated to the modified IL-COOH. By monitoring enzyme activity in situ on the SPR sensor, it was revealed that the IL-COOH SAM improved the activity of hDHFR by 24% in comparison to classical SAM. Thereby, IL-SAM has been synthesized and successfully applied to three important biosensing schemes, demonstrating the advantages of this new class of monolayers. PMID:23706008

  16. Transformation of acidic poorly water soluble drugs into ionic liquids.

    PubMed

    Balk, Anja; Wiest, Johannes; Widmer, Toni; Galli, Bruno; Holzgrabe, Ulrike; Meinel, Lorenz

    2015-08-01

    Poor water solubility of active pharmaceutical ingredients (API) is a major challenge in drug development impairing bioavailability and therapeutic benefit. This study is addressing the possibility to tailor pharmaceutical and physical properties of APIs by transforming these into tetrabutylphosphonium (TBP) salts, including the generation of ionic liquids (IL). Therefore, poorly water soluble acidic APIs (Diclofenac, Ibuprofen, Ketoprofen, Naproxen, Sulfadiazine, Sulfamethoxazole, and Tolbutamide) were converted into TBP ILs or low melting salts and compared to the corresponding sodium salts. Free acids and TBP salts were characterized by NMR and IR spectroscopy, DSC and XRPD, DVS and dissolution rate measurements, release profiles, and saturation concentration measurements. TBP salts had lower melting points and glass transition temperatures and dissolution rates were improved up to a factor of 1000 as compared to the corresponding free acid. An increase in dissolution rates was at the expense of increased hygroscopicity. In conclusion, the creation of TBP ionic liquids or solid salts from APIs is a valuable concept addressing dissolution and solubility challenges of poorly water soluble acidic compounds. The data suggested that tailor-made counterions may substantially expand the formulation scientist's armamentarium to meet challenges of poorly water soluble drugs.

  17. Surface confined ionic liquid as a stationary phase for HPLC

    SciTech Connect

    Wang, Qian; Baker, Gary A; Baker, Sheila N; Colon, Luis

    2006-01-01

    Trimethoxysilane ionosilane derivatives of room temperature ionic liquids based on alkylimidazolium bromides were synthesized for attachment to silica support material. The derivatives 1-methyl-3-(trimethoxysilylpropyl)imidazolium bromide and 1-butyl-3-(trimethoxysilylpropyl)imidazolium bromide were used to modify the surface of 3 {micro}m diameter silica particles to act as the stationary phase for HPLC. The modified particles were characterized by thermogravimetric analysis (TGA) and {sup 13}C and {sup 29}Si NMR spectroscopies. The surface modification procedure rendered particles with a surface coverage of 0.84 {micro}mol m{sup -2} for the alkylimidazolium bromide. The ionic liquid moiety was predominantly attached to the silica surface through two siloxane bonds of the ionosilane derivative (63%). Columns packed with the modified silica material were tested under HPLC conditions. Preliminary evaluation of the stationary phase for HPLC was performed using aromatic carboxylic acids as model compounds. The separation mechanism appears to involve multiple interactions including ion exchange, hydrophobic interaction, and other electrostatic interactions.

  18. Ionic Liquid Induced Band Shift of Titanium Dioxide.

    PubMed

    Weber, Henry; Kirchner, Barbara

    2016-09-01

    Ionic liquids (ILs) have become an established option for the use as electrolytes in dye-sensitized solar cells. In the present study, the adsorption of a multitude of different ILs on a TiO2 surface is studied systematically, focusing on the energetic modifications of the semiconductor. The cation was found to generally cause an energetic downward shift of the TiO2 band levels by accepting electron density from the surface, and the anions were observed to function in the opposite direction, raising the energy levels by donating electron density. Both effects counterbalance each other, leaving the desired outcome dependent on the choice of the specific IL, i.e., the choice of the cation/anion combination. The correlation of the band levels with the properties of the IL was successfully achieved. The dipole moment of the adsorbed ionic liquid species showed little to no correlation with the semiconductor energetics, but the charge transfer calculated by radical Voronoi tessellation revealed a high correlation. The current findings contribute to a deeper understanding of the role of the electrolyte in dye-sensitized solar cells, and ILs in general, and help with choosing and tuning of the electrolyte solutions in existing applications. PMID:27510436

  19. Antitumor Activity of Ionic Liquids Based on Ampicillin.

    PubMed

    Ferraz, Ricardo; Costa-Rodrigues, João; Fernandes, Maria H; Santos, Miguel M; Marrucho, Isabel M; Rebelo, Luís Paulo N; Prudêncio, Cristina; Noronha, João Paulo; Petrovski, Željko; Branco, Luís C

    2015-09-01

    Significant antiproliferative effects against various tumor cell lines were observed with novel ampicillin salts as ionic liquids. The combination of anionic ampicillin with appropriate ammonium, imidazolium, phosphonium, and pyridinium cations yielded active pharmaceutical ingredient ionic liquids (API-ILs) that show potent antiproliferative activities against five different human cancer cell lines: T47D (breast), PC3 (prostate), HepG2 (liver), MG63 (osteosarcoma), and RKO (colon). Some API-ILs showed IC50 values between 5 and 42 nM, activities that stand in dramatic contrast to the negligible cytotoxic activity level shown by the ampicillin sodium salt. Moreover, very low cytotoxicity against two primary cell lines-skin (SF) and gingival fibroblasts (GF)-indicates that the majority of these API-ILs are nontoxic to normal human cell lines. The most promising combination of antitumor activity and low toxicity toward healthy cells was observed for the 1-hydroxyethyl-3-methylimidazolium-ampicillin pair ([C2 OHMIM][Amp]), making this the most suitable lead API-IL for future studies.

  20. (Eco)toxicity and biodegradability of protic ionic liquids.

    PubMed

    Oliveira, Maria V S; Vidal, Bruna T; Melo, Claudia M; de Miranda, Rita de C M; Soares, Cleide M F; Coutinho, João A P; Ventura, Sónia P M; Mattedi, Silvana; Lima, Álvaro S

    2016-03-01

    Ionic liquids (ILs) are often claimed to be "environmentally friendly" compounds however, the knowledge of their potential toxicity towards different organisms and trophic levels is still limited, in particular when protic ionic liquids (PILs) are addressed. This study aims to evaluate the toxicity against various microorganisms and the biodegradability of four PILs namely, N-methyl-2-hydroxyethylammonium acetate, m-2-HEAA; N-methyl-2-hydroxyethylammonium propionate, m-2-HEAPr; N-methyl-2-hydroxyethylammonium butyrate, m-2-HEAB; and N-methyl-2-hydroxyethylammonium pentanoate, m-2-HEAP. The antimicrobial activity was determined against the two bacteria, Sthaplylococcus aureus ATCC-6533 and Escherichia coli CCT-0355; the yeast Candida albicans ATCC-76645; and the fungi Fusarium sp. LM03. The toxicity of all PILs was tested against the aquatic luminescent marine bacterium Vibrio fischeri using the Microtox(®) test. The impact of the PILs was also studied regarding their effect on lettuce seeds (Lactuta sativa). The biodegradability of these PILs was evaluated using the ratio between the biochemical oxygen demand (BOD) and the chemical oxygen demand (COD). The results show that, in general, the elongation of the alkyl chain tends to increase the negative impact of the PILs towards the organisms and biological systems under study. According to these results, m-2-HEAA and m-2-HEAP are the less and most toxic PILs studied in this work, respectively. Additionally, all the PILs have demonstrated low biodegradability.

  1. Development of an Ionic-Liquid Absorption Heat Pump

    SciTech Connect

    Holcomb, Don

    2011-03-29

    Solar Fueled Products (SFP) is developing an innovative ionic-liquid absorption heat pump (ILAHP). The development of an ILAHP is extremely significant, as it could result in annual savings of more than 190 billion kW h of electrical energy and $19 billion. This absorption cooler uses about 75 percent less electricity than conventional cooling and heating units. The ILAHP also has significant environmental sustainability benefits, due to reduced CO2 emissions. Phase I established the feasibility and showed the economic viability of an ILAHP with these key accomplishments: • Used the breakthrough capabilities provided by ionic liquids which overcome the key difficulties of the common absorption coolers. • Showed that the theoretical thermodynamic performance of an ILAHP is similar to existing absorption-cooling systems. • Established that the half-effect absorption cycle reduces the peak generator temperature, improving collector efficiency and reducing collector area. • Component testing demonstrated that the most critical components, absorber and generator, operate well with conventional heat exchangers. • Showed the economic viability of an ILAHP. The significant energy savings, sustainability benefits, and economic viability are compelling reasons to continue the ILAHP development.

  2. Charge screening between anionic and cationic surfactants in ionic liquids.

    PubMed

    Chen, Lang G; Bermudez, Harry

    2013-03-01

    The aggregation and interfacial behavior of mixtures of anionic (sodium dodecylsulfate, SDS) and cationic (dodecylammonium bromide, DTAB) surfactants were investigated. A room-temperature ionic liquid (IL) was explored as a solvent for the SDS/DTAB system and compared to water. The critical micelle concentration (cmc) and composition in mixed micelles were determined for both solvents. Our experiments showed nearly ideal mixing of SDS/DTAB over the entire composition range and suggest that charge screening is prominent in ILs. This behavior is in sharp contrast to the strong electrostatic attraction and a multiphase composition gap in water. Two models by Clint and Rubingh, which describe ideal and nonideal micellar behavior, respectively, are discussed on the basis of our results. According to Rubingh's model, the composition of mixed micelles is gradually changing with the bulk composition in ILs but tends to be a 1:1 ratio in water. The results here are further support of the strong charge screening in ionic liquids.

  3. Separation of Fission Products Based on Ionic Liquids: Anion Effect

    SciTech Connect

    Luo, Huimin; Dai, Sheng; Bonnesen, Peter V.

    2004-03-28

    The applications of ionic liquids (ILs) as new separation media have been actively investigated recently. The most commonly studied class of ILs for such applications is based on dialkyl imidazolium cations. In comparison with conventional molecular solvents, ILs exhibit enhanced distribution coefficients for a number of complexing neutral ligands in extraction of metal ions from aqueous solutions. The effect of the alkyl chain length of imidazolium cations on the distribution coefficients of solvent extraction using crown ethers was the subject of a number of the previous investigations. The distribution coefficients have been found to decrease with the alkyl chain length of the IL cations. This observation implies that the extraction process also involves the exchange of the IL cations with metal ions. The longer the alkyl chain lengths of the IL cations are, the more hydrophobic the IL cations are and the more difficult to be transported into aqueous phases via ion exchange. Accordingly, the ion-exchange process is another unique property of IL-based extractions involving charged species. Here, we report the investigation about the effect of the variation of IL anions on the solvent extraction of metal ions using crown ethers as extractants. The elucidation of different solvation effects involved in ionic liquids could lead to optimized separation media for these novel solvents.

  4. Polarizability effects on the structure and dynamics of ionic liquids

    SciTech Connect

    Cavalcante, Ary de Oliveira; Ribeiro, Mauro C. C.; Skaf, Munir S.

    2014-04-14

    Polarization effects on the structure and dynamics of ionic liquids are investigated using molecular dynamics simulations. Four different ionic liquids were simulated, formed by the anions Cl{sup −} and PF{sub 6}{sup −}, treated as single fixed charge sites, and the 1-n-alkyl-3-methylimidazolium cations (1-ethyl and 1-butyl-), which are polarizable. The partial charge fluctuation of the cations is provided by the electronegativity equalization model (EEM) and a complete parameter set for the cations electronegativity (χ) and hardness (J) is presented. Results obtained from a non-polarizable model for the cations are also reported for comparison. Relative to the fixed charged model, the equilibrium structure of the first solvation shell around the imidazolium cations shows that inclusion of EEM polarization forces brings cations closer to each other and that anions are preferentially distributed above and below the plane of the imidazolium ring. The polarizable model yields faster translational and reorientational dynamics than the fixed charges model in the rotational-diffusion regime. In this sense, the polarizable model dynamics is in better agreement with the experimental data.

  5. Using Ionic Liquids in Selective Hydrocarbon Conversion Processes

    SciTech Connect

    Tang, Yongchun; Periana, Roy; Chen, Weiqun; van Duin, Adri; Nielsen, Robert; Shuler, Patrick; Ma, Qisheng; Blanco, Mario; Li, Zaiwei; Oxgaard, Jonas; Cheng, Jihong; Cheung, Sam; Pudar, Sanja

    2009-09-28

    This is the Final Report of the five-year project Using Ionic Liquids in Selective Hydrocarbon Conversion Processes (DE-FC36-04GO14276, July 1, 2004- June 30, 2009), in which we present our major accomplishments with detailed descriptions of our experimental and theoretical efforts. Upon the successful conduction of this project, we have followed our proposed breakdown work structure completing most of the technical tasks. Finally, we have developed and demonstrated several optimized homogenously catalytic methane conversion systems involving applications of novel ionic liquids, which present much more superior performance than the Catalytica system (the best-to-date system) in terms of three times higher reaction rates and longer catalysts lifetime and much stronger resistance to water deactivation. We have developed in-depth mechanistic understandings on the complicated chemistry involved in homogenously catalytic methane oxidation as well as developed the unique yet effective experimental protocols (reactors, analytical tools and screening methodologies) for achieving a highly efficient yet economically feasible and environmentally friendly catalytic methane conversion system. The most important findings have been published, patented as well as reported to DOE in this Final Report and our 20 Quarterly Reports.

  6. (Eco)toxicity and biodegradability of protic ionic liquids.

    PubMed

    Oliveira, Maria V S; Vidal, Bruna T; Melo, Claudia M; de Miranda, Rita de C M; Soares, Cleide M F; Coutinho, João A P; Ventura, Sónia P M; Mattedi, Silvana; Lima, Álvaro S

    2016-03-01

    Ionic liquids (ILs) are often claimed to be "environmentally friendly" compounds however, the knowledge of their potential toxicity towards different organisms and trophic levels is still limited, in particular when protic ionic liquids (PILs) are addressed. This study aims to evaluate the toxicity against various microorganisms and the biodegradability of four PILs namely, N-methyl-2-hydroxyethylammonium acetate, m-2-HEAA; N-methyl-2-hydroxyethylammonium propionate, m-2-HEAPr; N-methyl-2-hydroxyethylammonium butyrate, m-2-HEAB; and N-methyl-2-hydroxyethylammonium pentanoate, m-2-HEAP. The antimicrobial activity was determined against the two bacteria, Sthaplylococcus aureus ATCC-6533 and Escherichia coli CCT-0355; the yeast Candida albicans ATCC-76645; and the fungi Fusarium sp. LM03. The toxicity of all PILs was tested against the aquatic luminescent marine bacterium Vibrio fischeri using the Microtox(®) test. The impact of the PILs was also studied regarding their effect on lettuce seeds (Lactuta sativa). The biodegradability of these PILs was evaluated using the ratio between the biochemical oxygen demand (BOD) and the chemical oxygen demand (COD). The results show that, in general, the elongation of the alkyl chain tends to increase the negative impact of the PILs towards the organisms and biological systems under study. According to these results, m-2-HEAA and m-2-HEAP are the less and most toxic PILs studied in this work, respectively. Additionally, all the PILs have demonstrated low biodegradability. PMID:26796340

  7. Amphiphilic behavior of two phosphonium based ionic liquids.

    PubMed

    Mukherjee, Indrajyoti; Mukherjee, Suvasree; Naskar, Bappaditya; Ghosh, Soumen; Moulik, Satya P

    2013-04-01

    Solution and surface chemical behavior of two phosphonium based ionic liquids triisobutyl (methyl) phosphonium tosylate (IL-1) and trihexyl (tetradecyl) phosphonium bis 2,4,4-(trimethylpentyl)phosphinate (IL-2) have been studied. The polar IL-1 is surface active and water soluble, whereas the weakly polar IL-2 is more surface active with very low aqueous solubility. IL-1 does not form micelles but affects the micellization properties of ionic, nonionic, and zwitterionic surfactants more strongly than conventional electrolytes. IL-2 itself forms micelles and mixed micelles with Triton X-100 (TX-100) in aqueous solution. It also forms Langmuir monolayers of liquid expanded type, at the air/water interface. IL-1 can replace water in forming microemulsions with the oil isopropylmyristate (IPM), stabilized by IL-2 (surfactant)+isopropanol (IP as a co-surfactant) like the IL-1/IPM/(IL-2+IP) system. It produces a large monophasic zone in the pseudoternary phase diagram. The thermodynamics of formation of the microemulsions of IL-1 in oil (IPM) have been examined. The dimensions and the polydispersity of the dispersed nano-droplets in the microemulsions have been determined by DLS. The thermal stability of the microemulsion forming systems has also been studied. ILs studied against Sarcoma-180 cell lines have evidenced proficient anti-cancer activity of IL-1 and moderate activity of IL-2. PMID:23317771

  8. Interactions of Ionic Liquids with Uranium and its Bioreduction

    SciTech Connect

    Zhang, C.; Francis, A.

    2012-09-18

    We investigated the influence of ionic liquids (ILs) 1-butyl-3-methylimidazolium hexafluorophosphate [BMIM]{sup +}[PF{sub 6}]{sup -}, N-ethylpyridinium trifluoroacetate [EtPy]{sup +}[CF{sub 3}COO]{sup -} and N-ethylpyridinium tetrafluoroborate [Et-Py]{sup +}[BF{sub 4}]{sup -} on uranium reduction by Clostridium sp. under anaerobic conditions. Potentiometric titration, UV-vis spectrophotometry, LC-MS and EXAFS analyses showed monodentate complexation between uranyl and BF{sub 4}{sup -} PF{sub 6}{sup -}; and bidentate complexation with CF{sub 3}COO{sup -}. Ionic liquids affected the growth of Clostridium sp. as evidenced by decrease in optical density, changes in pH, gas production, and the extent of U(VI) reduction and precipitation of U(IV) from solution. Reduction of U(VI) to U(IV) was observed in the presence of [EtPy][BF{sub 4}] and [BMIM][PF{sub 6}] but not with [EtPy][CF{sub 3}COO].

  9. Spatial-decomposition analysis of electrical conductivity in ionic liquid.

    PubMed

    Tu, Kai-Min; Ishizuka, Ryosuke; Matubayasi, Nobuyuki

    2014-12-28

    The electrical conductivity of room temperature ionic liquid (IL) is investigated with molecular dynamics simulation. A trajectory of 1 μs in total is analyzed for the ionic liquid [C4mim][NTf2] (1-n-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, and the anion is also called TFSI or TFSA), and the ion motions are examined in direct connection to the conductivity within the framework formulated previously [K.-M. Tu, R. Ishizuka, and N. Matubayasi, J. Chem. Phys. 141, 044126 (2014)]. As a transport coefficient, the computed electrical conductivity is in fair agreement with the experiment. The conductivity is then decomposed into the autocorrelation term of Nernst-Einstein form and the cross-correlation term describing the two-body motions of ions, and the cross-correlation term is further decomposed spatially to incorporate the structural insights on ion configurations into the dynamic picture. It is observed that the ion-pair contribution to the conductivity is not spatially localized and extends beyond the first coordination shell. The extent of localization of the cross-correlation effect in the conductivity is in correspondence to that of the spatial correlation represented by radial distribution function, which persists over nanometer scale.

  10. Investigation of Carbon-2 Substituted Imidazoles and Their Corresponding Ionic Liquids

    SciTech Connect

    Liao, Chen; Xiang, Zhu; Sun, Xiao-Guang; Dai, Sheng

    2011-01-01

    The functionality at the C-2 position of the imidazole ring plays a key role in defining the chemical properties of the imidazoles and their corresponding ionic liquids. Imidazoles 1 6 with different C-2 functionality were synthesized and their corresponding ionic liquids were systematically investigated. Based on their physical properties the six imidazoles can be divided into three groups. 1) The imidazoles 2 and 3 are capable of self-polymerization to form poly(ionic liquid)s, and they are characterized with a strong leaving group at the C-2 position. 2) The imidazoles 4 and 5 can form ionic liquids, but they are very sensitive to moisture. 3) The imidazoles 1 and 6 can form stable ionic liquids, and their stabilities were influenced by the electronic effects of the substituents at the C-2 position.

  11. Selective extraction of copper, mercury, silver and palladium ionsfrom water using hydrophobic ionic liquids.

    SciTech Connect

    Papaiconomou, Nicolas; Lee, Jong-Min; Salminen, Justin; VonStosch, Moritz; Prausnitz, John M.

    2007-06-25

    Extraction of dilute metal ions from water was performed near room temperature with a variety of ionic liquids. Distribution coefficients are reported for fourteen metal ions extracted with ionic liquids containing cations 1-octyl-4-methylpyridinium [4MOPYR]{sup +}, 1-methyl-1-octylpyrrolidinium [MOPYRRO]{sup +} or 1-methyl-1-octylpiperidinium [MOPIP]{sup +}, and anions tetrafluoroborate [BF{sub 4}]{sup +}, trifluoromethyl sulfonate [TfO]{sup +} or nonafluorobutyl sulfonate [NfO]{sup +}. Ionic liquids containing octylpyridinium cations are very good for extracting mercury ions. However, other metal ions were not significantly extracted by any of these ionic liquids. Extractions were also performed with four new task-specific ionic liquids. Such liquids containing a disulfide functional group are efficient and selective for mercury and copper, whereas those containing a nitrile functional group are efficient and selective for silver and palladium.

  12. Determination of optimal ionic liquid for organic single-crystal field-effect transistors

    NASA Astrophysics Data System (ADS)

    Ono, S.; Miwa, K.; Seki, S.

    2016-02-01

    We investigate organic single-crystal field-effect transistors with various ionic liquids as gate dielectric. We find that the mobility of the field-effect transistors for both p-type and n-type organic semiconductors increases with decreasing total capacitance of the ionic liquid. However, it does not depend on the ion species at the interface between the organic semiconductor and the ionic liquid. By choosing an appropriate ionic liquid, a high carrier mobility of 12.4 cm2/V s in rubrene single crystals (p-type) and 0.13 cm2/V s in 7.7.8.8-Tetracyanoquinodimethane single crystals (n-type) are achieved. This study clarifies the influence of ionic liquids on the device performance of organic field-effect transistors and shows a way to maximize carrier mobility at the solid/liquid interface.

  13. Poly(ionic liquid)/Ionic Liquid Ion-Gels with High "Free" Ionic Liquid Content: Platform Membrane Materials for CO2/Light Gas Separations.

    PubMed

    Cowan, Matthew G; Gin, Douglas L; Noble, Richard D

    2016-04-19

    -films (ca. 100-nm-thick active layer). Traditional polymeric membrane materials are limited by a trade-off between permeability and selectivity empirically described by the "Robeson upper bound"-placing the desired membrane properties beyond reach. Therefore, the investigation of advanced and composite materials that can overcome the limitations of traditional polymeric materials is the focus of significant academic and industrial research. In particular, there has been substantial work on ionic-liquid (IL)-based materials due to their gas transport properties. This review provides an overview of our collaborative work on developing poly(ionic liquid)/ionic liquid (PIL/IL) ion-gel membrane technology. We detail developmental work on the preparation of PIL/IL composites and describe how this chemical technology was adapted to allow the roll-to-roll processing and preparation of membranes with defect-free active layers ca. 100 nm thick, CO2 permeances of over 6000 GPU, and CO2/N2 selectivity of ≥20-properties with the potential to reduce the cost of CO2 removal from coal-fired power plant flue gas to ca. $15 per ton of CO2 captured. Additionally, we examine the materials developments that have produced advanced PIL/IL composite membranes. These advancements include cross-linked PIL/IL blends, step-growth PIL/IL networks with facilitated transport groups, and PIL/IL composites with microporous additives for CO2/CH4 separations. PMID:27046045

  14. Poly(ionic liquid)/Ionic Liquid Ion-Gels with High "Free" Ionic Liquid Content: Platform Membrane Materials for CO2/Light Gas Separations.

    PubMed

    Cowan, Matthew G; Gin, Douglas L; Noble, Richard D

    2016-04-19

    -films (ca. 100-nm-thick active layer). Traditional polymeric membrane materials are limited by a trade-off between permeability and selectivity empirically described by the "Robeson upper bound"-placing the desired membrane properties beyond reach. Therefore, the investigation of advanced and composite materials that can overcome the limitations of traditional polymeric materials is the focus of significant academic and industrial research. In particular, there has been substantial work on ionic-liquid (IL)-based materials due to their gas transport properties. This review provides an overview of our collaborative work on developing poly(ionic liquid)/ionic liquid (PIL/IL) ion-gel membrane technology. We detail developmental work on the preparation of PIL/IL composites and describe how this chemical technology was adapted to allow the roll-to-roll processing and preparation of membranes with defect-free active layers ca. 100 nm thick, CO2 permeances of over 6000 GPU, and CO2/N2 selectivity of ≥20-properties with the potential to reduce the cost of CO2 removal from coal-fired power plant flue gas to ca. $15 per ton of CO2 captured. Additionally, we examine the materials developments that have produced advanced PIL/IL composite membranes. These advancements include cross-linked PIL/IL blends, step-growth PIL/IL networks with facilitated transport groups, and PIL/IL composites with microporous additives for CO2/CH4 separations.

  15. Ionic Liquids and New Proton Exchange Membranes for Fuel Cells

    NASA Technical Reports Server (NTRS)

    Belieres, Jean-Philippe

    2004-01-01

    There is currently a great surge of activity in fuel cell research as laboratories across the world seek to take advantage of the high energy capacity provided by &el cells relative to those of other portable electrochemical power systems. Much of this activity is aimed at high temperature fie1 cells, and a vital component of such &el cells must be the availability of a high temperature stable proton-permeable membrane. NASA Glenn Research Center is greatly involved in developing this technology. Other approaches to the high temperature fuel cell involve the use of single- component or almost-single-component electrolytes that provide a path for protons through the cell. A heavily researched case is the phosphoric acid fuel cell, in which the electrolyte is almost pure phosphoric acid and the cathode reaction produces water directly. The phosphoric acid fie1 cell delivers an open circuit voltage of 0.9 V falling to about 0.7 V under operating conditions at 170 C. The proton transport mechanism is mainly vehicular in character according to the viscosity/conductance relation. Here we describe some Proton Transfer Ionic Liquids (PTILs) with low vapor pressure and high temperature stability that have conductivities of unprecedented magnitude for non-aqueous systems. The first requirement of an ionic liquid is that, contrary to experience with most liquids consisting of ions, it must have a melting point that is not much above room temperature. The limit commonly suggested is 100 C. PTILs constitute an interesting class of non-corrosive proton-exchange electrolyte, which can serve well in high temperature (T = 100 - 250 C) fuel cell applications. We will present cell performance data showing that the open circuit voltage output, and the performance of a simple H2(g)Pt/PTIL/Pt/O2(g) fuel cell may be superior to those of the equivalent phosphoric acid electrolyte fuel cell both at ambient temperature and temperatures up to and above 200 C. My work at NASA Glenn Research

  16. Thermal properties of ionic systems near the liquid-liquid critical point.

    PubMed

    Méndez-Castro, Pablo; Troncoso, Jacobo; Pérez-Sánchez, Germán; Peleteiro, José; Romaní, Luis

    2011-12-01

    Isobaric heat capacity per unit volume, C(p), and excess molar enthalpy, h(E), were determined in the vicinity of the critical point for a set of binary systems formed by an ionic liquid and a molecular solvent. Moreover, and, since critical composition had to be accurately determined, liquid-liquid equilibrium curves were also obtained using a calorimetric method. The systems were selected with a view on representing, near room temperature, examples from clearly solvophobic to clearly coulombic behavior, which traditionally was related with the electric permittivity of the solvent. The chosen molecular compounds are: ethanol, 1-butanol, 1-hexanol, 1,3-dichloropropane, and diethylcarbonate, whereas ionic liquids are formed by imidazolium-based cations and tetrafluoroborate or bis-(trifluromethylsulfonyl)amide anions. The results reveal that solvophobic critical behavior-systems with molecular solvents of high dielectric permittivity-is very similar to that found for molecular binary systems. However, coulombic systems-those with low permittivity molecular solvents-show strong deviations from the results usually found for these magnitudes near the liquid-liquid phase transition. They present an extremely small critical anomaly in C(p)-several orders of magnitude lower than those typically obtained for binary mixtures-and extremely low h(E)-for one system even negative, fact not observed, up to date, for any liquid-liquid transition in the nearness of an upper critical solution temperature.

  17. Solid-liquid equilibria of binary mixtures of fluorinated ionic liquids.

    PubMed

    Teles, Ana Rita R; Correia, Helga; Maximo, Guilherme J; Rebelo, Luís P N; Freire, Mara G; Pereiro, Ana B; Coutinho, João A P

    2016-09-28

    Within ionic liquids, fluorinated ionic liquids (FILs) present unique physico-chemical properties and potential applications in several fields. However, the melting point of these neoteric compounds is usually higher due to the presence of fluorine atoms. This drawback may be resolved by, for instance, mixing different FILs to create eutectic mixtures. In this work, binary mixtures of fluoro-containing and fluorinated ionic liquids were considered with the aim of decreasing their melting temperatures as well as understanding and characterizing these mixtures and their phase transitions. Five FILs were selected, allowing the investigation of four binary mixtures, each of them with a common ion. Their solid-liquid and solid-solid equilibria were studied by differential scanning calorimetry and the non-ideality of the mixtures was investigated. Overall, a variety of solid-liquid equilibria with systems exhibiting eutectic behavior, polymorphs with solid-solid phase transitions, and the formation of intermediate compounds and solid solutions were surprisingly found. In addition to these intriguing behaviours, novel FILs with lower melting temperatures were obtained by the formation of binary systems, thus enlarging the application range of FILs at lower temperatures. PMID:27603428

  18. Solid-liquid equilibria of binary mixtures of fluorinated ionic liquids.

    PubMed

    Teles, Ana Rita R; Correia, Helga; Maximo, Guilherme J; Rebelo, Luís P N; Freire, Mara G; Pereiro, Ana B; Coutinho, João A P

    2016-09-28

    Within ionic liquids, fluorinated ionic liquids (FILs) present unique physico-chemical properties and potential applications in several fields. However, the melting point of these neoteric compounds is usually higher due to the presence of fluorine atoms. This drawback may be resolved by, for instance, mixing different FILs to create eutectic mixtures. In this work, binary mixtures of fluoro-containing and fluorinated ionic liquids were considered with the aim of decreasing their melting temperatures as well as understanding and characterizing these mixtures and their phase transitions. Five FILs were selected, allowing the investigation of four binary mixtures, each of them with a common ion. Their solid-liquid and solid-solid equilibria were studied by differential scanning calorimetry and the non-ideality of the mixtures was investigated. Overall, a variety of solid-liquid equilibria with systems exhibiting eutectic behavior, polymorphs with solid-solid phase transitions, and the formation of intermediate compounds and solid solutions were surprisingly found. In addition to these intriguing behaviours, novel FILs with lower melting temperatures were obtained by the formation of binary systems, thus enlarging the application range of FILs at lower temperatures.

  19. Superfluorinated Ionic Liquid Crystals Based on Supramolecular, Halogen-Bonded Anions.

    PubMed

    Cavallo, Gabriella; Terraneo, Giancarlo; Monfredini, Alessandro; Saccone, Marco; Priimagi, Arri; Pilati, Tullio; Resnati, Giuseppe; Metrangolo, Pierangelo; Bruce, Duncan W

    2016-05-17

    Unconventional ionic liquid crystals in which the liquid crystallinity is enabled by halogen-bonded supramolecular anions [Cn F2 n+1 -I⋅⋅⋅I⋅⋅⋅I-Cn F2 n+1 ](-) are reported. The material system is unique in many ways, demonstrating for the first time 1) ionic, halogen-bonded liquid crystals, and 2) imidazolium-based ionic liquid crystals in which the occurrence of liquid crystallinity is not driven by the alkyl chains of the cation. PMID:27073033

  20. Superfluorinated Ionic Liquid Crystals Based on Supramolecular, Halogen-Bonded Anions.

    PubMed

    Cavallo, Gabriella; Terraneo, Giancarlo; Monfredini, Alessandro; Saccone, Marco; Priimagi, Arri; Pilati, Tullio; Resnati, Giuseppe; Metrangolo, Pierangelo; Bruce, Duncan W

    2016-05-17

    Unconventional ionic liquid crystals in which the liquid crystallinity is enabled by halogen-bonded supramolecular anions [Cn F2 n+1 -I⋅⋅⋅I⋅⋅⋅I-Cn F2 n+1 ](-) are reported. The material system is unique in many ways, demonstrating for the first time 1) ionic, halogen-bonded liquid crystals, and 2) imidazolium-based ionic liquid crystals in which the occurrence of liquid crystallinity is not driven by the alkyl chains of the cation.

  1. Superfluorinated Ionic Liquid Crystals Based on Supramolecular, Halogen‐Bonded Anions

    PubMed Central

    Terraneo, Giancarlo; Monfredini, Alessandro; Saccone, Marco; Priimagi, Arri; Pilati, Tullio

    2016-01-01

    Abstract Unconventional ionic liquid crystals in which the liquid crystallinity is enabled by halogen‐bonded supramolecular anions [CnF2 n+1‐I⋅⋅⋅I⋅⋅⋅I‐CnF2 n+1]− are reported. The material system is unique in many ways, demonstrating for the first time 1) ionic, halogen‐bonded liquid crystals, and 2) imidazolium‐based ionic liquid crystals in which the occurrence of liquid crystallinity is not driven by the alkyl chains of the cation. PMID:27073033

  2. Enhanced electrical transport in ionic liquid dispersed TMAI-PEO solid polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Gupta, Neha; Rathore, Munesh; Dalvi, Anshuman; Kumar, Anil

    2014-04-01

    A polymer composite is prepared by dispersing ionic liquid [Bmim][BF4] in Polyethylene oxide-tetra methyl ammonium iodide composite and subsequent microwave treatment. X-ray diffraction patterns confirm the composite nature. To explore possibility of proton conductivity in these films, electrical transport is studied by impedance spectroscopy and DC polarization. It is revealed that addition of ionic liquid in host TMAI-PEO solid polymer electrolyte enhances the conductivity by ˜ 2 orders of magnitude. Polarization measurements suggest that composites are essentially ion conducting in nature. The maximum ionic conductivity is found to be ˜2 × 10-5 for 10 wt % ionic liquid.

  3. Enhanced electrical transport in ionic liquid dispersed TMAI-PEO solid polymer electrolyte

    SciTech Connect

    Gupta, Neha; Rathore, Munesh Dalvi, Anshuman; Kumar, Anil

    2014-04-24

    A polymer composite is prepared by dispersing ionic liquid [Bmim][BF{sub 4}] in Polyethylene oxide-tetra methyl ammonium iodide composite and subsequent microwave treatment. X-ray diffraction patterns confirm the composite nature. To explore possibility of proton conductivity in these films, electrical transport is studied by impedance spectroscopy and DC polarization. It is revealed that addition of ionic liquid in host TMAI-PEO solid polymer electrolyte enhances the conductivity by ∼ 2 orders of magnitude. Polarization measurements suggest that composites are essentially ion conducting in nature. The maximum ionic conductivity is found to be ∼2 × 10{sup −5} for 10 wt % ionic liquid.

  4. Water-in-ionic liquid microemulsion formation in solvent mixture of aprotic and protic imidazolium-based ionic liquids.

    PubMed

    Kusano, Takumi; Fujii, Kenta; Hashimoto, Kei; Shibayama, Mitsuhiro

    2014-10-14

    We report that water-in-ionic liquid microemulsions (MEs) are stably formed in an organic solvent-free system, i.e., a mixture of aprotic (aIL) and protic (pIL) imidazolium-based ionic liquids (ILs) containing the anionic surfactant dioctyl sulfosuccinate sodium salt (AOT). Structural investigations using dynamic light, small-angle X-ray, and small-angle neutron scatterings were performed for MEs formed in mixtures of aprotic 1-octyl-3-methylimidazolium ([C8mIm(+)]) and protic 1-alkylimidazolium ([CnImH(+)], n = 4 or 8) IL with a common anion, bis(trifluoromethanesulfonyl)amide ([TFSA(-)]). It was found that the ME structure strongly depends on the mixing composition of the aIL/pIL in the medium. The ME size appreciably increases with increasing pIL content in both [C8mIm(+)][TFSA(-)]/[C8ImH(+)][TFSA(-)] and [C8mIm(+)][TFSA(-)]/[C4ImH(+)][TFSA(-)] mixtures. The size is larger for the n = 8 system than that for the n = 4 system. These results indicate that the shell part of MEs is composed of both AOT and pIL cation, and the ME size can be tuned by pIL content in the aIL/pIL mixtures. PMID:25226398

  5. Ternary mixtures of ionic liquids for better salt solubility, conductivity and cation transference number improvement

    PubMed Central

    Karpierz, E.; Niedzicki, L.; Trzeciak, T.; Zawadzki, M.; Dranka, M.; Zachara, J.; Żukowska, G. Z.; Bitner-Michalska, A.; Wieczorek, W.

    2016-01-01

    We hereby present the new class of ionic liquid systems in which lithium salt is introduced into the solution as a lithium cation−glyme solvate. This modification leads to the reorganisation of solution structure, which entails release of free mobile lithium cation solvate and hence leads to the significant enhancement of ionic conductivity and lithium cation transference numbers. This new approach in composing electrolytes also enables even three-fold increase of salt concentration in ionic liquids. PMID:27767069

  6. Direct UV-spectroscopic measurement of selected ionic-liquid vapors

    SciTech Connect

    Dai, Sheng; Luo, Huimin; Wang, Congmin; Li, Haoran

    2010-01-01

    The hallmark of ionic liquids lies in their negligible vapor pressure. This ultralow vapor pressure makes it difficult to conduct the direct spectroscopic measurement of ionic-liquid vapors. In fact, there have been no electronic spectroscopic data currently available for ionic-liquid vapors. This deficiency significantly hampers the fundamental understanding of the unique molecular structures of ionic liquids. Herein, the UV absorption spectra of eight ionic liquids, such as 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([Bmim{sup +}] [Tf{sub 2}N{sup -}]) and 1-ethyl-3-methylimidazolium bis(perfluoroethylsulfonyl)imide ([Emim{sup +}][beti{sup -}]) in the vapor phase in a distillation-like environment, were measured through a high-temperature spectroscopic technique to fill this knowledge gap. Two strong absorption peaks of the [Bmim{sup +}][Tf{sub 2}N{sup -}] vapor lie at 202 and 211 nm, slightly different from those of the neat [Bmim{sup +}][Tf{sub 2}N{sup -}] thin film and its solution in water. Based on the quantitative determination of the vapor absorption spectra as a function of temperature, the vaporization enthalpies of these ionic liquids vapors were measured and found to be in good agreement with the corresponding literature values. This in situ method opens up a new avenue to study the nature of ionic-liquid vapors and to determine the vaporization enthalpies of ionic liquids.

  7. Bis-sulfonic acid ionic liquids for the conversion of fructose to 5-hydroxymethyl-2-furfural.

    PubMed

    Sim, Sang Eun; Kwon, Sunjeong; Koo, Sangho

    2012-10-31

    Homogenous bis-sulfonic acid ionic liquids (1 mol equiv.) in DMSO (10 mol equiv.) at 100 °C efficiently mediated the conversion of D-fructose into 5-hydroxymethyl-2-furfural in 75% isolated yield, which was roughly a 10% increment compared to the case of the mono-sulfonic acid ionic liquids.

  8. Polyanionic and polyzwitterionic azobenzene ionic liquid-functionalized silica materials and their chromatographic applications.

    PubMed

    Qiu, Hongdeng; Jiang, Shengxiang; Takafuji, Makoto; Ihara, Hirotaka

    2013-03-25

    New polyanionic and polyzwitterionic azobenzene ionic liquid-functionalized silica materials were designed based on the preparation of a new polymerizable azobenzene anionic monomer and either its cation-exchange with alkylimidazolium after grafting or the formation of an ionic liquid monomer pair before grafting onto silica. PMID:23417018

  9. Exploiting hydrophobic borohydride-rich ionic liquids as faster-igniting rocket fuels.

    PubMed

    Liu, Tianlin; Qi, Xiujuan; Huang, Shi; Jiang, Linhai; Li, Jianling; Tang, Chenglong; Zhang, Qinghua

    2016-02-01

    A family of hydrophobic borohydride-rich ionic liquids was developed, which exhibited the shortest ignition delay times of 1.7 milliseconds and the lowest viscosity (10 mPa s) of hypergolic ionic fluids, demonstrating their great potential as faster-igniting rocket fuels to replace toxic hydrazine derivatives in liquid bipropellant formulations.

  10. Comparison of Three Ionic Liquid-Tolerant Cellulases by Molecular Dynamics

    PubMed Central

    Jaeger, Vance; Burney, Patrick; Pfaendtner, Jim

    2015-01-01

    We have employed molecular dynamics to investigate the differences in ionic liquid tolerance among three distinct family 5 cellulases from Trichoderma viride, Thermogata maritima, and Pyrococcus horikoshii. Simulations of the three cellulases were conducted at a range of temperatures in various binary mixtures of the ionic liquid 1-ethyl-3-methyl-imidazolium acetate with water. Our analysis demonstrates that the effects of ionic liquids on the enzymes vary in each individual case from local structural disturbances to loss of much of one of the enzyme’s secondary structure. Enzymes with more negatively charged surfaces tend to resist destabilization by ionic liquids. Specific and unique structural changes in the enzymes are induced by the presence of ionic liquids. Disruption of the secondary structure, changes in dynamical motion, and local changes in the binding pocket are observed in less tolerant enzymes. Ionic-liquid-induced denaturation of one of the enzymes is indicated over the 500 ns timescale. In contrast, the most tolerant cellulase behaves similarly in water and in ionic-liquid-containing mixtures. Unlike the heuristic approaches that attempt to predict enzyme stability using macroscopic properties, molecular dynamics allows us to predict specific atomic-level structural and dynamical changes in an enzyme’s behavior induced by ionic liquids and other mixed solvents. Using these insights, we propose specific experimentally testable hypotheses regarding the origin of activity loss for each of the systems investigated in this study. PMID:25692593

  11. Concentration-dependent apparent partition coefficients of ionic liquids possessing ethyl- and bi-sulphate anions.

    PubMed

    Jain, Preeti; Kumar, Anil

    2016-01-14

    This study deals with the concentration dependent apparent partition coefficients log P of the ethyl and bisulfate-based ionic liquids. It is observed that the bisulfate-based ionic liquids show different behaviour with respect to concentration as compared to ethyl sulphate-based ionic liquids. It is significant and useful analysis for the further implementation of alkyl sulfate based ionic liquids as solvents in extraction processes. The log P values of the ethyl sulphate-based ionic liquids were noted to vary linearly with the concentration of the ionic liquid, whereas a flip-flop trend with the concentration for the log P values of the bisulphate-based ionic liquids was observed due to the difference in hydrogen bond accepting basicity and possibility of aggregate formation of these anions. The π-π interactions between the imidazolium and pyridinium rings were seen to affect the log P values. The alkyl chain length of anions was also observed to influence the log P values. The hydrophobicity of ionic liquid changes with the alkyl chain in the anion in the order; [HSO4](-) < [EtSO4](-) < [BuSO4](-).

  12. Unraveling the photoelectrochemical properties of ionic liquids: cognizance of partially reversible redox activity.

    PubMed

    Patel, Dipal B; Chauhan, Khushbu R; Mukhopadhyay, Indrajit

    2014-11-01

    Ionic liquid based electrolytes are gaining great interest in the field of photoenergy conversion. We have found that the ionic liquids namely BMIm Cl, BMIm PF6 and BMIm Tf2N inherently offer redox activity. The device performance of the photoelectrochemical (PEC) cells of the configuration PbOx (0.25 cm(2))|blank ionic liquids|platinum (2 cm(2)) was analyzed in detail to get insights into the working principle of such systems. It was found that partially reversible redox ion pairs diminish the performance of such cells as power generating devices. The partial redox activity of the ionic liquids was confirmed by a number of observations derived from the PEC spectra. The important parameter, Vredox, which determines the performance of any PEC cell was also calculated for all the ionic liquids. The difficulties that arise in high frequency C-V measurements for ionic liquid systems were overcome by choosing the appropriate probing frequency. The evaluated Vredox of BMIm Cl, BMIm PF6 and BMIm Tf2N ionic liquids was found to be -0.30, -0.20 and -0.78 V (vs. NHE), respectively. This study will be beneficial to understand the role of ionic liquids as redox active electrolyte media in several applications.

  13. Metal-air cell comprising an electrolyte with a room temperature ionic liquid and hygroscopic additive

    SciTech Connect

    Friesen, Cody A.; Krishnan, Ramkumar; Tang, Toni; Wolfe, Derek

    2014-08-19

    An electrochemical cell comprising an electrolyte comprising water and a hydrophobic ionic liquid comprising positive ions and negative ions. The electrochemical cell also includes an air electrode configured to absorb and reduce oxygen. A hydrophilic or hygroscopic additive modulates the hydrophobicity of the ionic liquid to maintain a concentration of the water in the electrolyte is between 0.001 mol % and 25 mol %.

  14. Microscopic characterization of tension wood cell walls of Japanese beech (Fagus crenata) treated with ionic liquids.

    PubMed

    Kanbayashi, Toru; Miyafuji, Hisashi

    2016-09-01

    Tension wood that is an abnormal part formed in angiosperms has been barely used for wood industry. In this study, to utilize the tension wood effectively by means of liquefaction using ionic liquid, we performed morphological and topochemical determination of the changes in tension wood of Japanese beech (Fagus crenata) during ionic liquid treatment at the cellular level using light microscopy, scanning electron microscopy and confocal Raman microscopy. Ionic liquid treatment induced cell wall swelling in tension wood. Changes in the tissue morphology treated with ionic liquids were different between normal wood and tension wood, moreover the types of ionic liquids. The ionic liquid 1-ethyl-3-methylimidazolium chloride liquefied gelatinous layers rapidly, whereas 1-ethylpyridinium bromide liquefied slowly but delignified selectively. These novel insights into the deconstruction behavior of tension wood cell walls during ionic liquid treatment provide better understanding of the liquefaction mechanism. The obtained knowledge will contribute to development of an effective chemical processing of tension wood using ionic liquids and lead to efficient use of wood resources. PMID:27285953

  15. Comparison of three ionic liquid-tolerant cellulases by molecular dynamics.

    PubMed

    Jaeger, Vance; Burney, Patrick; Pfaendtner, Jim

    2015-02-17

    We have employed molecular dynamics to investigate the differences in ionic liquid tolerance among three distinct family 5 cellulases from Trichoderma viride, Thermogata maritima, and Pyrococcus horikoshii. Simulations of the three cellulases were conducted at a range of temperatures in various binary mixtures of the ionic liquid 1-ethyl-3-methyl-imidazolium acetate with water. Our analysis demonstrates that the effects of ionic liquids on the enzymes vary in each individual case from local structural disturbances to loss of much of one of the enzyme's secondary structure. Enzymes with more negatively charged surfaces tend to resist destabilization by ionic liquids. Specific and unique structural changes in the enzymes are induced by the presence of ionic liquids. Disruption of the secondary structure, changes in dynamical motion, and local changes in the binding pocket are observed in less tolerant enzymes. Ionic-liquid-induced denaturation of one of the enzymes is indicated over the 500 ns timescale. In contrast, the most tolerant cellulase behaves similarly in water and in ionic-liquid-containing mixtures. Unlike the heuristic approaches that attempt to predict enzyme stability using macroscopic properties, molecular dynamics allows us to predict specific atomic-level structural and dynamical changes in an enzyme's behavior induced by ionic liquids and other mixed solvents. Using these insights, we propose specific experimentally testable hypotheses regarding the origin of activity loss for each of the systems investigated in this study. PMID:25692593

  16. Synthesis and Characterization of Novel Dimeric Ionic Liquids by Conventional Approaches

    PubMed Central

    Ganesan, Kilivelu; Alias, Yatimah

    2008-01-01

    The 1H-NMR shifts of the imidazolium protons of some novel dimeric ionic liquids were examined in various deuterated solvents. Interactions between the solvent and the imidazolium salt of butyl substituted ionic liquids were observed to give higher chemical shifts than methyl substitution. PMID:19325800

  17. Ionic Liquid as a Solvent and Catalyst for Acylation of Maltodextrin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Catalyst-free esterification of maltodextrin was carried out in ionic liquid. Stearate esters of maltodextrin were obtained in various degree of substitution (DS) when vinyl stearate or stearic acid was heated with maltodextrin in ionic liquid, 1-butyl-3-methylimidazolium cyanamide (bmim[dca]). Re...

  18. Microscopic characterization of tension wood cell walls of Japanese beech (Fagus crenata) treated with ionic liquids.

    PubMed

    Kanbayashi, Toru; Miyafuji, Hisashi

    2016-09-01

    Tension wood that is an abnormal part formed in angiosperms has been barely used for wood industry. In this study, to utilize the tension wood effectively by means of liquefaction using ionic liquid, we performed morphological and topochemical determination of the changes in tension wood of Japanese beech (Fagus crenata) during ionic liquid treatment at the cellular level using light microscopy, scanning electron microscopy and confocal Raman microscopy. Ionic liquid treatment induced cell wall swelling in tension wood. Changes in the tissue morphology treated with ionic liquids were different between normal wood and tension wood, moreover the types of ionic liquids. The ionic liquid 1-ethyl-3-methylimidazolium chloride liquefied gelatinous layers rapidly, whereas 1-ethylpyridinium bromide liquefied slowly but delignified selectively. These novel insights into the deconstruction behavior of tension wood cell walls during ionic liquid treatment provide better understanding of the liquefaction mechanism. The obtained knowledge will contribute to development of an effective chemical processing of tension wood using ionic liquids and lead to efficient use of wood resources.

  19. Method of purifying a gas stream using 1,2,3-triazolium ionic liquids

    DOEpatents

    Luebke, David; Nulwala, Hunald; Tang, Chau

    2014-12-09

    A method for separating a target gas from a gaseous mixture using 1,2,3-triazolium ionic liquids is presented. Industrial effluent streams may be cleaned by removing carbon dioxide from the stream by contacting the effluent stream with a 1,2,3-triazolium ionic liquid compound.

  20. Determination of water in room temperature ionic liquids by cathodic stripping voltammetry at a gold electrode.

    PubMed

    Zhao, Chuan; Bond, Alan M; Lu, Xunyu

    2012-03-20

    An electrochemical method based on cathodic stripping voltammetry at a gold electrode has been developed for the determination of water in ionic liquids. The technique has been applied to two aprotic ionic liquids, (1-butyl-3-ethylimidazolium tetrafluoroborate and 1-butyl-3-methylimidazolium hexafluorophosphate), and two protic ionic liquids, (bis(2-hydroxyethyl)ammonium acetate and triethylammonium acetate). When water is present in an ionic liquid, electrooxidation of a gold electrode forms gold oxides. Thus, application of an anodic potential scan or holding the potential of the electrode at a very positive value leads to accumulation of an oxide film. On applying a cathodic potential scan, a sensitive stripping peak is produced as a result of the reduction of gold oxide back to gold. The magnitude of the peak current generated from the stripping process is a function of the water concentration in an ionic liquid. The method requires no addition of reagents and can be used for the sensitive and in situ determination of water present in small volumes of ionic liquids. Importantly, the method allows the determination of water in the carboxylic acid-based ionic liquids, such as acetate-based protic ionic liquids, where the widely used Karl Fischer titration method suffering from an esterification side reaction which generates water as a side product.