Science.gov

Sample records for 1-aminocyclopropane-1-carboxylic acid transported

  1. Transport and Metabolism of 1-Aminocyclopropane-1-carboxylic Acid in Sunflower (Helianthus annuus L.) Seedlings 1

    PubMed Central

    Finlayson, Scott A.; Foster, Kenneth R.; Reid, David M.

    1991-01-01

    Transport and metabolism of [2,3-14C] 1-aminocyclopropane-1-carboxylic acid (ACC) from roots to shoots in 4-day-old sunflower (Helianthus annuus L.) seedlings were studied. [14C]ACC was detected in, and 14C2H4 was evolved from, shoots 0.5 hours after [14C]ACC was supplied to roots. Ethylene emanation from the shoots returned to normal levels after 6 hours. The roots showed a similar pattern, although at 24 hours ethylene emanation was still slightly higher than in those plants that did not receive ACC. [14C]N-malonyl-ACC (MACC) was detected in both tissues at all times sampled. [14C]MACC levels surpassed [14C]ACC levels in the shoot at 2 hours, whereas [14C]MACC levels in the root remained below [14C]ACC levels until 6 hours, after which they were higher. Thin-layer chromatography analysis identified [14C] ACC in 1-hour shoot extracts, and [14C]MACC was identified in root tissues at 1 and 12 hours after treatment. [14C]ACC and [14C] MACC in the xylem sap of treated seedlings were identified by thin-layer chromatography. Xylem transport of [14C]ACC in treated seedlings, and transport of ACC in untreated seedlings, was confirmed by gas chromatography-mass spectrometry. Some evidence for the presence of [14C]MACC in xylem sap in [14C]ACC-treated seedlings is presented. A substantial amount of radioactivity in both ACC and MACC fractions was detected leaking from the roots over 24 hours. A second radiolabeled volatile compound was trapped in a CO2-trapping solution but not in mercuric perchlorate. Levels of this compound were highest after the peak of ACC levels and before peak MACC levels in both tissues, suggesting that an alternate pathway of ACC metabolism was operating in this system. PMID:16668342

  2. Accumulation and Transport of 1-Aminocyclopropane-1-Carboxylic Acid (ACC) in Plants: Current Status, Considerations for Future Research and Agronomic Applications

    PubMed Central

    Vanderstraeten, Lisa; Van Der Straeten, Dominique

    2017-01-01

    1-aminocyclopropane-1-carboxylic acid (ACC) is a non-protein amino acid acting as the direct precursor of ethylene, a plant hormone regulating a wide variety of vegetative and developmental processes. ACC is the central molecule of ethylene biosynthesis. The rate of ACC formation differs in response to developmental, hormonal and environmental cues. ACC can be conjugated to three derivatives, metabolized in planta or by rhizobacteria using ACC deaminase, and is transported throughout the plant over short and long distances, remotely leading to ethylene responses. This review highlights some recent advances related to ACC. These include the regulation of ACC synthesis, conjugation and deamination, evidence for a role of ACC as an ethylene-independent signal, short and long range ACC transport, and the identification of a first ACC transporter. Although unraveling the complex mechanism of ACC transport is in its infancy, new questions emerge together with the identification of a first transporter. In the light of the future quest for additional ACC transporters, this review presents perspectives of the novel findings and includes considerations for future research toward applications in agronomy. PMID:28174583

  3. 1-Aminocyclopropane-1-Carboxylic Acid Transported from Roots to Shoots Promotes Leaf Abscission in Cleopatra Mandarin (Citrus reshni Hort. ex Tan.) Seedlings Rehydrated after Water Stress.

    PubMed

    Tudela, D; Primo-Millo, E

    1992-09-01

    The effect of water stress and subsequent rehydration on 1-aminocyclopropane-1-carboxylic acid (ACC) content, ACC synthase activity, ethylene production, and leaf abscission was studied in Cleopatra mandarin (Citrus reshni Hort. ex Tan.) seedlings. Leaf abscission occurred when drought-stressed plants were allowed to rehydrate, whereas no abscission was observed in plants under water stress conditions. In roots of water-stressed plants, a high ACC accumulation and an increase in ACC synthase activity were observed. Neither increase in ACC content nor significant ethylene production were detected in leaves of water-stressed plants. After rehydration, a sharp rise in ACC content and ethylene production was observed in leaves of water-stressed plants. Content of ACC in xylem fluid was 10-fold higher in plants rehydrated for 2 h after water stress than in nonstressed plants. Leaf abscission induced by rehydration after drought stress was inhibited when roots or shoots were treated before water stress with aminooxyacetic acid (AOA, inhibitor of ACC synthase) or cobalt ion (inhibitor of ethylene-forming enzyme), respectively. However, AOA treatments to shoots did not suppress leaf abscission. The data indicate that water stress promotes ACC synthesis in roots of Cleopatra mandarin seedlings. Rehydration of plants results in ACC transport to the shoots, where it is oxidized to ethylene. Subsequently, this ethylene induces leaf abscission.

  4. 1-aminocyclopropane-1-carboxylic acid (ACC) in plants: more than just the precursor of ethylene!

    PubMed Central

    Van de Poel, Bram; Van Der Straeten, Dominique

    2014-01-01

    Ethylene is a simple two carbon atom molecule with profound effects on plants. There are quite a few review papers covering all aspects of ethylene biology in plants, including its biosynthesis, signaling and physiology. This is merely a logical consequence of the fascinating and pleiotropic nature of this gaseous plant hormone. Its biochemical precursor, 1-aminocyclopropane-1-carboxylic acid (ACC) is also a fairly simple molecule, but perhaps its role in plant biology is seriously underestimated. This triangularly shaped amino acid has many more features than just being the precursor of the lead-role player ethylene. For example, ACC can be conjugated to three different derivatives, but their biological role remains vague. ACC can also be metabolized by bacteria using ACC-deaminase, favoring plant growth and lowering stress susceptibility. ACC is also subjected to a sophisticated transport mechanism to ensure local and long-distance ethylene responses. Last but not least, there are now a few exciting studies where ACC has been reported to function as a signal itself, independently from ethylene. This review puts ACC in the spotlight, not to give it the lead-role, but to create a picture of the stunning co-production of the hormone and its precursor. PMID:25426135

  5. A strategy for promoting astaxanthin accumulation in Haematococcus pluvialis by 1-aminocyclopropane-1-carboxylic acid application.

    PubMed

    Lee, Changsu; Choi, Yoon-E; Yun, Yeoung-Sang

    2016-10-20

    The green algae Haematococcus pluvialis is a freshwater unicellular microalga belonging to Chlorophyceae. It is one of the best natural sources of astaxanthin, a secondary metabolite commonly used as an antioxidant and anti-inflammatory agent. Due to the importance of astaxanthin, various efforts have been made to increase its production. In this study, we attempted to develop a strategy for promoting astaxanthin accumulation in H. pluvialis using 1-aminocyclopropane-1-carboxylic acid (ACC), a precursor of ethylene (normally known as an aging hormone in plants). Our results demonstrated that ACC could enhance the growth of H. pluvialis, thereby promoting astaxanthin accumulation. Therefore, ACC has an indirect influence on astaxanthin production. We further verified the effect of ACC with a direct treatment of ethylene originated from banana peels. These results indicate that ethylene could be applied as an indirect method for enhancing growth and astaxanthin biosynthesis in H. pluvialis.

  6. Tissue Localization of a Submergence-Induced 1-Aminocyclopropane-1-Carboxylic Acid Synthase in Rice1

    PubMed Central

    Zhou, Zhongyi; de Almeida Engler, Janice; Rouan, Dominique; Michiels, Frank; Van Montagu, Marc; Van Der Straeten, Dominique

    2002-01-01

    At least two 1-aminocyclopropane-1-carboxylic acid synthase genes (ACS) are implicated in the submergence response of rice (Oryza sativa). Previously, the OS-ACS5 gene has been shown to be induced during short- as well as long-term complete submergence of seedlings and to be controlled by a balance of gibberellin and abscisic acid in both lowland and deepwater rice. This study demonstrates that OS-ACS5 mRNA is localized in specific tissues and cells both during normal development and in response to complete submergence. The temporal and spatial regulation of OS-ACS5 expression is presented by in situ hybridization and histochemical analysis of β-glucuronidase (GUS) activity in transgenic rice carrying an OS-ACS5-gus fusion. Whole-mount in situ hybridization revealed that in air-grown rice seedlings, OS-ACS5 was expressed at a low level in the shoot apex, meristems, leaf, and adventitious root primordia, and in vascular tissues of nonelongated stems and leaf sheaths. In response to complete submergence, the expression in vascular bundles of young stems and leaf sheaths was strongly induced. The results of histochemical GUS assays were consistent with those found by whole-mount in situ hybridization. Our findings suggest that OS-ACS5 plays a role in vegetative growth of rice under normal conditions and is also recruited for enhanced growth upon complete submergence. The possible implication of OS-ACS5 in root-shoot communication during submergence stress and its putative role in aerenchyma formation upon low-oxygen stress are discussed. PMID:12011339

  7. Bio-inspired amino acid oxidation by a non-heme iron catalyst modeling the action of 1-aminocyclopropane-1-carboxylic acid oxidase.

    PubMed

    Baráth, Gábor; Kaizer, József; Pap, József Sándor; Speier, Gábor; El Bakkali-Taheri, Nadia; Simaan, A Jalila

    2010-10-21

    In this communication we describe the first example of a biomimetic mononuclear iron complex, [Fe(III)(Salen)Cl] (Salen = N,N'-bis(salicylidene)-ethylenediaminato), that highly selectively and efficiently catalyzes the oxidation of 1-aminocyclopropane-1-carboxylic acid (ACCH), α-aminoisobutyric acid (AIBH), and alanine (ALAH) to ethylene or the corresponding carbonyl compounds, mimicking the action of the non-heme iron enzyme 1-aminocyclopropane-1-carboxylic acid oxidase (ACCO).

  8. Cell wall integrity controls root elongation via a general 1-aminocyclopropane-1-carboxylic acid-dependent, ethylene-independent pathway.

    PubMed

    Tsang, Dat L; Edmond, Clare; Harrington, Jennifer L; Nühse, Thomas S

    2011-06-01

    Cell expansion in plants requires cell wall biosynthesis and rearrangement. During periods of rapid elongation, such as during the growth of etiolated hypocotyls and primary root tips, cells respond dramatically to perturbation of either of these processes. There is growing evidence that this response is initiated by a cell wall integrity-sensing mechanism and dedicated signaling pathway rather than being an inevitable consequence of lost structural integrity. However, the existence of such a pathway in root tissue and its function in a broader developmental context have remained largely unknown. Here, we show that various types of cell wall stress rapidly reduce primary root elongation in Arabidopsis (Arabidopsis thaliana). This response depended on the biosynthesis of 1-aminocyclopropane-1-carboxylic acid (ACC). In agreement with the established ethylene signaling pathway in roots, auxin signaling and superoxide production are required downstream of ACC to reduce elongation. However, this cell wall stress response unexpectedly does not depend on the perception of ethylene. We show that the short-term effect of ACC on roots is partially independent of its conversion to ethylene or ethylene signaling and that this ACC-dependent pathway is also responsible for the rapid reduction of root elongation in response to pathogen-associated molecular patterns. This acute response to internal and external stress thus represents a novel, noncanonical signaling function of ACC.

  9. Biosynthesis of 1-aminocyclopropane-1-carboxylic acid and ethylene from delta-aminolevulinic acid in ripening tomato fruits

    SciTech Connect

    El-Rayes, D.E.D.A.

    1987-01-01

    A new pathway for ethylene (C/sub 2/H/sub 4/) biosynthesis, which utilizes delta-aminolevulinic acid (ALA) as a precursor of 1-aminocyclopropane-1-carboxylic acid (ACC), the immediate precursor of C/sub 2/H/sub 4/, is presented. ALA enhanced ACC accumulation to 410% and C/sub 2/H/sub 4/ production to 232% of the control. The C/sub 2/H/sub 4/ production rate varied with the ALA concentration and the stage of tomato fruit development. As the ALA concentration increased from zero to 40 mM, the C/sub 2/H/sub 4/ production rate increased. Both treated and untreated pericarp discs from fruits at the pink stage of development yielded the largest C/sub 2/H/sub 4/ production rate. Radioactivity from (2,3-/sup 3/H)ALA was detected in both ACC and C/sub 2/H/sub 4/, and radioactivity from (4-/sup 14/C)ALA was detected in ACC and CO/sub 2/ but not in C/sub 2/H/sub 4/. However, radioactivity from (5-/sup 14/C)ALA was detected in CO/sub 2/, and its amount was greater than that obtained from (4-/sup 14/C)ALA. Neither ACC nor C/sub 2/H/sub 4/ showed any radioactivity when (5-/sup 14/C)ALA was supplied to the fruit discs. In addition, when (2,3-/sup 3/H)ALA or (4-/sup 14/C)ALA was supplied to the fruit discs, radioactivity was detected in other metabolites such as fumarate, succinate, malate, glutamate, glutamine, ..cap alpha..-ketoglutarate, and methionine, but the amount of radioactivity was insignificant as compared with the amount of radioactivity found in C/sub 2/H/sub 4/ and ACC.

  10. Studies of 1-Amino-2,2-difluorocyclopropane-1-carboxylic Acid: Mechanism of Decomposition and Inhibition of 1-Aminocyclopropane-1-carboxylic Acid Deaminase.

    PubMed

    Liu, Cheng-Hao; Wang, Shao-An; Ruszczycky, Mark W; Chen, Huawei; Li, Keqiang; Murakami, Kazuo; Liu, Hung-wen

    2015-07-02

    1-Amino-2,2-difluorocyclopropane-1-carboxylic acid (DFACC) is of interest in the study of 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase due to the increased reactivity of its cyclopropyl functionality. It is shown that DFACC is unstable under near-physiological conditions where it primarily decomposes via specific-base catalysis to 3-fluoro-2-oxobut-3-enoic acid with a rate constant of 0.18 ± 0.01 min(-1). Upon incubation with ACC deaminase, DFACC is found to be a slow-dissociating inhibitor of ACC deaminase with submicromolar affinity.

  11. RNA interference of 1-aminocyclopropane-1-carboxylic acid oxidase (ACO1 and ACO2) genes expression prolongs the shelf life of Eksotika (Carica papaya L.) papaya fruit.

    PubMed

    Sekeli, Rogayah; Abdullah, Janna Ong; Namasivayam, Parameswari; Muda, Pauziah; Abu Bakar, Umi Kalsom; Yeong, Wee Chien; Pillai, Vilasini

    2014-06-19

    The purpose of this study was to evaluate the effectiveness of using RNA interference in down regulating the expression of 1-aminocyclopropane-1-carboxylic acid oxidase gene in Eksotika papaya. One-month old embryogenic calli were separately transformed with Agrobacterium strain LBA 4404 harbouring the three different RNAi pOpOff2 constructs bearing the 1-aminocyclopropane-1-carboxylic acid oxidase gene. A total of 176 putative transformed lines were produced from 15,000 calli transformed, selected, then regenerated on medium supplemented with kanamycin. Integration and expression of the targeted gene in putatively transformed lines were verified by PCR and real-time RT-PCR. Confined field evaluation of a total of 31 putative transgenic lines planted showed a knockdown expression of the targeted ACO1 and ACO2 genes in 13 lines, which required more than 8 days to achieve the full yellow colour (Index 6). Fruits harvested from lines pRNAiACO2 L2-9 and pRNAiACO1 L2 exhibited about 20 and 14 days extended post-harvest shelf life to reach Index 6, respectively. The total soluble solids contents of the fruits ranged from 11 to 14° Brix, a range similar to fruits from non-transformed, wild type seed-derived plants.

  12. Ethylene Evolution following Treatment with 1-Aminocyclopropane-1-carboxylic Acid and Ethephon in an in Vitro Olive Shoot System in Relation to Leaf Abscission

    PubMed Central

    Lavee, S.; Martin, George C.

    1981-01-01

    1-Aminocyclopropane-1-carboxylic acid (ACC) supplied via the cut base of detached olive shoots caused a burst of ethylene from leaves, but other cyclopropanes tested did not exhibit this effect. Ethephon (ET) and another ethylene-releasing compound caused a prolonged increase in ethylene evolution. ACC had only a very limited effect on leaf abscission regardless of concentration, whereas shoots placed with cut bases in ET for 60 to 80 minutes exhibited 100% leaf abscission within 90 hours. Shoots with inflorescences treated with ET just prior to anthesis began to wilt in vitro within 20 to 30 hours and failed to exhibit leaf abscission. At earlier stages of development, ET induced more leaf abscission on reproductive shoots than on vegetative shoots. It is suggested that the duration of ethylene evolution from the leaves governs their potential for abscission and that bursts of ethylene evolution even though large in amount may not induce abscission. Images PMID:16661837

  13. Simultaneous analysis of apolar phytohormones and 1-aminocyclopropan-1-carboxylic acid by high performance liquid chromatography/electrospray negative ion tandem mass spectrometry via 9-fluorenylmethoxycarbonyl chloride derivatization.

    PubMed

    Ziegler, Jörg; Qwegwer, Jakob; Schubert, Melvin; Erickson, Jessica L; Schattat, Martin; Bürstenbinder, Katharina; Grubb, C Douglas; Abel, Steffen

    2014-10-03

    A strategy to detect and quantify the polar ethylene precursor 1-aminocyclopropan-1-carboxylic acid (ACC) along with the more apolar phytohormones abscisic acid (ABA), indole-3-acetic acid (IAA), jasmonic acid (JA), jasmonic acid-isoleucine conjugate (JA-Ile), 12-oxo-phytodienoic acid (OPDA), trans-zeatin, and trans-zeatin 9-riboside using a single extraction is presented. Solid phase resins commonly employed for extraction of phytohormones do not allow the recovery of ACC. We circumvent this problem by attaching an apolar group to ACC via derivatization with the amino group specific reagent 9-fluorenylmethoxycarbonyl chloride (Fmoc-Cl). Derivatization in the methanolic crude extract does not modify other phytohormones. The derivatized ACC could be purified and detected together with the more apolar phytohormones using common solid phase extraction resins and reverse phase HPLC/electrospray negative ion tandem mass spectrometry. The limit of detection was in the low nanomolar range for all phytohormones, a sensitivity sufficient to accurately determine the phytohormone levels from less than 50mg (fresh weight) of Arabidopsis thaliana and Nicotiana benthamiana tissues. Comparison with previously published phytohormone levels and the reported changes in phytohormone levels after stress treatments confirmed the accuracy of the method.

  14. Deletion of the carboxyl-terminal region of 1-aminocyclopropane-1-carboxylic acid synthase, a key protein in the biosynthesis of ethylene, results in catalytically hyperactive, monomeric enzyme.

    PubMed

    Li, N; Mattoo, A K

    1994-03-04

    1-Aminocyclopropane-1-carboxylic acid (ACC) synthase is a key enzyme regulating biosynthesis of the plant hormone ethylene. The expression of an enzymatically active, wound-inducible tomato (Lycopersicon esculentum L. cv Pik-Red) ACC synthase (485 amino acids long) in a heterologous Escherichia coli system allowed us to study the importance of hypervariable COOH terminus in enzymatic activity and protein conformation. We constructed several deletion mutants of the gene, expressed these in E. coli, purified the protein products to apparent homogeneity, and analyzed both conformation and enzyme kinetic parameters of the wild-type and truncated ACC syntheses. Deletion of the COOH terminus through Arg429 results in complete inactivation of the enzyme. Deletion of 46-52 amino acids from the COOH terminus results in an enzyme that has nine times higher affinity for the substrate S-adenosylmethionine than the wild-type enzyme. The highly efficient, truncated ACC synthase was found to be a monomer of 52 +/- 1.8 kDa as determined by gel filtration, whereas the wild-type ACC synthase, analyzed under similar conditions, is a dimer. These results demonstrate that the non-conserved COOH terminus of ACC synthase affects its enzymatic function as well as dimerization.

  15. Radioisotope assay for 1-aminocyclopropane-1-carboxylic acid synthase: s-adenosylhomocysteine analogs as inhibitors of the enzyme involved in plant senescence

    SciTech Connect

    Miura, G.A.; Chiang, P.K.

    1985-01-01

    A simple and rapid radioisotopic assay for 1-aminocyclopropane-1-carboxylic acid (ACC) synthase was developed, an enzyme involved in the biosynthesis of the plant hormone ethylene. The assay utilizes an AG50-X4(NH4 (+)) column which separates S-adenosyl-L-(carboxyl-/sup 14/C)methionine (AdoMet) from the product (/sup 14/C)acc, since the latter is not bound to the resin while (/sup 14/C)adoMet is. As opposed to other assays, this procedure measures ACC directly and does not require further conversion to ethylene. When an enzyme preparation from ripe-tomato fruits (Lycopersicon esculentum Mill) was assayed, an I/sub 50/ of 2.5 + or - 0.8 micrometers for sinefungin and a K/sub m/ of 27 + or - 2 micrometers for AdoMet were obtained; these values were in good agreement with previous previous determinations made with a gas-chromatographic assay. When other nucleosides were tested as inhibitors the following order of decreasing activity was found: sinefungin, S-adenosylhomocysteine (AdoHcy), AdoHcy sulfoxide, S-n-butyladenosine, 3-deaza-adenosylhomocysteine, S-isobutyladenosine, S-isobutyladenosine, S-isobutyl-l-deazaadenosine. In contrast, S-isobutyl-3-deazaadenosine, S-isobutyl-7-deazaadenosine, 3-deazaadenosine, and adenodine were not inhibitory.

  16. 1-Aminocyclopropane-1-carboxylic acid (ACC) deaminase-containing rhizobacteria protect Ocimum sanctum plants during waterlogging stress via reduced ethylene generation.

    PubMed

    Barnawal, Deepti; Bharti, Nidhi; Maji, Deepamala; Chanotiya, Chandan Singh; Kalra, Alok

    2012-09-01

    Ocimum sanctum grown as rain-fed crop, is known to be poorly adapted to waterlogged conditions. Many a times the crop suffers extreme damages because of anoxia and excessive ethylene generation due to waterlogging conditions present under heavy rain. The usefulness of 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase-containing plant growth promoting rhizobacteria was investigated under waterlogging stress. The comparison of herb yield and stress induced biochemical changes of waterlogged and non-waterlogged plants with and without ACC deaminase-containing microbiological treatments were monitored in this study. Ten plant growth promoting rhizobacteria strains containing ACC-deaminase were isolated and characterized. Four selected isolates Fd2 (Achromobacter xylosoxidans), Bac5 (Serratia ureilytica), Oci9 (Herbaspirillum seropedicae) and Oci13 (Ochrobactrum rhizosphaerae) had the potential to protect Ocimum plants from flood induced damage under waterlogged glass house conditions. Pot experiments were conducted to evaluate the potential of these ACC deaminase-containing selected strains for reducing the yield losses caused by waterlogging conditions. Bacterial treatments protected plants from waterlogging induced detrimental changes like stress ethylene production, reduced chlorophyll concentration, higher lipid peroxidation, proline concentration and reduced foliar nutrient uptake. Fd2 (A. xylosoxidans) induced maximum waterlogging tolerance as treated waterlogged plants recorded maximum growth and herb yield (46.5% higher than uninoculated waterlogged plants) with minimum stress ethylene levels (53% lower ACC concentration as compared to waterlogged plants without bacterial inoculation) whereas under normal non-waterlogged conditions O. rhizosphaerae was most effective in plant growth promotion.

  17. Gibberellic acid, synthetic auxins, and ethylene differentially modulate alpha-L-Arabinofuranosidase activities in antisense 1-aminocyclopropane-1-carboxylic acid synthase tomato pericarp discs.

    PubMed

    Sozzi, Gabriel O; Greve, L Carl; Prody, Gerry A; Labavitch, John M

    2002-07-01

    Alpha-L-Arabinofuranosidases (alpha-Afs) are plant enzymes capable of releasing terminal arabinofuranosyl residues from cell wall matrix polymers, as well as from different glycoconjugates. Three different alpha-Af isoforms were distinguished by size exclusion chromatography of protein extracts from control tomatoes (Lycopersicon esculentum) and an ethylene synthesis-suppressed (ESS) line expressing an antisense 1-aminocyclopropane-1-carboxylic synthase transgene. alpha-Af I and II are active throughout fruit ontogeny. alpha-Af I is the first Zn-dependent cell wall enzyme isolated from tomato pericarp tissues, thus suggesting the involvement of zinc in fruit cell wall metabolism. This isoform is inhibited by 1,10-phenanthroline, but remains stable in the presence of NaCl and sucrose. alpha-Af II activity accounts for over 80% of the total alpha-Af activity in 10-d-old fruit, but activity drops during ripening. In contrast, alpha-Af III is ethylene dependent and specifically active during ripening. alpha-Af I released monosaccharide arabinose from KOH-soluble polysaccharides from tomato cell walls, whereas alpha-Af II and III acted on Na(2)CO(3)-soluble pectins. Different alpha-Af isoform responses to gibberellic acid, synthetic auxins, and ethylene were followed by using a novel ESS mature-green tomato pericarp disc system. alpha-Af I and II activity increased when gibberellic acid or 2,4-dichlorophenoxyacetic acid was applied, whereas ethylene treatment enhanced only alpha-Af III activity. Results suggest that tomato alpha-Afs are encoded by a gene family under differential hormonal controls, and probably have different in vivo functions. The ESS pericarp explant system allows comprehensive studies involving effects of physiological levels of different growth regulators on gene expression and enzyme activity with negligible wound-induced ethylene production.

  18. Gibberellic Acid, Synthetic Auxins, and Ethylene Differentially Modulate α-l-Arabinofuranosidase Activities in Antisense 1-Aminocyclopropane-1-Carboxylic Acid Synthase Tomato Pericarp Discs1

    PubMed Central

    Sozzi, Gabriel O.; Greve, L. Carl; Prody, Gerry A.; Labavitch, John M.

    2002-01-01

    α-l-Arabinofuranosidases (α-Afs) are plant enzymes capable of releasing terminal arabinofuranosyl residues from cell wall matrix polymers, as well as from different glycoconjugates. Three different α-Af isoforms were distinguished by size exclusion chromatography of protein extracts from control tomatoes (Lycopersicon esculentum) and an ethylene synthesis-suppressed (ESS) line expressing an antisense 1-aminocyclopropane-1-carboxylic synthase transgene. α-Af I and II are active throughout fruit ontogeny. α-Af I is the first Zn-dependent cell wall enzyme isolated from tomato pericarp tissues, thus suggesting the involvement of zinc in fruit cell wall metabolism. This isoform is inhibited by 1,10-phenanthroline, but remains stable in the presence of NaCl and sucrose. α-Af II activity accounts for over 80% of the total α-Af activity in 10-d-old fruit, but activity drops during ripening. In contrast, α-Af III is ethylene dependent and specifically active during ripening. α-Af I released monosaccharide arabinose from KOH-soluble polysaccharides from tomato cell walls, whereas α-Af II and III acted on Na2CO3-soluble pectins. Different α-Af isoform responses to gibberellic acid, synthetic auxins, and ethylene were followed by using a novel ESS mature-green tomato pericarp disc system. α-Af I and II activity increased when gibberellic acid or 2,4-dichlorophenoxyacetic acid was applied, whereas ethylene treatment enhanced only α-Af III activity. Results suggest that tomato α-Afs are encoded by a gene family under differential hormonal controls, and probably have different in vivo functions. The ESS pericarp explant system allows comprehensive studies involving effects of physiological levels of different growth regulators on gene expression and enzyme activity with negligible wound-induced ethylene production. PMID:12114586

  19. 1-Aminocyclopropane-1-carboxylic acid and abscisic acid during the germination of sugar beet (Beta vulgaris L.): a comparative study of fruits and seeds.

    PubMed

    Hermann, Katrin; Meinhard, Juliane; Dobrev, Peter; Linkies, Ada; Pesek, Bedrich; Hess, Barbara; Machácková, Ivana; Fischer, Uwe; Leubner-Metzger, Gerhard

    2007-01-01

    The control of sugar beet (Beta vulgaris L.) germination by plant hormones was studied by comparing fruits and seeds. Treatment of sugar beet fruits and seeds with gibberellins, brassinosteroids, auxins, cytokinins, and jasmonates or corresponding hormone biosynthesis inhibitors did not appreciably affect radicle emergence of fruits or seeds. By contrast, treatment with ethylene or the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) promoted radicle emergence of fruits and seeds. Abscisic acid (ABA) acted as an antagonist of ethylene and inhibited radicle emergence of seeds, but not appreciably of fruits. High endogenous contents of ACC and of ABA were evident in seeds and pericarps of dry mature fruits, but declined early during imbibition. ABA-treatment of seeds and fruits induced seed ACC accumulation while ACC-treatment did not affect the seed ABA content. Transcripts of ACC oxidase (ACO, ethylene-forming enzyme) and ABA 8'-hydroxylase (CYP707A, ABA-degrading enzyme) accumulate in fruits and seeds upon imbibition. ABA and ACC and the pericarp did not affect the seed CYP707A transcript levels. By contrast, seed ACO transcript accumulation was promoted by ABA and by pericarp removal, but not by ACC. Quantification of the endogenous ABA and ACC contents, ABA and ACC leaching, and ethylene evolution, demonstrate that an embryo-mediated active ABA extrusion system is involved in keeping the endogenous seed ABA content low by 'active ABA leaching', while the pericarp restricts ACC leaching during imbibition. Sugar beet radicle emergence appears to be controlled by the pericarp, by ABA and ACC leaching, and by an ABA-ethylene antagonism that affects ACC biosynthesis and ACO gene expression.

  20. Kinetic and mutagenic evidence for the role of histidine residues in the Lycopersicon esculentum 1-aminocyclopropane-1-carboxylic acid oxidase.

    PubMed

    Tayeh, M A; Howe, D L; Salleh, H M; Sheflyan, G Y; Son, J K; Woodard, R W

    1999-01-01

    The ACCO gene from Lycopersicon esculentum (tomato) has been cloned into the expression vector PT7-7. The highly expressed protein was recovered in the form of inclusion bodies. ACCO is inactivated by diethyl pyrocarbonate (DEPC) with a second-order rate constant of 170 M(-1) min(-1). The pH-inactivation rate data imply the involvement of an amino acid residue with a pK value of 6.05. The difference UV spectrum of the the DEPC-inactivated versus native ACCO showed a single peak at 242 nm indicating the modification of histidine residues. The inactivation was reversed by the addition of hydroxylamine to the DEPC-inactivated ACCO. Substrate/cofactor protection studies indicate that both iron and ACC bind near the active site, which contains histidine residues. Four histidines of ACCO were individually mutated to alanine and glycine. H39A is catalytically active, while H177A, H177G, H211A, H211G, H234A, and H234G are basically inactive. The results indicate that histidine residues 177, 211, and 234 may serve as ligands for the active-site iron of ACCO and/or may play some important structural or catalytic role.

  1. Silicon-mediated changes in polyamine and 1-aminocyclopropane-1-carboxylic acid are involved in silicon-induced drought resistance in Sorghum bicolor L.

    PubMed

    Yin, Lina; Wang, Shiwen; Liu, Peng; Wang, Wenhua; Cao, Dan; Deng, Xiping; Zhang, Suiqi

    2014-07-01

    The fact that silicon application alleviates drought stress has been widely reported, but the mechanism it underlying remains unclear. Here, morphologic and physiological changes were investigated in sorghum (Sorghum bicolor L.) seedlings treated with silicon and exposed to PEG-simulated drought stress for seven days. Drought stress dramatically decreased growth parameters (biomass, root/shoot ratio, leaf area, chlorophyll concentration and photosynthetic rate), while silicon application reduced the drought-induced decreases in those parameters. Leaf relative water content and transpiration rate were maintained at high levels compared to those in seedlings without silicon. The soluble sugar contents were increased, but the proline contents and the osmotic potential were decreased, showing that osmotic adjustment did not contribute to the silicon induced-drought resistance. Furthermore, levels of both free and conjugated polyamines (PAs) levels, including putrescine, spermidine and spermine, were all found to be increased by silicon under drought stress both in leaf and root. Meanwhile, 1-aminocyclopropane-1-carboxylic acid (ACC), the precursor of ethylene, was markedly decreased by supplemental silicon. Several key PA synthesis genes were upregulated by silicon under drought stress. These results suggest that silicon improves sorghum drought resistance by mediating the balance of PAs and ethylene levels. In leaf, the increased PAs and decreased ACC help to retard leaf senescence. In root, the balance between PAs and ACC participates in the modulation of root plasticity, increases the root/shoot ratio, and contributes to an increase in water uptake. These results suggest that silicon increases drought resistance through regulating several important physiological processes in plants.

  2. 1-Aminocyclopropane-1-carboxylic acid (ACC) concentration and ACC synthase expression in soybean roots, root tips, and soybean cyst nematode (Heterodera glycines)-infected roots.

    PubMed

    Tucker, Mark L; Xue, Ping; Yang, Ronghui

    2010-01-01

    Colonization of plant roots by root knot and cyst nematodes requires a functional ethylene response pathway. However, ethylene plays many roles in root development and whether its role in nematode colonization is direct or indirect, for example lateral root initiation or root hair growth, is not known. The temporal requirement for ethylene and localized synthesis of ethylene during the life span of soybean cyst nematode (SCN) on soybean roots was further investigated. Although a significant increase in ethylene evolution was not detected from SCN-colonized roots, the concentration of the immediate precursor to ethylene, 1-aminocyclopropane-1-carboxylic acid (ACC), was higher in SCN-colonized root pieces and root tips than in other parts of the root. Moreover, expression analysis of 17 ACC synthase (ACS) genes indicated that a select set of ACS genes is expressed in SCN-colonized root pieces that is clearly different from the set of genes expressed in non-colonized roots or root tips. Semi-quantitative real-time PCR indicated that ACS transcript accumulation correlates with the high concentration of ACC in root tips. In addition, an ACS-like sequence was found in the public SCN nucleotide database. Acquisition of a full-length sequence for this mRNA (accession GQ389647) and alignment with transcripts for other well-characterized ACS proteins indicated that the nematode sequence is missing a key element required for ACS activity and therefore probably is not a functional ACS. Moreover, no significant amount of ACC was found in any growth stage of SCN that was tested.

  3. A Ser/Thr protein kinase phosphorylates MA-ACS1 (Musa acuminata 1-aminocyclopropane-1-carboxylic acid synthase 1) during banana fruit ripening.

    PubMed

    Choudhury, Swarup Roy; Roy, Sujit; Sengupta, Dibyendu N

    2012-08-01

    1-Aminocyclopropane-1-carboxylic acid synthase (ACS) catalyzes the rate-limiting step in ethylene biosynthesis during ripening. ACS isozymes are regulated both transcriptionally and post-translationally. However, in banana, an important climacteric fruit, little is known about post-translational regulation of ACS. Here, we report the post-translational modification of MA-ACS1 (Musa acuminata ACS1), a ripening inducible isozyme in the ACS family, which plays a key role in ethylene biosynthesis during banana fruit ripening. Immunoprecipitation analyses of phospholabeled protein extracts from banana fruit using affinity-purified anti-MA-ACS1 antibody have revealed phosphorylation of MA-ACS1, particularly in ripe fruit tissue. We have identified the induction of a 41-kDa protein kinase activity in pulp at the onset of ripening. The 41-kDa protein kinase has been identified as a putative protein kinase by MALDI-TOF/MS analysis. Biochemical analyses using partially purified protein kinase fraction from banana fruit have identified the protein kinase as a Ser/Thr family of protein kinase and its possible involvement in MA-ACS1 phosphorylation during ripening. In vitro phosphorylation analyses using synthetic peptides and site-directed mutagenized recombinant MA-ACS1 have revealed that serine 476 and 479 residues at the C-terminal region of MA-ACS1 are phosphorylated. Overall, this study provides important novel evidence for in vivo phosphorylation of MA-ACS1 at the molecular level as a possible mechanism of post-translational regulation of this key regulatory protein in ethylene signaling pathway in banana fruit during ripening.

  4. Dissecting the role of climacteric ethylene in kiwifruit (Actinidia chinensis) ripening using a 1-aminocyclopropane-1-carboxylic acid oxidase knockdown line.

    PubMed

    Atkinson, Ross G; Gunaseelan, Kularajathevan; Wang, Mindy Y; Luo, Luke; Wang, Tianchi; Norling, Cara L; Johnston, Sarah L; Maddumage, Ratnasiri; Schröder, Roswitha; Schaffer, Robert J

    2011-07-01

    During climacteric fruit ripening, autocatalytic (Type II) ethylene production initiates a transcriptional cascade that controls the production of many important fruit quality traits including flavour production and softening. The last step in ethylene biosynthesis is the conversion of 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene by the enzyme ACC oxidase (ACO). Ten independent kiwifruit (Actinidia chinensis) lines were generated targeting suppression of fruit ripening-related ACO genes and the fruit from one of these lines (TK2) did not produce detectable levels of climacteric ethylene. Ripening behaviour in a population of kiwifruit at harvest is asynchronous, so a short burst of exogenous ethylene was used to synchronize ripening in TK2 and control fruit. Following such a treatment, TK2 and control fruit softened to an 'eating-ripe' firmness. Control fruit produced climacteric ethylene and softened beyond eating-ripe by 5 d. In contrast, TK2 fruit maintained an eating-ripe firmness for >25 d and total volatile production was dramatically reduced. Application of continuous exogenous ethylene to the ripening-arrested TK2 fruit re-initiated fruit softening and typical ripe fruit volatiles were detected. A 17 500 gene microarray identified 401 genes that changed after ethylene treatment, including a polygalacturonase and a pectate lyase involved in cell wall breakdown, and a quinone oxidoreductase potentially involved in volatile production. Many of the gene changes were consistent with the softening and flavour changes observed after ethylene treatment. However, a surprisingly large number of genes of unknown function were also observed, which could account for the unique flavour and textural properties of ripe kiwifruit.

  5. Pear ACO genes encoding putative 1-aminocyclopropane-1-carboxylate oxidase homologs are functionally expressed during fruit ripening and involved in response to salicylic acid.

    PubMed

    Shi, Hai-Yan; Zhang, Yu-Xing

    2012-10-01

    1-Aminocyclopropane-1-carboxylate (ACC) oxidase catalyzes the final reaction of the ethylene biosynthetic pathway, converting ACC into ethylene. Past studies have shown a possible link between ACC oxidase and salicylic acid during fruit ripening in pear, but the relationship has received no more than modest study at the gene expression level. In this study, two cDNA clones encoding putative ACC oxidase, PpACO1 and PpACO2, were isolated from a cDNA library constructed by our own laboratory and produced using mRNA from mesocarp of pear (Pyrus pyrifolia Nakai. cv.Whangkeumbae). One cDNA clone, designated PpACO1 (GenBank accession No. JN807390), comprised an open reading frame of 945 bp encoding a protein of 314 amino acids. The other cDNA, designated PpACO2 (GenBank accession No. JN807392), encodes a protein with 322 amino acids that shares high similarity with the known plant ACOs. Using PCR amplification techniques, two genomic clones corresponding to PpACO1 and PpACO2 were isolated and shown to contain independently three introns with typical GT/AG boundaries defining the splice junctions. The PpACO1 gene product shared 99 % identity with an ACC oxidase from pear (Pyrus × bretschneideri Rehd.cv.Yali), and phylogenetic analyses clearly placed the gene product in the ACC oxidase cluster of the pear 2-oxoglutarate-dependent dioxygenase superfamily tree. Quantitative RT-PCR analysis indicated that the two PpACO genes are differentially expressed in pear tissues. PpACO1 and PpACO2 were predominantly expressed in fruit. The transcripts of PpACO1 were accumulated at relatively low levels in early fruit, but strongly high levels in fruit ripening and senescence stages, while the transcripts of PpACO2 were accumulated at higher levels in early fruit and much lower levels with further fruit cell development than the transcripts of PpACO1. In addition, PpACO1 gene was down-regulated in fruit by salicylic acid (SA). Nevertheless, PpACO2 gene was dramatically up-regulated in

  6. Expression and regulation of pear 1-aminocyclopropane-1-carboxylic acid synthase gene (PpACS1a) during fruit ripening, under salicylic acid and indole-3-acetic acid treatment, and in diseased fruit.

    PubMed

    Shi, Hai-Yan; Zhang, Yu-Xing

    2014-06-01

    In plants, the level of ethylene is determined by the activity of the key enzyme 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS). A gene encoding an ACC synthase protein was isolated from pear (Pyrus pyrifolia). This gene designated PpACS1a (GenBank accession no. KC632526) was 1488 bp in length with an open reading frame (ORF) encoding a protein of 495 amino acids that shared high similarity with other pear ACC synthase proteins. The PpACS1a was grouped into type-1 subfamily of plant ACS based on its conserved domain and phylogenetic status. Real-time quantitative PCR indicated that PpACS1a was differentially expressed in pear tissues and predominantly expressed in anthers. The expression signal of PpACS1a was also detected in fruit and leaves, but no signal was detected in shoots and petals. Furthermore, the PpACS1a expression was regulated during fruit ripening. In addition, the PpACS1a gene expression was regulated by salicylic acid (SA) and indole-3-acetic acid (IAA) in fruit. Moreover, the expression of the PpACS1a was up-regulated in diseased pear fruit. These results indicated that PpACS1a might be involved in fruit ripening and response to SA, IAA and disease.

  7. Enhancement of growth and salt tolerance of red pepper seedlings (Capsicum annuum L.) by regulating stress ethylene synthesis with halotolerant bacteria containing 1-aminocyclopropane-1-carboxylic acid deaminase activity.

    PubMed

    Siddikee, Md Ashaduzzaman; Glick, Bernard R; Chauhan, Puneet S; Yim, Woo jong; Sa, Tongmin

    2011-04-01

    Three 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase-producing halotolerant bacteria were isolated from West Coast soil of Yellow Sea, Incheon, South Korea and evaluated for their efficiency in improving red pepper plant growth under salt stress. The strains RS16, RS656 and RS111 were identified by 16S rRNA gene sequencing as Brevibacterium iodinum, Bacillus licheniformis and Zhihengliuela alba, respectively. Two hour exposure of 100, 150 and 200 mM NaCl stress on 8 day old red pepper seedlings caused 44, 64 and 74% increase ethylene production, while at 150 mM NaCl stress, inoculation of B. licheniformis RS656, Z. alba RS111, and Br. iodinum RS16 reduces ethylene production by 44, 53 and 57%, respectively. Similarly, 3 week old red pepper plants were subjected to salt stress for two weeks and approximately ∼50% reduction in growth recorded at 150 mM NaCl stress compared to negative control whereas bacteria inoculation significantly increase the growth compared to positive control. Salt stress also caused 1.3-fold reduction in the root/shoot dry weight ratio compared to the absence of salt while bacteria inoculation retained the biomass allocation similar to control plants. The salt tolerance index (ratio of biomass of salt stressed to non-stressed plant) was also significantly increased in inoculated plants compared to non-inoculated. Increase nutrient uptakes under salt stress by red pepper further evident that bacteria inoculation ameliorates salt stress effect. In summary, this study indicates that the use of ACC deaminase-producing halotolerant bacteria mitigates the salt stress by reducing salt stress-induced ethylene production on growth of red pepper plants.

  8. Expression of 1-Aminocyclopropane-1-Carboxylate Oxidase during Leaf Ontogeny in White Clover1

    PubMed Central

    Hunter, Donald A.; Yoo, Sang Dong; Butcher, Stephen M.; McManus, Michael T.

    1999-01-01

    We examined the expression of three distinct 1-aminocyclopropane-1-carboxylic acid oxidase genes during leaf ontogeny in white clover (Trifolium repens). Significant production of ethylene occurs at the apex, in newly initiated leaves, and in senescent leaf tissue. We used a combination of reverse transcriptase-polymerase chain reaction and 3′-rapid amplification of cDNA ends to identify three distinct DNA sequences designated TRACO1, TRACO2, and TRACO3, each with homology to 1-aminocyclopropane-1-carboxylic acid oxidase. Southern analysis confirmed that these sequences represent three distinct genes. Northern analysis revealed that TRACO1 is expressed specifically in the apex and TRACO2 is expressed in the apex and in developing and mature green leaves, with maximum expression in developing leaf tissue. The third gene, TRACO3, is expressed in senescent leaf tissue. Antibodies were raised to each gene product expressed in Escherichia coli, and western analysis showed that the TRACO1 antibody recognizes a protein of approximately 205 kD (as determined by gradient sodium dodecyl sulfate-polyacylamide gel electrophoresis) that is expressed preferentially in apical tissue. The TRACO2 antibody recognizes a protein of approximately 36.4 kD (as determined by gradient sodium dodecyl sulfate-polyacylamide gel electrophoresis) that is expressed in the apex and in developing and mature green leaves, with maximum expression in mature green tissue. No protein recognition by the TRACO3 antibody could be detected in senescent tissue or at any other stage of leaf development. PMID:10318691

  9. Cloning and expression of the 1-aminocyclopropane-1-carboxylic oxidase gene from Agrostis stolonifera.

    PubMed

    Xiao, G Z; Li, L J; Teng, K; Chao, Y H; Han, L B

    2016-11-03

    A gene encoding 1-aminocyclopropane-1-carboxylic oxidase (ACO), which catalyzes the terminal step in ethylene biosynthesis, was isolated from Agrostis stolonifera. The AsACO gene is composed of 975 bp, encoding 324 amino acids. Three exons interspersed by two introns form AsACO gDNA. A BLAST search of the nucleotide sequence revealed a high level of similarity (79-91%) between AsACO and ACO genes of other plants. A phylogenetic tree was constructed via BLAST in the NCBI, and revealed the highest homology with wheat TaACO. The calculated molecular mass and predicted isoelectric point of AsACO were 36.25 and 4.89 kDa, respectively. Analysis of subcellular localization revealed that AsACO is located in the nucleus and cytoplasm. The Fe(II)-binding cofactors and cosubstrate were identified, pertaining to the ACO family. The expression patterns of AsACO were determined by quantitative real time PCR. AsACO expression was highest in the stem, and was strongly up-regulated in response to ethephon, methyl jasmonate, salicylic acid, and cold temperature, but down-regulated in response to drought and NaCl treatment. The protein encoded by AsACO exhibited ACC oxidase activity in vitro. Taken together, these findings suggest that AsACO contains domains common to the ACO family, and is induced in response to exogenous hormones. Conversely, some abiotic stress conditions can inhibit AsACO expression.

  10. Molecular cloning of an 1-aminocyclopropane-1-carboxylate synthase from senescing carnation flower petals.

    PubMed

    Park, K Y; Drory, A; Woodson, W R

    1992-01-01

    Synthetic oligonucleotides based on the sequence of 1-aminocyclopropane-1-carboxylate (ACC) synthase from tomato were used to prime the synthesis and amplification of a 337 bp tomato ACC synthase cDNA by polymerase chain reaction (PCR). This PCR product was used to screen a cDNA library prepared from mRNA isolated from senescing carnation flower petals. Two cDNA clones were isolated which represented the same mRNA. The longer of the two clones (CARACC3) contained a 1950 bp insert with a single open reading frame of 516 amino acids encoding a protein of 58 kDa. The predicted protein from the carnation ACC synthase cDNA was 61%, 61%, 64%, and 51% identical to the deduced proteins from zucchini squash, winter squash, tomato, and apple, respectively. Genomic DNA gel blot analysis indicated the presence of at least a second gene in carnation which hybridized to CARACC3 under conditions of low stringency. ACC synthase mRNA accumulates during senescence of carnation flower petals concomitant with the increase in ethylene production and ACC synthase enzyme activity. Ethylene induced the accumulation of ACC synthase mRNA in presenescent petals. Wound-induced ethylene production in leaves was not associated with an increase in ACC synthase mRNA represented by CARACC3. These results indicate that CARACC3 represents an ACC synthase transcript involved in autocatalytic ethylene production in senescing flower petals.

  11. Glutathione Regulates 1-Aminocyclopropane-1-Carboxylate Synthase Transcription via WRKY33 and 1-Aminocyclopropane-1-Carboxylate Oxidase by Modulating Messenger RNA Stability to Induce Ethylene Synthesis during Stress.

    PubMed

    Datta, Riddhi; Kumar, Deepak; Sultana, Asma; Hazra, Saptarshi; Bhattacharyya, Dipto; Chattopadhyay, Sharmila

    2015-12-01

    Glutathione (GSH) plays a fundamental role in plant defense-signaling network. Recently, we have established the involvement of GSH with ethylene (ET) to combat environmental stress. However, the mechanism of GSH-ET interplay still remains unexplored. Here, we demonstrate that GSH induces ET biosynthesis by modulating the transcriptional and posttranscriptional regulations of its key enzymes, 1-aminocyclopropane-1-carboxylate synthase (ACS) and 1-aminocyclopropane-1-carboxylate oxidase (ACO). Transgenic Arabidopsis (Arabidopsis thaliana) plants with enhanced GSH content (AtECS) exhibited remarkable up-regulation of ACS2, ACS6, and ACO1 at transcript as well as protein levels, while they were down-regulated in the GSH-depleted phytoalexin deficient2-1 (pad2-1) mutant. We further observed that GSH induced ACS2 and ACS6 transcription in a WRKY33-dependent manner, while ACO1 transcription remained unaffected. On the other hand, the messenger RNA stability for ACO1 was found to be increased by GSH, which explains our above observations. In addition, we also identified the ACO1 protein to be a subject for S-glutathionylation, which is consistent with our in silico data. However, S-glutathionylation of ACS2 and ACS6 proteins was not detected. Further, the AtECS plants exhibited resistance to necrotrophic infection and salt stress, while the pad2-1 mutant was sensitive. Exogenously applied GSH could improve stress tolerance in wild-type plants but not in the ET-signaling mutant ethylene insensitive2-1, indicating that GSH-mediated resistance to these stresses occurs via an ET-mediated pathway. Together, our investigation reveals a dual-level regulation of ET biosynthesis by GSH during stress.

  12. Increased 1-aminocyclopropane-1-carboxylate deaminase activity enhances Agrobacterium tumefaciens-mediated gene delivery into plant cells.

    PubMed

    Someya, Tatsuhiko; Nonaka, Satoko; Nakamura, Kouji; Ezura, Hiroshi

    2013-10-01

    Agrobacterium-mediated transformation is a useful tool for the genetic modification in plants, although its efficiency is low for several plant species. Agrobacterium-mediated transformation has three major steps in laboratory-controlled experiments: the delivery of T-DNA into plant cells, the selection of transformed plant cells, and the regeneration of whole plants from the selected cells. Each of these steps must be optimized to improve the efficiency of Agrobacterium-mediated plant transformation. It has been reported that increasing the number of cells transformed by T-DNA delivery can improve the frequency of stable transformation. Previously, we demonstrated that a reduction in ethylene production by plant cells during cocultivation with A. tumefaciens-expressing 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase resulted in increased T-DNA delivery into the plant cells. In this study, to further improve T-DNA delivery by A. tumefaciens, we modified the expression cassette of the ACC deaminase gene using vir gene promoter sequences. The ACC deaminase gene driven by the virD1 promoter was expressed at a higher level, resulting in a higher ACC deaminase activity in this A. tumefaciens strain than in the strain with the lac promoter used in a previous study. The newly developed A. tumefaciens strain improves the delivery of T-DNA into Solanum lycopersicum (tomato) and Erianthus ravennae plants and thus may be a powerful tool for the Agrobacterium-mediated genetic engineering of plants.

  13. Purification and characterization of 1-aminocyclopropane-1-carboxylate synthase from etiolated mung bean hypocotyls.

    PubMed

    Tsai, D S; Arteca, R N; Bachman, J M; Phillips, A T

    1988-08-01

    1-Aminocyclopropane-1-carboxylate (ACC) synthase, EC 4.4.1.14, was purified to homogeneity from etiolated mung bean hypocotyl segments. This was made possible by the ability to elevate the enzyme level markedly through hormone treatments and by stabilization of the enzyme with high phosphate concentrations. The four-step procedure resulted in 1050-fold purification with 25% yield, and consisted of stepwise elution from hydroxylapatite, chromatography on phenyl-Sepharose CL-4B, gradient elution from hydroxylapatite, and fast protein liquid chromatography (FPLC) on a MonoQ anion-exchange column. FPLC-purified ACC synthase migrated as a single band of Mr 65,000 on denaturing polyacrylamide gel electrophoresis. The molecular weight of native enzyme by Bio-Gel A-0.5 M chromatography was 125,000, indicating that the enzyme probably exists as a dimer of identical 65,000 Mr subunits. The mung bean ACC synthase exhibited a pH optimum of 8.0 for activity and a Km for S-adenosylmethionine (AdoMet) of 55 microM at 30 degrees C. It exhibited an Arrhenius activation energy of 12 kcal mol-1 degree-1 and was inactivated at temperatures in excess of 40 degrees C. The specific activity for pure ACC synthase was 21 mumol of ACC formed/mg protein/h when determined under optimal conditions with 400 microM AdoMet.

  14. 1-Aminocyclopropane-1-Carboxylate Oxidase Activity Limits Ethylene Biosynthesis in Rumex palustris during Submergence

    PubMed Central

    Vriezen, Wim H.; Hulzink, Raymond; Mariani, Celestina; Voesenek, Laurentius A.C.J.

    1999-01-01

    Submergence strongly stimulates petiole elongation in Rumex palustris, and ethylene accumulation initiates and maintains this response in submerged tissues. cDNAs from R. palustris corresponding to a 1-aminocyclopropane-1-carboxylate (ACC) oxidase gene (RP-ACO1) were isolated from elongating petioles and used to study the expression of the corresponding gene. An increase in RP-ACO1 messenger was observed in the petioles and lamina of elongating leaves 2 h after the start of submergence. ACC oxidase enzyme activity was measured in homogenates of R. palustris shoots, and a relevant increase was observed within 12 h under water with a maximum after 24 h. We have shown previously that the ethylene production rate of submerged shoots does not increase significantly during the first 24 h of submergence (L.A.C.J. Voesenek, M. Banga, R.H. Thier, C.M. Mudde, F.M. Harren, G.W.M. Barendse, C.W.P.M. Blom [1993] Plant Physiol 103: 783–791), suggesting that under these conditions ACC oxidase activity is inhibited in vivo. We found evidence that this inhibition is caused by a reduction of oxygen levels. We hypothesize that an increased ACC oxidase enzyme concentration counterbalances the reduced enzyme activity caused by low oxygen concentration during submergence, thus sustaining ethylene production under these conditions. Therefore, ethylene biosynthesis seems to be limited at the level of ACC oxidase activity rather than by ACC synthase in R. palustris during submergence. PMID:10482674

  15. Mechanistic studies of 1-aminocyclopropane-1-carboxylate deaminase: characterization of an unusual pyridoxal 5'-phosphate-dependent reaction.

    PubMed

    Thibodeaux, Christopher J; Liu, Hung-Wen

    2011-03-22

    1-Aminocyclopropane-1-carboxylic acid (ACC) deaminase (ACCD) is a pyridoxal 5'-phosphate (PLP)-dependent enzyme that cleaves the cyclopropane ring of ACC, to give α-ketobutyric acid and ammonia as products. The cleavage of the C(α)-C(β) bond of an amino acid substrate is a rare event in PLP-dependent enzyme catalysis. Potential chemical mechanisms involving nucleophile- or acid-catalyzed cyclopropane ring opening have been proposed for the unusual transformation catalyzed by ACCD, but the actual mode of cyclopropane ring cleavage remains obscure. In this report, we aim to elucidate the mechanistic features of ACCD catalysis by investigating the kinetic properties of ACCD from Pseudomonas sp. ACP and several of its mutant enzymes. Our studies suggest that the pK(a) of the conserved active site residue, Tyr294, is lowered by a hydrogen bonding interaction with a second conserved residue, Tyr268. This allows Tyr294 to deprotonate the incoming amino group of ACC to initiate the aldimine exchange reaction between ACC and the PLP coenzyme and also likely helps to activate Tyr294 for a role as a nucleophile to attack and cleave the cyclopropane ring of the substrate. In addition, solvent kinetic isotope effect (KIE), proton inventory, and (13)C KIE studies of the wild type enzyme suggest that the C(α)-C(β) bond cleavage step in the chemical mechanism is at least partially rate-limiting under k(cat)/K(m) conditions and is likely preceded in the mechanism by a partially rate-limiting step involving the conversion of a stable gem-diamine intermediate into a reactive external aldimine intermediate that is poised for cyclopropane ring cleavage. When viewed within the context of previous mechanistic and structural studies of ACCD enzymes, our studies are most consistent with a mode of cyclopropane ring cleavage involving nucleophilic catalysis by Tyr294.

  16. Methyl jasmonate-induced defense responses are associated with elevation of 1-aminocyclopropane-1-carboxylate oxidase in Lycopersicon esculentum fruit.

    PubMed

    Yu, Mengmeng; Shen, Lin; Zhang, Aijun; Sheng, Jiping

    2011-10-15

    It has been known that methyl jasmonate (MeJA) interacts with ethylene to elicit resistance. In green mature tomato fruits (Lycopersicon esculentum cv. Lichun), 0.02mM MeJA increased the activity of 1-aminocyclopropane-1-carboxylate oxidase (ACO), and consequently influenced the last step of ethylene biosynthesis. Fruits treated with a combination of 0.02 MeJA and 0.02 α-aminoisobutyric acid (AIB, a competitive inhibitor of ACO) exhibited a lower ethylene production comparing to that by 0.02mM MeJA alone. The increased activities of defense enzymes and subsequent control of disease incidence caused by Botrytis cinerea with 0.2mM MeJA treatment was impaired by AIB as well. A close relationship (P<0.05) was found between the activity alterations of ACO and that of chitinase (CHI) and β-1,3-glucanase (GLU). In addition, this study further detected the changes of gene expressions and enzyme kinetics of ACO to different concentrations of MeJA. LeACO1 was found the principal member from the ACO gene family to respond to MeJA. Accumulation of LeACO1/3/4 transcripts followed the concentration pattern of MeJA treatments, where the largest elevations were reached by 0.2mM. For kinetic analysis, K(m) values of ACO stepped up during the experiment and reached the maximums at 0.2mM MeJA with ascending concentrations of treatments. V(max) exhibited a gradual increase from 3h to 24h, and the largest induction appeared with 1.0mM MeJA. The results suggested that ACO is involved in MeJA-induced resistance in tomato, and the concentration influence of MeJA on ACO was attributable to the variation of gene transcripts and enzymatic properties.

  17. New Insights into 1-Aminocyclopropane-1-Carboxylate (ACC) Deaminase Phylogeny, Evolution and Ecological Significance

    PubMed Central

    Nascimento, Francisco X.; Rossi, Márcio J.; Soares, Cláudio R. F. S.; McConkey, Brendan J.; Glick, Bernard R.

    2014-01-01

    The main objective of this work is the study of the phylogeny, evolution and ecological importance of the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase, the activity of which represents one of the most important and studied mechanisms used by plant growth–promoting microorganisms. The ACC deaminase gene and its regulatory elements presence in completely sequenced organisms was verified by multiple searches in diverse databases, and based on the data obtained a comprehensive analysis was conducted. Strain habitat, origin and ACC deaminase activity were taken into account when analyzing the results. In order to unveil ACC deaminase origin, evolution and relationships with other closely related pyridoxal phosphate (PLP) dependent enzymes a phylogenetic analysis was also performed. The data obtained show that ACC deaminase is mostly prevalent in some Bacteria, Fungi and members of Stramenopiles. Contrary to previous reports, we show that ACC deaminase genes are predominantly vertically inherited in various bacterial and fungal classes. Still, results suggest a considerable degree of horizontal gene transfer events, including interkingdom transfer events. A model for ACC deaminase origin and evolution is also proposed. This study also confirms the previous reports suggesting that the Lrp-like regulatory protein AcdR is a common mechanism regulating ACC deaminase expression in Proteobacteria, however, we also show that other regulatory mechanisms may be present in some Proteobacteria and other bacterial phyla. In this study we provide a more complete view of the role for ACC deaminase than was previously available. The results show that ACC deaminase may not only be related to plant growth promotion abilities, but may also play multiple roles in microorganism's developmental processes. Hence, exploring the origin and functioning of this enzyme may be the key in a variety of important agricultural and biotechnological applications. PMID:24905353

  18. Variovorax guangxiensis sp. nov., an aerobic, 1-aminocyclopropane-1-carboxylate deaminase producing bacterium isolated from banana rhizosphere.

    PubMed

    Gao, Jun-lian; Yuan, Mei; Wang, Xu-ming; Qiu, Tian-lei; Li, Ji-wei; Liu, Hong-can; Li, Xiu-ai; Chen, Jian; Sun, Jian-guang

    2015-01-01

    A 1-aminocyclopropane-1-carboxylate deaminase producing bacterium, designated GXGD002(T), was isolated from the rhizosphere of banana plants cultivated in Guangxi province, China. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain GXGD002(T) is a member of the genus Variovorax. High levels of 16S rRNA gene sequence similarity are found between strain GXGD002(T) and Variovorax paradoxus DSM 30034(T) (99.4 %), Variovorax ginsengisoli KCTC 12583(T) (99.1 %), Variovorax boronicumulans KCTC 22010(T) (99.0 %), Variovorax soli DSM18216(T) (98.7 %), Variovorax defluvii DSM 27259(T) (98.1 %) and Variovorax dokdonensis KCTC 12544(T) (97.4 %) respectively. However, the DNA-DNA hybridization values between strain GXGD002(T) and its closely related species V. paradoxus DSM 30034(T), V. ginsengisoli KCTC 12583(T) and V. boronicumulans KCTC 22010(T) were found to be 40.7, 30.9 and 23.7 %, respectively. The DNA G + C content of strain GXGD002(T) was found to be 67.8 mol%. The major fatty acids of strain GXGD002(T) are C16:0 (20.3 %), C10:0 3OH (18.4 %), C17:0 cyclo (18.9 %), C18:1w7c (12.3 %) and summed feature 3 (13.9 %). The predominant respiratory quinone was identified as ubiquinone-8 (Q-8) and the major polar lipids as phosphatidylethanolamine and phosphatidylglycerol. The results of polyphasic taxonomic study including physiological and biochemical tests, whole-cell SDS-PAGE profiles and chemotaxonomic analysis allowed a clear differentiation of strain GXGD002(T) from the other species in the genus Variovorax. Based on these results, a new species, Variovorax guangxiensis, is proposed. The type strain is GXGD002(T) (=DSM 27352(T) = ACCC 05911(T)).

  19. Glutathione Regulates 1-Aminocyclopropane-1-Carboxylate Synthase Transcription via WRKY33 and 1-Aminocyclopropane-1-Carboxylate Oxidase by Modulating Messenger RNA Stability to Induce Ethylene Synthesis during Stress1[OPEN

    PubMed Central

    Kumar, Deepak; Hazra, Saptarshi; Chattopadhyay, Sharmila

    2015-01-01

    Glutathione (GSH) plays a fundamental role in plant defense-signaling network. Recently, we have established the involvement of GSH with ethylene (ET) to combat environmental stress. However, the mechanism of GSH-ET interplay still remains unexplored. Here, we demonstrate that GSH induces ET biosynthesis by modulating the transcriptional and posttranscriptional regulations of its key enzymes, 1-aminocyclopropane-1-carboxylate synthase (ACS) and 1-aminocyclopropane-1-carboxylate oxidase (ACO). Transgenic Arabidopsis (Arabidopsis thaliana) plants with enhanced GSH content (AtECS) exhibited remarkable up-regulation of ACS2, ACS6, and ACO1 at transcript as well as protein levels, while they were down-regulated in the GSH-depleted phytoalexin deficient2-1 (pad2-1) mutant. We further observed that GSH induced ACS2 and ACS6 transcription in a WRKY33-dependent manner, while ACO1 transcription remained unaffected. On the other hand, the messenger RNA stability for ACO1 was found to be increased by GSH, which explains our above observations. In addition, we also identified the ACO1 protein to be a subject for S-glutathionylation, which is consistent with our in silico data. However, S-glutathionylation of ACS2 and ACS6 proteins was not detected. Further, the AtECS plants exhibited resistance to necrotrophic infection and salt stress, while the pad2-1 mutant was sensitive. Exogenously applied GSH could improve stress tolerance in wild-type plants but not in the ET-signaling mutant ethylene insensitive2-1, indicating that GSH-mediated resistance to these stresses occurs via an ET-mediated pathway. Together, our investigation reveals a dual-level regulation of ET biosynthesis by GSH during stress. PMID:26463088

  20. Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase yield of plants grown in drying soil via both local and systemic hormone signalling.

    PubMed

    Belimov, Andrey A; Dodd, Ian C; Hontzeas, Nikos; Theobald, Julian C; Safronova, Vera I; Davies, William J

    2009-01-01

    Decreased soil water availability can stimulate production of the plant hormone ethylene and inhibit plant growth. Strategies aimed at decreasing stress ethylene evolution might attenuate its negative effects. An environmentally benign (nonchemical) method of modifying crop ethylene relations - soil inoculation with a natural root-associated bacterium Variovorax paradoxus 5C-2 (containing the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase that degrades the ethylene precursor ACC), was assessed with pea (Pisum sativum) plants grown in drying soil. Inoculation with V. paradoxus 5C-2, but not with a transposome mutant with massively decreased ACC deaminase activity, improved growth, yield and water-use efficiency of droughted peas. Systemic effects of V. paradoxus 5C-2 included an amplified soil drying-induced increase of xylem abscisic acid (ABA) concentration, but an attenuated soil drying-induced increase of xylem ACC concentration. A local bacterial effect was increased nodulation by symbiotic nitrogen-fixing bacteria, which prevented a drought-induced decrease in nodulation and seed nitrogen content. Successfully deploying a single bacterial gene in the rhizosphere increased yield and nutritive value of plants grown in drying soil, via both local and systemic hormone signalling. Such bacteria may provide an easily realized, economic means of sustaining crop yields and using irrigation water more efficiently in dryland agriculture.

  1. 1-Aminocyclopropane-1-carboxylate (ACC) deaminases from Methylobacterium radiotolerans and Methylobacterium nodulans with higher specificity for ACC.

    PubMed

    Fedorov, Dmitry N; Ekimova, Galina A; Doronina, Nina V; Trotsenko, Yuri A

    2013-06-01

    The 1-aminocyclopropane-1-carboxylate (ACC) deaminases (EC 3.4.99.7), the key enzymes of degradation of the precursor of the phytohormone ethylene, have not been well studied despite their great importance for plant-bacterial interactions. Using blast, the open reading frames encoding ACC deaminases were found in the genomes of epiphytic methylotroph Methylobacterium radiotolerans JCM2831 and nodule-forming endosymbiont Methylobacterium nodulans ORS2060. These genes were named acdS and cloned; recombinant proteins were expressed and purified from Escherichia coli. The enzyme from M. nodulans displayed the highest substrate specificity among all of the characterized ACC deaminases (Km 0.80 ± 0.04 mM), whereas the enzyme from M. radiotolerans had Km 1.8 ± 0.3 mM. The kcat values were 111.8 ± 0.2 and 65.8 ± 2.8 min(-1) for the enzymes of M. nodulans and M. radiotolerans, respectively. Both enzymes are homotetramers with a molecular mass of 144 kDa, as was demonstrated by size exclusion chromatography and native PAGE. The purified enzymes displayed the maximum activity at 45-50 °C and pH 8.0. Thus, the priority data have been obtained, extending the knowledge of biochemical properties of bacterial ACC deaminases.

  2. Dynamic 1-Aminocyclopropane-1-Carboxylate-Synthase and -Oxidase Transcript Accumulation Patterns during Pollen Tube Growth in Tobacco Styles1

    PubMed Central

    Weterings, Koen; Pezzotti, Mario; Cornelissen, Marc; Mariani, Celestina

    2002-01-01

    In flowering plants, pollination of the stigma sets off a cascade of responses in the distal flower organs. Ethylene and its biosynthetic precursor 1-aminocyclopropane-1-carboxylate (ACC) play an important role in regulating these responses. Because exogenous application of ethylene or ACC does not invoke the full postpollination syndrome, the pollination signal probably consists of a more complex set of stimuli. We set out to study how and when the pollination signal moves through the style of tobacco (Nicotiana tabacum) by analyzing the expression patterns of pistil-expressed ACC-synthase and -oxidase genes. Results from this analysis showed that pollination induces high ACC-oxidase transcript levels in all cells of the transmitting tissue. ACC-synthase mRNA accumulated only in a subset of transmitting tract cells and to lower levels as compared with ACC-oxidase. More significantly, we found that although ACC-oxidase transcripts accumulate to uniform high levels, the ACC-synthase transcripts accumulate in a wave-like pattern in which the peak coincides with the front of the ingrowing pollen tube tips. This wave of ACC-synthase expression can also be induced by incongruous pollination and (partially) by wounding. This indicates that wounding-like features of pollen tube invasion might be part of the stimuli evoking the postpollination response and that these stimuli are interpreted differently by the regulatory mechanisms of the ACC-synthase and -oxidase genes. PMID:12427986

  3. Differentiation of 1-aminocyclopropane-1-carboxylate (ACC) deaminase from its homologs is the key for identifying bacteria containing ACC deaminase.

    PubMed

    Li, Zhengyi; Chang, Siping; Ye, Shuting; Chen, Mingyue; Lin, Li; Li, Yuanyuan; Li, Shuying; An, Qianli

    2015-10-01

    1-Aminocyclopropane-1-carboxylate (ACC) deaminase-mediated reduction of ethylene generation in plants under abiotic stresses is a key mechanism by which bacteria can promote plant growth. Misidentification of ACC deaminase and the ACC deaminase structure gene (acdS) can lead to overestimation of the number of bacteria containing ACC deaminase and their function in ecosystems. Previous non-specific amplification of acdS homologs has led to an overestimation of the horizontal transfer of acdS genes. Here, we designed consensus-degenerate hybrid oligonucleotide primers (acdSf3, acdSr3 and acdSr4) based on differentiating the key residues in ACC deaminases from those of homologs for specific amplification of partial acdS genes. PCR amplification, sequencing and phylogenetic analysis identified acdS genes from a wide range of proteobacteria and actinobacteria. PCR amplification and a genomic search did not find the acdS gene in bacteria belonging to Pseudomonas stutzeri or in the genera Enterobacter, Klebsiella or Bacillus. We showed that differentiating the acdS gene and ACC deaminase from their homologs was crucial for the molecular identification of bacteria containing ACC deaminase and for understanding the evolution of the acdS gene. We provide an effective method for screening and identifying bacteria containing ACC deaminase.

  4. Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase.

    PubMed

    Belimov, A A; Safronova, V I; Sergeyeva, T A; Egorova, T N; Matveyeva, V A; Tsyganov, V E; Borisov, A Y; Tikhonovich, I A; Kluge, C; Preisfeld, A; Dietz, K J; Stepanok, V V

    2001-07-01

    Fifteen bacterial strains containing 1-aminocyclopropane-1-carboxylate (ACC) deaminase were isolated from the rhizoplane of pea (Pisum sativum L.) and Indian mustard (Brassica juncea L.) grown in different soils and a long-standing sewage sludge contaminated with heavy metals. The isolated strains were characterized and assigned to various genera and species, such as Pseudomonas brassicacearum, Pseudomonas marginalis, Pseudomonas oryzihabitans, Pseudomonas putida, Pseudomonas sp., Alcaligenes xylosoxidans, Alcaligenes sp., Variovorax paradoxus, Bacillus pumilus, and Rhodococcus sp. by determination of 16S rRNA gene sequences. The root elongation of Indian mustard and rape (Brassica napus var. oleifera L.) germinating seedlings was stimulated by inoculation with 8 and 13 isolated strains, respectively. The bacteria were tolerant to cadmium toxicity and stimulated root elongation of rape seedlings in the presence of 300 microM CdCl2 in the nutrient solution. The effect of ACC-utilising bacteria on root elongation correlated with the impact of aminoethoxyvinylglycine and silver ions, chemical inhibitors of ethylene biosynthesis. A significant improvement in the growth of rape caused by inoculation with certain selected strains was also observed in pot experiments, when the plants were cultivated in cadmium-supplemented soil. The biomass of pea cv. Sparkle and its ethylene sensitive mutant E2 (sym5), in particular, was increased through inoculation with certain strains of ACC-utilising bacteria in pot experiments in quartz sand culture. The beneficial effect of the bacteria on plant growth varied significantly depending on individual bacterial strains, plant genotype, and growth conditions. The results suggest that plant growth promoting rhizobacteria containing ACC deaminase are present in various soils and offer promise as a bacterial inoculum for improvement of plant growth, particularly under unfavourable environmental conditions.

  5. 1-Aminocyclopropane-1-Carboxylate Oxidase Induction in Tomato Flower Pedicel Phloem and Abscission Related Processes Are Differentially Sensitive to Ethylene

    PubMed Central

    Chersicola, Marko; Kladnik, Aleš; Tušek Žnidarič, Magda; Mrak, Tanja; Gruden, Kristina; Dermastia, Marina

    2017-01-01

    Ethylene has impact on several physiological plant processes, including abscission, during which plants shed both their vegetative and reproductive organs. Cell separation and programmed cell death are involved in abscission, and these have also been correlated with ethylene action. However, the detailed spatiotemporal pattern of the molecular events during abscission remains unknown. We examined the expression of two tomato ACO genes, LeACO1, and LeACO4 that encode the last enzyme in ethylene biosynthesis, 1-aminocyclopropane-1-carboxylate oxidase (ACO), together with the expression of other abscission-associated genes involved in cell separation and programmed cell death, during a period of 0–12 h after abscission induction in the tomato flower pedicel abscission zone and nearby tissues. In addition, we determined their localization in specific cell layers of the flower pedicel abscission zone and nearby tissues obtained by laser microdissection before and 8 h after abscission induction. The expression of both ACO genes was localized to the vascular tissues in the pedicel. While LeACO4 was more uniformly expressed in all examined cell layers, the main expression site of LeACO1 was in cell layers just outside the abscission zone in its proximal and distal part. We showed that after abscission induction, ACO1 protein was synthesized in phloem companion cells, in which it was localized mainly in the cytoplasm. Samples were additionally treated with 1-methylcyclopropene (1-MCP), a competitive inhibitor of ethylene actions, and analyzed 8 h after abscission induction. Cell-layer-specific changes in gene expression were observed together with the specific localization and ethylene sensitivity of the hallmarks of cell separation and programmed cell death. While treatment with 1-MCP prevented separation of cells through inhibition of the expression of polygalacturonases, which are the key enzymes involved in degradation of the middle lamella, this had less impact on

  6. Isolation of an 1-aminocyclopropane-1-carboxylate oxidase gene from mulberry (Morus alba L.) and analysis of the function of this gene in plant development and stresses response.

    PubMed

    Pan, Gang; Lou, Chengfu

    2008-07-31

    Mulberry (Morus alba) is an important crop tree involved in sericulture and pharmaceuticals. To further understand the development and the environmental adaptability mechanism of mulberry, a cDNA of the gene MaACO1 encoding 1-aminocyclopropane-1-carboxylate oxidase was isolated from mulberry. This was used to investigate stress-responsive expression in mulberry. Developmental expression of ACC oxidase in mulberry leaves and spatial expression in mulberry flowers were also investigated. Damage and low-temperature treatment promoted the expression of MaACO1 in mulberry. In leaves, expression of the MaACO1 gene increased in cotyledons and the lowest leaves with leaf development, but showed reduced levels in emerging leaves. In flowers, the pollinated stigma showed the highest expression level, followed by the unpollinated stigma, ovary, and immature flowers. These results suggest that high MaACO1 expression may be predominantly associated with tissue aging or senescence in mulberry.

  7. Effect of the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid on different growth stages of Haematococcus pluvialis.

    PubMed

    Vo, Thi-Thao; Lee, Changsu; Han, Sang-Il; Kim, Jee Young; Kim, Sok; Choi, Yoon-E

    2016-11-01

    In this study, we explored the effects of ACC on other stages of H. pluvialis. Interestingly, even though ACC displayed a dose-dependent effect on astaxanthin production, it is evident that astaxanthin production could be facilitated whenever the cells were treated at the early red stage. The transcriptional levels of BKT, CHY, SOD, and CAT genes supported enhanced astaxanthin biosynthesis upon ACC treatment at the early red stage. The combinatorial synergistic effect of ACC and light intensity was also confirmed. Finally, two-step application of ACC at the vegetative phase to increase biomass production and at the early-red stage to promote astaxanthin biosynthesis was proposed to maximize the efficiency of ACC treatment.

  8. Rapid identification of 1-aminocyclopropane-1-carboxylate (ACC) synthase genotypes in cultivars of Japanese pear (Pyrus pyrifolia Nakai) using CAPS markers.

    PubMed

    Itai, A; Kotaki, T; Tanabe, K; Tamura, F; Kawaguchi, D; Fukuda, M

    2003-05-01

    In Japanese pear (Pyrus pyrifolia Nakai), fruit storage potential is closely related to the amount of ethylene produced. We have developed a rapid and accurate method for analyzing genes involved in high ethylene production during fruit ripening in Japanese pear. This involves cleaved-amplified polymorphic sequences (CAPS) of two 1-aminocyclopropane-1-carboxylate (ACC) synthase genes (PPACS1 and PPACS2). Two CAPS markers (A for PPACS1 and B for PPACS2), associated with the amount of ethylene produced, were identified. Marker A was associated with high ethylene producers and marker B with moderate ethylene producers. The absence of these two markers enabled the identification of low ethylene producers. Using these markers, we have identified ethylene genotypes for 40 Japanese pear cultivars and two Chinese pear (P. bretschneideri) cultivars that are commercially important and used in breeding programs. Furthermore, we performed linkage analysis of these two genes in the F(2) population, which revealed that the recombination frequency between the two markers was 20.8 +/- 3.6%. This information is critical to the selection of parents and in breeding strategies to improve storage ability of Japanese pears.

  9. The cloned 1-aminocyclopropane-1-carboxylate (ACC) deaminase gene from Sinorhizobium sp. strain BL3 in Rhizobium sp. strain TAL1145 promotes nodulation and growth of Leucaena leucocephala.

    PubMed

    Tittabutr, Panlada; Awaya, Jonathan D; Li, Qing X; Borthakur, Dulal

    2008-06-01

    The objective of this study was to determine the role of 1-aminocyclopropane-1-carboxylate (ACC) deaminase of symbionts in nodulation and growth of Leucaena leucocephala. The acdS genes encoding ACC deaminase were cloned from Rhizobium sp. strain TAL1145 and Sinorhizobium sp. BL3 in multicopy plasmids, and transferred to TAL1145. The BL3-acdS gene greatly enhanced ACC deaminase activity in TAL1145 compared to the native acdS gene. The transconjugants of TAL1145 containing the native or BL3 acdS gene could grow in minimal media containing 1.5mM ACC, whereas BL3 could tolerate up to 3mM ACC. The TAL1145 acdS gene was inducible by mimosine and not by ACC, while the BL3 acdS gene was highly inducible by ACC and not by mimosine. The transconjugants of TAL1145 containing the native- and BL3-acdS genes formed nodules with greater number and sizes, and produced higher root mass on L. leucocephala than by TAL1145. This study shows that the introduction of multiple copies of the acdS gene increased ACC deaminase activities of TAL1145 and enhanced its symbiotic efficiency on L. leucocephala.

  10. 1-Aminocyclopropane-1-Carboxylate Deaminase from Pseudomonas stutzeri A1501 Facilitates the Growth of Rice in the Presence of Salt or Heavy Metals.

    PubMed

    Han, Yunlei; Wang, Rui; Yang, Zhirong; Zhan, Yuhua; Ma, Yao; Ping, Shuzhen; Zhang, Liwen; Lin, Min; Yan, Yongliang

    2015-07-01

    1-Aminocyclopropane-1-carboxylate (ACC) deaminase, which is encoded by some bacteria, can reduce the amount of ethylene, a root elongation inhibitor, and stimulate the growth of plants under various environmental stresses. The presence of ACC deaminase activity and the regulation of ACC in several rhizospheric bacteria have been reported. The nitrogen-fixing Pseudomonas stutzeri A1501 is capable of endophytic association with rice plants and promotes the growth of rice. However, the functional identification of ACC deaminase has not been performed. In this study, the proposed effect of ACC deaminase in P. stutzeri A1501 was investigated. Genome mining showed that P. stutzeri A1501 carries a single gene encoding ACC deaminase, designated acdS. The acdS mutant was devoid of ACC deaminase activity and was less resistant to NaCl and NiCl2 compared with the wild-type. Furthermore, inactivation of acdS greatly impaired its nitrogenase activity under salt stress conditions. It was also observed that mutation of the acdS gene led to loss of the ability to promote the growth of rice under salt or heavy metal stress. Taken together, this study illustrates the essential role of ACC deaminase, not only in enhancing the salt or heavy metal tolerance of bacteria but also in improving the growth of plants, and provides a theoretical basis for studying the interaction between plant growth-promoting rhizobacteria and plants.

  11. Involvement of ethylene and 1-aminocyclopropane-1-carboxylate synthase gene in regulation of programmed cell death during rose (Rosa x hybrida) flower development.

    PubMed

    Pan, Hai-Chun; Li, Ji-Hong; Wang, Xian-Ze

    2005-08-01

    Programmed cell death (PCD) is an integral part of plant development. Flower petal usually has the shortest lifetime among all plant organs. There must be a sensitive, tightly controlled PCD in the life cycle of the flower. To understand its mechanism, the ethylene production rate of petals and its correlation with degree of senescence, 1-aminocyclopropane-1-carboxylate (ACC) synthase gene expression, ACC synthase activity and ACC content were determined through the whole flower development period which was arbitrarily divided into five stages depending on appearance of the flower. The results showed that ethylene was not detectable at stages 1 and 2, appeared at stage 3 and increased at stage 5. Transcript of ACC synthase gene did not accumulate at stages 1 and 2, but did so at stages 3-5, and increased gradually at stage 5. ACC synthase activity and ACC content changed in similar way to ethylene production. Ethylene plays a critical role in initiation of rose flower senescence through regulating petal PCD.

  12. Possible Role of 1-Aminocyclopropane-1-Carboxylate (ACC) Deaminase Activity of Sinorhizobium sp. BL3 on Symbiosis with Mung Bean and Determinate Nodule Senescence

    PubMed Central

    Tittabutr, Panlada; Sripakdi, Sudarat; Boonkerd, Nantakorn; Tanthanuch, Waraporn; Minamisawa, Kiwamu; Teaumroong, Neung

    2015-01-01

    Sinorhizobium sp. BL3 forms symbiotic interactions with mung bean (Vigna radiata) and contains lrpL-acdS genes, which encode the 1-aminocyclopropane-1-carboxylate (ACC) deaminase enzyme that cleaves ACC, a precursor of plant ethylene synthesis. Since ethylene interferes with nodule formation in some legumes and plays a role in senescence in plant cells, BL3-enhancing ACC deaminase activity (BL3+) and defective mutant (BL3−) strains were constructed in order to investigate the effects of this enzyme on symbiosis and nodule senescence. Nodulation competitiveness was weaker in BL3− than in the wild-type, but was stronger in BL3+. The inoculation of BL3− into mung bean resulted in less plant growth, a lower nodule dry weight, and smaller nodule number than those in the wild-type, whereas the inoculation of BL3+ had no marked effects. However, similar nitrogenase activity was observed with all treatments; it was strongly detected 3 weeks after the inoculation and gradually declined with time, indicating senescence. The rate of plant nodulation by BL3+ increased in a time-dependent manner. Nodules occupied by BL3− formed smaller symbiosomes, and bacteroid degradation was more prominent than that in the wild-type 7 weeks after the inoculation. Changes in biochemical molecules during nodulation were tracked by Fourier Transform Infrared (FT-IR) microspectroscopy, and the results obtained confirmed that aging processes differed in nodules occupied by BL3 and BL3−. This is the first study to show the possible role of ACC deaminase activity in senescence in determinate nodules. Our results suggest that an increase in ACC deaminase activity in this strain does not extend the lifespan of nodules, whereas the lack of this activity may accelerate nodule senescence. PMID:26657304

  13. Novel Rhizosphere Soil Alleles for the Enzyme 1-Aminocyclopropane-1-Carboxylate Deaminase Queried for Function with an In Vivo Competition Assay.

    PubMed

    Jin, Zhao; Di Rienzi, Sara C; Janzon, Anders; Werner, Jeff J; Angenent, Largus T; Dangl, Jeffrey L; Fowler, Douglas M; Ley, Ruth E

    2015-12-04

    Metagenomes derived from environmental microbiota encode a vast diversity of protein homologs. How this diversity impacts protein function can be explored through selection assays aimed to optimize function. While artificially generated gene sequence pools are typically used in selection assays, their usage may be limited because of technical or ethical reasons. Here, we investigate an alternative strategy, the use of soil microbial DNA as a starting point. We demonstrate this approach by optimizing the function of a widely occurring soil bacterial enzyme, 1-aminocyclopropane-1-carboxylate (ACC) deaminase. We identified a specific ACC deaminase domain region (ACCD-DR) that, when PCR amplified from the soil, produced a variant pool that we could swap into functional plasmids carrying ACC deaminase-encoding genes. Functional clones of ACC deaminase were selected for in a competition assay based on their capacity to provide nitrogen to Escherichia coli in vitro. The most successful ACCD-DR variants were identified after multiple rounds of selection by sequence analysis. We observed that previously identified essential active-site residues were fixed in the original unselected library and that additional residues went to fixation after selection. We identified a divergent essential residue whose presence hints at the possible use of alternative substrates and a cluster of neutral residues that did not influence ACCD performance. Using an artificial ACCD-DR variant library generated by DNA oligomer synthesis, we validated the same fixation patterns. Our study demonstrates that soil metagenomes are useful starting pools of protein-coding-gene diversity that can be utilized for protein optimization and functional characterization when synthetic libraries are not appropriate.

  14. Novel Rhizosphere Soil Alleles for the Enzyme 1-Aminocyclopropane-1-Carboxylate Deaminase Queried for Function with an In Vivo Competition Assay

    PubMed Central

    Jin, Zhao; Di Rienzi, Sara C.; Janzon, Anders; Werner, Jeff J.; Angenent, Largus T.; Dangl, Jeffrey L.; Fowler, Douglas M.

    2015-01-01

    Metagenomes derived from environmental microbiota encode a vast diversity of protein homologs. How this diversity impacts protein function can be explored through selection assays aimed to optimize function. While artificially generated gene sequence pools are typically used in selection assays, their usage may be limited because of technical or ethical reasons. Here, we investigate an alternative strategy, the use of soil microbial DNA as a starting point. We demonstrate this approach by optimizing the function of a widely occurring soil bacterial enzyme, 1-aminocyclopropane-1-carboxylate (ACC) deaminase. We identified a specific ACC deaminase domain region (ACCD-DR) that, when PCR amplified from the soil, produced a variant pool that we could swap into functional plasmids carrying ACC deaminase-encoding genes. Functional clones of ACC deaminase were selected for in a competition assay based on their capacity to provide nitrogen to Escherichia coli in vitro. The most successful ACCD-DR variants were identified after multiple rounds of selection by sequence analysis. We observed that previously identified essential active-site residues were fixed in the original unselected library and that additional residues went to fixation after selection. We identified a divergent essential residue whose presence hints at the possible use of alternative substrates and a cluster of neutral residues that did not influence ACCD performance. Using an artificial ACCD-DR variant library generated by DNA oligomer synthesis, we validated the same fixation patterns. Our study demonstrates that soil metagenomes are useful starting pools of protein-coding-gene diversity that can be utilized for protein optimization and functional characterization when synthetic libraries are not appropriate. PMID:26637602

  15. Inducing salt tolerance in mung bean through coinoculation with rhizobia and plant-growth-promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate deaminase.

    PubMed

    Ahmad, Maqshoof; Zahir, Zahir A; Asghar, H Naeem; Asghar, M

    2011-07-01

    Twenty-five strains of plant-growth-promoting rhizobacteria (PGPR) containing 1-aminocyclopropane-1-carboxylate (ACC) deaminase and 10 strains of rhizobia were isolated from rhizosphere soil samples and nodules of mung bean. They were screened in separate trials under salt-stressed axenic conditions. The three most effective strains of PGPR (Mk1, Pseudomonas syringae ; Mk20, Pseudomonas fluorescens ; and Mk25, Pseudomonas fluorescens biotype G) and Rhizobium phaseoli strains M1, M6, and M9 were evaluated in coinoculation for their growth-promoting activity at three salinity levels (original, 4 dS·m(-1), and 6 dS·m(-1)) under axenic conditions. The results showed that salinity stress significantly reduced plant growth but inoculation with PGPR containing ACC deaminase and rhizobia enhanced plant growth, thus reducing the inhibitory effect of salinity. However, their combined application was more effective under saline conditions, and the combination Mk20 × M6 was the most efficient for improving seedling growth and nodulation. The effect of high ethylene concentrations on plant growth and the performance of these strains for reducing the negative impact of saline stress was also evaluated by conducting a classical triple-response bioassay. The intensity of the classical triple response decreased owing to inoculation with these strains, with the root and shoot lengths of inoculated mung bean seedlings increasing and stem diameter decreasing, which is a typical response to the dilution in a classical triple response bioassay. Thus, coinoculation with PGPR containing ACC deaminase and Rhizobium spp. could be a useful approach for inducing salt tolerance and thus improving growth and nodulation in mung bean under salt-affected conditions.

  16. Expression of an exogenous 1-aminocyclopropane-1-carboxylate deaminase gene in psychrotolerant bacteria modulates ethylene metabolism and cold induced genes in tomato under chilling stress.

    PubMed

    Subramanian, Parthiban; Krishnamoorthy, Ramasamy; Chanratana, Mak; Kim, Kiyoon; Sa, Tongmin

    2015-04-01

    The role of stress induced ethylene under low temperature stress has been controversial and hitherto remains unclear. In the present study, 1-aminocyclopropane-1-carboxylate deaminase (ACCD) gene, acdS expressing mutant strains were generated from ACCD negative psychrotolerant bacterial strains Flavobacterium sp. OR306 and Pseudomonas frederiksbergensis OS211, isolated from agricultural soil during late winter. After transformation with plasmid pRKACC which contained the acdS gene, both the strains were able to exhibit ACCD activity in vitro. The effect of this ACCD under chilling stress with regards to ethylene was studied in tomato plants inoculated with both acdS expressing and wild type bacteria. On exposing the plants to one week of chilling treatment at 12/10 °C, it was found that stress ethylene, ACC accumulation and ACO activity which are markers of ethylene stress, were significantly reduced in plants inoculated with the acdS gene transformed mutants. In case of plants inoculated with strain OS211-acdS, ethylene emission, ACC accumulation and ACO activity was significantly reduced by 52%, 75.9% and 23.2% respectively compared to uninoculated control plants. Moreover, expression of cold induced LeCBF1 and LeCBF3 genes showed that these genes were significantly induced by the acdS transformed mutants in addition to reduced expression of ethylene-responsive transcription factor 13 (ETF-13) and ACO genes. Induced expression of LeCBF1 and LeCBF3 in plants inoculated with acdS expressing mutants compared to wild type strains show that physiologically evolved stress ethylene and its transcription factors play a role in regulation of cold induced genes as reported earlier in the literature.

  17. Cloning and expression of 1-aminocyclopropane-1-carboxylate oxidase cDNA induced by thidiazuron during somatic embryogenesis of alfalfa (Medicago sativa).

    PubMed

    Feng, Bi-Hong; Wu, Bei; Zhang, Chun-Rong; Huang, Xia; Chen, Yun-Feng; Huang, Xue-Lin

    2012-01-15

    Embryogenic callus (EC) induced from petioles of alfalfa (Medicago sativa L. cv. Jinnan) on B5h medium turned green, compact and non-embryogenic when the kinetin (KN) in the medium was replaced partially or completely by thidiazuron (TDZ). The application of CoCl₂, which is an inhibitor of 1-aminocyclopropane-1-carboxylate oxidase (ACO), counteracted the effect of TDZ. Ethylene has been shown to be involved in the modulation of TDZ-induced morphogenesis responses. However, very little is known about the genes involved in ethylene formation during somatic embryogenesis (SE). To investigate whether ethylene mediated by ACO is involved in the effect of TDZ on inhibition of embryogenic competence of the alfalfa callus. In this study we cloned full-length ACO cDNA from the alfalfa callus, named MsACO, and observed changes in this gene expression during callus formation and induction of SE under treatment with TDZ or TDZ plus CoCl₂. RNA blot analysis showed that during the EC subcultural period, the expression level of MsACO in EC was significantly increased on the 2nd day, rose to the highest level on the 8th day and remained at this high level until the 21st day. However, the ACO expression in the TDZ (0.93 μM)-treated callus was higher than in the EC especially on the 8th day. Moreover the ACO expression level increased with increasing TDZ concentration during the subcultural/maintenance period of the callus. It is worth noting that comparing the treatment with TDZ alone, the treatment with 0.93 μM TDZ plus 50 μM CoCl₂ reduced both of the ACO gene expressions and ACO activity in the treated callus. These results indicate that the effect of TDZ could be counteracted by CoCl₂ either on the ACO gene expression level or ACO activity. Thus, a TDZ inhibitory effect on embryogenic competence of alfalfa callus could be mediated by ACO gene expression.

  18. Analysis of genomic DNA of DcACS1, a 1-aminocyclopropane-1-carboxylate synthase gene, expressed in senescing petals of carnation (Dianthus caryophyllus) and its orthologous genes in D. superbus var. longicalycinus.

    PubMed

    Harada, Taro; Murakoshi, Yuino; Torii, Yuka; Tanase, Koji; Onozaki, Takashi; Morita, Shigeto; Masumura, Takehiro; Satoh, Shigeru

    2011-04-01

    Carnation (Dianthus caryophyllus) flowers exhibit climacteric ethylene production followed by petal wilting, a senescence symptom. DcACS1, which encodes 1-aminocyclopropane-1-carboxylate synthase (ACS), is a gene involved in this phenomenon. We determined the genomic DNA structure of DcACS1 by genomic PCR. In the genome of 'Light Pink Barbara', we found two distinct nucleotide sequences: one corresponding to the gene previously shown as DcACS1, designated here as DcACS1a, and the other novel one designated as DcACS1b. It was revealed that both DcACS1a and DcACS1b have five exons and four introns. These two genes had almost identical nucleotide sequences in exons, but not in some introns and 3'-UTR. Analysis of transcript accumulation revealed that DcACS1b is expressed in senescing petals as well as DcACS1a. Genomic PCR analysis of 32 carnation cultivars showed that most cultivars have only DcACS1a and some have both DcACS1a and DcACS1b. Moreover, we found two DcACS1 orthologous genes with different nucleotide sequences from D. superbus var. longicalycinus, and designated them as DsuACS1a and DsuACS1b. Petals of D. superbus var. longicalycinus produced ethylene in response to exogenous ethylene, accompanying accumulation of DsuACS1 transcripts. These data suggest that climacteric ethylene production in flowers was genetically established before the cultivation of carnation.

  19. Inoculation of Soil with Plant Growth Promoting Bacteria Producing 1-Aminocyclopropane-1-Carboxylate Deaminase or Expression of the Corresponding acdS Gene in Transgenic Plants Increases Salinity Tolerance in Camelina sativa

    PubMed Central

    Heydarian, Zohreh; Yu, Min; Gruber, Margaret; Glick, Bernard R.; Zhou, Rong; Hegedus, Dwayne D.

    2016-01-01

    Camelina sativa (camelina) is an oilseed crop touted for use on marginal lands; however, it is no more tolerant of soil salinity than traditional crops, such as canola. Plant growth-promoting bacteria (PGPB) that produce 1-aminocyclopropane-1-carboxylate deaminase (ACC deaminase) facilitate plant growth in the presence of abiotic stresses by reducing stress ethylene. Rhizospheric and endophytic PGPB and the corresponding acdS- mutants of the latter were examined for their ability to enhance tolerance to salt in camelina. Stimulation of growth and tolerance to salt was correlated with ACC deaminase production. Inoculation of soil with wild-type PGPB led to increased shoot length in the absence of salt, and increased seed production by approximately 30–50% under moderately saline conditions. The effect of ACC deaminase was further examined in transgenic camelina expressing a bacterial gene encoding ACC deaminase (acdS) under the regulation of the CaMV 35S promoter or the root-specific rolD promoter. Lines expressing acdS, in particular those using the rolD promoter, showed less decline in root length and weight, increased seed production, better seed quality and higher levels of seed oil production under salt stress. This study clearly demonstrates the potential benefit of using either PGPB that produce ACC deaminase or transgenic plants expressing the acdS gene under the control of a root-specific promoter to facilitate plant growth, seed production and seed quality on land that is not normally suitable for the majority of crops due to high salt content. PMID:28018305

  20. Inoculation of Soil with Plant Growth Promoting Bacteria Producing 1-Aminocyclopropane-1-Carboxylate Deaminase or Expression of the Corresponding acdS Gene in Transgenic Plants Increases Salinity Tolerance in Camelina sativa.

    PubMed

    Heydarian, Zohreh; Yu, Min; Gruber, Margaret; Glick, Bernard R; Zhou, Rong; Hegedus, Dwayne D

    2016-01-01

    Camelina sativa (camelina) is an oilseed crop touted for use on marginal lands; however, it is no more tolerant of soil salinity than traditional crops, such as canola. Plant growth-promoting bacteria (PGPB) that produce 1-aminocyclopropane-1-carboxylate deaminase (ACC deaminase) facilitate plant growth in the presence of abiotic stresses by reducing stress ethylene. Rhizospheric and endophytic PGPB and the corresponding acdS- mutants of the latter were examined for their ability to enhance tolerance to salt in camelina. Stimulation of growth and tolerance to salt was correlated with ACC deaminase production. Inoculation of soil with wild-type PGPB led to increased shoot length in the absence of salt, and increased seed production by approximately 30-50% under moderately saline conditions. The effect of ACC deaminase was further examined in transgenic camelina expressing a bacterial gene encoding ACC deaminase (acdS) under the regulation of the CaMV 35S promoter or the root-specific rolD promoter. Lines expressing acdS, in particular those using the rolD promoter, showed less decline in root length and weight, increased seed production, better seed quality and higher levels of seed oil production under salt stress. This study clearly demonstrates the potential benefit of using either PGPB that produce ACC deaminase or transgenic plants expressing the acdS gene under the control of a root-specific promoter to facilitate plant growth, seed production and seed quality on land that is not normally suitable for the majority of crops due to high salt content.

  1. Improved method for effective screening of ACC (1-aminocyclopropane-1-carboxylate) deaminase producing microorganisms.

    PubMed

    Patil, Chandrashekhar; Suryawanshi, Rahul; Koli, Sunil; Patil, Satish

    2016-12-01

    Aminocyclopropane-1-carboxylate deaminase (ACCD) producing microorganisms support plant growth under a variety of biotic and abiotic stress conditions such as drought, soil salinity, flooding, heavy metal pollution and phyto-pathogen attack. Available screening methods for ACCD give idea only about its primary microbial ACCD activity than the actual potential. In the present investigation, we have simply improved screening method by incorporating pH indicator dyes (phenol red and bromothymol blue) in ACC containing medium. This modification is based on the basic principle that ACCD action releases ammonia which can be detected by color change and zone around the bacterial colony. High color intensity and zone around the colony indicates most potent producer, colony showing only a color change indicates moderate potential and no change in colony color indicates least efficiency. Enzymatic bioassays as well as root elongation studies revealed that ACC-deaminase activity of Pseudomonas aeruginosa, Stenotrophomonas maltophilia and Bacillus subtilis clearly corresponds to their growth on dye incorporated ACC medium. This method could be used to complement the existing screening methods and to speed up the targeted isolation of agriculturally important microorganisms.

  2. Leaf Abscission Induced by Ethylene in Water-Stressed Intact Seedlings of Cleopatra Mandarin Requires Previous Abscisic Acid Accumulation in Roots.

    PubMed

    Gomez-Cadenas, A.; Tadeo, F. R.; Talon, M.; Primo-Millo, E.

    1996-09-01

    The involvement of abscisic acid (ABA) in the process of leaf abscission induced by 1-aminocyclopropane-1-carboxylic acid (ACC) transported from roots to shoots in Cleopatra mandarin (Citrus reshni Hort. ex Tan.) seedlings grown under water stress was studied using norflurazon (NF). Water stress induced both ABA (24-fold) and ACC (16-fold) accumulation in roots and arrested xylem flow. Leaf bulk ABA also increased (8-fold), although leaf abscission did not occur. Shortly after rehydration, root ABA and ACC returned to their prestress levels, whereas sharp and transitory increases of ACC (17-fold) and ethylene (10-fold) in leaves and high percentages of abscission (up to 47%) were observed. NF suppressed the ABA and ACC accumulation induced by water stress in roots and the sharp increases of ACC and ethylene observed after rewatering in leaves. NF also reduced leaf abscission (7-10%). These results indicate that water stress induces root ABA accumulation and that this is required for the process of leaf abscission to occur. It was also shown that exogenous ABA increases ACC levels in roots but not in leaves. Collectively, the data suggest that ABA, the primary sensitive signal to water stress, modulates the levels of ethylene, which is the hormonal activator of leaf abscission. This assumption implies that root ACC levels are correlated with root ABA amounts in a dependent way, which eventually links water status to an adequate, protective response such as leaf abscission.

  3. Ethylene regulates lateral root formation and auxin transport in Arabidopsis thaliana

    PubMed Central

    Negi, Sangeeta; Ivanchenko, Maria G; Muday, Gloria K

    2008-01-01

    Lateral root branching is a genetically defined and environmentally regulated process. Auxin is required for lateral root formation, and mutants that are altered in auxin synthesis, transport or signaling often have lateral root defects. Crosstalk between auxin and ethylene in root elongation has been demonstrated, but interactions between these hormones in the regulation of Arabidopsis lateral root formation are not well characterized. This study utilized Arabidopsis mutants altered in ethylene signaling and synthesis to explore the role of ethylene in lateral root formation. We find that enhanced ethylene synthesis or signaling, through the eto1-1 and ctr1-1 mutations, or through the application of 1-aminocyclopropane-1-carboxylic acid (ACC), negatively impacts lateral root formation, and is reversible by treatment with the ethylene antagonist, silver nitrate. In contrast, mutations that block ethylene responses, etr1-3 and ein2-5, enhance root formation and render it insensitive to the effect of ACC, even though these mutants have reduced root elongation at high ACC doses. ACC treatments or the eto1-1 mutation significantly enhance radiolabeled indole-3-acetic acid (IAA) transport in both the acropetal and the basipetal directions. ein2-5 and etr1-3 have less acropetal IAA transport, and transport is no longer regulated by ACC. DR5-GUS reporter expression is also altered by ACC treatment, which is consistent with transport differences. The aux1-7 mutant, which has a defect in an IAA influx protein, is insensitive to the ethylene inhibition of root formation. aux1-7 also has ACC-insensitive acropetal and basipetal IAA transport, as well as altered DR5-GUS expression, which is consistent with ethylene altering AUX1-mediated IAA uptake, and thereby blocking lateral root formation. PMID:18363780

  4. Differential Expression and Internal Feedback Regulation of 1-Aminocyclopropane-1-Carboxylate Synthase, 1-Aminocyclopropane-1-Carboxylate Oxidase, and Ethylene Receptor Genes in Tomato Fruit during Development and Ripening1

    PubMed Central

    Nakatsuka, Akira; Murachi, Shiho; Okunishi, Hironori; Shiomi, Shinjiro; Nakano, Ryohei; Kubo, Yasutaka; Inaba, Akitsugu

    1998-01-01

    We investigated the feedback regulation of ethylene biosynthesis in tomato (Lycopersicon esculentum) fruit with respect to the transition from system 1 to system 2 ethylene production. The abundance of LE-ACS2, LE-ACS4, and NR mRNAs increased in the ripening fruit concomitant with a burst in ethylene production. These increases in mRNAs with ripening were prevented to a large extent by treatment with 1-methylcyclopropene (MCP), an ethylene action inhibitor. Transcripts for the LE-ACS6 gene, which accumulated in preclimacteric fruit but not in untreated ripening fruit, did accumulate in ripening fruit treated with MCP. Treatment of young fruit with propylene prevented the accumulation of transcripts for this gene. LE-ACS1A, LE-ACS3, and TAE1 genes were expressed constitutively in the fruit throughout development and ripening irrespective of whether the fruit was treated with MCP or propylene. The transcripts for LE-ACO1 and LE-ACO4 genes already existed in preclimacteric fruit and increased greatly when ripening commenced. These increases in LE-ACO mRNA with ripening were also prevented by treatment with MCP. The results suggest that in tomato fruit the preclimacteric system 1 ethylene is possibly mediated via constitutively expressed LE-ACS1A and LE-ACS3 and negatively feedback-regulated LE-ACS6 genes with preexisting LE-ACO1 and LE-ACO4 mRNAs. At the onset of the climacteric stage, it shifts to system 2 ethylene, with a large accumulation of LE-ACS2, LE-ACS4, LE-ACO1, and LE-ACO4 mRNAs as a result of a positive feedback regulation. This transition from system 1 to system 2 ethylene production might be related to the accumulated level of NR mRNA. PMID:9847103

  5. Southern blight disease of tomato control by 1-aminocyclopropane-1-carboxylate (ACC) deaminase producing Paenibacillus lentimorbus B-30488.

    PubMed

    Dixit, Ritu; Agrawal, Lalit; Gupta, Swati; Kumar, Manoj; Yadav, Sumit; Chauhan, Puneet Singh; Nautiyal, Chandra Shekhar

    2016-01-01

    Tomato cultivation is highly susceptible for soil born diseases and among them southern blight disease caused by Scelerotium rolfsii is very common. For its management use of chemical fungicides is not very successful as their spores are able to survive for many years in the soil. As an alternative eco-friendly approach to control the disease antagonistic microbes are being characterized.Among them plant growth promoting rhizobacteria Paenibacillus lentimorbus B-30488 (B-30488) with antagonistic properties, multiple PGP attributes stress tolerance and ACC deaminase enzyme activity is characterized to decipher its mode of action against S. rolfsii under in vitro and in vivo conditions. In vitro results obtained from this study clearly demonstrate that B-30488 has ability to show antagonistic properties under different abiotic stresses against S. rolfsii. Similar results were also obtained from in vivo experiments where B-30488 inoculation has efficiently controlled the disease caused by S. rolfsii and improve the plant growth. Deleterious enhanced ethylene level in S. rolfsii infected plants was also ameliorated by inoculation of ACC deaminase producing B-30488. The ACC accumulation, ACO and ACS activities were also modulated in S. rolfsii infected plants. Results from defense enzymes and other biochemical attributes were also support the role of B-30488 inoculation in ameliorating the biotic stress caused by S. rolfsii in tomato plants. These results were further validated by pathogen related gene expression analysis by real time PCR. Overall results from the present study may be concluded that ACC deaminase producing B-30488 has ability to control the southern blight disease caused by S. rolfsii and commercial bioinoculant package may be developed.

  6. Southern blight disease of tomato control by 1-aminocyclopropane-1-carboxylate (ACC) deaminase producing Paenibacillus lentimorbus B-30488

    PubMed Central

    Dixit, Ritu; Agrawal, Lalit; Gupta, Swati; Kumar, Manoj; Yadav, Sumit; Chauhan, Puneet Singh; Nautiyal, Chandra Shekhar

    2016-01-01

    abstract Tomato cultivation is highly susceptible for soil born diseases and among them southern blight disease caused by Scelerotium rolfsii is very common. For its management use of chemical fungicides is not very successful as their spores are able to survive for many years in the soil. As an alternative eco-friendly approach to control the disease antagonistic microbes are being characterized.Among them plant growth promoting rhizobacteria Paenibacillus lentimorbus B-30488 (B-30488) with antagonistic properties, multiple PGP attributes stress tolerance and ACC deaminase enzyme activity is characterized to decipher its mode of action against S. rolfsii under in vitro and in vivo conditions. In vitro results obtained from this study clearly demonstrate that B-30488 has ability to show antagonistic properties under different abiotic stresses against S. rolfsii. Similar results were also obtained from in vivo experiments where B-30488 inoculation has efficiently controlled the disease caused by S. rolfsii and improve the plant growth. Deleterious enhanced ethylene level in S. rolfsii infected plants was also ameliorated by inoculation of ACC deaminase producing B-30488. The ACC accumulation, ACO and ACS activities were also modulated in S. rolfsii infected plants. Results from defense enzymes and other biochemical attributes were also support the role of B-30488 inoculation in ameliorating the biotic stress caused by S. rolfsii in tomato plants. These results were further validated by pathogen related gene expression analysis by real time PCR. Overall results from the present study may be concluded that ACC deaminase producing B-30488 has ability to control the southern blight disease caused by S. rolfsii and commercial bioinoculant package may be developed. PMID:26825539

  7. Bio-inspired amino acid oxidation by a non-heme iron catalyst.

    PubMed

    Góger, Szabina; Bogáth, Dóra; Baráth, Gábor; Simaan, A Jalila; Speier, Gábor; Kaizer, József

    2013-06-01

    This study reports the kinetics and mechanism of Fe(III)-catalyzed oxidative decarboxylation and deamination of a series of acyclic (α-aminoisobutyric acid, α-(methylamino)isobutyric acid, alanine, norvaline, and 2-aminobutyric acid) and cyclic (1-aminocyclopropane-1-carboxylic acid, 1-amino-1-cyclobutanecarboxylic acid, 1-aminocyclopentanecarboxylic acid, and 1-aminocyclohexanecarboxylicacid) amino acids using hydrogen peroxide, t-butyl hydroperoxide, iodosylbenzene, m-chloroperbenzoic acid, and peroxomonosulphate as oxidant in 75% DMF-25% water solvent mixture. Model complex [Fe(IV)O(SALEN)](•+) (SALENH2: N,N'-bis(salicylidene)ethylenediamine) was generated by the reaction of Fe(III)(SALEN)Cl and H2O2 in CH3CN at 278 K as reported earlier. This method provided us high-valent oxoiron species, stable enough to ensure the direct observation of the reaction with amino acids.

  8. Enhanced ethylene emissions from red and Norway spruce exposed to acidic mists

    SciTech Connect

    Chen, Yimin; Wellburn, A.R. )

    1989-09-01

    Acidic cloudwater is believed to cause needle injury and to decrease winter hardiness in conifers. During simulations of these adverse conditions, rates of ethylene emissions from and levels of 1-aminocyclopropane-1-carboxylic acid (ACC) in both red and Norway spruce needles increased as a result of treatment with acidic mists but amounts of 1-malonyl(amino)cyclopropane-1-carboxylic acid remained unchanged. However, release of significant quantities of ethylene by another mechanism independent of ACC was also detected from brown needles. Application of exogenous plant growth regulators such as auxin, kinetic, abscisic acid and gibberellic acid (each 0.1 millimolar) had no obvious effects on the rates of basal or stress ethylene production from Norway spruce needles. The kinetics of ethylene formation by acidic mist-stressed needles suggest that there is no active inhibitive mechanism in spruce to prevent stress ethylene being released once ACC has been formed.

  9. Burst of ethylene upon horizontal placement of tomato seedlings

    NASA Technical Reports Server (NTRS)

    Harrison, M.; Pickard, B. G.

    1984-01-01

    Seedlings of Lycopersicon esculentum Mill. cv Rutgers emit a pulse of ethylene during the first 2 to 4 minutes following horizontal placement. Because this burst appears too rapid and brief to be mediated by increase in net activity of 1-aminocyclopropane-1-carboxylic acid synthase, it might result form accelerated transformation of vacuolar 1-aminocyclopropane-1-carboxylic acid to ethylene.

  10. Bile acid transporters

    PubMed Central

    Dawson, Paul A.; Lan, Tian; Rao, Anuradha

    2009-01-01

    In liver and intestine, transporters play a critical role in maintaining the enterohepatic circulation and bile acid homeostasis. Over the past two decades, there has been significant progress toward identifying the individual membrane transporters and unraveling their complex regulation. In the liver, bile acids are efficiently transported across the sinusoidal membrane by the Na+ taurocholate cotransporting polypeptide with assistance by members of the organic anion transporting polypeptide family. The bile acids are then secreted in an ATP-dependent fashion across the canalicular membrane by the bile salt export pump. Following their movement with bile into the lumen of the small intestine, bile acids are almost quantitatively reclaimed in the ileum by the apical sodium-dependent bile acid transporter. The bile acids are shuttled across the enterocyte to the basolateral membrane and effluxed into the portal circulation by the recently indentified heteromeric organic solute transporter, OSTα-OSTβ. In addition to the hepatocyte and enterocyte, subgroups of these bile acid transporters are expressed by the biliary, renal, and colonic epithelium where they contribute to maintaining bile acid homeostasis and play important cytoprotective roles. This article will review our current understanding of the physiological role and regulation of these important carriers. PMID:19498215

  11. Altered cultivar resistance of kimchi cabbage seedlings mediated by salicylic Acid, jasmonic Acid and ethylene.

    PubMed

    Lee, Young Hee; Kim, Sang Hee; Yun, Byung-Wook; Hong, Jeum Kyu

    2014-09-01

    Two cultivars Buram-3-ho (susceptible) and CR-Hagwang (moderate resistant) of kimchi cabbage seedlings showed differential defense responses to anthracnose (Colletotrichum higginsianum), black spot (Alternaria brassicicola) and black rot (Xanthomonas campestris pv. campestris, Xcc) diseases in our previous study. Defense-related hormones salicylic acid (SA), jasmonic acid (JA) and ethylene led to different transcriptional regulation of pathogenesis-related (PR) gene expression in both cultivars. In this study, exogenous application of SA suppressed basal defenses to C. higginsianum in the 1st leaves of the susceptible cultivar and cultivar resistance of the 2nd leaves of the resistant cultivar. SA also enhanced susceptibility of the susceptible cultivar to A. brassicicola. By contrast, SA elevated disease resistance to Xcc in the resistant cultivar, but not in the susceptible cultivar. Methyl jasmonate (MJ) treatment did not affect the disease resistance to C. higginsianum and Xcc in either cultivar, but it compromised the disease resistance to A. brassicicola in the resistant cultivar. Treatment with 1-aminocyclopropane-1-carboxylic acid (ACC) ethylene precursor did not change resistance of the either cultivar to C. higginsianum and Xcc. Effect of ACC pretreatment on the resistance to A. brassicicola was not distinguished between susceptible and resistant cultivars, because cultivar resistance of the resistant cultivar was lost by prolonged moist dark conditions. Taken together, exogenously applied SA, JA and ethylene altered defense signaling crosstalk to three diseases of anthracnose, black spot and black rot in a cultivar-dependent manner.

  12. Comparative Indole-3-Acetic Acid Levels in the Slender Pea and Other Pea Phenotypes 1

    PubMed Central

    Law, David M.; Davies, Peter J.

    1990-01-01

    Free indole-3-acetic acid levels were measured by gas chromatography-mass spectrometry in three ultra-tall `slender' Pisum sativum L. lines differing in gibberellin content. Measurements were made for apices and stem elongation zones of light-grown plants and values were compared with wild-type, dwarf, and nana phenotypes in which internode length is genetically regulated, purportedly via the gibberellin level. Indole-3-acetic acid levels of growing stems paralleled growth rates in all lines, and were high in all three slender genotypes. Growth was inhibited by p-chlorophenoxyisobutyric acid, demonstrating the requirement of auxin activity for stem elongation, and also by the ethylene precursor 1-aminocyclopropane-1-carboxylic acid. It is concluded that the slender phenotype may arise from constant activation of a gibberellin receptor or transduction chain event leading directly or indirectly to elevated levels of indole-3-acetic acid, and that increased indole-3-acetic acid levels are a significant factor in the promotion of stem elongation. PMID:16667653

  13. New chiral didehydroamino acid derivatives from a cyclic glycine template with 3,6-dihydro-2H-1,4-oxazin-2-one structure: applications to the asymmetric synthesis of nonproteinogenic alpha-amino acids.

    PubMed

    Chinchilla, R; Falvello, L R; Galindo, N; Nájera, C

    2000-05-19

    New chiral (Z)-alpha,beta-didehydroamino acid (DDAA) derivatives with 3,5-dihydro-2H-1,4-oxazin-2-one structure 11a-f have been stereoselectively prepared after condensation of chiral glycine equivalent 7 with aldehydes in the presence of K(2)CO(3) under mild solid-liquid phase-transfer catalysis reaction conditions. These new systems have been used in diastereoselective cyclopropanation reactions using Corey's ylide for the asymmetric synthesis of 1-aminocyclopropane-1-carboxylic acids (ACCs) such as allo-corononamic and allo-norcoronamic acids. The hydrogenation reaction of these systems at ambient pressure in the presence of formaldehyde affords saturated oxazinones and N-methylated oxazinones which have been transformed into the N-methyl-alpha-amino acids (N-MAAs) (S)-2-(methylamino)butanoic acid and (S)-N-methylleucine. In addition, the parent alpha, beta-didehydroalanine derivative 11g has been prepared by a direct aminomethylation-elimination sequence from 7 and Eschenmoser's salt and has been used in Diels-Alder cycloaddition with endo selectivity for the synthesis of the enantiomerically pure bicyclic alpha-amino acids (-)-2-aminobicyclo[2.2.1]heptane-2-carboxylic and (-)-2-aminobicyclo[2.2.2]octane-2-carboxylic acids.

  14. Accumulation of wound-inducible ACC synthase transcript in tomato fruit is inhibited by salicylic acid and polyamines.

    PubMed

    Li, N; Parsons, B L; Liu, D R; Mattoo, A K

    1992-02-01

    Regulation of wound-inducible 1-aminocyclopropane-1-carboxylic acid (ACC) synthase expression was studied in tomato fruit (Lycopersicon esculentum cv. Pik-Red). A 70 base oligonucleotide probe homologous to published ACC synthase cDNA sequences was successfully used to identify and analyze regulation of a wound-inducible transcript. The 1.8 kb ACC synthase transcript increased upon wounding the fruit as well as during fruit ripening. Salicylic acid, an inhibitor of wound-responsive genes in tomato, inhibited the wound-induced accumulation of the ACC synthase transcript. Further, polyamines (putrescine, spermidine and spermine) that have anti-senescence properties and have been shown to inhibit the development of ACC synthase activity, inhibited the accumulation of the wound-inducible ACC synthase transcript. The inhibition by spermine was greater than that caused by putrescine or spermidine. The transcript level of a wound-repressible glycine-rich protein gene and that of the constitutively expressed rRNA were not affected as markedly by either salicylic acid or polyamines. These data suggest that salicylic acid and polyamines may specifically regulate ethylene biosynthesis at the level of ACC synthase transcript accumulation.

  15. Ethylene limits abscisic acid- or soil drying-induced stomatal closure in aged wheat leaves.

    PubMed

    Chen, Lin; Dodd, Ian C; Davies, William J; Wilkinson, Sally

    2013-10-01

    The mechanism of age-induced decreased stomatal sensitivity to abscisic acid (ABA) and soil drying has been explored here. Older, fully expanded leaves partly lost their ability to close stomata in response to foliar ABA sprays, and soil drying which stimulated endogenous ABA production, while young fully expanded leaves closed their stomata more fully. However, ABA- or soil drying-induced stomatal closure of older leaves was partly restored by pretreating plants with 1-methylcyclopropene (1-MCP), which can antagonize ethylene receptors, or by inoculating soil around the roots with the rhizobacterium Variovorax paradoxus 5C-2, which contains 1-aminocyclopropane-1-carboxylic acid (ACC)-deaminase. ACC (the immediate biosynthetic precursor of ethylene) sprays revealed higher sensitivity of stomata to ethylene in older leaves than younger leaves, despite no differences in endogenous ACC concentrations or ethylene emission. Taken together, these results indicate that the relative insensitivity of stomatal closure to ABA and soil drying in older leaves is likely due to altered stomatal sensitivity to ethylene, rather than ethylene production. To our knowledge, this is the first study to mechanistically explain diminished stomatal responses to soil moisture deficit in older leaves, and the associated reduction in leaf water-use efficiency.

  16. Pear 14-3-3a gene (Pp14-3-3a) is regulated during fruit ripening and senescense, and involved in response to salicylic acid and ethylene signalling.

    PubMed

    Shi, Haiyan; Zhang, Yuxing

    2014-12-01

    14-3-3 proteins play important roles in regulating plant development and phytohormone (abscisic acid, gibberellin and brassinosteroids) signalling. However, their regulation in fruit ripening and senescense, and response to salicylic acid and ethylene signalling are yet to be illustrated. One cDNA encoding putative 14-3-3 protein was isolated from pear (Pyrus pyrifolia) and designated Pp14-3-3a. Phylogenetic analysis clearly demonstrated that Pp14-3-3a belonged to ε-like group of 14-3-3 superfamilies. Real-time quantitative PCR analysis indicated that the expression of Pp14-3-3a gene was developmentally regulated in the fruit. Further study demonstrated that Pp14-3-3a expression was inhibited by salicylic acid and induced by ethylene precursor 1-aminocyclopropane-1-carboxylic acid in pear fruit. These data suggested that Pp14-3-3a might be involved in response to salicylic acid and ethylene signalling during fruit ripening and senescence of pear.

  17. Quorum sensing and indole-3-acetic acid degradation play a role in colonization and plant growth promotion of Arabidopsis thaliana by Burkholderia phytofirmans PsJN.

    PubMed

    Zúñiga, Ana; Poupin, María Josefina; Donoso, Raúl; Ledger, Thomas; Guiliani, Nicolás; Gutiérrez, Rodrigo A; González, Bernardo

    2013-05-01

    Although not fully understood, molecular communication in the rhizosphere plays an important role regulating traits involved in plant-bacteria association. Burkholderia phytofirmans PsJN is a well-known plant-growth-promoting bacterium, which establishes rhizospheric and endophytic colonization in different plants. A competent colonization is essential for plant-growth-promoting effects produced by bacteria. Using appropriate mutant strains of B. phytofirmans, we obtained evidence for the importance of N-acyl homoserine lactone-mediated (quorum sensing) cell-to-cell communication in efficient colonization of Arabidopsis thaliana plants and the establishment of a beneficial interaction. We also observed that bacterial degradation of the auxin indole-3-acetic acid (IAA) plays a key role in plant-growth-promoting traits and is necessary for efficient rhizosphere colonization. Wildtype B. phytofirmans but not the iacC mutant in IAA mineralization is able to restore promotion effects in roots of A. thaliana in the presence of exogenously added IAA, indicating the importance of this trait for promoting primary root length. Using a transgenic A. thaliana line with suppressed auxin signaling (miR393) and analyzing the expression of auxin receptors in wild-type inoculated plants, we provide evidence that auxin signaling in plants is necessary for the growth promotion effects produced by B. phytofirmans. The interplay between ethylene and auxin signaling was also confirmed by the response of the plant to a 1-aminocyclopropane-1-carboxylate deaminase bacterial mutant strain.

  18. Determination and stereochemistry of proteinogenic and non-proteinogenic amino acids in Saudi Arabian date fruits.

    PubMed

    Ali, Hatem Salama Mohamed; Alhaj, Omar Amin; Al-Khalifa, Abdulrahman Saleh; Brückner, Hans

    2014-09-01

    Whereas an abundance of literature is available on the occurrence of common proteinogenic amino acids (AAs) in edible fruits of the date palm (Phoenix dactylifera L.), recent reports on non-proteinogenic (non-coded) AAs and amino components are scarce. With emphasis on these components we have analyzed total hydrolysates of twelve cultivars of date fruits using automated ion-exchange chromatography, HPLC employing a fluorescent aminoquinolyl label, and GC-MS of total hydrolysates using the chiral stationary phases Chirasil(®)-L-Val and Lipodex(®) E. Besides common proteinogenic AAs, relatively large amounts of the following non-proteinogenic amino acids were detected: (2S,5R)-5-hydroxypipecolic acid (1.4-4.0 g/kg dry matter, DM), 1-aminocyclopropane-1-carboxylic acid (1.3-2.6 g/kg DM), γ-amino-n-butyric acid (0.5-1.2 g/kg DM), (2S,4R)-4-hydroxyproline (130-230 mg/kg DM), L-pipecolic acid (40-140 mg/kg DM), and 2-aminoethanol (40-160 mg/kg DM) as well as low or trace amounts (<70 mg/kg DM) of L-ornithine, 5-hydroxylysine, β-alanine, and in some samples (<20 mg/kg DM) of (S)-β-aminoisobutyric acid and (<10 mg/kg DM) L-allo-isoleucine. In one date fruit, traces of α-aminoadipic acid could be determined. Enantiomeric analysis of 6 M DCl/D2O hydrolysates of AAs using chiral capillary gas chromatography-mass spectrometry revealed the presence of very low amounts of D-Ala, D-Asp, D-Glu, D-Ser and D-Phe (1.2-0.4%, relative to the corresponding L-enantiomers), besides traces (0.2-1%) of other D-AAs. The possible relevance of non-proteinogenic amino acids in date fruits is briefly addressed.

  19. Structural Analysis of a β-Helical Protein Motif Stabilized by Targeted Replacements with Conformationally Constrained Amino Acids

    PubMed Central

    Ballano, Gema; Zanuy, David; Jiménez, Ana I.; Cativiela, Carlos; Nussinov, Ruth; Alemán, Carlos

    2009-01-01

    Here we study conformational stabilization induced in a β-helical nanostructure by position-specific mutations. The nanostructure is constructed through the self-assembly of the β-helical building block excised from E. coli galactoside acetyltransferase (PDB code 1krr, chain A; residues 131-165). The mutations involve substitutions by cyclic, conformationally constrained amino acids. Specifically, a complete structural analysis of the Pro-Xaa-Val sequence [with Xaa being Gly, Ac3c (1-aminocyclopropane-1-carboxylic acid) and Ac5c (1-aminocyclopentane-1-carboxylic acid)], corresponding to the 148-150 loop region in the wild-type (Gly) and mutated (Ac3c and Ac5c) 1krr, has been performed using Molecular Dynamics simulations and X-ray crystallography. Simulations have been performed for the wild-type and mutants of three different systems, namely the building block, the nanoconstruct and the isolated Pro-Xaa-Val tripeptide. Furthermore, the crystalline structures of five peptides of Pro-Xaa-Val or Xaa-Val sequences have been solved by X-ray diffraction analysis and compared with theoretical predictions. Both the theoretical and crystallographic studies indicate that the Pro-Acnc-Val sequences exhibit a high propensity to adopt turn-like conformations, and this propensity is little affected by the chemical environment. Overall, the results indicate that replacement of Gly149 by Ac3c or Ac5c significantly reduce the conformational flexibility of the target site enhancing the structural specificity of the building block and the nanoconstruct derived from the 1krr β-helical motif. PMID:18811190

  20. The formation of ACC and competition between polyamines and ethylene for SAM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ethylene biosynthesis involves the conversion of S-adenosylmethionine (SAM) to 1-aminocyclopropane-1-carboxylic acid (ACC) by ACC synthase (ACS). ACC is then converted to ethylene. The genes that encode enzymes in this pathway all belong to a family of genes. Differential transcriptional regulation ...

  1. Genome Sequence of the Banana Plant Growth-Promoting Rhizobacterium Pseudomonas fluorescens PS006

    PubMed Central

    Gamez, Rocío M.; Rodríguez, Fernando; Ramírez, Sandra; Gómez, Yolanda; Agarwala, Richa; Landsman, David

    2016-01-01

    Pseudomonas fluorescens is a well-known plant growth-promoting rhizobacterium (PGPR). We report here the first whole-genome sequence of PGPR P. fluorescens evaluated in Colombian banana plants. The genome sequences contains genes involved in plant growth and defense, including bacteriocins, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, and genes that provide resistance to toxic compounds. PMID:27151797

  2. A novel allele of monoecious (m) locus is responsible for elongated fruit shape and perfect flowers in cucumber (Cucumis sativus L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In cucumber (Cucumis sativus L.), sex determination is controlled primarily by the F (female) and M (monoecy) loci. Homozygous recessive mm plants bear bisexual (perfect) flowers and the fruits are often round shaped. CsACS2 encoding the 1-aminocyclopropane-1-carboxylic acid synthase has been shown ...

  3. Effects of abscisic acid on ethylene biosynthesis and perception in Hibiscus rosa-sinensis L. flower development.

    PubMed

    Trivellini, Alice; Ferrante, Antonio; Vernieri, Paolo; Serra, Giovanni

    2011-11-01

    The effect of the complex relationship between ethylene and abscisic acid (ABA) on flower development and senescence in Hibiscus rosa-sinensis L. was investigated. Ethylene biosynthetic (HrsACS and HrsACO) and receptor (HrsETR and HrsERS) genes were isolated and their expression evaluated in three different floral tissues (petals, style-stigma plus stamens, and ovaries) of detached buds and open flowers. This was achieved through treatment with 0.1 mM 1-aminocyclopropane-1-carboxylic acid (ACC) solution, 500 nl l(-1) methylcyclopropene (1-MCP), and 0.1 mM ABA solution. Treatment with ACC and 1-MCP confirmed that flower senescence in hibiscus is ethylene dependent, and treatment with exogenous ABA suggested that ABA may play a role in this process. The 1-MCP impeded petal in-rolling and decreased ABA content in detached open flowers after 9 h. This was preceded by an earlier and sequential increase in ABA content in 1-MCP-treated petals and style-stigma plus stamens between 1 h and 6 h. ACC treatment markedly accelerated flower senescence and increased ethylene production after 6 h and 9 h, particularly in style-stigma plus stamens. Ethylene evolution was positively correlated in these floral tissues with the induction of the gene expression of ethylene biosynthetic and receptor genes. Finally, ABA negatively affected the ethylene biosynthetic pathway and tissue sensitivity in all flower tissues. Transcript abundance of HrsACS, HrsACO, HrsETR, and HrsERS was reduced by exogenous ABA treatment. This research underlines the regulatory effect of ABA on the ethylene biosynthetic and perception machinery at a physiological and molecular level when inhibitors or promoters of senescence are exogenously applied.

  4. Foliar Abscisic Acid-To-Ethylene Accumulation and Response Regulate Shoot Growth Sensitivity to Mild Drought in Wheat

    PubMed Central

    Valluru, Ravi; Davies, William J.; Reynolds, Matthew P.; Dodd, Ian C.

    2016-01-01

    Although, plant hormones play an important role in adjusting growth in response to environmental perturbation, the relative contributions of abscisic acid (ABA) and ethylene remain elusive. Using six spring wheat genotypes differing for stress tolerance, we show that young seedlings of the drought-tolerant (DT) group maintained or increased shoot dry weight (SDW) while the drought-susceptible (DS) group decreased SDW in response to mild drought. Both the DT and DS groups increased endogenous ABA and ethylene concentrations under mild drought compared to control. The DT and DS groups exhibited different SDW response trends, whereby the DS group decreased while the DT group increased SDW, to increased concentrations of ABA and ethylene under mild drought, although both groups decreased ABA/ethylene ratio under mild drought albeit at different levels. We concluded that SDW of the DT and DS groups might be distinctly regulated by specific ABA:ethylene ratio. Further, a foliar-spray of low concentrations (0.1 μM) of ABA increased shoot relative growth rate (RGR) in the DS group while ACC (1-aminocyclopropane-1-carboxylic acid, ethylene precursor) spray increased RGR in both groups compared to control. Furthermore, the DT group accumulated a significantly higher galactose while a significantly lower maltose in the shoot compared to the DS group. Taken all together, these results suggest an impact of ABA, ethylene, and ABA:ethylene ratio on SDW of wheat seedlings that may partly underlie a genotypic variability of different shoot growth sensitivities to drought among crop species under field conditions. We propose that phenotyping based on hormone accumulation, response and hormonal ratio would be a viable, rapid, and an early–stage selection tool aiding genotype selection for stress tolerance. PMID:27148292

  5. Effects of abscisic acid on ethylene biosynthesis and perception in Hibiscus rosa-sinensis L. flower development

    PubMed Central

    Trivellini, Alice; Ferrante, Antonio; Vernieri, Paolo; Serra, Giovanni

    2011-01-01

    The effect of the complex relationship between ethylene and abscisic acid (ABA) on flower development and senescence in Hibiscus rosa-sinensis L. was investigated. Ethylene biosynthetic (HrsACS and HrsACO) and receptor (HrsETR and HrsERS) genes were isolated and their expression evaluated in three different floral tissues (petals, style–stigma plus stamens, and ovaries) of detached buds and open flowers. This was achieved through treatment with 0.1 mM 1-aminocyclopropane-1-carboxylic acid (ACC) solution, 500 nl l−1 methylcyclopropene (1-MCP), and 0.1 mM ABA solution. Treatment with ACC and 1-MCP confirmed that flower senescence in hibiscus is ethylene dependent, and treatment with exogenous ABA suggested that ABA may play a role in this process. The 1-MCP impeded petal in-rolling and decreased ABA content in detached open flowers after 9 h. This was preceded by an earlier and sequential increase in ABA content in 1-MCP-treated petals and style–stigma plus stamens between 1 h and 6 h. ACC treatment markedly accelerated flower senescence and increased ethylene production after 6 h and 9 h, particularly in style–stigma plus stamens. Ethylene evolution was positively correlated in these floral tissues with the induction of the gene expression of ethylene biosynthetic and receptor genes. Finally, ABA negatively affected the ethylene biosynthetic pathway and tissue sensitivity in all flower tissues. Transcript abundance of HrsACS, HrsACO, HrsETR, and HrsERS was reduced by exogenous ABA treatment. This research underlines the regulatory effect of ABA on the ethylene biosynthetic and perception machinery at a physiological and molecular level when inhibitors or promoters of senescence are exogenously applied. PMID:21841180

  6. Ethylene signaling in salt stress- and salicylic acid-induced programmed cell death in tomato suspension cells.

    PubMed

    Poór, Péter; Kovács, Judit; Szopkó, Dóra; Tari, Irma

    2013-02-01

    Salt stress- and salicylic acid (SA)-induced cell death can be activated by various signaling pathways including ethylene (ET) signaling in intact tomato plants. In tomato suspension cultures, a treatment with 250 mM NaCl increased the production of reactive oxygen species (ROS), nitric oxide (NO), and ET. The 10(-3) M SA-induced cell death was also accompanied by ROS and NO production, but ET emanation, the most characteristic difference between the two cell death programs, did not change. ET synthesis was enhanced by addition of ET precursor 1-aminocyclopropane-1-carboxylic acid, which, after 2 h, increased the ROS production in the case of both stressors and accelerated cell death under salt stress. However, it did not change the viability and NO levels in SA-treated samples. The effect of ET induced by salt stress could be blocked with silver thiosulfate (STS), an inhibitor of ET action. STS reduced the death of cells which is in accordance with the decrease in ROS production of cells exposed to high salinity. Unexpectedly, application of STS together with SA resulted in increasing ROS and reduced NO accumulation which led to a faster cell death. NaCl- and SA-induced cell death was blocked by Ca(2+) chelator EGTA and calmodulin inhibitor W-7, or with the inhibitors of ROS. The inhibitor of MAPKs, PD98059, and the cysteine protease inhibitor E-64 reduced cell death in both cases. These results show that NaCl induces cell death mainly by ET-induced ROS production, but ROS generated by SA was not controlled by ET in tomato cell suspension.

  7. WRKY8 transcription factor functions in the TMV-cg defense response by mediating both abscisic acid and ethylene signaling in Arabidopsis.

    PubMed

    Chen, Ligang; Zhang, Liping; Li, Daibo; Wang, Fang; Yu, Diqiu

    2013-05-21

    WRKY transcription factors are key players in the plant immune response, but less is known about their involvement in antiviral defense than about their roles in defense against bacterial or fungi pathogens. Here, we report that Arabidopsis thaliana WRKY DNA-binding protein 8 (WRKY8) has a role in mediating the long-distance movement of crucifer-infecting tobacco mosaic virus (TMV-cg). The expression of WRKY8 was inhibited by TMV-cg infection, and mutation of WRKY8 accelerated the accumulation of TMV-cg in systemically infected leaves. Quantitative RT-PCR analysis showed that the expression of ABA insensitive 4 (ABI4) was reduced and the expression of 1-aminocyclopropane-1-carboxylic acid synthase 6 (ACS6) and ethylene response factor 104 (ERF104) was enhanced in the systemically infected leaves of wrky8. Immunoprecipitation assays demonstrated that WRKY8 could bind selectively to putative W-boxes of the ABI4, ACS6, and ERF104 promoters. Furthermore, TMV-cg infection enhanced WRKY8 binding to the ABI4 promoter but reduced the binding of WRKY8 to the ACS6 and ERF104 promoters, indicating that regulation of ABI4, ACS6, and ERF104 by WRKY8 is at least partially dependent on TMV-cg. Exogenous applications of abscisic acid (ABA) reduced the systemic accumulation of TMV-cg. Mutations in ABA deficient 1, ABA deficient 2, ABA deficient 3, or abi4 accelerated systemic TMV-cg accumulation. In contrast, exogenous application of aminocyclopropane-1-carboxylic acid enhanced the systemic accumulation of TMV-cg, but mutations in acs6, erf104, or an octuple acs mutant inhibited systemic TMV-cg accumulation. Our results demonstrate that WRKY8 is involved in the defense response against TMV-cg through the direct regulation of the expression of ABI4, ACS6, and ERF104 and may mediate the crosstalk between ABA and ethylene signaling during the TMV-cg-Arabidopsis interaction.

  8. Cross-talk between salicylic acid and NaCl-generated reactive oxygen species and nitric oxide in tomato during acclimation to high salinity.

    PubMed

    Gémes, Katalin; Poór, Péter; Horváth, Edit; Kolbert, Zsuzsanna; Szopkó, Dóra; Szepesi, Agnes; Tari, Irma

    2011-06-01

    Hydrogen peroxide (H₂O₂) and nitric oxide (NO) generated by salicylic acid (SA) are considered to be functional links of cross-tolerance to various stressors. SA-stimulated pre-adaptation state was beneficial in the acclimation to subsequent salt stress in tomato (Solanum lycopersicum cv. Rio Fuego). At the whole-plant level, SA-induced massive H₂O₂ accumulation only at high concentrations (10⁻³-10⁻² M), which later caused the death of plants. The excess accumulation of H₂O₂ as compared with plants exposed to 100 mM NaCl was not associated with salt stress response after SA pre-treatments. In the root tips, 10⁻³-10⁻² M SA triggered the production of reactive oxygen species (ROS) and NO with a concomitant decline in the cell viability. Sublethal concentrations of SA, however, decreased the effect of salt stress on ROS and NO production in the root apex. The attenuation of oxidative stress because of high salinity occurred not only in pre-adapted plants but also at cell level. When protoplasts prepared from control leaves were exposed to SA in the presence of 100 mM NaCl, the production of NO and ROS was much lower and the viability of the cells was higher than in salt-treated samples. This suggests that, the cross-talk of signalling pathways induced by SA and high salinity may occur at the level of ROS and NO production. Abscisic acid (ABA), polyamines and 1-aminocyclopropane-1-carboxylic acid, the compounds accumulating in pre-treated plants, enhanced the diphenylene iodonium-sensitive ROS and NO levels, but, in contrast to others, ABA and putrescine preserved the viability of protoplasts.

  9. After-ripening induced transcriptional changes of hormonal genes in wheat seeds: the cases of brassinosteroids, ethylene, cytokinin and salicylic acid.

    PubMed

    Chitnis, Vijaya R; Gao, Feng; Yao, Zhen; Jordan, Mark C; Park, Seokhoon; Ayele, Belay T

    2014-01-01

    Maintenance and release of seed dormancy is regulated by plant hormones; their levels and seed sensitivity being the critical factors. This study reports transcriptional regulation of brassinosteroids (BR), ethylene (ET), cytokinin (CK) and salicylic acid (SA) related wheat genes by after-ripening, a period of dry storage that decays dormancy. Changes in the expression of hormonal genes due to seed after-ripening did not occur in the anhydrobiotic state but rather in the hydrated state. After-ripening induced dormancy decay appears to be associated with imbibition mediated increase in the synthesis and signalling of BR, via transcriptional activation of de-etiolated2, dwarf4 and brassinosteroid signaling kinase, and repression of brassinosteroid insensitive 2. Our analysis is also suggestive of the significance of increased ET production, as reflected by enhanced transcription of 1-aminocyclopropane-1-carboxylic acid oxidase in after-ripened seeds, and tight regulation of seed response to ET in regulating dormancy decay. Differential transcriptions of lonely guy, zeatin O-glucosyltransferases and cytokinin oxidases, and pseudo-response regulator between dormant and after-ripened seeds implicate CK in the regulation of seed dormancy in wheat. Our analysis also reflects the association of dormancy decay in wheat with seed SA level and NPR independent SA signaling that appear to be regulated transcriptionally by phenylalanine ammonia lyase, and whirly and suppressor of npr1 inducible1 genes, respectively. Co-expression clustering of the hormonal genes implies the significance of synergistic and antagonistic interaction between the different plant hormones in regulating wheat seed dormancy. These results contribute to further our understanding of the molecular features controlling seed dormancy in wheat.

  10. Cysteine transport through excitatory amino acid transporter 3 (EAAT3).

    PubMed

    Watts, Spencer D; Torres-Salazar, Delany; Divito, Christopher B; Amara, Susan G

    2014-01-01

    Excitatory amino acid transporters (EAATs) limit glutamatergic signaling and maintain extracellular glutamate concentrations below neurotoxic levels. Of the five known EAAT isoforms (EAATs 1-5), only the neuronal isoform, EAAT3 (EAAC1), can efficiently transport the uncharged amino acid L-cysteine. EAAT3-mediated cysteine transport has been proposed to be a primary mechanism used by neurons to obtain cysteine for the synthesis of glutathione, a key molecule in preventing oxidative stress and neuronal toxicity. The molecular mechanisms underlying the selective transport of cysteine by EAAT3 have not been elucidated. Here we propose that the transport of cysteine through EAAT3 requires formation of the thiolate form of cysteine in the binding site. Using Xenopus oocytes and HEK293 cells expressing EAAT2 and EAAT3, we assessed the transport kinetics of different substrates and measured transporter-associated currents electrophysiologically. Our results show that L-selenocysteine, a cysteine analog that forms a negatively-charged selenolate ion at physiological pH, is efficiently transported by EAATs 1-3 and has a much higher apparent affinity for transport when compared to cysteine. Using a membrane tethered GFP variant to monitor intracellular pH changes associated with transport activity, we observed that transport of either L-glutamate or L-selenocysteine by EAAT3 decreased intracellular pH, whereas transport of cysteine resulted in cytoplasmic alkalinization. No change in pH was observed when cysteine was applied to cells expressing EAAT2, which displays negligible transport of cysteine. Under conditions that favor release of intracellular substrates through EAAT3 we observed release of labeled intracellular glutamate but did not detect cysteine release. Our results support a model whereby cysteine transport through EAAT3 is facilitated through cysteine de-protonation and that once inside, the thiolate is rapidly re-protonated. Moreover, these findings suggest

  11. Ascorbic acid transport into cultured pituitary cells

    SciTech Connect

    Cullen, E.I.; May, V.; Eipper, R.A.

    1986-05-01

    An amidating enzyme designated peptidyl-glycine ..cap alpha..-amidating monooxygenase (PAM) has been studied in a variety of tissues and is dependent on molecular oxygen and stimulated by copper and ascorbic acid. To continue investigating the relationship among cellular ascorbic acid concentrations, amidating ability, and PAM activity, the authors studied ascorbic acid transport in three cell preparations that contain PAM and produce amidated peptides: primary cultures of rat anterior and intermediate pituitary and mouse AtT-20 tumor cells. When incubated in 50 ..mu..M (/sup 14/C)ascorbic acid all three cell preparations concentrated ascorbic acid 20- to 40-fold, producing intracellular ascorbate concentrations of 1 to 2 mM, based on experimentally determined cell volumes. All three cell preparations displayed saturable ascorbic acid uptake with half-maximal initial rates occurring between 9 and 18 ..mu..M ascorbate. Replacing NaCl in the uptake buffer with choline chloride significantly diminished ascorbate uptake in all three preparations. Ascorbic acid efflux from these cells was slow, displaying half-lives of 7 hours. Unlike systems that transport dehydroascorbic acid, the transport system for ascorbic acid in these cells was not inhibited by glucose. Thus, ascorbate is transported into pituitary cells by a sodium-dependent, active transport system.

  12. SLC27 fatty acid transport proteins.

    PubMed

    Anderson, Courtney M; Stahl, Andreas

    2013-01-01

    The uptake and metabolism of long chain fatty acids (LCFA) are critical to many physiological and cellular processes. Aberrant accumulation or depletion of LCFA underlie the pathology of numerous metabolic diseases. Protein-mediated transport of LCFA has been proposed as the major mode of LCFA uptake and activation. Several proteins have been identified to be involved in LCFA uptake. This review focuses on the SLC27 family of fatty acid transport proteins, also known as FATPs, with an emphasis on the gain- and loss-of-function animal models that elucidate the functions of FATPs in vivo and how these transport proteins play a role in physiological and pathological situations.

  13. Transport and biological activities of bile acids.

    PubMed

    Zwicker, Brittnee L; Agellon, Luis B

    2013-07-01

    Bile acids have emerged as important biological molecules that support the solubilization of various lipids and lipid-soluble compounds in the gut, and the regulation of gene expression and cellular function. Bile acids are synthesized from cholesterol in the liver and eventually released into the small intestine. The majority of bile acids are recovered in the distal end of the small intestine and then returned to the liver for reuse. The components of the mechanism responsible for the recycling of bile acids within the enterohepatic circulation have been identified whereas the mechanism for intracellular transport is less understood. Recently, the ileal lipid binding protein (ILBP; human gene symbol FABP6) was shown to be needed for the efficient transport of bile acids from the apical side to the basolateral side of enterocytes in the distal intestine. This review presents an overview of the transport of bile acids between the liver and the gut as well as within hepatocytes and enterocytes. A variety of pathologies is associated with the malfunction of the bile acid transport system.

  14. Selective amino acid substitutions convert the creatine transporter to a gamma-aminobutyric acid transporter.

    PubMed

    Dodd, Joanna R; Christie, David L

    2007-05-25

    The creatine transporter (CRT) is a member of a large family of sodium-dependent neurotransmitter and amino acid transporters. The CRT is closely related to the gamma-aminobutyric acid (GABA) transporter, GAT-1, yet GABA is not an effective substrate for the CRT. The high resolution structure of a prokaryotic homologue, LeuT has revealed precise details of the substrate binding site for leucine (Yamashita, A., Singh, S. K., Kawate, T., Jin, Y., and Gouaux, E. (2005) Nature 437, 215-223). We have now designed mutations based on sequence comparisons of the CRT with GABA transporters and the LeuT structural template in an attempt to alter the substrate specificity of the CRT. Combinations of two or three amino acid substitutions at four selected positions resulted in the loss of creatine transport activity and gain of a specific GABA transport function. GABA transport by the "gain of function" mutants was sensitive to nipecotic acid, a competitive inhibitor of GABA transporters. Our results show LeuT to be a good structural model to identify amino acid residues involved in the substrate and inhibitor selectivity of eukaryotic sodium-dependent neurotransmitter and amino acid transporters. However, modification of the binding site alone appears to be insufficient for efficient substrate translocation. Additional residues must mediate the conformational changes required for the diffusion of substrate from the binding site to the cytoplasm.

  15. Intestinal transport and metabolism of bile acids

    PubMed Central

    Dawson, Paul A.; Karpen, Saul J.

    2015-01-01

    In addition to their classical roles as detergents to aid in the process of digestion, bile acids have been identified as important signaling molecules that function through various nuclear and G protein-coupled receptors to regulate a myriad of cellular and molecular functions across both metabolic and nonmetabolic pathways. Signaling via these pathways will vary depending on the tissue and the concentration and chemical structure of the bile acid species. Important determinants of the size and composition of the bile acid pool are their efficient enterohepatic recirculation, their host and microbial metabolism, and the homeostatic feedback mechanisms connecting hepatocytes, enterocytes, and the luminal microbiota. This review focuses on the mammalian intestine, discussing the physiology of bile acid transport, the metabolism of bile acids in the gut, and new developments in our understanding of how intestinal metabolism, particularly by the gut microbiota, affects bile acid signaling. PMID:25210150

  16. Amino Acid Transport into Cultured Tobacco Cells

    PubMed Central

    Harrington, H. Michael; Henke, Randolph R.

    1981-01-01

    Lysine transport into suspension-cultured Wisconsin-38 tobacco cells was observed. Uptake was linear (up to 90 minutes) with respect to time and amount of tissue only after 4 to 6 hours preincubation in calcium-containing medium. The observed cellular accumulation of lysine was against a concentration gradient and not due to exchange diffusion. Transport was stimulated by low pH and characterized by a biphasic uptake isotherm with two Km values for lysine. System I (Km ≃ 5 × 10−6 molar; Vmax ≃ 180 nanomoles per gram fresh weight per hour) and system II (Km ≃ 10−4 molar; Vmax ≃ 1900 nanomoles per gram fresh weight per hour) were inhibited by N-ethylmaleimide and a variety of respiratory inhibitors. This inhibition was not due to increased efflux. In antagonism experiments, system I was inhibited most effectively by basic amino acids, followed by the sulfur amino acids. System I was only slightly inhibited by the neutral and aromatic amino acids and was not inhibited by the acidic amino acids aspartic and glutamic acids. Transport by system II was inhibited by all of the tested amino acids (including aspartic and glutamic acids) and analogs; however, this system was not inhibited by d-arginine. Neither system was strongly inhibited by d-lysine or the lysine analog S-2-aminoethyl-l-cysteine. Arginine was shown to be a competitive inhibitor of both systems with values for Ki similar to the respective Km values. These studies suggest the presence of at least two amino acid permeases in W-38 tobacco cells. PMID:16661678

  17. Amino acid transport by prosthecae of Asticcacaulis biprosthecum: evidence for a broad-range transport system.

    PubMed

    Tam, E; Pate, J L

    1985-10-01

    Prosthecae purified from cells of Asticcaulis biprosthecum possess active transport systems that transport all 20 amino acids tested. Using ascorbate-reduced phenazine methosulphate in the presence of oxygen, all 20 amino acids are accumulated against a concentration gradient by isolated prosthecae. Results of experiments testing the inhibition of transport of one amino acid by another, and of experiments testing the exchange of exogenous amino acids with those preloaded in prosthecae, along with characteristics of mutants defective in amino acid transport, suggest the presence in prosthecae of three amino acid transport systems. One, the general or G system, transports at least 18 of the 20 amino acids tested. Another system, referred to as the proline or P system, transports seven amino acids (including proline) that are also transported by the G system. The third system transports only glutamate and aspartate, and is referred to as the acidic amino acid transport system or A system.

  18. Modeling Electrical Transport through Nucleic Acids

    NASA Astrophysics Data System (ADS)

    Qi, Jianqing

    Nucleic acids play a vital role in many biological systems and activities. In recent years, engineers and scientists have been interested in studying their electrical properties. The motivation for these studies stems from the following facts: (1) the bases, which form the building blocks of nucleic acids, have unique ionization potentials. Further, nucleic acids are one of the few nanomaterials that can be reproducibly manufactured with a high degree of accuracy (though admittedly their placement at desired locations remains a challenge). As a result, designed strands with specific sequences may offer unique device properties; (2) electrical methods offer potential for sequencing nucleic acids based on a single molecule; (3) electrical methods for disease detection based on the current flowing through nucleic acids are beginning to be demonstrated. While experiments in the above mentioned areas is promising, a deeper understanding of the electrical current flow through the nucleic acids needs to be developed. The modeling of current flowing in these molecules is complex because: (1) they are based on atomic scale contacts between nucleic acids and metal, which cannot be reproducibly built; (2) the conductivity of nucleic acids is easily influenced by the environment, which is constantly changing; and (3) the nucleic acids by themselves are floppy. This thesis focuses on the modeling of electrical transport through nucleic acids that are connected to two metal electrodes at nanoscale. We first develop a decoherent transport model for the double-stranded helix based on the Landauer-Buttiker framework. This model is rationalized by comparison with an experiment that measured the conductance of four different DNA strands. The developed model is then used to study the: (1) potential to make barriers and wells for quantum transport using specifically engineered sequences; (2) change in the electrical properties of a specific DNA strand with and without methylation; (3

  19. Thermotolerance and antioxidant systems in Agrostis stolonifera: involvement of salicylic acid, abscisic acid, calcium, hydrogen peroxide, and ethylene.

    PubMed

    Larkindale, Jane; Huang, Bingru

    2004-04-01

    This study investigated whether pre-treating plants with specific putative signaling components and heat acclimation would induce tolerance of a cool-season grass, creeping bentgrass (Agrostis stolonifera var. palustris), to subsequent heat stress and whether thermotolerance induction of those pretreatments was associated with the regulation of antioxidant regenerating enzymes. The treatments included foliar application of salicylic acid (SA), abscisic acid (ABA), calcium chloride (CaCl2), hydrogen peroxide (H2O2), 1-aminocyclopropane-1-carboxylic acid (ACC, a precursor of ethylene prior to the exposure of plants to heat stress (35 degrees C) in a growth chamber. Physiological measurements including turf quality, leaf photosynthetic rate, and levels of oxidative damage demonstrated that all treatments increased heat tolerance. The better heat tolerance for pre-treated plants as compared to controls was related to the protection of oxidative damage under heat stress. APX activity increased over the first 2 days and 5 days of heating for ACC and CaCl2 respectively, but for only 12 h for H2O2. SA and ABA pre-treatments had no effects on APX activity earlier, but maintained APX activity at a significantly higher level than in controls after 24 h of heating. SA and ABA pre-treatments had no effects on POX activity. ACC treatment significantly increased POX activity. Pre-treatment with CaCl2, H2O2, and HA reduced POX activity, particularly during the later phase of heating. Plants treated with SA, CaCl2, H2O2 and HA had lower CAT activity than their control plants prior to heating and within 48 h of heat stress. ABA and ACC pre-treatments maintained higher CAT activity than the controls after 48 h of heating. ACC, CaCl2, or HA pre-treatments increased SOD activity only before 5 days of heat stress. SA and ABA pre-treatments had less effect on APX activity earlier under heat stress. These results suggest that specific groups of potential signaling molecules may induce

  20. Reactive solute transport in acidic streams

    USGS Publications Warehouse

    Broshears, R.E.

    1996-01-01

    Spatial and temporal profiles of Ph and concentrations of toxic metals in streams affected by acid mine drainage are the result of the interplay of physical and biogeochemical processes. This paper describes a reactive solute transport model that provides a physically and thermodynamically quantitative interpretation of these profiles. The model combines a transport module that includes advection-dispersion and transient storage with a geochemical speciation module based on MINTEQA2. Input to the model includes stream hydrologic properties derived from tracer-dilution experiments, headwater and lateral inflow concentrations analyzed in field samples, and a thermodynamic database. Simulations reproduced the general features of steady-state patterns of observed pH and concentrations of aluminum and sulfate in St. Kevin Gulch, an acid mine drainage stream near Leadville, Colorado. These patterns were altered temporarily by injection of sodium carbonate into the stream. A transient simulation reproduced the observed effects of the base injection.

  1. Abscisic Acid Transport in Human Erythrocytes*

    PubMed Central

    Vigliarolo, Tiziana; Guida, Lucrezia; Millo, Enrico; Fresia, Chiara; Turco, Emilia; De Flora, Antonio; Zocchi, Elena

    2015-01-01

    Abscisic acid (ABA) is a plant hormone involved in the response to environmental stress. Recently, ABA has been shown to be present and active also in mammals, where it stimulates the functional activity of innate immune cells, of mesenchymal and hemopoietic stem cells, and insulin-releasing pancreatic β-cells. LANCL2, the ABA receptor in mammalian cells, is a peripheral membrane protein that localizes at the intracellular side of the plasma membrane. Here we investigated the mechanism enabling ABA transport across the plasmamembrane of human red blood cells (RBC). Both influx and efflux of [3H]ABA occur across intact RBC, as detected by radiometric and chromatographic methods. ABA binds specifically to Band 3 (the RBC anion transporter), as determined by labeling of RBC membranes with biotinylated ABA. Proteoliposomes reconstituted with human purified Band 3 transport [3H]ABA and [35S]sulfate, and ABA transport is sensitive to the specific Band 3 inhibitor 4,4′-diisothiocyanostilbene-2,2′-disulfonic acid. Once inside RBC, ABA stimulates ATP release through the LANCL2-mediated activation of adenylate cyclase. As ATP released from RBC is known to exert a vasodilator response, these results suggest a role for plasma ABA in the regulation of vascular tone. PMID:25847240

  2. Differential expression of ethylene biosynthesis genes in drupelets and receptacle of raspberry (Rubus idaeus).

    PubMed

    Fuentes, Lida; Monsalve, Liliam; Morales-Quintana, Luis; Valdenegro, Mónika; Martínez, Juan-Pablo; Defilippi, Bruno G; González-Agüero, Mauricio

    2015-05-01

    Red Raspberry (Rubus idaeus) is traditionally classified as non-climacteric, and the role of ethylene in fruit ripening is not clear. The available information indicates that the receptacle, a modified stem that supports the drupelets, is involved in ethylene production of ripe fruits. In this study, we report receptacle-related ethylene biosynthesis during the ripening of fruits of cv. Heritage. In addition, the expression pattern of ethylene biosynthesis transcripts was evaluated during the ripening process. The major transcript levels of 1-aminocyclopropane-1-carboxylic acid synthase (RiACS1) and 1-aminocyclopropane-1-carboxylic acid oxidase (RiACO1) were concomitant with ethylene production, increased total soluble solids (TSS) and decreased titratable acidity (TA) and fruit firmness. Moreover, ethylene biosynthesis and transcript levels of RiACS1 and RiACO1 were higher in the receptacle, sustaining the receptacle's role as a source of ethylene in regulating the ripening of raspberry.

  3. Amino Acid Transport in Mycobacterium smegmatis

    PubMed Central

    Yabu, Kunihiko

    1970-01-01

    The transport of d-alanine, d-glutamic acid, and d-valine in Mycobacterium smegmatis was compared quantitatively with that of their l-isomers. It appeared that the uptake of d-alanine was mediated by an active process displaying saturation kinetics characteristic of enzyme function, whereas the uptake of d-glutamic acid was accomplished by a passive process showing diffusion kinetics. Both processes were involved in the uptake of l-alanine, l-glutamic acid, d-valine, and l-valine. d-Valine competed with l-valine for entry into the cell through a single active process. d-Alanine and l-alanine also utilized the same active process, but the d-isomer could not enter the cell through the passive process. The passive process exhibited characteristics of diffusion, but was sensitive to sulfhydryl-blocking reagents and showed competition among structurally related amino acids. These last findings suggested that the passive process is a facilitated diffusion. PMID:5437732

  4. Ascorbic acid participates in a general mechanism for concerted glucose transport inhibition and lactate transport stimulation.

    PubMed

    Castro, Maite A; Angulo, Constanza; Brauchi, Sebastián; Nualart, Francisco; Concha, Ilona I

    2008-11-01

    In this paper, we present a novel function for ascorbic acid. Ascorbic acid is an important water-soluble antioxidant and cofactor in various enzyme systems. We have previously demonstrated that an increase in neuronal intracellular ascorbic acid is able to inhibit glucose transport in cortical and hippocampal neurons. Because of the presence of sodium-dependent vitamin C transporters, ascorbic acid is highly concentrated in brain, testis, lung, and adrenal glands. In this work, we explored how ascorbic acid affects glucose and lactate uptake in neuronal and non-neuronal cells. Using immunofluorescence and reverse transcriptase-polymerase chain reaction (RT-PCR) analysis, the expression of glucose and ascorbic acid transporters in non-neuronal cells was studied. Like neurons, HEK293 cells expressed GLUT1, GLUT3, and SVCT2. With radioisotope-based methods, only intracellular ascorbic acid, but not extracellular, inhibits 2-deoxyglucose transport in HEK293 cells. As monocarboxylates such as pyruvate and lactate, are important metabolic sources, we analyzed the ascorbic acid effect on lactate transport in cultured neurons and HEK293 cells. Intracellular ascorbic acid was able to stimulate lactate transport in both cell types. Extracellular ascorbic acid did not affect this transport. Our data show that ascorbic acid inhibits glucose transport and stimulates lactate transport in neuronal and non-neuronal cells. Mammalian cells frequently present functional glucose and monocarboxylate transporters, and we describe here a general effect in which ascorbic acid functions like a glucose/monocarboxylate uptake switch in tissues expressing ascorbic acid transporters.

  5. Targeted systems biology profiling of tomato fruit reveals coordination of the Yang cycle and a distinct regulation of ethylene biosynthesis during postclimacteric ripening.

    PubMed

    Van de Poel, Bram; Bulens, Inge; Markoula, Aikaterina; Hertog, Maarten L A T M; Dreesen, Rozemarijn; Wirtz, Markus; Vandoninck, Sandy; Oppermann, Yasmin; Keulemans, Johan; Hell, Ruediger; Waelkens, Etienne; De Proft, Maurice P; Sauter, Margret; Nicolai, Bart M; Geeraerd, Annemie H

    2012-11-01

    The concept of system 1 and system 2 ethylene biosynthesis during climacteric fruit ripening was initially described four decades ago. Although much is known about fruit development and climacteric ripening, little information is available about how ethylene biosynthesis is regulated during the postclimacteric phase. A targeted systems biology approach revealed a novel regulatory mechanism of ethylene biosynthesis of tomato (Solanum lycopersicum) when fruit have reached their maximal ethylene production level and which is characterized by a decline in ethylene biosynthesis. Ethylene production is shut down at the level of 1-aminocyclopropane-1-carboxylic acid oxidase. At the same time, 1-aminocyclopropane-1-carboxylic acid synthase activity increases. Analysis of the Yang cycle showed that the Yang cycle genes are regulated in a coordinated way and are highly expressed during postclimacteric ripening. Postclimacteric red tomatoes on the plant showed only a moderate regulation of 1-aminocyclopropane-1-carboxylic acid synthase and Yang cycle genes compared with the regulation in detached fruit. Treatment of red fruit with 1-methylcyclopropane and ethephon revealed that the shut-down mechanism in ethylene biosynthesis is developmentally programmed and only moderately ethylene sensitive. We propose that the termination of autocatalytic ethylene biosynthesis of system 2 in ripe fruit delays senescence and preserves the fruit until seed dispersal.

  6. Transport of Aromatic Amino Acids by Pseudomonas aeruginosa

    PubMed Central

    Kay, W. W.; Gronlund, Audrey F.

    1971-01-01

    Kinetic studies of the transport of aromatic amino acids by Pseudomonas aeruginosa revealed the existence of two high-affinity transport systems which recognized the three aromatic amino acids. From competition data and studies on the exchange of preformed aromatic amino acid pools, the first transport system was found to be functional with phenylalanine, tyrosine, and tryptophan (in order of decreasing activity), whereas the second system was active with tryptophan, phenylalanine, and tyrosine. The two systems also transported a number of aromatic amino acid analogues but not other amino acids. Mutants defective in each of the two and in both transport systems were isolated and described. When the amino acids were added at low external concentrations to cells growing logarithmically in glucose minimal medium, the tryptophan pool very quickly became saturated. Under identical conditions, phenylalanine and tyrosine each accumulated in the intracellular pool of P. aeruginosa at a concentration which was 10 times greater than that of tryptophan. PMID:4994029

  7. Transport of malic acid and other dicarboxylic acids in the yeast Hansenula anomala.

    PubMed

    Côrte-Real, M; Leão, C

    1990-04-01

    DL-Malic acid-grown cells of the yeast Hansenula anomala formed a saturable transport system that mediated accumulative transport of L-malic acid with the following kinetic parameters at pH 5.0: Vmax, 0.20 nmol.s-1.mg (dry weight)-1; Km, 0.076 mM L-malate. Uptake of malic acid was accompanied by proton disappearance from the external medium with rates that followed Michaelis-Menten kinetics as a function of malic acid concentration. Fumaric acid, alpha-ketoglutaric acid, oxaloacetic acid, D-malic acid, and L-malic acid were competitive inhibitors of succinic acid transport, and all induced proton movements that followed Michaelis-Menten kinetics, suggesting that all of these dicarboxylates used the same transport system. Maleic acid, malonic acid, oxalic acid, and L-(+)-tartaric acid, as well as other Krebs cycle acids such as citric and isocitric acids, were not accepted by the malate transport system. Km measurements as a function of pH suggested that the anionic forms of the acids were transported by an accumulative dicarboxylate proton symporter. The accumulation ratio at pH 5.0 was about 40. The malate system was inducible and was subject to glucose repression. Undissociated succinic acid entered the cells slowly by simple diffusion. The permeability of the cells by undissociated acid increased with pH, with the diffusion constant increasing 100-fold between pH 3.0 and 6.0.

  8. Novel Lactate Transporters from Carboxylic Acid-Producing Rhizopus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fungus Rhizopus is frequently used for fermentative production of lactic acid, but little is known about the mechanisms or proteins for transporting this carboxylic acid. Since transport of the lactate anion across the plasma membrane is critical to prevent acidification of the cytoplasm, we ev...

  9. Structural Determinants for Transport Across the Intestinal Bile Acid Transporter Using C-24 Bile Acid Conjugates

    PubMed Central

    Rais, Rana; Acharya, Chayan; MacKerell, Alexander D.; Polli, James E.

    2010-01-01

    The human apical sodium dependent bile acid transporter (hASBT) re-absorbs gram quantities of bile acid daily and is a potential prodrug target to increase oral drug absorption. In the absence of a high resolution hASBT crystal structure, 3D-QSAR modeling may prove beneficial in designing prodrug targets to hASBT. The objective was to derive a conformationally sampled pharmacophore 3D–QSAR (CSP-SAR) model for the uptake of bile acid conjugates by hASBT. A series of bile acid conjugates of glutamyl chenodeoxycholate were evaluated in terms of Km and normalized Vmax(normVmax) using hASBT-MDCK cells. All mono-anionic conjugates were potent substrates. Dianions, cations and zwitterions, which bound with a high affinity, were not substrates. CSP-SAR models were derived using structural and physicochemical descriptors, and evaluated via cross-validation. The best CSP-SAR model for Km included two structural and two physiochemical descriptors, where substrate hydrophobicity enhanced affinity. A best CSP-SAR model for Km/normVmax employed one structural and three physicochemical descriptors, also indicating hydrophobicity enhanced efficiency. Overall, the bile acid C-24 region accommodated a range of substituted anilines, provided a single negative charge was present near C-24. In comparing uptake findings to prior inhibition results, increased hydrophobicity enhanced activity, with dianions and zwitterions hindering activity. PMID:20939504

  10. Ascorbic acid transport and accumulation in human neutrophils

    SciTech Connect

    Washko, P.; Rotrosen, D.; Levine, M. )

    1989-11-15

    The transport, accumulation, and distribution of ascorbic acid were investigated in isolated human neutrophils utilizing a new ascorbic acid assay, which combined the techniques of high performance liquid chromatography and coulometric electrochemical detection. Freshly isolated human neutrophils contained 1.0-1.4 mM ascorbic acid, which was localized greater than or equal to 94% to the cytosol, was not protein bound, and was present only as ascorbic acid and not as dehydroascorbic acid. Upon addition of ascorbic acid to the extracellular medium in physiologic amounts, ascorbic acid was accumulated in neutrophils in millimolar concentrations. Accumulation was mediated by a high affinity and a low affinity transporter; both transporters were responsible for maintenance of concentration gradients as large as 50-fold. The high affinity transporter had an apparent Km of 2-5 microns by Lineweaver-Burk and Eadie-Hofstee analyses, and the low affinity transporter had an apparent Km of 6-7 mM by similar analyses. Each transporter was saturable and temperature dependent. In normal human blood the high affinity transporter should be saturated, whereas the low affinity transporter should be in its linear phase of uptake.

  11. Valproic acid induces the glutamate transporter excitatory amino acid transporter-3 in human oligodendroglioma cells.

    PubMed

    Bianchi, M G; Franchi-Gazzola, R; Reia, L; Allegri, M; Uggeri, J; Chiu, M; Sala, R; Bussolati, O

    2012-12-27

    Glutamate transport in early, undifferentiated oligodendrocytic precursors has not been characterized thus far. Here we show that human oligodendroglioma Hs683 cells are not endowed with EAAT-dependent anionic amino acid transport. However, in these cells, but not in U373 human glioblastoma cells, valproic acid (VPA), an inhibitor of histone deacetylases, markedly induces SLC1A1 mRNA, which encodes for the glutamate transporter EAAT3. The effect is detectable after 8h and persists up to 120h of treatment. EAAT3 protein increase becomes detectable after 24h of treatment and reaches its maximum after 72-96h, when it is eightfold more abundant than control. The initial influx of d-aspartate increases in parallel, exhibiting the typical features of an EAAT3-mediated process. SLC1A1 mRNA induction is associated with the increased expression of PDGFRA mRNA (+150%), a marker of early oligodendrocyte precursor cells, while the expression of GFAP, CNP and TUBB3 remains unchanged. Short term experiments have indicated that the VPA effect is shared by trichostatin A, another inhibitor of histone deacetylases. On the contrary, EAAT3 induction is neither prevented by inhibitors of mitogen-activated protein kinases nor triggered by a prolonged incubation with lithium, thus excluding a role for the GSK3β/β-catenin pathway. Thus, the VPA-dependent induction of the glutamate transporter EAAT3 in human oligodendroglioma cells likely occurs through an epigenetic mechanism and may represent an early indicator of commitment to oligodendrocytic differentiation.

  12. Differential regulation of placental amino acid transport by saturated and unsaturated fatty acids.

    PubMed

    Lager, Susanne; Jansson, Thomas; Powell, Theresa L

    2014-10-15

    Fatty acids are critical for normal fetal development but may also influence placental function. We have previously reported that oleic acid (OA) stimulates amino acid transport in primary human trophoblasts (PHTs). In other tissues, saturated and unsaturated fatty acids have distinct effects on cellular signaling, for instance, palmitic acid (PA) but not OA reduces IκBα expression. We hypothesized that saturated and unsaturated fatty acids differentially affect trophoblast amino acid transport and cellular signaling. To test this hypothesis, PHTs were cultured in docosahexaenoic acid (DHA; 50 μM), OA (100 μM), or PA (100 μM). DHA and OA were also combined to test whether DHA could counteract the OA stimulatory effect on amino acid transport. The effects of fatty acids were compared against a vehicle control. Amino acid transport was measured by isotope-labeled tracers. Activation of inflammatory-related signaling pathways and the mechanistic target of rapamycin (mTOR) pathway were determined by Western blot analysis. Exposure of PHTs to DHA for 24 h reduced amino acid transport and phosphorylation of p38 MAPK, STAT3, mTOR, eukaryotic initiation factor 4E-binding protein 1, and ribosomal protein (rp)S6. In contrast, OA increased amino acid transport and phosphorylation of ERK, mTOR, S6 kinase 1, and rpS6. The combination of DHA with OA increased amino acid transport and rpS6 phosphorylation. PA did not affect amino acid transport but reduced IκBα expression. In conclusion, these fatty acids differentially regulated placental amino acid transport and cellular signaling. Taken together, these findings suggest that dietary fatty acids could alter the intrauterine environment by modifying placental function, thereby having long-lasting effects on the developing fetus.

  13. Arachidonic acid inhibits glycine transport in cultured glial cells.

    PubMed Central

    Zafra, F; Alcantara, R; Gomeza, J; Aragon, C; Gimenez, C

    1990-01-01

    The effects of arachidonic acid on glycine uptake, exchange and efflux in C6 glioma cells were investigated. Arachidonic acid produced a dose-dependent inhibition of high-affinity glycine uptake. This effect was not due to a simple detergent-like action on membranes, as the inhibition of glycine transport was most pronounced with cis-unsaturated long-chain fatty acids, whereas saturated and trans-unsaturated fatty acids had relatively little or no effect. Endogenous unsaturated non-esterified fatty acids may exert a similar inhibitory effect on the transport of glycine. The mechanism for this inhibitory effect has been examined in a plasma membrane vesicle preparation derived from C6 cells, which avoids metabolic or compartmentation interferences. The results suggest that part of the selective inhibition of glycine transport by arachidonic acid could be due to the effects of the arachidonic acid on the lipid domain surrounding the carrier. PMID:2121132

  14. Ligands targeting the excitatory amino acid transporters (EAATs).

    PubMed

    Dunlop, John; Butera, John A

    2006-01-01

    This review provides an overview of ligands for the excitatory amino acid transporters (EAATs), a family of high-affinity glutamate transporters localized to the plasma membrane of neurons and astroglial cells. Ligand development from the perspective of identifying novel and more selective tools for elucidating transporter subtype function, and the potential of transporter ligands in a therapeutic setting are discussed. Acute pharmacological modulation of EAAT activity in the form of linear and conformationally restricted glutamate and aspartate analogs is presented, in addition to recent strategies aimed more toward modulating transporter expression levels, the latter of particular significance to the development of transporter based therapeutics.

  15. Identification of a novel sialic acid transporter in Haemophilus ducreyi.

    PubMed

    Post, Deborah M B; Mungur, Rachna; Gibson, Bradford W; Munson, Robert S

    2005-10-01

    Haemophilus ducreyi, the causative agent of chancroid, produces a lipooligosaccharide (LOS) which terminates in N-acetyllactosamine. This glycoform can be further extended by the addition of a single sialic acid residue to the terminal galactose moiety. H. ducreyi does not synthesize sialic acid, which must be acquired from the host during infection or from the culture medium when the bacteria are grown in vitro. However, H. ducreyi does not have genes that are highly homologous to the genes encoding known bacterial sialic acid transporters. In this study, we identified the sialic acid transporter by screening strains in a library of random transposon mutants for those mutants that were unable to add sialic acid to N-acetyllactosamine-containing LOS. Mutants that reacted with the monoclonal antibody 3F11, which recognizes the terminal lactosamine structure, and lacked reactivity with the lectin Maackia amurensis agglutinin, which recognizes alpha2,3-linked sialic acid, were further characterized to demonstrate that they produced a N-acetyllactosamine-containing LOS by silver-stained sodium dodecyl sulfate-polyacrylamide gel electrophoresis and mass spectrometric analyses. The genes interrupted in these mutants were mapped to a four-gene cluster with similarity to genes encoding bacterial ABC transporters. Uptake assays using radiolabeled sialic acid confirmed that the mutants were unable to transport sialic acid. This study is the first report of bacteria using an ABC transporter for sialic acid uptake.

  16. Ammonia Transporters and Their Role in Acid-Base Balance.

    PubMed

    Weiner, I David; Verlander, Jill W

    2017-04-01

    Acid-base homeostasis is critical to maintenance of normal health. Renal ammonia excretion is the quantitatively predominant component of renal net acid excretion, both under basal conditions and in response to acid-base disturbances. Although titratable acid excretion also contributes to renal net acid excretion, the quantitative contribution of titratable acid excretion is less than that of ammonia under basal conditions and is only a minor component of the adaptive response to acid-base disturbances. In contrast to other urinary solutes, ammonia is produced in the kidney and then is selectively transported either into the urine or the renal vein. The proportion of ammonia that the kidney produces that is excreted in the urine varies dramatically in response to physiological stimuli, and only urinary ammonia excretion contributes to acid-base homeostasis. As a result, selective and regulated renal ammonia transport by renal epithelial cells is central to acid-base homeostasis. Both molecular forms of ammonia, NH3 and NH4(+), are transported by specific proteins, and regulation of these transport processes determines the eventual fate of the ammonia produced. In this review, we discuss these issues, and then discuss in detail the specific proteins involved in renal epithelial cell ammonia transport.

  17. Identification and application of keto acids transporters in Yarrowia lipolytica

    PubMed Central

    Guo, Hongwei; Liu, Peiran; Madzak, Catherine; Du, Guocheng; Zhou, Jingwen; Chen, Jian

    2015-01-01

    Production of organic acids by microorganisms is of great importance for obtaining building-block chemicals from sustainable biomass. Extracellular accumulation of organic acids involved a series of transporters, which play important roles in the accumulation of specific organic acid while lack of systematic demonstration in eukaryotic microorganisms. To circumvent accumulation of by-product, efforts have being orchestrated to carboxylate transport mechanism for potential clue in Yarrowia lipolytica WSH-Z06. Six endogenous putative transporter genes, YALI0B19470g, YALI0C15488g, YALI0C21406g, YALI0D24607g, YALI0D20108g and YALI0E32901g, were identified. Transport characteristics and substrate specificities were further investigated using a carboxylate-transport-deficient Saccharomyces cerevisiae strain. These transporters were expressed in Y. lipolytica WSH-Z06 to assess their roles in regulating extracellular keto acids accumulation. In a Y. lipolytica T1 line over expressing YALI0B19470g, α-ketoglutarate accumulated to 46.7 g·L−1, whereas the concentration of pyruvate decreased to 12.3 g·L−1. Systematic identification of these keto acids transporters would provide clues to further improve the accumulation of specific organic acids with higher efficiency in eukaryotic microorganisms. PMID:25633653

  18. Identification and application of keto acids transporters in Yarrowia lipolytica.

    PubMed

    Guo, Hongwei; Liu, Peiran; Madzak, Catherine; Du, Guocheng; Zhou, Jingwen; Chen, Jian

    2015-01-30

    Production of organic acids by microorganisms is of great importance for obtaining building-block chemicals from sustainable biomass. Extracellular accumulation of organic acids involved a series of transporters, which play important roles in the accumulation of specific organic acid while lack of systematic demonstration in eukaryotic microorganisms. To circumvent accumulation of by-product, efforts have being orchestrated to carboxylate transport mechanism for potential clue in Yarrowia lipolytica WSH-Z06. Six endogenous putative transporter genes, YALI0B19470g, YALI0C15488g, YALI0C21406g, YALI0D24607g, YALI0D20108g and YALI0E32901g, were identified. Transport characteristics and substrate specificities were further investigated using a carboxylate-transport-deficient Saccharomyces cerevisiae strain. These transporters were expressed in Y. lipolytica WSH-Z06 to assess their roles in regulating extracellular keto acids accumulation. In a Y. lipolytica T1 line over expressing YALI0B19470g, α-ketoglutarate accumulated to 46.7 g·L(-1), whereas the concentration of pyruvate decreased to 12.3 g·L(-1). Systematic identification of these keto acids transporters would provide clues to further improve the accumulation of specific organic acids with higher efficiency in eukaryotic microorganisms.

  19. Amino acid transporters: roles in amino acid sensing and signalling in animal cells.

    PubMed Central

    Hyde, Russell; Taylor, Peter M; Hundal, Harinder S

    2003-01-01

    Amino acid availability regulates cellular physiology by modulating gene expression and signal transduction pathways. However, although the signalling intermediates between nutrient availability and altered gene expression have become increasingly well documented, how eukaryotic cells sense the presence of either a nutritionally rich or deprived medium is still uncertain. From recent studies it appears that the intracellular amino acid pool size is particularly important in regulating translational effectors, thus, regulated transport of amino acids across the plasma membrane represents a means by which the cellular response to amino acids could be controlled. Furthermore, evidence from studies with transportable amino acid analogues has demonstrated that flux through amino acid transporters may act as an initiator of nutritional signalling. This evidence, coupled with the substrate selectivity and sensitivity to nutrient availability classically associated with amino acid transporters, plus the recent discovery of transporter-associated signalling proteins, demonstrates a potential role for nutrient transporters as initiators of cellular nutrient signalling. Here, we review the evidence supporting the idea that distinct amino acid "receptors" function to detect and transmit certain nutrient stimuli in higher eukaryotes. In particular, we focus on the role that amino acid transporters may play in the sensing of amino acid levels, both directly as initiators of nutrient signalling and indirectly as regulators of external amino acid access to intracellular receptor/signalling mechanisms. PMID:12879880

  20. Carboxylic Acids Plasma Membrane Transporters in Saccharomyces cerevisiae.

    PubMed

    Casal, Margarida; Queirós, Odília; Talaia, Gabriel; Ribas, David; Paiva, Sandra

    2016-01-01

    This chapter covers the functionally characterized plasma membrane carboxylic acids transporters Jen1, Ady2, Fps1 and Pdr12 in the yeast Saccharomyces cerevisiae, addressing also their homologues in other microorganisms, as filamentous fungi and bacteria. Carboxylic acids can either be transported into the cells, to be used as nutrients, or extruded in response to acid stress conditions. The secondary active transporters Jen1 and Ady2 can mediate the uptake of the anionic form of these substrates by a H(+)-symport mechanism. The undissociated form of carboxylic acids is lipid-soluble, crossing the plasma membrane by simple diffusion. Furthermore, acetic acid can also be transported by facilitated diffusion via Fps1 channel. At the cytoplasmic physiological pH, the anionic form of the acid prevails and it can be exported by the Pdr12 pump. This review will highlight the mechanisms involving carboxylic acids transporters, and the way they operate according to the yeast cell response to environmental changes, as carbon source availability, extracellular pH and acid stress conditions.

  1. Transport of aromatic amino acids by Brevibacterium linens.

    PubMed

    Boyaval, P; Moreira, E; Desmazeaud, M J

    1983-09-01

    Whole metabolizing Brevibacterium linens cells were used to study the transport of aromatic amino acids. Kinetic results followed the Michaelis-Menten equation with apparent Km values for phenylalanine, tyrosine, and tryptophan of 24, 3.5, and 1.8 microM. Transport of these amino acids was optimum at pH 7.5 and 25 degrees C for phenylalanine and pH 8.0 and 35 degrees C for tyrosine and tryptophan. Crossed inhibitions were all noncompetitive. The only marked stereospecificity was for the L form of phenylalanine. Transport was almost totally inhibited by carbonyl cyanide-m-chlorophenylhydrazone. Iodoacetate and N-ethylmaleimide were much more inhibitory for tryptophan transport than for transport of the other two aromatic amino acids.

  2. Transport of malic acid and other dicarboxylic acids in the yeast Hansenula anomala.

    PubMed Central

    Côrte-Real, M; Leão, C

    1990-01-01

    DL-Malic acid-grown cells of the yeast Hansenula anomala formed a saturable transport system that mediated accumulative transport of L-malic acid with the following kinetic parameters at pH 5.0: Vmax, 0.20 nmol.s-1.mg (dry weight)-1; Km, 0.076 mM L-malate. Uptake of malic acid was accompanied by proton disappearance from the external medium with rates that followed Michaelis-Menten kinetics as a function of malic acid concentration. Fumaric acid, alpha-ketoglutaric acid, oxaloacetic acid, D-malic acid, and L-malic acid were competitive inhibitors of succinic acid transport, and all induced proton movements that followed Michaelis-Menten kinetics, suggesting that all of these dicarboxylates used the same transport system. Maleic acid, malonic acid, oxalic acid, and L-(+)-tartaric acid, as well as other Krebs cycle acids such as citric and isocitric acids, were not accepted by the malate transport system. Km measurements as a function of pH suggested that the anionic forms of the acids were transported by an accumulative dicarboxylate proton symporter. The accumulation ratio at pH 5.0 was about 40. The malate system was inducible and was subject to glucose repression. Undissociated succinic acid entered the cells slowly by simple diffusion. The permeability of the cells by undissociated acid increased with pH, with the diffusion constant increasing 100-fold between pH 3.0 and 6.0. PMID:2339872

  3. Nucleic acids encoding metal uptake transporters and their uses

    DOEpatents

    Schroeder, Julian I.; Antosiewicz, Danuta M.; Schachtman, Daniel P.; Clemens, Stephan

    1999-01-01

    The invention provides LCT1 nucleic acids which encode metal ion uptake transporters. The invention also provides methods of modulating heavy metal and alkali metal uptake in plants. The methods involve producing transgenic plants comprising a recombinant expression cassette containing an LCT1 nucleic acid linked to a plant promoter.

  4. Assessing the allelotypic effect of two aminocyclopropane carboxylic acid synthase-encoding genes MdACS1 and MdACS3a on fruit ethylene production and softening in Malus

    PubMed Central

    Dougherty, Laura; Zhu, Yuandi; Xu, Kenong

    2016-01-01

    Phytohormone ethylene largely determines apple fruit shelf life and storability. Previous studies demonstrated that MdACS1 and MdACS3a, which encode 1-aminocyclopropane-1-carboxylic acid synthases (ACS), are crucial in apple fruit ethylene production. MdACS1 is well-known to be intimately involved in the climacteric ethylene burst in fruit ripening, while MdACS3a has been regarded a main regulator for ethylene production transition from system 1 (during fruit development) to system 2 (during fruit ripening). However, MdACS3a was also shown to have limited roles in initiating the ripening process lately. To better assess their roles, fruit ethylene production and softening were evaluated at five time points during a 20-day post-harvest period in 97 Malus accessions and in 34 progeny from 2 controlled crosses. Allelotyping was accomplished using an existing marker (ACS1) for MdACS1 and two markers (CAPS866 and CAPS870) developed here to specifically detect the two null alleles (ACS3a-G289V and Mdacs3a) of MdACS3a. In total, 952 Malus accessions were allelotyped with the three markers. The major findings included: The effect of MdACS1 was significant on fruit ethylene production and softening while that of MdACS3a was less detectable; allele MdACS1–2 was significantly associated with low ethylene and slow softening; under the same background of the MdACS1 allelotypes, null allele Mdacs3a (not ACS3a-G289V) could confer a significant delay of ethylene peak; alleles MdACS1–2 and Mdacs3a (excluding ACS3a-G289V) were highly enriched in M. domestica and M. hybrid when compared with those in M. sieversii. These findings are of practical implications in developing apples of low and delayed ethylene profiles by utilizing the beneficial alleles MdACS1-2 and Mdacs3a. PMID:27231553

  5. Modeling acid transport in chemically amplified resist films

    NASA Astrophysics Data System (ADS)

    Patil, Abhijit A.; Doxastakis, Manolis; Stein, Gila E.

    2014-03-01

    The acid-catalyzed deprotection of glassy poly(4-hydroxystyrene-co-tert butyl acrylate) films was studied with infrared absorbance spectroscopy and stochastic simulations. Experimental data were interpreted with a simple description of subdiffusive acid transport coupled to second-order acid loss. This model predicts key attributes of observed deprotection rates, such as fast reaction at short times, slow reaction at long times, and a non-linear dependence on acid loading. The degree of anomalous character is reduced by increasing the post-exposure bake temperature or adding plasticizing agents to the polymer resin. These findings indicate that the acid mobility and overall deprotection kinetics are coupled to glassy matrix dynamics. Furthermore, the acid diffusion lengths were calculated from the anomalous transport model and compared with nanopattern line widths. The consistent scaling between experiments and simulations suggests that the anomalous diffusion model could be further developed into a predictive lithography tool.

  6. Luminal Heterodimeric Amino Acid Transporter Defective in Cystinuria

    PubMed Central

    Pfeiffer, Rahel; Loffing, Jan; Rossier, Grégoire; Bauch, Christian; Meier, Christian; Eggermann, Thomas; Loffing-Cueni, Dominique; Kühn, Lukas C.; Verrey, François

    1999-01-01

    Mutations of the glycoprotein rBAT cause cystinuria type I, an autosomal recessive failure of dibasic amino acid transport (b0,+ type) across luminal membranes of intestine and kidney cells. Here we identify the permease-like protein b0,+AT as the catalytic subunit that associates by a disulfide bond with rBAT to form a hetero-oligomeric b0,+ amino acid transporter complex. We demonstrate its b0,+-type amino acid transport kinetics using a heterodimeric fusion construct and show its luminal brush border localization in kidney proximal tubule. These biochemical, transport, and localization characteristics as well as the chromosomal localization on 19q support the notion that the b0,+AT protein is the product of the gene defective in non-type I cystinuria. PMID:10588648

  7. Differential diagnosis of (inherited) amino acid metabolism or transport disorders.

    PubMed

    Blom, W; Huijmans, J G

    1992-02-01

    Disorders of amino acid metabolism or transport are most clearly expressed in urine. Nevertheless the interpretation of abnormalities in urinary amino acid excretion remains difficult. An increase or decrease of almost every amino acid in urine can be due to various etiology. To differentiate between primary and secondary aminoacido-pathies systematic laboratory investigation is necessary. Early diagnosis of disorders of amino acid metabolism or transport is very important, because most of them can be treated, leading to the prevention of (further) clinical abnormalities. In those disorders, which cannot be treated, early diagnosis in an index-patient may prevent the birth of other siblings by means of genetic counseling and prenatal diagnosis.Primary aminoacidopathies can be due to genetically determined transport disorders and enzyme deficiencies in amino acid metabolism or degradation. Secondary aminoacidopathies are the result of abnormal or deficient nutrition, intestinal dysfunction, organ pathology or other metabolic diseases like organic acidurias.A survey of amino acid metabolism and transport abnormalities will be given, illustrated with metabolic pathways and characteristic abnormal amino acid chromatograms.

  8. Xenobiotic, Bile Acid, and Cholesterol Transporters: Function and Regulation

    PubMed Central

    Aleksunes, Lauren M.

    2010-01-01

    Transporters influence the disposition of chemicals within the body by participating in absorption, distribution, and elimination. Transporters of the solute carrier family (SLC) comprise a variety of proteins, including organic cation transporters (OCT) 1 to 3, organic cation/carnitine transporters (OCTN) 1 to 3, organic anion transporters (OAT) 1 to 7, various organic anion transporting polypeptide isoforms, sodium taurocholate cotransporting polypeptide, apical sodium-dependent bile acid transporter, peptide transporters (PEPT) 1 and 2, concentrative nucleoside transporters (CNT) 1 to 3, equilibrative nucleoside transporter (ENT) 1 to 3, and multidrug and toxin extrusion transporters (MATE) 1 and 2, which mediate the uptake (except MATEs) of organic anions and cations as well as peptides and nucleosides. Efflux transporters of the ATP-binding cassette superfamily, such as ATP-binding cassette transporter A1 (ABCA1), multidrug resistance proteins (MDR) 1 and 2, bile salt export pump, multidrug resistance-associated proteins (MRP) 1 to 9, breast cancer resistance protein, and ATP-binding cassette subfamily G members 5 and 8, are responsible for the unidirectional export of endogenous and exogenous substances. Other efflux transporters [ATPase copper-transporting β polypeptide (ATP7B) and ATPase class I type 8B member 1 (ATP8B1) as well as organic solute transporters (OST) α and β] also play major roles in the transport of some endogenous chemicals across biological membranes. This review article provides a comprehensive overview of these transporters (both rodent and human) with regard to tissue distribution, subcellular localization, and substrate preferences. Because uptake and efflux transporters are expressed in multiple cell types, the roles of transporters in a variety of tissues, including the liver, kidneys, intestine, brain, heart, placenta, mammary glands, immune cells, and testes are discussed. Attention is also placed upon a variety of regulatory

  9. Xenobiotic, bile acid, and cholesterol transporters: function and regulation.

    PubMed

    Klaassen, Curtis D; Aleksunes, Lauren M

    2010-03-01

    Transporters influence the disposition of chemicals within the body by participating in absorption, distribution, and elimination. Transporters of the solute carrier family (SLC) comprise a variety of proteins, including organic cation transporters (OCT) 1 to 3, organic cation/carnitine transporters (OCTN) 1 to 3, organic anion transporters (OAT) 1 to 7, various organic anion transporting polypeptide isoforms, sodium taurocholate cotransporting polypeptide, apical sodium-dependent bile acid transporter, peptide transporters (PEPT) 1 and 2, concentrative nucleoside transporters (CNT) 1 to 3, equilibrative nucleoside transporter (ENT) 1 to 3, and multidrug and toxin extrusion transporters (MATE) 1 and 2, which mediate the uptake (except MATEs) of organic anions and cations as well as peptides and nucleosides. Efflux transporters of the ATP-binding cassette superfamily, such as ATP-binding cassette transporter A1 (ABCA1), multidrug resistance proteins (MDR) 1 and 2, bile salt export pump, multidrug resistance-associated proteins (MRP) 1 to 9, breast cancer resistance protein, and ATP-binding cassette subfamily G members 5 and 8, are responsible for the unidirectional export of endogenous and exogenous substances. Other efflux transporters [ATPase copper-transporting beta polypeptide (ATP7B) and ATPase class I type 8B member 1 (ATP8B1) as well as organic solute transporters (OST) alpha and beta] also play major roles in the transport of some endogenous chemicals across biological membranes. This review article provides a comprehensive overview of these transporters (both rodent and human) with regard to tissue distribution, subcellular localization, and substrate preferences. Because uptake and efflux transporters are expressed in multiple cell types, the roles of transporters in a variety of tissues, including the liver, kidneys, intestine, brain, heart, placenta, mammary glands, immune cells, and testes are discussed. Attention is also placed upon a variety of

  10. Functional characterization of Caenorhabditis elegans heteromeric amino acid transporters.

    PubMed

    Veljkovic, Emilija; Stasiuk, Susan; Skelly, Patrick J; Shoemaker, Charles B; Verrey, François

    2004-02-27

    Mammalian heteromeric amino acid transporters (HATs) are composed of a multi-transmembrane spanning catalytic protein covalently associated with a type II glycoprotein (e.g. 4F2hc, rBAT) through a disulfide bond. Caenorhabditis elegans has nine genes encoding close homologues of the HAT catalytic proteins. Three of these genes (designated AAT-1 to AAT-3) have a much higher degree of similarity to the mammalian homologues than the other six, including the presence of a cysteine residue at the position known to form a disulfide bridge to the glycoprotein partner in mammalian HATs. C. elegans also has two genes encoding homologues of the heteromeric amino acid transporter type II glycoprotein subunits (designated ATG-1 and ATG-2). Both ATG, and/or AAT-1, -2, -3 proteins were expressed in Xenopus oocytes and tested for amino acid transport function. This screen revealed that AAT-1 and AAT-3 facilitate amino acid transport when expressed together with ATG-2 but not with ATG-1 or the mammalian type II glycoproteins 4F2hc and rBAT. AAT-1 and AAT-3 covalently bind to both C. elegans ATG glycoproteins, but only the pairs with ATG-2 traffic to the oocyte surface. Both of these functional, surface-expressed C. elegans HATs transport most neutral amino acids and display the highest transport rate for l-Ala and l-Ser (apparent K(m) 100 microm range). Similar to their mammalian counterparts, the C. elegans HATs function as (near) obligatory amino acid exchangers. Taken together, this study demonstrates that the heteromeric structure and the amino acid exchange function of HATs have been conserved throughout the evolution of nematodes to mammals.

  11. The interaction with arbuscular mycorrhizal fungi or Trichoderma harzianum alters the shoot hormonal profile in melon plants.

    PubMed

    Martínez-Medina, Ainhoa; Roldán, Antonio; Albacete, Alfonso; Pascual, Jose A

    2011-02-01

    Arbuscular mycorrhizal fungi (AMF) and Trichoderma harzianum are known to affect plant growth and disease resistance through interaction with phytohormone synthesis or transport in the plant. Cross-talk between these microorganisms and their host plants normally occurs in nature and may affect plant resistance. Simultaneous quantification in the shoots of melon plants revealed significant changes in the levels of several hormones in response to inoculation with T. harzianum and two different AMF (Glomus intraradices and Glomus mosseae). Analysis of zeatin (Ze), indole-3-acetic acid (IAA), 1-aminocyclopropane-1-carboxylic acid (ACC), salicylic acid (SA), jasmonic acid (JA) and abscisic acid (ABA) in the shoot showed common and divergent responses of melon plants to G. intraradices and G. mosseae. T. harzianum effected systemic increases in Ze, IAA, ACC, SA, JA and ABA. The interaction of T. harzianum and the AMF with the plant produced a characteristic hormonal profile, which differed from that produced by inoculation with each microorganism singly, suggesting an attenuation of the plant response, related to the hormones SA, JA and ethylene. These results are discussed in relation to their involvement in biomass allocation and basal resistance against Fusarium wilt.

  12. Transported acid aerosols measured in southern Ontario

    NASA Astrophysics Data System (ADS)

    Keeler, Gerald J.; Spengler, John D.; Koutrakis, Petros; Allen, George A.; Raizenne, Mark; Stern, Bonnie

    During the period 29 June 1986-9 August 1986, a field health study assessing the acute health effects of air pollutants on children was conducted at a summer girls' camp on the northern shore of Lake Erie in SW Ontario. Continuous air pollution measurements of SO 2, O 3, NO x, particulate sulfates, light scattering, and meteorological measurements including temperature, dew point, and wind speed and direction were made. Twelve-hour integrated samples of size fractioned particles were also obtained using dichotomous samplers and Harvard impactors equipped with an ammonia denuder for subsequent hydrogen ion determination. Particulate samples were analyzed for trace elements by X-ray fluorescence and Neutron Activation, and for organic and elemental carbon by a thermal/optical technique. The measured aerosol was periodically very acidic with observed 12-h averaged H + concentrations in the range < 10-560 nmoles m -3. The aerosol H + appeared to represent the net strong acidity after H 2SO 4 reaction with NH 3(g). Average daytime concentrations were higher than night-time for aerosol H +, sulfate, fine mass and ozone. Prolonged episodes of atmospheric acidity, sulfate, and ozone were associated with air masses arriving at the measurement site from the west and from the southwest over Lake Erie. Sulfate concentrations measured at the lakeshore camp were more than twice those measured at inland sites during extreme pollution episodes. The concentration gradient observed with onshore flow was potentially due to enhanced deposition near the lakeshore caused by discontinuities in the meteorological fields in this region.

  13. Specific lysosomal transport of small neutral amino acids

    SciTech Connect

    Pisoni, R.L.; Flickinger, K.S.; Thoene, J.G.; Christensen, H.N.

    1986-05-01

    Studies of amino acid exodus from lysosomes have allowed us previously to describe transport systems specific for cystine and another for cationic amino acids in fibroblast lysosomes. They are now able to study amino acid uptake into highly purified fibroblast lysosomes obtained by separating crude granular fraction on gradients formed by centrifugation in 35% isoosmotic Percoll solutions. Analog inhibition and saturation studies indicate that L-(/sup 14/C)proline (50 ..mu..M) uptake by fibroblast lysosomes at 37/sup 0/C in 50 mM citrate/tris pH 7.0 buffer containing 0.25 M sucrose is mediated by two transport systems, one largely specific for L-proline and the other for which transport is shared with small neutral amino acids such as alanine, serine and threonine. At 7 mM, L-proline inhibits L-(/sup 14/C)proline uptake almost completely, whereas ala, ser, val, thr, gly, N-methylalanine and sarcosine inhibit proline uptake by 50-65%. The system shared by alanine, serine and threonine is further characterized by these amino acids strongly inhibiting the uptakes of each other. Lysosomal proline transport is selective for the L-isomer of the amino acid, and is scarcely inhibited by 7 mM arg, glu, asp, leu, phe, his, met, (methylamino) isobutyrate, betaine or N,N-dimethylglycine. Cis or trans-4-hydroxy-L-proline inhibit proline uptake only slightly. In sharp contrast to the fibroblast plasma membrane in which Na/sup +/ is required for most proline and alanine transport, lysosomal uptake of these amino acids occurs independently of Na/sup +/.

  14. Regulation of amino acid metabolic enzymes and transporters in plants.

    PubMed

    Pratelli, Réjane; Pilot, Guillaume

    2014-10-01

    Amino acids play several critical roles in plants, from providing the building blocks of proteins to being essential metabolites interacting with many branches of metabolism. They are also important molecules that shuttle organic nitrogen through the plant. Because of this central role in nitrogen metabolism, amino acid biosynthesis, degradation, and transport are tightly regulated to meet demand in response to nitrogen and carbon availability. While much is known about the feedback regulation of the branched biosynthesis pathways by the amino acids themselves, the regulation mechanisms at the transcriptional, post-transcriptional, and protein levels remain to be identified. This review focuses mainly on the current state of our understanding of the regulation of the enzymes and transporters at the transcript level. Current results describing the effect of transcription factors and protein modifications lead to a fragmental picture that hints at multiple, complex levels of regulation that control and coordinate transport and enzyme activities. It also appears that amino acid metabolism, amino acid transport, and stress signal integration can influence each other in a so-far unpredictable fashion.

  15. Renal Transport of Uric Acid: Evolving Concepts and Uncertainties

    PubMed Central

    Bobulescu, Ion Alexandru; Moe, Orson W.

    2013-01-01

    In addition to its role as a metabolic waste product, uric acid has been proposed to be an important molecule with multiple functions in human physiology and pathophysiology and may be linked to human diseases beyond nephrolithiasis and gout. Uric acid homeostasis is determined by the balance between production, intestinal secretion, and renal excretion. The kidney is an important regulator of circulating uric acid levels, by reabsorbing around 90% of filtered urate, while being responsible for 60–70% of total body uric acid excretion. Defective renal handling of urate is a frequent pathophysiologic factor underpinning hyperuricemia and gout. In spite of tremendous advances over the past decade, the molecular mechanisms of renal urate transport are still incompletely understood. Many transport proteins are candidate participants in urate handling, with URAT1 and GLUT9 being the best characterized to date. Understanding these transporters is increasingly important for the practicing clinician as new research unveils their physiology, importance in drug action, and genetic association with uric acid levels in human populations. The future may see the introduction of new drugs that specifically act on individual renal urate transporters for the treatment of hyperuricemia and gout. PMID:23089270

  16. Early steps of adventitious rooting: morphology, hormonal profiling and carbohydrate turnover in carnation stem cuttings.

    PubMed

    Agulló-Antón, María Ángeles; Ferrández-Ayela, Almudena; Fernández-García, Nieves; Nicolás, Carlos; Albacete, Alfonso; Pérez-Alfocea, Francisco; Sánchez-Bravo, José; Pérez-Pérez, José Manuel; Acosta, Manuel

    2014-03-01

    The rooting of stem cuttings is a common vegetative propagation practice in many ornamental species. A detailed analysis of the morphological changes occurring in the basal region of cultivated carnation cuttings during the early stages of adventitious rooting was carried out and the physiological modifications induced by exogenous auxin application were studied. To this end, the endogenous concentrations of five major classes of plant hormones [auxin, cytokinin (CK), abscisic acid, salicylic acid (SA) and jasmonic acid] and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid were analyzed at the base of stem cuttings and at different stages of adventitious root formation. We found that the stimulus triggering the initiation of adventitious root formation occurred during the first hours after their excision from the donor plant, due to the breakdown of the vascular continuum that induces auxin accumulation near the wounding. Although this stimulus was independent of exogenously applied auxin, it was observed that the auxin treatment accelerated cell division in the cambium and increased the sucrolytic activities at the base of the stem, both of which contributed to the establishment of the new root primordia at the stem base. Further, several genes involved in auxin transport were upregulated in the stem base either with or without auxin application, while endogenous CK and SA concentrations were specially affected by exogenous auxin application. Taken together our results indicate significant crosstalk between auxin levels, stress hormone homeostasis and sugar availability in the base of the stem cuttings in carnation during the initial steps of adventitious rooting.

  17. Neutral amino acid transport across brain microvessel endothelial cell monolayers

    SciTech Connect

    Audus, K.L.; Borchardt, R.T.

    1986-03-01

    Brain microvessel endothelial cells (BMEC) which form the blood-brain barrier (BBB) possess an amino acid carrier specific for large neutral amino acids (LNAA). The carrier is important for facilitating the delivery of nutrient LNAA's and centrally acting drugs that are LNAA's, to the brain. Bovine BMEC's were isolated and grown up to complete monolayers on regenerated cellulose-membranes in primary culture. To study the transendothelial transport of leucine, the monolayers were placed in a side-by-side diffusion cell, and transport across the monolayers followed with (/sup 3/H)-leucine. The transendothelial transport of leucine in this in vitro model was determined to be bidirectional, and time-, temperature-, and concentration-dependent. The transport of leucine was saturable and the apparent K/sub m/ and V/sub max/, 0.18 mM and 6.3 nmol/mg/min, respectively. Other LNAA's, including the centrally acting drugs, ..cap alpha..-methyldopa, L-DOPA, ..cap alpha..-methyl-tyrosine, and baclofen, inhibited leucine transport. The leucine carrier was also found to be stereospecific and not sensitive to inhibitors of active transport. These results are consistent with previous in vitro and in vivo studies. Primary cultures of BMEC's appear to be a potentially important tool for investigating at the cellular level, the transport mechanisms of the BBB.

  18. The Arabidopsis mutant alh1 illustrates a cross talk between ethylene and auxin.

    PubMed

    Vandenbussche, Filip; Smalle, Jan; Le, Jie; Saibo, Nelson José Madeira; De Paepe, Annelies; Chaerle, Laury; Tietz, Olaf; Smets, Raphael; Laarhoven, Lucas J J; Harren, Frans J M; Van Onckelen, Harry; Palme, Klaus; Verbelen, Jean-Pierre; Van Der Straeten, Dominique

    2003-03-01

    Ethylene or its precursor 1-aminocyclopropane-1-carboxylic acid (ACC) can stimulate hypocotyl elongation in light-grown Arabidopsis seedlings. A mutant, designated ACC-related long hypocotyl 1 (alh1), that displayed a long hypocotyl in the light in the absence of the hormone was characterized. Etiolated alh1 seedlings overproduced ethylene and had an exaggerated apical hook and a thicker hypocotyl, although no difference in hypocotyl length was observed when compared with wild type. Alh1 plants were less sensitive to ethylene, as reflected by reduction of ACC-mediated inhibition of hypocotyl growth in the dark and delay in flowering and leaf senescence. Alh1 also had an altered response to auxin, whereas auxin levels in whole alh1 seedlings remained unaffected. In contrast to wild type, alh1 seedlings showed a limited hypocotyl elongation when treated with indole-3-acetic acid. Alh1 roots had a faster response to gravity. Furthermore, the hypocotyl elongation of alh1 and of ACC-treated wild type was reverted by auxin transport inhibitors. In addition, auxin up-regulated genes were ectopically expressed in hypocotyls upon ACC treatment, suggesting that the ethylene response is mediated by auxins. Together, these data indicate that alh1 is altered in the cross talk between ethylene and auxins, probably at the level of auxin transport.

  19. Acid-base transport in pancreas—new challenges

    PubMed Central

    Novak, Ivana; Haanes, Kristian A.; Wang, Jing

    2013-01-01

    Along the gastrointestinal tract a number of epithelia contribute with acid or basic secretions in order to aid digestive processes. The stomach and pancreas are the most extreme examples of acid (H+) and base (HCO−3) transporters, respectively. Nevertheless, they share the same challenges of transporting acid and bases across epithelia and effectively regulating their intracellular pH. In this review, we will make use of comparative physiology to enlighten the cellular mechanisms of pancreatic HCO−3 and fluid secretion, which is still challenging physiologists. Some of the novel transporters to consider in pancreas are the proton pumps (H+-K+-ATPases), as well as the calcium-activated K+ and Cl− channels, such as KCa3.1 and TMEM16A/ANO1. Local regulators, such as purinergic signaling, fine-tune, and coordinate pancreatic secretion. Lastly, we speculate whether dys-regulation of acid-base transport contributes to pancreatic diseases including cystic fibrosis, pancreatitis, and cancer. PMID:24391597

  20. Transport of Amino Acids to the Maize Root 1

    PubMed Central

    Oaks, Ann

    1966-01-01

    When 5-mm maize root tips were excised and placed in an inorganic salts solution for 6 hours, there was a loss of alcohol-insoluble nitrogen. The levels of threonine, proline, valine, isoleucine, leucine, tyrosine, phenylalanine, and lysine in the alcohol soluble fraction were severely reduced, whereas those of glutamate, aspartate, ornithine, and alanine were scarcely affected. There was a 4-fold increase in the level of γ-aminobutyrate. Those amino acids whose synthesis appeared to be deficient in excised root tips also showed poor incorporation of acetate carbon. In addition, the results show that asparagine and the amino acids of the neutral and basic fraction were preferentially transported to the root tip region. The results therefore suggest that the synthesis of certain amino acids in the root tip region is restricted, and that this requirement for amino acids in the growing region could regulate the flow of amino acids to the root tip. PMID:16656225

  1. The involvement of L-type amino acid transporters in theanine transport.

    PubMed

    Yamamoto, Sachiko; Kimura, Toru; Tachiki, Takashi; Anzai, Naohiko; Sakurai, Takuya; Ushimaru, Makoto

    2012-01-01

    L-Theanine has favorable physiological effects in terms of human health, but the mechanisms that transport it to its target organs or cells are not completely defined. To identify the major transport mechanisms of L-theanine, we screened for candidate transporters of L-3H-theanine in several mammal cell lines that intrinsically express multiple transporters with various specificities. All of the cells tested, T24, HepG2, COS1, 293A, Neuro2a, and HuH7, absorbed L-3H-theanine. Uptake was significantly inhibited by the addition of L-leucine and by a specific inhibitor of the system L transport system, 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid (BCH). L-3H-Theanine uptake occurred mostly independently of Na+. These results indicate that L-theanine was taken up via a system L like transport system in all of the cells tested. Additionally, in experiments using cells stably expressing two system L isoforms, LAT1 and LAT2, we found that the two isoforms mediated L-theanine transport to similar extents. Taken together, our results indicate that L-theanine is transported mostly via the system L transport pathway and its isoforms.

  2. A type III ACC synthase, ACS7, is involved in root gravitropism in Arabidopsis thaliana.

    PubMed

    Huang, Shih-Jhe; Chang, Chia-Lun; Wang, Po-Hsun; Tsai, Min-Chieh; Hsu, Pang-Hung; Chang, Ing-Feng

    2013-11-01

    Ethylene is an important plant hormone that regulates developmental processes in plants. The ethylene biosynthesis pathway is a highly regulated process at both the transcriptional and post-translational level. The transcriptional regulation of these ethylene biosynthesis genes is well known. However, post-translational modifications of the key ethylene biosynthesis enzyme 1-aminocyclopropane-1-carboxylate (ACC) synthase (ACS) are little understood. In vitro kinase assays were conducted on the type III ACS, AtACS7, fusion protein and peptides to determine whether the AtACS7 protein can be phosphorylated by calcium-dependent protein kinase (CDPK). AtACS7 was phosphorylated at Ser216, Thr296, and Ser299 by AtCDPK16 in vitro. To investigate further the function of the ACS7 gene in Arabidopsis, an acs7-1 loss-of-function mutant was isolated. The acs7-1 mutant exhibited less sensitivity to the inhibition of root gravitropism by treatment with the calcium chelator ethylene glycol tetraacetic acid (EGTA). Seedlings were treated with gradient concentrations of ACC. The results showed that a certain concentration of ethylene enhanced the gravity response. Moreover, the acs7-1 mutant was less sensitive to inhibition of the gravity response by treatment with the auxin polar transport inhibitor 1-naphthylphthalamic acid, but exogenous ACC application recovered root gravitropism. Altogether, the results indicate that AtACS7 is involved in root gravitropism in a calcium-dependent manner in Arabidopsis.

  3. Integration of computational modeling with membrane transport studies reveals new insights into amino acid exchange transport mechanisms.

    PubMed

    Widdows, Kate L; Panitchob, Nuttanont; Crocker, Ian P; Please, Colin P; Hanson, Mark A; Sibley, Colin P; Johnstone, Edward D; Sengers, Bram G; Lewis, Rohan M; Glazier, Jocelyn D

    2015-06-01

    Uptake of system L amino acid substrates into isolated placental plasma membrane vesicles in the absence of opposing side amino acid (zero-trans uptake) is incompatible with the concept of obligatory exchange, where influx of amino acid is coupled to efflux. We therefore hypothesized that system L amino acid exchange transporters are not fully obligatory and/or that amino acids are initially present inside the vesicles. To address this, we combined computational modeling with vesicle transport assays and transporter localization studies to investigate the mechanisms mediating [(14)C]L-serine (a system L substrate) transport into human placental microvillous plasma membrane (MVM) vesicles. The carrier model provided a quantitative framework to test the 2 hypotheses that l-serine transport occurs by either obligate exchange or nonobligate exchange coupled with facilitated transport (mixed transport model). The computational model could only account for experimental [(14)C]L-serine uptake data when the transporter was not exclusively in exchange mode, best described by the mixed transport model. MVM vesicle isolates contained endogenous amino acids allowing for potential contribution to zero-trans uptake. Both L-type amino acid transporter (LAT)1 and LAT2 subtypes of system L were distributed to MVM, with L-serine transport attributed to LAT2. These findings suggest that exchange transporters do not function exclusively as obligate exchangers.

  4. Fatty acid transport protein expression in human brain and potential role in fatty acid transport across human brain microvessel endothelial cells.

    PubMed

    Mitchell, Ryan W; On, Ngoc H; Del Bigio, Marc R; Miller, Donald W; Hatch, Grant M

    2011-05-01

    The blood-brain barrier (BBB), formed by the brain capillary endothelial cells, provides a protective barrier between the systemic blood and the extracellular environment of the CNS. Passage of fatty acids from the blood to the brain may occur either by diffusion or by proteins that facilitate their transport. Currently several protein families have been implicated in fatty acid transport. The focus of the present study was to identify the fatty acid transport proteins (FATPs) expressed in the brain microvessel endothelial cells and characterize their involvement in fatty acid transport across an in vitro BBB model. The major fatty acid transport proteins expressed in human brain microvessel endothelial cells (HBMEC), mouse capillaries and human grey matter were FATP-1, -4 and fatty acid binding protein 5 and fatty acid translocase/CD36. The passage of various radiolabeled fatty acids across confluent HBMEC monolayers was examined over a 30-min period in the presence of fatty acid free albumin in a 1 : 1 molar ratio. The apical to basolateral permeability of radiolabeled fatty acids was dependent upon both saturation and chain length of the fatty acid. Knockdown of various fatty acid transport proteins using siRNA significantly decreased radiolabeled fatty acid transport across the HBMEC monolayer. Our findings indicate that FATP-1 and FATP-4 are the predominant fatty acid transport proteins expressed in the BBB based on human and mouse expression studies. While transport studies in HBMEC monolayers support their involvement in fatty acid permeability, fatty acid translocase/CD36 also appears to play a prominent role in transport of fatty acids across HBMEC.

  5. Regulation of the plasma amino acid profile by leucine via the system L amino acid transporter.

    PubMed

    Zhen, Hongmin; Nakamura, Koichi; Kitaura, Yasuyuki; Kadota, Yoshihiro; Ishikawa, Takuya; Kondo, Yusuke; Xu, Minjun; Shimomura, Yoshiharu

    2015-01-01

    Plasma concentrations of amino acids reflect the intracellular amino acid pool in mammals. However, the regulatory mechanism requires clarification. In this study, we examined the effect of leucine administration on plasma amino acid profiles in mice with and without the treatment of 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid (BCH) or rapamycin as an inhibitor of system L or mammalian target of rapamycin complex 1, respectively. The elevation of plasma leucine concentration after leucine administration was associated with a significant decrease in the plasma concentrations of isoleucine, valine, methionine, phenylalanine, and tyrosine; BCH treatment almost completely blocked the leucine-induced decrease in plasma amino acid concentrations. Rapamycin treatment had much less effects on the actions of leucine than BCH treatment. These results suggest that leucine regulates the plasma concentrations of branched-chain amino acids, methionine, phenylalanine, and tyrosine, and that system L amino acid transporters are involved in the leucine action.

  6. Transport in Halobacterium Halobium: Light-Induced Cation-Gradients, Amino Acid Transport Kinetics, and Properties of Transport Carriers

    NASA Technical Reports Server (NTRS)

    Lanyi, Janos K.

    1977-01-01

    Cell envelope vesicles prepared from H. halobium contain bacteriorhodopsin and upon illumination protons are ejected. Coupled to the proton motive force is the efflux of Na(+). Measurements of Na-22 flux, exterior pH change, and membrane potential, Delta(psi) (with the dye 3,3'-dipentyloxadicarbocyanine) indicate that the means of Na(+) transport is sodium/proton exchange. The kinetics of the pH changes and other evidence suggests that the antiport is electrogenic (H(+)/Na(++ greater than 1). The resulting large chemical gradient for Na(+) (outside much greater than inside), as well as the membrane potential, will drive the transport of 18 amino acids. The I9th, glutamate, is unique in that its accumulation is indifferent to Delta(psi): this amino acid is transported only when a chemical gradient for Na(+) is present. Thus, when more and more NaCl is included in the vesicles glutamate transport proceeds with longer and longer lags. After illumination the gradient of H+() collapses within 1 min, while the large Na(+) gradient and glutamate transporting activity persists for 10- 15 min, indicating that proton motive force is not necessary for transport. A chemical gradient of Na(+), arranged by suspending vesicles loaded with KCl in NaCl, drives glutamate transport in the dark without other sources of energy, with V(sub max) and K(sub m) comparable to light-induced transport. These and other lines of evidence suggest that the transport of glutamate is facilitated by symport with Na(+), in an electrically neutral fashion, so that only the chemical component of the Na(+) gradient is a driving force.

  7. Fatty acid transport and activation and the expression patterns of genes involved in fatty acid trafficking.

    PubMed

    Sandoval, Angel; Fraisl, Peter; Arias-Barrau, Elsa; Dirusso, Concetta C; Singer, Diane; Sealls, Whitney; Black, Paul N

    2008-09-15

    These studies defined the expression patterns of genes involved in fatty acid transport, activation and trafficking using quantitative PCR (qPCR) and established the kinetic constants of fatty acid transport in an effort to define whether vectorial acylation represents a common mechanism in different cell types (3T3-L1 fibroblasts and adipocytes, Caco-2 and HepG2 cells and three endothelial cell lines (b-END3, HAEC, and HMEC)). As expected, fatty acid transport protein (FATP)1 and long-chain acyl CoA synthetase (Acsl)1 were the predominant isoforms expressed in adipocytes consistent with their roles in the transport and activation of exogenous fatty acids destined for storage in the form of triglycerides. In cells involved in fatty acid processing including Caco-2 (intestinal-like) and HepG2 (liver-like), FATP2 was the predominant isoform. The patterns of Acsl expression were distinct between these two cell types with Acsl3 and Acsl5 being predominant in Caco-2 cells and Acsl4 in HepG2 cells. In the endothelial lines, FATP1 and FATP4 were the most highly expressed isoforms; the expression patterns for the different Acsl isoforms were highly variable between the different endothelial cell lines. The transport of the fluorescent long-chain fatty acid C(1)-BODIPY-C(12) in 3T3-L1 fibroblasts and 3T3-L1 adipocytes followed typical Michaelis-Menten kinetics; the apparent efficiency (k(cat)/K(T)) of this process increases over 2-fold (2.1 x 10(6)-4.5 x 10(6)s(-1)M(-1)) upon adipocyte differentiation. The V(max) values for fatty acid transport in Caco-2 and HepG2 cells were essentially the same, yet the efficiency was 55% higher in Caco-2 cells (2.3 x 10(6)s(-1)M(-1) versus 1.5 x 10(6)s(-1)M(-1)). The kinetic parameters for fatty acid transport in three endothelial cell types demonstrated they were the least efficient cell types for this process giving V(max) values that were nearly 4-fold lower than those defined form 3T3-L1 adipocytes, Caco-2 cells and HepG2 cells. The

  8. Inorganic nanoparticles as nucleic acid transporters into eukaryotic cells

    NASA Astrophysics Data System (ADS)

    Amirkhanov, R. N.; Zarytova, V. F.; Zenkova, M. A.

    2017-02-01

    The review is concerned with inorganic nanoparticles (gold, titanium dioxide, silica, iron oxides, calcium phosphate) used as nucleic acid transporters into mammalian cells. Methods for the synthesis of nanoparticles and approaches to surface modification through covalent or noncovalent attachment of low- or high-molecular-weight compounds are considered. The data available from the literature on biological action of nucleic acids delivered into the cells by nanoparticles and on the effect of nanoparticles and their conjugates and complexes on the cell survival are summarized. Pathways of cellular internalization of nanoparticles and the mechanism of their excretion, as well as the ways of release of nucleic acids from their complexes with nanoparticles after the cellular uptake are described. The bibliography includes 161 references.

  9. Neutralizing aspartate 83 modifies substrate translocation of excitatory amino acid transporter 3 (EAAT3) glutamate transporters.

    PubMed

    Hotzy, Jasmin; Machtens, Jan-Philipp; Fahlke, Christoph

    2012-06-08

    Excitatory amino acid transporters (EAATs) terminate glutamatergic synaptic transmission by removing glutamate from the synaptic cleft into neuronal and glial cells. EAATs are not only secondary active glutamate transporters but also function as anion channels. Gating of EAAT anion channels is tightly coupled to transitions within the glutamate uptake cycle, resulting in Na(+)- and glutamate-dependent anion currents. A point mutation neutralizing a conserved aspartic acid within the intracellular loop close to the end of transmembrane domain 2 was recently shown to modify the substrate dependence of EAAT anion currents. To distinguish whether this mutation affects transitions within the uptake cycle or directly modifies the opening/closing of the anion channel, we used voltage clamp fluorometry. Using three different sites for fluorophore attachment, V120C, M205C, and A430C, we observed time-, voltage-, and substrate-dependent alterations of EAAT3 fluorescence intensities. The voltage and substrate dependence of fluorescence intensities can be described by a 15-state model of the transport cycle in which several states are connected to branching anion channel states. D83A-mediated changes of fluorescence intensities, anion currents, and secondary active transport can be explained by exclusive modifications of substrate translocation rates. In contrast, sole modification of anion channel opening and closing is insufficient to account for all experimental data. We conclude that D83A has direct effects on the glutamate transport cycle and that these effects result in changed anion channel function.

  10. Aluminum in acidic surface waters: chemistry, transport, and effects.

    PubMed Central

    Driscoll, C T

    1985-01-01

    Ecologically significant concentrations of Al have been reported in surface waters draining "acid-sensitive" watersheds that are receiving elevated inputs of acidic deposition. It has been hypothesized that mineral acids from atmospheric deposition have remobilized Al previously precipitated within the soil during soil development. This Al is then thought to be transported to adjacent surface waters. Dissolved mononuclear Al occurs as aquo Al, as well as OH-, F-, SO4(2-), and organic complexes. Although past investigations have often ignored non-hydroxide complexes of Al, it appears that organic and F complexes are the predominant forms of Al in dilute (low ionic strength) acidic surface waters. The concentration of inorganic forms of Al increases exponentially with decreases in solution pH. This response is similar to the theoretical pH dependent solubility of Al mineral phases. The concentration of organic forms of Al, however, is strongly correlated with variations in organic carbon concentration of surface waters rather than pH. Elevated concentrations of Al in dilute acidic waters are of interest because: Al is an important pH buffer; Al may influence the cycling of important elements like P, organic carbon, and trace metals; and Al is potentially toxic to aquatic organisms. An understanding of the aqueous speciation of Al is essential for an evaluation of these processes. PMID:3935428

  11. Choline inhibition of amino acid transport in preimplantation mouse blastocysts

    SciTech Connect

    Campione, A.L.; Haghighat, N.; Gorman, J.; Van Winkle, L.J.

    1987-05-01

    Addition of 70 mM choline chloride to Brinster's medium (140 mM Na/sup +/) inhibited uptake of approx. 1 ..mu..M (/sup 3/H)glycine, leucine, lysine and alanine in blastocysts by about 50% each during a five-minute incubation period at 37/sup 0/C, whereas 70 mM LiCl, sodium acetate and NaCl or 140 mM mannitol had no effect. They attribute the apparent linear relationship between Gly transport in blastocysts and the square of the (Na/sup +/), observed when choline was substituted for Na/sup +/ in Brinster's medium, to concomitant, concentration-dependent enhancement and inhibition of transport by Na/sup +/ and choline, respectively. As expected, Gly uptake and the (Na/sup +/) were linearly related up to 116 mM Na/sup +/, when Na/sup +/ was replaced with Li/sup +/. The rates of Na/sup +/-independent Gly and Ala uptake were <5% and <2% of the total, respectively, and similar when either Li/sup +/ or choline replaced Na/sup +/. Therefore, neither Li/sup +/ nor choline appears to substitute for Na/sup +/ in supporting Na/sup +/-dependent transport in blastocysts. Na/sup +/-independent Leu uptake was 20 times faster than Gly or Ala uptake and appeared to be inhibited by choline in blastocysts since it was about 37% slower when choline instead of Li/sup +/ was substituted for Na/sup +/. In contrast to blastocysts, choline had no effect on amino acid transport in cleavage-stage mouse embryos. The unexpected sensitivity of transport to choline in blastocysts underscores the importance of testing the effects of this substance when it is used to replace Na/sup +/ in new transport studies.

  12. Perfluorocarboxylic acid (PFCA) atmospheric formation and transport to the Arctic.

    NASA Astrophysics Data System (ADS)

    Pike-thackray, C.; Selin, N. E.

    2015-12-01

    Perfluorocarboxylic acids (PFCAs) are highly persistent and toxic environmental contaminants that have been found in remote locations such as the Arctic, far from emission sources. These persistent organic pollutants are emitted directly to the atmosphere as well as being produced by the degradation of precursor compounds in the atmosphere, but recent trends towards increasing precursor emissions and decreasing direct emissions raise the importance of production in the atmosphere. Our work aims to improve understanding of the atmospheric degradation of fluorotelomer precursor compounds to form the long-chain PFCAs PFOA (C8) and PFNA (C9).Using the atmospheric chemical transport model GEOS-Chem, which uses assimilated meteorology to simulate the atmospheric transport of trace gas species, we investigate the interaction of the atmospheric formation of PFCAs and the atmospheric transport of their precursor species. Our simulations are a first application of the GEOS-Chem framework to PFCA chemistry. We highlight the importance of the spatial and temporal variability of background atmospheric chemical conditions experienced during transport. We find that yields and formation times of PFOA and PFNA respond differently and strongly to the photochemical conditions of the atmosphere, such as the abundance of NO, HO2, and other photochemical species.

  13. Endothelium as a gatekeeper of fatty acid transport

    PubMed Central

    Mehrotra, Devi; Wu, Jingxia; Papangeli, Irinna; Chun, Hyung J.

    2013-01-01

    The endothelium transcends all clinical disciplines and is key to the function of every organ system. A crucial, but poorly understood role of the endothelium is its ability to control the transport of energy supply according to organ needs. Fatty acids (FAs) in particular represent a key energy source that is utilized by a number of tissues, but whose utilization must be tightly regulated to avoid potentially deleterious consequences of excess accumulation, including insulin resistance. Recent studies have identified key endothelial signaling mechanisms involving vascular endothelial growth factor B, peroxisome proliferator-activated receptor-γ, and the peptide ligand apelin, that are critical to endothelial regulation of FA transport. Here we discuss the mechanisms by which these signaling pathways regulate this key endothelial function. PMID:24315207

  14. Unraveling fatty acid transport and activation mechanisms in Yarrowia lipolytica.

    PubMed

    Dulermo, Rémi; Gamboa-Meléndez, Heber; Ledesma-Amaro, Rodrigo; Thévenieau, France; Nicaud, Jean-Marc

    2015-09-01

    Fatty acid (FA) transport and activation have been extensively studied in the model yeast species Saccharomyces cerevisiae but have rarely been examined in oleaginous yeasts, such as Yarrowia lipolytica. Because the latter begins to be used in biodiesel production, understanding its FA transport and activation mechanisms is essential. We found that Y. lipolytica has FA transport and activation proteins similar to those of S. cerevisiae (Faa1p, Pxa1p, Pxa2p, Ant1p) but mechanism of FA peroxisomal transport and activation differs greatly with that of S. cerevisiae. While the ScPxa1p/ScPxa2p heterodimer is essential for growth on long-chain FAs, ΔYlpxa1 ΔYlpxa2 is not impaired for growth on FAs. Meanwhile, ScAnt1p and YlAnt1p are both essential for yeast growth on medium-chain FAs, suggesting they function similarly. Interestingly, we found that the ΔYlpxa1 ΔYlpxa2 ΔYlant1 mutant was unable to grow on short-, medium-, or long-chain FAs, suggesting that YlPxa1p, YlPxa2p, and YlAnt1p belong to two different FA degradation pathways. We also found that YlFaa1p is involved in FA storage in lipid bodies and that FA remobilization largely depended on YlFat1p, YlPxa1p and YlPxa2p. This study is the first to comprehensively examine FA intracellular transport and activation in oleaginous yeast.

  15. Antibacterial drug treatment increases intestinal bile acid absorption via elevated levels of ileal apical sodium-dependent bile acid transporter but not organic solute transporter α protein.

    PubMed

    Miyata, Masaaki; Hayashi, Kenjiro; Yamakawa, Hiroki; Yamazoe, Yasushi; Yoshinari, Kouichi

    2015-01-01

    Antibacterial drug treatment increases the bile acid pool size and hepatic bile acid concentration through the elevation of hepatic bile acid synthesis. However, the involvement of intestinal bile acid absorption in the increased bile acid pool size remains unclear. To determine whether intestinal bile acid absorption contributes to the increased bile acid pool in mice treated with antibacterial drugs, we evaluated the levels of bile acid transporter proteins and the capacity of intestinal bile acid absorption. Ileal apical sodium-dependent bile acid transporter (ASBT) mRNA and protein levels were significantly increased in ampicillin (ABPC)-treated mice, whereas organic solute transporter α (OSTα) mRNA levels, but not protein levels, significantly decreased in mice. Similar alterations in the expression levels of bile acid transporters were observed in mice treated with bacitracin/neomycin/streptomycin. The capacity for intestinal bile acid absorption was evaluated by an in situ loop method. Increased ileal absorption of taurochenodeoxycholic acid was observed in mice treated with ABPC. These results suggest that intestinal bile acid absorption is elevated in an ASBT-dependent manner in mice treated with antibacterial drugs.

  16. Intracellular dehydroascorbic acid inhibits SVCT2-dependent transport of ascorbic acid in mitochondria.

    PubMed

    Fiorani, Mara; Azzolini, Catia; Guidarelli, Andrea; Cerioni, Liana; Scotti, Maddalena; Cantoni, Orazio

    2015-09-01

    Exposure of U937 cells to low concentrations of L-ascorbic acid (AA) is associated with a prompt cellular uptake and a further mitochondrial accumulation of the vitamin. Under the same conditions, dehydroascorbic acid (DHA) uptake was followed by rapid reduction and accumulation of identical intracellular levels of AA, however, in the absence of significant mitochondrial uptake. This event was instead observed after exposure to remarkably greater concentrations of DHA. Furthermore, experiments performed in isolated mitochondria revealed that DHA transport through hexose transporters and Na(+) -dependent transport of AA were very similar. These results suggest that the different subcellular compartmentalization of the vitamin is mediated by events promoting inhibition of mitochondrial AA transport, possibly triggered by low levels of DHA. We obtained results in line with this notion in intact cells, and more direct evidence in isolated mitochondria. This inhibitory effect was promptly reversible after DHA removal and comparable with that mediated by established inhibitors, as quercetin. The results presented collectively indicate that low intracellular concentrations of DHA, because of its rapid reduction back to AA, are a poor substrate for direct mitochondrial uptake. DHA concentrations, however, appear sufficiently high to mediate inhibition of mitochondrial transport of AA/DHA-derived AA.

  17. Transport of heptafluorostearate across model membranes. Membrane transport of long-chain fatty acid anions I.

    PubMed

    Schmider, W; Fahr, A; Blum, H E; Kurz, G

    2000-05-01

    Heptafluorostearic acid, an isogeometric derivative of stearic acid, has a pK(a) value of about 0.5. To evaluate the suitability of heptafluorostearate as model compound for anions of long-chain fatty acids in membrane transport, monolayer and liposome studies were performed with lipid mixtures containing phospholipids;-cholesterol-heptafluorostearate or stearate (100:40:20 molar ratios). Transfer of heptafluorostearate and stearate from liposomes to bovine serum albumin (BSA) was followed by measuring the intrinsic fluorescence of BSA. The percentage of heptafluorostearate, equivalent to the amount placed in their outer monolayer, transferred from liposomes (120;-130 nm diameter) to BSA was 55.7 +/- 3.7% within 10 min at 25 degrees C and 55 +/- 2% within 5 min at 37 degrees C. Slow transfer of 22.7 +/- 2.5% of heptafluorostearate at 25 degrees C followed with a half-life of 2.3 +/- 0.4 h and of 20 +/- 4% at 37 degrees C with a half-life of 0.9 +/- 0.1 h until the final equilibrium distributions between BSA and liposomes were reached, 79 +/- 6% to 21 +/- 5% at 25 degrees C and 75 +/- 5% to 25 +/- 4% at 37 degrees C. The pseudounimolecular rate constants for flip-flop of heptafluorostearate equal k(FF,25) = 0.24 +/- 0.05 h(-) and k(FF,37) = 0.6 +/- 0.1 h(-), respectively. By comparison, transfer of stearate required only 3 min to reach equilibrium distribution. The difference between heptafluorostearate and stearate may be explained by a rapid flip-flop movement of the un-ionized fatty acids which exist in different concentrations in accordance with their pK(a) values. Half-life of flip-flop of heptafluorostearate makes it suitable to study mediated membrane transport of long-chain fatty acid anions.

  18. Transport of two naphthoic acids and salicylic acid in soil: experimental study and empirical modeling.

    PubMed

    Hanna, K; Lassabatere, L; Bechet, B

    2012-09-15

    In contrast to the parent compounds, the mechanisms responsible for the transport of natural metabolites of polycyclic aromatic hydrocarbons (PAH) in contaminated soils have been scarcely investigated. In this study, the sorption of three aromatic acids (1-naphthoic acid (NA), 1-hydroxy-2-naphthoic acid (HNA) and salicylic acid (SA)) was examined on soil, in a batch equilibrium single-system, with varying pH and acid concentrations. Continuous flow experiments were also carried out under steady-state water flow. The adsorption behavior of naphthoic and benzoic acids was affected by ligand functionality and molecular structure. All modeling options (equilibrium, chemical nonequilibrium, i.e. chemical kinetics, physical nonequilibrium, i.e. surface sites in the immobile water fraction, and both chemical and physical nonequilibrium) were tested in order to describe the breakthrough behavior of organic compounds in homogeneously packed soil columns. Tracer experiments showed a small fractionation of flow into mobile and immobile compartments, and the related hydrodynamic parameters were used for the modeling of reactive transport. In all cases, the isotherm parameters obtained from column tests differed from those derived from the batch experiments. The best accurate modeling was obtained considering nonequilibrium for the three organic compounds. Both chemical and physical nonequilibrium led to appropriate modeling for HNA and NA, while chemical nonequilibrium was the sole option for SA. SA sorption occurs mainly in mobile water and results from the concomitancy of instantaneous and kinetically limited sites. For all organic compounds, retention is contact condition dependent and differs between batch and column experiments. Such results show that preponderant mechanisms are solute dependent and kinetically limited, which has important implications for the fate and transport of carboxylated aromatic compounds in contaminated soils.

  19. Transport of the two natural auxins, indole-3-butyric acid and indole-3-acetic acid, in Arabidopsis

    NASA Technical Reports Server (NTRS)

    Rashotte, Aaron M.; Poupart, Julie; Waddell, Candace S.; Muday, Gloria K.; Brown, C. S. (Principal Investigator)

    2003-01-01

    Polar transport of the natural auxin indole-3-acetic acid (IAA) is important in a number of plant developmental processes. However, few studies have investigated the polar transport of other endogenous auxins, such as indole-3-butyric acid (IBA), in Arabidopsis. This study details the similarities and differences between IBA and IAA transport in several tissues of Arabidopsis. In the inflorescence axis, no significant IBA movement was detected, whereas IAA is transported in a basipetal direction from the meristem tip. In young seedlings, both IBA and IAA were transported only in a basipetal direction in the hypocotyl. In roots, both auxins moved in two distinct polarities and in specific tissues. The kinetics of IBA and IAA transport appear similar, with transport rates of 8 to 10 mm per hour. In addition, IBA transport, like IAA transport, is saturable at high concentrations of auxin, suggesting that IBA transport is protein mediated. Interestingly, IAA efflux inhibitors and mutations in genes encoding putative IAA transport proteins reduce IAA transport but do not alter IBA movement, suggesting that different auxin transport protein complexes are likely to mediate IBA and IAA transport. Finally, the physiological effects of IBA and IAA on hypocotyl elongation under several light conditions were examined and analyzed in the context of the differences in IBA and IAA transport. Together, these results present a detailed picture of IBA transport and provide the basis for a better understanding of the transport of these two endogenous auxins.

  20. Increased Rat Placental Fatty Acid, but Decreased Amino Acid and Glucose Transporters Potentially Modify Intrauterine Programming.

    PubMed

    Nüsken, Eva; Gellhaus, Alexandra; Kühnel, Elisabeth; Swoboda, Isabelle; Wohlfarth, Maria; Vohlen, Christina; Schneider, Holm; Dötsch, Jörg; Nüsken, Kai-Dietrich

    2016-07-01

    Regulation of placental nutrient transport significantly affects fetal development and may modify intrauterine growth restriction (IUGR) and fetal programming. We hypothesized that placental nutrient transporters are differentially affected both by utero-placental insufficiency and prenatal surgical stress. Pregnant rats underwent bilateral uterine artery and vein ligation (LIG), sham operation (SOP) or no operation (controls, C) on gestational day E19. Placentas were obtained by caesarean section 4 h (LIG, n=20 placentas; SOP, n=24; C, n=12), 24 h (LIG, n=28; SOP, n=20; C, n=12) and 72 h (LIG, n=20; SOP, n=20; C, n=24) after surgery. Gene and protein expression of placental nutrient transporters for fatty acids (h-FABP, CD36), amino acids (SNAT1, SNAT2) and glucose (GLUT-1, Connexin 26) were examined by qRT-PCR, western blot and immunohistochemistry. Interestingly, the mean protein expression of h-FABP was doubled in placentas of LIG and SOP animals 4, 24 (SOP significant) and 72 h (SOP significant) after surgery. CD36 protein was significantly increased in LIG after 72 h. SNAT1 and SNAT2 protein and gene expressions were significantly reduced in LIG and SOP after 24 h. Further significantly reduced proteins were GLUT-1 in LIG (4 h, 72 h) and SOP (24 h), and Connexin 26 in LIG (72 h). In conclusion, placental nutrient transporters are differentially affected both by reduced blood flow and stress, probably modifying the already disturbed intrauterine milieu and contributing to IUGR and fetal programming. Increased fatty acid transport capacity may affect energy metabolism and could be a compensatory reaction with positive effects on brain development. J. Cell. Biochem. 117: 1594-1603, 2016. © 2015 Wiley Periodicals, Inc.

  1. Induction of amino acid transporters expression by endurance exercise in rat skeletal muscle

    SciTech Connect

    Murakami, Taro Yoshinaga, Mariko

    2013-10-04

    Highlights: •Regulation of amino acid transporter expression in working muscle remains unclear. •Expression of amino acid transporters for leucine were induced by a bout of exercise. •Requirement of leucine in muscle cells might regulate expression of its transporters. •This information is beneficial for understanding the muscle remodeling by exercise. -- Abstract: We here investigated whether an acute bout of endurance exercise would induce the expression of amino acid transporters that regulate leucine transport across plasma and lysosomal membranes in rat skeletal muscle. Rats ran on a motor-driven treadmill at a speed of 28 m/min for 90 min. Immediately after the exercise, we observed that expression of mRNAs encoding L-type amino acid transporter 1 (LAT1) and CD98 was induced in the gastrocnemius, soleus, and extensor digitorum longus (EDL) muscles. Sodium-coupled neutral amino acid transporter 2 (SNAT2) mRNA was also induced by the exercise in those three muscles. Expression of proton-assisted amino acid transporter 1 (PAT1) mRNA was slightly but not significantly induced by a single bout of exercise in soleus and EDL muscles. Exercise-induced mRNA expression of these amino acid transporters appeared to be attenuated by repeated bouts of the exercise. These results suggested that the expression of amino acid transporters for leucine may be induced in response to an increase in the requirement for this amino acid in the cells of working skeletal muscles.

  2. Amino Acid Transporters and Release of Hydrophobic Amino Acids in the Heterocyst-Forming Cyanobacterium Anabaena sp. Strain PCC 7120

    PubMed Central

    Pernil, Rafael; Picossi, Silvia; Herrero, Antonia; Flores, Enrique; Mariscal, Vicente

    2015-01-01

    Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium that can use inorganic compounds such as nitrate or ammonium as nitrogen sources. In the absence of combined nitrogen, it can fix N2 in differentiated cells called heterocysts. Anabaena also shows substantial activities of amino acid uptake, and three ABC-type transporters for amino acids have been previously characterized. Seven new loci encoding predicted amino acid transporters were identified in the Anabaena genomic sequence and inactivated. Two of them were involved in amino acid uptake. Locus alr2535-alr2541 encodes the elements of a hydrophobic amino acid ABC-type transporter that is mainly involved in the uptake of glycine. ORF all0342 encodes a putative transporter from the dicarboxylate/amino acid:cation symporter (DAACS) family whose inactivation resulted in an increased uptake of a broad range of amino acids. An assay to study amino acid release from Anabaena filaments to the external medium was set up. Net release of the alanine analogue α-aminoisobutyric acid (AIB) was observed when transport system N-I (a hydrophobic amino acid ABC-type transporter) was engaged in the uptake of a specific substrate. The rate of AIB release was directly proportional to the intracellular AIB concentration, suggesting leakage from the cells by diffusion. PMID:25915115

  3. Amino Acid Transporters and Release of Hydrophobic Amino Acids in the Heterocyst-Forming Cyanobacterium Anabaena sp. Strain PCC 7120.

    PubMed

    Pernil, Rafael; Picossi, Silvia; Herrero, Antonia; Flores, Enrique; Mariscal, Vicente

    2015-04-23

    Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium that can use inorganic compounds such as nitrate or ammonium as nitrogen sources. In the absence of combined nitrogen, it can fix N2 in differentiated cells called heterocysts. Anabaena also shows substantial activities of amino acid uptake, and three ABC-type transporters for amino acids have been previously characterized. Seven new loci encoding predicted amino acid transporters were identified in the Anabaena genomic sequence and inactivated. Two of them were involved in amino acid uptake. Locus alr2535-alr2541 encodes the elements of a hydrophobic amino acid ABC-type transporter that is mainly involved in the uptake of glycine. ORF all0342 encodes a putative transporter from the dicarboxylate/amino acid:cation symporter (DAACS) family whose inactivation resulted in an increased uptake of a broad range of amino acids. An assay to study amino acid release from Anabaena filaments to the external medium was set up. Net release of the alanine analogue α-aminoisobutyric acid (AIB) was observed when transport system N-I (a hydrophobic amino acid ABC-type transporter) was engaged in the uptake of a specific substrate. The rate of AIB release was directly proportional to the intracellular AIB concentration, suggesting leakage from the cells by diffusion.

  4. Impact of Microbial Growth on Subsurface Perfluoroalkyl Acid Transport

    NASA Astrophysics Data System (ADS)

    Weathers, T. S.; Higgins, C. P.; Sharp, J.

    2014-12-01

    The fate and transport of poly and perfluoroalkyl substances (PFASs) in the presence of active microbial communities has not been widely investigated. These emerging contaminants are commonly utilized in aqueous film-forming foams (AFFF) and have often been detected in groundwater. This study explores the transport of a suite of perfluorocarboxylic acids and perfluoroalkylsulfonates, including perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), in microbially active settings. Single point organic carbon normalized sorption coefficients derived by exposing inactive cellular material to PFASs result in more than an order of magnitude increase in sorption compared to soil organic carbon sorption coefficients found in literature. For example, the sorption coefficients for PFOS are 4.05±0.07 L/kg and 2.80±0.08 L/kg for cellular organic carbon and soil organic carbon respectively. This increase in sorption, coupled with enhanced extracellular polymeric substance production observed during growth of a common hydrocarbon degrading soil microbe exposed to source-level concentrations of PFASs (10 mg/L of 11 analytes, 110 mg/L total) may result in PFAS retardation in situ. To address the upscaling of this phenomenon, flow-through columns packed with low-organic carbon sediment and biostimulated with 10 mg/L glucose were exposed to PFAS concentrations from 15 μg/L to 10 mg/L of each 11 analytes. Breakthrough and tailing of each analyte was measured and modeled with Hydrus-1D to explore sorption coefficients over time for microbially active columns.

  5. Few Amino Acid Exchanges Expand the Substrate Spectrum of Monocarboxylate Transporter 10.

    PubMed

    Johannes, Jörg; Braun, Doreen; Kinne, Anita; Rathmann, Daniel; Köhrle, Josef; Schweizer, Ulrich

    2016-07-01

    Monocarboxylate transporters (MCTs) belong to the SLC16 family within the major facilitator superfamily of transmembrane transporters. MCT8 is a thyroid hormone transporter mutated in the Allan-Herndon-Dudley syndrome, a severe psychomotor retardation syndrome. MCT10 is closely related to MCT8 and is known as T-type amino acid transporter. Both transporters mediate T3 transport, but although MCT8 also transports rT3 and T4, these compounds are not efficiently transported by MCT10, which, in contrast, transports aromatic amino acids. Based on the 58% amino acid identity within the transmembrane regions among MCT8 and MCT10, we reasoned that substrate specificity may be primarily determined by a small number of amino acid differences between MCT8 and MCT10 along the substrate translocation channel. Inspecting the homology model of MCT8 and a structure-guided alignment between both proteins, we selected 8 amino acid positions and prepared chimeric MCT10 proteins with selected amino acids changed to the corresponding amino acids in MCT8. The MCT10 mutant harboring 8 amino acid substitutions was stably expressed in Madin-Darby canine kidney 1 cells and found to exhibit T4 transport activity. We then successively reduced the number of amino acid substitutions and eventually identified a minimal set of 2-3 amino acid exchanges which were sufficient to allow T4 transport. The resulting MCT10 chimeras exhibited KM values for T4 similar to MCT8 but transported T4 at a slower rate. The acquisition of T4 transport by MCT10 was associated with complete loss of the capacity to transport Phe, when Tyr184 was mutated to Phe.

  6. Acid-base transport by the renal proximal tubule

    PubMed Central

    Skelton, Lara A.; Boron, Walter F.; Zhou, Yuehan

    2015-01-01

    Each day, the kidneys filter 180 L of blood plasma, equating to some 4,300 mmol of the major blood buffer, bicarbonate (HCO3−). The glomerular filtrate enters the lumen of the proximal tubule (PT), and the majority of filtered HCO3− is reclaimed along the early (S1) and convoluted (S2) portions of the PT in a manner coupled to the secretion of H+ into the lumen. The PT also uses the secreted H+ to titrate non-HCO3− buffers in the lumen, in the process creating “new HCO3−” for transport into the blood. Thus, the PT – along with more distal renal segments – is largely responsible for regulating plasma [HCO3−]. In this review we first focus on the milestone discoveries over the past 50+ years that define the mechanism and regulation of acid-base transport by the proximal tubule. Further on in the review, we will summarize research still in progress from our laboratory, work that addresses the problem of how the PT is able to finely adapt to acid–base disturbances by rapidly sensing changes in basolateral levels of HCO3− and CO2 (but not pH), and thereby to exert tight control over the acid–base composition of the blood plasma. PMID:21170887

  7. Intestinal transport of sugars and amino acids in diabetic rats

    PubMed Central

    Olsen, Ward A.; Rosenberg, Irwin H.

    1970-01-01

    The specificity and mechanism of altered intestinal transport of diabetic rats was studied with an everted ring technique. Increased intracellular accumulation of amino acids, as well as galactose and 3-O-methylglucose, was demonstrated in diabetes. The greater accumulation by diabetic intestine could not be attributed to a direct effect of the agent used to induce diabetes or to an alteration in food consumption. Although the changes were related to the severity of diabetes and could be reversed with treatment with insulin, they could not be modified by addition of insulin in vitro. The changes could not be induced in control intestine either with hyperglycemia from glucose infusion or preincubation with glucose in vitro. Although the higher concentration gradients of amino acids, galactose, and 3-O-methylglucose could result from increased energy utilization by diabetic intestine, an alteration of cell membrane function, as well, is suggested by the demonstration with kinetic studies of increased influx with an increase in Vmax. PMID:5409812

  8. The transport of uric acid across mouse small intestine in vitro.

    PubMed Central

    Bronk, J R; Shaw, M I

    1986-01-01

    The in vitro recirculation technique was used to study the uptake and transport of uric acid by the jejunum of mouse small intestine. Three components of the serosal secretions appeared to be endogenously derived nucleic acid derivatives; two of these were identified as uric acid and uracil. There was no detectable metabolism of uric acid by the intestine. Uric acid transported from the lumen appeared in the serosal fluid at a concentration higher than that in the lumen. The final serosal/luminal concentration ratio of about 1.18 for exogenous uric acid was found to be constant over the concentration range studied (0.01-0.1 mM). The presence of exogenous uric acid in the lumen did not affect the production of endogenous uric acid by the intestine and its release into the serosal secretions. Mucosal concentration of exogenous uric acid was below, but the total mucosal concentration (exogenous+endogenous) was above, that in the lumen. There was no evidence for the secretion of endogenous uric acid into the lumen. Oxypurinol significantly decreased the rate of serosal appearance of exogenous uric acid. Allopurinol did not affect the transport of exogenous uric acid from the lumen and there was negligible metabolism of allopurinol to oxypurinol by the tissue. Uracil did not affect the transport of exogenous uric acid from the lumen, or the serosal appearance of endogenous uric acid. Likewise uracil transport was unaffected by luminal uric acid. PMID:3795104

  9. Butyric acid increases transepithelial transport of ferulic acid through upregulation of the monocarboxylate transporters SLC16A1 (MCT1) and SLC16A3 (MCT4).

    PubMed

    Ziegler, Kerstin; Kerimi, Asimina; Poquet, Laure; Williamson, Gary

    2016-06-01

    Ferulic acid is released by microbial hydrolysis in the colon, where butyric acid, a major by-product of fermentation, constitutes the main energy source for colonic enterocytes. We investigated how varying concentrations of this short chain fatty acid may influence the absorption of the phenolic acid. Chronic treatment of Caco-2 cells with butyric acid resulted in increased mRNA and protein abundance of the monocarboxylate transporters SLC16A1 (MCT1) and SLC16A3 (MCT4), previously proposed to facilitate ferulic acid absorption in addition to passive diffusion. Short term incubation with butyric acid only led to upregulation of MCT4 while both conditions increased transepithelial transport of ferulic acid in the apical to basolateral, but not basolateral to apical, direction. Chronic treatment also elevated intracellular concentrations of ferulic acid, which in turn gave rise to increased concentrations of ferulic acid metabolites. Immunofluorescence staining of cells revealed uniform distribution of MCT1 protein in the cell membrane, whereas MCT4 was only detected in the lateral plasma membrane sections of Caco-2 cells. We therefore propose that MCT1 may be acting as an uptake transporter and MCT4 as an efflux system across the basolateral membrane for ferulic acid, and that this process is stimulated by butyric acid.

  10. Low- and high-affinity transport systems for citric acid in the yeast Candida utilis.

    PubMed Central

    Cássio, F; Leáo, C

    1991-01-01

    Citric acid-grown cells of the yeast Candida utilis induced two transport systems for citric acid, presumably a proton symport and a facilitated diffusion system for the charged and the undissociated forms of the acid, respectively. Both systems could be observed simultaneously when the transport was measured at 25 degrees C with labelled citric acid at pH 3.5 with the following kinetic parameters: for the low-affinity system, Vmax, 1.14 nmol of undissociated citric acid s-1 mg (dry weight) of cells-1, and Km, 0.59 mM undissociated acid; for the high-affinity system, Vmax, 0.38 nmol of citrate s-1 mg (dry weight) of cells-1, and Km, 0.056 mM citrate. At high pH values (above 5.0), the low-affinity system was absent or not measurable. The two transport systems exhibited different substrate specificities. Isocitric acid was a competitive inhibitor of citric acid for the high-affinity system, suggesting that these tricarboxylic acids used the same transport system, while aconitic, tricarballylic, trimesic, and hemimellitic acids were not competitive inhibitors. With respect to the low-affinity system, isocitric acid, L-lactic acid, and L-malic acid were competitive inhibitors, suggesting that all of these mono-, di-, and tricarboxylic acids used the same low-affinity transport system. The two transport systems were repressed by glucose, and as a consequence diauxic growth was observed. Both systems were inducible, and not only citric acid but also lactic acid and malic acid may induce those transport systems. The induction of both systems was not dependent on the relative concentration of the anionic form(s) and of undissociated citric acid in the culture medium.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1664712

  11. Cationic amino acid transporters play key roles in the survival and transmission of apicomplexan parasites

    PubMed Central

    Rajendran, Esther; Hapuarachchi, Sanduni V.; Miller, Catherine M.; Fairweather, Stephen J.; Cai, Yeping; Smith, Nicholas C.; Cockburn, Ian A.; Bröer, Stefan; Kirk, Kiaran; van Dooren, Giel G.

    2017-01-01

    Apicomplexans are obligate intracellular parasites that scavenge essential nutrients from their hosts via transporter proteins on their plasma membrane. The identities of the transporters that mediate amino acid uptake into apicomplexans are unknown. Here we demonstrate that members of an apicomplexan-specific protein family—the Novel Putative Transporters (NPTs)—play key roles in the uptake of cationic amino acids. We show that an NPT from Toxoplasma gondii (TgNPT1) is a selective arginine transporter that is essential for parasite survival and virulence. We also demonstrate that a homologue of TgNPT1 from the malaria parasite Plasmodium berghei (PbNPT1), shown previously to be essential for the sexual gametocyte stage of the parasite, is a cationic amino acid transporter. This reveals a role for cationic amino acid scavenging in gametocyte biology. Our study demonstrates a critical role for amino acid transporters in the survival, virulence and life cycle progression of these parasites. PMID:28205520

  12. Intestinal transport of zinc and folic acid: a mutual inhibitory effect

    SciTech Connect

    Ghishan, F.K.; Said, H.M.; Wilson, P.C.; Murrell, J.E.; Greene, H.L.

    1986-02-01

    Recent observations suggest an inverse relationship between folic acid intake and zinc nutriture and indicate an interaction between folic acid and zinc at the intestinal level. To define that interaction, we designed in vivo and in vitro transport studies in which folic acid transport in the presence of zinc, as well as zinc transport in the presence of folic acid was examined. These studies show that zinc transport is significantly decreased when folate is present in the intestinal lumen. Similarly folic acid transport is significantly decreased with the presence of zinc. To determine whether this intestinal inhibition is secondary to zinc and folate-forming complexes, charcoal-binding studies were performed. These studies indicate that zinc and folate from complexes at pH 2.0, but that at pH 6.0, these complexes dissolve. Therefore, our studies suggest that under normal physiological conditions a mutual inhibition between folate and zinc exists at the site of intestinal transport.

  13. Cationic amino acid transporters play key roles in the survival and transmission of apicomplexan parasites.

    PubMed

    Rajendran, Esther; Hapuarachchi, Sanduni V; Miller, Catherine M; Fairweather, Stephen J; Cai, Yeping; Smith, Nicholas C; Cockburn, Ian A; Bröer, Stefan; Kirk, Kiaran; van Dooren, Giel G

    2017-02-16

    Apicomplexans are obligate intracellular parasites that scavenge essential nutrients from their hosts via transporter proteins on their plasma membrane. The identities of the transporters that mediate amino acid uptake into apicomplexans are unknown. Here we demonstrate that members of an apicomplexan-specific protein family-the Novel Putative Transporters (NPTs)-play key roles in the uptake of cationic amino acids. We show that an NPT from Toxoplasma gondii (TgNPT1) is a selective arginine transporter that is essential for parasite survival and virulence. We also demonstrate that a homologue of TgNPT1 from the malaria parasite Plasmodium berghei (PbNPT1), shown previously to be essential for the sexual gametocyte stage of the parasite, is a cationic amino acid transporter. This reveals a role for cationic amino acid scavenging in gametocyte biology. Our study demonstrates a critical role for amino acid transporters in the survival, virulence and life cycle progression of these parasites.

  14. Functional transformations of bile acid transporters induced by high-affinity macromolecules

    PubMed Central

    Al-Hilal, Taslim A.; Chung, Seung Woo; Alam, Farzana; Park, Jooho; Lee, Kyung Eun; Jeon, Hyesung; Kim, Kwangmeyung; Kwon, Ick Chan; Kim, In-San; Kim, Sang Yoon; Byun, Youngro

    2014-01-01

    Apical sodium-dependent bile acid transporters (ASBT) are the intestinal transporters that form intermediate complexes with substrates and its conformational change drives the movement of substrates across the cell membrane. However, membrane-based intestinal transporters are confined to the transport of only small molecular substrates. Here, we propose a new strategy that uses high-affinity binding macromolecular substrates to functionally transform the membrane transporters so that they behave like receptors, ultimately allowing the apical-basal transport of bound macromolecules. Bile acid based macromolecular substrates were synthesized and allowed to interact with ASBT. ASBT/macromolecular substrate complexes were rapidly internalized in vesicles, localized in early endosomes, dissociated and escaped the vesicular transport while binding of cytoplasmic ileal bile acid binding proteins cause exocytosis of macromolecules and prevented entry into lysosomes. This newly found transformation process of ASBT suggests a new transport mechanism that could aid in further utilization of ASBT to mediate oral macromolecular drug delivery. PMID:24566561

  15. L-aspartic acid transport by cat erythrocytes

    SciTech Connect

    Chen, C.W.; Preston, R.L.

    1986-03-01

    Cat and dog red cells are unusual in that they have no Na/K ATPase and contain low K and high Na intracellularly. They also show significant Na dependent L-aspartate (L-asp) transport. The authors have characterized this system in cat RBCs. The influx of /sup 3/H-L-asp (typically 2..mu..M) was measured in washed RBCs incubated for 60 s at 37/sup 0/C in medium containing 140 mM NaCl, 5 mM Kcl, 2 mM CaCl/sub 2/, 15 mM MOPS pH 7.4, 5 mM glucose, and /sup 14/C-PEG as a space marker. The cells were washed 3 times in the medium immediately before incubation which was terminated by centrifuging the RBCs through a layer of dibutylphthalate. Over an L-asp concentration range of 0.5-1000..mu..M, influx obeyed Michaelis-Menten kinetics with a small added linear diffusion component. The Kt and Jmax of the saturable component were 5.40 +/- 0.34 ..mu..M and 148.8 +/- 7.2 ..mu..mol 1. cell/sup -1/h/sup -1/ respectively. Replacement of Na with Li, K, Rb, Cs or choline reduce influx to diffusion. With the addition of asp analogues (4/sup +/M L-asp, 40/sup +/M inhibitor), the following sequence of inhibition was observed (range 80% to 40% inhib.): L-glutamate > L-cysteine sulfonate > D-asp > L-cysteic acid > D-glutamate. Other amino acids such as L-alanine, L-proline, L-lysine, L-cysteine, and taurine showed no inhibition (<5%). These data suggest that cat red cells contain a high-affinity Na dependent transport system for L-asp, glutamate, and closely related analogues which resembles that found in the RBCs of other carnivores and in neural tissues.

  16. Designing Novel Nanoformulations Targeting Glutamate Transporter Excitatory Amino Acid Transporter 2: Implications in Treating Drug Addiction

    PubMed Central

    Rao, PSS; Yallapu, Murali M.; Sari, Youssef; Fisher, Paul B.; Kumar, Santosh

    2015-01-01

    Chronic drug abuse is associated with elevated extracellular glutamate concentration in the brain reward regions. Deficit of glutamate clearance has been identified as a contributing factor that leads to enhanced glutamate concentration following extended drug abuse. Importantly, normalization of glutamate level through induction of glutamate transporter 1 (GLT1)/ excitatory amino acid transporter 2 (EAAT2) expression has been described in several in vivo studies. GLT1 upregulators including ceftriaxone, a beta-lactam antibiotic, have been effective in attenuating drug-seeking and drug-consumption behavior in rodent models. However, potential obstacles toward clinical translation of GLT1 (EAAT2) upregulators as treatment for drug addiction might include poor gastrointestinal absorption, serious peripheral adverse effects, and/or suboptimal CNS concentrations. Given the growing success of nanotechnology in targeting CNS ailments, nanoformulating known GLT1 (EAAT2) upregulators for selective uptake across the blood brain barrier presents an ideal therapeutic approach for treating drug addiction. In this review, we summarize the results obtained with promising GLT1 (EAAT2) inducing compounds in animal models recapitulating drug addiction. Additionally, the various nanoformulations that can be employed for selectively increasing the CNS bioavailability of GLT1 (EAAT2) upregulators are discussed. Finally, the applicability of GLT1 (EAAT2) induction via central delivery of drug-loaded nanoformulations is described. PMID:26635971

  17. Designing Novel Nanoformulations Targeting Glutamate Transporter Excitatory Amino Acid Transporter 2: Implications in Treating Drug Addiction.

    PubMed

    Rao, Pss; Yallapu, Murali M; Sari, Youssef; Fisher, Paul B; Kumar, Santosh

    Chronic drug abuse is associated with elevated extracellular glutamate concentration in the brain reward regions. Deficit of glutamate clearance has been identified as a contributing factor that leads to enhanced glutamate concentration following extended drug abuse. Importantly, normalization of glutamate level through induction of glutamate transporter 1 (GLT1)/ excitatory amino acid transporter 2 (EAAT2) expression has been described in several in vivo studies. GLT1 upregulators including ceftriaxone, a beta-lactam antibiotic, have been effective in attenuating drug-seeking and drug-consumption behavior in rodent models. However, potential obstacles toward clinical translation of GLT1 (EAAT2) upregulators as treatment for drug addiction might include poor gastrointestinal absorption, serious peripheral adverse effects, and/or suboptimal CNS concentrations. Given the growing success of nanotechnology in targeting CNS ailments, nanoformulating known GLT1 (EAAT2) upregulators for selective uptake across the blood brain barrier presents an ideal therapeutic approach for treating drug addiction. In this review, we summarize the results obtained with promising GLT1 (EAAT2) inducing compounds in animal models recapitulating drug addiction. Additionally, the various nanoformulations that can be employed for selectively increasing the CNS bioavailability of GLT1 (EAAT2) upregulators are discussed. Finally, the applicability of GLT1 (EAAT2) induction via central delivery of drug-loaded nanoformulations is described.

  18. Retinoic acid induces expression of the thyroid hormone transporter, monocarboxylate transporter 8 (Mct8).

    PubMed

    Kogai, Takahiko; Liu, Yan-Yun; Richter, Laura L; Mody, Kaizeen; Kagechika, Hiroyuki; Brent, Gregory A

    2010-08-27

    Retinoic acid (RA) and thyroid hormone are critical for differentiation and organogenesis in the embryo. Mct8 (monocarboxylate transporter 8), expressed predominantly in the brain and placenta, mediates thyroid hormone uptake from the circulation and is required for normal neural development. RA induces differentiation of F9 mouse teratocarcinoma cells toward neurons as well as extraembryonal endoderm. We hypothesized that Mct8 is functionally expressed in F9 cells and induced by RA. All-trans-RA (tRA) and other RA receptor (RAR) agonists dramatically (>300-fold) induced Mct8. tRA treatment significantly increased uptake of triiodothyronine and thyroxine (4.1- and 4.3-fold, respectively), which was abolished by a selective Mct8 inhibitor, bromosulfophthalein. Sequence inspection of the Mct8 promoter region and 5'-rapid amplification of cDNA ends PCR analysis in F9 cells identified 11 transcription start sites and a proximal Sp1 site but no TATA box. tRA significantly enhanced Mct8 promoter activity through a consensus RA-responsive element located 6.6 kilobases upstream of the coding region. A chromatin immunoprecipitation assay demonstrated binding of RAR and retinoid X receptor to the RA response element. The promotion of thyroid hormone uptake through the transcriptional up-regulation of Mct8 by RAR is likely to be important for extraembryonic endoderm development and neural differentiation. This finding demonstrates cross-talk between RA signaling and thyroid hormone signaling in early development at the level of the thyroid hormone transporter.

  19. Transport mechanism and regulatory properties of the human amino acid transporter ASCT2 (SLC1A5).

    PubMed

    Scalise, Mariafrancesca; Pochini, Lorena; Panni, Simona; Pingitore, Piero; Hedfalk, Kristina; Indiveri, Cesare

    2014-11-01

    The kinetic mechanism of the transport catalyzed by the human glutamine/neutral amino acid transporter hASCT2 over-expressed in P. pastoris was determined in proteoliposomes by pseudo-bi-substrate kinetic analysis of the Na(+)-glutamineex/glutaminein transport reaction. A random simultaneous mechanism resulted from the experimental analysis. Purified functional hASCT2 was chemically cross-linked to a stable dimeric form. The oligomeric structure correlated well with the kinetic mechanism of transport. Half-saturation constants (Km) of the transporter for the other substrates Ala, Ser, Asn and Thr were measured both on the external and internal side. External Km were much lower than the internal ones confirming the asymmetry of the transporter. The electric nature of the transport reaction was determined imposing a negative inside membrane potential generated by K(+) gradients in the presence of valinomycin. The transport reaction resulted to be electrogenic and the electrogenicity originated from external Na(+). Internal Na(+) exerted a stimulatory effect on the transport activity which could be explained by a regulatory, not a counter-transport, effect. Native and deglycosylated hASCT2 extracted from HeLa showed the same transport features demonstrating that the glycosyl moiety has no role in transport function. Both in vitro and in vivo interactions of hASCT2 with the scaffold protein PDZK1 were revealed.

  20. Report membrane transport of lactic acid in the filamentous fungus Rhizopus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fungus Rhizopus is frequently used for fermentative production of lactic acid, but little is known about the mechanisms or proteins for transporting this carboxylic acid. Since transport of the lactate anion across the plasma membrane is critical to prevent acidification of the cytoplasm, we ev...

  1. Properties of an Inducible C4-Dicarboxylic Acid Transport System in Bacillus subtilis

    PubMed Central

    Ghei, Om. K.; Kay, William W.

    1973-01-01

    The transport of the tricarboxylic acid cycle C4-dicarboxylic acids was studied in both the wild-type strain and tricarboxylic acid cycle mutants of Bacillus subtilis. Active transport of malate, fumarate, and succinate was found to be inducible by these dicarboxylic acids or by precursors to them, whereas glucose or closely related metabolites catabolite-repressed their uptake. l-Malate was found to be the best dicarboxylic acid transport inducer in succinic dehydrogenase, fumarase, and malic dehydrogenase mutants. Succinate and fumarate are accumulated over 100-fold in succinic dehydrogenase and fumarase mutants, respectively, whereas mutants lacking malate dehydrogenase were unable to accumulate significant quantities of the C4-dicarboxylic acids. The stereospecificity of this transport system was studied from a comparison of the rates of competitive inhibition of both succinate uptake and efflux in a succinate dehydrogenase mutant by utilizing thirty dicarboxylic acid analogues. The system was specific for the C4-dicarboxylic acids of the tricarboxylic acid cycle, neither citrate nor α-ketoglutarate were effective competitive inhibitors. Of a wide variety of metabolic inhibitors tested, inhibiors of oxidative phosphorylation and of the formation of proton gradients were the most potent inhibitors of transport. From the kinetics of dicarboxylic acid transport (Km approximately 10−4 M for succinate or fumarate in succinic acid dehydrogenase and fumarase mutants) and from the competitive inhibition studies, it was concluded that an inducible dicarboxylic acid transport system mediates the entry of malate, fumarate, or succinate into B. subtilis. Mutants devoid of α-ketoglutarate dehydrogenase were shown to accumulate both α-ketoglutarate and glutamate, and these metabolites subsequently inhibited the transport of all the C4-dicarboxylic acids, suggesting a regulatory role. Images PMID:4633350

  2. Adsorption and transport of polymaleic acid on Callovo-Oxfordian clay stone: batch and transport experiments.

    PubMed

    Durce, Delphine; Landesman, Catherine; Grambow, Bernd; Ribet, Solange; Giffaut, Eric

    2014-08-01

    Dissolved Organic Matter (DOM) can affect the mobility of radionuclides in pore water of clay-rich geological formations, such as those intended to be used for nuclear waste disposal. The present work studies the adsorption and transport properties of a polycarboxylic acid, polymaleic acid (PMA, Mw=1.9kDa), on Callovo-Oxfordian argillite samples (COx). Even though this molecule is rather different from the natural organic matter found in clay rock, the study of its retention properties on both dispersed and intact samples allows assessing to which extent organic acids may undergo sorption under natural conditions (pH7) and what could be the impact on their mobility. PMA sorption and desorption were investigated in dispersed systems. The degree of sorption was measured after 1, 8 and 21days and for a range of PMA initial concentrations from 4.5×10(-7) to 1.4×10(-3)mol.L(-1). The reversibility of the sorption process was estimated by desorption experiments performed after the sorption experiments. At the sorption steady state, the sorption was described by a two-site Langmuir model. A total sorption capacity of COx for PMA was found to be 1.01×10(-2) mol.kg(-1) distributed on two sorption sites, one weak and one strong. The desorption of PMA was incomplete, independently of the duration of the sorption phase. The amount of desorbable PMA even appeared to decrease for sorption phases from 1 to 21days. To describe the apparent desorption hysteresis, two conceptual models were applied. The two-box diffusion model accounted for intraparticle diffusion and more generally for nonequilibrium processes. The two-box first-order non-reversible model accounted for a first-order non-reversible sorption and more generally for kinetically-controlled irreversible sorption processes. The use of the two models revealed that desorption hysteresis was not the result of nonequilibrium processes but was due to irreversible sorption. Irreversible sorption on the strong site was

  3. Adsorption and transport of polymaleic acid on Callovo-Oxfordian clay stone: Batch and transport experiments

    NASA Astrophysics Data System (ADS)

    Durce, Delphine; Landesman, Catherine; Grambow, Bernd; Ribet, Solange; Giffaut, Eric

    2014-08-01

    Dissolved Organic Matter (DOM) can affect the mobility of radionuclides in pore water of clay-rich geological formations, such as those intended to be used for nuclear waste disposal. The present work studies the adsorption and transport properties of a polycarboxylic acid, polymaleic acid (PMA, Mw = 1.9 kDa), on Callovo-Oxfordian argillite samples (COx). Even though this molecule is rather different from the natural organic matter found in clay rock, the study of its retention properties on both dispersed and intact samples allows assessing to which extent organic acids may undergo sorption under natural conditions (pH 7) and what could be the impact on their mobility. PMA sorption and desorption were investigated in dispersed systems. The degree of sorption was measured after 1, 8 and 21 days and for a range of PMA initial concentrations from 4.5 × 10- 7 to 1.4 × 10- 3 mol.L- 1. The reversibility of the sorption process was estimated by desorption experiments performed after the sorption experiments. At the sorption steady state, the sorption was described by a two-site Langmuir model. A total sorption capacity of COx for PMA was found to be 1.01×10- 2 mol.kg- 1 distributed on two sorption sites, one weak and one strong. The desorption of PMA was incomplete, independently of the duration of the sorption phase. The amount of desorbable PMA even appeared to decrease for sorption phases from 1 to 21 days. To describe the apparent desorption hysteresis, two conceptual models were applied. The two-box diffusion model accounted for intraparticle diffusion and more generally for nonequilibrium processes. The two-box first-order non-reversible model accounted for a first-order non-reversible sorption and more generally for kinetically-controlled irreversible sorption processes. The use of the two models revealed that desorption hysteresis was not the result of nonequilibrium processes but was due to irreversible sorption. Irreversible sorption on the strong site was

  4. Fatty Acid-Binding Protein 5 Facilitates the Blood-Brain Barrier Transport of Docosahexaenoic Acid.

    PubMed

    Pan, Yijun; Scanlon, Martin J; Owada, Yuji; Yamamoto, Yui; Porter, Christopher J H; Nicolazzo, Joseph A

    2015-12-07

    The brain has a limited ability to synthesize the essential polyunsaturated fatty acid (PUFA) docosahexaenoic acid (DHA) from its omega-3 fatty acid precursors. Therefore, to maintain brain concentrations of this PUFA at physiological levels, plasma-derived DHA must be transported across the blood-brain barrier (BBB). While DHA is able to partition into the luminal membrane of brain endothelial cells, its low aqueous solubility likely limits its cytosolic transfer to the abluminal membrane, necessitating the requirement of an intracellular carrier protein to facilitate trafficking of this PUFA across the BBB. As the intracellular carrier protein fatty acid-binding protein 5 (FABP5) is expressed at the human BBB, the current study assessed the putative role of FABP5 in the brain endothelial cell uptake and BBB transport of DHA in vitro and in vivo, respectively. hFAPB5 was recombinantly expressed and purified from Escherichia coli C41(DE3) cells and the binding affinity of DHA to hFABP5 assessed using isothermal titration calorimetry. The impact of FABP5 siRNA on uptake of (14)C-DHA into immortalized human brain microvascular endothelial (hCMEC/D3) cells was assessed. An in situ transcardiac perfusion method was optimized in C57BL/6 mice and subsequently used to compare the BBB influx rate (Kin) of (14)C-DHA between FABP5-deficient (FABP5(-/-)) and wild-type (FABP5(+/+)) C57BL/6 mice. DHA bound to hFABP5 with an equilibrium dissociation constant of 155 ± 8 nM (mean ± SEM). FABP5 siRNA transfection decreased hCMEC/D3 mRNA and protein expression of FABP5 by 53.2 ± 5.5% and 44.8 ± 13.7%, respectively, which was associated with a 14.1 ± 2.7% reduction in (14)C-DHA cellular uptake. By using optimized conditions for the in situ transcardiac perfusion (a 1 min preperfusion (10 mL/min) followed by perfusion of (14)C-DHA (1 min)), the Kin of (14)C-DHA was 0.04 ± 0.01 mL/g/s. Relative to FABP5(+/+) mice, the Kin of (14)C-DHA decreased 36.7 ± 12.4% in FABP5(-/-) mice

  5. Study of Tranexamic Acid During Air Medical Prehospital Transport Trial (STAAMP trial)

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBER: W81XWH-13-2-0080 TITLE: Study of Tranexamic Acid During Air Medical Prehospital Transport Trial (STAAMP trial) PRINCIPAL INVESTIGATOR...TITLE AND SUBTITLE 5a. CONTRACT NUMBER Study of Tranexamic Acid During Air Medical Prehospital Transport Trial (STAAMP trial) 5b. GRANT NUMBER W81XWH...IRB approval regarding changes to the protocol language. 15. SUBJECT TERMS Prehospital; Tranexamic acid 16. SECURITY CLASSIFICATION OF: 17. LIMITATION

  6. Mechanism of L-lactic acid transport in L6 skeletal muscle cells.

    PubMed

    Kobayashi, Masaki; Itagaki, Shirou; Hirano, Takeshi; Iseki, Ken

    2004-10-01

    L-lactic acid transport plays an important role in the regulation of L-lactic acid circulation into and out of muscle. To clarify the transport mechanism of L-lactic acid in skeletal muscle, L-lactic acid uptake was investigated using a L6 cell line. mRNAs of monocarboxylate transporter (MCT) 1, 2 and 4 were found to be expressed in L6 cells. The [(14)C] L-lactic acid uptake by L6 cells increased up to pH of 6.0. The [(14)C] L-lactic acid uptake at pH 6.0 was concentration-dependent with a K(m) of 3.7 mM. This process was reduced by alpha-cyano-4-hydroxycinnamate, a typical MCT1, 2 and 4 inhibitor. These results suggest that an MCT participates in the uptake of L-lactic acid by L6 cells. [(14)C] L-lactic acid uptake was markedly inhibited by monocarboxylic acids and monocarboxylate drugs but not by dicarboxylic acids and amino acids. Moreover, benzoic acid, a substrate for MCT1, competitively inhibited this process with K(i) of 1.7 mM. [(14)C] L-lactic acid efflux in L6 cells was inhibited by alpha-cyano-4-hydroxycinnamate but not by benzoic acid. These results suggest that [(14)C] L-lactic acid efflux in L6 cells is mediated by MCT other than MCT1.

  7. Characterization and expression profiles of MaACS and MaACO genes from mulberry (Morus alba L.).

    PubMed

    Liu, Chang-ying; Lü, Rui-hua; Li, Jun; Zhao, Ai-chun; Wang, Xi-ling; Diane, Umuhoza; Wang, Xiao-hong; Wang, Chuan-hong; Yu, Ya-sheng; Han, Shu-mei; Lu, Cheng; Yu, Mao-de

    2014-07-01

    1-Aminocyclopropane-1-carboxylic acid synthase (ACS) and 1-aminocyclopropane-1-carboxylic acid oxidase (ACO) are encoded by multigene families and are involved in fruit ripening by catalyzing the production of ethylene throughout the development of fruit. However, there are no reports on ACS or ACO genes in mulberry, partly because of the limited molecular research background. In this study, we have obtained five ACS gene sequences and two ACO gene sequences from Morus Genome Database. Sequence alignment and phylogenetic analysis of MaACO1 and MaACO2 showed that their amino acids are conserved compared with ACO proteins from other species. MaACS1 and MaACS2 are type I, MaACS3 and MaACS4 are type II, and MaACS5 is type III, with different C-terminal sequences. Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) expression analysis showed that the transcripts of MaACS genes were strongly expressed in fruit, and more weakly in other tissues. The expression of MaACO1 and MaACO2 showed different patterns in various mulberry tissues. MaACS and MaACO genes demonstrated two patterns throughout the development of mulberry fruit, and both of them were strongly up-regulated by abscisic acid (ABA) and ethephon.

  8. [Human peritoneum in vitro: changes in urate transport after administration of pyrazinoic acid].

    PubMed

    Czyzewska, K; Grzegorzewska, A; Stawny, B; Knapowski, J

    1989-01-01

    The article is an analysis of the dynamics of two-direction transportation of uric acid (UA) through the human peritoneum in vitro, and also changes of the dynamics under the influence of pyrazinoic++ acid. The peritoneum was taken from the anterior abdominal wall of patients undergoing planned abdominal surgery. It was found that the transportation of UA both from the vascular to the mesothelial side of the peritoneal membrane and in the opposite direction remained on a stable level for 120 minutes. The introduction of pyrazinoic++ acid decreased the transportation of UA from the vascular to the mesothelial side of the peritoneum on the average by 50 per cent. The transportation in the opposite direction did not change. The results obtained are consistent with results of clinical examinations. One may suppose that pyrazinoic++ acid induces changes in transportation qualities of the peritoneum.

  9. Amino-acid transporters in T-cell activation and differentiation.

    PubMed

    Ren, W; Liu, G; Yin, J; Tan, B; Wu, G; Bazer, F W; Peng, Y; Yin, Y

    2017-03-02

    T-cell-mediated immune responses aim to protect mammals against cancers and infections, and are also involved in the pathogenesis of various inflammatory or autoimmune diseases. Cellular uptake and the utilization of nutrients is closely related to the T-cell fate decision and function. Research in this area has yielded surprising findings in the importance of amino-acid transporters for T-cell development, homeostasis, activation, differentiation and memory. In this review, we present current information on amino-acid transporters, such as LAT1 (l-leucine transporter), ASCT2 (l-glutamine transporter) and GAT-1 (γ-aminobutyric acid transporter-1), which are critically important for mediating peripheral naive T-cell homeostasis, activation and differentiation, especially for Th1 and Th17 cells, and even memory T cells. Mechanically, the influence of amino-acid transporters on T-cell fate decision may largely depend on the mechanistic target of rapamycin complex 1 (mTORC1) signaling. These discoveries remarkably demonstrate the role of amino-acid transporters in T-cell fate determination, and strongly indicate that manipulation of the amino-acid transporter-mTORC1 axis could ameliorate many inflammatory or autoimmune diseases associated with T-cell-based immune responses.

  10. Mitochondrial ascorbic acid transport is mediated by a low-affinity form of the sodium-coupled ascorbic acid transporter-2.

    PubMed

    Muñoz-Montesino, Carola; Roa, Francisco J; Peña, Eduardo; González, Mauricio; Sotomayor, Kirsty; Inostroza, Eveling; Muñoz, Carolina A; González, Iván; Maldonado, Mafalda; Soliz, Carlos; Reyes, Alejandro M; Vera, Juan Carlos; Rivas, Coralia I

    2014-05-01

    Despite the fundamental importance of the redox metabolism of mitochondria under normal and pathological conditions, our knowledge regarding the transport of vitamin C across mitochondrial membranes remains far from complete. We report here that human HEK-293 cells express a mitochondrial low-affinity ascorbic acid transporter that molecularly corresponds to SVCT2, a member of the sodium-coupled ascorbic acid transporter family 2. The transporter SVCT1 is absent from HEK-293 cells. Confocal colocalization experiments with anti-SVCT2 and anti-organelle protein markers revealed that most of the SVCT2 immunoreactivity was associated with mitochondria, with minor colocalization at the endoplasmic reticulum and very low immunoreactivity at the plasma membrane. Immunoblotting of proteins extracted from highly purified mitochondrial fractions confirmed that SVCT2 protein was associated with mitochondria, and transport analysis revealed a sigmoidal ascorbic acid concentration curve with an apparent ascorbic acid transport Km of 0.6mM. Use of SVCT2 siRNA for silencing SVCT2 expression produced a major decrease in mitochondrial SVCT2 immunoreactivity, and immunoblotting revealed decreased SVCT2 protein expression by approximately 75%. Most importantly, the decreased protein expression was accompanied by a concomitant decrease in the mitochondrial ascorbic acid transport rate. Further studies using HEK-293 cells overexpressing SVCT2 at the plasma membrane revealed that the altered kinetic properties of mitochondrial SVCT2 are due to the ionic intracellular microenvironment (low in sodium and high in potassium), with potassium acting as a concentration-dependent inhibitor of SVCT2. We discarded the participation of two glucose transporters previously described as mitochondrial dehydroascorbic acid transporters; GLUT1 is absent from mitochondria and GLUT10 is not expressed in HEK-293 cells. Overall, our data indicate that intracellular SVCT2 is localized in mitochondria, is

  11. The role of L-type amino acid transporter 1 in human tumors

    PubMed Central

    Zhao, Yu; Wang, Lin; Pan, Jihong

    2015-01-01

    Summary L-type amino acid transporter 1 (LAT1) is an L-type amino acid transporter and transports large neutral amino acids such as leucine, isoleucine, valine, phenylalanine, tyrosine, tryptophan, methionine, and histidine. LAT1 was found to be highly expressed especially in human cancer tissues, and up-regulated LAT1 can lead to dysfunction in human tumor cells. These findings suggest that LAT1 plays an important role in human tumors. This review provides an overview of the current understanding of LAT1 expression and its clinical significance and function in tumors. PMID:26668776

  12. Structural basis of the alternating-access mechanism in a bile acid transporter

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaoming; Levin, Elena J.; Pan, Yaping; McCoy, Jason G.; Sharma, Ruchika; Kloss, Brian; Bruni, Renato; Quick, Matthias; Zhou, Ming

    2014-01-01

    Bile acids are synthesized from cholesterol in hepatocytes and secreted through the biliary tract into the small intestine, where they aid in absorption of lipids and fat-soluble vitamins. Through a process known as enterohepatic recirculation, more than 90% of secreted bile acids are then retrieved from the intestine and returned to the liver for resecretion. In humans, there are two Na+-dependent bile acid transporters involved in enterohepatic recirculation, the Na+-taurocholate co-transporting polypeptide (NTCP; also known as SLC10A1) expressed in hepatocytes, and the apical sodium-dependent bile acid transporter (ASBT; also known as SLC10A2) expressed on enterocytes in the terminal ileum. In recent years, ASBT has attracted much interest as a potential drug target for treatment of hypercholesterolaemia, because inhibition of ASBT reduces reabsorption of bile acids, thus increasing bile acid synthesis and consequently cholesterol consumption. However, a lack of three-dimensional structures of bile acid transporters hampers our ability to understand the molecular mechanisms of substrate selectivity and transport, and to interpret the wealth of existing functional data. The crystal structure of an ASBT homologue from Neisseria meningitidis (ASBTNM) in detergent was reported recently, showing the protein in an inward-open conformation bound to two Na+ and a taurocholic acid. However, the structural changes that bring bile acid and Na+ across the membrane are difficult to infer from a single structure. To understand the structural changes associated with the coupled transport of Na+ and bile acids, here we solved two structures of an ASBT homologue from Yersinia frederiksenii (ASBTYf) in a lipid environment, which reveal that a large rigid-body rotation of a substrate-binding domain gives the conserved `crossover' region, where two discontinuous helices cross each other, alternating accessibility from either side of the cell membrane. This result has implications

  13. Auxin and ethylene induce flavonol accumulation through distinct transcriptional networks.

    PubMed

    Lewis, Daniel R; Ramirez, Melissa V; Miller, Nathan D; Vallabhaneni, Prashanthi; Ray, W Keith; Helm, Richard F; Winkel, Brenda S J; Muday, Gloria K

    2011-05-01

    Auxin and ethylene are key regulators of plant growth and development, and thus the transcriptional networks that mediate responses to these hormones have been the subject of intense research. This study dissected the hormonal cross talk regulating the synthesis of flavonols and examined their impact on root growth and development. We analyzed the effects of auxin and an ethylene precursor on roots of wild-type and hormone-insensitive Arabidopsis (Arabidopsis thaliana) mutants at the transcript, protein, and metabolite levels at high spatial and temporal resolution. Indole-3-acetic acid (IAA) and 1-aminocyclopropane-1-carboxylic acid (ACC) differentially increased flavonol pathway transcripts and flavonol accumulation, altering the relative abundance of quercetin and kaempferol. The IAA, but not ACC, response is lost in the transport inhibitor response1 (tir1) auxin receptor mutant, while ACC responses, but not IAA responses, are lost in ethylene insensitive2 (ein2) and ethylene resistant1 (etr1) ethylene signaling mutants. A kinetic analysis identified increases in transcripts encoding the transcriptional regulators MYB12, Transparent Testa Glabra1, and Production of Anthocyanin Pigment after hormone treatments, which preceded increases in transcripts encoding flavonoid biosynthetic enzymes. In addition, myb12 mutants were insensitive to the effects of auxin and ethylene on flavonol metabolism. The equivalent phenotypes for transparent testa4 (tt4), which makes no flavonols, and tt7, which makes kaempferol but not quercetin, showed that quercetin derivatives are the inhibitors of basipetal root auxin transport, gravitropism, and elongation growth. Collectively, these experiments demonstrate that auxin and ethylene regulate flavonol biosynthesis through distinct signaling networks involving TIR1 and EIN2/ETR1, respectively, both of which converge on MYB12. This study also provides new evidence that quercetin is the flavonol that modulates basipetal auxin transport.

  14. Hormonal changes in relation to biomass partitioning and shoot growth impairment in salinized tomato (Solanum lycopersicum L.) plants.

    PubMed

    Albacete, Alfonso; Ghanem, Michel Edmond; Martínez-Andújar, Cristina; Acosta, Manuel; Sánchez-Bravo, José; Martínez, Vicente; Lutts, Stanley; Dodd, Ian C; Pérez-Alfocea, Francisco

    2008-01-01

    Following exposure to salinity, the root/shoot ratio is increased (an important adaptive response) due to the rapid inhibition of shoot growth (which limits plant productivity) while root growth is maintained. Both processes may be regulated by changes in plant hormone concentrations. Tomato plants (Solanum lycopersicum L. cv Moneymaker) were cultivated hydroponically for 3 weeks under high salinity (100 mM NaCl) and five major plant hormones (abscisic acid, ABA; the cytokinins zeatin, Z, and zeatin-riboside, ZR; the auxin indole-3-acetic acid, IAA; and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid, ACC) were determined weekly in roots, xylem sap, and leaves. Salinity reduced shoot biomass by 50-60% and photosynthetic area by 20-25% both by decreasing leaf expansion and delaying leaf appearance, while root growth was less affected, thus increasing the root/shoot ratio. ABA and ACC concentrations strongly increased in roots, xylem sap, and leaves after 1 d (ABA) and 15 d (ACC) of salinization. By contrast, cytokinins and IAA were differentially affected in roots and shoots. Salinity dramatically decreased the Z+ZR content of the plant, and induced the conversion of ZR into Z, especially in the roots, which accounted for the relative increase of cytokinins in the roots compared to the leaf. IAA concentration was also strongly decreased in the leaves while it accumulated in the roots. Decreased cytokinin content and its transport from the root to the shoot were probably induced by the basipetal transport of auxin from the shoot to the root. The auxin/cytokinin ratio in the leaves and roots may explain both the salinity-induced decrease in shoot vigour (leaf growth and leaf number) and the shift in biomass allocation to the roots, in agreement with changes in the activity of the sink-related enzyme cell wall invertase.

  15. Hormonal changes in relation to biomass partitioning and shoot growth impairment in salinized tomato (Solanum lycopersicum L.) plants

    PubMed Central

    Albacete, Alfonso; Ghanem, Michel Edmond; Martínez-Andújar, Cristina; Acosta, Manuel; Sánchez-Bravo, José; Martínez, Vicente; Lutts, Stanley; Dodd, Ian C.; Pérez-Alfocea, Francisco

    2008-01-01

    Following exposure to salinity, the root/shoot ratio is increased (an important adaptive response) due to the rapid inhibition of shoot growth (which limits plant productivity) while root growth is maintained. Both processes may be regulated by changes in plant hormone concentrations. Tomato plants (Solanum lycopersicum L. cv Moneymaker) were cultivated hydroponically for 3 weeks under high salinity (100 mM NaCl) and five major plant hormones (abscisic acid, ABA; the cytokinins zeatin, Z, and zeatin-riboside, ZR; the auxin indole-3-acetic acid, IAA; and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid, ACC) were determined weekly in roots, xylem sap, and leaves. Salinity reduced shoot biomass by 50–60% and photosynthetic area by 20–25% both by decreasing leaf expansion and delaying leaf appearance, while root growth was less affected, thus increasing the root/shoot ratio. ABA and ACC concentrations strongly increased in roots, xylem sap, and leaves after 1 d (ABA) and 15 d (ACC) of salinization. By contrast, cytokinins and IAA were differentially affected in roots and shoots. Salinity dramatically decreased the Z+ZR content of the plant, and induced the conversion of ZR into Z, especially in the roots, which accounted for the relative increase of cytokinins in the roots compared to the leaf. IAA concentration was also strongly decreased in the leaves while it accumulated in the roots. Decreased cytokinin content and its transport from the root to the shoot were probably induced by the basipetal transport of auxin from the shoot to the root. The auxin/cytokinin ratio in the leaves and roots may explain both the salinity-induced decrease in shoot vigour (leaf growth and leaf number) and the shift in biomass allocation to the roots, in agreement with changes in the activity of the sink-related enzyme cell wall invertase. PMID:19036841

  16. Functional domains of the fatty acid transport proteins: studies using protein chimeras.

    PubMed

    DiRusso, Concetta C; Darwis, Dina; Obermeyer, Thomas; Black, Paul N

    2008-03-01

    Fatty acid transport proteins (FATP) function in fatty acid trafficking pathways, several of which have been shown to participate in the transport of exogenous fatty acids into the cell. Members of this protein family also function as acyl CoA synthetases with specificity towards very long chain fatty acids or bile acids. These proteins have two identifying sequence motifs: The ATP/AMP motif, an approximately 100 amino acid segment required for ATP binding and common to members of the adenylate-forming super family of proteins, and the FATP/VLACS motif that consists of approximately 50 amino acid residues and is restricted to members of the FATP family. This latter motif has been implicated in fatty acid transport in the yeast FATP orthologue Fat1p. In the present studies using a yeast strain containing deletions in FAT1 (encoding Fat1p) and FAA1 (encoding the major acyl CoA synthetase (Acsl) Faa1p) as an experimental platform, the phenotypic and functional properties of specific murine FATP1-FATP4 and FATP6-FATP4 protein chimeras were evaluated in order to define elements within these proteins that further distinguish the fatty acid transport and activation functions. As expected from previous work FATP1 and FATP4 were functional in the fatty acid transport pathway, while and FATP6 was not. All three isoforms were able to activate the very long chain fatty acids arachidonate (C(20:4)) and lignocerate (C(24:0)), but with distinguishing activities between saturated and highly unsaturated ligands. A 73 amino acid segment common to FATP1 and FATP4 and between the ATP/AMP and FATP/VLACS motifs was identified by studying the chimeras, which is hypothesized to contribute to the transport function.

  17. Ethylene Regulates the Arabidopsis Microtubule-Associated Protein WAVE-DAMPENED2-LIKE5 in Etiolated Hypocotyl Elongation1[OPEN

    PubMed Central

    Sun, Jingbo; Ma, Qianqian; Mao, Tonglin

    2015-01-01

    The phytohormone ethylene plays crucial roles in the negative regulation of plant etiolated hypocotyl elongation. The microtubule cytoskeleton also participates in hypocotyl cell growth. However, it remains unclear if ethylene signaling-mediated etiolated hypocotyl elongation involves the microtubule cytoskeleton. In this study, we functionally identified the previously uncharacterized microtubule-associated protein WAVE-DAMPENED2-LIKE5 (WDL5) as a microtubule-stabilizing protein that plays a positive role in ethylene-regulated etiolated hypocotyl cell elongation in Arabidopsis (Arabidopsis thaliana). ETHYLENE-INSENSITIVE3, a key transcription factor in the ethylene signaling pathway, directly targets and up-regulates WDL5. Etiolated hypocotyls from a WDL5 loss-of-function mutant (wdl5-1) were more insensitive to 1-aminocyclopropane-1-carboxylic acid treatment than the wild type. Decreasing WDL5 expression partially rescued the shorter etiolated hypocotyl phenotype in the ethylene overproduction mutant eto1-1. Reorganization of cortical microtubules in etiolated hypocotyl cells from the wdl5-1 mutant was less sensitive to 1-aminocyclopropane-1-carboxylic acid treatment. These findings indicate that WDL5 is an important participant in ethylene signaling inhibition of etiolated hypocotyl growth. This study reveals a mechanism involved in the ethylene regulation of microtubules through WDL5 to inhibit etiolated hypocotyl cell elongation. PMID:26134166

  18. Ethylene is Involved in Brassinosteroids Induced Alternative Respiratory Pathway in Cucumber (Cucumis sativus L.) Seedlings Response to Abiotic Stress

    PubMed Central

    Wei, Li-Jie; Deng, Xing-Guang; Zhu, Tong; Zheng, Ting; Li, Peng-Xu; Wu, Jun-Qiang; Zhang, Da-Wei; Lin, Hong-Hui

    2015-01-01

    Effects of brassinosteroids (BRs) on cucumber (Cucumis sativus L.) abiotic stresses resistance to salt, polyethylene glycol (PEG), cold and the potential mechanisms were investigated in this work. Previous reports have indicated that BRs can induce ethylene production and enhance alternative oxidase (AOX) pathway. The mechanisms whether ethylene is involved as a signal molecule which connected BR with AOX in regulating stress tolerance are still unknown. Here, we found that pretreatment with 1 μM brassinolide (BL, the most active BRs) relieved stress-caused oxidative damage in cucumber seedlings and clearly enhanced the capacity of AOX and the ethylene biosynthesis. Furthermore, transcription level of ethylene signaling biosynthesis genes including ripening-related ACC synthase1 (CSACS1), ripening-related ACC synthase2 (CSACS2), ripening-related ACC synthase3 (CSACS3), 1-aminocyclopropane-1-carboxylate oxidase1 (CSACO1), 1-aminocyclopropane-1-carboxylate oxidase2 (CSACO2), and CSAOX were increased after BL treatment. Importantly, the application of the salicylhydroxamic acid (SHAM, AOX inhibitor) and ethylene biosynthesis inhibitor aminooxyacetic acid (AOA) decreased plant resistance to environmental stress by blocking BRs-induced alternative respiration. Taken together, our results demonstrated that ethylene was involved in BRs-induced AOX activity which played important roles in abiotic stresses tolerance in cucumber seedlings. PMID:26617622

  19. Ethylene-Mediated Programmed Cell Death during Maize Endosperm Development of Wild-Type and shrunken2 Genotypes.

    PubMed Central

    Young, T. E.; Gallie, D. R.; DeMason, D. A.

    1997-01-01

    We characterized the progression of programmed cell death during maize (Zea mays L.) endosperm development of starchy (Su; wild-type) and shrunken2 (sh2) genotypes and tested the involve ment of ethylene in mediating this process. Histological and viability staining demonstrated that endosperm cell death was initiated earlier and progressed more rapidly in sh2 endosperm compared with Su endosperm. Internucleosomal DNA fragmentation accompanied endosperm cell death and occurred more extensively in sh2 endosperm. 1-Aminocyclopropane-1-carboxylic acid levels peaked approximately 16 d after pollination (dap) in Su endosperm and gradually decreased during subsequent development, whereas two large 1-aminocyclopropane-1-carboxylic acid peaks were observed in sh2 endosperm, the first between 16 and 20 dap and the second at 36 dap. Ethylene levels were elevated in sh2 kernels compared with Su kernels, with an initial peak 20 dap approximately 3-fold higher than in Su kernels and a second peak 36 dap approximately 5-fold higher than that in Su kernels. Ethylene treatment of Su kernels resulted in earlier and more extensive endosperm cell death and DNA fragmentation. Aminoethoxyvinylglycine treatment of sh2 kernels reduced the extent of DNA fragmentation. We conclude that ethylene is involved in triggering programmed cell death in developing maize endosperm and is responsible for the aberrant phenotype of sh2 kernels. PMID:12223841

  20. Ethylene Regulates the Arabidopsis Microtubule-Associated Protein WAVE-DAMPENED2-LIKE5 in Etiolated Hypocotyl Elongation.

    PubMed

    Sun, Jingbo; Ma, Qianqian; Mao, Tonglin

    2015-09-01

    The phytohormone ethylene plays crucial roles in the negative regulation of plant etiolated hypocotyl elongation. The microtubule cytoskeleton also participates in hypocotyl cell growth. However, it remains unclear if ethylene signaling-mediated etiolated hypocotyl elongation involves the microtubule cytoskeleton. In this study, we functionally identified the previously uncharacterized microtubule-associated protein WAVE-DAMPENED2-LIKE5 (WDL5) as a microtubule-stabilizing protein that plays a positive role in ethylene-regulated etiolated hypocotyl cell elongation in Arabidopsis (Arabidopsis thaliana). ETHYLENE-INSENSITIVE3, a key transcription factor in the ethylene signaling pathway, directly targets and up-regulates WDL5. Etiolated hypocotyls from a WDL5 loss-of-function mutant (wdl5-1) were more insensitive to 1-aminocyclopropane-1-carboxylic acid treatment than the wild type. Decreasing WDL5 expression partially rescued the shorter etiolated hypocotyl phenotype in the ethylene overproduction mutant eto1-1. Reorganization of cortical microtubules in etiolated hypocotyl cells from the wdl5-1 mutant was less sensitive to 1-aminocyclopropane-1-carboxylic acid treatment. These findings indicate that WDL5 is an important participant in ethylene signaling inhibition of etiolated hypocotyl growth. This study reveals a mechanism involved in the ethylene regulation of microtubules through WDL5 to inhibit etiolated hypocotyl cell elongation.

  1. LAT1 is the transport competent unit of the LAT1/CD98 heterodimeric amino acid transporter.

    PubMed

    Napolitano, Lara; Scalise, Mariafrancesca; Galluccio, Michele; Pochini, Lorena; Albanese, Leticia Maria; Indiveri, Cesare

    2015-10-01

    LAT1 (SLC7A5) and CD98 (SLC3A2) constitute a heterodimeric transmembrane protein complex that catalyzes amino acid transport. Whether one or both subunits are competent for transport is still unclear. The present work aims to solve this question using different experimental strategies. Firstly, LAT1 and CD98 were immuno-detected in protein extracts from SiHa cells. Under oxidizing conditions, i.e., without addition of SH (thiol) reducing agent DTE, both proteins were revealed as a 120kDa major band. Upon DTE treatment separated bands, corresponding to LAT1(35kDa) or CD98(80kDa), were detected. LAT1 function was evaluated in intact cells as BCH sensitive [(3)H]His transport inhibited by hydrophobic amino acids. Antiport of [(3)H]His was measured in proteoliposomes reconstituted with SiHa cell extract in presence of internal His. Transport was increased by DTE. Hydrophobic amino acids were best inhibitors in addition to hydrophilic Tyr, Gln, Asn and Lys. Cys, Tyr and Gln, included in the intraliposomal space, were transported in antiport with external [(3)H]His. Similar experiments were performed in proteoliposomes reconstituted with the recombinant purified hLAT1. Results overlapping those obtained with native protein were achieved. Lower transport of [(3)H]Leu and [(3)H]Gln with respect to [(3)H]His was detected. Kinetic asymmetry was found with external Km for His lower than internal one. No transport was detected in proteoliposomes reconstituted with recombinant hCD98. The experimental data demonstrate that LAT1 is the sole transport competent subunit of the heterodimer. This conclusion has important outcome for following studies on functional characterization and identification of specific inhibitors with potential application in human therapy.

  2. Oleic acid stimulates system A amino acid transport in primary human trophoblast cells mediated by toll-like receptor 4.

    PubMed

    Lager, Susanne; Gaccioli, Francesca; Ramirez, Vanessa I; Jones, Helen N; Jansson, Thomas; Powell, Theresa L

    2013-03-01

    Obese women have an increased risk to deliver large babies. However, the mechanisms underlying fetal overgrowth in these pregnancies are not well understood. Obese pregnant women typically have elevated circulating lipid levels. We tested the hypothesis that fatty acids stimulate placental amino acid transport, mediated via toll-like receptor 4 (TLR4) and mammalian target of rapamycin (mTOR) signaling pathways. Circulating NEFA levels and placental TLR4 expression were assessed in women with varying prepregnancy body mass index (BMI). The effects of oleic acid on system A and system L amino acid transport, and on the activation of the mTOR (4EBP1, S6K1, rpS6), TLR4 (IĸB, JNK, p38 MAPK), and STAT3 signaling pathways were determined in cultured primary human trophoblast cells. Maternal circulating NEFAs (n = 33), but not placental TLR4 mRNA expression (n = 16), correlated positively with BMI (P < 0.05). Oleic acid increased trophoblast JNK and STAT3 phosphorylation (P < 0.05), whereas mTOR activity was unaffected. Furthermore, oleic acid doubled trophoblast system A activity (P < 0.05), without affecting system L activity. siRNA-mediated silencing of TLR4 expression prevented the stimulatory effect of oleic acid on system A activity. Our data suggest that maternal fatty acids can increase placental nutrient transport via TLR4, thereby potentially affecting fetal growth.

  3. Bile acid transport in sister of P-glycoprotein (ABCB11) knockout mice.

    PubMed

    Lam, Ping; Wang, Renxue; Ling, Victor

    2005-09-20

    In vertebrates, bile flow is essential for movement of water and solutes across liver canalicular membranes. In recent years, the molecular motor of canalicular bile acid secretion has been identified as a member of the ATP binding cassette transporter (ABC) superfamily, known as sister of P-glycoprotein (Spgp) or bile salt export pump (Bsep, ABCB11). In humans, mutations in the BSEP gene are associated with a very low level of bile acid secretion and severe cholestasis. However, as reported previously, because the spgp(-)(/)(-) knockout mice do not express severe cholestasis and have substantial bile acid secretion, we investigated the "alternative transport system" that allows these mice to be physiologically relatively normal. We examined the expression levels of several ABC transporters in spgp(-)(/)(-) mice and found that the level of multidrug resistance Mdr1 (P-glycoprotein) was strikingly increased while those of Mdr2, Mrp2, and Mrp3 were increased to only a moderate extent. We hypothesize that an elevated level of Mdr1 in the spgp(-)(/)(-) knockout mice functions as an alternative pathway to transport bile acids and protects hepatocytes from bile acid-induced cholestasis. In support of this hypothesis, we showed that plasma membrane vesicles isolated from a drug resistant cell line expressing high levels of P-glycoprotein were capable of transporting bile acids, albeit with a 5-fold lower affinity compared to Spgp. This finding is the first direct evidence that P-glycoprotein (Mdr1) is capable of transporting bile acids.

  4. Active transport of amino acids by a guanidiniocarbonyl-pyrrole receptor.

    PubMed

    Urban, Christian; Schmuck, Carsten

    2010-08-16

    Herein we report the synthesis and characterization of a transporter 9 for N-acetylated amino acids. Transporter 9 is a conjugate of a guanidiniocarbonyl pyrrole cation, one of the most efficient carboxylate binding motifs reported so far, and a hydrophobic tris(dodecylbenzyl) group, which ensures solubility in organic solvents. In its protonated form, 9 binds N-acetylated amino acid carboxylates in wet organic solvents with association constants in the range of 10(4) M(-1) as estimated by extraction experiments. Aromatic amino acids are preferred due to additional cation-pi-interactions of the amino acid side chain with the guanidiniocarbonyl pyrrole moiety. U-tube experiments established efficient transport across a bulk liquid chloroform phase with fluxes approaching 10(-6) mol m(-2) s(-1). In experiments with single substrates, the release rate of the amino acid from the receptor-substrate complex at the interface with the receiving phase is rate determining. In contrast to this, in competition experiments with several substrates, the thermodynamic affinity to 9 becomes decisive. As 9 can only transport anions in its protonated form and has a pK(a) value of approximately 7, pH-driven active transport of amino acids is also possible. Transport occurs as a symport of the amino acid carboxylate and a proton.

  5. Transporters for ammonium, amino acids and peptides are expressed in pitchers of the carnivorous plant Nepenthes.

    PubMed

    Schulze, W; Frommer, W B; Ward, J M

    1999-03-01

    Insect capture and digestion contribute substantially to the nitrogen budget of carnivorous plants. In Nepenthes, insect-derived nitrogenous compounds are imported from the pitcher fluid and transported throughout the plant via the vascular tissue to support growth. Import and distribution of nutrients may require transmembrane nitrogen transporters. Representatives of three classes of genes encoding transporters for the nitrogenous compounds ammonium, amino acids and peptides were identified in Nepenthes pitchers. The expression at the cellular level of an ammonium transporter gene, three amino acid transporter genes, and one peptide transporter gene were investigated in the insect trapping organs of Nepenthes. Expression of the ammonium transporter gene NaAMT1 was detected in the head cells of digestive glands in the lower part of the pitcher where NaAMT1 may function in ammonium uptake from the pitcher fluid. One amino acid transporter gene, NaAAP1, was expressed in bundle sheath cells surrounding the vascular tissue. To understand the locations where transmembrane transport could be required within the pitcher, symplasmic and apoplasmic continuity was probed using fluorescent dyes. Symplasmic connections were not found between cortical cells and vascular bundles. Therefore, the amino acid transporter encoded by NaAAP1 may be involved in transport of amino acids into the vascular tissue. In contrast, expression of the peptide transporter gene NaNTR1 was detected in phloem cells of the vascular tissue within pitchers. NaNTR1 may function in the export of nitrogen from the pitcher by loading peptides into the phloem.

  6. Structure and mechanism of a Na+-independent amino acid transporter.

    PubMed

    Shaffer, Paul L; Goehring, April; Shankaranarayanan, Aruna; Gouaux, Eric

    2009-08-21

    Amino acid, polyamine, and organocation (APC) transporters are secondary transporters that play essential roles in nutrient uptake, neurotransmitter recycling, ionic homeostasis, and regulation of cell volume. Here, we present the crystal structure of apo-ApcT, a proton-coupled broad-specificity amino acid transporter, at 2.35 angstrom resolution. The structure contains 12 transmembrane helices, with the first 10 consisting of an inverted structural repeat of 5 transmembrane helices like the leucine transporter LeuT. The ApcT structure reveals an inward-facing, apo state and an amine moiety of lysine-158 located in a position equivalent to the sodium ion site Na2 of LeuT. We propose that lysine-158 is central to proton-coupled transport and that the amine group serves the same functional role as the Na2 ion in LeuT, thus demonstrating common principles among proton- and sodium-coupled transporters.

  7. Transport and metabolic effects of alpha-aminoisobutyric acid in Saccharomyces cerevisiae.

    PubMed

    Kim, K W; Roon, R J

    1982-11-24

    alpha-Aminoisobutyric acid is actively transported into yeast cells by the general amino acid transport system. The system exhibits a Km for alpha-aminoisobutyric acid of 270 microM, a Vmax of 24 nmol/min per mg cells (dry weight), and a pH optimum of 4.1-4.3. alpha-Aminoisobutyric acid is also transported by a minor system(s) with a Vmax of 1.7 nmol/min per mg cells. Transport occurs against a concentration gradient with the concentration ratio reaching over 1000:1 (in/out). The alpha-aminoisobutyric acid is not significantly metabolized or incorporated into protein after an 18 h incubation. alpha-Aminoisobutyric acid inhibits cell growth when a poor nitrogen source such as proline is provided but not with good nitrogen sources such as NH+4. During nitrogen starvation alpha-aminoisobutyric acid strongly inhibits the synthesis of the nitrogen catabolite repression sensitive enzyme, asparaginase II. Studies with a mutant yeast strain (GDH-CR) suggest that alpha-aminoisobutyric acid inhibition of asparaginase II synthesis occurs because alpha-aminoisobutyric acid is an effective inhibitor of protein synthesis in nitrogen starved cells.

  8. Characteristics of the transport of ascorbic acid into leucocytes

    SciTech Connect

    Raghoebar, M.; Huisman, J.A.M.; van den Berg, W.B.; van Ginneken, C.A.M.

    1987-02-02

    The degree and the mode of association of (/sup 14/C)-ascorbic acid with leucocytes are examined. The degree of association of ascorbic acid with polymorphonuclear leucocytes (1-3 %) is dependent on cell type, extracellular concentration of ascorbic acid, incubation temperature, intactness of the cells and the extracellular pH. All experiments are performed according to strict protocols as these compounds are labile in aqueous solutions. Further it is noticed that in all experiments an outward gradient of leucocyte endogenic ascorbic acid exists. The results suggest that the association process comprises at least one saturable pathway. The activation of polymorphonuclear leucocytes by phorbol myristate acetate increases the accumulation of ascorbic acid threefold. 30 references, 7 figures, 3 tables.

  9. Relationship between acid precipitation and three-dimensional transport associated with synoptic-scale cyclones

    SciTech Connect

    Haagenson, P.L.; Lazrus, A.L.; Kuo, Y.H.; Caldwell, G.A.

    1985-09-01

    Field data collected during APEX (Acid Precipitation Experiment) are used in combination with an isentropic trajectory model to analyze the relationship between acid precipitation and three-dimensional transport associated with cyclonic storms. Data are presented which indicate that high acidity in precipitation is often associated with slow transport speed and elevated SO2 concentrations in the dry air feeding into the precipitating regions. Conversely, low acidity is usually related to rapid transit, descending motion, and transport above the atmospheric boundary layer. The results also show that precipitation in the cold sector of a cyclone (in advance of the surface warm front) is often more acidic than that in other sectors of the storm. Four case studies are included to detail some of these meteorological effects. 19 references.

  10. The ABC transporter ABC40 encodes a phenylacetic acid export system in Penicillium chrysogenum.

    PubMed

    Weber, Stefan S; Kovalchuk, Andriy; Bovenberg, Roel A L; Driessen, Arnold J M

    2012-11-01

    The filamentous fungus Penicillium chrysogenum is used for the industrial production of β-lactam antibiotics. The pathway for β-lactam biosynthesis has been resolved and involves the enzyme phenylacetic acid CoA ligase that is responsible for the CoA activation of the side chain precursor phenylacetic acid (PAA) that is used for the biosynthesis of penicillin G. To identify ABC transporters related to β-lactam biosynthesis, we analyzed the expression of all 48 ABC transporters present in the genome of P. chryso-genum when grown in the presence and absence of PAA. ABC40 is significantly upregulated when cells are grown or exposed to high levels of PAA. Although deletion of this transporter did not affect β-lactam biosynthesis, it resulted in a significant increase in sensitivity to PAA and other weak acids. It is concluded that ABC40 is involved in weak acid detoxification in P. chrysogenum including resistance to phenylacetic acid.

  11. Niflumic acid modulates uncoupled substrate-gated conductances in the human glutamate transporter EAAT4

    PubMed Central

    Poulsen, Miguel V; Vandenberg, Robert J

    2001-01-01

    The effects of niflumic acid on the substrate-gated currents mediated by the glutamate transporter EAAT4 expressed in Xenopus laevis oocytes were examined using radiolabelled substrate flux measurements and two-electrode voltage clamp techniques. Niflumic acid significantly enhanced the substrate-gated currents in EAAT4, without affecting the affinity of the substrates towards EAAT4. At a concentration of 300 μm, niflumic acid caused a 19 ± 5 % reduction in l-[3H]glutamate uptake and no significant effect on the uptake of dl-[3H]aspartate. Thus, enhancement of the substrate-gated currents in EAAT4 does not correlate with the rate of substrate transport and suggests that the niflumic acid-induced currents are not thermodynamically coupled to the transport of substrate. Niflumic acid and arachidonic acid co-applied with substrate to EAAT4-expressing oocytes had similar functional consequences. However, niflumic acid still enhanced the l-glutamate-gated current to the same extent in the presence and absence of a saturating dose of arachidonic acid, which suggests that the sites of action of the two compounds are distinct. The EAAT4-mediated currents for the two substrates, l-glutamate and l-aspartate, were not enhanced equally by addition of the same dose of niflumic acid and the ionic composition of the niflumic acid-induced currents was not the same for the two substrates. Protons carry the l-glutamate-gated niflumic acid-induced current and both protons and chloride ions carry the l-aspartate-gated niflumic acid-induced current. These results show that niflumic acid can be used to probe the functional aspects of EAAT4 and that niflumic acid and other non-steroid anti-inflammatory drugs could be used as the basis for the development of novel modulators of glutamate transporters. PMID:11432999

  12. Niflumic acid modulates uncoupled substrate-gated conductances in the human glutamate transporter EAAT4.

    PubMed

    Poulsen, M V; Vandenberg, R J

    2001-07-01

    1. The effects of niflumic acid on the substrate-gated currents mediated by the glutamate transporter EAAT4 expressed in Xenopus laevis oocytes were examined using radiolabelled substrate flux measurements and two-electrode voltage clamp techniques. 2. Niflumic acid significantly enhanced the substrate-gated currents in EAAT4, without affecting the affinity of the substrates towards EAAT4. At a concentration of 300 microM, niflumic acid caused a 19 +/- 5 % reduction in L-[(3)H]glutamate uptake and no significant effect on the uptake of DL-[(3)H]aspartate. Thus, enhancement of the substrate-gated currents in EAAT4 does not correlate with the rate of substrate transport and suggests that the niflumic acid-induced currents are not thermodynamically coupled to the transport of substrate. 3. Niflumic acid and arachidonic acid co-applied with substrate to EAAT4-expressing oocytes had similar functional consequences. However, niflumic acid still enhanced the L-glutamate-gated current to the same extent in the presence and absence of a saturating dose of arachidonic acid, which suggests that the sites of action of the two compounds are distinct. 4. The EAAT4-mediated currents for the two substrates, L-glutamate and L-aspartate, were not enhanced equally by addition of the same dose of niflumic acid and the ionic composition of the niflumic acid-induced currents was not the same for the two substrates. Protons carry the L-glutamate-gated niflumic acid-induced current and both protons and chloride ions carry the L-aspartate-gated niflumic acid-induced current. 5. These results show that niflumic acid can be used to probe the functional aspects of EAAT4 and that niflumic acid and other non-steroid anti-inflammatory drugs could be used as the basis for the development of novel modulators of glutamate transporters.

  13. Bacteria in combination with fertilizers promote root and shoot growth of maize in saline-sodic soil.

    PubMed

    Zafar-Ul-Hye, Muhammad; Farooq, Hafiz Muhammad; Hussain, Mubshar

    2015-03-01

    Salinity is the leading abiotic stress hampering maize ( Zea mays L.) growth throughout the world, especially in Pakistan. During salinity stress, the endogenous ethylene level in plants increases, which retards proper root growth and consequent shoot growth of the plants. However, certain bacteria contain the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase, which converts 1-aminocyclopropane-1-carboxylic acid (an immediate precursor of ethylene biosynthesis in higher plants) into ammonia and α-ketobutyrate instead of ethylene. In the present study, two Pseudomonas bacterial strains containing ACC-deaminase were tested separately and in combinations with mineral fertilizers to determine their potential to minimize/undo the effects of salinity on maize plants grown under saline-sodic field conditions. The data recorded at 30, 50 and 70 days after sowing revealed that both the Pseudomonas bacterial strains improved root and shoot length, root and shoot fresh weight, and root and shoot dry weight up to 34, 43, 35, 71, 55 and 68%, respectively, when applied without chemical fertilizers: these parameter were enhanced up to 108, 95, 100, 131, 100 and 198%, respectively, when the strains were applied along with chemical fertilizers. It can be concluded that ACC-deaminase Pseudomonas bacterial strains applied alone and in conjunction with mineral fertilizers improved the root and shoot growth of maize seedlings grown in saline-sodic soil.

  14. EAAT3 promotes amino acid transport and proliferation of porcine intestinal epithelial cells.

    PubMed

    Ye, Jin-Ling; Gao, Chun-Qi; Li, Xiang-Guang; Jin, Cheng-Long; Wang, Dan; Shu, Gang; Wang, Wen-Ce; Kong, Xiang-Feng; Yao, Kang; Yan, Hui-Chao; Wang, Xiu-Qi

    2016-06-21

    Excitatory amino acid transporter 3 (EAAT3, encoded by SLC1A1) is an epithelial type high-affinity anionic amino acid transporter, and glutamate is the major oxidative fuel for intestinal epithelial cells. This study investigated the effects of EAAT3 on amino acid transport and cell proliferation through activation of the mammalian target of the rapamycin (mTOR) pathway in porcine jejunal epithelial cells (IPEC-J2). Anionic amino acid and cystine (Cys) transport were increased (P<0.05) by EAAT3 overexpression and decreased (P<0.05) by EAAT3 knockdown rather than other amino acids. MTT and cell counting assays suggested that IPEC-J2 cell proliferation increased (P<0.05) with EAAT3 overexpression. Phosphorylation of mTOR (Ser2448), ribosomal protein S6 kinase-1 (S6K1, Thr389) and eukaryotic initiation factor 4E-binding protein-1 (4EBP1, Thr70) was increased by EAAT3 overexpression and decreased by EAAT3 knockdown (P<0.05), as were levels of activating transcription factor 4 (ATF4) and cystine/glutamate antiporter (xCT) (P<0.05). Our results demonstrate for the first time that EAAT3 facilitates anionic amino acid transport and activates the mTOR pathway, promoting Cys transport and IPEC-J2 cell proliferation.

  15. EAAT3 promotes amino acid transport and proliferation of porcine intestinal epithelial cells

    PubMed Central

    Jin, Cheng-long; Wang, Dan; Shu, Gang; Wang, Wen-ce; Kong, Xiang-feng; Yao, Kang; Yan, Hui-chao; Wang, Xiu-qi

    2016-01-01

    Excitatory amino acid transporter 3 (EAAT3, encoded by SLC1A1) is an epithelial type high-affinity anionic amino acid transporter, and glutamate is the major oxidative fuel for intestinal epithelial cells. This study investigated the effects of EAAT3 on amino acid transport and cell proliferation through activation of the mammalian target of the rapamycin (mTOR) pathway in porcine jejunal epithelial cells (IPEC-J2). Anionic amino acid and cystine (Cys) transport were increased (P<0.05) by EAAT3 overexpression and decreased (P<0.05) by EAAT3 knockdown rather than other amino acids. MTT and cell counting assays suggested that IPEC-J2 cell proliferation increased (P<0.05) with EAAT3 overexpression. Phosphorylation of mTOR (Ser2448), ribosomal protein S6 kinase-1 (S6K1, Thr389) and eukaryotic initiation factor 4E-binding protein-1 (4EBP1, Thr70) was increased by EAAT3 overexpression and decreased by EAAT3 knockdown (P<0.05), as were levels of activating transcription factor 4 (ATF4) and cystine/glutamate antiporter (xCT) (P<0.05). Our results demonstrate for the first time that EAAT3 facilitates anionic amino acid transport and activates the mTOR pathway, promoting Cys transport and IPEC-J2 cell proliferation. PMID:27231847

  16. Fatty acid binding protein facilitates sarcolemmal fatty acid transport but not mitochondrial oxidation in rat and human skeletal muscle

    PubMed Central

    Holloway, Graham P; Lally, Jamie; Nickerson, James G; Alkhateeb, Hakam; Snook, Laelie A; Heigenhauser, George J F; Calles-Escandon, Jorge; Glatz, Jan F C; Luiken, Joost J F P; Spriet, Lawrence L; Bonen, Arend

    2007-01-01

    The transport of long-chain fatty acids (LCFAs) across mitochondrial membranes is regulated by carnitine palmitoyltransferase I (CPTI) activity. However, it appears that additional fatty acid transport proteins, such as fatty acid translocase (FAT)/CD36, influence not only LCFA transport across the plasma membrane, but also LCFA transport into mitochondria. Plasma membrane-associated fatty acid binding protein (FABPpm) is also known to be involved in sacrolemmal LCFA transport, and it is also present on the mitochondria. At this location, it has been identified as mitochondrial aspartate amino transferase (mAspAT), despite being structurally identical to FABPpm. Whether this protein is also involved in mitochondrial LCFA transport and oxidation remains unknown. Therefore, we have examined the ability of FABPpm/mAspAT to alter mitochondrial fatty acid oxidation. Muscle contraction increased (P < 0.05) the mitochondrial FAT/CD36 content in rat (+22%) and human skeletal muscle (+33%). By contrast, muscle contraction did not alter the content of mitochondrial FABPpm/mAspAT protein in either rat or human muscles. Electrotransfecting rat soleus muscles, in vivo, with FABPpm cDNA increased FABPpm protein in whole muscle (+150%; P < 0.05), at the plasma membrane (+117%; P < 0.05) and in mitochondria (+80%; P < 0.05). In these FABPpm-transfected muscles, palmitate transport into giant vesicles was increased by +73% (P < 0.05), and fatty acid oxidation in intact muscle was increased by +18% (P < 0.05). By contrast, despite the marked increase in mitochondrial FABPpm/mAspAT protein content (+80%), the rate of mitochondrial palmitate oxidation was not altered (P > 0.05). However, electrotransfection increased mAspAT activity by +70% (P < 0.05), and the mitochondrial FABPpm/mAspAT protein content was significantly correlated with mAspAT activity (r= 0.75). It is concluded that FABPpm has two distinct functions depending on its subcellular location: (a) it contributes to

  17. Role of organic acids in promoting colloidal transport of mercury from mine tailings

    USGS Publications Warehouse

    Slowey, A.J.; Johnson, S.B.; Rytuba, J.J.; Brown, Gordon E.

    2005-01-01

    A number of factors affect the transport of dissolved and paniculate mercury (Hg) from inoperative Hg mines, including the presence of organic acids in the rooting zone of vegetated mine waste. We examined the role of the two most common organic acids in soils (oxalic and citric acid) on Hg transport from such waste by pumping a mixed organic acid solution (pH 5.7) at 1 mL/min through Hg mine tailings columns. For the two total organic acid concentrations investigated (20 ??M and 1 mM), particle-associated Hg was mobilized, with the onset of paniculate Hg transport occurring later for the lower organic acid concentration. Chemical analyses of column effluent indicate that 98 wt % of Hg mobilized from the column was paniculate. Hg speciation was determined using extended X-ray absorption fine structure spectroscopy and transmission electron microscopy, showing that HgS minerals are dominant in the mobilized particles. Hg adsorbed to colloids is another likely mode of transport due to the abundance of Fe-(oxyhydr)oxides, Fe-sulfides, alunite, and jarosite in the tailings to which Hg(II) adsorbs. Organic acids produced by plants are likely to enhance the transport of colloid-associated Hg from vegetated Hg mine tailings by dissolving cements to enable colloid release. ?? 2005 American Chemical Society.

  18. Effect of common polymorphisms of the farnesoid X receptor and bile acid transporters on the pharmacokinetics of ursodeoxycholic acid.

    PubMed

    Hu, Miao; Fok, Benny S P; Wo, Siu-Kwan; Lee, Vincent H L; Zuo, Zhong; Tomlinson, Brian

    2016-01-01

    Ursodeoxycholic acid (UDCA), a natural, dihydroxy bile acid, promotes gallstone dissolution and has been attributed with several other beneficial effects. The farnesoid X receptor (FXR) may influence the pharmacokinetics of UDCA by modulating the expression of bile acid transporters. This exploratory study examined whether common functional polymorphisms in FXR and in bile acid transporter genes affect the pharmacokinetics of exogenous UDCA. Polymorphisms in genes for transporters involved in bile acid transport, solute carrier organic anion 1B1 (SLCO1B1) 388A>G and 521T>C, solute carrier 10A1 (SLC10A1) 800 C>T and ATP-binding cassette B11 (ABCB11) 1331T>C, and the FXR -1G>T polymorphism were genotyped in 26 male Chinese subjects who ingested single oral 500-mg doses of UDCA. Plasma concentrations of UDCA and its major conjugate metabolite glycoursodeoxycholic acid (GUDCA) were determined. The mean systemic exposure of UDCA was higher in the five subjects with one copy of the FXR -1G>T variant allele than in those homozygous for the wild-type allele (n = 21) (AUC0-24 h : 38.5 ± 28.2 vs. 20.9 ± 8.0 μg h/mL, P = 0.021), but this difference appeared mainly due to one outlier with the -1GT genotype and elevated baseline and post-treatment UDCA concentrations. After excluding the outlier, body weight was the only factor associated with plasma concentrations of UDCA and there were no significant associations with the other polymorphisms examined. None of the polymorphisms affected the pharmacokinetics of GUDCA. This study showed that the common polymorphisms in bile acid transporters had no significant effect on the pharmacokinetics of exogenous UDCA but an effect of the FXR polymorphism cannot be excluded.

  19. Ethylene and auxin interaction in the control of adventitious rooting in Arabidopsis thaliana

    PubMed Central

    Veloccia, A.; Fattorini, L.; Della Rovere, F.; Sofo, A.; D’Angeli, S.; Betti, C.; Falasca, G.; Altamura, M.M.

    2016-01-01

    Adventitious roots (ARs) are post-embryonic roots essential for plant survival and propagation. Indole-3-acetic acid (IAA) is the auxin that controls AR formation; however, its precursor indole-3-butyric acid (IBA) is known to enhance it. Ethylene affects many auxin-dependent processes by affecting IAA synthesis, transport and/or signaling, but its role in AR formation has not been elucidated. This research investigated the role of ethylene in AR formation in dark-grown Arabidopsis thaliana seedlings, and its interaction with IAA/IBA. A number of mutants/transgenic lines were exposed to various treatments, and mRNA in situ hybridizations were carried out and hormones were quantified In the wild-type, the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) at 0.1 μM enhanced AR formation when combined with IBA (10 μM), but reduced it when applied alone; this effect did not occur in the ein3eil1 ethylene-insensitive mutant. ACC inhibited the expression of the IAA-biosynthetic genes WEI2, WEI7, and YUC6, but enhanced IBA-to-IAA conversion, as shown by the response of the ech2ibr10 mutant and an increase in the endogenous levels of IAA. The ethylene effect was independent of auxin-signaling by TIR1-AFB2 and IBA-efflux by ABCG carriers, but it was dependent on IAA-influx by AUX1/LAX3. Taken together, the results demonstrate that a crosstalk involving ethylene signaling, IAA-influx, and IBA-to-IAA conversion exists between ethylene and IAA in the control of AR formation. PMID:27831474

  20. Antioxidant enzyme activities and hormonal status in response to Cd stress in the wetland halophyte Kosteletzkya virginica under saline conditions.

    PubMed

    Han, Rui-Ming; Lefèvre, Isabelle; Albacete, Alfonso; Pérez-Alfocea, Francisco; Barba-Espín, Gregorio; Díaz-Vivancos, Pedro; Quinet, Muriel; Ruan, Cheng-Jiang; Hernández, José Antonio; Cantero-Navarro, Elena; Lutts, Stanley

    2013-03-01

    Salt marshes constitute major sinks for heavy metal accumulation but the precise impact of salinity on heavy metal toxicity for halophyte plant species remains largely unknown. Young seedlings of Kosteletzkya virginica were exposed during 3 weeks in nutrient solution to Cd 5 µM in the presence or absence of 50 mM NaCl. Cadmium (Cd) reduced growth and shoot water content and had major detrimental effect on maximum quantum efficiency (F(v) /F(m) ), effective quantum yield of photosystem II (Y(II)) and electron transport rates (ETRs). Cd induced an oxidative stress in relation to an increase in O(2) (•-) and H(2) O(2) concentration and lead to a decrease in endogenous glutathione (GSH) and α-tocopherol in the leaves. Cd not only increased leaf zeatin and zeatin riboside concentration but also increased the senescing compounds 1-aminocyclopropane-1-carboxylic acid (ACC) and abscisic acid (ABA). Salinity reduced Cd accumulation already after 1 week of stress but was unable to restore shoot growth and thus did not induce any dilution effect. Salinity delayed the Cd-induced leaf senescence: NaCl reduced the deleterious impact of Cd on photosynthesis apparatus through an improvement of F(v) /F(m) , Y(II) and ETR. Salt reduced oxidative stress in Cd-treated plants through an increase in GSH, α-tocopherol and ascorbic acid synthesis and an increase in glutathione reductase (EC 1.6.4.2) activity. Additional salt reduced ACC and ABA accumulation in Cd+NaCl-treated leaves comparing to Cd alone. It is concluded that salinity affords efficient protection against Cd to the halophyte species K. virginica, in relation to an improved management of oxidative stress and hormonal status.

  1. Estradiol augments while progesterone inhibits arginine transport in human endothelial cells through modulation of cationic amino acid transporter-1.

    PubMed

    Bentur, Ohad S; Schwartz, Doron; Chernichovski, Tamara; Ingbir, Merav; Weinstein, Talia; Chernin, Gil; Schwartz, Idit F

    2015-08-15

    Decreased generation of nitric oxide (NO) by endothelial NO synthase (eNOS) characterizes endothelial dysfunction (ECD). Delivery of arginine to eNOS by cationic amino acid transporter-1 (CAT-1) was shown to modulate eNOS activity. We found in female rats, but not in males, that CAT-1 activity is preserved with age and in chronic renal failure, two experimental models of ECD. In contrast, during pregnancy CAT-1 is inhibited. We hypothesize that female sex hormones regulate arginine transport. Arginine uptake in human umbilical vein endothelial cells (HUVEC) was determined following incubation with either 17β-estradiol (E2) or progesterone. Exposure to E2 (50 and 100 nM) for 30 min resulted in a significant increase in arginine transport and reduction in phosphorylated CAT-1 (the inactive form) protein content. This was coupled with a decrease in phosphorylated MAPK/extracellular signal-regulated kinase (ERK) 1/2. Progesterone (1 and 100 pM for 30 min) attenuated arginine uptake and increased phosphorylated CAT-1, phosphorylated protein kinase Cα (PKCα), and phosphorylated ERK1/2 protein content. GO-6976 (PKCα inhibitor) prevented the progesterone-induced decrease in arginine transport. Coincubation with both progesterone and estrogen for 30 min resulted in attenuated arginine transport. While estradiol increases arginine transport and CAT-1 activity through modulation of constitutive signaling transduction pathways involving ERK, progesterone inhibits arginine transport and CAT-1 via both PKCα and ERK1/2 phosphorylation, an effect that predominates over estradiol.

  2. Engineering rTCA pathway and C4-dicarboxylate transporter for L-malic acid production.

    PubMed

    Chen, Xiulai; Wang, Yuancai; Dong, Xiaoxiang; Hu, Guipeng; Liu, Liming

    2017-02-22

    L-Malic acid is an important component of a vast array of food additives, antioxidants, disincrustants, pharmaceuticals, and cosmetics. Here, we presented a pathway optimization strategy and a transporter modification approach to reconstruct the L-malic acid biosynthesis pathway and transport system, respectively. First, pyruvate carboxylase (pyc) and malate dehydrogenase (mdh) from Aspergillus flavus and Rhizopus oryzae were combinatorially overexpressed to construct the reductive tricarboxylic acid (rTCA) pathway for L-malic acid biosynthesis. Second, the L-malic acid transporter (Spmae) from Schizosaccharomyces pombe was engineered by removing the ubiquitination motification to enhance the L-malic acid efflux system. Finally, the L-malic acid pathway was optimized by controlling gene expression levels, and the final L-malic acid concentration, yield, and productivity were up to 30.25 g L(-1), 0.30 g g(-1), and 0.32 g L(-1) h(-1) in the resulting strain W4209 with CaCO3 as a neutralizing agent, respectively. In addition, these corresponding parameters of pyruvic acid remained at 30.75 g L(-1), 0.31 g g(-1), and 0.32 g L(-1) h(-1), respectively. The metabolic engineering strategy used here will be useful for efficient production of L-malic acid and other chemicals.

  3. Third system for neutral amino acid transport in a marine pseudomonad.

    PubMed Central

    Pearce, S M; Hildebrandt, V A; Lee, T

    1977-01-01

    Uptake of leucine by the marine pseudomonad B-16 is an energy-dependent, concentrative process. Respiratory inhibitors, uncouplers, and sulfhydryl reagents block transport. The uptake of leucine is Na+ dependent, although the relationship between the rate of leucine uptake and Na+ concentration depends, to some extent, on the ionic strength of the suspending assay medium and the manner in which cells are washed prior to assay. Leucine transport can be separated into at least two systems: a low-affinity system with an apparent Km of 1.3 X 10(-5) M, and a high-affinity system with an apparent Km of 1.9 X 10(-7) M. The high-affinity system shows a specificity unusual for bacterial systems in that both aromatic and aliphatic amino acids inhibit leucine transport, provided that they have hydrophobic side chains of a length greater than that of two carbon atoms. The system exhibits strict stereospecificity for the L form. Phenylalanine inhibition was investigated in more detail. The Ki for inhibition of leucine transport by phenylalanine is about 1.4 X 10(-7) M. Phenylalanine itself is transported by an energy-dependent process whose specificity is the same as the high-affinity leucine transport system, as is expected if both amino acids share the same transport system. Studies with protoplasts indicate that a periplasmic binding protein is not an essential part of this transport system. Fein and MacLeod (J. Bacteriol. 124:1177-1190, 1975) reported two neutral amino acid transport systems in strain B-16: the DAG system, serving glycine, D-alanine, D-serine, and alpha-aminoisobutyric acid; and the LIV system, serving L-leucine, L-isoleucine, L-valine, and L-alanine. The high-affinity system reported here is a third neutral amino acid transport system in this marine pseudomonad. We propose the name "LIV-II" system. PMID:856786

  4. Maternal bile acid transporter deficiency promotes neonatal demise

    PubMed Central

    Zhang, Yuanyuan; Li, Fei; Wang, Yao; Pitre, Aaron; Fang, Zhong-ze; Frank, Matthew W.; Calabrese, Christopher; Krausz, Kristopher W.; Neale, Geoffrey; Frase, Sharon; Vogel, Peter; Rock, Charles O.; Gonzalez, Frank J.; Schuetz, John D.

    2015-01-01

    Intrahepatic cholestasis of pregnancy (ICP) is associated with adverse neonatal survival and is estimated to impact between 0.4 and 5% of pregnancies worldwide. Here we show that maternal cholestasis (due to Abcb11 deficiency) produces neonatal death among all offspring within 24 h of birth due to atelectasis-producing pulmonary hypoxia, which recapitulates the neonatal respiratory distress of human ICP. Neonates of Abcb11-deficient mothers have elevated pulmonary bile acids and altered pulmonary surfactant structure. Maternal absence of Nr1i2 superimposed on Abcb11 deficiency strongly reduces maternal serum bile acid concentrations and increases neonatal survival. We identify pulmonary bile acids as a key factor in the disruption of the structure of pulmonary surfactant in neonates of ICP. These findings have important implications for neonatal respiratory failure, especially when maternal bile acids are elevated during pregnancy, and highlight potential pathways and targets amenable to therapeutic intervention to ameliorate this condition. PMID:26416771

  5. Acid-base transport in pancreatic cancer: molecular mechanisms and clinical potential.

    PubMed

    Kong, Su Chii; Giannuzzo, Andrea; Gianuzzo, Andrea; Novak, Ivana; Pedersen, Stine Falsig

    2014-12-01

    Solid tumors are characterized by a microenvironment that is highly acidic, while intracellular pH (pHi) is normal or even elevated. This is the result of elevated metabolic rates in the highly proliferative cancer cells, in conjunction with often greatly increased rates of net cellular acid extrusion. Studies in various cancers have suggested that while the acid extrusion mechanisms employed are generally the same as those in healthy cells, the specific transporters upregulated vary with the cancer type. The main such transporters include Na(+)/H(+) exchangers, various HCO3(-) transporters, H(+) pumps, and lactate-H(+) cotransporters. The mechanisms leading to their dysregulation in cancer are incompletely understood but include changes in transporter expression levels, trafficking and membrane localization, and posttranslational modifications. In turn, accumulating evidence has revealed that in addition to supporting their elevated metabolic rate, their increased acid efflux capacity endows the cancer cells with increased capacity for invasiveness, proliferation, and chemotherapy resistance. The pancreatic duct exhibits an enormous capacity for acid-base transport, rendering pHi dysregulation a potentially very important topic in pancreatic ductal adenocarcinoma (PDAC). PDAC - accounting for about 90% of all pancreatic cancers - has one of the highest cancer mortality rates known, and new diagnostic and treatment options are highly needed. However, very little is known about whether pH regulation is altered in PDAC and, if so, the possible role of this in cancer development. Here, we review current models for pancreatic acid-base transport and pH homeostasis and summarize current views on acid-base dysregulation in cancer, focusing where possible on the few studies to date in PDAC. Finally, we present new data-mining analyses of acid-base transporter expression changes in PDAC and discuss essential directions for future work.

  6. In-stream sorption of fulvic acid in an acidic stream: A stream-scale transport experiment

    USGS Publications Warehouse

    McKnight, Diane M.; Hornberger, G.M.; Bencala, K.E.; Boyer, E.W.

    2002-01-01

    The variation of concentration and composition of dissolved organic carbon (DOC) in stream waters cannot be explained solely on the basis of soil processes in contributing subcatchments. To investigate in-stream processes that control DOC, we injected DOC-enriched water into a reach of the Snake River (Summit County, Colorado) that has abundant iron oxyhydroxides coating the streambed. The injected water was obtained from the Suwannee River (Georgia), which is highly enriched in fulvic acid. The fulvic acid from this water is the standard reference for aquatic fulvic acid for the International Humic Substances Society and has been well characterized. During the experimental injection, significant removal of sorbable fulvic acid occurred within the first 141 m of stream reach. We coinjected a conservative tracer (lithium chloride) and analyzed the results with the one-dimensional transport with inflow and storage (OTIS) stream solute transport model to quantify the physical transport mechanisms. The downstream transport of fulvic acid as indicated by absorbance was then simulated using OTIS with a first-order kinetic sorption rate constant applied to the sorbable fulvic acid. The "sorbable" fraction of injected fulvic acid was irreversibly sorbed by streambed sediments at rates (kinetic rate constants) of the order of 10-4-10-3 S-1. In the injected Suwannee River water, sorbable and nonsorbable fulvic acid had distinct chemical characteristics identified in 13C-NMR spectra. The 13C-NMR spectra indicate that during the experiment, the sorbable "signal" of greater aromaticity and carboxyl content decreased downstream; that is, these components were preferentially removed. This study illustrates that interactions between the water and the reactive surfaces will modify significantly the concentration and composition of DOC observed in streams with abundant chemically reactive surfaces on the streambed and in the hyporheic zone.

  7. Myosin 1b Regulates Amino Acid Transport by Associating Transporters with the Apical Plasma Membrane of Kidney Cells.

    PubMed

    Komaba, Shigeru; Coluccio, Lynne M

    2015-01-01

    Amino acid transporters (AATers) in the brush border of the apical plasma membrane (APM) of renal proximal tubule (PT) cells mediate amino acid transport (AAT). We found that the membrane-associated class I myosin myosin 1b (Myo1b) localized at the apical brush border membrane of PTs. In opossum kidney (OK) 3B/2 epithelial cells, which are derived from PTs, expressed rat Myo1b-GFP colocalized in patched microvilli with expressed mouse V5-tagged SIT1 (SIT1-V5), which mediates neutral amino acid transport in OK cells. Lentivirus-mediated delivery of opossum Myo1b-specific shRNA resulted in knockdown (kd) of Myo1b expression, less SIT1-V5 at the APM as determined by localization studies, and a decrease in neutral AAT as determined by radioactive uptake assays. Myo1b kd had no effect on Pi transport or noticeable change in microvilli structure as determined by rhodamine phalloidin staining. The studies are the first to define a physiological role for Myo1b, that of regulating renal AAT by modulating the association of AATers with the APM.

  8. Identification and functional characterization of uric acid transporter Urat1 (Slc22a12) in rats.

    PubMed

    Sato, Masanobu; Wakayama, Tomohiko; Mamada, Hideaki; Shirasaka, Yoshiyuki; Nakanishi, Takeo; Tamai, Ikumi

    2011-06-01

    Uric acid transporter URAT1 contributes significantly to reabsorption of uric acid in humans to maintain a constant serum uric acid (SUA) level. Since alteration of SUA level is associated with various diseases, it is important to clarify the mechanism of change in SUA. However, although expression of mRNA of an ortholog of URAT1 (rUrat1) in rats has been reported, functional analysis and localization have not been done. Therefore, rat rUrat1 was functionally analyzed using gene expression systems and isolated brush-border membrane vesicles (BBMVs) prepared from rat kidney, and its localization in kidney was examined immunohistochemically. Uric acid transport by rUrat1 was chloride (Cl-) susceptible with a Km of 1773μM. It was inhibited by benzbromarone and trans-stimulated by lactate and pyrazinecarboxylic acid (PZA). Cl- gradient-susceptible uric acid transport by BBMVs showed similar characteristics to those of uric acid transport by rUrat1. Moreover, rUrat1 was localized at the apical membrane in proximal tubular epithelial cells in rat kidney. Accordingly, rUrat1 is considered to be involved in uric acid reabsorption in rats in the same manner as URAT1 in humans. Therefore, rUrat1 may be a useful model to study issues related to the role of human URAT1.

  9. Transportation impact analysis for the shipment of low specific activity nitric acid. Revisison 1

    SciTech Connect

    Green, J.R.

    1995-05-16

    This is in support of the Plutonium-Uranium Extraction (PUREX) Facility Low Specific Activity (LSA) Nitric Acid Shipment Environmental Assessment. It analyzes potential toxicological and radiological risks associated with transportation of PUREX Facility LSA Nitric Acid from the Hanford Site to Portsmouth VA, Baltimore MD, and Port Elizabeth NJ.

  10. Transport of Corilagin, Gallic Acid, and Ellagic Acid from Fructus Phyllanthi Tannin Fraction in Caco-2 Cell Monolayers

    PubMed Central

    Zhao, Hai-juan; Liang, Wen-Yi; Chen, Wen-Jing; Han, Shu-Xian; Qi, Qi; Cui, Ya-Ping; Li, Shi; Yang, Guang-Hui; Shao, Yan-Yan; Zhu, Dan

    2016-01-01

    Objective. To investigate the absorption property of the representative hydrolyzable tannin, namely corilagin, and its hydrolysates gallic acid (GA) and ellagic acid (EA) from the Fructus Phyllanthi tannin fraction (PTF) in vitro. Methods. Caco-2 cells monolayer model was established. Influences of PTF on Caco-2 cells viability were detected with MTT assay. The transport across monolayers was examined for different time points, concentrations, and secretory directions. The inhibitors of P-glycoprotein (P-gp), multidrug resistance proteins (MRPs), organic anion transporting polypeptide (OATP) and sodium/glucose cotransporter 1 (SGLT1), and tight junction modulators were used to study the transport mechanism. LC-MS method was employed to quantify the absorption concentration. Results. The apparent permeability coefficient (Papp) values of the three compounds were below 1.0 × 10−6 cm/s. The absorption of corilagin and GA were much lower than their efflux, and the uptake of both compounds was increased in the presence of inhibitors of P-gp and MRPs. The absorption of EA was decreased in the company of OATP and SGLT1 inhibitors. Moreover, the transport of corilagin, GA, and EA was enhanced by tight junction modulators. Conclusion. These observations indicated that the three compounds in PTF were transported via passive diffusion combined with protein mediated transport. P-gp and MRPs might get involved in the transport of corilagin and GA. The absorption of EA could be attributed to OATP and SGLT1 protein. PMID:27738446

  11. Expression pattern of peptide and amino acid genes in digestive tract of transporter juvenile turbot ( Scophthalmus maximus L.)

    NASA Astrophysics Data System (ADS)

    Xu, Dandan; He, Gen; Mai, Kangsen; Zhou, Huihui; Xu, Wei; Song, Fei

    2016-04-01

    Turbot ( Scophthalmus maximus L.), a carnivorous fish species with high dietary protein requirement, was chosen to examine the expression pattern of peptide and amino acid transporter genes along its digestive tract which was divided into six segments including stomach, pyloric caeca, rectum, and three equal parts of the remainder of the intestine. The results showed that the expression of two peptide and eleven amino acid transporters genes exhibited distinct patterns. Peptide transporter 1 (PepT1) was rich in proximal intestine while peptide transporter 2 (PepT2) was abundant in distal intestine. A number of neutral and cationic amino acid transporters expressed richly in whole intestine including B0-type amino acid transporter 1 (B0AT1), L-type amino acid transporter 2 (LAT2), T-type amino acid transporter 1 (TAT1), proton-coupled amino acid transporter 1 (PAT1), y+L-type amino acid transporter 1 (y+LAT1), and cationic amino acid transporter 2 (CAT2) while ASC amino acid transporter 2 (ASCT2), sodium-coupled neutral amino acid transporter 2 (SNAT2), and y+L-type amino acid transporter 2 (y+LAT2) abundantly expressed in stomach. In addition, system b0,+ transporters (rBAT and b0,+AT) existed richly in distal intestine. These findings comprehensively characterized the distribution of solute carrier family proteins, which revealed the relative importance of peptide and amino acid absorption through luminal membrane. Our findings are helpful to understand the mechanism of the utilization of dietary protein in fish with a short digestive tract.

  12. Maternal micronutrients and omega 3 fatty acids affect placental fatty acid desaturases and transport proteins in Wistar rats.

    PubMed

    Wadhwani, Nisha S; Dangat, Kamini D; Joshi, Asmita A; Joshi, Sadhana R

    2013-03-01

    Adequate supply of LCPUFA from maternal plasma is crucial for fetal normal growth and development. The present study examines the effect of maternal micronutrients (folic acid and vitamin B12) and omega 3 fatty acids on placental mRNA levels of fatty acid desaturases (Δ5 and Δ6) and transport proteins. Pregnant female rats were divided into 6 groups at 2 levels of folic acid both in the presence and absence of vitamin B12. Both the vitamin B12 deficient groups were supplemented with omega 3 fatty acid. Maternal vitamin B12 deficiency reduced placental mRNA and protein levels of Δ5 desaturase, mRNA levels of FATP1 and FATP4 (p<0.05 for all) as compared to control while omega 3 fatty acid supplementation normalized the levels. Our data for the first time indicates that altered maternal micronutrients and omega 3 fatty acids play a key role in regulating fatty acid desaturase and transport protein expression in placenta.

  13. Substrate specificity and transport mechanism of amino-acid transceptor Slimfast from Aedes aegypti

    PubMed Central

    Boudko, Dmitri Y.; Tsujimoto, Hitoshi; Rodriguez, Stacy D.; Meleshkevitch, Ella A.; Price, David P.; Drake, Lisa L.; Hansen, Immo A.

    2015-01-01

    Anautogenous mosquitoes depend on vertebrate blood as nutrient source for their eggs. A highly efficient set of membrane transporters mediates the massive movement of nutrient amino acids between mosquito tissues after a blood meal. Here we report the characterization of the amino-acid transporter Slimfast (Slif) from the yellow-fever mosquito Aedes aegypti using codon-optimized heterologous expression. Slif is a well-known component of the target-of-rapamycin signalling pathway and fat body nutrient sensor, but its substrate specificity and transport mechanism were unknown. We found that Slif transports essential cationic and neutral amino acids with preference for arginine. It has an unusual dual-affinity mechanism with only the high affinity being Na+ dependent. Tissue-specific expression and blood meal-dependent regulation of Slif are consistent with conveyance of essential amino acids from gut to fat body. Slif represents a novel transport system and type of transceptor for sensing and transporting essential amino acids during mosquito reproduction. PMID:26449545

  14. Inhibition of ileal bile acid transporter: An emerging therapeutic strategy for chronic idiopathic constipation.

    PubMed

    Mosińska, Paula; Fichna, Jakub; Storr, Martin

    2015-06-28

    Chronic idiopathic constipation is a common disorder of the gastrointestinal tract that encompasses a wide profile of symptoms. Current treatment options for chronic idiopathic constipation are of limited value; therefore, a novel strategy is necessary with an increased effectiveness and safety. Recently, the inhibition of the ileal bile acid transporter has become a promising target for constipation-associated diseases. Enhanced delivery of bile acids into the colon achieves an accelerated colonic transit, increased stool frequency, and relief of constipation-related symptoms. This article provides insight into the mechanism of action of ileal bile acid transporter inhibitors and discusses their potential clinical use for pharmacotherapy of constipation in chronic idiopathic constipation.

  15. CSR1, the sole target of imidazolinone herbicide in Arabidopsis thaliana.

    PubMed

    Manabe, Yuzuki; Tinker, Nicholas; Colville, Adam; Miki, Brian

    2007-09-01

    The imidazolinone-tolerant mutant of Arabidopsis thaliana, csr1-2(D), carries a mutation equivalent to that found in commercially available Clearfield crops. Despite their widespread usage, the mechanism by which Clearfield crops gain imidazolinone herbicide tolerance has not yet been fully characterized. Transcription profiling of imazapyr (an imidazolinone herbicide)-treated wild-type and csr1-2(D) mutant plants using Affymetrix ATH1 GeneChip microarrays was performed to elucidate further the biochemical and genetic mechanisms of imidazolinone resistance. In wild-type shoots, the genes which responded earliest to imazapyr treatment were detoxification-related genes which have also been shown to be induced by other abiotic stresses. Early-response genes included steroid sulfotransferase (ST) and 1-aminocyclopropane-1-carboxylic acid oxidase (ACO), as well as members of the glycosyltransferase, glutathione transferase (GST), cytochrome P450, ATP-binding cassette (ABC) transporter, multidrug and toxin extrusion (MATE) and alternative oxidase (AOX) protein families. Later stages of the imazapyr response involved regulation of genes participating in biosynthesis of amino acids, secondary metabolites and tRNA. In contrast to the dynamic changes in the transcriptome profile observed in imazapyr-treated wild-type plants, the transcriptome of csr1-2(D) did not exhibit significant changes following imazapyr treatment, compared with mock-treated csr1-2(D). Further, no substantial difference was observed between wild-type and csr1-2(D) transcriptomes in the absence of imazapyr treatment. These results indicate that CSR1 is the sole target of imidazolinone and that the csr1-2(D) mutation has little or no detrimental effect on whole-plant fitness.

  16. SOS4, a pyridoxal kinase gene, is required for root hair development in Arabidopsis.

    PubMed

    Shi, Huazhong; Zhu, Jian-Kang

    2002-06-01

    Root hair development in plants is controlled by many genetic, hormonal, and environmental factors. A number of genes have been shown to be important for root hair formation. Arabidopsis salt overly sensitive 4 mutants were originally identified by screening for NaCl-hypersensitive growth. The SOS4 (Salt Overly Sensitive 4) gene was recently isolated by map-based cloning and shown to encode a pyridoxal (PL) kinase involved in the production of PL-5-phosphate, which is an important cofactor for various enzymes and a ligand for certain ion transporters. The root growth of sos4 mutants is slower than that of the wild type. Microscopic observations revealed that sos4 mutants do not have root hairs in the maturation zone. The sos4 mutations block the initiation of most root hairs, and impair the tip growth of those that are initiated. The root hairless phenotype of sos4 mutants was complemented by the wild-type SOS4 gene. SOS4 promoter-beta-glucuronidase analysis showed that SOS4 is expressed in the root hair and other hair-like structures. Consistent with SOS4 function as a PL kinase, in vitro application of pyridoxine and pyridoxamine, but not PL, partially rescued the root hair defect in sos4 mutants. 1-Aminocyclopropane-1-carboxylic acid and 2,4-dichlorophenoxyacetic acid treatments promoted root hair formation in both wild-type and sos4 plants, indicating that genetically SOS4 functions upstream of ethylene and auxin in root hair development. The possible role of SOS4 in ethylene and auxin biosynthesis is discussed.

  17. Light-activated amino acid transport in Halobacterium halobium envelope vesicles

    NASA Technical Reports Server (NTRS)

    Macdonald, R. E.; Lanyi, J. K.

    1977-01-01

    Vesicles prepared from Halobacterium halobium cell envelopes accumulate amino acids in response to light-induced electrical and chemical gradients. Nineteen of 20 commonly occurring amino acids have been shown to be actively accumulated by these vesicles in response to illumination or in response to an artificially created Na+ gradient. On the basis of shared common carriers the transport systems can be divided into eight classes, each responsible for the transport of one or several amino acids: arginine, lysine, histidine; asparagine, glutamine; alanine, glycine, threonine, serine; leucine, valine, isoleucine, methionine; phenylalanine, tyrosine, tryptophan; aspartate; glutamate; proline. Available evidence suggests that these carriers are symmetrical in that amino acids can be transported equally well in both directions across the vesicle membranes. A tentative working model to account for these observations is presented.

  18. Surface proton transport of fully protonated poly(aspartic acid) thin films on quartz substrates

    NASA Astrophysics Data System (ADS)

    Nagao, Yuki; Kubo, Takahiro

    2014-12-01

    Thin film structure and the proton transport property of fully protonated poly(aspartic acid) (P-Asp100) have been investigated. An earlier study assessed partially protonated poly(aspartic acid), highly oriented thin film structure and enhancement of the internal proton transport. In this study of P-Asp100, IR p-polarized multiple-angle incidence resolution (P-MAIR) spectra were measured to investigate the thin film structure. The obtained thin films, with thicknesses of 120-670 nm, had no oriented structure. Relative humidity dependence of the resistance, proton conductivity, and normalized resistance were examined to ascertain the proton transport property of P-Asp100 thin films. The obtained data showed that the proton transport of P-Asp100 thin films might occur on the surface, not inside of the thin film. This phenomenon might be related with the proton transport of the biological system.

  19. The solute carrier family 10 (SLC10): beyond bile acid transport

    PubMed Central

    da Silva, Tatiana Claro; Polli, James E.; Swaan, Peter W.

    2012-01-01

    The solute carrier (SLC) family 10 (SLC10) comprises influx transporters of bile acids, steroidal hormones, various drugs, and several other substrates. Because the seminal transporters of this family, namely, sodium/taurocholate cotransporting polypeptide (NTCP; SLC10A1) and the apical sodium-dependent bile acid transporter (ASBT; SLC10A2), were primarily bile acid transporters, the term “sodium bile salt cotransporting family” was used for the SLC10 family. However, this notion became obsolete with the finding of other SLC10 members that do not transport bile acids. For example, the sodium-dependent organic anion transporter (SOAT; SLC10A6) transports primarily sulfated steroids. Moreover, NTCP was shown to also transport steroids and xenobiotics, including HMG-CoA inhibitors (statins). The SLC10 family contains four additional members, namely, P3 (SLC10A3; SLC10A3), P4 (SLC10A4; SLC10A4), P5 (SLC10A5; SLC10A5) and SLC10A7 (SLC10A7), several of which were unknown or considered hypothetical until approximately a decade ago. While their substrate specificity remains undetermined, great progress has been made towards their characterization in recent years. SLC10A4 may participate in vesicular storage or exocytosis of neurotransmitters or mastocyte mediators, whereas SLC10A5 and SLC10A7 may be involved in solute transport and SLC10A3 may have a role as a housekeeping protein. Finally, the newly found role of bile acids in glucose and energy homeostasis, via the TGR5 receptor, sheds new light on the clinical relevance of ASBT and NTCP. The present mini-review provides a brief summary of recent progress on members of the SLC10 family. PMID:23506869

  20. Transport of acetic acid in Zygosaccharomyces bailii: effects of ethanol and their implications on the resistance of the yeast to acidic environments.

    PubMed Central

    Sousa, M J; Miranda, L; Côrte-Real, M; Leão, C

    1996-01-01

    Cells of Zygosaccharomyces bailii ISA 1307 grown in a medium with acetic acid, ethanol, or glycerol as the sole carbon and energy source transported acetic acid by a saturable transport system. This system accepted propionic and formic acids but not lactic, sorbic, and benzoic acids. When the carbon source was glucose or fructose, the cells displayed activity of a mediated transport system specific for acetic acid, apparently not being able to recognize other monocarboxylic acids. In both types of cells, ethanol inhibited the transport of labelled acetic acid. The inhibition was noncompetitive, and the dependence of the maximum transport rate on the ethanol concentration was found to be exponential. These results reinforced the belief that, under the referenced growth conditions, the acid entered the cells mainly through a transporter protein. The simple diffusion of the undissociated acid appeared to contribute, with a relatively low weight, to the overall acid uptake. It was concluded that in Z. bailii, ethanol plays a protective role against the possible negative effects of acetic acid by inhibiting its transport and accumulation. Thus, the intracellular concentration of the acid could be maintained at levels lower than those expected if the acid entered the cells only by simple diffusion. PMID:8795203

  1. Soy-dairy protein blend and whey protein ingestion after resistance exercise increases amino acid transport and transporter expression in human skeletal muscle.

    PubMed

    Reidy, P T; Walker, D K; Dickinson, J M; Gundermann, D M; Drummond, M J; Timmerman, K L; Cope, M B; Mukherjea, R; Jennings, K; Volpi, E; Rasmussen, B B

    2014-06-01

    Increasing amino acid availability (via infusion or ingestion) at rest or postexercise enhances amino acid transport into human skeletal muscle. It is unknown whether alterations in amino acid availability, from ingesting different dietary proteins, can enhance amino acid transport rates and amino acid transporter (AAT) mRNA expression. We hypothesized that the prolonged hyperaminoacidemia from ingesting a blend of proteins with different digestion rates postexercise would enhance amino acid transport into muscle and AAT expression compared with the ingestion of a rapidly digested protein. In a double-blind, randomized clinical trial, we studied 16 young adults at rest and after acute resistance exercise coupled with postexercise (1 h) ingestion of either a (soy-dairy) protein blend or whey protein. Phenylalanine net balance and transport rate into skeletal muscle were measured using stable isotopic methods in combination with femoral arteriovenous blood sampling and muscle biopsies obtained at rest and 3 and 5 h postexercise. Phenylalanine transport into muscle and mRNA expression of select AATs [system L amino acid transporter 1/solute-linked carrier (SLC) 7A5, CD98/SLC3A2, system A amino acid transporter 2/SLC38A2, proton-assisted amino acid transporter 1/SLC36A1, cationic amino acid transporter 1/SLC7A1] increased to a similar extent in both groups (P < 0.05). However, the ingestion of the protein blend resulted in a prolonged and positive net phenylalanine balance during postexercise recovery compared with whey protein (P < 0.05). Postexercise myofibrillar protein synthesis increased similarly between groups. We conclude that, while both protein sources enhanced postexercise AAT expression, transport into muscle, and myofibrillar protein synthesis, postexercise ingestion of a protein blend results in a slightly prolonged net amino acid balance across the leg compared with whey protein.

  2. Transport of Palmitic Acid Across the Tegument of the Entomophilic Nematode Romanomermis culicivorax

    PubMed Central

    Gordon, Roger; Burford, Ian R.

    1984-01-01

    Romanomermis culicivorax juveniles, dissected out of Aedes aegypti larvae 7 days after infection, were incubated under controlled conditions in isotonic saline containing ¹⁴C-U-palmitic acid to investigate the nature of the transport mechanism(s) used by the nematode for transcuticular uptake of palmitic acid. Net uptake of the isotope by the nematode was of a logarithmic nature with respect to time. Uptake of palmitic acid was accomplished by a combination of diffusion and a mediated process which was substrate saturable and competitively inhibited by myristic and stearic acids. Both 2,4-dinitrophenol and ouabain inhibited uptake of palmitic acid and thus supported the hypothesis that the carrier system is of the active transport variety and is coupled to a Na⁺K⁺ ATPase pump. PMID:19295867

  3. New mechanisms that regulate Saccharomyces cerevisiae short peptide transporter achieve balanced intracellular amino acid concentrations.

    PubMed

    Melnykov, Artem V

    2016-01-01

    The budding yeast Saccharomyces cerevisiae is able to take up large quantities of amino acids in the form of di- and tripeptides via a short peptide transporter, Ptr2p. It is known that PTR2 can be induced by certain peptides and amino acids, and the mechanisms governing this upregulation are understood at the molecular level. We describe two new opposing mechanisms of regulation that emphasize potential toxicity of amino acids: the first is upregulation of PTR2 in a population of cells, caused by amino acid secretion that accompanies peptide uptake; the second is loss of Ptr2p activity, due to transporter internalization following peptide uptake. Our findings emphasize the importance of proper amino acid balance in the cell and extend understanding of peptide import regulation in yeast.

  4. 1/f fluctuations of amino acids regulate water transportation in aquaporin 1

    NASA Astrophysics Data System (ADS)

    Yamamoto, Eiji; Akimoto, Takuma; Hirano, Yoshinori; Yasui, Masato; Yasuoka, Kenji

    2014-02-01

    Aquaporins (AQPs), which transport water molecules across cell membranes, are involved in many physiological processes. Recently, it is reported that the water-water interactions within the channel are broken at the aromatic/arginine selectivity filter (ar/R region), which prevents proton transportation [U. K. Eriksson et al., Science 340, 1346 (2013), 10.1126/science.1234306]. However, the effects of the conformational fluctuations of amino acids on water transportation remain unclear. Using all-atom molecular dynamics simulations, we analyze water transportation and fluctuations of amino acids within AQP1. The amino acids exhibit 1/f fluctuations, indicating possession of long-term memory. Moreover, we find that water molecules crossing the ar/R region obey a non-Poisson process. To investigate the effect of 1/f fluctuations on water transportation, we perform restrained molecular dynamics simulations of AQP1 and simple Langevin stochastic simulations. As a result, we confirm that 1/f fluctuations of amino acids contribute to water transportation in AQP1. These findings appreciably enhance our understanding of AQPs and suggest possibilities for developing biomimetic nanopores.

  5. Coupling of hydrologic transport and chemical reactions in a stream affected by acid mine drainage

    USGS Publications Warehouse

    Kimball, B.A.; Broshears, R.E.; Bencala, K.E.; McKnight, Diane M.

    1994-01-01

    Experiments in St. Kevin Gulch, an acid mine drainage stream, examined the coupling of hydrologic transport to chemical reactions affecting metal concentrations. Injection of LiCl as a conservative tracer was used to determine discharge and residence time along a 1497-m reach. Transport of metals downstream from inflows of acidic, metal-rich water was evaluated based on synoptic samples of metal concentrations and the hydrologic characteristics of the stream. Transport of SO4 and Mn was generally conservative, but in the subreaches most affected by acidic inflows, transport was reactive. Both 0.1-??m filtered and particulate Fe were reactive over most of the stream reach. Filtered Al partitioned to the particulate phase in response to high instream concentrations. Simulations that accounted for the removal of SO4, Mn, Fe, and Al with first-order reactions reproduced the steady-state profiles. The calculated rate constants for net removal used in the simulations embody several processes that occur on a stream-reach scale. The comparison between rates of hydrologie transport and chemical reactions indicates that reactions are only important over short distances in the stream near the acidic inflows, where reactions occur on a comparable time scale with hydrologic transport and thus affect metal concentrations.

  6. ATP-dependent transport of bile acid intermediates across rat liver peroxisomal membranes.

    PubMed

    Une, Mizuho; Iguchi, Yusuke; Sakamoto, Tomoko; Tomita, Takashi; Suzuki, Yasuyuki; Morita, Masashi; Imanaka, Tsuneo

    2003-08-01

    The bile acid intermediate 3alpha,7alpha,12alpha-trihydroxy-5beta-cholestanoic acid (THCA) is converted to cholic acid exclusively in peroxisomes by the oxidative cleavage of the side chain. To investigate the mechanism by which the biosynthetic intermediates of bile acids are transported into peroxisomes, we incubated THCA or its CoA ester (THC-CoA) with isolated intact rat liver peroxisomes and analyzed their oxidation products, cholic acid and 3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-enoic acid. The oxidation of both THCA and THC-CoA was dependent on incubation time and peroxisomal proteins, and was stimulated by ATP. THC-CoA was efficiently oxidized to cholic acid and 3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-enoic acid as compared with THCA, suggesting that THC-CoA is the preferred substrate for transport into peroxisomes. The oxidation of THC-CoA was significantly inhibited by sodium azide, verapamile, and N-ethylmaleimide. Furthermore, the stimulatory effect of ATP on the oxidation was not replaced by GTP or AMP. In addition, the ATP-dependent oxidation of THC-CoA was markedly inhibited by pretreatment of peroxisomes with proteinase K when peroxisomal matrix proteins were not degraded. These results suggest that an ATP-dependent transport system for THC-CoA exists on peroxisomal membranes.

  7. Bibliography for acid-rock drainage and selected acid-mine drainage issues related to acid-rock drainage from transportation activities

    USGS Publications Warehouse

    Bradley, Michael W.; Worland, Scott C.

    2015-01-01

    Acid-rock drainage occurs through the interaction of rainfall on pyrite-bearing formations. When pyrite (FeS2) is exposed to oxygen and water in mine workings or roadcuts, the mineral decomposes and sulfur may react to form sulfuric acid, which often results in environmental problems and potential damage to the transportation infrastructure. The accelerated oxidation of pyrite and other sulfidic minerals generates low pH water with potentially high concentrations of trace metals. Much attention has been given to contamination arising from acid mine drainage, but studies related to acid-rock drainage from road construction are relatively limited. The U.S. Geological Survey, in cooperation with the Tennessee Department of Transportation, is conducting an investigation to evaluate the occurrence and processes controlling acid-rock drainage and contaminant transport from roadcuts in Tennessee. The basic components of acid-rock drainage resulting from transportation activities are described and a bibliography, organized by relevant categories (remediation, geochemical, microbial, biological impact, and secondary mineralization) is presented.

  8. Humic acid transport in saturated porous media: influence of flow velocity and influent concentration.

    PubMed

    Wei, Xiaorong; Shao, Mingan; Du, Lina; Horton, Robert

    2014-12-01

    Understanding the transport of humic acids (HAs) in porous media can provide important and practical evidence needed for accurate prediction of organic/inorganic contaminant transport in different environmental media and interfaces. A series of column transport experiments was conducted to evaluate the transport of HA in different porous media at different flow velocities and influent HA concentrations. Low flow velocity and influent concentration were found to favor the adsorption and deposition of HA onto sand grains packed into columns and to give higher equilibrium distribution coefficients and deposition rate coefficients, which resulted in an increased fraction of HA being retained in columns. Consequently, retardation factors were increased and the transport of HA through the columns was delayed. These results suggest that the transport of HA in porous media is primarily controlled by the attachment of HA to the solid matrix. Accordingly, this attachment should be considered in studies of HA behavior in porous media.

  9. Prohibitin/annexin 2 interaction regulates fatty acid transport in adipose tissue

    PubMed Central

    Salameh, Ahmad; Daquinag, Alexes C.; Staquicini, Daniela I.; An, Zhiqiang; Pasqualini, Renata; Kolonin, Mikhail G.

    2016-01-01

    We have previously identified prohibitin (PHB) and annexin A2 (ANX2) as proteins interacting on the surface of vascular endothelial cells in white adipose tissue (WAT) of humans and mice. Here, we demonstrate that ANX2 and PHB also interact in adipocytes. Mice lacking ANX2 have normal WAT vascularization, adipogenesis, and glucose metabolism but display WAT hypotrophy due to reduced fatty acid uptake by WAT endothelium and adipocytes. By using cell culture systems in which ANX2/PHB binding is disrupted either genetically or through treatment with a blocking peptide, we show that fatty acid transport efficiency relies on this protein complex. We also provide evidence that the interaction between ANX2 and PHB mediates fatty acid transport from the endothelium into adipocytes. Moreover, we demonstrate that ANX2 and PHB form a complex with the fatty acid transporter CD36. Finally, we show that the colocalization of PHB and CD36 on adipocyte surface is induced by extracellular fatty acids. Together, our results suggest that an unrecognized biochemical interaction between ANX2 and PHB regulates CD36-mediated fatty acid transport in WAT, thus revealing a new potential pathway for intervention in metabolic diseases. PMID:27468426

  10. Tissue specific analysis reveals a differential organization and regulation of both ethylene biosynthesis and E8 during climacteric ripening of tomato

    PubMed Central

    2014-01-01

    Background Solanum lycopersicum or tomato is extensively studied with respect to the ethylene metabolism during climacteric ripening, focusing almost exclusively on fruit pericarp. In this work the ethylene biosynthesis pathway was examined in all major tomato fruit tissues: pericarp, septa, columella, placenta, locular gel and seeds. The tissue specific ethylene production rate was measured throughout fruit development, climacteric ripening and postharvest storage. All ethylene intermediate metabolites (1-aminocyclopropane-1-carboxylic acid (ACC), malonyl-ACC (MACC) and S-adenosyl-L-methionine (SAM)) and enzyme activities (ACC-oxidase (ACO) and ACC-synthase (ACS)) were assessed. Results All tissues showed a similar climacteric pattern in ethylene productions, but with a different amplitude. Profound differences were found between tissue types at the metabolic and enzymatic level. The pericarp tissue produced the highest amount of ethylene, but showed only a low ACC content and limited ACS activity, while the locular gel accumulated a lot of ACC, MACC and SAM and showed only limited ACO and ACS activity. Central tissues (septa, columella and placenta) showed a strong accumulation of ACC and MACC. These differences indicate that the ethylene biosynthesis pathway is organized and regulated in a tissue specific way. The possible role of inter- and intra-tissue transport is discussed to explain these discrepancies. Furthermore, the antagonistic relation between ACO and E8, an ethylene biosynthesis inhibiting protein, was shown to be tissue specific and developmentally regulated. In addition, ethylene inhibition by E8 is not achieved by a direct interaction between ACO and E8, as previously suggested in literature. Conclusions The Ethylene biosynthesis pathway and E8 show a tissue specific and developmental differentiation throughout tomato fruit development and ripening. PMID:24401128

  11. Methyl jasmonate-induced ethylene production is responsible for conifer phloem defense responses and reprogramming of stem cambial zone for traumatic resin duct formation.

    PubMed

    Hudgins, J W; Franceschi, Vincent R

    2004-08-01

    Conifer stem pest resistance includes constitutive defenses that discourage invasion and inducible defenses, including phenolic and terpenoid resin synthesis. Recently, methyl jasmonate (MJ) was shown to induce conifer resin and phenolic defenses; however, it is not known if MJ is the direct effector or if there is a downstream signal. Exogenous applications of MJ, methyl salicylate, and ethylene were used to assess inducible defense signaling mechanisms in conifer stems. MJ and ethylene but not methyl salicylate caused enhanced phenolic synthesis in polyphenolic parenchyma cells, early sclereid lignification, and reprogramming of the cambial zone to form traumatic resin ducts in Pseudotsuga menziesii and Sequoiadendron giganteum. Similar responses in internodes above and below treated internodes indicate transport of a signal giving a systemic response. Studies focusing on P. menziesii showed MJ induced ethylene production earlier and 77-fold higher than wounding. Ethylene production was also induced in internodes above the MJ-treated internode. Pretreatment of P. menziesii stems with the ethylene response inhibitor 1-methylcyclopropene inhibited MJ and wound responses. Wounding increased 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase protein, but MJ treatment produced a higher and more rapid ACC oxidase increase. ACC oxidase was most abundant in ray parenchyma cells, followed by cambial zone cells and resin duct epithelia. The data show these MJ-induced defense responses are mediated by ethylene. The cambial zone xylem mother cells are reprogrammed to differentiate into resin-secreting epithelial cells by an MJ-induced ethylene burst, whereas polyphenolic parenchyma cells are activated to increase polyphenol production. The results also indicate a central role of ray parenchyma in ethylene-induced defense.

  12. Methyl Jasmonate-Induced Ethylene Production Is Responsible for Conifer Phloem Defense Responses and Reprogramming of Stem Cambial Zone for Traumatic Resin Duct Formation

    PubMed Central

    Hudgins, J.W.; Franceschi, Vincent R.

    2004-01-01

    Conifer stem pest resistance includes constitutive defenses that discourage invasion and inducible defenses, including phenolic and terpenoid resin synthesis. Recently, methyl jasmonate (MJ) was shown to induce conifer resin and phenolic defenses; however, it is not known if MJ is the direct effector or if there is a downstream signal. Exogenous applications of MJ, methyl salicylate, and ethylene were used to assess inducible defense signaling mechanisms in conifer stems. MJ and ethylene but not methyl salicylate caused enhanced phenolic synthesis in polyphenolic parenchyma cells, early sclereid lignification, and reprogramming of the cambial zone to form traumatic resin ducts in Pseudotsuga menziesii and Sequoiadendron giganteum. Similar responses in internodes above and below treated internodes indicate transport of a signal giving a systemic response. Studies focusing on P. menziesii showed MJ induced ethylene production earlier and 77-fold higher than wounding. Ethylene production was also induced in internodes above the MJ-treated internode. Pretreatment of P. menziesii stems with the ethylene response inhibitor 1-methylcyclopropene inhibited MJ and wound responses. Wounding increased 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase protein, but MJ treatment produced a higher and more rapid ACC oxidase increase. ACC oxidase was most abundant in ray parenchyma cells, followed by cambial zone cells and resin duct epithelia. The data show these MJ-induced defense responses are mediated by ethylene. The cambial zone xylem mother cells are reprogrammed to differentiate into resin-secreting epithelial cells by an MJ-induced ethylene burst, whereas polyphenolic parenchyma cells are activated to increase polyphenol production. The results also indicate a central role of ray parenchyma in ethylene-induced defense. PMID:15299142

  13. Cholesterol reduces the effects of dihydroxy bile acids and fatty acids on water and solute transport in the human jejunum.

    PubMed Central

    Broor, S L; Slota, T; Ammon, H V

    1980-01-01

    Jejunal perfusion studies were performed in 16 healthy volunteers to test the hypothesis that intraluminal cholesterol can mitigate the fluid secretion induced by dihydroxy bile acids and fatty acids. Fluid secretion in the presence of 5 mM taurodeoxycholate was somewhat reduced by 4 mM mono-olein which was used for the solubilization of cholesterol. Addition of 0.8 mM cholesterol reduced fluid secretion further (P less than 0.05). Fluid secretion induced by 4 mM oleic acid was changed to net absorption in a linear fashion with increasing cholesterol concentration in the perfusion solutions. 1 mM cholesterol reduced fluid secretion induced by 6 mM oleic acid (P less than 0.005), but had no effect on fluid secretion induced by 6 mM linolenic acid. Glucose absorption was generally affected in a similar manner as water transport. In vitro, 1 mM cholesterol reduced monomer activity of 6 mM oleic acid to 72.3 +/- 0.9% of control and that of linolenic acid to 81.1 +/- 1.7% of control. Although statistically significant (P less than 0.001), the difference in the effects of cholesterol on monomer activities of the two fatty acids was rather small and it is unlikely that changes in monomer concentration of fatty acids and bile acids account for the protective effect of cholesterol. The in vivo observations point to a new physiological role for biliary cholesterol: the modification of the response of the small intestine to the effects of dihydroxy bile acids and fatty acids. PMID:7358850

  14. Expression of the SNAT2 amino acid transporter during the development of rat cerebral cortex.

    PubMed

    Rodríguez, Angelina; Angelina, Rodríguez; Berumen, Laura C; Francisco, Zafra; Giménez, Cecilio; Cecilio, Giménez; García-Alcocer, María Guadalupe; Guadalupe, García-Alcocer María

    2011-11-01

    The sodium-coupled neutral amino acid transporter 2 (SNAT2) is a protein that is expressed ubiquitously in mammalian tissues and that displays Na(+), voltage and pH dependent activity. This transporter mediates the passage of small zwitterionic amino acids across the cell membrane and regulates the cell homeostasis and its volume. We have examined the expression of SNAT2 mRNA and protein during the development of the rat cerebral cortex, from gestation through the postnatal stages to adulthood. Our data reveal that SNAT2 mRNA and protein expression is higher during embryogenesis, while it subsequently diminishes during postnatal development. Moreover, during embryonic period SNAT2 colocalizes with the radial glial cells marker GLAST, while in postnatal period it is mainly detected in neuronal dendrites. These findings suggest a relevant role for amino acid transport through SNAT2 in the developing embryonic brain.

  15. Carrier-mediated placental transport of cimetidine and valproic acid across differentiating JEG-3 cell layers.

    PubMed

    Ikeda, K; Ueda, C; Yamada, K; Nakamura, A; Hatsuda, Y; Kawanishi, S; Nishii, S; Ogawa, M

    2015-07-01

    Human choriocarcinoma has been used as a model to study trophoblast transcellular drug transport in the placenta. Previous models had limitations regarding low molecular weight drug transport through the intracellular gap junction. The purpose of this study was to evaluate placental carrier-mediated transport across a differentiating JEG-3 choriocarcinoma cell (DJEGs) layer model in which the intracellular gap junction was restricted. Cimetidine is the substrate of an efflux transporter, breast cancer resistance protein (BCRP). BCRP highly expressed in the placenta, and its function in the DJEGs model was investigated. In addition, the placental drug transport of another efflux transporter, multidrug resistance-associated proteins (MRPs), and an influx transporter, monocarboxylate transporter (MCT), were examined with various substrates. Cimetidine permeated from the fetal side to the maternal side at significantly high levels and saturated in a dose-dependent manner. The permeability coefficient of a MRP substrate, fluorescein, across the DJEGs model was significantly increased by inhibiting MRP function with probenecid. On the other hand, permeation in the influx direction to the fetal side with a substrate of MCT, valproic acid, had a gentle dose-dependent saturation. These findings suggest that the DJEGs model could be used to evaluate transcellular placental drug transport mediated by major placental transporters.

  16. Further evaluation of the interrelationship between the hepatocellular transport of bile acids and endocytosed proteins.

    PubMed Central

    Herrera, M. C.; el-Mir, M. Y.; Monte, M. J.; Perez-Barriocanal, F.; Marin, J. J.

    1992-01-01

    Experiments on the relationship between the hepatocellular transport of endogenous or exogenously loaded bile acids (sodium taurocholate, TC, 0.5 mumol/min/100 g body wt) and horseradish peroxidase (HRP) or immunoglobulin A (IgA) (0.5 mg/100 g body wt) were carried out on anaesthetized Wistar rats. The time course of HRP excretion into bile (acceleration in the secretory peak), but not the total amount of HRP output, was affected by TC infusion. Administration of HRP was found to have no stimulatory effect on either spontaneous or TC-induced bile flow, bile acid, lecithin or cholesterol output. Spontaneous bile acid output was increased (25 and 67%, respectively) in rats that were treated for 12-h fasting or by oral administration of TC (45 mg/100 g body wt, every 12 h, for 2 days). These manoeuvres did not change the inability of HRP and IgA to increase bile acid output. Exogenous TC load had no stimulatory effect on the hepatocellular transport of endogenous bile acid pool, that was labelled by a combination of fasting and oral administration of 14C-glycocholic acid 12 h before the experiments. Therefore, exogenous bile acid load-induced stimulation of transcytosis had no effect on endogenous bile acid output. Moreover, bile secretion of both endogenous and exogenously loaded bile acids is unaffected by the administration of proteins, irrespective of whether they are endocytosed by a receptor or nonreceptor mediated process. PMID:1571280

  17. Auxin Activity of Substituted Benzoic Acids and Their Effect on Polar Auxin Transport 1

    PubMed Central

    Keitt, George W.; Baker, Robert A.

    1966-01-01

    Six dichloro-, 3 trichloro-, 2 triiodo-, and 3 heterosubstituted benzoic acids (amiben, dinoben, dicamba), and N-1-naphthylphthalamic acid have been tested for effects on growth and on polar auxin transport. Growth activity with and without kinetin was measured by effects on fresh and dry weights of 30-day cultures of fresh tobacco pith. Transport inhibition was measured by following uptake and output of IAA-2-14C through 10 mm bean epicotyl sections. The distribution of callus growth on vascularized tobacco stem segments was also observed. Avena first internode extension assays established the relative activities: dicamba > amiben > dinoben suggested by pith growth results. Growth effects of active compounds were similar with and without kinetin, except that amiben was less active with kinetin, while 2,3,6-trichlorobenzoic acid was more active with kinetin than alone. The weak auxin activity of NPA was confirmed. Transport experiments showed that NPA was the most inhibitory compound tested, followed by TIBA. Other compounds tested were at least 300 times less inhibitory to IAA transport. The best growth promoters were the least inhibitory to transport, and the most effective transport inhibitors were at best poor auxins. It is suggested that the weak auxin and auxin synergistic activity of TIBA (and perhaps 2,3-dichlorobenzoic acid) in extension growth tests arises from its inhibition of transport of endogenous or added auxin out of the sections, rather than from its intrinsic auxin activity. Chemically induced apolar callus growth on vascularized tobacco stem explants can arise from inhibition of native auxin transport, apolar growth stimulation by auxinic action of the test compound, or both. PMID:16656441

  18. Tuning transport selectivity of ionic species by phosphoric acid gradient in positively charged nanochannel membranes.

    PubMed

    Yang, Meng; Yang, Xiaohai; Wang, Kemin; Wang, Qing; Fan, Xin; Liu, Wei; Liu, Xizhen; Liu, Jianbo; Huang, Jin

    2015-02-03

    The transport of ionic species through a nanochannel plays important roles in fundamental research and practical applications of the nanofluidic device. Here, we demonstrated that ionic transport selectivity of a positively charged nanochannel membrane can be tuned under a phosphoric acid gradient. When phosphoric acid solution and analyte solution were connected by the positively charged nanochannel membrane, the faster-moving analyte through the positively charged nanochannel membrane was the positively charged dye (methylviologen, MV(2+)) instead of the negatively charged dye (1,5-naphthalene disulfonate, NDS(2-)). In other words, a reversed ion selectivity of the nanochannel membranes can be found. It can be explained as a result of the combination of diffusion, induced electroosmosis, and induced electrophoresis. In addition, the influencing factors of transport selectivity, including concentration of phosphoric acid, penetration time, and volume of feed solution, were also investigated. The results showed that the transport selectivity can further be tuned by adjusting these factors. As a method of tuning ionic transport selectivity by establishing phosphoric acid gradient, it will be conducive to improving the separation of ionic species.

  19. Reactive iron transport in an acidic mountain stream in Summit County, Colorado: A hydrologic perspective

    USGS Publications Warehouse

    McKnight, Diane M.; Bencala, K.E.

    1989-01-01

    A pH perturbation experiment was conducted in an acidic, metal-enriched, mountain stream to identify relative rates of chemical and hydrologic processes as they influence iron transport. During the experiment the pH was lowered from 4.2 to 3.2 for three hours by injection of sulfuric acid. Amorphous iron oxides are abundant on the streambed, and dissolution and photoreduction reactions resulted in a rapid increase in the dissolved iron concentration. The increase occurred simultaneously with the decrease in pH. Ferrous iron was the major aqueous iron species. The changes in the iron concentration during the experiment indicate that variation exists in the solubility properties of the hydrous iron oxides on the streambed with dissolution of at least two compartments of hydrous iron oxides contributing to the iron pulse. Spatial variations of the hydrologic properties along the stream were quantified by simulating the transport of a coinjected tracer, lithium. A simulation of iron transport, as a conservative solute, indicated that hydrologie transport had a significant role in determining downstream changes in the iron pulse. The rapidity of the changes in iron concentration indicates that a model based on dynamic equilibrium may be adequate for simulating iron transport in acid streams. A major challenge for predictive solute transport models of geochemical processes may be due to substantial spatial and seasonal variations in chemical properties of the reactive hydrous oxides in such streams, and in the physical and hydrologic properties of the stream. ?? 1989.

  20. Amino acid composition analysis of human secondary transport proteins and implications for reliable membrane topology prediction.

    PubMed

    Saidijam, Massoud; Azizpour, Sonia; Patching, Simon G

    2016-07-08

    Secondary transporters in humans are a large group of proteins that transport a wide range of ions, metals, organic and inorganic solutes involved in energy transduction, control of membrane potential and osmotic balance, metabolic processes and in the absorption or efflux of drugs and xenobiotics. They are also emerging as important targets for development of new drugs and as target sites for drug delivery to specific organs or tissues. We have performed amino acid composition (AAC) and phylogenetic analyses and membrane topology predictions for 336 human secondary transport proteins and used the results to confirm protein classification and to look for trends and correlations with structural domains and specific substrates and/or function. Some proteins showed statistically high contents of individual amino acids or of groups of amino acids with similar physicochemical properties. One recurring trend was a correlation between high contents of charged and/or polar residues with misleading results in predictions of membrane topology, which was especially prevalent in Mitochondrial Carrier family proteins. We demonstrate how charged or polar residues located in the middle of transmembrane helices can interfere with their identification by membrane topology tools resulting in missed helices in the prediction. Comparison of AAC in the human proteins with that in 235 secondary transport proteins from Escherichia coli revealed similar overall trends along with differences in average contents for some individual amino acids and groups of similar amino acids that are presumed to result from a greater number of functions and complexity in the higher organism.

  1. Modeling uranium transport in acidic contaminated groundwater with base addition.

    PubMed

    Zhang, Fan; Luo, Wensui; Parker, Jack C; Brooks, Scott C; Watson, David B; Jardine, Philip M; Gu, Baohua

    2011-06-15

    This study investigates reactive transport modeling in a column of uranium(VI)-contaminated sediments with base additions in the circulating influent. The groundwater and sediment exhibit oxic conditions with low pH, high concentrations of NO(3)(-), SO(4)(2-), U and various metal cations. Preliminary batch experiments indicate that additions of strong base induce rapid immobilization of U for this material. In the column experiment that is the focus of the present study, effluent groundwater was titrated with NaOH solution in an inflow reservoir before reinjection to gradually increase the solution pH in the column. An equilibrium hydrolysis, precipitation and ion exchange reaction model developed through simulation of the preliminary batch titration experiments predicted faster reduction of aqueous Al than observed in the column experiment. The model was therefore modified to consider reaction kinetics for the precipitation and dissolution processes which are the major mechanism for Al immobilization. The combined kinetic and equilibrium reaction model adequately described variations in pH, aqueous concentrations of metal cations (Al, Ca, Mg, Sr, Mn, Ni, Co), sulfate and U(VI). The experimental and modeling results indicate that U(VI) can be effectively sequestered with controlled base addition due to sorption by slowly precipitated Al with pH-dependent surface charge. The model may prove useful to predict field-scale U(VI) sequestration and remediation effectiveness.

  2. Alpha-aminoisobutyric acid transport into human glia and glioma cells in culture.

    PubMed

    Ronquist, G; Agren, G; Ponten, J; Westermark, B

    1976-11-01

    The AIB transport into human glia and glioma cells in culture has been studied. Because of the high affinity of AIB to the plastic culture dishes, a special washing technique had to be developed. With this technique, it was possible to perform transport experiments in a single plate containing about one million cells. The cells were viable, intact and adhered to the supporting medium throughout the experiment. The AIB transport into both types of cells was Na+-dependent and showed saturation kinetics when the small component of the transport due to diffusion had been subtracted. The AIB transport capacity of neoplastic glioma cells was 3.6 times higher than that of glia cells. This difference was related to the Vmax-values for the two types of cells. The apparent Km-values were the same. Inhibition experiments with other amino acids support the view that AIB is transported via System A in both glia and glioma cells. Sulfhydryl reagents (ethacrynic acid and NEM) and cytochalasin B clearly inhibited the AIB transport into glia cells whereas the effect on glioma cells was minimal.

  3. Transport and metabolism of fumaric acid in Saccharomyces cerevisiae in aerobic glucose-limited chemostat culture.

    PubMed

    Shah, Mihir V; van Mastrigt, Oscar; Heijnen, Joseph J; van Gulik, Walter M

    2016-04-01

    Currently, research is being focused on the industrial-scale production of fumaric acid and other relevant organic acids from renewable feedstocks via fermentation, preferably at low pH for better product recovery. However, at low pH a large fraction of the extracellular acid is present in the undissociated form, which is lipophilic and can diffuse into the cell. There have been no studies done on the impact of high extracellular concentrations of fumaric acid under aerobic conditions in S. cerevisiae, which is a relevant issue to study for industrial-scale production. In this work we studied the uptake and metabolism of fumaric acid in S. cerevisiae in glucose-limited chemostat cultures at a cultivation pH of 3.0 (pH < pK). Steady states were achieved with different extracellular levels of fumaric acid, obtained by adding different amounts of fumaric acid to the feed medium. The experiments were carried out with the wild-type S. cerevisiae CEN.PK 113-7D and an engineered S. cerevisiae ADIS 244 expressing a heterologous dicarboxylic acid transporter (DCT-02) from Aspergillus niger, to examine whether it would be capable of exporting fumaric acid. We observed that fumaric acid entered the cells most likely via passive diffusion of the undissociated form. Approximately two-thirds of the fumaric acid in the feed was metabolized together with glucose. From metabolic flux analysis, an increased ATP dissipation was observed only at high intracellular concentrations of fumarate, possibly due to the export of fumarate via an ABC transporter. The implications of our results for the industrial-scale production of fumaric acid are discussed.

  4. Regulation of amino acid transport in isolated rat hepatocytes during development

    SciTech Connect

    Leoni, S.; Spagnuolo, S.; Dini, L.; Devirgiliis, L.C.

    1987-01-01

    The effect of amino acid depletion or supplementation and the effect of glucagon and insulin on the amino acid transport mediated by system A were investigated by determining the uptake of either 2-amino (1-/sup 14/C)isobutyric acid (AIB) or N-methyl 2-amino (1-/sup 14/C)isobutyric acid (MeAIB) in rat hepatocytes, freshly isolated at different stages of pre- and postnatal development. The data obtained show that the Na/sup +/ -dependent uptake was higher at the earliest developmental stages, and steadily decreased until the adult level. The hormones increased AIB and MeAIB uptake enhancing the V/sub max/, while the K/sub m/ was unchanged. This effect was evident in cells from adult and 18-20-day-old fetuses, while no response was present before the 18th day of fetal life and in the prenatal period. Actinomycin D or cycloheximide abolished this hormone-dependent increase. A decrease in AIB and MeAIB transport after incubation in an amino acid-rich medium was demonstrated at all ages tested, but was particularly evident in the prenatal life. The increase in the activity of the system following amino acid starvation was shown to be mostly dependent from de novo protein synthesis in the fetal life; on the contrary in the adult the increase appeared to be more linked to the release from transinhibition of the transport.

  5. Fatty acids as an energy source for the operation of axoplasmic transport.

    PubMed

    Takenaka, Toshifumi; Hiruma, Hiromi; Hori, Hideaki; Hashimoto, Yoko; Ichikawa, Takafumi; Kawakami, Tadashi

    2003-05-16

    Fatty acids are utilized as a cellular energy source. In the present study, we investigated whether fatty acids could affect axoplasmic transport. Cultured mouse superior cervical ganglion neurons were placed in the glucose-containing medium (145 mM NaCl, 5 mM KCl, 1 mM CaCl(2), 1 mM MgCl(2), 5 mM D-glucose, 10 mM Hepes, pH 7.3, 37 degrees C), and axoplasmic transport of particles in neurites was observed under video-enhanced contrast microscopy. A variety of fatty acids (acetate (C2), caproate (C6), caprylate (C8), caprate (C10), 2-decenoate (C10:1), arachidonate (C20:4); 0.1-1 mM) caused a transient increase in the amount of particles transported in both anterograde and retrograde directions. The increasing effects of fatty acids were dose-dependent. A half-maximum effective dose (ED(50)) for acetate was 0.8 mM, which is similar to the reported K(m) value of acetyl-CoA synthetase for acetate. The ED(50) for caprylate was 28 microM, which is near the K(m) value of acyl-CoA synthetase for medium- and long-chain fatty acids. Application of 5 mM malonate, an inhibitor of the citrate cycle, induced a steady-state decrease in axoplasmic transport, indicating that energy derived from the citrate cycle is required for the maintenance of axoplasmic transport. The increasing effect of acetate (1 mM) on axoplasmic transport was completely abolished by pretreatment with malonate (5 mM), suggesting that acetate produces ATP for axoplasmic transport via the citrate cycle. Alternatively, the effect of caprate (1 mM) was retained after treatment with malonate. Thus, fatty acids except acetate produce ATP probably through both the beta-oxidation pathway and the citrate cycle, increasing axoplasmic transport. Since the effect of fatty acids was transient, certain negative feedback mechanisms might be involved. The removal of glucose from the medium resulted in a low steady-state level of axoplasmic transport. Under such condition, the acetate (1 mM)-induced transient increase in

  6. Mode of action of pyrazinamide: disruption of Mycobacterium tuberculosis membrane transport and energetics by pyrazinoic acid.

    PubMed

    Zhang, Ying; Wade, Mary Margaret; Scorpio, Angelo; Zhang, Hao; Sun, Zhonghe

    2003-11-01

    Pyrazinamide is an important sterilizing drug that shortens tuberculosis (TB) therapy. However, the mechanism of action of pyrazinamide is poorly understood because of its unusual properties. Here we show that pyrazinoic acid, the active moiety of pyrazinamide, disrupted membrane energetics and inhibited membrane transport function in Mycobacterium tuberculosis. The preferential activity of pyrazinamide against old non-replicating bacilli correlated with their low membrane potential and the disruption of membrane potential by pyrazinoic acid and acid pH. Inhibitors of membrane energetics increased the antituberculous activity of pyrazinamide. These findings shed new light on the mode of action of pyrazinamide and may help in the design of new drugs that shorten therapy.

  7. Aromatic amino acid transporter AAT-9 of Caenorhabditis elegans localizes to neurons and muscle cells.

    PubMed

    Veljkovic, Emilija; Bacconi, Andrea; Stetak, Attila; Hajnal, Alex; Stasiuk, Susan; Skelly, Patrick J; Forster, Ian; Shoemaker, Charles B; Verrey, Francois

    2004-11-19

    The Caenorhabditis elegans genome encodes nine homologues of mammalian glycoprotein-associated amino acid transporters. Two of these C. elegans proteins (AAT-1 and AAT-3) have been shown to function as catalytic subunits (light chains) of heteromeric amino acid transporters. These proteins need to associate with a glycoprotein heavy chain subunit (ATG-2) to reach the cell surface in a manner similar to that of their mammalian homologues. AAT-1 and AAT-3 contain a cysteine residue in the second putative extracellular loop through which a disulfide bridge can form with a heavy chain. In contrast, six C. elegans members of this family (AAT-4 to AAT-9) lack such a cysteine residue. We show here that one of these transporter proteins, AAT-9, reaches the cell surface in Xenopus oocytes without an exogenous heavy chain and that it functions as an exchanger of aromatic amino acids. Two-electrode voltage clamp experiments demonstrate that AAT-9 displays a substrate-activated conductance. Immunofluorescence shows that it is expressed close to the pharyngeal bulbs within C. elegans neurons. The selective expression of an aat-9 promoter-green fluorescent protein construct in several neurons of this region and in wall muscle cells around the mouth supports and extends these localization data. Taken together, the results show that AAT-9 is expressed in excitable cells of the nematode head and pharynx in which it may provide a pathway for aromatic amino acid transport.

  8. The role of membrane fatty-acid transporters in regulating skeletal muscle substrate use during exercise.

    PubMed

    Pelsers, Maurice M A L; Stellingwerff, Trent; van Loon, Luc J C

    2008-01-01

    While endogenous carbohydrates form the main substrate source during high-intensity exercise, long-chain fatty acids (LCFA) represent the main substrate source during more prolonged low- to moderate-intensity exercise. Adipose tissue lipolysis is responsible for the supply of LCFA to the contracting muscle. Once taken up by skeletal muscle tissue, LCFA can either serve as a substrate for oxidative phosphorylation or can be directed towards esterification into triacylglycerol. Myocellular uptake of LCFA comprises a complex and incompletely understood process. Although LCFA can enter the cell via passive diffusion, more recent reports indicate that LCFA uptake is tightly regulated by plasma membrane-located transport proteins (fatty acid translocase [FAT/CD36], plasmalemmal-located fatty acid binding protein [FABPpm] and fatty acid transport protein [FATP]). Depending on cardiac and skeletal muscle energy demands, some of these LCFA transporters can translocate rapidly from intracellular pools to the plasma membrane to allow greater LCFA uptake. This translocation process can be induced by insulin and/or muscle contraction. However, the precise signalling pathways responsible for activating the translocation machinery remain to be elucidated. This article will provide an overview on the effects of diet, acute exercise and exercise training on the expression and/or translocation of the various LCFA transporters in skeletal muscle tissue (FAT/CD36, FABPpm, FATP).

  9. The transport of indole-3-acetic Acid in boron- and calcium-deficient sunflower hypocotyl segments.

    PubMed

    Tang, P M; Dela Fuente, R K

    1986-06-01

    Transfer of sunflower (Helianthus annuus L. cv Russian Mammoth) seedlings from complete nutrient solution to solutions deficient in either boron or calcium resulted in a steady decline in the rate of auxin transport, compared to seedlings that remained in the complete solution. In seedlings transferred to solutions deficient in both B and Ca, the decline in auxin transport was greater than seedlings deficient in only one element. The transfer of B- or Ca-deficient seedlings back to the complete solution prevented further decline in auxin transport, but auxin transport did not increase to the same level as seedlings maintained in complete solution. The significant reduction in auxin transport during the early stages of B or Ca deficiency was not related to (a) reduced growth rate of the hypocotyl, (b) increased acropetal movement of auxin, or (c) lack of respiratory substrates in the hypocotyl. In addition, no difference was found in the water-extractable total and ionic Ca in B-deficient and control nondeficient hypocotyls, indicating a direct effect of B on auxin transport, rather than indirectly by affecting Ca absorption. The rate of auxin transport in hypocotyls deficient in either B or Ca, was inversely correlated with K(+) leakage and rate of respiration. The data presented strongly support the view that there are separate sites for B and Ca in the basipetal transport of the plant hormone indoleacetic acid.

  10. Urinary solute transport by ileal segments. I. Effects of nicotinic acid.

    PubMed

    Martínez-Piñeiro, L; Mateos, F; Montero, A; Madero, R; Martínez-Piñeiro, J A

    1993-12-01

    This study was conducted to quantify urinary solute transport by the ileum, using an in vivo human model, and to determine the effect of nicotinic acid on this process. Patients were studied under both basal conditions and niacin therapy. The rates of solute transport were established by analysis of excretion indexes for each solute. Potassium and ammonium were absorbed by the ileum, while phosphorus, sodium and bicarbonate were secreted. The percentage excretion index of sodium and bicarbonate increased by approximately 100 and 600% respectively, causing a significant rise in urinary pH. Although not statistically significant, there was a tendency for chloride to be absorbed and for water to pass into the bowel lumen. Nicotinic acid 3 g/day had no significant effect on urinary solute transport.

  11. Charge transport and structural dynamics in carboxylic-acid-based deep eutectic mixtures.

    PubMed

    Griffin, Philip J; Cosby, Tyler; Holt, Adam P; Benson, Roberto S; Sangoro, Joshua R

    2014-08-07

    Charge transport and structural dynamics in the 1:2 mol ratio mixture of lidocaine and decanoic acid (LID-DA), a model deep eutectic mixture (DEM), have been characterized over a wide temperature range using broad-band dielectric spectroscopy and depolarized dynamic light scattering. Additionally, Fourier transform infrared spectroscopy measurements were performed to assess the degree of proton transfer between the neutral parent molecules. From our detailed analysis of the dielectric spectra, we have determined that this carboxylic-acid-based DEM is approximately 25% ionic at room temperature. Furthermore, we have found that the characteristic diffusion rate of mobile charge carriers is practically identical to the rate of structural relaxation at all measured temperatures, indicating that fast proton transport does not occur in LID-DA. Our results demonstrate that while LID-DA exhibits the thermal characteristics of a DEM, its charge transport properties resemble those of a protic ionic liquid.

  12. Transport of Glyphosate and Aminomethylphosphonic Acid under Two Soil Management Practices in an Italian Vineyard.

    PubMed

    Napoli, Marco; Marta, Anna Dalla; Zanchi, Camillo A; Orlandini, Simone

    2016-09-01

    Worldwide, glyphosate is the most widely used herbicide in controlling the growth of annual and perennial weeds. An increasing number of studies have highlighted the environmental risk resulting from the use of this molecule in aquatic and terrestrial ecosystems. The objective of the study was to determine the transport of glyphosate and its degradation product, aminomethylphosphonic acid (AMPA), through runoff and transported sediment from a vineyard under two different soil management systems: harrowed inter-row (HR) and permanent grass covered inter-row (GR). The study was performed over a period of 4 yr. Glyphosate and AMPA concentrations were found to be higher in runoff and in transported sediment from HR compared with GR, regardless of the amount of runoff and transported sediment. The mean annual percentages of glyphosate loss, via runoff and transported sediment, were about 1.37 and 0.73% for HR and GR, respectively. Aminomethylphosphonic acid represented approximately 30.9 and 40.0% of the total glyphosate losses in GR and HR, respectively. Moreover, results suggested that rains occurring within 4 wk after treatment could cause the transport of glyphosate and AMPA in high concentrations. Soil analyses indicated that glyphosate content was below detection within 1 yr, whereas AMPA remained in the soil profiles along the vine row and in the inter-row. Results indicated that GR can reduce soil and herbicide loss by runoff in vineyard cropping system.

  13. Glucocorticoid regulation of amino acid transport in anucleate rat hepatoma (HTC) cells

    PubMed Central

    1981-01-01

    The transport of alpha-aminoisobutyric acid (AIB) by rat hepatoma tissue culture (HTC) cells is rapidly and reversibly inhibited by dexamethasone and other glucocorticoids. To investigate the role of the nucleus in the regulation of transport and to determine whether steroid hormones or steroid-receptor complexes may have direct effects on cytoplasmic or membrane functions, we have examined the regulation of transport by dexamethasone in anucleate HTC cells. Cytoplasts prepared from suspension cultures of HTC cells fully retain active transport of AIB with the same kinetic properties as intact cells. However, the uptake of AIB is not inhibited by dexamethasone or other corticosteroids. Neither is the inhibited rate of transport, manifested by cytoplasts prepared from dexamethasone-treated cells, restored to normal upon removal of the hormone. Anucleate cells exhibit specific, saturable binding of [3H]dexamethasone; however, the binding is reduced compared with that of intact cells. The nucleus is thus required for the glucocorticoid regulation of amino acid transport in HTC cells. PMID:7217203

  14. Modulating Effect of Ascorbic Acid on Transport-Induced Immunosuppression in Goats

    PubMed Central

    Minka, Ndazo Salka; Ayo, Joseph Olusegun

    2011-01-01

    The effect of 12 h road transportation on some basic blood cells and the modulating role of ascorbic acid were investigated in 40 adult Red Sokoto goats during the hot dry season. The animals were divided into two groups, GI (experimental; n = 20) and GII (control; n = 20). Group 1 was administered with ascorbic acid (AA) per os at a dosage rate of 100 mg/kg body weight, while GII was given 10 mL of sterile water per goat. Forty minutes after the administration and loading, the goats were transported for 12 h. The result obtained in GII goats showed that loading, transportation, high ambient temperature (AT), and relative humidity (RH) encountered during transportation induced lymphopenia, neutrophilia, and eosinopenia, which can cause immunosuppression. In GI goats, the administration of AA prior to loading and transportation ameliorated the adverse effects of loading and transportation stress on neutrophil/lymphocyte ratio and eosinopenia of the goats. PMID:23738106

  15. Transport of Arginine and Aspartic Acid into Isolated Barley Mesophyll Vacuoles 1

    PubMed Central

    Martinoia, Enrico; Thume, Monika; Vogt, Esther; Rentsch, Doris; Dietz, Karl-Josef

    1991-01-01

    The transport of arginine into isolated barley (Hordeum vulgare L.) mesophyll vacuoles was investigated. In the absence of ATP, arginine uptake was saturable with a Km of 0.3 to 0.4 millimolar. Positively charged amino acids inhibited arginine uptake, lysine being most potent with a Ki of 1.2 millimolar. In the presence of free ATP, but not of its Mg-complex, uptake of arginine was drastically enhanced and a linear function of its concentration up to 16 millimolar. The nonhydrolyzable adenylyl imidodiphosphate, but no other nucleotide tested, could substitute for ATP. Therefore, it is suggested that this process does not require energy and does not involve the tonoplast ATPase. The ATP-dependent arginine uptake was strongly inhibited by p-chloromercuriphenylsulfonic acid. Furthermore, hydrophobic amino acids were inhibitory (I50 phenylalanine 1 millimolar). Similar characteristics were observed for the uptake of aspartic acid. However, rates of ATP-stimulated aspartic acid transport were 10-fold lower as compared to arginine transport. Uptake of aspartate in the absence of ATP was negligible. PMID:16668447

  16. Disposition and transportation of surplus radioactive low specific activity nitric acid. Volume 1, Environmental Assessment

    SciTech Connect

    1995-05-01

    DOE is deactivating the PUREX plant at Hanford; this will involve the disposition of about 692,000 liters (183,000 gallons) of surplus nitric acid contaminated with low levels of U and other radionuclides. The nitric acid, designated as low specific activity, is stored in 4 storage tanks at PUREX. Five principal alternatives were evaluated: transfer for reuse (sale to BNF plc), no action, continued storage in Hanford upgraded or new facility, consolidation of DOE surplus acid, and processing the LSA nitric acid as waste. The transfer to BNF plc is the preferred alternative. From the analysis, it is concluded that the proposed disposition and transportation of the acid does not constitute a major federal action significantly affecting the quality of the human environment within the meaning of NEPA; therefore an environmental impact statement is not required.

  17. Transport of fluorescent bile acids by the isolated perfused rat liver: kinetics, sequestration, and mobilization.

    PubMed

    Holzinger, F; Schteingart, C D; Ton-Nu, H T; Cerrè, C; Steinbach, J H; Yeh, H Z; Hofmann, A F

    1998-08-01

    Hepatocyte transport of six fluorescent bile acids containing nitrobenzoxadiazolyl (NBD) or a fluorescein derivative on the side chain was compared with that of natural bile acids using the single-pass perfused rat liver. Compounds were infused at 40 nmol/g liver min for 15 minutes; hepatic uptake and biliary recovery were measured; fractional extraction, intrinsic basolateral clearance, and sequestration (nonrecovery after 45 minutes of additional perfusion) were calculated. Fluorescent bile acids were efficiently extracted during the first 3 minutes (70%-97%), but net extraction decreased with time mostly because of regurgitation into the perfusate. For cholylglycine and ursodeoxycholylglycine (UDC-glycine), extraction was 94% to 99%, and regurgitation did not occur. Intrinsic hepatic clearance of fluorescent bile acids (2-7 mL/g liver x min) was lower than that of cholylglycine (9.0 +/- 0.6; mean +/- SD) and UDC-glycine (21.4 +/- 0.4). Sequestration at 60 minutes was 8% to 26% for fluorescent bile acids with a cholyl moiety (cholylglycylaminofluorescein [CGamF], cholyllysylfluorescein [C-L-F], cholyl-[N epsilon-NBD]-lysine [C-L-NBD], and cholylaminofluorescein [CamF]), 32% for ursodeoxycholylaminofluorescein (UDCamF), and 88% for ursodeoxycholyl-(N epsilon-NBD)lysine (UDC-L-NBD). Cholylglycine and UDC-glycine had <3% retention. Biliary secretion of sequestered UDCamF, but not of UDC-L-NBD, was induced by adding dibutyryl cyclic adenosine monophosphate (DBcAMP) to the perfusate, possibly by translocation to the canaliculus of pericanalicular vesicles containing fluorescent bile acids. Biliary secretion of UDC-L-NBD, but not of UDCamF, was induced by adding cholyltaurine or UDC-taurine, possibly by inhibition of binding to intracellular constituents or of transport into organelles. It is concluded that fluorescent bile acids are efficiently transported across the basolateral membrane, but in contrast to natural conjugated bile acids, are sequestered in the

  18. Role of sodium ion in transport of folic acid in the small intestine

    SciTech Connect

    Zimmerman, J.; Selhub, J.; Rosenberg, I.H.

    1986-08-01

    The effect of sodium on folate transport across the intestinal luminal membrane was analyzed using two techniques: the influx chamber and isoalted brush-border membrane vesicles. Preincubation of tissue in Na -free medium did not have a consistent effect on folic acid influx provided that Na was present in the test solution. Replacement of Na in the test solution by choline resulted in a significant reduction of folic acid influx. However, when intestinal sheets that had been equilibrated in Na -free solution were exposed to test solutions containing either Na , Li , K , Rb , Cs , Tris , or guanidinium as main cations, folic acid influx was not significantly decreased. Concentration-dependence studies showed that replacement of Na by Rb did not affect the saturable mechanism of folate transport. Rather, a decrease in nonsaturable folic acid uptake accounted for the slightly reduced influx observed in the presence of Rb . Experiments with brush-border membrane vesicles revealed that methotrexate uptake was significantly higher in the presence of external Na than in the presence of K , but was not different from uptake in the presence of K plus valinomycin. These data suggest that 1) the saturable component of folate transport is not Na dependent, and 2) nonsaturable transport of folic acid across the luminal membrane occurs in part through a conductive pathway that involves a negatively charged species of folate and a cation whose membrane permeability affects the rate of folate transport. The importance of Na in this process in vivo derives from the fact that Na is the most permeant cation available at the absorptive site in the small intestine.

  19. Novel male-biased expression in paralogs of the aphid slimfast nutrient amino acid transporter expansion

    PubMed Central

    2011-01-01

    Background A major goal of molecular evolutionary biology is to understand the fate and consequences of duplicated genes. In this context, aphids are intriguing because the newly sequenced pea aphid genome harbors an extraordinary number of lineage-specific gene duplications relative to other insect genomes. Though many of their duplicated genes may be involved in their complex life cycle, duplications in nutrient amino acid transporters appear to be associated rather with their essential amino acid poor diet and the intracellular symbiosis aphids rely on to compensate for dietary deficits. Past work has shown that some duplicated amino acid transporters are highly expressed in the specialized cells housing the symbionts, including a paralog of an aphid-specific expansion homologous to the Drosophila gene slimfast. Previous data provide evidence that these bacteriocyte-expressed transporters mediate amino acid exchange between aphids and their symbionts. Results We report that some nutrient amino acid transporters show male-biased expression. Male-biased expression characterizes three paralogs in the aphid-specific slimfast expansion, and the male-biased expression is conserved across two aphid species for at least two paralogs. One of the male-biased paralogs has additionally experienced an accelerated rate of non-synonymous substitutions. Conclusions This is the first study to document male-biased slimfast expression. Our data suggest that the male-biased aphid slimfast paralogs diverged from their ancestral function to fill a functional role in males. Furthermore, our results provide evidence that members of the slimfast expansion are maintained in the aphid genome not only for the previously hypothesized role in mediating amino acid exchange between the symbiotic partners, but also for sex-specific roles. PMID:21917168

  20. SGLT2 inhibitor lowers serum uric acid through alteration of uric acid transport activity in renal tubule by increased glycosuria.

    PubMed

    Chino, Yukihiro; Samukawa, Yoshishige; Sakai, Soichi; Nakai, Yasuhiro; Yamaguchi, Jun-ichi; Nakanishi, Takeo; Tamai, Ikumi

    2014-10-01

    Sodium glucose cotransporter 2 (SGLT2) inhibitors have been reported to lower the serum uric acid (SUA) level. To elucidate the mechanism responsible for this reduction, SUA and the urinary excretion rate of uric acid (UE(UA)) were analysed after the oral administration of luseogliflozin, a SGLT2 inhibitor, to healthy subjects. After dosing, SUA decreased, and a negative correlation was observed between the SUA level and the UE(UA), suggesting that SUA decreased as a result of the increase in the UE(UA). The increase in UE(UA) was correlated with an increase in urinary D-glucose excretion, but not with the plasma luseogliflozin concentration. Additionally, in vitro transport experiments showed that luseogliflozin had no direct effect on the transporters involved in renal UA reabsorption. To explain that the increase in UE(UA) is likely due to glycosuria, the study focused on the facilitative glucose transporter 9 isoform 2 (GLUT9ΔN, SLC2A9b), which is expressed at the apical membrane of the kidney tubular cells and transports both UA and D-glucose. It was observed that the efflux of [(14) C]UA in Xenopus oocytes expressing the GLUT9 isoform 2 was trans-stimulated by 10 mm D-glucose, a high concentration of glucose that existed under SGLT2 inhibition. On the other hand, the uptake of [(14) C]UA by oocytes was cis-inhibited by 100 mm D-glucose, a concentration assumed to exist in collecting ducts. In conclusion, it was demonstrated that the UE(UA) could potentially be increased by luseogliflozin-induced glycosuria, with alterations of UA transport activity because of urinary glucose.

  1. Transport of some strong incompletely dissociated acids through anion-exchange membrane.

    PubMed

    Palatý, Zdenek; Záková, Alena

    2003-12-01

    Nitric and sulfuric acids belong among strong incompletely dissociated acids, so that in the description of their transport through an ion-exchange membrane, ionic equilibria have to be taken into account. The paper presents the determination of ionic mobilities and diffusivity of nondissociated form of these acids. For that purpose, data on the dialysis experiments with nitric and sulfuric acids in a batch mixed cell with an anion-exchange membrane NEOSEPTA-AFN, which have been completed by those on the membrane conductivity, have been used. The dependencies of the ionic mobilities and the diffusivity of nondissociated form of nitric acid upon the acid concentration in the membrane have been approximated by second degree polynomials. Their coefficients have been determined by numerical integration of the partial differential equation describing the concentration fields of the acids in the membrane and liquid films on both sides of the membrane, followed by an optimizing procedure. The model used is based on the Nernst-Planck electrodiffusion equation. Using all the experimental data obtained at various acid concentrations and rotational speeds of the stirrers, it has been found that ionic mobility is strongly affected by the acid concentration in the membrane and decreases in the series H(3)O(+), SO(2-)(4), NO(-)(3), HSO(-)(4).

  2. Transport of the aromatic amino acids into isolated rat liver cells. Properties of uptake by two distinct systems.

    PubMed Central

    Salter, M; Knowles, R G; Pogson, C I

    1986-01-01

    The transport of the aromatic amino acids into isolated rat liver cells was studied. There was a rapid and substantial binding of the aromatic amino acids, L-alanine and L-leucine to the plasma membrane. This has important consequences for the determination of rates of transport and intracellular concentrations of the amino acids. Inhibition studies with a variety of substrates of various transport systems gave results consistent with aromatic amino acid transport being catalysed by two systems: a 2-aminobicyclo(2,2,1)heptane-2-carboxylic acid (BCH)-insensitive aromatic D- and L-amino acid-specific system, and the L-type system (BCH-sensitive). The BCH-insensitive component of transport was Na+-independent and facilitated non-concentrative transport of the aromatic amino acids; it was unaffected by culture of liver cells for 24 h, by 48 h starvation, dexamethasone phosphate or glucagon. Kinetic properties of the BCH-inhibitable component were similar to those previously reported for the L2-system in liver cells. The BCH-insensitive component was a comparatively low-Km low-Vmax. transport system that we suggest is similar to the T-transport system previously seen only in human red blood cells. The results are discussed with reference to the importance of the T- and L-systems in the control of aromatic L-amino acid degradation in the liver. PMID:3954748

  3. Transport of indoleacetic acid in intact corn coleoptiles. [Zea mays L

    SciTech Connect

    Parker, K.E.; Briggs, W.R. )

    1990-10-01

    We have characterized the transport of ({sup 3}H)indoleacetic acid (IAA) in intact corn (Zea mays L.) coleoptiles. We have used a wide range of concentrations of added IAA (28 femtomoles to 100 picomoles taken up over 60 minutes). The shape of the transport curve varies with the concentration of added IAA, although the rate of movement of the observed front of tracer is invariant with concentration. At the lowest concentration of tracer used, the labeled IAA in the transport stream is not detectably metabolized or immobilized, curvature does not develop as a result of tracer application, and normal phototropic and gravitropic responsiveness are not affected. Therefore we believe we are observing the transport of true tracer quantities of labeled auxin at this lowest concentration.

  4. Experimental Study and Reactive Transport Modeling of Boric Acid Leaching of Concrete

    NASA Astrophysics Data System (ADS)

    Pabalan, R. T.; Chiang, K.-T. K.

    2013-07-01

    Borated water leakage through spent fuel pools (SFPs) at pressurized water reactors is a concern because it could cause corrosion of reinforcement steel in the concrete structure, compromise the integrity of the structure, or cause unmonitored releases of contaminated water to the environment. Experimental data indicate that pH is a critical parameter that determines the corrosion susceptibility of rebar in borated water and the degree of concrete degradation by boric acid leaching. In this study, reactive transport modeling of concrete leaching by borated water was performed to provide information on the solution pH in the concrete crack or matrix and the degree of concrete degradation at different locations of an SFP concrete structure exposed to borated water. Simulations up to 100 years were performed using different boric acid concentrations, crack apertures, and solution flow rates. Concrete cylinders were immersed in boric acid solutions for several months and the mineralogical changes and boric acid penetration in the concrete cylinder were evaluated as a function of time. The depths of concrete leaching by boric acid solution derived from the reactive transport simulations were compared with the measured boric acid penetration depth.

  5. Large amino acid transporter 1 (LAT1) prodrugs of valproic acid: new prodrug design ideas for central nervous system delivery.

    PubMed

    Peura, Lauri; Malmioja, Kalle; Laine, Krista; Leppänen, Jukka; Gynther, Mikko; Isotalo, Antti; Rautio, Jarkko

    2011-10-03

    Central nervous system (CNS) drug delivery is a major challenge in drug development because the blood-brain barrier (BBB) efficiently restricts the entry of drug molecules into the CNS at sufficient amounts. The brain uptake of poorly penetrating drugs could be improved by utilizing the transporters at the BBB with a prodrug approach. In this study, we designed four phenylalanine derivatives of valproic acid and studied their ability to utilize a large amino acid transporter 1 (LAT1) in CNS delivery with an aim to show that the meta-substituted phenylalanine prodrugs bind to LAT1 with a higher affinity compared with the affinity of the para-substituted derivatives. All of the prodrugs crossed the BBB carrier mediatedly via LAT1 in in situ rat brain perfusion. For the first time, we introduced a novel meta-substituted phenylalanine analogue promoiety which improved the LAT1 affinity 10-fold and more importantly the rat brain uptake of the prodrug 2-fold compared with those of the para-substituted derivatives. Therefore, we have characterized a new prodrug design idea for CNS drug delivery utilizing a transporter-mediated prodrug approach.

  6. The plasma transport and metabolism of retinoic acid in the rat

    PubMed Central

    Smith, John Edgar; Milch, Peter O.; Muto, Yasutoshi; Goodman, DeWitt S.

    1973-01-01

    The transport of retinoic acid in plasma was examined in vitamin A-deficient rats maintained on small doses of radioactively labelled retinoic acid. After ultracentrifugation of serum adjusted to density 1.21, most of the radioactivity (83%) was associated with the proteins of density greater than 1.21, and not with the serum lipoproteins. Gel filtration of the labelled serum on Sephadex G-200 showed that the radioactive label was associated with protein in the molecular-weight range of serum albumin. On polyacrylamide-gel electrophoresis almost all of the recovered radioactivity migrated with serum albumin. Similar esults were obtained with serum from a normal control rat given a single oral dose of [14C]retinoic acid. These findings indicate that retinoic acid is transported in rat serum bound to serum albumin, and not by retinol-binding protein (the specific transport protein for plasma retinol). Several tissues and the entire remaining carcase of each rat were extracted with ethanol–acetone to determine the tissue distribution of retinoic acid and some of its metabolites. The total recover of radioactive compounds in in the entire body of the rat was about 7–9μg, representing less than 5% or 10% respectively of the total administered label in the two dosage groups studied. The results confirm that retinoic acid is not stored in any tissue. Most of the radioactive material was found in the carcase, rather than in the specific tissues analysed. Two-thirds of the radioactivity in the carcase appeared to represent unchanged retinoic acid. Of the tissues examined, the liver, kidneys and intestine had relatively high concentrations of radioactive compounds, whereas the testes and fat-pads had the lowest concentrations. PMID:4721615

  7. Transport of indoleacetic acid (IAA) and its conjugates in nodal stem segments of Phaseolus vulgaris L

    SciTech Connect

    Tamas, I.A.; Lim, R.

    1987-04-01

    Donor agar blocks containing either (2-acetyl-/sup 14/C) IAA; (2-acetyl-/sup 14/C) indole-3-acetyl-L-aspartate; (2-aceyl-/sup 14/) indole-3-acetyl-L-glycine; or (2-acetyl-/sup 14/C) indole-3-acetyl-L-alanine were placed on either the apical or the basal cut surface of stem segments each bearing an axillary bud in the middle. A receiver block was placed on the end opposite to the donor. After transport, the segments were divided into five equal sections plus the bud, and the radioactivity of donors, receivers and each part of the stem segments was counted. For all substances, the amount of /sup 14/C transported to the bud from the base was the same or greater than that from the apical end. After basipetal transport, the distribution of /sup 14/C in the segment declined sharply from apex to base. The opposite was true for acropetal transport. Transport for the three IAA conjugates did not different substantially from each other. The IAA transport inhibitor, naphthylphthalamic acid (NPA), inhibited basipetal /sup 14/C-IAA transport to the base of the stem segment but did not alter substantially the amount of /sup 14/C-IAA recovered from the bud. The results will be discussed in relation to axillary bud growth regulation.

  8. Effect of maternal micronutrients (folic acid, vitamin B12) and omega 3 fatty acids on liver fatty acid desaturases and transport proteins in Wistar rats.

    PubMed

    Wadhwani, Nisha S; Manglekar, Rupali R; Dangat, Kamini D; Kulkarni, Asmita V; Joshi, Sadhana R

    2012-01-01

    A disturbed fatty acid metabolism increases the risk of adult non-communicable diseases. This study examines the effect of maternal micronutrients on the fatty acid composition, desaturase activity, mRNA levels of fatty acid desaturases and transport proteins in the liver. Pregnant female rats were divided into 6 groups at 2 levels of folic acid both in the presence and absence of vitamin B(12). The vitamin B(12) deficient groups were supplemented with omega 3 fatty acid. An imbalance of maternal micronutrients reduces liver docosahexaenoic acid, increases Δ5 desaturase activity but decreases mRNA levels, decreases Δ6 desaturase activity but not mRNA levels as compared to control. mRNA level of Δ5 desaturase reverts back to the levels of the control group as a result of omega 3 fatty acid supplementation. Our data for the first time indicates that maternal micronutrients differentially alter the activity and expression of fatty acid desaturases in the liver.

  9. Molecular Switch Controlling the Binding of Anionic Bile Acid Conjugates to Human Apical Sodium-dependent Bile Acid Transporter

    PubMed Central

    Rais, Rana; Acharya, Chayan; Tririya, Gasirat; MacKerell, Alexander D.; Polli, James E.

    2010-01-01

    The human apical sodium-dependent bile acid transporter (hASBT) may serve as a prodrug target for oral drug absorption. Synthetic, biological, NMR and computational approaches identified the structure-activity relationships of mono- and dianionic bile acid conjugates for hASBT binding. Experimental data combined with a conformationally-sampled pharmacophore/QSAR modeling approach (CSP-SAR) predicted that dianionic substituents with intramolecular hydrogen bonding between hydroxyls on the cholane skeleton and the acid group on the conjugate's aromatic ring increased conjugate hydrophobicity and improved binding affinity. Notably, the model predicted the presence of a conformational molecular switch, where shifting the carboxylate substituent on an aromatic ring by a single position controlled binding affinity. Model validation was performed by effectively shifting the spatial location of the carboxylate by inserting a methylene adjacent to the aromatic ring, resulting in the predicted alteration in binding affinity. This work illustrates conformation as a determinant of ligand binding affinity to a biological transporter. PMID:20504026

  10. Human intestine luminal ACE2 and amino acid transporter expression increased by ACE-inhibitors.

    PubMed

    Vuille-dit-Bille, Raphael N; Camargo, Simone M; Emmenegger, Luca; Sasse, Tom; Kummer, Eva; Jando, Julia; Hamie, Qeumars M; Meier, Chantal F; Hunziker, Schirin; Forras-Kaufmann, Zsofia; Kuyumcu, Sena; Fox, Mark; Schwizer, Werner; Fried, Michael; Lindenmeyer, Maja; Götze, Oliver; Verrey, François

    2015-04-01

    Sodium-dependent neutral amino acid transporter B(0)AT1 (SLC6A19) and imino acid (proline) transporter SIT1 (SLC6A20) are expressed at the luminal membrane of small intestine enterocytes and proximal tubule kidney cells where they exert key functions for amino acid (re)absorption as documented by their role in Hartnup disorder and iminoglycinuria, respectively. Expression of B(0)AT1 was shown in rodent intestine to depend on the presence of the carboxypeptidase angiotensin-converting enzyme 2 (ACE2). This enzyme belongs to the renin-angiotensin system and its expression is induced by treatment with ACE-inhibitors (ACEIs) or angiotensin II AT1 receptor blockers (ARBs) in many rodent tissues. We show here in the Xenopus laevis oocyte expression system that human ACE2 also functionally interacts with SIT1. To investigate in human intestine the potential effect of ACEIs or ARBs on ACE2, we analysed intestinal biopsies taken during routine gastroduodenoscopy and ileocolonoscopy from 46 patients of which 9 were under ACEI and 13 ARB treatment. Analysis of transcript expression by real-time PCR and of proteins by immunofluorescence showed a co-localization of SIT1 and B(0)AT1 with ACE2 in the brush-border membrane of human small intestine enterocytes and a distinct axial expression pattern of the tested gene products along the intestine. Patients treated with ACEIs displayed in comparison with untreated controls increased intestinal mRNA levels of ACE2, peptide transporter PEPT1 (SLC15A1) and AA transporters B(0)AT1 and PAT1 (SLC36A1). This study unravels in human intestine the localization and distribution of intestinal transporters involved in amino acid absorption and suggests that ACEIs impact on their expression.

  11. Formulating gels for decreased mucociliary transport using rheologic properties: polyacrylic acids.

    PubMed

    Shah, Ankur J; Donovan, Maureen D

    2007-04-20

    The purpose of these studies was to identify the rheologic properties of polyacrylic acid gels necessary for optimal reductions in mucociliary clearance. The mucociliary transport of 2 bioadhesive polyacrylic acid polymers, polycarbophil and carbopol, was assessed in vitro by measuring their clearance rates across explants of ciliated bovine tracheal tissue. The viscoelastic properties of polymer gels were measured in the presence of mucus using controlled stress rheometry. Combinations of apparent viscosity (eta) and complex modulus (G*) were found to be the most useful parameters in the identification of polyacrylic acid formulations capable of decreasing mucociliary transport rate (MTR). A narrow range of eta and G* values suitable for reducing mucociliary clearance, while remaining sufficiently fluid for intranasal administration, were identified. The correlations between the rheologic parameters of the polycarbophil gels and their mucociliary transport rates were used to identify other polyacrylic acid gels that also had suitable mucociliary clearance properties, demonstrating that these parameters can be used to direct the optimization of formulations using simple in vitro rheologic testing.

  12. Structural basis for amino acid export by DMT superfamily transporter YddG.

    PubMed

    Tsuchiya, Hirotoshi; Doki, Shintaro; Takemoto, Mizuki; Ikuta, Tatsuya; Higuchi, Takashi; Fukui, Keita; Usuda, Yoshihiro; Tabuchi, Eri; Nagatoishi, Satoru; Tsumoto, Kouhei; Nishizawa, Tomohiro; Ito, Koichi; Dohmae, Naoshi; Ishitani, Ryuichiro; Nureki, Osamu

    2016-06-16

    The drug/metabolite transporter (DMT) superfamily is a large group of membrane transporters ubiquitously found in eukaryotes, bacteria and archaea, and includes exporters for a remarkably wide range of substrates, such as toxic compounds and metabolites. YddG is a bacterial DMT protein that expels aromatic amino acids and exogenous toxic compounds, thereby contributing to cellular homeostasis. Here we present structural and functional analyses of YddG. Using liposome-based analyses, we show that Escherichia coli and Starkeya novella YddG export various amino acids. The crystal structure of S. novella YddG at 2.4 Å resolution reveals a new membrane transporter topology, with ten transmembrane segments in an outward-facing state. The overall structure is basket-shaped, with a large substrate-binding cavity at the centre of the molecule, and is composed of inverted structural repeats related by two-fold pseudo-symmetry. On the basis of this intramolecular symmetry, we propose a structural model for the inward-facing state and a mechanism of the conformational change for substrate transport, which we confirmed by biochemical analyses. These findings provide a structural basis for the mechanism of transport of DMT superfamily proteins.

  13. Cationic amino acid transporters and beta-defensins in dry eye syndrome.

    PubMed

    Jäger, Kristin; Garreis, Fabian; Dunse, Matthias; Paulsen, Friedrich P

    2010-01-01

    Several diseases concomitant with L-arginine deficiency (diabetes, chronic kidney failure, psoriasis) are significantly associated with dry eye syndrome. One important factor that has so far been neglected is the y(+) transporter. In humans, y(+) accounts for nearly 80% of arginine transport, exclusively carrying the cationic amino acids L-arginine, L-lysine and L-ornithine. y(+) is represented by CAT(cationic amino acid transporter) proteins. L-arginine is a precursor of the moisturizer urea, which has been used in the treatment of dry skin diseases. Although urea has also been shown to be part of the tear film, little attention has been paid to it in this role. Moreover, L-arginine and L-lysine are major components contributing to synthesis of the antimicrobially active beta-defensins induced under dry eye conditions. The first results have demonstrated that transport of L-arginine and L-lysine into epithelial cells is limited by the y(+) transporter at the ocular surface.

  14. Clinical significance of coexpression of L-type amino acid transporter 1 (LAT1) and ASC amino acid transporter 2 (ASCT2) in lung adenocarcinoma

    PubMed Central

    Yazawa, Tomohiro; Shimizu, Kimihiro; Kaira, Kyoichi; Nagashima, Toshiteru; Ohtaki, Yoichi; Atsumi, Jun; Obayashi, Kai; Nagamori, Shushi; Kanai, Yoshikatsu; Oyama, Tetsunari; Takeyoshi, Izumi

    2015-01-01

    Background: L-type amino acid transporter 1 (LAT1) and ASC amino acid transporter 2 (ASCT2) have been associated with tumor growth and progression. However, the clinical significance of LAT1 and ASCT2 coexpression in the prognosis of patients with lung adenocarcinoma remains unclear. Methods: In total, 222 patients with surgically resected lung adenocarcinoma were investigated retrospectively. Tumor sections were stained immunohistochemically for LAT1, ASCT2, CD98, phosphorylated mammalian target-of-rapamycin (p-mTOR), and Ki-67, and microvessel density (MVD) was determined by staining for CD34. Epidermal growth factor receptor (EGFR) mutation status was also examined. Results: LAT1 and ASCT2 were positively expressed in 22% and 40% of cases, respectively. Coexpression of LAT1 and ASCT2 was observed in 12% of cases and was associated significantly with disease stage, lymphatic permeation, vascular invasion, CD98, Ki-67, and p-mTOR. Only LAT1 and ASCT2 coexpression indicated a poor prognosis for lung adenocarcinoma. Furthermore, this characteristic was recognized in early-stage patients, especially those who had wild-type, rather than mutated, EGFR. Multivariate analysis confirmed that the coexpression of LAT1 and ASCT2 was an independent factor for predicting poor outcome. Conclusions: LAT1 and ASCT2 coexpression is an independent prognostic factor for patients with lung adenocarcinoma, especially during the early stages, expressing wild-type EGFR. PMID:26279756

  15. Effect of peracetic acid reprocessing on the transport characteristics of polysulfone hemodialyzers.

    PubMed

    Wolff, Susanne H; Zydney, Andrew L

    2005-02-01

    Peracetic acid is used extensively for reprocessing hemodialyzers, despite several indications that reprocessing alters the dialyzer transport characteristics. The objective of this study was to obtain quantitative data for the effects of peracetic acid reprocessing on the clearance and sieving coefficients of urea, vitamin B12, and polydisperse dextrans using Fresenius F80A polysulfone dialyzers. Reprocessing restored the urea and vitamin B12 clearance to close to their original values. However, the reprocessed dialyzers had substantially lower clearance of the larger molecular weight dextrans, which was attributed to reductions in the effective pore size caused by residual plasma proteins within the membrane. Storage in peracetic acid provided some additional removal of residual proteins, although the clearance and sieving coefficients of the larger dextrans remained well below their original values. Peracetic acid caused no degradation of the membrane polymer, in sharp contrast to results obtained with bleach reprocessing.

  16. Nutrient uptake by marine invertebrates: cloning and functional analysis of amino acid transporter genes in developing sea urchins (Strongylocentrotus purpuratus).

    PubMed

    Meyer, Eli; Manahan, Donal T

    2009-08-01

    Transport of amino acids from low concentrations in seawater by marine invertebrates has been extensively studied, but few of the genes involved in this physiological process have been identified. We have characterized three amino acid transporter genes cloned from embryos of the sea urchin Strongylocentrotus purpuratus. These genes show phylogenetic proximity to classical amino acid transport systems, including Gly and B0+, and the inebriated gene (INE). Heterologous expression of these genes in frog oocytes induced a 40-fold increase in alanine transport above endogenous levels, demonstrating that these genes mediate alanine transport. Antibodies specific to one of these genes (Sp-AT1) inhibited alanine transport, confirming the physiological activity of this gene in larvae. Whole-mount antibody staining of larvae revealed expression of Sp-AT1 in the ectodermal tissues associated with amino acid transport, as independently demonstrated by autoradiographic localization of radioactive alanine. Maximum rates of alanine transport increased 6-fold during early development, from embryonic to larval stages. Analysis of gene expression during this developmental period revealed that Sp-AT1 transcript abundance remained nearly constant, while that of another transporter gene (Sp-AT2) increased 11-fold. The functional characterization of these genes establishes a molecular biological basis for amino acid transport by developmental stages of marine invertebrates.

  17. Effect of heat stress on amino acid digestibility and transporters in meat-type chickens.

    PubMed

    Habashy, W S; Milfort, M C; Adomako, K; Attia, Y A; Rekaya, R; Aggrey, S E

    2017-03-02

    The present study was conducted to investigate the effect of heat stress (HS) on performance, digestibility, and molecular transporters of amino acids in broilers. Cobb 500 chicks were raised from hatch till 13 d in floor pens. At d 14, 48 birds were randomly and equally divided between a control group (25°C) and a HS treatment group (35°C). Birds in both treatment classes were individually caged and fed ad libitum on a diet containing 18.7% CP and 3,560 Kcal ME/Kg. Five birds per treatment at one and 12 d post treatment were euthanized and the Pectoralis major (P. major) and ileum were sampled for gene expression analysis. At d 33, ileal contents were collected and used for digestibility analysis. Broilers under HS had reduced growth and feed intake compared to controls. Although the apparent ileal digestibility (AID) was consistently higher for all amino acids in the HS group, it was not significant except for hydroxylysine. The amino acid consumption and retention were significantly lower in the HS group when compared to the control group. Meanwhile, the retention of amino acids per BWG was higher in the HS group when compared to the control group except for hydroxylysine and ornithine. The dynamics of amino acid transporters in the P. major and ileum was influenced by HS. In P. major and ileum tissues at d one, transporters SNAT1, SNAT2, SNAT7, TAT1, and b0,+AT, were down-regulated in the HS group. Meanwhile, LAT4 and B0AT were down-regulated only in the P. major in the treatment group. The amino acid transporters B0AT and SNAT7 at d 12 post HS were down-regulated in the P. major and ileum, but SNAT2 was down-regulated only in the ileum and TAT1 was down-regulated only in the P. major compared with the control group. These changes in amino acid transporters may explain the reduced growth in meat type chickens under heat stress.

  18. Migration-induced variation of fatty acid transporters and cellular metabolic intensity in passerine birds.

    PubMed

    Zhang, Yufeng; King, Marisa O; Harmon, Erin; Eyster, Kathleen; Swanson, David L

    2015-10-01

    Because lipids are the main fuel supporting avian endurance activity, lipid transport and oxidation capacities may increase during migration. We measured enzyme activities, mRNA expression and protein levels in pectoralis and heart for several key steps of lipid transport and catabolism pathways to investigate whether these pathways were upregulated during migration. We used yellow-rumped (Setophaga coronata) and yellow (S. petechia) warblers and warbling vireos (Vireo gilvus) as study species because they all show migration-induced increases in organismal metabolic capacities. For yellow-rumped warblers, β-hydroxyacyl CoA-dehydrogenase (HOAD) activities and fatty acid transporter mRNA and/or protein levels were higher during spring than fall in pectoralis and heart, except that fatty acid translocase (FAT/CD36) protein levels showed the opposite pattern in heart. Lipid transporter protein levels, but not mRNA expression, in pectoralis and heart of warbling vireos were higher either during spring or fall than summer, but this was not true for HOAD activities. For yellow warblers, pectoralis, but not heart, protein levels of lipid transporters were upregulated during migration relative to summer, but this pattern was not evident for mRNA expression or HOAD activity. Finally, muscle and heart citrate synthase and carnitine palmitoyl transferase activities showed little seasonal variation for any species. These data suggest that pectoralis and heart lipid transport and catabolism capacities are often, but not universally, important correlates of elevated organismal metabolic capacity during migration. In contrast, migration-induced variation in cellular metabolic intensity and mitochondrial membrane transport are apparently not common correlates of the migratory phenotype in passerines.

  19. Organic Anion Transporting Polypeptides Contribute to the Disposition of Perfluoroalkyl Acids in Humans and Rats.

    PubMed

    Zhao, Wen; Zitzow, Jeremiah D; Weaver, Yi; Ehresman, David J; Chang, Shu-Ching; Butenhoff, John L; Hagenbuch, Bruno

    2016-12-24

    Perfluoroalkyl sulfonates (PFSAs) such as perfluorohexane sulfonate (PFHxS) and perfluorooctane sulfonate (PFOS) have very long serum elimination half-lives in humans, and preferentially distribute to serum and liver. The enterohepatic circulation of PFHxS and PFOS likely contributes to their extended elimination half-lives. We previously demonstrated that perfluorobutane sulfonate (PFBS), PFHxS, and PFOS are transported into hepatocytes both in a sodium-dependent and a sodium-independent manner. We identified Na(+)/taurocholate cotransporting polypeptide (NTCP) as the responsible sodium-dependent transporter. Furthermore, we demonstrated that the human apical sodium-dependent bile salt transporter (ASBT) contributes to the intestinal reabsorption of PFOS. However, so far no sodium-independent uptake transporters for PFSAs have been identified in human hepatocytes or enterocytes. In addition, perfluoroalkyl carboxylates (PFCAs) with 8 and 9 carbons were shown to preferentially distribute to the liver of rodents; however, no rat or human liver uptake transporters are known to transport these PFCAs. Therefore, we tested whether PFBS, PFHxS, PFOS, and PFCAs with 7-10 carbons are substrates of organic anion transporting polypeptides (OATPs). We used CHO and HEK293 cells to demonstrate that human OATP1B1, OATP1B3, and OATP2B1 can transport PFBS, PFHxS, PFOS, and the 2 PFCAs (C8 and C9). In addition, we show that rat OATP1A1, OATP1A5, OATP1B2, and OATP2B1 transport all 3 PFSAs. In conclusion, our results suggest that besides NTCP and ASBT, OATPs also are capable of contributing to the enterohepatic circulation and extended human serum elimination half-lives of the tested perfluoroalkyl acids.

  20. Genome expansion and differential expression of amino acid transporters at the aphid/Buchnera symbiotic interface.

    PubMed

    Price, Daniel R G; Duncan, Rebecca P; Shigenobu, Shuji; Wilson, Alex C C

    2011-11-01

    In insects, some of the most ecologically important symbioses are nutritional symbioses that provide hosts with novel traits and thereby facilitate exploitation of otherwise inaccessible niches. One such symbiosis is the ancient obligate intracellular symbiosis of aphids with the γ-proteobacteria, Buchnera aphidicola. Although the nutritional basis of the aphid/Buchnera symbiosis is well understood, the processes and structures that mediate the intimate interactions of symbiotic partners remain uncharacterized. Here, using a de novo approach, we characterize the complement of 40 amino acid polyamine organocation (APC) superfamily member amino acid transporters (AATs) encoded in the genome of the pea aphid, Acyrthosiphon pisum. We find that the A. pisum APC superfamily is characterized by extensive gene duplications such that A. pisum has more APC superfamily transporters than other fully sequenced insects, including a ten paralog aphid-specific expansion of the APC transporter slimfast. Detailed expression analysis of 17 transporters selected on the basis of their phylogenetic relationship to five AATs identified in an earlier bacteriocyte expressed sequence tag study distinguished a subset of eight transporters that have been recruited for amino acid transport in bacteriocyte cells at the symbiotic interface. These eight transporters include transporters that are highly expressed and/or highly enriched in bacteriocytes and intriguingly, the four AATs that show bacteriocyte-enriched expression are all members of gene family expansions, whereas three of the four that are highly expressed but not enriched in bacteriocytes retain one-to-one orthology with transporters in other genomes. Finally, analysis of evolutionary rates within the large A. pisum slimfast expansion demonstrated increased rates of molecular evolution coinciding with two major shifts in expression: 1) a loss of gut expression and possibly a gain of bacteriocyte expression and 2) loss of expression

  1. Molecular physiology of the insect K-activated amino acid transporter 1 (KAAT1) and cation-anion activated amino acid transporter/channel 1 (CAATCH1) in the light of the structure of the homologous protein LeuT.

    PubMed

    Castagna, M; Bossi, E; Sacchi, V F

    2009-06-01

    K-activated amino acid transporter 1 (KAAT1) and cation-anion-activated amino acid transporter/channel 1 (CAATCH1) are amino acid cotransporters, belonging to the Na/Cl-dependent neurotransmitter transporter family (also called SLC6/NSS), that have been cloned from Manduca sexta midgut. They have been thoroughly studied by expression in Xenopus laevis oocytes, and structure/function analyses have made it possible to identify the structural determinants of their cation and amino acid selectivity. About 40 mutants of these proteins have been studied by measuring amino acid uptake and current/voltage relationships. The results obtained since the cloning of KAAT1 and CAATCH1 are here discussed in the light of the 3D model of the first crystallized member of the family, the leucine transporter LeuT.

  2. Novel therapeutic approaches targeting L-type amino acid transporters for cancer treatment

    PubMed Central

    Hayashi, Keitaro; Anzai, Naohiko

    2017-01-01

    L-type amino acid transporters (LATs) mainly assist the uptake of neutral amino acids into cells. Four LATs (LAT1, LAT2, LAT3 and LAT4) have so far been identified. LAT1 (SLC7A5) has been attracting much attention in the field of cancer research since it is commonly up-regulated in various cancers. Basic research has made it increasingly clear that LAT1 plays a predominant role in malignancy. The functional significance of LAT1 in cancer and the potential therapeutic application of the features of LAT1 to cancer management are described in this review. PMID:28144396

  3. Placental glucose and amino acid transport in calorie-restricted wild-type and Glut3 null heterozygous mice.

    PubMed

    Ganguly, Amit; Collis, Laura; Devaskar, Sherin U

    2012-08-01

    Calorie restriction (CR) decreased placenta and fetal weights in wild-type (wt) and glucose transporter (Glut) 3 heterozygous null (glut3(+/-)) mice. Because placental nutrient transport is a primary energy determinant of placentofetal growth, we examined key transport systems. Maternal CR reduced intra- and transplacental glucose and leucine transport but enhanced system A amino acid transport in wt mice. These transport perturbations were accompanied by reduced placental Glut3 and leucine amino acid transporter (LAT) family member 2, no change in Glut1 and LAT family member 1, but increased sodium coupled neutral amino acid transporter (SNAT) and SNAT2 expression. We also noted decreased total and active phosphorylated forms of mammalian target of rapamycin, which is the intracellular nutrient sensor, the downstream total P70S6 kinase, and pS6 ribosomal protein with no change in total and phosphorylated 4E-binding protein 1. To determine the role of placental Glut3 in mediating CR-induced placental transport changes, we next investigated the effect of gestational CR in glut3(+/-) mice. In glut3(+/-) mice, a key role of placental Glut3 in mediating transplacental and intraplacental glucose transport was established. In addition, reduced Glut3 results in a compensatory increase of leucine and system A transplacental transport. On the other hand, diminished Glut3-mediated intraplacental glucose transport reduced leucine transport and mammalian target of rapamycin and preserved LAT and enhancing SNAT. CR in glut3(+/-) mice further reduced transplacental glucose transport and enhanced system A amino acid transport, although the increased leucine transport was lost. In addition, increased Glut3 was seen and preserved Glut1, LAT, and SNAT. These placental changes collectively protect survival of wt and glut3(+/-) fetuses against maternal CR-imposed reduction of macromolecular nutrients.

  4. Placental Glucose and Amino Acid Transport in Calorie-Restricted Wild-Type and Glut3 Null Heterozygous Mice

    PubMed Central

    Ganguly, Amit; Collis, Laura

    2012-01-01

    Calorie restriction (CR) decreased placenta and fetal weights in wild-type (wt) and glucose transporter (Glut) 3 heterozygous null (glut3+/−) mice. Because placental nutrient transport is a primary energy determinant of placentofetal growth, we examined key transport systems. Maternal CR reduced intra- and transplacental glucose and leucine transport but enhanced system A amino acid transport in wt mice. These transport perturbations were accompanied by reduced placental Glut3 and leucine amino acid transporter (LAT) family member 2, no change in Glut1 and LAT family member 1, but increased sodium coupled neutral amino acid transporter (SNAT) and SNAT2 expression. We also noted decreased total and active phosphorylated forms of mammalian target of rapamycin, which is the intracellular nutrient sensor, the downstream total P70S6 kinase, and pS6 ribosomal protein with no change in total and phosphorylated 4E-binding protein 1. To determine the role of placental Glut3 in mediating CR-induced placental transport changes, we next investigated the effect of gestational CR in glut3+/− mice. In glut3+/− mice, a key role of placental Glut3 in mediating transplacental and intraplacental glucose transport was established. In addition, reduced Glut3 results in a compensatory increase of leucine and system A transplacental transport. On the other hand, diminished Glut3-mediated intraplacental glucose transport reduced leucine transport and mammalian target of rapamycin and preserved LAT and enhancing SNAT. CR in glut3+/− mice further reduced transplacental glucose transport and enhanced system A amino acid transport, although the increased leucine transport was lost. In addition, increased Glut3 was seen and preserved Glut1, LAT, and SNAT. These placental changes collectively protect survival of wt and glut3+/− fetuses against maternal CR-imposed reduction of macromolecular nutrients. PMID:22700768

  5. Column experiments to investigate transport of colloidal humic acid through porous media during managed aquifer recharge

    NASA Astrophysics Data System (ADS)

    Liu, Dan; Zhou, Jingjing; Zhang, Wenjing; Huan, Ying; Yu, Xipeng; Li, Fulin; Chen, Xuequn

    2016-09-01

    Colloids act as vectors for pollutants in groundwater, thereby creating a series of environmental problems. While managed aquifer recharge plays an important role in protecting groundwater resources and controlling land subsidence, it has a significant effect on the transport of colloids. In this study, particle size and zeta potential of colloidal humic acid (HA) have been measured to determine the effects of different hydrochemistry conditions. Column experiments were conducted to examine the effects on the transport of colloidal HA under varying conditions of pH (5, 7, 9), ionic strength (<0.0005, 0.02, 0.05 M), cation valence (Na+, Ca2+) and flow rate (0.1, 0.2, 0.4 ml/min) through collectors (glass beads) to model the properties and quality of artificial recharge water and changes in the hydrodynamic field. Breakthrough curves showed that the behavior of colloidal HA being transported varied depending on the conditions. Colloid transport was strongly influenced by hydrochemical and hydrodynamic conditions. With decreasing pH or increasing ionic strength, a decrease in the peak effluent concentration of colloidal HA and increase in deposition could be clearly seen. Comparison of different cation valence tests indicated that changes in transport and deposition were more pronounced with divalent Ca2+ than with monovalent Na+. Changes in hydrodynamic field (flow rate) also had an impact on transportation of colloidal HA. The results of this study highlight the need for further research in this area.

  6. Theory of ion transport with fast acid-base equilibrations in bioelectrochemical systems.

    PubMed

    Dykstra, J E; Biesheuvel, P M; Bruning, H; Ter Heijne, A

    2014-07-01

    Bioelectrochemical systems recover valuable components and energy in the form of hydrogen or electricity from aqueous organic streams. We derive a one-dimensional steady-state model for ion transport in a bioelectrochemical system, with the ions subject to diffusional and electrical forces. Since most of the ionic species can undergo acid-base reactions, ion transport is combined in our model with infinitely fast ion acid-base equilibrations. The model describes the current-induced ammonia evaporation and recovery at the cathode side of a bioelectrochemical system that runs on an organic stream containing ammonium ions. We identify that the rate of ammonia evaporation depends not only on the current but also on the flow rate of gas in the cathode chamber, the diffusion of ammonia from the cathode back into the anode chamber, through the ion exchange membrane placed in between, and the membrane charge density.

  7. Theory of ion transport with fast acid-base equilibrations in bioelectrochemical systems

    NASA Astrophysics Data System (ADS)

    Dykstra, J. E.; Biesheuvel, P. M.; Bruning, H.; Ter Heijne, A.

    2014-07-01

    Bioelectrochemical systems recover valuable components and energy in the form of hydrogen or electricity from aqueous organic streams. We derive a one-dimensional steady-state model for ion transport in a bioelectrochemical system, with the ions subject to diffusional and electrical forces. Since most of the ionic species can undergo acid-base reactions, ion transport is combined in our model with infinitely fast ion acid-base equilibrations. The model describes the current-induced ammonia evaporation and recovery at the cathode side of a bioelectrochemical system that runs on an organic stream containing ammonium ions. We identify that the rate of ammonia evaporation depends not only on the current but also on the flow rate of gas in the cathode chamber, the diffusion of ammonia from the cathode back into the anode chamber, through the ion exchange membrane placed in between, and the membrane charge density.

  8. Evidence for transport intermediates in aromatic amino acid synthesis of non-green tissues

    SciTech Connect

    Leuschner, C.; Schultz, G. )

    1990-05-01

    Quinate (QA) is the predominant pre-aromatic compound formed at high rates in leaves of many plants at the early vegetation stage and transported through the phloem. The transfer of 3-dehydroquinate, 3-dehydroshikimate and (SkA) across the plastidial membranes has been evidenced. The question was whether the rate of QA uptake is comparable to that of the 3 SkA-pathway intermediates. To demonstrate this, /U-{sup 14}C/QA and /U-{sup 14}C/SkA were applied to Brassica rapa roots. Both compounds were uptaken at considerable rates and incorporated into aromatic amino acids (Phe + Tyr + Trp formation, in nmol/g fresh wt x h: applying 145 {mu}mol QA: 21.2; applying 156 {mu}mol Ska: 31.8). Thus, QA is a possible candidate for transport into non-green tissues for aromatic amino acid synthesis.

  9. Fatty Acid-Binding Protein in Small Intestine IDENTIFICATION, ISOLATION, AND EVIDENCE FOR ITS ROLE IN CELLULAR FATTY ACID TRANSPORT

    PubMed Central

    Ockner, Robert K.; Manning, Joan A.

    1974-01-01

    A soluble fatty acid-binding protein (FABP), mol wt ∼ 12,000 is present in intestinal mucosa and other tissues that utilize fatty acids, including liver, myocardium, adipose, and kidney. This protein binds long chain fatty acids both in vivo and in vitro. FABP was isolated from rat intestine by gel filtration and isoelectric focusing. It showed a reaction of complete immunochemical identity with proteins in the 12,000 mol wt fatty acid-binding fractions of liver, myocardium, and adipose tissue supernates. (The presence of immunochemically nonidentical 12,000 mol wt FABP in these tissues is not excluded.) By quantitative radial immunodiffusion, supernatant FABP concentration in mucosa from proximal and middle thirds of jejuno-ileum significantly exceeded that in distal third, duodenum, and liver, expressed as micrograms per milligram soluble protein, micrograms per gram DNA, and micrograms per gram tissue. FABP concentration in villi was approximately three times greater than in crypts. Small quantities of FABP were present in washed nuclei-cell membrane, mitochondrial and microsomal fractions. However, the amount of FABP solubilized per milligram membrane protein was similar for all particulate fractions, and total membrane-associated FABP was only about 16% of supernatant FABP. Intestinal FABP concentration was significantly greater in animals maintained on high fat diets than on low fat; saturated and unsaturated fat diets did not differ greatly in this regard. The preponderance of FABP in villi from proximal and middle intestine, its ability to bind fatty acids in vivo as well as in vitro, and its response to changes in dietary fat intake support the concept that this protein participates in cellular fatty acid transport during fat absorption. Identical or closely related 12,000 mol wt proteins may serve similar functions in other tissues. Images PMID:4211161

  10. The effects of the carboxyl-terminus amino acids of the Shiga toxin B-subunit on retrograde transport.

    PubMed

    Liu, Dan; Fan, Yuying; Li, Jie; Gao, Xiaoge; Hao, Miao; Xue, Huiting; Tai, Guihua

    2012-07-01

    The Shiga toxin B-subunit (STxB), from the enteric pathogen, Shigella dysenteriae, is responsible for the attachment of its receptor, globotriaosylceramide (Gb3), and navigates the retrograde pathway from the plasma membrane to the endoplasmic reticulum (ER). In this study, in order to demonstrate the role of carboxyl-terminus (C-terminus/al) amino acids of the B-fragment on the retrograde transport speed and the retrograde transport pathway, STxB was modified by site-directed mutagenesis and by the addition of an amino acid tail. The results showed that when the C-terminal amino acid, arginine [Arg (R)], was mutated to serine [Ser (S)], the speed of the B-fragment transportation into the ER at 37 ˚C was slower. When an acidic amino acid tail 'glutamine (Glu)-Ser' (ES) was added to the C-terminal amino acid 'R', the B-fragment transporting speed slowed down and remained in the Golgi apparatus. Further experiments showed that the effects induced by mutations of the amino acid tail resulted in STxB-EEEES ≥-EEES>-EES>-ES, demonstrating that the retardation effect on the tail was increased and the length of the acidic amino acid was augmented. The effect was possibly produced by an acidic amino acid tail, not only by the amino acid 'E'. The significant inhibitory effect on the speed of B-fragment retrograde transport was observed only when the mutations of the acidic amino acid tail were linked near to the C-terminus. These results may provide important insights for the study of transport mechanisms and for the development of STxB serial proteins as vectors for drug delivery.

  11. Absorption and lymphatic transport of exogenous and endogenous arachidonic and linoleic acid in the rat

    SciTech Connect

    Nilsson, A.; Landin, B.; Jensen, E.; Akesson, B.

    1987-06-01

    (/sup 3/H)Arachidonic (20:4) and (/sup 14/C)linoleic acid (18:2) were fed to thoracic duct-cannulated rats in test meals of either tracers alone, cream, Intralipid, pure arachidonic acid, or pure linoleic acid. Less (/sup 3/H)20:4 than (/sup 14/C)18:2 was recovered in chyle during the first 5 h. After cream feeding, the proportion of radioactivity found in phospholipids was high and increased during the first 3 h. After the meal 61 +/- 6% of the /sup 3/H and 57 +/- 10% of the /sup 14/C was in phosphatidylcholine, and 11 +/- 3% of the /sup 3/H and 3.0 +/- 4% of the /sup 14/C was in phosphatidylethanolamine. Changing the fat vehicle to Intralipid or pure 18:2 decreased the proportion of label in the phospholipds and increased the /sup 3/H and /sup 14/C radioactivity in the triacylglycerol fraction, the distribution of /sup 14/C radioactivity in the triacylglycerol fraction, the distribution of /sup 14/C being influenced more than that of /sup 3/H. After feeding the tracers in 200 ..mu..l of pure 20:4, >90% of both isotopes was in triacylglycerol. During fasting, triacylglycerol transported 56% (0.7 ..mu..mol/h), phosphatidylethanolamine transported 10% (0.1 ..mu..mol/h) of the 20:4 mass. After cream or Intralipid feeding, the output of 20:4-containing phosphatidylcholine and phosphatidylethanolamine increased 2.1- to 2.8-fold, whereas the transport of 20:4 with triacylglycerol remained constant. Phospholipids thus became the predominant transport form for 20:4. After feeding 200 ..mu..l of 20:4, the intestine produced, however, 20:4-rich triacylglycerols that transported 80% of the chyle 20:4.

  12. Improved Experimental Techniques for Analyzing Nucleic Acid Transport Through Protein Nanopores in Planar Lipid Bilayers

    NASA Astrophysics Data System (ADS)

    Costa, Justin A.

    The translocation of nucleic acid polymers across cell membranes is a fundamental requirement for complex life and has greatly contributed to genomic molecular evolution. The diversity of pathways that have evolved to transport DNA and RNA across membranes include protein receptors, active and passive transporters, endocytic and pinocytic processes, and various types of nucleic acid conducting channels known as nanopores. We have developed a series of experimental techniques, collectively known as "Wicking", that greatly improves the biophysical analysis of nucleic acid transport through protein nanopores in planar lipid bilayers. We have verified the Wicking method using numerous types of classical ion channels including the well-studied chloride selective channel, CLIC1. We used the Wicking technique to reconstitute α-hemolysin and found that DNA translocation events of types A and B could be routinely observed using this method. Furthermore, measurable differences were observed in the duration of blockade events as DNA length and composition was varied, consistent with previous reports. Finally, we tested the ability of the Wicking technology to reconstitute the dsRNA transporter Sid-1. Exposure to dsRNAs of increasing length and complexity showed measurable differences in the current transitions suggesting that the charge carrier was dsRNA. However, the translocation events occurred so infrequently that a meaningful electrophysiological analysis was not possible. Alterations in the lipid composition of the bilayer had a minor effect on the frequency of translocation events but not to such a degree as to permit rigorous statistical analysis. We conclude that in many instances the Wicking method is a significant improvement to the lipid bilayer technique, but is not an optimal method for analyzing transport through Sid-1. Further refinements to the Wicking method might have future applications in high throughput DNA sequencing, DNA computation, and

  13. [Hepatocellular transport of bile acids and organic anions in infection and SIRS--evidence for different mechanisms for regulating membrane transport proteins].

    PubMed

    Bolder, U; Thasler, W E; Hofmann, A F; Jauch, K W

    1998-01-01

    The alteration of proinflammatory mediators during sepsis and SIRS results in a large variety of adaptive changes of metabolic and physiologic variables. This study investigated the alterations of hepatocellular transport in a rat sepsis model (LPS i.p.) as well as in a model inducing SIRS by sterile abscess formation (turpentine i.m.). Two bile acids (Cholyltaurine and Chemodeoxycholyltaurine) and one organic anion (Sulfolithocholyltaurine) were used as marker substrates to investigate the time course of hepatocellular transport function. Experiments were performed in isolated perfused rat livers and plasma membrane vesicles. During sepsis, both, the transport of bile acids and that of the organic anion was markedly reduced. In contrast no alteration of transport was detected during SIRS. However, biliary secretion of glutathione (+90%) and bile acid independent bile flow (%) were increased. mRNA levels of bile acid and organic anion transport proteins were reduced. The lowest values were noted 12 h after injection of LPS or turpentine. Almost unchanged kinetic parameters during SIRS pointed to a normal population of transporters with regard to quantity and substrate affinity. Therefore it seems that transcriptional regulation plays an important role for the expression of transport proteins during sepsis, whereas posttranscriptional regulation may be of importance during SIRS. The clinical phenomenon of septic cholestasis including jaundice implies endotoxemia and differenciates against SIRS.

  14. Klotho sensitivity of the neuronal excitatory amino acid transporters EAAT3 and EAAT4.

    PubMed

    Almilaji, Ahmad; Munoz, Carlos; Pakladok, Tatsiana; Alesutan, Ioana; Feger, Martina; Föller, Michael; Lang, Undine E; Shumilina, Ekaterina; Lang, Florian

    2013-01-01

    Klotho, a transmembrane protein, which can be cleaved off as β-glucuronidase and hormone, is released in both, kidney and choroid plexus and encountered in blood and cerebrospinal fluid. Klotho deficiency leads to early appearance of age-related disorders and premature death. Klotho may modify transport by inhibiting 1,25(OH)2D3 formation or by directly affecting channel and carrier proteins. The present study explored whether Klotho influences the activity of the Na(+)-coupled excitatory amino acid transporters EAAT3 and EAAT4, which are expressed in kidney (EAAT3), intestine (EAAT3) and brain (EAAT3 and EAAT4). To this end, cRNA encoding EAAT3 or EAAT4 was injected into Xenopus oocytes with and without additional injection of cRNA encoding Klotho. EAAT expressing Xenopus oocytes were further treated with recombinant human β-Klotho protein with or without β-glucuronidase inhibitor D-saccharic acid 1,4-lactone monohydrate (DSAL). Electrogenic excitatory amino acid transport was determined as L-glutamate-induced current (Iglu) in two electrode voltage clamp experiments. EAAT3 and EAAT4 protein abundance in the Xenopus oocyte cell membrane was visualized by confocal microscopy and quantified utilizing chemiluminescence. As a result, coexpression of Klotho cRNA significantly increased Iglu in both, EAAT3 or EAAT4-expressing Xenopus oocytes. Klotho cRNA coexpression significantly increased the maximal current and cell membrane protein abundance of both EAAT3 and EAAT4. The effect of Klotho coexpression on EAAT3 and EAAT4 activity was mimicked by treating EAAT3 or EAAT4-expressing Xenopus oocytes with recombinant human β-Klotho protein. The effects of Klotho coexpression and of treatment with recombinant human β-Klotho protein were both abrogated in the presence of DSAL (10 µM). In conclusion, Klotho is a novel, powerful regulator of the excitatory amino acid transporters EAAT3 and EAAT4.

  15. Interaction of α-Lipoic Acid with the Human Na+/Multivitamin Transporter (hSMVT).

    PubMed

    Zehnpfennig, Britta; Wiriyasermkul, Pattama; Carlson, David A; Quick, Matthias

    2015-06-26

    The human Na(+)/multivitamin transporter (hSMVT) has been suggested to transport α-lipoic acid (LA), a potent antioxidant and anti-inflammatory agent used in therapeutic applications, e.g. in the treatment of diabetic neuropathy and Alzheimer disease. However, the molecular basis of the cellular delivery of LA and in particular the stereospecificity of the transport process are not well understood. Here, we expressed recombinant hSMVT in Pichia pastoris and used affinity chromatography to purify the detergent-solubilized protein followed by reconstitution of hSMVT in lipid bilayers. Using a combined approach encompassing radiolabeled LA transport and equilibrium binding studies in conjunction with the stabilized R-(+)- and S-(-)-enantiomers and the R,S-(+/-) racemic mixture of LA or lipoamide, we identified the biologically active form of LA, R-LA, to be the physiological substrate of hSMVT. Interaction of R-LA with hSMVT is strictly dependent on Na(+). Under equilibrium conditions, hSMVT can simultaneously bind ~2 molecules of R-LA in a biphasic binding isotherm with dissociation constants (Kd) of 0.9 and 7.4 μm. Transport of R-LA in the oocyte and reconstituted system is exclusively dependent on Na(+) and exhibits an affinity of ~3 μm. Measuring transport with known amounts of protein in proteoliposomes containing hSMVT in outside-out orientation yielded a catalytic turnover number (kcat) of about 1 s(-1), a value that is well in agreement with other Na(+)-coupled transporters. Our data suggest that hSMVT-mediated transport is highly specific for R-LA at our tested concentration range, a finding with wide ramifications for the use of LA in therapeutic applications.

  16. Transport of. cap alpha. -aminoisobutyric acid by Streptococcus pyogenes and its derived L-form

    SciTech Connect

    Reizer, J.; Panos, C.

    1982-01-01

    We studied the uptake of ..cap alpha..-aminoisobutyric acid (AIB) in Streptococcus pyogenes and its physiologically isotonic L-form. S. pyogenes cells starved for glucose or treated with carbonyl cyanide-m-chlorophenyl hydrazone accumulated limited amounts of AIB. A high apparent K/sub m/ value characterized the glucose-independent transport of AIB. The rate and extent of AIB accumulation significantly increased in the presence of glucose. Two saturable transport components with distinct apparent K/sub m/values characterized glycolysis-coupled transport of AIB. A biphasic Lineweaver-Burk plot was also obtained for L-alanine transport by glycolyzing S. pyogenes cells. AIB seems to share a common transport system(s) with glycine, L- and D-anine, L-serine, and L-valine. This was shown by the competitive exchange efflux of accumulated AIB. About 30% of the AIB uptake was not inhibited by a saturating amount of L-valine, indicating the existence of more than one system for AIB transport, p-Chloromercuribenzoate markedly inhibited the accumulation of AIB by both glycolyzing and glucose-starved cells. In contrast, carbonyl cyanide-m-chlorophenyl hydrazone affected only metabolism-dependent uptake of AIB, which was also sensitive to dinitrophenol, N-ethylmaleimide, iodoacetate, fluoride (NaF), arsenate, and N,N'-dicyclohexylcarbodiimide. These results are interpreted according to the chemiosmotic theory of Mitchell, whereby a proton motive force constitutes the driving force for AIB accumulation. AIB was not accumulated by the L-form. However, a temporary accumulation of AIB by a counterflow mechanism and a saturable system with a low apparent affinity were demonstrated for AIB transport by this organism. We suggest that a deficiency in the coupling of energy to AIB transport is responsible for the apparent lack of active AIB accumulation by the L-form.

  17. Stimulation of the amino acid transporter SLC6A19 by JAK2

    SciTech Connect

    Bhavsar, Shefalee K.; Hosseinzadeh, Zohreh; Merches, Katja; Gu, Shuchen; Broeer, Stefan; Lang, Florian

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer The amino acid transporter SLC6A19 is upregulated by Janus kinase-2 JAK2. Black-Right-Pointing-Pointer The {sup V617F}JAK2 mutant, causing myeloproliferative disease, is more effective. Black-Right-Pointing-Pointer JAK2 inhibitor AG490 reverses stimulation of SLC6A19 by {sup V617F}JAK2. Black-Right-Pointing-Pointer JAK2 enhances SLC6A19 protein insertion into the cell membrane. Black-Right-Pointing-Pointer SLC6A19 may contribute to amino acid uptake into {sup V617F}JAK2 expressing tumor cells. -- Abstract: JAK2 (Janus kinase-2) is expressed in a wide variety of cells including tumor cells and contributes to the proliferation and survival of those cells. The gain of function mutation {sup V617F}JAK2 mutant is found in the majority of myeloproliferative diseases. Cell proliferation depends on the availability of amino acids. Concentrative cellular amino acid uptake is in part accomplished by Na{sup +} coupled amino acid transport through SLC6A19 (B(0)AT). The present study thus explored whether JAK2 activates SLC6A19. To this end, SLC6A19 was expressed in Xenopus oocytes with or without wild type JAK2, {sup V617F}JAK2 or inactive {sup K882E}JAK2 and electrogenic amino acid transport determined by dual electrode voltage clamp. In SLC6A19-expressing oocytes but not in oocytes injected with water or JAK2 alone, the addition of leucine (2 mM) to the bath generated a current (I{sub le}), which was significantly increased following coexpression of JAK2 or {sup V617F}JAK2, but not by coexpression of {sup K882E}JAK2. Coexpression of JAK2 enhanced the maximal transport rate without significantly modifying the affinity of the carrier. Exposure of the oocytes to the JAK2 inhibitor AG490 (40 {mu}M) resulted in a gradual decline of I{sub le}. According to chemiluminescence JAK2 enhanced the carrier protein abundance in the cell membrane. The decline of I{sub le} following inhibition of carrier insertion by brefeldin A (5 {mu}M) was similar

  18. Studies on the renal transport of trimethylpentanoic acid metabolites of 2,2,4-trimethylpentane in rat renal cortical slices.

    PubMed

    Lock, E A; Strasser, J; Bus, J S; Charbonneau, M

    1993-01-01

    2,2,4-Trimethylpentane (TMP), a nephrotoxic component of unleaded gasoline in male but not female rats, undergoes oxidative metabolism to yield 2,2,4- and 2,4,4-trimethylpentanol, pentanoic acid and 5-hydroxypentanoic acid. We have examined the effect of three of these pentanoic acid metabolites on the renal transport of the organic anion p-aminohippurate (PAH) and the organic cation tetraethylammonium (TEA) in renal cortical slices from male Fischer 344 rats. 2,4,4-Trimethylpentanoic acid, the major urinary metabolite in rats, produced a selective decrease in the accumulation of PAH without affecting TEA accumulation. Kinetic analysis showed that 2,4,4-trimethylpentanoic acid was a competitive inhibitor of the organic anion transport system, with a Ki of 4 mM. 2,4,4-Trimethyl-5-hydroxypentanoic acid also showed selective inhibition of PAH transport, while 2,2,4-trimethylpentanoic acid was less selective and reduced both PAH and TEA transport. Additional studies with radiolabeled 2,4,4-trimethylpentanoic acid showed that there was a time- and concentration-dependent accumulation of radioactivity into slices of renal cortex. However, experiments conducted at 4 degrees C and studies with metabolic inhibitors, or with an inhibitor of organic anion transport, indicated that little of the accumulated material was entering the cell. We conclude from these studies that the pentanoic acid metabolites formed from 2,2,4-trimethylpentane are not actively transported by the renal organic anion transport system. In summary, in vitro the pentanoic acid metabolites appear to bind to renal cortical tissue and thereby reduce the transport of PAH.

  19. Effect of the defoliant thidiazuron on ethylene evolution from mung bean hypocotyl segments.

    PubMed

    Suttle, J C

    1984-08-01

    The effect of the defoliant thidiazuron (N-phenyl-N'1,2,3-thiadiazol-5-ylurea) on ethylene evolution from etiolated mung bean hypocotyl segments was examined. Treatment of hypocotyl segments with concentrations of thidiazuron equal to or greater than 30 nanomolar stimulated ethylene evolution. Increased rates of ethylene evolution from thidiazuron-treated tissues could be detected within 90 minutes of treatment and persisted up to 30 hours after treatment. Radioactive methionine was readily taken up by thidiazuron-treated tissues and was converted to ethylene, 1-aminocyclopropane-1-carboxylic acid (ACC) and an acidic conjugate of ACC. Aminoethoxyvinylglycine, aminooxyacetic acid, cobalt chloride, and alpha-aminoisobutyric acid reduced ethylene evolution from treated tissues. An increase in the endogenous content of free ACC coincided with the increase in ethylene evolution following thidiazuron treatment. Uptake and conversion of exogenous ACC to ethylene were not affected by thidiazuron treatment. No increases in the extractable activities of ACC synthase were detected following thidiazuron treatment.

  20. cAMP increases mitochondrial cholesterol transport through the induction of arachidonic acid release inside this organelle in Leydig cells.

    PubMed

    Castillo, Ana Fernanda; Cornejo Maciel, Fabiana; Castilla, Rocío; Duarte, Alejandra; Maloberti, Paula; Paz, Cristina; Podestá, Ernesto J

    2006-11-01

    We have investigated the direct effect of arachidonic acid on cholesterol transport in intact cells or isolated mitochondria from steroidogenic cells and the effect of cyclic-AMP on the specific release of this fatty acid inside the mitochondria. We show for the first time that cyclic-AMP can regulate the release of arachidonic acid in a specialized compartment of MA-10 Leydig cells, e.g. the mitochondria, and that the fatty acid induces cholesterol transport through a mechanism different from the classical pathway. Arachidonic acid and arachidonoyl-CoA can stimulate cholesterol transport in isolated mitochondria from nonstimulated cells. The effect of arachidonoyl-CoA is inhibited by the reduction in the expression or in the activity of a mitochondrial thioesterase that uses arachidonoyl-CoA as a substrate to release arachidonic acid. cAMP-induced arachidonic acid accumulation into the mitochondria is also reduced when the mitochondrial thioesterase activity or expression is blocked. This new feature in the regulation of cholesterol transport by arachidonic acid and the release of arachidonic acid in specialized compartment of the cells could offer novel means for understanding the regulation of steroid synthesis but also would be important in other situations such as neuropathological disorders or oncology disorders, where cholesterol transport plays an important role.

  1. Effects of ethanol and acetic acid on the transport of malic acid and glucose in the yeast Schizosaccharomyces pombe: implications in wine deacidification.

    PubMed

    Sousa, M J; Mota, M; Leão, C

    1995-02-15

    Ethanol and acetic acid, at concentrations which may occur during wine-making, inhibited the transport of L-malic acid in Schizosaccharomyces pombe. The inhibition was non-competitive, the decrease of the maximum initial velocity following exponential kinetics. Glucose transport was not significantly affected either by ethanol (up to 13%, w/v) or by acetic acid (up to 1.5%, w/v). The uptake of labelled acetic acid followed simple diffusion kinetics, indicating that a carrier was not involved in its transport. Therefore, the undissociated acid appears to be the only form that enters the cells and is probably responsible for the toxic effects. Accordingly, deacidification by Ss. pombe during wine fermentation should take place before, rather than after, the main alcoholic fermentation by Saccharomyces cerevisiae.

  2. Size does matter: 18 amino acids at the N-terminal tip of an amino acid transporter in Leishmania determine substrate specificity

    PubMed Central

    Schlisselberg, Doreen; Mazarib, Eldar; Inbar, Ehud; Rentsch, Doris; Myler, Peter J.; Zilberstein, Dan

    2015-01-01

    Long N-terminal tails of amino acid transporters are known to act as sensors of the internal pool of amino acids and as positive regulators of substrate flux rate. In this study we establish that N-termini of amino acid transporters can also determine substrate specificity. We show that due to alternative trans splicing, the human pathogen Leishmania naturally expresses two variants of the proline/alanine transporter, one 18 amino acid shorter than the other. We demonstrate that the longer variant (LdAAP24) translocates both proline and alanine, whereas the shorter variant (∆18LdAAP24) translocates just proline. Remarkably, co-expressing the hydrophilic N-terminal peptide of the long variant with ∆18LdAAP24 was found to recover alanine transport. This restoration of alanine transport could be mediated by a truncated N-terminal tail, though truncations exceeding half of the tail length were no longer functional. Taken together, the data indicate that the first 18 amino acids of the negatively charged N-terminal LdAAP24 tail are required for alanine transport and may facilitate the electrostatic interactions of the entire negatively charged N-terminal tail with the positively charged internal loops in the transmembrane domain, as this mechanism has been shown to underlie regulation of substrate flux rate for other transporters. PMID:26549185

  3. Peptide modules for overcoming barriers of nucleic acids transport to cells.

    PubMed

    Egorova, Anna A; Kiselev, Anton V

    2016-01-01

    Absence of safe and efficient methods of nucleic acids delivery is one of the major issues which limits the development of human gene therapy. Highly efficient viral vectors raise questions due to safety reasons. Among non-viral vectors peptide-based carriers can be considered as good candidates for the development of "artificial viruses"--multifunctional polyplexes that mimic viruses. Suggested strategy to obtain multifunctionality is to combine several peptide modules into one modular carrier. Different kinds of peptide modules are needed for successful overcoming barriers of nucleic acids transport into the cells. Design of such modules and establishment of structure-function relationships are issues of importance to researchers working in the field of nucleic acids delivery.

  4. The evolution of Jen3 proteins and their role in dicarboxylic acid transport in Yarrowia

    PubMed Central

    Dulermo, Rémi; Gamboa-Meléndez, Heber; Michely, Stéphanie; Thevenieau, France; Neuvéglise, Cécile; Nicaud, Jean-Marc

    2015-01-01

    Jen proteins in yeast are involved in the uptake of mono/dicarboxylic acids. The Jen1 subfamily transports lactate and pyruvate, while the Jen2 subfamily transports fumarate, malate, and succinate. Yarrowia lipolytica has six JEN genes: YALI0B19470g, YALI0C15488g, YALI0C21406g, YALI0D20108g, YALI0D24607g, and YALI0E32901g. Through phylogenetic analyses, we found that these genes represent a new subfamily, Jen3 and that these three Jen subfamilies derivate from three putative ancestral genes. Reverse transcription-PCR. revealed that only four YLJEN genes are expressed and they are upregulated in the presence of lactate, pyruvate, fumarate, malate, and/or succinate, suggesting that they are able to transport these substrates. Analysis of deletion mutant strains revealed that Jen3 subfamily proteins transport fumarate, malate, and succinate. We found evidence that YALI0C15488 encodes the main transporter because its deletion was sufficient to strongly reduce or suppress growth in media containing fumarate, malate, or succinate. It appears that the other YLJEN genes play a minor role, with the exception of YALI0E32901g, which is important for malate uptake. However, the overexpression of each YLJEN gene in the sextuple-deletion mutant strain ΔYLjen1-6 revealed that all six genes are functional and have evolved to transport different substrates with varying degrees of efficacy. In addition, we found that YALI0E32901p transported succinate more efficiently in the presence of lactate or fumarate. PMID:25515252

  5. Substrate Selectivity of YgfU, a Uric Acid Transporter from Escherichia coli*

    PubMed Central

    Papakostas, Konstantinos; Frillingos, Stathis

    2012-01-01

    The ubiquitous nucleobase-ascorbate transporter (NAT/NCS2) family includes more than 2,000 members, but only 15 have been characterized experimentally. Escherichia coli has 10 members, of which the uracil permease UraA and the xanthine permeases XanQ and XanP are functionally known. Of the remaining members, YgfU is closely related in sequence and genomic locus with XanQ. We analyzed YgfU and showed that it is a proton-gradient dependent, low-affinity (Km 0.5 mm), and high-capacity transporter for uric acid. It also shows a low capacity for transport of xanthine at 37 °C but not at 25 °C. Based on the set of positions delineated as important from our previous Cys-scanning analysis of permease XanQ, we subjected YgfU to rationally designed site-directed mutagenesis. The results show that the conserved His-37 (TM1), Glu-270 (TM8), Asp-298 (TM9), and Gln-318 and Asn-319 (TM10) are functionally irreplaceable, and Thr-100 (TM3) is essential for the uric acid selectivity because its replacement with Ala allows efficient uptake of xanthine. The key role of these residues is corroborated by the conservation pattern and homology modeling on the recently described x-ray structure of permease UraA. In addition, site-specific replacements at TM8 (S271A, M274D, V282S) impair expression in the membrane, and V320N (TM10) inactivates the permease, whereas R327G (TM10) or S426N (TM14) reduces the affinity for uric acid (4-fold increased Km). Our study shows that comprehensive analysis of structure-function relationships in a newly characterized transporter can be accomplished with relatively few site-directed replacements, based on the knowledge available from Cys-scanning mutagenesis of a prototypic homolog. PMID:22437829

  6. SNAT2 amino acid transporter is regulated by amino acids of the SLC6 gamma-aminobutyric acid transporter subfamily in neocortical neurons and may play no role in delivering glutamine for glutamatergic transmission.

    PubMed

    Grewal, Sukhjeevan; Defamie, Norah; Zhang, Xiong; De Gois, Stéphanie; Shawki, Ali; Mackenzie, Bryan; Chen, Chu; Varoqui, Hélène; Erickson, Jeffrey D

    2009-04-24

    System A transporters SNAT1 and SNAT2 mediate uptake of neutral alpha-amino acids (e.g. glutamine, alanine, and proline) and are expressed in central neurons. We tested the hypothesis that SNAT2 is required to support neurotransmitter glutamate synthesis by examining spontaneous excitatory activity after inducing or repressing SNAT2 expression for prolonged periods. We stimulated de novo synthesis of SNAT2 mRNA and increased SNAT2 mRNA stability and total SNAT2 protein and functional activity, whereas SNAT1 expression was unaffected. Increased endogenous SNAT2 expression did not affect spontaneous excitatory action-potential frequency over control. Long term glutamine exposure strongly repressed SNAT2 expression but increased excitatory action-potential frequency. Quantal size was not altered following SNAT2 induction or repression. These results suggest that spontaneous glutamatergic transmission in pyramidal neurons does not rely on SNAT2. To our surprise, repression of SNAT2 activity was not limited to System A substrates. Taurine, gamma-aminobutyric acid, and beta-alanine (substrates of the SLC6 gamma-aminobutyric acid transporter family) repressed SNAT2 expression more potently (10x) than did System A substrates; however, the responses to System A substrates were more rapid. Since ATF4 (activating transcription factor 4) and CCAAT/enhancer-binding protein are known to bind to an amino acid response element within the SNAT2 promoter and mediate induction of SNAT2 in peripheral cell lines, we tested whether either factor was similarly induced by amino acid deprivation in neurons. We found that glutamine and taurine repressed the induction of both transcription factors. Our data revealed that SNAT2 expression is constitutively low in neurons under physiological conditions but potently induced, together with the taurine transporter TauT, in response to depletion of neutral amino acids.

  7. Stable isotope tracer reveals that viviparous snakes transport amino acids to offspring during gestation.

    PubMed

    Van Dyke, James U; Beaupre, Steven J

    2012-03-01

    Viviparity and placentation have evolved from oviparity over 100 times in squamate reptiles (lizards and snakes). The independent origins of placentation have resulted in a variety of placental morphologies in different taxa, ranging from simple apposition of fetal and maternal tissues to endotheliochorial implantation that is homoplasious with mammalian placentation. Because the eggs of oviparous squamates transport gases and water from the environment and calcium from the eggshell, the placentae of viviparous squamates are thought to have initially evolved to accomplish these functions from within the maternal oviduct. Species with complex placentae have also been shown to rely substantially, or even primarily, on placental transport of organic nutrients for embryonic nutrition. However, it is unclear whether species with only simple placentae are also capable of transporting organic nutrients to offspring. Among viviparous squamates, all of the snakes that have been studied thus far have been shown to have simple placentae. However, most studies of snake placentation are limited to a single lineage, the North American Natricinae. We tested the abilities of four species of viviparous snakes - Agkistrodon contortrix (Viperidae), Boa constrictor (Boidae), Nerodia sipedon (Colubridae: Natricinae) and Thamnophis sirtalis (Colubridae: Natricinae) - to transport diet-derived amino acids to offspring during gestation. We fed [(15)N]leucine to pregnant snakes, and compared offspring (15)N content with that of unlabeled controls. Labeled females allocated significantly more (15)N to offspring than did controls, but (15)N allocation did not differ among species. Our results indicate that viviparous snakes are capable of transporting diet-derived amino acids to their offspring during gestation, possibly via placentation.

  8. Assessment of Amino Acid/Drug Transporters for Renal Transport of [18F]Fluciclovine (anti-[18F]FACBC) in Vitro

    PubMed Central

    Ono, Masahiro; Baden, Atsumi; Okudaira, Hiroyuki; Kobayashi, Masato; Kawai, Keiichi; Oka, Shuntaro; Yoshimura, Hirokatsu

    2016-01-01

    [18F]Fluciclovine (trans-1-amino-3-[18F]fluorocyclobutanecarboxylic acid; anti-[18F]FACBC), a positron emission tomography tracer used for the diagnosis of recurrent prostate cancer, is transported via amino acid transporters (AATs) with high affinity (Km: 97–230 μM). However, the mechanism underlying urinary excretion is unknown. In this study, we investigated the involvement of AATs and drug transporters in renal [18F]fluciclovine reuptake. [14C]Fluciclovine (trans-1-amino-3-fluoro[1-14C]cyclobutanecarboxylic acid) was used because of its long half-life. The involvement of AATs in [14C]fluciclovine transport was measured by apical-to-basal transport using an LLC-PK1 monolayer as model for renal proximal tubules. The contribution of drug transporters herein was assessed using vesicles/cells expressing the drug transporters P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), multidrug resistance-associated protein 4 (MRP4), organic anion transporter 1 (OAT1), organic anion transporter 3 (OAT3) , organic cation transporter 2 (OCT2), organic anion transporting polypeptide 1B1 (OATP1B1), and organic anion transporting polypeptide 1B3 (OATP1B3). The apical-to-basal transport of [14C]fluciclovine was attenuated by l-threonine, the substrate for system alanine-serine-cysteine (ASC) AATs. [14C]Fluciclovine uptake by drug transporter-expressing vesicles/cells was not significantly different from that of control vesicles/cells. Fluciclovine inhibited P-gp, MRP4, OAT1, OCT2, and OATP1B1 (IC50 > 2.95 mM). Therefore, system ASC AATs may be partly involved in the renal reuptake of [18F]fluciclovine. Further, given that [18F]fluciclovine is recognized as an inhibitor with millimolar affinity for the tested drug transporters, slow urinary excretion of [18F]fluciclovine may be mediated by system ASC AATs, but not by drug transporters. PMID:27754421

  9. Identification of transport pathways for citric acid cycle intermediates in the human colon carcinoma cell line, Caco-2.

    PubMed

    Weerachayaphorn, Jittima; Pajor, Ana M

    2008-04-01

    Citric acid cycle intermediates are absorbed from the gastrointestinal tract through carrier-mediated mechanisms, although the transport pathways have not been clearly identified. This study examines the transport of citric acid cycle intermediates in the Caco-2 human colon carcinoma cell line, often used as a model of small intestine. Inulin was used as an extracellular volume marker instead of mannitol since the apparent volume measured with mannitol changed with time. The results show that Caco-2 cells contain at least three distinct transporters, including the Na+-dependent di- and tricarboxylate transporters, NaDC1 and NaCT, and one or more sodium-independent pathways, possibly involving organic anion transporters. Succinate transport is mediated mostly by Na+-dependent pathways, predominantly by NaDC1, but with some contribution by NaCT. RT-PCR and functional characteristics verified the expression of these transporters in Caco-2 cells. In contrast, citrate transport in Caco-2 cells occurs by a combination of Na+-independent pathways, possibly mediated by an organic anion transporter, and Na+-dependent mechanisms. The non-metabolizable dicarboxylate, methylsuccinate, is also transported by a combination of Na+-dependent and -independent pathways. In conclusion, we find that multiple pathways are involved in the transport of di- and tricarboxylates by Caco-2 cells. Since many of these pathways are not found in human intestine, this model may be best suited for studying Na+-dependent transport of succinate by NaDC1.

  10. The contribution of SNAT1 to system A amino acid transporter activity in human placental trophoblast

    SciTech Connect

    Desforges, M.; Greenwood, S.L.; Glazier, J.D.; Westwood, M.; Sibley, C.P.

    2010-07-16

    Research highlights: {yields} mRNA levels for SNAT1 are higher than other system A subtype mRNAs in primary human cytotrophoblast. {yields} SNAT1 knockdown in cytotrophoblast cells significantly reduces system A activity. {yields} SNAT1 is a key contributor to system A-mediated amino acid transport in human placenta. -- Abstract: System A-mediated amino acid transport across the placenta is important for the supply of neutral amino acids needed for fetal growth. All three system A subtypes (SNAT1, 2, and 4) are expressed in human placental trophoblast suggesting there is an important biological role for each. Placental system A activity increases as pregnancy progresses, coinciding with increased fetal nutrient demands. We have previously shown SNAT4-mediated system A activity is higher in first trimester than at term, suggesting that SNAT1 and/or SNAT2 are responsible for the increased system A activity later in gestation. However, the relative contribution of each subtype to transporter activity in trophoblast at term has yet to be evaluated. The purpose of this study was to identify the predominant subtype of system A in cytotrophoblast cells isolated from term placenta, maintained in culture for 66 h, by: (1) measuring mRNA expression of the three subtypes and determining the Michaelis-Menten constants for uptake of the system A-specific substrate, {sup 14}C-MeAIB, (2) investigating the contribution of SNAT1 to total system A activity using siRNA. Results: mRNA expression was highest for the SNAT1 subtype of system A. Kinetic analysis of {sup 14}C-MeAIB uptake revealed two distinct transport systems; system 1: K{sub m} = 0.38 {+-} 0.12 mM, V{sub max} = 27.8 {+-} 9.0 pmol/mg protein/20 min, which resembles that reported for SNAT1 and SNAT2 in other cell types, and system 2: K{sub m} = 45.4 {+-} 25.0 mM, V{sub max} = 1190 {+-} 291 pmol/mg protein/20 min, which potentially represents SNAT4. Successful knockdown of SNAT1 mRNA using target-specific si

  11. Interactions Between Fatty Acid Transport Proteins, Genes That Encode for Them, and Exercise: A Systematic Review.

    PubMed

    Jayewardene, Avindra F; Mavros, Yorgi; Reeves, Anneliese; Hancock, Dale P; Gwinn, Tom; Rooney, Kieron B

    2016-08-01

    Long-chain fatty acid (LCFA) movement into skeletal muscle involves a highly mediated process in which lipid rafts are utilized in the cellular membrane, involving numerous putative plasma membrane-associated LCFA transport proteins. The process of LCFA uptake and oxidation is of particular metabolic significance both at rest and during light to moderate exercise. A comprehensive systematic search of electronic databases was conducted to investigate whether exercise alters protein and/or gene expression of putative LCFA transport proteins. There were 31 studies meeting all eligibility criteria, of these 13 utilized an acute exercise protocol and 18 examined chronic exercise adaptations. Seventeen involved a study design incorporating an exercise stimulus, while the remaining 14 incorporated a combined exercise and diet stimulus. Divergent data relating to acute exercise, as well as prolonged exercise training (≥3 weeks), on protein content (PC) response was identified for proteins CD36, FABPpm and CAV1. Messenger ribonucleic acid (mRNA) data did not always correspond to functional PC, supporting previous suggestions of a disconnect due to potentially limiting factors post gene expression. The large array of study designs, cohorts, and primary dependent variables within the studies included in the present review elucidate the complexity of the interaction between exercise and LCFA transport proteins. Summary of the results in the present review validate the need for further targeted investigation within this topic, and provide an important information base for such research. J. Cell. Physiol. 231: 1671-1687, 2016. © 2015 Wiley Periodicals, Inc.

  12. Influence of Perfluorooctanoic Acid on the Transport and Deposition Behaviors of Bacteria in Quartz Sand.

    PubMed

    Wu, Dan; Tong, Meiping; Kim, Hyunjung

    2016-03-01

    The significance of perfluorooctanoic acid (PFOA) on the transport and deposition behaviors of bacteria (Gram-negative Escherichia coli and Gram-positive Bacillus subtilis) in quartz sand is examined in both NaCl and CaCl2 solutions at pH 5.6 by comparing both breakthrough curves and retained profiles with PFOA in solutions versus those without PFOA. All test conditions are found to be highly unfavorable for cell deposition regardless of the presence of PFOA; however, 7%-46% cell deposition is observed depending on the conditions. The cell deposition may be attributed to micro- or nanoscale roughness and/or to chemical heterogeneity of the sand surface. The results show that, under all examined conditions, PFOA in suspensions increases cell transport and decreases cell deposition in porous media regardless of cell type, presence or absence of extracellular polymeric substances, ionic strength, and ion valence. We find that the additional repulsion between bacteria and quartz sand caused by both acid-base interaction and steric repulsion as well as the competition for deposition sites on quartz sand surfaces by PFOA are responsible for the enhanced transport and decreased deposition of bacteria with PFOA in solutions.

  13. Structure of a Bacterial ABC Transporter Involved in the Import of an Acidic Polysaccharide Alginate.

    PubMed

    Maruyama, Yukie; Itoh, Takafumi; Kaneko, Ai; Nishitani, Yu; Mikami, Bunzo; Hashimoto, Wataru; Murata, Kousaku

    2015-09-01

    The acidic polysaccharide alginate represents a promising marine biomass for the microbial production of biofuels, although the molecular and structural characteristics of alginate transporters remain to be clarified. In Sphingomonas sp. A1, the ATP-binding cassette transporter AlgM1M2SS is responsible for the import of alginate across the cytoplasmic membrane. Here, we present the substrate-transport characteristics and quaternary structure of AlgM1M2SS. The addition of poly- or oligoalginate enhanced the ATPase activity of reconstituted AlgM1M2SS coupled with one of the periplasmic solute-binding proteins, AlgQ1 or AlgQ2. External fluorescence-labeled oligoalginates were specifically imported into AlgM1M2SS-containing proteoliposomes in the presence of AlgQ2, ATP, and Mg(2+). The crystal structure of AlgQ2-bound AlgM1M2SS adopts an inward-facing conformation. The interaction between AlgQ2 and AlgM1M2SS induces the formation of an alginate-binding tunnel-like structure accessible to the solvent. The translocation route inside the transmembrane domains contains charged residues suitable for the import of acidic saccharides.

  14. A branched chain amino acid metabolite drives vascular transport of fat and causes insulin resistance

    PubMed Central

    Jang, Cholsoon; Oh, Sungwhan F; Wada, Shogo; Rowe, Glenn C; Liu, Laura; Chan, Mun Chun; Rhee, James; Hoshino, Atsushi; Kim, Boa; Ibrahim, Ayon; Baca, Luisa G; Kim, Esl; Ghosh, Chandra C; Parikh, Samir M; Jiang, Aihua; Chu, Qingwei; Forman, Daniel E.; Lecker, Stewart H.; Krishnaiah, Saikumari; Rabinowitz, Joshua D; Weljie, Aalim M; Baur, Joseph A; Kasper, Dennis L; Arany, Zoltan

    2016-01-01

    Epidemiological and experimental data implicate branched chain amino acids (BCAAs) in the development of insulin resistance, but the mechanisms underlying this link remain unclear.1–3 Insulin resistance in skeletal muscle stems from excess accumulation of lipid species4, a process that requires blood-borne lipids to first traverse the blood vessel wall. Little is known, however, of how this trans-endothelial transport occurs or is regulated. Here, we leverage PGC-1α, a transcriptional coactivator that regulates broad programs of FA consumption, to identify 3-hydroxy-isobutyrate (3-HIB), a catabolic intermediate of the BCAA valine, as a novel paracrine regulator of trans-endothelial fatty acids (FA) transport. 3-HIB is secreted from muscle cells, activates endothelial FA transport, stimulates muscle FA uptake in vivo, and promotes muscle lipid accumulation and insulin resistance in animals. Conversely, inhibiting the synthesis of 3-HIB in muscle cells blocks the promotion of endothelial FA uptake. 3-HIB levels are elevated in muscle from db/db mice and from subjects with diabetes. These data thus unveil a novel mechanism that regulates trans-endothelial flux of FAs, revealing 3-HIB as a new bioactive signaling metabolite that links the regulation of FA flux to BCAA catabolism and provides a mechanistic explanation for how increased BCAA catabolic flux can cause diabetes. PMID:26950361

  15. Fatty Acid Transporter CD36 Mediates Hypothalamic Effect of Fatty Acids on Food Intake in Rats

    PubMed Central

    Moullé, Valentine S.; Le Foll, Christelle; Philippe, Erwann; Kassis, Nadim; Rouch, Claude; Marsollier, Nicolas; Bui, Linh-Chi; Guissard, Christophe; Dairou, Julien; Lorsignol, Anne; Pénicaud, Luc; Levin, Barry E.; Cruciani-Guglielmacci, Céline; Magnan, Christophe

    2013-01-01

    Variations in plasma fatty acid (FA) concentrations are detected by FA sensing neurons in specific brain areas such as the hypothalamus. These neurons play a physiological role in the control of food intake and the regulation of hepatic glucose production. Le Foll et al. previously showed in vitro that at least 50% of the FA sensing in ventromedial hypothalamic (VMH) neurons is attributable to the interaction of long chain FA with FA translocase/CD36 (CD36). The present work assessed whether in vivo effects of hypothalamic FA sensing might be partly mediated by CD36 or intracellular events such as acylCoA synthesis or β-oxidation. To that end, a catheter was implanted in the carotid artery toward the brain in male Wistar rats. After 1 wk recovery, animals were food-deprived for 5 h, then 10 min infusions of triglyceride emulsion, Intralipid +/− heparin (IL, ILH, respectively) or saline/heparin (SH) were carried out and food intake was assessed over the next 5 h. Experimental groups included: 1) Rats previously injected in ventromedian nucleus (VMN) with shRNA against CD36 or scrambled RNA; 2) Etomoxir (CPT1 inhibitor) or saline co-infused with ILH/SH; and 3) Triacsin C (acylCoA synthase inhibitor) or saline co-infused with ILH/SH. ILH significantly lowered food intake during refeeding compared to SH (p<0.001). Five hours after refeeding, etomoxir did not affect this inhibitory effect of ILH on food intake while VMN CD36 depletion totally prevented it. Triacsin C also prevented ILH effects on food intake. In conclusion, the effect of FA to inhibit food intake is dependent on VMN CD36 and acylCoA synthesis but does not required FA oxidation. PMID:24040150

  16. Carrier-mediated γ-aminobutyric acid transport across the basolateral membrane of human intestinal Caco-2 cell monolayers.

    PubMed

    Nielsen, Carsten Uhd; Carstensen, Mette; Brodin, Birger

    2012-06-01

    The aim of the present study was to investigate the transport of γ-aminobutyric acid (GABA) across the basolateral membrane of intestinal cells. The proton-coupled amino acid transporter, hPAT1, mediates the influx of GABA and GABA mimetic drug substances such as vigabatrin and gaboxadol and the anticancer prodrug δ-aminolevulinic acid across the apical membrane of small intestinal enterocytes. Little is however known about the basolateral transport of these substances. We investigated basolateral transport of GABA in mature Caco-2 cell monolayers using isotope studies. Here we report that, at least two transporters seem to be involved in the basolateral transport of GABA. The basolateral uptake consisted of a high-affinity system with a K(m) of 290 μM and V(max) of 75 pmol cm(-2) min(-1) and a low affinity system with a K(m) of approximately 64 mM and V(max) of 1.6 nmol cm(-2) min(-1). The high-affinity transporter is Na(+) and Cl(-) dependent. The substrate specificity of the high-affinity transporter was further studied and Gly-Sar, Leucine, gaboxadol, sarcosine, lysine, betaine, 5-hydroxythryptophan, proline and glycine reduced the GABA uptake to approximately 44-70% of the GABA uptake in the absence of inhibitor. Other substances such as β-alanine, GABA, 5-aminovaleric acid, taurine and δ-aminolevulinic acid reduced the basolateral GABA uptake to 6-25% of the uptake in the absence of inhibitor. Our results indicate that the distance between the charged amino- and acid-groups is particular important for inhibition of basolateral GABA uptake. Thus, there seems to be a partial substrate overlap between the basolateral GABA transporter and hPAT1, which may prove important for understanding drug interactions at the level of intestinal transport.

  17. Amino acid contents and transport of fixed N in nodules of Leucaena leucocephala variety K-8

    SciTech Connect

    DuBois, J.D.

    1987-04-01

    Seedlings of Leucaena leucocephala var. K-8 were grown with a N-free fertilizer or fertilizer containing /sup 15/N-depleted (NH/sub 4/)/sub 2/SO/sub 4/ (0.01 atom /sup 15/N; 10 ppm). The nodules of 5 month old trees grown on N-free media were used for /sup 15/N-enriched treatment and as controls. Nodules from plants grown on /sup 15/N-depleted media were also used. Nodules were extracted with 0.5% aqueous toluene and aliquots were analyzed with a Beckman 120B Amino Acid Analyzer. Samples were separated into free ammonium, Asp-N, Glu-N, Asn and Gln amide- and amino-N, and remaining amino acids. Fractions were then analyzed for /sup 15/N content. Asn (27.3 umol/gfw) represented 56% of the total free amino acid pool in the nodules. Asn (amide-N and amino-N) also represented approximately 77% of the total N fixed during the one hour /sup 15/N-enriched N/sub 2/ and the /sup 15/N-depleted treatments. Based on these findings and the fact that the ureide fraction is barely detectable in the nodules (0.25 ..mu..mol/gfw), the authors considers L. leucocephala an amide transporter of fixed N. Additional information will be presented on the amino acid contents of tissues, as well as a time course of amino acid content from seed through nodulation.

  18. Transport of citrate across renal brush border membrane: effects of dietary acid and alkali loading

    SciTech Connect

    Jenkins, A.D.; Dousa, T.P.; Smith, L.H.

    1985-10-01

    Dietary acid or alkali loading was given to rats by providing 150 mM NH4Cl or 150 mM NaHCO3 in place of drinking water for 6 days; control animals received 150 mM NaCl. After 6 days, the citrate clearance was 0.04 +/- 0.01 ml/min (mean +/- SE) in the acid-loaded group, 0.9 +/- 0.1 ml/min in the control group, and 2.5 +/- 0.2 ml/min in the alkali-loaded group. At the end of the experiment, the rats were killed, and the Na gradient-dependent citrate uptake was measured in brush border membrane (BBM) vesicles prepared from each group. At 0.3 min, the ( UC)citrate uptake was 198 +/- 8 pmol/mg protein (mean +/- SE) in the acid-loaded group, 94 +/- 16 pmol/mg protein in the control group, and 94 +/- 13 pmol/mg protein in the alkali-loaded group. The rate of Na -independent (NaCl in medium replaced by KCl) ( UC)-citrate uptake by BBM vesicles was the same for acid-loaded, control, and alkali-loaded animals. Thus, the increased capacity of the proximal tubular BBM to transport citrate from the tubular lumen into the cell interior may be an important factor that contributes to decreased urinary citrate in the presence of metabolic acidosis induced by chronic dietary acid loading.

  19. Circumvention of defective neutral amino acid transport in Hartnup disease using tryptophan ethyl ester.

    PubMed Central

    Jonas, A J; Butler, I J

    1989-01-01

    Tryptophan ethyl ester, a lipid-soluble tryptophan derivative, was used to bypass defective gastrointestinal neutral amino acid transport in a child with Hartnup disease. The child's baseline tryptophan concentrations in serum (20 +/- 6 microM) and cerebrospinal fluid (1.0 +/- 0.2 microM) were persistently less than 50% of normal values. Cerebrospinal fluid 5-hydroxyindoleacetic acid (5-HIAA), a serotonin metabolite, was also less than 50% of normal (21 +/- 2 ng/ml). Serum tryptophan concentrations increased only modestly and briefly after an oral challenge with 200 mg/kg of oral L-tryptophan, reflecting the absorptive defect. An oral challenge with 200 mg/kg of tryptophan ethyl ester resulted in a prompt increase in serum tryptophan to a peak of 555 microM. Sustained treatment with 20 mg/kg q6h resulted in normalization of serum (66 +/- 15 microM) and cerebrospinal fluid tryptophan concentrations (mean = 2.3 microM). Cerebrospinal fluid 5-HIAA increased to more normal concentrations (mean = 33 ng/ml). No toxicity was observed over an 8-mo period of treatment, chronic diarrhea resolved, and body weight, which had remained unchanged for 7 mo before ester therapy, increased by approximately 26%. We concluded that tryptophan ethyl ester is effective at circumventing defective gastrointestinal neutral amino acid transport and may be useful in the treatment of Hartnup disease. PMID:2472426

  20. Enhanced charge transport in highly conducting PEDOT-PSS films after acid treatment

    NASA Astrophysics Data System (ADS)

    Shiva, V. Akshaya; Bhatia, Ravi; Menon, Reghu

    The high electrical conductivity, good stability, high strength, flexibility and good transparency of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS), make it useful for many applications including polymeric anodes for organic photovoltaics, light-emitting diodes, flexible electrodes, supercapacitors, electrochromic devices, field-effect transistors and antistatic-coatings. However, the electrical conductivity of PEDOT-PSS has to be increased significantly for replacement of indium tin oxide (ITO) as the transparent electrode in optoelectronic devices. The as prepared (pristine) PEDOT-PSS film prepared from the PEDOT-PSS aqueous solution usually has conductivity below 1Scm-1, remarkably lower than ITO. Significant conductivity enhancement has been observed on transparent and conductive PEDOT-PSS films after a treatment with inorganic acids. Our study investigates the charge transport in pristine and H2SO4, HNO3, HCl treated PEDOT-PSS films. We have treated the films with various concentrations of acids to probe the effect of the acid treatment on the conduction mechanism. The study includes the measurement of dc and electric field dependent conductivity of films in the temperature range of 4.2K-300K. We have also performed magneto-resistance measurements in the range of 0-5T. An enhancement by a factor of~103 has been observed in the room temperature conductivity. The detailed magneto-transport studies explain the various mechanisms for the conductivity enhancement observed.

  1. Trypanocidal Effect of Isotretinoin through the Inhibition of Polyamine and Amino Acid Transporters in Trypanosoma cruzi.

    PubMed

    Reigada, Chantal; Valera-Vera, Edward A; Sayé, Melisa; Errasti, Andrea E; Avila, Carla C; Miranda, Mariana R; Pereira, Claudio A

    2017-03-01

    Polyamines are essential compounds to all living organisms and in the specific case of Trypanosoma cruzi, the causative agent of Chagas disease, they are exclusively obtained through transport processes since this parasite is auxotrophic for polyamines. Previous works reported that retinol acetate inhibits Leishmania growth and decreases its intracellular polyamine concentration. The present work describes a combined strategy of drug repositioning by virtual screening followed by in vitro assays to find drugs able to inhibit TcPAT12, the only polyamine transporter described in T. cruzi. After a screening of 3000 FDA-approved drugs, 7 retinoids with medical use were retrieved and used for molecular docking assays with TcPAT12. From the docked molecules, isotretinoin, a well-known drug used for acne treatment, showed the best interaction score with TcPAT12 and was selected for further in vitro studies. Isotretinoin inhibited the polyamine transport, as well as other amino acid transporters from the same protein family (TcAAAP), with calculated IC50 values in the range of 4.6-10.3 μM. It also showed a strong inhibition of trypomastigote burst from infected cells, with calculated IC50 of 130 nM (SI = 920) being significantly less effective on the epimastigote stage (IC50 = 30.6 μM). The effect of isotretinoin on the parasites plasma membrane permeability and on mammalian cell viability was tested, and no change was observed. Autophagosomes and apoptotic bodies were detected as part of the mechanisms of isotretinoin-induced death indicating that the inhibition of transporters by isotretinoin causes nutrient starvation that triggers autophagic and apoptotic processes. In conclusion, isotretinoin is a promising trypanocidal drug since it is a multi-target inhibitor of essential metabolites transporters, in addition to being an FDA-approved drug largely used in humans, which could reduce significantly the requirements for its possible application in the treatment of

  2. Trypanocidal Effect of Isotretinoin through the Inhibition of Polyamine and Amino Acid Transporters in Trypanosoma cruzi

    PubMed Central

    Reigada, Chantal; Valera-Vera, Edward A.; Sayé, Melisa; Errasti, Andrea E.; Avila, Carla C.; Miranda, Mariana R.; Pereira, Claudio A.

    2017-01-01

    Polyamines are essential compounds to all living organisms and in the specific case of Trypanosoma cruzi, the causative agent of Chagas disease, they are exclusively obtained through transport processes since this parasite is auxotrophic for polyamines. Previous works reported that retinol acetate inhibits Leishmania growth and decreases its intracellular polyamine concentration. The present work describes a combined strategy of drug repositioning by virtual screening followed by in vitro assays to find drugs able to inhibit TcPAT12, the only polyamine transporter described in T. cruzi. After a screening of 3000 FDA-approved drugs, 7 retinoids with medical use were retrieved and used for molecular docking assays with TcPAT12. From the docked molecules, isotretinoin, a well-known drug used for acne treatment, showed the best interaction score with TcPAT12 and was selected for further in vitro studies. Isotretinoin inhibited the polyamine transport, as well as other amino acid transporters from the same protein family (TcAAAP), with calculated IC50 values in the range of 4.6–10.3 μM. It also showed a strong inhibition of trypomastigote burst from infected cells, with calculated IC50 of 130 nM (SI = 920) being significantly less effective on the epimastigote stage (IC50 = 30.6 μM). The effect of isotretinoin on the parasites plasma membrane permeability and on mammalian cell viability was tested, and no change was observed. Autophagosomes and apoptotic bodies were detected as part of the mechanisms of isotretinoin-induced death indicating that the inhibition of transporters by isotretinoin causes nutrient starvation that triggers autophagic and apoptotic processes. In conclusion, isotretinoin is a promising trypanocidal drug since it is a multi-target inhibitor of essential metabolites transporters, in addition to being an FDA-approved drug largely used in humans, which could reduce significantly the requirements for its possible application in the treatment of

  3. Transport of Indole-3-Acetic Acid during Gravitropism in Intact Maize Coleoptiles 1

    PubMed Central

    Parker, Karen E.; Briggs, Winslow R.

    1990-01-01

    We have investigated the transport of tritiated indole-3-acetic acid (IAA) in intact, red light-grown maize (Zea mays) coleoptiles during gravitropic induction and the subsequent development of curvature. This auxin is transported down the length of gravistimulated coleoptiles at a rate comparable to that in normal, upright plants. Transport is initially symmetrical across the coleoptile, but between 30 and 40 minutes after plants are turned horizontal a lateral redistribution of the IAA already present in the transport stream occurs. By 60 minutes after the beginning of the gravitropic stimulus, the ratio of tritiated tracer auxin in the lower half with respect to the upper half is approximately 2:1. The redistribution of growth that causes gravitropic curvature follows the IAA redistribution by 5 or 10 minutes at the minimum in most regions of the coleoptile. Immobilization of tracer auxin from the transport stream during gravitropism was not detectable in the most apical 10 millimeters. Previous reports have shown that in intact, red light-grown maize coleoptiles, endogenous auxin is limiting for growth, the tissue is linearly responsive to linearly increasing concentrations of small amounts of added auxin, and the lag time for the stimulation of straight growth by added IAA is approximately 8 or 9 minutes (TI Baskin, M Iino, PB Green, WR Briggs [1985] Plant Cell Environ 8: 595-603; TI Baskin, WR Briggs, M Iino [1986] Plant Physiol 81: 306-309). We conclude that redistribution of IAA in the transport stream occurs in maize coleoptiles during gravitropism, and is sufficient in degree and timing to be the immediate cause of gravitropic curvature. PMID:16667914

  4. Membrane transporters for the special amino acid glutamine: Structure/function relationships and relevance to human health.

    NASA Astrophysics Data System (ADS)

    Pochini, Lorena; Scalise, Mariafrancesca; Galluccio, Michele; Indiveri, Cesare

    2014-08-01

    Glutamine together with glucose is essential for body’s homeostasis. It is the most abundant amino acid and is involved in many biosynthetic, regulatory and energy production processes. Several membrane transporters which differ in transport modes, ensure glutamine homeostasis by coordinating its absorption, reabsorption and delivery to tissues. These transporters belong to different protein families, are redundant and ubiquitous. Their classification, originally based on functional properties, has recently been associated with the SLC nomenclature. Function of glutamine transporters is studied in cells over-expressing the transporters or, more recently in proteoliposomes harboring the proteins extracted from animal tissues or over-expressed in microorganisms. The role of the glutamine transporters is linked to their transport modes and coupling with Na+ and H+. Most transporters share specificity for other neutral or cationic amino acids. Na+-dependent co-transporters efficiently accumulate glutamine while antiporters regulate the pools of glutamine and other amino acids. The most acknowledged glutamine transporters belong to the SLC1, 6, 7 and 38 families. The members involved in the homeostasis are the co-transporters B0AT1 and the SNAT members 1, 2, 3, 5 and 7; the antiporters ASCT2, LAT1 and 2. The last two are associated to the ancillary CD98 protein. Some information on regulation of the glutamine transporters exist, which, however, need to be deepened. No information at all is available on structures, besides some homology models obtained using similar bacterial transporters as templates. Some models of rat and human glutamine transporters highlight very similar structures between the orthologues. Moreover the presence of glycosylation and/or phosphorylation sites located at the extracellular or intracellular faces has been predicted. ASCT2 and LAT1 are over-expressed in several cancers, thus representing potential targets for pharmacological intervention.

  5. Membrane transporters for the special amino acid glutamine: structure/function relationships and relevance to human health

    PubMed Central

    Pochini, Lorena; Scalise, Mariafrancesca; Galluccio, Michele; Indiveri, Cesare

    2014-01-01

    Glutamine together with glucose is essential for body's homeostasis. It is the most abundant amino acid and is involved in many biosynthetic, regulatory and energy production processes. Several membrane transporters which differ in transport modes, ensure glutamine homeostasis by coordinating its absorption, reabsorption and delivery to tissues. These transporters belong to different protein families, are redundant and ubiquitous. Their classification, originally based on functional properties, has recently been associated with the SLC nomenclature. Function of glutamine transporters is studied in cells over-expressing the transporters or, more recently in proteoliposomes harboring the proteins extracted from animal tissues or over-expressed in microorganisms. The role of the glutamine transporters is linked to their transport modes and coupling with Na+ and H+. Most transporters share specificity for other neutral or cationic amino acids. Na+-dependent co-transporters efficiently accumulate glutamine while antiporters regulate the pools of glutamine and other amino acids. The most acknowledged glutamine transporters belong to the SLC1, 6, 7, and 38 families. The members involved in the homeostasis are the co-transporters B0AT1 and the SNAT members 1, 2, 3, 5, and 7; the antiporters ASCT2, LAT1 and 2. The last two are associated to the ancillary CD98 protein. Some information on regulation of the glutamine transporters exist, which, however, need to be deepened. No information at all is available on structures, besides some homology models obtained using similar bacterial transporters as templates. Some models of rat and human glutamine transporters highlight very similar structures between the orthologs. Moreover the presence of glycosylation and/or phosphorylation sites located at the extracellular or intracellular faces has been predicted. ASCT2 and LAT1 are over-expressed in several cancers, thus representing potential targets for pharmacological intervention

  6. Transport and cycling of iron and hydrogen peroxide in a freshwater stream: Influence of organic acids

    USGS Publications Warehouse

    Scott, D.T.; Runkel, R.L.; McKnight, Diane M.; Voelker, B.M.; Kimball, B.A.; Carraway, E.R.

    2003-01-01

    An in-stream injection of two dissolved organic acids (phthalic and aspartic acids) was performed in an acidic mountain stream to assess the effects of organic acids on Fe photoreduction and H2O2 cycling. Results indicate that the fate of Fe is dependent on a net balance of oxidative and reductive processes, which can vary over a distance of several meters due to changes in incident light and other factors. Solution phase photoreduction rates were high in sunlit reaches and were enhanced by the organic acid addition but were also limited by the amount of ferric iron present in the water column. Fe oxide photoreduction from the streambed and colloids within the water column resulted in an increase in the diurnal load of total filterable Fe within the experimental reach, which also responded to increases in light and organic acids. Our results also suggest that Fe(II) oxidation increased in response to the organic acids, with the result of offsetting the increase in Fe(II) from photoreductive processes. Fe(II) was rapidly oxidized to Fe(III) after sunset and during the day within a well-shaded reach, presumably through microbial oxidation. H2O 2, a product of dissolved organic matter photolysis, increased downstream to maximum concentrations of 0.25 ??M midday. Kinetic calculations show that the buildup of H2O2 is controlled by reaction with Fe(III), but this has only a small effect on Fe(II) because of the small formation rates of H2O2 compared to those of Fe(II). The results demonstrate the importance of incorporating the effects of light and dissolved organic carbon into Fe reactive transport models to further our understanding of the fate of Fe in streams and lakes.

  7. Reduced amino acid transport in skeletal muscle caused by a circulating factor during endotoxemia.

    PubMed Central

    Warner, B W; Hasselgren, P O; James, J H; Hummel, R P; Rigel, D F; Fischer, J E

    1990-01-01

    The present study was designed to determine whether reduced amino acid uptake in skeletal muscle during endotoxemia is due to associated hypotension or is caused by a factor present in plasma. Three series of experiments were performed. In the first series of experiments, mean arterial pressure (MAP), heart rate, and amino acid uptake in incubated soleus muscles were measured after intravenous injection of endotoxin (1 mg/kg) in male Sprague-Dawley rats (40 to 60 g). Amino acid transport was measured by determining intracellular uptake of [3H]-alpha-amino-isobutyric acid (AIB) during 2 hours of incubation. In the second series of experiments, hypotension was induced by bleeding and muscle amino acid uptake was measured. In the third series of experiments, whole plasma or a low molecular weight fraction (less than 10,000 d) of plasma from endotoxin-injected rats was added in vitro to incubated muscles and amino acid uptake was determined. One hour after injection of endotoxin, MAP was reduced from 80 +/- 2 mmHg to 54 +/- 4 mmHg (p less than 0.05). AIB uptake was reduced by 20% (p less than 0.05) 2 hours after endotoxin injection. When MAP was maintained at 50 mmHg for 1 hour by bleeding, no changes in muscle AIB uptake were noted. When plasma obtained from rats 2 hours after endotoxin injection was added to incubated soleus muscles, AIB uptake was reduced by 22%. This effect was duplicated by a fraction of endotoxic plasma containing substances with a molecular weight less than 10,000 d. The present results suggest that reduced muscle amino acid uptake during endotoxemia is not due to associated hypotension, but may be caused by a circulating factor(s) with a molecular weight less than 10,000 d. PMID:2178567

  8. The anti-tumor drug 2-hydroxyoleic acid (Minerval) stimulates signaling and retrograde transport

    PubMed Central

    Torgersen, Maria L.; Klokk, Tove Irene; Kavaliauskiene, Simona; Klose, Christian; Simons, Kai; Skotland, Tore; Sandvig, Kirsten

    2016-01-01

    2-hydroxyoleic acid (OHOA, Minerval®) is an example of a substance used for membrane lipid therapy, where the cellular membranes rather than specific proteins constitute the therapeutical target. OHOA is thought to mediate its anti-tumor effect by affecting the biophysical properties of membranes, which leads to altered recruitment and activation of amphitropic proteins, altered cellular signaling, and eventual cell death. Little is known about the initial signaling events upon treatment with OHOA, and whether the altered membrane properties would have any impact on the dynamic intracellular transport system. In the present study we demonstrate that treatment with OHOA led to a rapid release of intracellular calcium and activation of multiple signaling pathways in HeLa cells, including the PI3K-AKT1-MTOR pathway and several MAP kinases, in a process independent of the EGFR. By lipidomics we confirmed that OHOA was incorporated into several lipid classes. Concomitantly, OHOA potently increased retrograde transport of the plant toxin ricin from endosomes to the Golgi and further to the endoplasmic reticulum. The OHOA-stimulated ricin transport seemed to require several amphitropic proteins, including Src, phospholipase C, protein kinase C, and also Ca2+/calmodulin. Interestingly, OHOA induced a slight increase in endosomal localization of the retromer component VPS35. Thus, our data show that addition of a lipid known to alter membrane properties not only affects signaling, but also intracellular transport. PMID:27894086

  9. Biodegradation, sorption, and transport of 2,4-dichlorophenoxyacetic acid in saturated and unsaturated soils.

    PubMed Central

    Estrella, M R; Brusseau, M L; Maier, R S; Pepper, I L; Wierenga, P J; Miller, R M

    1993-01-01

    The fate of an organic contaminant in soil depends on many factors, including sorption, biodegradation, and transport. The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) was used as a model compound to illustrate the impact of these interacting factors on the fate of an organic contaminant. Batch and column experiments performed with a sandy loam soil mixture under saturated and unsaturated conditions were used to determine the effects of sorption and biodegradation on the fate and transport of 2,4-D. Sorption of 2,4-D was found to have a slight but significant effect on transport of 2,4-D under saturated conditions (retardation factor, 1.8) and unsaturated conditions (retardation factor, 3.4). Biodegradation of 2,4-D was extensive under both batch and column conditions and was found to have a significant impact on 2,4-D transport in column experiments. In batch experiments, complete mineralization of 2,4-D (100 mg kg-1) occurred over a 4-day period following a 3-day lag phase under both saturated and unsaturated conditions. The biodegradation rate parameters calculated for batch experiments were found to be significantly different from those estimated for column experiments. PMID:8285717

  10. A functional splice variant of the human Golgi CMP-sialic acid transporter.

    PubMed

    Salinas-Marín, Roberta; Mollicone, Rosella; Martínez-Duncker, Iván

    2016-12-01

    The human Golgi Cytidine-5'-monophospho-N-acetylneuraminic acid (CMP-Sia) transporter SLC35A1, a member of the nucleotide sugar transporter family, translocates CMP-Sia from the cytosol into the Golgi lumen where sialyltransferases use it as donor substrate for the synthesis of sialoglycoconjugates. In 2005, we reported a novel Congenital Disorder of Glycosylation (CDG) termed CDG-IIf or SLC35A1-CDG, characterized by macrothrombocytopenia, neutropenia and complete lack of the sialyl-Le(x) antigen (NeuAcα2-3Galβ1-4(Fucα1-3)GlcNAc-R) on polymorphonuclear cells. This disease was caused by the presence of inactive SLC35A1 alleles. It was also found that the SLC35A1 generates additional isoforms through alternative splicing. In this work, we demonstrate that one of the reported isoforms, the del177 with exon 6 skipping, is able to maintain sialylation in HepG2 cells submitted to wt knockdown and restore sialylation to normal levels in the Chinese Hamester Ovary (CHO) cell line Lec2 mutant deficient in CMP-Sia transport. The characteristics of the alternatively spliced protein are discussed as well as therapeutic implications of this finding in CDGs caused by mutations in nucleotide sugar transporters (NSTs).

  11. gamma-aminobutyric acid transporter-mediated current from bipolar cells in tiger salamander retinal slices.

    PubMed

    Yang, C Y

    1998-09-01

    About 10% of bipolar cells in salamander retina synthesize and take up gamma-aminobutyric acid (GABA), and may use GABA as a neurotransmitter. As GABA uptake is electrogenic, bipolar cells expressing GABA transporters (GATs) should give transport current (IGAT) to extracellular GABA. Using whole-cell patch recording, 28 bipolar cells responded to 30-200 microM GABA puffed to the axon terminals with a picrotoxin (PTX)-sensitive chloride current (ICI) only. Another three bipolar cells had, in addition to ICI, a PTX-resistant, sodium-dependent current that was completely and reversibly blocked by NO-711, an IGAT inhibitor, indicating that this component was an IGAT. This finding provides further support for a subset of GABAergic bipolar cells in the salamander retina.

  12. Effects of morpholine and boric acid implementation on secondary chemistry and corrosion product transport

    SciTech Connect

    Siegwarth, D.P.; Pearl, W.L.; Sawochka, S.G.; Clouse, M.E.

    1992-07-01

    This project expanded the database on the effects of morpholine use as a pH control additive in the secondary water system of pressurized water reactors. Tests carried out at Alabama Power`s Joseph M. Farley Units 1 and 2, Northern States Power`s Prairie Island Unit 2, and Commonwealth Edison`s Byron Unit 1 demonstrated that the use of morpholine reduced corrosion product transport in PWR secondary systems by up to a factor of 2. Further reductions were achieved by eliminating copper alloy tubing and increasing secondary cycles pH. Steam generator boric acid treatment in plants with all ferrous secondary cycles operated with morpholine was shown to have a minimal effect on iron transport.

  13. Effects of morpholine and boric acid implementation on secondary chemistry and corrosion product transport

    SciTech Connect

    Siegwarth, D.P.; Pearl, W.L.; Sawochka, S.G.; Clouse, M.E. )

    1992-07-01

    This project expanded the database on the effects of morpholine use as a pH control additive in the secondary water system of pressurized water reactors. Tests carried out at Alabama Power's Joseph M. Farley Units 1 and 2, Northern States Power's Prairie Island Unit 2, and Commonwealth Edison's Byron Unit 1 demonstrated that the use of morpholine reduced corrosion product transport in PWR secondary systems by up to a factor of 2. Further reductions were achieved by eliminating copper alloy tubing and increasing secondary cycles pH. Steam generator boric acid treatment in plants with all ferrous secondary cycles operated with morpholine was shown to have a minimal effect on iron transport.

  14. TRANSPORT

    EPA Science Inventory

    Presentation outline: transport principles, effective solubility; gasoline composition; and field examples (plume diving).
    Presentation conclusions: MTBE transport follows from - phyiscal and chemical properties and hydrology. Field examples show: MTBE plumes > benzene plu...

  15. Light-Activated Amino Acid Transport Systems in Halobacterium halobium Envelope Vesicles: Role of Chemical and Electrical Gradients

    NASA Technical Reports Server (NTRS)

    MacDonald, Russell E.; Greene, Richard V.; Lanyi, Janos K.

    1977-01-01

    The accumulation of 20 commonly occurring L-amino acids by cell envelope vesicles of Halobacterium halobium, in response to light-induced membrane potential and an artificially created sodium gradient, has been studied. Nineteen of these amino acids are actively accumulated under either or both of these conditions. Glutamate is unique in that its uptake is driven only by a chemical gradient for sodium. Amino acid concentrations at half-maximal uptake rates (Km) and maximal transport rates (V(sub max) have been determined for the uptake of all 19 amino acids. The transport systems have been partially characterized with respect to groups of amino acids transported by common carriers, cation effects, and relative response to the electrical and chemical components of the sodium gradient, the driving forces for uptake. The data presented clearly show that the carrier systems, which are responsible for uptake of individual amino acids, are as variable in their properties as those found in other organisms, i. e., some are highly specific for individual amino acids, some transport several amino acids competitively, some are activated by a chemical gradient of sodium only, and some function also in the complete absence of such a gradient. For all amino acids, Na(+) and K(+) are both required for maximal rate of uptake. The carriers for L-leucine and L-histidine are symmetrical in that these amino acids are transported in both directions across the vesicle membrane. It is suggested that coupling of substrate transport to metabolic energy via transient ionic gradients may be a general phenomenon in procaryotes.

  16. Design and Evaluation of a Novel Trifluorinated Imaging Agent for Assessment of Bile Acid Transport Using Fluorine Magnetic Resonance Imaging

    PubMed Central

    Vivian, Diana; Cheng, Kunrong; Khurana, Sandeep; Xu, Su; Dawson, Paul A.; Raufman, Jean-Pierre; Polli, James E.

    2014-01-01

    Previously, we developed a trifluorinated bile acid, CA-lys-TFA, with the objective of noninvasively assessing bile acid transport in vivo using 19F magnetic resonance imaging (MRI). CA-lys-TFA was successfully imaged in the mouse gallbladder, but was susceptible to deconjugation in vitro by choloylglycine hydrolase (CGH), a bacterial bile acid deconjugating enzyme found in the terminal ileum and colon. The objective of the present study was to develop a novel trifluorinated bile acid resistant to deconjugation by CGH. CA-sar-TFMA was designed, synthesized, and tested for in vitro transport properties, stability, imaging properties, and its ability to differentially accumulate in the gallbladders of normal mice, compared with mice with known impaired bile acid transport (deficient in the apical sodium-dependent bile acid transporter, ASBT). CA-sar-TFMA was a potent inhibitor and substrate of ASBT and the Na+/taurocholate cotransporting polypeptide. Stability was favorable in all conditions tested, including the presence of CGH. CA-sar-TFMA was successfully imaged and accumulated at 16.1-fold higher concentrations in gallbladders from wild-type mice compared with those from Asbt-deficient mice. Our results support the potential of using MRI with CA-sar-TFMA as a noninvasive method to assess bile acid transport in vivo. PMID:25196788

  17. Hypomorphic variants of cationic amino acid transporter 3 in males with autism spectrum disorders.

    PubMed

    Nava, Caroline; Rupp, Johanna; Boissel, Jean-Paul; Mignot, Cyril; Rastetter, Agnès; Amiet, Claire; Jacquette, Aurélia; Dupuits, Céline; Bouteiller, Delphine; Keren, Boris; Ruberg, Merle; Faudet, Anne; Doummar, Diane; Philippe, Anne; Périsse, Didier; Laurent, Claudine; Lebrun, Nicolas; Guillemot, Vincent; Chelly, Jamel; Cohen, David; Héron, Delphine; Brice, Alexis; Closs, Ellen I; Depienne, Christel

    2015-12-01

    Cationic amino acid transporters (CATs) mediate the entry of L-type cationic amino acids (arginine, ornithine and lysine) into the cells including neurons. CAT-3, encoded by the SLC7A3 gene on chromosome X, is one of the three CATs present in the human genome, with selective expression in brain. SLC7A3 is highly intolerant to variation in humans, as attested by the low frequency of deleterious variants in available databases, but the impact on variants in this gene in humans remains undefined. In this study, we identified a missense variant in SLC7A3, encoding the CAT-3 cationic amino acid transporter, on chromosome X by exome sequencing in two brothers with autism spectrum disorder (ASD). We then sequenced the SLC7A3 coding sequence in 148 male patients with ASD and identified three additional rare missense variants in unrelated patients. Functional analyses of the mutant transporters showed that two of the four identified variants cause severe or moderate loss of CAT-3 function due to altered protein stability or abnormal trafficking to the plasma membrane. The patient with the most deleterious SLC7A3 variant had high-functioning autism and epilepsy, and also carries a de novo 16p11.2 duplication possibly contributing to his phenotype. This study shows that rare hypomorphic variants of SLC7A3 exist in male individuals and suggest that SLC7A3 variants possibly contribute to the etiology of ASD in male subjects in association with other genetic factors.

  18. Evaluating remedial alternatives for an acid mine drainage stream: Application of a reactive transport model

    USGS Publications Warehouse

    Runkel, R.L.; Kimball, B.A.

    2002-01-01

    A reactive transport model based on one-dimensional transport and equilibrium chemistry is applied to synoptic data from an acid mine drainage stream. Model inputs include streamflow estimates based on tracer dilution, inflow chemistry based on synoptic sampling, and equilibrium constants describing acid/base, complexation, precipitation/dissolution, and sorption reactions. The dominant features of observed spatial profiles in pH and metal concentration are reproduced along the 3.5-km study reach by simulating the precipitation of Fe(III) and Al solid phases and the sorption of Cu, As, and Pb onto freshly precipitated iron-(III) oxides. Given this quantitative description of existing conditions, additional simulations are conducted to estimate the streamwater quality that could result from two hypothetical remediation plans. Both remediation plans involve the addition of CaCO3 to raise the pH of a small, acidic inflow from ???2.4 to ???7.0. This pH increase results in a reduced metal load that is routed downstream by the reactive transport model, thereby providing an estimate of post-remediation water quality. The first remediation plan assumes a closed system wherein inflow Fe(II) is not oxidized by the treatment system; under the second remediation plan, an open system is assumed, and Fe(II) is oxidized within the treatment system. Both plans increase instream pH and substantially reduce total and dissolved concentrations of Al, As, Cu, and Fe(II+III) at the terminus of the study reach. Dissolved Pb concentrations are reduced by ???18% under the first remediation plan due to sorption onto iron-(III) oxides within the treatment system and stream channel. In contrast, iron(III) oxides are limiting under the second remediation plan, and removal of dissolved Pb occurs primarily within the treatment system. This limitation results in an increase in dissolved Pb concentrations over existing conditions as additional downstream sources of Pb are not attenuated by

  19. Involvement of γ-aminobutyric acid transporter 2 in the hepatic uptake of taurine in rats.

    PubMed

    Ikeda, Saori; Tachikawa, Masanori; Akanuma, Shin-ichi; Fujinawa, Jun; Hosoya, Ken-ichi

    2012-08-01

    Taurine is essential for the hepatic synthesis of bile salts and, although taurine is synthesized mainly in pericentral hepatocytes, taurine and taurine-conjugated bile acids are abundant in periportal hepatocytes. One possible explanation for this discrepancy is that the active supply of taurine to hepatocytes from the blood stream is a key regulatory factor. The purpose of the present study is to investigate and identify the transporter responsible for taurine uptake by periportal hepatocytes. An in vivo bolus injection of [(3)H]taurine into the rat portal vein demonstrated that 25% of the injected [(3)H]taurine was taken up by the liver on a single pass. The in vivo uptake was significantly inhibited by GABA, taurine, β-alanine, and nipecotic acid, a GABA transporter (GAT) inhibitor, each at a concentration of 10 mM. The characteristics of Na(+)- and Cl(-)-dependent [(3)H]taurine uptake by freshly isolated rat hepatocytes were consistent with those of GAT2 (solute carrier SLC6A13). Indeed, the K(m) value of the saturable uptake (594 μM) was close to that of mouse SLC6A13-mediated taurine transport. Although GABA, taurine, and β-alanine inhibited the [(3)H]taurine uptake by > 50%, each at a concentration of 10 mM, GABA caused a marked inhibition with an IC(50) value of 95 μM. The [(3)H]taurine uptake exhibited a significant reduction when the GAT2 gene was silenced. Immunohistochemical analysis showed that GAT2 was localized on the sinusoidal membrane of the hepatocytes predominantly in the periportal region. These results suggest that GAT2 is responsible for taurine transport from the circulating blood to hepatocytes predominantly in the periportal region.

  20. Charge transport through dicarboxylic-acid-terminated alkanes bound to graphene-gold nanogap electrodes

    NASA Astrophysics Data System (ADS)

    Liu, Longlong; Zhang, Qian; Tao, Shuhui; Zhao, Cezhou; Almutib, Eman; Al-Galiby, Qusiy; Bailey, Steven W. D.; Grace, Iain; Lambert, Colin J.; Du, Jun; Yang, Li

    2016-07-01

    Graphene-based electrodes are attractive for single-molecule electronics due to their high stability and conductivity and reduced screening compared with metals. In this paper, we use the STM-based matrix isolation I(s) method to measure the performance of graphene in single-molecule junctions with one graphene electrode and one gold electrode. By measuring the length dependence of the electrical conductance of dicarboxylic-acid-terminated alkanes, we find that the transport is consistent with phase-coherent tunneling, but with an attenuation factor of βN = 0.69 per methyl unit, which is lower than the value measured for Au-molecule-Au junctions. Comparison with density-functional-theory calculations of electron transport through graphene-molecule-Au junctions and Au-molecule-Au junctions reveals that this difference is due to the difference in Fermi energies of the two types of junction, relative to the frontier orbitals of the molecules. For most molecules, their electrical conductance in graphene-molecule-Au junctions is higher than that in Au-molecule-Au junctions, which suggests that graphene offers superior electrode performance, when utilizing carboxylic acid anchor groups.Graphene-based electrodes are attractive for single-molecule electronics due to their high stability and conductivity and reduced screening compared with metals. In this paper, we use the STM-based matrix isolation I(s) method to measure the performance of graphene in single-molecule junctions with one graphene electrode and one gold electrode. By measuring the length dependence of the electrical conductance of dicarboxylic-acid-terminated alkanes, we find that the transport is consistent with phase-coherent tunneling, but with an attenuation factor of βN = 0.69 per methyl unit, which is lower than the value measured for Au-molecule-Au junctions. Comparison with density-functional-theory calculations of electron transport through graphene-molecule-Au junctions and Au

  1. Structure-based ligand discovery for the Large-neutral Amino Acid Transporter 1, LAT-1

    PubMed Central

    Geier, Ethan G.; Schlessinger, Avner; Fan, Hao; Gable, Jonathan E.; Irwin, John J.; Sali, Andrej; Giacomini, Kathleen M.

    2013-01-01

    The Large-neutral Amino Acid Transporter 1 (LAT-1)—a sodium-independent exchanger of amino acids, thyroid hormones, and prescription drugs—is highly expressed in the blood–brain barrier and various types of cancer. LAT-1 plays an important role in cancer development as well as in mediating drug and nutrient delivery across the blood–brain barrier, making it a key drug target. Here, we identify four LAT-1 ligands, including one chemically novel substrate, by comparative modeling, virtual screening, and experimental validation. These results may rationalize the enhanced brain permeability of two drugs, including the anticancer agent acivicin. Finally, two of our hits inhibited proliferation of a cancer cell line by distinct mechanisms, providing useful chemical tools to characterize the role of LAT-1 in cancer metabolism. PMID:23509259

  2. Rapid chemoenzymatic route to glutamate transporter inhibitor l-TFB-TBOA and related amino acids.

    PubMed

    Fu, Haigen; Younes, Sabry H H; Saifuddin, Mohammad; Tepper, Pieter G; Zhang, Jielin; Keller, Erik; Heeres, André; Szymanski, Wiktor; Poelarends, Gerrit J

    2017-03-21

    The complex amino acid (l-threo)-3-[3-[4-(trifluoromethyl)benzoylamino]benzyloxy]aspartate (l-TFB-TBOA) and its derivatives are privileged compounds for studying the roles of excitatory amino acid transporters (EAATs) in regulation of glutamatergic neurotransmission, animal behavior, and in the pathogenesis of neurological diseases. The wide-spread use of l-TFB-TBOA stems from its high potency of EAAT inhibition and the lack of off-target binding to glutamate receptors. However, one of the main challenges in the evaluation of l-TFB-TBOA and its derivatives is the laborious synthesis of these compounds in stereoisomerically pure form. Here, we report an efficient and step-economic chemoenzymatic route that gives access to enantio- and diastereopure l-TFB-TBOA and its derivatives at multigram scale.

  3. Transport mechanism for L-lactic acid in human myocytes using human prototypic embryonal rhabdomyosarcoma cell line (RD cells).

    PubMed

    Kobayashi, Masaki; Fujita, Itaru; Itagaki, Shirou; Hirano, Takeshi; Iseki, Ken

    2005-07-01

    Monocarboxylate transporter (MCT), which cotransport L-lactic acid and protons across cell membranes, are important for regulation of muscle pH. However, it has not been demonstrated in detail whether MCT isoform contribute to the transport of L-lactic acid in skeletal muscle. The aim of this study was to characterize L-lactic acid transport using an human rhabdomyosarcoma (RD) cell line as a model of human skeletal muscle. mRNAs of MCT 1, 2 and 4 were found to be expressed in RD cells. The [14C] L-lactic acid uptake was concentration-dependent with a Km of 1.19 mM. This Km value was comparable to its Km values for MCT1 or MCT2. MCT1 mRNA was found to be present markedly greater than that MCT2. Therefore, MCT1 most probably acts on L-lactic acid uptake at RD cells. [14C] L-Lactic acid efflux in RD cells was inhibited by alpha-cyano-4-hydroxycinnamate (CHC) but not by butyric acid, a substrate of MCT1. Accordingly, MCT2 or MCT4 is responsible for L-lactic acid efflux by RD cells. MCT4 mRNA was found to be present significantly greater than that MCT2. We conclude that MCT1 is responsible for L-lactic acid uptake and L-lactic acid efflux is mediated by MCT4 in RD cells.

  4. Protein kinase C restricts transport of carnitine by amino acid transporter ATB(0,+) apically localized in the blood-brain barrier.

    PubMed

    Michalec, Katarzyna; Mysiorek, Caroline; Kuntz, Mélanie; Bérézowski, Vincent; Szczepankiewicz, Andrzej A; Wilczyński, Grzegorz M; Cecchelli, Roméo; Nałęcz, Katarzyna A

    2014-07-15

    Carnitine (3-hydroxy-4-trimethylammoniobutyrate) is necessary for transfer of fatty acids through the inner mitochondrial membrane. Carnitine, not synthesized in the brain, is delivered there through the strongly polarized blood-brain barrier (BBB). Expression and presence of two carnitine transporters - organic cation/carnitine transporter (OCTN2) and amino acid transporter B(0,+) (ATB(0,+)) have been demonstrated previously in an in vitro model of the BBB. Due to potential protein kinase C (PKC) phosphorylation sites within ATB(0,+) sequence, the present study verified effects of this kinase on transporter function and localization in the BBB. ATB(0,+) can be regulated by estrogen receptor α and up-regulated in vitro, therefore its presence in vivo was verified with the transmission electron microscopy. The analyses of brain slices demonstrated ATB(0,+) luminal localization in brain capillaries, confirmed by biotinylation experiments in an in vitro model of the BBB. Brain capillary endothelial cells were shown to control carnitine gradient. ATB(0,+) was phosphorylated by PKC, what correlated with inhibition of carnitine transport. PKC activation did not change the amount of ATB(0,+) present in the apical membrane of brain endothelial cells, but resulted in transporter exclusion from raft microdomains. ATB(0,+) inactivation by a lateral movement in plasma membrane after transporter phosphorylation has been postulated.

  5. Effect of cyclic fatty acid monomers on fat absorption and transport depends on their positioning within the ingested triacylglycerols.

    PubMed

    Martin, J C; Caselli, C; Broquet, S; Juanéda, P; Nour, M; Sébédio, J L; Bernard, A

    1997-08-01

    We investigated the intestinal digestion of cyclic fatty acid monomers (CFAM) isolated from heated linseed oil and their effects upon fatty acid lymphatic transport and lipoprotein profile in lymph. These cyclic fatty acid monomers were acylated in specific positions in the glycerol backbone of triacylglycerols (sn-(1/3) position for the 1C oil, sn-2 position for the 2C oil and together in the sn-1,2, and 3 positions for the 3C oil) and administered intragastrically to lymph-canulated rats. Their lumenal digestibility was also assessed in vitro using a pancreatic lipase assay. The lipase activity was 1.9 to 6.6 less towards the triacylglycerols acylated with cyclic fatty acids compared to control. The lowest activity was with the 2C oil. In the hydrolytic products, the cyclic fatty acid contents were similar between the experimental groups. When absorbed as 2-monoacyl-sn-glycerol (2C oil), cyclic fatty acid monomers were better and unselectively recovered into the lymph than when absorbed as free fatty acids (1C oil). In that latter situation, the bulkier cyclic fatty acids (C6 and cis membered-ring CFAM) were transported into the lymph to a lesser extent. The appearance of the lymphatic chylomicrons was delayed in rats fed the 1C oil. Cyclic fatty acid monomers from the 2C oil only increased the lymphatic transport of saturated fatty acids (80%). Cyclic fatty acids from the 3C oil (absorbed as 2-monoacyl-sn-glycerol and free fatty acid) usually elicited intermediary effects. We conclude that the effects of cyclic fatty acid monomers upon the intestinal metabolism are greatly influenced by their positioning within the triacylglycerol and that the structure of the cyclic fatty acids influences their lymphatic recovery only when they are absorbed as free fatty acid.

  6. Reactive transport controls on sandy acid sulfate soils and impacts on shallow groundwater quality

    NASA Astrophysics Data System (ADS)

    Salmon, S. Ursula; Rate, Andrew W.; Rengel, Zed; Appleyard, Steven; Prommer, Henning; Hinz, Christoph

    2014-06-01

    Disturbance or drainage of potential acid sulfate soils (PASS) can result in the release of acidity and degradation of infrastructure, water resources, and the environment. Soil processes affecting shallow groundwater quality have been investigated using a numerical code that integrates (bio)geochemical processes with water, solute, and gas transport. The patterns of severe and persistent acidification (pH < 4) in the sandy, carbonate-depleted podzols of a coastal plain could be reproduced without calibration, based on oxidation of microcrystalline pyrite after groundwater level decrease and/or residual groundwater acidity, due to slow vertical solute transport rates. The rate of acidification was limited by gas phase diffusion of oxygen and hence was sensitive to soil water retention properties and in some cases also to oxygen consumption by organic matter mineralization. Despite diffusion limitation, the rate of oxidation in sandy soils was rapid once pyrite-bearing horizons were exposed, even to a depth of 7.5 m. Groundwater level movement was thus identified as an important control on acidification, as well as the initial pyrite content. Increase in the rate of Fe(II) oxidation lead to slightly lower pH and greater accumulation of Fe(III) phases, but had little effect on the overall amount of pyrite oxidized. Aluminosilicate (kaolinite) dissolution had a small pH-buffering effect but lead to the release of Al and associated acidity. Simulated dewatering scenarios highlighted the potential of the model for risk assessment of (bio)geochemical impacts on soil and groundwater over a range of temporal and spatial scales.

  7. Characterization and Regulation of the Amino Acid Transporter SNAT2 in the Small Intestine of Piglets

    PubMed Central

    Tan, Bie; Wang, Jing; Kong, Xiangfeng; Guan, Guiping; Li, Fengna; Yin, Yulong

    2015-01-01

    The sodium-dependent neutral amino acid transporter 2 (SNAT2), which has dual transport/receptor functions, is well documented in eukaryotes and some mammalian systems, but has not yet been verified in piglets. The objective of this study was to investigate the characteristics and regulation of SNAT2 in the small intestine of piglets. The 1,521-bp porcine full cDNA sequence of SNAT2 (KC769999) from the small intestine of piglets was cloned. The open reading frame of cDNA encodes 506 deduced amino acid residues with a calculated molecular mass of 56.08 kDa and an isoelectric point (pI) of 7.16. Sequence alignment and phylogenetic analysis revealed that SNAT2 is highly evolutionarily conserved in mammals. SNAT2 mRNA can be detected in the duodenum, jejunum and ileum by real-time quantitative PCR. During the suckling period from days 1 to 21, the duodenum had the highest abundance of SNAT2 mRNA among the three segments of the small intestine. There was a significant decrease in the expression of SNAT2 mRNA in the duodenal and jejunal mucosa and in the expression of SNAT2 protein in the jejunal and ileal mucosa on day 1 after weaning (P < 0.05). Studies with enterocytes in vitro showed that amino acid starvation and supplementation with glutamate, arginine or leucine enhanced, while supplementation with glutamine reduced, SNAT2 mRNA expression (P < 0.05). These results regarding the characteristics and regulation of SNAT2 should help to provide some information to further clarify its roles in the absorption of amino acids and signal transduction in the porcine small intestine. PMID:26107628

  8. The mRNA expression of amino acid transporters, aminopeptidase, and the di- and tri-peptide transporter PepT1 in the intestine and liver of post-hatch broiler chicks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Amino acid transporter (AAT) proteins are responsible for the movement of amino acids (AA) in and out of cells. Aminopeptidase (APN) cleaves AAs from the N terminus of polypeptides making them available for transport, while PepT1 is a di- and tri- peptide transporter. In the intestine, these prote...

  9. Involvement of the L-Type Amino Acid Transporter Lat2 in the Transport of 3,3′-Diiodothyronine across the Plasma Membrane

    PubMed Central

    Kinne, Anita; Wittner, Melanie; Wirth, Eva K.; Hinz, Katrin M.; Schülein, Ralf; Köhrle, Josef; Krause, Gerd

    2015-01-01

    Thyroid hormones are transported across cell membranes by transmembrane transporter proteins, for example by members of the monocarboxylate transporter (MCT) and the L-type amino acid transporter (LAT) families. LATs consist of a light chain (e.g. LAT2) and a heavy chain (CD98), which is essential for their cell surface expression and functionality. The specificity of Lat2 for thyroid hormones and their metabolites and its role in their transport was not fully clear. This fact motivated us to establish a cell system to elucidate the uptake of thyroid hormones and their metabolites by mouse Lat2. The coinjection of cRNA coding for Lat2 and CD98 into Xenopus laevis oocytes resulted in a markedly increased level of 3,3′-diiodo-L-thyronine (3,3′-T2) and to some extent also enhanced T3 transport. To gain insight into properties of thyroid hormones and their metabolites transported by Lat2, we inhibited 3,3′-T2 uptake by various iodothyronine derivatives. T1 and T2 derivatives as well as 2-aminobicyclo-[2, 2,1]-heptane-2-carboxylic acid strongly competed with 3,3′-T2 uptake. In addition, we performed T2 uptake measurements with the thyroid hormone-specific transporter MCT8. For both Lat2 and MCT8, Km values in a low micromolar range were calculated. We demonstrated that oocytes are a suitable system for thyroid hormone transport studies mediated by Lat2. Our data indicates that Lat2 compared to other thyroid hormone transporters prefers 3,3′-T2 as the substrate. Thus, Lat2 might contribute to the availability of thyroid hormone by importing and/or exporting 3,3′-T2, which is generated either by T3 inactivation or by rapid deiodinase 1-mediated rT3 degradation. PMID:26601072

  10. Geochemical and biological controls on trace metal transport in an acid mine impacted watershed.

    PubMed

    Butler, Thomas W

    2006-06-01

    Water samples collected in an acid mine impacted watershed indicated that the concentrations of dissolved trace metals were diurnally influenced by mineral saturation, which is controlled primarily by pH and water temperature. Measurements taken suggested that these variations only occur at sample locations immediately downstream from the confluence of acidic and alkaline waters. It is at these locations where initial mineral precipitation occurred and where subtle changes in solubility were most affected, increasing trace metal removal when both the rate of photosynthesis (influencing pH in headwaters) and water temperature were at a maximum. The role of iron photoreduction (increased midday production of ferrous iron) on overall Cu, Mn, and Zn transport was also evaluated, but found to be inconclusive. Iron photoreduction may however influence adsorption and/or coprecipitation of trace metals through associated changes in oxidation state, solubility, and mineralogy of various iron colloids, which are produced upon the neutralization of acidic, metal enriched water. Furthermore, measured values of copper and zinc were compared to relative USEPA chronic criterion for exposure to continuous concentration (CCC) of metals by the calculation of a "toxicity unit" (TU). It was found that average values of both copper and zinc only exceeded the CCC (TU>1) in the acid mine-impacted Leona Creek. In general, zinc toxicity decreased while copper toxicity increased downstream of the confluence of the mine impacted Leona Creek and background Lion Creek (sampled at Lake Aliso), indicating a significant source of zinc in upstream, non mine-impacted samples.

  11. Anterograde transport of horseradish peroxidase in the nigrostriatal pathway after neostriatal kainic acid lesions.

    PubMed

    Walker, P D; McAllister, J P

    1986-08-01

    We used the anterograde transport of HRP to analyze the nigrostriatal pathway after intrastriatal injections of kainic acid. A total volume of 1 microliter kainic acid (3 nM) was injected unilaterally into the neostriatum of adult rats. After 5, 10, or 35 days, HRP was injected into the ipsilateral substantia nigra. Sections stained for Nissl substance revealed that kainic acid damaged as much as three-quarters of the neostriatum. Lesion sites were characterized by gliosis and the absence of neurons. Alternate sections processed for HRP histochemistry and analyzed with bright- and dark-field microscopy revealed labeled axons and terminals in the lesion site. These findings were consistent in all three time periods. Much of the labeling was similar to that seen in neostriatal of control animals. However, the normal homogeneous pattern of the nigrostriatal terminal field was disrupted in all experimental groups, illustrated by changes in some labeling characteristics in the lesion site. These findings provide morphologic evidence for the preservation of much of the nigrostriatal pathway but indicate that some axons and their terminals may be altered after kainic acid injection.

  12. Suppression of asymmetric acid efflux and gravitropism in maize roots treated with auxin transport inhibitors of sodium orthovanadate

    NASA Technical Reports Server (NTRS)

    Mulkey, T. J.; Evans, M. L.

    1982-01-01

    In gravitropically stimulated roots of maize (Zea mays L., hybrid WF9 x 38MS), there is more acid efflux on the rapidly growing upper side than on the slowly growing lower side. In light of the Cholodny/Went hypothesis of gravitropism which states that gravitropic curvature results from lateral redistribution of auxin, the effects of auxin transport inhibitors on the development of acid efflux asymmetry and curvature in gravistimulated roots were examined. All the transport inhibitors tested prevented both gravitropism and the development of asymmetric acid efflux in gravistimulated roots. The results indicate that auxin redistribution may cause the asymmetry of acid efflux, a finding consistent with the Cholodny/Went hypothesis of gravitropism. As further evidence that auxin-induced acid efflux asymmetry may mediate gravitropic curvature, sodium orthovanadate, an inhibitor of auxin-induced H+ efflux was found to prevent both gravitropism and the development of asymmetric acid efflux in gravistimulated roots.

  13. Unusual effects of monocarboxylic acids on the structure and on the transport and mechanical properties of chitosan films.

    PubMed

    Chen, Fei; Gällstedt, Mikael; Olsson, Richard T; Gedde, Ulf W; Hedenqvist, Mikael S

    2015-11-05

    The purpose of this study was to study the transport of monocarboxylic acids in chitosan films, since this is important for understanding and predicting the drying kinetics of chitosan from aqueous solutions. Despite the wealth of data on chitosan films prepared from aqueous monocarboxylic acid solutions, this transport has not been reported. Chitosan films were exposed to formic, acetic, propionic and butyric acid vapours, it was found that the rate of uptake decreased with increasing molecular size. The equilibration time was unexpectedly long, especially for propionic and butyric acid, nine months. A clear two-stage uptake curve was observed for propionic acid. Evidently, the rate of uptake was determined by acid-induced changes in the material. X-ray diffraction and infrared spectroscopy indicated that the structure of the chitosan acetate and buffered chitosan films changed during exposure to acid and during the subsequent drying. The dried films previously exposed to the acid showed less crystalline features than the original material and a novel repeating structure possibly involving acid molecules. The molar mass of the chitosan decreased on exposure to acid but tensile tests revealed that the films were always ductile. The films exposed to acid vapour (propionic and butyric acid) for the longest period of time were insoluble in the size-exclusion chromatography eluent, and they were also the most ductile/extensible of all samples studied.

  14. Identification of a Novel N-Acetylmuramic Acid Transporter in Tannerella forsythia.

    PubMed

    Ruscitto, Angela; Hottmann, Isabel; Stafford, Graham P; Schäffer, Christina; Mayer, Christoph; Sharma, Ashu

    2016-11-15

    Tannerella forsythia is a Gram-negative periodontal pathogen lacking the ability to undergo de novo synthesis of amino sugars N-acetylmuramic acid (MurNAc) and N-acetylglucosamine (GlcNAc) that form the disaccharide repeating unit of the peptidoglycan backbone. T. forsythia relies on the uptake of these sugars from the environment, which is so far unexplored. Here, we identified a novel transporter system of T. forsythia involved in the uptake of MurNAc across the inner membrane and characterized a homolog of the Escherichia coli MurQ etherase involved in the conversion of MurNAc-6-phosphate (MurNAc-6-P) to GlcNAc-6-P. The genes encoding these components were identified on a three-gene cluster spanning Tanf_08375 to Tanf_08385 located downstream from a putative peptidoglycan recycling locus. We show that the three genes, Tanf_08375, Tanf_08380, and Tanf_08385, encoding a MurNAc transporter, a putative sugar kinase, and a MurQ etherase, respectively, are transcriptionally linked. Complementation of the Tanf_08375 and Tanf_08380 genes together in trans, but not individually, rescued the inability of an E. coli mutant deficient in the phosphotransferase (PTS) system-dependent MurNAc transporter MurP as well as that of a double mutant deficient in MurP and components of the PTS system to grow on MurNAc. In addition, complementation with this two-gene construct in E. coli caused depletion of MurNAc in the medium, further confirming this observation. Our results show that the products of Tanf_08375 and Tanf_08380 constitute a novel non-PTS MurNAc transporter system that seems to be widespread among bacteria of the Bacteroidetes phylum. To the best of our knowledge, this is the first identification of a PTS-independent MurNAc transporter in bacteria.

  15. The hepatic bile acid transporters Ntcp and Mrp2 are downregulated in experimental necrotizing enterocolitis.

    PubMed

    Cherrington, Nathan J; Estrada, Teresa E; Frisk, Harrison A; Canet, Mark J; Hardwick, Rhiannon N; Dvorak, Bohuslav; Lux, Katie; Halpern, Melissa D

    2013-01-01

    Necrotizing enterocolitis (NEC) is the most common gastrointestinal emergency of premature infants and is characterized by an extensive hemorrhagic inflammatory necrosis of the distal ileum and proximal colon. We have previously shown that, during the development of experimental NEC, the liver plays an important role in regulating inflammation in the ileum, and accumulation of ileal bile acids (BA) along with dysregulation of ileal BA transporters contributes to ileal damage. Given these findings, we speculated that hepatic BA transporters would also be altered in experimental NEC. Using both rat and mouse models of NEC, levels of Cyp7a1, Cyp27a1, and the hepatic BA transporters Bsep, Ntcp, Oatp2, Oatp4, Mrp2, and Mrp3 were investigated. In addition, levels of hepatic BA transporters were also determined when the proinflammatory cytokines tumor necrosis factor (TNF)-α and interleukin (IL)-18, which are both elevated in NEC, are neutralized during disease development. Ntcp and Mrp2 were decreased in NEC, but elevated ileal BA levels were not responsible for these reductions. However, neutralization of TNF-α normalized Ntcp, whereas removal of IL-18 normalized Mrp2 levels. These data show that the hepatic transporters Ntcp and Mrp2 are downregulated, whereas Cyp27a1 is increased in rodent models of NEC. Furthermore, increased levels of TNF-α and IL-18 in experimental NEC may play a role in the regulation of Ntcp and Mrp2, respectively. These data suggest the gut-liver axis should be considered when therapeutic modalities for NEC are developed.

  16. Role of hepatic transporters in prevention of bile acid toxicity after partial hepatectomy in mice

    PubMed Central

    Csanaky, Iván L.; Aleksunes, Lauren M.; Tanaka, Yuji; Klaassen, Curtis D.

    2009-01-01

    The enterohepatic recirculation of bile acids (BAs) is important in several physiological processes. Although there has been considerable research on liver regeneration after two-thirds partial hepatectomy (PHx), little is known about how the liver protects itself against BA toxicity during regeneration. In this study, various BAs in plasma and liver, the composition of micelle-forming bile constituents, as well as gene expression of the main hepatobiliary transporters were quantified in sham-operated and PHx mice 24 and 48 h after surgery. PHx did not influence the hepatic concentrations of taurine-conjugated BAs (T-BA) but increased the concentration of glycine-conjugated (G-BA) and unconjugated BAs. Total BA excretion (μg·min−1·g liver wt−1) increased 2.4-fold and was accompanied by a 55% increase in bile flow after PHx. The plasma concentrations of T-BAs (402-fold), G-BAs (17-fold), and unconjugated BAs (500-fold) increased. The mRNA and protein levels of the BA uptake transporter Ntcp were unchanged after PHx, whereas the canalicular Bsep protein increased twofold at 48 h. The basolateral efflux transporter Mrp3 was induced at the mRNA (2.6-fold) and protein (3.1-fold) levels after PHx, which may contribute to elevated plasma BA and bilirubin levels. Biliary phospholipid excretion was nearly doubled in PHx mice, most likely owing to increased mRNA expression of the phospholipid transporter, Mdr2. In conclusion, the remnant liver after PHx excretes 2.5-fold more BAs and three times more phospholipids per gram liver than the sham-operated mouse liver. Upregulation of phospholipid transport may be important in protecting the biliary tract from BA toxicity during PHx. PMID:19497955

  17. A novel glutamate transport system in poly(γ-glutamic acid)-producing strain Bacillus subtilis CGMCC 0833.

    PubMed

    Wu, Qun; Xu, Hong; Zhang, Dan; Ouyang, Pingkai

    2011-08-01

    Bacillus subtilis CGMCC 0833 is a poly(γ-glutamic acid) (γ-PGA)-producing strain. It has the capacity to tolerate high concentration of extracellular glutamate and to utilize glutamate actively. Such a high uptake capacity was owing to an active transport system for glutamate. Therefore, a specific transport system for L-glutamate has been observed in this strain. It was a novel transport process in which glutamate was symported with at least two protons, and an inward-directed sodium gradient had no stimulatory effect on it. K(m) and V(m) for glutamate transport were estimated to be 67 μM and 152 nmol⁻¹ min⁻¹ mg⁻¹ of protein, respectively. The transport system showed structural specificity and stereospecificity and was strongly dependent on extracellular pH. Moreover, it could be stimulated by Mg²⁺, NH₄⁺, and Ca²⁺. In addition, the glutamate transporter in this strain was studied at the molecular level. As there was no important mutation of the transporter protein, it appeared that the differences of glutamate transporter properties between this strain and other B. subtilis strains were not due to the differences of the amino acid sequence and the structure of transporter protein. This is the first extensive report on the properties of glutamate transport system in γ-PGA-producing strain.

  18. Osteoblast protects osteoclast devoid of sodium-dependent vitamin C transporters from oxidative cytotoxicity of ascorbic acid.

    PubMed

    Takarada, Takeshi; Hinoi, Eiichi; Kambe, Yuki; Sahara, Koichi; Kurokawa, Shintaro; Takahata, Yoshifumi; Yoneda, Yukio

    2007-12-01

    The view that ascorbic acid indirectly benefits osteoclastogenesis through expression of receptor activator of nuclear factor-kappaB (NF-kappaB) ligand (RANKL) by osteoblasts is prevailing. In this study, we have examined the direct effect of ascorbic acid on osteoclastogenesis in cultured mouse osteoclasts differentiated from bone marrow precursors. The absence of alkaline phosphatase and osteoblastic marker genes validated the usefulness of isolation procedures. Sustained exposure to ascorbic acid, but not to dehydroascorbic acid, significantly reduced the number of multinucleated cells positive to tartrate-resistant acid phosphatase (TRAP) staining. In cultured osteoclasts, mRNA expression was seen for glucose transporter-1 involved in membrane transport of dehydroascorbic acid, but not for sodium-dependent vitamin C transporters-1 and -2 that are both responsible for the transport of ascorbic acid. The inhibition by ascorbic acid was completely prevented by catalase, while ascorbic acid or hydrogen peroxide drastically increased the number of cells stained with propidium iodide and the generation of reactive oxygen species, in addition to inducing mitochondrial membrane depolarization in cultured osteoclasts. In pre-osteoclastic cell line RAW264.7 cells, ascorbic acid similarly inhibited the formation of TRAP-positive multinucleated cells, with a significant decrease in RANKL-induced NF-kappaB transactivation. Moreover, co-culture with osteoblastic MC3T3-E1 cells significantly prevented the ascorbic acid-induced decrease in the number of TRAP-positive multinucleated cells in RAW264.7 cells. These results suggest that ascorbic acid may play a dual repulsive role in osteoclastogenesis toward bone remodeling through the direct cytotoxicity mediated by oxidative stress to osteoclasts, in addition to the indirect trophism mediated by RANKL from osteoblasts.

  19. Proton transport in triflic acid pentahydrate studied via ab initio path integral molecular dynamics.

    PubMed

    Hayes, Robin L; Paddison, Stephen J; Tuckerman, Mark E

    2011-06-16

    Trifluoromethanesulfonic acid hydrates provide a well-defined system to study proton dissociation and transport in perfluorosulfonic acid membranes, typically used as the electrolyte in hydrogen fuel cells, in the limit of minimal water. The triflic acid pentahydrate crystal (CF(3)SO(3)H·5H(2)O) is sufficiently aqueous that it contains an extended three-dimensional water network. Despite it being extended, however, long-range proton transport along the network is structurally unfavorable and would require considerable rearrangement. Nevertheless, the triflic acid pentahydrate crystal system can provide a clear picture of the preferred locations of local protonic defects in the water network, which provides insights about related structures in the disordered, low-hydration environment of perfluorosulfonic acid membranes. Ab initio molecular dynamics simulations reveal that the proton defect is most likely to transfer to the closest water that has the expected presolvation and only contains water in its first solvation shell. Unlike the tetrahydrate of triflic acid (CF(3)SO(3)H·4H(2)O), there is no evidence of the proton preferentially transferring to a water molecule bridging two of the sulfonate groups. However, this could be an artifact of the crystal structure since the only such water molecule is separated from the proton by long O-O distances. Hydrogen bonding criteria, using the two-dimensional potential of mean force, are extracted. Radial distribution functions, free energy profiles, radii of gyration, and the root-mean-square displacement computed from ab initio path integral molecular dynamics simulations reveal that quantum effects do significantly extend the size of the protonic defect and increase the frequency of proton transfer events by nearly 15%. The calculated IR spectra confirm that the dominant protonic defect mostly exists as an Eigen cation but contains some Zundel ion characteristics. Chain lengths and ring sizes determined from the

  20. Nutritional and Hormonal Regulation of Citrate and Carnitine/Acylcarnitine Transporters: Two Mitochondrial Carriers Involved in Fatty Acid Metabolism

    PubMed Central

    Giudetti, Anna M.; Stanca, Eleonora; Siculella, Luisa; Gnoni, Gabriele V.; Damiano, Fabrizio

    2016-01-01

    The transport of solutes across the inner mitochondrial membrane is catalyzed by a family of nuclear-encoded membrane-embedded proteins called mitochondrial carriers (MCs). The citrate carrier (CiC) and the carnitine/acylcarnitine transporter (CACT) are two members of the MCs family involved in fatty acid metabolism. By conveying acetyl-coenzyme A, in the form of citrate, from the mitochondria to the cytosol, CiC contributes to fatty acid and cholesterol synthesis; CACT allows fatty acid oxidation, transporting cytosolic fatty acids, in the form of acylcarnitines, into the mitochondrial matrix. Fatty acid synthesis and oxidation are inversely regulated so that when fatty acid synthesis is activated, the catabolism of fatty acids is turned-off. Malonyl-CoA, produced by acetyl-coenzyme A carboxylase, a key enzyme of cytosolic fatty acid synthesis, represents a regulator of both metabolic pathways. CiC and CACT activity and expression are regulated by different nutritional and hormonal conditions. Defects in the corresponding genes have been directly linked to various human diseases. This review will assess the current understanding of CiC and CACT regulation; underlining their roles in physio-pathological conditions. Emphasis will be placed on the molecular basis of the regulation of CiC and CACT associated with fatty acid metabolism. PMID:27231907

  1. Role of oxidative stress and the activity of ethylene biosynthetic enzymes on the formation of spongy tissue in 'Alphonso' mango.

    PubMed

    Nagamani, J E; Shivashankara, K S; Roy, T K

    2010-06-01

    Spongy tissue formation in 'Alphonso' mangoes (Mangifera indica L) is a major national problem leading to loss for farmers and traders. Spongy tissue is whitish sponge like tissue formed near the seed with insipid taste and off odour. Lipid peroxidation of membranes as studied by malondialdehyde formation was significantly higher in spongy tissue. Activities of antioxidative enzymes like superoxide dismutase, catalase, peroxidase and polyphenol oxidase were lower in spongy tissue. Among the antioxidative enzymes, activities of catalase and peroxidases were severely reduced leading to membrane damage in spongy tissue. A significant reduction in 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase and accumulation of ACC was also observed in spongy tissue. However, ACC synthase activity in spongy tissue was more compared to healthy tissue. Results indicate that the membrane peroxidation leading to lower activity of ACC oxidase might lead to the formation of spongy tissue in 'Alphonso' mango.

  2. Optimatization of transient transformation methods to study gene expression in Musa acuminata (AAA group) cultivar Ambon Lumut

    NASA Astrophysics Data System (ADS)

    Prayuni, Kinasih; Dwivany, Fenny M.

    2015-09-01

    Banana is classified as a climateric fruit, whose ripening is regulated by ethylene. Ethylene is synthesized from ACC (1-aminocyclopropane-1-carboxylic acid) by ACC oxidase enzyme which is encoded by ACO gene. Controling an important gene expression in ethylene biosynthesis pathway has became a target to delay the ripening process. Therefore in the previous study we have designed a MaACO-RNAi construct to control MaACO gene expression. In this research, we study the effectiveness of different transient transformation methods to deliver the construct. Direct injection, with or no vaccum infiltration methods were used to deliver MaACO-RNAi construct. All of the methods succesfully deliver the construct into banana fruits based on RT-PCR result.

  3. Enterobacter asburiae KUNi5, a Nickel Resistant Bacterium for Possible Bioremediation of Nickel Contaminated Sites.

    PubMed

    Paul, Anirudha; Mukherjee, Samir Kumar

    2016-01-01

    Nickel resistant bacterial strain Enterobacter asburiae KUNi5 was isolated and showed resistance up to 15 mM and could remove Ni optimally better at 37 degrees C and pH 7. Maximum removal was found at initial concentration of 0.5 to 2 mM, however, growth and Ni removal were affected by other heavy metals. Major amount of the metal was accumulated in the membrane fractions and certain negatively charged groups were found responsible for Ni binding. KUNi5 could also produce 1-aminocyclopropane-1-carboxylate deaminase, indole-acetic acid and siderophore. It seems that KUNi5 could be a possible candidate for Ni detoxification and plant growth promotion in Ni-contaminated field.

  4. Plant growth-promoting and rhizosphere-competent Acinetobacter rhizosphaerae strain BIHB 723 from the cold deserts of the Himalayas.

    PubMed

    Gulati, Arvind; Vyas, Pratibha; Rahi, Praveen; Kasana, Ramesh Chand

    2009-04-01

    A phosphate-solubilizing bacterial strain BIHB 723 isolated from the rhizosphere of Hippophae rhamnoides was identified as Acinetobacter rhizosphaerae on the basis of phenotypic characteristics, carbon source utilization pattern, fatty acid methyl esters analysis, and 16S rRNA gene sequence. The strain exhibited the plant growth-promoting attributes of inorganic and organic phosphate solubilization, auxin production, 1-aminocyclopropane-1-carboxylate deaminase activity, ammonia generation, and siderophore production. A significant increase in the growth of pea, chickpea, maize, and barley was recorded for inoculations under controlled conditions. Field testing with the pea also showed a significant increment in plant growth and yield. The rifampicin mutant of the bacterial strain effectively colonized the pea rhizosphere without adversely affecting the resident microbial populations.

  5. Kinetics of shoot inversion-induced ethylene production in Pharbitis nil

    NASA Technical Reports Server (NTRS)

    Prasad, T. K.; Cline, M. G.

    1986-01-01

    Shoot inversion promotes a significant increase in ethylene production in the inverted part of the Pharbitis nil main shoot. The latent period for shoot inversion-induced ethylene production is ca. 2.75 h. Our results indicate that the shoot-inversion ethylene response is not persistent and can be terminated and rapidly reinitiated by appropriate alteration of the orientation of the main shoot regardless of prolonged previous exposures of the shoot to various orientations. The time course of the production of ACC (1-aminocyclopropane-1-carboxylic acid), the immediate precursor of ethylene, follows a pattern similar to that of ethylene during the various alterations of shoot orientation. Excised stem segments and intact stems are capable of induction, inhibition, and reinduction of ethylene evolution. Ethylene production reported here for shoot inversion does not result from segmenting (wounding) of the tissue.

  6. Plant growth-promoting traits of yeasts isolated from the phyllosphere and rhizosphere of Drosera spatulata Lab.

    PubMed

    Fu, Shih-Feng; Sun, Pei-Feng; Lu, Hsueh-Yu; Wei, Jyuan-Yu; Xiao, Hong-Su; Fang, Wei-Ta; Cheng, Bai-You; Chou, Jui-Yu

    2016-03-01

    Microorganisms can promote plant growth through direct and indirect mechanisms. Compared with the use of bacteria and mycorrhizal fungi, the use of yeasts as plant growth-promoting (PGP) agents has not been extensively investigated. In this study, yeast isolates from the phyllosphere and rhizosphere of the medicinally important plant Drosera spatulata Lab. were assessed for their PGP traits. All isolates were tested for indole-3-acetic acid-, ammonia-, and polyamine-producing abilities, calcium phosphate and zinc oxide solubilizing ability, and catalase activity. Furthermore, the activities of siderophore, 1-aminocyclopropane-1-carboxylate deaminase, and fungal cell wall-degrading enzymes were assessed. The antagonistic action of yeasts against pathogenic Glomerella cingulata was evaluated. The cocultivation of Nicotiana benthamiana with yeast isolates enhanced plant growth, indicating a potential yeast-plant interaction. Our study results highlight the potential use of yeasts as plant biofertilizers under controlled and field conditions.

  7. Recycling of 5'-methylthioadenosine-ribose carbon atoms into methionine in tomato tissue in relation to ethylene production.

    PubMed

    Wang, S Y; Adams, D O; Lieberman, M

    1982-07-01

    The ribose moiety of 5'-methylthioadenosine (MTA) is metabolized to form the four-carbon unit (2-aminobutyrate) of methionine in tomato tissue (Lycopersicon esculentum Mill., cv. Pik Red). When [U-(14)C-adenosine] MTA was administered to tomato tissue slices, label was recovered in 5-methylthioribose (MTR), methionine, 1-aminocyclopropane-1-carboxylic acid (ACC), C(2)H(4) and other unidentified compounds. However, when [U-(14)C-ribose]MTR was administered, radioactivities were recovered in methionine, ACC and C(2)H(4), but not MTA. This suggests that C(2)H(4) formed in tomato pericarp tissue may be derived from the ribose portion of MTA via MTR, methionine and ACC. The conversion of MTR to methionine is not inhibited by aminoethoxyvinylglycine (AVG), but is O(2) dependent. These data present a new salvage pathway for methionine biosynthesis which may be important in relation to polyamine and ethylene biosynthesis in tomato tissue.

  8. Selenium delays tomato fruit ripening by inhibiting ethylene biosynthesis and enhancing the antioxidant defense system.

    PubMed

    Zhu, Zhu; Chen, Yanli; Shi, Guoqing; Zhang, Xueji

    2017-03-15

    The antioxidant activity of selenium (Se) detoxifies reactive oxygen species (ROS) in plants and animals. In the present study, we elucidated the mechanism underlying Se induced fruit development and ripening. Our study showed that foliar pretreatment with 1mgL(-1) sodium selenate effectively delayed fruit ripening and maintained fruit quality. Gene expression studies revealed that the repression of ethylene biosynthetic genes 1-aminocyclopropane-1-carboxylic acid (ACC) synthase and ACC oxidase decreased ethylene production and respiration rate. Moreover, Se treatment probably boosted the antioxidant defense system to reduce ROS generation and membrane damage. The enhanced antioxidative effect was attributed to higher glutathione content and increased activity of enzymes such as glutathione peroxidase and glutathione reductase. The upregulation of respiratory burst oxidase homologue genes in tomato fruit may also contribute to the enhanced antioxidative effect. Selenium treatment represents a promising strategy for delaying ripening and extending the shelf life of tomato fruit.

  9. Homology Modeling of Human γ-Butyric Acid Transporters and the Binding of Pro-Drugs 5-Aminolevulinic Acid and Methyl Aminolevulinic Acid Used in Photodynamic Therapy

    PubMed Central

    Baglo, Yan; Gabrielsen, Mari; Sylte, Ingebrigt; Gederaas, Odrun A.

    2013-01-01

    Photodynamic therapy (PDT) is a safe and effective method currently used in the treatment of skin cancer. In ALA-based PDT, 5-aminolevulinic acid (ALA), or ALA esters, are used as pro-drugs to induce the formation of the potent photosensitizer protoporphyrin IX (PpIX). Activation of PpIX by light causes the formation of reactive oxygen species (ROS) and toxic responses. Studies have indicated that ALA and its methyl ester (MAL) are taken up into the cells via γ-butyric acid (GABA) transporters (GATs). Uptake via GATs into peripheral sensory nerve endings may also account for one of the few adverse side effects of ALA-based PDT, namely pain. In the present study, homology models of the four human GAT subtypes were constructed using three x-ray crystal structures of the homologous leucine transporter (LeuT) as templates. Binding of the native substrate GABA and the possible substrates ALA and MAL was investigated by molecular docking of the ligands into the central putative substrate binding sites in the outward-occluded GAT models. Electrostatic potentials (ESPs) of the putative substrate translocation pathway of each subtype were calculated using the outward-open and inward-open homology models. Our results suggested that ALA is a substrate of all four GATs and that MAL is a substrate of GAT-2, GAT-3 and BGT-1. The ESP calculations indicated that differences likely exist in the entry pathway of the transporters (i.e. in outward-open conformations). Such differences may be exploited for development of inhibitors that selectively target specific GAT subtypes and the homology models may hence provide tools for design of therapeutic inhibitors that can be used to reduce ALA-induced pain. PMID:23762315

  10. The importance of the excitatory amino acid transporter 3 (EAAT3).

    PubMed

    Bjørn-Yoshimoto, Walden E; Underhill, Suzanne M

    2016-09-01

    The neuronal excitatory amino acid transporter 3 (EAAT3) is fairly ubiquitously expressed in the brain, though it does not necessarily maintain the same function everywhere. It is important in maintaining low local concentrations of glutamate, where its predominant post-synaptic localization can buffer nearby glutamate receptors and modulate excitatory neurotransmission and synaptic plasticity. It is also the main neuronal cysteine uptake system acting as the rate-limiting factor for the synthesis of glutathione, a potent antioxidant, in EAAT3 expressing neurons, while on GABAergic neurons, it is important in supplying glutamate as a precursor for GABA synthesis. Several diseases implicate EAAT3, and modulation of this transporter could prove a useful therapeutic approach. Regulation of EAAT3 could be targeted at several points for functional modulation, including the level of transcription, trafficking and direct pharmacological modulation, and indeed, compounds and experimental treatments have been identified that regulate EAAT3 function at different stages, which together with observations of EAAT3 regulation in patients is giving us insight into the endogenous function of this transporter, as well as the consequences of altered function. This review summarizes work done on elucidating the role and regulation of EAAT3.

  11. Investigating Mass Transport Limitations on Xylan Hydrolysis During Dilute Acid Pretreatment of Poplar

    SciTech Connect

    Mittal, Ashutosh; Pilath, Heid M.; Parent, Yves; Chatterjee, Siddharth G.; Donohoe, Bryon S.; Yarbrough, John M.; Himmel, Michael E.; Nimlos, Mark R.; Johnson, David K.

    2014-04-28

    Mass transport limitations could be an impediment to achieving high sugar yields during biomass pretreatment and thus be a critical factor in the economics of biofuels production. The objective of this work was to study the mass transfer restrictions imposed by the structure of biomass on the hydrolysis of xylan during dilute acid pretreatment of biomass. Mass transfer effects were studied by pretreating poplar wood at particle sizes ranging from 10 micrometers to 10 mm. This work showed a significant reduction in the rate of xylan hydrolysis in poplar when compared to the intrinsic rate of hydrolysis for isolated xylan that is possible in the absence of mass transfer. In poplar samples we observed no significant difference in the rates of xylan hydrolysis over more than two orders of magnitude in particle size. It appears that no additional mass transport restrictions are introduced by increasing particle size from 10 micrometers to 10 mm. This work suggests that the rates of xylan hydrolysis in biomass particles are limited primarily by the diffusion of hydrolysis products out of plant cell walls. A mathematical description is presented to describe the kinetics of xylan hydrolysis that includes transport of the hydrolysis products through biomass into the bulk solution. The modeling results show that the effective diffusion coefficient of the hydrolysis products in the cell wall is several orders of magnitude smaller than typical values in other applications signifying the role of plant cell walls in offering resistance to diffusion of the hydrolysis products.

  12. Fate and transport of glyphosate and aminomethylphosphonic acid in surface waters of agricultural basins

    USGS Publications Warehouse

    Coupe, R.H.; Kalkhoff, S.J.; Capel, P.D.; Gregoire, C.

    2012-01-01

    Background: Glyphosate [N-(phosphonomethyl)glycine] is a herbicide used widely throughout the world in the production of many crops and is heavily used on soybeans, corn and cotton. Glyphosate is used in almost all agricultural areas of the United States, and the agricultural use of glyphosate has increased from less than 10 000 Mg in 1992 to more than 80 000 Mg in 2007. The greatest intensity of glyphosate use is in the midwestern United States, where applications are predominantly to genetically modified corn and soybeans. In spite of the increase in usage across the United States, the characterization of the transport of glyphosate and its degradate aminomethylphosphonic acid (AMPA) on a watershed scale is lacking. Results: Glyphosate and AMPA were frequently detected in the surface waters of four agricultural basins. The frequency and magnitude of detections varied across basins, and the load, as a percentage of use, ranged from 0.009 to 0.86% and could be related to three general characteristics: source strength, rainfall runoff and flow route. Conclusions: Glyphosate use in a watershed results in some occurrence in surface water; however, the watersheds most at risk for the offsite transport of glyphosate are those with high application rates, rainfall that results in overland runoff and a flow route that does not include transport through the soil. ?? 2011 Society of Chemical Industry.

  13. Numerical simulations of ethacrynic acid transport from precorneal region to trabecular meshwork.

    PubMed

    Lin, Cheng-Wen; Yuan, Fan

    2010-03-01

    Topical application of drugs for treatment of intraocular diseases is often limited by inadequate transport and induced toxicity in corneal tissues. To improve the drug delivery, a mathematical model was developed to numerically simulate the transport process of ethacrynic acid (ECA), a potential drug for glaucoma treatment, in the anterior segment of a typical human eye. The model considered diffusion of ECA in all tissues and the aqueous humor (AH) as well as convection of ECA in the AH. The simulation results showed that ECA concentration in the eye depended on the rate of AH production, the half-life of ECA in the precorneal tear film, and the transport parameters in the model. In addition, the main pathway for ECA clearance from the eye was the trabecular meshwork (TM) and the rate of clearance was approximately proportional to the AH production rate. The model predicted that the most effective approach to improving topical drug delivery was to prolong its half-life in the precorneal tear film. These simulation results and model prediction, which could be verified experimentally, might be useful for improving delivery of ECA and other therapeutic agents to the TM as well as other tissues in the anterior segment of the eye.

  14. Amino acid transport in schistosomes: Characterization of the permeaseheavy chain SPRM1hc.

    PubMed

    Krautz-Peterson, Greice; Camargo, Simone; Huggel, Katja; Verrey, François; Shoemaker, Charles B; Skelly, Patrick J

    2007-07-27

    Schistosomes are human parasitic flatworms that constitute an important public health problem globally. Adult parasites live in the bloodstream where they import nutrients such as amino acids across their body surface (the tegument). One amino acid transporter, Schistosome Permease 1 light chain, SPRM1lc, a member of the glycoprotein-associated family of transporters (gpaAT), has been characterized in schistosomes. Only a single member of the SLC3 family of glycoproteins that associate with gpaATs is found following extensive searching of the genomes of Schistosoma mansoni and S. japonicum. In this report, we characterize this schistosome permease heavy chain (SPRM1hc) gene and protein. The 72-kDa gene product is predicted to possess a single transmembrane domain, a (betaalpha)(8) (TIM barrel) conformation and a catalytic triad. Xenopus oocytes functionally expressing SPRM1hc with SPRM1lc import phenylalanine, arginine, lysine, alanine, glutamine, histidine, tryptophan, and leucine. Biochemical characterization demonstrates that in Xenopus extracts and in schistosome extracts SPRM1hc is associated into a high molecular weight complex with SPRM1lc that is disrupted by reducing agents. Quantitative real-time PCR and Western analysis demonstrate that SPRM1hc is expressed in each schistosome life stage examined (eggs, cercariae, schistosomula, adult males and females). SPRM1hc is widely distributed throughout adult male and female worms as determined by immunolocalization. Consistent with the hypothesis that SPRM1hc functions to facilitate nutrient uptake from host blood, immunogold electron microscopy confirms that the protein is distributed on the host-interactive tegumental membranes. We propose that surface-exposed, host-interactive, nutrient-transporting proteins like the SPRM1 heterodimer are promising vaccine candidates.

  15. Mechanisms underlying the transport and intracellular metabolism of acetic acid in the presence of glucose in the yeast Zygosaccharomyces bailii.

    PubMed

    Sousa, M J; Rodrigues, F; Côrte-Real, M; Leão, C

    1998-03-01

    Zygosaccharomyces bailii ISA 1307 displays biphasic growth in a medium containing a mixture of glucose (0.5%, w/v) and acetic acid (0.5%, w/v), pH 5.0 and 3.0. In cells harvested during the first growth phase, no activity of a mediated acetic acid transport system was found. Incubation of these cells in phosphate buffer with cycloheximide for 1 h restored activity of an acetic acid carrier which behaved as the one present in glucose-grown cells. These results indicated that the acetic acid carrier is probably present in cells from the first growth phase of the mixed medium but its activity was affected by the presence of acetic acid in the culture medium. In glucose-grown cells, after incubation in phosphate buffer with glucose and acetic acid, the activity of the acetic acid carrier decreased significantly with increased acid concentration in the incubation buffer. At acid concentrations above 16.7 mM, no significant carrier activity was detectable. Furthermore, the intracellular acid concentration increased with the extracellular one and was inversely correlated with the activity of the acetic acid carrier, suggesting the involvement of a feedback inhibition mechanism in the regulation of the carrier. During biphasic growth, the first phase corresponded to a simultaneous consumption of glucose and acetic acid, and the second to the utilization of the remaining acid. The enzyme acetyl-CoA synthetase was active in both growth phases, even in the presence of glucose. Activity of isocitrate lyase and phosphoenolpyruvate carboxykinase was found only in acetic-acid-grown cells. Thus it appears that both membrane transport and acetyl-CoA synthetase and their regulation are important for Z. bailii to metabolize acetic acid in the presence of glucose. This fact correlates with the high resistance of this yeast to environments with mixtures of sugars and acetic acid such as those often present during wine fermentation.

  16. Concentration-dependent mode of interaction of angiotensin II receptor blockers with uric acid transporter.

    PubMed

    Iwanaga, Takashi; Sato, Masanobu; Maeda, Tomoji; Ogihara, Toshio; Tamai, Ikumi

    2007-01-01

    Serum uric acid (SUA) is currently recognized as a risk factor for cardiovascular disease. It has been reported that an angiotensin II receptor blocker (ARB), losartan, decreases SUA level, whereas other ARBs, such as candesartan, have no lowering effect. Because the renal uric acid transporter (URAT1) is an important factor controlling the SUA level, we examined the involvement of URAT1 in those differential effects of various ARBs on SUA level at clinically relevant concentrations. This study was done by using URAT1-expressing Xenopus oocytes. Losartan, pratosartan, and telmisartan exhibited cis-inhibitory effects on the uptake of uric acid by URAT1, whereas at higher concentrations, only telmisartan did, and these ARBs reduced the uptake in competitive inhibition kinetics. On the other hand, candesartan, EXP3174 [2-n-butyl-4-chloro-1-[(2'-(1H-tetrazol-5-yl)biphenyl-4-yI)methyl]imidazole-5-carboxylic acid] (a major metabolite of losartan), olmesartan, and valsartan were not inhibitory. Preloading of those ARBs in the oocytes enhanced the URAT1-mediated uric acid uptake, showing a trans-stimulatory effect. The present study is a first demonstration of the differential effects of ARBs on URAT1 that some ARBs are both cis-inhibitory and trans-stimulatory, depending on concentration, whereas others exhibit either a trans-stimulatory or cis-inhibitory effect alone, which could explain the clinically observed differential effects of ARBs on SUA level. Furthermore, it was found that such differential effects of ARBs on URAT1 could be predicted from the partial chemical structures of ARBs, which will be useful information for the appropriate use and development of ARBs without an increase of SUA.

  17. Amino Acid Residues in the Putative Transmembrane Domain 11 of Human Organic Anion Transporting Polypeptide 1B1 Dictate Transporter Substrate Binding, Stability, and Trafficking.

    PubMed

    Hong, Weifang; Wu, Zhixuan; Fang, Zihui; Huang, Jiujiu; Huang, Hong; Hong, Mei

    2015-12-07

    Organic anion transporting polypeptides (OATPs, gene symbol SLCO) are membrane proteins that mediate the sodium-independent transport of a wide range of endogenous and exogenous compounds. Due to their broad substrate specificity, wide tissue distribution, and involvement in drug-drug interactions, OATPs have been considered as key players in drug absorption, distribution, and excretion. Transmembrane domains (TMs) are crucial structural features involved in proper functions of many transporters. According to computer-based modeling and previous studies of our laboratory and others, TM11 of OATP1B1 may face the substrate interaction pocket and thus play an important role in the transport function of the protein. Alanine-scanning of the transmembrane domain identified seven critical amino acid residues within the region. Further analysis revealed that alanine substitution of these residues resulted in reduced protein stability, which led to significantly decreased protein expression on the plasma membrane. In addition, all mutants exhibited an altered Km for ES uptake (either high affinity or low affinity component, or both), though Km for taurocholate transport only changed in R580A, G584A, and F591A. These results suggested that critical residues in TM11 not only affect protein stability of the transporter, but its interaction with substrates as well. The identification of seven essential residues out of 21 TM amino acids highlighted the importance of this transmembrane domain in the proper function of OATP1B1.

  18. Fluid transport by the cornea endothelium is dependent on buffering lactic acid efflux.

    PubMed

    Li, Shimin; Kim, Edward; Bonanno, Joseph A

    2016-07-01

    Maintenance of corneal hydration is dependent on the active transport properties of the corneal endothelium. We tested the hypothesis that lactic acid efflux, facilitated by buffering, is a component of the endothelial fluid pump. Rabbit corneas were perfused with bicarbonate-rich (BR) or bicarbonate-free (BF) Ringer of varying buffering power, while corneal thickness was measured. Perfusate was collected and analyzed for lactate efflux. In BF with no added HEPES, the maximal corneal swelling rate was 30.0 ± 4.1 μm/h compared with 5.2 ± 0.9 μm/h in BR. Corneal swelling decreased directly with [HEPES], such that with 60 mM HEPES corneas swelled at 7.5 ± 1.6 μm/h. Perfusate [lactate] increased directly with [HEPES]. Similarly, reducing the [HCO3 (-)] increased corneal swelling and decreased lactate efflux. Corneal swelling was inversely related to Ringer buffering power (β), whereas lactate efflux was directly related to β. Ouabain (100 μM) produced maximal swelling and reduction in lactate efflux, whereas carbonic anhydrase inhibition and an monocarboxylic acid transporter 1 inhibitor produced intermediate swelling and decreases in lactate efflux. Conversely, 10 μM adenosine reduced the swelling rate to 4.2 ± 0.8 μm/h and increased lactate efflux by 25%. We found a strong inverse relation between corneal swelling and lactate efflux (r = 0.98, P < 0.0001). Introducing lactate in the Ringer transiently increased corneal thickness, reaching a steady state (0 ± 0.6 μm/h) within 90 min. We conclude that corneal endothelial function does not have an absolute requirement for bicarbonate; rather it requires a perfusing solution with high buffering power. This facilitates lactic acid efflux, which is directly linked to water efflux, indicating that lactate flux is a component of the corneal endothelial pump.

  19. Plasmalemmal and Vesicular γ-Aminobutyric Acid Transporter Expression in the Developing Mouse Retina

    PubMed Central

    GUO, CHENYING; STELLA, SALVATORE L.; HIRANO, ARLENE A.; BRECHA, NICHOLAS C.

    2009-01-01

    Plasmalemmal and vesicular γ-aminobutyric acid (GABA) transporters influence neurotransmission by regulating high-affinity GABA uptake and GABA release into the synaptic cleft and extracellular space. Postnatal expression of the plasmalemmal GABA transporter-1 (GAT-1), GAT-3, and the vesicular GABA/glycine transporter (VGAT) were evaluated in the developing mouse retina by using immunohistochemistry with affinity-purified antibodies. Weak transporter immunoreactivity was observed in the inner retina at postnatal day 0 (P0). GAT-1 immunostaining at P0 and at older ages was in amacrine and displaced amacrine cells in the inner nuclear layer (INL) and ganglion cell layer (GCL), respectively, and in their processes in the inner plexiform layer (IPL). At P10, weak GAT-1 immunostaining was in Müller cell processes. GAT-3 immunostaining at P0 and older ages was in amacrine cells and their processes, as well as in Müller cells and their processes that extended radially across the retina. At P10, Müller cell somata were observed in the middle of the INL. VGAT immunostaining was present at P0 and older ages in amacrine cells in the INL as well as processes in the IPL. At P5, weak VGAT immunostaining was also observed in horizontal cell somata and processes. By P15, the GAT and VGAT immunostaining patterns appear similar to the adult immunostaining patterns; they reached adult levels by about P20. These findings demonstrate that GABA uptake and release are initially established in the inner retina during the first postnatal week and that these systems subsequently mature in the outer retina during the second postnatal week. PMID:18975268

  20. Transport in Porous Media of Poly(Acrylic Acid) Coated Ferrihydrite Nanoparticles

    NASA Astrophysics Data System (ADS)

    Jaffe, P. R.; Xiang, A.; Koel, B. E.

    2012-12-01

    Augmentation of soils with iron to enhance biological processes such as uranium reduction via iron reducing bacteria, e.g., Geobacter sp., might be achieved via the injection of iron nanoparticles into the subsurface. The challenge is to make these nanoparticles transportable in the subsurface while not affecting the iron bioavailability. Poorly crystallized 2-line ferrihydrite iron oxide nanoparticles were synthesized and coated with different amounts of poly(acrylic acid) polymers (Na-PAA6K or Na-PAA140K). Analyses were then performed on these particles, including sorption/desorption of the polymer onto the iron nanoparticles, particle size, zeta potential, transport in sand and soil columns, and bioavailabity of the Fe(III) in the absence and presence of the coating to iron reducing organisms. Results showed that at pH values of environmental relevance, the zeta potential of the particles varied from about 3 mV (pH=8.2) for the non-coated particles to about -30 mV for the particles coated with the polymers to their highest sorption capacity. The coated particle diameter was shown to be in the range of 200 nm. Column transport experiments showed that for the highest polymer coating the nanoparticle breakthrough was virtually identical to that of bromide, while significant filtration was observed for particles with an intermediate coating, and complete particle removal via filtration was observed for the non-coated particles. These results held for sand as well as for soil, which had been previously characterized, from a field site at Rifle, CO. Bioavailability experiments showed no difference in the iron reduction rate between the untreated and treated nanoparticles. These results show that it is possible to manufacture iron nanoparticles to enhance biological iron reduction, and that the transport properties of these treated particles is tunable so that a desired retention in the porous medium can be achieved.

  1. Regulation of dipeptide transport in Saccharomyces cerevisiae by micromolar amino acid concentrations

    SciTech Connect

    Island, M.D.; Naider, F.; Becker, J.M.

    1987-05-01

    Prototrophic Saccharomyces cerevisiae X2180, when grown on unsupplemented minimal medium, displayed little sensitivity to ethionine- and m-fluorophenylalanine-containing toxic dipeptides. The authors examined the influence of the 20 naturally occurring amino acids on sensitivity to toxic dipeptides. A number of these amino acids, at concentrations as low as 1 ..mu..M (leucine and tryptophan), produced large increases in sensitivity to leucyl-ethionine, alanyl-ethionine, and leucyl-m-fluorophenylalanine. Sensitivity to ethionine and m-fluorophenylalanine remained high under either set of conditions. The addition of 0.15 mM tryptophan to a growing culture resulted in the induction of dipeptide transport, as indicated by a 25-fold increase in the initial rate of L-leucyl-L(/sup 3/H)leucine accumulation. This increase, which was prevented by the addition of cycloheximide, began within 30 min and peaked approximately 240 min after a shift to medium containing tryptophan. Comparable increases in peptidase activity were not apparent in crude cell extracts form tryptophan-induced cultures. The authors concluded that S. cerevisiae possesses a specific mechanism for the induction of dipeptidetransport that can respond to very low concentrations of amino acids.

  2. Mechanism of proton transport in ionic-liquid-doped perfluorosulfonic acid membranes.

    PubMed

    Kumar, Milan; Venkatnathan, Arun

    2013-11-21

    Ionic-liquid-doped perfluorosulfonic acid membranes (PFSA) are promising electrolytes for intermediate/high-temperature fuel cell applications. In the present study, we examine proton-transport pathways in a triethylammonium-triflate (TEATF) ionic liquid (IL)-doped Nafion membrane using quantum chemistry calculations. The IL-doped membrane matrix contains triflic acid (TFA), triflate anions (TFA(-)), triethylamine (TEA), and triethylammonium cations (TEAH(+)). Results show that proton abstraction from the sulfonic acid end groups in the membrane by TFA(-) facilitates TEAH(+) interaction with the side-chains. In the IL-doped PFSA membrane matrix, proton transfer from TFA to TEA and TFA to TFA(-) occurs. However, proton transfer from a tertiary amine cation (TEAH(+)) to a tertiary amine (TEA) does not occur without an interaction with an anion (TFA(-)). An anion interaction with the amine increases its basicity, and as a consequence, it takes a proton from a cation either instantly (if the cation is freely moving) or with a small activation energy barrier of 2.62 kcal/mol (if the cation is interacting with another anion). The quantum chemistry calculations predict that anions are responsible for proton-exchange between cations and neutral molecules of a tertiary amine. Results from this study can assist the experimental choice of IL to provide enhanced proton conduction in PFSA membrane environments.

  3. The Fate and Transport of Glyphosate and its Degradation Product, Aminomethylphosphonic Acid (AMPA), in Water

    NASA Astrophysics Data System (ADS)

    Scribner, E.; Meyer, M. T.

    2006-05-01

    Since 2001, the U.S. Geological Survey (USGS) has investigated the fate and transport of glyphosate and its degradation product, aminomethylphosphonic acid (AMPA), in surface water, and more recently in tile-drain flow, soil, and wet deposition. According to U.S. Environmental Protection Agency sources, glyphosate is among the world's most widely used herbicides. In 2004, glyphosate usage estimates indicated that between 103 and 113 million pounds were applied annually to crops in the United States. The use of glyphosate over a wide geographic area suggests that this herbicide might be a potential concern for air, water, and soil quality as well as measured in high concentrations in streams; therefore, it is important to monitor its fate and transport in ground-water/surface-water systems. National, regional, and field-scale studies conducted by the USGS National Water-Quality Assessment and Toxic Substance Hydrology Programs have studied the fate and transport of glyphosate in overland flow, tile- drain flow, surface water, soil, and wet-deposition samples. The samples were analyzed for glyphosate and AMPA by using derivatization and online solid-phase extraction with liquid chromatography/mass spectrometry (LC/MS) and LC/MS/MS methods developed by the USGS Organic Geochemistry Research Laboratory in Lawrence, Kansas. During spring, summer, and fall 2002 runoff periods in 50 Midwestern streams, glyphosate was detected at or above the 0.10 micrograms per liter detection limit in 35, 41, and 31 percent of samples, respectively. AMPA was detected in 53, 82, and 75 percent of samples, respectively. Results of 128 samples from a field study showed that glyphosate was transported as a narrow high- concentration pulse during the first period of runoff after application and that the concentration of glyphosate in runoff was greater than the concentration of AMPA. In tile-drain flow, glyphosate and AMPA were transported in a broad low-concentration pulse during these same

  4. Amino acid transport system - A substrate predicts the therapeutic effects of particle radiotherapy

    PubMed Central

    Watanabe, Mariko; Suzuki, Hiroyuki; Furusawa, Yoshiya; Arano, Yasushi

    2017-01-01

    L-[methyl-11C]Methionine (11C-Met) is useful for estimating the therapeutic efficacy of particle radiotherapy at early stages of the treatment. Given the short half-life of 11C, the development of longer-lived 18F- and 123I-labeled probes that afford diagnostic information similar to 11C-Met, are being sought. Tumor uptake of 11C-Met is involved in many cellular functions such as amino acid transport System-L, protein synthesis, and transmethylation. Among these processes, since the energy-dependent intracellular functions involved with 11C-Met are more reflective of the radiotherapeutic effects, we evaluated the activity of the amino acid transport System-A as an another energy-dependent cellular function in order to estimate radiotherapeutic effects. In this study, using a carbon-ion beam as the radiation source, the activity of System-A was evaluated by a specific System-A substrate, alpha-[1-14C]-methyl-aminoisobutyric acid (14C-MeAIB). Cellular growth and the accumulation of 14C-MeAIB or 14C-Met were evaluated over time in vitro in cultured human salivary gland (HSG) tumor cells (3-Gy) or in vivo in murine xenografts of HSG tumors (6- or 25-Gy) before and after irradiation with the carbon-ion beam. Post 3-Gy irradiation, in vitro accumulation of 14C-Met and 14C-MeAIB decreased over a 5-day period. In xenografts of HSG tumors in mice, tumor re-growth was observed in vivo on day-10 after a 6-Gy irradiation dose, but no re-growth was detected after the 25-Gy irradiation dose. Consistent with the growth results, the in vivo tumor accumulation of 14C-MeAIB did not decrease after the 6-Gy irradiation dose, whereas a significant decrease was observed after the 25-Gy irradiation dose. These results indicate that the activity of energy dependent System-A transporter may reflect the therapeutic efficacy of carbon-ion radiotherapy and suggests that longer half-life radionuclide-labeled probes for System-A may also provide widely available probes to evaluate the effects

  5. Facilitated transport of titanium dioxide nanoparticles by humic substances in saturated porous media under acidic conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Ruichang; Zhang, Haibo; Tu, Chen; Hu, Xuefeng; Li, Lianzhen; Luo, Yongming; Christie, Peter

    2015-04-01

    The transport behavior of titanium dioxide nanoparticles (TiO2 NPs, 30 nm in diameter) was studied in well-defined porous media composed of clean quartz sand over a range of solution chemistry under acidic conditions. Transport of TiO2 NPs was dramatically enhanced by humic substances (HS) at acidic pH (4.0, 5.0 and 6.0), even at a low HS concentration of 0.5 mg L-1. Facilitated transport of TiO2 NPs was likely attributable to the increased stability of TiO2 NPs and repulsive interaction between TiO2 NPs and quartz sands due to the adsorbed HS. The mobility of TiO2 NPs was also increased with increasing pH from 4.0 to 6.0. Although transport of TiO2 NPs was insensitive to low ionic strength, it was significantly inhibited by high concentrations of NaCl and CaCl2. In addition, calculated Derjaguin-Landau-Verwey-Overbeek (DLVO) interaction energy indicated that high energy barriers were responsible for the high mobility of TiO2 NPs, while the secondary energy minimum could play an important role in the retention of TiO2 NPs at 100 mmol L-1 NaCl. Straining and gravitational settlement of larger TiO2 NPs aggregates at 1 mg L-1 HS, pH 5.0, and 2 mmol L-1 CaCl2 could be responsible for the significant retention even in the presence of high energy barriers. Moreover, more favorable interaction between approaching TiO2 NPs and TiO2 NPs that had been already deposited on the collector resulted in a ripening-shape breakthrough curve at 2 mmol L-1 CaCl2. Overall, a combination of mechanisms including DLVO-type force, straining, and physical filtration was involved in the retention of TiO2 NPs over the range of solution chemistry examined in this study.

  6. Functional characterization of folic acid transport in the intestine of the laying hen using the everted intestinal sac model.

    PubMed

    Tactacan, G B; Rodriguez-Lecompte, J C; Karmin, O; House, J D

    2011-01-01

    Absorption at the level of the intestine is likely a primary regulatory mechanism for the deposition of dietary supplemented folic acid into the chicken egg. Therefore, factors affecting the intestinal transport of folic acid in the laying hen may influence the level of egg folate concentrations. To this end, a series of experiments using intestinal everted sacs were conducted to characterize intestinal folic acid absorption processes in laying hens. Effects of naturally occurring folate derivatives (5-methyl and 10-formyltetrahydrofolate) as well as heme on folic acid absorption were also investigated. Folic acid absorption was measured based on the rate of uptake of (3)H-labeled folic acid in the everted sac from various segments of the small and large intestines. Folic acid concentration, incubation length, and pH condition were optimized before the performance of uptake experiments. The distribution profile of folic acid transport along the intestine was highest in the upper half of the small intestine. Maximum uptake rate (nmol·100 g tissue(-1)·min(-1)) was observed in the duodenum (20.6 ± 1.9) and jejunum (22.3 ± 2.0) and decreased significantly in the ileum (15.3 ± 1.1) and cecum (9.3 ± 0.9). Transport increased proportionately (P < 0.05) between 0.0001 and 0.1 µM folic acid. Above 0.1 µM, the slope of the regression line was not significantly different from zero (P < 0.137). Folic acid uptake in the jejunum showed a maximum rate of transport at pH 6.0, but was lowest at pH 7.5. The presence of 5-methyl and 10-formyltetrahydrofolate as well as heme impeded folic acid uptake, reducing intestinal folic acid absorption when added at concentrations ranging from 0 to 100 µM. Overall, these data indicated the presence of a folic acid transport system in the entire intestine of the laying hen. Uptake of folic acid in the cecum raises the likelihood of absorption of bacterial-derived folate.

  7. Analysis of acidity production during enhanced reductive dechlorination using a simplified reactive transport model

    NASA Astrophysics Data System (ADS)

    Brovelli, A.; Barry, D. A.; Robinson, C.; Gerhard, J. I.

    2012-07-01

    Build-up of fermentation products and hydrochloric acid at a contaminated site undergoing enhanced reductive dechlorination can result in groundwater acidification. Sub-optimal pH conditions can inhibit microbial activity and lead to reduced dechlorination rates. The extent of acidification likely to occur is site-specific and depends primarily on the extent of fermentation and dechlorination, the geochemical composition of soil and groundwater, and the pH-sensitivity of the active microbial populations. Here, the key chemical and physical mechanisms that control the extent of groundwater acidification in a contaminated site were examined, and the extent to which the remediation efficiency was affected by variations in groundwater pH was evaluated using a simplified process-based reactive-transport model. This model was applied successfully to a well-documented field site and was then employed in a sensitivity analysis to identify the processes likely to significantly influence acidity production and subsequent microbial inhibition. The accumulation of organic acids produced from the fermentation of the injected substrate was the main cause of the pH change. The concentration of dissolved sulphates controlled substrate utilisation efficiency because sulphate-reducing biomass competed with halo-respiring biomass for the fermentation products. It was shown further that increased groundwater velocity increases dilution and reduces the accumulation of acidic products. As a consequence, the flow rate corresponding to the highest remediation efficiency depends on the fermentation and dechlorination rates. The model enables investigation and forecasting of the extent and areal distribution of pH change, providing a means to optimise the application of reductive dechlorination for site remediation.

  8. Determination of thermodynamic and transport parameters of naphthenic acids and organic process chemicals in oil sand tailings pond water.

    PubMed

    Wang, Xiaomeng; Robinson, Lisa; Wen, Qing; Kasperski, Kim L

    2013-07-01

    Oil sand tailings pond water contains naphthenic acids and process chemicals (e.g., alkyl sulphates, quaternary ammonium compounds, and alkylphenol ethoxylates). These chemicals are toxic and can seep through the foundation of the tailings pond to the subsurface, potentially affecting the quality of groundwater. As a result, it is important to measure the thermodynamic and transport parameters of these chemicals in order to study the transport behavior of contaminants through the foundation as well as underground. In this study, batch adsorption studies and column experiments were performed. It was found that the transport parameters of these chemicals are related to their molecular structures and other properties. The computer program (CXTFIT) was used to further evaluate the transport process in the column experiments. The results from this study show that the transport of naphthenic acids in a glass column is an equilibrium process while the transport of process chemicals seems to be a non-equilibrium process. At the end of this paper we present a real-world case study in which the transport of the contaminants through the foundation of an external tailings pond is calculated using the lab-measured data. The results show that long-term groundwater monitoring of contaminant transport at the oil sand mining site may be necessary to avoid chemicals from reaching any nearby receptors.

  9. Envelope-binding domain in the cationic amino acid transporter determines the host range of ecotropic murine retroviruses.

    PubMed Central

    Albritton, L M; Kim, J W; Tseng, L; Cunningham, J M

    1993-01-01

    Infection of rodent cells by ecotropic type C retroviruses requires the expression of a cationic amino acid transporter composed of multiple membrane-spanning domains. By exchanging portions of cDNAs encoding the permissive mouse and nonpermissive human transporters and examining their abilities to specify virus infection upon expression in human 293 cells, we have identified the amino acid residues in the extracellular loop connecting the fifth and sixth membrane-spanning segments of the mouse transporter that are required for both envelope gp70 binding and infection. These findings strongly suggest that the role of the mouse transporter in determining infection is to provide an envelope-binding site. This role is analogous to those of host membrane proteins composed of a single membrane-spanning domain that serve as binding proteins or receptors for other enveloped viruses such as human immunodeficiency virus, Epstein-Barr virus, and murine and human coronaviruses. PMID:8445722

  10. A glial amino-acid transporter controls synapse strength and courtship in Drosophila.

    PubMed

    Grosjean, Yael; Grillet, Micheline; Augustin, Hrvoje; Ferveur, Jean-François; Featherstone, David E

    2008-01-01

    Mate choice is an evolutionarily critical decision that requires the detection of multiple sex-specific signals followed by central integration of these signals to direct appropriate behavior. The mechanisms controlling mate choice remain poorly understood. Here, we show that the glial amino-acid transporter genderblind controls whether Drosophila melanogaster males will attempt to mate with other males. Genderblind (gb) mutant males showed no alteration in heterosexual courtship or copulation, but were attracted to normally unappealing male species-specific chemosensory cues. As a result, genderblind mutant males courted and attempted to copulate with other Drosophila males. This homosexual behavior could be induced within hours using inducible RNAi, suggesting that genderblind controls nervous system function rather than its development. Consistent with this, and indicating that glial genderblind regulates ambient extracellular glutamate to suppress glutamatergic synapse strength in vivo, homosexual behavior could be turned on and off by altering glutamatergic transmission pharmacologically and/or genetically.

  11. Fatty Acid Transport Protein-2 inhibitor Grassofermata/CB5 protects cells against lipid accumulation and toxicity

    PubMed Central

    Saini, Nipun; Black, Paul N.; Montefusco, David; DiRusso, Concetta C.

    2015-01-01

    The inhibition of the fatty acid uptake into non-adipose tissues provides an attractive target for prevention of lipotoxicity leading to obesity-associated non-alcoholic fatty liver disease and type 2 diabetes. Fatty acid transport proteins (FATPs) are bifunctional proteins involved in the uptake and activation of fatty acids by esterification with coenzyme A. Here we characterize Grassofermata/CB5, previously identified as a fatty acid uptake inhibitor directed against HsFATP2. The compound was effective in inhibiting the uptake of fatty acids in the low micro-molar range (IC50 8–11μM) and prevented palmitate-mediated lipid accumulation and cell death in cell lines that are models for intestines, liver, muscle and pancreas. In adipocytes, uptake inhibition was less effective (IC50 58μM). Inhibition was specific for long chain fatty acids and was ineffective toward medium chain fatty acids, which are transported by diffusion. Kinetic analysis of Grassofermata-dependent FA transport inhibition verified a non-competitive mechanism. By comparison with Grassofermata, several atypical antipsychotic drugs previously implicated as inhibitors of FA uptake were ineffectual. In mice Grassofermata decreased absorption of 13C-oleate demonstrating its potential as a therapeutic agent. PMID:26284975

  12. Amino acid ester prodrugs conjugated to the α-carboxylic acid group do not display affinity for the L-type amino acid transporter 1 (LAT1).

    PubMed

    Rautio, Jarkko; Kärkkäinen, Jussi; Huttunen, Kristiina M; Gynther, Mikko

    2015-01-23

    L-type amino acid transporter (LAT1) is an intriguing target for carrier-mediated transport of drugs as it is highly expressed in the blood-brain barrier and also in various types of cancer. Several studies have proposed that in order for compounds to act as LAT1 substrates they should possess both negatively charged α-carboxyl and positively charged α-amino groups. However, in some reports, such as in two recent publications describing an isoleucine-quinidine ester prodrug (1), compounds having no free α-carboxyl group have been reported to exhibit high affinity for LAT1 in vitro. In the present study, 1 was synthesized and its affinity for LAT1 was evaluated both with an in situ rat brain perfusion technique and in the human breast cancer cell line MCF-7 in vitro. 1 showed no affinity for LAT1 in either model nor did it show any affinity for LAT2 in an in vitro study. Our results confirm the earlier reported requirements for LAT1 substrates. Thus drugs or prodrugs with substituted α-carboxyl group cannot bind to LAT with high affinity.

  13. Interactions between ethylene and auxin are crucial to the control of grape (Vitis vinifera L.) berry ripening

    PubMed Central

    2013-01-01

    Background Fruit development is controlled by plant hormones, but the role of hormone interactions during fruit ripening is poorly understood. Interactions between ethylene and the auxin indole-3-acetic acid (IAA) are likely to be crucial during the ripening process, since both hormones have been shown to be implicated in the control of ripening in a range of different fruit species. Results Grapevine (Vitis vinifera L.) homologues of the TRYPTOPHAN AMINOTRANSFERASE RELATED (TAR) and YUCCA families, functioning in the only characterized pathway of auxin biosynthesis, were identified and the expression of several TAR genes was shown to be induced by the pre-ripening application of the ethylene-releasing compound Ethrel. The induction of TAR expression was accompanied by increased IAA and IAA-Asp concentrations, indicative of an upregulation of auxin biosynthesis and conjugation. Exposure of ex planta, pre-ripening berries to the ethylene biosynthesis inhibitor aminoethoxyvinylglycine resulted in decreased IAA and IAA-Asp concentrations. The delayed initiation of ripening observed in Ethrel-treated berries might therefore represent an indirect ethylene effect mediated by increased auxin concentrations. During berry development, the expression of three TAR genes and one YUCCA gene was upregulated at the time of ripening initiation and/or during ripening. This increase in auxin biosynthesis gene expression was preceded by high expression levels of the ethylene biosynthesis genes 1-aminocyclopropane-1-carboxylate synthase and 1-aminocyclopropane-1-carboxylate oxidase. Conclusions In grape berries, members of both gene families involved in the two-step pathway of auxin biosynthesis are expressed, suggesting that IAA is produced through the combined action of TAR and YUCCA proteins in developing berries. The induction of TAR expression by Ethrel applications and the developmental expression patterns of auxin and ethylene biosynthesis genes indicate that elevated

  14. Vesicular γ-Aminobutyric Acid Transporter Expression in Amacrine and Horizontal Cells

    PubMed Central

    Cueva, Juan G.; Haverkamp, Silke; Reimer, Richard J.; Edwards, Robert; Wässle, Heinz; Brecha, Nicholas C.

    2010-01-01

    The vesicular γ-aminobutyric acid (GABA) transporter (VGAT), which transports the inhibitory amino acid transmitters GABA and glycine, is localized to synaptic vesicles in axon terminals. The localization of VGAT immunoreactivity to mouse and rat retina was evaluated with light and electron microscopy by using well-characterized VGAT antibodies. Specific VGAT immunoreactivity was localized to numerous varicose processes in all laminae of the inner plexiform layer (IPL) and to the outer plexiform layer (OPL). Amacrine cell somata characterized by weak VGAT immunoreactivity in the cytoplasm were located in the ganglion cell layer and proximal inner nuclear layer (INL) adjacent to the IPL. In rat retina, VGAT-immunoreactive cell bodies also contained GABA, glycine, or parvalbumin (PV) immunoreactivity, suggesting vesicular uptake of GABA or glycine by these cells. A few varicose VGAT-immunoreactive processes entered the OPL from the IPL. VGAT immunoreactivity in the OPL was predominantly localized to horizontal cell processes. VGAT and calcium binding protein-28K immunoreactivities (CaBP; a marker for horizontal cells) were colocalized in processes and terminals distributed to the OPL. Furthermore, VGAT immunoreactivity overlapped or was immediately adjacent to postsynaptic density-95 (PSD-95) immunoreactivity, which is prominent in photoreceptor terminals. Preem-bedding immunoelectron microscopy of mouse and rat retinae showed that VGAT immunoreactivity was localized to horizontal cell processes and their terminals. Immunoreactivity was distributed throughout the cytoplasm of the horizontal cell processes. Taken together, these findings demonstrate VGAT immunoreactivity in both amacrine and horizontal cell processes, suggesting these cells contain vesicles that accumulate GABA and glycine, possibly for vesicular release. PMID:11920703

  15. Expression and purification of a functional uric acid-xanthine transporter (UapA).

    PubMed

    Leung, James; Karachaliou, Mayia; Alves, Claudia; Diallinas, George; Byrne, Bernadette

    2010-07-01

    The Nucleobase-Ascorbate Transporters (NATs) family includes carriers with fundamental functions in uptake of key cellular metabolites, such as uric acid or vitamin C. The best studied example of a NAT transporter is the uric acid-xanthine permease (UapA) from the model ascomycete Aspergillus nidulans. Detailed genetic and biochemical analyses have revealed much about the mechanism of action of this protein; however, the difficulties associated with handling eukaryotic membrane proteins have limited efforts to elucidate the precise structure-function relationships of UapA by structural analysis. In this manuscript, we describe the heterologous overexpression of functional UapA as a fusion with GFP in different strains of Saccharomyces cerevisiae. The UapA-GFP construct expressed to 2.3 mg/L in a pep4Delta deletion strain lacking a key vacuolar endopeptidase and 3.8 mg/L in an npi1-1 mutant strain with defective Rsp5 ubiquitin ligase activity. Epifluorescence microscopy revealed that the UapA-GFP was predominately localized to the plasma membrane in both strains, although a higher intensity of fluorescence was observed for the npi1-1 mutant strain plasma membrane. In agreement with these observations, the npi1-1 mutant strain demonstrated a approximately 5-fold increase in uptake of [(3)H]-xanthine compared to the pep4Delta deletion strain. Despite yielding the best results for functional expression, in-gel fluorescence of the UapA-GFP expressed in the npi1-1 mutant strain revealed that the protein was subject to significant proteolytic degradation. Large scale expression of the protein using the pep4Delta deletion strain followed by purification produced mg quantities of pure, monodispersed protein suitable for further structural and functional studies. In addition, this work has generated a yeast cell based system for performing reverse genetics and other targeted approaches, in order to further understand the mechanism of action of this important model protein.

  16. Effect of acid stress on sodium transport by isolated skins and on osmotic permeability of intact frogs

    SciTech Connect

    Fromm, P.O.

    1981-08-01

    The experiments reported here were designed to determine the effects of increased external hydrogen ion concentrations on the ion transport capability of isolated frog skins measured as short-circuit current and to determine the nature of the interaction of hydrogen ions to sodium transport. Results from a study of the effects of acid exposure on the osmotic permeability of intact frogs are also reported.

  17. Ursolic Acid Inhibits Na+/K+-ATPase Activity and Prevents TNF-α-Induced Gene Expression by Blocking Amino Acid Transport and Cellular Protein Synthesis

    PubMed Central

    Yokomichi, Tomonobu; Morimoto, Kyoko; Oshima, Nana; Yamada, Yuriko; Fu, Liwei; Taketani, Shigeru; Ando, Masayoshi; Kataoka, Takao

    2011-01-01

    Pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α, induce the expression of a wide variety of genes, including intercellular adhesion molecule-1 (ICAM-1). Ursolic acid (3β-hydroxy-urs-12-en-28-oic acid) was identified to inhibit the cell-surface ICAM-1 expression induced by pro-inflammatory cytokines in human lung carcinoma A549 cells. Ursolic acid was found to inhibit the TNF-α-induced ICAM-1 protein expression almost completely, whereas the TNF-α-induced ICAM-1 mRNA expression and NF-κB signaling pathway were decreased only partially by ursolic acid. In line with these findings, ursolic acid prevented cellular protein synthesis as well as amino acid uptake, but did not obviously affect nucleoside uptake and the subsequent DNA/RNA syntheses. This inhibitory profile of ursolic acid was similar to that of the Na+/K+-ATPase inhibitor, ouabain, but not the translation inhibitor, cycloheximide. Consistent with this notion, ursolic acid was found to inhibit the catalytic activity of Na+/K+-ATPase. Thus, our present study reveals a novel molecular mechanism in which ursolic acid inhibits Na+/K+-ATPase activity and prevents the TNF-α-induced gene expression by blocking amino acid transport and cellular protein synthesis. PMID:24970122

  18. Amino acid transporter LAT3 is required for podocyte development and function.

    PubMed

    Sekine, Yuji; Nishibori, Yukino; Akimoto, Yoshihiro; Kudo, Akihiko; Ito, Noriko; Fukuhara, Daisuke; Kurayama, Ryota; Higashihara, Eiji; Babu, Ellappan; Kanai, Yoshikatsu; Asanuma, Katsuhiko; Nagata, Michio; Majumdar, Arindam; Tryggvason, Karl; Yan, Kunimasa

    2009-07-01

    LAT3 is a Na+-independent neutral l-amino acid transporter recently isolated from a human hepatocellular carcinoma cell line. Although liver, skeletal muscle, and pancreas are known to express LAT3, the tissue distribution and physiologic function of this transporter are not completely understood. Here, we observed that glomeruli express LAT3. Immunofluorescence, confocal microscopy, and immunoelectron microscopy revealed that LAT3 localizes to the apical plasma membrane of podocyte foot processes. In mice, starvation upregulated glomerular LAT3, phosphorylated AKT1, reconstituted the actin network, and elongated foot processes. In the fetal kidney, we observed intense LAT3 expression at the capillary loops stage of renal development. Finally, zebrafish morphants lacking lat3 function showed collapsed glomeruli with thickened glomerular basement membranes. Permeability studies of the glomerular filtration barrier in these zebrafish morphants demonstrated a disruption of selective glomerular permeability. Our data suggest that LAT3 may play a crucial role in the development and maintenance of podocyte structure and function by regulating protein synthesis and the actin cytoskeleton.

  19. Transport of cationic amino acids by the mouse ecotropic retrovirus receptor.

    PubMed

    Kim, J W; Closs, E I; Albritton, L M; Cunningham, J M

    1991-08-22

    Susceptibility of rodent cells to infection by ecotropic murine leukaemia viruses (MuLV) is determined by binding of the virus envelope to a membrane receptor that has multiple membrane-spanning domains. Cells infected by ecotropic MuLV synthesize envelope protein, gp70, which binds to this receptor, thereby preventing additional infections. The consequences of envelope-MuLV receptor binding for the infected host cell have not been directly determined, partly because the cellular function of the MuLV receptor protein is unknown. Here we report a coincidence in the positions of the first eight putative membrane-spanning domains found in the virus receptor and in two related proteins, the arginine and histidine permeases of Saccharomyces cerevisiae (Fig. 1), but not in any other proteins identified by computer-based sequence comparison of the GenBank data base. Xenopus oocytes injected with receptor-encoding messenger RNA show increased uptake of L-arginine, L-lysine and L-ornithine. The transport properties and the expression pattern of the virus receptor behave in ways previously attributed to y+, the principal transporter of cationic L-amino acids in mammalian cells.

  20. Recent Advance in the Relationship between Excitatory Amino Acid Transporters and Parkinson's Disease

    PubMed Central

    Zhang, Yunlong; Tan, Feng; Xu, Pingyi; Qu, Shaogang

    2016-01-01

    Parkinson's disease (PD) is the most common movement disorder disease in the elderly and is characterized by degeneration of dopamine neurons and formation of Lewy bodies. Glutamate is the major excitatory neurotransmitter in the central nervous system (CNS). If glutamate is not removed promptly in the synaptic cleft, it will excessively stimulate the glutamate receptors and induce excitotoxic effects on the CNS. With lack of extracellular enzyme to decompose glutamate, glutamate uptake in the synaptic cleft is mainly achieved by the excitatory amino acid transporters (EAATs, also known as high-affinity glutamate transporters). Current studies have confirmed that decreased expression and function of EAATs appear in PD animal models. Moreover, single unilateral administration of EAATs inhibitor in the substantia nigra mimics several PD features and this is a solid evidence supporting that decreased EAATs contribute to the process of PD. Drugs or treatments promoting the expression and function of EAATs are shown to attenuate dopamine neurons death in the substantia nigra and striatum, ameliorate the behavior disorder, and improve cognitive abilities in PD animal models. EAATs are potential effective drug targets in treatment of PD and thus study of relationship between EAATs and PD has predominant medical significance currently. PMID:26981287

  1. Therapeutic Potential of the Mycobacterium tuberculosis Mycolic Acid Transporter, MmpL3

    PubMed Central

    Li, Wei; Obregón-Henao, Andrés; Wallach, Joshua B.; North, E. Jeffrey; Lee, Richard E.; Gonzalez-Juarrero, Mercedes; Schnappinger, Dirk

    2016-01-01

    In recent years, whole-cell-based screens for novel small molecule inhibitors active against Mycobacterium tuberculosis in culture followed by the whole-genome sequencing of spontaneous resistant mutants have identified multiple chemical scaffolds thought to kill the bacterium through the inactivation of the mycolic acid transporter, MmpL3. Consistent with the fact that MmpL3 is required for the formation of the mycobacterial outer membrane, we have conclusively shown in this study, using conditionally regulated knockdown mutants, that mmpL3 is required for the replication and viability of M. tuberculosis, both under standard laboratory growth conditions and during the acute and chronic phases of infection in mice. Speaking for the vulnerability of this target, silencing mmpL3 had a rapid bactericidal effect on actively replicating cells in vitro and reduced by 3 to 5 logs in less than 4 weeks the bacterial loads of acutely and chronically infected mouse lungs, respectively. Depletion of MmpL3 further rendered M. tuberculosis hypersusceptible to MmpL3 inhibitors. The exquisite vulnerability of MmpL3 at all stages of the infection establishes this transporter as an attractive new target with the potential to improve and shorten current drug-susceptible and drug-resistant tuberculosis chemotherapies. PMID:27297488

  2. Expression Profile of Cationic Amino Acid Transporters in Rats with Endotoxin-Induced Uveitis

    PubMed Central

    Chang, Shu-Wen; Lee, Yi-An; Kao, Tzu-Yun

    2016-01-01

    Purpose. The transcellular arginine transportation via cationic amino acid transporter (CAT) is the