Science.gov

Sample records for 1-aminocyclopropane-1-carboxylate synthase leads

  1. Glutathione Regulates 1-Aminocyclopropane-1-Carboxylate Synthase Transcription via WRKY33 and 1-Aminocyclopropane-1-Carboxylate Oxidase by Modulating Messenger RNA Stability to Induce Ethylene Synthesis during Stress.

    PubMed

    Datta, Riddhi; Kumar, Deepak; Sultana, Asma; Hazra, Saptarshi; Bhattacharyya, Dipto; Chattopadhyay, Sharmila

    2015-12-01

    Glutathione (GSH) plays a fundamental role in plant defense-signaling network. Recently, we have established the involvement of GSH with ethylene (ET) to combat environmental stress. However, the mechanism of GSH-ET interplay still remains unexplored. Here, we demonstrate that GSH induces ET biosynthesis by modulating the transcriptional and posttranscriptional regulations of its key enzymes, 1-aminocyclopropane-1-carboxylate synthase (ACS) and 1-aminocyclopropane-1-carboxylate oxidase (ACO). Transgenic Arabidopsis (Arabidopsis thaliana) plants with enhanced GSH content (AtECS) exhibited remarkable up-regulation of ACS2, ACS6, and ACO1 at transcript as well as protein levels, while they were down-regulated in the GSH-depleted phytoalexin deficient2-1 (pad2-1) mutant. We further observed that GSH induced ACS2 and ACS6 transcription in a WRKY33-dependent manner, while ACO1 transcription remained unaffected. On the other hand, the messenger RNA stability for ACO1 was found to be increased by GSH, which explains our above observations. In addition, we also identified the ACO1 protein to be a subject for S-glutathionylation, which is consistent with our in silico data. However, S-glutathionylation of ACS2 and ACS6 proteins was not detected. Further, the AtECS plants exhibited resistance to necrotrophic infection and salt stress, while the pad2-1 mutant was sensitive. Exogenously applied GSH could improve stress tolerance in wild-type plants but not in the ET-signaling mutant ethylene insensitive2-1, indicating that GSH-mediated resistance to these stresses occurs via an ET-mediated pathway. Together, our investigation reveals a dual-level regulation of ET biosynthesis by GSH during stress.

  2. Isolation and Molecular Characterization of 1-Aminocyclopropane-1-carboxylic Acid Synthase Genes in Hevea brasiliensis

    PubMed Central

    Zhu, Jia-Hong; Xu, Jing; Chang, Wen-Jun; Zhang, Zhi-Li

    2015-01-01

    Ethylene is an important factor that stimulates Hevea brasiliensis to produce natural rubber. 1-Aminocyclopropane-1-carboxylic acid synthase (ACS) is a rate-limiting enzyme in ethylene biosynthesis. However, knowledge of the ACS gene family of H. brasiliensis is limited. In this study, nine ACS-like genes were identified in H. brasiliensis. Sequence and phylogenetic analysis results confirmed that seven isozymes (HbACS1–7) of these nine ACS-like genes were similar to ACS isozymes with ACS activity in other plants. Expression analysis results showed that seven ACS genes were differentially expressed in roots, barks, flowers, and leaves of H. brasiliensis. However, no or low ACS gene expression was detected in the latex of H. brasiliensis. Moreover, seven genes were differentially up-regulated by ethylene treatment.These results provided relevant information to help determine the functions of the ACS gene in H. brasiliensis, particularly the functions in regulating ethylene stimulation of latex production. PMID:25690030

  3. Ethylene-Enhanced 1-Aminocyclopropane-1-carboxylic Acid Synthase Activity in Ripening Apples 1

    PubMed Central

    Bufler, Gebhard

    1984-01-01

    Apples (Malus sylvestris Mill, cv Golden Delicious) were treated before harvest with aminoethoxyvinylglycine (AVG). AVG is presumed to reversibly inhibit 1-aminocyclopropane-1-carboxylic acid (ACC) activity, but not the formation of ACC synthase. AVG treatment effectively blocked initiation of autocatalytic ethylene production and ripening of harvested apples. Exogenous ethylene induced extractable ACC synthase activity and ripening in AVG-treated apples. Removal of exogenous ethylene caused a rapid decline in ACC synthase activity and in CO2 production. The results with ripened, AVG-treated apples indicate (a) a dose-response relationship between ethylene and enhancement of ACC synthase activity with a half-maximal response at approximately 0.8 μl/l ethylene; (b) reversal of ethylene-enhanced ACC synthase activity by CO2; (c) enhancement of ACC synthase activity by the ethylene-activity analog propylene. Induction of ACC synthase activity, autocatalytic ethylene production, and ripening of preclimacteric apples not treated with AVG were delayed by 6 and 10% CO2, but not by 1.25% CO2. However, each of these CO2 concentrations reduced the rate of increase of ACC synthase activity. PMID:16663569

  4. Differential expression of two genes for 1-aminocyclopropane-1-carboxylate synthase in tomato fruits

    SciTech Connect

    Olson, D.C.; White, J.A.; Edelman, L.; Kende, H. ); Harkins, R.N. )

    1991-06-15

    1-Aminocyclopropane-1-carboxylate synthase is the regulated enzyme in the biosynthetic pathway of the plant hormone ethylene. A full-length cDNA encoding this enzyme has been cloned from tomato fruits. The authors report here the complete nucleotide and derived amino acid sequences of a cDNA encoding a second isoform of ACC synthase from tomato fruits. The cDNAs coding for both isoforms contain highly conserved regions that are surrounded by regions of low homology, especially at the 5{prime} and 3{prime} ends. Gene-specific probes were constructed to examine the expression of transcripts encoding the two ACC synthase isoforms under two conditions of enhanced ethylene formation--namely, during fruit ripening and in response to mechanical stress (wounding). The level of mRNA encoding both isoforms, ACC synthase 1 and 2, increased during ripening. In contrast, wounding caused an increase in only the level of mRNA coding for ACC synthase 1. Blot analysis of genomic DNA digested with restriction enzymes confirmed that ACC synthase 1 and 2 are encoded by different genes.

  5. Mutation in the gene encoding 1-aminocyclopropane-1-carboxylate synthase 4 (CitACS4) led to andromonoecy in watermelon.

    PubMed

    Ji, Gaojie; Zhang, Jie; Zhang, Haiying; Sun, Honghe; Gong, Guoyi; Shi, Jianting; Tian, Shouwei; Guo, Shaogui; Ren, Yi; Shen, Huolin; Gao, Junping; Xu, Yong

    2016-09-01

    Although it has been reported previously that ethylene plays a critical role in sex determination in cucurbit species, how the andromonoecy that carries both the male and hermaphroditic flowers is determined in watermelon is still unknown. Here we showed that the watermelon gene 1-aminocyclopropane-1-carboxylate synthase 4 (CitACS4), expressed specifically in carpel primordia, determines the andromonoecy in watermelon. Among four single nucleotide polymorphism (SNPs) and one InDel identified in the coding region of CitACS4, the C364W mutation located in the conserved box 6 was co-segregated with andromonoecy. Enzymatic analyses showed that the C364W mutation caused a reduced activity in CitACS4. We believe that the reduced CitACS4 activity may hamper the programmed cell death in stamen primordia, leading to the formation of hermaphroditic flowers. PMID:26839981

  6. Characterization and sequencing of the active site of 1-aminocyclopropane-1-carboxylate synthase

    SciTech Connect

    Yip, Wing-Kin; Dong, Jian-Guo; Yang, S.F. ); Kenny, J.W.; Thompson, G.A. )

    1990-10-01

    The pyridoxal phosphate (PLP)-dependent 1-aminocyclopropane-1-carboxylic acid (ACC) synthase the key enzyme in ethylene biosynthesis, is inactivated by its substrate S-adenosylmethionine (AdoMet). Apple ACC synthase was purified with an immunoaffinity gel, and its active site was probed with NaB{sup 3}H{sub 4} or Ado({sup 14}C)Met. Peptide sequencing of both {sup 3}H- and {sup 14}C-labeled peptides revealed a common dodecapeptide of Ser-Leu-Ser-Xaa-Asp-Leu-Gly-Leu-Pro-Gly-Phe-Arg, where Xaa was the modified, radioactive residue in each case. Acid hydrolysis of the {sup 3}H-labeled enzyme released radioactive N-pyridoxyllysine, indicating that the active-site peptide contained lysine at position 4. Mass spectrometry of the {sup 14}C-labeled peptide indicated a protonated molecular ion at m/z 1390.6, from which the mass of Xaa was calculated to be 229, a number that is equivalent to the mass of a lysine residue alkylated by the 2-aminobutyrate portion of AdoMet, as we previously proposed. These results indicate that the same active-site lysine binds the PLP and convalently links to the 2-aminobutyrate portion of AdoMet during inactivation. The active site of tomato ACC synthase was probed in the same manner with Ado ({sup 14}C)Met. Sequencing of the tomato active-site peptide revealed two highly conserved dodecapeptides; the minor peptide possessed a sequence identical to that of the apple enzyme, whereas the major peptide differed from the minor peptide in that methionine replaced leucine at position 6.

  7. Glutathione Regulates 1-Aminocyclopropane-1-Carboxylate Synthase Transcription via WRKY33 and 1-Aminocyclopropane-1-Carboxylate Oxidase by Modulating Messenger RNA Stability to Induce Ethylene Synthesis during Stress1[OPEN

    PubMed Central

    Kumar, Deepak; Hazra, Saptarshi; Chattopadhyay, Sharmila

    2015-01-01

    Glutathione (GSH) plays a fundamental role in plant defense-signaling network. Recently, we have established the involvement of GSH with ethylene (ET) to combat environmental stress. However, the mechanism of GSH-ET interplay still remains unexplored. Here, we demonstrate that GSH induces ET biosynthesis by modulating the transcriptional and posttranscriptional regulations of its key enzymes, 1-aminocyclopropane-1-carboxylate synthase (ACS) and 1-aminocyclopropane-1-carboxylate oxidase (ACO). Transgenic Arabidopsis (Arabidopsis thaliana) plants with enhanced GSH content (AtECS) exhibited remarkable up-regulation of ACS2, ACS6, and ACO1 at transcript as well as protein levels, while they were down-regulated in the GSH-depleted phytoalexin deficient2-1 (pad2-1) mutant. We further observed that GSH induced ACS2 and ACS6 transcription in a WRKY33-dependent manner, while ACO1 transcription remained unaffected. On the other hand, the messenger RNA stability for ACO1 was found to be increased by GSH, which explains our above observations. In addition, we also identified the ACO1 protein to be a subject for S-glutathionylation, which is consistent with our in silico data. However, S-glutathionylation of ACS2 and ACS6 proteins was not detected. Further, the AtECS plants exhibited resistance to necrotrophic infection and salt stress, while the pad2-1 mutant was sensitive. Exogenously applied GSH could improve stress tolerance in wild-type plants but not in the ET-signaling mutant ethylene insensitive2-1, indicating that GSH-mediated resistance to these stresses occurs via an ET-mediated pathway. Together, our investigation reveals a dual-level regulation of ET biosynthesis by GSH during stress. PMID:26463088

  8. Molecular cloning and expression analysis of an 1-aminocyclopropane-1-carboxylate synthase gene from Oncidium Gower Ramsey.

    PubMed

    Shi, Le-Song; Liu, Jin-Ping

    2016-01-01

    1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS) is a rate-limiting enzyme in the biosynthesis of ethylene which regulates many aspects of the plant development and responses to biotic and abiotic stresses. In this study, a full-length cDNA of ACC synthase, OnACS2, was cloned from the senescing flower of Oncidium Gower Ramsey by RACE. The full-length cDNA of OnACS2 (GenBank accession no. JQ822087) was 1557 bp in length with an open reading frame (ORF) of 1308 bp encoding for a protein of 435 amino acid residues. The predicted OnACS2 protein had a molecular mass of 49.1 kDa with pI value of 7.51. Phylogenetic analysis indicated its evolutionary relationships with corresponding orthologous sequences in orchids, Hosta ventricosa and monocots. Real-time PCR assay demonstrated that OnACS2 was constitutively expressed in all tested organs with the highest transcript level in the gynandria. Differential expression pattern of OnACS2 gene correlated to the ethylene production and the subsequent occurrence of senescent symptoms in flower suggested that OnACS2 probably played an important role in the initiation of flower senescence. PMID:26631967

  9. An insight into the sequential, structural and phylogenetic properties of banana 1-aminocyclopropane-1-carboxylate synthase 1 and study of its interaction with pyridoxal-5'-phosphate and aminoethoxyvinylglycine.

    PubMed

    Choudhury, Swarup Roy; Singh, Sanjay Kumar; Roy, Sujit; Sengupta, Dibyendu N

    2010-06-01

    In banana, ethylene production for ripening is accompanied by a dramatic increase in 1-aminocyclopropane-1-carboxylate (ACC) content, transcript level of Musa acuminata ACC synthase 1 (MA-ACS1) and the enzymatic activity of ACC synthase 1 at the onset of the climacteric period. MA-ACS1 catalyses the conversion of S-adenosyl-L-methionine (SAM) to ACC, the key regulatory step in ethylene biosynthesis. Multiple sequence alignments of 1-aminocyclopropane-1-carboxylate synthase (ACS) amino acid sequences based on database searches have indicated that MA-ACS1 is a highly conserved protein across the plant kingdom. This report describes an in silico analysis to provide the first important insightful information about the sequential, structural and phylogenetic characteristics of MA-ACS1. The three-dimensional structure of MA-ACS1, constructed based on homology modelling, in combination with the available data enabled a comparative mechanistic analysis of MA-ACS1 to explain the catalytic roles of the conserved and non-conserved active site residues. We have further demonstrated that, as in apple and tomato, banana- ACS1 (MA-ACS1) forms a homodimer and a complex with cofactor pyridoxal-5'-phosphate (PLP) and inhibitor aminoethoxyvinylglycine (AVG). We have also predicted that the residues from the PLP-binding pocket, essential for ligand binding, are mostly conserved across the MA-ACS1 structure and the competitive inhibitor AVG binds at a location adjacent to PLP. PMID:20689184

  10. An insight into the sequential, structural and phylogenetic properties of banana 1-aminocyclopropane-1-carboxylate synthase 1 and study of its interaction with pyridoxal-5'-phosphate and aminoethoxyvinylglycine.

    PubMed

    Choudhury, Swarup Roy; Singh, Sanjay Kumar; Roy, Sujit; Sengupta, Dibyendu N

    2010-06-01

    In banana, ethylene production for ripening is accompanied by a dramatic increase in 1-aminocyclopropane-1-carboxylate (ACC) content, transcript level of Musa acuminata ACC synthase 1 (MA-ACS1) and the enzymatic activity of ACC synthase 1 at the onset of the climacteric period. MA-ACS1 catalyses the conversion of S-adenosyl-L-methionine (SAM) to ACC, the key regulatory step in ethylene biosynthesis. Multiple sequence alignments of 1-aminocyclopropane-1-carboxylate synthase (ACS) amino acid sequences based on database searches have indicated that MA-ACS1 is a highly conserved protein across the plant kingdom. This report describes an in silico analysis to provide the first important insightful information about the sequential, structural and phylogenetic characteristics of MA-ACS1. The three-dimensional structure of MA-ACS1, constructed based on homology modelling, in combination with the available data enabled a comparative mechanistic analysis of MA-ACS1 to explain the catalytic roles of the conserved and non-conserved active site residues. We have further demonstrated that, as in apple and tomato, banana- ACS1 (MA-ACS1) forms a homodimer and a complex with cofactor pyridoxal-5'-phosphate (PLP) and inhibitor aminoethoxyvinylglycine (AVG). We have also predicted that the residues from the PLP-binding pocket, essential for ligand binding, are mostly conserved across the MA-ACS1 structure and the competitive inhibitor AVG binds at a location adjacent to PLP.

  11. Identification of a 1-aminocyclopropane-1-carboxylic acid synthase gene linked to the female (F) locus that enhances female sex expression in cucumber.

    PubMed Central

    Trebitsh, T; Staub, J E; O'Neill, S D

    1997-01-01

    Sex determination in cucumber (Cucumis sativus L.) is controlled largely by three genes: F, m, and a. The F and m loci interact to produce monoecious (M_f_) or gynoecious (M_f_) sex phenotypes. Ethylene and factors that induce ethylene biosynthesis, such as 1-aminocyclopropane-1-carboxylate (ACC) and auxin, also enhance female sex expression. A genomic sequence (CS-ACS1) encoding ACC synthase was amplified from genomic DNA by a polymerase chain reaction using degenerate oligonucleotide primers. Expression of CS-ACS1 is induced by auxin, but not by ACC, in wounded and intact shoot apices. Southern blo hybridization analysis of near-isogenic gynoecious (MMFF) and monoecious (MMff) lines derived from divers genetic backgrounds revealed the existence of an additional ACC synthase (CS-ACS1G) genomic sequence in the gynoecious lines. Sex phenotype analysis of a segregating F2 population detected a 100% correlation between the CS-ACS1G marker and the presence of the F locus. The CS-ACS1G gene is located in linkage group B coincident with the F locus, and in the population tested there was no recombination between the CS-ACS1G gene and the F locus. Collectively, these data suggest that CS-ACS1G is closely linked to the F locus and may play a pivotal role in the determination of sex in cucumber flowers. PMID:9085580

  12. Differential Expression of 1-Aminocyclopropane-1-Carboxylate Synthase Genes during Orchid Flower Senescence Induced by the Protein Phosphatase Inhibitor Okadaic Acid1

    PubMed Central

    Wang, Ning Ning; Yang, Shang Fa; Charng, Yee-yung

    2001-01-01

    Applying 10 pmol of okadaic acid (OA), a specific inhibitor of type 1 or type 2A serine/threonine protein phosphatases, to the orchid (Phalaenopsis species) stigma induced a dramatic increase in ethylene production and an accelerated senescence of the whole flower. Aminoethoxyvinylglycine or silver thiosulfate, inhibitors of ethylene biosynthesis or action, respectively, effectively inhibited the OA-induced ethylene production and retarded flower senescence, suggesting that the protein phosphatase inhibitor induced orchid flower senescence through an ethylene-mediated signaling pathway. OA treatment induced a differential expression pattern for the 1-aminocyclopropane-1-carboxylic acid synthase multigene family. Accumulation of Phal-ACS1 transcript in the stigma, labelum, and ovary induced by OA were higher than those induced by pollination as determined by “semiquantitative” reverse transcriptase-polymerase chain reaction. In contrast, the transcript levels of Phal-ACS2 and Phal-ACS3 induced by OA were much lower than those induced by pollination. Staurosporine, a protein kinase inhibitor, on the other hand, inhibited the OA-induced Phal-ACS1 expression in the stigma and delayed flower senescence. Our results suggest that a hyper-phosphorylation status of an unidentified protein(s) is involved in up-regulating the expression of Phal-ACS1 gene resulting in increased ethylene production and accelerated the senescence process of orchid flower. PMID:11351088

  13. 1-Aminocyclopropane-1-carboxylic acid (ACC) concentration and ACC synthase expression in soybean roots, root tips, and soybean cyst nematode (Heterodera glycines)-infected roots.

    PubMed

    Tucker, Mark L; Xue, Ping; Yang, Ronghui

    2010-01-01

    Colonization of plant roots by root knot and cyst nematodes requires a functional ethylene response pathway. However, ethylene plays many roles in root development and whether its role in nematode colonization is direct or indirect, for example lateral root initiation or root hair growth, is not known. The temporal requirement for ethylene and localized synthesis of ethylene during the life span of soybean cyst nematode (SCN) on soybean roots was further investigated. Although a significant increase in ethylene evolution was not detected from SCN-colonized roots, the concentration of the immediate precursor to ethylene, 1-aminocyclopropane-1-carboxylic acid (ACC), was higher in SCN-colonized root pieces and root tips than in other parts of the root. Moreover, expression analysis of 17 ACC synthase (ACS) genes indicated that a select set of ACS genes is expressed in SCN-colonized root pieces that is clearly different from the set of genes expressed in non-colonized roots or root tips. Semi-quantitative real-time PCR indicated that ACS transcript accumulation correlates with the high concentration of ACC in root tips. In addition, an ACS-like sequence was found in the public SCN nucleotide database. Acquisition of a full-length sequence for this mRNA (accession GQ389647) and alignment with transcripts for other well-characterized ACS proteins indicated that the nematode sequence is missing a key element required for ACS activity and therefore probably is not a functional ACS. Moreover, no significant amount of ACC was found in any growth stage of SCN that was tested.

  14. Gibberellic Acid, Synthetic Auxins, and Ethylene Differentially Modulate α-l-Arabinofuranosidase Activities in Antisense 1-Aminocyclopropane-1-Carboxylic Acid Synthase Tomato Pericarp Discs1

    PubMed Central

    Sozzi, Gabriel O.; Greve, L. Carl; Prody, Gerry A.; Labavitch, John M.

    2002-01-01

    α-l-Arabinofuranosidases (α-Afs) are plant enzymes capable of releasing terminal arabinofuranosyl residues from cell wall matrix polymers, as well as from different glycoconjugates. Three different α-Af isoforms were distinguished by size exclusion chromatography of protein extracts from control tomatoes (Lycopersicon esculentum) and an ethylene synthesis-suppressed (ESS) line expressing an antisense 1-aminocyclopropane-1-carboxylic synthase transgene. α-Af I and II are active throughout fruit ontogeny. α-Af I is the first Zn-dependent cell wall enzyme isolated from tomato pericarp tissues, thus suggesting the involvement of zinc in fruit cell wall metabolism. This isoform is inhibited by 1,10-phenanthroline, but remains stable in the presence of NaCl and sucrose. α-Af II activity accounts for over 80% of the total α-Af activity in 10-d-old fruit, but activity drops during ripening. In contrast, α-Af III is ethylene dependent and specifically active during ripening. α-Af I released monosaccharide arabinose from KOH-soluble polysaccharides from tomato cell walls, whereas α-Af II and III acted on Na2CO3-soluble pectins. Different α-Af isoform responses to gibberellic acid, synthetic auxins, and ethylene were followed by using a novel ESS mature-green tomato pericarp disc system. α-Af I and II activity increased when gibberellic acid or 2,4-dichlorophenoxyacetic acid was applied, whereas ethylene treatment enhanced only α-Af III activity. Results suggest that tomato α-Afs are encoded by a gene family under differential hormonal controls, and probably have different in vivo functions. The ESS pericarp explant system allows comprehensive studies involving effects of physiological levels of different growth regulators on gene expression and enzyme activity with negligible wound-induced ethylene production. PMID:12114586

  15. A Ser/Thr protein kinase phosphorylates MA-ACS1 (Musa acuminata 1-aminocyclopropane-1-carboxylic acid synthase 1) during banana fruit ripening.

    PubMed

    Choudhury, Swarup Roy; Roy, Sujit; Sengupta, Dibyendu N

    2012-08-01

    1-Aminocyclopropane-1-carboxylic acid synthase (ACS) catalyzes the rate-limiting step in ethylene biosynthesis during ripening. ACS isozymes are regulated both transcriptionally and post-translationally. However, in banana, an important climacteric fruit, little is known about post-translational regulation of ACS. Here, we report the post-translational modification of MA-ACS1 (Musa acuminata ACS1), a ripening inducible isozyme in the ACS family, which plays a key role in ethylene biosynthesis during banana fruit ripening. Immunoprecipitation analyses of phospholabeled protein extracts from banana fruit using affinity-purified anti-MA-ACS1 antibody have revealed phosphorylation of MA-ACS1, particularly in ripe fruit tissue. We have identified the induction of a 41-kDa protein kinase activity in pulp at the onset of ripening. The 41-kDa protein kinase has been identified as a putative protein kinase by MALDI-TOF/MS analysis. Biochemical analyses using partially purified protein kinase fraction from banana fruit have identified the protein kinase as a Ser/Thr family of protein kinase and its possible involvement in MA-ACS1 phosphorylation during ripening. In vitro phosphorylation analyses using synthetic peptides and site-directed mutagenized recombinant MA-ACS1 have revealed that serine 476 and 479 residues at the C-terminal region of MA-ACS1 are phosphorylated. Overall, this study provides important novel evidence for in vivo phosphorylation of MA-ACS1 at the molecular level as a possible mechanism of post-translational regulation of this key regulatory protein in ethylene signaling pathway in banana fruit during ripening. PMID:22419220

  16. Gibberellic acid, synthetic auxins, and ethylene differentially modulate alpha-L-Arabinofuranosidase activities in antisense 1-aminocyclopropane-1-carboxylic acid synthase tomato pericarp discs.

    PubMed

    Sozzi, Gabriel O; Greve, L Carl; Prody, Gerry A; Labavitch, John M

    2002-07-01

    Alpha-L-Arabinofuranosidases (alpha-Afs) are plant enzymes capable of releasing terminal arabinofuranosyl residues from cell wall matrix polymers, as well as from different glycoconjugates. Three different alpha-Af isoforms were distinguished by size exclusion chromatography of protein extracts from control tomatoes (Lycopersicon esculentum) and an ethylene synthesis-suppressed (ESS) line expressing an antisense 1-aminocyclopropane-1-carboxylic synthase transgene. alpha-Af I and II are active throughout fruit ontogeny. alpha-Af I is the first Zn-dependent cell wall enzyme isolated from tomato pericarp tissues, thus suggesting the involvement of zinc in fruit cell wall metabolism. This isoform is inhibited by 1,10-phenanthroline, but remains stable in the presence of NaCl and sucrose. alpha-Af II activity accounts for over 80% of the total alpha-Af activity in 10-d-old fruit, but activity drops during ripening. In contrast, alpha-Af III is ethylene dependent and specifically active during ripening. alpha-Af I released monosaccharide arabinose from KOH-soluble polysaccharides from tomato cell walls, whereas alpha-Af II and III acted on Na(2)CO(3)-soluble pectins. Different alpha-Af isoform responses to gibberellic acid, synthetic auxins, and ethylene were followed by using a novel ESS mature-green tomato pericarp disc system. alpha-Af I and II activity increased when gibberellic acid or 2,4-dichlorophenoxyacetic acid was applied, whereas ethylene treatment enhanced only alpha-Af III activity. Results suggest that tomato alpha-Afs are encoded by a gene family under differential hormonal controls, and probably have different in vivo functions. The ESS pericarp explant system allows comprehensive studies involving effects of physiological levels of different growth regulators on gene expression and enzyme activity with negligible wound-induced ethylene production.

  17. The Effect of Ethylene and Propylene Pulses on Respiration, Ripening Advancement, Ethylene-Forming Enzyme, and 1-Aminocyclopropane-1-carboxylic Acid Synthase Activity in Avocado Fruit.

    PubMed

    Starrett, D A; Laties, G G

    1991-03-01

    When early-season avocado fruit (Persea americana Mill. cv Hass) were treated with ethylene or propylene for 24 hours immediately on picking, the time to the onset of the respiratory climacteric, i.e. the lag period, remained unchanged compared with that in untreated fruit. When fruit were pulsed 24 hours after picking, on the other hand, the lag period was shortened. In both cases, however, a 24 hour ethylene or propylene pulse induced a transient increase in respiration, called the pulse-peak, unaccompanied by ethylene production (IL Eaks [1980] Am Soc Hortic Sci 105: 744-747). The pulse also caused a sharp rise in ethylene-forming enzyme activity in both cases, without any increase in the low level of 1-aminocyclopropane-1-carboxylic acid synthase activity. Thus, the shortening of the lag period by an ethylene pulse is not due to an effect of ethylene on either of the two key enzymes in ethylene biosynthesis. A comparison of two-dimensional polyacrylamide gel electrophoresis polypeptide profiles of in vitro translation products of poly(A(+)) mRNA from control and ethylene-pulsed fruit showed both up- and down-regulation in response to ethylene pulsing of a number of genes expressed during the ripening syndrome. It is proposed that the pulse-peak or its underlying events reflect an intrinsic element in the ripening process that in late-season or continuously ethylene-treated fruit may be subsumed in the overall climacteric response. A computerized system that allows continuous readout of multiple samples has established that the continued presentation of exogeneous ethylene or propylene to preclimacteric fruit elicits a dual respiration response comprising the merged pulse-peak and climacteric peak in series. The sequential removal of cores from a single fruit has proven an unsatisfactory sampling procedure inasmuch as coring induces wound ethylene, evokes a positive respiration response, and advances ripening.

  18. An auxin-responsive 1-aminocyclopropane-1-carboxylate synthase is responsible for differential ethylene production in gravistimulated Antirrhinum majus L. flower stems.

    PubMed

    Woltering, Ernst J; Balk, Peter A; Nijenhuis-Devries, Mariska A; Faivre, Marilyne; Ruys, Gerda; Somhorst, Dianne; Philosoph-Hadas, Sonia; Friedman, Haya

    2005-01-01

    The regulation of gravistimulation-induced ethylene production and its role in gravitropic bending was studied in Antirrhinum majus L. cut flower stems. Gravistimulation increased ethylene production in both lower and upper halves of the stems with much higher levels observed in the lower half. Expression patterns of three different 1-aminocyclopropane-1-carboxylate (ACC) synthase (ACS) genes, an ACC oxidase (ACO) and an ethylene receptor (ETR/ERS homolog) gene were studied in the bending zone of gravistimulated stems and in excised stem sections following treatment with different chemicals. One of the ACS genes (Am-ACS3) was abundantly expressed in the bending zone cortex at the lower side of the stems within 2 h of gravistimulation. Am-ACS3 was not expressed in vertical stems or in other parts of (gravistimulated) stems, leaves or flowers. Am-ACS3 was strongly induced by indole-3-acetic acid (IAA) but not responsive to ethylene. The Am-ACS3 expression pattern strongly suggests that Am-ACS3 is responsible for the observed differential ethylene production in gravistimulated stems; its responsiveness to IAA suggests that Am-ACS3 expression reflects changes in auxin signalling. Am-ACS1 also showed increased expression in gravistimulated and IAA-treated stems although to a much lesser extent than Am-ACS3. In contrast to Am-ACS3, Am-ACS1 was also expressed in non-bending regions of vertical and gravistimulated stems and in leaves, and Am-ACS1 expression was not confined to the lower side cortex but evenly distributed over the diameter of the stem. Am-ACO and Am-ETR/ERS expression was increased in both the lower and upper halves of gravistimulated stems. Expression of both Am-ACO and Am-ETR/ERS was responsive to ethylene, suggesting regulation by IAA-dependent differential ethylene production. Am-ACO expression and in vivo ACO activity, in addition, were induced by IAA, independent of the IAA-induced ethylene. IAA-induced growth of vertical stem sections and bending of

  19. The female-specific Cs-ACS1G gene of cucumber. A case of gene duplication and recombination between the non-sex-specific 1-aminocyclopropane-1-carboxylate synthase gene and a branched-chain amino acid transaminase gene.

    PubMed

    Knopf, Ronit Rimon; Trebitsh, Tova

    2006-09-01

    Cucumber (Cucumis sativus L.) is a monoecious plant in which female sex expression (gynoecy) is controlled by the Female (F) locus that can be modified by other sex-determining genes as well as by environmental and hormonal factors. As in many other cucurbits, ethylene is the major plant hormone regulating female sex expression. Previously we isolated the Cs-ACS1 (ACS, 1-aminocyclopropane-1-carboxylate synthase) gene that encodes the rate-limiting enzyme in the ethylene biosynthetic pathway. We proposed that Cs-ACS1 is present in a single copy in monoecious (ffMM) plants whereas gynoecious plants (FFMM) contain an additional copy Cs-ACS1G that was mapped to the F locus. To study the origin of Cs-ACS1G, we cloned and analyzed both the gynoecious-specific Cs-ACS1G gene and the non-sex-specific Cs-ACS1 gene. Our results indicate that Cs-ACS1G is the result of a relatively recent gene duplication and recombination, between Cs-ACS1 and a branched-chain amino acid transaminase (BCAT) gene. Taking into consideration that the Cs-ACS1G gene was mapped to the F locus, we propose that this duplication event gave rise to the F locus and to gynoecious cucumber plants. Computer analysis of the 1 kb region upstream of the transcription initiation site revealed several putative cis-acting regulatory elements that can potentially confer the responsiveness of Cs-ACS1G to developmental and hormonal factors and thereby control female sex determination in cucumber. These findings lead us to a model explaining the action of Cs-ACS1 and Cs-ACS1G in cucumber floral sex determination. PMID:16887844

  20. Expression and regulation of pear 1-aminocyclopropane-1-carboxylic acid synthase gene (PpACS1a) during fruit ripening, under salicylic acid and indole-3-acetic acid treatment, and in diseased fruit.

    PubMed

    Shi, Hai-Yan; Zhang, Yu-Xing

    2014-06-01

    In plants, the level of ethylene is determined by the activity of the key enzyme 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS). A gene encoding an ACC synthase protein was isolated from pear (Pyrus pyrifolia). This gene designated PpACS1a (GenBank accession no. KC632526) was 1488 bp in length with an open reading frame (ORF) encoding a protein of 495 amino acids that shared high similarity with other pear ACC synthase proteins. The PpACS1a was grouped into type-1 subfamily of plant ACS based on its conserved domain and phylogenetic status. Real-time quantitative PCR indicated that PpACS1a was differentially expressed in pear tissues and predominantly expressed in anthers. The expression signal of PpACS1a was also detected in fruit and leaves, but no signal was detected in shoots and petals. Furthermore, the PpACS1a expression was regulated during fruit ripening. In addition, the PpACS1a gene expression was regulated by salicylic acid (SA) and indole-3-acetic acid (IAA) in fruit. Moreover, the expression of the PpACS1a was up-regulated in diseased pear fruit. These results indicated that PpACS1a might be involved in fruit ripening and response to SA, IAA and disease.

  1. Expression characteristics of CS-ACS1, CS-ACS2 and CS-ACS3, three members of the 1-aminocyclopropane-1-carboxylate synthase gene family in cucumber (Cucumis sativus L.) fruit under carbon dioxide stress.

    PubMed

    Mathooko, F M; Mwaniki, M W; Nakatsuka, A; Shiomi, S; Kubo, Y; Inaba, A; Nakamura, R

    1999-02-01

    We investigated the expression pattern of three 1-aminocyclopropane-1-carboxylate (ACC) synthase genes, CS-ACS1, CS-ACS2 and CS-ACS3 in cucumber (Cucumis sativus L.) fruit under CO2 stress. CO2 stress-induced ethylene production paralleled the accumulation of only CS-ACS1 transcripts which disappeared upon withdrawal of CO2. Cycloheximide inhibited the CO2 stress-induced ethylene production but superinduced the accumulation of CS-ACS1 transcript. At higher concentrations, cycloheximide also induced the accumulation of CS-ACS2 and CS-ACS3 transcripts. In the presence of CO2 and cycloheximide, the accumulation of CS-ACS2 transcript occurred within 1 h, disappeared after 3 h and increased greatly upon withdrawal of CO2. Inhibitors of protein kinase and types 1 and 2A protein phosphatases which inhibited and stimulated, respectively, CO2 stress-induced ethylene production had little effect on the expression of these genes. The results presented here identify CS-ACS1 as the main ACC synthase gene responsible for the increased ethylene biosynthesis in cucumber fruit under CO2 stress and suggest that this gene is a primary response gene and its expression is under negative control since it is expressed by treatment with cycloheximide. The results further suggest that the regulation of CO2 stress-induced ethylene biosynthesis by reversible protein phosphorylation does not result from enhanced ACC synthase transcription. PMID:10202812

  2. Analysis of genomic DNA of DcACS1, a 1-aminocyclopropane-1-carboxylate synthase gene, expressed in senescing petals of carnation (Dianthus caryophyllus) and its orthologous genes in D. superbus var. longicalycinus.

    PubMed

    Harada, Taro; Murakoshi, Yuino; Torii, Yuka; Tanase, Koji; Onozaki, Takashi; Morita, Shigeto; Masumura, Takehiro; Satoh, Shigeru

    2011-04-01

    Carnation (Dianthus caryophyllus) flowers exhibit climacteric ethylene production followed by petal wilting, a senescence symptom. DcACS1, which encodes 1-aminocyclopropane-1-carboxylate synthase (ACS), is a gene involved in this phenomenon. We determined the genomic DNA structure of DcACS1 by genomic PCR. In the genome of 'Light Pink Barbara', we found two distinct nucleotide sequences: one corresponding to the gene previously shown as DcACS1, designated here as DcACS1a, and the other novel one designated as DcACS1b. It was revealed that both DcACS1a and DcACS1b have five exons and four introns. These two genes had almost identical nucleotide sequences in exons, but not in some introns and 3'-UTR. Analysis of transcript accumulation revealed that DcACS1b is expressed in senescing petals as well as DcACS1a. Genomic PCR analysis of 32 carnation cultivars showed that most cultivars have only DcACS1a and some have both DcACS1a and DcACS1b. Moreover, we found two DcACS1 orthologous genes with different nucleotide sequences from D. superbus var. longicalycinus, and designated them as DsuACS1a and DsuACS1b. Petals of D. superbus var. longicalycinus produced ethylene in response to exogenous ethylene, accompanying accumulation of DsuACS1 transcripts. These data suggest that climacteric ethylene production in flowers was genetically established before the cultivation of carnation.

  3. 1-Aminocyclopropane-1-Carboxylate Oxidase Activity Limits Ethylene Biosynthesis in Rumex palustris during Submergence

    PubMed Central

    Vriezen, Wim H.; Hulzink, Raymond; Mariani, Celestina; Voesenek, Laurentius A.C.J.

    1999-01-01

    Submergence strongly stimulates petiole elongation in Rumex palustris, and ethylene accumulation initiates and maintains this response in submerged tissues. cDNAs from R. palustris corresponding to a 1-aminocyclopropane-1-carboxylate (ACC) oxidase gene (RP-ACO1) were isolated from elongating petioles and used to study the expression of the corresponding gene. An increase in RP-ACO1 messenger was observed in the petioles and lamina of elongating leaves 2 h after the start of submergence. ACC oxidase enzyme activity was measured in homogenates of R. palustris shoots, and a relevant increase was observed within 12 h under water with a maximum after 24 h. We have shown previously that the ethylene production rate of submerged shoots does not increase significantly during the first 24 h of submergence (L.A.C.J. Voesenek, M. Banga, R.H. Thier, C.M. Mudde, F.M. Harren, G.W.M. Barendse, C.W.P.M. Blom [1993] Plant Physiol 103: 783–791), suggesting that under these conditions ACC oxidase activity is inhibited in vivo. We found evidence that this inhibition is caused by a reduction of oxygen levels. We hypothesize that an increased ACC oxidase enzyme concentration counterbalances the reduced enzyme activity caused by low oxygen concentration during submergence, thus sustaining ethylene production under these conditions. Therefore, ethylene biosynthesis seems to be limited at the level of ACC oxidase activity rather than by ACC synthase in R. palustris during submergence. PMID:10482674

  4. 1-aminocyclopropane-1-carboxylic acid (ACC) in plants: more than just the precursor of ethylene!

    PubMed Central

    Van de Poel, Bram; Van Der Straeten, Dominique

    2014-01-01

    Ethylene is a simple two carbon atom molecule with profound effects on plants. There are quite a few review papers covering all aspects of ethylene biology in plants, including its biosynthesis, signaling and physiology. This is merely a logical consequence of the fascinating and pleiotropic nature of this gaseous plant hormone. Its biochemical precursor, 1-aminocyclopropane-1-carboxylic acid (ACC) is also a fairly simple molecule, but perhaps its role in plant biology is seriously underestimated. This triangularly shaped amino acid has many more features than just being the precursor of the lead-role player ethylene. For example, ACC can be conjugated to three different derivatives, but their biological role remains vague. ACC can also be metabolized by bacteria using ACC-deaminase, favoring plant growth and lowering stress susceptibility. ACC is also subjected to a sophisticated transport mechanism to ensure local and long-distance ethylene responses. Last but not least, there are now a few exciting studies where ACC has been reported to function as a signal itself, independently from ethylene. This review puts ACC in the spotlight, not to give it the lead-role, but to create a picture of the stunning co-production of the hormone and its precursor. PMID:25426135

  5. Ethylene Production and 1-Aminocyclopropane-1-Carboxylic Acid Conjugation in Thermoinhibited Cicer arietinum L. Seeds.

    PubMed

    Gallardo, M; Delgado, M del M; Sánchez-Calle, I M; Matilla, A J

    1991-09-01

    The effect of supraoptimal temperatures (30 degrees C, 35 degrees C) on germination and ethylene production of Cicer arietinum (chick-pea) seeds was measured. Compared with a 25 degrees C control, these temperatures inhibited both germination and ethylene production. The effect of supraoptimal temperatures could be alleviated by treating the seeds with ethylene. It was concluded that one effect of high temperature on germination was due to its negative effect on ethylene production. This inhibitory effect of high temperature was due to increased conjugation of 1-aminocyclopropane-1-carboxylic acid to 1-(malonylamino)cyclopropane-1-carboxylic acid and to an inhibition of ethylene-forming enzyme activity.

  6. A strategy for promoting astaxanthin accumulation in Haematococcus pluvialis by 1-aminocyclopropane-1-carboxylic acid application.

    PubMed

    Lee, Changsu; Choi, Yoon-E; Yun, Yeoung-Sang

    2016-10-20

    The green algae Haematococcus pluvialis is a freshwater unicellular microalga belonging to Chlorophyceae. It is one of the best natural sources of astaxanthin, a secondary metabolite commonly used as an antioxidant and anti-inflammatory agent. Due to the importance of astaxanthin, various efforts have been made to increase its production. In this study, we attempted to develop a strategy for promoting astaxanthin accumulation in H. pluvialis using 1-aminocyclopropane-1-carboxylic acid (ACC), a precursor of ethylene (normally known as an aging hormone in plants). Our results demonstrated that ACC could enhance the growth of H. pluvialis, thereby promoting astaxanthin accumulation. Therefore, ACC has an indirect influence on astaxanthin production. We further verified the effect of ACC with a direct treatment of ethylene originated from banana peels. These results indicate that ethylene could be applied as an indirect method for enhancing growth and astaxanthin biosynthesis in H. pluvialis. PMID:27544287

  7. In vitro germination of Striga hermonthica and Striga aspera seeds by 1-aminocyclopropane-1-carboxylic acid.

    PubMed

    Rugutt, Kipngeno J; Rugutt, Joseph K; Berner, Dana K

    2003-01-01

    Treatment of conditioned seeds of four isolates of Striga hermonthica and one isolate of Striga aspera with various concentrations of the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), caused complex stimulation of germination patterns. GR 24, the strigol analogue served as a positive control and its stimulatory activity was comparable to that of ACC. When conditioned Striga seeds were treated with negative control that did not contain ACC, the stimulatory effect was lost. Overall, the germination data suggested a hormonal mode of action by ACC, which involves indirect stimulation of biosynthesis of ethylene that then triggers seed germination. The various mechanisms that have been proposed for the chemical and biological oxidation of ACC to generate ethylene are discussed.

  8. 1-Aminocyclopropane-1-carboxylic acid oxidase: insight into cofactor binding from experimental and theoretical studies.

    PubMed

    Brisson, Lydie; El Bakkali-Taheri, Nadia; Giorgi, Michel; Fadel, Antoine; Kaizer, József; Réglier, Marius; Tron, Thierry; Ajandouz, El Hassan; Simaan, A Jalila

    2012-08-01

    1-Aminocyclopropane-1-carboxylic acid oxidase (ACCO) is a nonheme Fe(II)-containing enzyme that is related to the 2-oxoglutarate-dependent dioxygenase family. The binding of substrates/cofactors to tomato ACCO was investigated through kinetics, tryptophan fluorescence quenching, and modeling studies. α-Aminophosphonate analogs of the substrate (1-aminocyclopropane-1-carboxylic acid, ACC), 1-aminocyclopropane-1-phosphonic acid (ACP) and (1-amino-1-methyl)ethylphosphonic acid (AMEP), were found to be competitive inhibitors versus both ACC and bicarbonate (HCO(3)(-)) ions. The measured dissociation constants for Fe(II) and ACC clearly indicate that bicarbonate ions improve both Fe(II) and ACC binding, strongly suggesting a stabilization role for this cofactor. A structural model of tomato ACCO was constructed and used for docking experiments, providing a model of possible interactions of ACC, HCO(3)(-), and ascorbate at the active site. In this model, the ACC and bicarbonate binding sites are located close together in the active pocket. HCO(3)(-) is found at hydrogen-bond distance from ACC and interacts (hydrogen bonds or electrostatic interactions) with residues K158, R244, Y162, S246, and R300 of the enzyme. The position of ascorbate is also predicted away from ACC. Individually docked at the active site, the inhibitors ACP and AMEP were found coordinating the metal ion in place of ACC with the phosphonate groups interacting with K158 and R300, thus interlocking with both ACC and bicarbonate binding sites. In conclusion, HCO(3)(-) and ACC together occupy positions similar to the position of 2-oxoglutarate in related enzymes, and through a hydrogen bond HCO(3)(-) likely plays a major role in the stabilization of the substrate in the active pocket. PMID:22711330

  9. Tolerance of transgenic canola expressing 1-aminocyclopropane-1-carboxylic acid deaminase to growth inhibition by nickel.

    PubMed

    Stearns, Jennifer C; Shah, Saleh; Greenberg, Bruce M; Dixon, D George; Glick, Bernard R

    2005-07-01

    Plant growth-promoting bacteria are useful to phytoremediation strategies in that they confer advantages to plants in contaminated soil. When plant growth-promoting bacteria contain the enzyme 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, the bacterial cell acts as a sink for ACC, the immediate biosynthetic precursor of the plant growth regulator ethylene thereby lowering plant ethylene levels and decreasing the negative effects of various environmental stresses. In an effort to gain the advantages provided by bacterial ACC deaminase in the phytoremediation of metals from the environment two transgenic canola lines with the gene for this enzyme were generated and tested. In these transgenic canola plants, expression of the ACC deaminase gene is driven by either tandem constitutive cauliflower mosaic virus (CaMV) 35S promoters or the root specific rolD promoter from Agrobacterium rhizogenes. Following the growth of transgenic and non-transformed canola in nickel contaminated soil, it was observed that the rolD plants demonstrate significantly increased tolerance to nickel compared to the non-transformed control plants.

  10. New Insights into 1-Aminocyclopropane-1-Carboxylate (ACC) Deaminase Phylogeny, Evolution and Ecological Significance

    PubMed Central

    Nascimento, Francisco X.; Rossi, Márcio J.; Soares, Cláudio R. F. S.; McConkey, Brendan J.; Glick, Bernard R.

    2014-01-01

    The main objective of this work is the study of the phylogeny, evolution and ecological importance of the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase, the activity of which represents one of the most important and studied mechanisms used by plant growth–promoting microorganisms. The ACC deaminase gene and its regulatory elements presence in completely sequenced organisms was verified by multiple searches in diverse databases, and based on the data obtained a comprehensive analysis was conducted. Strain habitat, origin and ACC deaminase activity were taken into account when analyzing the results. In order to unveil ACC deaminase origin, evolution and relationships with other closely related pyridoxal phosphate (PLP) dependent enzymes a phylogenetic analysis was also performed. The data obtained show that ACC deaminase is mostly prevalent in some Bacteria, Fungi and members of Stramenopiles. Contrary to previous reports, we show that ACC deaminase genes are predominantly vertically inherited in various bacterial and fungal classes. Still, results suggest a considerable degree of horizontal gene transfer events, including interkingdom transfer events. A model for ACC deaminase origin and evolution is also proposed. This study also confirms the previous reports suggesting that the Lrp-like regulatory protein AcdR is a common mechanism regulating ACC deaminase expression in Proteobacteria, however, we also show that other regulatory mechanisms may be present in some Proteobacteria and other bacterial phyla. In this study we provide a more complete view of the role for ACC deaminase than was previously available. The results show that ACC deaminase may not only be related to plant growth promotion abilities, but may also play multiple roles in microorganism's developmental processes. Hence, exploring the origin and functioning of this enzyme may be the key in a variety of important agricultural and biotechnological applications. PMID:24905353

  11. Transport and Metabolism of 1-Aminocyclopropane-1-carboxylic Acid in Sunflower (Helianthus annuus L.) Seedlings 1

    PubMed Central

    Finlayson, Scott A.; Foster, Kenneth R.; Reid, David M.

    1991-01-01

    Transport and metabolism of [2,3-14C] 1-aminocyclopropane-1-carboxylic acid (ACC) from roots to shoots in 4-day-old sunflower (Helianthus annuus L.) seedlings were studied. [14C]ACC was detected in, and 14C2H4 was evolved from, shoots 0.5 hours after [14C]ACC was supplied to roots. Ethylene emanation from the shoots returned to normal levels after 6 hours. The roots showed a similar pattern, although at 24 hours ethylene emanation was still slightly higher than in those plants that did not receive ACC. [14C]N-malonyl-ACC (MACC) was detected in both tissues at all times sampled. [14C]MACC levels surpassed [14C]ACC levels in the shoot at 2 hours, whereas [14C]MACC levels in the root remained below [14C]ACC levels until 6 hours, after which they were higher. Thin-layer chromatography analysis identified [14C] ACC in 1-hour shoot extracts, and [14C]MACC was identified in root tissues at 1 and 12 hours after treatment. [14C]ACC and [14C] MACC in the xylem sap of treated seedlings were identified by thin-layer chromatography. Xylem transport of [14C]ACC in treated seedlings, and transport of ACC in untreated seedlings, was confirmed by gas chromatography-mass spectrometry. Some evidence for the presence of [14C]MACC in xylem sap in [14C]ACC-treated seedlings is presented. A substantial amount of radioactivity in both ACC and MACC fractions was detected leaking from the roots over 24 hours. A second radiolabeled volatile compound was trapped in a CO2-trapping solution but not in mercuric perchlorate. Levels of this compound were highest after the peak of ACC levels and before peak MACC levels in both tissues, suggesting that an alternate pathway of ACC metabolism was operating in this system. PMID:16668342

  12. 1-Aminocyclopropane-1-Carboxylic Acid Transported from Roots to Shoots Promotes Leaf Abscission in Cleopatra Mandarin (Citrus reshni Hort. ex Tan.) Seedlings Rehydrated after Water Stress.

    PubMed

    Tudela, D; Primo-Millo, E

    1992-09-01

    The effect of water stress and subsequent rehydration on 1-aminocyclopropane-1-carboxylic acid (ACC) content, ACC synthase activity, ethylene production, and leaf abscission was studied in Cleopatra mandarin (Citrus reshni Hort. ex Tan.) seedlings. Leaf abscission occurred when drought-stressed plants were allowed to rehydrate, whereas no abscission was observed in plants under water stress conditions. In roots of water-stressed plants, a high ACC accumulation and an increase in ACC synthase activity were observed. Neither increase in ACC content nor significant ethylene production were detected in leaves of water-stressed plants. After rehydration, a sharp rise in ACC content and ethylene production was observed in leaves of water-stressed plants. Content of ACC in xylem fluid was 10-fold higher in plants rehydrated for 2 h after water stress than in nonstressed plants. Leaf abscission induced by rehydration after drought stress was inhibited when roots or shoots were treated before water stress with aminooxyacetic acid (AOA, inhibitor of ACC synthase) or cobalt ion (inhibitor of ethylene-forming enzyme), respectively. However, AOA treatments to shoots did not suppress leaf abscission. The data indicate that water stress promotes ACC synthesis in roots of Cleopatra mandarin seedlings. Rehydration of plants results in ACC transport to the shoots, where it is oxidized to ethylene. Subsequently, this ethylene induces leaf abscission.

  13. Complementary DNA cloning of the pear 1-aminocyclopropane-1-carboxylic acid oxidase gene and agrobacterium-mediated anti-sense genetic transformation.

    PubMed

    Qi, Jing; Dong, Zhen; Zhang, Yu-Xing

    2015-12-01

    The aim of the present study was to genetically modify plantlets of the Chinese yali pear to reduce their expression of ripening-associated 1-aminocyclopropane-1-carboxylic acid oxidase (ACO) and therefore increase the shelf-life of the fruit. Primers were designed with selectivity for the conserved regions of published ACO gene sequences, and yali complementary DNA (cDNA) cloning was performed by reverse transcription quantitative polymerase chain reaction (PCR). The obtained cDNA fragment contained 831 base pairs, encoding 276 amino acid residues, and shared no less than 94% nucleotide sequence identity with other published ACO genes. The cDNA fragment was inversely inserted into a pBI121 expression vector, between the cauliflower mosaic virus 35S promoter and the nopaline synthase terminator, in order to construct the anti‑sense expression vector of the ACO gene; it was transfected into cultured yali plants using Agrobacterium LBA4404. Four independent transgenic lines of pear plantlets were obtained and validated by PCR analysis. A Southern blot assay revealed that there were three transgenic lines containing a single copy of exogenous gene and one line with double copies. The present study provided germplasm resources for the cultivation of novel storage varieties of pears, therefore providing a reference for further applications of anti‑sense RNA technology in the genetic improvement of pears and other fruit.

  14. Recent developments in use of 1-aminocyclopropane-1-carboxylate (ACC) deaminase for conferring tolerance to biotic and abiotic stress.

    PubMed

    Gontia-Mishra, Iti; Sasidharan, Shaly; Tiwari, Sharad

    2014-05-01

    Ethylene is an essential plant hormone also known as a stress hormone because its synthesis is accelerated by induction of a variety of biotic and abiotic stress. The plant growth promoting bacteria containing the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase enhances plant growth by decreasing plant ethylene levels under stress conditions. The expression of ACC deaminase (acdS) gene in transgenic plants is an alternative approach to overcome the ethylene-induced stress. Several transgenic plants have been engineered to express both bacterial/plant acdS genes which then lowers the stress-induced ethylene levels, thus efficiently combating the deleterious effects of environmental stresses. This review summarizes the current knowledge of various transgenic plants overexpressing microbial and plant acdS genes and their potential under diverse biotic and abiotic stresses. Transcription regulation mechanism of acdS gene from different bacteria, with special emphasis to nitrogen fixing bacteria is also discussed in this review.

  15. Changes in 1-aminocyclopropane-1-carboxylic-acid content of cut carnation flowers in relation to their senescence.

    PubMed

    Bufler, G; Mor, Y; Reid, M S; Yang, S F

    1980-12-01

    The rise in ethylene production accompanying the respiration climacteric and senescence of cut carnation flowers (Dianthus caryophyllus L. cv. White Sim) was associated with a 30-fold increase in the concentration of 1-aminocyclopropane-1-carboxylic acid (ACC) in the petals (initial content 0.3 nmol/g fresh weight). Pretreatment of the flowers with silver thiosulfate (STS) retarded flower senescence and prevented the increase in ACC concentration in the petals. An increase in ACC in the remaining flower parts, which appeared to precede the increase in the petals, was only partially prevented by the STS pretreatment. Addition of aminoxyacetic acid (2 mM) to the solution in which the flowers were kept completely inhibited accumulation of ACC in all flower parts.

  16. Molecular characterization and expression analysis of 1-aminocyclopropane-1-carboxylate oxidase homologs from potato under abiotic and biotic stresses.

    PubMed

    Nie, Xianzhou; Singh, Rudra P; Tai, George C C

    2002-10-01

    In this work, we report cloning of two full-length 1-aminocyclopropane-1-carboxylate oxidase (ACO) cDNAs (ACO1 and ACO2) from potato (Solanum tuberosum) and their expression in potato tissues. The sequence data indicate that the two cDNAs share a high degree of homology with each other, and with known ACO genes from other plant species, including monocots and dicots. However, these potato genes lack homology at the 5' and 3' ends, despite similarities in their open reading frames and encoded amino acids. Phylogenetic analysis places them in two subfamilies of ACOs. The genes are tissue specific: expression is high in leaves and low in roots and tubers. In sprouts and tubers, ACO1 is induced by heat (40 degrees C) and cold (0 degrees C) stresses, whereas ACO2 is induced only by cold (0 degrees C). ACO1 is markedly induced in leaves by wounding, soil-flooding, and exogenous application of 1-aminocyclopropane-1-carboxylic acid (ACC). In contrast, ACO2 induction is lower under these treatments. ACO1 and ACO2 are regulated very differently in potato leaves with respect to senescence. ACO2 expression is unaffected by senescence, whereas that of ACO1 is closely related to the age and senescence in both attached and detached leaves. Exogenous ACC not only induces ACO1, but also accelerates leaf senescence. ACO1 transcripts are induced significantly in leaves, stems, and tubers in the Potato virus A (PVA)-resistant potato cultivar Shepody when graft inoculated with PVA. PMID:12416623

  17. Kinetin Enhanced 1-Aminocyclopropane-1-Carboxylic Acid Utilization during Alleviation of High Temperatures Stress in Lettuce Seeds.

    PubMed

    Khan, A A; Prusinski, J

    1989-10-01

    The thermoinhibition at 35 and 32 degrees C of pregermination ethylene production and germination in lettuce (Lactuca sativa L. cv Mesa 659) seeds was synergistically or additively alleviated by 0.05 millimolar kinetin (KIN) and 10 millimolar 1-aminocyclopropane-1-carboxylic acid (ACC). The synergistic effect of KIN + ACC on ethylene production and germination at 35 degrees C was inhibited by Co(2+) (44-46%) but not by aminoethoxyvinyl glycine (AVG). The uptake of ACC by the seed was not influenced by KIN. Upon slitting of the seed coats (composed of pericarp, testa and endosperm), following the uptake of chemicals, ACC was readily converted into ethylene at all temperatures, and the synergistic effects of KIN + ACC at 35 degrees C were lost. At 35 degrees C, KIN acted synergistically with ACC or ethephon (ETH) in alleviating the osmotic restraint. At 25 degrees C, ETH was more active than KIN or KIN + ACC in overcoming the osmotic restraint. Thus, the integrity of the seed coats, the KIN-enhanced ACC utilization, and an interaction of KIN with the ethylene produced may be the basis for the synergistic or additive effects of KIN + ACC at high temperature.

  18. Increased 1-aminocyclopropane-1-carboxylate deaminase activity enhances Agrobacterium tumefaciens-mediated gene delivery into plant cells

    PubMed Central

    Someya, Tatsuhiko; Nonaka, Satoko; Nakamura, Kouji; Ezura, Hiroshi

    2013-01-01

    Agrobacterium-mediated transformation is a useful tool for the genetic modification in plants, although its efficiency is low for several plant species. Agrobacterium-mediated transformation has three major steps in laboratory-controlled experiments: the delivery of T-DNA into plant cells, the selection of transformed plant cells, and the regeneration of whole plants from the selected cells. Each of these steps must be optimized to improve the efficiency of Agrobacterium-mediated plant transformation. It has been reported that increasing the number of cells transformed by T-DNA delivery can improve the frequency of stable transformation. Previously, we demonstrated that a reduction in ethylene production by plant cells during cocultivation with A. tumefaciens-expressing 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase resulted in increased T-DNA delivery into the plant cells. In this study, to further improve T-DNA delivery by A. tumefaciens, we modified the expression cassette of the ACC deaminase gene using vir gene promoter sequences. The ACC deaminase gene driven by the virD1 promoter was expressed at a higher level, resulting in a higher ACC deaminase activity in this A. tumefaciens strain than in the strain with the lac promoter used in a previous study. The newly developed A. tumefaciens strain improves the delivery of T-DNA into Solanum lycopersicum (tomato) and Erianthus ravennae plants and thus may be a powerful tool for the Agrobacterium-mediated genetic engineering of plants. PMID:24000136

  19. Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase.

    PubMed

    Belimov, A A; Safronova, V I; Sergeyeva, T A; Egorova, T N; Matveyeva, V A; Tsyganov, V E; Borisov, A Y; Tikhonovich, I A; Kluge, C; Preisfeld, A; Dietz, K J; Stepanok, V V

    2001-07-01

    Fifteen bacterial strains containing 1-aminocyclopropane-1-carboxylate (ACC) deaminase were isolated from the rhizoplane of pea (Pisum sativum L.) and Indian mustard (Brassica juncea L.) grown in different soils and a long-standing sewage sludge contaminated with heavy metals. The isolated strains were characterized and assigned to various genera and species, such as Pseudomonas brassicacearum, Pseudomonas marginalis, Pseudomonas oryzihabitans, Pseudomonas putida, Pseudomonas sp., Alcaligenes xylosoxidans, Alcaligenes sp., Variovorax paradoxus, Bacillus pumilus, and Rhodococcus sp. by determination of 16S rRNA gene sequences. The root elongation of Indian mustard and rape (Brassica napus var. oleifera L.) germinating seedlings was stimulated by inoculation with 8 and 13 isolated strains, respectively. The bacteria were tolerant to cadmium toxicity and stimulated root elongation of rape seedlings in the presence of 300 microM CdCl2 in the nutrient solution. The effect of ACC-utilising bacteria on root elongation correlated with the impact of aminoethoxyvinylglycine and silver ions, chemical inhibitors of ethylene biosynthesis. A significant improvement in the growth of rape caused by inoculation with certain selected strains was also observed in pot experiments, when the plants were cultivated in cadmium-supplemented soil. The biomass of pea cv. Sparkle and its ethylene sensitive mutant E2 (sym5), in particular, was increased through inoculation with certain strains of ACC-utilising bacteria in pot experiments in quartz sand culture. The beneficial effect of the bacteria on plant growth varied significantly depending on individual bacterial strains, plant genotype, and growth conditions. The results suggest that plant growth promoting rhizobacteria containing ACC deaminase are present in various soils and offer promise as a bacterial inoculum for improvement of plant growth, particularly under unfavourable environmental conditions.

  20. Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase.

    PubMed

    Belimov, A A; Safronova, V I; Sergeyeva, T A; Egorova, T N; Matveyeva, V A; Tsyganov, V E; Borisov, A Y; Tikhonovich, I A; Kluge, C; Preisfeld, A; Dietz, K J; Stepanok, V V

    2001-07-01

    Fifteen bacterial strains containing 1-aminocyclopropane-1-carboxylate (ACC) deaminase were isolated from the rhizoplane of pea (Pisum sativum L.) and Indian mustard (Brassica juncea L.) grown in different soils and a long-standing sewage sludge contaminated with heavy metals. The isolated strains were characterized and assigned to various genera and species, such as Pseudomonas brassicacearum, Pseudomonas marginalis, Pseudomonas oryzihabitans, Pseudomonas putida, Pseudomonas sp., Alcaligenes xylosoxidans, Alcaligenes sp., Variovorax paradoxus, Bacillus pumilus, and Rhodococcus sp. by determination of 16S rRNA gene sequences. The root elongation of Indian mustard and rape (Brassica napus var. oleifera L.) germinating seedlings was stimulated by inoculation with 8 and 13 isolated strains, respectively. The bacteria were tolerant to cadmium toxicity and stimulated root elongation of rape seedlings in the presence of 300 microM CdCl2 in the nutrient solution. The effect of ACC-utilising bacteria on root elongation correlated with the impact of aminoethoxyvinylglycine and silver ions, chemical inhibitors of ethylene biosynthesis. A significant improvement in the growth of rape caused by inoculation with certain selected strains was also observed in pot experiments, when the plants were cultivated in cadmium-supplemented soil. The biomass of pea cv. Sparkle and its ethylene sensitive mutant E2 (sym5), in particular, was increased through inoculation with certain strains of ACC-utilising bacteria in pot experiments in quartz sand culture. The beneficial effect of the bacteria on plant growth varied significantly depending on individual bacterial strains, plant genotype, and growth conditions. The results suggest that plant growth promoting rhizobacteria containing ACC deaminase are present in various soils and offer promise as a bacterial inoculum for improvement of plant growth, particularly under unfavourable environmental conditions. PMID:11547884

  1. Mechanistic studies of 1-aminocyclopropane-1-carboxylate deaminase: characterization of an unusual pyridoxal 5'-phosphate-dependent reaction.

    PubMed

    Thibodeaux, Christopher J; Liu, Hung-Wen

    2011-03-22

    1-Aminocyclopropane-1-carboxylic acid (ACC) deaminase (ACCD) is a pyridoxal 5'-phosphate (PLP)-dependent enzyme that cleaves the cyclopropane ring of ACC, to give α-ketobutyric acid and ammonia as products. The cleavage of the C(α)-C(β) bond of an amino acid substrate is a rare event in PLP-dependent enzyme catalysis. Potential chemical mechanisms involving nucleophile- or acid-catalyzed cyclopropane ring opening have been proposed for the unusual transformation catalyzed by ACCD, but the actual mode of cyclopropane ring cleavage remains obscure. In this report, we aim to elucidate the mechanistic features of ACCD catalysis by investigating the kinetic properties of ACCD from Pseudomonas sp. ACP and several of its mutant enzymes. Our studies suggest that the pK(a) of the conserved active site residue, Tyr294, is lowered by a hydrogen bonding interaction with a second conserved residue, Tyr268. This allows Tyr294 to deprotonate the incoming amino group of ACC to initiate the aldimine exchange reaction between ACC and the PLP coenzyme and also likely helps to activate Tyr294 for a role as a nucleophile to attack and cleave the cyclopropane ring of the substrate. In addition, solvent kinetic isotope effect (KIE), proton inventory, and (13)C KIE studies of the wild type enzyme suggest that the C(α)-C(β) bond cleavage step in the chemical mechanism is at least partially rate-limiting under k(cat)/K(m) conditions and is likely preceded in the mechanism by a partially rate-limiting step involving the conversion of a stable gem-diamine intermediate into a reactive external aldimine intermediate that is poised for cyclopropane ring cleavage. When viewed within the context of previous mechanistic and structural studies of ACCD enzymes, our studies are most consistent with a mode of cyclopropane ring cleavage involving nucleophilic catalysis by Tyr294.

  2. Isolation and characterization of a potato cDNA corresponding to a 1-aminocyclopropane-1-carboxylate (ACC) oxidase gene differentially activated by stress.

    PubMed

    Zanetti, María Eugenia; Terrile, María Cecilia; Arce, Débora; Godoy, Andrea Verónica; Segundo, Blanca San; Casalongué, Claudia

    2002-12-01

    1-Aminocyclopropane-1-carboxylate (ACC) oxidase enzyme catalyses the final step in ethylene biosynthesis, converting 1-aminocyclopropane-1-carboxylic acid to ethylene. A cDNA clone encoding an ACC oxidase, ST-ACO3, was isolated from potato (Solanum tuberosum L.) by differential screening of a Fusarium eumartii infected-tuber cDNA library. The deduced amino acid sequence exhibited similarity to other ACC oxidase proteins from several plants species. Northern blot analysis revealed that the ST-ACO3 mRNA level increased in potato tubers upon inoculation with F. eumartii, as well as after treatment with salicylic acid and indole-3-acetic acid, suggesting a cross-talk between different signalling pathways involved in the defence response of potato tubers against F. eumartii attack.

  3. A fifth member of the tomato 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase gene family harbours a leucine zipper and is anaerobically induced.

    PubMed

    Sell, Simone; Hehl, Reinhard

    2005-02-01

    Using the leucine zipper domain of a small anaerobically induced bZIP transcription factor in a yeast two hybrid screen, anaerobically induced genes were identified. One peptide corresponds to an anaerobically induced IDS4-like protein that maybe involved in G-protein signaling. Surprisingly, another interacting peptide corresponds to a novel anaerobically induced 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase, designated ACO5. ACO5 harbours a leucine zipper and transcription is mainly induced in fruits and to a lesser extend in leaves. The role of ACO5 in the low oxygen response of tomato is discussed. PMID:16040352

  4. RNA interference of 1-aminocyclopropane-1-carboxylic acid oxidase (ACO1 and ACO2) genes expression prolongs the shelf life of Eksotika (Carica papaya L.) papaya fruit.

    PubMed

    Sekeli, Rogayah; Abdullah, Janna Ong; Namasivayam, Parameswari; Muda, Pauziah; Abu Bakar, Umi Kalsom; Yeong, Wee Chien; Pillai, Vilasini

    2014-06-19

    The purpose of this study was to evaluate the effectiveness of using RNA interference in down regulating the expression of 1-aminocyclopropane-1-carboxylic acid oxidase gene in Eksotika papaya. One-month old embryogenic calli were separately transformed with Agrobacterium strain LBA 4404 harbouring the three different RNAi pOpOff2 constructs bearing the 1-aminocyclopropane-1-carboxylic acid oxidase gene. A total of 176 putative transformed lines were produced from 15,000 calli transformed, selected, then regenerated on medium supplemented with kanamycin. Integration and expression of the targeted gene in putatively transformed lines were verified by PCR and real-time RT-PCR. Confined field evaluation of a total of 31 putative transgenic lines planted showed a knockdown expression of the targeted ACO1 and ACO2 genes in 13 lines, which required more than 8 days to achieve the full yellow colour (Index 6). Fruits harvested from lines pRNAiACO2 L2-9 and pRNAiACO1 L2 exhibited about 20 and 14 days extended post-harvest shelf life to reach Index 6, respectively. The total soluble solids contents of the fruits ranged from 11 to 14° Brix, a range similar to fruits from non-transformed, wild type seed-derived plants.

  5. Differential Expression and Internal Feedback Regulation of 1-Aminocyclopropane-1-Carboxylate Synthase, 1-Aminocyclopropane-1-Carboxylate Oxidase, and Ethylene Receptor Genes in Tomato Fruit during Development and Ripening1

    PubMed Central

    Nakatsuka, Akira; Murachi, Shiho; Okunishi, Hironori; Shiomi, Shinjiro; Nakano, Ryohei; Kubo, Yasutaka; Inaba, Akitsugu

    1998-01-01

    We investigated the feedback regulation of ethylene biosynthesis in tomato (Lycopersicon esculentum) fruit with respect to the transition from system 1 to system 2 ethylene production. The abundance of LE-ACS2, LE-ACS4, and NR mRNAs increased in the ripening fruit concomitant with a burst in ethylene production. These increases in mRNAs with ripening were prevented to a large extent by treatment with 1-methylcyclopropene (MCP), an ethylene action inhibitor. Transcripts for the LE-ACS6 gene, which accumulated in preclimacteric fruit but not in untreated ripening fruit, did accumulate in ripening fruit treated with MCP. Treatment of young fruit with propylene prevented the accumulation of transcripts for this gene. LE-ACS1A, LE-ACS3, and TAE1 genes were expressed constitutively in the fruit throughout development and ripening irrespective of whether the fruit was treated with MCP or propylene. The transcripts for LE-ACO1 and LE-ACO4 genes already existed in preclimacteric fruit and increased greatly when ripening commenced. These increases in LE-ACO mRNA with ripening were also prevented by treatment with MCP. The results suggest that in tomato fruit the preclimacteric system 1 ethylene is possibly mediated via constitutively expressed LE-ACS1A and LE-ACS3 and negatively feedback-regulated LE-ACS6 genes with preexisting LE-ACO1 and LE-ACO4 mRNAs. At the onset of the climacteric stage, it shifts to system 2 ethylene, with a large accumulation of LE-ACS2, LE-ACS4, LE-ACO1, and LE-ACO4 mRNAs as a result of a positive feedback regulation. This transition from system 1 to system 2 ethylene production might be related to the accumulated level of NR mRNA. PMID:9847103

  6. Inhibition by 1-aminocyclobutane-1-carboxylate of the activity of 1-aminocyclopropane-1-carboxylate oxidase obtained from senescing petals of carnation (Dianthus caryophyllus L.) flowers.

    PubMed

    Kosugi, Y; Oyamada, N; Satoh, S; Yoshioka, T; Onodera, E; Yamada, Y

    1997-03-01

    We partially purified 1-aminocyclopropane-1-carboxylate (ACC) oxidase from senescing petals of carnation (Dianthus caryophyllus L. cv. Nora) flowers and investigated its general characteristics, and, in particular, the inhibition of its activity by ACC analogs. The enzyme had an optimum pH at 7-7.5 and required Fe2+, ascorbate and NaHCO3 for its maximal activity. The Km for ACC was calculated as 111-125 microM in the presence of NaHCO3. Its M(r) was estimated to be 35 and 36 kDa by gel-filtration chromatography on HPLC and SDS-PAGE, respectively, indicating that the enzyme exists in a monomeric form. These properties were in agreement with those reported previously with ACC oxidases from different plant tissues including senescing carnation petals. Among six ACC analogs tested, 1-aminocyclobutane-1-carboxylate (ACBC) inhibited most severely the activity of ACC oxidase from carnation petals. ACBC acted as a competitive inhibitor with the Ki of 20-30 microM. The comparison between the Km for ACC and the Ki for ACBC indicated that ACBC had an affinity which was ca. 5-fold higher than that of ACC. Whereas ACC inactivated carnation ACC oxidase in a time-dependent manner during incubation, ACBC did not cause the inactivation of the enzyme. Preliminary experiments showed that ACBC and its N-substituted derivatives delayed the onset of senescence in cut carnation flowers.

  7. Expression of an exogenous 1-aminocyclopropane-1-carboxylate deaminase gene in Mesorhizobium spp. reduces the negative effects of salt stress in chickpea.

    PubMed

    Brígido, Clarisse; Nascimento, Francisco X; Duan, Jin; Glick, Bernard R; Oliveira, Solange

    2013-12-01

    Our goal was to study the symbiotic performance of two Mesorhizobium ciceri strains, transformed with an exogenous 1-aminocyclopropane-1-carboxylate deaminase gene (acdS), in chickpea plants under salinity stress. The EE-7 (salt-sensitive) and G-55 (salt-tolerant) M. ciceri strains were transformed with an acdS gene present on plasmid pRKACC. Salinity significantly reduced the overall growth of plants inoculated with either wild-type strains. Although the growth of plants inoculated with either salt-sensitive or salt-tolerant strain was reduced under salinity, the salt-tolerant strain showed a higher ability to nodulate chickpea under salt stress compared with the salt-sensitive strain. The shoot dry weight was significantly higher in plants inoculated with the acdS-transformed salt-sensitive strain compared with the plants inoculated with the native strain in the presence of salt. The negative effects of salt stress were also reduced in nodulation when using acdS-transformed strains in comparison with the wild-type strains. Interestingly, by expressing the exogenous acdS gene, the salt-sensitive strain was able to induce nodules in the same extent as the salt-tolerant strain. Although preliminary, these results suggest that genetic modification of a Mesorhizobium strain can improve its symbiotic performance under salt stress and indicate that ACC deaminase can play an important role in facilitating plant-rhizobium interaction under salinity conditions.

  8. 1-Aminocyclopropane-1-carboxylic acid (ACC) deaminase-containing rhizobacteria protect Ocimum sanctum plants during waterlogging stress via reduced ethylene generation.

    PubMed

    Barnawal, Deepti; Bharti, Nidhi; Maji, Deepamala; Chanotiya, Chandan Singh; Kalra, Alok

    2012-09-01

    Ocimum sanctum grown as rain-fed crop, is known to be poorly adapted to waterlogged conditions. Many a times the crop suffers extreme damages because of anoxia and excessive ethylene generation due to waterlogging conditions present under heavy rain. The usefulness of 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase-containing plant growth promoting rhizobacteria was investigated under waterlogging stress. The comparison of herb yield and stress induced biochemical changes of waterlogged and non-waterlogged plants with and without ACC deaminase-containing microbiological treatments were monitored in this study. Ten plant growth promoting rhizobacteria strains containing ACC-deaminase were isolated and characterized. Four selected isolates Fd2 (Achromobacter xylosoxidans), Bac5 (Serratia ureilytica), Oci9 (Herbaspirillum seropedicae) and Oci13 (Ochrobactrum rhizosphaerae) had the potential to protect Ocimum plants from flood induced damage under waterlogged glass house conditions. Pot experiments were conducted to evaluate the potential of these ACC deaminase-containing selected strains for reducing the yield losses caused by waterlogging conditions. Bacterial treatments protected plants from waterlogging induced detrimental changes like stress ethylene production, reduced chlorophyll concentration, higher lipid peroxidation, proline concentration and reduced foliar nutrient uptake. Fd2 (A. xylosoxidans) induced maximum waterlogging tolerance as treated waterlogged plants recorded maximum growth and herb yield (46.5% higher than uninoculated waterlogged plants) with minimum stress ethylene levels (53% lower ACC concentration as compared to waterlogged plants without bacterial inoculation) whereas under normal non-waterlogged conditions O. rhizosphaerae was most effective in plant growth promotion. PMID:22846334

  9. 1-Aminocyclopropane-1-Carboxylate Deaminase from Pseudomonas stutzeri A1501 Facilitates the Growth of Rice in the Presence of Salt or Heavy Metals.

    PubMed

    Han, Yunlei; Wang, Rui; Yang, Zhirong; Zhan, Yuhua; Ma, Yao; Ping, Shuzhen; Zhang, Liwen; Lin, Min; Yan, Yongliang

    2015-07-01

    1-Aminocyclopropane-1-carboxylate (ACC) deaminase, which is encoded by some bacteria, can reduce the amount of ethylene, a root elongation inhibitor, and stimulate the growth of plants under various environmental stresses. The presence of ACC deaminase activity and the regulation of ACC in several rhizospheric bacteria have been reported. The nitrogen-fixing Pseudomonas stutzeri A1501 is capable of endophytic association with rice plants and promotes the growth of rice. However, the functional identification of ACC deaminase has not been performed. In this study, the proposed effect of ACC deaminase in P. stutzeri A1501 was investigated. Genome mining showed that P. stutzeri A1501 carries a single gene encoding ACC deaminase, designated acdS. The acdS mutant was devoid of ACC deaminase activity and was less resistant to NaCl and NiCl2 compared with the wild-type. Furthermore, inactivation of acdS greatly impaired its nitrogenase activity under salt stress conditions. It was also observed that mutation of the acdS gene led to loss of the ability to promote the growth of rice under salt or heavy metal stress. Taken together, this study illustrates the essential role of ACC deaminase, not only in enhancing the salt or heavy metal tolerance of bacteria but also in improving the growth of plants, and provides a theoretical basis for studying the interaction between plant growth-promoting rhizobacteria and plants. PMID:25674802

  10. 1-Aminocyclopropane-1-Carboxylate Deaminase from Pseudomonas stutzeri A1501 Facilitates the Growth of Rice in the Presence of Salt or Heavy Metals.

    PubMed

    Han, Yunlei; Wang, Rui; Yang, Zhirong; Zhan, Yuhua; Ma, Yao; Ping, Shuzhen; Zhang, Liwen; Lin, Min; Yan, Yongliang

    2015-07-01

    1-Aminocyclopropane-1-carboxylate (ACC) deaminase, which is encoded by some bacteria, can reduce the amount of ethylene, a root elongation inhibitor, and stimulate the growth of plants under various environmental stresses. The presence of ACC deaminase activity and the regulation of ACC in several rhizospheric bacteria have been reported. The nitrogen-fixing Pseudomonas stutzeri A1501 is capable of endophytic association with rice plants and promotes the growth of rice. However, the functional identification of ACC deaminase has not been performed. In this study, the proposed effect of ACC deaminase in P. stutzeri A1501 was investigated. Genome mining showed that P. stutzeri A1501 carries a single gene encoding ACC deaminase, designated acdS. The acdS mutant was devoid of ACC deaminase activity and was less resistant to NaCl and NiCl2 compared with the wild-type. Furthermore, inactivation of acdS greatly impaired its nitrogenase activity under salt stress conditions. It was also observed that mutation of the acdS gene led to loss of the ability to promote the growth of rice under salt or heavy metal stress. Taken together, this study illustrates the essential role of ACC deaminase, not only in enhancing the salt or heavy metal tolerance of bacteria but also in improving the growth of plants, and provides a theoretical basis for studying the interaction between plant growth-promoting rhizobacteria and plants.

  11. 1-Aminocyclopropane-1-carboxylic acid (ACC) deaminase-containing rhizobacteria protect Ocimum sanctum plants during waterlogging stress via reduced ethylene generation.

    PubMed

    Barnawal, Deepti; Bharti, Nidhi; Maji, Deepamala; Chanotiya, Chandan Singh; Kalra, Alok

    2012-09-01

    Ocimum sanctum grown as rain-fed crop, is known to be poorly adapted to waterlogged conditions. Many a times the crop suffers extreme damages because of anoxia and excessive ethylene generation due to waterlogging conditions present under heavy rain. The usefulness of 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase-containing plant growth promoting rhizobacteria was investigated under waterlogging stress. The comparison of herb yield and stress induced biochemical changes of waterlogged and non-waterlogged plants with and without ACC deaminase-containing microbiological treatments were monitored in this study. Ten plant growth promoting rhizobacteria strains containing ACC-deaminase were isolated and characterized. Four selected isolates Fd2 (Achromobacter xylosoxidans), Bac5 (Serratia ureilytica), Oci9 (Herbaspirillum seropedicae) and Oci13 (Ochrobactrum rhizosphaerae) had the potential to protect Ocimum plants from flood induced damage under waterlogged glass house conditions. Pot experiments were conducted to evaluate the potential of these ACC deaminase-containing selected strains for reducing the yield losses caused by waterlogging conditions. Bacterial treatments protected plants from waterlogging induced detrimental changes like stress ethylene production, reduced chlorophyll concentration, higher lipid peroxidation, proline concentration and reduced foliar nutrient uptake. Fd2 (A. xylosoxidans) induced maximum waterlogging tolerance as treated waterlogged plants recorded maximum growth and herb yield (46.5% higher than uninoculated waterlogged plants) with minimum stress ethylene levels (53% lower ACC concentration as compared to waterlogged plants without bacterial inoculation) whereas under normal non-waterlogged conditions O. rhizosphaerae was most effective in plant growth promotion.

  12. Expression and characterization of 1-aminocyclopropane-1-carboxylate deaminase from the rhizobacterium Pseudomonas putida UW4: a key enzyme in bacterial plant growth promotion.

    PubMed

    Hontzeas, Nikos; Zoidakis, Jérôme; Glick, Bernard R; Abu-Omar, Mahdi M

    2004-12-01

    The enzyme 1-aminocyclopropane-1-carboxylate deaminase (ACCD) converts ACC, the precursor of the plant hormone ethylene, to alpha-ketobutyrate and ammonium. This enzyme has been identified in soil bacteria and has been proposed to play a key role in microbe-plant association. A soluble recombinant ACCD from Pseudomonas putida UW4 of molecular weight 41 kDa has been cloned, expressed, and purified. It showed selectivity and high activity towards the substrate ACC: K(M)=3.4+/-0.2 mM and k(cat)=146+/-5 min(-1) at pH 8.0 and 22 degrees C. The enzyme displayed optimal activity at pH 8.0 with a sharp decline to essentially no activity below pH 6.5 and a slightly less severe tapering in activity at higher pH resulting in loss of activity at pH>10. The major component of the enzyme's secondary structure was determined to be alpha-helical by circular dichroism (CD). P. putida UW4 ACCD unfolded at 60 degrees C as determined by its CD temperature profile as well as by differential scanning microcalorimetry (DSC). Enzyme activity was knocked out in the point mutant Gly44Asp. Modeling this mutation into the known yeast ACCD structure shed light on the role this highly conserved residue plays in allowing substrate accessibility to the active site. This enzyme's biochemical and biophysical properties will serve as an important reference point to which newly isolated ACC deaminases from other organisms can be compared. PMID:15588698

  13. Novel Rhizosphere Soil Alleles for the Enzyme 1-Aminocyclopropane-1-Carboxylate Deaminase Queried for Function with an In Vivo Competition Assay

    PubMed Central

    Jin, Zhao; Di Rienzi, Sara C.; Janzon, Anders; Werner, Jeff J.; Angenent, Largus T.; Dangl, Jeffrey L.; Fowler, Douglas M.

    2015-01-01

    Metagenomes derived from environmental microbiota encode a vast diversity of protein homologs. How this diversity impacts protein function can be explored through selection assays aimed to optimize function. While artificially generated gene sequence pools are typically used in selection assays, their usage may be limited because of technical or ethical reasons. Here, we investigate an alternative strategy, the use of soil microbial DNA as a starting point. We demonstrate this approach by optimizing the function of a widely occurring soil bacterial enzyme, 1-aminocyclopropane-1-carboxylate (ACC) deaminase. We identified a specific ACC deaminase domain region (ACCD-DR) that, when PCR amplified from the soil, produced a variant pool that we could swap into functional plasmids carrying ACC deaminase-encoding genes. Functional clones of ACC deaminase were selected for in a competition assay based on their capacity to provide nitrogen to Escherichia coli in vitro. The most successful ACCD-DR variants were identified after multiple rounds of selection by sequence analysis. We observed that previously identified essential active-site residues were fixed in the original unselected library and that additional residues went to fixation after selection. We identified a divergent essential residue whose presence hints at the possible use of alternative substrates and a cluster of neutral residues that did not influence ACCD performance. Using an artificial ACCD-DR variant library generated by DNA oligomer synthesis, we validated the same fixation patterns. Our study demonstrates that soil metagenomes are useful starting pools of protein-coding-gene diversity that can be utilized for protein optimization and functional characterization when synthetic libraries are not appropriate. PMID:26637602

  14. Expression of an exogenous 1-aminocyclopropane-1-carboxylate deaminase gene in psychrotolerant bacteria modulates ethylene metabolism and cold induced genes in tomato under chilling stress.

    PubMed

    Subramanian, Parthiban; Krishnamoorthy, Ramasamy; Chanratana, Mak; Kim, Kiyoon; Sa, Tongmin

    2015-04-01

    The role of stress induced ethylene under low temperature stress has been controversial and hitherto remains unclear. In the present study, 1-aminocyclopropane-1-carboxylate deaminase (ACCD) gene, acdS expressing mutant strains were generated from ACCD negative psychrotolerant bacterial strains Flavobacterium sp. OR306 and Pseudomonas frederiksbergensis OS211, isolated from agricultural soil during late winter. After transformation with plasmid pRKACC which contained the acdS gene, both the strains were able to exhibit ACCD activity in vitro. The effect of this ACCD under chilling stress with regards to ethylene was studied in tomato plants inoculated with both acdS expressing and wild type bacteria. On exposing the plants to one week of chilling treatment at 12/10 °C, it was found that stress ethylene, ACC accumulation and ACO activity which are markers of ethylene stress, were significantly reduced in plants inoculated with the acdS gene transformed mutants. In case of plants inoculated with strain OS211-acdS, ethylene emission, ACC accumulation and ACO activity was significantly reduced by 52%, 75.9% and 23.2% respectively compared to uninoculated control plants. Moreover, expression of cold induced LeCBF1 and LeCBF3 genes showed that these genes were significantly induced by the acdS transformed mutants in addition to reduced expression of ethylene-responsive transcription factor 13 (ETF-13) and ACO genes. Induced expression of LeCBF1 and LeCBF3 in plants inoculated with acdS expressing mutants compared to wild type strains show that physiologically evolved stress ethylene and its transcription factors play a role in regulation of cold induced genes as reported earlier in the literature.

  15. 1-Aminocyclopropane-1-carboxylic acid and abscisic acid during the germination of sugar beet (Beta vulgaris L.): a comparative study of fruits and seeds.

    PubMed

    Hermann, Katrin; Meinhard, Juliane; Dobrev, Peter; Linkies, Ada; Pesek, Bedrich; Hess, Barbara; Machácková, Ivana; Fischer, Uwe; Leubner-Metzger, Gerhard

    2007-01-01

    The control of sugar beet (Beta vulgaris L.) germination by plant hormones was studied by comparing fruits and seeds. Treatment of sugar beet fruits and seeds with gibberellins, brassinosteroids, auxins, cytokinins, and jasmonates or corresponding hormone biosynthesis inhibitors did not appreciably affect radicle emergence of fruits or seeds. By contrast, treatment with ethylene or the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) promoted radicle emergence of fruits and seeds. Abscisic acid (ABA) acted as an antagonist of ethylene and inhibited radicle emergence of seeds, but not appreciably of fruits. High endogenous contents of ACC and of ABA were evident in seeds and pericarps of dry mature fruits, but declined early during imbibition. ABA-treatment of seeds and fruits induced seed ACC accumulation while ACC-treatment did not affect the seed ABA content. Transcripts of ACC oxidase (ACO, ethylene-forming enzyme) and ABA 8'-hydroxylase (CYP707A, ABA-degrading enzyme) accumulate in fruits and seeds upon imbibition. ABA and ACC and the pericarp did not affect the seed CYP707A transcript levels. By contrast, seed ACO transcript accumulation was promoted by ABA and by pericarp removal, but not by ACC. Quantification of the endogenous ABA and ACC contents, ABA and ACC leaching, and ethylene evolution, demonstrate that an embryo-mediated active ABA extrusion system is involved in keeping the endogenous seed ABA content low by 'active ABA leaching', while the pericarp restricts ACC leaching during imbibition. Sugar beet radicle emergence appears to be controlled by the pericarp, by ABA and ACC leaching, and by an ABA-ethylene antagonism that affects ACC biosynthesis and ACO gene expression.

  16. Synergistic enhancement of ethylene production and germination with kinetin and 1-aminocyclopropane-1-carboxylic Acid in lettuce seeds exposed to salinity stress.

    PubMed

    Khan, A A; Huang, X L

    1988-08-01

    Relief of salt (0.1 molar NaCl) stress on germination of lettuce (Lactuca sativa L., cv Mesa 659) seeds occurred with applications of 0.05 millimolar kinetin (KIN) and 1 to 10 millimolar 1-aminocyclopropane 1-carboxylic acid (ACC). Treatment with KIN enhanced the pregermination ethylene production under saline condition. A synergistic or an additive enhancement of pregermination ethylene production and germination occurred under saline condition in the presence of KIN and a saturating dose (10 millimolar) of ACC. No KIN-ACC synergism was noted in ethylene production or germination under nonsaline condition. Addition of 1 millimolar aminoethoxyvinylglycine (AVG) inhibited the KIN-enhanced pregermination ethylene production (85 to 89%) and germination (58%) under saline condition but not the synergistic effect of KIN + ACC on ethylene production. Under nonsaline condition, AVG had no effect on germination even though ethylene production was strongly inhibited. Alleviation of salt stress by KIN was inhibited in a competitive manner by 2,5-norbornadiene (NBD) (0.02-0.2 milliliter per liter), and the addition of ACC and/or ethylene reduced this inhibition. An increase in the pregermination ethylene production and germination occurred also by cotylenin E (CN) under saline condition. However, neither AVG (1 millimolar) nor NBD (0.02 to 0.2 milliliter per liter) prevented the relief of salt stress by CN. Thus, KIN may alleviate salt stress on germination by promoting both ACC production and its conversion to ethylene. Rapid utilization of ACC may be the basis for the synergistic or the additive effect of KIN plus ACC. The need for ethylene production and action for the relief of salt stress is circumvented by a treatment with CN.

  17. Genetic identification of ACC-RESISTANT2 reveals involvement of LYSINE HISTIDINE TRANSPORTER1 in the uptake of 1-aminocyclopropane-1-carboxylic acid in Arabidopsis thaliana.

    PubMed

    Shin, Kihye; Lee, Sumin; Song, Won-Yong; Lee, Rin-A; Lee, Inhye; Ha, Kyungsun; Koo, Ja-Choon; Park, Soon-Ki; Nam, Hong-Gil; Lee, Youngsook; Soh, Moon-Soo

    2015-03-01

    1-Aminocyclopropane-1-carboxylic acid (ACC) is a biosynthetic precursor of ethylene, a gaseous plant hormone which controls a myriad of aspects of development and stress adaptation in higher plants. Here, we identified a mutant in Arabidopsis thaliana, designated as ACC-resistant2 (are2), displaying a dose-dependent resistance to exogenously applied ACC. Physiological analyses revealed that mutation of are2 impaired various aspects of exogenous ACC-induced ethylene responses, while not affecting sensitivity to other plant hormones during seedling development. Interestingly, the are2 mutant was normally sensitive to gaseous ethylene, compared with the wild type. Double mutant analysis showed that the ethylene-overproducing mutations, eto1 or eto3, and the constitutive ethylene signaling mutation, ctr1 were epistatic to the are2 mutation. These results suggest that the are2 mutant is not defective in ethylene biosynthesis or ethylene signaling per se. Map-based cloning of ARE2 demonstrated that LYSINE HISTIDINE TRANSPORTER1 (LHT1), encoding an amino acid transporter, is the gene responsible. An uptake experiment with radiolabeled ACC indicated that mutations of LHT1 reduced, albeit not completely, uptake of ACC. Further, we performed an amino acid competition assay and found that two amino acids, alanine and glycine, known as substrates of LHT1, could suppress the ACC-induced triple response in a LHT1-dependent way. Taken together, these results provide the first molecular genetic evidence supporting that a class of amino acid transporters including LHT1 takes part in transport of ACC, thereby influencing exogenous ACC-induced ethylene responses in A. thaliana. PMID:25520403

  18. Silicon-mediated changes in polyamine and 1-aminocyclopropane-1-carboxylic acid are involved in silicon-induced drought resistance in Sorghum bicolor L.

    PubMed

    Yin, Lina; Wang, Shiwen; Liu, Peng; Wang, Wenhua; Cao, Dan; Deng, Xiping; Zhang, Suiqi

    2014-07-01

    The fact that silicon application alleviates drought stress has been widely reported, but the mechanism it underlying remains unclear. Here, morphologic and physiological changes were investigated in sorghum (Sorghum bicolor L.) seedlings treated with silicon and exposed to PEG-simulated drought stress for seven days. Drought stress dramatically decreased growth parameters (biomass, root/shoot ratio, leaf area, chlorophyll concentration and photosynthetic rate), while silicon application reduced the drought-induced decreases in those parameters. Leaf relative water content and transpiration rate were maintained at high levels compared to those in seedlings without silicon. The soluble sugar contents were increased, but the proline contents and the osmotic potential were decreased, showing that osmotic adjustment did not contribute to the silicon induced-drought resistance. Furthermore, levels of both free and conjugated polyamines (PAs) levels, including putrescine, spermidine and spermine, were all found to be increased by silicon under drought stress both in leaf and root. Meanwhile, 1-aminocyclopropane-1-carboxylic acid (ACC), the precursor of ethylene, was markedly decreased by supplemental silicon. Several key PA synthesis genes were upregulated by silicon under drought stress. These results suggest that silicon improves sorghum drought resistance by mediating the balance of PAs and ethylene levels. In leaf, the increased PAs and decreased ACC help to retard leaf senescence. In root, the balance between PAs and ACC participates in the modulation of root plasticity, increases the root/shoot ratio, and contributes to an increase in water uptake. These results suggest that silicon increases drought resistance through regulating several important physiological processes in plants.

  19. Inducing salt tolerance in mung bean through coinoculation with rhizobia and plant-growth-promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate deaminase.

    PubMed

    Ahmad, Maqshoof; Zahir, Zahir A; Asghar, H Naeem; Asghar, M

    2011-07-01

    Twenty-five strains of plant-growth-promoting rhizobacteria (PGPR) containing 1-aminocyclopropane-1-carboxylate (ACC) deaminase and 10 strains of rhizobia were isolated from rhizosphere soil samples and nodules of mung bean. They were screened in separate trials under salt-stressed axenic conditions. The three most effective strains of PGPR (Mk1, Pseudomonas syringae ; Mk20, Pseudomonas fluorescens ; and Mk25, Pseudomonas fluorescens biotype G) and Rhizobium phaseoli strains M1, M6, and M9 were evaluated in coinoculation for their growth-promoting activity at three salinity levels (original, 4 dS·m(-1), and 6 dS·m(-1)) under axenic conditions. The results showed that salinity stress significantly reduced plant growth but inoculation with PGPR containing ACC deaminase and rhizobia enhanced plant growth, thus reducing the inhibitory effect of salinity. However, their combined application was more effective under saline conditions, and the combination Mk20 × M6 was the most efficient for improving seedling growth and nodulation. The effect of high ethylene concentrations on plant growth and the performance of these strains for reducing the negative impact of saline stress was also evaluated by conducting a classical triple-response bioassay. The intensity of the classical triple response decreased owing to inoculation with these strains, with the root and shoot lengths of inoculated mung bean seedlings increasing and stem diameter decreasing, which is a typical response to the dilution in a classical triple response bioassay. Thus, coinoculation with PGPR containing ACC deaminase and Rhizobium spp. could be a useful approach for inducing salt tolerance and thus improving growth and nodulation in mung bean under salt-affected conditions.

  20. ACC (1-aminocyclopropane-1-carboxylate) deaminase activity, a widespread trait in Burkholderia species, and its growth-promoting effect on tomato plants.

    PubMed

    Onofre-Lemus, Janette; Hernández-Lucas, Ismael; Girard, Lourdes; Caballero-Mellado, Jesús

    2009-10-01

    The genus Burkholderia includes pathogens of plants and animals and some human opportunistic pathogens, such as the Burkholderia cepacia complex (Bcc), but most species are nonpathogenic, plant associated, and rhizospheric or endophytic. Since rhizobacteria expressing ACC (1-aminocyclopropane-1-carboxylate) deaminase may enhance plant growth by lowering plant ethylene levels, in this work we investigated the presence of ACC deaminase activity and the acdS gene in 45 strains, most of which are plant associated, representing 20 well-known Burkholderia species. The results demonstrated that ACC deaminase activity is a widespread feature in the genus Burkholderia, since 18 species exhibited ACC deaminase activities in the range from 2 to 15 mumol of alpha-ketobutyrate/h/mg protein, which suggests that these species may be able to modulate ethylene levels and enhance plant growth. In these 18 Burkholderia species the acdS gene sequences were highly conserved (76 to 99% identity). Phylogenetic analysis of acdS gene sequences in Burkholderia showed tight clustering of the Bcc species, which were clearly distinct from diazotrophic plant-associated Burkholderia species. In addition, an acdS knockout mutant of the N(2)-fixing bacterium Burkholderia unamae MTl-641(T) and a transcriptional acdSp-gusA fusion constructed in this strain showed that ACC deaminase could play an important role in promotion of the growth of tomato plants. The widespread ACC deaminase activity in Burkholderia species and the common association of these species with plants suggest that this genus could be a major contributor to plant growth under natural conditions.

  1. Possible Role of 1-Aminocyclopropane-1-Carboxylate (ACC) Deaminase Activity of Sinorhizobium sp. BL3 on Symbiosis with Mung Bean and Determinate Nodule Senescence.

    PubMed

    Tittabutr, Panlada; Sripakdi, Sudarat; Boonkerd, Nantakorn; Tanthanuch, Waraporn; Minamisawa, Kiwamu; Teaumroong, Neung

    2015-01-01

    Sinorhizobium sp. BL3 forms symbiotic interactions with mung bean (Vigna radiata) and contains lrpL-acdS genes, which encode the 1-aminocyclopropane-1-carboxylate (ACC) deaminase enzyme that cleaves ACC, a precursor of plant ethylene synthesis. Since ethylene interferes with nodule formation in some legumes and plays a role in senescence in plant cells, BL3-enhancing ACC deaminase activity (BL3(+)) and defective mutant (BL3(-)) strains were constructed in order to investigate the effects of this enzyme on symbiosis and nodule senescence. Nodulation competitiveness was weaker in BL3(-) than in the wild-type, but was stronger in BL3(+). The inoculation of BL3(-) into mung bean resulted in less plant growth, a lower nodule dry weight, and smaller nodule number than those in the wild-type, whereas the inoculation of BL3(+) had no marked effects. However, similar nitrogenase activity was observed with all treatments; it was strongly detected 3 weeks after the inoculation and gradually declined with time, indicating senescence. The rate of plant nodulation by BL3(+) increased in a time-dependent manner. Nodules occupied by BL3(-) formed smaller symbiosomes, and bacteroid degradation was more prominent than that in the wild-type 7 weeks after the inoculation. Changes in biochemical molecules during nodulation were tracked by Fourier Transform Infrared (FT-IR) microspectroscopy, and the results obtained confirmed that aging processes differed in nodules occupied by BL3 and BL3(-). This is the first study to show the possible role of ACC deaminase activity in senescence in determinate nodules. Our results suggest that an increase in ACC deaminase activity in this strain does not extend the lifespan of nodules, whereas the lack of this activity may accelerate nodule senescence.

  2. Novel Rhizosphere Soil Alleles for the Enzyme 1-Aminocyclopropane-1-Carboxylate Deaminase Queried for Function with an In Vivo Competition Assay.

    PubMed

    Jin, Zhao; Di Rienzi, Sara C; Janzon, Anders; Werner, Jeff J; Angenent, Largus T; Dangl, Jeffrey L; Fowler, Douglas M; Ley, Ruth E

    2015-12-04

    Metagenomes derived from environmental microbiota encode a vast diversity of protein homologs. How this diversity impacts protein function can be explored through selection assays aimed to optimize function. While artificially generated gene sequence pools are typically used in selection assays, their usage may be limited because of technical or ethical reasons. Here, we investigate an alternative strategy, the use of soil microbial DNA as a starting point. We demonstrate this approach by optimizing the function of a widely occurring soil bacterial enzyme, 1-aminocyclopropane-1-carboxylate (ACC) deaminase. We identified a specific ACC deaminase domain region (ACCD-DR) that, when PCR amplified from the soil, produced a variant pool that we could swap into functional plasmids carrying ACC deaminase-encoding genes. Functional clones of ACC deaminase were selected for in a competition assay based on their capacity to provide nitrogen to Escherichia coli in vitro. The most successful ACCD-DR variants were identified after multiple rounds of selection by sequence analysis. We observed that previously identified essential active-site residues were fixed in the original unselected library and that additional residues went to fixation after selection. We identified a divergent essential residue whose presence hints at the possible use of alternative substrates and a cluster of neutral residues that did not influence ACCD performance. Using an artificial ACCD-DR variant library generated by DNA oligomer synthesis, we validated the same fixation patterns. Our study demonstrates that soil metagenomes are useful starting pools of protein-coding-gene diversity that can be utilized for protein optimization and functional characterization when synthetic libraries are not appropriate.

  3. Possible Role of 1-Aminocyclopropane-1-Carboxylate (ACC) Deaminase Activity of Sinorhizobium sp. BL3 on Symbiosis with Mung Bean and Determinate Nodule Senescence

    PubMed Central

    Tittabutr, Panlada; Sripakdi, Sudarat; Boonkerd, Nantakorn; Tanthanuch, Waraporn; Minamisawa, Kiwamu; Teaumroong, Neung

    2015-01-01

    Sinorhizobium sp. BL3 forms symbiotic interactions with mung bean (Vigna radiata) and contains lrpL-acdS genes, which encode the 1-aminocyclopropane-1-carboxylate (ACC) deaminase enzyme that cleaves ACC, a precursor of plant ethylene synthesis. Since ethylene interferes with nodule formation in some legumes and plays a role in senescence in plant cells, BL3-enhancing ACC deaminase activity (BL3+) and defective mutant (BL3−) strains were constructed in order to investigate the effects of this enzyme on symbiosis and nodule senescence. Nodulation competitiveness was weaker in BL3− than in the wild-type, but was stronger in BL3+. The inoculation of BL3− into mung bean resulted in less plant growth, a lower nodule dry weight, and smaller nodule number than those in the wild-type, whereas the inoculation of BL3+ had no marked effects. However, similar nitrogenase activity was observed with all treatments; it was strongly detected 3 weeks after the inoculation and gradually declined with time, indicating senescence. The rate of plant nodulation by BL3+ increased in a time-dependent manner. Nodules occupied by BL3− formed smaller symbiosomes, and bacteroid degradation was more prominent than that in the wild-type 7 weeks after the inoculation. Changes in biochemical molecules during nodulation were tracked by Fourier Transform Infrared (FT-IR) microspectroscopy, and the results obtained confirmed that aging processes differed in nodules occupied by BL3 and BL3−. This is the first study to show the possible role of ACC deaminase activity in senescence in determinate nodules. Our results suggest that an increase in ACC deaminase activity in this strain does not extend the lifespan of nodules, whereas the lack of this activity may accelerate nodule senescence. PMID:26657304

  4. Dissecting the role of climacteric ethylene in kiwifruit (Actinidia chinensis) ripening using a 1-aminocyclopropane-1-carboxylic acid oxidase knockdown line.

    PubMed

    Atkinson, Ross G; Gunaseelan, Kularajathevan; Wang, Mindy Y; Luo, Luke; Wang, Tianchi; Norling, Cara L; Johnston, Sarah L; Maddumage, Ratnasiri; Schröder, Roswitha; Schaffer, Robert J

    2011-07-01

    During climacteric fruit ripening, autocatalytic (Type II) ethylene production initiates a transcriptional cascade that controls the production of many important fruit quality traits including flavour production and softening. The last step in ethylene biosynthesis is the conversion of 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene by the enzyme ACC oxidase (ACO). Ten independent kiwifruit (Actinidia chinensis) lines were generated targeting suppression of fruit ripening-related ACO genes and the fruit from one of these lines (TK2) did not produce detectable levels of climacteric ethylene. Ripening behaviour in a population of kiwifruit at harvest is asynchronous, so a short burst of exogenous ethylene was used to synchronize ripening in TK2 and control fruit. Following such a treatment, TK2 and control fruit softened to an 'eating-ripe' firmness. Control fruit produced climacteric ethylene and softened beyond eating-ripe by 5 d. In contrast, TK2 fruit maintained an eating-ripe firmness for >25 d and total volatile production was dramatically reduced. Application of continuous exogenous ethylene to the ripening-arrested TK2 fruit re-initiated fruit softening and typical ripe fruit volatiles were detected. A 17 500 gene microarray identified 401 genes that changed after ethylene treatment, including a polygalacturonase and a pectate lyase involved in cell wall breakdown, and a quinone oxidoreductase potentially involved in volatile production. Many of the gene changes were consistent with the softening and flavour changes observed after ethylene treatment. However, a surprisingly large number of genes of unknown function were also observed, which could account for the unique flavour and textural properties of ripe kiwifruit.

  5. The final step of the ethylene biosynthesis pathway in turnip tops (Brassica rapa): molecular characterization of the 1-aminocyclopropane-1-carboxylate oxidase BrACO1 throughout zygotic embryogenesis and germination of heterogeneous seeds.

    PubMed

    Del Carmen Rodríguez-Gacio, María; Nicolás, Carlos; Matilla, Angel Jesús

    2004-05-01

    In a previous report from the present authors, it was shown that the 1-aminocyclopropane-1-carboxylate (ACC) oxidation may play a crucial role during zygotic embryogenesis of turnip tops seeds. The present study was performed to elucidate the contribution of the silique-wall and seeds in ethylene production during this developmental process. ACC content in the silique wall is only higher than in seeds during the middle phases of zygotic embryogenesis. The ACC-oxidase (ACO) activity peaks in the silique-wall and seeds during the onset of embryogenesis, declining gradually afterwards, being undetectable during desiccation period. Using reverse transcriptase-polymerase chain reaction, one cDNA clone coding for an ACO and called BrACO1, was isolated. The deduced protein for BrACO1 has a molecular weight of 36.8 kDa and a high homology with other crucifer ACOs. The heterologous expression of this cDNA confirmed that BrACO1 is an ACO. The expression of this gene was high during the first phases of silique-wall development, low during the middle phases and undetectable during desiccation. By contrast, BrACO1 transcript was accumulated only in the earliest phases of seed embryogenesis and may participate in the highest ACO activity and ethylene production by seeds at the beginning of embryogenesis. Finally, in this work a correlation between the heterogeneity of Brassica rapa L. cv. Rapa seeds and the ability to oxidize the ACC to ethylene has been demonstrated.

  6. A conserved mutation in an ethylene biosynthesis enzyme leads to andromonoecy in melons.

    PubMed

    Boualem, Adnane; Fergany, Mohamed; Fernandez, Ronan; Troadec, Christelle; Martin, Antoine; Morin, Halima; Sari, Marie-Agnes; Collin, Fabrice; Flowers, Jonathan M; Pitrat, Michel; Purugganan, Michael D; Dogimont, Catherine; Bendahmane, Abdelhafid

    2008-08-01

    Andromonoecy is a widespread sexual system in angiosperms characterized by plants carrying both male and bisexual flowers. In melon, this sexual form is controlled by the identity of the alleles at the andromonoecious (a) locus. Cloning of the a gene reveals that andromonoecy results from a mutation in the active site of 1-aminocyclopropane-1-carboxylic acid synthase. Expression of the active enzyme inhibits the development of the male organs and is not required for carpel development. A causal single-nucleotide polymorphism associated with andromonoecy was identified, which suggests that the a allele has been under recent positive selection and may be linked to the evolution of this sexual system.

  7. Differential expression of two 1-aminocyclopropane-1-carboxylic acid oxidase genes in broccoli after harvest.

    PubMed Central

    Pogson, B J; Downs, C G; Davies, K M

    1995-01-01

    Broccoli (Brassica oleracea L.) floral tissues rapidly differentiate and grow before harvest and then senesce rapidly after harvest. Associated with this postharvest deterioration is an increase in ethylene production by florets. Two cDNA clones having high nucleotide identity to sequences encoding 1-amino-cyclopropane-1-carboxylic acid (ACC) oxidase were isolated from senescing florets. The cDNAs, ACC Ox1 and ACC Ox2, apparently encode mRNAs from different genes. ACC Ox1 transcripts were found at low levels in whole florets at the time of harvest and increased markedly in abundance after harvest. ACC Ox1 transcript abundance also increased in sepals after harvest and in excised yellowing leaves. Transcripts corresponding to ACC Ox2 were found exclusively within the reproductive structures. These ACC Ox2 transcripts were absent at harvest but started to increase in abundance within 2 h of harvest and then accumulated to high levels. Hormone treatment did not alter the abundance of ACC Ox1 transcripts, whereas ACC Ox2 transcripts increased in abundance after treatment with abscisic acid and propylene. Wounding did not affect the levels of ACC Ox1 or Ox2 transcripts after harvest. At harvest, individual broccoli florets were closed and remained unpollinated. We propose a model whereby the rapid increase in ACC Ox1 and Ox2 transcript abundance after harvest contributes to increased ethylene production by florets. This ethylene may regulate aspects of postharvest senescence, in particular chlorophyll loss. PMID:7610162

  8. Effect of the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid on different growth stages of Haematococcus pluvialis.

    PubMed

    Vo, Thi-Thao; Lee, Changsu; Han, Sang-Il; Kim, Jee Young; Kim, Sok; Choi, Yoon-E

    2016-11-01

    In this study, we explored the effects of ACC on other stages of H. pluvialis. Interestingly, even though ACC displayed a dose-dependent effect on astaxanthin production, it is evident that astaxanthin production could be facilitated whenever the cells were treated at the early red stage. The transcriptional levels of BKT, CHY, SOD, and CAT genes supported enhanced astaxanthin biosynthesis upon ACC treatment at the early red stage. The combinatorial synergistic effect of ACC and light intensity was also confirmed. Finally, two-step application of ACC at the vegetative phase to increase biomass production and at the early-red stage to promote astaxanthin biosynthesis was proposed to maximize the efficiency of ACC treatment. PMID:27566516

  9. 1-aminocyclopropane-1-carboxylate deaminase from Pseudomonas fluorescens promoting the growth of Chinese cabbage and its polyclonal antibody.

    PubMed

    Soh, Byoung Yul; Lee, Gun Woong; Go, Eun Byeul; Kim, Byeo-Ri; Lee, Kui-Jae; Chae, Jong-Chan

    2014-05-01

    Bacterial 1-aminocyclopropane-1-carboxlyate (ACC) deaminase (AcdS) is an enzyme that cleaves ACC, a precursor of the plant hormone ethylene, into α-ketobutyrate and ammonia. The acdS gene was cloned from Pseudomonas fluorescens, which was capable of improving the seedling of Chinese cabbage under salinity condition. The recombinant AcdS (rAcdS) exhibited optimal activity at pH 8.5 and 30°C. Strong activity was sustained at up to 100 mM NaCl. The polyclonal anti-P. fluorescens AcdS antibody was produced in a rabbit that had been immunized with the purified rAcdS. This antibody successfully recognized the homologous antigens derived from the total proteins of isolated plant growth-promoting microorganisms. A statistically significant correlation was observed between the intensity of hybridization signal and AcdS activity measured by a biochemical method, suggesting its application as a useful indicator for active deaminases.

  10. Southern blight disease of tomato control by 1-aminocyclopropane-1-carboxylate (ACC) deaminase producing Paenibacillus lentimorbus B-30488

    PubMed Central

    Dixit, Ritu; Agrawal, Lalit; Gupta, Swati; Kumar, Manoj; Yadav, Sumit; Chauhan, Puneet Singh; Nautiyal, Chandra Shekhar

    2016-01-01

    abstract Tomato cultivation is highly susceptible for soil born diseases and among them southern blight disease caused by Scelerotium rolfsii is very common. For its management use of chemical fungicides is not very successful as their spores are able to survive for many years in the soil. As an alternative eco-friendly approach to control the disease antagonistic microbes are being characterized.Among them plant growth promoting rhizobacteria Paenibacillus lentimorbus B-30488 (B-30488) with antagonistic properties, multiple PGP attributes stress tolerance and ACC deaminase enzyme activity is characterized to decipher its mode of action against S. rolfsii under in vitro and in vivo conditions. In vitro results obtained from this study clearly demonstrate that B-30488 has ability to show antagonistic properties under different abiotic stresses against S. rolfsii. Similar results were also obtained from in vivo experiments where B-30488 inoculation has efficiently controlled the disease caused by S. rolfsii and improve the plant growth. Deleterious enhanced ethylene level in S. rolfsii infected plants was also ameliorated by inoculation of ACC deaminase producing B-30488. The ACC accumulation, ACO and ACS activities were also modulated in S. rolfsii infected plants. Results from defense enzymes and other biochemical attributes were also support the role of B-30488 inoculation in ameliorating the biotic stress caused by S. rolfsii in tomato plants. These results were further validated by pathogen related gene expression analysis by real time PCR. Overall results from the present study may be concluded that ACC deaminase producing B-30488 has ability to control the southern blight disease caused by S. rolfsii and commercial bioinoculant package may be developed. PMID:26825539

  11. Isoelectric focusing of wound-induced tomato ACC synthase

    SciTech Connect

    White, J.A.; Kende, H. )

    1990-05-01

    Several techniques of electrofocusing have been used to determine whether 1-aminocyclopropane-1-carboxylate (ACC) synthase isolated from wounded tomato pericarp tissue exists in different isoforms, each with its characteristic isoelectric point (pI). The pI of the native enzyme was found to be 6.0 {plus minus} 0.2. When radiolabeled, denatured ACC synthase was electrofocused by non-equilibrium pH gradient electrophoresis (NEpHGE), the enzyme separated into four discernible spots which, upon reaching equilibrium, ranged in pI from 6.6 to 6.9. Immunopurified ACC synthase from four tomato cultivars (Duke, Cornell, Mountain Pride and Pik Red) migrated in each case as a 50-kDa protein on sodium dodecyl sulfate polyacrylamide gels (SDS-PAGE). We propose that native ACC synthase in extracts of tomato pericarp tissue exists in one single form and that the charge heterogeneities observed upon electrofocusing of denatured enzyme result from modifications of preexisting protein.

  12. Burst of ethylene upon horizontal placement of tomato seedlings

    NASA Technical Reports Server (NTRS)

    Harrison, M.; Pickard, B. G.

    1984-01-01

    Seedlings of Lycopersicon esculentum Mill. cv Rutgers emit a pulse of ethylene during the first 2 to 4 minutes following horizontal placement. Because this burst appears too rapid and brief to be mediated by increase in net activity of 1-aminocyclopropane-1-carboxylic acid synthase, it might result form accelerated transformation of vacuolar 1-aminocyclopropane-1-carboxylic acid to ethylene.

  13. Undecaprenyl diphosphate synthase inhibitors: antibacterial drug leads.

    PubMed

    Sinko, William; Wang, Yang; Zhu, Wei; Zhang, Yonghui; Feixas, Ferran; Cox, Courtney L; Mitchell, Douglas A; Oldfield, Eric; McCammon, J Andrew

    2014-07-10

    There is a significant need for new antibiotics due to the rise in drug resistance. Drugs such as methicillin and vancomycin target bacterial cell wall biosynthesis, but methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE) have now arisen and are of major concern. Inhibitors acting on new targets in cell wall biosynthesis are thus of particular interest since they might also restore sensitivity to existing drugs, and the cis-prenyl transferase undecaprenyl diphosphate synthase (UPPS), essential for lipid I, lipid II, and thus, peptidoglycan biosynthesis, is one such target. We used 12 UPPS crystal structures to validate virtual screening models and then assayed 100 virtual hits (from 450,000 compounds) against UPPS from S. aureus and Escherichia coli. The most promising inhibitors (IC50 ∼2 μM, Ki ∼300 nM) had activity against MRSA, Listeria monocytogenes, Bacillus anthracis, and a vancomycin-resistant Enterococcus sp. with MIC or IC50 values in the 0.25-4 μg/mL range. Moreover, one compound (1), a rhodanine with close structural similarity to the commercial diabetes drug epalrestat, exhibited good activity as well as a fractional inhibitory concentration index (FICI) of 0.1 with methicillin against the community-acquired MRSA USA300 strain, indicating strong synergism. PMID:24827744

  14. Induction of isoprenyl diphosphate synthases, plant hormones and defense signalling genes correlates with traumatic resin duct formation in Norway spruce (Picea abies).

    PubMed

    Schmidt, Axel; Nagel, Raimund; Krekling, Trygve; Christiansen, Erik; Gershenzon, Jonathan; Krokene, Paal

    2011-12-01

    Norway spruce (Picea abies) defends itself against herbivores and pathogens by formation of traumatic resin ducts filled with terpenoid-based oleoresin. An important group of enzymes in terpenoid biosynthesis are the short-chain isoprenyl diphosphate synthases which produce geranyl diphosphate (C(10)), farnesyl diphosphate (C(15)), and geranylgeranyl diphosphate (C(20)) as precursors of monoterpenes, sesquiterpenes, and diterpene resin acids, respectively. After treatment with methyl jasmonate (MJ) we investigated the expression of all isoprenyl diphosphate synthase genes characterized to date from Norway spruce and correlated this with formation of traumatic resin ducts and terpene accumulation. Formation of traumatic resin ducts correlated with higher amounts of monoterpenes, sesquiterpenes and diterpene resin acids and an upregulation of isoprenyl diphosphate synthase genes producing geranyl diphosphate or geranylgeranyl diphosphate. Among defense hormones, jasmonate and jasmonate-isoleucine conjugate accumulated to higher levels in trees with extensive traumatic resin duct formation, whereas salicylate did not. Jasmonate and ethylene are likely to both be involved in formation of traumatic resin ducts based on elevated transcripts of genes encoding lipoxygenase and 1-aminocyclopropane-1-carboxylic acid oxidase associated with resin duct formation. Other genes involved in defense signalling in other systems, mitogen-activated protein kinase3 and nonexpressor of pathogenesis-related gene1, were also associated with traumatic resin duct formation. These responses were detected not only at the site of MJ treatment, but also systemically up to 60 cm above the site of treatment on the trunk.

  15. A type III ACC synthase, ACS7, is involved in root gravitropism in Arabidopsis thaliana

    PubMed Central

    Chang, Ing-Feng

    2013-01-01

    Ethylene is an important plant hormone that regulates developmental processes in plants. The ethylene biosynthesis pathway is a highly regulated process at both the transcriptional and post-translational level. The transcriptional regulation of these ethylene biosynthesis genes is well known. However, post-translational modifications of the key ethylene biosynthesis enzyme 1-aminocyclopropane-1-carboxylate (ACC) synthase (ACS) are little understood. In vitro kinase assays were conducted on the type III ACS, AtACS7, fusion protein and peptides to determine whether the AtACS7 protein can be phosphorylated by calcium-dependent protein kinase (CDPK). AtACS7 was phosphorylated at Ser216, Thr296, and Ser299 by AtCDPK16 in vitro. To investigate further the function of the ACS7 gene in Arabidopsis, an acs7-1 loss-of-function mutant was isolated. The acs7-1 mutant exhibited less sensitivity to the inhibition of root gravitropism by treatment with the calcium chelator ethylene glycol tetraacetic acid (EGTA). Seedlings were treated with gradient concentrations of ACC. The results showed that a certain concentration of ethylene enhanced the gravity response. Moreover, the acs7-1 mutant was less sensitive to inhibition of the gravity response by treatment with the auxin polar transport inhibitor 1-naphthylphthalamic acid, but exogenous ACC application recovered root gravitropism. Altogether, the results indicate that AtACS7 is involved in root gravitropism in a calcium-dependent manner in Arabidopsis. PMID:23943848

  16. Ethylene production and β-cyanoalanine synthase activity in carnation flowers.

    PubMed

    Manning, K

    1986-05-01

    The relationship between ethylene production and the CN(-)-assimilating enzyme β-cyanoalanine synthase (CAS; EC 4.4.1.9) was examined in the carnation (Dianthus caryophyllus L.) flower. In petals from cut flowers aged naturally or treated with ethylene to accelerate senescence the several hundred-fold increase in ethylene production which occurred during irreversible wilting was accompanied by a one- to twofold increase in CAS activity. The basal parts of the petal, which produced the most ethylene, had the highest CAS activity. Studies of flower parts (styles, ovaries, receptacles, petals) showed that the styles had a high level of CAS together with the ethylene-forming enzyme (EFE) system for converting 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene. The close association between CAS and EFE found in styles could also be observed in detached petals after induction by ACC or ethylene. Treatment of the cut flowers with cycloheximide reduced synthesis of CAS and EFE. The data indicate that CAS and ethylene production are associated, and are discussed in relation to the hypothesis that CN(-) is formed during the conversion of ACC to ethylene.

  17. Effect of drought and high solar radiation on 1-aminocyclopropane-1-carboxylic acid and abscisic acid concentrations in Rosmarinus officinalis plants.

    PubMed

    Munné-Bosch, Sergi; López-Carbonell, Marta; Alegre, Leonor; Van Onckelen, Harry A

    2002-03-01

    The endogenous concentrations of ACC and ABA were measured, at predawn and at maximum solar radiation, during a summer drought, and recovery after autumn rainfalls, in rosemary (Rosmarinus officinalis L.), a drought-tolerant species, growing under Mediterranean field conditions. During the summer, plants were subjected to both water deficit and high solar radiation. Plants showed severe reductions in shoot water potential to -3 MPa, which were associated with drastic stomatal closure (73%), a decrease in net photosynthesis, reaching almost zero, and a severe chlorophyll loss (74%). Despite the severity of the stress, plants recovered after the autumn rainfalls. The concentration of ACC was not enhanced by drought, and at predawn these concentrations remained constant at approximately 600 pmol ACC-1 DW throughout the experiment. Thus, ethylene did not regulate the response of rosemary to drought. However, a sharp increase in ACC levels between predawn and midday was observed. This increase was positively correlated to the intensity of the incident solar radiation. ACC levels recorded in June at midday reached 16 000 pmol g DW and in October values of 1000 pmol g-1 DW were observed. In contrast, in drought-stressed plants predawn concentrations of ABA were up to 130-fold those of recovered plants, and the levels of ABA scored at midday were double of those scored at predawn. In conclusion, although drought-stressed rosemary plants showed a relatively moderate ABA accumulation (approximately 500 pmol g-1 DW#, at predawn), it seems to be an essential factor for the regulation of the plant response to stress, thereby enabling a rapid recovery after stress release, although other mechanisms can not be excluded. As drought stress did not induce ACC accumulation, it was concluded that ethylene production was not a major factor in the drought stress resistance of rosemary plants. The increased ACC and ABA concentrations at midday were correlated with day length and light intensity and not with the water status of the plant.

  18. Arabidopsis protein phosphatase 2C ABI1 interacts with type I ACC synthases and is involved in the regulation of ozone-induced ethylene biosynthesis.

    PubMed

    Ludwików, Agnieszka; Cieśla, Agata; Kasprowicz-Maluśki, Anna; Mituła, Filip; Tajdel, Małgorzata; Gałgański, Łukasz; Ziółkowski, Piotr A; Kubiak, Piotr; Małecka, Arleta; Piechalak, Aneta; Szabat, Marta; Górska, Alicja; Dąbrowski, Maciej; Ibragimow, Izabela; Sadowski, Jan

    2014-06-01

    Ethylene plays a crucial role in various biological processes and therefore its biosynthesis is strictly regulated by multiple mechanisms. Posttranslational regulation, which is pivotal in controlling ethylene biosynthesis, impacts 1-aminocyclopropane 1-carboxylate synthase (ACS) protein stability via the complex interplay of specific factors. Here, we show that the Arabidopsis thaliana protein phosphatase type 2C, ABI1, a negative regulator of abscisic acid signaling, is involved in the regulation of ethylene biosynthesis under oxidative stress conditions. We found that ABI1 interacts with ACS6 and dephosphorylates its C-terminal fragment, a target of the stress-responsive mitogen-activated protein kinase, MPK6. In addition, ABI1 controls MPK6 activity directly and by this means also affects the ACS6 phosphorylation level. Consistently with this, ozone-induced ethylene production was significantly higher in an ABI1 knockout strain (abi1td) than in wild-type plants. Importantly, an increase in stress-induced ethylene production in the abi1td mutant was compensated by a higher ascorbate redox state and elevated antioxidant activities. Overall, the results of this study provide evidence that ABI1 restricts ethylene synthesis by affecting the activity of ACS6. The ABI1 contribution to stress phenotype underpins its role in the interplay between the abscisic acid (ABA) and ethylene signaling pathways. PMID:24637173

  19. Increased cadmium and lead uptake of a cadmium hyperaccumulator tomato by cadmium-resistant bacteria.

    PubMed

    He, Lin-Yan; Chen, Zhao-Jin; Ren, Gai-Di; Zhang, Yan-Feng; Qian, Meng; Sheng, Xia-Fang

    2009-07-01

    Two cadmium (Cd)-resistant strains Pseudomonas sp. RJ10 and Bacillus sp. RJ16 were investigated for their effects on the soil Cd and lead (Pb) solubilization and promotion of plant growth and Cd and Pb uptakes of a Cd-hyperaccumulator tomato. In the heavy metal-contaminated inoculated soil, the CaCl(2)-extractable Cd and Pb were increased by 58-104% and 67-93%, respectively, compared to the uninoculation control. The bacteria produced indole acetic acid, siderophore and 1-aminocyclopropane-1-carboxylate deaminase. Root elongation assay conducted on tomato under gnotobiotic conditions demonstrated increase in root elongation of inoculated tomato seedlings compared to the control plants. An increase in Cd and Pb contents of above-ground tissues varied from 92% to 113% and from 73% to 79% in inoculated plants growing in heavy metal-contaminated soil compared to the uninoculation control, respectively. These results show that the bacteria could be exploited for bacteria enhanced-phytoextraction of Cd- and Pb-polluted soils. PMID:19368973

  20. Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape.

    PubMed

    Sheng, Xia-Fang; Xia, Juan-Juan; Jiang, Chun-Yu; He, Lin-Yan; Qian, Meng

    2008-12-01

    Two lead (Pb)-resistant endophytic bacteria were isolated from rape roots grown in heavy metal-contaminated soils and characterized. A pot experiment was conducted for investigating the capability of the two isolates to promote the growth and Pb uptake of rape from Pb-amended soil. The two isolates were identified as Pseudomonas fluorescens G10 and Microbacterium sp. G16 based on the 16S rDNA gene sequence analysis. Strains G10 and G16 exhibited different multiple heavy metal and antibiotic resistance characteristics and increased water-soluble Pb in solution and in Pb-added soil. Root elongation assays demonstrated increases in root elongation of inoculated rape seedlings compared to the control plants. Strain G16 produced indole acetic acid, siderophores and 1-aminocyclopropane-1-carboxylate deaminase. Increases in biomass production and total Pb uptake in the bacteria-inoculated plants were obtained compared to the control. The two strains could colonize the root interior and rhizosphere soil of rape after root inoculation. PMID:18490091

  1. ACC synthase genes are polymorphic in watermelon (Citrullus spp.) and differentially expressed in flowers and in response to auxin and gibberellin.

    PubMed

    Salman-Minkov, Ayelet; Levi, Amnon; Wolf, Shmuel; Trebitsh, Tova

    2008-05-01

    The flowering pattern of watermelon species (Citrullus spp.) is either monoecious or andromonoecious. Ethylene is known to play a critical role in floral sex determination of cucurbit species. In contrast to its feminizing effect in cucumber and melon, in watermelon ethylene promotes male flower development. In cucumber, the rate-limiting enzyme of ethylene biosynthesis, 1-aminocyclopropane-1-carboxylate (ACC) synthase (ACS), regulates unisexual flower development. To investigate the role of ethylene in flower development, we isolated four genomic sequences of ACS from watermelon (CitACS1-4). Both CitACS1 and CitACS3 are expressed in floral tissue. CitACS1 is also expressed in vegetative tissue and it may be involved in cell growth processes. Expression of CitACS1 is up-regulated by exogenous treatment with auxin, gibberellin or ACC, the immediate precursor of ethylene. No discernible differential floral sex-dependent expression pattern was observed for this gene. The CitACS3 gene is expressed in open flowers and in young staminate floral buds (male or hermaphrodite), but not in female flowers. CitACS3 is also up-regulated by ACC, and is likely to be involved in ethylene-regulated anther development. The expression of CitACS2 was not detected in vegetative or reproductive organs but was up-regulated by auxin. CitACS4 transcript was not detected under our experimental conditions. Restriction fragment length polymorphism (RFLP) and sequence tagged site (STS) marker analyses of the CitACS genes showed polymorphism among and within the different Citrullus groups, including watermelon cultivars, Citrullus lanatus var. lanatus, the central subspecies Citrullus lanatus var. citroides, and the desert species Citrullus colocynthis (L).

  2. Delayed ripening and improved fruit processing quality in tomato by RNAi-mediated silencing of three homologs of 1-aminopropane-1-carboxylate synthase gene.

    PubMed

    Gupta, Aarti; Pal, Ram Krishna; Rajam, Manchikatla Venkat

    2013-07-15

    The ripening hormone, ethylene is known to initiate, modulate and co-ordinate the expression of various genes involved in the ripening process. The burst in ethylene production is the key event for the onset of ripening in climacteric fruits, including tomatoes. Therefore ethylene is held accountable for the tons of post-harvest losses due to over-ripening and subsequently resulting in fruit rotting. In the present investigation, delayed ripening tomatoes were generated by silencing three homologs of 1-aminocyclopropane-1-carboxylate (ACC) synthase (ACS) gene during the course of ripening using RNAi technology. The chimeric RNAi-ACS construct designed to target ACS homologs, effectively repressed the ethylene production in tomato fruits. Fruits from such lines exhibited delayed ripening and extended shelf life for ∼45 days, with improved juice quality. The ethylene suppression brought about compositional changes in these fruits by enhancing polyamine (PA) levels. Further, decreased levels of ethylene in RNAi-ACS fruits has led to the altered levels of various ripening-specific transcripts, especially the up-regulation of PA biosynthesis and ascorbic acid (AsA) metabolism genes and down-regulation of cell wall hydrolyzing enzyme genes. These results suggest that the down-regulation of ACS homologs using RNAi can be an effective approach for obtaining delayed ripening with longer shelf life and an enhanced processing quality of tomato fruits. Also, the chimeric gene fusion can be used as an effective design for simultaneous silencing of more than one gene. These observations would be useful in better understanding of the ethylene and PA signaling during fruit ripening and molecular mechanisms underlying the interaction of these two molecules in affecting fruit quality traits.

  3. Characterization of lead-resistant and ACC deaminase-producing endophytic bacteria and their potential in promoting lead accumulation of rape.

    PubMed

    Zhang, Yan-feng; He, Lin-yan; Chen, Zhao-jin; Zhang, Wen-hui; Wang, Qing-ya; Qian, Meng; Sheng, Xia-fang

    2011-02-28

    Forty-nine lead (Pb)-resistant endophytic bacteria were isolated from metal-tolerant Commelina communis plants grown on lead and zinc mine tailing, of which, seven 1-aminocyclopropane-1-carboxylate (ACC) deaminase-producing endophytic bacteria were initially obtained and characterized with respect to heavy metal resistance and production of ACC deaminase, indole-3-acetic acid (IAA) as well as siderophores. Two isolates (Q2BJ2 and Q2BG1) showing higher ACC deaminase activity were evaluated for promoting plant growth and Pb uptake of rape grown in quartz sand containing 0 and 100 mg kg(-1) of Pb in pot experiments. The seven Pb-resistant and ACC deaminase-producing endophytic bacterial isolates were found to exhibit different multiple heavy metal resistance characteristics and to show different levels of ACC deaminase activity (ranging from 12.8 μM α-KB mg(-1) h(-1) to 121 μM α-KB mg(-1) h(-1)). Among the seven isolates, six isolates produced indole acetic acid, whilst five isolates produced siderophores. In experiments involving rape plants grown in quartz sand containing 100 mg kg(-1) of Pb, inoculation with the isolates resulted in the increased dry weights of above-ground tissues (ranging from 39% to 71%) and roots (ranging from 35% to 123%) compared to the uninoculated control. Increases in above-ground tissue Pb contents of rape cultivated in 100 mg kg(-1) of Pb-contaminated substrates varied from 58% to 62% in inoculated-rape plants compared to the uninoculated control.

  4. Characterization of lead-resistant and ACC deaminase-producing endophytic bacteria and their potential in promoting lead accumulation of rape.

    PubMed

    Zhang, Yan-feng; He, Lin-yan; Chen, Zhao-jin; Zhang, Wen-hui; Wang, Qing-ya; Qian, Meng; Sheng, Xia-fang

    2011-02-28

    Forty-nine lead (Pb)-resistant endophytic bacteria were isolated from metal-tolerant Commelina communis plants grown on lead and zinc mine tailing, of which, seven 1-aminocyclopropane-1-carboxylate (ACC) deaminase-producing endophytic bacteria were initially obtained and characterized with respect to heavy metal resistance and production of ACC deaminase, indole-3-acetic acid (IAA) as well as siderophores. Two isolates (Q2BJ2 and Q2BG1) showing higher ACC deaminase activity were evaluated for promoting plant growth and Pb uptake of rape grown in quartz sand containing 0 and 100 mg kg(-1) of Pb in pot experiments. The seven Pb-resistant and ACC deaminase-producing endophytic bacterial isolates were found to exhibit different multiple heavy metal resistance characteristics and to show different levels of ACC deaminase activity (ranging from 12.8 μM α-KB mg(-1) h(-1) to 121 μM α-KB mg(-1) h(-1)). Among the seven isolates, six isolates produced indole acetic acid, whilst five isolates produced siderophores. In experiments involving rape plants grown in quartz sand containing 100 mg kg(-1) of Pb, inoculation with the isolates resulted in the increased dry weights of above-ground tissues (ranging from 39% to 71%) and roots (ranging from 35% to 123%) compared to the uninoculated control. Increases in above-ground tissue Pb contents of rape cultivated in 100 mg kg(-1) of Pb-contaminated substrates varied from 58% to 62% in inoculated-rape plants compared to the uninoculated control. PMID:21227577

  5. A single residue change leads to a hydroxylated product from the class II diterpene cyclization catalyzed by abietadiene synthase

    PubMed Central

    Criswell, Jared; Potter, Kevin; Shephard, Freya; Beale, Michael H.; Peters, Reuben J.

    2012-01-01

    Class II diterpene cyclases catalyze bicyclization of geranylgeranyl diphosphate. While this reaction typically is terminated via methyl deprotonation to yield copalyl diphosphate, in rare cases hydroxylated bicycles are produced instead. Abietadiene synthase is a bifunctional diterpene cyclase that usually produces a copalyl diphosphate intermediate. Here it is shown that substitution of aspartate for a conserved histidine in the class II active site of abietadiene synthase leads to selective production of 8α-hydroxy-CPP instead, demonstrating striking plasticity. PMID:23167845

  6. Triazolopyrimidines as a New Herbicidal Lead for Combating Weed Resistance Associated with Acetohydroxyacid Synthase Mutation.

    PubMed

    Liu, Yu-Chao; Qu, Ren-Yu; Chen, Qiong; Yang, Jing-Fang; Cong-Wei, Niu; Zhen, Xi; Yang, Guang-Fu

    2016-06-22

    Acetohydroxyacid synthase (AHAS; also known as acetolactate synthase; EC 2.2.1.6, formerly EC 4.1.3.18) is the first common enzyme in the biosynthetic pathway leading to the branched-chain amino acids in plants and a wide range of microorganisms. Weed resistance to AHAS-inhibiting herbicides, increasing at an exponential rate, is becoming a global problem and leading to an urgent demand of developing novel compounds against both resistant and wild AHAS. In the present work, a series of novel 2-aroxyl-1,2,4-triazolopyrimidine derivatives (a total of 55) were designed and synthesized with the aim to discover an antiresistant lead compound. Fortunately, the screening results indicated that many of the newly synthesized compounds showed a better, even excellent, inhibition effect against both the wild-type Arabidopsis thaliana AHAS and P197L mutants. Among them, compounds 5-3 to 5-17, compounds 5-19 to 5-26, compounds 5-28 to 5-45, and compound 5-48 have the lower values of resistance factor (RF) and display a potential power to overcome resistance associated with the P197L mutation in the enzyme levels. Further greenhouse in vivo assay showed that compounds 5-15 and 5-20 displayed "moderate" to "good" herbicidal activity against both the wild type-and the resistant (P197L mutation) Descurainia sophia, even at a rate as low as 0.9375 (g of ai/ha). The above results indicated that these two compounds could be used as new leads for the future development of antiresistance herbicides. PMID:27265721

  7. Assessment of bacterial communities and characterization of lead-resistant bacteria in the rhizosphere soils of metal-tolerant Chenopodium ambrosioides grown on lead-zinc mine tailings.

    PubMed

    Zhang, Wen-hui; Huang, Zhi; He, Lin-yan; Sheng, Xia-fang

    2012-06-01

    Bacterial communities in the rhizosphere soils of metal tolerant and accumulating Chenopodium ambrosioides grown in highly and moderately lead-zinc mine tailings contaminated-soils as well as the adjacent soils with low metal contamination were characterized by using cultivation-independent and cultivation techniques. A total of 69, 73, and 83 bacterial operational taxonomic units (OTUs) having 84.8-100% similarity with the closest match in the database were detected among high, moderate, and low-contamination soil clone libraries, respectively. These OTUs had a Shannon diversity index value in the range of 4.06-4.30. There were 9, 10, and 14 bacterial genera specific to high, moderate, and low metal-contaminated soil clone libraries, respectively. Phylogenetic analysis showed that the Pb-resistant isolates belonged to 8 genera. Pseudomonas and Arthrobacter were predominant among the isolates. Most of the isolates (82-86%) produced indole acetic acid and siderophores. More strains from the highly metal-contaminated soil produced 1-aminocyclopropane-1-carboxylate deaminase than the strains from the moderately and lowly metal-contaminated soils. In experiments involving canola grown in quartz sand containing 200 mg kg(-1) of Pb, inoculation with the isolated Paenibacillus jamilae HTb8 and Pseudomonas sp. GTa5 was found to significantly increase the above-ground tissues dry weight (ranging from 19% to 36%) and Pb uptake (ranging from 30% to 40%) compared to the uninoculated control. These results show that C. ambrosioides harbor different metal-resistant bacterial communities in their rhizosphere soils and the isolates expressing plant growth promoting traits may be exploited for improving the phytoextraction efficiency of Pb-polluted environment.

  8. Assessment of bacterial communities and characterization of lead-resistant bacteria in the rhizosphere soils of metal-tolerant Chenopodium ambrosioides grown on lead-zinc mine tailings.

    PubMed

    Zhang, Wen-hui; Huang, Zhi; He, Lin-yan; Sheng, Xia-fang

    2012-06-01

    Bacterial communities in the rhizosphere soils of metal tolerant and accumulating Chenopodium ambrosioides grown in highly and moderately lead-zinc mine tailings contaminated-soils as well as the adjacent soils with low metal contamination were characterized by using cultivation-independent and cultivation techniques. A total of 69, 73, and 83 bacterial operational taxonomic units (OTUs) having 84.8-100% similarity with the closest match in the database were detected among high, moderate, and low-contamination soil clone libraries, respectively. These OTUs had a Shannon diversity index value in the range of 4.06-4.30. There were 9, 10, and 14 bacterial genera specific to high, moderate, and low metal-contaminated soil clone libraries, respectively. Phylogenetic analysis showed that the Pb-resistant isolates belonged to 8 genera. Pseudomonas and Arthrobacter were predominant among the isolates. Most of the isolates (82-86%) produced indole acetic acid and siderophores. More strains from the highly metal-contaminated soil produced 1-aminocyclopropane-1-carboxylate deaminase than the strains from the moderately and lowly metal-contaminated soils. In experiments involving canola grown in quartz sand containing 200 mg kg(-1) of Pb, inoculation with the isolated Paenibacillus jamilae HTb8 and Pseudomonas sp. GTa5 was found to significantly increase the above-ground tissues dry weight (ranging from 19% to 36%) and Pb uptake (ranging from 30% to 40%) compared to the uninoculated control. These results show that C. ambrosioides harbor different metal-resistant bacterial communities in their rhizosphere soils and the isolates expressing plant growth promoting traits may be exploited for improving the phytoextraction efficiency of Pb-polluted environment. PMID:22397839

  9. The formation of ACC and competition between polyamines and ethylene for SAM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ethylene biosynthesis involves the conversion of S-adenosylmethionine (SAM) to 1-aminocyclopropane-1-carboxylic acid (ACC) by ACC synthase (ACS). ACC is then converted to ethylene. The genes that encode enzymes in this pathway all belong to a family of genes. Differential transcriptional regulation ...

  10. 2-Methyl-3-buten-2-ol (MBO) synthase expression in Nostoc punctiforme leads to over production of phytols

    PubMed Central

    Gupta, Dinesh; Ip, Tina; Summers, Michael L; Basu, Chhandak

    2015-01-01

    Phytol is a diterpene alcohol of medicinal importance and it also has potential to be used as biofuel. We found over production of phytol in Nostoc punctiforme by expressing a 2-Methyl-3-buten-2-ol (MBO) synthase gene. MBO synthase catalyzes the conversion of dimethylallyl pyrophosphate (DMAPP) into MBO, a volatile hemiterpene alcohol, in Pinus sabiniana. The result of enhanced phytol production in N. punctiforme, instead of MBO, could be explained by one of the 2 models: either the presence of a native prenyltransferase enzyme with a broad substrate specificity, or appropriation of a MBO synthase metabolic intermediate by a native geranyl diphosphate (GDP) synthase. In this work, an expression vector with an indigenous petE promoter for gene expression in the cyanobacterium N. punctiforme was constructed and MBO synthase gene expression was successfully shown using reverse transcriptase (RT)-PCR and SDS-PAGE. Gas chromatography – mass spectrophotometry (GC-MS) was performed to confirm phytol production from the transgenic N. punctiforme strains. We conclude that the expression of MBO synthase in N. punctiforme leads to overproduction of an economically important compound, phytol. This study provides insights about metabolic channeling of isoprenoids in cyanobacteria and also illustrates the challenges of bioengineering non-native hosts to produce economically important compounds. PMID:25424521

  11. A tomato MADS-box transcription factor, SlMADS1, acts as a negative regulator of fruit ripening.

    PubMed

    Dong, Tingting; Hu, Zongli; Deng, Lei; Wang, Yi; Zhu, Mingku; Zhang, Jianling; Chen, Guoping

    2013-10-01

    MADS-box genes encode a highly conserved gene family of transcriptional factors that regulate numerous developmental processes in plants. In this study, a tomato (Solanum lycopersicum) MADS-box gene, SlMADS1, was cloned and its tissue-specific expression profile was analyzed. The real-time polymerase chain reaction results showed that SlMADS1 was highly expressed in sepals and fruits; its expression level was increased with the development of sepals, while the transcript of SlMADS1 decreased significantly in accordance with fruit ripening. To further explore the function of SlMADS1, an RNA interference (RNAi) expression vector targeting SlMADS1 was constructed and transformed into tomato plants. Shorter ripening time of fruit was observed in SlMADS1-silenced tomatoes. The accumulation of carotenoid and the expression of PHYTOENE SYNTHETASE1 were enhanced in RNAi fruits. Besides, ethylene biosynthetic genes, including 1-AMINOCYCLOPROPANE-1-CARBOXYLATE SYNTHASE1A, 1-AMINOCYCLOPROPANE-1-CARBOXYLATE SYNTHASE6, 1-AMINOCYCLOPROPANE-1-CARBOXYLATE OXIDASE1, and 1-AMINOCYCLOPROPANE-1-CARBOXYLATE OXIDASE3, and the ethylene-responsive genes E4 and E8, which were involved in fruit ripening, were also up-regulated in silenced plants. SlMADS1 RNAi fruits showed approximately 2- to 4-fold increases in ethylene production compared with the wild type. Furthermore, SlMADS1-silenced seedlings displayed shorter hypocotyls and were more sensitive to 1-aminocyclopropane-1-carboxylate than the wild type. Additionally, a yeast two-hybrid assay revealed a clear interaction between SlMADS1 and SlMADS-RIN. These results suggest that SlMADS1 plays an important role in fruit ripening as a repressive modulator.

  12. Antisense inhibition of threonine synthase leads to high methionine content in transgenic potato plants.

    PubMed

    Zeh, M; Casazza, A P; Kreft, O; Roessner, U; Bieberich, K; Willmitzer, L; Hoefgen, R; Hesse, H

    2001-11-01

    Methionine (Met) and threonine (Thr) are members of the aspartate family of amino acids. In plants, their biosynthetic pathways diverge at the level of O-phosphohomo-serine (Ser). The enzymes cystathionine gamma-synthase and Thr synthase (TS) compete for the common substrate O-phosphohomo-Ser with the notable feature that plant TS is activated through S-adenosyl-Met, a metabolite derived from Met. To investigate the regulation of this branch point, we engineered TS antisense potato (Solanum tuberosum cv Désirée) plants using the constitutive cauliflower mosaic virus 35S promoter. In leaf tissues, these transgenics exhibit a reduction of TS activity down to 6% of wild-type levels. Thr levels are reduced to 45% wild-type controls, whereas Met levels increase up to 239-fold depending on the transgenic line and environmental conditions. Increased levels of homo-Ser and homo-cysteine indicate increased carbon allocation into the aspartate pathway. In contrast to findings in Arabidopsis, increased Met content has no detectable effect on mRNA or protein levels or on the enzymatic activity of cystathionine gamma-synthase in potato. Tubers of TS antisense potato plants contain a Met level increased by a factor of 30 and no reduction in Thr. These plants offer a major biotechnological advance toward the development of crop plants with improved nutritional quality. PMID:11706163

  13. Assessing the allelotypic effect of two aminocyclopropane carboxylic acid synthase-encoding genes MdACS1 and MdACS3a on fruit ethylene production and softening in Malus.

    PubMed

    Dougherty, Laura; Zhu, Yuandi; Xu, Kenong

    2016-01-01

    Phytohormone ethylene largely determines apple fruit shelf life and storability. Previous studies demonstrated that MdACS1 and MdACS3a, which encode 1-aminocyclopropane-1-carboxylic acid synthases (ACS), are crucial in apple fruit ethylene production. MdACS1 is well-known to be intimately involved in the climacteric ethylene burst in fruit ripening, while MdACS3a has been regarded a main regulator for ethylene production transition from system 1 (during fruit development) to system 2 (during fruit ripening). However, MdACS3a was also shown to have limited roles in initiating the ripening process lately. To better assess their roles, fruit ethylene production and softening were evaluated at five time points during a 20-day post-harvest period in 97 Malus accessions and in 34 progeny from 2 controlled crosses. Allelotyping was accomplished using an existing marker (ACS1) for MdACS1 and two markers (CAPS866 and CAPS870) developed here to specifically detect the two null alleles (ACS3a-G289V and Mdacs3a) of MdACS3a. In total, 952 Malus accessions were allelotyped with the three markers. The major findings included: The effect of MdACS1 was significant on fruit ethylene production and softening while that of MdACS3a was less detectable; allele MdACS1-2 was significantly associated with low ethylene and slow softening; under the same background of the MdACS1 allelotypes, null allele Mdacs3a (not ACS3a-G289V) could confer a significant delay of ethylene peak; alleles MdACS1-2 and Mdacs3a (excluding ACS3a-G289V) were highly enriched in M. domestica and M. hybrid when compared with those in M. sieversii. These findings are of practical implications in developing apples of low and delayed ethylene profiles by utilizing the beneficial alleles MdACS1-2 and Mdacs3a. PMID:27231553

  14. Assessing the allelotypic effect of two aminocyclopropane carboxylic acid synthase-encoding genes MdACS1 and MdACS3a on fruit ethylene production and softening in Malus

    PubMed Central

    Dougherty, Laura; Zhu, Yuandi; Xu, Kenong

    2016-01-01

    Phytohormone ethylene largely determines apple fruit shelf life and storability. Previous studies demonstrated that MdACS1 and MdACS3a, which encode 1-aminocyclopropane-1-carboxylic acid synthases (ACS), are crucial in apple fruit ethylene production. MdACS1 is well-known to be intimately involved in the climacteric ethylene burst in fruit ripening, while MdACS3a has been regarded a main regulator for ethylene production transition from system 1 (during fruit development) to system 2 (during fruit ripening). However, MdACS3a was also shown to have limited roles in initiating the ripening process lately. To better assess their roles, fruit ethylene production and softening were evaluated at five time points during a 20-day post-harvest period in 97 Malus accessions and in 34 progeny from 2 controlled crosses. Allelotyping was accomplished using an existing marker (ACS1) for MdACS1 and two markers (CAPS866 and CAPS870) developed here to specifically detect the two null alleles (ACS3a-G289V and Mdacs3a) of MdACS3a. In total, 952 Malus accessions were allelotyped with the three markers. The major findings included: The effect of MdACS1 was significant on fruit ethylene production and softening while that of MdACS3a was less detectable; allele MdACS1–2 was significantly associated with low ethylene and slow softening; under the same background of the MdACS1 allelotypes, null allele Mdacs3a (not ACS3a-G289V) could confer a significant delay of ethylene peak; alleles MdACS1–2 and Mdacs3a (excluding ACS3a-G289V) were highly enriched in M. domestica and M. hybrid when compared with those in M. sieversii. These findings are of practical implications in developing apples of low and delayed ethylene profiles by utilizing the beneficial alleles MdACS1-2 and Mdacs3a. PMID:27231553

  15. Overexpression of phytochelatin synthase in Arabidopsis leads to enhanced arsenic tolerance and cadmium hypersensitivity.

    PubMed

    Li, Yujing; Dhankher, Om Parkash; Carreira, Laura; Lee, David; Chen, Alice; Schroeder, Julian I; Balish, Rebecca S; Meagher, Richard B

    2004-12-01

    Phytochelatin synthase (PCS) catalyzes the final step in the biosynthesis of phytochelatins, which are a family of cysteine-rich thiol-reactive peptides believed to play important roles in processing many thiol-reactive toxicants. A modified Arabidopsis thaliana PCS sequence (AtPCS1) was active in Escherichia coli. When AtPCS1 was overexpressed in Arabidopsis from a strong constitutive Arabidopsis actin regulatory sequence (A2), the A2::AtPCS1 plants were highly resistant to arsenic, accumulating 20-100 times more biomass on 250 and 300 microM arsenate than wild type (WT); however, they were hypersensitive to Cd(II). After exposure to cadmium and arsenic, the overall accumulation of thiol-peptides increased to 10-fold higher levels in the A2::AtPCS1 plants compared with WT, as determined by fluorescent HPLC. Whereas cadmium induced greater increases in traditional PCs (PC2, PC3, PC4), arsenic exposure resulted in the expression of many unknown thiol products. Unexpectedly, after arsenate or cadmium exposure, levels of the dipeptide substrate for PC synthesis, gamma-glutamyl cysteine (gamma-EC), were also dramatically increased. Despite these high thiol-peptide concentrations, there were no significant increases in concentrations of arsenic and cadmium in above-ground tissues in the AtPCS1 plants relative to WT plants. The potential for AtPCS1 overexpression to be useful in strategies for phytoremediating arsenic and to compound the negative effects of cadmium are discussed.

  16. Overexpression of phytochelatin synthase in Arabidopsis leads to enhanced arsenic tolerance and cadmium hypersensitivity.

    PubMed

    Li, Yujing; Dhankher, Om Parkash; Carreira, Laura; Lee, David; Chen, Alice; Schroeder, Julian I; Balish, Rebecca S; Meagher, Richard B

    2004-12-01

    Phytochelatin synthase (PCS) catalyzes the final step in the biosynthesis of phytochelatins, which are a family of cysteine-rich thiol-reactive peptides believed to play important roles in processing many thiol-reactive toxicants. A modified Arabidopsis thaliana PCS sequence (AtPCS1) was active in Escherichia coli. When AtPCS1 was overexpressed in Arabidopsis from a strong constitutive Arabidopsis actin regulatory sequence (A2), the A2::AtPCS1 plants were highly resistant to arsenic, accumulating 20-100 times more biomass on 250 and 300 microM arsenate than wild type (WT); however, they were hypersensitive to Cd(II). After exposure to cadmium and arsenic, the overall accumulation of thiol-peptides increased to 10-fold higher levels in the A2::AtPCS1 plants compared with WT, as determined by fluorescent HPLC. Whereas cadmium induced greater increases in traditional PCs (PC2, PC3, PC4), arsenic exposure resulted in the expression of many unknown thiol products. Unexpectedly, after arsenate or cadmium exposure, levels of the dipeptide substrate for PC synthesis, gamma-glutamyl cysteine (gamma-EC), were also dramatically increased. Despite these high thiol-peptide concentrations, there were no significant increases in concentrations of arsenic and cadmium in above-ground tissues in the AtPCS1 plants relative to WT plants. The potential for AtPCS1 overexpression to be useful in strategies for phytoremediating arsenic and to compound the negative effects of cadmium are discussed. PMID:15653797

  17. Ectopic overexpression of the cell wall invertase gene CIN1 leads to dehydration avoidance in tomato.

    PubMed

    Albacete, Alfonso; Cantero-Navarro, Elena; Großkinsky, Dominik K; Arias, Cintia L; Balibrea, María Encarnación; Bru, Roque; Fragner, Lena; Ghanem, Michel E; González, María de la Cruz; Hernández, Jose A; Martínez-Andújar, Cristina; van der Graaff, Eric; Weckwerth, Wolfram; Zellnig, Günther; Pérez-Alfocea, Francisco; Roitsch, Thomas

    2015-02-01

    senescence-delaying hormone trans-zeatin and decreases in the senescence-inducing ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) in the leaves. Thus, cwInv critically functions at the integration point of metabolic, hormonal, and stress signals, providing a novel strategy to overcome drought-induced limitations to crop yield, without negatively affecting plant fitness under optimal growth conditions.

  18. Ectopic overexpression of the cell wall invertase gene CIN1 leads to dehydration avoidance in tomato

    PubMed Central

    Albacete, Alfonso; Cantero-Navarro, Elena; Großkinsky, Dominik K.; Arias, Cintia L.; Balibrea, María Encarnación; Bru, Roque; Fragner, Lena; Ghanem, Michel E.; González, María de la Cruz; Hernández, Jose A.; Martínez-Andújar, Cristina; van der Graaff, Eric; Weckwerth, Wolfram; Zellnig, Günther; Pérez-Alfocea, Francisco; Roitsch, Thomas

    2015-01-01

    the senescence-delaying hormone trans-zeatin and decreases in the senescence-inducing ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) in the leaves. Thus, cwInv critically functions at the integration point of metabolic, hormonal, and stress signals, providing a novel strategy to overcome drought-induced limitations to crop yield, without negatively affecting plant fitness under optimal growth conditions. PMID:25392479

  19. Ectopic overexpression of the cell wall invertase gene CIN1 leads to dehydration avoidance in tomato.

    PubMed

    Albacete, Alfonso; Cantero-Navarro, Elena; Großkinsky, Dominik K; Arias, Cintia L; Balibrea, María Encarnación; Bru, Roque; Fragner, Lena; Ghanem, Michel E; González, María de la Cruz; Hernández, Jose A; Martínez-Andújar, Cristina; van der Graaff, Eric; Weckwerth, Wolfram; Zellnig, Günther; Pérez-Alfocea, Francisco; Roitsch, Thomas

    2015-02-01

    senescence-delaying hormone trans-zeatin and decreases in the senescence-inducing ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) in the leaves. Thus, cwInv critically functions at the integration point of metabolic, hormonal, and stress signals, providing a novel strategy to overcome drought-induced limitations to crop yield, without negatively affecting plant fitness under optimal growth conditions. PMID:25392479

  20. Differential expression of ethylene biosynthesis genes in drupelets and receptacle of raspberry (Rubus idaeus).

    PubMed

    Fuentes, Lida; Monsalve, Liliam; Morales-Quintana, Luis; Valdenegro, Mónika; Martínez, Juan-Pablo; Defilippi, Bruno G; González-Agüero, Mauricio

    2015-05-01

    Red Raspberry (Rubus idaeus) is traditionally classified as non-climacteric, and the role of ethylene in fruit ripening is not clear. The available information indicates that the receptacle, a modified stem that supports the drupelets, is involved in ethylene production of ripe fruits. In this study, we report receptacle-related ethylene biosynthesis during the ripening of fruits of cv. Heritage. In addition, the expression pattern of ethylene biosynthesis transcripts was evaluated during the ripening process. The major transcript levels of 1-aminocyclopropane-1-carboxylic acid synthase (RiACS1) and 1-aminocyclopropane-1-carboxylic acid oxidase (RiACO1) were concomitant with ethylene production, increased total soluble solids (TSS) and decreased titratable acidity (TA) and fruit firmness. Moreover, ethylene biosynthesis and transcript levels of RiACS1 and RiACO1 were higher in the receptacle, sustaining the receptacle's role as a source of ethylene in regulating the ripening of raspberry.

  1. RNA interference silencing of chalcone synthase, the first step in the flavonoid biosynthesis pathway, leads to parthenocarpic tomato fruits.

    PubMed

    Schijlen, Elio G W M; de Vos, C H Ric; Martens, Stefan; Jonker, Harry H; Rosin, Faye M; Molthoff, Jos W; Tikunov, Yury M; Angenent, Gerco C; van Tunen, Arjen J; Bovy, Arnaud G

    2007-07-01

    Parthenocarpy, the formation of seedless fruits in the absence of functional fertilization, is a desirable trait for several important crop plants, including tomato (Solanum lycopersicum). Seedless fruits can be of great value for consumers, the processing industry, and breeding companies. In this article, we propose a novel strategy to obtain parthenocarpic tomatoes by down-regulation of the flavonoid biosynthesis pathway using RNA interference (RNAi)-mediated suppression of chalcone synthase (CHS), the first gene in the flavonoid pathway. In CHS RNAi plants, total flavonoid levels, transcript levels of both Chs1 and Chs2, as well as CHS enzyme activity were reduced by up to a few percent of the corresponding wild-type values. Surprisingly, all strong Chs-silenced tomato lines developed parthenocarpic fruits. Although a relation between flavonoids and parthenocarpic fruit development has never been described, it is well known that flavonoids are essential for pollen development and pollen tube growth and, hence, play an essential role in plant reproduction. The observed parthenocarpic fruit development appeared to be pollination dependent, and Chs RNAi fruits displayed impaired pollen tube growth. Our results lead to novel insight in the mechanisms underlying parthenocarpic fruit development. The potential of this technology for applications in plant breeding and biotechnology will be discussed. PMID:17478633

  2. Mild water stress of Phaseolus vulgaris plants leads to reduced starch synthesis and extractable sucrose phosphate synthase activity

    SciTech Connect

    Vassey, T.L.; Sharkey, T.D. )

    1989-04-01

    Mild water stress, on the order of {minus}1.0 megapascals xylem water potential, can reduce the rate of photosynthesis and eliminate the inhibition of photosynthesis caused by O{sub 2} in water-stress-sensitive plants such as Phaseolus vulgaris. To investigate the lack of O{sub 2} inhibition of photosynthesis, we measured stromal and cytosolic fructose-1,6-bisphosphatase, sucrose phosphate synthase, and partitioning of newly fixed carbon between starch and sucrose before, during, and after mild water stress. The extractable activity of the fructose bisphosphatases was unaffected by mild water stress. The extractable activity of SPS was inhibited by more than 60% in plants stressed to water potentials of {minus}0.9 megapascals. Water stress caused a decline in the starch/sucrose partitioning ratio indicating that starch synthesis was inhibited more than sucrose synthesis. We conclude that the reduced rate of photosynthesis during water stress is caused by stomatal closure, and that the restriction of CO{sub 2} supply caused by stomatal closure leads to a reduction in the capacity for both starch and sucrose synthesis. This causes the reduced O{sub 2} inhibition and abrupt CO{sub 2} saturation of photosynthesis.

  3. Targeted systems biology profiling of tomato fruit reveals coordination of the Yang cycle and a distinct regulation of ethylene biosynthesis during postclimacteric ripening.

    PubMed

    Van de Poel, Bram; Bulens, Inge; Markoula, Aikaterina; Hertog, Maarten L A T M; Dreesen, Rozemarijn; Wirtz, Markus; Vandoninck, Sandy; Oppermann, Yasmin; Keulemans, Johan; Hell, Ruediger; Waelkens, Etienne; De Proft, Maurice P; Sauter, Margret; Nicolai, Bart M; Geeraerd, Annemie H

    2012-11-01

    The concept of system 1 and system 2 ethylene biosynthesis during climacteric fruit ripening was initially described four decades ago. Although much is known about fruit development and climacteric ripening, little information is available about how ethylene biosynthesis is regulated during the postclimacteric phase. A targeted systems biology approach revealed a novel regulatory mechanism of ethylene biosynthesis of tomato (Solanum lycopersicum) when fruit have reached their maximal ethylene production level and which is characterized by a decline in ethylene biosynthesis. Ethylene production is shut down at the level of 1-aminocyclopropane-1-carboxylic acid oxidase. At the same time, 1-aminocyclopropane-1-carboxylic acid synthase activity increases. Analysis of the Yang cycle showed that the Yang cycle genes are regulated in a coordinated way and are highly expressed during postclimacteric ripening. Postclimacteric red tomatoes on the plant showed only a moderate regulation of 1-aminocyclopropane-1-carboxylic acid synthase and Yang cycle genes compared with the regulation in detached fruit. Treatment of red fruit with 1-methylcyclopropane and ethephon revealed that the shut-down mechanism in ethylene biosynthesis is developmentally programmed and only moderately ethylene sensitive. We propose that the termination of autocatalytic ethylene biosynthesis of system 2 in ripe fruit delays senescence and preserves the fruit until seed dispersal.

  4. Expression of genes responsible for ethylene production and wilting are differently regulated in carnation (Dianthus caryophyllus L.) petals.

    PubMed

    Kosugi; Shibuya; Tsuruno; Iwazaki; Mochizuki; Yoshioka; Hashiba; Satoh

    2000-09-01

    Carnation petals exhibit autocatalytic ethylene production and wilting during senescence. The autocatalytic ethylene production is caused by the expression of 1-aminocyclopropane-1-carboxylate (ACC) synthase and ACC oxidase genes, whereas the wilting of petals is related to the expression of the cysteine proteinase (CPase) gene. So far, it has been believed that the ethylene production and wilting are regulated in concert in senescing carnation petals, since the two events occurred closely in parallel with time. In the present study, we investigated the expression of these genes in petals of a transgenic carnation harboring a sense ACC oxidase transgene and in petals of carnation flowers treated with 1,1-dimethyl-4-(phenylsulfonyl)semicarbazide (DPSS). In petals of the transgenic carnation flowers, treatment with exogenous ethylene caused accumulation of the transcript for CPase and in-rolling (wilting), whereas it caused no or little accumulation of the transcripts for ACC oxidase and ACC synthase and negligible ethylene production. In petals of the flowers treated with DPSS, the transcripts for ACC synthase and ACC oxidase were accumulated, but no significant change in the level of the transcript for CPase was observed. These results suggest that the expression of ACC synthase and ACC oxidase genes, which leads to ethylene production, is differentially regulated from the expression of CPase, which leads to wilting, in carnation petals.

  5. Design and synthesis of triazolopyrimidine acylsulfonamides as novel anti-mycobacterial leads acting through inhibition of acetohydroxyacid synthase.

    PubMed

    Patil, Vikas; Kale, Manoj; Raichurkar, Anandkumar; Bhaskar, Brahatheeswaran; Prahlad, Dwarakanath; Balganesh, Meenakshi; Nandan, Santosh; Shahul Hameed, P

    2014-05-01

    Novel triazolopyrimidine acylsulfonamides class of antimycobacterial agents, which are mycobacterial acetohydroxyacid synthase (AHAS) inhibitors were designed by hybridization of known AHAS inhibitors such as sulfonyl urea and triazolopyrimidine sulfonamides. This Letter describes the synthesis and SAR studies of this class of molecules by variation of two parts of the molecule, the phenyl and triazolopyrimidine rings. SAR study describes optimisation of enzyme potency, whole cell potency and evidence of mechanism of action. PMID:24703230

  6. Heterologous expression of Ceratophyllum demersum phytochelatin synthase, CdPCS1, in rice leads to lower arsenic accumulation in grain.

    PubMed

    Shri, Manju; Dave, Richa; Diwedi, Sanjay; Shukla, Devesh; Kesari, Ravi; Tripathi, Rudra Deo; Trivedi, Prabodh Kumar; Chakrabarty, Debasis

    2014-07-22

    Recent studies have identified rice (Oryza sativa) as a major dietary source of inorganic arsenic (As) and poses a significant human health risk. The predominant model for plant detoxification of heavy metals is complexation of heavy metals with phytochelatins (PCs), synthesized non-translationally by PC synthase (PCS) and compartmentalized in vacuoles. In this study, in order to restrict As in the rice roots as a detoxification mechanism, a transgenic approach has been followed through expression of phytochelatin synthase, CdPCS1, from Ceratophyllum demersum, an aquatic As-accumulator plant. CdPCS1 expressing rice transgenic lines showed marked increase in PCS activity and enhanced synthesis of PCs in comparison to non-transgenic plant. Transgenic lines showed enhanced accumulation of As in root and shoot. This enhanced metal accumulation potential of transgenic lines was positively correlated to the content of PCs, which also increased several-fold higher in transgenic lines. However, all the transgenic lines accumulated significantly lower As in grain and husk in comparison to non-transgenic plant. The higher level of PCs in transgenic plants relative to non-transgenic presumably allowed sequestering and detoxification of higher amounts of As in roots and shoots, thereby restricting its accumulation in grain.

  7. Heterologous expression of Ceratophyllum demersum phytochelatin synthase, CdPCS1, in rice leads to lower arsenic accumulation in grain.

    PubMed

    Shri, Manju; Dave, Richa; Diwedi, Sanjay; Shukla, Devesh; Kesari, Ravi; Tripathi, Rudra Deo; Trivedi, Prabodh Kumar; Chakrabarty, Debasis

    2014-01-01

    Recent studies have identified rice (Oryza sativa) as a major dietary source of inorganic arsenic (As) and poses a significant human health risk. The predominant model for plant detoxification of heavy metals is complexation of heavy metals with phytochelatins (PCs), synthesized non-translationally by PC synthase (PCS) and compartmentalized in vacuoles. In this study, in order to restrict As in the rice roots as a detoxification mechanism, a transgenic approach has been followed through expression of phytochelatin synthase, CdPCS1, from Ceratophyllum demersum, an aquatic As-accumulator plant. CdPCS1 expressing rice transgenic lines showed marked increase in PCS activity and enhanced synthesis of PCs in comparison to non-transgenic plant. Transgenic lines showed enhanced accumulation of As in root and shoot. This enhanced metal accumulation potential of transgenic lines was positively correlated to the content of PCs, which also increased several-fold higher in transgenic lines. However, all the transgenic lines accumulated significantly lower As in grain and husk in comparison to non-transgenic plant. The higher level of PCs in transgenic plants relative to non-transgenic presumably allowed sequestering and detoxification of higher amounts of As in roots and shoots, thereby restricting its accumulation in grain. PMID:25048298

  8. Heterologous expression of Ceratophyllum demersum phytochelatin synthase, CdPCS1, in rice leads to lower arsenic accumulation in grain

    PubMed Central

    Shri, Manju; Dave, Richa; Diwedi, Sanjay; Shukla, Devesh; Kesari, Ravi; Tripathi, Rudra Deo; Trivedi, Prabodh Kumar; Chakrabarty, Debasis

    2014-01-01

    Recent studies have identified rice (Oryza sativa) as a major dietary source of inorganic arsenic (As) and poses a significant human health risk. The predominant model for plant detoxification of heavy metals is complexation of heavy metals with phytochelatins (PCs), synthesized non-translationally by PC synthase (PCS) and compartmentalized in vacuoles. In this study, in order to restrict As in the rice roots as a detoxification mechanism, a transgenic approach has been followed through expression of phytochelatin synthase, CdPCS1, from Ceratophyllum demersum, an aquatic As-accumulator plant. CdPCS1 expressing rice transgenic lines showed marked increase in PCS activity and enhanced synthesis of PCs in comparison to non-transgenic plant. Transgenic lines showed enhanced accumulation of As in root and shoot. This enhanced metal accumulation potential of transgenic lines was positively correlated to the content of PCs, which also increased several-fold higher in transgenic lines. However, all the transgenic lines accumulated significantly lower As in grain and husk in comparison to non-transgenic plant. The higher level of PCs in transgenic plants relative to non-transgenic presumably allowed sequestering and detoxification of higher amounts of As in roots and shoots, thereby restricting its accumulation in grain. PMID:25048298

  9. Reduced expression of CDP-DAG synthase changes lipid composition and leads to male sterility in Drosophila

    PubMed Central

    Laurinyecz, Barbara; Péter, Mária; Vedelek, Viktor; Kovács, Attila L.; Juhász, Gábor; Maróy, Péter; Vígh, László; Balogh, Gábor; Sinka, Rita

    2016-01-01

    Drosophila spermatogenesis is an ideal system to study the effects of changes in lipid composition, because spermatid elongation and individualization requires extensive membrane biosynthesis and remodelling. The bulk of transcriptional activity is completed with the entry of cysts into meiotic division, which makes post-meiotic stages of spermatogenesis very sensitive to even a small reduction in gene products. In this study, we describe the effect of changes in lipid composition during spermatogenesis using a hypomorphic male sterile allele of the Drosophila CDP-DAG synthase (CdsA) gene. We find that the CdsA mutant shows defects in spermatid individualization and enlargement of mitochondria and the axonemal sheath of the spermatids. Furthermore, we could genetically rescue the male sterile phenotype by overexpressing Phosphatidylinositol synthase (dPIS) in a CdsA mutant background. The results of lipidomic and genetic analyses of the CdsA mutant highlight the importance of correct lipid composition during sperm development and show that phosphatidic acid levels are crucial in late stages of spermatogenesis. PMID:26791243

  10. Associations of Uric Acid with Polymorphisms in the δ-Aminolevulinic Acid Dehydratase, Vitamin D Receptor, and Nitric Oxide Synthase Genes in Korean Lead Workers

    PubMed Central

    Weaver, Virginia M.; Schwartz, Brian S.; Jaar, Bernard G.; Ahn, Kyu-Dong; Todd, Andrew C.; Lee, Sung-Soo; Kelsey, Karl T.; Silbergeld, Ellen K.; Lustberg, Mark E.; Parsons, Patrick J.; Wen, Jiayu; Lee, Byung-Kook

    2005-01-01

    Recent research suggests that uric acid may be nephrotoxic at lower levels than previously recognized and that it may be one mechanism for lead-related nephrotoxicity. Therefore, in understanding mechanisms for lead-related nephrotoxicity, it would be of value to determine whether genetic polymorphisms that are associated with renal outcomes in lead workers and/or modify associations between lead dose and renal function are also associated with uric acid and/or modify associations between lead dose and uric acid. We analyzed data on three such genetic polymorphisms: δ-aminolevulinic acid dehydratase (ALAD), endothelial nitric oxide synthase (eNOS), and the vitamin D receptor (VDR). Mean (± SD) tibia, blood, and dimercaptosuccinic acid–chelatable lead levels were 37.2 ± 40.4 μg/g bone mineral, 32.0± 15.0 g/dL, and 0.77± 0.86 μg/mg creatinine, respectively, in 798 current and former lead workers. Participants with the eNOS Asp allele had lower mean serum uric acid compared with those with the Glu/Glu genotype. Among older workers (age ≥ median of 40.6 years), ALAD genotype modified associations between lead dose and uric acid levels. Higher lead dose was significantly associated with higher uric acid in workers with the ALAD1-1 genotype; associations were in the opposite direction in participants with the variant ALAD1-2 genotype. In contrast, higher tibia lead was associated with higher uric acid in those with the variant VDR B allele; however, modification was dependent on participants with the bb genotype and high tibia lead levels. We conclude that genetic polymorphisms may modify uric acid mediation of lead-related adverse renal effects. PMID:16263504

  11. Post-transcriptional silencing of flavonol synthase mRNA in tobacco leads to fruits with arrested seed set.

    PubMed

    Mahajan, Monika; Ahuja, Paramvir Singh; Yadav, Sudesh Kumar

    2011-01-01

    Flavonoids are synthesized by phenylpropanoid pathway. They are known to participate in large number of physiological and biochemical processes in plants. Parthenocarpy and male sterility has earlier been reported by silencing chalcone synthase (CHS) encoding gene. Silencing of CHS has blocked the synthesis of most of useful flavonoids including flavan-3-ols and flavonols. Also, these studies could not identify whether parthenocarpy/male sterility were due to lack of flavan-3-ols or flavonols or both. Flavonol synthase (FLS) is an important enzyme of flavonoid pathway that catalyzes the formation of flavonols. In this article, we propose a novel strategy towards the generation of seedless or less-seeded fruits by downregulation of flavonol biosynthesis in tobacco (Nicotiana tabacum cv Xanthi) through post-transcriptional gene silencing (PTGS) of FLS encoding mRNA. The FLS silenced lines were observed for 20-80% reduction in FLS encoding gene expression and 25-93% reduction in flavonol (quercetin) content. Interestingly, these FLS silenced tobacco lines also showed reduction in their anthocyanidins content. While the content of flavan-3-ols (catechin, epi-catechin and epi-gallocatechin) was found to be increased in FLS silenced lines. The delayed flowering in FLS silenced lines could be due to decrease in level of indole acetic acid (IAA) at apical region of their shoots. Furthermore, the pollen germination was hampered and pollens were unable to produce functional pollen tube in FLS silenced tobacco lines. Pods of FLS silenced lines contained significantly less number of seeds. The in vitro and in vivo studies where 1 µM quercetin was supplied to germination media, documented the restoration of normal pollen germination and pollen tube growth. This finding identified the role of flavonols particularly quercetin in pollen germination as well as in the regulation of plant fertility. Results also suggest a novel approach towards generation of seedless

  12. Overexpression of Poplar Xylem Sucrose Synthase in Tobacco Leads to a Thickened Cell Wall and Increased Height

    PubMed Central

    Wei, Zhigang; Qu, Zanshuang; Zhang, Lijie; Zhao, Shuanjing; Bi, Zhihong; Ji, Xiaohui; Wang, Xiaowen; Wei, Hairong

    2015-01-01

    Sucrose synthase (SuSy) is considered the first key enzyme for secondary growth because it is a highly regulated cytosolic enzyme that catalyzes the reversible conversion of sucrose and UDP into UDP-glucose and fructose. Although SuSy enzymes preferentially functions in the direction of sucrose cleavage at most cellular condition, they also catalyze the synthetic reaction. We isolated a gene that encodes a SuSy from Populus simonii×Populus nigra and named it PsnSuSy2 because it shares high similarity to SuSy2 in Populus trichocarpa. RT-PCR revealed that PsnSuSy2 was highly expressed in xylem, but lowly expressed in young leaves. To characterize its functions in secondary growth, multiple tobacco overexpression transgenic lines of PnsSuSy2 were generated via Agrobacterium-mediated transformation. The PsnSuSy2 expression levels and altered wood properties in stem segments from the different transgenic lines were carefully characterized. The results demonstrated that the levels of PsnSuSy2 enzyme activity, chlorophyll content, total soluble sugars, fructose and glucose increased significantly, while the sucrose level decreased significantly. Consequently, the cellulose content and fiber length increased, whereas the lignin content decreased, suggesting that PsnSuSy2 plays a significant role in cleaving sucrose into UDP-glucose and fructose to facilitate cellulose biosynthesis and that promotion of cellulose biosynthesis suppresses lignin biosynthesis. Additionally, the noticeable increase in the lodging resistance in transgenic tobacco stem suggested that the cell wall characteristics were altered by PsnSuSy2 overexpression. Scanning electron microscopy was performed to study the cell wall morphology of stem, and surprisingly, we found that the secondary cell wall was significantly thicker in transgenic tobacco. However, the thickened secondary cell wall did not negatively affect the height of the plants because the PsnSuSy2- overexpressing lines grew taller than the

  13. Is a cysteine proteinase inhibitor involved in the regulation of petal wilting in senescing carnation (Dianthus caryophyllus L.) flowers?

    PubMed

    Sugawara, Hiroaki; Shibuya, Kenichi; Yoshioka, Toshihito; Hashiba, Teruyoshi; Satoh, Shigeru

    2002-03-01

    Senescence of carnation petals is accompanied by autocatalytic ethylene production and wilting of the petals; the former is caused by the expression of 1-aminocyclopropane-1-carboxylate (ACC) synthase and ACC oxidase genes and the latter is related to the expression of a cysteine proteinase (CPase) gene. CPase is probably responsible for the degradation of proteins, leading to the decomposition of cell components and resultant cell death during the senescence of petals. The carnation plant also has a gene for the CPase inhibitor (DC-CPIn) that is expressed abundantly in petals at the full opening stage of flowers. In the present study, DC-CPIn cDNA was cloned and expressed in E. coli. The recombinant DC-CPIn protein completely inhibited the activities of a proteinase (CPase) extracted from carnation petals and papain. Northern blot analysis showed that the mRNA for CPase (DC-CP1) accumulated in large amounts, whereas that for DC-CPIn disappeared, corresponding to the onset of petal wilting in flowers undergoing natural senescence and exogenous ethylene-induced senescence. Based on these findings, a role of DC-CPIn in the regulation of petal wilting is suggested; DC-CPIn acts as a suppressor of petal wilting, which probably functions to fine-tune petal wilting in contrast to coarse tuning, the up-regulation of CPase activity by gene expression.

  14. In vitro studies of polyphenols, antioxidants and other dietary indices in kiwifruit (Actinidia deliciosa).

    PubMed

    Park, Yong-Seo; Jung, Soon-Teck; Kang, Seong-Gook; Drzewiecki, Jerzy; Namiesnik, Jacek; Haruenkit, Ratiporn; Barasch, Dinorah; Trakhtenberg, Simon; Gorinstein, Shela

    2006-01-01

    The main aim of the present study was the evaluation of proteins and antioxidant potential in ethylene-treated kiwifruit during the first 10 days of ripening. Kiwifruit samples were randomly divided into two groups: treated and untreated. Flesh firmness, sensory value, visual score, free sugars, soluble solids, ethylene biosynthesis, proteins, dietary fibers, total polyphenols and antioxidant potential were determined in both groups. Ethylene (100 ppm) at 20 degrees C for 24 h was used in the treated group. The flesh firmness and acidity in treated samples decreased significantly in the early stage of ripening simultaneously with significant increase in the contents of free sugars, soluble solids, endogenous ethylene production, sensory value, 1-aminocyclopropane-1-carboxylic acid (ACC) content, ACC synthase and ACC oxidase activities, total polyphenols and related antioxidant potential, and was significantly higher than in untreated samples (P < 0.05). Proteins were extracted from kiwifruit and separated by modified sodium dodecyl sulphate polyacrylamide gel electrophoresis. The separation was resolved into 14 protein bands. Some minor quality changes were found only in the 32 kDa band, which was more pronounced in the treated samples. In conclusion, ethylene treatment of kiwifruits leads to positive changes in most of the studied kiwifruit compounds and to an increase in the fruit antioxidant potential. It shortens the ripening time and improves fruit quality by decreasing its flesh firmness and acidity. Some minor changes in the protein profile did not affect the fruit taste and quality.

  15. mRNA Transcript Abundance during Plant Growth and the Influence of Li+ Exposure

    DOE PAGES

    Duff, M. C.; Kuhne, W. W.; Halverson, N. V.; Chang, C. -S.; Kitamura, E.; Hawthorn, L.; Martinez, N. E.; Stafford, C.; Milliken, C. E.; Caldwell, E. F.; et al

    2014-10-23

    Lithium (Li) toxicity in plants is, at a minimum, a function of Li+ concentration, exposure time, species and growth conditions. Most plant studies with Li+ focus on short-term acute exposures. This study examines short- and long-term effects of Li+ exposure in Arabidopsis with Li+ uptake studies and measured shoot mRNA transcript abundance levels in treated and control plants. Stress, pathogen-response and arabinogalactan protein genes were typically more up-regulated in older (chronic, low level) Li+-treatment plants and in the much younger plants from acute high-level exposures. The gene regulation behavior of high-level Li+ resembled prior studies due to its influence on:more » inositol synthesis, 1-aminocyclopropane-1-carboxylate synthases and membrane ion transport. In contrast, chronically-exposed plants had gene regulation responses that were indicative of pathogen, cold, and heavy-metal stress, cell wall degradation, ethylene production, signal transduction, and calcium-release modulation. Acute Li+ exposure phenocopies magnesium-deficiency symptoms and is associated with elevated expression of stress response genes that could lead to consumption of metabolic and transcriptional energy reserves and the dedication of more resources to cell development. In contrast, chronic Li+ exposure increases expression signal transduction genes. The identification of new Li+-sensitive genes and a gene-based “response plan” for acute and chronic Li+ exposure are delineated.« less

  16. mRNA Transcript abundance during plant growth and the influence of Li(+) exposure.

    PubMed

    Duff, M C; Kuhne, W W; Halverson, N V; Chang, C-S; Kitamura, E; Hawthorn, L; Martinez, N E; Stafford, C; Milliken, C E; Caldwell, E F; Stieve-Caldwell, E

    2014-12-01

    Lithium (Li) toxicity in plants is, at a minimum, a function of Li(+) concentration, exposure time, species and growth conditions. Most plant studies with Li(+) focus on short-term acute exposures. This study examines short- and long-term effects of Li(+) exposure in Arabidopsis with Li(+) uptake studies and measured shoot mRNA transcript abundance levels in treated and control plants. Stress, pathogen-response and arabinogalactan protein genes were typically more up-regulated in older (chronic, low level) Li(+)-treatment plants and in the much younger plants from acute high-level exposures. The gene regulation behavior of high-level Li(+) resembled prior studies due to its influence on: inositol synthesis, 1-aminocyclopropane-1-carboxylate synthases and membrane ion transport. In contrast, chronically-exposed plants had gene regulation responses that were indicative of pathogen, cold, and heavy-metal stress, cell wall degradation, ethylene production, signal transduction, and calcium-release modulation. Acute Li(+) exposure phenocopies magnesium-deficiency symptoms and is associated with elevated expression of stress response genes that could lead to consumption of metabolic and transcriptional energy reserves and the dedication of more resources to cell development. In contrast, chronic Li(+) exposure increases expression signal transduction genes. The identification of new Li(+)-sensitive genes and a gene-based "response plan" for acute and chronic Li(+) exposure are delineated.

  17. Ripening-associated ethylene biosynthesis in tomato fruit is autocatalytically and developmentally regulated

    PubMed Central

    Yokotani, Naoki; Nakano, Ryohei; Imanishi, Shunsuke; Nagata, Masayasu; Inaba, Akitsugu; Kubo, Yasutaka

    2009-01-01

    To investigate the regulatory mechanism(s) of ethylene biosynthesis in fruit, transgenic tomatoes with all known LeEIL genes suppressed were produced by RNA interference engineering. The transgenic tomato exhibited ethylene insensitivity phenotypes such as non-ripening and the lack of the triple response and petiole epinasty of seedlings even in the presence of exogenous ethylene. Transgenic fruit exhibited a low but consistent increase in ethylene production beyond 40 days after anthesis (DAA), with limited LeACS2 and LeACS4 expression. 1-Methylcyclopropene (1-MCP), a potent inhibitor of ethylene perception, failed to inhibit the limited increase in ethylene production and expression of the two 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS) genes in the transgenic fruit. These results suggest that ripening-associated ethylene (system 2) in wild-type tomato fruit consists of two parts: a small part regulated by a developmental factor through the ethylene-independent expression of LeACS2 and LeACS4 and a large part regulated by an autocatalytic system due to the ethylene-dependent expression of the same genes. The results further suggest that basal ethylene (system 1) is less likely to be involved in the transition to system 2. Even if the effect of system 1 ethylene is eliminated, fruit can show a small increase in ethylene production due to unknown developmental factors. This increase would be enough for the stimulation of autocatalytic ethylene production, leading to fruit ripening. PMID:19605457

  18. Fetal and neonatal exposure to nicotine leads to augmented hepatic and circulating triglycerides in adult male offspring due to increased expression of fatty acid synthase

    SciTech Connect

    Ma, Noelle; Nicholson, Catherine J.; Wong, Michael; Holloway, Alison C.; Hardy, Daniel B.

    2014-02-15

    While nicotine replacement therapy is assumed to be a safer alternative to smoking during pregnancy, the long-term consequences for the offspring remain elusive. Animal studies now suggest that maternal nicotine exposure during perinatal life leads to a wide range of adverse outcomes for the offspring including increased adiposity. The focus of this study was to investigate if nicotine exposure during pregnancy and lactation leads to alterations in hepatic triglyceride synthesis. Female Wistar rats were randomly assigned to receive daily subcutaneous injections of saline (vehicle) or nicotine bitartrate (1 mg/kg/day) for two weeks prior to mating until weaning. At postnatal day 180 (PND 180), nicotine exposed offspring exhibited significantly elevated levels of circulating and hepatic triglycerides in the male offspring. This was concomitant with increased expression of fatty acid synthase (FAS), the critical hepatic enzyme in de novo triglyceride synthesis. Given that FAS is regulated by the nuclear receptor Liver X receptor (LXRα), we measured LXRα expression in both control and nicotine-exposed offspring. Nicotine exposure during pregnancy and lactation led to an increase in hepatic LXRα protein expression and enriched binding to the putative LXRE element on the FAS promoter in PND 180 male offspring. This was also associated with significantly enhanced acetylation of histone H3 [K9,14] surrounding the FAS promoter, a hallmark of chromatin activation. Collectively, these findings suggest that nicotine exposure during pregnancy and lactation leads to an increase in circulating and hepatic triglycerides long-term via changes in the transcriptional and epigenetic regulation of the hepatic lipogenic pathway. - Highlights: • Our data reveals the links nicotine exposure in utero and long-term hypertriglyceridemia. • It is due to nicotine-induced augmented expression of hepatic FAS and LXRα activity. • Moreover, this involves nicotine-induced enhanced

  19. Chalcone Synthase (CHS) Gene Suppression in Flax Leads to Changes in Wall Synthesis and Sensing Genes, Cell Wall Chemistry and Stem Morphology Parameters.

    PubMed

    Zuk, Magdalena; Działo, Magdalena; Richter, Dorota; Dymińska, Lucyna; Matuła, Jan; Kotecki, Andrzej; Hanuza, Jerzy; Szopa, Jan

    2016-01-01

    The chalcone synthase (CHS) gene controls the first step in the flavonoid biosynthesis. In flax, CHS down-regulation resulted in tannin accumulation and reduction in lignin synthesis, but plant growth was not affected. This suggests that lignin content and thus cell wall characteristics might be modulated through CHS activity. This study investigated the possibility that CHS affects cell wall sensing as well as polymer content and arrangement. CHS-suppressed and thus lignin-reduced plants showed significant changes in expression of genes involved in both synthesis of components and cell wall sensing. This was accompanied by increased levels of cellulose and hemicellulose. CHS-reduced flax also showed significant changes in morphology and arrangement of the cell wall. The stem tissue layers were enlarged averagely twofold compared to the control, and the number of fiber cells more than doubled. The stem morphology changes were accompanied by reduction of the crystallinity index of the cell wall. CHS silencing induces a signal transduction cascade that leads to modification of plant metabolism in a wide range and thus cell wall structure. PMID:27446124

  20. Chalcone Synthase (CHS) Gene Suppression in Flax Leads to Changes in Wall Synthesis and Sensing Genes, Cell Wall Chemistry and Stem Morphology Parameters

    PubMed Central

    Zuk, Magdalena; Działo, Magdalena; Richter, Dorota; Dymińska, Lucyna; Matuła, Jan; Kotecki, Andrzej; Hanuza, Jerzy; Szopa, Jan

    2016-01-01

    The chalcone synthase (CHS) gene controls the first step in the flavonoid biosynthesis. In flax, CHS down-regulation resulted in tannin accumulation and reduction in lignin synthesis, but plant growth was not affected. This suggests that lignin content and thus cell wall characteristics might be modulated through CHS activity. This study investigated the possibility that CHS affects cell wall sensing as well as polymer content and arrangement. CHS-suppressed and thus lignin-reduced plants showed significant changes in expression of genes involved in both synthesis of components and cell wall sensing. This was accompanied by increased levels of cellulose and hemicellulose. CHS-reduced flax also showed significant changes in morphology and arrangement of the cell wall. The stem tissue layers were enlarged averagely twofold compared to the control, and the number of fiber cells more than doubled. The stem morphology changes were accompanied by reduction of the crystallinity index of the cell wall. CHS silencing induces a signal transduction cascade that leads to modification of plant metabolism in a wide range and thus cell wall structure. PMID:27446124

  1. Chalcone Synthase (CHS) Gene Suppression in Flax Leads to Changes in Wall Synthesis and Sensing Genes, Cell Wall Chemistry and Stem Morphology Parameters.

    PubMed

    Zuk, Magdalena; Działo, Magdalena; Richter, Dorota; Dymińska, Lucyna; Matuła, Jan; Kotecki, Andrzej; Hanuza, Jerzy; Szopa, Jan

    2016-01-01

    The chalcone synthase (CHS) gene controls the first step in the flavonoid biosynthesis. In flax, CHS down-regulation resulted in tannin accumulation and reduction in lignin synthesis, but plant growth was not affected. This suggests that lignin content and thus cell wall characteristics might be modulated through CHS activity. This study investigated the possibility that CHS affects cell wall sensing as well as polymer content and arrangement. CHS-suppressed and thus lignin-reduced plants showed significant changes in expression of genes involved in both synthesis of components and cell wall sensing. This was accompanied by increased levels of cellulose and hemicellulose. CHS-reduced flax also showed significant changes in morphology and arrangement of the cell wall. The stem tissue layers were enlarged averagely twofold compared to the control, and the number of fiber cells more than doubled. The stem morphology changes were accompanied by reduction of the crystallinity index of the cell wall. CHS silencing induces a signal transduction cascade that leads to modification of plant metabolism in a wide range and thus cell wall structure.

  2. Lead

    MedlinePlus

    ... Lead Share Facebook Twitter Google+ Pinterest Contact Us Lead Poisoning is Preventable If your home was built before ... of the RRP rule. Read more . Learn about Lead Poisoning Prevention Week . Report Uncertified Contractors and Environmental Violations ...

  3. Lead

    MedlinePlus

    ... obvious symptoms, it frequently goes unrecognized. CDC’s Childhood Lead Poisoning Prevention Program is committed to the Healthy People ... Lead Levels Information for Parents Tips for preventing lead poisoning About Us Overview of CDC’s Childhood Lead Poisoning ...

  4. Identification and in vitro evaluation of new leads as selective and competitive glycogen synthase kinase-3β inhibitors through ligand and structure based drug design.

    PubMed

    Darshit, B S; Balaji, B; Rani, P; Ramanathan, M

    2014-09-01

    Glycogen synthase kinase-3β elicits multi-functional effects on intracellular signaling pathways, thereby making the kinase a therapeutic target in multiple pathologies. Hence, it is important to selectively inhibit GSK-3β over structurally and biologically similar targets, such as CDK5. The current study was designed to identify and evaluate novel ATP-competitive GSK-3β inhibitors. The study was designed to identify new leads by ligand based drug design, structure based drug design and in vitro evaluation. The best validated pharmacophore model (AADRRR) identified using LBDD was derived from a dataset of 135 molecules. There were 357 primary hits within the SPECS database using this pharmacophore model. A SBDD approach to the GSK-3β and CDK5 proteins was applied to all primary hits, and 5 selective inhibitors were identified for GSK-3β. GSK-3β and CDK5 in vitro kinase inhibition assays were performed with these molecules to confirm their selectivity for GSK-3β. The molecules showed IC50 values ranging from 0.825μM to 1.116μM and were 23- to 57-fold selective for GSK-3β. Of all the molecules, molecule 3 had the lowest IC50 value of 0.825μM. Our research identified molecules possessing benzothiophene, isoquinoline, thiazolidinedione imidazo-isoquinoline and quinazolinone scaffolds. Potency of these molecules may be due to H-bond interaction with backbone residues of Val135, Asp133 and side chain interaction with Tyr134. Selectivity over CDK5 may be due to side chain interactions with Asp200, backbone of Val61, ionic interaction with Lys60 and π-cationic interaction with Arg141. These selective molecules were also exhibited small atom hydrophobicity and H-bond interaction with water molecule.

  5. Pseudouridine synthases.

    PubMed

    Hamma, Tomoko; Ferré-D'Amaré, Adrian R

    2006-11-01

    Pseudouridine synthases are the enzymes responsible for the most abundant posttranscriptional modification of cellular RNAs. These enzymes catalyze the site-specific isomerization of uridine residues that are already part of an RNA chain, and appear to employ both sequence and structural information to achieve site specificity. Crystallographic analyses have demonstrated that all pseudouridine synthases share a common core fold and active site structure and that this core is modified by peripheral domains, accessory proteins, and guide RNAs to give rise to remarkable substrate versatility.

  6. Comparative effectiveness of ACC-deaminase and/or nitrogen-fixing rhizobacteria in promotion of maize (Zea mays L.) growth under lead pollution.

    PubMed

    Hassan, Waseem; Bano, Rizwana; Bashir, Farhat; David, Julie

    2014-09-01

    Lead (Pb) pollution is appearing as an alarming threat nowadays. Excessive Pb concentrations in agricultural soils result in minimizing the soil fertility and health which affects the plant growth and leads to decrease in crop production. Plant growth promoting rhizobacteria (PGPR) are beneficial bacteria which can protect the plants against many abiotic stresses, and enhance the growth. The study aimed to identify important rhizobacterial strains by using the 1-aminocyclopropane-1-carboxylate (ACC) enrichment technique and examine their inoculation effects in the growth promotion of maize, under Pb pollution. A pot experiment was conducted and six rhizobacterial isolates were used. Pb was added to 2 kg soil in each pot (with 4 seeds/pot) using Pb(NO3)2 at the rate of 0, 100, 200, 300, and 400 mg kg(-1) Pb with three replications in completely randomized design. Rhizobacterial isolates performed significantly better under all Pb levels, i.e., 100 to 400 Pb mg kg(-1) soil, compared to control. Comparing the efficacy of the rhizobacterial isolates under different Pb levels, rhizobacterial isolates having both ACC-deaminase and nitrogen-fixing activities (AN8 and AN12) showed highest increase in terms of the physical, chemical and enzymatic growth parameters of maize, followed by the rhizobacterial isolates having ACC-deaminase activity only (ACC5 and ACC8), and then the nitrogen-fixing rhizobia (Azotobacter and RN5). However, the AN8 isolate showed maximum efficiency, and highest shoot and root length (14.2 and 6.1 cm), seedling fresh and dry weights (1.91 and 0.14 g), chlorophyll a, b, and carotenoids (24.1, 30.2 and 77.7 μg/l), protein (0.82 mg/g), proline (3.42 μmol/g), glutathione S-transferase, peroxidase and catalase (12.3, 4.2 and 7.2 units/mg protein), while the lowest Pb uptake in the shoot and root (0.83 and 0.48 mg/kg) were observed under this rhizobial isolate at the highest Pb level (i.e., 400 Pb mg kg(-1) soil). The results revealed that PGPR

  7. Comparative effectiveness of ACC-deaminase and/or nitrogen-fixing rhizobacteria in promotion of maize (Zea mays L.) growth under lead pollution.

    PubMed

    Hassan, Waseem; Bano, Rizwana; Bashir, Farhat; David, Julie

    2014-09-01

    Lead (Pb) pollution is appearing as an alarming threat nowadays. Excessive Pb concentrations in agricultural soils result in minimizing the soil fertility and health which affects the plant growth and leads to decrease in crop production. Plant growth promoting rhizobacteria (PGPR) are beneficial bacteria which can protect the plants against many abiotic stresses, and enhance the growth. The study aimed to identify important rhizobacterial strains by using the 1-aminocyclopropane-1-carboxylate (ACC) enrichment technique and examine their inoculation effects in the growth promotion of maize, under Pb pollution. A pot experiment was conducted and six rhizobacterial isolates were used. Pb was added to 2 kg soil in each pot (with 4 seeds/pot) using Pb(NO3)2 at the rate of 0, 100, 200, 300, and 400 mg kg(-1) Pb with three replications in completely randomized design. Rhizobacterial isolates performed significantly better under all Pb levels, i.e., 100 to 400 Pb mg kg(-1) soil, compared to control. Comparing the efficacy of the rhizobacterial isolates under different Pb levels, rhizobacterial isolates having both ACC-deaminase and nitrogen-fixing activities (AN8 and AN12) showed highest increase in terms of the physical, chemical and enzymatic growth parameters of maize, followed by the rhizobacterial isolates having ACC-deaminase activity only (ACC5 and ACC8), and then the nitrogen-fixing rhizobia (Azotobacter and RN5). However, the AN8 isolate showed maximum efficiency, and highest shoot and root length (14.2 and 6.1 cm), seedling fresh and dry weights (1.91 and 0.14 g), chlorophyll a, b, and carotenoids (24.1, 30.2 and 77.7 μg/l), protein (0.82 mg/g), proline (3.42 μmol/g), glutathione S-transferase, peroxidase and catalase (12.3, 4.2 and 7.2 units/mg protein), while the lowest Pb uptake in the shoot and root (0.83 and 0.48 mg/kg) were observed under this rhizobial isolate at the highest Pb level (i.e., 400 Pb mg kg(-1) soil). The results revealed that PGPR

  8. Ethylene is Involved in Brassinosteroids Induced Alternative Respiratory Pathway in Cucumber (Cucumis sativus L.) Seedlings Response to Abiotic Stress

    PubMed Central

    Wei, Li-Jie; Deng, Xing-Guang; Zhu, Tong; Zheng, Ting; Li, Peng-Xu; Wu, Jun-Qiang; Zhang, Da-Wei; Lin, Hong-Hui

    2015-01-01

    Effects of brassinosteroids (BRs) on cucumber (Cucumis sativus L.) abiotic stresses resistance to salt, polyethylene glycol (PEG), cold and the potential mechanisms were investigated in this work. Previous reports have indicated that BRs can induce ethylene production and enhance alternative oxidase (AOX) pathway. The mechanisms whether ethylene is involved as a signal molecule which connected BR with AOX in regulating stress tolerance are still unknown. Here, we found that pretreatment with 1 μM brassinolide (BL, the most active BRs) relieved stress-caused oxidative damage in cucumber seedlings and clearly enhanced the capacity of AOX and the ethylene biosynthesis. Furthermore, transcription level of ethylene signaling biosynthesis genes including ripening-related ACC synthase1 (CSACS1), ripening-related ACC synthase2 (CSACS2), ripening-related ACC synthase3 (CSACS3), 1-aminocyclopropane-1-carboxylate oxidase1 (CSACO1), 1-aminocyclopropane-1-carboxylate oxidase2 (CSACO2), and CSAOX were increased after BL treatment. Importantly, the application of the salicylhydroxamic acid (SHAM, AOX inhibitor) and ethylene biosynthesis inhibitor aminooxyacetic acid (AOA) decreased plant resistance to environmental stress by blocking BRs-induced alternative respiration. Taken together, our results demonstrated that ethylene was involved in BRs-induced AOX activity which played important roles in abiotic stresses tolerance in cucumber seedlings. PMID:26617622

  9. Ethylene is Involved in Brassinosteroids Induced Alternative Respiratory Pathway in Cucumber (Cucumis sativus L.) Seedlings Response to Abiotic Stress.

    PubMed

    Wei, Li-Jie; Deng, Xing-Guang; Zhu, Tong; Zheng, Ting; Li, Peng-Xu; Wu, Jun-Qiang; Zhang, Da-Wei; Lin, Hong-Hui

    2015-01-01

    Effects of brassinosteroids (BRs) on cucumber (Cucumis sativus L.) abiotic stresses resistance to salt, polyethylene glycol (PEG), cold and the potential mechanisms were investigated in this work. Previous reports have indicated that BRs can induce ethylene production and enhance alternative oxidase (AOX) pathway. The mechanisms whether ethylene is involved as a signal molecule which connected BR with AOX in regulating stress tolerance are still unknown. Here, we found that pretreatment with 1 μM brassinolide (BL, the most active BRs) relieved stress-caused oxidative damage in cucumber seedlings and clearly enhanced the capacity of AOX and the ethylene biosynthesis. Furthermore, transcription level of ethylene signaling biosynthesis genes including ripening-related ACC synthase1 (C S ACS1), ripening-related ACC synthase2 (C S ACS2), ripening-related ACC synthase3 (C S ACS3), 1-aminocyclopropane-1-carboxylate oxidase1 (C S ACO1), 1-aminocyclopropane-1-carboxylate oxidase2 (C S ACO2), and C S AOX were increased after BL treatment. Importantly, the application of the salicylhydroxamic acid (SHAM, AOX inhibitor) and ethylene biosynthesis inhibitor aminooxyacetic acid (AOA) decreased plant resistance to environmental stress by blocking BRs-induced alternative respiration. Taken together, our results demonstrated that ethylene was involved in BRs-induced AOX activity which played important roles in abiotic stresses tolerance in cucumber seedlings.

  10. Overexpression of an Isoprenyl Diphosphate Synthase in Spruce Leads to Unexpected Terpene Diversion Products That Function in Plant Defense1[W][OPEN

    PubMed Central

    Nagel, Raimund; Berasategui, Aileen; Paetz, Christian; Gershenzon, Jonathan; Schmidt, Axel

    2014-01-01

    Spruce (Picea spp.) and other conifers employ terpenoid-based oleoresin as part of their defense against herbivores and pathogens. The short-chain isoprenyl diphosphate synthases (IDS) are situated at critical branch points in terpene biosynthesis, producing the precursors of the different terpenoid classes. To determine the role of IDS and to create altered terpene phenotypes for assessing the defensive role of terpenoids, we overexpressed a bifunctional spruce IDS, a geranyl diphosphate and geranylgeranyl diphosphate synthase in white spruce (Picea glauca) saplings. While transcript level (350-fold), enzyme activity level (7-fold), and in planta geranyl diphosphate and geranylgeranyl diphosphate levels (4- to 8-fold) were significantly increased in the needles of transgenic plants, there was no increase in the major monoterpenes and diterpene acids of the resin and no change in primary isoprenoids, such as sterols, chlorophylls, and carotenoids. Instead, large amounts of geranylgeranyl fatty acid esters, known from various gymnosperm and angiosperm plant species, accumulated in needles and were shown to act defensively in reducing the performance of larvae of the nun moth (Lymantria monacha), a conifer pest in Eurasia. These results show the impact of overexpression of an IDS and the defensive role of an unexpected accumulation product of terpenoid biosynthesis with the potential for a broader function in plant protection. PMID:24346420

  11. Ethylene Biosynthesis in Detached Young Persimmon Fruit Is Initiated in Calyx and Modulated by Water Loss from the Fruit1

    PubMed Central

    Nakano, Ryohei; Ogura, Emi; Kubo, Yasutaka; Inaba, Akitsugu

    2003-01-01

    Persimmon (Diospyros kaki Thunb.) fruit are usually classified as climacteric fruit; however, unlike typical climacteric fruits, persimmon fruit exhibit a unique characteristic in that the younger the stage of fruit detached, the greater the level of ethylene produced. To investigate ethylene induction mechanisms in detached young persimmon fruit, we cloned three cDNAs encoding 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (DK-ACS1, 2, and -3) and two encoding ACC oxidase (DK-ACO1 and -2) genes involved in ethylene biosynthesis, and we analyzed their expression in various fruit tissues. Ethylene production was induced within a few days of detachment in all fruit tissues tested, accompanied by temporally and spatially coordinated expression of all the DK-ACS and DK-ACO genes. In all tissues except the calyx, treatment with 1-methylcyclopropene, an inhibitor of ethylene action, suppressed ethylene production and ethylene biosynthesis-related gene expression. In the calyx, one ACC synthase gene (DK-ACS2) exhibited increased mRNA accumulation accompanied by a large quantity of ethylene production, and treatment of the fruit with 1-methylcyclopropene did not prevent either the accumulation of DK-ACS2 transcripts or ethylene induction. Furthermore, the alleviation of water loss from the fruit significantly delayed the onset of ethylene production and the expression of DK-ACS2 in the calyx. These results indicate that ethylene biosynthesis in detached young persimmon fruit is initially induced in calyx and is modulated by water loss through transcriptional activation of DK-ACS2. The ethylene produced in the calyx subsequently diffuses to other fruit tissues and acts as a secondary signal that stimulates autocatalytic ethylene biosynthesis in these tissues, leading to a burst of ethylene production. PMID:12529535

  12. Dormancy removal in apple embryos by nitric oxide or cyanide involves modifications in ethylene biosynthetic pathway.

    PubMed

    Gniazdowska, Agnieszka; Krasuska, Urszula; Bogatek, Renata

    2010-11-01

    The connection between classical phytohormone-ethylene and two signaling molecules, nitric oxide (NO) and hydrogen cyanide (HCN), was investigated in dormancy removal and germination "sensu stricto" of apple (Malus domestica Borkh.) embryos. Deep dormancy of apple embryos was removed by short-term (3-6 h) pre-treatment with NO or HCN. NO- or HCN-mediated stimulation of germination was associated with enhanced emission of ethylene by the embryos, coupled with transient increase in ROS concentration in embryos. Ethylene vapors stimulated germination of dormant apple embryos and eliminated morphological anomalies characteristic for young seedlings developed from dormant embryos. Inhibitors of ethylene receptors completely impeded beneficial effect of NO and HCN on embryo germination. NO- and HCN-induced ethylene emission by apple embryo was only slightly reduced by inhibitor of 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase activity during first 4 days of germination. Short-term pre-treatment of the embryos with NO and HCN modified activity of both key enzymes of ethylene biosynthetic pathway: ACC synthase and ACC oxidase. Activity of ACC synthase declined during first 4 days of germination, while activity of ACC oxidase increased markedly at that time. Additional experiments point to non-enzymatic conversion of ACC to ethylene in the presence of ROS (H(2)O(2)). The results indicate that NO and HCN may alleviate dormancy of apple embryos "via" transient accumulation of ROS, leading to enhanced ethylene emission which is required to terminate germination "sensu stricto". Therefore, ethylene seems to be a trigger factor in control of apple embryo dormancy removal and germination.

  13. Deficiencies in both starch synthase IIIa and branching enzyme IIb lead to a significant increase in amylose in SSIIa-inactive japonica rice seeds

    PubMed Central

    Asai, Hiroki; Abe, Natsuko; Matsushima, Ryo; Crofts, Naoko; Oitome, Naoko F.; Nakamura, Yasunori; Fujita, Naoko

    2014-01-01

    Starch synthase (SS) IIIa has the second highest activity of the total soluble SS activity in developing rice endosperm. Branching enzyme (BE) IIb is the major BE isozyme, and is strongly expressed in developing rice endosperm. A mutant (ss3a/be2b) was generated from wild-type japonica rice which lacks SSIIa activity. The seed weight of ss3a/be2b was 74–94% of that of the wild type, whereas the be2b seed weight was 59–73% of that of the wild type. There were significantly fewer amylopectin short chains [degree of polymerization (DP) ≤13] in ss3a/be2b compared with the wild type. In contrast, the amount of long chains (DP ≥25) connecting clusters of amylopectin in ss3a/be2b was higher than in the wild type and lower than in be2b. The apparent amylose content of ss3a/be2b was 45%, which was >1.5 times greater than that of either ss3a or be2b. Both SSIIIa and BEIIb deficiencies led to higher activity of ADP-glucose pyrophosphorylase (AGPase) and granule-bound starch synthase I (GBSSI), which partly explains the high amylose content in the ss3a/be2b endosperm. The percentage apparent amylose content of ss3a and ss3a/be2b at 10 days after flowering (DAF) was higher than that of the wild type and be2b. At 20 DAF, amylopectin biosynthesis in be2b and ss3a/be2b was not observed, whereas amylose biosynthesis in these lines was accelerated at 30 DAF. These data suggest that the high amylose content in the ss3a/be2b mutant results from higher amylose biosynthesis at two stages, up to 20 DAF and from 30 DAF to maturity. PMID:25071222

  14. Exogenously induced expression of ethylene biosynthesis, ethylene perception, phospholipase D, and Rboh-oxidase genes in broccoli seedlings.

    PubMed

    Jakubowicz, Małgorzata; Gałgańska, Hanna; Nowak, Witold; Sadowski, Jan

    2010-07-01

    In higher plants, copper ions, hydrogen peroxide, and cycloheximide have been recognized as very effective inducers of the transcriptional activity of genes encoding the enzymes of the ethylene biosynthesis pathway. In this report, the transcriptional patterns of genes encoding the 1-aminocyclopropane-1-carboxylate synthases (ACSs), 1-aminocyclopropane-1-carboxylate oxidases (ACOs), ETR1, ETR2, and ERS1 ethylene receptors, phospholipase D (PLD)-alpha1, -alpha2, -gamma1, and -delta, and respiratory burst oxidase homologue (Rboh)-NADPH oxidase-D and -F in response to these inducers in Brassica oleracea etiolated seedlings are shown. ACS1, ACO1, ETR2, PLD-gamma1, and RbohD represent genes whose expression was considerably affected by all of the inducers used. The investigations were performed on the seedlings with (i) ethylene insensitivity and (ii) a reduced level of the PLD-derived phosphatidic acid (PA). The general conclusion is that the expression of ACS1, -3, -4, -5, -7, and -11, ACO1, ETR1, ERS1, and ETR2, PLD-gamma 1, and RbohD and F genes is undoubtedly under the reciprocal cross-talk of the ethylene and PA(PLD) signalling routes; both signals affect it in concerted or opposite ways depending on the gene or the type of stimuli. The results of these studies on broccoli seedlings are in agreement with the hypothesis that PA may directly affect the ethylene signal transduction pathway via an inhibitory effect on CTR1 (constitutive triple response 1) activity.

  15. The Andromonoecious Sex Determination Gene Predates the Separation of Cucumis and Citrullus Genera.

    PubMed

    Boualem, Adnane; Lemhemdi, Afef; Sari, Marie-Agnes; Pignoly, Sarah; Troadec, Christelle; Abou Choucha, Fadi; Solmaz, Ilknur; Sari, Nebahat; Dogimont, Catherine; Bendahmane, Abdelhafid

    2016-01-01

    Understanding the evolution of sex determination in plants requires the cloning and the characterization of sex determination genes. Monoecy is characterized by the presence of both male and female flowers on the same plant. Andromonoecy is characterized by plants carrying both male and bisexual flowers. In watermelon, the transition between these two sexual forms is controlled by the identity of the alleles at the A locus. We previously showed, in two Cucumis species, melon and cucumber, that the transition from monoecy to andromonoecy results from mutations in 1-aminocyclopropane-1-carboxylic acid synthase (ACS) gene, ACS-7/ACS2. To test whether the ACS-7/ACS2 function is conserved in cucurbits, we cloned and characterized ClACS7 in watermelon. We demonstrated co-segregation of ClACS7, the homolog of CmACS-7/CsACS2, with the A locus. Sequence analysis of ClACS7 in watermelon accessions identified three ClACS7 isoforms, two in andromonoecious and one in monoecious lines. To determine whether the andromonoecious phenotype is due to a loss of ACS enzymatic activity, we expressed and assayed the activity of the three protein isoforms. Like in melon and cucumber, the isoforms from the andromonoecious lines showed reduced to no enzymatic activity and the isoform from the monoecious line was active. Consistent with this, the mutations leading andromonoecy were clustered in the active site of the enzyme. Based on this, we concluded that active ClACS7 enzyme leads to the development of female flowers in monoecious lines, whereas a reduction of enzymatic activity yields hermaphrodite flowers. ClACS7, like CmACS-7/CsACS2 in melon and cucumber, is highly expressed in carpel primordia of buds determined to develop carpels and not in male flowers. Based on this finding and previous investigations, we concluded that the monoecy gene, ACS7, likely predated the separation of the Cucumis and Citrullus genera. PMID:27171236

  16. Ethylene and Wound-Induced Gene Expression in the Preclimacteric Phase of Ripening Avocado Fruit and Mesocarp Discs.

    PubMed Central

    Starrett, D. A.; Laties, G. G.

    1993-01-01

    Whereas intact postharvest avocado (Persea americana Mill.) fruit may take 1 or more weeks to ripen, ripening is hastened by pulsing fruit for 24 h with ethylene or propylene and is initiated promptly by cutting slices, or discs, of mesocarp tissue. Because the preclimacteric lag period constitutes the extended and variable component of the ripening syndrome, we postulated that selective gene expression during the lag period leads to the triggering of the climacteric. Accordingly, we sought to identify genes that are expressed gradually in the course of the lag period in intact fruit, are turned on sooner in response to a pulse, and are induced promptly in response to wounding (i.e. slicing). To this end, a mixed cDNA library was constructed from mRNA from untreated fruit, pulsed fruit, and aged slices, and the library was screened for genes induced by wounding or by pulsing and/or wounding. The time course of induction of genes encoding selected clones was established by probing northern blots of mRNA from tissues variously treated over a period of time. Four previously identified ripening-associated genes encoding cellulase, polygalacturonase (PG), cytochrome P-450 oxidase (P-450), and ethylene-forming enzyme (EFE, or 1-aminocyclopropane-1-carboxylic acid synthase), respectively, were studied in the same way. Whereas cellulase, PG, and EFE were ruled out as having a role in the initiation of the climacteric, the time course of P-450 induction, as well as the response of same to pulsing and wounding met the criteria[mdash]together with several clones from the mixed library[mdash]for a gene potentially involved in preclimacteric events leading to the onset of the climacteric. Further, it was established that the continuous presence of ethylene is required for persisting induction, and it is suggested that in selected cases wounding may exert a synergistic effect on ethylene action. PMID:12231929

  17. The Andromonoecious Sex Determination Gene Predates the Separation of Cucumis and Citrullus Genera

    PubMed Central

    Boualem, Adnane; Lemhemdi, Afef; Sari, Marie-Agnes; Pignoly, Sarah; Troadec, Christelle; Abou Choucha, Fadi; Solmaz, Ilknur; Sari, Nebahat; Dogimont, Catherine; Bendahmane, Abdelhafid

    2016-01-01

    Understanding the evolution of sex determination in plants requires the cloning and the characterization of sex determination genes. Monoecy is characterized by the presence of both male and female flowers on the same plant. Andromonoecy is characterized by plants carrying both male and bisexual flowers. In watermelon, the transition between these two sexual forms is controlled by the identity of the alleles at the A locus. We previously showed, in two Cucumis species, melon and cucumber, that the transition from monoecy to andromonoecy results from mutations in 1-aminocyclopropane-1-carboxylic acid synthase (ACS) gene, ACS-7/ACS2. To test whether the ACS-7/ACS2 function is conserved in cucurbits, we cloned and characterized ClACS7 in watermelon. We demonstrated co-segregation of ClACS7, the homolog of CmACS-7/CsACS2, with the A locus. Sequence analysis of ClACS7 in watermelon accessions identified three ClACS7 isoforms, two in andromonoecious and one in monoecious lines. To determine whether the andromonoecious phenotype is due to a loss of ACS enzymatic activity, we expressed and assayed the activity of the three protein isoforms. Like in melon and cucumber, the isoforms from the andromonoecious lines showed reduced to no enzymatic activity and the isoform from the monoecious line was active. Consistent with this, the mutations leading andromonoecy were clustered in the active site of the enzyme. Based on this, we concluded that active ClACS7 enzyme leads to the development of female flowers in monoecious lines, whereas a reduction of enzymatic activity yields hermaphrodite flowers. ClACS7, like CmACS-7/CsACS2 in melon and cucumber, is highly expressed in carpel primordia of buds determined to develop carpels and not in male flowers. Based on this finding and previous investigations, we concluded that the monoecy gene, ACS7, likely predated the separation of the Cucumis and Citrullus genera. PMID:27171236

  18. The Andromonoecious Sex Determination Gene Predates the Separation of Cucumis and Citrullus Genera.

    PubMed

    Boualem, Adnane; Lemhemdi, Afef; Sari, Marie-Agnes; Pignoly, Sarah; Troadec, Christelle; Abou Choucha, Fadi; Solmaz, Ilknur; Sari, Nebahat; Dogimont, Catherine; Bendahmane, Abdelhafid

    2016-01-01

    Understanding the evolution of sex determination in plants requires the cloning and the characterization of sex determination genes. Monoecy is characterized by the presence of both male and female flowers on the same plant. Andromonoecy is characterized by plants carrying both male and bisexual flowers. In watermelon, the transition between these two sexual forms is controlled by the identity of the alleles at the A locus. We previously showed, in two Cucumis species, melon and cucumber, that the transition from monoecy to andromonoecy results from mutations in 1-aminocyclopropane-1-carboxylic acid synthase (ACS) gene, ACS-7/ACS2. To test whether the ACS-7/ACS2 function is conserved in cucurbits, we cloned and characterized ClACS7 in watermelon. We demonstrated co-segregation of ClACS7, the homolog of CmACS-7/CsACS2, with the A locus. Sequence analysis of ClACS7 in watermelon accessions identified three ClACS7 isoforms, two in andromonoecious and one in monoecious lines. To determine whether the andromonoecious phenotype is due to a loss of ACS enzymatic activity, we expressed and assayed the activity of the three protein isoforms. Like in melon and cucumber, the isoforms from the andromonoecious lines showed reduced to no enzymatic activity and the isoform from the monoecious line was active. Consistent with this, the mutations leading andromonoecy were clustered in the active site of the enzyme. Based on this, we concluded that active ClACS7 enzyme leads to the development of female flowers in monoecious lines, whereas a reduction of enzymatic activity yields hermaphrodite flowers. ClACS7, like CmACS-7/CsACS2 in melon and cucumber, is highly expressed in carpel primordia of buds determined to develop carpels and not in male flowers. Based on this finding and previous investigations, we concluded that the monoecy gene, ACS7, likely predated the separation of the Cucumis and Citrullus genera.

  19. RNA Interference of Soybean Isoflavone Synthase Genes Leads to Silencing in Tissues Distal to the Transformation Site and to Enhanced Susceptibility to Phytophthora sojae1

    PubMed Central

    Subramanian, Senthil; Graham, Madge Y.; Yu, Oliver; Graham, Terrence L.

    2005-01-01

    Isoflavones are thought to play diverse roles in plant-microbe interactions and are also potentially important to human nutrition and medicine. Isoflavone synthase (IFS) is a key enzyme for the formation of the isoflavones. Here, we examined the consequences of RNAi silencing of genes for this enzyme in soybean (Glycine max). Soybean cotyledon tissues were transformed with Agrobacterium rhizogenes carrying an RNAi silencing construct designed to silence expression of both copies of IFS genes. Approximately 50% of emerging roots were transformed with the RNAi construct, and most transformed roots exhibited >95% silencing of isoflavone accumulation. Silencing of IFS was also demonstrated throughout the entire cotyledon (in tissues distal to the transformation site) both by high-performance liquid chromatography analysis of isoflavones and by real-time reverse transcription-PCR. This distal silencing led to a nearly complete suppression of mRNA accumulation for both the IFS1 and IFS2 genes and of isoflavone accumulations induced by wounding or treatment with the cell wall glucan elicitor from Phytophthora sojae. Preformed isoflavone conjugates were not reduced in distal tissues, suggesting little turnover of these stored isoflavone pools. Distal silencing was established within just 5 d of transformation and was highly efficient for a 3- to 4-d period, after which it was no longer apparent in most experiments. Silencing of IFS was effective in at least two genotypes and led to enhanced susceptibility to P. sojae, disrupting both R gene-mediated resistance in roots and nonrace-specific resistance in cotyledon tissues. The soybean cotyledon system, already a model system for defense signal-response and cell-to-cell signaling, may provide a convenient and effective system for functional analysis of plant genes through gene silencing. PMID:15778457

  20. Analysis of gene expression during the transition to climacteric phase in carnation flowers (Dianthus caryophyllus L.).

    PubMed

    In, Byung-Chun; Binder, Brad M; Falbel, Tanya G; Patterson, Sara E

    2013-11-01

    It has been generally thought that in ethylene-sensitive plants such as carnations, senescence proceeds irreversibly once the tissues have entered the climacteric phase. While pre-climacteric petal tissues have a lower sensitivity to ethylene, these tissues are converted to the climacteric phase at a critical point during flower development. In this study, it is demonstrated that the senescence process initiated by exogenous ethylene is reversible in carnation petals. Petals treated with ethylene for 12h showed sustained inrolling and senescence, while petals treated with ethylene for 10h showed inrolling followed by recovery from inrolling. Reverse transcription-PCR analysis revealed differential expression of genes involved in ethylene biosynthesis and ethylene signalling between 10h and 12h ethylene treatment. Ethylene treatment at or beyond 12h (threshold time) decreased the mRNA levels of the receptor genes (DcETR1, DcERS1, and DcERS2) and DcCTR genes, and increased the ethylene biosynthesis genes DcACS1 and DcACO1. In contrast, ethylene treatment under the threshold time caused a transient decrease in the receptor genes and DcCTR genes, and a transient increase in DcACS1 and DcACO1. Sustained DcACS1 accumulation is correlated with decreases in DcCTR genes and increase in DcEIL3 and indicates that tissues have entered the climacteric phase and that senescence proceeds irreversibly. Inhibition of ACS (1-aminocyclopropane-1-carboxylic acid synthase) prior to 12h ethylene exposure was not able to prevent reduction in transcripts of DcCTR genes, yet suppressed transcript of DcACS1 and DcACO1. This leads to the recovery from inrolling of the petals, indicating that DcACS1 may act as a signalling molecule in senescence of flowers.

  1. mRNA Transcript Abundance during Plant Growth and the Influence of Li+ Exposure

    SciTech Connect

    Duff, M. C.; Kuhne, W. W.; Halverson, N. V.; Chang, C. -S.; Kitamura, E.; Hawthorn, L.; Martinez, N. E.; Stafford, C.; Milliken, C. E.; Caldwell, E. F.; Stieve-Caldwell, E.

    2014-10-23

    Lithium (Li) toxicity in plants is, at a minimum, a function of Li+ concentration, exposure time, species and growth conditions. Most plant studies with Li+ focus on short-term acute exposures. This study examines short- and long-term effects of Li+ exposure in Arabidopsis with Li+ uptake studies and measured shoot mRNA transcript abundance levels in treated and control plants. Stress, pathogen-response and arabinogalactan protein genes were typically more up-regulated in older (chronic, low level) Li+-treatment plants and in the much younger plants from acute high-level exposures. The gene regulation behavior of high-level Li+ resembled prior studies due to its influence on: inositol synthesis, 1-aminocyclopropane-1-carboxylate synthases and membrane ion transport. In contrast, chronically-exposed plants had gene regulation responses that were indicative of pathogen, cold, and heavy-metal stress, cell wall degradation, ethylene production, signal transduction, and calcium-release modulation. Acute Li+ exposure phenocopies magnesium-deficiency symptoms and is associated with elevated expression of stress response genes that could lead to consumption of metabolic and transcriptional energy reserves and the dedication of more resources to cell development. In contrast, chronic Li+ exposure increases expression signal transduction genes. The identification of new Li+-sensitive genes and a gene-based “response plan” for acute and chronic Li+ exposure are delineated.

  2. Bacteria in combination with fertilizers promote root and shoot growth of maize in saline-sodic soil.

    PubMed

    Zafar-Ul-Hye, Muhammad; Farooq, Hafiz Muhammad; Hussain, Mubshar

    2015-03-01

    Salinity is the leading abiotic stress hampering maize ( Zea mays L.) growth throughout the world, especially in Pakistan. During salinity stress, the endogenous ethylene level in plants increases, which retards proper root growth and consequent shoot growth of the plants. However, certain bacteria contain the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase, which converts 1-aminocyclopropane-1-carboxylic acid (an immediate precursor of ethylene biosynthesis in higher plants) into ammonia and α-ketobutyrate instead of ethylene. In the present study, two Pseudomonas bacterial strains containing ACC-deaminase were tested separately and in combinations with mineral fertilizers to determine their potential to minimize/undo the effects of salinity on maize plants grown under saline-sodic field conditions. The data recorded at 30, 50 and 70 days after sowing revealed that both the Pseudomonas bacterial strains improved root and shoot length, root and shoot fresh weight, and root and shoot dry weight up to 34, 43, 35, 71, 55 and 68%, respectively, when applied without chemical fertilizers: these parameter were enhanced up to 108, 95, 100, 131, 100 and 198%, respectively, when the strains were applied along with chemical fertilizers. It can be concluded that ACC-deaminase Pseudomonas bacterial strains applied alone and in conjunction with mineral fertilizers improved the root and shoot growth of maize seedlings grown in saline-sodic soil.

  3. Stilbene Synthase and Chalcone Synthase 1

    PubMed Central

    Rolfs, Claus-Henning; Kindl, Helmut

    1984-01-01

    Cultured cells of Picea excelsa capable of forming stilbenes and flavanoids have been established. Unlike needles of intact plants containing piceatannol (3,3′,4′,5-tetrahydroxystilbene) and stilbene glycosides the cultured cells converted phenylalanine and p-coumaric acid primarily into resveratrol monomethyl ether (3,4′-dihydroxy-5-methoxystilbene) and naringenin. Partially purified enzyme preparations were assayed for chalcone synthase as well as for stilbene synthase activity converting malonyl-CoA plus p-coumaroyl-CoA into 3,4′,5-trihydroxystilbene (resveratrol). Although stilbene synthase and chalcone synthase use the same substrates and exhibit similar molecular properties, i.e. molecular weight and subunit molecular weight, they are two different proteins. This difference was demonstrated by gel electrophoresis and by means of monospecific antibodies. PMID:16663649

  4. STRUCTURAL ENZYMOLOGY OF POLYKETIDE SYNTHASES

    PubMed Central

    Tsai, Shiou-Chuan (Sheryl); Ames, Brian Douglas

    2010-01-01

    This chapter describes structural and associated enzymological studies of polyketide synthases, including isolated single domains and multidomain fragments. The sequence–structure–function relationship of polyketide biosynthesis, compared with homologous fatty acid synthesis, is discussed in detail. Structural enzymology sheds light on sequence and structural motifs that are important for the precise timing, substrate recognition, enzyme catalysis, and protein–protein interactions leading to the extraordinary structural diversity of naturally occurring polyketides. PMID:19362634

  5. The role of gravity in apical dominance: effects of clinostating on shoot inversion-induced ethylene production, shoot elongation and lateral bud growth

    NASA Technical Reports Server (NTRS)

    Prasad, T. K.; Cline, M. G.

    1987-01-01

    Shoot inversion-induced release of apical dominance in Pharbitis nil is inhibited by rotating the plant at 0.42 revolutions per minute in a vertical plane perpendicular to the axis of rotation of a horizontal clinostat. Clinostating prevented lateral bud outgrowth, apparently by negating the restriction of the shoot elongation via reduction of ethylene production in the inverted shoot. Radial stem expansion was also decreased. Data from experiments with intact tissue and isolated segments indicated that shoot-inversion stimulates ethylene production by increasing the activity of 1-aminocyclopropane-1-carboxylic acid synthase. The results support the hypothesis that shoot inversion-induced release of apical dominance in Pharbitis nil is due to gravity stress and is mediated by ethylene-induced retardation of the elongation of the inverted shoot.

  6. Effect of the defoliant thidiazuron on ethylene evolution from mung bean hypocotyl segments.

    PubMed

    Suttle, J C

    1984-08-01

    The effect of the defoliant thidiazuron (N-phenyl-N'1,2,3-thiadiazol-5-ylurea) on ethylene evolution from etiolated mung bean hypocotyl segments was examined. Treatment of hypocotyl segments with concentrations of thidiazuron equal to or greater than 30 nanomolar stimulated ethylene evolution. Increased rates of ethylene evolution from thidiazuron-treated tissues could be detected within 90 minutes of treatment and persisted up to 30 hours after treatment. Radioactive methionine was readily taken up by thidiazuron-treated tissues and was converted to ethylene, 1-aminocyclopropane-1-carboxylic acid (ACC) and an acidic conjugate of ACC. Aminoethoxyvinylglycine, aminooxyacetic acid, cobalt chloride, and alpha-aminoisobutyric acid reduced ethylene evolution from treated tissues. An increase in the endogenous content of free ACC coincided with the increase in ethylene evolution following thidiazuron treatment. Uptake and conversion of exogenous ACC to ethylene were not affected by thidiazuron treatment. No increases in the extractable activities of ACC synthase were detected following thidiazuron treatment.

  7. Suppression of Ripening-Associated Gene Expression in Tomato Fruits Subjected to a High CO2 Concentration.

    PubMed Central

    Rothan, C.; Duret, S.; Chevalier, C.; Raymond, P.

    1997-01-01

    High concentrations of CO2 block or delay the ripening of fruits. In this study we investigated the effects of high CO2 on ripening and on the expression of stress- and ripening-inducible genes in cherry tomato (Lycopersicon esculentum Mill.) fruit. Mature-green tomato fruits were submitted to a high CO2 concentration (20%) for 3 d and then transferred to air. These conditions effectively inhibited ripening-associated color changes and ethylene production, and reduced the protein content. No clear-cut effect was observed on the expression of two proteolysis-related genes, encoding polyubiquitin and ubiquitin-conjugating enzyme E2, respectively. Exposure of fruit to high CO2 also resulted in the strong induction of two genes encoding stress-related proteins: a ripening-regulated heat-shock protein and glutamate decarboxylase. Induction of these two genes indicated that high CO2 had a stress effect, most likely through cytosolic acidification. In addition, high CO2 blocked the accumulation of mRNAs for genes involved in the main ripening-related changes: ethylene synthesis (1-aminocyclopropane-1-carboxylic acid synthase and 1-aminocyclopropane-1-carboxylic acid oxidase), color (phytoene synthase), firmness (polygalacturonase), and sugar accumulation (acid invertase). The expression of ripening-specific genes was affected by CO2 regardless of whether their induction was ethylene- or development-dependent. It is proposed that the inhibition of tomato fruit ripening by high CO2 is due, in part, to the suppression of the expression of ripening-associated genes, which is probably related to the stress effect exerted by high CO2. PMID:12223703

  8. Ethylene Biosynthesis Is Promoted by Very-Long-Chain Fatty Acids during Lysigenous Aerenchyma Formation in Rice Roots.

    PubMed

    Yamauchi, Takaki; Shiono, Katsuhiro; Nagano, Minoru; Fukazawa, Aya; Ando, Miho; Takamure, Itsuro; Mori, Hitoshi; Nishizawa, Naoko K; Kawai-Yamada, Maki; Tsutsumi, Nobuhiro; Kato, Kiyoaki; Nakazono, Mikio

    2015-09-01

    In rice (Oryza sativa) roots, lysigenous aerenchyma, which is created by programmed cell death and lysis of cortical cells, is constitutively formed under aerobic conditions, and its formation is further induced under oxygen-deficient conditions. Ethylene is involved in the induction of aerenchyma formation. reduced culm number1 (rcn1) is a rice mutant in which the gene encoding the ATP-binding cassette transporter RCN1/OsABCG5 is defective. Here, we report that the induction of aerenchyma formation was reduced in roots of rcn1 grown in stagnant deoxygenated nutrient solution (i.e. under stagnant conditions, which mimic oxygen-deficient conditions in waterlogged soils). 1-Aminocyclopropane-1-carboxylic acid synthase (ACS) is a key enzyme in ethylene biosynthesis. Stagnant conditions hardly induced the expression of ACS1 in rcn1 roots, resulting in low ethylene production in the roots. Accumulation of saturated very-long-chain fatty acids (VLCFAs) of 24, 26, and 28 carbons was reduced in rcn1 roots. Exogenously supplied VLCFA (26 carbons) increased the expression level of ACS1 and induced aerenchyma formation in rcn1 roots. Moreover, in rice lines in which the gene encoding a fatty acid elongase, CUT1-LIKE (CUT1L; a homolog of the gene encoding Arabidopsis CUT1, which is required for cuticular wax production), was silenced, both ACS1 expression and aerenchyma formation were reduced. Interestingly, the expression of ACS1, CUT1L, and RCN1/OsABCG5 was induced predominantly in the outer part of roots under stagnant conditions. These results suggest that, in rice under oxygen-deficient conditions, VLCFAs increase ethylene production by promoting 1-aminocyclopropane-1-carboxylic acid biosynthesis in the outer part of roots, which, in turn, induces aerenchyma formation in the root cortex.

  9. Ethylene Biosynthesis Is Promoted by Very-Long-Chain Fatty Acids during Lysigenous Aerenchyma Formation in Rice Roots1

    PubMed Central

    Yamauchi, Takaki; Shiono, Katsuhiro; Nagano, Minoru; Fukazawa, Aya; Ando, Miho; Takamure, Itsuro; Mori, Hitoshi; Nishizawa, Naoko K.; Kawai-Yamada, Maki; Tsutsumi, Nobuhiro; Kato, Kiyoaki; Nakazono, Mikio

    2015-01-01

    In rice (Oryza sativa) roots, lysigenous aerenchyma, which is created by programmed cell death and lysis of cortical cells, is constitutively formed under aerobic conditions, and its formation is further induced under oxygen-deficient conditions. Ethylene is involved in the induction of aerenchyma formation. reduced culm number1 (rcn1) is a rice mutant in which the gene encoding the ATP-binding cassette transporter RCN1/OsABCG5 is defective. Here, we report that the induction of aerenchyma formation was reduced in roots of rcn1 grown in stagnant deoxygenated nutrient solution (i.e. under stagnant conditions, which mimic oxygen-deficient conditions in waterlogged soils). 1-Aminocyclopropane-1-carboxylic acid synthase (ACS) is a key enzyme in ethylene biosynthesis. Stagnant conditions hardly induced the expression of ACS1 in rcn1 roots, resulting in low ethylene production in the roots. Accumulation of saturated very-long-chain fatty acids (VLCFAs) of 24, 26, and 28 carbons was reduced in rcn1 roots. Exogenously supplied VLCFA (26 carbons) increased the expression level of ACS1 and induced aerenchyma formation in rcn1 roots. Moreover, in rice lines in which the gene encoding a fatty acid elongase, CUT1-LIKE (CUT1L; a homolog of the gene encoding Arabidopsis CUT1, which is required for cuticular wax production), was silenced, both ACS1 expression and aerenchyma formation were reduced. Interestingly, the expression of ACS1, CUT1L, and RCN1/OsABCG5 was induced predominantly in the outer part of roots under stagnant conditions. These results suggest that, in rice under oxygen-deficient conditions, VLCFAs increase ethylene production by promoting 1-aminocyclopropane-1-carboxylic acid biosynthesis in the outer part of roots, which, in turn, induces aerenchyma formation in the root cortex. PMID:26036614

  10. [Four cases of aldosterone synthase deficiency in childhood].

    PubMed

    Collinet, E; Pelissier, P; Richard, O; Gay, C; Pugeat, M; Morel, Y; Stephan, J-L

    2012-11-01

    Neonatal salt-wasting syndromes are rare but potentially serious conditions. Isolated hypoaldosteronism is an autosomal recessive inherited disorder of terminal aldosterone synthesis, leading to selective aldosterone deficiency. Two different biochemical forms of this disease have been described, called aldosterone synthase deficiency or corticosterone methyl oxydase, types I and II. In type I, there is no aldosterone synthase activity and the 18 hydroxycorticosterone (18 OHB) level is low, whereas in type II, a residual activity of aldosterone synthase persists and 18 OHB is overproduced. We report on four patients with isolated hypoaldosteronism. In 2 of them, who were recently diagnosed with aldosterone synthase deficit, we discuss the symptoms and treatment. The 2 other patients are now adults. We discuss the long-term outcome, the quality of adult life, aldosterone synthase deficits, as well as the pathophysiology and molecular analysis.

  11. Geranyl diphosphate synthase from mint

    DOEpatents

    Croteau, Rodney Bruce; Wildung, Mark Raymond; Burke, Charles Cullen; Gershenzon, Jonathan

    1999-01-01

    A cDNA encoding geranyl diphosphate synthase from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID No:1) is provided which codes for the expression of geranyl diphosphate synthase (SEQ ID No:2) from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase or for a base sequence sufficiently complementary to at least a portion of the geranyl diphosphate synthase DNA or RNA to enable hybridization therewith (e.g., antisense geranyl diphosphate synthase RNA or fragments of complementary geranyl diphosphate synthase DNA which are useful as polymerase chain reaction primers or as probes for geranyl diphosphate synthase or related genes). In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase that may be used to facilitate the production, isolation and purification of significant quantities of recombinant geranyl diphosphate synthase for subsequent use, to obtain expression or enhanced expression of geranyl diphosphate synthase in plants in order to enhance the production of monoterpenoids, to produce geranyl diphosphate in cancerous cells as a precursor to monoterpenoids having anti-cancer properties or may be otherwise employed for the regulation or expression of geranyl diphosphate synthase or the production of geranyl diphosphate.

  12. Geranyl diphosphate synthase from mint

    DOEpatents

    Croteau, R.B.; Wildung, M.R.; Burke, C.C.; Gershenzon, J.

    1999-03-02

    A cDNA encoding geranyl diphosphate synthase from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID No:1) is provided which codes for the expression of geranyl diphosphate synthase (SEQ ID No:2) from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase or for a base sequence sufficiently complementary to at least a portion of the geranyl diphosphate synthase DNA or RNA to enable hybridization therewith (e.g., antisense geranyl diphosphate synthase RNA or fragments of complementary geranyl diphosphate synthase DNA which are useful as polymerase chain reaction primers or as probes for geranyl diphosphate synthase or related genes). In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase that may be used to facilitate the production, isolation and purification of significant quantities of recombinant geranyl diphosphate synthase for subsequent use, to obtain expression or enhanced expression of geranyl diphosphate synthase in plants in order to enhance the production of monoterpenoids, to produce geranyl diphosphate in cancerous cells as a precursor to monoterpenoids having anti-cancer properties or may be otherwise employed for the regulation or expression of geranyl diphosphate synthase or the production of geranyl diphosphate. 5 figs.

  13. Hybrid polyketide synthases

    DOEpatents

    Fortman, Jeffrey L.; Hagen, Andrew; Katz, Leonard; Keasling, Jay D.; Poust, Sean; Zhang, Jingwei; Zotchev, Sergey

    2016-05-10

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing an even-chain or odd-chain diacid or lactam or diamine. The present invention also provides for a host cell comprising the PKS and when cultured produces the even-chain diacid, odd-chain diacid, or KAPA. The present invention also provides for a host cell comprising the PKS capable of synthesizing a pimelic acid or KAPA, and when cultured produces biotin.

  14. Endothelial Nitric Oxide Synthase T-786C Mutation, Prothrombin Gene Mutation (G-20210-A) and Protein S Deficiency Could Lead to Myocardial Infarction in a Very Young Male Adult

    PubMed Central

    Klincheva, Milka; Vilarova, Elena Ambarkova; Angjusheva, Tanja; Milev, Ivan; Idoski, Enver; Mitrev, Zan

    2016-01-01

    INTRODUCTION: Myocardial infarction is a rare medical event in young people. The main reasons include congenital coronary abnormalities, coronary artery spasm, and coronary thrombosis due to hypercoagulable states (hereditary and acquired). AIM: We present a case of a young male adult with myocardial infarction caused by a combination of gene mutations and anticoagulation protein deficiency. CASE PRESENTATION: A 19 years old young man was admitted to our hospital complaining of chest pain during the last two weeks. The patient did not have any known cardiovascular risk factors, except a positive family anamnesis. Subacute inferior nonST segment myocardial infarction was diagnosed according to the patient’s history, electrocardiographic and laboratory findings. Coronary angiography revealed suboclusive thrombus in the proximal, medial and distal part of the right coronary artery (TIMI 2). Percutaneous coronary intervention was performed. Anticoagulant and antiagregant therapy (heparin, acetilsalicilic acid and clopidogrel) according to protocol was started. The hospital stay was uneventful. Homozygous endothelial nitric oxid synthase (eNOS) T-786-C mutation, heterozygote prothrombin gene mutation (G-20210-A), and protein S deficiency were verified from the thrombophilia testing. Other trombophilic tests were normal. Three months after discharge from hospital another coronary angiography was performed. It revealed normal coronary arteries. Four years after the attack, the patient is free of symptoms and another cardiovascular event. CONCLUSION: Combination of genetic mutations and anticoagulation protein deficiency could be a reasonable cause for myocardial infarction in a very young male adult without any other cardiovascular risk factors. PMID:27275349

  15. Down-regulation of the glucan synthase-like 6 gene (HvGsl6) in barley leads to decreased callose accumulation and increased cell wall penetration by Blumeria graminis f. sp. hordei.

    PubMed

    Chowdhury, Jamil; Schober, Michael S; Shirley, Neil J; Singh, Rohan R; Jacobs, Andrew K; Douchkov, Dimitar; Schweizer, Patrick; Fincher, Geoffrey B; Burton, Rachel A; Little, Alan

    2016-10-01

    The recent characterization of the polysaccharide composition of papillae deposited at the barley cell wall during infection by the powdery mildew pathogen, Blumeria graminis f. sp. hordei (Bgh), has provided new targets for the generation of enhanced disease resistance. The role of callose in papilla-based penetration resistance of crop species is largely unknown because the genes involved in the observed callose accumulation have not been identified unequivocally. We have employed both comparative and functional genomics approaches to identify the functional orthologue of AtGsl5 in the barley genome. HvGsl6 (the barley glucan synthase-like 6 gene), which has the highest sequence identity to AtGsl5, is the only Bgh-induced gene among the HvGsls examined in this study. Through double-stranded RNA interference (dsRNAi)-mediated silencing of HvGsl6, we have shown that the down-regulation of HvGsl6 is associated with a lower accumulation of papillary and wound callose and a higher susceptibility to penetration of the papillae by Bgh, compared with control lines. The results indicate that the HvGsl6 gene is a functional orthologue of AtGsl5 and is involved in papillary callose accumulation in barley. The increased susceptibility of HvGsl6 dsRNAi transgenic lines to infection indicates that callose positively contributes to the barley fungal penetration resistance mechanism.

  16. Monoterpene synthases from common sage (Salvia officinalis)

    DOEpatents

    Croteau, Rodney Bruce; Wise, Mitchell Lynn; Katahira, Eva Joy; Savage, Thomas Jonathan

    1999-01-01

    cDNAs encoding (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase from common sage (Salvia officinalis) have been isolated and sequenced, and the corresponding amino acid sequences has been determined. Accordingly, isolated DNA sequences (SEQ ID No:1; SEQ ID No:3 and SEQ ID No:5) are provided which code for the expression of (+)-bornyl diphosphate synthase (SEQ ID No:2), 1,8-cineole synthase (SEQ ID No:4) and (+)-sabinene synthase SEQ ID No:6), respectively, from sage (Salvia officinalis). In other aspects, replicable recombinant cloning vehicles are provided which code for (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase, or for a base sequence sufficiently complementary to at least a portion of (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase. Thus, systems and methods are provided for the recombinant expression of the aforementioned recombinant monoterpene synthases that may be used to facilitate their production, isolation and purification in significant amounts. Recombinant (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase may be used to obtain expression or enhanced expression of (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase in plants in order to enhance the production of monoterpenoids, or may be otherwise employed for the regulation or expression of (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase, or the production of their products.

  17. Induced jasmonate signaling leads to contrasting effects on root damage and herbivore performance.

    PubMed

    Lu, Jing; Robert, Christelle Aurélie Maud; Riemann, Michael; Cosme, Marco; Mène-Saffrané, Laurent; Massana, Josep; Stout, Michael Joseph; Lou, Yonggen; Gershenzon, Jonathan; Erb, Matthias

    2015-03-01

    Induced defenses play a key role in plant resistance against leaf feeders. However, very little is known about the signals that are involved in defending plants against root feeders and how they are influenced by abiotic factors. We investigated these aspects for the interaction between rice (Oryza sativa) and two root-feeding insects: the generalist cucumber beetle (Diabrotica balteata) and the more specialized rice water weevil (Lissorhoptrus oryzophilus). Rice plants responded to root attack by increasing the production of jasmonic acid (JA) and abscisic acid, whereas in contrast to in herbivore-attacked leaves, salicylic acid and ethylene levels remained unchanged. The JA response was decoupled from flooding and remained constant over different soil moisture levels. Exogenous application of methyl JA to the roots markedly decreased the performance of both root herbivores, whereas abscisic acid and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid did not have any effect. JA-deficient antisense 13-lipoxygenase (asLOX) and mutant allene oxide cyclase hebiba plants lost more root biomass under attack from both root herbivores. Surprisingly, herbivore weight gain was decreased markedly in asLOX but not hebiba mutant plants, despite the higher root biomass removal. This effect was correlated with a herbivore-induced reduction of sucrose pools in asLOX roots. Taken together, our experiments show that jasmonates are induced signals that protect rice roots from herbivores under varying abiotic conditions and that boosting jasmonate responses can strongly enhance rice resistance against root pests. Furthermore, we show that a rice 13-lipoxygenase regulates root primary metabolites and specifically improves root herbivore growth. PMID:25627217

  18. Genome analysis of quorum sensing Cedecea neteri SSMD04 leads to identification of its novel signaling synthase (cneI), cognate receptor (cneR) and an orphan receptor

    PubMed Central

    Tan, Kian-Hin; Tan, Jia-Yi; Yin, Wai-Fong

    2015-01-01

    Cedecea neteri is a very rare human pathogen. We have isolated a strain of C. neteri SSMD04 from pickled mackerel sashimi identified using molecular and phenotypics approaches. Using the biosensor Chromobacterium violaceum CV026, we have demonstrated the presence of short chain N-acyl-homoserine lactone (AHL) type quorum sensing (QS) activity in C. neteri SSMD04. Triple quadrupole LC/MS analysis revealed that C. neteri SSMD04 produced short chain N-butyryl-homoserine lactone (C4-HSL). With the available genome information of C. neteri SSMD04, we went on to analyse and identified a pair of luxI/R homologues in this genome that share the highest similarity with croI/R homologues from Citrobacter rodentium. The AHL synthase, which we named cneI(636 bp), was found in the genome sequences of C. neteri SSMD04. At a distance of 8bp from cneI is a sequence encoding a hypothetical protein, potentially the cognate receptor, a luxR homologue which we named it as cneR. Analysis of this protein amino acid sequence reveals two signature domains, the autoinducer-binding domain and the C-terminal effector which is typical characteristic of luxR. In addition, we found that this genome harboured an orphan luxR that is most closely related to easR in Enterobacter asburiae. To our knowledge, this is the first report on the AHL production activity in C. neteri, and the discovery of its luxI/R homologues, the orphan receptor and its whole genome sequence. PMID:26355540

  19. The Effects of Early Life Lead Exposure on the Expression of Glycogen Synthase Kinase-3β and Insulin-like Growth Factor 1 Receptor in the Hippocampus of Mouse Pups.

    PubMed

    Li, Ning; Qiao, MingWu; Zhang, PingAn; Li, Xing; Li, Li; Yu, ZengLi

    2016-01-01

    The present study was undertaken to investigate the effects of maternal lead exposure on expression of GSK-3β and IGF1R in the hippocampus of mice offspring. Lead exposure initiated from beginning of gestation to weaning. Lead acetate administered in drinking solutions was dissolved in distilled deionized water at the concentrations of 0.1, 0.5, and 1%, respectively. On the 21st postnatal day, the Pb levels were determined by graphite furnace atomic absorption spectrometry. The expression of GSK-3β and IGF1R in hippocampus was examined by immunohistochemistry and Western blotting. The lead levels in blood and hippocampus of all lead exposure groups were significantly higher than those of the control group (P < 0.05). Compared with the control group, the expression of GSK-3β was increased in lead-exposed groups (P < 0.05), but the expression of IGF1R was decreased (P < 0.05). The high expression of GSK-3β and low expression of IGF1R in the hippocampus of pups may contribute to the neurotoxicity associated with maternal Pb exposure.

  20. Linking pseudouridine synthases to growth, development and cell competition.

    PubMed

    Tortoriello, Giuseppe; de Celis, José F; Furia, Maria

    2010-08-01

    Eukaryotic pseudouridine synthases direct RNA pseudouridylation and bind H/ACA small nucleolar RNA (snoRNAs), which, in turn, may act as precursors of microRNA-like molecules. In humans, loss of pseudouridine synthase activity causes dyskeratosis congenita (DC), a complex systemic disorder characterized by cancer susceptibility, failures in ribosome biogenesis and telomere stability, and defects in stem cell formation. Considering the significant interest in deciphering the various molecular consequences of pseudouridine synthase failure, we performed a loss of function analysis of minifly (mfl), the pseudouridine synthase gene of Drosophila, in the wing disc, an advantageous model system for studies of cell growth and differentiation. In this organ, depletion of the mfl-encoded pseudouridine synthase causes a severe reduction in size by decreasing both the number and the size of wing cells. Reduction of cell number was mainly attributable to cell death rather than reduced proliferation, establishing that apoptosis plays a key role in the development of the loss of function mutant phenotype. Depletion of Mfl also causes a proliferative disadvantage in mosaic tissues that leads to the elimination of mutant cells by cell competition. Intriguingly, mfl silencing also triggered unexpected effects on wing patterning and cell differentiation, including deviations from normal lineage boundaries, mingling of cells of different compartments, and defects in the formation of the wing margin that closely mimic the phenotype of reduced Notch activity. These results suggest that a component of the pseudouridine synthase loss of function phenotype is caused by defects in Notch signalling.

  1. Creation of a high-amylose durum wheat through mutagenesis of starch synthase II (SSIIa)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In cereal seeds mutations in one or more starch synthases lead to decreased amylopectin and increased amylose content. Here, the impact of starch synthase IIa (SSIIa or SGP-1) mutations upon durum starch was investigated. A screen of durum accessions identified two lines lacking SGP-A1, the A geno...

  2. Conversion of anthranilate synthase into isochorismate synthase: implications for the evolution of chorismate-utilizing enzymes.

    PubMed

    Plach, Maximilian G; Löffler, Patrick; Merkl, Rainer; Sterner, Reinhard

    2015-09-14

    Chorismate-utilizing enzymes play a vital role in the biosynthesis of metabolites in plants as well as free-living and infectious microorganisms. Among these enzymes are the homologous primary metabolic anthranilate synthase (AS) and secondary metabolic isochorismate synthase (ICS). Both catalyze mechanistically related reactions by using ammonia and water as nucleophiles, respectively. We report that the nucleophile specificity of AS can be extended from ammonia to water by just two amino acid exchanges in a channel leading to the active site. The observed ICS/AS bifunctionality demonstrates that a secondary metabolic enzyme can readily evolve from a primary metabolic enzyme without requiring an initial gene duplication event. In a general sense, these findings add to our understanding how nature has used the structurally predetermined features of enzyme superfamilies to evolve new reactions.

  3. Exploiting the Biosynthetic Potential of Type III Polyketide Synthases.

    PubMed

    Lim, Yan Ping; Go, Maybelle K; Yew, Wen Shan

    2016-01-01

    Polyketides are structurally and functionally diverse secondary metabolites that are biosynthesized by polyketide synthases (PKSs) using acyl-CoA precursors. Recent studies in the engineering and structural characterization of PKSs have facilitated the use of target enzymes as biocatalysts to produce novel functionally optimized polyketides. These compounds may serve as potential drug leads. This review summarizes the insights gained from research on type III PKSs, from the discovery of chalcone synthase in plants to novel PKSs in bacteria and fungi. To date, at least 15 families of type III PKSs have been characterized, highlighting the utility of PKSs in the development of natural product libraries for therapeutic development. PMID:27338328

  4. Properties of phosphorylated thymidylate synthase.

    PubMed

    Frączyk, Tomasz; Ruman, Tomasz; Wilk, Piotr; Palmowski, Paweł; Rogowska-Wrzesinska, Adelina; Cieśla, Joanna; Zieliński, Zbigniew; Nizioł, Joanna; Jarmuła, Adam; Maj, Piotr; Gołos, Barbara; Wińska, Patrycja; Ostafil, Sylwia; Wałajtys-Rode, Elżbieta; Shugar, David; Rode, Wojciech

    2015-12-01

    Thymidylate synthase (TS) may undergo phosphorylation endogenously in mammalian cells, and as a recombinant protein expressed in bacterial cells, as indicated by the reaction of purified enzyme protein with Pro-Q® Diamond Phosphoprotein Gel Stain (PGS). With recombinant human, mouse, rat, Trichinella spiralis and Caenorhabditis elegans TSs, expressed in Escherichia coli, the phosphorylated, compared to non-phosphorylated recombinant enzyme forms, showed a decrease in Vmax(app), bound their cognate mRNA (only rat enzyme studied), and repressed translation of their own and several heterologous mRNAs (human, rat and mouse enzymes studied). However, attempts to determine the modification site(s), whether endogenously expressed in mammalian cells, or recombinant proteins, did not lead to unequivocal results. Comparative ESI-MS/analysis of IEF fractions of TS preparations from parental and FdUrd-resistant mouse leukemia L1210 cells, differing in sensitivity to inactivation by FdUMP, demonstrated phosphorylation of Ser(10) and Ser(16) in the resistant enzyme only, although PGS staining pointed to the modification of both L1210 TS proteins. The TS proteins phosphorylated in bacterial cells were shown by (31)P NMR to be modified only on histidine residues, like potassium phosphoramidate (KPA)-phosphorylated TS proteins. NanoLC-MS/MS, enabling the use of CID and ETD peptide fragmentation methods, identified several phosphohistidine residues, but certain phosphoserine and phosphothreonine residues were also implicated. Molecular dynamics studies, based on the mouse TS crystal structure, allowed one to assess potential of several phosphorylated histidine residues to affect catalytic activity, the effect being phosphorylation site dependent.

  5. The ATP synthase: the understood, the uncertain and the unknown.

    PubMed

    Walker, John E

    2013-02-01

    The ATP synthases are multiprotein complexes found in the energy-transducing membranes of bacteria, chloroplasts and mitochondria. They employ a transmembrane protonmotive force, Δp, as a source of energy to drive a mechanical rotary mechanism that leads to the chemical synthesis of ATP from ADP and Pi. Their overall architecture, organization and mechanistic principles are mostly well established, but other features are less well understood. For example, ATP synthases from bacteria, mitochondria and chloroplasts differ in the mechanisms of regulation of their activity, and the molecular bases of these different mechanisms and their physiological roles are only just beginning to emerge. Another crucial feature lacking a molecular description is how rotation driven by Δp is generated, and how rotation transmits energy into the catalytic sites of the enzyme to produce the stepping action during rotation. One surprising and incompletely explained deduction based on the symmetries of c-rings in the rotor of the enzyme is that the amount of energy required by the ATP synthase to make an ATP molecule does not have a universal value. ATP synthases from multicellular organisms require the least energy, whereas the energy required to make an ATP molecule in unicellular organisms and chloroplasts is higher, and a range of values has been calculated. Finally, evidence is growing for other roles of ATP synthases in the inner membranes of mitochondria. Here the enzymes form supermolecular complexes, possibly with specific lipids, and these complexes probably contribute to, or even determine, the formation of the cristae.

  6. Structure and Function of Fusicoccadiene Synthase, a Hexameric Bifunctional Diterpene Synthase.

    PubMed

    Chen, Mengbin; Chou, Wayne K W; Toyomasu, Tomonobu; Cane, David E; Christianson, David W

    2016-04-15

    Fusicoccin A is a diterpene glucoside phytotoxin generated by the fungal pathogen Phomopsis amygdali that causes the plant disease constriction canker, first discovered in New Jersey peach orchards in the 1930s. Fusicoccin A is also an emerging new lead in cancer chemotherapy. The hydrocarbon precursor of fusicoccin A is the tricyclic diterpene fusicoccadiene, which is generated by a bifunctional terpenoid synthase. Here, we report X-ray crystal structures of the individual catalytic domains of fusicoccadiene synthase: the C-terminal domain is a chain elongation enzyme that generates geranylgeranyl diphosphate, and the N-terminal domain catalyzes the cyclization of geranylgeranyl diphosphate to form fusicoccadiene. Crystal structures of each domain complexed with bisphosphonate substrate analogues suggest that three metal ions and three positively charged amino acid side chains trigger substrate ionization in each active site. While in vitro incubations reveal that the cyclase domain can utilize farnesyl diphosphate and geranyl diphosphate as surrogate substrates, these shorter isoprenoid diphosphates are mainly converted into acyclic alcohol or hydrocarbon products. Gel filtration chromatography and analytical ultracentrifugation experiments indicate that full-length fusicoccadiene synthase adopts hexameric quaternary structure, and small-angle X-ray scattering data yield a well-defined molecular envelope illustrating a plausible model for hexamer assembly.

  7. CLYBL is a polymorphic human enzyme with malate synthase and β-methylmalate synthase activity

    PubMed Central

    Strittmatter, Laura; Li, Yang; Nakatsuka, Nathan J.; Calvo, Sarah E.; Grabarek, Zenon; Mootha, Vamsi K.

    2014-01-01

    CLYBL is a human mitochondrial enzyme of unknown function that is found in multiple eukaryotic taxa and conserved to bacteria. The protein is expressed in the mitochondria of all mammalian organs, with highest expression in brown fat and kidney. Approximately 5% of all humans harbor a premature stop polymorphism in CLYBL that has been associated with reduced levels of circulating vitamin B12. Using comparative genomics, we now show that CLYBL is strongly co-expressed with and co-evolved specifically with other components of the mitochondrial B12 pathway. We confirm that the premature stop polymorphism in CLYBL leads to a loss of protein expression. To elucidate the molecular function of CLYBL, we used comparative operon analysis, structural modeling and enzyme kinetics. We report that CLYBL encodes a malate/β-methylmalate synthase, converting glyoxylate and acetyl-CoA to malate, or glyoxylate and propionyl-CoA to β-methylmalate. Malate synthases are best known for their established role in the glyoxylate shunt of plants and lower organisms and are traditionally described as not occurring in humans. The broader role of a malate/β-methylmalate synthase in human physiology and its mechanistic link to vitamin B12 metabolism remain unknown. PMID:24334609

  8. Genetics Home Reference: GM3 synthase deficiency

    MedlinePlus

    ... GM3 synthase deficiency is characterized by recurrent seizures (epilepsy) and problems with brain development. Within the first ... diagnosis or management of GM3 synthase deficiency: American Epilepsy Society: Find a Doctor Clinic for Special Children ( ...

  9. Mycocerosic acid synthase exemplifies the architecture of reducing polyketide synthases.

    PubMed

    Herbst, Dominik A; Jakob, Roman P; Zähringer, Franziska; Maier, Timm

    2016-03-24

    Polyketide synthases (PKSs) are biosynthetic factories that produce natural products with important biological and pharmacological activities. Their exceptional product diversity is encoded in a modular architecture. Modular PKSs (modPKSs) catalyse reactions colinear to the order of modules in an assembly line, whereas iterative PKSs (iPKSs) use a single module iteratively as exemplified by fungal iPKSs (fiPKSs). However, in some cases non-colinear iterative action is also observed for modPKSs modules and is controlled by the assembly line environment. PKSs feature a structural and functional separation into a condensing and a modifying region as observed for fatty acid synthases. Despite the outstanding relevance of PKSs, the detailed organization of PKSs with complete fully reducing modifying regions remains elusive. Here we report a hybrid crystal structure of Mycobacterium smegmatis mycocerosic acid synthase based on structures of its condensing and modifying regions. Mycocerosic acid synthase is a fully reducing iPKS, closely related to modPKSs, and the prototype of mycobacterial mycocerosic acid synthase-like PKSs. It is involved in the biosynthesis of C20-C28 branched-chain fatty acids, which are important virulence factors of mycobacteria. Our structural data reveal a dimeric linker-based organization of the modifying region and visualize dynamics and conformational coupling in PKSs. On the basis of comparative small-angle X-ray scattering, the observed modifying region architecture may be common also in modPKSs. The linker-based organization provides a rationale for the characteristic variability of PKS modules as a main contributor to product diversity. The comprehensive architectural model enables functional dissection and re-engineering of PKSs.

  10. Oxygen control of ethylene biosynthesis during seed development in Arabidopsis thaliana (L.) Heynh

    NASA Technical Reports Server (NTRS)

    Ramonell, K. M.; McClure, G.; Musgrave, M. E.

    2002-01-01

    An unforeseen side-effect on plant growth in reduced oxygen is the loss of seed production at concentrations around 25% atmospheric (50 mmol mol-1 O2). In this study, the model plant Arabidopsis thaliana (L.) Heynh. cv. 'Columbia' was used to investigate the effect of low oxygen on ethylene biosynthesis during seed development. Plants were grown in a range of oxygen concentrations (210 [equal to ambient], 160, 100, 50 and 25 mmol mol-1) with 0.35 mmol mol-1 CO2 in N2. Ethylene in full-sized siliques was sampled using gas chromatography, and viable seed production was determined at maturity. Molecular analysis of ethylene biosynthesis was accomplished using cDNAs encoding 1-aminocyclopropane-1-carboxylic acid (ACC) synthase and ACC oxidase in ribonuclease protection assays and in situ hybridizations. No ethylene was detected in siliques from plants grown at 50 and 25 mmol mol-1 O2. At the same time, silique ACC oxidase mRNA increased three-fold comparing plants grown under the lowest oxygen with ambient controls, whereas ACC synthase mRNA was unaffected. As O2 decreased, tissue-specific patterning of ACC oxidase and ACC synthase gene expression shifted from the embryo to the silique wall. These data demonstrate how low O2 modulates the activity and expression of the ethylene biosynthetic pathway during seed development in Arabidopsis.

  11. Role of the Tomato Non-Ripening Mutation in Regulating Fruit Quality Elucidated Using iTRAQ Protein Profile Analysis

    PubMed Central

    Yuan, Xin-Yu; Wang, Rui-Heng; Zhao, Xiao-Dan; Luo, Yun-Bo; Fu, Da-Qi

    2016-01-01

    Natural mutants of the Non-ripening (Nor) gene repress the normal ripening of tomato fruit. The molecular mechanism of fruit ripening regulation by the Nor gene is unclear. To elucidate how the Nor gene can affect ripening and fruit quality at the protein level, we used the fruits of Nor mutants and wild-type Ailsa Craig (AC) to perform iTRAQ (isobaric tags for relative and absolute quantitation) analysis. The Nor mutation altered tomato fruit ripening and affected quality in various respects, including ethylene biosynthesis by down-regulating the abundance of 1-aminocyclopropane-1-carboxylic acid oxidase (ACO), pigment biosynthesis by repressing phytoene synthase 1 (PSY1), ζ-carotene isomerase (Z-ISO), chalcone synthase 1 (CHS1) and other proteins, enhancing fruit firmness by increasing the abundance of cellulose synthase protein, while reducing those of polygalacturonase 2 (PG2) and pectate lyase (PL), altering biosynthesis of nutrients such as carbohydrates, amino acids, and anthocyanins. Conversely, Nor mutation also enhanced the fruit’s resistance to some pathogens by up-regulating the expression of several genes associated with stress and defense. Therefore, the Nor gene is involved in the regulation of fruit ripening and quality. It is useful in the future as a means to improve fruit quality in tomato. PMID:27732677

  12. Studies of inositol 1-phosphate analogues as inhibitors of the phosphatidylinositol phosphate synthase in mycobacteria.

    PubMed

    Morii, Hiroyuki; Okauchi, Tatsuo; Nomiya, Hiroki; Ogawa, Midori; Fukuda, Kazumasa; Taniguchi, Hatsumi

    2013-03-01

    We previously reported a novel pathway for the biosynthesis of phosphatidylinositol in mycobacteria via phosphatidylinositol phosphate (PIP) [Morii H., Ogawa, M., Fukuda, K., Taniguchi, H., and Koga, Y (2010) J. Biochem. 148, 593-602]. PIP synthase in the pathway is a promising target for the development of new anti-mycobacterium drugs. In the present study, we evaluated the characteristics of the PIP synthase of Mycobacterium tuberculosis. Four types of compounds were chemically synthesized based on the assumption that structural homologues of inositol 1-phosphate, a PIP synthase substrate, would act as PIP synthase inhibitors, and the results confirmed that all synthesized compounds inhibited PIP synthase activity. The phosphonate analogue of inositol 1-phosphate (Ino-C-P) had the greatest inhibitory effect among the synthesized compounds examined. Kinetic analysis indicated that Ino-C-P acted as a competitive inhibitor of inositol 1-phosphate. The IC(50) value for Ino-C-P inhibition of the PIP synthase activity was estimated to be 2.0 mM. Interestingly, Ino-C-P was utilized in the same manner as the normal PIP synthase substrate, leading to the synthesis of a phosphonate analogue of PIP (PI-C-P), which had a structure similar to that of the natural product, PIP. In addition, PI-C-P had high inhibitory activity against PIP synthase.

  13. Isolation and functional characterization of a τ-cadinol synthase, a new sesquiterpene synthase from Lavandula angustifolia.

    PubMed

    Jullien, Frédéric; Moja, Sandrine; Bony, Aurélie; Legrand, Sylvain; Petit, Cécile; Benabdelkader, Tarek; Poirot, Kévin; Fiorucci, Sébastien; Guitton, Yann; Nicolè, Florence; Baudino, Sylvie; Magnard, Jean-Louis

    2014-01-01

    In this paper we characterize three sTPSs: a germacrene D (LaGERDS), a (E)-β-caryophyllene (LaCARS) and a τ-cadinol synthase (LaCADS). τ-cadinol synthase is reported here for the first time and its activity was studied in several biological models including transiently or stably transformed tobacco species. Three dimensional structure models of LaCADS and Ocimum basilicum γ-cadinene synthase were built by homology modeling using the template structure of Gossypium arboreum δ-cadinene synthase. The depiction of their active site organization provides evidence of the global influence of the enzymes on the formation of τ-cadinol: instead of a unique amino-acid, the electrostatic properties and solvent accessibility of the whole active site in LaCADS may explain the stabilization of the cadinyl cation intermediate. Quantitative PCR performed from leaves and inflorescences showed two patterns of expression. LaGERDS and LaCARS were mainly expressed during early stages of flower development and, at these stages, transcript levels paralleled the accumulation of the corresponding terpene products (germacrene D and (E)-β-caryophyllene). By contrast, the expression level of LaCADS was constant in leaves and flowers. Phylogenetic analysis provided informative results on potential duplication process leading to sTPS diversification in lavender. PMID:24078339

  14. Molecular and physiological evidence suggests the existence of a system II-like pathway of ethylene production in non-climacteric Citrus fruit.

    PubMed

    Katz, Ehud; Lagunes, Paulino Martinez; Riov, Joseph; Weiss, David; Goldschmidt, Eliezer E

    2004-06-01

    Mature citrus fruits, which are classified as non-climacteric, evolve very low amounts of ethylene during ripening but respond to exogenous ethylene by ripening-related pigment changes and accelerated respiration. In the present study we show that young citrus fruitlets attached to the tree produce high levels of ethylene, which decrease dramatically towards maturation. Upon harvest, fruitlets exhibited a climacteric-like rise in ethylene production, preceded by induction of the genes for 1-aminocyclopropane-1-carboxylate (ACC) synthase 1 (CsACS1), ACC oxidase 1 (CsACO1) and the ethylene receptor CsERS1. This induction was advanced and augmented by exogenous ethylene or propylene, indicating an autocatalytic system II-like ethylene biosynthesis. In mature, detached fruit, very low rates of ethylene production were associated with constitutive expression of the ACC synthase 2 (CsACS2) and ethylene receptor CsETR1 genes (system I). CsACS1 gene expression was undetectable at this stage, even following ethylene or propylene treatment, and CsERS1 gene expression remained constant, indicating that no autocatalytic response had occurred. The transition from system II-like behavior of young fruitlets to system I behavior appears to be under developmental control. PMID:15014996

  15. Molecular and physiological evidence suggests the existence of a system II-like pathway of ethylene production in non-climacteric Citrus fruit.

    PubMed

    Katz, Ehud; Lagunes, Paulino Martinez; Riov, Joseph; Weiss, David; Goldschmidt, Eliezer E

    2004-06-01

    Mature citrus fruits, which are classified as non-climacteric, evolve very low amounts of ethylene during ripening but respond to exogenous ethylene by ripening-related pigment changes and accelerated respiration. In the present study we show that young citrus fruitlets attached to the tree produce high levels of ethylene, which decrease dramatically towards maturation. Upon harvest, fruitlets exhibited a climacteric-like rise in ethylene production, preceded by induction of the genes for 1-aminocyclopropane-1-carboxylate (ACC) synthase 1 (CsACS1), ACC oxidase 1 (CsACO1) and the ethylene receptor CsERS1. This induction was advanced and augmented by exogenous ethylene or propylene, indicating an autocatalytic system II-like ethylene biosynthesis. In mature, detached fruit, very low rates of ethylene production were associated with constitutive expression of the ACC synthase 2 (CsACS2) and ethylene receptor CsETR1 genes (system I). CsACS1 gene expression was undetectable at this stage, even following ethylene or propylene treatment, and CsERS1 gene expression remained constant, indicating that no autocatalytic response had occurred. The transition from system II-like behavior of young fruitlets to system I behavior appears to be under developmental control.

  16. ETHY. A Theory of Fruit Climacteric Ethylene Emission1

    PubMed Central

    Génard, Michel; Gouble, Barbara

    2005-01-01

    A theory of fruit climacteric ethylene emission was developed and used as the basis of a simulation model called ETHY. According to the theory, the biosynthetic pathway of ethylene is supplied by ATP and is regulated by 1-aminocyclopropane-1-carboxylic acid (ACC) synthase and ACC oxidase. The conjugation of ACC with malonate to form MACC was taken into account as a way to decrease the availability of ACC. Because of the seasonal increase of fruit volume, the dilution of biochemical compounds used in ETHY was taken into account. Finally, the ethylene diffusion across the skin was considered. The theory took into account the effect of temperature and O2 and CO2 internal concentrations on ethylene. The model was applied to peach (Prunus persica) fruit over 3 years, several leaf:fruit ratios, and irrigation conditions. An adequate ethylene increase was predicted without considering any increase in respiration during the ripening period, which suggests that the respiratory climacteric may not be required for ripening. Another important result of this study is the high sensitivity of ETHY to the parameters involved in the calculation of ACC oxidase and ACC synthase activities, ATP production, and skin surface and permeability. ETHY was also highly sensitive to changes in fruit growth and temperature. PMID:16143642

  17. Where Will LEAD Lead?

    ERIC Educational Resources Information Center

    Wildman, Louis

    After setting forth eight assumptions concerning the education of educational administrators, findings about the Leadership in Educational Administration Development (LEAD) program are discussed. The analysis is based on the first-year applications, telephone conversations with staff at a majority of the project sites, and additional material…

  18. Acetohydroxyacid synthases: evolution, structure, and function.

    PubMed

    Liu, Yadi; Li, Yanyan; Wang, Xiaoyuan

    2016-10-01

    Acetohydroxyacid synthase, a thiamine diphosphate-dependent enzyme, can condense either two pyruvate molecules to form acetolactate for synthesizing L-valine and L-leucine or pyruvate with 2-ketobutyrate to form acetohydroxybutyrate for synthesizing L-isoleucine. Because the key reaction catalyzed by acetohydroxyacid synthase in the biosynthetic pathways of branched-chain amino acids exists in plants, fungi, archaea, and bacteria, but not in animals, acetohydroxyacid synthase becomes a potential target for developing novel herbicides and antimicrobial compounds. In this article, the evolution, structure, and catalytic mechanism of acetohydroxyacid synthase are summarized. PMID:27576495

  19. LEADING WITH LEADING INDICATORS

    SciTech Connect

    PREVETTE, S.S.

    2005-01-27

    This paper documents Fluor Hanford's use of Leading Indicators, management leadership, and statistical methodology in order to improve safe performance of work. By applying these methods, Fluor Hanford achieved a significant reduction in injury rates in 2003 and 2004, and the improvement continues today. The integration of data, leadership, and teamwork pays off with improved safety performance and credibility with the customer. The use of Statistical Process Control, Pareto Charts, and Systems Thinking and their effect on management decisions and employee involvement are discussed. Included are practical examples of choosing leading indicators. A statistically based color coded dashboard presentation system methodology is provided. These tools, management theories and methods, coupled with involved leadership and employee efforts, directly led to significant improvements in worker safety and health, and environmental protection and restoration at one of the nation's largest nuclear cleanup sites.

  20. Producing biofuels using polyketide synthases

    SciTech Connect

    Katz, Leonard; Fortman, Jeffrey L; Keasling, Jay D

    2013-04-16

    The present invention provides for a non-naturally occurring polyketide synthase (PKS) capable of synthesizing a carboxylic acid or a lactone, and a composition such that a carboxylic acid or lactone is included. The carboxylic acid or lactone, or derivative thereof, is useful as a biofuel. The present invention also provides for a recombinant nucleic acid or vector that encodes such a PKS, and host cells which also have such a recombinant nucleic acid or vector. The present invention also provides for a method of producing such carboxylic acids or lactones using such a PKS.

  1. Molecular evolution and sequence divergence of plant chalcone synthase and chalcone synthase-Like genes.

    PubMed

    Han, Yingying; Zhao, Wenwen; Wang, Zhicui; Zhu, Jingying; Liu, Qisong

    2014-06-01

    Plant chalcone synthase (CHS) and CHS-Like (CHSL) proteins are polyketide synthases. In this study, we evaluated the molecular evolution of this gene family using representative types of CHSL genes, including stilbene synthase (STS), 2-pyrone synthase (2-PS), bibenzyl synthase (BBS), acridone synthase (ACS), biphenyl synthase (BIS), benzalacetone synthase, coumaroyl triacetic acid synthase (CTAS), and benzophenone synthase (BPS), along with their CHS homologs from the same species of both angiosperms and gymnosperms. A cDNA-based phylogeny indicated that CHSLs had diverse evolutionary patterns. STS, ACS, and 2-PS clustered with CHSs from the same species (late diverged pattern), while CTAS, BBS, BPS, and BIS were distant from their CHS homologs (early diverged pattern). The amino-acid phylogeny suggested that CHS and CHSL proteins formed clades according to enzyme function. The CHSs and CHSLs from Polygonaceae and Arachis had unique evolutionary histories. Synonymous mutation rates were lower in late diverged CHSLs than in early diverged ones, indicating that gene duplications occurred more recently in late diverged CHSLs than in early diverged ones. Relative rate tests proved that late diverged CHSLs had unequal rates to CHSs from the same species when using fatty acid synthase, which evolved from the common ancestor with the CHS superfamily, as the outgroup, while the early diverged lineages had equal rates. This indicated that late diverged CHSLs experienced more frequent mutation than early diverged CHSLs after gene duplication, allowing obtaining new functions in relatively short period of time.

  2. Trichodiene synthase. Substrate specificity and inhibition.

    PubMed

    Cane, D E; Yang, G; Xue, Q; Shim, J H

    1995-02-28

    The substrate specificity of the sesquiterpene synthase trichodiene synthase was examined by determining the Vmax and Km parameters for the natural substrate, trans,trans-farnesyl diphosphate (1), its stereoisomer, cis,trans-farnesyl diphosphate, and the tertiary allylic isomer, (3R)-nerolidyl diphosphate (3), using both the native fungal and recombinant enzymes. A series of farnesyl diphosphate analogs, 15, 16, 20, 7, 8, and 9, was also tested as inhibitors of trichodiene synthase. 10-Fluorofarnesyl diphosphate (15) was the most effective competitive inhibitor, with a K1 of 16 nM compared to the Km for 1 of 87 nM, while the ether analog of farnesyl diphosphate, 8, an extremely potent inhibitor of squalene synthase, showed only modest inhibition of trichodiene synthase, with a K1/Km of 70. PMID:7873526

  3. Mechanical perturbation-induced ethylene releases apical dominance in Pharbitis nil by restricting shoot growth

    NASA Technical Reports Server (NTRS)

    Prasad, T. K.; Cline, M. G.

    1985-01-01

    Mechanical perturbation (MP, rubbing) or internodes of Pharbitis nil shoots initiates release of lateral buds (LB) from apical dominance within 48 h. Evidence is presented which suggests that MP promotion of LB outgrowth is mediated by ethylene-induced restriction of main shoot growth. Ethylene production in the internodes is stimulated by MP within 2 h. Effects of MP are mimicked by treatments with 1-aminocyclopropane-1-carboxylic acid (ACC) and are negated by the inhibitors of ethylene production or action, aminoethoxy vinylglycine (AVG) and AgNO3. The fact that effects of MP, ACC, and ethylene inhibitors are observed to occur on main shoot growth at least 24 h before they are observed to occur on LB growth suggests a possible cause and effect relationship. MP also causes an increase in internode diameter. MP stimulation of ethylene production appears to be mediated by ACC synthase. The results of this study and our previous studies suggest that apical dominance may be released by any mechanism which induces ethylene restriction of main shoot growth.

  4. Inhibition of ethylene production by putrescine alleviates aluminium-induced root inhibition in wheat plants

    PubMed Central

    Yu, Yan; Jin, Chongwei; Sun, Chengliang; Wang, Jinghong; Ye, Yiquan; Zhou, Weiwei; Lu, Lingli; Lin, Xianyong

    2016-01-01

    Inhibition of root elongation is one of the most distinct symptoms of aluminium (Al) toxicity. Although putrescine (Put) has been identified as an important signaling molecule involved in Al tolerance, it is yet unknown how Put mitigates Al-induced root inhibition. Here, the possible mechanism was investigated by using two wheat genotypes differing in Al resistance: Al-tolerant Xi Aimai-1 and Al-sensitive Yangmai-5. Aluminium caused more root inhibition in Yangmai-5 and increased ethylene production at the root apices compared to Xi Aimai-1, whereas the effects were significantly reversed by ethylene biosynthesis inhibitors. The simultaneous exposure of wheat seedlings to Al and ethylene donor, ethephon, or ethylene biosynthesis precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), increased ethylene production and aggravated root inhibition, which was more pronounced in Xi Aimai-1. In contrast, Put treatment decreased ethylene production and alleviated Al-induced root inhibition in both genotypes, and the effects were more conspicuous in Yangmai-5. Furthermore, our results indicated that Al-induced ethylene production was mediated by ACC synthase (ACS) and ACC oxidase, and that Put decreased ethylene production by inhibiting ACS. Altogether, these findings indicate that ethylene is involved in Al-induced root inhibition and this process could be alleviated by Put through inhibiting ACS activity. PMID:26744061

  5. Effect of Lithium on Thigmomorphogenesis in Bryonia dioica Ethylene Production and Sensitivity 1

    PubMed Central

    Boyer, Nicole; Desbiez, Marie-Odile; Hofinger, Michel; Gaspar, Thomas

    1983-01-01

    Rubbing internodes of Bryonia dioica plants reduced their ethylene production but increased their capacity to convert 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene. These results were explained by the previously shown rubbing-induced decrease of indoleacetic acid, which controls the level of ACC synthase, and by the increase of membrane-associated peroxidases which would participate in the conversion of ACC-ethylene. Pretreatment of the plants with Li had no significant effect on control plants but counteracted the rubbing-induced decrease of ethylene production and diminished the capacity of the internodes to convert ACC to ethylene. Exogenously applied ethylene induced an increase of peroxidase activity similar to that caused by rubbing. Inasmuch as both effects were reduced by Li, it was concluded that Li inhibition of thigmomorphogenetic processes was essentially due to a Li inhibition of the effect of ethylene formed in response to mechanical stimuli. The decreased ethylene production and ACC conversion capacity in the presence of Li were explained by a cellular redistribution of peroxidases. PMID:16663035

  6. Antiphase light and temperature cycles affect PHYTOCHROME B-controlled ethylene sensitivity and biosynthesis, limiting leaf movement and growth of Arabidopsis.

    PubMed

    Bours, Ralph; van Zanten, Martijn; Pierik, Ronald; Bouwmeester, Harro; van der Krol, Alexander

    2013-10-01

    In the natural environment, days are generally warmer than the night, resulting in a positive day/night temperature difference (+DIF). Plants have adapted to these conditions, and when exposed to antiphase light and temperature cycles (cold photoperiod/warm night [-DIF]), most species exhibit reduced elongation growth. To study the physiological mechanism of how light and temperature cycles affect plant growth, we used infrared imaging to dissect growth dynamics under +DIF and -DIF in the model plant Arabidopsis (Arabidopsis thaliana). We found that -DIF altered leaf growth patterns, decreasing the amplitude and delaying the phase of leaf movement. Ethylene application restored leaf growth in -DIF conditions, and constitutive ethylene signaling mutants maintain robust leaf movement amplitudes under -DIF, indicating that ethylene signaling becomes limiting under these conditions. In response to -DIF, the phase of ethylene emission advanced 2 h, but total ethylene emission was not reduced. However, expression analysis on members of the 1-aminocyclopropane-1-carboxylic acid (ACC) synthase ethylene biosynthesis gene family showed that ACS2 activity is specifically suppressed in the petiole region under -DIF conditions. Indeed, petioles of plants under -DIF had reduced ACC content, and application of ACC to the petiole restored leaf growth patterns. Moreover, acs2 mutants displayed reduced leaf movement under +DIF, similar to wild-type plants under -DIF. In addition, we demonstrate that the photoreceptor PHYTOCHROME B restricts ethylene biosynthesis and constrains the -DIF-induced phase shift in rhythmic growth. Our findings provide a mechanistic insight into how fluctuating temperature cycles regulate plant growth.

  7. Regulation of a Chitinase Gene Promoter by Ethylene and Elicitors in Bean Protoplasts 1

    PubMed Central

    Roby, Dominique; Broglie, Karen; Gaynor, John; Broglie, Richard

    1991-01-01

    Chitinase gene expression has been shown to be transcriptionally regulated by a number of inducers, including ethylene, elicitors, and pathogen attack. To investigate the mechanism(s) responsible for induction of chitinase gene expression in response to various stimuli, we have developed a transient gene expression system in bean (Phaseolus vulgaris) protoplasts that is responsive to ethylene and elicitor treatment. This system was used to study the expression of a chimeric gene composed of the 5′ flanking sequences of a bean endochitinase gene fused to the reporter gene β-glucuronidase linked to a 3′ fragment from nopaline synthase. Addition of 1-aminocyclopropane-1-carboxylic acid, the direct precursor of ethylene, or elicitors such as chitin oligosaccharides or cell wall fragments derived from Colletotrichum lagenarium, to transformed protoplasts resulted in a rapid and marked increase in the expression of the chimeric gene. The kinetics and dose response for these treatments were similar to those observed for the native gene in vivo. Analyses of 5′ deletion mutants in the protoplast system indicated that DNA sequences located between −305 and −236 are important for both ethylene and elicitor induction of the reporter gene. ImagesFigure 1 PMID:16668405

  8. Transgenic rice with inducible ethylene production exhibits broad-spectrum disease resistance to the fungal pathogens Magnaporthe oryzae and Rhizoctonia solani.

    PubMed

    Helliwell, Emily E; Wang, Qin; Yang, Yinong

    2013-01-01

    Rice blast (Magnaporthe oryzae) and sheath blight (Rhizoctonia solani) are the two most devastating diseases of rice (Oryza sativa), and have severe impacts on crop yield and grain quality. Recent evidence suggests that ethylene (ET) may play a more prominent role than salicylic acid and jasmonic acid in mediating rice disease resistance. In this study, we attempt to genetically manipulate endogenous ET levels in rice for enhancing resistance to rice blast and sheath blight diseases. Transgenic lines with inducible production of ET were generated by expressing the rice ACS2 (1-aminocyclopropane-1-carboxylic acid synthase, a key enzyme of ET biosynthesis) transgene under control of a strong pathogen-inducible promoter. In comparison with the wild-type plant, the OsACS2-overexpression lines showed significantly increased levels of the OsACS2 transcripts, endogenous ET and defence gene expression, especially in response to pathogen infection. More importantly, the transgenic lines exhibited increased resistance to a field isolate of R. solani, as well as different races of M. oryzae. Assessment of the growth rate, generational time and seed production revealed little or no differences between wild type and transgenic lines. These results suggest that pathogen-inducible production of ET in transgenic rice can enhance resistance to necrotrophic and hemibiotrophic fungal pathogens without negatively impacting crop productivity.

  9. Anthropogenic increase in carbon dioxide compromises plant defense against invasive insects

    SciTech Connect

    Zavala, J.; Casteel, C.; DeLucia, E.; Berenbaum, M.

    2008-04-01

    Elevated levels of atmospheric carbon dioxide (CO{sub 2}), a consequence of anthropogenic global change, can profoundly affect the interactions between crop plants and insect pests and may promote yet another form of global change: the rapid establishment of invasive species. Elevated CO{sub 2} increased the susceptibility of soybean plants grown under field conditions to the invasive Japanese beetle (Popillia japonica) and to a variant of western corn rootworm (Diabrotica virgifera virgifera) resistant to crop rotation by down-regulating gene expression related to defense signaling [lipoxygenase 7 (lox7), lipoxygenase 8 (lox8), and 1-aminocyclopropane-1-carboxylate synthase (acc-s)]. The down-regulation of these genes, in turn, reduced the production of cysteine proteinase inhibitors (CystPIs), which are specific deterrents to coleopteran herbivores. Beetle herbivory increased CystPI activity to a greater degree in plants grown under ambient than under elevated CO{sub 2}. Gut cysteine proteinase activity was higher in beetles consuming foliage of soybeans grown under elevated CO{sub 2} than in beetles consuming soybeans grown in ambient CO{sub 2}, consistent with enhanced growth and development of these beetles on plants grown in elevated CO{sub 2}. These findings suggest that predicted increases in soybean productivity under projected elevated CO{sub 2} levels may be reduced by increased susceptibility to invasive crop pests.

  10. Effect of the defoliant thidiazuron on ethylene evolution from mung bean hypocotyl segments.

    PubMed

    Suttle, J C

    1984-08-01

    The effect of the defoliant thidiazuron (N-phenyl-N'1,2,3-thiadiazol-5-ylurea) on ethylene evolution from etiolated mung bean hypocotyl segments was examined. Treatment of hypocotyl segments with concentrations of thidiazuron equal to or greater than 30 nanomolar stimulated ethylene evolution. Increased rates of ethylene evolution from thidiazuron-treated tissues could be detected within 90 minutes of treatment and persisted up to 30 hours after treatment. Radioactive methionine was readily taken up by thidiazuron-treated tissues and was converted to ethylene, 1-aminocyclopropane-1-carboxylic acid (ACC) and an acidic conjugate of ACC. Aminoethoxyvinylglycine, aminooxyacetic acid, cobalt chloride, and alpha-aminoisobutyric acid reduced ethylene evolution from treated tissues. An increase in the endogenous content of free ACC coincided with the increase in ethylene evolution following thidiazuron treatment. Uptake and conversion of exogenous ACC to ethylene were not affected by thidiazuron treatment. No increases in the extractable activities of ACC synthase were detected following thidiazuron treatment. PMID:16663757

  11. Expansion of banana (Musa acuminata) gene families involved in ethylene biosynthesis and signalling after lineage-specific whole-genome duplications.

    PubMed

    Jourda, Cyril; Cardi, Céline; Mbéguié-A-Mbéguié, Didier; Bocs, Stéphanie; Garsmeur, Olivier; D'Hont, Angélique; Yahiaoui, Nabila

    2014-05-01

    Whole-genome duplications (WGDs) are widespread in plants, and three lineage-specific WGDs occurred in the banana (Musa acuminata) genome. Here, we analysed the impact of WGDs on the evolution of banana gene families involved in ethylene biosynthesis and signalling, a key pathway for banana fruit ripening. Banana ethylene pathway genes were identified using comparative genomics approaches and their duplication modes and expression profiles were analysed. Seven out of 10 banana ethylene gene families evolved through WGD and four of them (1-aminocyclopropane-1-carboxylate synthase (ACS), ethylene-insensitive 3-like (EIL), ethylene-insensitive 3-binding F-box (EBF) and ethylene response factor (ERF)) were preferentially retained. Banana orthologues of AtEIN3 and AtEIL1, two major genes for ethylene signalling in Arabidopsis, were particularly expanded. This expansion was paralleled by that of EBF genes which are responsible for control of EIL protein levels. Gene expression profiles in banana fruits suggested functional redundancy for several MaEBF and MaEIL genes derived from WGD and subfunctionalization for some of them. We propose that EIL and EBF genes were co-retained after WGD in banana to maintain balanced control of EIL protein levels and thus avoid detrimental effects of constitutive ethylene signalling. In the course of evolution, subfunctionalization was favoured to promote finer control of ethylene signalling. PMID:24716518

  12. Effect of nitric oxide on ethylene synthesis and softening of banana fruit slice during ripening.

    PubMed

    Cheng, Guiping; Yang, En; Lu, Wangjin; Jia, Yongxia; Jiang, Yueming; Duan, Xuewu

    2009-07-01

    The effects of nitric oxide (NO) on ethylene synthesis and softening of ripening-initiated banana slice were investigated. Fruit firmness, color, and contents of starch and acid-soluble pectin (ASP) were measured. In addition, ethylene production, 1-aminocyclopropane-1-carboxylic acid (ACC) content, expression and activities of ACC synthase (ACS) and ACC oxidase (ACO), and activities of cell-wall-modifying enzymes, polygalacturonase (PG), pectin methylesterase (PME), and endo-beta-1,4-glucanase, were analyzed. Application of NO reduced ethylene production, inhibited degreening of the peel and delayed softening of the pulp. The decrease of ethylene production was associated with the reduction in the activity of ACO and the expression of the MA-ACO1 gene. Moreover, the NO-treated fruit showed a lower expression of the MA-ACS1 gene but higher ACS activity and ACC content. In addition, NO treatment decreased the activities of PG, PME, and endo-beta-1,4-glucanase and maintained higher contents of ASP and starch, which may account for the delay of softening. We proposed that the inhibition of ACO activity and transcription of gene MA-ACO1 by NO resulted in decreased ethylene synthesis and the delay of ripening of banana slice. PMID:19534461

  13. Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution.

    PubMed

    Li, Fuguang; Fan, Guangyi; Lu, Cairui; Xiao, Guanghui; Zou, Changsong; Kohel, Russell J; Ma, Zhiying; Shang, Haihong; Ma, Xiongfeng; Wu, Jianyong; Liang, Xinming; Huang, Gai; Percy, Richard G; Liu, Kun; Yang, Weihua; Chen, Wenbin; Du, Xiongming; Shi, Chengcheng; Yuan, Youlu; Ye, Wuwei; Liu, Xin; Zhang, Xueyan; Liu, Weiqing; Wei, Hengling; Wei, Shoujun; Huang, Guodong; Zhang, Xianlong; Zhu, Shuijin; Zhang, He; Sun, Fengming; Wang, Xingfen; Liang, Jie; Wang, Jiahao; He, Qiang; Huang, Leihuan; Wang, Jun; Cui, Jinjie; Song, Guoli; Wang, Kunbo; Xu, Xun; Yu, John Z; Zhu, Yuxian; Yu, Shuxun

    2015-05-01

    Gossypium hirsutum has proven difficult to sequence owing to its complex allotetraploid (AtDt) genome. Here we produce a draft genome using 181-fold paired-end sequences assisted by fivefold BAC-to-BAC sequences and a high-resolution genetic map. In our assembly 88.5% of the 2,173-Mb scaffolds, which cover 89.6%∼96.7% of the AtDt genome, are anchored and oriented to 26 pseudochromosomes. Comparison of this G. hirsutum AtDt genome with the already sequenced diploid Gossypium arboreum (AA) and Gossypium raimondii (DD) genomes revealed conserved gene order. Repeated sequences account for 67.2% of the AtDt genome, and transposable elements (TEs) originating from Dt seem more active than from At. Reduction in the AtDt genome size occurred after allopolyploidization. The A or At genome may have undergone positive selection for fiber traits. Concerted evolution of different regulatory mechanisms for Cellulose synthase (CesA) and 1-Aminocyclopropane-1-carboxylic acid oxidase1 and 3 (ACO1,3) may be important for enhanced fiber production in G. hirsutum.

  14. Benzothiadiazole affects the leaf proteome in arctic bramble (Rubus arcticus).

    PubMed

    Hukkanen, Anne; Kokko, Harri; Buchala, Antony; Häyrinen, Jukka; Kärenlampi, Sirpa

    2008-11-01

    Benzothiadiazole (BTH) induces resistance to the downy mildew pathogen, Peronospora sparsa, in arctic bramble, but the basis for the BTH-induced resistance is unknown. Arctic bramble cv. Mespi was treated with BTH to study the changes in leaf proteome and to identify proteins with a putative role in disease resistance. First, BTH induced strong expression of one PR-1 protein isoform, which was also induced by salicylic acid (SA). The PR-1 was responsive to BTH and exogenous SA despite a high endogenous SA content (20-25 microg/g fresh weight), which increased to an even higher level after treatment with BTH. Secondly, a total of 792 protein spots were detected in two-dimensional gel electrophoresis, eight proteins being detected solely in the BTH-treated plants. BTH caused up- or down-regulation of 72 and 31 proteins, respectively, of which 18 were tentatively identified by mass spectrometry. The up-regulation of flavanone-3-hydroxylase, alanine aminotransferase, 1-aminocyclopropane-1-carboxylate oxidase, PR-1 and PR-10 proteins may partly explain the BTH-induced resistance against P. sparsa. Other proteins with changes in intensity appear to be involved in, for example, energy metabolism and protein processing. The decline in ATP synthase, triosephosphate isomerase, fructose bisphosphate aldolase and glutamine synthetase suggests that BTH causes significant changes in primary metabolism, which provides one possible explanation for the decreased vegetative growth of foliage and rhizome observed in BTH-treated plants.

  15. Expression of a nitric oxide degrading enzyme induces a senescence programme in Arabidopsis.

    PubMed

    Mishina, Tatiana E; Lamb, Chris; Zeier, Jürgen

    2007-01-01

    Nitric oxide (NO) has been proposed to act as a factor delaying leaf senescence and fruit maturation in plants. Here we show that expression of a NO degrading dioxygenase (NOD) in Arabidopsis thaliana initiates a senescence-like phenotype, an effect that proved to be more pronounced in older than in younger leaves. This senescence phenotype was preceded by a massive switch in gene expression in which photosynthetic genes were down-regulated, whereas many senescence-associated genes (SAGs) and the 1-aminocyclopropane-1-carboxylic acid (ACC) synthase gene ACS6 involved in ethylene synthesis were up-regulated. External fumigation of NOD plants with NO as well as environmental conditions known to stimulate endogenous NO production attenuated the induced senescence programme. For instance, both high light conditions and nitrate feeding reduced the senescence phenotype and attenuated the down-regulation of photosynthetic genes as well as the up-regulation of SAGs. Treatment of plants with the cytokinin 6-benzylaminopurin (BAP) reduced the down-regulation of photosynthesis, although it had no consistent effect on SAG expression. Metabolic changes during NOD-induced senescence comprehended increases in salicylic acid (SA) levels, accumulation of the phytoalexin camalexin and elevation of leaf gamma-tocopherol contents, all of which occurred during natural senescence in Arabidopsis leaves as well. Moreover, NO fumigation delayed the senescence process induced by darkening individual Arabidopsis Columbia-0 (Col-0) leaves. Our data thus support the notion that NO acts as a negative regulator of leaf senescence.

  16. Expansion of banana (Musa acuminata) gene families involved in ethylene biosynthesis and signalling after lineage-specific whole-genome duplications.

    PubMed

    Jourda, Cyril; Cardi, Céline; Mbéguié-A-Mbéguié, Didier; Bocs, Stéphanie; Garsmeur, Olivier; D'Hont, Angélique; Yahiaoui, Nabila

    2014-05-01

    Whole-genome duplications (WGDs) are widespread in plants, and three lineage-specific WGDs occurred in the banana (Musa acuminata) genome. Here, we analysed the impact of WGDs on the evolution of banana gene families involved in ethylene biosynthesis and signalling, a key pathway for banana fruit ripening. Banana ethylene pathway genes were identified using comparative genomics approaches and their duplication modes and expression profiles were analysed. Seven out of 10 banana ethylene gene families evolved through WGD and four of them (1-aminocyclopropane-1-carboxylate synthase (ACS), ethylene-insensitive 3-like (EIL), ethylene-insensitive 3-binding F-box (EBF) and ethylene response factor (ERF)) were preferentially retained. Banana orthologues of AtEIN3 and AtEIL1, two major genes for ethylene signalling in Arabidopsis, were particularly expanded. This expansion was paralleled by that of EBF genes which are responsible for control of EIL protein levels. Gene expression profiles in banana fruits suggested functional redundancy for several MaEBF and MaEIL genes derived from WGD and subfunctionalization for some of them. We propose that EIL and EBF genes were co-retained after WGD in banana to maintain balanced control of EIL protein levels and thus avoid detrimental effects of constitutive ethylene signalling. In the course of evolution, subfunctionalization was favoured to promote finer control of ethylene signalling.

  17. Ethylene-mediated enhancement of apical hook formation in etiolated Arabidopsis thaliana seedlings is gibberellin dependent.

    PubMed

    Vriezen, Wim H; Achard, Patrick; Harberd, Nicholas P; Van Der Straeten, Dominique

    2004-02-01

    Dark-grown Arabidopsis seedlings develop an apical hook by differential elongation and division of hypocotyl cells. This allows the curved hypocotyl to gently drag the apex, which is protected by the cotyledons, upwards through the soil. Several plant hormones are known to be involved in hook development, including ethylene, which causes exaggeration of the hook. We show that gibberellins (GAs) are also involved in this process. Inhibition of GA biosynthesis with paclobutrazol (PAC) prevented hook formation in wild-type (WT) seedlings and in constitutive ethylene response (ctr)1-1, a mutant that exhibits a constitutive ethylene response. In addition, a GA-deficient mutant (ga1-3) did not form an apical hook in the presence of the ethylene precursor 1-aminocyclopropane-1-carboxylate (ACC). Analysis of transgenic Arabidopsis seedlings expressing a green fluorescent protein (GFP)-repressor of ga1-3 (RGA) fusion protein suggested that ACC inhibits cell elongation in the apical hook by inhibition of GA signaling. A decreased feedback of GA possibly causes an induction of GA biosynthesis based upon the expression of genes encoding copalyl diphosphate synthase (CPS; GA1) and GA 2-oxidase (AtGA2ox1). Furthermore, expression of GASA1, a GA-response gene, suggests that differential cell elongation in the apical hook might be a result of differential GA-sensitivity.

  18. Abscisic acid inhibits root growth in Arabidopsis through ethylene biosynthesis.

    PubMed

    Luo, Xingju; Chen, Zhizhong; Gao, Junping; Gong, Zhizhong

    2014-07-01

    When first discovered in 1963, abscisic acid (ABA) was called abscisin II because it promotes abscission. Later, researchers found that ABA accelerates abscission via ethylene. In Arabidopsis, previous studies have shown that high concentrations of ABA inhibit root growth through ethylene signaling but not ethylene production. In the present study in Arabidopsis, we found that ABA inhibits root growth by promoting ethylene biosynthesis. The ethylene biosynthesis inhibitor L-α-(2-aminoethoxyvinyl)-glycine reduces ABA inhibition of root growth, and multiple mutants of ACS (1-aminocyclopropane-1-carboxylate synthase) are more resistant to ABA in terms of root growth than the wild-type is. Two ABA-activated calcium-dependent protein kinases, CPK4 and CPK11, phosphorylate the C-terminus of ACS6 and increase the stability of ACS6 in ethylene biosynthesis. Plants expressing an ACS6 mutant that mimics the phosphorylated form of ACS6 produce more ethylene than the wild-type. Our results reveal an important mechanism by which ABA promotes ethylene production. This mechanism may be highly conserved among higher plants.

  19. Benzothiadiazole affects the leaf proteome in arctic bramble (Rubus arcticus).

    PubMed

    Hukkanen, Anne; Kokko, Harri; Buchala, Antony; Häyrinen, Jukka; Kärenlampi, Sirpa

    2008-11-01

    Benzothiadiazole (BTH) induces resistance to the downy mildew pathogen, Peronospora sparsa, in arctic bramble, but the basis for the BTH-induced resistance is unknown. Arctic bramble cv. Mespi was treated with BTH to study the changes in leaf proteome and to identify proteins with a putative role in disease resistance. First, BTH induced strong expression of one PR-1 protein isoform, which was also induced by salicylic acid (SA). The PR-1 was responsive to BTH and exogenous SA despite a high endogenous SA content (20-25 microg/g fresh weight), which increased to an even higher level after treatment with BTH. Secondly, a total of 792 protein spots were detected in two-dimensional gel electrophoresis, eight proteins being detected solely in the BTH-treated plants. BTH caused up- or down-regulation of 72 and 31 proteins, respectively, of which 18 were tentatively identified by mass spectrometry. The up-regulation of flavanone-3-hydroxylase, alanine aminotransferase, 1-aminocyclopropane-1-carboxylate oxidase, PR-1 and PR-10 proteins may partly explain the BTH-induced resistance against P. sparsa. Other proteins with changes in intensity appear to be involved in, for example, energy metabolism and protein processing. The decline in ATP synthase, triosephosphate isomerase, fructose bisphosphate aldolase and glutamine synthetase suggests that BTH causes significant changes in primary metabolism, which provides one possible explanation for the decreased vegetative growth of foliage and rhizome observed in BTH-treated plants. PMID:19019008

  20. Contrasting effects of ethylene biosynthesis on induced plant resistance against a chewing and a piercing-sucking herbivore in rice.

    PubMed

    Lu, Jing; Li, Jiancai; Ju, Hongping; Liu, Xiaoli; Erb, Matthias; Wang, Xia; Lou, Yonggen

    2014-11-01

    Ethylene is a stress hormone with contrasting effects on herbivore resistance. However, it remains unknown whether these differences are plant- or herbivore-specific. We cloned a rice 1-aminocyclopropane-1-carboxylic acid (ACC) synthase gene, OsACS2, whose transcripts were rapidly up-regulated in response to mechanical wounding and infestation by two important pests: the striped stem borer (SSB) Chilo suppressalis and the brown planthopper (BPH) Nilaparvata lugens. Antisense expression of OsACS2 (as-acs) reduced elicited ethylene emission, SSB-elicited trypsin protease inhibitor (TrypPI) activity, SSB-induced volatile release, and SSB resistance. Exogenous application of ACC restored TrypPI activity and SSB resistance. In contrast to SSB, BPH infestation increased volatile emission in as-acs lines. Accordingly, BPH preferred to feed and oviposit on wild-type (WT) plants--an effect that could be attributed to two repellent volatiles, 2-heptanone and 2-heptanol, that were emitted in higher amounts by as-acs plants. BPH honeydew excretion was reduced and natural enemy attraction was enhanced in as-acs lines, resulting in higher overall resistance to BPH. These results demonstrate that ethylene signaling has contrasting, herbivore-specific effects on rice defense responses and resistance against a chewing and a piercing-sucking insect, and may mediate resistance trade-offs between herbivores of different feeding guilds in rice. PMID:25064847

  1. Effect of 1-methylcyclopropene on shelf life, visual quality and nutritional quality of netted melon.

    PubMed

    Shi, Y; Wang, B L; Shui, D J; Cao, L L; Wang, C; Yang, T; Wang, X Y; Ye, H X

    2015-04-01

    The effects of 1-methylcyclopropene (1-MCP) on shelf life, fruit visual quality and nutritional quality were investigated. Netted melons were treated with air (control) and 0.6 µl l(-1) 1-MCP at 25 ℃ for 24 h, and then stored at 25 ℃ or 10 ℃ for 10 days. 1-MCP significantly extended the shelf life, inhibited weight loss and delayed firmness decline of melon fruits. Ethylene production was also inhibited and respiration rate was declined. 1-MCP retarded 1-aminocyclopropane-1-carboxylic acid (ACC) increases and inhibited ACC synthase and ACC oxidase activity. Moreover, 1-MCP treatment reduced the decrease in total soluble solids and titratable acidity, as well as the decrease of the content of sugars (sucrose, fructose and glucose). These results indicated that 1-MCP treatment is a good method to extend melon shelf life and maintain fruit quality, and the combination of 1-MCP and low temperature storage resulted in more acceptable fruit quality.

  2. Tomato FRUITFULL homologs regulate fruit ripening via ethylene biosynthesis.

    PubMed

    Shima, Yoko; Fujisawa, Masaki; Kitagawa, Mamiko; Nakano, Toshitsugu; Kimbara, Junji; Nakamura, Nobutaka; Shiina, Takeo; Sugiyama, Junichi; Nakamura, Toshihide; Kasumi, Takafumi; Ito, Yasuhiro

    2014-01-01

    Certain MADS-box transcription factors play central roles in regulating fruit ripening. RIPENING INHIBITOR (RIN), a tomato MADS-domain protein, acts as a global regulator of ripening, affecting the climacteric rise of ethylene, pigmentation changes, and fruit softening. Previously, we showed that two MADS-domain proteins, the FRUITFULL homologs FUL1 and FUL2, form complexes with RIN. Here, we characterized the FUL1/FUL2 loss-of-function phenotype in co-suppressed plants. The transgenic plants produced ripening-defective fruits accumulating little or no lycopene. Unlike a previous study on FUL1/FUL2 suppressed tomatoes, our transgenic fruits showed very low levels of ethylene production, and this was associated with suppression of the genes for 1-aminocyclopropane-1-carboxylic acid synthase, a rate-limiting enzyme in ethylene synthesis. FUL1/FUL2 suppression also caused the fruit to soften in a manner independent of ripening, possibly due to reduced cuticle thickness in the peel of the suppressed tomatoes.

  3. Multilayered Regulation of Ethylene Induction Plays a Positive Role in Arabidopsis Resistance against Pseudomonas syringae.

    PubMed

    Guan, Rongxia; Su, Jianbin; Meng, Xiangzong; Li, Sen; Liu, Yidong; Xu, Juan; Zhang, Shuqun

    2015-09-01

    Ethylene, a key phytohormone involved in plant-pathogen interaction, plays a positive role in plant resistance against fungal pathogens. However, its function in plant bacterial resistance remains unclear. Here, we report a detailed analysis of ethylene induction in Arabidopsis (Arabidopsis thaliana) in response to Pseudomonas syringae pv tomato DC3000 (Pst). Ethylene biosynthesis is highly induced in both pathogen/microbe-associated molecular pattern (PAMP)-triggered immunity and effector-triggered immunity (ETI), and the induction is potentiated by salicylic acid (SA) pretreatment. In addition, Pst actively suppresses PAMP-triggered ethylene induction in a type III secretion system-dependent manner. SA potentiation of ethylene induction is dependent mostly on MITOGEN-ACTIVATED PROTEIN KINASE6 (MPK6) and MPK3 and their downstream ACS2 and ACS6, two type I isoforms of 1-aminocyclopropane-1-carboxylic acid synthases (ACSs). ACS7, a type III ACS whose expression is enhanced by SA pretreatment, is also involved. Pst expressing the avrRpt2 effector gene (Pst-avrRpt2), which is capable of triggering ETI, induces a higher level of ethylene production, and the elevated portion is dependent on SALICYLIC ACID INDUCTION DEFICIENT2 and NONEXPRESSER OF PATHOGENESIS-RELATED GENE1, two key players in SA biosynthesis and signaling. High-order ACS mutants with reduced ethylene induction are more susceptible to both Pst and Pst-avrRpt2, demonstrating a positive role of ethylene in plant bacterial resistance mediated by both PAMP-triggered immunity and ETI.

  4. New Insights into the Protein Turnover Regulation in Ethylene Biosynthesis.

    PubMed

    Yoon, Gyeong Mee

    2015-07-01

    Biosynthesis of the phytohormone ethylene is under tight regulation to satisfy the need for appropriate levels of ethylene in plants in response to exogenous and endogenous stimuli. The enzyme 1-aminocyclopropane-1-carboxylic acid synthase (ACS), which catalyzes the rate-limiting step of ethylene biosynthesis, plays a central role to regulate ethylene production through changes in ACS gene expression levels and the activity of the enzyme. Together with molecular genetic studies suggesting the roles of post-translational modification of the ACS, newly emerging evidence strongly suggests that the regulation of ACS protein stability is an alternative mechanism that controls ethylene production, in addition to the transcriptional regulation of ACS genes. In this review, recent new insight into the regulation of ACS protein turnover is highlighted, with a special focus on the roles of phosphorylation, ubiquitination, and novel components that regulate the turnover of ACS proteins. The prospect of cross-talk between ethylene biosynthesis and other signaling pathways to control turnover of the ACS protein is also considered.

  5. Transgenic analysis reveals LeACS-1 as a positive regulator of ethylene-induced shikonin biosynthesis in Lithospermum erythrorhizon hairy roots.

    PubMed

    Fang, Rongjun; Wu, Fengyao; Zou, Ailan; Zhu, Yu; Zhao, Hua; Zhao, Hu; Liao, Yonghui; Tang, Ren-Jie; Yang, Tongyi; Pang, Yanjun; Wang, Xiaoming; Yang, Rongwu; Qi, Jinliang; Lu, Guihua; Yang, Yonghua

    2016-03-01

    The phytohormone ethylene (ET) is a crucial signaling molecule that induces the biosynthesis of shikonin and its derivatives in Lithospermum erythrorhizon shoot cultures. However, the molecular mechanism and the positive regulators involved in this physiological process are largely unknown. In this study, the function of LeACS-1, a key gene encoding the 1-aminocyclopropane-1-carboxylic acid synthase for ET biosynthesis in L. erythrorhizon hairy roots, was characterized by using overexpression and RNA interference (RNAi) strategies. The results showed that overexpression of LeACS-1 significantly increased endogenous ET concentration and shikonin production, consistent with the up-regulated genes involved in ET biosynthesis and transduction, as well as the genes related to shikonin biosynthesis. Conversely, RNAi of LeACS-1 effectively decreased endogenous ET concentration and shikonin production and down-regulated the expression level of above genes. Correlation analysis showed a significant positive linear relationship between ET concentration and shikonin production. All these results suggest that LeACS-1 acts as a positive regulator of ethylene-induced shikonin biosynthesis in L. erythrorhizon hairy roots. Our work not only gives new insights into the understanding of the relationship between ET and shikonin biosynthesis, but also provides an efficient genetic engineering target gene for secondary metabolite production in non-model plant L. erythrorhizon.

  6. MPK3/MPK6 are involved in iron deficiency-induced ethylene production in Arabidopsis

    PubMed Central

    Ye, Lingxiao; Li, Lin; Wang, Lu; Wang, Shoudong; Li, Sen; Du, Juan; Zhang, Shuqun; Shou, Huixia

    2015-01-01

    Iron (Fe) is an essential micronutrient that participates in various biological processes important for plant growth. Ethylene production induced by Fe deficiency plays important roles in plant tolerance to stress induced by Fe deficiency. However, the activation and regulatory mechanisms of 1-Aminocyclopropane-1-carboxylic acid synthase (ACS) genes in this response are not clear. In this study, we demonstrated that Fe deficiency increased the abundance of ACS2, ACS6, ACS7, and ACS11 transcripts in both leaves and roots as well as the abundance of ACS8 transcripts in leaves and ACS9 transcripts in roots. Furthermore, we investigated the role of mitogen-activated protein kinase 3 and 6 (MPK3/MPK6)-regulated ACS2/6 activation in Fe deficiency-induced ethylene production. Our results showed that MPK3/MPK6 transcript abundance and MPK3/MPK6 phosphorylation are elevated under conditions of Fe deficiency. Furthermore, mpk3 and mpk6 mutants show a lesser induction of ethylene production under Fe deficiency and a greater sensitivity to Fe deficiency. Finally, in mpk3, mpk6, and acs2 mutants under conditions of Fe deficiency, induction of transcript expression of the Fe-deficiency response genes FRO2, IRT1, and FIT is partially compromised. Taken together, our results suggest that the MPK3/MPK6 and ACS2 are part of the Fe starvation-induced ethylene production signaling pathway. PMID:26579185

  7. Ethylene and hydrogen peroxide are involved in brassinosteroid-induced salt tolerance in tomato

    PubMed Central

    Zhu, Tong; Deng, Xingguang; Zhou, Xue; Zhu, Lisha; Zou, Lijuan; Li, Pengxu; Zhang, Dawei; Lin, Honghui

    2016-01-01

    Crosstalk between phytohormone pathways is essential in plant growth, development and stress responses. Brassinosteroids (BRs) and ethylene are both pivotal plant growth regulators, and the interaction between these two phytohormones in the tomato response to salt stress is still unclear. Here, we explored the mechanism by which BRs affect ethylene biosynthesis and signaling in tomato seedlings under salt stress. The activity of 1-aminocyclopropane-1-carboxylate synthase (ACS), an ethylene synthesis enzyme, and the ethylene signaling pathway were activated in plants pretreated with BRs. Scavenging of ethylene production or silencing of ethylene signaling components inhibited BR-induced salt tolerance and blocked BR-induced activities of several antioxidant enzymes. Previous studies have reported that BRs can induce plant tolerance to a variety of environmental stimuli by triggering the generation of H2O2 as a signaling molecule. We also found that H2O2 might be involved in the crosstalk between BRs and ethylene in the tomato response to salt stress. Simultaneously, BR-induced ethylene production was partially blocked by pretreated with a reactive oxygen species scavenger or synthesis inhibitor. These results strongly demonstrated that ethylene and H2O2 play important roles in BR-dependent induction of plant salt stress tolerance. Furthermore, we also investigated the relationship between BR signaling and ethylene signaling pathways in plant processes responding to salt stress. PMID:27739520

  8. Characterization of Ethylene Biosynthesis Associated with Ripening in Banana Fruit1

    PubMed Central

    Liu, Xuejun; Shiomi, Shinjiro; Nakatsuka, Akira; Kubo, Yasutaka; Nakamura, Reinosuke; Inaba, Akitsugu

    1999-01-01

    We investigated the characteristics of ethylene biosynthesis associated with ripening in banana (Musa sp. [AAA group, Cavendish subgroup] cv Grand Nain) fruit. MA-ACS1 encoding 1-aminocyclopropane-1-carboxylic acid (ACC) synthase in banana fruit was the gene related to the ripening process and was inducible by exogenous ethylene. At the onset of the climacteric period in naturally ripened fruit, ethylene production increased greatly, with a sharp peak concomitant with an increase in the accumulation of MA-ACS1 mRNA, and then decreased rapidly. At the onset of ripening, the in vivo ACC oxidase activity was enhanced greatly, followed by an immediate and rapid decrease. Expression of the MA-ACO1 gene encoding banana ACC oxidase was detectable at the preclimacteric stage, increased when ripening commenced, and then remained high throughout the later ripening stage despite of a rapid reduction in the ACC oxidase activity. This discrepancy between enzyme activity and gene expression of ACC oxidase could be, at least in part, due to reduced contents of ascorbate and iron, cofactors for the enzyme, during ripening. Addition of these cofactors to the incubation medium greatly stimulated the in vivo ACC oxidase activity during late ripening stages. The results suggest that ethylene production in banana fruit is regulated by transcription of MA-ACS1 until climacteric rise and by reduction of ACC oxidase activity possibly through limited in situ availability of its cofactors once ripening has commenced, which in turn characterizes the sharp peak of ethylene production. PMID:10594112

  9. Lead Poisoning

    MedlinePlus

    ... Experiments Stories Lessons Topics Games Activities Lessons MENU Lead Poisoning Kids Homepage Topics Pollution Lead Poisoning What is ... you can avoid contact with it! Sources of Lead Poisoning HOUSE PAINTS: Before1950, lead-based paint was used ...

  10. Lead Test

    MedlinePlus

    ... to determine lead sources, educating family members about lead poisoning , and instituting follow-up testing to monitor the ... high levels of lead, see the article on Lead Poisoning . The Occupational Safety and Health Administration (OSHA) has ...

  11. Lead Poisoning

    MedlinePlus

    Lead Poisoning What is it and who is affected? Lead is a highly toxic substance, exposure to which ... and children can suffer from the effects of lead poisoning, but childhood lead poisoning is much more frequent. ...

  12. Investigation of potential glycogen synthase kinase 3 inhibitors using pharmacophore mapping and virtual screening.

    PubMed

    Dessalew, Nigus; Bharatam, Prasad V

    2006-09-01

    Glycogen synthase kinase-3 is a serine/threonine kinase that has attracted significant drug discovery attention in recent years. To investigate the identification of new potential glycogen synthase kinase-3 inhibitors, a pharmacophore mapping study was carried out using a set of 21 structurally diverse glycogen synthase kinase-3 inhibitors. A hypothesis containing four features: two hydrophobic, one hydrogen bond donor and another hydrogen bond acceptor was found to be the best from the 10 common feature hypotheses produced by HipHop module of Catalyst. The best hypothesis has a high cost of 156.592 and higher best fit values were obtained for the 21 inhibitors using this best hypothesis than the other HipHop hypotheses. The best hypothesis was then used to screen electronically the NCI2000 database. The hits obtained were docked into glycogen synthase kinase-3beta active site. A total of five novel potential leads were proposed after: (i) visual examination of how well they dock into the glycogen synthase kinase-3beta-binding site, (ii) comparative analysis of their FlexX, G-Score, PMF-Score, ChemScore and D-Scores values, (iii) comparison of their best fit value with the known inhibitors and (iv) examination of the how the hits retain interactions with the important amino acid residues of glycogen synthase kinase-3beta-binding site. PMID:17062013

  13. Investigation of potential glycogen synthase kinase 3 inhibitors using pharmacophore mapping and virtual screening.

    PubMed

    Dessalew, Nigus; Bharatam, Prasad V

    2006-09-01

    Glycogen synthase kinase-3 is a serine/threonine kinase that has attracted significant drug discovery attention in recent years. To investigate the identification of new potential glycogen synthase kinase-3 inhibitors, a pharmacophore mapping study was carried out using a set of 21 structurally diverse glycogen synthase kinase-3 inhibitors. A hypothesis containing four features: two hydrophobic, one hydrogen bond donor and another hydrogen bond acceptor was found to be the best from the 10 common feature hypotheses produced by HipHop module of Catalyst. The best hypothesis has a high cost of 156.592 and higher best fit values were obtained for the 21 inhibitors using this best hypothesis than the other HipHop hypotheses. The best hypothesis was then used to screen electronically the NCI2000 database. The hits obtained were docked into glycogen synthase kinase-3beta active site. A total of five novel potential leads were proposed after: (i) visual examination of how well they dock into the glycogen synthase kinase-3beta-binding site, (ii) comparative analysis of their FlexX, G-Score, PMF-Score, ChemScore and D-Scores values, (iii) comparison of their best fit value with the known inhibitors and (iv) examination of the how the hits retain interactions with the important amino acid residues of glycogen synthase kinase-3beta-binding site.

  14. Design, synthesis, and enzyme kinetics of novel benzimidazole and quinoxaline derivatives as methionine synthase inhibitors.

    PubMed

    Elshihawy, Hosam; Helal, Mohamed A; Said, Mohamed; Hammad, Mohamed A

    2014-01-01

    Methionine synthase catalyzes the transfer of a methyl group from 5-methyltetrahydrofolate to homocysteine, producing methionine and tetrahydrofolate. Benzimidazole and deazatetrahydrofolates derivatives have been shown to inhibit methionine synthase by competing with the substrate 5-methyltetrahydrofolate. In this study, a novel series of substituted benzimidazoles and quinoxalines were designed and assessed for inhibitory activity against purified rat liver methionine synthase using a radiometric enzyme assay. Compounds 3g, 3j, and 5c showed the highest activity against methionine synthase (IC₅₀: 20 μM, 18 μM, 9 μM, respectively). Kinetic analysis of these compounds using Lineweaver-Burk plots revealed characteristics of mixed inhibition for 3g and 5c; and uncompetitive inhibition for 3j. Docking study into a homology model of the rat methionine synthase gave insights into the molecular determinants of the activity of this class of compounds. The identification of these drug-like inhibitors could lead the design of the next generation modulators of methionine synthase.

  15. Multi-Substrate Terpene Synthases: Their Occurrence and Physiological Significance.

    PubMed

    Pazouki, Leila; Niinemets, Ülo

    2016-01-01

    Terpene synthases are responsible for synthesis of a large number of terpenes in plants using substrates provided by two distinct metabolic pathways, the mevalonate-dependent pathway that is located in cytosol and has been suggested to be responsible for synthesis of sesquiterpenes (C15), and 2-C-methyl-D-erythritol-4-phosphate pathway located in plastids and suggested to be responsible for the synthesis of hemi- (C5), mono- (C10), and diterpenes (C20). Recent advances in characterization of genes and enzymes responsible for substrate and end product biosynthesis as well as efforts in metabolic engineering have demonstrated existence of a number of multi-substrate terpene synthases. This review summarizes the progress in the characterization of such multi-substrate terpene synthases and suggests that the presence of multi-substrate use might have been significantly underestimated. Multi-substrate use could lead to important changes in terpene product profiles upon substrate profile changes under perturbation of metabolism in stressed plants as well as under certain developmental stages. We therefore argue that multi-substrate use can be significant under physiological conditions and can result in complicate modifications in terpene profiles. PMID:27462341

  16. Multi-Substrate Terpene Synthases: Their Occurrence and Physiological Significance

    PubMed Central

    Pazouki, Leila; Niinemets, Ülo

    2016-01-01

    Terpene synthases are responsible for synthesis of a large number of terpenes in plants using substrates provided by two distinct metabolic pathways, the mevalonate-dependent pathway that is located in cytosol and has been suggested to be responsible for synthesis of sesquiterpenes (C15), and 2-C-methyl-D-erythritol-4-phosphate pathway located in plastids and suggested to be responsible for the synthesis of hemi- (C5), mono- (C10), and diterpenes (C20). Recent advances in characterization of genes and enzymes responsible for substrate and end product biosynthesis as well as efforts in metabolic engineering have demonstrated existence of a number of multi-substrate terpene synthases. This review summarizes the progress in the characterization of such multi-substrate terpene synthases and suggests that the presence of multi-substrate use might have been significantly underestimated. Multi-substrate use could lead to important changes in terpene product profiles upon substrate profile changes under perturbation of metabolism in stressed plants as well as under certain developmental stages. We therefore argue that multi-substrate use can be significant under physiological conditions and can result in complicate modifications in terpene profiles. PMID:27462341

  17. Crystal structure of riboflavin synthase

    SciTech Connect

    Liao, D.-I.; Wawrzak, Z.; Calabrese, J.C.; Viitanen, P.V.; Jordan, D.B.

    2010-03-05

    Riboflavin synthase catalyzes the dismutation of two molecules of 6,7-dimethyl-8-(1'-D-ribityl)-lumazine to yield riboflavin and 4-ribitylamino-5-amino-2,6-dihydroxypyrimidine. The homotrimer of 23 kDa subunits has no cofactor requirements for catalysis. The enzyme is nonexistent in humans and is an attractive target for antimicrobial agents of organisms whose pathogenicity depends on their ability to biosynthesize riboflavin. The first three-dimensional structure of the enzyme was determined at 2.0 {angstrom} resolution using the multiwavelength anomalous diffraction (MAD) method on the Escherichia coli protein containing selenomethionine residues. The homotrimer consists of an asymmetric assembly of monomers, each of which comprises two similar {beta} barrels and a C-terminal {alpha} helix. The similar {beta} barrels within the monomer confirm a prediction of pseudo two-fold symmetry that is inferred from the sequence similarity between the two halves of the protein. The {beta} barrels closely resemble folds found in phthalate dioxygenase reductase and other flavoproteins. The three active sites of the trimer are proposed to lie between pairs of monomers in which residues conserved among species reside, including two Asp-His-Ser triads and dyads of Cys-Ser and His-Thr. The proposed active sites are located where FMN (an analog of riboflavin) is modeled from an overlay of the {beta} barrels of phthalate dioxygenase reductase and riboflavin synthase. In the trimer, one active site is formed, and the other two active sites are wide open and exposed to solvent. The nature of the trimer configuration suggests that only one active site can be formed and be catalytically competent at a time.

  18. High diversity of polyketide synthase genes and the melanin biosynthesis gene cluster in Penicillium marneffei.

    PubMed

    Woo, Patrick C Y; Tam, Emily W T; Chong, Ken T K; Cai, James J; Tung, Edward T K; Ngan, Antonio H Y; Lau, Susanna K P; Yuen, Kwok-Yung

    2010-09-01

    Despite the unique phenotypic properties and clinical importance of Penicillium marneffei, the polyketide synthase genes in its genome have never been characterized. Twenty-three putative polyketide synthase genes and two putative polyketide synthase nonribosomal peptide-synthase hybrid genes were identified in the P. marneffei genome, a diversity much higher than found in other pathogenic thermal dimorphic fungi, such as Histoplasma capsulatum (one polyketide synthase gene) and Coccidioides immitis (10 polyketide synthase genes). These genes were evenly distributed on the phylogenetic tree with polyketide synthase genes of Aspergillus and other fungi, indicating that the high diversity was not a result of lineage-specific gene expansion through recent gene duplication. The melanin-biosynthesis gene cluster had gene order and orientations identical to those in the Talaromyces stipitatus (a teleomorph of Penicillium emmonsii) genome. Phylogenetically, all six genes of the melanin-biosynthesis gene cluster in P. marneffei were also most closely related to those in T. stipitatus, with high bootstrap supports. The polyketide synthase gene of the melanin-biosynthesis gene cluster (alb1) in P. marneffei was knocked down, which was accompanied by loss of melanin pigment production and reduced ornamentation in conidia. The survival of mice challenged with the alb1 knockdown mutant was significantly better than those challenged with wild-type P. marneffei (P < 0.005). The sterilizing doses of hydrogen peroxide, leading to a 50% reduction in survival of conidia, were 11 min for wild-type P. marneffei and 6 min for the alb1 knockdown mutant of P. marneffei, implying that the melanin-biosynthesis gene cluster contributed to virulence through decreased susceptibility to killing by hydrogen peroxide. PMID:20718860

  19. Nitric Oxide Synthases in Heart Failure

    PubMed Central

    Carnicer, Ricardo; Crabtree, Mark J.; Sivakumaran, Vidhya

    2013-01-01

    Abstract Significance: The regulation of myocardial function by constitutive nitric oxide synthases (NOS) is important for the maintenance of myocardial Ca2+ homeostasis, relaxation and distensibility, and protection from arrhythmia and abnormal stress stimuli. However, sustained insults such as diabetes, hypertension, hemodynamic overload, and atrial fibrillation lead to dysfunctional NOS activity with superoxide produced instead of NO and worse pathophysiology. Recent Advances: Major strides in understanding the role of normal and abnormal constitutive NOS in the heart have revealed molecular targets by which NO modulates myocyte function and morphology, the role and nature of post-translational modifications of NOS, and factors controlling nitroso-redox balance. Localized and differential signaling from NOS1 (neuronal) versus NOS3 (endothelial) isoforms are being identified, as are methods to restore NOS function in heart disease. Critical Issues: Abnormal NOS signaling plays a key role in many cardiac disorders, while targeted modulation may potentially reverse this pathogenic source of oxidative stress. Future Directions: Improvements in the clinical translation of potent modulators of NOS function/dysfunction may ultimately provide a powerful new treatment for many hearts diseases that are fueled by nitroso-redox imbalance. Antioxid. Redox Signal. 18, 1078–1099. PMID:22871241

  20. The lumazine synthase/riboflavin synthase complex: shapes and functions of a highly variable enzyme system.

    PubMed

    Ladenstein, Rudolf; Fischer, Markus; Bacher, Adelbert

    2013-06-01

    The xylene ring of riboflavin (vitamin B2 ) is assembled from two molecules of 3,4-dihydroxy-2-butanone 4-phosphate by a mechanistically complex process that is jointly catalyzed by lumazine synthase and riboflavin synthase. In Bacillaceae, these enzymes form a structurally unique complex comprising an icosahedral shell of 60 lumazine synthase subunits and a core of three riboflavin synthase subunits, whereas many other bacteria have empty lumazine synthase capsids, fungi, Archaea and some eubacteria have pentameric lumazine synthases, and the riboflavin synthases of Archaea are paralogs of lumazine synthase. The structures of the molecular ensembles have been studied in considerable detail by X-ray crystallography, X-ray small-angle scattering and electron microscopy. However, certain mechanistic aspects remain unknown. Surprisingly, the quaternary structure of the icosahedral β subunit capsids undergoes drastic changes, resulting in formation of large, quasi-spherical capsids; this process is modulated by sequence mutations. The occurrence of large shells consisting of 180 or more lumazine synthase subunits has recently generated interest for protein engineering topics, particularly the construction of encapsulation systems.

  1. Lead Toxicity

    MedlinePlus

    ... homes. • Most people, especially children, who suffer from lead poisoning are exposed through lead-contaminated household dust or ... and six if they are at risk of lead poisoning (see: ). Who can I call to get more ...

  2. Unique animal prenyltransferase with monoterpene synthase activity

    NASA Astrophysics Data System (ADS)

    Gilg, Anna B.; Tittiger, Claus; Blomquist, Gary J.

    2009-06-01

    Monoterpenes are structurally diverse natural compounds that play an essential role in the chemical ecology of a wide array of organisms. A key enzyme in monoterpene biosynthesis is geranyl diphosphate synthase (GPPS). GPPS is an isoprenyl diphosphate synthase that catalyzes a single electrophilic condensation reaction between dimethylallyl diphosphate (C5) and isopentenyl diphosphate (C5) to produce geranyl diphosphate (GDP; C10). GDP is the universal precursor to all monoterpenes. Subsequently, monoterpene synthases are responsible for the transformation of GDP to a variety of acyclic, monocyclic, and bicyclic monoterpene products. In pheromone-producing male Ips pini bark beetles (Coleoptera: Scolytidae), the acyclic monoterpene myrcene is required for the production of the major aggregation pheromone component, ipsdienol. Here, we report monoterpene synthase activity associated with GPPS of I. pini. Enzyme assays were performed on recombinant GPPS to determine the presence of monoterpene synthase activity, and the reaction products were analyzed by coupled gas chromatography-mass spectrometry. The functionally expressed recombinant enzyme produced both GDP and myrcene, making GPPS of I. pini a bifunctional enzyme. This unique insect isoprenyl diphosphate synthase possesses the functional plasticity that is characteristic of terpene biosynthetic enzymes of plants, contributing toward the current understanding of product specificity of the isoprenoid pathway.

  3. Nitric oxide synthases in pregnant rat uterus.

    PubMed

    Farina, M; Ribeiro, M L; Franchi, A

    2001-03-01

    The conversion of [14C]arginine into [14C]citrulline as an indicator of nitric oxide synthesis was studied in uteri isolated from rats on different days of gestation, after labour and during dioestrus. Nitric oxide synthesis was present in uterine tissues isolated at each stage of gestation and also in tissues collected during dioestrus and after labour. Expression of neuronal nitric oxide synthase was not detectable at any of the stages studied. Endothelial nitric oxide synthase was present at all the stages studied, but there was a significant increase on day 13 of gestation and a decrease thereafter, with the lowest expression recorded on the day after labour. Inducible nitric oxide synthase expression in rat uteri increased substantially during pregnancy, with the highest expression on day 13 of gestation; expression decreased at term and after labour. The changes in expression of inducible nitric oxide synthase were coincident with the changes in nitric oxide synthase activity in uteri treated with aminoguanidine. Thus, these findings indicate that an increase in expression of inducible nitric oxide synthase in the uterus may be important for maintenance of uterine quiescence during pregnancy and its decrease near the time of labour could have an effect on the start of uterine contractility. PMID:11226066

  4. Malate synthase a membrane protein

    SciTech Connect

    Chapman, K.D.; Turley, R.B.; Hermerath, C.A.; Carrapico, F.; Trelease, R.N.

    1987-04-01

    Malate synthase (MS) is generally regarded as a peripheral membrane protein, and believed by some to be ontogenetically associated with ER. However, immuno- and cyto-chemical in situ localizations show MS throughout the matrix of cotton (and cucumber) glyoxysomes, not specifically near their boundary membranes, nor in ER. Only a maximum of 50% MS can be solubilized from cotton glyoxysomes with 1% Triton X-100, 2mM Zwittergen 14, or 10mM DOC +/- salts. Cotton MS does not incorporate /sup 3/H-glucosamine in vivo, nor does it react with Con A on columns or blots. Cotton MS banded with ER in sucrose gradients (20-40%) in Tricine after 3h, but not after 22h in Tricine or Hepes, or after 3h in Hepes or K-phosphate. Collectively the authors data are inconsistent with physiologically meaningful MS-membrane associations in ER or glyoxysomes. It appears that experimentally-induced aggregates of MS migrate in ER gradients and occur in isolated glyoxysomes. These data indicate that ER is not involved in synthesis or modification of cottonseed MS prior to its import into the glyoxysomal matrix.

  5. Dihydrodipicolinate synthase from Thermotoga maritima.

    PubMed

    Pearce, F Grant; Perugini, Matthew A; McKerchar, Hannah J; Gerrard, Juliet A

    2006-12-01

    DHDPS (dihydrodipicolinate synthase) catalyses the branch point in lysine biosynthesis in bacteria and plants and is feedback inhibited by lysine. DHDPS from the thermophilic bacterium Thermotoga maritima shows a high level of heat and chemical stability. When incubated at 90 degrees C or in 8 M urea, the enzyme showed little or no loss of activity, unlike the Escherichia coli enzyme. The active site is very similar to that of the E. coli enzyme, and at mesophilic temperatures the two enzymes have similar kinetic constants. Like other forms of the enzyme, T. maritima DHDPS is a tetramer in solution, with a sedimentation coefficient of 7.2 S and molar mass of 133 kDa. However, the residues involved in the interface between different subunits in the tetramer differ from those of E. coli and include two cysteine residues poised to form a disulfide bond. Thus the increased heat and chemical stability of the T. maritima DHDPS enzyme is, at least in part, explained by an increased number of inter-subunit contacts. Unlike the plant or E. coli enzyme, the thermophilic DHDPS enzyme is not inhibited by (S)-lysine, suggesting that feedback control of the lysine biosynthetic pathway evolved later in the bacterial lineage. PMID:16872276

  6. Identification of avian wax synthases

    PubMed Central

    2012-01-01

    Background Bird species show a high degree of variation in the composition of their preen gland waxes. For instance, galliform birds like chicken contain fatty acid esters of 2,3-alkanediols, while Anseriformes like goose or Strigiformes like barn owl contain wax monoesters in their preen gland secretions. The final biosynthetic step is catalyzed by wax synthases (WS) which have been identified in pro- and eukaryotic organisms. Results Sequence similarities enabled us to identify six cDNAs encoding putative wax synthesizing proteins in chicken and two from barn owl and goose. Expression studies in yeast under in vivo and in vitro conditions showed that three proteins from chicken performed WS activity while a sequence from chicken, goose and barn owl encoded a bifunctional enzyme catalyzing both wax ester and triacylglycerol synthesis. Mono- and bifunctional WS were found to differ in their substrate specificities especially with regard to branched-chain alcohols and acyl-CoA thioesters. According to the expression patterns of their transcripts and the properties of the enzymes, avian WS proteins might not be confined to preen glands. Conclusions We provide direct evidence that avian preen glands possess both monofunctional and bifunctional WS proteins which have different expression patterns and WS activities with different substrate specificities. PMID:22305293

  7. Energy transduction in ATP synthase

    NASA Astrophysics Data System (ADS)

    Elston, Timothy; Wang, Hongyun; Oster, George

    1998-01-01

    Mitochondria, bacteria and chloroplasts use the free energy stored in transmembrane ion gradients to manufacture ATP by the action of ATP synthase. This enzyme consists of two principal domains. The asymmetric membrane-spanning Fo portion contains the proton channel, and the soluble F1 portion contains three catalytic sites which cooperate in the synthetic reactions. The flow of protons through Fo is thought to generate a torque which is transmitted to F1 by an asymmetric shaft, the coiled-coil γ-subunit. This acts as a rotating `cam' within F1, sequentially releasing ATPs from the three active sites. The free-energy difference across the inner membrane of mitochondria and bacteria is sufficient to produce three ATPs per twelve protons passing through the motor. It has been suggested that this protonmotive force biases the rotor's diffusion so that Fo constitutes a rotary motor turning the γ shaft. Here we show that biased diffusion, augmented by electrostatic forces, does indeed generate sufficient torque to account for ATP production. Moreover, the motor's reversibility - supplying torque from ATP hydrolysis in F1 converts the motor into an efficient proton pump - can also be explained by our model.

  8. Lead Poisoning

    MedlinePlus

    ... can be found in all parts of our environment. Much of it comes from human activities such as mining and manufacturing. Lead used to be in paint; older houses may still have lead paint. You could be exposed to lead by Eating food or drinking water that contains lead. Water pipes in older homes ...

  9. Lead poisoning

    SciTech Connect

    Rekus, J.F.

    1992-08-01

    Construction workers who weld, cut or blast structural steel coated with lead-based paint are at significant risk of lead poisoning. Although technology to control these exposures may not have existed when the lead standard was promulgated, it is available today. Employers who do not take steps to protect their employees from lead exposure may be cited and fined severely for their failure.

  10. Palmitate action to inhibit glycogen synthase and stimulate protein phosphatase 2A increases with risk factors for type 2 diabetes

    PubMed Central

    Mott, David M.; Stone, Karen; Gessel, Mary C.; Bunt, Joy C.; Bogardus, Clifton

    2008-01-01

    Recent studies have suggested that abnormal regulation of protein phosphatase 2A (PP2A) is associated with Type 2 diabetes in rodent and human tissues. Results with cultured mouse myotubes support a mechanism for palmitate activation of PP2A, leading to activation of glycogen synthase kinase 3. Phosphorylation and inactivation of glycogen synthase by glycogen synthase kinase 3 could be the mechanism for long-chain fatty acid inhibition of insulin-mediated carbohydrate storage in insulin-resistant subjects. Here, we test the effects of palmitic acid on cultured muscle glycogen synthase and PP2A activities. Palmitate inhibition of glycogen synthase fractional activity is increased in subjects with high body mass index compared with subjects with lower body mass index (r = −0.43, P = 0.03). Palmitate action on PP2A varies from inhibition in subjects with decreased 2-h plasma glucose concentration to activation in subjects with increased 2-h plasma glucose concentration (r = 0.45, P < 0.03) during oral glucose tolerance tests. The results do not show an association between palmitate effects on PP2A and glycogen synthase fractional activity. We conclude that subjects at risk for Type 2 diabetes have intrinsic differences in palmitate regulation of at least two enzymes (PP2A and glycogen synthase), contributing to abnormal insulin regulation of glucose metabolism. PMID:18056794

  11. Palmitate action to inhibit glycogen synthase and stimulate protein phosphatase 2A increases with risk factors for type 2 diabetes.

    PubMed

    Mott, David M; Stone, Karen; Gessel, Mary C; Bunt, Joy C; Bogardus, Clifton

    2008-02-01

    Recent studies have suggested that abnormal regulation of protein phosphatase 2A (PP2A) is associated with Type 2 diabetes in rodent and human tissues. Results with cultured mouse myotubes support a mechanism for palmitate activation of PP2A, leading to activation of glycogen synthase kinase 3. Phosphorylation and inactivation of glycogen synthase by glycogen synthase kinase 3 could be the mechanism for long-chain fatty acid inhibition of insulin-mediated carbohydrate storage in insulin-resistant subjects. Here, we test the effects of palmitic acid on cultured muscle glycogen synthase and PP2A activities. Palmitate inhibition of glycogen synthase fractional activity is increased in subjects with high body mass index compared with subjects with lower body mass index (r = -0.43, P = 0.03). Palmitate action on PP2A varies from inhibition in subjects with decreased 2-h plasma glucose concentration to activation in subjects with increased 2-h plasma glucose concentration (r = 0.45, P < 0.03) during oral glucose tolerance tests. The results do not show an association between palmitate effects on PP2A and glycogen synthase fractional activity. We conclude that subjects at risk for Type 2 diabetes have intrinsic differences in palmitate regulation of at least two enzymes (PP2A and glycogen synthase), contributing to abnormal insulin regulation of glucose metabolism.

  12. Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase

    PubMed Central

    Ludtmann, Marthe H.R.; Angelova, Plamena R.; Ninkina, Natalia N.; Gandhi, Sonia

    2016-01-01

    Misfolded α-synuclein is a key factor in the pathogenesis of Parkinson's disease (PD). However, knowledge about a physiological role for the native, unfolded α-synuclein is limited. Using brains of mice lacking α-, β-, and γ-synuclein, we report that extracellular monomeric α-synuclein enters neurons and localizes to mitochondria, interacts with ATP synthase subunit α, and modulates ATP synthase function. Using a combination of biochemical, live-cell imaging and mitochondrial respiration analysis, we found that brain mitochondria of α-, β-, and γ-synuclein knock-out mice are uncoupled, as characterized by increased mitochondrial respiration and reduced mitochondrial membrane potential. Furthermore, synuclein deficiency results in reduced ATP synthase efficiency and lower ATP levels. Exogenous application of low unfolded α-synuclein concentrations is able to increase the ATP synthase activity that rescues the mitochondrial phenotypes observed in synuclein deficiency. Overall, the data suggest that α-synuclein is a previously unrecognized physiological regulator of mitochondrial bioenergetics through its ability to interact with ATP synthase and increase its efficiency. This may be of particular importance in times of stress or PD mutations leading to energy depletion and neuronal cell toxicity. SIGNIFICANCE STATEMENT Misfolded α-synuclein aggregations in the form of Lewy bodies have been shown to be a pathological hallmark in histological staining of Parkinson's disease (PD) patient brains. It is known that misfolded α-synuclein is a key driver in PD pathogenesis, but the physiological role of unfolded monomeric α-synuclein remains unclear. Using neuronal cocultures and isolated brain mitochondria of α-, β-, and γ-synuclein knock-out mice and monomeric α-synuclein, this current study shows that α-synuclein in its unfolded monomeric form improves ATP synthase efficiency and mitochondrial function. The ability of monomeric α-synuclein to enhance

  13. Critical aspartic acid residues in pseudouridine synthases.

    PubMed

    Ramamurthy, V; Swann, S L; Paulson, J L; Spedaliere, C J; Mueller, E G

    1999-08-01

    The pseudouridine synthases catalyze the isomerization of uridine to pseudouridine at particular positions in certain RNA molecules. Genomic data base searches and sequence alignments using the first four identified pseudouridine synthases led Koonin (Koonin, E. V. (1996) Nucleic Acids Res. 24, 2411-2415) and, independently, Santi and co-workers (Gustafsson, C., Reid, R., Greene, P. J., and Santi, D. V. (1996) Nucleic Acids Res. 24, 3756-3762) to group this class of enzyme into four families, which display no statistically significant global sequence similarity to each other. Upon further scrutiny (Huang, H. L., Pookanjanatavip, M., Gu, X. G., and Santi, D. V. (1998) Biochemistry 37, 344-351), the Santi group discovered that a single aspartic acid residue is the only amino acid present in all of the aligned sequences; they then demonstrated that this aspartic acid residue is catalytically essential in one pseudouridine synthase. To test the functional significance of the sequence alignments in light of the global dissimilarity between the pseudouridine synthase families, we changed the aspartic acid residue in representatives of two additional families to both alanine and cysteine: the mutant enzymes are catalytically inactive but retain the ability to bind tRNA substrate. We have also verified that the mutant enzymes do not release uracil from the substrate at a rate significant relative to turnover by the wild-type pseudouridine synthases. Our results clearly show that the aligned aspartic acid residue is critical for the catalytic activity of pseudouridine synthases from two additional families of these enzymes, supporting the predictive power of the sequence alignments and suggesting that the sequence motif containing the aligned aspartic acid residue might be a prerequisite for pseudouridine synthase function.

  14. Terpene synthases are widely distributed in bacteria

    PubMed Central

    Yamada, Yuuki; Kuzuyama, Tomohisa; Komatsu, Mamoru; Shin-ya, Kazuo; Omura, Satoshi; Cane, David E.; Ikeda, Haruo

    2015-01-01

    Odoriferous terpene metabolites of bacterial origin have been known for many years. In genome-sequenced Streptomycetaceae microorganisms, the vast majority produces the degraded sesquiterpene alcohol geosmin. Two minor groups of bacteria do not produce geosmin, with one of these groups instead producing other sesquiterpene alcohols, whereas members of the remaining group do not produce any detectable terpenoid metabolites. Because bacterial terpene synthases typically show no significant overall sequence similarity to any other known fungal or plant terpene synthases and usually exhibit relatively low levels of mutual sequence similarity with other bacterial synthases, simple correlation of protein sequence data with the structure of the cyclized terpene product has been precluded. We have previously described a powerful search method based on the use of hidden Markov models (HMMs) and protein families database (Pfam) search that has allowed the discovery of monoterpene synthases of bacterial origin. Using an enhanced set of HMM parameters generated using a training set of 140 previously identified bacterial terpene synthase sequences, a Pfam search of 8,759,463 predicted bacterial proteins from public databases and in-house draft genome data has now revealed 262 presumptive terpene synthases. The biochemical function of a considerable number of these presumptive terpene synthase genes could be determined by expression in a specially engineered heterologous Streptomyces host and spectroscopic identification of the resulting terpene products. In addition to a wide variety of terpenes that had been previously reported from fungal or plant sources, we have isolated and determined the complete structures of 13 previously unidentified cyclic sesquiterpenes and diterpenes. PMID:25535391

  15. NOpiates: Novel Dual Action Neuronal Nitric Oxide Synthase Inhibitors with μ-Opioid Agonist Activity

    PubMed Central

    2012-01-01

    A novel series of benzimidazole designed multiple ligands (DMLs) with activity at the neuronal nitric oxide synthase (nNOS) enzyme and the μ-opioid receptor was developed. Targeting of the structurally dissimilar heme-containing enzyme and the μ-opioid GPCR was predicated on the modulatory role of nitric oxide on μ-opioid receptor function. Structure–activity relationship studies yielded lead compound 24 with excellent nNOS inhibitory activity (IC50 = 0.44 μM), selectivity over both endothelial nitric oxide synthase (10-fold) and inducible nitric oxide synthase (125-fold), and potent μ-opioid binding affinity, Ki = 5.4 nM. The functional activity as measured in the cyclic adenosine monosphospate secondary messenger assay resulted in full agonist activity (EC50 = 0.34 μM). This work represents a novel approach in the development of new analgesics for the treatment of pain. PMID:24900459

  16. Lead poisoning.

    PubMed Central

    Landrigan, P J; Todd, A C

    1994-01-01

    Lead poisoning is the most common disease of environmental origin in the United States today. Adult lead poisoning results primarily from exposure by inhalation in the workplace. Pediatric lead poisoning results principally from the ingestion of lead from environmental media, including paint chips, dust, soil, drinking water, ceramics, and medications. Lead is toxic to many organ systems, among them developing erythrocytes, the kidneys, and the nervous system. Lead-induced toxicity to the central nervous system causes delayed development, diminished intelligence, and altered behavior. In young children, this effect has been demonstrated convincingly to occur at blood lead levels between 10 and 20 micrograms per dl. The Centers for Disease Control and Prevention has recommended that a blood lead level of 10 micrograms per dl or higher be considered evidence of increased lead absorption, and the National Academy of Sciences has concurred in that recommendation. Unresolved issues in need of further study include the frequency of screening young children for lead, the question of whether women should be offered screening for lead before conceiving a pregnancy, the role of x-ray fluorescence analysis in assessing lead in bone, and the appropriate legislative response of the United States government to lead-based paint abatement. PMID:7941534

  17. Nuclear genetic defects of mitochondrial ATP synthase.

    PubMed

    Hejzlarová, K; Mráček, T; Vrbacký, M; Kaplanová, V; Karbanová, V; Nůsková, H; Pecina, P; Houštěk, J

    2014-01-01

    Disorders of ATP synthase, the key enzyme of mitochondrial energy provision belong to the most severe metabolic diseases presenting as early-onset mitochondrial encephalo-cardiomyopathies. Up to now, mutations in four nuclear genes were associated with isolated deficiency of ATP synthase. Two of them, ATP5A1 and ATP5E encode enzyme's structural subunits alpha and epsilon, respectively, while the other two ATPAF2 and TMEM70 encode specific ancillary factors that facilitate the biogenesis of ATP synthase. All these defects share a similar biochemical phenotype with pronounced decrease in the content of fully assembled and functional ATP synthase complex. However, substantial differences can be found in their frequency, molecular mechanism of pathogenesis, clinical manifestation as well as the course of the disease progression. While for TMEM70 the number of reported patients as well as spectrum of the mutations is steadily increasing, mutations in ATP5A1, ATP5E and ATPAF2 genes are very rare. Apparently, TMEM70 gene is highly prone to mutagenesis and this type of a rare mitochondrial disease has a rather frequent incidence. Here we present overview of individual reported cases of nuclear mutations in ATP synthase and discuss, how their analysis can improve our understanding of the enzyme biogenesis.

  18. An investigation into eukaryotic pseudouridine synthases.

    PubMed

    King, Ross D; Lu, Chuan

    2014-08-01

    A common post-transcriptional modification of RNA is the conversion of uridine to its isomer pseudouridine. We investigated the biological significance of eukaryotic pseudouridine synthases using the yeast Saccharomyces cerevisiae. We conducted a comprehensive statistical analysis on growth data from automated perturbation (gene deletion) experiments, and used bi-logistic curve analysis to characterise the yeast phenotypes. The deletant strains displayed different alteration in growth properties, including in some cases enhanced growth and/or biphasic growth curves not seen in wild-type strains under matched conditions. These results demonstrate that disrupting pseudouridine synthases can have a significant qualitative effect on growth. We further investigated the significance of post-transcriptional pseudouridine modification through investigation of the scientific literature. We found that (1) In Toxoplasma gondii, a pseudouridine synthase gene is critical in cellular differentiation between the two asexual forms: Tachyzoites and bradyzoites; (2) Mutation of pseudouridine synthase genes has also been implicated in human diseases (mitochondrial myopathy and sideroblastic anemia (MLASA); dyskeratosis congenita). Taken together, these results are consistent with pseudouridine synthases having a Gene Ontology function of "biological regulation".

  19. Lead poisoning

    MedlinePlus

    ... lead is still found in some modern faucets. Soil contaminated by decades of car exhaust or years ... house paint scrapings. Lead is more common in soil near highways and houses. Hobbies involving soldering, stained ...

  20. Ethylene biosynthetic genes are differentially expressed during carnation (Dianthus caryophyllus L.) flower senescence.

    PubMed

    ten Have, A; Woltering, E J

    1997-05-01

    Ethylene production and expression patterns of an 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase (CARAO1) and of two ACC synthase (EC 4.4.1.14) genes (CARACC3 and CARAS1) were studied in floral organs of cut carnation flowers (Dianthus caryophyllus L.) cv. White Sim. During the vase life and after treatment of fresh flowers with ethylene, production of ethylene and expression of ethylene biosynthetic genes first started in the ovary followed by the styles and the petals. ACC oxidase was expressed in all the floral organs whereas, during the vase life, tissue-specific expression of the two ACC synthase genes was observed. After treatment with a high ethylene concentration, tissue specificity of the two ACC synthase genes was lost and only a temporal difference in expression remained. In styles, poor correlation between ethylene production and ACC synthase (CARAS1) gene expression was observed suggesting that either activity is regulated at the translational level or that the CARAS1 gene product requires an additional factor for activity. Isolated petals showed no increase in ethylene production and expression of ethylene biosynthetic genes when excised from the flower before the increase in petal ethylene production (before day 7); showed rapid cessation of ethylene production and gene expression when excised during the early phase of petal ethylene production (day 7) and showed a pattern of ethylene production and gene expression similar to the pattern observed in the attached petals when isolated at day 8. The interorgan regulation of gene expression and ethylene as a signal molecule in flower senescence are discussed.

  1. Exploring biosynthetic diversity with trichodiene synthase.

    PubMed

    Vedula, L Sangeetha; Zhao, Yuxin; Coates, Robert M; Koyama, Tanetoshi; Cane, David E; Christianson, David W

    2007-10-15

    Trichodiene synthase is a terpenoid cyclase that catalyzes the cyclization of farnesyl diphosphate (FPP) to form the bicyclic sesquiterpene hydrocarbon trichodiene (89%), at least five sesquiterpene side products (11%), and inorganic pyrophosphate (PP(i)). Incubation of trichodiene synthase with 2-fluorofarnesyl diphosphate or 4-methylfarnesyl diphosphate similarly yields sesquiterpene mixtures despite the electronic effects or steric bulk introduced by substrate derivatization. The versatility of the enzyme is also demonstrated in the 2.85A resolution X-ray crystal structure of the complex with Mg(2+) (3)-PP(i) and the benzyl triethylammonium cation, which is a bulkier mimic of the bisabolyl carbocation intermediate in catalysis. Taken together, these findings show that the active site of trichodiene synthase is sufficiently flexible to accommodate bulkier and electronically-diverse substrates and intermediates, which could indicate additional potential for the biosynthetic utility of this terpenoid cyclase. PMID:17678871

  2. Cellulose Synthase Complexes: Composition and Regulation

    PubMed Central

    Lei, Lei; Li, Shundai; Gu, Ying

    2012-01-01

    Live cell imaging has greatly advanced our knowledge on the molecular mechanism by which cellulose is deposited. Both the actin and microtubule cytoskeleton are involved in assuring the proper distribution, organization, and dynamics of cellulose synthase complexes (CSCs). This review is an update on the most recent progress on the characterization of the composition, regulation, and trafficking of CSCs. With the newly identified cellulose synthase interactive protein 1 (CSI1) on hand, we begin to unveil the mystery of an intimate relationship between cellulose microfibrils and microtubules. PMID:22639663

  3. Homology study of two polyhydroxyalkanoate (PHA) synthases from Pseudomonas aureofaciens.

    PubMed

    Umeda, F; Nishikawa, T; Miyasaka, H; Maeda, I; Kawase, M; Yagi, K

    2001-11-01

    Recently, we have cloned and analyzed two polyhydroxyalkanoate (PHA) synthase genes (phaC1 and phaC2 in the pha cluster) from Pseudomonas aureofaciens. In this report, the deduced amino acid (AA) sequences of PHA synthase 1 and PHA synthase 2 from P. aureofaciens are compared with those from three other bacterial strains (Pseudomonas sp. 61-3, P. oleovorans and P. aeruginosa) containing the homologous pha cluster. The level of homology of either PHA synthase 1 or PHA synthase 2 was high with each enzyme from these three bacterial strains. Furthermore, multialignment of PHA synthase AA sequences implied that both enzymes of PHA synthase 1 and PHA synthase 2 were highly conserved in the four strains including P. aureofaciens. PMID:11916262

  4. Identification of novel sesterterpene/triterpene synthase from Bacillus clausii.

    PubMed

    Sato, Tsutomu; Yamaga, Hiroaki; Kashima, Shoji; Murata, Yusuke; Shinada, Tetsuro; Nakano, Chiaki; Hoshino, Tsutomu

    2013-05-10

    Basic enzyme: The tetraprenyl-β-curcumene synthase homologue from the alkalophilic Bacillus clausii catalyses conversions of a geranylfarnesyl diphosphate and a hexaprenyl diphosphate into novel head-to-tail acyclic sesterterpene and triterpene. Tetraprenyl-β-curcumene synthase homologues represent a new family of terpene synthases that form not only sesquarterpene but also sesterterpene and triterpene. PMID:23554321

  5. Chromosomal localization of the human and mouse hyaluronan synthase genes

    SciTech Connect

    Spicer, A.P.; McDonald, J.A.; Seldin, M.F.

    1997-05-01

    We have recently identified a new vertebrate gene family encoding putative hyaluronan (HA) synthases. Three highly conserved related genes have been identified, designated HAS1, HAS2, and HAS3 in humans and Has1, Has2, and Has3 in the mouse. All three genes encode predicted plasma membrane proteins with multiple transmembrane domains and approximately 25% amino acid sequence identity to the Streptococcus pyogenes HA synthase, HasA. Furthermore, expression of any one HAS gene in transfected mammalian cells leads to high levels of HA biosynthesis. We now report the chromosomal localization of the three HAS genes in human and in mouse. The genes localized to three different positions within both the human and the mouse genomes. HAS1 was localized to the human chromosome 19q13.3-q13.4 boundary and Has1 to mouse Chr 17. HAS2 was localized to human chromosome 8q24.12 and Has2 to mouse Chr 15. HAS3 was localized to human chromosome 16q22.1 and Has3 to mouse Chr 8. The map position for HAS1 reinforces the recently reported relationship between a small region of human chromosome 19q and proximal mouse chromosome 17. HAS2 mapped outside the predicted critical region delineated for the Langer-Giedion syndrome and can thus be excluded as a candidate gene for this genetic syndrome. 33 refs., 2 figs.

  6. Eugenol synthase genes in floral scent variation in Gymnadenia species.

    PubMed

    Gupta, Alok K; Schauvinhold, Ines; Pichersky, Eran; Schiestl, Florian P

    2014-12-01

    Floral signaling, especially through floral scent, is often highly complex, and little is known about the molecular mechanisms and evolutionary causes of this complexity. In this study, we focused on the evolution of "floral scent genes" and the associated changes in their functions in three closely related orchid species of the genus Gymnadenia. We developed a benchmark repertoire of 2,571 expressed sequence tags (ESTs) in Gymnadenia odoratissima. For the functional characterization and evolutionary analysis, we focused on eugenol synthase, as eugenol is a widespread and important scent compound. We obtained complete coding complementary DNAs (cDNAs) of two copies of putative eugenol synthase genes in each of the three species. The proteins encoded by these cDNAs were characterized by expression and testing for activity in Escherichia coli. While G. odoratissima and Gymnadenia conopsea enzymes were found to catalyze the formation of eugenol only, the Gymnadenia densiflora proteins synthesize eugenol, as well as a smaller amount of isoeugenol. Finally, we showed that the eugenol and isoeugenol producing gene copies of G. densiflora are evolutionarily derived from the ancestral genes of the other species producing only eugenol. The evolutionary switch from production of one to two compounds evolved under relaxed purifying selection. In conclusion, our study shows the molecular bases of eugenol and isoeugenol production and suggests that an evolutionary transition in a single gene can lead to an increased complexity in floral scent emitted by plants.

  7. In vitro Biochemical Characterization of All Barley Endosperm Starch Synthases

    PubMed Central

    Cuesta-Seijo, Jose A.; Nielsen, Morten M.; Ruzanski, Christian; Krucewicz, Katarzyna; Beeren, Sophie R.; Rydhal, Maja G.; Yoshimura, Yayoi; Striebeck, Alexander; Motawia, Mohammed S.; Willats, William G. T.; Palcic, Monica M.

    2016-01-01

    Starch is the main storage polysaccharide in cereals and the major source of calories in the human diet. It is synthesized by a panel of enzymes including five classes of starch synthases (SSs). While the overall starch synthase (SS) reaction is known, the functional differences between the five SS classes are poorly understood. Much of our knowledge comes from analyzing mutant plants with altered SS activities, but the resulting data are often difficult to interpret as a result of pleitropic effects, competition between enzymes, overlaps in enzyme activity and disruption of multi-enzyme complexes. Here we provide a detailed biochemical study of the activity of all five classes of SSs in barley endosperm. Each enzyme was produced recombinantly in E. coli and the properties and modes of action in vitro were studied in isolation from other SSs and other substrate modifying activities. Our results define the mode of action of each SS class in unprecedented detail; we analyze their substrate selection, temperature dependence and stability, substrate affinity and temporal abundance during barley development. Our results are at variance with some generally accepted ideas about starch biosynthesis and might lead to the reinterpretation of results obtained in planta. In particular, they indicate that granule bound SS is capable of processive action even in the absence of a starch matrix, that SSI has no elongation limit, and that SSIV, believed to be critical for the initiation of starch granules, has maltoligosaccharides and not polysaccharides as its preferred substrates. PMID:26858729

  8. Comparative Indole-3-Acetic Acid Levels in the Slender Pea and Other Pea Phenotypes 1

    PubMed Central

    Law, David M.; Davies, Peter J.

    1990-01-01

    Free indole-3-acetic acid levels were measured by gas chromatography-mass spectrometry in three ultra-tall `slender' Pisum sativum L. lines differing in gibberellin content. Measurements were made for apices and stem elongation zones of light-grown plants and values were compared with wild-type, dwarf, and nana phenotypes in which internode length is genetically regulated, purportedly via the gibberellin level. Indole-3-acetic acid levels of growing stems paralleled growth rates in all lines, and were high in all three slender genotypes. Growth was inhibited by p-chlorophenoxyisobutyric acid, demonstrating the requirement of auxin activity for stem elongation, and also by the ethylene precursor 1-aminocyclopropane-1-carboxylic acid. It is concluded that the slender phenotype may arise from constant activation of a gibberellin receptor or transduction chain event leading directly or indirectly to elevated levels of indole-3-acetic acid, and that increased indole-3-acetic acid levels are a significant factor in the promotion of stem elongation. PMID:16667653

  9. A novel role of ethephon in controlling the noxious weed Ipomoea cairica (Linn.) Sweet.

    PubMed

    Sun, Zhong-Yu; Zhang, Tai-Jie; Su, Jin-Quan; Chow, Wah Soon; Liu, Jia-Qin; Chen, Li-Ling; Li, Wei-Hua; Peng, Shao-Lin; Peng, Chang-Lian

    2015-01-01

    Several auxin herbicides, such as 2, 4-D and dicamba, have been used to eradicate an exotic invasive weed Ipomoea cairica in subtropical China, but restraining the re-explosion of this weed is still a challenge. Since ethylene is one of the major intermediate functioning products during the eradication process, we explored the possibility, mechanism and efficiency of using ethephon which can release ethylene to control Ipomoea cairica. The results of the pot experiment showed that 7.2 g /L ethephon could totally kill Ipomoea cairica including the stems and roots. The water culture experiment indicated that ethephon released an abundance of ethylene directly in leaves and caused increases in electrolyte leakage, 1-aminocyclopropane-1-carboxylic acid (ACC), abscisic acid (ABA) and H2O2 and decreases in chlorophyll content and photosynthetic activity, finally leading to the death of Ipomoea cairica. The field experiment showed that the theoretical effective concentration of ethephon for controlling Ipomoea cairica (weed control efficacy, WCE = 98%) was 4.06 g/L and the half inhibitory concentration (I50) was 0.56 g/L. More than 50% of the accompanying species were insensitive to the phytotoxicity of ethephon. Therefore, ethephon is an excellent alternative herbicide for controlling Ipomoea cairica. PMID:26087386

  10. A novel role of ethephon in controlling the noxious weed Ipomoea cairica (Linn.) Sweet.

    PubMed

    Sun, Zhong-Yu; Zhang, Tai-Jie; Su, Jin-Quan; Chow, Wah Soon; Liu, Jia-Qin; Chen, Li-Ling; Li, Wei-Hua; Peng, Shao-Lin; Peng, Chang-Lian

    2015-06-18

    Several auxin herbicides, such as 2, 4-D and dicamba, have been used to eradicate an exotic invasive weed Ipomoea cairica in subtropical China, but restraining the re-explosion of this weed is still a challenge. Since ethylene is one of the major intermediate functioning products during the eradication process, we explored the possibility, mechanism and efficiency of using ethephon which can release ethylene to control Ipomoea cairica. The results of the pot experiment showed that 7.2 g /L ethephon could totally kill Ipomoea cairica including the stems and roots. The water culture experiment indicated that ethephon released an abundance of ethylene directly in leaves and caused increases in electrolyte leakage, 1-aminocyclopropane-1-carboxylic acid (ACC), abscisic acid (ABA) and H2O2 and decreases in chlorophyll content and photosynthetic activity, finally leading to the death of Ipomoea cairica. The field experiment showed that the theoretical effective concentration of ethephon for controlling Ipomoea cairica (weed control efficacy, WCE = 98%) was 4.06 g/L and the half inhibitory concentration (I50) was 0.56 g/L. More than 50% of the accompanying species were insensitive to the phytotoxicity of ethephon. Therefore, ethephon is an excellent alternative herbicide for controlling Ipomoea cairica.

  11. Intermediates in the recycling of 5-methylthioribose to methionine in fruits.

    PubMed

    Kushad, M M; Richardson, D G; Ferro, A J

    1983-10-01

    The recycling of 5-methylthioribose (MTR) to methionine in avocado (Persea americana Mill, cv Hass) and tomato (Lycopersicum esculentum Mill, cv unknown) was examined. [(14)CH(3)]MTR was not metabolized in cell free extract from avocado fruit. Either [(14)CH(3)]MTR plus ATP or [(14)CH(3)]5-methylthioribose-1-phosphate (MTR-1-P) alone, however, were metabolized to two new products by these extracts. MTR kinase activity has previously been detected in these fruit extracts. These data indicate that MTR must be converted to MTR-1-P by MTR kinase before further metabolism can occur. The products of MTR-1-P metabolism were tentatively identified as alpha-keto-gamma-methylthiobutyric acid (alpha-KMB) and alpha-hydroxy-gamma-methylthiobutyric acid (alpha-HMB) by chromatography in several solvent systems. [(35)S]alpha-KMB was found to be further metabolized to methionine and alpha-HMB by these extracts, whereas alpha-HMB was not. However, alpha-HMB inhibited the conversion of alpha-KMB to methionine. Both [U-(14)C]alpha-KMB and [U-(14)C]methionine, but not [U-(14)C]alpha-HMB, were converted to ethylene in tomato pericarp tissue. In addition, aminoethoxyvinylglycine inhibited the conversion of alpha-KMB to ethylene. These data suggest that the recycling pathway leading to ethylene is MTR --> MTR-1-P --> alpha-KMB --> methionine --> S-adenosylmethionine --> 1-aminocyclopropane-1-carboxylic acid --> ethylene.

  12. Leading Democratically

    ERIC Educational Resources Information Center

    Brookfield, Stephen

    2010-01-01

    Democracy is the most venerated of American ideas, the one for which wars are fought and people die. So most people would probably agree that leaders should be able to lead well in a democratic society. Yet, genuinely democratic leadership is a relative rarity. Leading democratically means viewing leadership as a function or process, rather than…

  13. Lessons from 455 Fusarium polyketide synthases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In fungi, polyketide synthases (PKSs) synthesize a structurally diverse array of secondary metabolites (SMs) with a range of biological activities. The most studied SMs are toxic to animals and/or plants, alter plant growth, have beneficial pharmaceutical activities, and/or are brightly colored pigm...

  14. Producing dicarboxylic acids using polyketide synthases

    SciTech Connect

    Katz, Leonard; Fortman, Jeffrey L; Keasling, Jay D

    2013-10-29

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing a dicarboxylic acid (diacid). Such diacids include diketide-diacids and triketide-diacids. The invention includes recombinant nucleic acid encoding the PKS, and host cells comprising the PKS. The invention also includes methods for producing the diacids.

  15. Producing dicarboxylic acids using polyketide synthases

    SciTech Connect

    Katz, Leonard; Fortman, Jeffrey L.; Keasling, Jay D.

    2015-05-26

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing a dicarboxylic acid (diacid). Such diacids include diketide-diacids and triketide-diacids. The invention includes recombinant nucleic acid encoding the PKS, and host cells comprising the PKS. The invention also includes methods for producing the diacids.

  16. Identification and characterization of a second isogene encoding γ-terpinene synthase in Thymus caespititius.

    PubMed

    Mendes, Marta D; Barroso, José G; Oliveira, M Margarida; Trindade, Helena

    2014-07-15

    Thymus caespititius Brot. is an Iberian endemic species, whose essential oils possess high polymorphism. They consist mostly of mono- and sesquiterpene, some of them with interest for the pharmaceutical and food industries. The search for terpene synthase genes was performed in three in vitro T. caespititius genotypes. For these plants, the expression of a previously described γ-terpinene synthase gene, Tctps2, was confirmed, occurring concomitantly with a new gene encoding an enzyme with similar activity, named Thymus caespititius terpene synthase 4 (Tctps4). The two isogenes were isolated and functionally characterized in the three plant genotypes. Alignment of the two Tctps revealed a transit peptide much shorter in Tctps4 than in Tctps2 (3-4 amino acids instead of 47). The Tctps4 open reading frame is shorter than Tctps2 (1665 bp versus 1794 bp). The amino acid sequence of both γ-terpinene synthases shared an 88% pairwise identity. The fact that T. caespititius carries two isogenes for γ-terpinene synthases, suggests gene duplication along the evolutionary process, followed by mutations leading to the differentiation of both genes. These mutations didn't compromise protein activity. A high accumulation of transcripts from both genes was found in shoots of in vitro plantlets, while in roots they could not be detected. Still, γ-terpinene levels in aerial parts were reduced, probably due to fast conversion into carvacrol and thymol, the main components from T. caespititius essential oils. This study is a contribution to the identification of terpene synthase genes in Lamiaceae.

  17. Bifunctional cis-abienol synthase from Abies balsamea discovered by transcriptome sequencing and its implications for diterpenoid fragrance production.

    PubMed

    Zerbe, Philipp; Chiang, Angela; Yuen, Macaire; Hamberger, Björn; Hamberger, Britta; Draper, Jason A; Britton, Robert; Bohlmann, Jörg

    2012-04-01

    The labdanoid diterpene alcohol cis-abienol is a major component of the aromatic oleoresin of balsam fir (Abies balsamea) and serves as a valuable bioproduct material for the fragrance industry. Using high-throughput 454 transcriptome sequencing and metabolite profiling of balsam fir bark tissue, we identified candidate diterpene synthase sequences for full-length cDNA cloning and functional characterization. We discovered a bifunctional class I/II cis-abienol synthase (AbCAS), along with the paralogous levopimaradiene/abietadiene synthase and isopimaradiene synthase, all of which are members of the gymnosperm-specific TPS-d subfamily. The AbCAS-catalyzed formation of cis-abienol proceeds via cyclization and hydroxylation at carbon C-8 of a postulated carbocation intermediate in the class II active site, followed by cleavage of the diphosphate group and termination of the reaction sequence without further cyclization in the class I active site. This reaction mechanism is distinct from that of synthases of the isopimaradiene- or levopimaradiene/abietadiene synthase type, which employ deprotonation reactions in the class II active site and secondary cyclizations in the class I active site, leading to tricyclic diterpenes. Comparative homology modeling suggested the active site residues Asp-348, Leu-617, Phe-696, and Gly-723 as potentially important for the specificity of AbCAS. As a class I/II bifunctional enzyme, AbCAS is a promising target for metabolic engineering of cis-abienol production.

  18. Bifunctional cis-Abienol Synthase from Abies balsamea Discovered by Transcriptome Sequencing and Its Implications for Diterpenoid Fragrance Production*

    PubMed Central

    Zerbe, Philipp; Chiang, Angela; Yuen, Macaire; Hamberger, Björn; Hamberger, Britta; Draper, Jason A.; Britton, Robert; Bohlmann, Jörg

    2012-01-01

    The labdanoid diterpene alcohol cis-abienol is a major component of the aromatic oleoresin of balsam fir (Abies balsamea) and serves as a valuable bioproduct material for the fragrance industry. Using high-throughput 454 transcriptome sequencing and metabolite profiling of balsam fir bark tissue, we identified candidate diterpene synthase sequences for full-length cDNA cloning and functional characterization. We discovered a bifunctional class I/II cis-abienol synthase (AbCAS), along with the paralogous levopimaradiene/abietadiene synthase and isopimaradiene synthase, all of which are members of the gymnosperm-specific TPS-d subfamily. The AbCAS-catalyzed formation of cis-abienol proceeds via cyclization and hydroxylation at carbon C-8 of a postulated carbocation intermediate in the class II active site, followed by cleavage of the diphosphate group and termination of the reaction sequence without further cyclization in the class I active site. This reaction mechanism is distinct from that of synthases of the isopimaradiene- or levopimaradiene/abietadiene synthase type, which employ deprotonation reactions in the class II active site and secondary cyclizations in the class I active site, leading to tricyclic diterpenes. Comparative homology modeling suggested the active site residues Asp-348, Leu-617, Phe-696, and Gly-723 as potentially important for the specificity of AbCAS. As a class I/II bifunctional enzyme, AbCAS is a promising target for metabolic engineering of cis-abienol production. PMID:22337889

  19. LEAD STUDIES

    PubMed Central

    Aub, Joseph C.; Reznikoff, Paul; Smith, Dorothea E.

    1924-01-01

    It appears, from the investigations in other laboratories, that the anemia observed in cases of lead poisoning is due to destruction of blood rather than to diminished production of blood. The method of poisoning cells in vitro with lead was adopted in order to study this phenomenon, and distinct effects were thereby obtained, even when only 0.001 mg. of lead is added to approximately 5 billion washed red corpuscles. In order to obtain optimum results the usual dosage employed was ten times this or 0.01 mg. per 5 billion cells. The following changes were observed in cells so treated. 1. Such a marked increase in the resistance to hypotonic salt solution develops that complete hemolysis does not occur until the cells are exposed to a saline solution of 0.05 per cent. Untreated cells are completely hemolyzed in 0.25 or 0.225 per cent saline. 2. This reaction is quantitative and varies with the concentration of lead used. Under the conditions of our experiments this phenomenon seems to be unique. The effects of arsenic are very slight in comparison. 3. While from this reaction it may be concluded that lead increases cellular resistance, it also appears that it shortens the life of blood cells. This may be demonstrated by the much more rapid appearance of hemolysis than normal when the cells are merely allowed to stand in Ringer solution of any dilution. 4. In rabbits with acute lead poisoning these same phenomena may be noted in vivo. 5. Both phenomena may be changed in vitro by varying the time and temperature of the reaction and the concentration of lead, as Fici has already pointed out. 6. If normal cells stand in Ringer solution for 6 hours something diffuses into the solution which largely reduces the action of lead. After repeated washing these cells react with lead in the usual manner. 7. Small amounts of serum react with lead and eliminate its effects. Red blood cells, treated with a mixture of lead and blood serum, show normal hemolysis in hypotonic salt

  20. Re-Citrate Synthase from Clostridium kluyveri Is Phylogenetically Related to Homocitrate Synthase and Isopropylmalate Synthase Rather Than to Si-Citrate Synthase† ▿

    PubMed Central

    Li, Fuli; Hagemeier, Christoph H.; Seedorf, Henning; Gottschalk, Gerhard; Thauer, Rudolf K.

    2007-01-01

    The synthesis of citrate from acetyl-coenzyme A and oxaloacetate is catalyzed in most organisms by a Si-citrate synthase, which is Si-face stereospecific with respect to C-2 of oxaloacetate. However, in Clostridium kluyveri and some other strictly anaerobic bacteria, the reaction is catalyzed by a Re-citrate synthase, whose primary structure has remained elusive. We report here that Re-citrate synthase from C. kluyveri is the product of a gene predicted to encode isopropylmalate synthase. C. kluyveri is also shown to contain a gene for Si-citrate synthase, which explains why cell extracts of the organism always exhibit some Si-citrate synthase activity. PMID:17400742

  1. Geranyl diphosphate synthase large subunit, and methods of use

    DOEpatents

    Croteau, Rodney B.; Burke, Charles C.; Wildung, Mark R.

    2001-10-16

    A cDNA encoding geranyl diphosphate synthase large subunit from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase large subunit). In another aspect, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase large subunit. In yet another aspect, the present invention provides isolated, recombinant geranyl diphosphate synthase protein comprising an isolated, recombinant geranyl diphosphate synthase large subunit protein and an isolated, recombinant geranyl diphosphate synthase small subunit protein. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase.

  2. Farnesyl Diphosphate Synthase Inhibitors With Unique Ligand-Binding Geometries

    PubMed Central

    2015-01-01

    Farnesyl diphosphate synthase (FPPS) is an important drug target for bone resorption, cancer, and some infectious diseases. Here, we report five new structures including two having unique bound ligand geometries. The diamidine inhibitor 7 binds to human FPPS close to the homoallylic (S2) and allosteric (S3) sites and extends into a new site, here called S4. With the bisphosphonate inhibitor 8, two molecules bind to Trypanosoma brucei FPPS, one molecule in the allylic site (S1) and the other close to S2, the first observation of two bisphosphonate molecules bound to FPPS. We also report the structures of apo-FPPS from T. brucei, together with two more bisphosphonate-bound structures (2,9), for purposes of comparison. The diamidine structure is of particular interest because 7 could represent a new lead for lipophilic FPPS inhibitors, while 8 has low micromolar activity against T. brucei, the causative agent of human African trypanosomiasis. PMID:25815158

  3. Development of intron length polymorphism markers in genes encoding diketide-CoA synthase and curcumin synthase for discriminating Curcuma species.

    PubMed

    Kita, Tomoko; Komatsu, Katsuko; Zhu, Shu; Iida, Osamu; Sugimura, Koji; Kawahara, Nobuo; Taguchi, Hiromu; Masamura, Noriya; Cai, Shao-Qing

    2016-03-01

    Various Curcuma rhizomes have been used as medicines or spices in Asia since ancient times. It is very difficult to distinguish them morphologically, especially when they are boiled and dried, which causes misidentification leading to a loss of efficacy. We developed a method for discriminating Curcuma species by intron length polymorphism markers in genes encoding diketide-CoA synthase and curcumin synthase. This method could apply to identification of not only fresh plants but also samples of crude drugs or edible spices. By applying this method to Curcuma specimens and samples, and constructing a dendrogram based on these markers, seven Curcuma species were clearly distinguishable. Moreover, Curcuma longa specimens were geographically distinguishable. On the other hand, Curcuma kwangsiensis (gl type) specimens also showed intraspecies polymorphism, which may have occurred as a result of hybridization with other Curcuma species. The molecular method we developed is a potential tool for global classification of the genus Curcuma.

  4. Ecotoxicology: Lead

    USGS Publications Warehouse

    Scheuhammer, A.M.; Beyer, W.N.; Schmitt, C.J.; Jorgensen, Sven Erik; Fath, Brian D.

    2008-01-01

    Lead (Pb) is a naturally occurring metallic element; trace concentrations are found in all environmental media and in all living things. However, certain human activities, especially base metal mining and smelting; combustion of leaded gasoline; the use of Pb in hunting, target shooting, and recreational angling; the use of Pb-based paints; and the uncontrolled disposal of Pb-containing products such as old vehicle batteries and electronic devices have resulted in increased environmental levels of Pb, and have created risks for Pb exposure and toxicity in invertebrates, fish, and wildlife in some ecosystems.

  5. Transmission of arterial baroreflex signals depends on neuronal nitric oxide synthase.

    PubMed

    Talman, William T; Dragon, Deidre Nitschke

    2004-04-01

    Because inhibition of neuronal nitric oxide synthase in the nucleus tractus solitarii blocks cardiovascular responses to activation of local glutamate receptors, and because glutamate is a neurotransmitter of baroreceptor afferent nerves, we sought to test the hypothesis that neuronal nitric oxide synthase inhibition would block baroreflex transmission and cause hypertension. We determined reflex heart rate responses to intravenous phenylephrine and sodium nitroprusside in 5 anesthetized rats before and after bilateral microinjection (100 nL) of the neuronal nitric oxide synthase inhibitor AR-R 17477 (7.5 nmol) into the nucleus tractus solitarii. The inhibitor significantly increased mean arterial pressure without affecting heart rate, and it significantly reduced the gain of the baroreflex. After administration of the inhibitor, reflex responses of heart rate to changes in mean arterial pressure were always less than those responses to the same, or less, change in mean arterial pressure in the same animal without administration of the inhibitor. Microinjection of saline (100 nL) bilaterally into the nucleus tractus solitarii did not lead to hypertension or change baroreflex responses. These data support the hypothesis and suggest that neuronal nitric oxide synthase is critical to transmission of baroreflex signals through the nucleus tractus solitarii.

  6. Benzophenone synthase from Garcinia mangostana L. pericarps.

    PubMed

    Nualkaew, Natsajee; Morita, Hiroyuki; Shimokawa, Yoshihiko; Kinjo, Keishi; Kushiro, Tetsuo; De-Eknamkul, Wanchai; Ebizuka, Yutaka; Abe, Ikuro

    2012-05-01

    The cDNA of a benzophenone synthase (BPS), a type III polyketide synthase (PKS), was cloned and the recombinant protein expressed from the fruit pericarps of Garcinia mangostana L., which contains mainly prenylated xanthones. The obtained GmBPS showed an amino acid sequence identity of 77-78% with other plant BPSs belonging to the same family (Clusiaceae). The recombinant enzyme produced 2,4,6-trihydroxybenzophenone as the predominant product with benzoyl CoA as substrate. It also accepted other substrates, such as other plant PKSs, and used 1-3 molecules of malonyl CoA to form various phloroglucinol-type and polyketide lactone-type compounds. Thus, providing GmBPS with various substrates in vivo might redirect the xanthone biosynthetic pathway.

  7. Monoterpene synthases from grand fir (Abies grandis). cDNA isolation, characterization, and functional expression of myrcene synthase, (-)-(4S)-limonene synthase, and (-)-(1S,5S)-pinene synthase.

    PubMed

    Bohlmann, J; Steele, C L; Croteau, R

    1997-08-29

    Grand fir (Abies grandis) has been developed as a model system for studying defensive oleoresin formation in conifers in response to insect attack or other injury. The turpentine fraction of the oleoresin is a complex mixture of monoterpene (C10) olefins in which (-)-limonene and (-)-alpha- and (-)-beta-pinene are prominent components; (-)-limonene and (-)-pinene synthase activities are also induced upon stem wounding. A similarity based cloning strategy yielded three new cDNA species from a wounded stem cDNA library that appeared to encode three distinct monoterpene synthases. After expression in Escherichia coli and enzyme assay with geranyl diphosphate as substrate, subsequent analysis of the terpene products by chiral phase gas chromatography and mass spectrometry showed that these sequences encoded a (-)-limonene synthase, a myrcene synthase, and a (-)-pinene synthase that produces both alpha-pinene and beta-pinene. In properties and reaction stereochemistry, the recombinant enzymes resemble the corresponding native monoterpene synthases of wound-induced grand fir stem. The deduced amino acid sequences indicated the limonene synthase to be 637 residues in length (73.5 kDa), the myrcene synthase to be 627 residues in length (72.5 kDa), and the pinene synthase to be 628 residues in length (71.5 kDa); all of these monoterpene synthases appear to be translated as preproteins bearing an amino-terminal plastid targeting sequence. Sequence comparison revealed that these monoterpene synthases from grand fir resemble sesquiterpene (C15) synthases and diterpene (C20) synthases from conifers more closely than other monoterpene synthases from angiosperm species. This similarity between extant monoterpene, sesquiterpene, and diterpene synthases of gymnosperms is surprising since functional diversification of this enzyme class is assumed to have occurred over 300 million years ago. Wound-induced accumulation of transcripts for monoterpene synthases was demonstrated by RNA

  8. Building-block selectivity of polyketide synthases.

    PubMed

    Liou, Grace F; Khosla, Chaitan

    2003-04-01

    For the past decade, polyketide synthases have presented an exciting paradigm for the controlled manipulation of complex natural product structure. These multifunctional enzymes catalyze the biosynthesis of polyketide natural products by stepwise condensation and modification of metabolically derived building blocks. In particular, regioselective modification of polyketide structure is possible by alterations in either intracellular acyl-CoA pools or, more commonly, by manipulation of acyl transferases that act as the primary gatekeepers for building blocks.

  9. [Polyketide antibiotics produced by polyketide synthase in streptomyces--a review].

    PubMed

    Chen, Minjie; Wang, Guanghua; Dai, Shikun; Xie, Lianwu; Li, Xiang

    2009-12-01

    Polyketides have played an important role in antibiotic drug discovery with most antibacterial drugs being derived from a natural product or natural product lead. Furthermore, the biosynthetic gene clusters for numerous bioactive polyketides have been intensively studied over the past 15 years. This paper focuses on the polyketide drugs approved by US-FDA and takes a general view in the antibiotics produced by polyketide synthase in streptomyces.

  10. Tetraethyl lead

    Integrated Risk Information System (IRIS)

    Tetraethyl lead ; CASRN 78 - 00 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  11. Chrysanthemyl diphosphate synthase operates in planta as a bifunctional enzyme with chrysanthemol synthase activity.

    PubMed

    Yang, Ting; Gao, Liping; Hu, Hao; Stoopen, Geert; Wang, Caiyun; Jongsma, Maarten A

    2014-12-26

    Chrysanthemyl diphosphate synthase (CDS) is the first pathway-specific enzyme in the biosynthesis of pyrethrins, the most widely used plant-derived pesticide. CDS catalyzes c1'-2-3 cyclopropanation reactions of two molecules of dimethylallyl diphosphate (DMAPP) to yield chrysanthemyl diphosphate (CPP). Three proteins are known to catalyze this cyclopropanation reaction of terpene precursors. Two of them, phytoene and squalene synthase, are bifunctional enzymes with both prenyltransferase and terpene synthase activity. CDS, the other member, has been reported to perform only the prenyltransferase step. Here we show that the NDXXD catalytic motif of CDS, under the lower substrate conditions prevalent in plants, also catalyzes the next step, converting CPP into chrysanthemol by hydrolyzing the diphosphate moiety. The enzymatic hydrolysis reaction followed conventional Michaelis-Menten kinetics, with a Km value for CPP of 196 μm. For the chrysanthemol synthase activity, DMAPP competed with CPP as substrate. The DMAPP concentration required for half-maximal activity to produce chrysanthemol was ∼100 μm, and significant substrate inhibition was observed at elevated DMAPP concentrations. The N-terminal peptide of CDS was identified as a plastid-targeting peptide. Transgenic tobacco plants overexpressing CDS emitted chrysanthemol at a rate of 0.12-0.16 μg h(-1) g(-1) fresh weight. We propose that CDS should be renamed a chrysanthemol synthase utilizing DMAPP as substrate.

  12. Chrysanthemyl Diphosphate Synthase Operates in Planta as a Bifunctional Enzyme with Chrysanthemol Synthase Activity*

    PubMed Central

    Yang, Ting; Gao, Liping; Hu, Hao; Stoopen, Geert; Wang, Caiyun; Jongsma, Maarten A.

    2014-01-01

    Chrysanthemyl diphosphate synthase (CDS) is the first pathway-specific enzyme in the biosynthesis of pyrethrins, the most widely used plant-derived pesticide. CDS catalyzes c1′-2-3 cyclopropanation reactions of two molecules of dimethylallyl diphosphate (DMAPP) to yield chrysanthemyl diphosphate (CPP). Three proteins are known to catalyze this cyclopropanation reaction of terpene precursors. Two of them, phytoene and squalene synthase, are bifunctional enzymes with both prenyltransferase and terpene synthase activity. CDS, the other member, has been reported to perform only the prenyltransferase step. Here we show that the NDXXD catalytic motif of CDS, under the lower substrate conditions prevalent in plants, also catalyzes the next step, converting CPP into chrysanthemol by hydrolyzing the diphosphate moiety. The enzymatic hydrolysis reaction followed conventional Michaelis-Menten kinetics, with a Km value for CPP of 196 μm. For the chrysanthemol synthase activity, DMAPP competed with CPP as substrate. The DMAPP concentration required for half-maximal activity to produce chrysanthemol was ∼100 μm, and significant substrate inhibition was observed at elevated DMAPP concentrations. The N-terminal peptide of CDS was identified as a plastid-targeting peptide. Transgenic tobacco plants overexpressing CDS emitted chrysanthemol at a rate of 0.12–0.16 μg h−1 g−1 fresh weight. We propose that CDS should be renamed a chrysanthemol synthase utilizing DMAPP as substrate. PMID:25378387

  13. All members in the sphingomyelin synthase gene family have ceramide phosphoethanolamine synthase activity[S

    PubMed Central

    Ding, Tingbo; Kabir, Inamul; Li, Yue; Lou, Caixia; Yazdanyar, Amirfarbod; Xu, Jiachen; Dong, Jibin; Zhou, Hongwen; Park, Taesik; Boutjdir, Mohamed; Li, Zhiqiang; Jiang, Xian-Cheng

    2015-01-01

    Sphingomyelin synthase-related protein (SMSr) synthesizes the sphingomyelin analog ceramide phosphoethanolamine (CPE) in cells. Previous cell studies indicated that SMSr is involved in ceramide homeostasis and is crucial for cell function. To further examine SMSr function in vivo, we generated Smsr KO mice that were fertile and had no obvious phenotypic alterations. Quantitative MS analyses of plasma, liver, and macrophages from the KO mice revealed only marginal changes in CPE and ceramide as well as other sphingolipid levels. Because SMS2 also has CPE synthase activity, we prepared Smsr/Sms2 double KO mice. We found that CPE levels were not significantly changed in macrophages, suggesting that CPE levels are not exclusively dependent on SMSr and SMS2 activities. We then measured CPE levels in Sms1 KO mice and found that Sms1 deficiency also reduced plasma CPE levels. Importantly, we found that expression of Sms1 or Sms2 in SF9 insect cells significantly increased not only SM but also CPE formation, indicating that SMS1 also has CPE synthase activity. Moreover, we measured CPE synthase Km and Vmax for SMS1, SMS2, and SMSr using different NBD ceramides. Our study reveals that all mouse SMS family members (SMSr, SMS1, and SMS2) have CPE synthase activity. However, neither CPE nor SMSr appears to be a critical regulator of ceramide levels in vivo. PMID:25605874

  14. CTP synthase forms cytoophidia in the cytoplasm and nucleus

    SciTech Connect

    Gou, Ke-Mian; Chang, Chia-Chun; Shen, Qing-Ji; Sung, Li-Ying; Liu, Ji-Long

    2014-04-15

    CTP synthase is an essential metabolic enzyme responsible for the de novo synthesis of CTP. Multiple studies have recently showed that CTP synthase protein molecules form filamentous structures termed cytoophidia or CTP synthase filaments in the cytoplasm of eukaryotic cells, as well as in bacteria. Here we report that CTP synthase can form cytoophidia not only in the cytoplasm, but also in the nucleus of eukaryotic cells. Both glutamine deprivation and glutamine analog treatment promote formation of cytoplasmic cytoophidia (C-cytoophidia) and nuclear cytoophidia (N-cytoophidia). N-cytoophidia are generally shorter and thinner than their cytoplasmic counterparts. In mammalian cells, both CTP synthase 1 and CTP synthase 2 can form cytoophidia. Using live imaging, we have observed that both C-cytoophidia and N-cytoophidia undergo multiple rounds of fusion upon glutamine analog treatment. Our study reveals the coexistence of cytoophidia in the cytoplasm and nucleus, therefore providing a good opportunity to investigate the intracellular compartmentation of CTP synthase. - Highlights: • CTP synthase forms cytoophidia not only in the cytoplasm but also in the nucleus. • Glutamine deprivation and Glutamine analogs promotes cytoophidium formation. • N-cytoophidia exhibit distinct morphology when compared to C-cytoophidia. • Both CTP synthase 1 and CTP synthase 2 form cytoophidia in mammalian cells. • Fusions of cytoophidia occur in the cytoplasm and nucleus.

  15. Oligosaccharide Binding in Escherichia coli Glycogen Synthase

    SciTech Connect

    Sheng, Fang; Yep, Alejandra; Feng, Lei; Preiss, Jack; Geiger, James H.

    2010-11-17

    Glycogen/starch synthase elongates glucan chains and is the key enzyme in the synthesis of glycogen in bacteria and starch in plants. Cocrystallization of Escherichia coli wild-type glycogen synthase (GS) with substrate ADPGlc and the glucan acceptor mimic HEPPSO produced a closed form of GS and suggests that domain-domain closure accompanies glycogen synthesis. Cocrystallization of the inactive GS mutant E377A with substrate ADPGlc and oligosaccharide results in the first oligosaccharide-bound glycogen synthase structure. Four bound oligosaccharides are observed, one in the interdomain cleft (G6a) and three on the N-terminal domain surface (G6b, G6c, and G6d). Extending from the center of the enzyme to the interdomain cleft opening, G6a mostly interacts with the highly conserved N-terminal domain residues lining the cleft of GS. The surface-bound oligosaccharides G6c and G6d have less interaction with enzyme and exhibit a more curled, helixlike structural arrangement. The observation that oligosaccharides bind only to the N-terminal domain of GS suggests that glycogen in vivo probably binds to only one side of the enzyme to ensure unencumbered interdomain movement, which is required for efficient, continuous glucan-chain synthesis.

  16. Draft Genome Sequence of Endophytic Bacterium Enterobacter asburiae PDA134, Isolated from Date Palm (Phoenix dactylifera L.) Roots.

    PubMed

    Yaish, Mahmoud W

    2016-01-01

    In this report, a draft of the Enterobacter asburiae strain PDA134 genome was sequenced. This bacterial strain was isolated from the root tissue of a date palm, where it has the ability to produce 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase and indole-3-acetic acid (IAA) under salinity stress. PMID:27540071

  17. Draft Genome Sequence of Endophytic Bacterium Enterobacter asburiae PDA134, Isolated from Date Palm (Phoenix dactylifera L.) Roots

    PubMed Central

    2016-01-01

    In this report, a draft of the Enterobacter asburiae strain PDA134 genome was sequenced. This bacterial strain was isolated from the root tissue of a date palm, where it has the ability to produce 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase and indole-3-acetic acid (IAA) under salinity stress. PMID:27540071

  18. Genome Sequence of the Banana Plant Growth-Promoting Rhizobacterium Pseudomonas fluorescens PS006.

    PubMed

    Gamez, Rocío M; Rodríguez, Fernando; Ramírez, Sandra; Gómez, Yolanda; Agarwala, Richa; Landsman, David; Mariño-Ramírez, Leonardo

    2016-05-05

    Pseudomonas fluorescens is a well-known plant growth-promoting rhizobacterium (PGPR). We report here the first whole-genome sequence of PGPR P. fluorescens evaluated in Colombian banana plants. The genome sequences contains genes involved in plant growth and defense, including bacteriocins, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, and genes that provide resistance to toxic compounds.

  19. Genome Sequence of the Banana Plant Growth-Promoting Rhizobacterium Pseudomonas fluorescens PS006.

    PubMed

    Gamez, Rocío M; Rodríguez, Fernando; Ramírez, Sandra; Gómez, Yolanda; Agarwala, Richa; Landsman, David; Mariño-Ramírez, Leonardo

    2016-01-01

    Pseudomonas fluorescens is a well-known plant growth-promoting rhizobacterium (PGPR). We report here the first whole-genome sequence of PGPR P. fluorescens evaluated in Colombian banana plants. The genome sequences contains genes involved in plant growth and defense, including bacteriocins, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, and genes that provide resistance to toxic compounds. PMID:27151797

  20. Mutational analysis of a monoterpene synthase reaction: altered catalysis through directed mutagenesis of (-)-pinene synthase from Abies grandis.

    PubMed

    Hyatt, David C; Croteau, Rodney

    2005-07-15

    Two monoterpene synthases, (-)-pinene synthase and (-)-camphene synthase, from grand fir (Abies grandis) produce different product mixtures despite having highly homologous amino acid sequences and, presumably, very similar three-dimensional structures. The major product of (-)-camphene synthase, (-)-camphene, and the major products of (-)-pinene synthase, (-)-alpha-pinene, and (-)-beta-pinene, arise through distinct mechanistic variations of the electrophilic reaction cascade that is common to terpenoid synthases. Structural modeling followed by directed mutagenesis in (-)-pinene synthase was used to replace selected amino acid residues with the corresponding residues from (-)-camphene synthase in an effort to identify the amino acids responsible for the catalytic differences. This approach produced an enzyme in which more than half of the product was channeled through an alternative pathway. It was also shown that several (-)-pinene synthase to (-)-camphene synthase amino acid substitutions were necessary before catalysis was significantly altered. The data support a model in which the collective action of many key amino acids, located both in and distant from the active site pocket, regulate the course of the electrophilic reaction cascade.

  1. Ethylene-regulated expression of a carnation cysteine proteinase during flower petal senescence.

    PubMed

    Jones, M L; Larsen, P B; Woodson, W R

    1995-06-01

    The senescence of carnation (Dianthus caryophyllus L.) flower petals is regulated by the phytohormone ethylene and is associated with considerable catabolic activity including the loss of protein. In this paper we present the molecular cloning of a cysteine proteinase and show that its expression is regulated by ethylene and associated with petal senescence. A 1600 bp cDNA was amplified by polymerase chain reaction using a 5'-specific primer and 3'-nonspecific primer designed to amplify a 1-aminocyclopropane-1-carboxylate synthase cDNA from reverse-transcribed stylar RNA. The nucleotide sequence of the cloned product (pDCCP1) was found to share significant homology to several cysteine proteinases rather than ACC synthase. A single open reading frame of 428 amino acids was shown to share significant homology with other plant cysteine proteinases including greater than 70% identity with a cysteine proteinase from Arabidopsis thaliana. Amino acids in the active site of cysteine proteinases were conserved in the pDCCP1 peptide. RNA gel blot analysis revealed that the expression of pDCCP1 increased substantially with the onset of ethylene production and senescence of petals. Increased pDCCP1 expression was also associated with ethylene production in other senescing floral organs including ovaries and styles. The pDCCP1 transcript accumulated in petals treated with exogenous ethylene within 3 h and treatment of flowers with 2,5-norbornadiene, an inhibitor of ethylene action, prevented the increase in pDCCP1 expression in petals. The temporal and spatial patterns of pDCCP1 expression suggests a role for cysteine proteinase in the loss of protein during floral senescence.

  2. Thermoperiodic Control of Hypocotyl Elongation Depends on Auxin-Induced Ethylene Signaling That Controls Downstream PHYTOCHROME INTERACTING FACTOR3 Activity1

    PubMed Central

    Bours, Ralph; Kohlen, Wouter; Bouwmeester, Harro J.

    2015-01-01

    We show that antiphase light-temperature cycles (negative day-night temperature difference [−DIF]) inhibit hypocotyl growth in Arabidopsis (Arabidopsis thaliana). This is caused by reduced cell elongation during the cold photoperiod. Cell elongation in the basal part of the hypocotyl under −DIF was restored by both 1-aminocyclopropane-1-carboxylic acid (ACC; ethylene precursor) and auxin, indicating limited auxin and ethylene signaling under −DIF. Both auxin biosynthesis and auxin signaling were reduced during −DIF. In addition, expression of several ACC Synthase was reduced under −DIF but could be restored by auxin application. In contrast, the reduced hypocotyl elongation of ethylene biosynthesis and signaling mutants could not be complemented by auxin, indicating that auxin functions upstream of ethylene. The PHYTOCHROME INTERACTING FACTORS (PIFs) PIF3, PIF4, and PIF5 were previously shown to be important regulators of hypocotyl elongation. We now show that, in contrast to pif4 and pif5 mutants, the reduced hypocotyl length in pif3 cannot be rescued by either ACC or auxin. In line with this, treatment with ethylene or auxin inhibitors reduced hypocotyl elongation in PIF4 overexpressor (PIF4ox) and PIF5ox but not PIF3ox plants. PIF3 promoter activity was strongly reduced under −DIF but could be restored by auxin application in an ACC Synthase-dependent manner. Combined, these results show that PIF3 regulates hypocotyl length downstream, whereas PIF4 and PIF5 regulate hypocotyl length upstream of an auxin and ethylene cascade. We show that, under −DIF, lower auxin biosynthesis activity limits the signaling in this pathway, resulting in low activity of PIF3 and short hypocotyls. PMID:25516603

  3. Thermoperiodic control of hypocotyl elongation depends on auxin-induced ethylene signaling that controls downstream PHYTOCHROME INTERACTING FACTOR3 activity.

    PubMed

    Bours, Ralph; Kohlen, Wouter; Bouwmeester, Harro J; van der Krol, Alexander

    2015-02-01

    We show that antiphase light-temperature cycles (negative day-night temperature difference [-DIF]) inhibit hypocotyl growth in Arabidopsis (Arabidopsis thaliana). This is caused by reduced cell elongation during the cold photoperiod. Cell elongation in the basal part of the hypocotyl under -DIF was restored by both 1-aminocyclopropane-1-carboxylic acid (ACC; ethylene precursor) and auxin, indicating limited auxin and ethylene signaling under -DIF. Both auxin biosynthesis and auxin signaling were reduced during -DIF. In addition, expression of several ACC Synthase was reduced under -DIF but could be restored by auxin application. In contrast, the reduced hypocotyl elongation of ethylene biosynthesis and signaling mutants could not be complemented by auxin, indicating that auxin functions upstream of ethylene. The PHYTOCHROME INTERACTING FACTORS (PIFs) PIF3, PIF4, and PIF5 were previously shown to be important regulators of hypocotyl elongation. We now show that, in contrast to pif4 and pif5 mutants, the reduced hypocotyl length in pif3 cannot be rescued by either ACC or auxin. In line with this, treatment with ethylene or auxin inhibitors reduced hypocotyl elongation in PIF4 overexpressor (PIF4ox) and PIF5ox but not PIF3ox plants. PIF3 promoter activity was strongly reduced under -DIF but could be restored by auxin application in an ACC Synthase-dependent manner. Combined, these results show that PIF3 regulates hypocotyl length downstream, whereas PIF4 and PIF5 regulate hypocotyl length upstream of an auxin and ethylene cascade. We show that, under -DIF, lower auxin biosynthesis activity limits the signaling in this pathway, resulting in low activity of PIF3 and short hypocotyls.

  4. Melatonin promotes ripening and improves quality of tomato fruit during postharvest life.

    PubMed

    Sun, Qianqian; Zhang, Na; Wang, Jinfang; Zhang, Haijun; Li, Dianbo; Shi, Jin; Li, Ren; Weeda, Sarah; Zhao, Bing; Ren, Shuxin; Guo, Yang-Dong

    2015-02-01

    In this study, the effect of melatonin on the postharvest ripening and quality improvement of tomato fruit was carried out. The tomatoes were immersed in exogenous melatonin for 2h, and then the related physiological indicators and the expression of genes during post-harvest life were evaluated. Compared with control check (CK), the 50 µM melatonin treatment significantly increased lycopene levels by 5.8-fold. Meanwhile, the key genes involved in fruit colour development, including phytoene synthase1 (PSY1) and carotenoid isomerase (CRTISO), showed a 2-fold increase in expression levels. The rate of water loss from tomato fruit also increased 8.3%, and the expression of aquaporin genes, such as SlPIP12Q, SlPIPQ, SlPIP21Q, and SlPIP22, was up-regulated 2- to 3-fold under 50 µM melatonin treatment. In addition, 50 µM melatonin treatment enhanced fruit softening, increased water-soluble pectin by 22.5%, and decreased protopectin by 19.5%. The expression of the cell wall modifying proteins polygalacturonase (PG), pectin esterase1 (PE1), β-galactosidase (TBG4), and expansin1 (Exp1) was up-regulated under 50 µM melatonin treatment. Melatonin increased ethylene production by 27.1%, accelerated the climacteric phase, and influenced the ethylene signalling pathway. Alteration of ethylene production correlated with altered 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS4) expression. The expression of ethylene signal transduction-related genes such as NR, SlETR4, SlEIL1, SlEIL3, and SlERF2, was enhanced by 50 µM melatonin. The effect of melatonin on ethylene biosynthesis, ethylene perception, and ethylene signalling may contribute to fruit ripening and quality improvement in tomato. This research may promote the application of melatonin on postharvest ripening and quality improvement of tomato fruit as well as other horticultural productions in the future.

  5. Exogenous ethylene influences flower opening of cut roses (Rosa hybrida) by regulating the genes encoding ethylene biosynthesis enzymes.

    PubMed

    Ma, Nan; Cai, Lei; Lu, Wangjin; Tan, Hui; Gao, Junping

    2005-10-01

    The purpose of this paper is to investigate the differential responses of flower opening to ethylene in two cut rose cultivars, 'Samantha', whose opening process is promoted, and 'Kardinal', whose opening process is inhibited by ethylene. Ethylene production and 1-aminocyclopropane-1-carboxylate (ACC) synthase and oxidase activities were determined first. After ethylene treatment, ethylene production, ACC synthase (ACS) and ACC oxidase (ACO) activities in petals increased and peaked at the earlier stage (stage 3) in 'Samantha', and they were much more dramatically enhanced and peaked at the later stage (stage 4) in 'Kardinal' than control during vasing. cDNA fragments of three Rh-ACSs and one Rh-ACO genes were cloned and designated as Rh-ACS1, Rh-ACS2, Rh-ACS3 and Rh-ACO1 respectively. Northern blotting analysis revealed that, among three genes of ACS, ethylene-in- duced expression patterns of Rh-ACS3 gene corresponded to ACS activity and ethylene production in both cultivars. A more dramatic accumulation of Rh-ACS3 mRNA was induced by ethylene in 'Kardinal' than that of 'Samantha'. As an ethylene action inhibitor, STS at concentration of 0.2 mmol/L generally inhibited the expression of Rh-ACSs and Rh-ACO in both cultivars, although it induced the expression of Rh-ACS3 transiently in 'Kardinal'. Our results suggests that 'Kardinal' is more sensitive to ethylene than 'Samantha'; and the changes of Rh-ACS3 expression caused by ethylene might be related to the acceleration of flower opening in 'Samantha' and the inhibition in 'Kardinal'. Additional results indicated that three Rh-ACSs genes were differentially associated with flower opening and senescence as well as wounding

  6. Regulation of mitochondrial ATP synthase in cardiac pathophysiology.

    PubMed

    Long, Qinqiang; Yang, Kevin; Yang, Qinglin

    2015-01-01

    Mitochondrial function is paramount to energy homeostasis, metabolism, signaling, and apoptosis in cells. Mitochondrial complex V (ATP synthase), a molecular motor, is the ultimate ATP generator and a key determinant of mitochondrial function. ATP synthase catalyzes the final coupling step of oxidative phosphorylation to supply energy in the form of ATP. Alterations at this step will crucially impact mitochondrial respiration and hence cardiac performance. It is well established that cardiac contractility is strongly dependent on the mitochondria, and that myocardial ATP depletion is a key feature of heart failure. ATP synthase dysfunction can cause and exacerbate human diseases, such as cardiomyopathy and heart failure. While ATP synthase has been extensively studied, essential questions related to how the regulation of ATP synthase determines energy metabolism in the heart linger and therapies targeting this important mechanism remain scarce. This review will visit the main findings, identify unsolved issues and provide insights into potential future perspectives related to the regulation of ATP synthase and cardiac pathophysiology.

  7. Surrogate splicing for functional analysis of sesquiterpene synthase genes.

    PubMed

    Wu, Shuiqin; Schoenbeck, Mark A; Greenhagen, Bryan T; Takahashi, Shunji; Lee, Sungbeom; Coates, Robert M; Chappell, Joseph

    2005-07-01

    A method for the recovery of full-length cDNAs from predicted terpene synthase genes containing introns is described. The approach utilizes Agrobacterium-mediated transient expression coupled with a reverse transcription-polydeoxyribonucleotide chain reaction assay to facilitate expression cloning of processed transcripts. Subsequent expression of intronless cDNAs in a suitable prokaryotic host provides for direct functional testing of the encoded gene product. The method was optimized by examining the expression of an intron-containing beta-glucuronidase gene agroinfiltrated into petunia (Petunia hybrida) leaves, and its utility was demonstrated by defining the function of two previously uncharacterized terpene synthases. A tobacco (Nicotiana tabacum) terpene synthase-like gene containing six predicted introns was characterized as having 5-epi-aristolochene synthase activity, while an Arabidopsis (Arabidopsis thaliana) gene previously annotated as a terpene synthase was shown to possess a novel sesquiterpene synthase activity for alpha-barbatene, thujopsene, and beta-chamigrene biosynthesis. PMID:15965019

  8. Influence of gibberellin and daminozide on the expression of terpene synthases and on monoterpenes in common sage (Salvia officinalis).

    PubMed

    Schmiderer, Corinna; Grausgruber-Gröger, Sabine; Grassi, Paolo; Steinborn, Ralf; Novak, Johannes

    2010-07-01

    Common sage (Salvia officinalis L., Lamiaceae) is one of the most important medicinal and aromatic plants, with antioxidant, antimicrobial, spasmolytic, astringent, antihidrotic and specific sensorial properties. The essential oil of the plant, composed mainly of the monoterpenes 1,8-cineole, alpha-thujone, beta-thujone and camphor, is responsible for some of these effects. Gibberellins regulate diverse physiological processes in plants, such as seed germination, shoot elongation and cell division. In this study, we analyzed the effect of exogenously applied plant growth regulators, namely gibberellic acid (GA(3)) and daminozide, on leaf morphology and essential oil formation of two leaf stages during the period of leaf expansion. Essential oil content increased with increasing levels of gibberellins and decreased when gibberellin biosynthesis was blocked with daminozide. With increasing levels of gibberellins, 1,8-cineole and camphor contents increased. Daminozide blocked the accumulation of alpha- and beta-thujone. GA(3) at the highest level applied also led to a significant decrease of alpha- and beta-thujone. Monoterpene synthases are a class of enzymes responsible for the first step in monoterpene biosynthesis, competing for the same substrate geranylpyrophosphate. The levels of gene expression of the three most important monoterpene synthases in sage were investigated, 1,8-cineole synthase leading directly to 1,8-cineole, (+)-sabinene synthase responsible for the first step in the formation of alpha- and beta-thujone, and (+)-bornyl diphosphate synthase, the first step in camphor biosynthesis. The foliar application of GA(3) increased, while daminozide significantly decreased gene expression of the monoterpene synthases. The amounts of two of the end products, 1,8-cineole and camphor, were directly correlated with the levels of gene expression of the respective monoterpene synthases, indicating transcriptional control, while the formation of alpha- and beta

  9. Sporothrix schenckii: purification and partial biochemical characterization of glucosamine-6-phosphate synthase, a potential antifungal target.

    PubMed

    González-Ibarra, Joaquín; Milewski, Sławomir; Villagómez-Castro, Julio C; Cano-Canchola, Carmen; López-Romero, Everardo

    2010-02-01

    The first committed step of the biosynthetic pathway leading to uridine-5'-diphospho-N-acetyl-D-glucosamine (UDP-GlcNAc) is catalyzed by glucosamine-6-phosphate synthase (GlcN-6-P synthase), an enzyme proposed as a potential antifungal chemotherapy target. Here, we describe the purification and biochemical characterization of the native enzyme from the dimorphic pathogenic fungus Sporothrix schenckii. The availability of the pure protein facilitated its biochemical characterization. The enzyme exhibited subunit and native molecular masses of 79 and 350+/-5 kDa, respectively, suggesting a homotetrameric structure. Isoelectric point was 6.26 and K(m) values for fructose-6-phosphate and L-glutamine were 1.12+/-0.3 and 2.2+/-0.7 mM, respectively. Inhibition of activity by UDP-GlcNAc was enhanced by Glc-6-P and phosphorylation stimulated GlcN-6-P synthase activity without affecting the enzyme sensitivity to the aminosugar. A glutamine analogue, FMDP [N(3)-(4-methoxyfumaroyl)-L-2,3-diaminopropanoic acid] was a more potent inhibitor of activity than ADMP (2-Amino-2-deoxy-D-mannitol-6-phosphate) but the latter was a stronger inhibitor of growth in two culture media. To our knowledge, this is the first report on the purification and biochemical characterization of a non-recombinant GlcN-6-P synthase from a true dimorphic fungus. Inhibition of enzyme activity and fungal growth by specific inhibitors of GlcN-6-P synthase strongly reinforces the role of this enzyme as a potential target for antifungal chemotherapy. PMID:19353425

  10. Loss of Drosophila pseudouridine synthase triggers apoptosis-induced proliferation and promotes cell-nonautonomous EMT

    PubMed Central

    Vicidomini, R; Di Giovanni, A; Petrizzo, A; Iannucci, L F; Benvenuto, G; Nagel, A C; Preiss, A; Furia, M

    2015-01-01

    Many developing tissues display regenerative capability that allows them to compensate cell loss and preserve tissue homeostasis. Because of their remarkable regenerative capability, Drosophila wing discs are extensively used for the study of regenerative phenomena. We thus used the developing wing to investigate the role played in tissue homeostasis by the evolutionarily conserved eukaryotic H/ACA small nucleolar ribonucleoprotein pseudouridine synthase. Here we show that localized depletion of this enzyme can act as an endogenous stimulus capable of triggering apoptosis-induced proliferation, and that context-dependent effects are elicited in different sub-populations of the silenced cells. In fact, some cells undergo apoptosis, whereas those surrounding the apoptotic foci, although identically depleted, overproliferate. This overproliferation correlates with ectopic induction of the Wg and JAK-STAT (Janus kinase-signal transducer and activator of transcription) mitogenic pathways. Expression of a p35 transgene, which blocks the complete execution of the death program and generates the so-called ‘undead cells', amplifies the proliferative response. Pseudouridine synthase depletion also causes loss of apicobasal polarity, disruption of adherens cell junctions and ectopic induction of JNK (c-Jun N-terminal kinase) and Mmp1 (matrix metalloproteinase-1) activity, leading to a significant epithelial reorganization. Unexpectedly, cell-nonautonomous effects, such as epithelial mesenchymal transition in the contiguous unsilenced squamous epithelium, are also promoted. Collectively, these data point out that cell–cell communication and long-range signaling can take a relevant role in the response to pseudouridine synthase decline. Considering that all the affected pathways are highly conserved throughout evolution, it is plausible that the response to pseudouridine synthase depletion has been widely preserved. On this account, our results can add new light on the

  11. Loss of Drosophila pseudouridine synthase triggers apoptosis-induced proliferation and promotes cell-nonautonomous EMT.

    PubMed

    Vicidomini, R; Di Giovanni, A; Petrizzo, A; Iannucci, L F; Benvenuto, G; Nagel, A C; Preiss, A; Furia, M

    2015-03-26

    Many developing tissues display regenerative capability that allows them to compensate cell loss and preserve tissue homeostasis. Because of their remarkable regenerative capability, Drosophila wing discs are extensively used for the study of regenerative phenomena. We thus used the developing wing to investigate the role played in tissue homeostasis by the evolutionarily conserved eukaryotic H/ACA small nucleolar ribonucleoprotein pseudouridine synthase. Here we show that localized depletion of this enzyme can act as an endogenous stimulus capable of triggering apoptosis-induced proliferation, and that context-dependent effects are elicited in different sub-populations of the silenced cells. In fact, some cells undergo apoptosis, whereas those surrounding the apoptotic foci, although identically depleted, overproliferate. This overproliferation correlates with ectopic induction of the Wg and JAK-STAT (Janus kinase-signal transducer and activator of transcription) mitogenic pathways. Expression of a p35 transgene, which blocks the complete execution of the death program and generates the so-called 'undead cells', amplifies the proliferative response. Pseudouridine synthase depletion also causes loss of apicobasal polarity, disruption of adherens cell junctions and ectopic induction of JNK (c-Jun N-terminal kinase) and Mmp1 (matrix metalloproteinase-1) activity, leading to a significant epithelial reorganization. Unexpectedly, cell-nonautonomous effects, such as epithelial mesenchymal transition in the contiguous unsilenced squamous epithelium, are also promoted. Collectively, these data point out that cell-cell communication and long-range signaling can take a relevant role in the response to pseudouridine synthase decline. Considering that all the affected pathways are highly conserved throughout evolution, it is plausible that the response to pseudouridine synthase depletion has been widely preserved. On this account, our results can add new light on the still

  12. The metabolite alpha-ketoglutarate extends lifespan by inhibiting the ATP synthase and TOR

    PubMed Central

    Chin, Randall M.; Fu, Xudong; Pai, Melody Y.; Vergnes, Laurent; Hwang, Heejun; Deng, Gang; Diep, Simon; Lomenick, Brett; Meli, Vijaykumar S.; Monsalve, Gabriela C.; Hu, Eileen; Whelan, Stephen A.; Wang, Jennifer X.; Jung, Gwanghyun; Solis, Gregory M.; Fazlollahi, Farbod; Kaweeteerawat, Chitrada; Quach, Austin; Nili, Mahta; Krall, Abby S.; Godwin, Hilary A.; Chang, Helena R.; Faull, Kym F.; Guo, Feng; Jiang, Meisheng; Trauger, Sunia A.; Saghatelian, Alan; Braas, Daniel; Christofk, Heather R.; Clarke, Catherine F.; Teitell, Michael A.; Petrascheck, Michael; Reue, Karen; Jung, Michael E.; Frand, Alison R.; Huang, Jing

    2014-01-01

    Metabolism and ageing are intimately linked. Compared to ad libitum feeding, dietary restriction (DR) or calorie restriction (CR) consistently extends lifespan and delays age-related diseases in evolutionarily diverse organisms1,2. Similar conditions of nutrient limitation and genetic or pharmacological perturbations of nutrient or energy metabolism also have longevity benefits3,4. Recently, several metabolites have been identified that modulate ageing5,6 with largely undefined molecular mechanisms. Here we show that the tricarboxylic acid (TCA) cycle intermediate α-ketoglutarate (α-KG) extends the lifespan of adult C. elegans. ATP synthase subunit beta is identified as a novel binding protein of α-KG using a small-molecule target identification strategy called DARTS (drug affinity responsive target stability)7. The ATP synthase, also known as Complex V of the mitochondrial electron transport chain (ETC), is the main cellular energy-generating machinery and is highly conserved throughout evolution8,9. Although complete loss of mitochondrial function is detrimental, partial suppression of the ETC has been shown to extend C. elegans lifespan10–13. We show that α-KG inhibits ATP synthase and, similar to ATP synthase knockdown, inhibition by α-KG leads to reduced ATP content, decreased oxygen consumption, and increased autophagy in both C. elegans and mammalian cells. We provide evidence that the lifespan increase by α-KG requires ATP synthase subunit beta and is dependent on the target of rapamycin (TOR) downstream. Endogenous α-KG levels are increased upon starvation and α-KG does not extend the lifespan of DR animals, indicating that α-KG is a key metabolite that mediates longevity by DR. Our analyses uncover new molecular links between a common metabolite, a universal cellular energy generator, and DR in the regulation of organismal lifespan, thus suggesting new strategies for the prevention and treatment of ageing and age-related diseases. PMID:24828042

  13. Geranyl diphosphate synthase molecules, and nucleic acid molecules encoding same

    DOEpatents

    Croteau, Rodney Bruce; Burke, Charles Cullen

    2008-06-24

    In one aspect, the present invention provides isolated nucleic acid molecules that each encode a geranyl diphosphate synthase protein, wherein each isolated nucleic acid molecule hybridizes to a nucleic acid molecule consisting of the sequence set forth in SEQ ID NO:1 under conditions of 5.times.SSC at 45.degree. C. for one hour. The present invention also provides isolated geranyl diphosphate synthase proteins, and methods for altering the level of expression of geranyl diphosphate synthase protein in a host cell.

  14. New insight into the catalytic properties of rice sucrose synthase.

    PubMed

    Huang, Yu-Chiao; Hsiang, Erh-Chieh; Yang, Chien-Chih; Wang, Ai-Yu

    2016-01-01

    Sucrose synthase (SuS), which catalyzes the reversible conversion of sucrose and uridine diphosphate (UDP) into fructose and UDP-glucose, is a key enzyme in sucrose metabolism in higher plants. SuS belongs to family 4 of the glycosyltransferases (GT4) and contains an E-X7-E motif that is conserved in members of GT4 and two other GT families. To gain insight into the roles of this motif in rice sucrose synthase 3 (RSuS3), the two conserved glutamate residues (E678 and E686) in this motif and a phenylalanine residue (F680) that resides between the two glutamate residues were changed by site-directed mutagenesis. All mutant proteins maintained their tetrameric conformation. The mutants E686D and F680Y retained partial enzymatic activity and the mutants E678D, E678Q, F680S, and E686Q were inactive. Substrate binding assays indicated that UDP and fructose, respectively, were the leading substrates in the sucrose degradation and synthesis reactions of RSuS3. Mutations on E678, F680, and E686 affected the binding of fructose, but not of UDP. The results indicated that E678, F680, and E686 in the E-X7-E motif of RSuS3 are essential for the activity of the enzyme and the sequential binding of substrates. The sequential binding of the substrates implied that the reaction catalyzed by RSuS can be controlled by the availability of fructose and UDP, depending on the metabolic status of a tissue.

  15. Leishmania donovani Encodes a Functional Selenocysteinyl-tRNA Synthase.

    PubMed

    Manhas, Reetika; Gowri, Venkatraman Subramanian; Madhubala, Rentala

    2016-01-15

    The synthesis of selenocysteine, the 21st amino acid, occurs on its transfer RNA (tRNA), tRNA(Sec). tRNA(Sec) is initially aminoacylated with serine by seryl-tRNA synthetase and the resulting seryl moiety is converted to phosphoserine by O-phosphoseryl-tRNA kinase (PSTK) in eukaryotes. The selenium donor, selenophosphate is synthesized from selenide and ATP by selenophosphate synthetase. Selenocysteinyl-tRNA synthase (SepSecS) then uses the O-phosphoseryl-tRNA(Sec) and selenophosphate to form Sec-tRNA(Sec) in eukaryotes. Here, we report the characterization of selenocysteinyl-tRNA synthase from Leishmania donovani. Kinetoplastid SepSecS enzymes are phylogenetically closer to worm SepSecS. LdSepSecS was found to exist as a tetramer. Leishmania SepSecS enzyme was found to be active and able to complement the ΔselA deletion in Escherichia coli JS1 strain only in the presence of archaeal PSTK, indicating the conserved nature of the PSTK-SepSecS pathway. LdSepSecS was found to localize in the cytoplasm of the parasite. Gene deletion studies indicate that Leishmania SepSecS is dispensable for the parasite survival. The parasite was found to encode three selenoproteins, which were only expressed in the presence of SepSecS. Selenoproteins of L. donovani are not required for the growth of the promastigotes. Auranofin, a known inhibitor of selenoprotein synthesis showed the same sensitivity toward the wild-type and null mutants suggesting its effect is not through binding to selenoproteins. The three-dimensional structural comparison indicates that human and Leishmania homologs are structurally highly similar but their association modes leading to tetramerization seem different. PMID:26586914

  16. A cyanobacterial protein with similarity to phytochelatin synthases catalyzes the conversion of glutathione to gamma-glutamylcysteine and lacks phytochelatin synthase activity.

    PubMed

    Harada, Emiko; von Roepenack-Lahaye, Edda; Clemens, Stephan

    2004-12-01

    Phytochelatins are glutathione-derived, non-translationally synthesized peptides essential for cadmium and arsenic detoxification in plant, fungal and nematode model systems. Recent sequencing programs have revealed the existence of phytochelatin synthase-related genes in a wide range of organisms that have not been reported yet to produce phytochelatins. Among those are several cyanobacteria. We have studied one of the encoded proteins (alr0975 from Nostoc sp. strain PCC 7120) and demonstrate here that it does not possess phytochelatin synthase activity. Instead, this protein catalyzes the conversion of glutathione to gamma-glutamylcysteine. The thiol spectrum of yeast cells expressing alr0975 shows the disappearance of glutathione and the formation of a compound that by LC-MSMS analysis was unequivocally identified as gamma-glutamylcysteine. Purified recombinant protein catalyzes the respective reaction. Unlike phytochelatin synthesis, the conversion of glutathione to gamma-glutamylcysteine is not dependent on activation by metal cations. No evidence was found for the accumulation of phytochelatins in cyanobacteria even after prolonged exposure to toxic Cd2+ concentrations. Expression of alr0975 was detected in Nostoc sp. cells with an antiserum raised against the protein. No indication for a responsiveness of expression to toxic metal exposure was found. Taken together, these data provide further evidence for possible additional functions of phytochelatin synthase-related proteins in glutathione metabolism and provide a lead as to the evolutionary history of phytochelatin synthesis.

  17. Evaluation of synthase and hemisynthase activities of glucosamine-6-phosphate synthase by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Gaucher-Wieczorek, Florence; Guérineau, Vincent; Touboul, David; Thétiot-Laurent, Sophie; Pelissier, Franck; Badet-Denisot, Marie-Ange; Badet, Bernard; Durand, Philippe

    2014-08-01

    Glucosamine-6-phosphate synthase (GlmS, EC 2.6.1.16) catalyzes the first and rate-limiting step in the hexosamine biosynthetic pathway, leading to the synthesis of uridine-5'-diphospho-N-acetyl-D-glucosamine, the major building block for the edification of peptidoglycan in bacteria, chitin in fungi, and glycoproteins in mammals. This bisubstrate enzyme converts D-fructose-6-phosphate (Fru-6P) and L-glutamine (Gln) into D-glucosamine-6-phosphate (GlcN-6P) and L-glutamate (Glu), respectively. We previously demonstrated that matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) allows determination of the kinetic parameters of the synthase activity. We propose here to refine the experimental protocol to quantify Glu and GlcN-6P, allowing determination of both hemisynthase and synthase parameters from a single assay kinetic experiment, while avoiding interferences encountered in other assays. It is the first time that MALDI-MS is used to survey the activity of a bisubstrate enzyme.

  18. Vitis vinifera terpenoid cyclases: functional identification of two sesquiterpene synthase cDNAs encoding (+)-valencene synthase and (-)-germacrene D synthase and expression of mono- and sesquiterpene synthases in grapevine flowers and berries.

    PubMed

    Lücker, Joost; Bowen, Pat; Bohlmann, Jörg

    2004-10-01

    Valencene is a volatile sesquiterpene emitted from flowers of grapevine, Vitis vinifera L. A full-length cDNA from the cultivar Gewürztraminer was functionally expressed in Escherichia coli and found to encode valencene synthase (VvVal). The two major products formed by recombinant VvVal enzyme activity with farnesyl diphosphate (FPP) as substrate are (+)-valencene and (-)-7-epi-alpha-selinene. Grapevine valencene synthase is closely related to a second sesquiterpene synthase from this species, (-)-germacrene D synthase (VvGerD). VvVal and VvGerD cDNA probes revealed strong signals in Northern hybridizations with RNA isolated from grapevine flower buds. Transcript levels were lower in open pre-anthesis flowers, flowers after anthesis, or at early onset of fruit development. Similar results were obtained using a third probe, (-)-alpha-terpineol synthase, a monoterpenol synthase. Sesquiterpene synthase and monoterpene synthase transcripts were not detected in the mesocarp and exocarp during early stages of fruit development, but transcripts hybridizing with VvVal appeared during late ripening of the berries. Sesquiterpene synthase transcripts were also detected in young seeds. PMID:15464152

  19. Divinyl ether synthase gene, and protein and uses thereof

    DOEpatents

    Howe, Gregg A.; Itoh, Aya

    2006-12-26

    The present invention relates to divinyl ether synthase genes, proteins, and methods of their use. The present invention encompasses both native and recombinant wild-type forms of the synthase, as well as mutants and variant forms, some of which possess altered characteristics relative to the wild-type synthase. The present invention also relates to methods of using divinyl ether synthase genes and proteins, including in their expression in transgenic organisms and in the production of divinyl ether fatty acids, and to methods of suing divinyl ether fatty acids, including in the protection of plants from pathogens.

  20. Divinyl ether synthase gene and protein, and uses thereof

    DOEpatents

    Howe, Gregg A.; Itoh, Aya

    2011-09-13

    The present invention relates to divinyl ether synthase genes, proteins, and methods of their use. The present invention encompasses both native and recombinant wild-type forms of the synthase, as well as mutants and variant forms, some of which possess altered characteristics relative to the wild-type synthase. The present invention also relates to methods of using divinyl ether synthase genes and proteins, including in their expression in transgenic organisms and in the production of divinyl ether fatty acids, and to methods of suing divinyl ether fatty acids, including in the protection of plants from pathogens.

  1. Reduced expression of prostacyclin synthase and nitric oxide synthase in subcutaneous arteries of type 2 diabetic patients.

    PubMed

    Safiah Mokhtar, Siti; M Vanhoutte, Paul; W S Leung, Susan; Imran Yusof, Mohd; Wan Sulaiman, Wan Azman; Zaharil Mat Saad, Arman; Suppian, Rapeah; Ghulam Rasool, Aida Hanum

    2013-01-01

    Diabetic endothelial dysfunction is characterized by impaired endothelium-dependent relaxation. In this study, we measured the expression of endothelial nitric oxide synthase (eNOS), cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2), prostacyclin synthase (PGIS), and prostacyclin receptor (IP) in subcutaneous arteries of type-2 diabetic and non-diabetic patients. Subcutaneous arteries were dissected from tissues from seven diabetics (4 males and 3 females) and seven non-diabetics (5 males and 2 females) aged between 18 to 65 years, who underwent lower limb surgical procedures. Diabetics had higher fasting blood glucose compared to non-diabetics, but there were no differences in blood pressure, body mass index and age. Patients were excluded if they had uncontrolled hypertension, previous myocardial infarction, coronary heart disease, renal or hepatic failure and tumor. The relative expression levels of eNOS, COX-1, COX-2, PGIS and IP receptor were determined by Western blotting analysis, normalized with the β-actin level. Increased expression of COX-2 was observed in subcutaneous arteries of diabetics compared to non-diabetics, whereas the expression levels of eNOS and PGIS were significantly lower in diabetics. There were no significant differences in expression levels of COX-1 and IP receptor between the two groups. Immunohistochemical study of subcutaneous arteries showed that the intensities of eNOS and PGIS staining were lower in diabetics, with higher COX-2 staining. In conclusion, type-2 diabetes is associated with higher COX-2 expression, but lower eNOS and PGIS expression in subcutaneous arteries. These alterations may lead to impaired endothelium-dependent vasodilatation, and thus these proteins may be potential targets for protection against the microvascular complications of diabetes.

  2. Molecular characterization of the homo-phytochelatin synthase of soybean Glycine max: relation to phytochelatin synthase.

    PubMed

    Oven, Matjaz; Page, Jonathan E; Zenk, Meinhart H; Kutchan, Toni M

    2002-02-15

    The phytochelatin homologs homo-phytochelatins are heavy metal-binding peptides present in many legumes. To study the biosynthesis of these compounds, we have isolated and functionally expressed a cDNA GmhPCS1 encoding homo-phytochelatin synthase from Glycine max, a plant known to accumulate homo-phytochelatins rather than phytochelatins upon the exposure to heavy metals. The catalytic properties of GmhPCS1 were compared with the phytochelatin synthase AtPCS1 from Arabidopsis thaliana. When assayed only in the presence of glutathione, both enzymes catalyzed phytochelatin formation. GmhPCS1 accepted homoglutathione as the sole substrate for the synthesis of homo-phytochelatins whereas AtPCS1 did not. Homo-phytochelatin synthesis activity of both recombinant enzymes was significantly higher when glutathione was included in the reaction mixture. The incorporation of both glutathione and homoglutathione into homo-phytochelatin, n = 2, was demonstrated using GmhPCS1 and AtPCS1. In addition to bis(glutathionato)-metal complexes, various other metal-thiolates were shown to contribute to the activation of phytochelatin synthase. These complexes were not accepted as substrates by the enzyme, thereby suggesting that a recently proposed model of activation cannot fully explain the catalytic mechanism of phytochelatin synthase (Vatamaniuk, O. K., Mari, S., Lu, Y. P., and Rea, P. A. (2000) J. Biol. Chem. 275, 31451-31459). PMID:11706029

  3. Engineering of chimeric class II polyhydroxyalkanoate synthases.

    PubMed

    Niamsiri, Nuttawee; Delamarre, Soazig C; Kim, Young-Rok; Batt, Carl A

    2004-11-01

    PHA synthase is a key enzyme involved in the biosynthesis of polyhydroxyalkanoates (PHAs). Using a combinatorial genetic strategy to create unique chimeric class II PHA synthases, we have obtained a number of novel chimeras which display improved catalytic properties. To engineer the chimeric PHA synthases, we constructed a synthetic phaC gene from Pseudomonas oleovorans (phaC1Po) that was devoid of an internal 540-bp fragment. Randomly amplified PCR products (created with primers based on conserved phaC sequences flanking the deleted internal fragment) were generated using genomic DNA isolated from soil and were substituted for the 540-bp internal region. The chimeric genes were expressed in a PHA-negative strain of Ralstonia eutropha, PHB(-)4 (DSM 541). Out of 1,478 recombinant clones screened for PHA production, we obtained five different chimeric phaC1Po genes that produced more PHA than the native phaC1Po. Chimeras S1-71, S4-8, S5-58, S3-69, and S3-44 exhibited 1.3-, 1.4-, 2.0-, 2.1-, and 3.0-fold-increased levels of in vivo activity, respectively. All of the mutants mediated the synthesis of PHAs with a slightly increased molar fraction of 3-hydroxyoctanoate; however, the weight-average molecular weights (Mw) of the PHAs in all cases remained almost the same. Based upon DNA sequence analyses, the various phaC fragments appear to have originated from Pseudomonas fluorescens and Pseudomonas aureofaciens. The amino acid sequence analyses showed that the chimeric proteins had 17 to 20 amino acid differences from the wild-type phaC1Po, and these differences were clustered in the same positions in the five chimeric clones. A threading model of PhaC1Po, developed based on homology of the enzyme to the Burkholderia glumae lipase, suggested that the amino acid substitutions found in the active chimeras were located mostly on the protein model surface. Thus, our combinatorial genetic engineering strategy proved to be broadly useful for improving the catalytic

  4. mRNA expressions of inducible nitric oxide synthase, endothelial nitric oxide synthase, and neuronal nitric oxide synthase genes in meningitis patients.

    PubMed

    Oztuzcu, Serdar; Igci, Yusuf Ziya; Arslan, Ahmet; Sivasli, Ercan; Ozkara, Esma; Igci, Mehri; Demiryürek, Seniz; Cengiz, Beyhan; Gogebakan, Bulent; Namiduru, Mustafa; Coskun, Mehmet Yavuz; Cakmak, Ecir Ali

    2011-03-01

    Meningitis is an inflammation of the protective membranes covering the brain and spinal cord caused by bacteria, fungi, or viruses with various clinical symptoms. Although meningitis is not so prevalent, it remains the most serious contagious disease. The aim of our study was to investigate the effect of gene expressions of nitric oxide synthases (NOS) on meningitis patients. Using samples taken from 61 meningitis patients, inducible NOS, endothelial NOS (eNOS), and neuronal NOS mRNA levels were assessed in both blood and cerebrospinal fluid (CSF). A control group was constructed of 64 healthy persons. The gene expression analysis was made using real-time polymerase chain reaction method. There was no neuronal NOS expression in either group, whereas inducible NOS expression was detected in 40 blood samples and 12 CSF samples from meningitis patients. However, there were no marked differences between groups (p=0.5104). eNOS expression was detected in all blood and CSF samples, which was markedly higher in patients (p=0.0367). Because the increase in eNOS expression increases NO production, eNOS expression in meningitis patients is of great importance. This increase of eNOS in meningitis patients compared with healthy subjects may lead to novel treatments for reducing the severity of the disease.

  5. Dynamic Structure and Inhibition of a Malaria Drug Target: Geranylgeranyl Diphosphate Synthase.

    PubMed

    G Ricci, Clarisse; Liu, Yi-Liang; Zhang, Yonghui; Wang, Yang; Zhu, Wei; Oldfield, Eric; McCammon, J Andrew

    2016-09-13

    We report a molecular dynamics investigation of the structure, function, and inhibition of geranylgeranyl diphosphate synthase (GGPPS), a potential drug target, from the malaria parasite Plasmodium vivax. We discovered several GGPPS inhibitors, benzoic acids, and determined their structures crystallographically. We then used molecular dynamics simulations to investigate the dynamics of three such inhibitors and two bisphosphonate inhibitors, zoledronate and a lipophilic analogue of zoledronate, as well as the enzyme's product, GGPP. We were able to identify the main motions that govern substrate binding and product release as well as the molecular features required for GGPPS inhibition by both classes of inhibitor. The results are of broad general interest because they represent the first detailed investigation of the mechanism of action, and inhibition, of an important antimalarial drug target, geranylgeranyl diphosphate synthase, and may help guide the development of other, novel inhibitors as new drug leads. PMID:27564465

  6. Novel family of terpene synthases evolved from trans-isoprenyl diphosphate synthases in a flea beetle.

    PubMed

    Beran, Franziska; Rahfeld, Peter; Luck, Katrin; Nagel, Raimund; Vogel, Heiko; Wielsch, Natalie; Irmisch, Sandra; Ramasamy, Srinivasan; Gershenzon, Jonathan; Heckel, David G; Köllner, Tobias G

    2016-03-15

    Sesquiterpenes play important roles in insect communication, for example as pheromones. However, no sesquiterpene synthases, the enzymes involved in construction of the basic carbon skeleton, have been identified in insects to date. We investigated the biosynthesis of the sesquiterpene (6R,7S)-himachala-9,11-diene in the crucifer flea beetle Phyllotreta striolata, a compound previously identified as a male-produced aggregation pheromone in several Phyllotreta species. A (6R,7S)-himachala-9,11-diene-producing sesquiterpene synthase activity was detected in crude beetle protein extracts, but only when (Z,E)-farnesyl diphosphate [(Z,E)-FPP] was offered as a substrate. No sequences resembling sesquiterpene synthases from plants, fungi, or bacteria were found in the P. striolata transcriptome, but we identified nine divergent putative trans-isoprenyl diphosphate synthase (trans-IDS) transcripts. Four of these putative trans-IDSs exhibited terpene synthase (TPS) activity when heterologously expressed. Recombinant PsTPS1 converted (Z,E)-FPP to (6R,7S)-himachala-9,11-diene and other sesquiterpenes observed in beetle extracts. RNAi-mediated knockdown of PsTPS1 mRNA in P. striolata males led to reduced emission of aggregation pheromone, confirming a significant role of PsTPS1 in pheromone biosynthesis. Two expressed enzymes showed genuine IDS activity, with PsIDS1 synthesizing (E,E)-FPP, whereas PsIDS3 produced neryl diphosphate, (Z,Z)-FPP, and (Z,E)-FPP. In a phylogenetic analysis, the PsTPS enzymes and PsIDS3 were clearly separated from a clade of known coleopteran trans-IDS enzymes including PsIDS1 and PsIDS2. However, the exon-intron structures of IDS and TPS genes in P. striolata are conserved, suggesting that this TPS gene family evolved from trans-IDS ancestors. PMID:26936952

  7. Novel family of terpene synthases evolved from trans-isoprenyl diphosphate synthases in a flea beetle.

    PubMed

    Beran, Franziska; Rahfeld, Peter; Luck, Katrin; Nagel, Raimund; Vogel, Heiko; Wielsch, Natalie; Irmisch, Sandra; Ramasamy, Srinivasan; Gershenzon, Jonathan; Heckel, David G; Köllner, Tobias G

    2016-03-15

    Sesquiterpenes play important roles in insect communication, for example as pheromones. However, no sesquiterpene synthases, the enzymes involved in construction of the basic carbon skeleton, have been identified in insects to date. We investigated the biosynthesis of the sesquiterpene (6R,7S)-himachala-9,11-diene in the crucifer flea beetle Phyllotreta striolata, a compound previously identified as a male-produced aggregation pheromone in several Phyllotreta species. A (6R,7S)-himachala-9,11-diene-producing sesquiterpene synthase activity was detected in crude beetle protein extracts, but only when (Z,E)-farnesyl diphosphate [(Z,E)-FPP] was offered as a substrate. No sequences resembling sesquiterpene synthases from plants, fungi, or bacteria were found in the P. striolata transcriptome, but we identified nine divergent putative trans-isoprenyl diphosphate synthase (trans-IDS) transcripts. Four of these putative trans-IDSs exhibited terpene synthase (TPS) activity when heterologously expressed. Recombinant PsTPS1 converted (Z,E)-FPP to (6R,7S)-himachala-9,11-diene and other sesquiterpenes observed in beetle extracts. RNAi-mediated knockdown of PsTPS1 mRNA in P. striolata males led to reduced emission of aggregation pheromone, confirming a significant role of PsTPS1 in pheromone biosynthesis. Two expressed enzymes showed genuine IDS activity, with PsIDS1 synthesizing (E,E)-FPP, whereas PsIDS3 produced neryl diphosphate, (Z,Z)-FPP, and (Z,E)-FPP. In a phylogenetic analysis, the PsTPS enzymes and PsIDS3 were clearly separated from a clade of known coleopteran trans-IDS enzymes including PsIDS1 and PsIDS2. However, the exon-intron structures of IDS and TPS genes in P. striolata are conserved, suggesting that this TPS gene family evolved from trans-IDS ancestors.

  8. Novel family of terpene synthases evolved from trans-isoprenyl diphosphate synthases in a flea beetle

    PubMed Central

    Beran, Franziska; Rahfeld, Peter; Luck, Katrin; Nagel, Raimund; Vogel, Heiko; Wielsch, Natalie; Irmisch, Sandra; Ramasamy, Srinivasan; Gershenzon, Jonathan; Heckel, David G.; Köllner, Tobias G.

    2016-01-01

    Sesquiterpenes play important roles in insect communication, for example as pheromones. However, no sesquiterpene synthases, the enzymes involved in construction of the basic carbon skeleton, have been identified in insects to date. We investigated the biosynthesis of the sesquiterpene (6R,7S)-himachala-9,11-diene in the crucifer flea beetle Phyllotreta striolata, a compound previously identified as a male-produced aggregation pheromone in several Phyllotreta species. A (6R,7S)-himachala-9,11-diene–producing sesquiterpene synthase activity was detected in crude beetle protein extracts, but only when (Z,E)-farnesyl diphosphate [(Z,E)-FPP] was offered as a substrate. No sequences resembling sesquiterpene synthases from plants, fungi, or bacteria were found in the P. striolata transcriptome, but we identified nine divergent putative trans-isoprenyl diphosphate synthase (trans-IDS) transcripts. Four of these putative trans-IDSs exhibited terpene synthase (TPS) activity when heterologously expressed. Recombinant PsTPS1 converted (Z,E)-FPP to (6R,7S)-himachala-9,11-diene and other sesquiterpenes observed in beetle extracts. RNAi-mediated knockdown of PsTPS1 mRNA in P. striolata males led to reduced emission of aggregation pheromone, confirming a significant role of PsTPS1 in pheromone biosynthesis. Two expressed enzymes showed genuine IDS activity, with PsIDS1 synthesizing (E,E)-FPP, whereas PsIDS3 produced neryl diphosphate, (Z,Z)-FPP, and (Z,E)-FPP. In a phylogenetic analysis, the PsTPS enzymes and PsIDS3 were clearly separated from a clade of known coleopteran trans-IDS enzymes including PsIDS1 and PsIDS2. However, the exon–intron structures of IDS and TPS genes in P. striolata are conserved, suggesting that this TPS gene family evolved from trans-IDS ancestors. PMID:26936952

  9. Evolution and function of phytochelatin synthases.

    PubMed

    Clemens, Stephan

    2006-02-01

    Both essential and non-essential transition metal ions can easily be toxic to cells. The physiological range for essential metals between deficiency and toxicity is therefore extremely narrow and a tightly controlled metal homeostasis network to adjust to fluctuations in micronutrient availability is a necessity for all organisms. One protective strategy against metal excess is the expression of high-affinity binding sites to suppress uncontrolled binding of metal ions to physiologically important functional groups. The synthesis of phytochelatins, glutathione-derived metal binding peptides, represents the major detoxification mechanism for cadmium and arsenic in plants and an unknown range of other organisms. A few years ago genes encoding phytochelatin synthases (PCS) were cloned from plants, fungi and nematodes. Since then it has become apparent that PCS genes are far more widespread than ever anticipated. Searches in sequence databases indicate PCS expression in representatives of all eukaryotic kingdoms and the presence of PCS-like proteins in several prokaryotes. The almost ubiquitous presence in the plant kingdom and beyond as well as the constitutive expression of PCS genes and PCS activity in all major plant tissues are still mysterious. It is unclear, how the extremely rare need to cope with an excess of cadmium or arsenic ions could explain the evolution and distribution of PCS genes. Possible answers to this question are discussed. Also, the molecular characterization of phytochelatin synthases and our current knowledge about the enzymology of phytochelatin synthesis are reviewed.

  10. Activities and regulation of peptidoglycan synthases

    PubMed Central

    Egan, Alexander J. F.; Biboy, Jacob; van't Veer, Inge; Breukink, Eefjan; Vollmer, Waldemar

    2015-01-01

    Peptidoglycan (PG) is an essential component in the cell wall of nearly all bacteria, forming a continuous, mesh-like structure, called the sacculus, around the cytoplasmic membrane to protect the cell from bursting by its turgor. Although PG synthases, the penicillin-binding proteins (PBPs), have been studied for 70 years, useful in vitro assays for measuring their activities were established only recently, and these provided the first insights into the regulation of these enzymes. Here, we review the current knowledge on the glycosyltransferase and transpeptidase activities of PG synthases. We provide new data showing that the bifunctional PBP1A and PBP1B from Escherichia coli are active upon reconstitution into the membrane environment of proteoliposomes, and that these enzymes also exhibit DD-carboxypeptidase activity in certain conditions. Both novel features are relevant for their functioning within the cell. We also review recent data on the impact of protein–protein interactions and other factors on the activities of PBPs. As an example, we demonstrate a synergistic effect of multiple protein–protein interactions on the glycosyltransferase activity of PBP1B, by its cognate lipoprotein activator LpoB and the essential cell division protein FtsN. PMID:26370943

  11. ATP synthase: a tentative structural model.

    PubMed

    Engelbrecht, S; Junge, W

    1997-09-15

    Adenosine triphosphate (ATP) synthase produces ATP from ADP and inorganic phosphate at the expense of proton- or sodium-motive force across the respective coupling membrane in Archaea, Bacteria and Eucarya. Cation flow through the intrinsic membrane portion of this enzyme (Fo, subunits ab2c9-12) and substrate turnover in the headpiece (F1, subunits alpha3beta3 gammadeltaepsilon) are mechanically coupled by the rotation of subunit gamma in the center of the catalytic hexagon of subunits (alphabeta)3 in F1. ATP synthase is the smallest rotatory engine in nature. With respect to the headpiece alone, it probably operates with three steps. Partial structures of six out of its at least eight different subunits have been published and a 3-dimensional structure is available for the assembly (alphabeta)3gamma. In this article, we review the available structural data and build a tentative topological model of the holoenzyme. The rotor portion is proposed to consist of a wheel of at least nine copies of subunits c, epsilon and a portion of gamma as a spoke, and another portion of gamma as a crankshaft. The stator is made up from a, the transmembrane portion of b2, delta and the catalytic hexagon of (alphabeta)3. As an educated guess, the model may be of heuristic value for ongoing studies on this fascinating electrochemical-to-mechanical-to-chemical transducer. PMID:9323021

  12. Torque generation mechanism of ATP synthase

    NASA Astrophysics Data System (ADS)

    Miller, John; Maric, Sladjana; Scoppa, M.; Cheung, M.

    2010-03-01

    ATP synthase is a rotary motor that produces adenosine triphosphate (ATP), the chemical currency of life. Our proposed electric field driven torque (EFT) model of FoF1-ATP synthase describes how torque, which scales with the number of c-ring proton binding sites, is generated by the proton motive force (pmf) across the mitochondrial inner membrane. When Fo is coupled to F1, the model predicts a critical pmf to drive ATP production. In order to fully understand how the electric field resulting from the pmf drives the c-ring to rotate, it is important to examine the charge distributions in the protonated c-ring and a-subunit containing the proton channels. Our calculations use a self-consistent field approach based on a refinement of reported structural data. The results reveal changes in pKa for key residues on the a-subunit and c-ring, as well as titration curves and protonation state energy diagrams. Health implications will be briefly discussed.

  13. ATP synthases from archaea: the beauty of a molecular motor.

    PubMed

    Grüber, Gerhard; Manimekalai, Malathy Sony Subramanian; Mayer, Florian; Müller, Volker

    2014-06-01

    Archaea live under different environmental conditions, such as high salinity, extreme pHs and cold or hot temperatures. How energy is conserved under such harsh environmental conditions is a major question in cellular bioenergetics of archaea. The key enzymes in energy conservation are the archaeal A1AO ATP synthases, a class of ATP synthases distinct from the F1FO ATP synthase ATP synthase found in bacteria, mitochondria and chloroplasts and the V1VO ATPases of eukaryotes. A1AO ATP synthases have distinct structural features such as a collar-like structure, an extended central stalk, and two peripheral stalks possibly stabilizing the A1AO ATP synthase during rotation in ATP synthesis/hydrolysis at high temperatures as well as to provide the storage of transient elastic energy during ion-pumping and ATP synthesis/-hydrolysis. High resolution structures of individual subunits and subcomplexes have been obtained in recent years that shed new light on the function and mechanism of this unique class of ATP synthases. An outstanding feature of archaeal A1AO ATP synthases is their diversity in size of rotor subunits and the coupling ion used for ATP synthesis with H(+), Na(+) or even H(+) and Na(+) using enzymes. The evolution of the H(+) binding site to a Na(+) binding site and its implications for the energy metabolism and physiology of the cell are discussed.

  14. Ubiquitination and filamentous structure of cytidine triphosphate synthase

    PubMed Central

    Pai, Li-Mei; Wang, Pei-Yu; Lin, Wei-Cheng; Chakraborty, Archan; Yeh, Chau-Ting; Lin, Yu-Hung

    2016-01-01

    ABSTRACT Living organisms respond to nutrient availability by regulating the activity of metabolic enzymes. Therefore, the reversible post-translational modification of an enzyme is a common regulatory mechanism for energy conservation. Recently, cytidine-5′-triphosphate (CTP) synthase was discovered to form a filamentous structure that is evolutionarily conserved from flies to humans. Interestingly, induction of the formation of CTP synthase filament is responsive to starvation or glutamine depletion. However, the biological roles of this structure remain elusive. We have recently shown that ubiquitination regulates CTP synthase activity by promoting filament formation in Drosophila ovaries during endocycles. Intriguingly, although the ubiquitination process was required for filament formation induced by glutamine depletion, CTP synthase ubiquitination was found to be inversely correlated with filament formation in Drosophila and human cell lines. In this article, we discuss the putative dual roles of ubiquitination, as well as its physiological implications, in the regulation of CTP synthase structure. PMID:27116391

  15. Trinuclear Metal Clusters in Catalysis by Terpenoid Synthases.

    PubMed

    Aaron, Julie A; Christianson, David W

    2010-01-01

    Terpenoid synthases are ubiquitous enzymes that catalyze the formation of structurally and stereochemically diverse isoprenoid natural products. Many isoprenoid coupling enzymes and terpenoid cyclases from bacteria, fungi, protists, plants, and animals share the class I terpenoid synthase fold. Despite generally low amino acid sequence identity among these examples, class I terpenoid synthases contain conserved metal binding motifs that coordinate to a trinuclear metal cluster. This cluster not only serves to bind and orient the flexible isoprenoid substrate in the precatalytic Michaelis complex, but it also triggers the departure of the diphosphate leaving group to generate a carbocation that initiates catalysis. Additional conserved hydrogen bond donors assist the metal cluster in this function. Crystal structure analysis reveals that the constellation of three metal ions required for terpenoid synthase catalysis is generally identical among all class I terpenoid synthases of known structure.

  16. Functional Contribution of Chorismate Synthase, Anthranilate Synthase, and Chorismate Mutase to Penetration Resistance in Barley-Powdery Mildew Interactions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant processes resulting from primary or secondary metabolism have been hypothesized to contribute to defense against microbial attack. Barley chorismate synthase (HvCS), anthranilate synthase alpha subunit 2 (HvASa2) and chorismate mutase 1 (HvCM1) occupy pivotal branch-points downstream of the s...

  17. A Comparison of the Effects of Neuronal Nitric Oxide Synthase and Inducible Nitric Oxide Synthase Inhibition on Cartilage Damage

    PubMed Central

    Gokay, Nevzat Selim; Yilmaz, Ibrahim; Demiroz, Ahu Senem; Gokce, Alper; Dervisoglu, Sergülen; Gokay, Banu Vural

    2016-01-01

    The objective of this study was to investigate the effects of selective inducible nitric oxide synthase and neuronal nitric oxide synthase inhibitors on cartilage regeneration. The study involved 27 Wistar rats that were divided into five groups. On Day 1, both knees of 3 rats were resected and placed in a formalin solution as a control group. The remaining 24 rats were separated into 4 groups, and their right knees were surgically damaged. Depending on the groups, the rats were injected with intra-articular normal saline solution, neuronal nitric oxide synthase inhibitor 7-nitroindazole (50 mg/kg), inducible nitric oxide synthase inhibitor amino-guanidine (30 mg/kg), or nitric oxide precursor L-arginine (200 mg/kg). After 21 days, the right and left knees of the rats were resected and placed in formalin solution. The samples were histopathologically examined by a blinded evaluator and scored on 8 parameters. Although selective neuronal nitric oxide synthase inhibition exhibited significant (P = 0.044) positive effects on cartilage regeneration following cartilage damage, it was determined that inducible nitric oxide synthase inhibition had no statistically significant effect on cartilage regeneration. It was observed that the nitric oxide synthase activation triggered advanced arthrosis symptoms, such as osteophyte formation. The fact that selective neuronal nitric oxide synthase inhibitors were observed to have mitigating effects on the severity of the damage may, in the future, influence the development of new agents to be used in the treatment of cartilage disorders. PMID:27382570

  18. Pseudouridines and pseudouridine synthases of the ribosome.

    PubMed

    Ofengand, J; Malhotra, A; Remme, J; Gutgsell, N S; Del Campo, M; Jean-Charles, S; Peil, L; Kaya, Y

    2001-01-01

    psi are ubiquitous in ribosomal RNA. Eubacteria, Archaea, and eukaryotes all contain psi, although their number varies widely, with eukaryotes having the most. The small ribosomal subunit can apparently do without psi in some organisms, even though others have as many as 40 or more. Large subunits appear to need at least one psi but can have up to 50-60. psi is made by a set of site-specific enzymes in eubacteria, and in eukaryotes by a single enzyme complexed with auxiliary proteins and specificity-conferring guide RNAs. The mechanism is not known in Archaea, but based on an analysis of the kinds of psi synthases found in sequenced archaeal genomes, it is likely to involve use of guide RNAs. All psi synthases can be classified into one of four related groups, virtually all of which have a conserved aspartate residue in a conserved sequence motif. The aspartate is essential for psi formation in all twelve synthases examined so far. When the need for psi in E. coli was examined, the only synthase whose absence caused a major decrease in growth rate under normal conditions was RluD, the synthase that makes psi 1911, psi 1915, and psi 1917 in the helix 69 end-loop. This growth defect was the result of a major failure in assembly of the large ribosomal subunit. The defect could be prevented by supplying the rluD structural gene in trans, and also by providing a point mutant gene that made a synthase unable to make psi. Therefore, the RluD synthase protein appears to be directly involved in 50S subunit assembly, possibly as an RNA chaperone, and this activity is independent of its ability to form psi. This result is not without precedent. Depletion of PET56, a 2'-O-methyltransferase specific for G2251 (E. coli numbering) in yeast mitochondria virtually blocks 50S subunit assembly and mitochondrial function (Sirum-Connolly et al. 1995), but the methylation activity of the enzyme is not required (T. Mason, pers. comm.). The absence of FtsJ, a heat shock protein that makes

  19. Hyaluronan synthases and hyaluronidases in nasal polyps.

    PubMed

    Panogeorgou, T; Tserbini, E; Filou, S; Vynios, D H; Naxakis, S S; Papadas, T A; Goumas, P D; Mastronikolis, N S

    2016-07-01

    Nasal polyps (NPs) are benign lesions of nasal and paranasal sinuses mucosa affecting 1-4 % of all adults. Nasal polyposis affects the quality of patient's life as it causes nasal obstruction, postnasal drainage, purulent nasal discharge, hyposmia or anosmia, chronic sinusitis, facial pain and snoring. Without treatment, the disease can alter the craniofacial skeleton in cases of extended growth of polyps. The development of NPs is caused by the hyperplasia of nasal or paranasal sinuses mucosa, and edema of extracellular matrix. This is usually the result of high concentration of high molecular mass hyaluronan (HA) which is either overproduced or accumulated from blood supply. The size of HA presents high diversity and, especially in pathologic conditions, chains of low molecular mass can be observed. In NPs, chains of about 200 kDa have been identified and considered to be responsible for the inflammation. The purpose of the present study was the investigation, in NPs and normal nasal mucosa (NM), of the expression of the wild-type and alternatively spliced forms of hyaluronidases, their immunolocalization, and the expression of HA synthases to examine the isoform(s) responsible for the increased amounts of HA in NPs. Hyaluronidases' presence was examined on mRNA (RT-PCR analysis) and protein (immunohistochemistry) levels. Hyaluronan synthases' presence was examined on mRNA levels. Hyaluronidases were localized in the cytoplasm of epithelial and inflammatory cells, as well as in the matrix. On mRNA level, it was found that hyal-1-wt was decreased in NPs compared to NM and hyal-1-v3, -v4 and -v5 were substantially increased. Moreover, HAS2 and HAS3 were the only hyaluronan synthases detected, the expression of which was almost similar in NPs and NM. Overall, the results of the present study support that hyaluronidases are the main enzymes responsible for the decreased size of hyaluronan observed in NPs; thus they behave as inflammatory agents. Therefore, they

  20. Structure of Aminodeoxychorismate Synthase from Stenotrophomonas maltophilia†

    PubMed Central

    Bera, Asim K.; Atanasova, Vesna; Dhanda, Anjali; Ladner, Jane E.; Parsons, James F.

    2012-01-01

    PabB, aminodeoxychorismate synthase, is the chorismic acid binding component of the heterodimeric PabAB complex that converts chorismic acid to 4-amino-4-deoxychorismate, a precursor of p-aminobenzoate and folic acid in microorganisms. The second component, a glutamine amidotransferase subunit, PabA, generates ammonia that is channeled to the PabB active site where it attacks the C4 carbon of a chorismate derived intermediate that is covalently bound, through C2, to an active site lysine residue. The presence of a PIKGT motif was, until recently, believed to be discriminate PabB enzymes from the closely related enzyme anthranilate synthase, which typically contains a PIAGT active site motif and does not form a covalent enzyme-substrate intermediate with chorismate. A subclass of PabB enzymes that employ an alternative mechanism requiring two equivalents of ammonia from glutamine and that feature a noncovalently bound 2-amino-2-deoxyisochorismate intermediate was recently identified. Here we report the 2.25 Å crystal structure of PabB from the emerging pathogen Stenotrophomonas maltophilia. It is the first reported structure of a PabB that features the PIAGT motif. Surprisingly, no dedicated pabA is evident in the genome of S. maltophilia suggesting that another cellular amidotransferase is able to fulfill the role of PabA in this organism. Evaluation of the ammonia-dependent aminodeoxychorismate synthase activity of S. maltophilia PabB alone revealed that it is virtually inactive. However, in the presence of a heterologous PabA surrogate, typical levels of activity were observed using either glutamine or ammonia as the nitrogen source. Additionally, the structure suggests that a key segment of the polypeptide can remodel itself to interact with a nonspecialized or shared amidotransferase partner in vivo. The structure and mass spectral analysis further suggest that S. maltophilia PabB, like Escherichia coli PabB, binds tryptophan in a vestigial regulatory site

  1. An ACC Oxidase Gene Essential for Cucumber Carpel Development.

    PubMed

    Chen, Huiming; Sun, Jinjing; Li, Shuai; Cui, Qingzhi; Zhang, Huimin; Xin, Fengjiao; Wang, Huaisong; Lin, Tao; Gao, Dongli; Wang, Shenhao; Li, Xia; Wang, Donghui; Zhang, Zhonghua; Xu, Zhihong; Huang, Sanwen

    2016-09-01

    Sex determination in plants gives rise to unisexual flowers that facilitate outcrossing and enhance genetic diversity. In cucumber and melon, ethylene promotes carpel development and arrests stamen development. Five sex-determination genes have been identified, including four encoding 1-aminocyclopropane-1-carboxylate (ACC) synthase that catalyzes the rate-limiting step in ethylene biosynthesis, and a transcription factor gene CmWIP1 that corresponds to the Mendelian locus gynoecious in melon and is a negative regulator of femaleness. ACC oxidase (ACO) converts ACC into ethylene; however, it remains elusive which ACO gene in the cucumber genome is critical for sex determination and how CmWIP1 represses development of female flowers. In this study, we discovered that mutation in an ACO gene, CsACO2, confers androecy in cucumber that bears only male flowers. The mutation disrupts the enzymatic activity of CsACO2, resulting in 50% less ethylene emission from shoot tips. CsACO2 was expressed in the carpel primordia and its expression overlapped with that of CsACS11 in female flowers at key stages for sex determination, presumably providing sufficient ethylene required for proper CsACS2 expression. CmACO3, the ortholog of CsACO2, showed a similar expression pattern in the carpel region, suggesting a conserved function of CsACO2/CmACO3. We demonstrated that CsWIP1, the ortholog of CmWIP1, could directly bind the promoter of CsACO2 and repress its expression. Taken together, we propose a presumably conserved regulatory module consisting of WIP1 transcription factor and ACO controls unisexual flower development in cucumber and melon.

  2. Cadmium-induced ethylene production and responses in Arabidopsis thaliana rely on ACS2 and ACS6 gene expression

    PubMed Central

    2014-01-01

    Background Anthropogenic activities cause metal pollution worldwide. Plants can absorb and accumulate these metals through their root system, inducing stress as a result of excess metal concentrations inside the plant. Ethylene is a regulator of multiple plant processes, and is affected by many biotic and abiotic stresses. Increased ethylene levels have been observed after exposure to excess metals but it remains unclear how the increased ethylene levels are achieved at the molecular level. In this study, the effects of cadmium (Cd) exposure on the production of ethylene and its precursor 1-aminocyclopropane-1-carboxylic acid (ACC), and on the expression of the ACC Synthase (ACS) and ACC Oxidase (ACO) multigene families were investigated in Arabidopsis thaliana. Results Increased ethylene release after Cd exposure was directly measurable in a system using rockwool-cultivated plants; enhanced levels of the ethylene precursor ACC together with higher mRNA levels of ethylene responsive genes: ACO2, ETR2 and ERF1 also indicated increased ethylene production in hydroponic culture. Regarding underlying mechanisms, it was found that the transcript levels of ACO2 and ACO4, the most abundantly expressed members of the ACO multigene family, were increased upon Cd exposure. ACC synthesis is the rate-limiting step in ethylene biosynthesis, and transcript levels of both ACS2 and ACS6 showed the highest increase and became the most abundant isoforms after Cd exposure, suggesting their importance in the Cd-induced increase of ethylene production. Conclusions Cadmium induced the biosynthesis of ACC and ethylene in Arabidopsis thaliana plants mainly via the increased expression of ACS2 and ACS6. This was confirmed in the acs2-1acs6-1 double knockout mutants, which showed a decreased ethylene production, positively affecting leaf biomass and resulting in a delayed induction of ethylene responsive gene expressions without significant differences in Cd contents between wild-type and

  3. Antiphase Light and Temperature Cycles Affect PHYTOCHROME B-Controlled Ethylene Sensitivity and Biosynthesis, Limiting Leaf Movement and Growth of Arabidopsis1[C][W

    PubMed Central

    Bours, Ralph; van Zanten, Martijn; Pierik, Ronald; Bouwmeester, Harro; van der Krol, Alexander

    2013-01-01

    In the natural environment, days are generally warmer than the night, resulting in a positive day/night temperature difference (+DIF). Plants have adapted to these conditions, and when exposed to antiphase light and temperature cycles (cold photoperiod/warm night [−DIF]), most species exhibit reduced elongation growth. To study the physiological mechanism of how light and temperature cycles affect plant growth, we used infrared imaging to dissect growth dynamics under +DIF and −DIF in the model plant Arabidopsis (Arabidopsis thaliana). We found that −DIF altered leaf growth patterns, decreasing the amplitude and delaying the phase of leaf movement. Ethylene application restored leaf growth in −DIF conditions, and constitutive ethylene signaling mutants maintain robust leaf movement amplitudes under −DIF, indicating that ethylene signaling becomes limiting under these conditions. In response to −DIF, the phase of ethylene emission advanced 2 h, but total ethylene emission was not reduced. However, expression analysis on members of the 1-aminocyclopropane-1-carboxylic acid (ACC) synthase ethylene biosynthesis gene family showed that ACS2 activity is specifically suppressed in the petiole region under −DIF conditions. Indeed, petioles of plants under −DIF had reduced ACC content, and application of ACC to the petiole restored leaf growth patterns. Moreover, acs2 mutants displayed reduced leaf movement under +DIF, similar to wild-type plants under −DIF. In addition, we demonstrate that the photoreceptor PHYTOCHROME B restricts ethylene biosynthesis and constrains the −DIF-induced phase shift in rhythmic growth. Our findings provide a mechanistic insight into how fluctuating temperature cycles regulate plant growth. PMID:23979970

  4. Shedding light on ethylene metabolism in higher plants

    PubMed Central

    Rodrigues, Maria A.; Bianchetti, Ricardo E.; Freschi, Luciano

    2014-01-01

    Ethylene metabolism in higher plants is regulated by a wide array of endogenous and environmental factors. During most physiological processes, ethylene levels are mainly determined by a strict control of the rate-limiting biosynthetic steps responsible for the production of 1-aminocyclopropane-1-carboxylic acid (ACC) and its subsequent conversion to ethylene. Responsible for these reactions, the key enzymes ACC synthase and ACC oxidase are encoded by multigene families formed by members that can be differentially regulated at the transcription and post-translational levels by specific developmental and environmental signals. Among the wide variety of environmental cues controlling plant ethylene production, light quality, duration, and intensity have consistently been demonstrated to influence the metabolism of this plant hormone in diverse plant tissues, organs, and species. Although still not completely elucidated, the mechanisms underlying the interaction between light signal transduction and ethylene evolution appears to involve a complex network that includes central transcription factors connecting multiple signaling pathways, which can be reciprocally modulated by ethylene itself, other phytohormones, and specific light wavelengths. Accumulating evidence has indicated particular photoreceptors as essential mediators in light-induced signaling cascades affecting ethylene levels. Therefore, this review specifically focuses on discussing the current knowledge of the potential molecular mechanisms implicated in the light-induced responses affecting ethylene metabolism during the regulation of developmental and metabolic plant responses. Besides presenting the state of the art in this research field, some overlooked mechanisms and future directions to elucidate the exact nature of the light–ethylene interplay in higher plants will also be compiled and discussed. PMID:25520728

  5. Ethylene Inhibits Root Elongation during Alkaline Stress through AUXIN1 and Associated Changes in Auxin Accumulation1

    PubMed Central

    Li, Juan; Xu, Heng-Hao; Liu, Wen-Cheng; Zhang, Xiao-Wei; Lu, Ying-Tang

    2015-01-01

    Soil alkalinity causes major reductions in yield and quality of crops worldwide. The plant root is the first organ sensing soil alkalinity, which results in shorter primary roots. However, the mechanism underlying alkaline stress-mediated inhibition of root elongation remains to be further elucidated. Here, we report that alkaline conditions inhibit primary root elongation of Arabidopsis (Arabidopsis thaliana) seedlings by reducing cell division potential in the meristem zones and that ethylene signaling affects this process. The ethylene perception antagonist silver (Ag+) alleviated the inhibition of root elongation by alkaline stress. Moreover, the ethylene signaling mutants ethylene response1-3 (etr1-3), ethylene insensitive2 (ein2), and ein3-1 showed less reduction in root length under alkaline conditions, indicating a reduced sensitivity to alkalinity. Ethylene biosynthesis also was found to play a role in alkaline stress-mediated root inhibition; the ethylene overproducer1-1 mutant, which overproduces ethylene because of increased stability of 1-AMINOCYCLOPROPANE-1-CARBOXYLIC ACID SYNTHASE5, was hypersensitive to alkaline stress. In addition, the ethylene biosynthesis inhibitor cobalt (Co2+) suppressed alkaline stress-mediated inhibition of root elongation. We further found that alkaline stress caused an increase in auxin levels by promoting expression of auxin biosynthesis-related genes, but the increase in auxin levels was reduced in the roots of the etr1-3 and ein3-1 mutants and in Ag+/Co2+-treated wild-type plants. Additional genetic and physiological data showed that AUXIN1 (AUX1) was involved in alkaline stress-mediated inhibition of root elongation. Taken together, our results reveal that ethylene modulates alkaline stress-mediated inhibition of root growth by increasing auxin accumulation by stimulating the expression of AUX1 and auxin biosynthesis-related genes. PMID:26109425

  6. Role for the banana AGAMOUS-like gene MaMADS7 in regulation of fruit ripening and quality.

    PubMed

    Liu, Juhua; Liu, Lin; Li, Yujia; Jia, Caihong; Zhang, Jianbin; Miao, Hongxia; Hu, Wei; Wang, Zhuo; Xu, Biyu; Jin, Zhiqiang

    2015-11-01

    MADS-box transcription factors play important roles in organ development. In plants, most studies on MADS-box genes have mainly focused on flower development and only a few concerned fruit development and ripening. A new MADS-box gene named MaMADS7 was isolated from banana fruit by rapid amplification of cDNA ends (RACE) based on a MADS-box fragment obtained from a banana suppression subtractive hybridization (SSH) cDNA library. MaMADS7 is an AGAMOUS-like MADS-box gene that is preferentially expressed in the ovaries and fruits and in tobacco its protein product localizes to the nucleus. This study found that MaMADS7 expression can be induced by exogenous ethylene. Ectopic expression of MaMADS7 in tomato resulted in broad ripening phenotypes. The expression levels of seven ripening and quality-related genes, ACO1, ACS2, E4, E8, PG, CNR and PSY1 in MaMADS7 transgenic tomato fruits were greatly increased while the expression of the AG-like MADS-box gene TAGL1 was suppressed. Compared with the control, the contents of β-carotene, lycopene, ascorbic acid and organic acid in transformed tomato fruits were increased, while the contents of glucose and fructose were slightly decreased. MaMADS7 interacted with banana 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase gene 1 (MaACO1) and tomato phytoene synthase gene (LePSY1) promoters. Our results indicated that MaMADS7 plays an important role in initiating endogenous ethylene biosynthesis and fruit ripening. PMID:25980771

  7. Ethylene is involved in strawberry fruit ripening in an organ-specific manner

    PubMed Central

    Valpuesta, Victoriano

    2013-01-01

    The fruit of the strawberry Fragaria×ananassa has traditionally been classified as non-climacteric because its ripening process is not governed by ethylene. However, previous studies have reported the timely endogenous production of minor amounts of ethylene by the fruit as well as the differential expression of genes of the ethylene synthesis, reception, and signalling pathways during fruit development. Mining of the Fragaria vesca genome allowed for the identification of the two main ethylene biosynthetic genes, 1-aminocyclopropane-1-carboxylic acid (ACC) synthase and ACC oxidase. Their expression pattern during fruit ripening was found to be stage and organ (achene or receptacle) specific. Strawberry plants with altered sensitivity to ethylene could be employed to unravel the role of ethylene in the ripening process of the strawberry fruit. To this end, independent lines of transgenic strawberry plants were generated that overexpress the Arabidopsis etr1-1 mutant ethylene receptor, which is a dominant negative allele, causing diminished sensitivity to ethylene. Genes involved in ethylene perception as well as in its related downstream processes, such as flavonoid biosynthesis, pectin metabolism, and volatile biosynthesis, were differently expressed in two transgenic tissues, the achene and the receptacle. The different transcriptional responsiveness of the achene and the receptacle to ethylene was also revealed by the metabolic profiling of the primary metabolites in these two organs. The free amino acid content was higher in the transgenic lines compared with the control in the mature achene, while glucose and fructose, and citric and malic acids were at lower levels. In the receptacle, the most conspicuous change in the transgenic lines was the depletion of the tricarboxylic acid cycle intermediates at the white stage of development, most probably as a consequence of diminished respiration. The results are discussed in the context of the importance of

  8. Transcriptome analysis of Japanese pear (Pyrus pyrifolia Nakai) flower buds transitioning through endodormancy.

    PubMed

    Bai, Songling; Saito, Takanori; Sakamoto, Daisuke; Ito, Akiko; Fujii, Hiroshi; Moriguchi, Takaya

    2013-07-01

    The transcriptomes of endodormant and ecodormant Japanese pear (Pyrus pyrifolia Nakai 'Kosui') flower buds were analyzed using RNA-seq technology and compared. Among de novo assembly of 114,191 unigenes, 76,995 unigenes were successfully annotated by BLAST searches against various databases. Gene Ontology (GO) enrichment analysis revealed that oxidoreductases were enriched in the molecular function category, a result consistent with previous observations of notable changes in hydrogen peroxide concentration during endodormancy release. In the GO categories related to biological process, the abundance of DNA methylation-related gene transcripts also significantly changed during endodormancy release, indicating the involvement of epigenetic regulation. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis also showed the changes in transcript abundance of genes involved in the metabolism of various phytohormones. Genes for both ABA and gibberellin biosynthesis were down-regulated, whereas the genes encoding their degradation enzymes were up-regulated during endodormancy release. In the ethylene pathway, 1-aminocyclopropane-1-carboxylate synthase (ACS), a gene encoding the rate-limiting enzyme for ethylene biosynthesis, was induced towards endodormancy release. All of these results indicated the involvement of phytohormones in endodormancy release. Furthermore, the expression of dormancy-associated MADS-box (DAM) genes was down-regulated concomitant with endodormancy release, although changes in the abundance of these gene transcripts were not as significant as those identified by transcriptome analysis. Consequently, characterization of the Japanese pear transcriptome during the transition from endormancy to ecodormancy will provide researchers with useful information for data mining and will facilitate further experiments on endodormancy especially in rosaceae fruit trees.

  9. Compression Wood-Responsive Proteins in Developing Xylem of Maritime Pine (Pinus pinaster Ait.)12

    PubMed Central

    Plomion, Christophe; Pionneau, Cédric; Brach, Jean; Costa, Paulo; Baillères, Henri

    2000-01-01

    When a conifer shoot is displaced from its vertical position, compression wood (CW) is formed on the under side and can eventually return the shoot to its original position. Changes in cell wall structure and chemistry associated with CW are likely to result from differential gene/protein expression. Two-dimensional polyacrylamide gel electrophoresis of differentiating xylem proteins was combined with the physical characterization of wooden samples to identify and characterize CW-responsive proteins. Differentiating xylem was harvested from a 22-year-old crooked maritime pine (Pinus pinaster Ait.) tree. Protein extracted from different samples were revealed by high-resolution silver stained two-dimensional polyacrylamide gel electrophoresis and analyzed with a computer-assisted system for single spot quantification. Growth strain (GS) measurements allowed xylem samples to be classified quantitatively from normal wood to CW. Regression of lignin and cellulose content on GS showed that an increase in the percentage of lignin and a decrease of the percentage of cellulose corresponded to increasing GS values, i.e. CW. Of the 137 studied spots, 19% were significantly associated with GS effect. Up-regulated proteins included 1-aminocyclopropane-1-carboxylate oxidase (an ethylene forming enzyme), a putative transcription factor, two lignification genes (caffeic O-methyltransferase and caffeoyl CoA-O-methyltransferase), members of the S-adenosyl-l-methionine-synthase gene family, and enzymes involved in nitrogen and carbon assimilation (glutamine synthetase and fructokinase). A clustered correlation analysis was performed to study simultaneously protein expression along a gradient of gravistimulated stressed xylem tissue. Proteins were found to form “expression clusters” that could identify: (a) Gene product under similar control mechanisms, (b) partner proteins, or (c) functional groups corresponding to specialized pathways. The possibility of obtaining regulatory

  10. The role of ABA in triggering ethylene biosynthesis and ripening of tomato fruit

    PubMed Central

    Zhang, Mei; Yuan, Bing; Leng, Ping

    2009-01-01

    In order to understand more details about the role of abscisic acid (ABA) in fruit ripening and senescence of tomato, two cDNAs (LeNCED1 and LeNCED2) which encode 9-cis-epoxycarotenoid dioxygenase (NCED) as a key enzyme in ABA biosynthesis, two cDNAs (LeACS2 and LeACS4) which encode 1-aminocyclopropane-1-carboxylic acid (ACC) synthase, and one cDNA (LeACO1) which encodes ACC oxidase involved in ethylene biosynthesis were cloned from tomato fruit using a reverse transcription-PCR (RT-PCR) approach. The relationship between ABA and ethylene during ripening was also investigated. Among six sampling times in tomato fruits, the LeNCED1 gene was highly expressed only at the breaker stage when the ABA content becomes high. After this, the LeACS2, LeACS4, and LeACO1 genes were expressed with some delay. The change in pattern of ACO activity was in accordance with ethylene production reaching its peak at the pink stage. The maximum ABA content preceded ethylene production in both the seeds and the flesh. The peak value of ABA, ACC, and ACC oxidase activity, and ethylene production all started to increase earlier in seeds than in flesh tissues, although they occurred at different ripening stages. Exogenous ABA treatment increased the ABA content in both flesh and seed, inducing the expression of both ACS and ACO genes, and promoting ethylene synthesis and fruit ripening, while treatment with fluridone or nordihydroguaiaretic acid (NDGA) inhibited them, delaying fruit ripening and softening. Based on the results obtained in this study, it was concluded that LeNCED1 initiates ABA biosynthesis at the onset of fruit ripening, and might act as an original inducer, and ABA accumulation might play a key role in the regulation of ripeness and senescence of tomato fruit. PMID:19246595

  11. Short-term complete submergence of rice at the tillering stage increases yield.

    PubMed

    Zhang, Yajie; Wang, Zhensheng; Li, Lei; Zhou, Qun; Xiao, Yao; Wei, Xing; Zhou, Mingyao

    2015-01-01

    Flooding is a major threat to agricultural production. Most studies have focused on the lower water storage limit in rice fields, whereas few studies have examined the upper water storage limit. This study aimed to explore the effect of waterlogging at the rice tillering stage on rice growth and yield. The early-ripening late japonica variety Yangjing 4227 was selected for this study. The treatments included different submergence depths (submergence depth/plant height: 1/2 (waist submergence), 2/3 (neck submergence), and 1/1 (complete submergence)) and durations (1, 3, and 5 d). The control group was treated with the conventional alternation of drying and wetting. The effects of waterlogging at the tillering stage on root characteristics, dry matter production, nitrogen and phosphorus accumulation, yield, yield components, and 1-aminocyclopropane-1-carboxylic acid synthase (ACS) gene expression were explored. Compared with the control group, the 1/1 group showed significant increases in yield, seed-setting rate, photosynthetically efficient leaf area, and OS-ACS3 gene expression after 1 d of submergence. The grain number per panicle, dry weight of the aboveground and belowground parts, and number of adventitious roots also increased. Correlation analysis revealed a significant positive correlation between the panicle number and nitrogen content; however, no significant correlation was found for phosphorus content. If a decrease in rice yield of less than 10% is acceptable, half, 2/3, and complete submergence of the plants can be performed at the tillering stage for 1-3 d; this treatment will increase the space available for rice field water management/control and will improve rainfall resource utilization. PMID:26001084

  12. An ACC Oxidase Gene Essential for Cucumber Carpel Development.

    PubMed

    Chen, Huiming; Sun, Jinjing; Li, Shuai; Cui, Qingzhi; Zhang, Huimin; Xin, Fengjiao; Wang, Huaisong; Lin, Tao; Gao, Dongli; Wang, Shenhao; Li, Xia; Wang, Donghui; Zhang, Zhonghua; Xu, Zhihong; Huang, Sanwen

    2016-09-01

    Sex determination in plants gives rise to unisexual flowers that facilitate outcrossing and enhance genetic diversity. In cucumber and melon, ethylene promotes carpel development and arrests stamen development. Five sex-determination genes have been identified, including four encoding 1-aminocyclopropane-1-carboxylate (ACC) synthase that catalyzes the rate-limiting step in ethylene biosynthesis, and a transcription factor gene CmWIP1 that corresponds to the Mendelian locus gynoecious in melon and is a negative regulator of femaleness. ACC oxidase (ACO) converts ACC into ethylene; however, it remains elusive which ACO gene in the cucumber genome is critical for sex determination and how CmWIP1 represses development of female flowers. In this study, we discovered that mutation in an ACO gene, CsACO2, confers androecy in cucumber that bears only male flowers. The mutation disrupts the enzymatic activity of CsACO2, resulting in 50% less ethylene emission from shoot tips. CsACO2 was expressed in the carpel primordia and its expression overlapped with that of CsACS11 in female flowers at key stages for sex determination, presumably providing sufficient ethylene required for proper CsACS2 expression. CmACO3, the ortholog of CsACO2, showed a similar expression pattern in the carpel region, suggesting a conserved function of CsACO2/CmACO3. We demonstrated that CsWIP1, the ortholog of CmWIP1, could directly bind the promoter of CsACO2 and repress its expression. Taken together, we propose a presumably conserved regulatory module consisting of WIP1 transcription factor and ACO controls unisexual flower development in cucumber and melon. PMID:27403533

  13. Contribution of Ethylene Biosynthesis for Resistance to Blast Fungus Infection in Young Rice Plants1[OA

    PubMed Central

    Iwai, Takayoshi; Miyasaka, Atsushi; Seo, Shigemi; Ohashi, Yuko

    2006-01-01

    The role of ethylene (ET) in resistance to infection with blast fungus (Magnaporthe grisea) in rice (Oryza sativa) is poorly understood. To study it, we quantified ET levels after inoculation, using young rice plants at the four-leaf stage of rice cv Nipponbare (wild type) and its isogenic plant (IL7), which contains the Pi-i resistance gene to blast fungus race 003. Small necrotic lesions by hypersensitive reaction (HR) were formed at 42 to 72 h postinoculation (hpi) in resistant IL7 leaves, and whitish expanding lesions at 96 hpi in susceptible wild-type leaves. Notable was the enhanced ET emission at 48 hpi accompanied by increased 1-aminocyclopropane-1-carboxylic acid (ACC) levels and highly elevated ACC oxidase (ACO) activity in IL7 leaves, whereas only an enhanced ACC increase at 96 hpi in wild-type leaves. Among six ACC synthase (ACS) and seven ACO genes found in the rice genome, OsACS2 was transiently expressed at 48 hpi in IL7 and at 96 hpi in wild type, and OsACO7 was expressed at 48 hpi in IL7. Treatment with an inhibitor for ACS, aminooxyacetic acid, suppressed enhanced ET emission at 48 hpi in IL7, resulting in expanding lesions instead of HR lesions. Exogenously supplied ACC compromised the aminooxyacetic acid-induced breakdown of resistance in IL7, and treatment with 1-methylcyclopropene and silver thiosulfate, inhibitors of ET action, did not suppress resistance. These findings suggest the importance of ET biosynthesis and, consequently, the coproduct, cyanide, for HR-accompanied resistance to blast fungus in young rice plants and the contribution of induced OsACS2 and OsACO7 gene expression to it. PMID:17012402

  14. Coupling of Physiological and Proteomic Analysis to Understand the Ethylene- and Chilling-Induced Kiwifruit Ripening Syndrome.

    PubMed

    Minas, Ioannis S; Tanou, Georgia; Karagiannis, Evangelos; Belghazi, Maya; Molassiotis, Athanassios

    2016-01-01

    Kiwifruit [Actinidia deliciosa (A. Chev.) C.F. Liang et A.R. Ferguson, cv. "Hayward"] is classified as climacteric fruit and the initiation of endogenous ethylene production following harvest is induced by exogenous ethylene or chilling exposure. To understand the biological basis of this "dilemma," kiwifruit ripening responses were characterized at 20°C following treatments with exogenous ethylene (100 μL L(-1), 20°C, 24 h) or/and chilling temperature (0°C, 10 days). All treatments elicited kiwifruit ripening and induced softening and endogenous ethylene biosynthesis, as determined by 1-aminocyclopropane-1-carboxylic acid (ACC) content and ACC synthase (ACS) and ACC oxidase (ACO) enzyme activities after 10 days of ripening at 20°C. Comparative proteomic analysis using two-dimensional gel electrophoresis (2DE-PAGE) and nanoscale liquid chromatography coupled to tandem mass spectrometry (nanoLC-MS/MS) revealed 81 kiwifruit proteins associated with ripening. Thirty-one kiwifruit proteins were identified as commonly regulated by the three treatments accompanied by dynamic changes of 10 proteins specific to exogenous ethylene, 2 to chilling treatment, and 12 to their combination. Ethylene and/or chilling-responsive proteins were mainly involved in disease/defense, energy, protein destination/storage, and cell structure/cell wall. Interactions between the identified proteins were demonstrated by bioinformatics analysis, allowing a more complete insight into biological pathways and molecular functions affected by ripening. The present approach provides a quantitative basis for understanding the ethylene- and chilling-induced kiwifruit ripening and climacteric fruit ripening in general.

  15. Coupling of Physiological and Proteomic Analysis to Understand the Ethylene- and Chilling-Induced Kiwifruit Ripening Syndrome.

    PubMed

    Minas, Ioannis S; Tanou, Georgia; Karagiannis, Evangelos; Belghazi, Maya; Molassiotis, Athanassios

    2016-01-01

    Kiwifruit [Actinidia deliciosa (A. Chev.) C.F. Liang et A.R. Ferguson, cv. "Hayward"] is classified as climacteric fruit and the initiation of endogenous ethylene production following harvest is induced by exogenous ethylene or chilling exposure. To understand the biological basis of this "dilemma," kiwifruit ripening responses were characterized at 20°C following treatments with exogenous ethylene (100 μL L(-1), 20°C, 24 h) or/and chilling temperature (0°C, 10 days). All treatments elicited kiwifruit ripening and induced softening and endogenous ethylene biosynthesis, as determined by 1-aminocyclopropane-1-carboxylic acid (ACC) content and ACC synthase (ACS) and ACC oxidase (ACO) enzyme activities after 10 days of ripening at 20°C. Comparative proteomic analysis using two-dimensional gel electrophoresis (2DE-PAGE) and nanoscale liquid chromatography coupled to tandem mass spectrometry (nanoLC-MS/MS) revealed 81 kiwifruit proteins associated with ripening. Thirty-one kiwifruit proteins were identified as commonly regulated by the three treatments accompanied by dynamic changes of 10 proteins specific to exogenous ethylene, 2 to chilling treatment, and 12 to their combination. Ethylene and/or chilling-responsive proteins were mainly involved in disease/defense, energy, protein destination/storage, and cell structure/cell wall. Interactions between the identified proteins were demonstrated by bioinformatics analysis, allowing a more complete insight into biological pathways and molecular functions affected by ripening. The present approach provides a quantitative basis for understanding the ethylene- and chilling-induced kiwifruit ripening and climacteric fruit ripening in general. PMID:26913040

  16. Short-term complete submergence of rice at the tillering stage increases yield.

    PubMed

    Zhang, Yajie; Wang, Zhensheng; Li, Lei; Zhou, Qun; Xiao, Yao; Wei, Xing; Zhou, Mingyao

    2015-01-01

    Flooding is a major threat to agricultural production. Most studies have focused on the lower water storage limit in rice fields, whereas few studies have examined the upper water storage limit. This study aimed to explore the effect of waterlogging at the rice tillering stage on rice growth and yield. The early-ripening late japonica variety Yangjing 4227 was selected for this study. The treatments included different submergence depths (submergence depth/plant height: 1/2 (waist submergence), 2/3 (neck submergence), and 1/1 (complete submergence)) and durations (1, 3, and 5 d). The control group was treated with the conventional alternation of drying and wetting. The effects of waterlogging at the tillering stage on root characteristics, dry matter production, nitrogen and phosphorus accumulation, yield, yield components, and 1-aminocyclopropane-1-carboxylic acid synthase (ACS) gene expression were explored. Compared with the control group, the 1/1 group showed significant increases in yield, seed-setting rate, photosynthetically efficient leaf area, and OS-ACS3 gene expression after 1 d of submergence. The grain number per panicle, dry weight of the aboveground and belowground parts, and number of adventitious roots also increased. Correlation analysis revealed a significant positive correlation between the panicle number and nitrogen content; however, no significant correlation was found for phosphorus content. If a decrease in rice yield of less than 10% is acceptable, half, 2/3, and complete submergence of the plants can be performed at the tillering stage for 1-3 d; this treatment will increase the space available for rice field water management/control and will improve rainfall resource utilization.

  17. Role for the banana AGAMOUS-like gene MaMADS7 in regulation of fruit ripening and quality.

    PubMed

    Liu, Juhua; Liu, Lin; Li, Yujia; Jia, Caihong; Zhang, Jianbin; Miao, Hongxia; Hu, Wei; Wang, Zhuo; Xu, Biyu; Jin, Zhiqiang

    2015-11-01

    MADS-box transcription factors play important roles in organ development. In plants, most studies on MADS-box genes have mainly focused on flower development and only a few concerned fruit development and ripening. A new MADS-box gene named MaMADS7 was isolated from banana fruit by rapid amplification of cDNA ends (RACE) based on a MADS-box fragment obtained from a banana suppression subtractive hybridization (SSH) cDNA library. MaMADS7 is an AGAMOUS-like MADS-box gene that is preferentially expressed in the ovaries and fruits and in tobacco its protein product localizes to the nucleus. This study found that MaMADS7 expression can be induced by exogenous ethylene. Ectopic expression of MaMADS7 in tomato resulted in broad ripening phenotypes. The expression levels of seven ripening and quality-related genes, ACO1, ACS2, E4, E8, PG, CNR and PSY1 in MaMADS7 transgenic tomato fruits were greatly increased while the expression of the AG-like MADS-box gene TAGL1 was suppressed. Compared with the control, the contents of β-carotene, lycopene, ascorbic acid and organic acid in transformed tomato fruits were increased, while the contents of glucose and fructose were slightly decreased. MaMADS7 interacted with banana 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase gene 1 (MaACO1) and tomato phytoene synthase gene (LePSY1) promoters. Our results indicated that MaMADS7 plays an important role in initiating endogenous ethylene biosynthesis and fruit ripening.

  18. Ethylene Inhibits Root Elongation during Alkaline Stress through AUXIN1 and Associated Changes in Auxin Accumulation.

    PubMed

    Li, Juan; Xu, Heng-Hao; Liu, Wen-Cheng; Zhang, Xiao-Wei; Lu, Ying-Tang

    2015-08-01

    Soil alkalinity causes major reductions in yield and quality of crops worldwide. The plant root is the first organ sensing soil alkalinity, which results in shorter primary roots. However, the mechanism underlying alkaline stress-mediated inhibition of root elongation remains to be further elucidated. Here, we report that alkaline conditions inhibit primary root elongation of Arabidopsis (Arabidopsis thaliana) seedlings by reducing cell division potential in the meristem zones and that ethylene signaling affects this process. The ethylene perception antagonist silver (Ag(+)) alleviated the inhibition of root elongation by alkaline stress. Moreover, the ethylene signaling mutants ethylene response1-3 (etr1-3), ethylene insensitive2 (ein2), and ein3-1 showed less reduction in root length under alkaline conditions, indicating a reduced sensitivity to alkalinity. Ethylene biosynthesis also was found to play a role in alkaline stress-mediated root inhibition; the ethylene overproducer1-1 mutant, which overproduces ethylene because of increased stability of 1-AMINOCYCLOPROPANE-1-CARBOXYLIC ACID SYNTHASE5, was hypersensitive to alkaline stress. In addition, the ethylene biosynthesis inhibitor cobalt (Co(2+)) suppressed alkaline stress-mediated inhibition of root elongation. We further found that alkaline stress caused an increase in auxin levels by promoting expression of auxin biosynthesis-related genes, but the increase in auxin levels was reduced in the roots of the etr1-3 and ein3-1 mutants and in Ag(+)/Co(2+)-treated wild-type plants. Additional genetic and physiological data showed that AUXIN1 (AUX1) was involved in alkaline stress-mediated inhibition of root elongation. Taken together, our results reveal that ethylene modulates alkaline stress-mediated inhibition of root growth by increasing auxin accumulation by stimulating the expression of AUX1 and auxin biosynthesis-related genes.

  19. Red light regulation of ethylene biosynthesis and gravitropism in etiolated pea stems

    NASA Technical Reports Server (NTRS)

    Steed, C. L.; Taylor, L. K.; Harrison, M. A.

    2004-01-01

    During gravitropism, the accumulation of auxin in the lower side of the stem causes increased growth and the subsequent curvature, while the gaseous hormone ethylene plays a modulating role in regulating the kinetics of growth asymmetries. Light also contributes to the control of gravitropic curvature, potentially through its interaction with ethylene biosynthesis. In this study, red-light pulse treatment of etiolated pea epicotyls was evaluated for its effect on ethylene biosynthesis during gravitropic curvature. Ethylene biosynthesis analysis included measurements of ethylene; the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC); malonyl-conjugated ACC (MACC); and expression levels of pea ACC oxidase (Ps-ACO1) and ACC synthase (Ps-ACS1, Ps-ACS2) genes by reverse transcriptase-polymerase chain reaction analysis. Red-pulsed seedlings were given a 6 min pulse of 11 micromoles m-2 s-1 red-light 15 h prior to horizontal reorientation for consistency with the timeline of red-light inhibition of ethylene production. Red-pulse treatment significantly reduced ethylene production and MACC levels in epicotyl tissue. However, there was no effect of red-pulse treatment on ACC level, or expression of ACS or ACO genes. During gravitropic curvature, ethylene production increased from 60 to 120 min after horizontal placement in both control and red-pulsed epicotyls. In red-pulsed tissues, ACC levels increased by 120 min after horizontal reorientation, accompanied by decreased MACC levels in the lower portion of the epicotyl. Overall, our results demonstrate that ethylene production in etiolated epicotyls increases after the initiation of curvature. This ethylene increase may inhibit cell growth in the lower portion of the epicotyl and contribute to tip straightening and reduced overall curvature observed after the initial 60 min of curvature in etiolated pea epicotyls.

  20. Increased levels of IAA are required for system 2 ethylene synthesis causing fruit softening in peach (Prunus persica L. Batsch).

    PubMed

    Tatsuki, Miho; Nakajima, Naoko; Fujii, Hiroshi; Shimada, Takehiko; Nakano, Michiharu; Hayashi, Ken-ichiro; Hayama, Hiroko; Yoshioka, Hirohito; Nakamura, Yuri

    2013-02-01

    The fruit of melting-flesh peach (Prunus persica L. Batsch) cultivars produce high levels of ethylene caused by high expression of PpACS1 (an isogene of 1-aminocyclopropane-1-carboxylic acid synthase), resulting in rapid fruit softening at the late-ripening stage. In contrast, the fruit of stony hard peach cultivars do not soften and produce little ethylene due to low expression of PpACS1. To elucidate the mechanism for suppressing PpACS1 expression in stony hard peaches, a microarray analysis was performed. Several genes that displayed similar expression patterns as PpACS1 were identified and shown to be indole-3-acetic acid (IAA)-inducible genes (Aux/IAA, SAUR). That is, expression of IAA-inducible genes increased at the late-ripening stage in melting flesh peaches; however, these transcripts were low in mature fruit of stony hard peaches. The IAA concentration increased suddenly just before harvest time in melting flesh peaches exactly coinciding with system 2 ethylene production. In contrast, the IAA concentration did not increase in stony hard peaches. Application of 1-naphthalene acetic acid, a synthetic auxin, to stony hard peaches induced a high level of PpACS1 expression, a large amount of ethylene production and softening. Application of an anti-auxin, α-(phenylethyl-2-one)-IAA, to melting flesh peaches reduced levels of PpACS1 expression and ethylene production. These observations indicate that suppression of PpACS1 expression at the late-ripening stage of stony hard peach may result from a low level of IAA and that a high concentration of IAA is required to generate a large amount of system 2 ethylene in peaches.

  1. Coupling of Physiological and Proteomic Analysis to Understand the Ethylene- and Chilling-Induced Kiwifruit Ripening Syndrome

    PubMed Central

    Minas, Ioannis S.; Tanou, Georgia; Karagiannis, Evangelos; Belghazi, Maya; Molassiotis, Athanassios

    2016-01-01

    Kiwifruit [Actinidia deliciosa (A. Chev.) C.F. Liang et A.R. Ferguson, cv. “Hayward”] is classified as climacteric fruit and the initiation of endogenous ethylene production following harvest is induced by exogenous ethylene or chilling exposure. To understand the biological basis of this “dilemma,” kiwifruit ripening responses were characterized at 20°C following treatments with exogenous ethylene (100 μL L−1, 20°C, 24 h) or/and chilling temperature (0°C, 10 days). All treatments elicited kiwifruit ripening and induced softening and endogenous ethylene biosynthesis, as determined by 1-aminocyclopropane-1-carboxylic acid (ACC) content and ACC synthase (ACS) and ACC oxidase (ACO) enzyme activities after 10 days of ripening at 20°C. Comparative proteomic analysis using two-dimensional gel electrophoresis (2DE-PAGE) and nanoscale liquid chromatography coupled to tandem mass spectrometry (nanoLC-MS/MS) revealed 81 kiwifruit proteins associated with ripening. Thirty-one kiwifruit proteins were identified as commonly regulated by the three treatments accompanied by dynamic changes of 10 proteins specific to exogenous ethylene, 2 to chilling treatment, and 12 to their combination. Ethylene and/or chilling-responsive proteins were mainly involved in disease/defense, energy, protein destination/storage, and cell structure/cell wall. Interactions between the identified proteins were demonstrated by bioinformatics analysis, allowing a more complete insight into biological pathways and molecular functions affected by ripening. The present approach provides a quantitative basis for understanding the ethylene- and chilling-induced kiwifruit ripening and climacteric fruit ripening in general. PMID:26913040

  2. 2,4-dichlorophenoxyacetic acid-induced leaf senescence in mung bean (Vigna radiata L. Wilczek) and senescence inhibition by co-treatment with silver nanoparticles.

    PubMed

    Karuppanapandian, Thirupathi; Wang, Hong Wei; Prabakaran, Natarajan; Jeyalakshmi, Kandhavelu; Kwon, Mi; Manoharan, Kumariah; Kim, Wook

    2011-02-01

    Leaf senescence induced by 2,4-dichlorophenoxyacetic acid (2,4-D) and senescence inhibition caused by supplementation with silver (Ag(+)) ions in the form of silver nitrate (AgNO(3)) or silver nanoparticles (AgNPs) were investigated in 8-day-old mung bean (Vigna radiata L. Wilczek) seedlings. Inhibition of root and shoot elongation were observed in mung bean seedlings treated with 500μM 2,4-D. Concomitantly, the activity of 1-aminocyclopropane-1-carboxylic acid synthase was significantly induced in leaf tissue. Leaf senescence induced by 2,4-D was closely associated with lipid peroxidation as well as increased levels of cytotoxic hydrogen peroxide (H(2)O(2)) and superoxide radicals (O(2)(·-)). Despite decreased catalase activity, the activities of peroxidase, superoxide dismutase, monodehydroascorbate reductase, dehydroascorbate reductase, and glutathione reductase were increased during 2,4-D-induced leaf senescence. Further, the levels of reduced ascorbate, oxidized ascorbate, and reduced glutathione were markedly decreased, whereas the level of oxidized glutathione increased. 2,4-D-induced leaf senescence in mung bean was accompanied by an increase in positive terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling, nuclear DNA fragmentation, and the activity of a 15-kDa Ca(2+)-dependent DNase. Supplementation with 100μM AgNO(3) or AgNPs inhibited 2,4-D-induced leaf senescence. The present results suggest that increased oxidative stress (O(2)(·-) and H(2)O(2)) led to senescence in mung bean leaves. Furthermore, significantly induced antioxidative enzymes are not sufficient to protect mung bean cells from 2,4-D-induced harmful ROS.

  3. Ethylene Inhibits Root Elongation during Alkaline Stress through AUXIN1 and Associated Changes in Auxin Accumulation.

    PubMed

    Li, Juan; Xu, Heng-Hao; Liu, Wen-Cheng; Zhang, Xiao-Wei; Lu, Ying-Tang

    2015-08-01

    Soil alkalinity causes major reductions in yield and quality of crops worldwide. The plant root is the first organ sensing soil alkalinity, which results in shorter primary roots. However, the mechanism underlying alkaline stress-mediated inhibition of root elongation remains to be further elucidated. Here, we report that alkaline conditions inhibit primary root elongation of Arabidopsis (Arabidopsis thaliana) seedlings by reducing cell division potential in the meristem zones and that ethylene signaling affects this process. The ethylene perception antagonist silver (Ag(+)) alleviated the inhibition of root elongation by alkaline stress. Moreover, the ethylene signaling mutants ethylene response1-3 (etr1-3), ethylene insensitive2 (ein2), and ein3-1 showed less reduction in root length under alkaline conditions, indicating a reduced sensitivity to alkalinity. Ethylene biosynthesis also was found to play a role in alkaline stress-mediated root inhibition; the ethylene overproducer1-1 mutant, which overproduces ethylene because of increased stability of 1-AMINOCYCLOPROPANE-1-CARBOXYLIC ACID SYNTHASE5, was hypersensitive to alkaline stress. In addition, the ethylene biosynthesis inhibitor cobalt (Co(2+)) suppressed alkaline stress-mediated inhibition of root elongation. We further found that alkaline stress caused an increase in auxin levels by promoting expression of auxin biosynthesis-related genes, but the increase in auxin levels was reduced in the roots of the etr1-3 and ein3-1 mutants and in Ag(+)/Co(2+)-treated wild-type plants. Additional genetic and physiological data showed that AUXIN1 (AUX1) was involved in alkaline stress-mediated inhibition of root elongation. Taken together, our results reveal that ethylene modulates alkaline stress-mediated inhibition of root growth by increasing auxin accumulation by stimulating the expression of AUX1 and auxin biosynthesis-related genes. PMID:26109425

  4. The chloroplast-localized phospholipases D α4 and α5 regulate herbivore-induced direct and indirect defenses in rice.

    PubMed

    Qi, Jinfeng; Zhou, Guoxin; Yang, Lijuan; Erb, Matthias; Lu, Yanhua; Sun, Xiaoling; Cheng, Jiaan; Lou, Yonggen

    2011-12-01

    The oxylipin pathway is of central importance for plant defensive responses. Yet, the first step of the pathway, the liberation of linolenic acid following induction, is poorly understood. Phospholipases D (PLDs) have been hypothesized to mediate this process, but data from Arabidopsis (Arabidopsis thaliana) regarding the role of PLDs in plant resistance have remained controversial. Here, we cloned two chloroplast-localized PLD genes from rice (Oryza sativa), OsPLDα4 and OsPLDα5, both of which were up-regulated in response to feeding by the rice striped stem borer (SSB) Chilo suppressalis, mechanical wounding, and treatment with jasmonic acid (JA). Antisense expression of OsPLDα4 and -α5 (as-pld), which resulted in a 50% reduction of the expression of the two genes, reduced elicited levels of linolenic acid, JA, green leaf volatiles, and ethylene and attenuated the SSB-induced expression of a mitogen-activated protein kinase (OsMPK3), a lipoxygenase (OsHI-LOX), a hydroperoxide lyase (OsHPL3), as well as a 1-aminocyclopropane-1-carboxylic acid synthase (OsACS2). The impaired oxylipin and ethylene signaling in as-pld plants decreased the levels of herbivore-induced trypsin protease inhibitors and volatiles, improved the performance of SSB and the rice brown planthopper Nilaparvata lugens, and reduced the attractiveness of plants to a larval parasitoid of SSB, Apanteles chilonis. The production of trypsin protease inhibitors in as-pld plants could be partially restored by JA, while the resistance to rice brown planthopper and SSB was restored by green leaf volatile application. Our results show that phospholipases function as important components of herbivore-induced direct and indirect defenses in rice.

  5. Regulatory mechanisms of ethylene biosynthesis in response to various stimuli during maturation and ripening in fig fruit (Ficus carica L.).

    PubMed

    Owino, W O; Manabe, Y; Mathooko, F M; Kubo, Y; Inaba, A

    2006-01-01

    In order to obtain a greater uniformity of maturation, the growth of the fig fruit (Ficus carica L.) can be stimulated by the application of either olive oil, ethrel/ethephon or auxin. The three treatments induce ethylene production in figs. In this study, we investigated the regulatory mechanisms responsible for oil, auxin and ethylene induced ethylene production in figs. The ethylene production in response to olive oil, auxin, and propylene treatments and during ripening were all induced by 1-methylcyclopropene (1-MCP) and inhibited by propylene indicating a negative feedback regulation mechanism. Three 1-aminocyclopropane-1-carboxylic acid (ACC) synthase genes (Fc-ACS1, Fc-ACS2 and Fc-ACS3) and one ACC oxidase gene (Fc-ACO1) were isolated and their expression patterns in response to either oil, propylene or auxin treatment in figs determined. The expression patterns of Fc-ACS1 and Fc-ACO1 were clearly inhibited by 1-MCP and induced by propylene in oil treated and ripe fruits indicating positive regulation by ethylene, whereas Fc-ACS2 gene expression was induced by 1-MCP and inhibited by propylene indicating negative regulation by ethylene. The Fc-ACS3 mRNA showed high level accumulation in the auxin treated fruit. The inhibition of Fc-ACS3 gene by 1-MCP in oil treated and in ripe fruits suggests that auxin and ethylene modulate the expression of this gene by multi-responsive signal transduction pathway mechanisms. We further report that the olive oil-induced ethylene in figs involves the ACC-dependent pathway and that multiple ethylene regulatory pathways are involved during maturation and ripening in figs and each specific pathway depends on the inducer/stimulus. PMID:16889975

  6. Identification of cystathionine γ-synthase and threonine synthase from Cicer arietinum and Lens culinaris.

    PubMed

    Morneau, Dominique J K; Jaworski, Allison F; Aitken, Susan M

    2013-04-01

    In plants, cystathionine γ-synthase (CGS) and threonine synthase (TS) compete for the branch-point metabolite O-phospho-L-homoserine. These enzymes are potential targets for metabolic engineering studies, aiming to alter the flux through the competing methionine and threonine biosynthetic pathways, with the goal of increasing methionine production. Although CGS and TS have been characterized in the model organisms Escherichia coli and Arabidopsis thaliana, little information is available on these enzymes in other, particularly plant, species. The functional CGS and TS coding sequences from the grain legumes Cicer arietinum (chickpea) and Lens culinaris (lentil) identified in this study share approximately 80% amino acid sequence identity with the corresponding sequences from Glycine max. At least 7 active-site residues of grain legume CGS and TS are conserved in the model bacterial enzymes, including the catalytic base. Putative processing sites that remove the targeting sequence and result in functional TS were identified in the target species.

  7. Two small (p)ppGpp synthases in Staphylococcus aureus mediate tolerance against cell envelope stress conditions.

    PubMed

    Geiger, Tobias; Kästle, Benjamin; Gratani, Fabio Lino; Goerke, Christiane; Wolz, Christiane

    2014-02-01

    The stringent response is a conserved global regulatory mechanism that is related to the synthesis of (p)ppGpp nucleotides. Gram-positive bacteria, such as Staphylococcus aureus, possess three (p)ppGpp synthases: the bifunctional RSH (RelA/SpoT homolog) protein, which consists of a (p)ppGpp synthase and a (p)ppGpp hydrolase domain, and two truncated (p)ppGpp synthases, designated RelP and RelQ. Here, we characterized these two small (p)ppGpp synthases. Biochemical analyses of purified proteins and in vivo studies revealed a stronger synthetic activity for RelP than for RelQ. However, both enzymes prefer GDP over GTP as the pyrophosphate recipient to synthesize ppGpp. Each of the enzymes was shown to be responsible for the essentiality of the (p)ppGpp hydrolase domain of the RSH protein. The staphylococcal RSH-hydrolase is an efficient enzyme that prevents the toxic accumulation of (p)ppGpp. Expression of (p)ppGpp synthases in a hydrolase-negative background leads not only to growth arrest but also to cell death. Transcriptional analyses showed that relP and relQ are strongly induced upon vancomycin and ampicillin treatments. Accordingly, mutants lacking relP and relQ showed a significantly reduced survival rate upon treatments with cell wall-active antibiotics. Thus, RelP and RelQ are active (p)ppGpp synthases in S. aureus that are induced under cell envelope stress to mediate tolerance against these conditions.

  8. Endothelial nitric oxide synthase in the microcirculation.

    PubMed

    Shu, Xiaohong; Keller, T C Stevenson; Begandt, Daniela; Butcher, Joshua T; Biwer, Lauren; Keller, Alexander S; Columbus, Linda; Isakson, Brant E

    2015-12-01

    Endothelial nitric oxide synthase (eNOS, NOS3) is responsible for producing nitric oxide (NO)--a key molecule that can directly (or indirectly) act as a vasodilator and anti-inflammatory mediator. In this review, we examine the structural effects of regulation of the eNOS enzyme, including post-translational modifications and subcellular localization. After production, NO diffuses to surrounding cells with a variety of effects. We focus on the physiological role of NO and NO-derived molecules, including microvascular effects on vessel tone and immune response. Regulation of eNOS and NO action is complicated; we address endogenous and exogenous mechanisms of NO regulation with a discussion of pharmacological agents used in clinical and laboratory settings and a proposed role for eNOS in circulating red blood cells.

  9. The Rotary Mechanism of the ATP Synthase

    PubMed Central

    Nakamoto, Robert K.; Scanlon, Joanne A. Baylis; Al-Shawi, Marwan K.

    2008-01-01

    The FOF1 ATP synthase is a large complex of at least 22 subunits, more than half of which are in the membranous FO sector. This nearly ubiquitous transporter is responsible for the majority of ATP synthesis in oxidative and photo-phosphorylation, and its overall structure and mechanism have remained conserved throughout evolution. Most examples utilize the proton motive force to drive ATP synthesis except for a few bacteria, which use a sodium motive force. A remarkable feature of the complex is the rotary movement of an assembly of subunits that plays essential roles in both transport and catalytic mechanisms. This review addresses the role of rotation in catalysis of ATP synthesis/hydrolysis and the transport of protons or sodium. PMID:18515057

  10. Transfer RNA pseudouridine synthases in Saccharomyces cerevisiae.

    PubMed

    Samuelsson, T; Olsson, M

    1990-05-25

    A transfer RNA lacking modified nucleosides was produced by transcription in vitro of a cloned gene that encodes a Saccharomyces cerevisiae glycine tRNA. At least three different uridines (in nucleotide positions 13, 32, and 55) of this transcript tRNA are modified to pseudouridine by an extract of S. cerevisiae. Variants of the RNA substrate were also constructed that each had only one of these sites, thus allowing specific monitoring of pseudouridylation at different nucleotide positions. Using such RNAs to assay pseudouridine synthesis, enzymes producing this nucleoside were purified from an extract of S. cerevisiae. The activities corresponding to positions 13, 32, and 55 in the tRNA substrate could all be separated chromatographically, indicating that there is a separate enzyme for each of these sites. The enzyme specific for position 55 (denoted pseudouridine synthase 55) was purified approximately 4000-fold using a combination of DEAE-Sepharose, heparin-Sepharose, and hydroxylapatite.

  11. Prenyltransferases of the dimethylallyltryptophan synthase superfamily.

    PubMed

    Yu, Xia; Li, Shu-Ming

    2012-01-01

    Prenylated natural products often have interesting biological and pharmacological activities clearly distinct from their nonprenylated precursors. Prenyltransferases are responsible for the attachment of prenyl moieties to a number of acceptors and contribute significantly to structural and biological diversity of these compounds in nature. In the past 8 years, significant progress has been achieved in the molecular biological, biochemical, and structural biological investigation of the prenyltransferases of the dimethylallyltryptophan synthase (DMATS) superfamily. These soluble enzymes are involved in the biosynthesis of fungal secondary metabolites and mainly catalyze prenylation of diverse indole derivatives, including tryptophan and tryptophan-containing cyclic dipeptides. The members of the DMATS superfamily show promising flexibility toward their aromatic substrates and catalyze highly regio- and stereoselective prenyltransfer reactions. These features were successfully used for chemoenzymatic synthesis, not only for production of prenylated simple indoles and cyclic dipeptides but also for prenylated hydroxynaphthalenes and flavonoids, which are usually found in bacteria and plants, respectively.

  12. The structure of MbtI from Mycobacterium tuberculosis, the first enzyme in the biosynthesis of the siderophore mycobactin, reveals it to be a salicylate synthase.

    PubMed

    Harrison, Anthony J; Yu, Minmin; Gårdenborg, Therés; Middleditch, Martin; Ramsay, Rochelle J; Baker, Edward N; Lott, J Shaun

    2006-09-01

    The ability to acquire iron from the extracellular environment is a key determinant of pathogenicity in mycobacteria. Mycobacterium tuberculosis acquires iron exclusively via the siderophore mycobactin T, the biosynthesis of which depends on the production of salicylate from chorismate. Salicylate production in other bacteria is either a two-step process involving an isochorismate synthase (chorismate isomerase) and a pyruvate lyase, as observed for Pseudomonas aeruginosa, or a single-step conversion catalyzed by a salicylate synthase, as with Yersinia enterocolitica. Here we present the structure of the enzyme MbtI (Rv2386c) from M. tuberculosis, solved by multiwavelength anomalous diffraction at a resolution of 1.8 A, and biochemical evidence that it is the salicylate synthase necessary for mycobactin biosynthesis. The enzyme is critically dependent on Mg2+ for activity and produces salicylate via an isochorismate intermediate. MbtI is structurally similar to salicylate synthase (Irp9) from Y. enterocolitica and the large subunit of anthranilate synthase (TrpE) and shares the overall architecture of other chorismate-utilizing enzymes, such as the related aminodeoxychorismate synthase PabB. Like Irp9, but unlike TrpE or PabB, MbtI is neither regulated by nor structurally stabilized by bound tryptophan. The structure of MbtI is the starting point for the design of inhibitors of siderophore biosynthesis, which may make useful lead compounds for the production of new antituberculosis drugs, given the strong dependence of pathogenesis on iron acquisition in M. tuberculosis. PMID:16923875

  13. Functional importance of motif I of pseudouridine synthases: mutagenesis of aligned lysine and proline residues.

    PubMed

    Spedaliere, C J; Hamilton, C S; Mueller, E G

    2000-08-01

    On the basis of sequence alignments, the pseudouridine synthases were grouped into four families that share no statistically significant global sequence similarity, though some common sequence motifs were discovered [Koonin, E. V. (1996) Nucleic Acids. Res. 24, 2411-2415; Gustafsson, C., Reid, R., Greene, P. J., and Santi, D. V. (1996) Nucleic Acids Res. 24, 3756-3762]. We have investigated the functional significance of these alignments by substituting the nearly invariant lysine and proline residues in Motif I of RluA and TruB, pseudouridine synthases belonging to different families. Contrary to our expectations, the altered enzymes display only very mild kinetic impairment. Substitution of the aligned lysine and proline residues does, however, reduce structural stability, consistent with a temperature sensitive phenotype that results from substitution of the cognate proline residue in Cbf5p, a yeast homologue of TruB [Zerbarjadian, Y., King, T., Fournier, M. J., Clarke, L., and Carbon, J. (1999) Mol. Cell. Biol. 19, 7461-7472]. Together, our data support a functional role for Motif I, as predicted by sequence alignments, though the effect of substituting the highly conserved residues was milder than we anticipated. By extrapolation, our findings also support the assignment of pseudouridine synthase function to certain physiologically important eukaryotic proteins that contain Motif I, including the human protein dyskerin, alteration of which leads to the disease dyskeratosis congenita.

  14. Role of cysteine residues in pseudouridine synthases of different families.

    PubMed

    Ramamurthy, V; Swann, S L; Spedaliere, C J; Mueller, E G

    1999-10-01

    The pseudouridine synthases catalyze the isomerization of uridine to pseudouridine in RNA molecules. An attractive mechanism was proposed based on that of thymidylate synthase, in which the thiol(ate) group of a cysteine side chain serves as the nucleophile in a Michael addition to C6 of the isomerized uridine. Such a role for cysteine in the pseudouridine synthase TruA (also named Psi synthase I) has been discredited by site-directed mutagenesis, but sequence alignments have led to the conclusion that there are four distinct "families" of pseudouridine synthases that share no statistically significant global sequence similarity. It was, therefore, necessary to probe the role of cysteine residues in pseudouridine synthases of the families that do not include TruA. We examined the enzymes RluA and TruB, which are members of different families than TruA and each other. Substitution of cysteine for amino acids with nonnucleophilic side chains did not significantly alter the catalytic activity of either pseudouridine synthase. We conclude, therefore, that neither TruB nor RluA require thiol(ate) groups to effect catalysis, excluding their participation in a Michael addition to C6 of uridine, although not eliminating that mechanism (with an alternate nucleophile) from future consideration.

  15. Endothelial Caveolar Subcellular Domain Regulation of Endothelial Nitric Oxide Synthase

    PubMed Central

    Ramadoss, Jayanth; Pastore, Mayra B.; Magness, Ronald R.

    2015-01-01

    SUMMARY Complex regulatory processes alter the activity of endothelial nitric oxide synthase (eNOS) leading to nitric oxide (NO) production by endothelial cells under various physiological states. These complex processes require specific sub-cellular eNOS partitioning between plasma membrane caveolar domains and non-caveolar compartments.eNOS translocation from the plasma membrane to intracellular compartments is important for eNOS activation and subsequent NO biosynthesis. We present data reviewing and interpreting information: 1) the coupling of endothelial plasma membrane receptor systems in the caveolar structure relative to eNOS trafficking; 2) how eNOS trafficking relates to specific protein-protein interaction for inactivation and activation of eNOS; and 3) how these complex mechanisms confer specific subcellular location relative to eNOS multi-site phosphorylation and signaling.Dysfunction in regulation of eNOS activation may contribute to several disease states; in particular gestational endothelial abnormalities (preeclampsia, gestational diabetes, etc) that have life-long deleterious health consequences that predispose the offspring to develop hypertensive disease, type II diabetes and adiposity.1 PMID:23745825

  16. Engineering the acyltransferase substrate specificity of assembly line polyketide synthases

    PubMed Central

    Dunn, Briana J.; Khosla, Chaitan

    2013-01-01

    Polyketide natural products act as a broad range of therapeutics, including antibiotics, immunosuppressants and anti-cancer agents. This therapeutic diversity stems from the structural diversity of these small molecules, many of which are produced in an assembly line manner by modular polyketide synthases. The acyltransferase (AT) domains of these megasynthases are responsible for selection and incorporation of simple monomeric building blocks, and are thus responsible for a large amount of the resulting polyketide structural diversity. The substrate specificity of these domains is often targeted for engineering in the generation of novel, therapeutically active natural products. This review outlines recent developments that can be used in the successful engineering of these domains, including AT sequence and structural data, mechanistic insights and the production of a diverse pool of extender units. It also provides an overview of previous AT domain engineering attempts, and concludes with proposed engineering approaches that take advantage of current knowledge. These approaches may lead to successful production of biologically active ‘unnatural’ natural products. PMID:23720536

  17. Insights into Diterpene Cyclization from Structure of Bifunctional Abietadiene Synthase from Abies grandis*

    PubMed Central

    Zhou, Ke; Gao, Yang; Hoy, Julie A.; Mann, Francis M.; Honzatko, Richard B.; Peters, Reuben J.

    2012-01-01

    Abietadiene synthase from Abies grandis (AgAS) is a model system for diterpene synthase activity, catalyzing class I (ionization-initiated) and class II (protonation-initiated) cyclization reactions. Reported here is the crystal structure of AgAS at 2.3 Å resolution and molecular dynamics simulations of that structure with and without active site ligands. AgAS has three domains (α, β, and γ). The class I active site is within the C-terminal α domain, and the class II active site is between the N-terminal γ and β domains. The domain organization resembles that of monofunctional diterpene synthases and is consistent with proposed evolutionary origins of terpene synthases. Molecular dynamics simulations were carried out to determine the effect of substrate binding on enzymatic structure. Although such studies of the class I active site do lead to an enclosed substrate-Mg2+ complex similar to that observed in crystal structures of related plant enzymes, it does not enforce a single substrate conformation consistent with the known product stereochemistry. Simulations of the class II active site were more informative, with observation of a well ordered external loop migration. This “loop-in” conformation not only limits solvent access but also greatly increases the number of conformational states accessible to the substrate while destabilizing the nonproductive substrate conformation present in the “loop-out” conformation. Moreover, these conformational changes at the class II active site drive the substrate toward the proposed transition state. Docked substrate complexes were further assessed with regard to the effects of site-directed mutations on class I and II activities. PMID:22219188

  18. Insights into Diterpene Cyclization from Structure of Bifunctional Abietadiene Synthase from Abies grandis

    SciTech Connect

    Zhou, Ke; Gao, Yang; Hoy, Julie A.; Mann, Francis M.; Honzatko, Richard B.; Peters, Reuben J.

    2013-09-24

    Abietadiene synthase from Abies grandis (AgAS) is a model system for diterpene synthase activity, catalyzing class I (ionization-initiated) and class II (protonation-initiated) cyclization reactions. Reported here is the crystal structure of AgAS at 2.3 {angstrom} resolution and molecular dynamics simulations of that structure with and without active site ligands. AgAS has three domains ({alpha}, {beta}, and {gamma}). The class I active site is within the C-terminal {alpha} domain, and the class II active site is between the N-terminal {gamma} and {beta} domains. The domain organization resembles that of monofunctional diterpene synthases and is consistent with proposed evolutionary origins of terpene synthases. Molecular dynamics simulations were carried out to determine the effect of substrate binding on enzymatic structure. Although such studies of the class I active site do lead to an enclosed substrate-Mg{sup 2+} complex similar to that observed in crystal structures of related plant enzymes, it does not enforce a single substrate conformation consistent with the known product stereochemistry. Simulations of the class II active site were more informative, with observation of a well ordered external loop migration. This 'loop-in' conformation not only limits solvent access but also greatly increases the number of conformational states accessible to the substrate while destabilizing the nonproductive substrate conformation present in the 'loop-out' conformation. Moreover, these conformational changes at the class II active site drive the substrate toward the proposed transition state. Docked substrate complexes were further assessed with regard to the effects of site-directed mutations on class I and II activities.

  19. The Pseudouridine Synthases Proceed through a Glycal Intermediate

    PubMed Central

    2016-01-01

    The pseudouridine synthases isomerize (U) in RNA to pseudouridine (Ψ), and the mechanism that they follow has long been a question of interest. The recent elucidation of a product of the mechanistic probe 5-fluorouridine that had been epimerized to the arabino isomer suggested that the Ψ synthases might operate through a glycal intermediate formed by deprotonation of C2′. When that position in substrate U is deuterated, a primary kinetic isotope effect is observed, which indisputably indicates that the proposed deprotonation occurs during the isomerization of U to Ψ and establishes the mechanism followed by the Ψ synthases. PMID:27292228

  20. Colorimetric Coupled Enzyme Assay for Cystathionine β-Synthase.

    PubMed

    Rocchiccioli, Marco; Moschini, Roberta; Cappiello, Laura; Balestri, Francesco; Cappiello, Mario; Mura, Umberto; Del-Corso, Antonella

    2016-01-01

    A colorimetric coupled enzyme assay for the determination of cystathionine β-synthase activity is described. The method exploits cystathionine γ-lyase as an ancillary enzyme capable of transforming cystathionine, produced by cystathionine β-synthase, into cysteine. The cysteine is then spectrophotometrically detected at 560 nm, after its specific complexation with ninhydrin. This method was used to detect cystathionine β-synthase in crude extracts, and for the kinetic characterization of the enzyme partially purified from bovine kidney. A rapid two-step protocol is described for the partial purification of cystathionine γ-lyase from bovine kidney, aimed at a suitable and stable ancillary enzyme preparation. PMID:27506718

  1. Computational design and selections for an engineered, thermostable terpene synthase

    PubMed Central

    Diaz, Juan E; Lin, Chun-Shi; Kunishiro, Kazuyoshi; Feld, Birte K; Avrantinis, Sara K; Bronson, Jonathan; Greaves, John; Saven, Jeffery G; Weiss, Gregory A

    2011-01-01

    Terpenoids include structurally diverse antibiotics, flavorings, and fragrances. Engineering terpene synthases for control over the synthesis of such compounds represents a long sought goal. We report computational design, selections, and assays of a thermostable mutant of tobacco 5-epi-aristolochene synthase (TEAS) for the catalysis of carbocation cyclization reactions at elevated temperatures. Selection for thermostability included proteolytic digestion followed by capture of intact proteins. Unlike the wild-type enzyme, the mutant TEAS retains enzymatic activity at 65°C. The thermostable terpene synthase variant denatures above 80°C, approximately twice the temperature of the wild-type enzyme. PMID:21739507

  2. The Pseudouridine Synthases Proceed through a Glycal Intermediate.

    PubMed

    Veerareddygari, Govardhan Reddy; Singh, Sanjay K; Mueller, Eugene G

    2016-06-29

    The pseudouridine synthases isomerize (U) in RNA to pseudouridine (Ψ), and the mechanism that they follow has long been a question of interest. The recent elucidation of a product of the mechanistic probe 5-fluorouridine that had been epimerized to the arabino isomer suggested that the Ψ synthases might operate through a glycal intermediate formed by deprotonation of C2'. When that position in substrate U is deuterated, a primary kinetic isotope effect is observed, which indisputably indicates that the proposed deprotonation occurs during the isomerization of U to Ψ and establishes the mechanism followed by the Ψ synthases.

  3. Generation and Functional Evaluation of Designer Monoterpene Synthases.

    PubMed

    Srividya, N; Lange, I; Lange, B M

    2016-01-01

    Monoterpene synthases are highly versatile enzymes that catalyze the first committed step in the pathways toward terpenoids, the structurally most diverse class of plant natural products. Recent advancements in our understanding of the reaction mechanism have enabled engineering approaches to develop mutant monoterpene synthases that produce specific monoterpenes. In this chapter, we are describing protocols to introduce targeted mutations, express mutant enzyme catalysts in heterologous hosts, and assess their catalytic properties. Mutant monoterpene synthases have the potential to contribute significantly to synthetic biology efforts aimed at producing larger amounts of commercially attractive monoterpenes. PMID:27480686

  4. Peroxisomal and mitochondrial citrate synthase in CAM plants.

    PubMed

    Zafra, M F; Segovia, J L; Alejandre, M J; García-Peregrín, E

    1981-12-01

    Citrate synthase wa studied for the first time in peroxisomes and mitochondria of crassulacean acid metabolism plants. Cellular organelles were isolated from Agave americana leaves by sucrose density gradient centrifugation and characterized by the use of catalase and cytochrome oxidase as marker enzymes, respectively. 48,000 X g centrifugation caused the breakdown of the cellular organelles. The presence of a glyoxylate cycle enzyme (citrate synthase) and a glycollate pathway enzyme (catalase) in the same organelles, besides the absence of another glyoxalate cycle enzyme (malate synthase) is reported for the first time, suggesting that peroxisomal and glyoxysomal proteins are synthesized at the same time and housed in he same organelle.

  5. Deletion of capn4 Protects the Heart Against Endotoxemic Injury by Preventing ATP Synthase Disruption and Inhibiting Mitochondrial Superoxide Generation

    PubMed Central

    Ni, Rui; Zheng, Dong; Wang, Qiang; Yu, Yong; Chen, Ruizhen; Sun, Tao; Wang, Wang; Fan, Guo-Chang; Greer, Peter A.; Gardiner, Richard B.; Peng, Tianqing

    2015-01-01

    Background Our recent study has demonstrated that inhibition of calpain by transgenic over-expression of calpastatin reduces myocardial pro-inflammatory response and dysfunction in endotoxemia. However, the underlying mechanisms remain to be determined. In this study, we employed cardiomyocyte-specific capn4 knockout mice to investigate whether and how calpain disrupts ATP synthase and induces mitochondrial superoxide generation during endotoxemia. Method and Results Cardiomyocyte-specific capn4 knockout mice and their wild-type littermates were injected with lipopolysaccharides (LPS). Four hours later, calpain-1 protein and activity were increased in mitochondria of endotoxemic mouse hearts. Mitochondrial calpain-1 co-localized with and cleaved ATP synthase-α (ATP5A1), leading to ATP synthase disruption and a concomitant increase in mitochondrial reactive oxygen species (ROS) generation during LPS stimulation. Deletion of capn4 or up-regulation of ATP5A1 increased ATP synthase activity, prevented mitochondrial ROS generation, and reduced pro-inflammatory response and myocardial dysfunction in endotoxemic mice. In cultured cardiomyocytes, LPS induced mitochondrial superoxide generation which was prevented by over-expression of mitochondria-targeted calpastatin or ATP5A1. Up-regulation of calpain-1 specifically in mitochondria sufficiently induced superoxide generation and pro-inflammatory response, both of which were attenuated by ATP5A1 over-expression or mitochondria-targeted superoxide dismutase mimetics, mito-TEMPO. Conclusions Cardiomyocyte-specific capn4 knockout protects the heart against LPS-induced injury in endotoxemic mice. LPS induces calpain-1 accumulation in mitochondria. Mitochondrial calpain-1 disrupts ATP synthase, leading to mitochondrial ROS generation, which promotes pro-inflammatory response and myocardial dysfunction during endotoxemia. These findings uncover a novel mechanism by which calpain mediates myocardial dysfunction in sepsis. PMID

  6. Rare structural variants of human and murine uroporphyrinogen I synthase.

    PubMed Central

    Meisler, M H; Carter, M L

    1980-01-01

    An isoelectric focusing method for detection of structural variants of the enzyme uroporphyrinogen I synthase [porphobilinogen ammonia-lyase (polymerizing), EC 4.3.1.8] in mammalian tissues has been developed. Mouse and human erythrocytes contain one or two major isozymes of uroporphyrinogen I synthase, respectively. Other tissues contain a set of more acidic isozymes that are encoded by the same structural gene as the erythrocyte isozymes. Mouse populations studied with this method were monomorphic for uroporphyrinogen I synthase, with the exception of one feral mouse population. The pedigree of a human family with a rare structural variant is consistent with autosomal linkage of the structural gene. This system provides a convenient isozyme marker for genetic studies and will facilitate determination of the chromosomal location of the uroporphyrinogen I synthase locus. Images PMID:6930671

  7. Thymoquinone Inhibits Escherichia coli ATP Synthase and Cell Growth

    PubMed Central

    Ahmad, Zulfiqar; Laughlin, Thomas F.; Kady, Ismail O.

    2015-01-01

    We examined the thymoquinone induced inhibition of purified F1 or membrane bound F1FO E. coli ATP synthase. Both purified F1 and membrane bound F1FO were completely inhibited by thymoquinone with no residual ATPase activity. The process of inhibition was fully reversible and identical in both membrane bound F1Fo and purified F1 preparations. Moreover, thymoquinone induced inhibition of ATP synthase expressing wild-type E. coli cell growth and non-inhibition of ATPase gene deleted null control cells demonstrates that ATP synthase is a molecular target for thymoquinone. This also links the beneficial dietary based antimicrobial and anticancer effects of thymoquinone to its inhibitory action on ATP synthase. PMID:25996607

  8. A Cd/Fe/Zn-responsive phytochelatin synthase is constitutively present in the ancient liverwort Lunularia cruciata (L.) dumort.

    PubMed

    Degola, Francesca; De Benedictis, Maria; Petraglia, Alessandro; Massimi, Alberto; Fattorini, Laura; Sorbo, Sergio; Basile, Adriana; Sanità di Toppi, Luigi

    2014-11-01

    Lunularia cruciata occupies a very basal position in the phylogenetic tree of liverworts, which in turn have been recognized as a very early clade of land plants. It would therefore seem appropriate to take L. cruciata as the startingpoint for investigating character evolution in plants' metal(loid) response. One of the strongest evolutionary pressures for land colonization by plants has come from potential access to much greater amounts of nutritive ions from surface rocks, compared to water. This might have resulted in the need to precisely regulate trace element homeostasis and to minimize the risk of exposure to toxic concentrations of certain metals, prompting the evolution of a number of response mechanisms, such as synthesis of phytochelatins, metal(loid)-binding thiol-peptides. Accordingly, if the ability to synthesize phytochelatins and the occurrence of an active phytochelatin synthase are traits present in a basal liverwort species, and have been even reinforced in 'modern' tracheophytes, e.g. Arabidopsis thaliana, then such traits would presumably have played an essential role in plant fitness over time. Hence, we demonstrated here that: (i) L. cruciata compartmentalizes cadmium in the vacuoles of the phototosynthetic parenchyma by means of a phytochelatin-mediated detoxification strategy, and possesses a phytochelatin synthase that is activated by cadmium and homeostatic concentrations of iron(II) and zinc; and (ii) A. thaliana phytochelatin synthase displays a higher and broader response to several metal(loid)s [namely: cadmium, iron(II), zinc, copper, mercury, lead, arsenic(III)] than L. cruciata phytochelatin synthase.

  9. Crystallization of the c[subscript 14]-rotor of the chloroplast ATP synthase reveals that it contains pigments

    SciTech Connect

    Varco-Merth, Benjamin; Fromme, Raimund; Wang, Meitian; Fromme, Petra

    2008-08-27

    The ATP synthase is one of the most important enzymes on earth as it couples the transmembrane electrochemical potential of protons to the synthesis of ATP from ADP and inorganic phosphage, providing the main ATP source of almost all higher life on earth. During ATP synthesis, stepwise protonation of a conserved carboxylate on each protein subunit of an oligomeric ring of 10--15 c-subunits is commonly thought to drive rotation of the rotor moiety (c{sub 10-14}{gamma}{sup {epsilon}}) relative to stator moiety ({alpha}{sub 3}{beta}{sub 3}{delta}ab{sub 2}). Here we report the isolation and crystallization of the c{sub 14}-ring of subunit c from the spinach chloroplast enzyme diffracting as far as 2.8 {angstrom}. Though ATP synthase was not previously know to contain any pigments, the crystals of the c-subunit possessed a strong yellow color. The pigment analysis revaled that they contain 1 chlorophyll and 2 carotenoids, thereby showing for the first time that the chloroplast ATP synthase contains cofactors, leading to the question of the possible roles of the functions of the pigments in the chloroplast ATP synthase.

  10. Regulation of synthase phosphatase and phosphorylase phosphatase in rat liver.

    PubMed

    Tan, A W; Nuttall, F Q

    1976-08-12

    Using substrates purified from liver, the apparent Km values of synthase phosphatase ([UDPglucose--glycogen glucosyltransferase-D]phosphohydrolase, EC 3.1.3.42) and phosphorylase phosphatase (phosphorylase a phosphohydrolase, EC 3.1.3.17) were found to be 0.7 and 60 units/ml respectively. The maximal velocity of phosphorylase phosphatase was more than a 100 times that of synthase phosphatase. In adrenalectomized, fasted animals there was a complete loss of synthase phosphatase but only a slight decrease in phosphorylase phosphatase when activity was measured using endogenous substrates in a concentrated liver extract. When assayed under optimal conditions with purified substrates, both activities were present but had decreased to very low levels. Mixing experiments indicated that synthase D present in the extract of adrenalectomized fasted animals was altered such that it was no longer a substrate for synthase phosphatase from normal rats. Phosphorylase a substrate on the other hand was unaltered and readily converted. When glucose was given in vivo, no change in percent of synthase in the I form was seen in adrenalectomized rats but the percent of phosphorylase in the a form was reduced. Precipitation of protein from an extract of normal fed rats with ethanol produced a large activation of phosphorylase phosphatase activity with no corresponding increase in synthase phosphatase activity. Despite the low phosphorylase phosphatase present in extracts of adrenalectomized fasted animals, ethanol precipitation increased activity to the same high level as obtained in the normal fed rats. Synthase phosphatase and phosphorylase phosphatase activities were also decreased in normal fasted, diabetic fed and fasted, and adrenalectomized fed rats. Both enzymes recovered in the same manner temporally after oral glucose administration to adrenalectomized, fasted rats. These results suggest an integrated regulatory mechanism for the two phosphatase.

  11. Biosynthesis of riboflavin: an unusual riboflavin synthase of Methanobacterium thermoautotrophicum.

    PubMed Central

    Eberhardt, S; Korn, S; Lottspeich, F; Bacher, A

    1997-01-01

    Riboflavin synthase was purified by a factor of about 1,500 from cell extract of Methanobacterium thermoautotrophicum. The enzyme had a specific activity of about 2,700 nmol mg(-1) h(-1) at 65 degrees C, which is relatively low compared to those of riboflavin synthases of eubacteria and yeast. Amino acid sequences obtained after proteolytic cleavage had no similarity with known riboflavin synthases. The gene coding for riboflavin synthase (designated ribC) was subsequently cloned by marker rescue with a ribC mutant of Escherichia coli. The ribC gene of M. thermoautotrophicum specifies a protein of 153 amino acid residues. The predicted amino acid sequence agrees with the information gleaned from Edman degradation of the isolated protein and shows 67% identity with the sequence predicted for the unannotated reading frame MJ1184 of Methanococcus jannaschii. The ribC gene is adjacent to a cluster of four genes with similarity to the genes cbiMNQO of Salmonella typhimurium, which form part of the cob operon (this operon contains most of the genes involved in the biosynthesis of vitamin B12). The amino acid sequence predicted by the ribC gene of M. thermoautotrophicum shows no similarity whatsoever to the sequences of riboflavin synthases of eubacteria and yeast. Most notably, the M. thermoautotrophicum protein does not show the internal sequence homology characteristic of eubacterial and yeast riboflavin synthases. The protein of M. thermoautotrophicum can be expressed efficiently in a recombinant E. coli strain. The specific activity of the purified, recombinant protein is 1,900 nmol mg(-1) h(-1) at 65 degrees C. In contrast to riboflavin synthases from eubacteria and fungi, the methanobacterial enzyme has an absolute requirement for magnesium ions. The 5' phosphate of 6,7-dimethyl-8-ribityllumazine does not act as a substrate. The findings suggest that riboflavin synthase has evolved independently in eubacteria and methanobacteria. PMID:9139911

  12. Understanding structure, function, and mutations in the mitochondrial ATP synthase

    PubMed Central

    Xu, Ting; Pagadala, Vijayakanth; Mueller, David M.

    2015-01-01

    The mitochondrial ATP synthase is a multimeric enzyme complex with an overall molecular weight of about 600,000 Da. The ATP synthase is a molecular motor composed of two separable parts: F1 and Fo. The F1 portion contains the catalytic sites for ATP synthesis and protrudes into the mitochondrial matrix. Fo forms a proton turbine that is embedded in the inner membrane and connected to the rotor of F1. The flux of protons flowing down a potential gradient powers the rotation of the rotor driving the synthesis of ATP. Thus, the flow of protons though Fo is coupled to the synthesis of ATP. This review will discuss the structure/function relationship in the ATP synthase as determined by biochemical, crystallographic, and genetic studies. An emphasis will be placed on linking the structure/function relationship with understanding how disease causing mutations or putative single nucleotide polymorphisms (SNPs) in genes encoding the subunits of the ATP synthase, will affect the function of the enzyme and the health of the individual. The review will start by summarizing the current understanding of the subunit composition of the enzyme and the role of the subunits followed by a discussion on known mutations and their effect on the activity of the ATP synthase. The review will conclude with a summary of mutations in genes encoding subunits of the ATP synthase that are known to be responsible for human disease, and a brief discussion on SNPs. PMID:25938092

  13. Citrate synthase from the liver fluke Fasciola hepatica.

    PubMed

    Zinsser, Veronika L; Moore, Catherine M; Hoey, Elizabeth M; Trudgett, Alan; Timson, David J

    2013-06-01

    Citrate synthase catalyses the first step of the Krebs' tricarboxylic acid cycle. A sequence encoding citrate synthase from the common liver fluke, Fasciola hepatica, has been cloned. The encoded protein sequence is predicted to fold into a largely α-helical protein with high structural similarity to mammalian citrate synthases. Although a hexahistidine-tagged version of the protein could be expressed in Escherichia coli, it was not possible to purify it by nickel-affinity chromatography. Similar results were obtained with a version of the protein which lacks the putative mitochondrial targeting sequence (residues 1 to 29). However, extracts from bacterial cells expressing this version had additional citrate synthase activity after correcting for the endogenous, bacterial activity. The apparent K m for oxaloacetate was found to be 0.22 mM, which is higher than that observed in mammalian citrate synthases. Overall, the sequence and structure of F. hepatica citrate synthase are similar to ones from other eukaryotes, but there are enzymological differences which merit further investigation.

  14. Membrane localization and topology of leukotriene C4 synthase.

    PubMed

    Christmas, Peter; Weber, Brittany M; McKee, Mary; Brown, Dennis; Soberman, Roy J

    2002-08-01

    Leukotriene C(4) (LTC(4)) synthase conjugates LTA(4) with GSH to form LTC(4). Determining the site of LTC(4) synthesis and the topology of LTC(4) synthase may uncover unappreciated intracellular roles for LTC(4), as well as how LTC(4) is transferred to its export carrier, the multidrug resistance protein-1. We have determined the membrane localization of LTC(4) synthase by immunoelectron microscopy. In contrast to the closely related five-lipoxygenase-activating protein, LTC(4) synthase is distributed in the outer nuclear membrane and peripheral endoplasmic reticulum but is excluded from the inner nuclear membrane. We have combined immunofluorescence with differential membrane permeabilization to determine the topology of LTC(4) synthase. The active site of LTC(4) synthase is localized in the lumen of the nuclear envelope and endoplasmic reticulum. These results indicate that the synthesis of LTB(4) and LTC(4) occurs in different subcellular locations and suggests that LTC(4) must be returned to the cytoplasmic side of the membrane for export by multidrug resistance protein-1. The differential localization of two very similar integral membrane proteins suggests that mechanisms other than size-dependent exclusion regulate their passage to the inner nuclear membrane.

  15. Electric field driven torque in ATP synthase.

    PubMed

    Miller, John H; Rajapakshe, Kimal I; Infante, Hans L; Claycomb, James R

    2013-01-01

    FO-ATP synthase (FO) is a rotary motor that converts potential energy from ions, usually protons, moving from high- to low-potential sides of a membrane into torque and rotary motion. Here we propose a mechanism whereby electric fields emanating from the proton entry and exit channels act on asymmetric charge distributions in the c-ring, due to protonated and deprotonated sites, and drive it to rotate. The model predicts a scaling between time-averaged torque and proton motive force, which can be hindered by mutations that adversely affect the channels. The torque created by the c-ring of FO drives the γ-subunit to rotate within the ATP-producing complex (F1) overcoming, with the aid of thermal fluctuations, an opposing torque that rises and falls with angular position. Using the analogy with thermal Brownian motion of a particle in a tilted washboard potential, we compute ATP production rates vs. proton motive force. The latter shows a minimum, needed to drive ATP production, which scales inversely with the number of proton binding sites on the c-ring. PMID:24040370

  16. Electric Field Driven Torque in ATP Synthase

    PubMed Central

    Miller, John H.; Rajapakshe, Kimal I.; Infante, Hans L.; Claycomb, James R.

    2013-01-01

    FO-ATP synthase (FO) is a rotary motor that converts potential energy from ions, usually protons, moving from high- to low-potential sides of a membrane into torque and rotary motion. Here we propose a mechanism whereby electric fields emanating from the proton entry and exit channels act on asymmetric charge distributions in the c-ring, due to protonated and deprotonated sites, and drive it to rotate. The model predicts a scaling between time-averaged torque and proton motive force, which can be hindered by mutations that adversely affect the channels. The torque created by the c-ring of FO drives the γ-subunit to rotate within the ATP-producing complex (F1) overcoming, with the aid of thermal fluctuations, an opposing torque that rises and falls with angular position. Using the analogy with thermal Brownian motion of a particle in a tilted washboard potential, we compute ATP production rates vs. proton motive force. The latter shows a minimum, needed to drive ATP production, which scales inversely with the number of proton binding sites on the c-ring. PMID:24040370

  17. Human Isoprenoid Synthase Enzymes as Therapeutic Targets

    NASA Astrophysics Data System (ADS)

    Park, Jaeok; Matralis, Alexios; Berghuis, Albert; Tsantrizos, Youla

    2014-07-01

    The complex biochemical network known as the mevalonate pathway is responsible for the biosynthesis of all isoprenoids in the human body, which consists of a vast array of metabolites that are vital for proper cellular functions. Two key isoprenoids, farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP) are responsible for the post-translational prenylation of small GTP-binding proteins, and serve as the biosynthetic precursors to numerous other biomolecules. The down-stream metabolite of FPP and GGPP is squalene, the precursor to steroids, bile acids, lipoproteins and vitamin D. In the past, interest in prenyl synthase inhibitors focused mainly on the role of the FPP in lytic bone diseases. More recently, pre-clinical and clinical studies have strongly implicated high levels of protein prenylation in a plethora of human diseases, including non-skeletal cancers, the progression of neurodegenerative diseases and cardiovascular diseases. In this review, we focus mainly on the potential therapeutic value of down-regulating the biosynthesis of FPP, GGPP and squalene. We summarize the most recent drug discovery efforts and the structural data available that support the current on-going studies.

  18. Electric field driven torque in ATP synthase.

    PubMed

    Miller, John H; Rajapakshe, Kimal I; Infante, Hans L; Claycomb, James R

    2013-01-01

    FO-ATP synthase (FO) is a rotary motor that converts potential energy from ions, usually protons, moving from high- to low-potential sides of a membrane into torque and rotary motion. Here we propose a mechanism whereby electric fields emanating from the proton entry and exit channels act on asymmetric charge distributions in the c-ring, due to protonated and deprotonated sites, and drive it to rotate. The model predicts a scaling between time-averaged torque and proton motive force, which can be hindered by mutations that adversely affect the channels. The torque created by the c-ring of FO drives the γ-subunit to rotate within the ATP-producing complex (F1) overcoming, with the aid of thermal fluctuations, an opposing torque that rises and falls with angular position. Using the analogy with thermal Brownian motion of a particle in a tilted washboard potential, we compute ATP production rates vs. proton motive force. The latter shows a minimum, needed to drive ATP production, which scales inversely with the number of proton binding sites on the c-ring.

  19. Human isoprenoid synthase enzymes as therapeutic targets

    PubMed Central

    Park, Jaeok; Matralis, Alexios N.; Berghuis, Albert M.; Tsantrizos, Youla S.

    2014-01-01

    In the human body, the complex biochemical network known as the mevalonate pathway is responsible for the biosynthesis of all isoprenoids, which consists of a vast array of metabolites that are vital for proper cellular functions. Two key isoprenoids, farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP) are responsible for the post-translational prenylation of small GTP-binding proteins, and serve as the biosynthetic precursors to numerous other biomolecules. The down-stream metabolite of FPP and GGPP is squalene, the precursor to steroids, bile acids, lipoproteins, and vitamin D. In the past, interest in prenyl synthase inhibitors focused mainly on the role of the FPP in lytic bone diseases. More recently pre-clinical and clinical studies have strongly implicated high levels of protein prenylation in a plethora of human diseases, including non-skeletal cancers, the progression of neurodegenerative diseases and cardiovascular diseases. In this review, we focus mainly on the potential therapeutic value of down-regulating the biosynthesis of FPP, GGPP, and squalene. We summarize the most recent drug discovery efforts and the structural data available that support the current on-going studies. PMID:25101260

  20. Reconstitution of Diphthine Synthase Activity In Vitro

    PubMed Central

    Zhu, Xuling; Kim, Jungwoo; Su, Xiaoyang; Lin, Hening

    2010-01-01

    Diphthamide, the target of diphtheria toxin, is a unique posttranslational modification on eukaryotic and archaeal translation elongation factor 2 (EF2). Although diphthamide modification was discovered three decades ago, in vitro reconstitution of diphthamide biosynthesis using purified proteins has not been reported. The proposed biosynthesis pathway of diphthamide involves three steps. Our laboratory has recently showed that in Pyrococcus horikoshii (P. horikoshii), the first step uses an [4Fe-4S] enzyme PhDph2 to generate a 3-amino-3-carboxypropyl radical from S-adenosyl-L-methionine (SAM) to form a C-C bond. The second step is the trimethylation of an amino group to form the diphthine intermediate. This step is catalyzed by a methyltransferase called diphthine synthase or Dph5. Here we report the in vitro reconstitution of the second step using P. horikoshii Dph5 (PhDph5). Our results demonstrate that PhDph5 is sufficient to catalyze the mono-, di-, and trimethylation of P. horikoshii EF2 (PhEF2). Interestingly, the trimethylated product from PhDph5-catalyzed reaction can easily eliminate the trimethylamino group. The potential implication of this unexpected finding on the diphthamide biosynthesis pathway is discussed. PMID:20873788

  1. Protein preparation, crystallization and preliminary X-ray analysis of Polygonum cuspidatum bifunctional chalcone synthase/benzalacetone synthase.

    PubMed

    Lu, Heshu; Yang, Mingfeng; Liu, Chunmei; Lu, Ping; Cang, Huaixing; Ma, Lanqing

    2013-08-01

    The chalcone synthase (CHS) superfamily of type III polyketide synthases (PKSs) generate the backbones of a variety of plant secondary metabolites. An active bifunctional chalcone synthase/benzalacetone synthase (CHS/BAS) from Polygonum cuspidatum was overexpressed in Escherichia coli as a C-terminally polyhistidine-tagged fusion protein, purified to homogeneity and crystallized using polyethylene glycol 4000 as a precipitant. The production of well shaped crystals of the complex between PcPKS1 and benzalacetone was dependent on the presence of sorbitol and barium chloride as additives. The crystals belonged to the orthorhombic space group P2₁2₁2₁, with unit-cell parameters a = 80.23, b = 81.01, c = 122.89 Å, and diffracted X-rays to at least 2.0 Å resolution. PMID:23908031

  2. Functional analysis of sucrose phosphate synthase (SPS) and sucrose synthase (SS) in sugarcane (Saccharum) cultivars.

    PubMed

    Verma, A K; Upadhyay, S K; Verma, P C; Solomon, S; Singh, S B

    2011-03-01

    Sucrose phosphate synthase (SPS; EC 2.4.1.14) and sucrose synthase (SS; EC 2.4.1.13) are key enzymes in the synthesis and breakdown of sucrose in sugarcane. The activities of internodal SPS and SS, as well as transcript expression were determined using semi-quantitative RT-PCR at different developmental stages of high and low sucrose accumulating sugarcane cultivars. SPS activity and transcript expression was higher in mature internodes compared with immature internodes in all the studied cultivars. However, high sugar cultivars showed increased transcript expression and enzyme activity of SPS compared to low sugar cultivars at all developmental stages. SS activity was higher in immature internodes than in mature internodes in all cultivars; SS transcript expression showed a similar pattern. Our studies demonstrate that SPS activity was positively correlated with sucrose and negatively correlated with hexose sugars. However, SS activity was negatively correlated with sucrose and positively correlated with hexose sugars. The present study opens the possibility for improvement of sugarcane cultivars by increasing expression of the respective enzymes using transgene technology.

  3. Dehydration induces expression of GALACTINOL SYNTHASE and RAFFINOSE SYNTHASE in seedlings of pea (Pisum sativum L.).

    PubMed

    Lahuta, Lesław B; Pluskota, Wioletta E; Stelmaszewska, Joanna; Szablińska, Joanna

    2014-09-01

    The exposition of 7-day-old pea seedlings to dehydration induced sudden changes in the concentration of monosaccharides and sucrose in epicotyl and roots tissues. During 24h of dehydration, the concentration of glucose and, to a lesser extent, fructose in seedling tissues decreased. The accumulation of sucrose was observed in roots after 4h and in epicotyls after 8h of stress. Epicotyls and roots also began to accumulate galactinol and raffinose after 8h of stress, when small changes in the water content of tissues occurred. The accumulation of galactinol and raffinose progressed parallel to water withdrawal from tissues, but after seedling rehydration both galactosides disappeared. The synthesis of galactinol and raffinose by an early induction (during the first hour of treatment) of galactinol synthase (PsGolS) and raffinose synthase (PsRS) gene expression as well as a later increase in the activity of both enzymes was noted. Signals possibly triggering the induction of PsGolS and PsRS gene expression and accumulation of galactinol and raffinose in seedlings are discussed.

  4. A Molecular Dynamics Investigation of Mycobacterium tuberculosis Prenyl Synthases: Conformational Flexibility and Implications for Computer-aided Drug Discovery.

    PubMed

    Kim, Meekyum Olivia; Feng, Xinxin; Feixas, Ferran; Zhu, Wei; Lindert, Steffen; Bogue, Shannon; Sinko, William; de Oliveira, César; Rao, Guodong; Oldfield, Eric; McCammon, James Andrew

    2015-06-01

    With the rise in antibiotic resistance, there is interest in discovering new drugs active against new targets. Here, we investigate the dynamic structures of three isoprenoid synthases from Mycobacterium tuberculosis using molecular dynamics (MD) methods with a view to discovering new drug leads. Two of the enzymes, cis-farnesyl diphosphate synthase (cis-FPPS) and cis-decaprenyl diphosphate synthase (cis-DPPS), are involved in bacterial cell wall biosynthesis, while the third, tuberculosinyl adenosine synthase (Rv3378c), is involved in virulence factor formation. The MD results for these three enzymes were then compared with previous results on undecaprenyl diphosphate synthase (UPPS) by means of active site volume fluctuation and principal component analyses. In addition, an analysis of the binding of prenyl diphosphates to cis-FPPS, cis-DPPS, and UPPS utilizing the new MD results is reported. We also screened libraries of inhibitors against cis-DPPS, finding ~1 μm inhibitors, and used the receiver operating characteristic-area under the curve (ROC-AUC) method to test the predictive power of X-ray and MD-derived cis-DPPS receptors. We found that one compound with potent M. tuberculosis cell growth inhibition activity was an IC(50) ~0.5- to 20-μm inhibitor (depending on substrate) of cis-DPPS, a ~660-nm inhibitor of Rv3378c as well as a 4.8-μm inhibitor of cis-FPPS, opening up the possibility of multitarget inhibition involving both cell wall biosynthesis and virulence factor formation. PMID:25352216

  5. Structural and functional organization of the animal fatty acid synthase.

    PubMed

    Smith, Stuart; Witkowski, Andrzej; Joshi, Anil K

    2003-07-01

    The entire pathway of palmitate synthesis from malonyl-CoA in mammals is catalyzed by a single, homodimeric, multifunctional protein, the fatty acid synthase. Each subunit contains three N-terminal domains, the beta-ketoacyl synthase, malonyl/acetyl transferase and dehydrase separated by a structural core from four C-terminal domains, the enoyl reductase, beta-ketoacyl reductase, acyl carrier protein and thiosterase. The kinetics and specificities of the substrate loading reaction catalyzed by the malonyl/acetyl transferase, the condensation reaction catalyzed by beta-ketoacyl synthase and chain-terminating reaction catalyzed by the thioesterase ensure that intermediates do not leak off the enzyme, saturated chains exclusively are elongated and palmitate is released as the major product. Only in the fatty acid synthase dimer do the subunits adopt conformations that facilitate productive coupling of the individual reactions for fatty acid synthesis at the two acyl carrier protein centers. Introduction of a double tagging and dual affinity chromatographic procedure has permitted the engineering and isolation of heterodimeric fatty acid synthases carrying different mutations on each subunit. Characterization of these heterodimers, by activity assays and chemical cross-linking, has been exploited to map the functional topology of the protein. The results reveal that the two acyl carrier protein domains engage in substrate loading and condensation reactions catalyzed by the malonyl/acetyl transferase and beta-ketoacyl synthase domains of either subunit. In contrast, the reactions involved in processing of the beta-carbon atom, following each chain elongation step, together with the release of palmitate, are catalyzed by the cooperation of the acyl carrier protein with catalytic domains of the same subunit. These findings suggest a revised model for the fatty acid synthase in which the two polypeptides are oriented such that head-to-tail contacts are formed both between

  6. Nitric oxide synthases: structure, function and inhibition.

    PubMed Central

    Alderton, W K; Cooper, C E; Knowles, R G

    2001-01-01

    This review concentrates on advances in nitric oxide synthase (NOS) structure, function and inhibition made in the last seven years, during which time substantial advances have been made in our understanding of this enzyme family. There is now information on the enzyme structure at all levels from primary (amino acid sequence) to quaternary (dimerization, association with other proteins) structure. The crystal structures of the oxygenase domains of inducible NOS (iNOS) and vascular endothelial NOS (eNOS) allow us to interpret other information in the context of this important part of the enzyme, with its binding sites for iron protoporphyrin IX (haem), biopterin, L-arginine, and the many inhibitors which interact with them. The exact nature of the NOS reaction, its mechanism and its products continue to be sources of controversy. The role of the biopterin cofactor is now becoming clearer, with emerging data implicating one-electron redox cycling as well as the multiple allosteric effects on enzyme activity. Regulation of the NOSs has been described at all levels from gene transcription to covalent modification and allosteric regulation of the enzyme itself. A wide range of NOS inhibitors have been discussed, interacting with the enzyme in diverse ways in terms of site and mechanism of inhibition, time-dependence and selectivity for individual isoforms, although there are many pitfalls and misunderstandings of these aspects. Highly selective inhibitors of iNOS versus eNOS and neuronal NOS have been identified and some of these have potential in the treatment of a range of inflammatory and other conditions in which iNOS has been implicated. PMID:11463332

  7. Tertiary model of a plant cellulose synthase

    PubMed Central

    Sethaphong, Latsavongsakda; Haigler, Candace H.; Kubicki, James D.; Zimmer, Jochen; Bonetta, Dario; DeBolt, Seth; Yingling, Yaroslava G.

    2013-01-01

    A 3D atomistic model of a plant cellulose synthase (CESA) has remained elusive despite over forty years of experimental effort. Here, we report a computationally predicted 3D structure of 506 amino acids of cotton CESA within the cytosolic region. Comparison of the predicted plant CESA structure with the solved structure of a bacterial cellulose-synthesizing protein validates the overall fold of the modeled glycosyltransferase (GT) domain. The coaligned plant and bacterial GT domains share a six-stranded β-sheet, five α-helices, and conserved motifs similar to those required for catalysis in other GT-2 glycosyltransferases. Extending beyond the cross-kingdom similarities related to cellulose polymerization, the predicted structure of cotton CESA reveals that plant-specific modules (plant-conserved region and class-specific region) fold into distinct subdomains on the periphery of the catalytic region. Computational results support the importance of the plant-conserved region and/or class-specific region in CESA oligomerization to form the multimeric cellulose–synthesis complexes that are characteristic of plants. Relatively high sequence conservation between plant CESAs allowed mapping of known mutations and two previously undescribed mutations that perturb cellulose synthesis in Arabidopsis thaliana to their analogous positions in the modeled structure. Most of these mutation sites are near the predicted catalytic region, and the confluence of other mutation sites supports the existence of previously undefined functional nodes within the catalytic core of CESA. Overall, the predicted tertiary structure provides a platform for the biochemical engineering of plant CESAs. PMID:23592721

  8. A thermodynamic investigation of reactions catalyzed by tryptophan synthase.

    PubMed

    Kishore, N; Tewari, Y B; Akers, D L; Goldberg, R N; Miles, E W

    1998-07-27

    Microcalorimetry and high-performance liquid chromatography have been used to conduct a thermodynamic investigation of the following reactions catalyzed by the tryptophan synthase alpha 2 beta 2 complex (EC 4.2.1.20) and its subunits: indole(aq) + L-serine(aq) = L-tryptophan(aq) + H2O(1); L-serine(aq) = pyruvate(aq) + ammonia(aq); indole(aq) + D-glyceraldehyde 3-phosphate(aq) = 1-(indol-3-yl)glycerol 3-phosphate(aq); L-serine(aq) + 1-(indol-3-yl)glycerol 3-phosphate(aq) = L-tryptophan(aq) + D-glyceraldehyde 3-phosphate(aq) + H2O(1). The calorimetric measurements led to standard molar enthalpy changes for all four of these reactions. Direct measurements yielded an apparent equilibrium constant for the third reaction; equilibrium constants for the remaining three reactions were obtained by using thermochemical cycle calculations. The results of the calorimetric and equilibrium measurements were analyzed in terms of a chemical equilibrium model that accounted for the multiplicity of the ionic states of the reactants and products. Thermodynamic quantities for chemical reference reactions involving specific ionic forms have been obtained. These quantities permit the calculation of the position of equilibrium of the above four reactions as a function of temperature, pH, and ionic strength. Values of the apparent equilibrium constants and standard transformed Gibbs free energy changes delta r G'(m) degree under approximately physiological conditions are given. Le Châtelier's principle provides an explanation as to why, in the metabolic pathway leading to the synthesis of L-tryptophan, the third reaction proceeds in the direction of formation of indole and D-glyceraldehyde 3-phosphate even though the apparent equilibrium constant greatly favors the formation of 1-(indol-3-yl)glycerol 3-phosphate. PMID:9700925

  9. Chemoprevention with phytochemicals targeting inducible nitric oxide synthase.

    PubMed

    Murakami, Akira

    2009-01-01

    A regulated low level of nitric oxide (NO) production in the body is essential for maintaining homeostasis (neuroprotection, vasorelaxation, etc.), though certain pathophysiological conditions associated with inflammation involve de novo synthesis of inducible NO synthase (iNOS) in immune cells, including macrophages. A large body of evidence indicates that many inflammatory diseases, such as colitis and gastritis, as well as many types of cancer, occur through sustained and elevated activation of this particular enzyme. The biochemical process of iNOS protein expression is tightly regulated and complex, in which the endotoxin lipopolysaccharide selectively binds to toll-like receptor 4 and thereby activates its adaptor protein MyD88, which in turn targets downstream proteins such as IRAK and TRAF6. This leads to functional activation of key protein kinases, including IkB kinases and mitogen-activated protein kinases (MAPKs), such as p38 MAPK, JNK1/2, and ERK1/2, all of which are involved in activating key transcription factors, including nuclear factor-kappaB and activator protein-1. In addition, the production of proinflammatory cytokines such as interferon-gamma and interleukin-12 potentiates iNOS induction in autocrine fashions. Meanwhile, an LPS-stimulated p38 MAPK pathway plays a pivotal role in the stabilization of iNOS mRNA, which has the AU-rich element in its 3'-untranslated region, for rapid NO production. Thus, suppression and/or inhibition of the above-mentioned signaling molecules may have a great potential for the prevention and treatment of inflammation-associated carcinogenesis. In fact, there have been numerous reports of phytochemicals found capable of targeting NO production by unique mechanisms, including polyphenols, terpenoids, and others. This review article briefly highlights the molecular mechanisms underlying endotoxin-induced iNOS expression in macrophages, and also focuses on promising natural agents that may be useful for anti

  10. Highly Divergent Mitochondrial ATP Synthase Complexes in Tetrahymena thermophila

    PubMed Central

    Balabaskaran Nina, Praveen; Dudkina, Natalya V.; Kane, Lesley A.; van Eyk, Jennifer E.; Boekema, Egbert J.; Mather, Michael W.; Vaidya, Akhil B.

    2010-01-01

    The F-type ATP synthase complex is a rotary nano-motor driven by proton motive force to synthesize ATP. Its F1 sector catalyzes ATP synthesis, whereas the Fo sector conducts the protons and provides a stator for the rotary action of the complex. Components of both F1 and Fo sectors are highly conserved across prokaryotes and eukaryotes. Therefore, it was a surprise that genes encoding the a and b subunits as well as other components of the Fo sector were undetectable in the sequenced genomes of a variety of apicomplexan parasites. While the parasitic existence of these organisms could explain the apparent incomplete nature of ATP synthase in Apicomplexa, genes for these essential components were absent even in Tetrahymena thermophila, a free-living ciliate belonging to a sister clade of Apicomplexa, which demonstrates robust oxidative phosphorylation. This observation raises the possibility that the entire clade of Alveolata may have invented novel means to operate ATP synthase complexes. To assess this remarkable possibility, we have carried out an investigation of the ATP synthase from T. thermophila. Blue native polyacrylamide gel electrophoresis (BN-PAGE) revealed the ATP synthase to be present as a large complex. Structural study based on single particle electron microscopy analysis suggested the complex to be a dimer with several unique structures including an unusually large domain on the intermembrane side of the ATP synthase and novel domains flanking the c subunit rings. The two monomers were in a parallel configuration rather than the angled configuration previously observed in other organisms. Proteomic analyses of well-resolved ATP synthase complexes from 2-D BN/BN-PAGE identified orthologs of seven canonical ATP synthase subunits, and at least 13 novel proteins that constitute subunits apparently limited to the ciliate lineage. A mitochondrially encoded protein, Ymf66, with predicted eight transmembrane domains could be a substitute for the subunit a

  11. Lead Poisoning Prevention Tips

    MedlinePlus

    ... CDC.gov . Lead Home Calendar of Events National Lead Poisoning Prevention Week Archived Materials CDC's Childhood Lead Poisoning Prevention Program Advisory Committee (ACCLPP) Current Activities Blood ...

  12. Lead - nutritional considerations

    MedlinePlus

    Lead poisoning - nutritional considerations; Toxic metal - nutritional considerations ... utensils . Old paint poses the greatest danger for lead poisoning , especially in young children. Tap water from lead ...

  13. The Expression of Type-1 and Type-2 Nitric Oxide Synthase in Selected Tissues of the Gastrointestinal Tract during Mixed Mycotoxicosis

    PubMed Central

    Gajęcka, Magdalena; Stopa, Ewa; Tarasiuk, Michał; Zielonka, Łukasz; Gajęcki, Maciej

    2013-01-01

    The aim of the study was to verify the hypothesis that intoxication with low doses of mycotoxins leads to changes in the mRNA expression levels of nitric oxide synthase-1 and nitric oxide synthase-2 genes in tissues of the gastrointestinal tract and the liver. The experiment involved four groups of immature gilts (with body weight of up to 25 kg) which were orally administered zearalenone in a daily dose of 40 μg/kg BW (group Z, n = 18), deoxynivalenol at 12 μg/kg BW (group D, n = 18), zearalenone and deoxynivalenol (group M, n = 18) or placebo (group C, n = 21) over a period of 42 days. The lowest mRNA expression levels of nitric oxide synthase-1 and nitric oxide synthase-2 genes were noted in the sixth week of the study, in particular in group M. Our results suggest that the presence of low mycotoxin doses in feed slows down the mRNA expression of both nitric oxide synthase isomers, which probably lowers the concentrations of nitric oxide, a common precursor of inflammation. PMID:24284830

  14. Expression and characterization of glycogen synthase kinase-3 mutants and their effect on glycogen synthase activity in intact cells.

    PubMed Central

    Eldar-Finkelman, H; Argast, G M; Foord, O; Fischer, E H; Krebs, E G

    1996-01-01

    In these studies we expressed and characterized wild-type (WT) GSK-3 (glycogen synthase kinase-3) and its mutants, and examined their physiological effect on glycogen synthase activity. The GSK-3 mutants included mutation at serine-9 either to alanine (S9A) or glutamic acid (S9E) and an inactive mutant, K85,86MA. Expression of WT and the various mutants in a cell-free system indicated that S9A and S9E exhibit increased kinase activity as compared with WT. Subsequently, 293 cells were transiently transfected with WT GSK-3 and mutants. Cells expressing the S9A mutant exhibited higher kinase activity (2.6-fold of control cells) as compared with cells expressing WT and S9E (1.8- and 2.0-fold, respectively, of control cells). Combined, these results suggest serine-9 as a key regulatory site of GSK-3 inactivation, and indicate that glutamic acid cannot mimic the function of the phosphorylated residue. The GSK-3-expressing cell system enabled us to examine whether GSK-3 can induce changes in the endogenous glycogen synthase activity. A decrease in glycogen synthase activity (50%) was observed in cells expressing the S9A mutant. Similarly, glycogen synthase activity was suppressed in cells expressing WT and the S9E mutant (20-30%, respectively). These studies indicate that activation of GSK-3 is sufficient to inhibit glycogen synthase in intact cells, and provide evidence supporting a physiological role for GSK-3 in regulating glycogen synthase and glycogen metabolism. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8816781

  15. Plasticity and Evolution of (+)-3-Carene Synthase and (−)-Sabinene Synthase Functions of a Sitka Spruce Monoterpene Synthase Gene Family Associated with Weevil Resistance*

    PubMed Central

    Roach, Christopher R.; Hall, Dawn E.; Zerbe, Philipp; Bohlmann, Jörg

    2014-01-01

    The monoterpene (+)-3-carene is associated with resistance of Sitka spruce against white pine weevil, a major North American forest insect pest of pine and spruce. High and low levels of (+)-3-carene in, respectively, resistant and susceptible Sitka spruce genotypes are due to variation of (+)-3-carene synthase gene copy number, transcript and protein expression levels, enzyme product profiles, and enzyme catalytic efficiency. A family of multiproduct (+)-3-carene synthase-like genes of Sitka spruce include the three (+)-3-carene synthases, PsTPS-3car1, PsTPS-3car2, PsTPS-3car3, and the (−)-sabinene synthase PsTPS-sab. Of these, PsTPS-3car2 is responsible for the relatively higher levels of (+)-3-carene in weevil-resistant trees. Here, we identified features of the PsTPS-3car1, PsTPS-3car2, PsTPS-3car3, and PsTPS-sab proteins that determine different product profiles. A series of domain swap and site-directed mutations, supported by structural comparisons, identified the amino acid in position 596 as critical for product profiles dominated by (+)-3-carene in PsTPS-3car1, PsTPS-3car2, and PsTPS-3car3, or (−)-sabinene in PsTPS-sab. A leucine in this position promotes formation of (+)-3-carene, whereas phenylalanine promotes (−)-sabinene. Homology modeling predicts that position 596 directs product profiles through differential stabilization of the reaction intermediate. Kinetic analysis revealed position 596 also plays a role in catalytic efficiency. Mutations of position 596 with different side chain properties resulted in a series of enzymes with different product profiles, further highlighting the inherent plasticity and potential for evolution of alternative product profiles of these monoterpene synthases of conifer defense against insects. PMID:25016016

  16. ATP synthases: cellular nanomotors characterized by LILBID mass spectrometry

    PubMed Central

    Hoffmann, Jan; Sokolova, Lucie; Preiss, Laura; Hicks, David B.; Krulwich, Terry A.; Morgner, Nina; Wittig, Ilka; Schägger, Hermann; Meier, Thomas; Brutschy, Bernd

    2010-01-01

    Mass spectrometry of membrane protein complexes is still a methodological challenge due to hydrophobic and hydrophilic parts of the species and the fact that all subunits are bound non-covalently together. The present study with the novel laser induced liquid bead ion desorption mass spectrometry (LILBID-MS) reports on the determination of the subunit composition of the F1Fo-ATP synthase from Bacillus pseudofirmus OF4, that of both bovine heart and, for the first time, of human heart mitochondrial F1Fo-ATP synthases. Under selected buffer conditions the mass of the intact F1Fo-ATP synthase of B. pseudofirmus OF4 could be measured, allowing the analysis of complex subunit stoichiometry. The agreement with theoretical masses derived from sequence databases is very good. A comparison of the ATP synthase subunit composition of 5 different ATPases reveals differences in the complexity of eukaryotic and bacterial ATP synthases. However, whereas the overall construction of eukaryotic enzymes is more complex than the bacterial ones, functionally important subunits are conserved among all ATPases. PMID:20820587

  17. Dimers of mitochondrial ATP synthase form the permeability transition pore

    PubMed Central

    Giorgio, Valentina; von Stockum, Sophia; Antoniel, Manuela; Fabbro, Astrid; Fogolari, Federico; Forte, Michael; Glick, Gary D.; Petronilli, Valeria; Zoratti, Mario; Szabó, Ildikó; Lippe, Giovanna; Bernardi, Paolo

    2013-01-01

    Here we define the molecular nature of the mitochondrial permeability transition pore (PTP), a key effector of cell death. The PTP is regulated by matrix cyclophilin D (CyPD), which also binds the lateral stalk of the FOF1 ATP synthase. We show that CyPD binds the oligomycin sensitivity-conferring protein subunit of the enzyme at the same site as the ATP synthase inhibitor benzodiazepine 423 (Bz-423), that Bz-423 sensitizes the PTP to Ca2+ like CyPD itself, and that decreasing oligomycin sensitivity-conferring protein expression by RNAi increases the sensitivity of the PTP to Ca2+. Purified dimers of the ATP synthase, which did not contain voltage-dependent anion channel or adenine nucleotide translocator, were reconstituted into lipid bilayers. In the presence of Ca2+, addition of Bz-423 triggered opening of a channel with currents that were typical of the mitochondrial megachannel, which is the PTP electrophysiological equivalent. Channel openings were inhibited by the ATP synthase inhibitor AMP-PNP (γ-imino ATP, a nonhydrolyzable ATP analog) and Mg2+/ADP. These results indicate that the PTP forms from dimers of the ATP synthase. PMID:23530243

  18. Diversity of sesquiterpene synthases in the basidiomycete Coprinus cinereus.

    PubMed

    Agger, Sean; Lopez-Gallego, Fernando; Schmidt-Dannert, Claudia

    2009-06-01

    Fungi are a rich source of bioactive secondary metabolites, and mushroom-forming fungi (Agaricomycetes) are especially known for the synthesis of numerous bioactive and often cytotoxic sesquiterpenoid secondary metabolites. Compared with the large number of sesquiterpene synthases identified in plants, less than a handful of unique sesquiterpene synthases have been described from fungi. Here we describe the functional characterization of six sesquiterpene synthases (Cop1 to Cop6) and two terpene-oxidizing cytochrome P450 monooxygenases (Cox1 and Cox2) from Coprinus cinereus. The genes were cloned and, except for cop5, functionally expressed in Escherichia coli and/or Saccharomyces cerevisiae. Cop1 and Cop2 each synthesize germacrene A as the major product. Cop3 was identified as an alpha-muurolene synthase, an enzyme that has not been described previously, while Cop4 synthesizes delta-cadinene as its major product. Cop6 was originally annotated as a trichodiene synthase homologue but instead was found to catalyse the highly specific synthesis of alpha-cuprenene. Coexpression of cop6 and the two monooxygenase genes next to it yields oxygenated alpha-cuprenene derivatives, including cuparophenol, suggesting that these genes encode the enzymes for the biosynthesis of antimicrobial quinone sesquiterpenoids (known as lagopodins) that were previously isolated from C. cinereus and other Coprinus species. PMID:19400802

  19. Lead levels - blood

    MedlinePlus

    Blood lead levels ... is used to screen people at risk for lead poisoning. This may include industrial workers and children ... also used to measure how well treatment for lead poisoning is working. Lead is common in the ...

  20. Cruentaren A Binds F1F0 ATP Synthase To Modulate the Hsp90 Protein Folding Machinery

    PubMed Central

    2015-01-01

    The molecular chaperone Hsp90 requires the assistance of immunophilins, co-chaperones, and partner proteins for the conformational maturation of client proteins. Hsp90 inhibition represents a promising anticancer strategy due to the dependence of numerous oncogenic signaling pathways upon Hsp90 function. Historically, small molecules have been designed to inhibit ATPase activity at the Hsp90 N-terminus; however, these molecules also induce the pro-survival heat shock response (HSR). Therefore, inhibitors that exhibit alternative mechanisms of action that do not elicit the HSR are actively sought. Small molecules that disrupt Hsp90-co-chaperone interactions can destabilize the Hsp90 complex without induction of the HSR, which leads to inhibition of cell proliferation. In this article, selective inhibition of F1F0 ATP synthase by cruentaren A was shown to disrupt the Hsp90-F1F0 ATP synthase interaction and result in client protein degradation without induction of the HSR. PMID:24450340

  1. Understanding Plant Cellulose Synthases through a Comprehensive Investigation of the Cellulose Synthase Family Sequences

    PubMed Central

    Carroll, Andrew; Specht, Chelsea D.

    2011-01-01

    The development of cellulose as an organizing structure in the plant cell wall was a key event in both the initial colonization and the subsequent domination of the terrestrial ecosystem by vascular plants. A wealth of experimental data has demonstrated the complicated genetic interactions required to form the large synthetic complex that synthesizes cellulose. However, these results are lacking an extensive analysis of the evolution, specialization, and regulation of the proteins that compose this complex. Here we perform an in-depth analysis of the sequences in the cellulose synthase (CesA) family. We investigate the phylogeny of the CesA family, with emphasis on evolutionary specialization. We define specialized clades and identify the class-specific regions within the CesA sequence that may explain this specialization. We investigate changes in regulation of CesAs by looking at the conservation of proposed phosphorylation sites. We investigate the conservation of sites where mutations have been documented that impair CesA function, and compare these sites to those observed in the closest cellulose synthase-like (Csl) families to better understand what regions may separate the CesAs from other Csls. Finally we identify two positions with strong conservation of the aromatic trait, but lacking conservation of amino acid identity, which may represent residues important for positioning the sugar substrate for catalysis. These analyses provide useful tools for understanding characterized mutations and post-translational modifications, and for informing further experiments to probe CesA assembly, regulation, and function through site-directed mutagenesis or domain swapping experiments. PMID:22629257

  2. SbnG, a Citrate Synthase in Staphylococcus aureus

    PubMed Central

    Kobylarz, Marek J.; Grigg, Jason C.; Sheldon, Jessica R.; Heinrichs, David E.; Murphy, Michael E. P.

    2014-01-01

    In response to iron deprivation, Staphylococcus aureus produces staphyloferrin B, a citrate-containing siderophore that delivers iron back to the cell. This bacterium also possesses a second citrate synthase, SbnG, that is necessary for supplying citrate to the staphyloferrin B biosynthetic pathway. We present the structure of SbnG bound to the inhibitor calcium and an active site variant in complex with oxaloacetate. The overall fold of SbnG is structurally distinct from TCA cycle citrate synthases yet similar to metal-dependent class II aldolases. Phylogenetic analyses revealed that SbnG forms a separate clade with homologs from other siderophore biosynthetic gene clusters and is representative of a metal-independent subgroup in the phosphoenolpyruvate/pyruvate domain superfamily. A structural superposition of the SbnG active site to TCA cycle citrate synthases and site-directed mutagenesis suggests a case for convergent evolution toward a conserved catalytic mechanism for citrate production. PMID:25336653

  3. Evolutionary history of the chitin synthases of eukaryotes.

    PubMed

    Morozov, Alexey A; Likhoshway, Yelena V

    2016-06-01

    Chitin synthases are widespread among eukaryotes and known to have a complex evolutionary history in some of the groups. We have reconstructed the chitin synthase phylogeny using the most taxonomically comprehensive dataset currently available and have shown the presence of independently formed paralogous groups in oomycetes, ciliates, fungi, and all diatoms except raphid pennates. There were also two cases of horizontal gene transfer (HGT): transfer from fungus to early diatoms gave rise to diatom paralogous group, while transfer from raphid pennate diatom to Acantamoeba ancestor is, to our knowledge, restricted to a single gene in amoeba. Early evolution of chitin synthases is heavily obscured by paralogy, and further sequencing effort is necessary. PMID:26887391

  4. A functional map of the nopaline synthase promoter.

    PubMed Central

    Shaw, C H; Carter, G H; Watson, M D; Shaw, C H

    1984-01-01

    This paper describes the first functional map of a promoter expressed from the plant chromosome. We have constructed a series of overlapping deletion mutants within the region upstream of the Ti-plasmid encoded nopaline synthase (nos) gene. By monitoring nos expression in tumour tissue we have inferred a functional map of the nos promoter. The maximum length of sequence upstream of the transcription initiation point required to express wild type levels of nopaline synthase is 88 bp. Within this region, the "CAAT" box is essential for maximal activity; deletion of this sequence reduced apparent nos expression by over 80%. Presence of an intact or partial "TATA" box in the absence of the "CAAT" box supports a barely detectable level of nopaline synthase. Removal of all sequences upstream of the nos coding sequence results in no detectable activity. PMID:6493982

  5. Properties of peroxisomal and mitochondrial citrate synthase from Agave americana.

    PubMed

    Segovia, J L; Zafra, M F; Alejandre, M J; García-Peregrín, E

    1982-09-01

    Adenine nucleotides were tested as effectors of peroxisomal and mitochondrial citrate synthase from Agave americana leaves in the presence of different concentrations of acetyl-CoA and oxalacetate substrates. ATP inhibited both enzyme activities but with a different inhibition profile. 1.0-7.5 mM ADP did not inhibit the peroxisomal citrate synthase in the presence of high substrate concentrations, while the mitochondrial enzyme was strongly inhibited by 1.0 mM ADP in the same conditions. Likewise, a different pattern was obtained with AMP on both peroxisomal and mitochondrial activities. The rate of citrate formation as function of acetyl-CoA and oxalacetate concentration was also studied in both fractions. Maximal velocity was highest in the peroxisomal fraction, whether acetyl-CoA or oxalacetate were the variable substrates. These differences indicate that peroxisomal and mitochondrial citrate synthases seem to be two different isoenzymes.

  6. The role of two Pseudomonas aeruginosa anthranilate synthases in tryptophan and quorum signal production

    PubMed Central

    Palmer, Gregory C.; Jorth, Peter A.

    2013-01-01

    Pseudomonas aeruginosa is a Gram-negative, opportunistic pathogen that causes infections in the lungs of individuals with the genetic disease cystic fibrosis. Density-dependent production of toxic factors regulated by the Pseudomonas quinolone signal (2-heptyl-3-hydroxy-4-quinolone; PQS) have been proposed to be involved in P. aeruginosa virulence. PQS biosynthesis requires conversion of the central metabolite chorismate to anthranilate by anthranilate synthase. This reaction is also the first step in tryptophan biosynthesis. P. aeruginosa possesses two functional anthranilate synthases, TrpEG and PhnAB, and these enzymes are not functionally redundant, as trpEG mutants are tryptophan auxotrophs but produce PQS while mutants in phnAB are tryptophan prototrophs but do not produce PQS in minimal media. The goal of the work described in this paper was to determine the mechanism for this lack of functional complementation of TrpEG and PhnAB. Our results reveal that overexpression of either enzyme compensates for tryptophan auxotrophy and PQS production in the trpEG and phnAB mutants respectively, leading to the hypothesis that differential regulation of these genes is responsible for the lack of functional complementation. In support of this hypothesis, trpEG was shown to be expressed primarily during low-density growth while phnAB was expressed primarily at high density. Furthermore, dysregulation of phnAB expression eliminated tryptophan auxotrophy in the P. aeruginosa trpEG mutant. Based on these data, we propose a model for anthranilate sequestration by differential transcriptional regulation of the two P. aeruginosa anthranilate synthase enzymes. PMID:23449919

  7. Mechanistic Insights from the Binding of Substrate and Carbocation Intermediate Analogues to Aristolochene Synthase

    PubMed Central

    Chen, Mengbin; Al-lami, Naeemah; Janvier, Marine; D'Antonio, Edward L.; Faraldos, Juan A.; Cane, David E.; Allemann, Rudolf K.; Christianson, David W.

    2013-01-01

    Aristolochene synthase, a metal-dependent sesquiterpene cyclase from Aspergillus terreus, catalyzes the ionization-dependent cyclization of farnesyl diphosphate (FPP) to form the bicyclic eremophilane (+)-aristolochene with perfect structural and stereochemical precision. Here, we report the X-ray crystal structure of aristolochene synthase complexed with three Mg2+ ions and the unreactive substrate analogue farnesyl-S-thiolodiphosphate (FSPP), showing that the substrate diphosphate group is anchored by metal coordination and hydrogen bond interactions identical to those previously observed in the complex with three Mg2+ ions and inorganic pyrophosphate (PPi). Moreover, the binding conformation of FSPP directly mimics that expected for productively bound FPP, with the exception of the precise alignment of the C-S bond with regard to the C10-C11 π system that would be required for C1-C10 bond formation in the first step of catalysis. We also report crystal structures of aristolochene synthase complexed with Mg2+3-PPi and ammonium or iminium analogues of bicyclic carbocation intermediates proposed for the natural cyclization cascade. Various binding orientations are observed for these bicyclic analogues, and these orientations appear to be driven by favorable electrostatic interactions between the positively charged ammonium group of the analogue and the negatively charged PPi anion. Surprisingly, the active site is sufficiently flexible to accommodate analogues with partially or completely incorrect stereochemistry. Although this permissiveness in binding is unanticipated, based on the stereochemical precision of catalysis that leads exclusively to the (+)-aristolochene stereoisomer, it suggests the ability of the active site to enable controlled reorientation of intermediates during the cyclization cascade. Taken together, these structures illuminate important aspects of the catalytic mechanism. PMID:23905850

  8. Mapping a kingdom-specific functional domain of squalene synthase.

    PubMed

    Linscott, Kristin B; Niehaus, Thomas D; Zhuang, Xun; Bell, Stephen A; Chappell, Joe

    2016-09-01

    Squalene synthase catalyzes the first committed step in sterol biosynthesis and consists of both an amino-terminal catalytic domain and a carboxy-terminal domain tethering the enzyme to the ER membrane. While the overall architecture of this enzyme is identical in eukaryotes, it was previously shown that plant and animal genes cannot complement a squalene synthase knockout mutation in yeast unless the carboxy-terminal domain is swapped for one of fungal origin. This implied a unique component of the fungal carboxy-terminal domain was responsible for the complementation phenotype. To identify this motif, we used Saccharomyces cerevisiae with a squalene synthase knockout mutation, and expressed intact and chimeric squalene synthases originating from fungi, plants, and animals. In contrast to previous observations, all enzymes tested could partially complement the knockout mutation when the genes were weakly expressed. However, when highly expressed, non-fungal squalene synthases could not complement the yeast mutation and instead led to the accumulation of a toxic intermediate(s) as defined by mutations of genes downstream in the ergosterol pathway. Restoration of the complete complementation phenotype was mapped to a 26-amino acid hinge region linking the catalytic and membrane-spanning domains specific to fungal squalene synthases. Over-expression of the C-terminal domain containing a hinge domain from fungi, not from animals or plants, led to growth inhibition of wild-type yeast. Because this hinge region is unique to and highly conserved within each kingdom of life, the data suggests that the hinge domain plays an essential functional role, such as assembly of ergosterol multi-enzyme complexes in fungi.

  9. Where Will LEAD Lead? An Update on My LEAD Research.

    ERIC Educational Resources Information Center

    Wildman, Louis

    Issues in the future of a federal collaborative program, Leadership in Educational Administration Development (LEAD), are discussed in this paper. Problems attributed to LEAD are its antagonistic posture to educational administration programs in higher education and political conflicts of interest. Methodology involved analysis of successful LEAD…

  10. Potential lead exposures from lead crystal decanters.

    PubMed Central

    Appel, B R; Kahlon, J K; Ferguson, J; Quattrone, A J; Book, S A

    1992-01-01

    We measured the concentrations of lead leached into 4% acetic acid, white port, and a synthetic alcoholic beverage that were stored in lead crystal decanters for 1-, 2-, and 10-day periods at room temperature. In decanters from 14 different manufacturers, measured lead concentrations ranged from 100 to 1800 micrograms/L. The pH of the leaching medium is probably the dominant factor determining the extent of lead leached, with greater leaching occurring at lower pH values. The consumption of alcoholic beverages stored in lead crystal decanters is judged to pose a hazard. PMID:1456345

  11. Heat treatment of peach fruit: modifications in the extracellular compartment and identification of novel extracellular proteins.

    PubMed

    Bustamante, Claudia A; Budde, Claudio O; Borsani, Julia; Lombardo, Verónica A; Lauxmann, Martin A; Andreo, Carlos S; Lara, María V; Drincovich, María F

    2012-11-01

    Ripening of peach (Prunus persica L. Batsch) fruit is accompanied by dramatic cell wall changes that lead to softening. Post-harvest heat treatment is effective in delaying softening and preventing some chilling injury symptoms that this fruit exhibits after storage at low temperatures. In the present work, the levels of twelve transcripts encoding proteins involved in cell wall metabolism, as well as the differential extracellular proteome, were examined after a post-harvest heat treatment (HT; 39 °C for 3 days) of "Dixiland" peach fruit. A typical softening behaviour, in correlation with an increase in 1-aminocyclopropane-1-carboxylic acid oxidase-1 (PpACO1), was observed for peach maintained at 20 °C for 3 days (R3). Six transcripts encoding proteins involved in cell wall metabolism significantly increased in R3 with respect to peach at harvest, while six showed no modification or even decreased. In contrast, after HT, fruit maintained their firmness, exhibiting low PpACO1 level and significant lower levels of the twelve cell wall-modifying genes than in R3. Differential proteomic analysis of apoplastic proteins during softening and after HT revealed a significant decrease of DUF642 proteins after HT; as well as an increase of glyceraldehyde-3-phosphate dehydrogenase (GAPC) after softening. The presence of GAPC in the peach extracellular matrix was further confirmed by in situ immunolocalization and transient expression in tomato fruit. Though further studies are required to establish the function of DUF642 and GAPC in the apoplast, this study contributes to a deeper understanding of the events during peach softening and after HT with a focus on this key compartment.

  12. Inoculation with Metal-Mobilizing Plant-Growth-Promoting Rhizobacterium Bacillus sp. SC2b and Its Role in Rhizoremediation.

    PubMed

    Ma, Ying; Oliveira, Rui S; Wu, Longhua; Luo, Yongming; Rajkumar, Mani; Rocha, Inês; Freitas, Helena

    2015-01-01

    A plant growth-promoting bacterial (PGPB) strain SC2b was isolated from the rhizosphere of Sedum plumbizincicola grown in lead (Pb)/zinc (Zn) mine soils and characterized as Bacillus sp. based on (1) morphological and biochemical characteristics and (2) partial 16S ribosomal DNA sequencing analysis. Strain SC2b exhibited high levels of resistance to cadmium (Cd) (300 mg/L), Zn (730 mg/L), and Pb (1400 mg/L). This strain also showed various plant growth-promoting (PGP) features such as utilization of 1-aminocyclopropane-1-carboxylate, solubilization of phosphate, and production of indole-3-acetic acid and siderophore. The strain mobilized high concentration of heavy metals from soils and exhibited different biosorption capacity toward the tested metal ions. Strain SC2b was further assessed for PGP activity by phytagar assay with a model plant Brassica napus. Inoculation of SC2b increased the biomass and vigor index of B. napus. Considering such potential, a pot experiment was conducted to assess the effects of inoculating the metal-resistant PGPB SC2b on growth and uptake of Cd, Zn and Pb by S. plumbizincicola in metal-contaminated agricultural soils. Inoculation with SC2b elevated the shoot and root biomass and leaf chlorophyll content of S. plumbizincicola. Similarly, plants inoculated with SC2b demonstrated markedly higher Cd and Zn accumulation in the root and shoot system, indicating that SC2b enhanced Cd and Zn uptake by S. plumbizincicola through metal mobilization or plant-microbial mediated changes in chemical or biological soil properties. Data demonstrated that the PGPB Bacillus sp. SC2b might serve as a future biofertilizer and an effective metal mobilizing bioinoculant for rhizoremediation of metal polluted soils.

  13. Increased sensitivity to salt stress in tocopherol-deficient Arabidopsis mutants growing in a hydroponic system.

    PubMed

    Ellouzi, Hasna; Hamed, Karim Ben; Cela, Jana; Müller, Maren; Abdelly, Chedly; Munné-Bosch, Sergi

    2013-02-01

    Recent studies suggest that tocopherols could play physiological roles in salt tolerance but the mechanisms are still unknown. In this study, we analyzed changes in growth, mineral and oxidative status in vte1 and vte4 Arabidopsis thaliana mutants exposed to salt stress. vte1 and vte4 mutants lack α-tocopherol, but only the vte1 mutant is additionally deficient in γ-tocopherol. Results showed that a deficiency in vitamin E leads to reduced growth and increased oxidative stress in hydroponically-grown plants. This effect was observed at early stages, not only in rosettes but also in roots. The vte1 mutant was more sensitive to salt-induced oxidative stress than the wild type and the vte4 mutant. Salt sensitivity was associated with (i) high contents of Na(+), (ii) reduced efficiency of PSII photochemistry (Fv/Fm ratio) and (iii) more pronounced oxidative stress as indicated by increased hydrogen peroxide and malondialdeyde levels. The vte 4 mutant, which accumulates γ- instead of α-tocopherol showed an intermediate sensitivity to salt stress between the wild type and the vte1 mutant. Contents of abscisic acid, jasmonic acid and the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid were higher in the vte1 mutant than the vte4 mutant and wild type. It is concluded that vitamin E-deficient plants show an increased sensitivity to salt stress both in rosettes and roots, therefore indicating the positive role of tocopherols in stress tolerance, not only by minimizing oxidative stress, but also controlling Na(+)/K(+) homeostasis and hormonal balance. PMID:23299430

  14. [Effect of substrate-dependent microbialy produced ethylene on plant growth].

    PubMed

    Khalid, A; Akhtar, M H; Makhmood, M H; Arshad, M

    2006-01-01

    Various compounds have been identified as precursors/substrates for the synthesis of ethylene (C2H4) in soil. This study was designed to compare the efficiency of four substrates, namely L-methionine (L-MET), 2-keto-4-methylthiobutyric acid (KMBA), 1-aminocyclopropane-1-carboxylic acid (ACC), and calcium carbide (CaC2) for ethylene biosynthesis in a sandy clay loam soil by gas chromatography. The classic "triple" response in etiolated pea seedling was employed as a bioassay to demonstrate the effect of substrate-dependent microbialy produced ethylene on plant growth. Results revealed that an amendment with L-MET, KMBA, ACC (up to 0.10 g/kg soil) and CaC2 (0.20 g/kg soil) significantly stimulated ethylene biosynthesis in soil. Overall, ACC proved to be the most effective substrate for ethylene production (1434 nmol/kg soil), followed by KMBA, L-MET, and CaC2 in descending order. Results further revealed that ethylene accumulation in soil released from these substrates created a classic "triple" response in etiolated pea seedlings with different degrees of efficacy. A more obvious classic "triple" response was observed at 0.15, 0.10, and 0.20 g/kg soil of L-MET, KMBA/ACC, and CaC2, respectively. Similarly, direct exposure of etiolated pea seedlings to commercial ethylene gas also modified the growth pattern in the same way. A significant direct correlation (r = 0.86 to 0.97) between substrate-derived [C2H4] and the classic triple response in etiolated pea seedlings was observed. This study demonstrated that the presence of substrate(s) in soil may lead to increased ethylene concentration in the air of the soil, which may affect plant growth in a desired direction.

  15. Increased sensitivity to salt stress in tocopherol-deficient Arabidopsis mutants growing in a hydroponic system.

    PubMed

    Ellouzi, Hasna; Hamed, Karim Ben; Cela, Jana; Müller, Maren; Abdelly, Chedly; Munné-Bosch, Sergi

    2013-02-01

    Recent studies suggest that tocopherols could play physiological roles in salt tolerance but the mechanisms are still unknown. In this study, we analyzed changes in growth, mineral and oxidative status in vte1 and vte4 Arabidopsis thaliana mutants exposed to salt stress. vte1 and vte4 mutants lack α-tocopherol, but only the vte1 mutant is additionally deficient in γ-tocopherol. Results showed that a deficiency in vitamin E leads to reduced growth and increased oxidative stress in hydroponically-grown plants. This effect was observed at early stages, not only in rosettes but also in roots. The vte1 mutant was more sensitive to salt-induced oxidative stress than the wild type and the vte4 mutant. Salt sensitivity was associated with (i) high contents of Na(+), (ii) reduced efficiency of PSII photochemistry (Fv/Fm ratio) and (iii) more pronounced oxidative stress as indicated by increased hydrogen peroxide and malondialdeyde levels. The vte 4 mutant, which accumulates γ- instead of α-tocopherol showed an intermediate sensitivity to salt stress between the wild type and the vte1 mutant. Contents of abscisic acid, jasmonic acid and the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid were higher in the vte1 mutant than the vte4 mutant and wild type. It is concluded that vitamin E-deficient plants show an increased sensitivity to salt stress both in rosettes and roots, therefore indicating the positive role of tocopherols in stress tolerance, not only by minimizing oxidative stress, but also controlling Na(+)/K(+) homeostasis and hormonal balance.

  16. Inoculation with Metal-Mobilizing Plant-Growth-Promoting Rhizobacterium Bacillus sp. SC2b and Its Role in Rhizoremediation.

    PubMed

    Ma, Ying; Oliveira, Rui S; Wu, Longhua; Luo, Yongming; Rajkumar, Mani; Rocha, Inês; Freitas, Helena

    2015-01-01

    A plant growth-promoting bacterial (PGPB) strain SC2b was isolated from the rhizosphere of Sedum plumbizincicola grown in lead (Pb)/zinc (Zn) mine soils and characterized as Bacillus sp. based on (1) morphological and biochemical characteristics and (2) partial 16S ribosomal DNA sequencing analysis. Strain SC2b exhibited high levels of resistance to cadmium (Cd) (300 mg/L), Zn (730 mg/L), and Pb (1400 mg/L). This strain also showed various plant growth-promoting (PGP) features such as utilization of 1-aminocyclopropane-1-carboxylate, solubilization of phosphate, and production of indole-3-acetic acid and siderophore. The strain mobilized high concentration of heavy metals from soils and exhibited different biosorption capacity toward the tested metal ions. Strain SC2b was further assessed for PGP activity by phytagar assay with a model plant Brassica napus. Inoculation of SC2b increased the biomass and vigor index of B. napus. Considering such potential, a pot experiment was conducted to assess the effects of inoculating the metal-resistant PGPB SC2b on growth and uptake of Cd, Zn and Pb by S. plumbizincicola in metal-contaminated agricultural soils. Inoculation with SC2b elevated the shoot and root biomass and leaf chlorophyll content of S. plumbizincicola. Similarly, plants inoculated with SC2b demonstrated markedly higher Cd and Zn accumulation in the root and shoot system, indicating that SC2b enhanced Cd and Zn uptake by S. plumbizincicola through metal mobilization or plant-microbial mediated changes in chemical or biological soil properties. Data demonstrated that the PGPB Bacillus sp. SC2b might serve as a future biofertilizer and an effective metal mobilizing bioinoculant for rhizoremediation of metal polluted soils. PMID:26167758

  17. Comparison of the role of gibberellins and ethylene in response to submergence of two lowland rice cultivars, Senia and Bomba.

    PubMed

    Dubois, Vincent; Moritz, Thomas; García-Martínez, José L

    2011-02-15

    We examined the gibberellin (GA) and ethylene regulation of submergence-induced elongation in seedlings of the submergence-tolerant lowland rice (Oryza sativa L.) cvs Senia and Bomba. Elongation was enhanced after germination to facilitate water escape and reach air. We found that submergence-induced elongation depends on GA because it was counteracted by paclobutrazol (an inhibitor of GA biosynthesis), an effect that was negated by GA(3). Moreover, in the cv Senia, submergence increased the content of active GA(1) and its immediate precursors (GA(53), GA(19) and GA(20)) by enhancing expression of several GA biosynthesis genes (OsGA20ox1 and -2, and OsGA3ox2), but not by decreasing expression of several OsGA2ox (GA inactivating genes). Senia seedlings, in contrast to Bomba seedlings, did not elongate in response to ethylene or 1-aminocyclopropane-1-carboxylic-acid (ACC; an ethylene precursor) application, and submergence-induced elongation was not reduced in the presence of 1-methylcyclopropene (1-MCP; an ethylene perception inhibitor). Ethylene emanation was similar in Senia seedlings grown in air and in submerged-grown seedlings following de-submergence, while it increased in Bomba. The expression of ethylene biosynthesis genes (OsACS1, -2 and -3, and OsACO1) was not affected in Senia, but expression of OsACS5 was rapidly enhanced in Bomba upon submergence. Our results support the conclusion that submergence elongation enhancement of lowland rice is due to alteration of GA metabolism leading to an increase in active GA (GA(1)) content. Interestingly, in the cv Senia, in contrast to cv Bomba, this was triggered through an ethylene-independent mechanism.

  18. Increased sensitivity to salt stress in tocopherol-deficient Arabidopsis mutants growing in a hydroponic system

    PubMed Central

    Ellouzi, Hasna; Hamed, Karim Ben; Cela, Jana; Müller, Maren; Abdelly, Chedly; Munné-Bosch, Sergi

    2013-01-01

    Recent studies suggest that tocopherols could play physiological roles in salt tolerance but the mechanisms are still unknown. In this study, we analyzed changes in growth, mineral and oxidative status in vte1 and vte4 Arabidopsis thaliana mutants exposed to salt stress. vte1 and vte4 mutants lack α-tocopherol, but only the vte1 mutant is additionally deficient in γ-tocopherol. Results showed that a deficiency in vitamin E leads to reduced growth and increased oxidative stress in hydroponically-grown plants. This effect was observed at early stages, not only in rosettes but also in roots. The vte1 mutant was more sensitive to salt-induced oxidative stress than the wild type and the vte4 mutant. Salt sensitivity was associated with (i) high contents of Na+, (ii) reduced efficiency of PSII photochemistry (Fv/Fm ratio) and (iii) more pronounced oxidative stress as indicated by increased hydrogen peroxide and malondialdeyde levels. The vte 4 mutant, which accumulates γ- instead of α-tocopherol showed an intermediate sensitivity to salt stress between the wild type and the vte1 mutant. Contents of abscisic acid, jasmonic acid and the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid were higher in the vte1 mutant than the vte4 mutant and wild type. It is concluded that vitamin E-deficient plants show an increased sensitivity to salt stress both in rosettes and roots, therefore indicating the positive role of tocopherols in stress tolerance, not only by minimizing oxidative stress, but also controlling Na+/K+ homeostasis and hormonal balance. PMID:23299430

  19. Lead in petrol. The isotopic lead experiment

    SciTech Connect

    Facchetti, S. )

    1989-10-01

    Many studies were dedicated to the evaluation of the impact of automotive lead on the environment and to the assessment of its absorption in the human population. They can be subdivided into two groups, those based on changes of air and blood lead concentrations and those based on changes of air and blood lead isotopic compositions. According to various authors, 50-66% of the lead added to petrol is mobilized in the atmosphere, while most of the remainder adheres to the walls of the exhaust system from which it is expelled by mechanical and thermal shocks in the forms of easily sedimented particles. The fraction directly emitted by engine exhaust fumes is found in the form of fine particles, which can be transferred a long way from the emitting sources. However important the contribution of petrol lead to the total airborne lead may be, our knowledge does not permit a straightforward calculation of the percentage of petrol lead in total blood lead, which of course can also originate from other sources (e.g., industrial, natural). To evaluate this percentage in 1973, the idea of the Isotopic Lead Experiment (ILE project) was conceived to label, on a regional scale, petrol with a nonradioactive lead of an isotopic composition sufficiently different from that of background lead and sufficiently stable in time. This Account summarizes the main results obtained by the ILE project.

  20. Bone lead, hypertension, and lead nephropathy

    SciTech Connect

    Wedeen, R.P.

    1988-06-01

    There is considerable clinical evidence that excessive lead absorption causes renal failure with hypertension and predisposes individuals to hypertension even in the absence of detectable renal failure. Recent analyses of transiliac bone biopsies indicate that unsuspected elevated bone leads may reflect the cause (or contributing cause) of end-stage renal disease in 5% of the European dialysis population. In these patients, bone lead levels were four times higher than in unexposed cadavers (6 micrograms/g wet weight) and approximated levels found in lead workers (30 micrograms/g). At present, the most reliable index of the body lead burden is the CaNa2 EDTA lead mobilization test. In vivo tibial X-ray-induced X-ray fluorescence (XRF) is a more practical noninvasive technique for assessing bone lead, which should find widespread application as a diagnostic tool and for epidemiologic studies.

  1. An Unusual Chimeric Diterpene Synthase from Emericella variecolor and Its Functional Conversion into a Sesterterpene Synthase by Domain Swapping.

    PubMed

    Qin, Bin; Matsuda, Yudai; Mori, Takahiro; Okada, Masahiro; Quan, Zhiyang; Mitsuhashi, Takaaki; Wakimoto, Toshiyuki; Abe, Ikuro

    2016-01-26

    Di- and sesterterpene synthases produce C20 and C25 isoprenoid scaffolds from geranylgeranyl pyrophosphate (GGPP) and geranylfarnesyl pyrophosphate (GFPP), respectively. By genome mining of the fungus Emericella variecolor, we identified a multitasking chimeric terpene synthase, EvVS, which has terpene cyclase (TC) and prenyltransferase (PT) domains. Heterologous gene expression in Aspergillus oryzae led to the isolation of variediene (1), a novel tricyclic diterpene hydrocarbon. Intriguingly, in vitro reaction with the enzyme afforded the new macrocyclic sesterterpene 2 as a minor product from dimethylallyl pyrophosphate (DMAPP) and isopentenyl pyrophosphate (IPP). The TC domain thus produces the diterpene 1 and the sesterterpene 2 from GGPP and GFPP, respectively. Notably, a domain swap of the PT domain of EvVS with that of another chimeric sesterterpene synthase, EvSS, successfully resulted in the production of 2 in vivo as well. Cyclization mechanisms for the production of these two compounds are proposed.

  2. Benzophenone Synthase and Chalcone Synthase Accumulate in the Mesophyll of Hypericum perforatum Leaves at Different Developmental Stages

    PubMed Central

    Belkheir, Asma K.; Gaid, Mariam; Liu, Benye; Hänsch, Robert; Beerhues, Ludger

    2016-01-01

    The active medicinal constituents in Hypericum perforatum, used to treat depression and skin irritation, include flavonoids and xanthones. The carbon skeletons of these compounds are formed by chalcone synthase (CHS) and benzophenone synthase (BPS), respectively. Polyclonal antisera were raised against the polyketide synthases from Hypericum androsaemum and their IgG fractions were isolated. Immunoblotting and immunotitration were used to test the IgGs for crossreactivity and monospecificity in H. perforatum leaf protein extract. Immunofluorescence localization revealed that both CHS and BPS are located in the mesophyll. The maximum fluorescence levels were observed in approx. 0.5 and 1 cm long leaves, respectively. The fluorescence intensity observed for CHS significantly exceeded that for BPS. Using histochemical staining, flavonoids were detected in the mesophyll, indicating that the sites of biosynthesis and accumulation coincide. Our results help understand the biosynthesis and underlying regulation of active H. perforatum constituents. PMID:27446151

  3. Identification of a cryptic type III polyketide synthase (1,3,6,8-tetrahydroxynaphthalene synthase) from Streptomyces peucetius ATCC 27952.

    PubMed

    Ghimire, Gopal Prasad; Oh, Tae-Jin; Liou, Kwangkyoung; Sohng, Jae Kyung

    2008-10-31

    We identified a 1,134-bp putative type III polyketide synthase from the sequence analysis of Streptomyces peucetius ATCC 27952, named Sp-RppA, which is characterized as 1,3,6,8-tetrahydroxynaphthalene synthase and shares 33% identity with SCO1206 from S. coelicolor A3(2) and 32% identity with RppA from S. griseus. The 1,3,6,8-tetrahydroxynaphthalene synthase is known to catalyze the sequential decarboxylative condensation, intramolecular cyclization, and aromatization of an oligoketide derived from five units of malonyl-CoA to give 1,3,6,8-tetrahydroxynaphthalene, which spontaneously oxidizes to form 2,5,7-trihydroxy-1,4-naphthoquinone (flaviolin). In this study, we report the in vivo expression and in vitro synthesis of flaviolin from purified gene product (Sp-RppA). PMID:18612244

  4. Benzophenone Synthase and Chalcone Synthase Accumulate in the Mesophyll of Hypericum perforatum Leaves at Different Developmental Stages.

    PubMed

    Belkheir, Asma K; Gaid, Mariam; Liu, Benye; Hänsch, Robert; Beerhues, Ludger

    2016-01-01

    The active medicinal constituents in Hypericum perforatum, used to treat depression and skin irritation, include flavonoids and xanthones. The carbon skeletons of these compounds are formed by chalcone synthase (CHS) and benzophenone synthase (BPS), respectively. Polyclonal antisera were raised against the polyketide synthases from Hypericum androsaemum and their IgG fractions were isolated. Immunoblotting and immunotitration were used to test the IgGs for crossreactivity and monospecificity in H. perforatum leaf protein extract. Immunofluorescence localization revealed that both CHS and BPS are located in the mesophyll. The maximum fluorescence levels were observed in approx. 0.5 and 1 cm long leaves, respectively. The fluorescence intensity observed for CHS significantly exceeded that for BPS. Using histochemical staining, flavonoids were detected in the mesophyll, indicating that the sites of biosynthesis and accumulation coincide. Our results help understand the biosynthesis and underlying regulation of active H. perforatum constituents. PMID:27446151

  5. Lead poisoning in children.

    PubMed

    Dapul, Heda; Laraque, Danielle

    2014-08-01

    There is no safe lead level in children. Primary prevention is the most effective way to bring about the complete removal of lead from the environment and eliminate lead poisoning as a public health concern. The National Lead Information Center can be reached via the Internet at www.epa.gov/lead and www.hud.gov/lead, or via phone at 1-800-424-LEAD (5323).

  6. The purification, crystallization and preliminary X-ray diffraction analysis of dihydrodipicolinate synthase from Clostridium botulinum

    SciTech Connect

    Dobson, Renwick C. J. Atkinson, Sarah C.; Gorman, Michael A.; Newman, Janet M.; Parker, Michael W.; Perugini, Matthew A.

    2008-03-01

    Dihydrodipicolinate synthase (DHDPS), an enzyme in the lysine-biosynthetic pathway, is a promising target for antibiotic development against pathogenic bacteria. Here, the expression, purification, crystallization and preliminary diffraction analysis of DHDPS from C. botulinum are reported. In recent years, dihydrodipicolinate synthase (DHDPS; EC 4.2.1.52) has received considerable attention from both mechanistic and structural viewpoints. This enzyme, which is part of the diaminopimelate pathway leading to lysine, couples (S)-aspartate-β-semialdehyde with pyruvate via a Schiff base to a conserved active-site lysine. In this paper, the expression, purification, crystallization and preliminary X-ray diffraction analysis of DHDPS from Clostridium botulinum, an important bacterial pathogen, are presented. The enzyme was crystallized in a number of forms, predominantly using PEG precipitants, with the best crystal diffracting to beyond 1.9 Å resolution and displaying P4{sub 2}2{sub 1}2 symmetry. The unit-cell parameters were a = b = 92.9, c = 60.4 Å. The crystal volume per protein weight (V{sub M}) was 2.07 Å{sup 3} Da{sup −1}, with an estimated solvent content of 41%. The structure of the enzyme will help guide the design of novel therapeutics against the C. botulinum pathogen.

  7. Characterization of a 1,4-{beta}-D-glucan synthase from Dictyostelium. Final technical report

    SciTech Connect

    Blanton, R.L.

    1996-02-01

    The study of cellulose biosynthesis has a long history of frustrations, false leads, and setbacks. The authors have been able to proceed further than others who have studied eukaryotic cellulose synthesis because of the high level of enzyme activity in crude membrane preparations from developing Dictyostelium cells. This has made possible experiments to study factors that influence the activity, to determine cellular localization, and to study the development regulation of the enzyme activity. In higher plants, the challenge is still to obtain highly active membrane preparations. However, they have not been able to move beyond the level of crude membranes. The high starting activity of Dictyostelium membranes gave hope that cellulose synthase activity could be purified, allowing the identification of the polypeptides involved in cellulose synthesis. The first step in the purification of a membrane-associated activity is the solubilization of the activity; this they have not yet been able to do. They have applied some of their methods developed in the study of the Dictyostelium glucan synthase to preparation of plant membranes to see if they can obtain any in vitro activity. For instance, the disruption medium, disruption methods, and assay conditions used in Dictyostelium were used to prepare plant membranes, but without obtaining significant levels of enzyme activity.

  8. Substituted Pyrrolo[2,3-d]pyrimidines as Cryptosporidium hominis Thymidylate Synthase Inhibitors

    PubMed Central

    Kumar, Vidya P.; Frey, Kathleen M.; Wang, Yiqiang; Jain, Hitesh K.; Gangjee, Aleem; Anderson, Karen S.

    2013-01-01

    Cryptosporidiosis, a gastrointestinal disease caused by a protozoan Cryptosporidium hominis is often fatal in immunocompromised individuals. There is little clinical data to show that the existing treatment by nitazoxanide and paromomycin is effective in immunocompromised individuals1, 2. Thymidylate synthase (TS) and dihydrofolate reductase (DHFR) are essential enzymes in the folate biosynthesis pathway and are well established as drug targets in cancer and malaria. A novel series of classical antifolates, 2-amino-4-oxo-5-substituted pyrrolo[2,3-d]pyrimidines have been evaluated as Cryptosporidium hominis thymidylate synthase (ChTS) inhibitors. Crystal structure in complex with the most potent compound, a 2’-chlorophenyl with a sulfur bridge with a Ki of 8.83 ± 0.67 nM is discussed in terms of several Van de Waals, hydrophobic and hydrogen bond interactions with the protein residues and the substrate analog 5-fluorodeoxyuridine monophosphate. Of these interactions, two interactions with the non-conserved residues (A287 and S290) offer an opportunity to develop ChTS specific inhibitors. Compound 6 serves as a lead compound for analog design and its crystal structure provides clues for the design of ChTS specific inhibitors. PMID:23927969

  9. Type III polyketide synthase repertoire in Zingiberaceae: computational insights into the sequence, structure and evolution.

    PubMed

    Mallika, Vijayanathan; Aiswarya, Girija; Gincy, Paily Thottathil; Remakanthan, Appukuttan; Soniya, Eppurathu Vasudevan

    2016-07-01

    Zingiberaceae or 'ginger family' is the largest family in the order 'Zingiberales' with more than 1300 species in 52 genera, which are mostly distributed throughout Asia, tropical Africa and the native regions of America with their maximum diversity in Southeast Asia. Many of the members are important spice, medicinal or ornamental plants including ginger, turmeric, cardamom and kaempferia. These plants are distinguished for the highly valuable metabolic products, which are synthesised through phenylpropanoid pathway, where type III polyketide synthase is the key enzyme. In our present study, we used sequence, structural and evolutionary approaches to scrutinise the type III polyketide synthase (PKS) repertoire encoded in the Zingiberaceae family. Highly conserved amino acid residues in the sequence alignment and phylogram suggested strong relationships between the type III PKS members of Zingiberaceae. Sequence and structural level investigation of type III PKSs showed a small number of variations in the substrate binding pocket, leading to functional divergence among these PKS members. Molecular evolutionary studies indicate that type III PKSs within Zingiberaceae evolved under strong purifying selection pressure, and positive selections were rarely detected in the family. Structural modelling and protein-small molecule interaction studies on Zingiber officinale PKS 'a representative from Zingiberaceae' suggested that the protein is comparatively stable without much disorder and exhibited wide substrate acceptance.

  10. Type III polyketide synthase repertoire in Zingiberaceae: computational insights into the sequence, structure and evolution.

    PubMed

    Mallika, Vijayanathan; Aiswarya, Girija; Gincy, Paily Thottathil; Remakanthan, Appukuttan; Soniya, Eppurathu Vasudevan

    2016-07-01

    Zingiberaceae or 'ginger family' is the largest family in the order 'Zingiberales' with more than 1300 species in 52 genera, which are mostly distributed throughout Asia, tropical Africa and the native regions of America with their maximum diversity in Southeast Asia. Many of the members are important spice, medicinal or ornamental plants including ginger, turmeric, cardamom and kaempferia. These plants are distinguished for the highly valuable metabolic products, which are synthesised through phenylpropanoid pathway, where type III polyketide synthase is the key enzyme. In our present study, we used sequence, structural and evolutionary approaches to scrutinise the type III polyketide synthase (PKS) repertoire encoded in the Zingiberaceae family. Highly conserved amino acid residues in the sequence alignment and phylogram suggested strong relationships between the type III PKS members of Zingiberaceae. Sequence and structural level investigation of type III PKSs showed a small number of variations in the substrate binding pocket, leading to functional divergence among these PKS members. Molecular evolutionary studies indicate that type III PKSs within Zingiberaceae evolved under strong purifying selection pressure, and positive selections were rarely detected in the family. Structural modelling and protein-small molecule interaction studies on Zingiber officinale PKS 'a representative from Zingiberaceae' suggested that the protein is comparatively stable without much disorder and exhibited wide substrate acceptance. PMID:27138283

  11. Natural fatty acid synthase inhibitors as potent therapeutic agents for cancers: A review.

    PubMed

    Zhang, Jia-Sui; Lei, Jie-Ping; Wei, Guo-Qing; Chen, Hui; Ma, Chao-Ying; Jiang, He-Zhong

    2016-09-01

    Context Fatty acid synthase (FAS) is the only mammalian enzyme to catalyse the synthesis of fatty acid. The expression level of FAS is related to cancer progression, aggressiveness and metastasis. In recent years, research on natural FAS inhibitors with significant bioactivities and low side effects has increasingly become a new trend. Herein, we present recent research progress on natural fatty acid synthase inhibitors as potent therapeutic agents. Objective This paper is a mini overview of the typical natural FAS inhibitors and their possible mechanism of action in the past 10 years (2004-2014). Method The information was collected and compiled through major databases including Web of Science, PubMed, and CNKI. Results Many natural products induce cancer cells apoptosis by inhibiting FAS expression, with fewer side effects than synthetic inhibitors. Conclusion Natural FAS inhibitors are widely distributed in plants (especially in herbs and foods). Some natural products (mainly phenolics) possessing potent biological activities and stable structures are available as lead compounds to synthesise promising FAS inhibitors.

  12. Structure and Mechanism of the Farnesyl Diphosphate Synthase from Trypanosoma cruzi: Implications for Drug Design

    SciTech Connect

    Gabelli,S.; McLellan, J.; Montalvetti, A.; Oldfield, E.; Docampo, R.; Amzel, L.

    2006-01-01

    Typanosoma cruzi, the causative agent of Chagas disease, has recently been shown to be sensitive to the action of the bisphosphonates currently used in bone resorption therapy. These compounds target the mevalonate pathway by inhibiting farnesyl diphosphate synthase (farnesyl pyrophosphate synthase, FPPS), the enzyme that condenses the diphosphates of C{sub 5} alcohols (isopentenyl and dimethylallyl) to form C{sub 10} and C{sub 15} diphosphates (geranyl and farnesyl). The structures of the T. cruzi FPPS (TcFPPS) alone and in two complexes with substrates and inhibitors reveal that following binding of the two substrates and three Mg2+ ions, the enzyme undergoes a conformational change consisting of a hinge-like closure of the binding site. In this conformation, it would be possible for the enzyme to bind a bisphosphonate inhibitor that spans the sites usually occupied by dimethylallyl diphosphate (DMAPP) and the homoallyl moiety of isopentenyl diphosphate. This observation may lead to the design of new, more potent anti-trypanosomal bisphosphonates, because existing FPPS inhibitors occupy only the DMAPP site. In addition, the structures provide an important mechanistic insight: after its formation, geranyl diphosphate can swing without leaving the enzyme, from the product site to the substrate site to participate in the synthesis of farnesyl diphosphate.

  13. Targeting ceramide synthase 6–dependent metastasis-prone phenotype in lung cancer cells

    PubMed Central

    Suzuki, Motoshi; Cao, Ke; Kato, Seiichi; Komizu, Yuji; Mizutani, Naoki; Tanaka, Kouji; Arima, Chinatsu; Tai, Mei Chee; Yanagisawa, Kiyoshi; Togawa, Norie; Shiraishi, Takahiro; Usami, Noriyasu; Taniguchi, Tetsuo; Fukui, Takayuki; Yokoi, Kohei; Wakahara, Keiko; Hasegawa, Yoshinori; Mizutani, Yukiko; Igarashi, Yasuyuki; Inokuchi, Jin-ichi; Iwaki, Soichiro; Fujii, Satoshi; Satou, Akira; Matsumoto, Yoko; Ueoka, Ryuichi; Tamiya-Koizumi, Keiko; Murate, Takashi; Nakamura, Mitsuhiro; Kyogashima, Mamoru; Takahashi, Takashi

    2015-01-01

    Sphingolipids make up a family of molecules associated with an array of biological functions, including cell death and migration. Sphingolipids are often altered in cancer, though how these alterations lead to tumor formation and progression is largely unknown. Here, we analyzed non–small-cell lung cancer (NSCLC) specimens and cell lines and determined that ceramide synthase 6 (CERS6) is markedly overexpressed compared with controls. Elevated CERS6 expression was due in part to reduction of microRNA-101 (miR-101) and was associated with increased invasion and poor prognosis. CERS6 knockdown in NSCLC cells altered the ceramide profile, resulting in decreased cell migration and invasion in vitro, and decreased the frequency of RAC1-positive lamellipodia formation while CERS6 overexpression promoted it. In murine models, CERS6 knockdown in transplanted NSCLC cells attenuated lung metastasis. Furthermore, combined treatment with l-α-dimyristoylphosphatidylcholine liposome and the glucosylceramide synthase inhibitor D-PDMP induced cell death in association with ceramide accumulation and promoted cancer cell apoptosis and tumor regression in murine models. Together, these results indicate that CERS6-dependent ceramide synthesis and maintenance of ceramide in the cellular membrane are essential for lamellipodia formation and metastasis. Moreover, these results suggest that targeting this homeostasis has potential as a therapeutic strategy for CERS6-overexpressing NSCLC. PMID:26650179

  14. Lead and the Romans

    ERIC Educational Resources Information Center

    Reddy, Aravind; Braun, Charles L.

    2010-01-01

    Lead poisoning has been a problem since early history and continues into modern times. An appealing characteristic of lead is that many lead salts are sweet. In the absence of cane and beet sugars, early Romans used "sugar of lead" (lead acetate) to sweeten desserts, fruits, and sour wine. People most at risk would have been those who consumed the…

  15. Genetics Home Reference: N-acetylglutamate synthase deficiency

    MedlinePlus

    ... of reactions that occurs in liver cells. This cycle processes excess nitrogen, generated when protein is used by the body, to make a compound called urea that is excreted by the kidneys. The ... cycle. In people with N-acetylglutamate synthase deficiency , N- ...

  16. Incremental truncation of PHA synthases results in altered product specificity.

    PubMed

    Wang, Qian; Xia, Yongzhen; Chen, Quan; Qi, Qingsheng

    2012-05-10

    PHA synthase is the key enzyme involved in the biosynthesis of microbial polymers, polyhydroxyalkanoates (PHA). In this study, we created a hybrid library of PHA synthase gene with different crossover points by an incremental truncation method between the C-terminal fragments of the phaC(Cn) (phaC from Cupriavidus necator) and the N-terminal fragments of the phaC1(Pa) (phaC from Pseudomonas aeruginosa). As the truncation of the hybrid enzyme increased, the in vivo PHB synthesis ability of the hybrids declined gradually. PHA synthase PhaC(Cn) with a deletion on N-terminal up to 83 amino acid residues showed no synthase activity. While with the removal of up to 270 amino acids from the N-terminus, the activity of the truncated PhaC(Cn) could be complemented by the N-terminus of PhaC1(Pa). Three of the hybrid enzymes W188, W235 and W272 (named by the deleted nucleic acid number) were found to have altered product specificities. PMID:22500895

  17. Absence of Pneumocystis dihydropteroate synthase mutants in Brittany, France.

    PubMed

    Le Gal, Solène; Robert-Gangneux, Florence; Perrot, Maëla; Rouillé, Amélie; Virmaux, Michèle; Damiani, Céline; Totet, Anne; Gangneux, Jean-Pierre; Nevez, Gilles

    2013-05-01

    Archival Pneumocystis jirovecii specimens from 84 patients monitored at Rennes University Hospital (Rennes, France) were assayed at the dihydropteroate synthase (DHPS) locus. No patient was infected with mutants. The results provide additional data showing that P. jirovecii infections involving DHPS mutants do not represent a public health issue in Brittany, western France.

  18. Insight into Biochemical Characterization of Plant Sesquiterpene Synthases

    PubMed Central

    Manczak, Tom; Simonsen, Henrik Toft

    2016-01-01

    A fast and reproducible protocol was established for enzymatic characterization of plant sesquiterpene synthases that can incorporate radioactivity in their products. The method utilizes the 96-well format in conjunction with cluster tubes and enables processing of >200 samples a day. Along with reduced reagent usage, it allows further reduction in the use of radioactive isotopes and flammable organic solvents. The sesquiterpene synthases previously characterized were expressed in yeast, and the plant-derived Thapsia garganica kunzeaol synthase TgTPS2 was tested in this method. KM for TgTPS2 was found to be 0.55 μM; the turnover number, kcat, was found to be 0.29 s−1, kcat for TgTPS2 is in agreement with that of terpene synthases of other plants, and kcat/KM was found to be 0.53 s−1 μM−1 for TgTPS2. The kinetic parameters were in agreement with previously published data. PMID:27721652

  19. A particular phenotype in a girl with aldosterone synthase deficiency.

    PubMed

    Williams, Tracy A; Mulatero, Paolo; Bosio, Maurizio; Lewicka, Sabina; Palermo, Mario; Veglio, Franco; Armanini, Decio

    2004-07-01

    Aldosterone synthase deficiency (ASD) usually presents in infancy as a life-threatening electrolyte imbalance. A 4-wk-old child of unrelated parents was examined for failure to thrive and salt-wasting. Notable laboratory findings were hyperkalemia, high plasma renin, and low-normal aldosterone levels. Urinary metabolite ratios of corticosterone/18-hydroxycorticosterone and 18-hydroxycorticosterone/aldosterone were intermediate between ASD type I and type II. Sequence analysis of CYP11B2, the gene encoding aldosterone synthase (P450c11AS), revealed that the patient was a compound heterozygote carrying a previously described mutation located in exon 4 causing a premature stop codon (E255X) and a further, novel mutation in exon 5 that also causes a premature stop codon (Q272X). The patient's unaffected father was a heterozygous carrier of the E255X mutation, whereas the unaffected mother was a heterozygous carrier of the Q272X mutation. Therefore, the patient's CYP11B2 encodes two truncated forms of aldosterone synthase predicted to be inactive because they lack critical active site residues as well as the heme-binding site. This case of ASD is of particular interest because despite the apparent lack of aldosterone synthase activity, the patient displays low-normal aldosterone levels, thus raising the question of its source. PMID:15240589

  20. Lipoxin synthase activity of human platelet 12-lipoxygenase.

    PubMed Central

    Romano, M; Chen, X S; Takahashi, Y; Yamamoto, S; Funk, C D; Serhan, C N

    1993-01-01

    Human platelets and megacaryocytes generate lipoxins from exogenous leukotriene A4 (LTA4). We examined the role of human 12-lipoxygenase (12-LO) in lipoxin generation with recombinant histidine-tagged human platelet enzyme (6His-12-LO), partially purified 12-LO from human platelets (HPL 12-LO) and, for the purposes of direct comparison, permeabilized platelets. Recombinant and HPL 12-LO catalysed the conversion of intact LTA4 into both lipoxin A4 (LXA4) and lipoxin B4 (LXB4). In contrast, only negligible quantities of LXA4 were generated when recombinant 12-LO was incubated with the non-enzymic hydrolysis products of LTA4.6His-12-LO also converted a non-allylic epoxide, 5(6)-epoxy-(8Z,11Z,14Z)-eicosatrienoic acid. The apparent Km and Vmax. for lipoxin synthase activity of 6His-12-LO were estimated to be 7.9 +/- 0.8 microM and 24.5 +/- 2.5 nmol/min per mg respectively, and the LXB4 synthase activity of this enzyme was selectively regulated by suicide inactivation. Aspirin gave a 2-fold increase in lipoxin formation by platelets but did not enhance the conversion of LTA4 by the recombinant 12-LO. These results provide direct evidence for LXA4 and LXB4 synthase activity of human platelet 12-LO. Moreover, they suggest that 12-LO is a dual-function enzyme that carries both oxygenase and lipoxin synthase activity. Images Figure 1 PMID:8250832

  1. Polyhydroyxalkanoate synthase fusions as a strategy for oriented enzyme immobilisation.

    PubMed

    Hooks, David O; Venning-Slater, Mark; Du, Jinping; Rehm, Bernd H A

    2014-01-01

    Polyhydroxyalkanoate (PHA) is a carbon storage polymer produced by certain bacteria in unbalanced nutrient conditions. The PHA forms spherical inclusions surrounded by granule associate proteins including the PHA synthase (PhaC). Recently, the intracellular formation of PHA granules with covalently attached synthase from Ralstonia eutropha has been exploited as a novel strategy for oriented enzyme immobilisation. Fusing the enzyme of interest to PHA synthase results in a bifunctional protein able to produce PHA granules and immobilise the active enzyme of choice to the granule surface. Functionalised PHA granules can be isolated from the bacterial hosts, such as Escherichia coli, and maintain enzymatic activity in a wide variety of assay conditions. This approach to oriented enzyme immobilisation has produced higher enzyme activities and product levels than non-oriented immobilisation techniques such as protein inclusion based particles. Here, enzyme immobilisation via PHA synthase fusion is reviewed in terms of the genetic designs, the choices of enzymes, the control of enzyme orientations, as well as their current and potential applications. PMID:24962396

  2. Mechanism of the beta-ketoacyl synthase reaction catalyzed by the animal fatty acid synthase.

    PubMed

    Witkowski, Andrzej; Joshi, Anil K; Smith, Stuart

    2002-09-01

    The catalytic mechanism of the beta-ketoacyl synthase domain of the multifunctional fatty acid synthase has been investigated by a combination of mutagenesis, active-site titration, product analysis, and product inhibition. Neither the reactivity of the active-site Cys161 residue toward iodoacetamide nor the rate of unidirectional transfer of acyl moieties to Cys161 was significantly decreased by replacement of any of the conserved residues, His293, His331, or Lys326, with Ala. Decarboxylation of malonyl moieties in the fully-active Cys161Gln background generated equimolar amounts of acetyl-CoA and bicarbonate, rather than carbon dioxide, and was seriously compromised by replacement of any of the conserved basic residues. The ability of bicarbonate to inhibit decarboxylation of malonyl moieties in the Cys161Gln background was significantly reduced by replacement of His293 but less so by replacement of His331. The data are consistent with a reaction mechanism, in which the initial primer transfer reaction is promoted largely through a lowering of the pKa of the Cys161 thiol by a helix dipole effect and activation of the substrate thioester carbon atom by binding of the keto group in an oxyanion hole. The data also indicate that an activated water molecule is present at the active site that is required either for the rapid hydration of carbon dioxide, prior its release as bicarbonate or, alternatively, for an initial attack on the malonyl C3. In the alternative mechanism, a negatively-charged tetrahedral transition state could be generated, stabilized in part by interaction of His293 with the negatively charged oxygen at C3 and interaction of His331 with the negatively charged thioester carbonyl oxygen, that breaks down to generate bicarbonate directly. Finally, the carbanion at C2, attacks the electrophilic C1 of the primer, generating a second tetrahedral transition state, also stabilized through contacts with the oxyanion hole and His331, that breaks down to form

  3. Substrate recognition by β-ketoacyl-ACP synthases.

    PubMed

    Borgaro, Janine G; Chang, Andrew; Machutta, Carl A; Zhang, Xujie; Tonge, Peter J

    2011-12-13

    β-Ketoacyl-ACP synthase (KAS) enzymes catalyze Claisen condensation reactions in the fatty acid biosynthesis pathway. These reactions follow a ping-pong mechanism in which a donor substrate acylates the active site cysteine residue after which the acyl group is condensed with the malonyl-ACP acceptor substrate to form a β-ketoacyl-ACP. In the priming KASIII enzymes the donor substrate is an acyl-CoA while in the elongating KASI and KASII enzymes the donor is an acyl-ACP. Although the KASIII enzyme in Escherichia coli (ecFabH) is essential, the corresponding enzyme in Mycobacterium tuberculosis (mtFabH) is not, suggesting that the KASI or II enzyme in M. tuberculosis (KasA or KasB, respectively) must be able to accept a CoA donor substrate. Since KasA is essential, the substrate specificity of this KASI enzyme has been explored using substrates based on phosphopantetheine, CoA, ACP, and AcpM peptide mimics. This analysis has been extended to the KASI and KASII enzymes from E. coli (ecFabB and ecFabF) where we show that a 14-residue malonyl-phosphopantetheine peptide can efficiently replace malonyl-ecACP as the acceptor substrate in the ecFabF reaction. While ecFabF is able to catalyze the condensation reaction when CoA is the carrier for both substrates, the KASI enzymes ecFabB and KasA have an absolute requirement for an ACP substrate as the acyl donor. Provided that this requirement is met, variation in the acceptor carrier substrate has little impact on the k(cat)/K(m) for the KASI reaction. For the KASI enzymes we propose that the binding of ecACP (AcpM) results in a conformational change that leads to an open form of the enzyme to which the malonyl acceptor substrate binds. Finally, the substrate inhibition observed when palmitoyl-CoA is the donor substrate for the KasA reaction has implications for the importance of mtFabH in the mycobacterial FASII pathway. PMID:22017312

  4. An evolutionarily ancient NO synthase (NOS) in shrimp.

    PubMed

    Wu, Chun-Hung; Siva, Vinu S; Song, Yen-Ling

    2013-11-01

    Nitric oxide (NO) is a well known essential molecule that is involved in multiple functions such as neuron transduction, cardiac disease, immune responses, etc.; nitric oxide synthase (NOS) is a critical enzyme that catalyzes the synthesis of it. A very few crustacean NOS molecules were biochemically characterized so far. In the present study, we cloned and characterized a NOS cDNA from haemocytes of tiger shrimp (Penaeus monodon) (PmNOS). The full-length of PmNOS cDNA contained 3997 bp, including a 5'UTR of 249 bp, ORF of 3582 bp and a 3'UTR of 166 bp. The putative peptide was 1193 amino acid residues in length, with an estimated molecular weight of 134.7 kDa and pI 6.7. Structurally, PmNOS contained oxygenase and reductase domains at N-terminal and C-terminal, respectively, and connected with a calmodulin binding motif. The deduced amino acid sequence of PmNOS shared 98% identical to the Chinese shrimp (Fenneropenaeus chinensis) NOS. Phylogenetically, PmNOS clustered with invertebrate NOS, but not clustered with iNOS, eNOS or nNOS found in vertebrates. PmNOS mRNA was expressed in many tissues or organs including thoracic and ventral nerves, midgut, gill, eyestalk, haemocytes, subcuticular epithelium and heart, but not found in hepatopancreas, muscle and lymphoid organ. But there was no significant difference in PmNOS mRNA expression after stimulation with LPS either by different concentration or time course or against CpG-ODN 2006. The enzyme activities of rPmNOS or crude homogenates from different tissues were detected, and were shown its highest activity in thoracic and ventral nerves, moderate in midgut and haemocytes but the lowest activity were seen in muscle. The addition of NOS antibody against NADPH binding domain leads to less activity which suggested that NADPH was an essential cofactor for PmNOS catalytic activity. The calcium dependency of PmNOS was ascertained using calmodulin inhibitor, Trifluroperazine. To confirm the population of haemocyte which

  5. Detailed characterization of the substrate specificity of mouse wax synthase.

    PubMed

    Miklaszewska, Magdalena; Kawiński, Adam; Banaś, Antoni

    2013-01-01

    Wax synthases are membrane-associated enzymes catalysing the esterification reaction between fatty acyl-CoA and a long chain fatty alcohol. In living organisms, wax esters function as storage materials or provide protection against harmful environmental influences. In industry, they are used as ingredients for the production of lubricants, pharmaceuticals, and cosmetics. Currently the biological sources of wax esters are limited to jojoba oil. In order to establish a large-scale production of desired wax esters in transgenic high-yielding oilseed plants, enzymes involved in wax esters synthesis from different biological resources should be characterized in detail taking into consideration their substrate specificity. Therefore, this study aims at determining the substrate specificity of one of such enzymes -- the mouse wax synthase. The gene encoding this enzyme was expressed heterologously in Saccharomyces cerevisiae. In the in vitro assays (using microsomal fraction from transgenic yeast), we evaluated the preferences of mouse wax synthase towards a set of combinations of 11 acyl-CoAs with 17 fatty alcohols. The highest activity was observed for 14:0-CoA, 12:0-CoA, and 16:0-CoA in combination with medium chain alcohols (up to 5.2, 3.4, and 3.3 nmol wax esters/min/mg microsomal protein, respectively). Unsaturated alcohols longer than 18°C were better utilized by the enzyme in comparison to the saturated ones. Combinations of all tested alcohols with 20:0-CoA, 22:1-CoA, or Ric-CoA were poorly utilized by the enzyme, and conjugated acyl-CoAs were not utilized at all. Apart from the wax synthase activity, mouse wax synthase also exhibited a very low acyl-CoA:diacylglycerol acyltransferase activity. However, it displayed neither acyl-CoA:monoacylglycerol acyltransferase, nor acyl-CoA:sterol acyltransferase activity.

  6. Phytochelatin synthase: of a protease a peptide polymerase made.

    PubMed

    Rea, Philip A

    2012-05-01

    Of the mechanisms known to protect vascular plants and some algae, fungi and invertebrates from the toxic effects of non-essential heavy metals such as As, Cd or Hg, one of the most sophisticated is the enzyme-catalyzed synthesis of phytochelatins (PCs). PCs, (γ-Glu-Cys)(n) Gly polymers, which serve as high-affinity, thiol-rich cellular chelators and contribute to the detoxification of heavy metal ions, are derived from glutathione (GSH; γ-Glu-Cys-Gly) and related thiols in a reaction catalyzed by phytochelatin synthases (PC synthases, EC 2.3.2.15). Using the enzyme from Arabidopsis thaliana (AtPCS1) as a model, the reasoning and experiments behind the conclusion that PC synthases are novel papain-like Cys protease superfamily members are presented. The status of S-substituted GSH derivatives as generic PC synthase substrates and the sufficiency of the N-terminal domain of the enzyme from eukaryotic and its half-size equivalents from prokaryotic sources, for net PC synthesis and deglycylation of GSH and its derivatives, respectively, are emphasized. The question of the common need or needs met by PC synthases and their homologs is discussed. Of the schemes proposed to account for the combined protease and peptide polymerase capabilities of the eukaryotic enzymes vs the limited protease capabilities of the prokaryotic enzymes, two that will be considered are the storage and homeostasis of essential heavy metals in eukaryotes and the metabolism of S-substituted GSH derivatives in both eukaryotes and prokaryotes.

  7. A bicarbonate cofactor modulates 1,4-dihydroxy-2-naphthoyl-coenzyme a synthase in menaquinone biosynthesis of Escherichia coli.

    PubMed

    Jiang, Ming; Chen, Minjiao; Guo, Zu-Feng; Guo, Zhihong

    2010-09-24

    1,4-Dihydroxy-2-naphthoyl coenzyme A (DHNA-CoA) synthase is a typical crotonase-fold protein catalyzing an intramolecular Claisen condensation in the menaquinone biosynthetic pathway. We have characterized this enzyme from Escherichia coli and found that it is activated by bicarbonate in a concentration-dependent manner. The bicarbonate binding site has been identified in the crystal structure of a virtually identical ortholog (96.8% sequence identity) from Salmonella typhimurium through comparison with a bicarbonate-insensitive orthologue. Kinetic properties of the enzyme and its site-directed mutants of the bicarbonate binding site indicate that the exogenous bicarbonate anion is essential to the enzyme activity. With this essential catalytic role, the simple bicarbonate anion is an enzyme cofactor, which is usually a small organic molecule derived from vitamins, a metal ion, or a metal-containing polyatomic anionic complex. This finding leads to classification of the DHNA-CoA synthases into two evolutionarily conserved subfamilies: type I enzymes that are bicarbonate-dependent and contain a conserved glycine at the bicarbonate binding site; and type II enzymes that are bicarbonate-independent and contain a conserved aspartate at the position similar to the enzyme-bound bicarbonate. In addition, the unique location of the enzyme-bound bicarbonate allows it to be proposed as a catalytic base responsible for abstraction of the α-proton of the thioester substrate in the enzymatic reaction, suggesting a unified catalytic mechanism for all DHNA-CoA synthases.

  8. The irregular xylem3 locus of Arabidopsis encodes a cellulose synthase required for secondary cell wall synthesis.

    PubMed Central

    Taylor, N G; Scheible, W R; Cutler, S; Somerville, C R; Turner, S R

    1999-01-01

    The irregular xylem3 (irx3) mutant of Arabidopsis has a severe deficiency in secondary cell wall cellulose deposition that leads to collapsed xylem cells. The irx3 mutation has been mapped to the top arm of chromosome V near the marker nga106. Expressed sequence tag clone 75G11, which exhibits sequence similarity to cellulose synthase, was found to be tightly linked to irx3, and genomic clones containing the gene corresponding to clone 75G11 complemented the irx3 mutation. Thus, the IRX3 gene encodes a cellulose synthase component that is specifically required for the synthesis of cellulose in the secondary cell wall. The irx3 mutant allele contains a stop codon that truncates the gene product by 168 amino acids, suggesting that this allele is null. Furthermore, in contrast to radial swelling1 (rsw1) plants, irx3 plants show no increase in the accumulation of beta-1,4-linked glucose in the noncrystalline cell wall fraction. IRX3 and RSW1 fall into a distinct subgroup (Csa) of Arabidopsis genes showing homology to bacterial cellulose synthases. PMID:10330464

  9. Identifying the catalytic components of cellulose synthase and the maize mixed-linkage beta-glucan synthase

    SciTech Connect

    Nicholas C Carpita

    2009-04-20

    Five specific objectives of this project are to develop strategies to identify the genes that encode the catalytic components of "mixed-linkage" (1→3),(1→4)-beta-D-glucans in grasses, to determine the protein components of the synthase complex, and determine the biochemical mechanism of synthesis. We have used proteomic approaches to define intrinsic and extrinsic polypeptides of Golgi membranes that are associated with polysaccharide synthesis and trafficking. We were successful in producing recombinant catalytic domains of cellulose synthase genes and discovered that they dimerize upon concentration, indicating that two CesA proteins form the catalytic unit. We characterized a brittle stalk2 mutant as a defect in a COBRA-like protein that results in compromised lignin-cellulose interactions that decrease tissue flexibility. We used virus-induced gene silencing of barley cell wall polysaccharide synthesis by BSMV in an attempt to silence specific members of the cellulose synthase-like gene family. However, we unexpectedly found that regardless of the specificity of the target gene, whole gene interaction networks were silenced. We discovered the cause to be an antisense transcript of the cellulose synthase gene initiated small interfering RNAs that spread silencing to related genes.

  10. Transgene silencing of sucrose synthase in alfalfa stem vascular tissue by a truncated phosphoenolpyruvate carboxylase: sucrose synthase construct

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An important role of sucrose synthase (SUS, EC 2.4.1.13) in plants is to provide UDP-glucose needed for cellulose synthesis in cell walls. We examined if over-expressing SUS in alfalfa (Medicago sativa L.) would increase cellulose content of stem cell walls. Alfalfa plants were transformed with two ...

  11. A Cd/Fe/Zn-responsive phytochelatin synthase is constitutively present in the ancient liverwort Lunularia cruciata (L.) dumort.

    PubMed

    Degola, Francesca; De Benedictis, Maria; Petraglia, Alessandro; Massimi, Alberto; Fattorini, Laura; Sorbo, Sergio; Basile, Adriana; Sanità di Toppi, Luigi

    2014-11-01

    Lunularia cruciata occupies a very basal position in the phylogenetic tree of liverworts, which in turn have been recognized as a very early clade of land plants. It would therefore seem appropriate to take L. cruciata as the startingpoint for investigating character evolution in plants' metal(loid) response. One of the strongest evolutionary pressures for land colonization by plants has come from potential access to much greater amounts of nutritive ions from surface rocks, compared to water. This might have resulted in the need to precisely regulate trace element homeostasis and to minimize the risk of exposure to toxic concentrations of certain metals, prompting the evolution of a number of response mechanisms, such as synthesis of phytochelatins, metal(loid)-binding thiol-peptides. Accordingly, if the ability to synthesize phytochelatins and the occurrence of an active phytochelatin synthase are traits present in a basal liverwort species, and have been even reinforced in 'modern' tracheophytes, e.g. Arabidopsis thaliana, then such traits would presumably have played an essential role in plant fitness over time. Hence, we demonstrated here that: (i) L. cruciata compartmentalizes cadmium in the vacuoles of the phototosynthetic parenchyma by means of a phytochelatin-mediated detoxification strategy, and possesses a phytochelatin synthase that is activated by cadmium and homeostatic concentrations of iron(II) and zinc; and (ii) A. thaliana phytochelatin synthase displays a higher and broader response to several metal(loid)s [namely: cadmium, iron(II), zinc, copper, mercury, lead, arsenic(III)] than L. cruciata phytochelatin synthase. PMID:25189342

  12. Evolutionary and mechanistic insights from the reconstruction of α-humulene synthases from a modern (+)-germacrene A synthase.

    PubMed

    Gonzalez, Veronica; Touchet, Sabrina; Grundy, Daniel J; Faraldos, Juan A; Allemann, Rudolf K

    2014-10-15

    Germacrene A synthase (GAS) from Solidago canadensis catalyzes the conversion of farnesyl diphosphate (FDP) to the plant sesquiterpene (+)-germacrene A. After diphosphate expulsion, farnesyl cation reacts with the distal 10,11-double bond to afford germacrene A (>96%) and <2% α-humulene, which arises from 1,11-cyclization of FDP. The origin of the 1,11-activity of GAS was investigated by amino acid sequence alignments of 1,10- and 1,11-synthases and comparisons of X-ray crystal structures with the homology model of GAS; a triad [Thr 401-Gly 402-Gly 403] that might be responsible for the predominant 1,10-cyclization activity of GAS was identified. Replacement of Gly 402 with residues of increasing size led to a progressive increase of 1,11-cyclization. The catalytic robustness of these 1,10- /1,11-GAS variants point to Gly 402 as a functional switch of evolutionary significance and suggests that enzymes with strict functionalities have evolved from less specific ancestors through a small number of substitutions. Similar results were obtained with germacrene D synthase (GDS) upon replacement of the homologous active-site residue Gly 404: GDS-G404V generated approximately 20% bicyclogermacrene, a hydrocarbon with a cyclopropane ring that underlines the dual 1,10-/1,11-cyclization activity of this mutant. This suggests that the reaction pathways to germacrenes and humulenes might be connected through a bridged 1,10,11-carbocation intermediate or transition state that resembles bicyclogermacrene. Mechanistic studies using [1-(3)H1]-10-fluorofarnesyl diphosphate and deuterium-labeling experiments with [12,13-(2)H6]-FDP support a germacrene-humulene rearrangement linking 1,10- and 1,11-pathways. These results support the bioinformatics proposal that modern 1,10-synthases could have evolved from promiscuous 1,11-sesquiterpene synthases. PMID:25230152

  13. Lead Surveillance Program

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Background on lead exposure is presented including forms of lead, sources, hematologic effects, neurologic effects, endocrine effects, renal effects, and reproductive and developmental effects. The purpose of the Lead Surveillance Program at LeRC is outlined, and the specifics of the Medical Surveillance Program for Lead Exposure at LeRC are discussed.

  14. Structural Analysis of Protein-Protein Interactions in Type I Polyketide Synthases

    PubMed Central

    Xu, Wei; Qiao, Kangjian; Tang, Yi

    2013-01-01

    Polyketide synthases (PKSs) are responsible for synthesizing a myriad of natural products with agricultural, medicinal relevance. The PKSs consist of multiple functional domains of which each can catalyze a specified chemical reaction leading to the synthesis of polyketides. Biochemical studies showed that protein-substrate and protein-protein interactions play crucial roles in these complex regio-/stereo- selective biochemical processes. Recent developments on X-ray crystallography and protein NMR techniques have allowed us to understand the biosynthetic mechanism of these enzymes from their structures. These structural studies have facilitated the elucidation of sequence-function relationship of PKSs and will ultimately contribute to the prediction of product structure. This review will focus on the current knowledge of type I PKS structures and the protein-protein interactions in this system. PMID:23249187

  15. Structure of Isoprene Synthase Illuminates the Chemical Mechanism of Teragram Atmospheric Carbon Emission

    SciTech Connect

    Koksal, M.; Zimmer, I; Schnitzler, J; Christianson, D

    2010-01-01

    The X-ray crystal structure of recombinant PcISPS (isoprene synthase from gray poplar hybrid Populus x canescens) has been determined at 2.7 {angstrom} resolution, and the structure of its complex with three Mg{sup 2+} and the unreactive substrate analogue dimethylallyl-S-thiolodiphosphate has been determined at 2.8 {angstrom} resolution. Analysis of these structures suggests that the generation of isoprene from substrate dimethylallyl diphosphate occurs via a syn-periplanar elimination mechanism in which the diphosphate-leaving group serves as a general base. This chemical mechanism is responsible for the annual atmospheric emission of 100 Tg of isoprene by terrestrial plant life. Importantly, the PcISPS structure promises to guide future protein engineering studies, potentially leading to hydrocarbon fuels and products that do not rely on traditional petrochemical sources.

  16. Evaluation of Improved Glycogen Synthase Kinase-3α Inhibitors in Models of Acute Myeloid Leukemia

    PubMed Central

    Neumann, Theresa; Benajiba, Lina; Göring, Stefan; Stegmaier, Kimberly; Schmidt, Boris

    2016-01-01

    The challenge for Glycogen Synthase Kinase-3 (GSK-3) inhibitor design lies in achieving high selectivity for one isoform over the other. The therapy of certain diseases, such as acute myeloid leukemia (AML) may require α-isoform specific targeting. The scorpion shaped GSK-3 inhibitors developed by our group achieved the highest GSK-3α selectivity reported so far, but suffered from insufficient aqueous solubility. This work presents the solubility-driven optimization of our isoform-selective inhibitors using a scorpion shaped lead. Among 15 novel compounds, compound 27 showed high activity against GSK-3α/β with the highest GSK-3α selectivity reported to date. Compound 27 was profiled for bioavailability and toxicity in a zebrafish embryo phenotype assay. Selective GSK-3α targeting in AML cell lines was achieved with compound 27, resulting in a strong differentiation phenotype and colony formation impairment, confirming the potential of GSK-3α inhibition in AML therapy. PMID:26496242

  17. Inhibition of nitric oxide synthase causes anxiolytic-like behaviour in an elevated plus-maze.

    PubMed

    Volke, V; Kõks, S; Vasar, E; Bourin, M; Bradwejn, J; Männistö, P T

    1995-07-10

    The action of inhibition of nitric oxide (NO) synthase by NG-nitro-L-arginine methyl ester (L-NAME) (1-20 mg kg-1) on the exploratory behaviour of rats in the elevated plus-maze was studied. L-NAME induced an anxiolytic-like effect in the plus-maze test, showing a reverse U-shape action behaviour, with a maximal effect at 10 mg kg-1. This effect was not related to a non-specific increase in motor activity, since in the open field test L-NAME did not affect locomotor activity of rats. Pretreatment of rats with L-NAME (1-10 mg kg-1) also tended to attenuate the anti-exploratory action of CCK agonist caerulein (5 micrograms kg-1), but this action was not significant. In conclusion, it appears that NO may be involved in the process that can lead to anxiety in the rat.

  18. Structural analysis of protein-protein interactions in type I polyketide synthases.

    PubMed

    Xu, Wei; Qiao, Kangjian; Tang, Yi

    2013-01-01

    Polyketide synthases (PKSs) are responsible for synthesizing a myriad of natural products with agricultural, medicinal relevance. The PKSs consist of multiple functional domains of which each can catalyze a specified chemical reaction leading to the synthesis of polyketides. Biochemical studies showed that protein-substrate and protein-protein interactions play crucial roles in these complex regio-/stereo-selective biochemical processes. Recent developments on X-ray crystallography and protein NMR techniques have allowed us to understand the biosynthetic mechanism of these enzymes from their structures. These structural studies have facilitated the elucidation of the sequence-function relationship of PKSs and will ultimately contribute to the prediction of product structure. This review will focus on the current knowledge of type I PKS structures and the protein-protein interactions in this system.

  19. Endothelial Nitric Oxide Synthase Prevents Heparanase Induction and the Development of Proteinuria

    PubMed Central

    Garsen, Marjolein; Rops, Angelique L.; Li, Jinhua; van Beneden, Katrien; van den Branden, Christiane; Berden, Jo HM; Rabelink, Ton J.

    2016-01-01

    Endothelial nitric oxide synthase (eNOS) deficiency exacerbates proteinuria and renal injury in several glomerular diseases, but the underlying mechanism is not fully understood. We recently showed that heparanase is essential for the development of experimental diabetic nephropathy and glomerulonephritis, and hypothesize that heparanase expression is regulated by eNOS. Here, we demonstrate that induction of adriamycin nephropathy (AN) in C57BL/6 eNOS-deficient mice leads to an increased glomerular heparanase expression accompanied with overt proteinuria, which was not observed in the AN-resistant wild type counterpart. In vitro, the eNOS inhibitor asymmetric dimethylarginine (ADMA) induced heparanase expression in cultured mouse glomerular endothelial cells. Moreover, ADMA enhanced transendothelial albumin passage in a heparanase-dependent manner. We conclude that eNOS prevents heparanase induction and the development of proteinuria. PMID:27505185

  20. Fatty acid synthase is preferentially degraded by autophagy upon nitrogen starvation in yeast

    PubMed Central

    Shpilka, Tomer; Welter, Evelyn; Borovsky, Noam; Amar, Nira; Shimron, Frida; Peleg, Yoav; Elazar, Zvulun

    2015-01-01

    Autophagy, an evolutionarily conserved intracellular catabolic process, leads to the degradation of cytosolic proteins and organelles in the vacuole/lysosome. Different forms of selective autophagy have recently been described. Starvation-induced protein degradation, however, is considered to be nonselective. Here we describe a novel interaction between autophagy-related protein 8 (Atg8) and fatty acid synthase (FAS), a pivotal enzymatic complex responsible for the entire synthesis of C16- and C18-fatty acids in yeast. We show that although FAS possesses housekeeping functions, under starvation conditions it is delivered to the vacuole for degradation by autophagy in a Vac8- and Atg24-dependent manner. We also provide evidence that FAS degradation is essential for survival under nitrogen deprivation. Our results imply that during nitrogen starvation specific proteins are preferentially recruited into autophagosomes PMID:25605918

  1. Complete Genome Sequence of the Rhizobacterium Pseudomonas trivialis Strain IHBB745 with Multiple Plant Growth-Promoting Activities and Tolerance to Desiccation and Alkalinity

    PubMed Central

    Swarnkar, Mohit Kumar; Vyas, Pratibha; Rahi, Praveen; Thakur, Rishu; Thakur, Namika; Singh, Anil Kumar

    2015-01-01

    The complete genome sequence of 6.45 Mb is reported here for Pseudomonas trivialis strain IHBB745 (MTCC 5336), which is an efficient, stress-tolerant, and broad-spectrum plant growth-promoting rhizobacterium. The gene-coding clusters predicted the genes for phosphate solubilization, siderophore production, 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity, indole-3-acetic acid (IAA) production, and stress response. PMID:26337878

  2. Complete Genome Sequence of the Rhizobacterium Pseudomonas trivialis Strain IHBB745 with Multiple Plant Growth-Promoting Activities and Tolerance to Desiccation and Alkalinity.

    PubMed

    Gulati, Arvind; Swarnkar, Mohit Kumar; Vyas, Pratibha; Rahi, Praveen; Thakur, Rishu; Thakur, Namika; Singh, Anil Kumar

    2015-01-01

    The complete genome sequence of 6.45 Mb is reported here for Pseudomonas trivialis strain IHBB745 (MTCC 5336), which is an efficient, stress-tolerant, and broad-spectrum plant growth-promoting rhizobacterium. The gene-coding clusters predicted the genes for phosphate solubilization, siderophore production, 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity, indole-3-acetic acid (IAA) production, and stress response. PMID:26337878

  3. Mechanism of Germacradien-4-ol Synthase-Controlled Water Capture.

    PubMed

    Grundy, Daniel J; Chen, Mengbin; González, Verónica; Leoni, Stefano; Miller, David J; Christianson, David W; Allemann, Rudolf K

    2016-04-12

    The sesquiterpene synthase germacradiene-4-ol synthase (GdolS) from Streptomyces citricolor is one of only a few known high-fidelity terpene synthases that convert farnesyl diphosphate (FDP) into a single hydroxylated product. Crystals of unliganded GdolS-E248A diffracted to 1.50 Å and revealed a typical class 1 sesquiterpene synthase fold with the active site in an open conformation. The metal binding motifs were identified as D(80)DQFD and N(218)DVRSFAQE. Some bound water molecules were evident in the X-ray crystal structure, but none were obviously positioned to quench a putative final carbocation intermediate. Incubations in H2(18)O generated labeled product, confirming that the alcohol functionality arises from nucleophilic capture of the final carbocation by water originating from solution. Site-directed mutagenesis of amino acid residues from both within the metal binding motifs and without identified by sequence alignment with aristolochene synthase from Aspergillus terreus generated mostly functional germacradien-4-ol synthases. Only GdolS-N218Q generated radically different products (∼50% germacrene A), but no direct evidence of the mechanism of incorporation of water into the active site was obtained. Fluorinated FDP analogues 2F-FDP and 15,15,15-F3-FDP were potent noncompetitive inhibitors of GdolS. 12,13-DiF-FDP generated 12,13-(E)-β-farnesene upon being incubated with GdolS, suggesting stepwise formation of the germacryl cation during the catalytic cycle. Incubation of GdolS with [1-(2)H2]FDP and (R)-[1-(2)H]FDP demonstrated that following germacryl cation formation a [1,3]-hydride shift generates the final carbocation prior to nucleophilic capture. The stereochemistry of this shift is not defined, and the deuteron in the final product was scrambled. Because no clear candidate residue for binding of a nucleophilic water molecule in the active site and no significant perturbation of product distribution from the replacement of active site residues

  4. Mechanism of Germacradien-4-ol Synthase-Controlled Water Capture

    PubMed Central

    2016-01-01

    The sesquiterpene synthase germacradiene-4-ol synthase (GdolS) from Streptomyces citricolor is one of only a few known high-fidelity terpene synthases that convert farnesyl diphosphate (FDP) into a single hydroxylated product. Crystals of unliganded GdolS-E248A diffracted to 1.50 Å and revealed a typical class 1 sesquiterpene synthase fold with the active site in an open conformation. The metal binding motifs were identified as D80DQFD and N218DVRSFAQE. Some bound water molecules were evident in the X-ray crystal structure, but none were obviously positioned to quench a putative final carbocation intermediate. Incubations in H218O generated labeled product, confirming that the alcohol functionality arises from nucleophilic capture of the final carbocation by water originating from solution. Site-directed mutagenesis of amino acid residues from both within the metal binding motifs and without identified by sequence alignment with aristolochene synthase from Aspergillus terreus generated mostly functional germacradien-4-ol synthases. Only GdolS-N218Q generated radically different products (∼50% germacrene A), but no direct evidence of the mechanism of incorporation of water into the active site was obtained. Fluorinated FDP analogues 2F-FDP and 15,15,15-F3-FDP were potent noncompetitive inhibitors of GdolS. 12,13-DiF-FDP generated 12,13-(E)-β-farnesene upon being incubated with GdolS, suggesting stepwise formation of the germacryl cation during the catalytic cycle. Incubation of GdolS with [1-2H2]FDP and (R)-[1-2H]FDP demonstrated that following germacryl cation formation a [1,3]-hydride shift generates the final carbocation prior to nucleophilic capture. The stereochemistry of this shift is not defined, and the deuteron in the final product was scrambled. Because no clear candidate residue for binding of a nucleophilic water molecule in the active site and no significant perturbation of product distribution from the replacement of active site residues were

  5. Phasin proteins activate Aeromonas caviae polyhydroxyalkanoate (PHA) synthase but not Ralstonia eutropha PHA synthase.

    PubMed

    Ushimaru, Kazunori; Motoda, Yoko; Numata, Keiji; Tsuge, Takeharu

    2014-05-01

    In this study, we performed in vitro and in vivo activity assays of polyhydroxyalkanoate (PHA) synthases (PhaCs) in the presence of phasin proteins (PhaPs), which revealed that PhaPs are activators of PhaC derived from Aeromonas caviae (PhaCAc). In in vitro assays, among the three PhaCs tested, PhaCAc was significantly activated when PhaPs were added at the beginning of polymerization (prepolymerization PhaCAc), whereas the prepolymerization PhaCRe (derived from Ralstonia eutropha) and PhaCDa (Delftia acidovorans) showed reduced activity with PhaPs. The PhaP-activated PhaCAc showed a slight shift of substrate preference toward 3-hydroxyhexanoyl-CoA (C6). PhaPAc also activated PhaCAc when it was added during polymerization (polymer-elongating PhaCAc), while this effect was not observed for PhaCRe. In an in vivo assay using Escherichia coli TOP10 as the host strain, the effect of PhaPAc expression on PHA synthesis by PhaCAc or PhaCRe was examined. As PhaPAc expression increased, PHA production was increased by up to 2.3-fold in the PhaCAc-expressing strain, whereas it was slightly increased in the PhaCRe-expressing strain. Taken together, this study provides evidence that PhaPs function as activators for PhaCAc both in vitro and in vivo but do not activate PhaCRe. This activating effect may be attributed to the new role of PhaPs in the polymerization reaction by PhaCAc.

  6. Crystal structure of the catalytic domain of RluD, the only rRNA pseudouridine synthase required for normal growth of Escherichia coli.

    PubMed

    Del Campo, Mark; Ofengand, James; Malhotra, Arun

    2004-02-01

    Escherichia coli pseudouridine synthase RluD makes pseudouridines 1911, 1915, and 1917 in the loop of helix 69 in 23S RNA. These are the most highly conserved ribosomal pseudouridines known. Of 11 pseudouridine synthases in E. coli, only cells lacking RluD have severe growth defects and abnormal ribosomes. We have determined the 2.0 A structure of the catalytic domain of RluD (residues 77-326), the first structure of an RluA family member. The catalytic domain folds into a mainly antiparallel beta-sheet flanked by several loops and helices. A positively charged cleft that presumably binds RNA leads to the conserved Asp 139. The RluD N-terminal S4 domain, connected by a flexible linker, is disordered in our structure. RluD is very similar in both catalytic domain structure and active site arrangement to the pseudouridine synthases RsuA, TruB, and TruA. We identify five sequence motifs, two of which are novel, in the RluA, RsuA, TruB, and TruA families, uniting them as one superfamily. These results strongly suggest that four of the five families of pseudouridine synthases arose by divergent evolution. The RluD structure also provides insight into its multisite specificity.

  7. S-sulfocysteine synthase function in sensing chloroplast redox status

    PubMed Central

    Gotor, Cecilia; Romero, Luis C.

    2013-01-01

    The minor chloroplastic O-acetylserine(thiol)lyase isoform encoded by the CS26 gene in Arabidopsis thaliana has been described as an S-sulfocysteine synthase enzyme that plays an important role in chloroplast function. This enzyme is located in the thylakoid lumen, and its S-sulfocysteine activity is essential for the proper photosynthetic performance of the chloroplast under long-day growth conditions. Based on the present knowledge of this enzyme, we suggest that S-sulfocysteine synthase functions as a protein sensor to detect the accumulation of thiosulfate as a result of the inadequate detoxification of reactive oxygen species generated under conditions of excess light to produce the S-sulfocysteine molecule that triggers protection mechanisms of the photosynthetic apparatus. PMID:23333972

  8. Structure of isochorismate synthase DhbC from Bacillus anthracis

    PubMed Central

    Domagalski, M. J.; Tkaczuk, K. L.; Chruszcz, M.; Skarina, T.; Onopriyenko, O.; Cymborowski, M.; Grabowski, M.; Savchenko, A.; Minor, W.

    2013-01-01

    The isochorismate synthase DhbC from Bacillus anthracis is essential for the biosynthesis of the siderophore bacillibactin by this pathogenic bacterium. The structure of the selenomethionine-substituted protein was determined to 2.4 Å resolution using single-wavelength anomalous diffraction. B. anthracis DhbC bears the strongest resemblance to the Escherichia coli isochorismate synthase EntC, which is involved in the biosynthesis of another siderophore, namely enterobactin. Both proteins adopt the characteristic fold of other chorismate-utilizing enzymes, which are involved in the biosynthesis of various products, including siderophores, menaquinone and tryptophan. The conservation of the active-site residues, as well as their spatial arrangement, suggests that these enzymes share a common Mg2+-dependent catalytic mechanism. PMID:23989140

  9. Visualization of cellulose synthases in Arabidopsis secondary cell walls.

    PubMed

    Watanabe, Y; Meents, M J; McDonnell, L M; Barkwill, S; Sampathkumar, A; Cartwright, H N; Demura, T; Ehrhardt, D W; Samuels, A L; Mansfield, S D

    2015-10-01

    Cellulose biosynthesis in plant secondary cell walls forms the basis of vascular development in land plants, with xylem tissues constituting the vast majority of terrestrial biomass. We used plant lines that contained an inducible master transcription factor controlling xylem cell fate to quantitatively image fluorescently tagged cellulose synthase enzymes during cellulose deposition in living protoxylem cells. The formation of secondary cell wall thickenings was associated with a redistribution and enrichment of CESA7-containing cellulose synthase complexes (CSCs) into narrow membrane domains. The velocities of secondary cell wall-specific CSCs were faster than those of primary cell wall CSCs during abundant cellulose production. Dynamic intracellular of endomembranes, in combination with increased velocity and high density of CSCs, enables cellulose to be synthesized rapidly in secondary cell walls. PMID:26450210

  10. Defining the Product Chemical Space of Monoterpenoid Synthases

    PubMed Central

    Tian, Boxue; Poulter, C. Dale; Jacobson, Matthew P.

    2016-01-01

    Terpenoid synthases create diverse carbon skeletons by catalyzing complex carbocation rearrangements, making them particularly challenging for enzyme function prediction. To begin to address this challenge, we have developed a computational approach for the systematic enumeration of terpenoid carbocations. Application of this approach allows us to systematically define a nearly complete chemical space for the potential carbon skeletons of products from monoterpenoid synthases. Specifically, 18758 carbocations were generated, which we cluster into 74 cyclic skeletons. Five of the 74 skeletons are found in known natural products; some of the others are plausible for new functions, either in nature or engineered. This work systematizes the description of function for this class of enzymes, and provides a basis for predicting functions of uncharacterized enzymes. To our knowledge, this is the first computational study to explore the complete product chemical space of this important class of enzymes. PMID:27517297

  11. S-sulfocysteine synthase function in sensing chloroplast redox status.

    PubMed

    Gotor, Cecilia; Romero, Luis C

    2013-03-01

    The minor chloroplastic O-acetylserine(thiol)lyase isoform encoded by the CS26 gene in Arabidopsis thaliana has been described as an S-sulfocysteine synthase enzyme that plays an important role in chloroplast function. This enzyme is located in the thylakoid lumen, and its S-sulfocysteine activity is essential for the proper photosynthetic performance of the chloroplast under long-day growth conditions. Based on the present knowledge of this enzyme, we suggest that S-sulfocysteine synthase functions as a protein sensor to detect the accumulation of thiosulfate as a result of the inadequate detoxification of reactive oxygen species generated under conditions of excess light to produce the S-sulfocysteine molecule that triggers protection mechanisms of the photosynthetic apparatus.

  12. Visualization of cellulose synthases in Arabidopsis secondary cell walls.

    PubMed

    Watanabe, Y; Meents, M J; McDonnell, L M; Barkwill, S; Sampathkumar, A; Cartwright, H N; Demura, T; Ehrhardt, D W; Samuels, A L; Mansfield, S D

    2015-10-01

    Cellulose biosynthesis in plant secondary cell walls forms the basis of vascular development in land plants, with xylem tissues constituting the vast majority of terrestrial biomass. We used plant lines that contained an inducible master transcription factor controlling xylem cell fate to quantitatively image fluorescently tagged cellulose synthase enzymes during cellulose deposition in living protoxylem cells. The formation of secondary cell wall thickenings was associated with a redistribution and enrichment of CESA7-containing cellulose synthase complexes (CSCs) into narrow membrane domains. The velocities of secondary cell wall-specific CSCs were faster than those of primary cell wall CSCs during abundant cellulose production. Dynamic intracellular of endomembranes, in combination with increased velocity and high density of CSCs, enables cellulose to be synthesized rapidly in secondary cell walls.

  13. Lead tolerance in plants: strategies for phytoremediation.

    PubMed

    Gupta, D K; Huang, H G; Corpas, F J

    2013-04-01

    Lead (Pb) is naturally occurring element whose distribution in the environment occurs because of its extensive use in paints, petrol, explosives, sludge, and industrial wastes. In plants, Pb uptake and translocation occurs, causing toxic effects resulting in decrease of biomass production. Commonly plants may prevent the toxic effect of heavy metals by induction of various celular mechanisms such as adsorption to the cell wall, compartmentation in vacuoles, enhancement of the active efflux, or induction of higher levels of metal chelates like a protein complex (metallothioneins and phytochelatins), organic (citrates), and inorganic (sulphides) complexes. Phyotochelains (PC) are synthesized from glutathione (GSH) and such synthesis is due to transpeptidation of γ-glutamyl cysteinyl dipeptides from GSH by the action of a constitutively present enzyme, PC synthase. Phytochelatin binds to Pb ions leading to sequestration of Pb ions in plants and thus serves as an important component of the detoxification mechanism in plants. At cellular level, Pb induces accumulation of reactive oxygen species (ROS), as a result of imbalanced ROS production and ROS scavenging processes by imposing oxidative stress. ROS include superoxide radical (O2(.-)), hydrogen peroxide (H2O2) and hydroxyl radical ((·)OH), which are necessary for the correct functioning of plants; however, in excess they caused damage to biomolecules, such as membrane lipids, proteins, and nucleic acids among others. To limit the detrimental impact of Pb, efficient strategies like phytoremediation are required. In this review, it will discuss recent advancement and potential application of plants for lead removal from the environment.

  14. Lead tolerance in plants: strategies for phytoremediation.

    PubMed

    Gupta, D K; Huang, H G; Corpas, F J

    2013-04-01

    Lead (Pb) is naturally occurring element whose distribution in the environment occurs because of its extensive use in paints, petrol, explosives, sludge, and industrial wastes. In plants, Pb uptake and translocation occurs, causing toxic effects resulting in decrease of biomass production. Commonly plants may prevent the toxic effect of heavy metals by induction of various celular mechanisms such as adsorption to the cell wall, compartmentation in vacuoles, enhancement of the active efflux, or induction of higher levels of metal chelates like a protein complex (metallothioneins and phytochelatins), organic (citrates), and inorganic (sulphides) complexes. Phyotochelains (PC) are synthesized from glutathione (GSH) and such synthesis is due to transpeptidation of γ-glutamyl cysteinyl dipeptides from GSH by the action of a constitutively present enzyme, PC synthase. Phytochelatin binds to Pb ions leading to sequestration of Pb ions in plants and thus serves as an important component of the detoxification mechanism in plants. At cellular level, Pb induces accumulation of reactive oxygen species (ROS), as a result of imbalanced ROS production and ROS scavenging processes by imposing oxidative stress. ROS include superoxide radical (O2(.-)), hydrogen peroxide (H2O2) and hydroxyl radical ((·)OH), which are necessary for the correct functioning of plants; however, in excess they caused damage to biomolecules, such as membrane lipids, proteins, and nucleic acids among others. To limit the detrimental impact of Pb, efficient strategies like phytoremediation are required. In this review, it will discuss recent advancement and potential application of plants for lead removal from the environment. PMID:23338995

  15. Use of linalool synthase in genetic engineering of scent production

    DOEpatents

    Pichersky, E.

    1998-12-15

    A purified S-linalool synthase polypeptide from Clarkia breweri is disclosed as is the recombinant polypeptide and nucleic acid sequences encoding the polypeptide. Also disclosed are antibodies immunoreactive with the purified peptide and with recombinant versions of the polypeptide. Methods of using the nucleic acid sequences, as well as methods of enhancing the smell and the flavor of plants expressing the nucleic acid sequences are also disclosed. 5 figs.

  16. Structural organization of the multifunctional animal fatty-acid synthase.

    PubMed

    Witkowski, A; Rangan, V S; Randhawa, Z I; Amy, C M; Smith, S

    1991-06-15

    The amino acid sequence of the multifunctional fatty-acid synthase has been examined to investigate the exact location of the seven functional domains. Good agreement in predicting the location of interdomain boundaries was obtained using three independent methods. First, the sites of limited proteolytic attack that give rise to relatively stable, large polypeptide fragments were identified; cryptic sites for protease attack at the subunit interface were unmasked by first dissociating the dimer into its component subunits. Second, polypeptide regions exhibiting higher-than-average rates of non-conservative mutation were identified. Third, the sizes of putative functional domains were compared with those of related monofunctional proteins that exhibit similar primary or secondary structure. Residues 1-406 were assigned to the oxoacyl synthase, residues 430-802 to the malonyl/acetyl transferase, residues 1630-1850 to the enoyl reductase, residues 1870-2100 to the oxyreductase, residues 2114-2190 to the acyl-carrier protein and residues 2200-2505 to the thioesterase. The 47-kDa transferase and 8-kDa acyl-carrier-protein domains, which are situated at opposite ends of the multifunctional subunit, were nevertheless isolated from tryptic digests as a non-covalently associated complex. Furthermore, a centrally located domain encompassing residues 1160-1545 was isolated as a nicked dimer. These findings, indicating that interactions between the head-to-tail juxtaposed subunits occur in both the polar and equatorial regions, are consistent with previously derived electron-micrograph images that show subunit contacts in these areas. The data permit refinement of the model for the fatty-acid synthase dimer and suggest that the malonyl/acetyl transferase and oxoacyl synthase of one subunit cooperate with the reductases, acyl carrier protein and thioesterase of the companion subunit in the formation of a center for fatty-acid synthesis.

  17. Structure and Mechanistic Implications of a Tryptophan Synthase Quinonoid Intermediate

    SciTech Connect

    Barends,T.; Domratcheva, T.; Kulik, V.; Blumenstein, L.; Niks, D.; Dunn, M.; Schlichting, I.

    2008-01-01

    Quinonoid intermediates play a key role in the catalytic mechanism of pyridoxal 5'-phosphate (PLP)-dependent enzymes. Whereas structures of other PLP-bound reaction intermediates have been determined, a high-quality structure of a quinonoid species has not been reported. We present the crystal structure of the indoline quinonoid intermediate of tryptophan synthase (see figure) and discuss its implications for the enzymatic mechanism and allosteric regulation.

  18. Isolation and characterization of terpene synthases in cotton (Gossypium hirsutum).

    PubMed

    Yang, Chang-Qing; Wu, Xiu-Ming; Ruan, Ju-Xin; Hu, Wen-Li; Mao, Yin-Bo; Chen, Xiao-Ya; Wang, Ling-Jian

    2013-12-01

    Cotton plants accumulate gossypol and related sesquiterpene aldehydes, which function as phytoalexins against pathogens and feeding deterrents to herbivorous insects. However, to date little is known about the biosynthesis of volatile terpenes in this crop. Herein is reported that 5 monoterpenes and 11 sesquiterpenes from extracts of a glanded cotton cultivar, Gossypium hirsutum cv. CCRI12, were detected by gas chromatography-mass spectrometry (GC-MS). By EST data mining combined with Rapid Amplification of cDNA Ends (RACE), full-length cDNAs of three terpene synthases (TPSs), GhTPS1, GhTPS2 and GhTPS3 were isolated. By in vitro assays of the recombinant proteins, it was found that GhTPS1 and GhTPS2 are sesquiterpene synthases: the former converted farnesyl pyrophosphate (FPP) into β-caryophyllene and α-humulene in a ratio of 2:1, whereas the latter produced several sesquiterpenes with guaia-1(10),11-diene as the major product. By contrast, GhTPS3 is a monoterpene synthase, which produced α-pinene, β-pinene, β-phellandrene and trace amounts of other monoterpenes from geranyl pyrophosphate (GPP). The TPS activities were also supported by Virus Induced Gene Silencing (VIGS) in the cotton plant. GhTPS1 and GhTPS3 were highly expressed in the cotton plant overall, whereas GhTPS2 was expressed only in leaves. When stimulated by mechanical wounding, Verticillium dahliae (Vde) elicitor or methyl jasmonate (MeJA), production of terpenes and expression of the corresponding synthase genes were induced. These data demonstrate that the three genes account for the biosynthesis of volatile terpenes of cotton, at least of this Upland cotton.

  19. The cellulose synthase superfamily in fully sequenced plants and algae

    PubMed Central

    2009-01-01

    Background The cellulose synthase superfamily has been classified into nine cellulose synthase-like (Csl) families and one cellulose synthase (CesA) family. The Csl families have been proposed to be involved in the synthesis of the backbones of hemicelluloses of plant cell walls. With 17 plant and algal genomes fully sequenced, we sought to conduct a genome-wide and systematic investigation of this superfamily through in-depth phylogenetic analyses. Results A single-copy gene is found in the six chlorophyte green algae, which is most closely related to the CslA and CslC families that are present in the seven land plants investigated in our analyses. Six proteins from poplar, grape and sorghum form a distinct family (CslJ), providing further support for the conclusions from two recent studies. CslB/E/G/H/J families have evolved significantly more rapidly than their widely distributed relatives, and tend to have intragenomic duplications, in particular in the grape genome. Conclusion Our data suggest that the CslA and CslC families originated through an ancient gene duplication event in land plants. We speculate that the single-copy Csl gene in green algae may encode a mannan synthase. We confirm that the rest of the Csl families have a different evolutionary origin than CslA and CslC, and have proposed a model for the divergence order among them. Our study provides new insights about the evolution of this important gene family in plants. PMID:19646250

  20. QSAR modeling of the inhibition of glycogen synthase kinase-3.

    PubMed

    Katritzky, Alan R; Pacureanu, Liliana M; Dobchev, Dimitar A; Fara, Dan C; Duchowicz, Pablo R; Karelson, Mati

    2006-07-15

    Quantitative structure-activity relationship (QSAR) models of the biological activity (pIC50) of 277 inhibitors of Glycogen Synthase Kinase-3 (GSK-3) are developed using geometrical, topological, quantum mechanical, and electronic descriptors calculated by CODESSA PRO. The linear (multilinear regression) and nonlinear (artificial neural network) models obtained link the structures to their reported activity pIC50. The results are discussed in the light of the main factors that influence the inhibitory activity of the GSK-3 enzyme.