Science.gov

Sample records for 1-azapentadienylmetal chemistry si

  1. Adopting SI Units in Introductory Chemistry.

    ERIC Educational Resources Information Center

    Davies, William G.; Moore, John W.

    1980-01-01

    Discusses advantages to the use of SI units in dealing with proportionality problems, with particular emphasis on stoichiometric relationships. A table lists conversion relationships commonly used in chemistry, and a single-step "roadmap" is provided for each relationship. (CS)

  2. Molecules on si: electronics with chemistry.

    PubMed

    Vilan, Ayelet; Yaffe, Omer; Biller, Ariel; Salomon, Adi; Kahn, Antoine; Cahen, David

    2010-01-12

    Basic scientific interest in using a semiconducting electrode in molecule-based electronics arises from the rich electrostatic landscape presented by semiconductor interfaces. Technological interest rests on the promise that combining existing semiconductor (primarily Si) electronics with (mostly organic) molecules will result in a whole that is larger than the sum of its parts. Such a hybrid approach appears presently particularly relevant for sensors and photovoltaics. Semiconductors, especially Si, present an important experimental test-bed for assessing electronic transport behavior of molecules, because they allow varying the critical interface energetics without, to a first approximation, altering the interfacial chemistry. To investigate semiconductor-molecule electronics we need reproducible, high-yield preparations of samples that allow reliable and reproducible data collection. Only in that way can we explore how the molecule/electrode interfaces affect or even dictate charge transport, which may then provide a basis for models with predictive power.To consider these issues and questions we will, in this Progress Report, review junctions based on direct bonding of molecules to oxide-free Si.describe the possible charge transport mechanisms across such interfaces and evaluate in how far they can be quantified.investigate to what extent imperfections in the monolayer are important for transport across the monolayer.revisit the concept of energy levels in such hybrid systems.

  3. Antibody binding to p-Si using LANL SAM chemistry

    SciTech Connect

    Anderson, Aaron S

    2010-12-06

    This NMSBA-sponsored project involves the attachment of antibodies to polymeric silicon (p-Si) surfaces, with the ultimate goal of attaching antibodies to nanowires for Vista Therapeutics, Inc. (Santa Fe, NM). This presentation describes the functionalization of p-Si surfaces. the activation of terminal carboxylates on these surfaces, the conjugation of antibodies, and the analyses undertaken at each step. The results of this work show that antibody conjugation is possible on p-Si coatings using the well-known EDC/NHS activation chemistry.

  4. On the chemistry of a-SiO 2 deposition by plasma enhanced CVD

    NASA Astrophysics Data System (ADS)

    Wickramanayaka, Sunil; Nakanishi, Y.; Hatanaka, Y.

    1997-04-01

    The chemistry in depositing a-SiO 2 using tetraethoxysilane, Si(OC 2H 5) 4, (TEOS) and tetraisocyanatesilane, Si(NCO) 4, (TICS) with an oxidant is comparatively studied. In both cases, absorption and desorption reactions of intermediate precursors are seen to be dominant. TEOS/O 2 chemistry, where there is no N atom in the source gas, yields conformal step coverage over patterned surfaces. The precursor or precursors generated in TICS/O 2 chemistry are expected to contain N atom or atoms and have no surface migration property. The N atom in the precursor is believed to limit the surface migration property. This results in an uneven step coverage over patterned surfaces similar to that of SiH 4/O 2 chemistry.

  5. Eppur Si Muove! The 2013 Nobel Prize in Chemistry

    SciTech Connect

    Smith, Jeremy C.; Roux, Benoit

    2013-12-03

    The 2013 Nobel Prize in Chemistry has been awarded to Martin Karplus, Michael Levitt, and Arieh Warshel for their work on developing computational methods to study complex chemical systems. Hence, their work has led to mechanistic critical insights into chemical systems both large and small and has enabled progress in a number of different fields, including structural biology.

  6. Planetary and meteoritic Mg/Si and δ30 Si variations inherited from solar nebula chemistry

    NASA Astrophysics Data System (ADS)

    Dauphas, Nicolas; Poitrasson, Franck; Burkhardt, Christoph; Kobayashi, Hiroshi; Kurosawa, Kosuke

    2015-10-01

    The bulk chemical compositions of planets are uncertain, even for major elements such as Mg and Si. This is due to the fact that the samples available for study all originate from relatively shallow depths. Comparison of the stable isotope compositions of planets and meteorites can help overcome this limitation. Specifically, the non-chondritic Si isotope composition of the Earth's mantle was interpreted to reflect the presence of Si in the core, which can also explain its low density relative to pure Fe-Ni alloy. However, we have found that angrite meteorites display a heavy Si isotope composition similar to the lunar and terrestrial mantles. Because core formation in the angrite parent-body (APB) occurred under oxidizing conditions at relatively low pressure and temperature, significant incorporation of Si in the core is ruled out as an explanation for this heavy Si isotope signature. Instead, we show that equilibrium isotopic fractionation between gaseous SiO and solid forsterite at ∼1370 K in the solar nebula could have produced the observed Si isotope variations. Nebular fractionation of forsterite should be accompanied by correlated variations between the Si isotopic composition and Mg/Si ratio following a slope of ∼1, which is observed in meteorites. Consideration of this nebular process leads to a revised Si concentration in the Earth's core of 3.6 (+ 6.0 / - 3.6) wt% and provides estimates of Mg/Si ratios of bulk planetary bodies.

  7. Influence of organic surface chemistry on the nucleation of plasma deposited SiO x films

    NASA Astrophysics Data System (ADS)

    Hoppe, C.; Mitschker, F.; Giner, I.; de los Arcos, T.; Awakowicz, P.; Grundmeier, G.

    2017-05-01

    The nucleation and film growth of SiO x plasma polymer films as a function of the substrate surface chemistry are analysed by a combination of microscopic, spectroscopic and electrochemical techniques. Self-assembled organothiol monolayers (SAMs) surfaces with different terminating groups (methyl, carboxyl- and trimethoxysilane groups) on Au(111) serve as a model system. Ultra-thin SiO x films with thickness ranging from 0.4 to 1.4 nm were deposited by microwave plasma in a mixture of HMDSO and O2. The changes in surface, interface and thin film chemistry are characterized by PM-IRRAS. Cyclic voltammetry with ferricyanide as a redox system is used to probe the defect density of the bare SAMs and the SiO x -covered SAMs. Furthermore, the evolution of the SiO x surface morphology for increasing film thickness as function of the substrate chemical termination is investigated by AFM. A strong influence of the surface chemistry on the SiO x nucleation and film growth is observed. While the methyl and carboxyl terminated SAMs are degraded during the nucleation leading to defect rich ultrathin films, the trimethoxysilane group protects the aliphatic chain of the SAM and leads to much better barrier properties of the ultra-thin SiO x -films. A mechanistic explanation of the results is provided.

  8. Controlled surface chemistry of diamond/β-SiC composite films for preferential protein adsorption.

    PubMed

    Wang, Tao; Handschuh-Wang, Stephan; Yang, Yang; Zhuang, Hao; Schlemper, Christoph; Wesner, Daniel; Schönherr, Holger; Zhang, Wenjun; Jiang, Xin

    2014-02-04

    Diamond and SiC both process extraordinary biocompatible, electronic, and chemical properties. A combination of diamond and SiC may lead to highly stable materials, e.g., for implants or biosensors with excellent sensing properties. Here we report on the controllable surface chemistry of diamond/β-SiC composite films and its effect on protein adsorption. For systematic and high-throughput investigations, novel diamond/β-SiC composite films with gradient composition have been synthesized using the hot filament chemical vapor deposition (HFCVD) technique. As revealed by scanning electron microscopy (SEM), the diamond/β-SiC ratio of the composite films shows a continuous change from pure diamond to β-SiC over a length of ∼ 10 mm on the surface. X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) was employed to unveil the surface termination of chemically oxidized and hydrogen treated surfaces. The surface chemistry of the composite films was found to depend on diamond/β-SiC ratio and the surface treatment. As observed by confocal fluorescence microscopy, albumin and fibrinogen were preferentially adsorbed from buffer: after surface oxidation, the proteins preferred to adsorb on diamond rather than on β-SiC, resulting in an increasing amount of proteins adsorbed to the gradient surfaces with increasing diamond/β-SiC ratio. By contrast, for hydrogen-treated surfaces, the proteins preferentially adsorbed on β-SiC, leading to a decreasing amount of albumin adsorbed on the gradient surfaces with increasing diamond/β-SiC ratio. The mechanism of preferential protein adsorption is discussed by considering the hydrogen bonding of the water self-association network to OH-terminated surfaces and the change of the polar surface energy component, which was determined according to the van Oss method. These results suggest that the diamond/β-SiC gradient film can be a promising material for biomedical applications which

  9. Progress in the medicinal chemistry of silicon: C/Si exchange and beyond.

    PubMed

    Fujii, Shinya; Hashimoto, Yuichi

    2017-04-01

    Application of silyl functionalities is one of the most promising strategies among various 'elements chemistry' approaches for the development of novel and distinctive drug candidates. Replacement of one or more carbon atoms of various biologically active compounds with silicon (so-called sila-substitution) has been intensively studied for decades, and is often effective for alteration of activity profile and improvement of metabolic profile. In addition to simple C/Si exchange, several novel approaches for utilizing silicon in medicinal chemistry have been suggested in recent years, focusing on the intrinsic differences between silicon and carbon. Sila-substitution offers great potential for enlarging the chemical space of medicinal chemistry, and provides many options for structural development of drug candidates.

  10. Reactions with a Metalloid Tin Cluster {Sn10[Si(SiMe3)3]4}(2-): Ligand Elimination versus Coordination Chemistry.

    PubMed

    Schrenk, Claudio; Gerke, Birgit; Pöttgen, Rainer; Clayborne, Andre; Schnepf, Andreas

    2015-05-26

    Chemistry that uses metalloid tin clusters as a starting material is of fundamental interest towards understanding the reactivity of such compounds. Since we identified {Sn10[Si(SiMe3)3]4}(2-) 7 as an ideal candidate for such reactions, we present a further step in the understanding of metalloid tin cluster chemistry. In contrast to germanium chemistry, ligand elimination seems to be a major reaction channel, which leads to the more open metalloid cluster {Sn10[Si(SiMe3)3]3}(-) 9, in which the Sn core is only shielded by three Si(SiMe3)3 ligands. Compound 9 is obtained through different routes and is crystallised together with two different countercations. Besides the structural characterisation of this novel metalloid tin cluster, the electronic structure is analysed by (119)Sn Mössbauer spectroscopy. Additionally, possible reaction pathways are discussed. The presented first step into the chemistry of metalloid tin clusters thus indicates that, with respect to metalloid germanium clusters, more reaction channels are accessible, thereby leading to a more complex reaction system.

  11. Antireflection and SiO2 Surface Passivation by Liquid-Phase Chemistry for Efficient Black Silicon Solar Cells: Preprint

    SciTech Connect

    Yuan, H. C.; Oh, J.; Zhang, Y.; Kuznetsov, O. A.; Flood, D. J.; Branz, H. M.

    2012-06-01

    We report solar cells with both black Si antireflection and SiO2 surface passivation provided by inexpensive liquid-phase chemistry, rather than by conventional vacuum-based techniques. Preliminary cell efficiency has reached 16.4%. Nanoporous black Si antireflection on crystalline Si by aqueous etching promises low surface reflection for high photon utilization, together with lower manufacturing cost compared to vacuum-based antireflection coating. Ag-nanoparticle-assisted black Si etching and post-etching chemical treatment recently developed at NREL enables excellent control over the pore diameter and pore separation. Performance of black Si solar cells, including open-circuit voltage, short-circuit current density, and blue response, has benefited from these improvements. Prior to this study, our black Si solar cells were all passivated by thermal SiO2 produced in tube furnaces. Although this passivation is effective, it is not yet ideal for ultra-low-cost manufacturing. In this study, we report, for the first time, the integration of black Si with a proprietary liquid-phase deposition (LPD) passivation from Natcore Technology. The Natcore LPD forms a layer of <10-nm SiO2 on top of the black Si surface in a relatively mild chemical bath at room temperature. We demonstrate black Si solar cells with LPD SiO2 with a spectrum-weighted average reflection lower than 5%, similar to the more costly thermally grown SiO2 approach. However, LPD SiO2 provides somewhat better surface-passivation quality according to the lifetime analysis by the photo-conductivity decay measurement. Moreover, black Si solar cells with LPD SiO2 passivation exhibit higher spectral response at short wavelength compared to those passivated by thermally grown SiO2. With further optimization, the combination of aqueous black Si etching and LPD could provide a pathway for low-cost, high-efficiency crystalline Si solar cells.

  12. Zirconocene and Si-tethered diynes: a happy match directed toward organometallic chemistry and organic synthesis.

    PubMed

    Zhang, Wen-Xiong; Zhang, Shaoguang; Xi, Zhenfeng

    2011-07-19

    Characterizing reactive organometallic intermediates is critical for understanding the mechanistic aspects of metal-mediated organic reactions. Moreover, the isolation of reactive organometallic intermediates can often result in the ability to design new synthetic methods. In this Account, we outline synthetic methods that we developed for a variety of diverse Zr/Si organo-bimetallic compounds and Si/N heteroatom-organic compounds through the detailed study of zirconacyclobutene-silacyclobutene fused compounds. Two basic components are involved in this chemistry. The first is the Si-tethered diyne, which owes its rich reactive palette to the combination of the Si-C bond and the C≡C triple bond. The second is the low-valent zirconocene species Cp(2)Zr(II), which has proven very useful in organic synthesis. The reaction of these two components affords the zirconacyclobutene-silacyclobutene fused compound, which is the key reactive Zr/Si organo-bimetallic intermediate discussed here. We discuss the three types of reactions that have been developed for the zirconacyclobutene-silacyclobutene fused intermediate. The reaction with nitriles (the C≡N triple bond) is introduced in the first section. In this one-pot reaction, up to four different components can be combined: the Si-tethered diyne can be reacted with three identical nitriles, with differing nitriles, or with a nitrile and other unsaturated organic substrates such as formamides, isocyanides, acid chlorides, aldehydes, carbodiimides, and azides. Several unexpected multiring, fused Zr/Si organo-bimetallic intermediates were isolated and characterized. A wide variety of N-heterocycles, such as 5-azaindole, pyrrole, and pyrroloazepine derivatives, were obtained. We then discuss the reaction with alkynes (the C≡C triple bond). A consecutive skeletal rearrangement, differing from that observed in the reactions with nitriles, takes place in this reaction. Finally, we discuss the reaction with the C═X substrates

  13. A Two-Zone Multigrid Model for SI Engine Combustion Simulation Using Detailed Chemistry

    DOE PAGES

    Ge, Hai-Wen; Juneja, Harmit; Shi, Yu; ...

    2010-01-01

    An efficient multigrid (MG) model was implemented for spark-ignited (SI) engine combustion modeling using detailed chemistry. The model is designed to be coupled with a level-set-G-equation model for flame propagation (GAMUT combustion model) for highly efficient engine simulation. The model was explored for a gasoline direct-injection SI engine with knocking combustion. The numerical results using the MG model were compared with the results of the original GAMUT combustion model. A simpler one-zone MG model was found to be unable to reproduce the results of the original GAMUT model. However, a two-zone MG model, which treats the burned and unburned regionsmore » separately, was found to provide much better accuracy and efficiency than the one-zone MG model. Without loss in accuracy, an order of magnitude speedup was achieved in terms of CPU and wall times. To reproduce the results of the original GAMUT combustion model, either a low searching level or a procedure to exclude high-temperature computational cells from the grouping should be applied to the unburned region, which was found to be more sensitive to the combustion model details.« less

  14. Characterization of plasma chemistry and ion energy in cathodic arc plasma from Ti-Si cathodes of different compositions

    SciTech Connect

    Eriksson, A. O.; Zhirkov, I.; Dahlqvist, M.; Jensen, J.; Hultman, L.; Rosen, J.

    2013-04-28

    Arc plasma from Ti-Si compound cathodes with up to 25 at. % Si was characterized in a DC arc system with respect to chemistry and charge-state-resolved ion energy. The plasma ion composition showed a lower Si content, diverging up to 12 at. % compared to the cathode composition, yet concurrently deposited films were in accordance with the cathode stoichiometry. Significant contribution to film growth from neutrals is inferred besides ions, since the contribution from macroparticles, estimated by scanning electron microscopy, cannot alone account for the compositional difference between cathode, plasma, and film. The average ion charge states for Ti and Si were higher than reference data for elemental cathodes. This result is likely related to TiSi{sub x} phases of higher cohesive energies in the compound cathodes and higher effective electron temperature in plasma formation. The ion energy distributions extended up to {approx}200 and {approx}130 eV for Ti and Si, respectively, with corresponding average energies of {approx}60 and {approx}30 eV. These averages were, however, not dependent on Si content in the cathode, except for 25 at. % Si where the average energies were increased up to 72 eV for Ti and 47 eV for Si.

  15. The chemistry of simple alkene molecules on Si(100)c(4 × 2): The mechanism of cycloaddition and their selectivities

    NASA Astrophysics Data System (ADS)

    Akagi, Kazuto; Yoshinobu, Jun

    2016-10-01

    The chemistry of simple alkene molecules on the Si(100) surface is reviewed with the newly-produced visual presentation by theoretical calculations. The early pioneering studies by the Kyoto Group and Pittsburgh group reported the di-σ bond formation and the precursor-mediated chemisorption for acetylene and ethylene on Si(100), respectively. Thereafter, these studies have been stimulating various studies of organic molecules on Si surfaces. Our recent studies have observed the precursor states for alkene chemisorption and elucidated the microscopic mechanisms of the di-σ bond formation (cycloaddition) with the help of theoretical calculations; the site-, stereo- and regio-selective chemisorption of simple alkene molecules on Si(100)c(4 × 2) has been established.

  16. Surface chemistry in the process of coating mesoporous SiO2 onto carbon nanotubes driven by the formation of Si-O-C bonds.

    PubMed

    Paula, Amauri J; Stéfani, Diego; Souza Filho, Antonio G; Kim, Yoong Ahm; Endo, Morinobu; Alves, Oswaldo L

    2011-03-07

    The deposition of mesoporous silica (SiO(2)) on carbon nanotubes (CNTs) has opened up a wide range of assembling possibilities by exploiting the sidewall of CNTs and organosilane chemistry. The resulting systems may be suitable for applications in catalysis, energy conversion, environmental chemistry, and nanomedicine. However, to promote the condensation of silicon monomers on the nanotube without producing segregated particles, (OR)(4-x)SiO(x)(x-) units must undergo nucleophilic substitution by groups localized on the CNT sidewall during the transesterification reaction. In order to achieve this preferential attachment, we have deposited silica on oxidized carbon nanotubes (single-walled and multiwalled) in a sol-gel process that also involved the use of a soft template (cetyltrimethylammonium bromide, CTAB). In contrast to the simple approach normally used to describe the attachment of inorganic compounds on CNTs, SiO(2) nucleation on the tube is a result of nucleophilic attack mainly by hydroxyl radicals, localized in a very complex surface chemical environment, where various oxygenated groups are covalently bonded to the sidewall and carboxylated carbonaceous fragments (CCFs) are adsorbed on the tubes. Si-O-C covalent bond formation in the SiO(2)-CNT hybrids was observed even after removal of the CCFs with sodium hydroxide. By adding CTAB, and increasing the temperature, time, and initial amount of the catalyst (NH(4)OH) in the synthesis, the SiO(2) coating morphology could be changed from one of nanoparticles to mesoporous shells. Concomitantly, pore ordering was achieved by increasing the amount of CTAB. Furthermore, preferential attachment on the sidewall results mostly in CNTs with uncapped ends, having sites (carboxylic acids) that can be used for further localized reactions.

  17. {Ge9[Si(SiMe3)2(SiPh3)]3}(-): Ligand Modification in Metalloid Germanium Cluster Chemistry.

    PubMed

    Kysliak, Oleksandr; Schrenk, Claudio; Schnepf, Andreas

    2015-07-20

    The influence of the stabilizing ligand on the physical and chemical properties of a metalloid cluster compound is important for nanotechnology as metalloid clusters are ideal model compounds for metal nanoparticles. Here we present the synthesis of a differently substituted metalloid {Ge9R3}(-) cluster: {Ge9[Si(SiMe3)2(SiPh3)]3}(-) 1, which is obtained in good yield by the reaction of K4Ge9 with ClSi(SiMe3)2(SiPh3). 1 is characterized via NMR and mass spectrometry, but crystallization is hindered. However, the reaction with HgCl2 gives the neutral compound HgGe18[Si(SiMe3)2(SiPh3)]6 2, which can be crystallized and structurally characterized. The presented results are a first step for the investigation of the ligand's influence on the properties of a metalloid germanium cluster compound.

  18. Ethers on Si(001): A prime example for the common ground between surface science and molecular organic chemistry.

    PubMed

    Pecher, Lisa; Laref, Slimane; Raupach, Marc; Tonner, Ralf Ewald

    2017-09-15

    Using computational chemistry, we show that the adsorption of ether molecules on Si(001) under ultra-high vacuum conditions can be understood with textbook organic chemistry. The two-step reaction mechanism of (1) dative bond formation between the ether oxygen and a Lewis acidic surface atom and (2) a nucleophilic attack of a nearby Lewis basic surface atom is analysed in detail and found to mirror the acid-catalysed ether cleavage in solution. The O-Si dative bond is found to be the strongest of its kind and reactivity from this state defies the Bell-Evans-Polanyi principle. Electron rearrangement during the C-O bond cleavage is visualized using a newly developed bonding analysis method, which shows that the mechanism of nucleophilic substitutions on semiconductor surfaces is identical to molecular chemistry SN2 reactions. Our findings thus illustrate how the fields of surface science and molecular chemistry can mutually benefit and unexpected insight can be gained. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. General method for labeling siRNA by click chemistry with fluorine-18 for the purpose of PET imaging.

    PubMed

    Mercier, Frédéric; Paris, Jérôme; Kaisin, Geoffroy; Thonon, David; Flagothier, Jessica; Teller, Nathalie; Lemaire, Christian; Luxen, André

    2011-01-19

    The alkyne-azide Cu(I)-catalyzed Huisgen cycloaddition, a click-type reaction, was used to label a double-stranded oligonucleotide (siRNA) with fluorine-18. An alkyne solid support CPG for the preparation of monostranded oligonucleotides functionalized with alkyne has been developed. Two complementary azide labeling agents (1-(azidomethyl)-4-[(18)F]fluorobenzene) and 1-azido-4-(3-[(18)F]fluoropropoxy)benzene have been produced with 41% and 35% radiochemical yields (decay-corrected), respectively. After annealing with the complementary strand, the siRNA was directly labeled by click chemistry with [(18)F]fluoroazide to produce the [(18)F]-radiolabeled siRNA with excellent radiochemical yield and purity.

  20. The Morphology and Chemistry Evolution of Inclusions in Fe-Si-Al-O Melts

    NASA Astrophysics Data System (ADS)

    Kwon, Youjong; Choi, Juhan; Sridhar, Seetharaman

    2011-08-01

    This study aims to elucidate the process of inclusion precipitation in Fe-Si and Fe-Si-Al melts. Deoxidation experiments were carried out in a vacuum induction furnace (VIF) at 1873 K (1600 °C). In the Si-deoxidation experiments, spherical SiO2 of 1~2 μm diameter was dominant. When 3 wt pct Si and 300 ppm Al were added, such that Al2O3 and mullite were thermodynamically stable, the resulting inclusions depended on the addition sequence. When aluminum was added before silicon, spherical aluminum oxides were dominant after the Al addition, but after the Si addition, the number and size of alumina decreased and Al-Si oxides and mullite appeared with increasing time. When silicon was added before aluminum, spherical SiO2 was dominant after the Si addition, but after the Al addition, spherical and polygonal alumina inclusions were dominant. When Al/Si was added simultaneously, polygonal alumina inclusions were dominant initially, but with time, Al-Si oxide and mullite inclusions increased in numbers. If the Al amount in the Al/Si addition was increased to 600 ppm, only alumina was found. This study shows how, under similar thermodynamic conditions, the transient evolution of inclusions in iron melts in the Si-Al-O system differ depending on the alloy addition sequence.

  1. High pressure chemistry in the H2-SiH4 system

    SciTech Connect

    Wang, S.

    2010-02-24

    Understanding the behavior of hydrogen-rich systems at extreme conditions has significance to both condensed matter physics, where it may provide insight into the metallization and superconductivity of element one, and also to applied research areas, where it can provide guidance for designing improved hydrogen storage materials for transportation applications. Here we report the high-pressure study of the SiH{sub 4}-H{sub 2} binary system up to 6.5 GPa at 300 K in a diamond anvil cell. Raman measurements indicate significant intermolecular interactions between H{sub 2} and SiH{sub 4}. We found that the H{sub 2} vibron frequency is softened by the presence of SiH{sub 4} by as much as 40 cm{sup -1} for the fluid with 50 mol% H{sub 2} compared with pure H{sub 2} fluid at the same pressures. In contrast, the Si-H stretching modes of SiH{sub 4} shift to higher frequency in the mixed fluid compared with pure SiH{sub 4}. Pressure-induced solidification of the H{sub 2}-SiH{sub 4} fluid shows a binary eutectic point at 72({+-}2) mol% H{sub 2} and 6.1({+-}0.1) GPa, above which the fluid crystallizes into a mixture of two nearly end-member solids. Neither solid has a pure end-member composition, with the silane-rich solid containing 0.5-1.5 mol% H{sub 2} and the hydrogen-rich solid containing 0.5-1 mol% SiH{sub 4}. These two crystalline phases can be regarded as doped hydrogen-dominant compounds. We were able to superpressurize the sample by 0.2-0.4 GPa above the eutectic before complete crystallization, indicating extended metastability.

  2. Reactivity of [Ge9 {Si(SiMe3 )3 }3 ](-) Towards Transition-Metal M(2+) Cations: Coordination and Redox Chemistry.

    PubMed

    Kysliak, Oleksandr; Schrenk, Claudio; Schnepf, Andreas

    2016-12-23

    Recently the metalloid cluster compound [Ge9 Hyp3 ](-) (1; Hyp=Si(SiMe3 )3 ) was oxidatively coupled by an iron(II) salt to give the largest metalloid Group 14 cluster [Ge18 Hyp6 ]. Such redox chemistry is also possible with different transition metal (TM) salts TM(2+) (TM=Fe, Co, Ni) to give the TM(+) complexes [Fe(dppe)2 ][Ge9 Hyp3 ] (3; dppe=1,2-bis(diphenylphosphino)ethane), [Co(dppe)2 ][Ge9 Hyp3 ] (4), [Ni(dppe)(Ge9 Hyp3 )] (5) and [Ni(dppe)2 (Ge9 Hyp3 )](+) (6). Such a redox reaction does not proceed for Mn, for which a salt metathesis gives the first open shell [Hyp3 Ge9 -M-Ge9 Hyp3 ] cluster (2; M=Mn). The bonding of the transition metal atom to 1 is also possible for Ni (e.g., compound 6), in which one or even two nickel atoms can bind to 1. In contrast to this in case of the Fe and Co compounds 3 and 4, respectively, the transition-metal atom is not bound to the Ge9 core of 1. The synthesis and the experimentally determined structures of 2-6 are presented. Additionally the bonding within 2-6 is analyzed and discussed with the aid of EPR measurements and quantum chemical calculations.

  3. Formal SiH4 chemistry using stable and easy-to-handle surrogates

    NASA Astrophysics Data System (ADS)

    Simonneau, Antoine; Oestreich, Martin

    2015-10-01

    Monosilane (SiH4) is far less well behaved than its carbon analogue methane (CH4). It is a colourless gas that is industrially relevant as a source of elemental silicon, but its pyrophoric and explosive nature makes its handling and use challenging. Consequently, synthetic applications of SiH4 in academic laboratories are extremely rare and methodologies based on SiH4 are underdeveloped. Safe and controlled alternatives to the substituent redistribution approaches of hydrosilanes are desirable and cyclohexa-2,5-dien-1-ylsilanes where the cyclohexa-1,4-diene units serve as placeholders for the hydrogen atoms have been identified as potent surrogates of SiH4. We disclose here that the commercially available Lewis acid tris(pentafluorophenyl)borane, B(C6F5)3, is able to promote the release of the Si-H bond catalytically while subsequently enabling the hydrosilylation of C-C multiple bonds in the same pot. The net reactions are transition-metal-free transfer hydrosilylations with SiH4 as a building block for the preparation of various hydrosilanes.

  4. Surface chemistry of five-membered aromatic ring molecules containing two different heteroatoms on Si(111)-7 x 7.

    PubMed

    Tao, Feng; Bernasek, Steven L

    2007-04-18

    The surface chemistry of three representative aromatic molecules containing two different heteroatoms isoxazole, oxazole, and thiazole on Si(111)-7 x 7 was studied. These molecules exhibit different competition and selectivity for multiple reaction channels with this surface, determined by a combination of molecular electronic and structural factors. Isoxazole is chemically attached to Si(111)-7 x 7 through both dative-bond addition and [4 + 2]-like cycloaddition. Oxazole chemisorbs on Si(111)-7 x 7 through both dative-bond addition and [2 + 2]-like cycloaddition. The kinetically favored [2 + 2]-like cycloadduct at low temperature is thermally converted into the thermodynamically preferred [4 + 2]-like cycloadduct at a temperature higher than 300 K. Thiazole is chemically bound to this surface only through formation of a Si...N dative bond at low temperature. This dative-bonded molecule is thermally converted into a [4 + 2]-like cycloadduct. The reaction channels of the three five-membered aromatic molecules containing two different heteroatoms (isoxazole, oxazole, and thiazole) and of the aromatic molecules containing only one heteroatom (pyridine, pyrrole, furan, and thiophene) are compared and analyzed for a thorough understanding of the reaction mechanisms of various heterocyclic aromatic molecules on this surface. The intrinsic connection between surface reaction mechanism and molecular electronic structure is demonstrated. This includes the distribution of electron density on the molecular ring determined by the geometric arrangement of the heteroatoms, the electronegativity of the heteroatoms, and the electronic contribution of the heteroatoms to formation of aromatic pi conjugation, as well as the molecular polarity.

  5. One-pot synthesis of Au@SiO(2) catalysts: a click chemistry approach.

    PubMed

    Solovyeva, Vera A; Vu, Khanh B; Merican, Zulkifli; Sougrat, Rachid; Rodionov, Valentin O

    2014-10-13

    Using the copper-catalyzed azide-alkyne cycloaddition "click" reaction, a library of triazole amphiphiles with a variety of functional polar "heads" and hydrophobic or superhydrophobic "tails" was synthesized. The amphiphiles were evaluated for their ability to stabilize small Au nanoparticles, and, at the same time, serve as templates for nanocasting porous SiO2. One of the Au@SiO2 materials thus prepared was found to be a highly active catalyst for the Au nanoparticle-catalyzed regioselective hydroamination of alkynes.

  6. Measurement and control of in-plane surface chemistry during the oxidation of H-terminated (111) Si.

    PubMed

    Gokce, Bilal; Adles, Eric J; Aspnes, David E; Gundogdu, Kenan

    2010-10-12

    In-plane directional control of surface chemistry during interface formation can lead to new opportunities regarding device structures and applications. Control of this type requires techniques that can probe and hence provide feedback on the chemical reactivity of bonds not only in specific directions but also in real time. Here, we demonstrate both control and measurement of the oxidation of H-terminated (111) Si. Control is achieved by externally applying uniaxial strain, and measurement by second-harmonic generation (SHG) together with the anisotropic-bond model of nonlinear optics. In this system anisotropy results because bonds in the strain direction oxidize faster than those perpendicular to it, leading in addition to transient structural changes that can also be detected at the bond level by SHG.

  7. Molecular Chemistry and Engineering of Boron-Modified Polyorganosilazanes as New Processable and Functional SiBCN Precursors.

    PubMed

    Viard, Antoine; Fonblanc, Diane; Schmidt, Marion; Lale, Abhijeet; Salameh, Chrystelle; Soleilhavoup, Anne; Wynn, Mélanie; Champagne, Philippe; Cerneaux, Sophie; Babonneau, Florence; Chollon, Georges; Rossignol, Fabrice; Gervais, Christel; Bernard, Samuel

    2017-07-06

    A series of boron-modified polyorganosilazanes was synthesized from a poly(vinylmethyl-co-methyl)silazane and controlled amounts of borane dimethyl sulfide. The role of the chemistry behind their synthesis has been studied in detail by using solid-state NMR spectroscopy, FTIR spectroscopy, and elemental analysis. The intimate relationship between the chemistry and the processability of these polymers is discussed. Polymers with low boron contents displayed appropriate requirements for facile processing in solution, such as impregnation of host carbon materials, which resulted in the design of mesoporous monoliths with a high specific surface area after pyrolysis. Polymers with high boron content are more appropriate for solid-state processing to design mechanically robust monolith-type macroporous and dense structures after pyrolysis. Boron acts as a crosslinking element, which offers the possibility to extend the processability of polyorganosilazanes and suppress the distillation of oligomeric fragments in the low-temperature region of their thermal decomposition (i.e., pyrolysis) at 1000 °C under nitrogen. Polymers with controlled and high ceramic yields were generated. We provide a comprehensive mechanistic study of the two-step thermal decomposition based on a combination of thermogravimetric experiments coupled with elemental analysis, solid-state NMR spectroscopy, and FTIR spectroscopy. Selected characterization tools allowed the investigation of specific properties of the monolith-type SiBCN materials. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Si and O self-diffusion in hydrous forsterite and iron-bearing olivine from the perspective of defect chemistry

    NASA Astrophysics Data System (ADS)

    Fei, Hongzhan; Katsura, Tomoo

    2016-02-01

    We discuss the experimental results of silicon and oxygen self-diffusion coefficients in forsterite and iron-bearing olivine from the perspective of defect chemistry. Silicon diffusion is dominated by VO ··-associated VSi″″, whereas oxygen diffusion is dominated by hopping of VO ·· under anhydrous conditions, and by (OH)O · under hydrous conditions. By considering the charge neutrality condition of [(OH)O ·] = 2[VMe″] in hydrous forsterite and iron-bearing olivine, we get D Si ∝ (C_{{{{H}}2 {{O}}}})1/3 and D O ∝ (C_{{{{H}}2 {{O}}}})0, which explains the experimental results of water effects on oxygen and silicon self-diffusion rates (Fei et al. in Nature 498:213-215, 2013; J Geophys Res 119:7598-7606, 2014). The C_{{{{H}}2 {{O}}}} dependence of creep rate in the Earth's mantle should be close to that given by Si and O self-diffusion coefficients obtained under water unsaturated conditions.

  9. Interface chemistry and epitaxial growth modes of SrF2 on Si(001)

    NASA Astrophysics Data System (ADS)

    Pasquali, L.; Suturin, S. M.; Kaveev, A. K.; Ulin, V. P.; Sokolov, N. S.; Doyle, B. P.; Nannarone, S.

    2007-02-01

    Molecular beam epitaxy has been used to grow SrF2 thin films on Si(001). The growth modes have been investigated by atomic force microscopy, electron diffraction, and photoemission. Two principal growth regimes have been identified: (i) when deposition is carried out with the substrate held at a temperature of 700-750°C , SrF2 molecules react with the substrate giving rise to a Sr-rich wetting layer on top of which three dimensional bulklike fluoride ridges develop; (ii) when deposition is carried out with the substrate held at 400°C , a nanopatterned film forms with characteristic triangular islands. Results are compared to the growth mode of CaF2 on Si(001) under analogous deposition conditions. Morphological and structural differences between the two systems are associated with the larger lattice parameter of SrF2 with respect to CaF2 , resulting in a larger mismatch with the Si substrate.

  10. Chemistry of La on the Si(001) surface from first principles

    NASA Astrophysics Data System (ADS)

    Ashman, Christopher R.; Först, Clemens J.; Schwarz, Karlheinz; Blöchl, Peter E.

    2004-10-01

    This paper reports state-of-the-art electronic structure calculations of La adsorption on the Si(001) surface. We predict La chains in the low-coverage limit, which condense in a stable phase at a coverage of 1/5 monolayer. At 1/3 monolayer we predict a chemically rather inert, stable phase. La changes its oxidation state from La3+ at lower coverages to La2+ at coverages beyond 1/3 monolayer. In the latter oxidation state, one electron resides in a state with a considerable contribution from La d and f states.

  11. A click chemistry route to 2-functionalised PEGylated and cationic β-cyclodextrins: co-formulation opportunities for siRNA delivery.

    PubMed

    O'Mahony, Aoife M; Ogier, Julien; Desgranges, Stephane; Cryan, John F; Darcy, Raphael; O'Driscoll, Caitriona M

    2012-07-07

    A new approach to the synthesis of amphiphilic β-cyclodextrins has used 'click' chemistry to selectively modify the secondary 2-hydroxyl group. The resulting extended polar groups can be either polycationic or neutral PEGylated groups and these two amphiphile classes are compatible in dual cyclodextrin formulations for delivery of siRNA. When used alone with an siRNA, a cationic cyclodextrin was shown to have good transfection properties in cell culture. Co-formulation with a PEGylated cyclodextrin altered the physicochemical properties of nanoparticles formed with siRNA. Improved particle properties included lower surface charges and reduced tendency to aggregate. However, as expected, the transfection efficiency of the cationic vector was lowered by co-formulation with the PEGylated cyclodextrin, requiring future surface modification of particles with targeting ligands for effective siRNA delivery.

  12. The ansa effect in permethylmolybdenocene chemistry: A [Me{sub 2}Si] ansa bridge promotes intermolecular C-H and C-C bond activation

    SciTech Connect

    Churchill, D.; Shin, J.H.; Hascall, T.; Hahn, J.M.; Bridgewater, B.M.; Parkin, G.

    1999-06-21

    Access to the [Me{sub 2}Si] ansa-bridged permethylmolybdenocene system is provided by the synthesis of [Me{sub 2}Si(C{sub 5}Me{sub 4}){sub 2}]MoCl{sub 2} from the reaction of MoCl{sub 5} with a mixture of [Me{sub 2}Si(C{sub 5}Me{sub 4}){sub 2}]Li{sub 2} and NaBH{sub 4}, followed by treatment with CHCl{sub 3}. Comparison with the chemistry of the non-ansa Cp{sup *}{sub 2}MoX{sub 2} system indicates that incorporation of the [Me{sub 2}Si] ansa bridge promotes intermolecular C-H and C-C bond activation reactions.

  13. Study of surface chemistry and microstructure of TiO2 nanostructures on Pt(111)/Si wafer and FTO glass substrates: a comparative approach

    NASA Astrophysics Data System (ADS)

    Roy Moulik, Samik; Ghatak, Ankita; Ghosh, Barnali

    2016-09-01

    We report, the kinetically controlled growth of the (002)-oriented TiO2 nanorods on fluorine-doped tin oxide (FTO) coated glass substrate via a cost effective hydrothermal synthesis route of binary oxides. In addition to this, the nanoflowered like growth of TiO2 nanorods using cubic structure Pt(111)/SiO2/Si substrate has also been demonstrated. Tuning of shape, crystallographic structure issues has been discussed by controlling the surface chemistry of the substrate on which the nanostructures were grown. The crystallographic structural aspects of the grown nanorods was confirmed both on ensemble and single nanowire level using spatially resolved tools and techniques. Growth mechanism for different shape, size and crystallographic structure depending on the surface chemistry of the substrate has been proposed. Understanding of growth of oriented TiO2 nanorods and interaction mechanism is quite promising and encouraging for designing optoelectronic and photocatalytic devices to enhanced electron transport and lower exciton recombination rates.

  14. Effect of Si-H bond on the gas-phase chemistry of trimethylsilane in the hot wire chemical vapor deposition process.

    PubMed

    Shi, Y J; Li, X M; Toukabri, R; Tong, L

    2011-09-22

    The effect of the Si-H bond on the gas-phase reaction chemistry of trimethylsilane in the hot-wire chemical vapor deposition (HWCVD) process has been studied by examining its decomposition on a hot tungsten filament and the secondary gas-phase reactions in a reactor using a soft laser ionization source coupled with mass spectrometry. Trimethylsilane decomposes on the hot filament via Si-H and Si-CH(3) bond cleavages. A short-chain mechanism is found to dominate in the secondary reactions in the reactor. It has been shown that the hydrogen abstractions of both Si-H and C-H occur simultaneously, with the abstraction of Si-H being favored. Tetramethylsilane and hexamethyldisilane are the two major products formed from the radical recombination reactions in the termination steps. Three methyl-substituted disilacyclobutane molecules, i.e., 1,3-dimethyl-1,3-disilacyclobutane, 1,1,3-trimethyl-1,3-disilacyclobutane, and 1,1,3,3-tetramethyl-1,3-disilacyclobutane are also produced in reactor from the cycloaddition reactions of methyl-substituted silene species. Compared to tetramethylsilane and hexamethyldisilane, a common feature with trimethylsilane is that the short-chain mechanism still dominates. However, a more active involvement of the reactive silene intermediates has been found with trimethylsilane.

  15. Molecular gas chemistry in AGN. II. High-resolution imaging of SiO emission in NGC 1068: shocks or XDR?

    NASA Astrophysics Data System (ADS)

    García-Burillo, S.; Usero, A.; Fuente, A.; Martín-Pintado, J.; Boone, F.; Aalto, S.; Krips, M.; Neri, R.; Schinnerer, E.; Tacconi, L. J.

    2010-09-01

    Context. This paper is part of a multi-species survey of line emission from the molecular gas in the circum-nuclear disk (CND) of the Seyfert 2 galaxy NGC 1068. Unlike in other active galaxies, the intensely star-forming regions in NGC 1068 and the CND can be resolved with current instrumentation. This makes this galaxy an optimal test-bed to probe the effects of AGN on the molecular medium at ~100 pc scales. Aims: Single-dish observations have provided evidence that the abundance of silicon monoxide (SiO) in the CND of NGC 1068 is enhanced by 3-4 orders of magnitude with respect to the values typically measured in quiescent molecular gas in the Galaxy. We aim at unveiling the mechanism(s) underlying the SiO enhancement. Methods: We have imaged the emission of the SiO(2-1) (86.8 GHz) and CN(2-1) (226.8 GHz) lines in NGC 1068 at ~150 pc and 60 pc spatial resolution with the IRAM Plateau de Bure interferometer (PdBI). We have also obtained complementary IRAM 30 m observations of HNCO and methanol (CH3OH) lines. These species are known as tracers of shocks in the Galaxy. Results: SiO is detected in a disk of ~400 pc size around the AGN. SiO abundances in the CND of ~(1-5) × 10-9 are about 1-2 orders of magnitude above those measured in the starburst ring. The overall abundance of CN in the CND is high: ~(0.2-1) × 10-7. The abundances of SiO and CN are enhanced at the extreme velocities of gas associated with non-circular motions close to the AGN (r < 70 pc). On average, HNCO/SiO and CH3OH/SiO line ratios in the CND are similar to those measured in prototypical shocked regions in our Galaxy. Yet the strength and abundance of CN in NGC 1068 can be explained neither by shocks nor by photon-dominated region (PDR) chemistry. Abundances measured for CN and SiO and the correlation of CN/CO and SiO/CO ratios with hard X-ray irradiation suggest that the CND of NGC 1068 has become a giant X-ray-dominated region (XDR). Conclusions: The extreme properties of molecular gas in

  16. From chemistry to mechanics: bulk modulus evolution of Li-Si and Li-Sn alloys via the metallic electronegativity scale.

    PubMed

    Li, Keyan; Xie, Hui; Liu, Jun; Ma, Zengsheng; Zhou, Yichun; Xue, Dongfeng

    2013-10-28

    Toward engineering high performance anode alloys for Li-ion batteries, we proposed a useful method to quantitatively estimate the bulk modulus of binary alloys in terms of metallic electronegativity (EN), alloy composition and formula volume. On the basis of our proposed potential viewpoint, EN as a fundamental chemistry concept can be extended to be an important physical parameter to characterize the mechanical performance of Li-Si and Li-Sn alloys as anode materials for Li-ion batteries. The bulk modulus of binary alloys is linearly proportional to the combination of average metallic EN and atomic density of alloys. We calculated the bulk moduli of Li-Si and Li-Sn alloys with different Li concentrations, which can agree well with the reported data. The bulk modulus of Li-Si and Li-Sn alloys decreases with increasing Li concentration, leading to the elastic softening of the alloys, which is essentially caused by the decreased strength of constituent chemical bonds in alloys from the viewpoint of EN. This work provides a deep understanding of mechanical failure of Si and Sn anodes for Li-ion batteries, and permits the prediction of the composition dependent bulk modulus of various lithiated alloys on the basis of chemical formula, metallic EN and cell volume (or alloy density), with no structural details required.

  17. Experimental evidence of bulk chemistry constraint on SiO2 solubility in clinopyroxene at high-pressure conditions

    NASA Astrophysics Data System (ADS)

    Kawasaki, Toshisuke; Osanai, Yasuhito

    2015-06-01

    We have experimentally confirmed that the solubility of SiO2 in clinopyroxene at ultrahigh-pressure metamorphic conditions is buffered by coesite and kyanite. The present findings were derived from high-pressure experiments on metapelite glass, powdered andesite and eclogite glass under anhydrous conditions. The metapelite glass and powdered andesite were recrystallised in boron nitride capsules at 8 GPa and 1100-1500 °C. The eclogite glass was heated in an AuPd capsule, both ends of which were welded, at 3 GPa and 1000 °C. Clinopyroxene nucleated from metapelite glass, the bulk composition of which is saturated in both SiO2 and Al2SiO5 components plotting within the Jd (Na,K)(Al,Cr)(Si,Ti)2O6-Qtz (Si,Ti)O2-Grt M3(Al,Cr)2(Si,Ti)3O12-Als (Al,Cr)2(Si,Ti)O5 tetrahedron (M = Fe, Mn, Mg, Ni, Zn, Ca), coexists with garnet, coesite and kyanite. The average excess silica content of the clinopyroxene ranges from 23.4 to 35.4 mol%. In contrast, an andesite experiment saturated in SiO2 but undersaturated in Al2SiO5 within the Jd-Qtz-Aug M(Si,Ti)O3-Grt tetrahedron produced clinopyroxene, garnet and coesite but no kyanite. The average excess silica in the clinopyroxene was 9.7-15.5 mol%, which is comparable to previous experimental data. Experiment on the eclogite glass with similar composition to andesite yielded clinopyroxene, garnet and coesite. An average excess silica content in clinopyroxene counts 6.4 mol%, which is much lower than that obtained from the andesite. The SiO2 content of clinopyroxene coexisting with garnet, coesite and kyanite is much higher than that of clinopyroxene coexisting with garnet and coesite without kyanite. Although the temperature dependence is unclear, the SiO2 solubility increases with pressure and Fe/(Fe+Mg). Clinopyroxene forms the solid solution series Jd-Es □0.5M0.5Al(Si,Ti)2O6 and Aug-Es, rather than Jd-Ts MAl2(Si,Ti)O6 and Es-Ts joins. Our experimental data suggest the probable existence of octahedral Si which may accompany the M2

  18. NanoSIMS STUDIES OF SMALL PRESOLAR SiC GRAINS: NEW INSIGHTS INTO SUPERNOVA NUCLEOSYNTHESIS, CHEMISTRY, AND DUST FORMATION

    SciTech Connect

    Hoppe, Peter; Leitner, Jan; Groener, Elmar; Marhas, Kuljeet K.; Meyer, Bradley S.; Amari, Sachiko

    2010-08-20

    We have studied more than 2000 presolar silicon carbide (SiC) grains from the Murchison CM2 chondrite in the size range 0.2-0.5 {mu}m for C- and Si-isotopic compositions. In a subset of these grains, we also measured N-, Mg-Al-, S-, and Ca-Ti-isotopic compositions as well as trace element concentrations. The overall picture emerging from the isotope data is quite comparable with that of larger grains, except for the abundances of grains from Type II supernovae (SNeII) and low-metallicity asymptotic giant branch (AGB) stars. Especially, the latter are much more abundant among submicrometer-sized grains than among micrometer-sized grains. This implies that SiC grains from lower-than-solar-metallicity AGB stars are on average smaller than those from solar metallicity AGB stars which provided the majority of presolar SiC grains. We identified five grains with large enrichments in {sup 29}Si (up to 3.5x solar) and {sup 30}Si (up to 3.9x solar in three of these grains). These grains are most likely from SNeII. The isotopically light S ({sup 32}S/{sup 34}S of 2x solar) together with the heavy Si in one of these grains suggests that molecule formation precedes macroscopic mixing and dust formation in SNII ejecta. This adds to the complexity of SN mixing calculations and should be considered in future studies. In total, about 2% of the presolar SiC grains in the size range 0.2-0.5 {mu}m appear to come from SNeII. This is about a factor of 2 higher than for micrometer-sized grains and suggests that SNeII, on average, produce smaller SiC grains than solar metallicity AGB stars. The high {sup 29}Si/{sup 30}Si ratio in one of the SN grains suggests that current SN models underestimate the {sup 29}Si production in the C- and Ne-burning regions by about a factor of 2. It is shown that with this adjustment the solar {sup 29}Si/{sup 28}Si ratio can be well reproduced in Galactic chemical evolution models and that a merger of our Galaxy with a low-metallicity satellite some 1.5 Gyr

  19. The synthesis, characterization and formation chemistry of Si-C-N-O-M ceramic and composite powders. Final technical report

    SciTech Connect

    Mariam, Y.H.

    1998-08-01

    Brief summaries are given for the work in each of the following areas: (1) general pattern of behavior in the conversion processes of SiNC precursors; (2) thermal and oxidative stability of SiNC ceramics; and (3) modification of PMVSEDA(poly(methylvinyl)silylethylenediamine) with borane-dimethyl sulfide.

  20. Surface Chemistry of Hydrogen-Passivated Porous Silicon-Oxidation of Surface Si-H Groups by Acetone

    DTIC Science & Technology

    1993-04-12

    IR spectra using a Mattson Research Model FTIR instrument at a resolution of 2 cm- 1. The instrument was equipped with a KBr beam splitter and a...organic/pharmaceutical chiral synthesis chemistry [19-22]. In the presence of fluoride ions [20, 21], the reaction is catalyzed and for ketones produces

  1. Electrode-selective deposition/etching processes using an SiF4/H2/Ar plasma chemistry excited by sawtooth tailored voltage waveforms

    NASA Astrophysics Data System (ADS)

    Wang, J. K.; Johnson, E. V.

    2017-01-01

    We report on the electrode-selective deposition and etching of hydrogenated silicon thin films using a plasma enhanced chemical vapour deposition process excited by sawtooth-shaped tailored voltage waveforms (TVWs). The slope asymmetry of such waveforms leads to a different rate of sheath expansion and contraction at each electrode, and therefore different electron power absorption near each electrode. This effect was employed with an SiF4/H2/Ar plasma chemistry, as the surface processes that result from this gas mixture depend strongly on the local balance between multiple precursors. For a specific gas flow ratio, a deposition rate of 0.82 Å s-1 on one electrode and an etching rate of 1.2 Å s-1 on the other were achieved. Moreover, this deposition/etching balance is controlled by the H2 flow rate, which limits the deposition rate at low flows. When the H2 injection is sufficiently high, the processes are then limited by the dissociation of SiF4, and the relative rate of the surface processes on the two electrodes are reversed, i.e. a higher net deposition rate is observed on the electrode where the fast sheath contraction occurs due to the electronegative character of the plasma.

  2. Surface functionalized SiO2 nanoparticles with cationic polymers via the combination of mussel inspired chemistry and surface initiated atom transfer radical polymerization: Characterization and enhanced removal of organic dye.

    PubMed

    Huang, Qiang; Liu, Meiying; Mao, Liucheng; Xu, Dazhuang; Zeng, Guangjian; Huang, Hongye; Jiang, Ruming; Deng, Fengjie; Zhang, Xiaoyong; Wei, Yen

    2017-03-28

    Monodispersed SiO2 particles functionalized with cationic polymers poly-((3-acrylamidopropyl)trimethylammonium chloride) (PAPTCl) were prepared using mussel inspired surface modification strategy and surface initiated atom transfer radical polymerization (SI-ATRP). Fourier transform infrared spectroscopy, transmission electron microscope, thermogravimetric analysis, X-ray photoelectron spectroscopy, and zeta potential were employed to characterize these SiO2 samples. The adsorption performance of the functionalized SiO2 (donated as SiO2-PDA-PAPTCl) towards anionic organic dye Congo red (CR) was investigated to evaluate their potential environmental applications. We demonstrated that the surface of SiO2 particles can be successfully functionalized with cationic PAPTCl. The adsorption capability of as-prepared SiO2 was found to increases from 28.70 and 106.65mg/g after surface grafted with cationic polymers. The significant enhancement in the adsorption capability of SiO2-PDA-PAPTCl is mainly attributed to the introduction of cationic polymers. More importantly, this strategy is expected to be promising for fabrication of many other functional polymer nanocomposites for environmental applications due to the universality of mussel inspired chemistry and well designability and good monomer adaptability of SI-ATRP.

  3. Ammonium and guanidinium dendron-carbon nanotubes by amidation and click chemistry and their use for siRNA delivery.

    PubMed

    Battigelli, Alessia; Wang, Julie Tzu-Wen; Russier, Julie; Da Ros, Tatiana; Kostarelos, Kostas; Al-Jamal, Khuloud T; Prato, Maurizio; Bianco, Alberto

    2013-11-11

    A series of multi-walled carbon nanotube (MWCNT) conjugates is described, functionalized with different dendrons bearing positive charges at their termini (i.e. ammonium or guanidinium groups). The dendrimeric units are anchored to the nanotube scaffolds using two orthogonal synthetic approaches, amidation and click reactions. The final nanohybrids are characterized by complementary analytical techniques, while their ability to interact with siRNA is investigated by means of agarose gel electrophoresis. The demonstration of the cell uptake capacity, the low cytotoxicity, and the ability of these cationic conjugates to silence cytotoxic genes suggests them to be promising carriers for genetic material.

  4. New strategies for Ge-on-Si materials and devices using non-conventional hydride chemistries: the tetragermane case

    NASA Astrophysics Data System (ADS)

    Xu, Chi; Beeler, Richard T.; Jiang, Liying; Grzybowski, Gordon; Chizmeshya, Andrew V. G.; Menéndez, José; Kouvetakis, John

    2013-10-01

    We introduce a practical chemical vapor deposition strategy for next-generation Ge-on-Si epitaxy utilizing recently introduced Ge4H10 hydride sources that confer unprecedented deposition efficiencies at very low-temperatures (<400 °C). The corresponding high growth rates produce thick bulk-like Ge films with structural and electrical properties significantly improved relative to state-of-the-art results obtained using conventional approaches. The use of a pure, single-source compound facilitates the control of residual doping, and enables p-i-n devices whose dark currents are not entirely determined by defects and whose zero-bias optical collection efficiencies are higher than obtained from samples fabricated using alternative Ge-on-Si approaches. The reaction pathways leading to the high-yield synthesis of Ge4H10 are identified on the basis of quantum thermochemistry simulations. The results suggest a simple approach to routine synthesis of tetragermane as the main product in quantities sufficient to be deployed as a commercial source.

  5. Trans-Metal-Trapping Meets Frustrated-Lewis-Pair Chemistry: Ga(CH2SiMe3)3-Induced C–H Functionalizations

    PubMed Central

    2017-01-01

    Merging two topical themes in main-group chemistry, namely, cooperative bimetallics and frustrated-Lewis-pair (FLP) activity, this Forum Article focuses on the cooperativity-induced outcomes observed when the tris(alkyl)gallium compound GaR3 (R = CH2SiMe3) is paired with the lithium amide LiTMP (TMP = 2,2,6,6-tetramethylpiperidide) or the sterically hindered N-heterocyclic carbene (NHC) 1,3-bis(tert-butyl)imidazol-2-ylidene (ItBu). When some previously published work are drawn together with new results, unique tandem reactivities are presented that are driven by the steric mismatch between the individual reagents of these multicomponent reagents. Thus, the LiTMP/GaR3 combination, which on its own fails to form a cocomplex, functions as a highly regioselective base (LiTMP)/trap (GaR3) partnership for the metalation of N-heterocycles such as diazines, 1,3-benzoazoles, and 2-picolines in a trans-metal-trapping (TMT) process that stabilizes the emerging sensitive carbanions. Taking advantage of related steric incompatibility, a novel monometallic FLP system pairing GaR3 with ItBu has been developed for the activation of carbonyl compounds (via C=O insertion) and other molecules with acidic hydrogen atoms such as phenol and phenylacetylene. Shedding new light on how these non-cocomplexing partnerships operate and showcasing the potential of gallium reagents to engage in metalation reactions or FLP activations, areas where the use of this group 13 metal is scant, this Forum Article aims to stimulate more interest and activity toward the advancement of organogallium chemistry. PMID:28485929

  6. Effect of Chemistry and Particle Size on the Performance of Calcium Disilicide Primers. Part 1 - Synthesis of Calcium Silicide (CaSi2) by Rotary Atomization

    DTIC Science & Technology

    2010-02-01

    CaSi2, including reacting elemental Ca and Si (refs. 5 and 6); CaO and Si (refs. 2 and 7); calcium carbonate (CaC03), Silica (Si02), and carbon (C...refs. 8 and 9); electrolysis (refs. 10 and 11); calcium hydride (CaH2) and Si (ref. 12); SiC and CaO (ref. 13); and combustion synthesis (ref. 14

  7. Surface tailoring for selective endothelialization and platelet inhibition via a combination of SI-ATRP and click chemistry using Cys-Ala-Gly-peptide.

    PubMed

    Khan, Musammir; Yang, Jing; Shi, Changcan; Lv, Juan; Feng, Yakai; Zhang, Wencheng

    2015-07-01

    Surface tailoring is an attractive approach to enhancing selective endothelialization, which is a prerequisite for current vascular prosthesis applications. Here, we modified polycarbonate urethane (PCU) surface with both poly(ethylene glycol) and Cys-Ala-Gly-peptide (CAG) for the purpose of creating a hydrophilic surface with targeting adhesion of endothelial cells (ECs). In the first step, PCU-film surface was grafted with poly(ethylene glycol) methacrylate (PEGMA) to covalently tether hydrophilic polymer brushes via surface initiated atom transfer radical polymerization (SI-ATRP), followed by grafting of an active monomer pentafluorophenyl methacrylate (PFMA) by a second ATRP. The postpolymerization modification of the terminal reactive groups with allyl amine molecules created pendant allyl groups, which were subsequently functionalized with cysteine terminated CAG-peptide via photo-initiated thiol-ene click chemistry. The functionalized surfaces were characterized by water contact angle and XPS analysis. The growth and proliferation of human ECs or human umbilical arterial smooth muscle cells on the functionalized surfaces were investigated for 1, 3 and 7 day/s. The results indicated that these peptide functionalized surfaces exhibited enhanced EC adhesion, growth and proliferation. Furthermore, they suppressed platelet adhesion in contact with platelet-rich plasma for 2h. Therefore, these surfaces with EC targeting ligand could be an effective anti-thrombogenic platform for vascular tissue engineering application. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Application of laser induced electron impact ionization to the deposition chemistry in the hot-wire chemical vapor deposition process with SiH4-NH3 gas mixtures.

    PubMed

    Eustergerling, Brett; Hèden, Martin; Shi, Yujun

    2007-11-01

    The application of a laser-induced electron impact (LIEI) ionization source in studying the gas-phase chemistry of the SiH(4)/NH(3) hot-wire chemical vapor deposition (HWCVD) system has been investigated. The LIEI source is achieved by directing an unfocused laser beam containing both 118 nm (10.5 eV) vacuum ultraviolet (VUV) and 355 nm UV radiations to the repeller plate in a time-of-flight mass spectrometer. Comparison of the LIEI source with the conventional 118 nm VUV single-photon ionization (SPI) method has demonstrated that the intensities of the chemical species with ionization potentials (IP) above 10.5 eV, e.g., H(2), N(2) and He, have been significantly enhanced with the incorporation of the LIEI source. It is found that the SPI source due to the 118 nm VUV light coexists in the LIEI source. This allows simultaneous observations of parent ions with enhanced intensity from VUV SPI and their "fingerprint" fragmentation ions from LIEI. It is, therefore, an effective tool to diagnose the gas-phase chemical species involved with both NH(3) and SiH(4) in the HWCVD reactor. In using the LIEI source to SiH(4), NH(3) and their mixtures, it has been shown that the NH(3) decomposition is suppressed with the addition of SiH(4) molecules. Examination of the NH(3) decomposition percentage and the time to reach the N(2) and H(2) steady-state intensities for various NH(3)/SiH(4) mixtures suggests that the extent of the suppression is enhanced with more SiH(4) content in the mixture. With increasing filament temperatures, the negative effect of SiH(4) becomes less important.

  9. Crystal chemistry and optical investigations of the Cu{sub 2}Zn(Sn,Si)S{sub 4} series for photovoltaic applications

    SciTech Connect

    Hamdi, Mohamed; Lafond, Alain; Guillot-Deudon, Catherine; Hlel, Faouzi; Gargouri, Mohamed; Jobic, Stéphane

    2014-12-15

    Different compounds in the Cu{sub 2}ZnSnS{sub 4}–Cu{sub 2}ZnSiS{sub 4} system have been prepared via ceramic route and structurally characterized via X-ray diffraction on powders and single crystals. Two solid solutions were identified along the Cu{sub 2}Zn(Sn,Si)S{sub 4} series. Namely, materials with Si-content x=Si/(Sn+Si) lower than 0.5 crystallize with the Cu{sub 2}ZnSnS{sub 4} kesterite structure type while materials with x higher than 0.8 adopt the Cu{sub 2}ZnSiS{sub 4} enargite structure type. In between, a miscibility gap occurs where the Cu{sub 2}ZnSn{sub 0.5}Si{sub 0.5}S{sub 4} and Cu{sub 2}ZnSn{sub 0.2}Si{sub 0.8}S{sub 4} compounds co-exist. The optical bandgap increases continuously with the Si content in the whole series. This opens up the possibility to fine tune the absorption threshold and to adjust it to 1.7 eV for x∼0.5, the optimum value for the top cell of tandem solar devises to achieve high photovoltaic conversion efficiency. - Graphical abstract: Two solid solutions have been pointed out in the Cu{sub 2}Zn(Sn{sub 1−x}Si{sub x})S{sub 4} series with the kesterite and the enargite type structures. - Highlights: • New compounds in Cu{sub 2}Zn(Sn,Si)S{sub 4} series have been prepared. • Two solid solutions Cu{sub 2}ZnSn{sub 1−x}Si{sub x}S{sub 4} were identified for x≤0.5 and x≥0.8. • In the miscibility gap 2 phases co-exist with kesterite and enargite structure types. • The optical bandgap increases continuously with the Si-content in the whole series. • These materials could be envisioned as absorber in thin-film solar cells.

  10. Surface interactions of SO{sub 2} and passivation chemistry during etching of Si and SiO{sub 2} in SF{sub 6}/O{sub 2} plasmas

    SciTech Connect

    Stillahn, Joshua M.; Zhang Jianming; Fisher, Ellen R.

    2011-01-15

    A variety of materials can be etched in SF{sub 6}/O{sub 2} plasmas. Here, the fate of SO{sub 2} at Si and SiO{sub 2} surfaces during etching in SF{sub 6}/O{sub 2} plasmas has been explored using the imaging of radicals interacting with surfaces method. The scattering of SO{sub 2} at Si and SiO{sub 2} surfaces was measured as a function of both the applied rf power and O{sub 2} addition to the plasma. For both surfaces, the surface scattering coefficient (S) of SO{sub 2} during etching is near unity and is largely unaffected by changing plasma parameters such as power and O{sub 2} addition. Notably the etch rate of Si increases monotonically with power, whereas the etch rate of SiO{sub 2} appears insensitive to changes in plasma conditions. As a result, the etch selectivity closely follows the trends of the Si etch rate. Etch rates are compared to other fluorine-containing plasma systems such as NF{sub 3}/O{sub 2} and C{sub 2}F{sub 6}/O{sub 2}. Using mass spectral data and optical emission spectra to characterize the gas phase species combined with compositional analysis from x-ray photoelectron spectroscopy data, the formation and roles of SO{sub 2} in Si and SiO{sub 2} etching are discussed and correlated with etch rate and other gas phase species such as F, O, and S{sub x}O{sub y}F{sub z}.

  11. Synthesis, X-ray structure, and hydrolytic chemistry of the high potent antiviral polyniobotungstate A-[alpha]-[Si2Nb6W18O77]8–

    Treesearch

    Gyu-Shik Kim; Huadong Zeng; Jeffrey T. Rhule; Ira A. Weinstock; Craig L. Hill

    1999-01-01

    Potently antiviral polyniobotungstates have been structurally characterized; the dimer A-[alpha]-[Si2Nb6W18O77]8– cleaves cleanly to the monomer A-[alpha]-[SiNb3W9O40]7– within 1 min in aqueous solution buffered at physiological (neutral) pH establishing that the monomer and not the dimer is pharmacologically relevant.

  12. Crystal chemistry of the G-phases in the {l_brace}Ti, Zr, Hf{r_brace}-Ni-Si systems

    SciTech Connect

    Grytsiv, A.; Chen Xingqiu; Rogl, P. Podloucky, R.; Schmidt, H.; Giester, G.; Pomjakushin, V.

    2007-02-15

    Ternary compounds M{sub 6}Ni{sub 16}Si{sub 7} (M=Ti, Zr, Hf) have been investigated by X-ray powder/single crystal and neutron powder diffraction. Compounds with Zr and Hf crystallize in the ordered Th{sub 6}Mn{sub 23} type (Mg{sub 6}Cu{sub 16}Si{sub 7}-type, space group Fm3-bar m), whereas Ti{sub 6}Ni{sub 16.7}Si{sub 7} contains an additional Ni atom partially occupying the 24e site (M2 site, x=0.4637,0,0; occ.=0.119) inside a Ti octahedron; Ti atoms occupy a split position. Ti{sub 6}Ni{sub 16.7}Si{sub 7} represents a new variant of the filled Th{sub 6}Mn{sub 23} type structure. Ab initio calculations confirm the structural difference: additional Ni atoms favour the 24e site for Ti{sub 6}Ni{sub 16.7}Si{sub 7}, however, for the Zr and Hf-based compounds the unoccupied site renders an energetically lower ground state. Enthalpies of formation of Ti{sub 6}Ni{sub 17}Si{sub 7}, Zr{sub 6}Ni{sub 16}Si{sub 7}, and Hf{sub 6}Ni{sub 16}Si{sub 7} were calculated to be -68.65, -74.78, and -78.59kJ/(mol of atoms), respectively.

  13. Conjugates of phosphorylated zalcitabine and lamivudine with SiO2 nanoparticles: Synthesis by CuAAC click chemistry and preliminary assessment of anti-HIV and antiproliferative activity.

    PubMed

    Vasilyeva, Svetlana V; Shtil, Alexander A; Petrova, Albina S; Balakhnin, Sergei M; Achigecheva, Polina Y; Stetsenko, Dmitry A; Silnikov, Vladimir N

    2017-03-01

    Conjugates of phosphorylated dideoxynucleoside antiviral drugs dideoxycytidine (zalcitabine) and lamivudine with SiO2 nanoparticles were obtained via the copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click chemistry between a nucleoside triphosphate containing an alkynyl group at the γ-phosphate or azidothymidine triphosphate and SiO2 nanoparticles containing alkyl azide or alkynyl groups, respectively. 4-(Prop-2-yn-1-yloxy)butylamino group has been attached to the γ-phosphate group of dideoxycytidine (zalcitabine) and lamivudine 5'-triphosphates via the phosphoramidate linkage. New compounds were shown to be potent killers of human colon carcinoma cells. Anti-HIV activity of the conjugates was demonstrated as well. The conjugates of phosphorylated lamivudine and dideoxycytidine (zalcitabine) showed higher potency than the parent nucleosides. The conjugate of phosphorylated azidothymidine was less active against HIV-1 than the parent nucleoside probably because of the replacement of its 3'-azido group by 1,2,3-triazole ring. These results show an opportunity for using SiO2 nanoparticles as a transport for delivering phosphorylated nucleosides to cells in order to increase their efficiency as antiviral and anticancer drugs.

  14. Surface chemistry of boron-doped SiO{sub 2} CVD: Enhanced uptake of tetraethyl orthosilicate by hydroxyl groups bonded to boron

    SciTech Connect

    Bartram, M.E.; Moffat, H.K.

    1993-12-31

    Insight into how dopants can enhance deposition rates has been obtained by comparing reactivities of tetraethyl orthosilicate (TEOS, Si(OCH{sub 2}CH{sub 3}){sub 4}) with silanol and boranol groups on SiO{sub 2}. This comparison is relevant for boron-doped SiO{sub 2} film growth from TEOS and trimethyl borate (TMB, B(OCH{sub 3}){sub 3}) sources since boranols and silanols are expected to be present on surface during the (CVD). A silica substrate having coadsorbed deuterated silanols (SIOD) and boranols (BOD) was reacted with TEOS in a cold-wall reactor in the mTorr pressure regime at 1000K. Reactions were followed with Fourier transform infrared spectroscopy. Use of deuterated hydroxyls allowed consumption of hydroxyls by TEOS chemisorption to be distinguished from concurrent formation of SIOH and BOH that results from TEOS decomposition. It was found that TEOS reacts with BOD at twice the rate observed for SIOD demonstrating that hydroxyl groups bonded to boron increase the rate of TEOS chemisorption. Surface ethoxy groups produced by chemisorption of TEOS decompose at a slower rate in the presence of TMB decomposition products. Possible dependencies on reactor geometries and other deposition conditions may determine which of these two competing effects will control deposition rates. This may explain (in part) why the rate enhancement effect is not always observed in boron-doped SiO{sub 2} CVD processes.

  15. Towards quantum dot and FRET-based optical DNA biosensor technology: surface chemistry and photoluminescence of CdSe/ZnS and Si quantum dots

    NASA Astrophysics Data System (ADS)

    Algar, W. Russ; Zhou, Yuehui; Zeng, Jiang; Krull, Ulrich J.

    2007-06-01

    Quantum dots (QDs) are nanostructures that are highly attractive to optical biosensing. We have developed a nucleic acid biosensing strategy based on the use of quantum dots as energy donors in FRET. One of the challenges in such an approach is avoiding the non-specific adsorption of oligonucleotides. In this report, we describe our efforts to develop poly(ethylene glycol) (PEG)-based hydrophilic surface chemistry and hexanethiol based hydrophobic surface chemistry to alleviate non-specific adsorption. With respect to the former, it was found that the PEG surface chemistry strongly quenched the band-edge luminescence of CdSe/ZnS QDs and yielded significant band-gap luminescence. Furthermore, the PEG chemistry proved ineffective in preventing adsorption. With respect to hexanethiol capped CdSe/ZnS QDs, it was found that good QD luminescence was retained in organic solvent but was quenched in aqueous solution. The use of hydrophobic hexanethiol QDs in aqueous solution required the immobilization of QDs. To achieve this, we used thiol modified biotin and avidin coated fused silica optical fibers. Despite the quenching of the QDs, minimal adsorption was observed suggesting the methodology has good potential. In addition, we describe the development of a one-pot method for both the synthesis and capping of silicon QDs. Our approach also allows versatile post-synthetic modification of the silicon QD capping to produce a variety of functional groups. Silicon QDs are of interest in biosensing due to their biocompatibility and much lower toxicity compared to II-VI semiconductors.

  16. Crystal chemistry and the role of ionic radius in rare earth tetrasilicates: Ba2RE2Si4O12F2 (RE = Er(3+)-Lu(3+)) and Ba2RE2Si4O13 (RE = La(3+)-Ho(3+)).

    PubMed

    Fulle, Kyle; Sanjeewa, Liurukara D; McMillen, Colin D; Kolis, Joseph W

    2017-10-01

    Structural variations across a series of barium rare earth (RE) tetrasilicates are studied. Two different formulas are observed, namely those of a new cyclo-silicate fluoride, BaRE2Si4O12F2 (RE = Er(3+)-Lu(3+)) and new compounds in the Ba2RE2Si4O13 (RE = La(3+)-Ho(3+)) family, covering the whole range of ionic radii for the rare earth ions. The Ba2RE2Si4O13 series is further subdivided into two polymorphs, also showing a dependence on rare earth ionic radius (space group P{\\overline 1} for La(3+)-Nd(3+), and space group C2/c for Sm(3+)-Ho(3+)). Two of the structure types identified are based on dinuclear rare earth units that differ in their crystal chemistries, particularly with respect to the role of fluorine as a structural director. The broad study of rare earth ions provides greater insight into understanding structural variations within silicate frameworks and the nature of f-block incorporation in oxyanion frameworks. The single crystals are grown from high-temperature (ca 953 K) hydrothermal fluids, demonstrating the versatility of the technique to access new phases containing recalcitrant rare earth oxides, enabling the study of structural trends.

  17. ON THE FORMATION OF SILACYCLOPROPENYLIDENE (c-SiC{sub 2}H{sub 2}) AND ITS ROLE IN THE ORGANOSILICON CHEMISTRY IN THE INTERSTELLAR MEDIUM

    SciTech Connect

    Parker, Dorian S. N.; Wilson, Anthony V.; Kaiser, Ralf I.; Mayhall, Nicholas J.; Head-Gordon, Martin; Tielens, Alexander G. G. M.

    2013-06-10

    Organosilicon species such as silicon carbide and silicon dicarbide are considered as key molecular building blocks in the chemical evolution of the interstellar medium and are associated with the formation of silicon-carbide dust grains in the outflow of circumstellar envelopes of carbon-rich asymptotic giant branch (AGB) stars. However, the formation mechanisms of even the simplest silicon-bearing organic molecules have remained elusive for decades. Here, we demonstrate in crossed molecular beam experiments combined with ab initio calculations that the silacyclopropenylidene molecule (c-SiC{sub 2}H{sub 2}) can be synthesized in the gas phase under single-collision conditions via the reaction of the silylidyne radical (SiH) with acetylene (C{sub 2}H{sub 2}). This system denotes the simplest representative of a previously overlooked reaction class, in which the formation of an organosilicon molecule can be initiated via barrierless and exoergic reactions of silylidyne radicals with hydrocarbon molecules in circumstellar envelopes of evolved carbon stars such as IRC+10216. Since organosilicon molecules like silacyclopropenylidene can be eventually photolyzed to carbon-silicon clusters such as silicon dicarbide (c-SiC{sub 2}), silacyclopropenylidene might even represent the missing link between simple molecular precursors and silicon-carbide-rich interstellar grains.

  18. Roymillerite, Pb24Mg9(Si9AlO28)(SiO4)(BO3)(CO3)10(OH)14O4, a new mineral: mineralogical characterization and crystal chemistry

    NASA Astrophysics Data System (ADS)

    Chukanov, Nikita V.; Jonsson, Erik; Aksenov, Sergey M.; Britvin, Sergey N.; Rastsvetaeva, Ramiza K.; Belakovskiy, Dmitriy I.; Van, Konstantin V.

    2017-04-01

    The new mineral roymillerite Pb24Mg9(Si9AlO28)(SiO4)(BO3)(CO3)10(OH)14O4, related to britvinite and molybdophyllite, was discovered in a Pb-rich assemblage from the Kombat Mine, Grootfontein district, Otjozondjupa region, Namibia, which includes also jacobsite, cerussite, hausmannite, sahlinite, rhodochrosite, barite, grootfonteinite, Mn-Fe oxides, and melanotekite. Roymillerite forms platy single-crystal grains up to 1.5 mm across and up to 0.3 mm thick. The new mineral is transparent, colorless to light pink, with a strong vitreous lustre. Cleavage is perfect on (001). Density calculated using the empirical formula is equal to 5.973 g/cm3. Roymillerite is optically biaxial, negative, α = 1.86(1), β ≈ γ = 1.94(1), 2V (meas.) = 5(5)°. The IR spectrum shows the presence of britvinite-type tetrahedral sheets, CO3^{2 - } , BO3^{3 - } , and OH- groups. The chemical composition is (wt%; electron microprobe, H2O and CO2 determined by gas chromatography, the content of B2O3 derived from structural data): MgO 4.93, MnO 1.24, FeO 0.95, PbO 75.38, B2O3 0.50, Al2O3 0.74, CO2 5.83, SiO2 7.90, H2O 1.8, total 99.27. The empirical formula based on 83 O atoms pfu (i.e. Z = 1) is Pb24.12Mg8.74Mn1.25Fe0.94B1.03Al1.04C9.46Si9.39H14.27O83. The crystal structure was determined using single-crystal X-ray diffraction data. The new mineral is triclinic, space group P \\bar{1} , with a = 9.315(1), b = 9.316(1), c = 26.463(4) Å, α = 83.295(3)°, β = 83.308(3)°, γ = 60.023(2)°, V = 1971.2(6) Å3. The crystal structure of roymillerite is based built by alternating pyrophyllite-type TOT-modules Mg9(OH)8[(Si,Al)10O28] and I-blocks Pb24(OH)6O4(CO3)10(BO3,SiO4). The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 25.9 (100) (001), 13.1 (11) (002), 3.480 (12) (017, 107, -115, 1-15), 3.378 (14) (126, 216), 3.282 (16) (-2-15, -1-25), 3.185 (12) (-116, 1-16), 2.684 (16) (031, 301, 030, 300, 332, -109, 0-19, 1-18), 2.382 (11) (0.0.-11). Roymillerite is

  19. Expanding the Chemistry of Molecular U(2+) Complexes: Synthesis, Characterization, and Reactivity of the {[C5 H3 (SiMe3 )2 ]3 U}(-) Anion.

    PubMed

    Windorff, Cory J; MacDonald, Matthew R; Meihaus, Katie R; Ziller, Joseph W; Long, Jeffrey R; Evans, William J

    2016-01-11

    The synthesis of new molecular complexes of U(2+) has been pursued to make comparisons in structure, physical properties, and reactivity with the first U(2+) complex, [K(2.2.2-cryptand)][Cp'3 U], 1 (Cp'=C5 H4 SiMe3 ). Reduction of Cp''3 U [Cp''=C5 H3 (SiMe3 )2 ] with KC8 in the presence of 2.2.2-cryptand or 18-crown-6 generates [K(2.2.2-cryptand)][Cp''3 U], 2-K(crypt), or [K(18-crown-6)(THF)2 ][Cp''3 U], 2-K(18c6), respectively. The UV/Vis spectra of 2-K and 1 are similar, and they are much more intense than those of U(3+) analogues. Variable temperature magnetic susceptibility data for 1 and 2-K(crypt) reveal lower room temperature χM T values relative to the experimental values for the 5f(3) U(3+) precursors. Stability studies monitored by UV/Vis spectroscopy show that 2-K(crypt) and 2-K(18c6) have t1/2 values of 20 and 15 h at room temperature, respectively, vs. 1.5 h for 1. Complex 2-K(18c6) reacts with H2 or PhSiH3 to form the uranium hydride, [K(18-crown-6)(THF)2 ][Cp''3 UH], 3. Complexes 1 and 2-K(18c6) both reduce cyclooctatetraene to form uranocene, (C8 H8 )2 U, as well as the U(3+) byproducts [K(2.2.2-cryptand)][Cp'4 U], 4, and Cp''3 U, respectively.

  20. Presidential Green Chemistry Challenge: 2008 Small Business Award

    EPA Pesticide Factsheets

    Presidential Green Chemistry Challenge 2008 award winner, SiGNa Chemistry, stabilized highly reactive sodium and lithium by encapsulating them in porous, sand-like powder, maintaining their usefulness in synthetic reactions.

  1. Surface chemistry of a Cu(I) beta-diketonate precursor and the atomic layer deposition of Cu{sub 2}O on SiO{sub 2} studied by x-ray photoelectron spectroscopy

    SciTech Connect

    Dhakal, Dileep; Waechtler, Thomas; Schulz, Stefan E.; Gessner, Thomas; Lang, Heinrich; Mothes, Robert; Tuchscherer, André

    2014-07-01

    The surface chemistry of the bis(tri-n-butylphosphane) copper(I) acetylacetonate, [({sup n}Bu{sub 3}P){sub 2}Cu(acac)] and the thermal atomic layer deposition (ALD) of Cu{sub 2}O using this Cu precursor as reactant and wet oxygen as coreactant on SiO{sub 2} substrates are studied by in-situ x-ray photoelectron spectroscopy (XPS). The Cu precursor was evaporated and exposed to the substrates kept at temperatures between 22 °C and 300 °C. The measured phosphorus and carbon concentration on the substrates indicated that most of the [{sup n}Bu{sub 3}P] ligands were released either in the gas phase or during adsorption. No disproportionation was observed for the Cu precursor in the temperature range between 22 °C and 145 °C. However, disproportionation of the Cu precursor was observed at 200 °C, since C/Cu concentration ratio decreased and substantial amounts of metallic Cu were present on the substrate. The amount of metallic Cu increased, when the substrate was kept at 300 °C, indicating stronger disproportionation of the Cu precursor. Hence, the upper limit for the ALD of Cu{sub 2}O from this precursor lies in the temperature range between 145 °C and 200 °C, as the precursor must not alter its chemical and physical state after chemisorption on the substrate. Five hundred ALD cycles with the probed Cu precursor and wet O{sub 2} as coreactant were carried out on SiO{sub 2} at 145 °C. After ALD, in-situ XPS analysis confirmed the presence of Cu{sub 2}O on the substrate. Ex-situ spectroscopic ellipsometry indicated an average film thickness of 2.5 nm of Cu{sub 2}O deposited with a growth per cycle of 0.05 Å/cycle. Scanning electron microscopy and atomic force microscopy (AFM) investigations depicted a homogeneous, fine, and granular morphology of the Cu{sub 2}O ALD film on SiO{sub 2}. AFM investigations suggest that the deposited Cu{sub 2}O film is continuous on the SiO{sub 2} substrate.

  2. The crystal chemistry of Ca(10-y)(SiO4)3(SO4)3Cl(2-x-2y)F(x) ellestadite.

    PubMed

    Fang, Yanan; Ritter, Clemens; White, Tim

    2011-12-19

    Fluor-chlorellestadite solid solutions Ca(10)(SiO(4))(3)(SO(4))(3)Cl(2-x)F(x), serving as prototype crystalline matrices for the fixation of hazardous fly ash, were synthesized and characterized by powder X-ray and neutron diffraction (PXRD and PND), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FTIR). The lattice parameters of the ellestadites vary linearly with composition and show the expected shrinkage of unit cell volume as fluorine (IR = 1.33 Å) displaces chlorine (IR = 1.81 Å). FTIR spectra indicate little or no OH(-) in the solid solutions. All compositions conform to P6(3)/m symmetry where F(-) is located at the 2a (0, 0, (1)/(4)) position, while Cl(-) is displaced out of the 6h Ca(2) triangle plane and occupies 4e (0, 0, z) split positions with z ranging from 0.336(3) to 0.4315(3). Si/S randomly occupy the 6h tetrahedral site. Ellestadites rich in Cl (x ≤ 1.2) show an overall deficiency in halogens (<2 atom per formula unit), particularly Cl as a result of CaCl(2) volatilization, with charge balance achieved by the creation of Ca vacancies (Ca(2+) + 2Cl(-) →□(Ca) + 2□(Cl)) leading to the formula Ca(10-y)(SiO(4))(3)(SO(4))(3)Cl(2-x-2y)F(x). For F-rich compositions the vacancies are found at Ca(2), while for Cl-rich ellestadites, vacancies are at Ca(1). It is likely the loss of CaCl(2) which leads tunnel anion vacancies promotes intertunnel positional disorder, preventing the formation of a P2(1)/b monoclinic dimorph, analogous to that reported for Ca(10)(PO(4))(6)Cl(2). Trends in structure with composition were analyzed using crystal-chemical parameters, whose systematic variations served to validate the quality of the Rietveld refinements.

  3. Petrography and chemistry of SiO 2 filling phases in the amethyst geodes from the Serra Geral Formation deposit, Rio Grande do Sul, Brazil

    NASA Astrophysics Data System (ADS)

    Commin-Fischer, Adriane; Berger, Gilles; Polvé, Mireille; Dubois, Michel; Sardini, Paul; Beaufort, Daniel; Formoso, Milton

    2010-04-01

    The filling process of amethyst-bearing geodes from Serra Geral Formation basalts, Brazil, is investigated by different methods performed on the SiO 2 filling phases. Image analysis of quartz-amethyst deposits suggests a single growing mechanism ruled by geometric selection of randomly oriented crystals. Microthermometry of fluid inclusions reveals formation temperature lower than 100 °C, probably lower than 50 °C, and fluid salinity as high as 3 mass% NaCl eq. Composition in REE and trace-elements measured by ICP-MS on acid-digested or laser-ablated samples indicates a common genesis for amethyst, quartz and chalcedony, as well as the absence of significant variations from one geode to another. 87Sr/ 86Sr data on chalcedony shows that both the host basalt or the Botucatu sandstone are possible silica sources. These data, combined with thermo-kinetic considerations, permit us to discuss the filling process. We argue in favor of the contribution of a mineralized fluid of hydrothermal origin producing a regional silica source which decreased with time. The observed mineral sequence is related to the depletion of silica in the solution.

  4. Nb2OsB2, with a new twofold superstructure of the U3Si2 type: Synthesis, crystal chemistry and chemical bonding

    NASA Astrophysics Data System (ADS)

    Mbarki, Mohammed; Touzani, Rachid St.; Fokwa, Boniface P. T.

    2013-07-01

    The new ternary metal-rich boride, Nb2OsB2, was synthesized by arc-melting the elements in a water-cooled copper crucible under an argon atmosphere. The compound was characterized from single-crystal X-ray data and EDX measurements. It crystallizes as a new superstructure (space group P4/mnc, no. 128) of the tetragonal U3Si2-structure type with lattice parameters a=5.922(1) Å and c=6.879(2) Å. All of the B atoms are involved in B2 dumbbells with B-B distances of 1.89(4) Å. Structure relaxation using VASP (Vienna ab intio Simulation Package) has confirmed the space group and the lattice parameters. According to electronic structure calculations (TB-LMTO-ASA), the homoatomic B-B interactions are optimized and very strong, but relatively strong heteroatomic Os-B, Nb-B and Nb-Os bonds are also found: These interactions, which together build a three-dimensional network, are mainly responsible for the structural stability of this new phase. The density of state at the Fermi level predicts metallic behavior, as expected, from this metal-rich boride.

  5. Interstellar sulfur chemistry

    NASA Technical Reports Server (NTRS)

    Prasad, S. S.; Huntress, W. T., Jr.

    1980-01-01

    The results of a chemical model of SO, CS, and OCS chemistry in dense clouds are summarized. The results are obtained from a theoretical study of sulfur chemistry in dense interstellar clouds using a large-scale time-dependent model of gas-phase chemistry. Among the results are the following: (1) owing to activation energy, the reaction of CS with O atoms is efficient as a loss mechanism of CS during the early phases of cloud evolution or in hot and oxygen-rich sources such as the KL nebula; (2) if sulfur is not abnormally depleted in dense clouds, then the observed abundances of SO, SO2, H2S, CS, OCS, H2CS, and SiS indicate that sulfur is mostly atomic in dense clouds; and (3) OCS is stable against reactions with neutral atoms and radicals in dense clouds.

  6. Chemistry Dashboard

    EPA Pesticide Factsheets

    The Chemistry Dashboard is part of a suite of dashboards developed by EPA to help evaluate the safety of chemicals. The Chemistry Dashboard provides access to a variety of information on over 700,000 chemicals currently in use.

  7. Chemistry Notes

    ERIC Educational Resources Information Center

    School Science Review, 1976

    1976-01-01

    Described are eight chemistry experiments and demonstrations applicable to introductory chemistry courses. Activities include: measure of lattice enthalpy, Le Chatelier's principle, decarboxylation of soap, use of pocket calculators in pH measurement, and making nylon. (SL)

  8. Chemistry Notes

    ERIC Educational Resources Information Center

    School Science Review, 1972

    1972-01-01

    Thirteen ideas are presented that may be of use to chemistry teachers. Topics covered include vitamin C, industrial chemistry, electrical conductivity, electrolysis, alkali metals, vibration modes infra-red, dynamic equilibrium, and some new demonstrations in gaseous combinations. (PS)

  9. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1983

    1983-01-01

    Presents background information, laboratory procedures, classroom materials/activities, and chemistry experiments. Topics include sublimation, electronegativity, electrolysis, experimental aspects of strontianite, halide test, evaluation of present and future computer programs in chemistry, formula building, care of glass/saturated calomel…

  10. Chemistry Notes

    ERIC Educational Resources Information Center

    School Science Review, 1976

    1976-01-01

    Described are eight chemistry experiments and demonstrations applicable to introductory chemistry courses. Activities include: measure of lattice enthalpy, Le Chatelier's principle, decarboxylation of soap, use of pocket calculators in pH measurement, and making nylon. (SL)

  11. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1983

    1983-01-01

    Presents background information, laboratory procedures, classroom materials/activities, and chemistry experiments. Topics include sublimation, electronegativity, electrolysis, experimental aspects of strontianite, halide test, evaluation of present and future computer programs in chemistry, formula building, care of glass/saturated calomel…

  12. Biophysical chemistry.

    PubMed

    Häussinger, Daniel; Pfohl, Thomas

    2010-01-01

    Biophysical chemistry at the Department of Chemistry, University of Basel, covers the NMR analysis of protein-protein interaction using paramagnetic tags and sophisticated microscopy techniques investigating the dynamics of biological matter.

  13. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1978

    1978-01-01

    Describes experiments, demonstrations, activities and ideas relating to various fields of chemistry to be used in chemistry courses of secondary schools. Three experiments concerning differential thermal analysis are among these notes presented. (HM)

  14. Chemistry Notes

    ERIC Educational Resources Information Center

    School Science Review, 1972

    1972-01-01

    Thirteen ideas are presented that may be of use to chemistry teachers. Topics covered include vitamin C, industrial chemistry, electrical conductivity, electrolysis, alkali metals, vibration modes infra-red, dynamic equilibrium, and some new demonstrations in gaseous combinations. (PS)

  15. Surface chemistry and reactivity of SiO2 polymorphs: A comparative study on α-quartz and α-cristobalite

    NASA Astrophysics Data System (ADS)

    Tang, Cuihua; Zhu, Jianxi; Li, Zhaohui; Zhu, Runliang; Zhou, Qing; Wei, Jingming; He, Hongping; Tao, Qi

    2015-11-01

    Silica minerals are widely used in environmental remediation for their prevalence in soil and sediment. Two common SiO2 polymorphs, α-quartz and α-cristobalite, were investigated for the removal of a typical cationic dye, methylene blue (MB), from aqueous solutions. Their adsorption behaviors were studied in batch experiments as a function of specific surface area (SSA), pH, and temperature. The surface site density of α-quartz (10.6 sites/nm2) was higher than that of α-cristobalite (6.2 sites/nm2) with the Gran plot method, and the adsorption maxima of MB on the two were 0.84 mg/m2 and 0.49 mg/m2, respectively, at 303 K and pH 8. The potentiometric titration showed the capacity of proton-donating by α-quartz was stronger than that by α-cristobalite. A drastic increase of adsorption amount on α-quartz at pH < 3 was caused by its greater quantity of isolated silanols. The negative ΔG and positive ΔH values suggested adsorption of MB on both minerals was spontaneous and endothermic. At three different temperatures (288 K, 298 K, and 303 K), the adsorption capacities of two polymorphs increased with increasing temperature. The surface heterogeneity of α-quartz and α-cristobalite corresponds to their different adsorption behavior, and our work also provides some referential significance in evaluating the overall quality of soils and sediments.

  16. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1982

    1982-01-01

    Presents background information, laboratory procedures, classroom materials/activities, and experiments for chemistry. Topics include superheavy elements, polarizing power and chemistry of alkali metals, particulate carbon from combustion, tips for the chemistry laboratory, interesting/colorful experiments, behavior of bismuth (III) iodine, and…

  17. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1982

    1982-01-01

    Presents background information, laboratory procedures, classroom materials/activities, and experiments for chemistry. Topics include superheavy elements, polarizing power and chemistry of alkali metals, particulate carbon from combustion, tips for the chemistry laboratory, interesting/colorful experiments, behavior of bismuth (III) iodine, and…

  18. CLUSTER CHEMISTRY

    SciTech Connect

    Muetterties, Earl L.

    1980-05-01

    Metal cluster chemistry is one of the most rapidly developing areas of inorganic and organometallic chemistry. Prior to 1960 only a few metal clusters were well characterized. However, shortly after the early development of boron cluster chemistry, the field of metal cluster chemistry began to grow at a very rapid rate and a structural and a qualitative theoretical understanding of clusters came quickly. Analyzed here is the chemistry and the general significance of clusters with particular emphasis on the cluster research within my group. The importance of coordinately unsaturated, very reactive metal clusters is the major subject of discussion.

  19. Forensic chemistry.

    PubMed

    Bell, Suzanne

    2009-01-01

    Forensic chemistry is unique among chemical sciences in that its research, practice, and presentation must meet the needs of both the scientific and the legal communities. As such, forensic chemistry research is applied and derivative by nature and design, and it emphasizes metrology (the science of measurement) and validation. Forensic chemistry has moved away from its analytical roots and is incorporating a broader spectrum of chemical sciences. Existing forensic practices are being revisited as the purview of forensic chemistry extends outward from drug analysis and toxicology into such diverse areas as combustion chemistry, materials science, and pattern evidence.

  20. Isotropic plasma etching of Ge Si and SiNx films

    DOE PAGES

    Henry, Michael David; Douglas, Erica Ann

    2016-08-31

    This study reports on selective isotropic dry etching of chemically vapor deposited (CVD) Ge thin film, release layers using a Shibaura chemical downstream etcher (CDE) with NF3 and Ar based plasma chemistry. Relative etch rates between Ge, Si and SiNx are described with etch rate reductions achieved by adjusting plasma chemistry with O2. Formation of oxides reducing etch rates were measured for both Ge and Si, but nitrides or oxy-nitrides created using direct injection of NO into the process chamber were measured to increase Si and SiNx etch rates while retarding Ge etching.

  1. Isotropic plasma etching of Ge Si and SiNx films

    SciTech Connect

    Henry, Michael David; Douglas, Erica Ann

    2016-08-31

    This study reports on selective isotropic dry etching of chemically vapor deposited (CVD) Ge thin film, release layers using a Shibaura chemical downstream etcher (CDE) with NF3 and Ar based plasma chemistry. Relative etch rates between Ge, Si and SiNx are described with etch rate reductions achieved by adjusting plasma chemistry with O2. Formation of oxides reducing etch rates were measured for both Ge and Si, but nitrides or oxy-nitrides created using direct injection of NO into the process chamber were measured to increase Si and SiNx etch rates while retarding Ge etching.

  2. Isotropic plasma etching of Ge Si and SiNx films

    SciTech Connect

    Henry, Michael David; Douglas, Erica Ann

    2016-08-31

    This study reports on selective isotropic dry etching of chemically vapor deposited (CVD) Ge thin film, release layers using a Shibaura chemical downstream etcher (CDE) with NF3 and Ar based plasma chemistry. Relative etch rates between Ge, Si and SiNx are described with etch rate reductions achieved by adjusting plasma chemistry with O2. Formation of oxides reducing etch rates were measured for both Ge and Si, but nitrides or oxy-nitrides created using direct injection of NO into the process chamber were measured to increase Si and SiNx etch rates while retarding Ge etching.

  3. Process dependent morphology of the Si/SiO2 interface measured with scanning tunneling microscopy

    NASA Technical Reports Server (NTRS)

    Hecht, Michael H.; Bell, L. D.; Grunthaner, F. J.; Kaiser, W. J.

    1988-01-01

    A new experimental technique to determine Si/SiO2 interface morphology is described. Thermal oxides of silicon are chemically removed, and the resulting surface topography is measured with scanning tunneling microscopy. Interfaces prepared by oxidation of Si (100) and (111) surfaces, followed by postoxidation anneal (POA) at different temperatures, have been characterized. Correlations between interface structure, chemistry, and electrical characteristics are described.

  4. The Choice of Names and Symbols for Quantities in Chemistry.

    ERIC Educational Resources Information Center

    Mills, Ian M.

    1989-01-01

    Discussed are some of the issues which were considered when the International Union of Pure and Applied Chemistry revised its guide to notation in physical chemistry. Included are the choice between SI and non-SI units and choosing sensible names and symbols for quantities. (CW)

  5. SI Units? A Camel is a Camel.

    ERIC Educational Resources Information Center

    Adamson, Arthur W.

    1978-01-01

    This paper is a summary of remarks made at a recent symposium on new directions in the teaching of physical chemistry. The author takes exception to the claims made for the International System of Units (SI). (HM)

  6. Chemistry Notes

    ERIC Educational Resources Information Center

    School Science Review, 1972

    1972-01-01

    Twelve new chemistry expermiments are described. Broad areas covered include atomic structure, solubility, gaseous diffusion, endothermic reactions, alcohols, equilibrium, atomic volumes, and some improvised apparatus. (PS)

  7. Chemistry Notes

    ERIC Educational Resources Information Center

    School Science Review, 1972

    1972-01-01

    Twelve new chemistry expermiments are described. Broad areas covered include atomic structure, solubility, gaseous diffusion, endothermic reactions, alcohols, equilibrium, atomic volumes, and some improvised apparatus. (PS)

  8. Technetium chemistry

    SciTech Connect

    Burns, C.; Bryan, J.; Cotton, F.; Ott, K.; Kubas, G.; Haefner, S.; Barrera, J.; Hall, K.; Burrell, A.

    1996-04-01

    Technetium chemistry is a young and developing field. Despite the limited knowledge of its chemistry, technetium is the workhorse for nuclear medicine. Technetium is also a significant environmental concern because it is formed as a byproduct of nuclear weapons production and fission-power generators. Development of new technetium radio-pharmaceuticals and effective environmental control depends strongly upon knowledge of basic technetium chemistry. The authors performed research into the basic coordination and organometallic chemistry of technetium and used this knowledge to address nuclear medicine and environmental applications. This is the final report of a three-year Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL).

  9. SiC Nanoparticles Toughened-SiC/MoSi2-SiC Multilayer Functionally Graded Oxidation Protective Coating for Carbon Materials at High Temperatures

    NASA Astrophysics Data System (ADS)

    Abdollahi, Alireza; Ehsani, Naser; Valefi, Zia; Khalifesoltani, Ali

    2017-05-01

    A SiC nanoparticle toughened-SiC/MoSi2-SiC functionally graded oxidation protective coating on graphite was prepared by reactive melt infiltration (RMI) at 1773 and 1873 K under argon atmosphere. The phase composition and anti-oxidation behavior of the coatings were investigated. The results show that the coating was composed of MoSi2, α-SiC and β-SiC. By the variations of Gibbs free energy (calculated by HSC Chemistry 6.0 software), it could be suggested that the SiC coating formed at low temperatures by solution-reprecipitation mechanism and at high temperatures by gas-phase reactions and solution-reprecipitation mechanisms simultaneously. SiC nanoparticles could improve the oxidation resistance of SiC/MoSi2-SiC multiphase coating. Addition of SiC nanoparticles increases toughness of the coating and prevents spreading of the oxygen diffusion channels in the coating during the oxidation test. The mass loss and oxidation rate of the SiC nanoparticle toughened-SiC/MoSi2-SiC-coated sample after 10-h oxidation at 1773 K were only 1.76% and 0.32 × 10-2 g/cm3/h, respectively.

  10. Silicon chemistry in interstellar clouds

    NASA Technical Reports Server (NTRS)

    Langer, William D.; Glassgold, A. E.

    1990-01-01

    A new model of interstellar silicon chemistry is presented that explains the lack of SiO detections in cold clouds and contains an exponential temperature dependence for the SiO abundance. A key aspect of the model is the sensitivity of SiO production by neutral silicon reactions to density and temperature, which arises from the dependence of the rate coefficients on the population of the excited fine-structure levels of the silicon atom. As part of the explanation of the lack of SiO detections at low temperatures and densities, the model also emphasizes the small efficiencies of the production routes and the correspondingly long times needed to reach equilibrium. Measurements of the abundance of SiO, in conjunction with theory, can provide information on the physical properties of interstellar clouds such as the abundance of oxygen bearing molecules and the depletion of interstellar silicon.

  11. Impact of Supplemental Instruction in Entry-Level Chemistry Courses at a Midsized Public University

    ERIC Educational Resources Information Center

    Rath, Kenneth A.; Peterfreund, Alan; Bayliss, Frank; Runquist, Elizabeth; Simonis, Ursula

    2012-01-01

    This paper examines the impact of supplemental instruction (SI)--nonremedial workshops that support regularly scheduled courses--on four different chemistry courses: General Chemistry I and II, and Organic Chemistry I and II. Differences in how SI impacts student performance in these courses are discussed, particularly in terms of whether students…

  12. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1981

    1981-01-01

    Outlines laboratory procedures, demonstrations, teaching suggestions, and content information related to chemistry. Topics include polarizing power; calorimetry and momentum; microcomputers in school chemistry; a constant-volume dispenser for liquids, floating magnets, and crystal lattices; preparation of chromium; and solvent polarity and…

  13. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1981

    1981-01-01

    Outlines laboratory procedures, demonstrations, teaching suggestions, and content information related to chemistry. Topics include polarizing power; calorimetry and momentum; microcomputers in school chemistry; a constant-volume dispenser for liquids, floating magnets, and crystal lattices; preparation of chromium; and solvent polarity and…

  14. Advances in Phosphasilene Chemistry.

    PubMed

    Nesterov, Vitaly; Breit, Nora C; Inoue, Shigeyoshi

    2017-09-07

    Heavier alkene analogues possess unique electronic properties and reactivity, encouraging multidisciplinary research groups to utilize them in the rational design of novel classes of compounds and materials. Phosphasilenes are heavier imine analogues, containing highly reactive Si=P double bonds. Recent achievements in this field are closely related to the progress in the chemistry of stable low-coordinate silicon compounds. In this Review, we have attempted to summarize in a comprehensive way the available data on the structures, syntheses, electronic and chemical properties of these compounds, with an emphasis on recent achievements. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Circumstellar chemistry

    NASA Technical Reports Server (NTRS)

    Glassgold, Alfred E.; Huggins, Patrick J.

    1987-01-01

    The study of the outer envelopes of cool evolved stars has become an active area of research. The physical properties of CS envelopes are presented. Observations of many wavelengths bands are relevant. A summary of observations and a discussion of theoretical considerations concerning the chemistry are summarized. Recent theoretical considerations show that the thermal equilibrium model is of limited use for understanding the chemistry of the outer CS envelopes. The theoretical modeling of the chemistry of CS envelopes provides a quantitive test of chemical concepts which have a broader interest than the envelopes themselves.

  16. Crystal chemistry of sodium zirconium phosphate based simulated ceramic waste forms of effluent cations (Ba(2+), Sn(4+), Fe(3+), Cr(3+), Ni(2+) and Si(4+)) from light water reactor fuel reprocessing plants.

    PubMed

    Shrivastava, O P; Chourasia, Rashmi

    2008-05-01

    A novel concept of immobilization of light water reactor (LWR) fuel reprocessing waste effluent through interaction with sodium zirconium phosphate (NZP) has been established. Such conversion utilizes waste materials like zirconium and nickel alloys, stainless steel, spent solvent tri-butyl phosphate and concentrated solution of NaNO(3). The resultant multi component NZP material is a physically and chemically stable single phase crystalline product having good mechanical strength. The NZP matrix can also incorporate all types of fission product cations in a stable crystalline lattice structure; therefore, the resultant solid solutions deserve quantification of crystallographic data. In this communication, crystal chemistry of the two types of simulated waste forms (type I-Na(1.49)Zr(1.56)Sn(0.02)Fe(0).(28)Cr(0.07)Ni(0.07)P(3)O(12) and type II-Na(1.35)Ba(0.14)Zr(1.56)Sn(0.02)Fe(0).(28)Cr(0.07)Ni(0.07)P(2.86)Si(0.14)O(12)) has been investigated using General Structure Analysis System (GSAS) programming of the X-ray powder diffraction data. About 4001 data points of each have been subjected to Rietveld analysis to arrive at a satisfactory structural convergence of Rietveld parameters; R-pattern (R(p))=0.0821, R-weighted pattern (R(wp))=0.1266 for type I and R(p)=0.0686, R(wp)=0.0910 for type II. The structure of type I and type II waste forms consist of ZrO(6) octahedra and PO(4) tetrahedra linked by the corners to form a three-dimensional network. Each phosphate group is on a two-fold rotation axis and is linked to four ZrO(6) octahedra while zirconium octahedra lies on a three-fold rotation axis and is connected to six PO(4) tetrahedra. Though the expansion along c-axis and shrinkage along a-axis with slight distortion of bond angles in the synthesized crystal indicate the flexibility of the structure, the waste forms are basically of NZP structure. Morphological examination by SEM reveals that the size of almost rectangular parallelepiped crystallites varies

  17. Catalytic Chemistry.

    ERIC Educational Resources Information Center

    Borer, Londa; And Others

    1996-01-01

    Describes an approach for making chemistry relevant to everyday life. Involves the study of kinetics using the decomposition of hydrogen peroxide by vegetable juices. Allows students to design and carry out experiments and then draw conclusions from their results. (JRH)

  18. Nuclear Chemistry.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1979

    1979-01-01

    Provides a brief review of the latest developments in nuclear chemistry. Nuclear research today is directed toward increased activity in radiopharmaceuticals and formation of new isotopes by high-energy, heavy-ion collisions. (Author/BB)

  19. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1981

    1981-01-01

    Describes 13 activities, experiments and demonstrations, including the preparation of iron (III) chloride, simple alpha-helix model, investigating camping gas, redox reactions of some organic compounds, a liquid crystal thermometer, and the oxidation number concept in organic chemistry. (JN)

  20. Precolumbian Chemistry.

    ERIC Educational Resources Information Center

    Robinson, Janet Bond

    1995-01-01

    Describes the content and development of a curriculum that provides an approach to descriptive chemistry and the history of technology through consideration of the pottery, metallurgy, pigments, dyes, agriculture, and medicine of pre-Columbian people. (DDR)

  1. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1980

    1980-01-01

    Describes equipment, activities, and experiments useful in chemistry instruction, including among others, a rapid method to determine available chlorine in bleach, simple flame testing apparatus, and a simple apparatus demonstrating the technique of flash photolysis. (SK)

  2. Chemistry Notes

    ERIC Educational Resources Information Center

    School Science Review, 1973

    1973-01-01

    Several ideas are proposed for chemistry teachers to try in their classrooms. Subjects included are polymerization of acrylate, polymerization of styrene, conductivity, pollution, preparation of chlorine, redox equations, chemiluminescence, and molecular sieves. (PS)

  3. Catalytic Chemistry.

    ERIC Educational Resources Information Center

    Borer, Londa; And Others

    1996-01-01

    Describes an approach for making chemistry relevant to everyday life. Involves the study of kinetics using the decomposition of hydrogen peroxide by vegetable juices. Allows students to design and carry out experiments and then draw conclusions from their results. (JRH)

  4. Nuclear Chemistry.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1979

    1979-01-01

    Provides a brief review of the latest developments in nuclear chemistry. Nuclear research today is directed toward increased activity in radiopharmaceuticals and formation of new isotopes by high-energy, heavy-ion collisions. (Author/BB)

  5. Chemistry Notes

    ERIC Educational Resources Information Center

    School Science Review, 1973

    1973-01-01

    Several ideas are proposed for chemistry teachers to try in their classrooms. Subjects included are polymerization of acrylate, polymerization of styrene, conductivity, pollution, preparation of chlorine, redox equations, chemiluminescence, and molecular sieves. (PS)

  6. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1980

    1980-01-01

    Describes equipment, activities, and experiments useful in chemistry instruction, including among others, a rapid method to determine available chlorine in bleach, simple flame testing apparatus, and a simple apparatus demonstrating the technique of flash photolysis. (SK)

  7. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1981

    1981-01-01

    Describes 13 activities, experiments and demonstrations, including the preparation of iron (III) chloride, simple alpha-helix model, investigating camping gas, redox reactions of some organic compounds, a liquid crystal thermometer, and the oxidation number concept in organic chemistry. (JN)

  8. Precolumbian Chemistry.

    ERIC Educational Resources Information Center

    Robinson, Janet Bond

    1995-01-01

    Describes the content and development of a curriculum that provides an approach to descriptive chemistry and the history of technology through consideration of the pottery, metallurgy, pigments, dyes, agriculture, and medicine of pre-Columbian people. (DDR)

  9. Stratospheric chemistry

    NASA Astrophysics Data System (ADS)

    Brune, William H.

    Advances in stratospheric chemistry made by investigators in the United States from 1987 to 1990 are reviewed. Subject areas under consideration include photochemistry of the polar stratosphere, photochemistry of the global stratosphere, and assessments of inadvertent modification of the stratosphere by anthropogenic activity. Particular attention is given to early observations and theories, gas phase chemistry, Antarctic observations, Arctic observations, odd-oxygen, odd-hydrogen, odd-nitrogen, halogens, aerosols, modeling of stratospheric ozone, and reactive nitrogen effects.

  10. Stratospheric chemistry

    SciTech Connect

    Brune, W.H. )

    1991-01-01

    Advances in stratospheric chemistry made by investigators in the United States from 1987 to 1990 are reviewed. Subject areas under consideration include photochemistry of the polar stratosphere, photochemistry of the global stratosphere, and assessments of inadvertent modification of the stratosphere by anthropogenic activity. Particular attention is given to early observations and theories, gas phase chemistry, Antarctic observations, Arctic observations, odd-oxygen, odd-hydrogen, odd-nitrogen, halogens, aerosols, modeling of stratospheric ozone, and reactive nitrogen effects.

  11. Chemistry Experiments

    NASA Technical Reports Server (NTRS)

    Brasseur, Guy; Remsberg, Ellis; Purcell, Patrick; Bhatt, Praful; Sage, Karen H.; Brown, Donald E.; Scott, Courtney J.; Ko, Malcolm K. W.; Tie, Xue-Xi; Huang, Theresa

    1999-01-01

    The purpose of the chemistry component of the model comparison is to assess to what extent differences in the formulation of chemical processes explain the variance between model results. Observed concentrations of chemical compounds are used to estimate to what degree the various models represent realistic situations. For readability, the materials for the chemistry experiment are reported in three separate sections. This section discussed the data used to evaluate the models in their simulation of the source gases and the Nitrogen compounds (NO(y)) and Chlorine compounds (Cl(y)) species.

  12. Polymer Chemistry

    NASA Technical Reports Server (NTRS)

    Williams, Martha; Roberson, Luke; Caraccio, Anne

    2010-01-01

    This viewgraph presentation describes new technologies in polymer and material chemistry that benefits NASA programs and missions. The topics include: 1) What are Polymers?; 2) History of Polymer Chemistry; 3) Composites/Materials Development at KSC; 4) Why Wiring; 5) Next Generation Wiring Materials; 6) Wire System Materials and Integration; 7) Self-Healing Wire Repair; 8) Smart Wiring Summary; 9) Fire and Polymers; 10) Aerogel Technology; 11) Aerogel Composites; 12) Aerogels for Oil Remediation; 13) KSC's Solution; 14) Chemochromic Hydrogen Sensors; 15) STS-130 and 131 Operations; 16) HyperPigment; 17) Antimicrobial Materials; 18) Conductive Inks Formulations for Multiple Applications; and 19) Testing and Processing Equipment.

  13. Chemistry Experiments

    NASA Technical Reports Server (NTRS)

    Brasseur, Guy; Remsberg, Ellis; Purcell, Patrick; Bhatt, Praful; Sage, Karen H.; Brown, Donald E.; Scott, Courtney J.; Ko, Malcolm K. W.; Tie, Xue-Xi; Huang, Theresa

    1999-01-01

    The purpose of the chemistry component of the model comparison is to assess to what extent differences in the formulation of chemical processes explain the variance between model results. Observed concentrations of chemical compounds are used to estimate to what degree the various models represent realistic situations. For readability, the materials for the chemistry experiment are reported in three separate sections. This section discussed the data used to evaluate the models in their simulation of the source gases and the Nitrogen compounds (NO(y)) and Chlorine compounds (Cl(y)) species.

  14. Silicon Chemistry in the Mesosphere and Lower Thermosphere

    NASA Technical Reports Server (NTRS)

    Plane, John M. C.; Gomez-Martin, Juan Carlos; Feng, Wuhu; Janches, Diego

    2016-01-01

    Silicon is one of the most abundant elements in cosmic dust, and meteoric ablation injects a significant amount of Si into the atmosphere above 80 km. In this study, a new model for silicon chemistry in the mesosphere lower thermosphere is described, based on recent laboratory kinetic studies of Si, SiO,SiO2, and S(exp +). Electronic structure calculations and statistical rate theory are used to show that the likely fate of SiO2 is a two-step hydration to silicic acid (Si(OH)4), which then polymerizes with metal oxides and hydroxides to form meteoric smoke particles. This chemistry is then incorporated into a whole atmosphere chemistry-climate model. The vertical profiles of Si+ and the Si(exp +)Fe(exp +) ratio are shown to be in good agreement with rocket-borne mass spectrometric measurements between 90 and 110 km. Si(exp +) has consistently been observed to be the major meteoric ion around 110 km; this implies that the relative injection rate of Si from meteoric ablation, compared to metals such as Fe and Mg, is significantly larger than expected based on the irrelative chondritic abundances. Finally, the global abundances of SiO and Si(OH)4 show clear evidence of the seasonal meteoric input function, which is much less pronounced in the case of other meteoric species.

  15. Chemistry Notes

    ERIC Educational Resources Information Center

    School Science Review, 1972

    1972-01-01

    Short articles on the kinetics of the hydrogen peroxide-iodide ion reaction, simulation of fluidization catalysis, the use of Newman projection diagrams to represent steric relationships in organic chemistry, the use of synthetic substrates for proteolytic enzyme reactions, and two simple clock reactions"--hydrolysis of halogenoalkanes and…

  16. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1983

    1983-01-01

    Presents chemistry experiments, laboratory procedures, demonstrations, and classroom materials/activities. These include: experiments on colloids, processing of uranium ore, action of heat on carbonates; color test for phenols and aromatic amines; solvent properties of non-electrolytes; stereoscopic applications/methods; a valency balance;…

  17. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1983

    1983-01-01

    Presents chemistry experiments, laboratory procedures, demonstrations, teaching suggestions, and classroom materials/activities. These include: game for teaching ionic formulas; method for balancing equations; description of useful redox series; computer programs (with listings) for water electrolysis simulation and for determining chemical…

  18. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1983

    1983-01-01

    Presents chemistry experiments, laboratory procedures, demonstrations, teaching suggestions, and classroom materials/activities. These include: game for teaching ionic formulas; method for balancing equations; description of useful redox series; computer programs (with listings) for water electrolysis simulation and for determining chemical…

  19. Colorful Chemistry

    ERIC Educational Resources Information Center

    Sullivan, P. Teal; Carsten Conner, L. D.; Guthrie, Mareca; Pompea, Stephen; Tsurusaki, Blakely K.; Tzou, Carrie

    2017-01-01

    This article describes a chemistry/art activity that originated in an National Science Foundation--funded two-week STEAM (Science, Technology, Engineering, Art, and Math) academy for grade 4-6 girls. The authors recommend using this investigation in conjunction with other activities focusing on chemical change as a step toward fulfilling the…

  20. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1980

    1980-01-01

    Presents 12 chemistry notes for British secondary school teachers. Some of these notes are: (1) a simple device for testing pH-meters; (2) portable fume cupboard safety screen; and (3) Mass spectroscopy-analysis of a mass peak. (HM)

  1. Chemistry Notes

    ERIC Educational Resources Information Center

    School Science Review, 1976

    1976-01-01

    Describes several chemistry projects, including solubility, formula for magnesium oxide, dissociation of dinitrogen tetroxide, use of 1-chloro-2, 4-dinitrobenzene, migration of ions, heats of neutralizations, use of pocket calculators, sonic cleaning, oxidation states of manganese, and cell potentials. Includes an extract from Chemical Age on…

  2. Confectionary Chemistry.

    ERIC Educational Resources Information Center

    Levine, Elise Hilf

    1996-01-01

    Presents activities and demonstrations that enable teachers to use various types of confections as tactile experiences to spark chemistry students' interest and generate enthusiasm for learning. Presents uses of candy in teaching about atomic structure, spontaneous nuclear decay, chemical formulas, fractoluminescence, the effect of a molecular…

  3. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1980

    1980-01-01

    Presents 12 chemistry notes for British secondary school teachers. Some of these notes are: (1) a simple device for testing pH-meters; (2) portable fume cupboard safety screen; and (3) Mass spectroscopy-analysis of a mass peak. (HM)

  4. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1982

    1982-01-01

    Presents procedures, experiments, demonstrations, teaching suggestions, and information on a variety of chemistry topics including, for example, inert gases, light-induced reactions, calculators, identification of substituted acetophenones, the elements, analysis of copper minerals, extraction of metallic strontium, equilibrium, halogens, and…

  5. Chemistry Notes

    ERIC Educational Resources Information Center

    School Science Review, 1976

    1976-01-01

    Describes several chemistry projects, including solubility, formula for magnesium oxide, dissociation of dinitrogen tetroxide, use of 1-chloro-2, 4-dinitrobenzene, migration of ions, heats of neutralizations, use of pocket calculators, sonic cleaning, oxidation states of manganese, and cell potentials. Includes an extract from Chemical Age on…

  6. Chemistry Notes

    ERIC Educational Resources Information Center

    School Science Review, 1972

    1972-01-01

    Short articles on the kinetics of the hydrogen peroxide-iodide ion reaction, simulation of fluidization catalysis, the use of Newman projection diagrams to represent steric relationships in organic chemistry, the use of synthetic substrates for proteolytic enzyme reactions, and two simple clock reactions"--hydrolysis of halogenoalkanes and…

  7. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1978

    1978-01-01

    Describes some laboratory apparatus, chemistry experiments and demonstrations, such as a Kofler block melting point apparatus, chromatographic investigation of the phosphoric acid, x-ray diffraction, the fountain experiment, endothermic sherbet, the measurement of viscosity, ionization energies and electronic configurations. (GA)

  8. Chemistry Notes

    ERIC Educational Resources Information Center

    School Science Review, 1972

    1972-01-01

    Short articles on the alkylation of aniline, the preparation and properties of perbromate, using scrap copper in chemistry instruction, a safe method of burning hydrogen, and the use of an ion-charge model as an alternative to the mole concept in secondary school instruction. (AL)

  9. Chemistry's year

    NASA Astrophysics Data System (ADS)

    2011-01-01

    The United Nations has proclaimed 2011 to be the International Year of Chemistry. Under this banner, chemists should seize the opportunity to highlight the rich history and successes of our subject to a much broader audience - and explain how it can help to solve the global challenges we face today and in the future.

  10. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1982

    1982-01-01

    Presents procedures, experiments, demonstrations, teaching suggestions, and information on a variety of chemistry topics including, for example, inert gases, light-induced reactions, calculators, identification of substituted acetophenones, the elements, analysis of copper minerals, extraction of metallic strontium, equilibrium, halogens, and…

  11. Chemistry Notes

    ERIC Educational Resources Information Center

    School Science Review, 1972

    1972-01-01

    Short articles on the alkylation of aniline, the preparation and properties of perbromate, using scrap copper in chemistry instruction, a safe method of burning hydrogen, and the use of an ion-charge model as an alternative to the mole concept in secondary school instruction. (AL)

  12. Confectionary Chemistry.

    ERIC Educational Resources Information Center

    Levine, Elise Hilf

    1996-01-01

    Presents activities and demonstrations that enable teachers to use various types of confections as tactile experiences to spark chemistry students' interest and generate enthusiasm for learning. Presents uses of candy in teaching about atomic structure, spontaneous nuclear decay, chemical formulas, fractoluminescence, the effect of a molecular…

  13. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1983

    1983-01-01

    Presents chemistry experiments, laboratory procedures, demonstrations, and classroom materials/activities. These include: experiments on colloids, processing of uranium ore, action of heat on carbonates; color test for phenols and aromatic amines; solvent properties of non-electrolytes; stereoscopic applications/methods; a valency balance;…

  14. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1978

    1978-01-01

    Describes some laboratory apparatus, chemistry experiments and demonstrations, such as a Kofler block melting point apparatus, chromatographic investigation of the phosphoric acid, x-ray diffraction, the fountain experiment, endothermic sherbet, the measurement of viscosity, ionization energies and electronic configurations. (GA)

  15. Microscale Chemistry and Green Chemistry: Complementary Pedagogies

    NASA Astrophysics Data System (ADS)

    Singh, Mono M.; Szafran, Zvi; Pike, R. M.

    1999-12-01

    This paper describes the complementary nature of microscale chemistry and green chemistry. Green chemistry emphasizes the concepts of atom economy, source reduction, pathway modification, solvent substitution, and pollution prevention as means of improving the environmental impact of industrial chemistry. Microscale chemistry serves as a tool for incorporating green chemistry ideas across the curriculum in educational institutions. Examples are drawn from microscale laboratory experiments to illustrate the pedagogic connection between the two areas.

  16. SI Notes.

    ERIC Educational Resources Information Center

    Nelson, Robert A.

    1983-01-01

    Discusses legislation related to SI (International Systems of Units) in the United States. Indicates that although SI metric units have been officially recognized by law in the United States, U.S. Customary Units have never received a statutory basis. (JN)

  17. Chemistry of MOS-LSI radiation hardening

    NASA Technical Reports Server (NTRS)

    Grunthaner, P.

    1985-01-01

    The objective of this task was to obtain chemical information on MOS test samples. Toward this end, high resolution X-ray photoemission spectroscopy (XPS) has been the primary techniques used to characterize the chemistry and structure of the SiO2/Si interface for a variety of MOS structures with differing degrees of susceptibility to damage by ionizing radiation. The major accomplishments of this program are: (1) the identification of a structurally distinct region of SiO2 in the near-interfacial region of thermal SiO2 on Si; (2) the identification in the near-interfacial region of SiO2 structural differences between radiation hard and soft gate oxides; (3) the direct observation of radiation-induced damage sites in thermal SiO2 with XPS using in situ electron stress; (4) the correlation of suboxide state distributions at the SiO2/Si interface with processing parameters and radiation susceptibility; (5) the development of a chemical mechanism for radiation-induced interface state generation in SiO2/Si structures; and (6) the development benign chemical profiling techniques which permit the investigation of oxide/semiconductor structures using surface sensitive electron spectroscopic techniques.

  18. High Refractive Index Si/SiOx Based Nanocomposites

    DTIC Science & Technology

    2000-01-01

    also provide the means for performing chemistry, in the presence of oxidizing agents such as benzoyl peroxide or 3- 328 chloroperbenzoic acid.[32,33...A small amount of benzoyl peroxide (1.79x10" 4 M) was found to produce the optimum results in terms of concentration of Si nanoparticles. Scheme 1...benzoylethyl ester and tetraethoxysilane (TEOS), along with unreacted benzoyl peroxide indicate that sonication can provide considerable amount of

  19. Polynitrogen Chemistry

    DTIC Science & Technology

    2013-09-24

    4N3, while As(C6H5)4N3 presents a borderline case.23 Theoretical Calculations High-level theoretical studies of nitrogen, oxygen, selenium and...Dixon, D. A.; Christe, K. O., "Thermochemical Properties of Selenium Fluorides, Oxides, and Oxofluorides," Inorganic Chemistry, p. 2472, vol. 51, (2012...34Thermochemical Properties of Selenium Fluorides, Oxides, and Oxofluorides," Inorg. Chem., p. 2472, vol. 51, (2012). 26. K. S. Thanthiriwatte, M. Vasiliu

  20. Computational chemistry

    NASA Technical Reports Server (NTRS)

    Arnold, J. O.

    1987-01-01

    With the advent of supercomputers, modern computational chemistry algorithms and codes, a powerful tool was created to help fill NASA's continuing need for information on the properties of matter in hostile or unusual environments. Computational resources provided under the National Aerodynamics Simulator (NAS) program were a cornerstone for recent advancements in this field. Properties of gases, materials, and their interactions can be determined from solutions of the governing equations. In the case of gases, for example, radiative transition probabilites per particle, bond-dissociation energies, and rates of simple chemical reactions can be determined computationally as reliably as from experiment. The data are proving to be quite valuable in providing inputs to real-gas flow simulation codes used to compute aerothermodynamic loads on NASA's aeroassist orbital transfer vehicles and a host of problems related to the National Aerospace Plane Program. Although more approximate, similar solutions can be obtained for ensembles of atoms simulating small particles of materials with and without the presence of gases. Computational chemistry has application in studying catalysis, properties of polymers, all of interest to various NASA missions, including those previously mentioned. In addition to discussing these applications of computational chemistry within NASA, the governing equations and the need for supercomputers for their solution is outlined.

  1. Silicon chemistry in the mesosphere and lower thermosphere

    PubMed Central

    Gómez‐Martín, Juan Carlos; Feng, Wuhu; Janches, Diego

    2016-01-01

    Abstract Silicon is one of the most abundant elements in cosmic dust, and meteoric ablation injects a significant amount of Si into the atmosphere above 80 km. In this study, a new model for silicon chemistry in the mesosphere/lower thermosphere is described, based on recent laboratory kinetic studies of Si, SiO, SiO2, and Si+. Electronic structure calculations and statistical rate theory are used to show that the likely fate of SiO2 is a two‐step hydration to silicic acid (Si(OH)4), which then polymerizes with metal oxides and hydroxides to form meteoric smoke particles. This chemistry is then incorporated into a whole atmosphere chemistry‐climate model. The vertical profiles of Si+ and the Si+/Fe+ ratio are shown to be in good agreement with rocket‐borne mass spectrometric measurements between 90 and 110 km. Si+ has consistently been observed to be the major meteoric ion around 110 km; this implies that the relative injection rate of Si from meteoric ablation, compared to metals such as Fe and Mg, is significantly larger than expected based on their relative chondritic abundances. Finally, the global abundances of SiO and Si(OH)4 show clear evidence of the seasonal meteoric input function, which is much less pronounced in the case of other meteoric species. PMID:27668138

  2. Interfacial chemistry and structure in ceramic composites

    SciTech Connect

    Jones, R.H.; Saenz, N.T.; Schilling, C.H.

    1990-09-01

    The interfacial chemistry and structure of ceramic matrix composites (CMCs) play a major role in the properties of these materials. Fiber-matrix interfaces chemistries are vitally important in the fracture strength, fracture toughness, and fracture resistance of ceramic composites because they influence fiber loading and fiber pullout. Elevated-temperature properties are also linked to the interfacial characteristics through the chemical stability of the interface in corrosive environments and the creep/pullout behavior of the interface. Physical properties such as electrical and thermal conductivity are also dependent on the interface. Fiber-matrix interfaces containing a 1-{mu}m-thick multilayered interface with amorphous and graphitic C to a 1-nm-thick SiO{sub 2} layer can result from sintering operations for some composite systems. Fibers coated with C, BN, C/BC/BN, and Si are also used to produce controlled interface chemistries and structures. Growth interfaces within the matrix resulting from processing of CMCs can also be crucial to the behavior of these materials. Evaluation of the interfacial chemistry and structure of CMCs requires the use of a variety of analytical tools, including optical microscopy, scanning electron microscopy, Auger electron spectroscopy, and transmission electron microscopy coupled with energy dispersive x-ray analysis. A review of the interfacial chemistry and structure of SiC whisker- and fiber-reinforced Si{sub 3}N{sub 4} and SiC/SiC materials is presented. Where possible, correlations with fracture properties and high-temperature stability are made. 94 refs., 10 figs.

  3. Silicon chemistry in interstellar clouds

    NASA Technical Reports Server (NTRS)

    Langer, William D.; Glassgold, A. E.

    1989-01-01

    Interstellar SiO was discovered shortly after CO but it has been detected mainly in high density and high temperature regions associated with outflow sources. A new model of interstellar silicon chemistry that explains the lack of SiO detections in cold clouds is presented which contains an exponential temperature dependence for the SiO abundance. A key aspect of the model is the sensitivity of SiO production by neutral silicon reactions to density and temperature, which arises from the dependence of the rate coefficients on the population of the excited fine structure levels of the silicon atom. This effect was originally pointed out in the context of neutral reactions of carbon and oxygen by Graff, who noted that the leading term in neutral atom-molecule interactions involves the quadrupole moment of the atom. Similar to the case of carbon, the requirement that Si has a quadrupole moment requires population of the J = 1 level, which lies 111K above the J = 0 ground state and has a critical density n(cr) equal to or greater than 10(6)/cu cm. The SiO abundance then has a temperature dependence proportional to exp(-111/T) and a quadratic density dependence for n less than n(cr). As part of the explanation of the lack of SiO detections at low temperatures and densities, this model also emphasizes the small efficiencies of the production routes and the correspondingly long times needed to reach equilibrium. Measurements of the abundance of SiO, in conjunction with theory, can provide information on the physical properties of interstellar clouds such as the abundances of oxygen bearing molecules and the depletion of interstellar silicon.

  4. Chemistry at high pressures and temperatures: in-situ synthesis and characterization of {beta}-Si{sub 3}N{sub 4} by DAC X-ray/laser-heating studies

    SciTech Connect

    Yoo, C.-S.; Akella, J.; Nicol, M.

    1996-01-01

    We have developed in-situ XRD technique at high pressures and temperatures by integrating the angle-resolved synchrotron XRD method, laser-heating system, and diamond anvil cell together. Using this technique, we have studied the direct elementary reactions of nitrogen with Si, yielding technologically important {beta}-Si{sub 3}N{sub 4}. These reactions do not occur at ambient temperatures at high pressures up to 50 GPa, but proceed exothermically at high temperatures at moderate pressures. It implies that the reaction is kinetically limited by a large activation barrier.

  5. Tularosa Basin Play Fairway Analysis: Water Chemistry

    DOE Data Explorer

    Adam Brandt

    2015-12-15

    This shapefile contains 409 well data points on Tularosa Basin Water Chemistry, each of which have a location (UTM), temperature, quartz and Potassium/Magnesium geothermometer; as well as concentrations of chemicals like Mn, Fe, Ba, Sr, Cs, Rb, As, NH4, HCO3, SO4, F, Cl, B, SiO2, Mg, Ca, K, Na, and Li.

  6. Interstellar chemistry

    PubMed Central

    Klemperer, William

    2006-01-01

    In the past half century, radioastronomy has changed our perception and understanding of the universe. In this issue of PNAS, the molecular chemistry directly observed within the galaxy is discussed. For the most part, the description of the molecular transformations requires specific kinetic schemes rather than chemical thermodynamics. Ionization of the very abundant molecular hydrogen and atomic helium followed by their secondary reactions is discussed. The rich variety of organic species observed is a challenge for complete understanding. The role and nature of reactions involving grain surfaces as well as new spectroscopic observations of interstellar and circumstellar regions are topics presented in this special feature. PMID:16894148

  7. (Pesticide chemistry)

    SciTech Connect

    Barnthouse, L.W.

    1990-09-04

    This report summarizes a trip by L. W. Barnthouse of the Environmental Sciences Division (ESD), Oak Ridge National Laboratory (ORNL), to Hamburg, Federal Republic of Germany (FRG), where he participated in the 7th International Congress of Pesticide Chemistry. He chaired a workshop on experimental systems for determining effects of pesticides on nontarget organisms and gave an oral presentation at a symposium on pesticide risk assessment. Before returning to the United States, Dr. Barnthouse visited the Netherlands Institute for Sea Research in Texel, the Netherlands.

  8. Science Update: Inorganic Chemistry

    ERIC Educational Resources Information Center

    Rawls, Rebecca

    1978-01-01

    This first in a series of articles describing the state of the art of various branches of chemistry reviews inorganic chemistry, including bioinorganic, photochemistry, organometallic, and solid state chemistries. (SL)

  9. Science Update: Inorganic Chemistry

    ERIC Educational Resources Information Center

    Rawls, Rebecca

    1978-01-01

    This first in a series of articles describing the state of the art of various branches of chemistry reviews inorganic chemistry, including bioinorganic, photochemistry, organometallic, and solid state chemistries. (SL)

  10. Why Teach Environmental Chemistry?

    ERIC Educational Resources Information Center

    Gardner, Marjorie H.

    1974-01-01

    Discusses the importance of teaching environmental chemistry in secondary school science classes, and outlines five examples of environmental chemistry problems that focus on major concepts of chemistry and have critical implications for human survival and well-being. (JR)

  11. Environmental chemistry. Seventh edition

    SciTech Connect

    Manahan, S.E.

    1999-11-01

    This book presents a basic understanding of environmental chemistry and its applications. In addition to providing updated materials in this field, the book emphasizes the major concepts essential to the practice of environmental chemistry. Topics of discussion include the following: toxicological chemistry; toxicological chemistry of chemical substances; chemical analysis of water and wastewater; chemical analysis of wastes and solids; air and gas analysis; chemical analysis of biological materials and xenobiotics; fundamentals of chemistry; and fundamentals of organic chemistry.

  12. Computational study on SiH4 dissociation channels and H abstraction reactions

    NASA Astrophysics Data System (ADS)

    Hayashi, Toshio; Ishikawa, Kenji; Sekine, Makoto; Hori, Masaru

    2016-07-01

    The primary dissociation channels of SiH4 were investigated using computational chemistry. The results showed properties very similar to those of CH4. The main dissociation product was SiH2 and the second dissociation product was SiH3. SiH was produced through SiH3 to SiH + H2 dissociation by electronic excitation. H abstraction reactions by H and SiH3 were also calculated for SiH4, Si2H6, Si3H8, and Si9H14(100) cluster models. The energy barriers of H abstraction reactions were lower than those of SiH3 abstraction reactions. This result is considerably important for deposition in SiH4/H2 process plasma.

  13. Tropospheric Chemistry

    NASA Technical Reports Server (NTRS)

    Mohnen, V.

    1984-01-01

    The fundamental processes that control the chemical composition and cycles of the global troposphere and how these processes and properties affect the physical behavior of the atmosphere are examined. The long-term information needs for tropospheric chemistry are: to be able to predict tropospheric responses to perturbations, both natural and anthropogenic, of these cycles, and to provide the information required for the maintenance and effective future management of the atmospheric component of our global life support system. The processes controlling global tropospheric biogeochemical cycles include: the input of trace species into the troposphere, their long-range transport and distribution as affected by the mean wind and vertical venting, their chemical transformations, including gas to particle conversion, leading to the appearance of aerosols or aqueous phase reactions inside cloud droplets, and their removal from the troposphere via wet (precipitation) and dry deposition.

  14. Combustion chemistry

    SciTech Connect

    Brown, N.J.

    1993-12-01

    This research is concerned with the development and use of sensitivity analysis tools to probe the response of dependent variables to model input variables. Sensitivity analysis is important at all levels of combustion modeling. This group`s research continues to be focused on elucidating the interrelationship between features in the underlying potential energy surface (obtained from ab initio quantum chemistry calculations) and their responses in the quantum dynamics, e.g., reactive transition probabilities, cross sections, and thermal rate coefficients. The goals of this research are: (i) to provide feedback information to quantum chemists in their potential surface refinement efforts, and (ii) to gain a better understanding of how various regions in the potential influence the dynamics. These investigations are carried out with the methodology of quantum functional sensitivity analysis (QFSA).

  15. Stratospheric chemistry

    NASA Technical Reports Server (NTRS)

    Cox, R. A.; Demore, W. B.; Ferguson, E. E.; Lesclaux, R.; Ravishankara, A. R.; Sander, S. P.; Sze, N. D.; Zellner, R.

    1985-01-01

    Recent improvements in the data base for the currently identified reactions describing the chemistry of the major families of trace gas species, HO(x), NO(x), ClO(x), and hydrocarbons are assessed. The important coupling reactions between the families are introduced progressively. Chemical aspects such as heterogeneous reactions and reactions of sodium species, the importance of which are not yet completely established, are discussed. Recent attempts to reconcile some of the more unexpected kinetic behavior which has emerged from the extensive experimental studies of key reactions with current reaction rate theory are also examined. The uncertainties in the current kinetic and photochemical data base is given. The prospects for improvement of data for known reactions of atmospheric importance as well as for the identification of gaps in the chemical description of the atmosphere.

  16. Science Update: Inorganic Chemistry.

    ERIC Educational Resources Information Center

    Rawls, Rebecca

    1981-01-01

    Describes areas of inorganic chemistry which have changed dramatically in the past year or two, including photochemistry, electrochemistry, organometallic complexes, inorganic reaction theory, and solid state chemistry. (DS)

  17. Science Update: Inorganic Chemistry.

    ERIC Educational Resources Information Center

    Rawls, Rebecca

    1981-01-01

    Describes areas of inorganic chemistry which have changed dramatically in the past year or two, including photochemistry, electrochemistry, organometallic complexes, inorganic reaction theory, and solid state chemistry. (DS)

  18. Chemistry Modeling for Aerothermodynamics and TPS

    NASA Technical Reports Server (NTRS)

    Wang, Dunyou; Stallcop, James R.; Dateo, Christopher e.; Schwenke, David W.; Halicioglu, Timur; Huo, winifred M.

    2005-01-01

    Recent advances in supercomputers and highly scalable quantum chemistry software render computational chemistry methods a viable means of providing chemistry data for aerothermal analysis at a specific level of confidence. Four examples of first principles quantum chemistry calculations will be presented. Study of the highly nonequilibrium rotational distribution of a nitrogen molecule from the exchange reaction N + N2 illustrates how chemical reactions can influence rotational distribution. The reaction C2H + H2 is one example of a radical reaction that occurs during hypersonic entry into an atmosphere containing methane. A study of the etching of a Si surface illustrates our approach to surface reactions. A recently developed web accessible database and software tool (DDD) that provides the radiation profile of diatomic molecules is also described.

  19. Chemistry Modeling for Aerothermodynamics and TPS

    NASA Technical Reports Server (NTRS)

    Wang, Dun-You; Stallcop, James R.; Dateo, Christopher E.; Schwenke, David W.; Haliciogiu, Timur; Huo, Winifred

    2004-01-01

    Recent advances in supercomputers and highly scalable quantum chemistry software render computational chemistry methods a viable means of providing chemistry data for aerothermal analysis at a specific level of confidence. Four examples of first principles quantum chemistry calculations will be presented. The study of the highly nonequilibrium rotational distribution of nitrogen molecule from the exchange reaction N + N2 illustrates how chemical reactions can influence the rotational distribution. The reaction C2H + H2 is one example of a radical reaction that occurs during hypersonic entry into a methane containing atmosphere. A study of the etching of Si surface illustrates our approach to surface reactions. A recently developed web accessible database and software tool (DDD) that provides the radiation profile of diatomic molecules is also described.

  20. Nb{sub 2}OsB{sub 2}, with a new twofold superstructure of the U{sub 3}Si{sub 2} type: Synthesis, crystal chemistry and chemical bonding

    SciTech Connect

    Mbarki, Mohammed; Touzani, Rachid St.; Fokwa, Boniface P.T.

    2013-07-15

    The new ternary metal-rich boride, Nb{sub 2}OsB{sub 2}, was synthesized by arc-melting the elements in a water-cooled copper crucible under an argon atmosphere. The compound was characterized from single-crystal X-ray data and EDX measurements. It crystallizes as a new superstructure (space group P4/mnc, no. 128) of the tetragonal U{sub 3}Si{sub 2}-structure type with lattice parameters a=5.922(1) Å and c=6.879(2) Å. All of the B atoms are involved in B{sub 2} dumbbells with B–B distances of 1.89(4) Å. Structure relaxation using VASP (Vienna ab intio Simulation Package) has confirmed the space group and the lattice parameters. According to electronic structure calculations (TB–LMTO–ASA), the homoatomic B–B interactions are optimized and very strong, but relatively strong heteroatomic Os–B, Nb–B and Nb–Os bonds are also found: These interactions, which together build a three-dimensional network, are mainly responsible for the structural stability of this new phase. The density of state at the Fermi level predicts metallic behavior, as expected, from this metal-rich boride. - Graphical abstract: Nb{sub 2}OsB{sub 2} is, to the best of our knowledge, the first fully characterized phase in the ternary Nb–Os–B system. It crystallizes (space group P4/mnc, 128) with a new twofold superstructure of the U{sub 3}Si{sub 2} structure type (space group P4/mbm, 127), and is therefore the first boride in this structure family crystallizing with a superstructure of the U{sub 3}Si{sub 2} structure type. We show that the distortions leading to this superstructure occurs mainly in the Nb-layer, which tries to accommodate the large osmium atoms. The consequence of this puckering is the building osmium dumbbells instead of chains along [001]. - Highlights: • First compound in the Nb–Os–B system. • New twofold superstructure of U{sub 3}Si{sub 2} structure type. • Puckering of Nb-layer responsible for superstructure occurrence. • Chemical bonding studied

  1. ICP Etching of SiC

    SciTech Connect

    Grow, J.M.; Lambers, E.S.; Ostling, M.; Pearton, S.J.; Ren, F.; Shul, R.J.; Wang, J.J.; Zetterling, C.-M.

    1999-02-04

    A number of different plasma chemistries, including NF{sub 3}/O{sub 2}, SF{sub 6}/O{sub 2}, SF{sub 6}/Ar, ICl, IBr, Cl{sub 2}/Ar, BCl{sub 3}/Ar and CH{sub 4}/H{sub 2}/Ar, have been investigated for dry etching of 6H and 3C-SiC in a Inductively Coupled Plasma tool. Rates above 2,000 {angstrom} cm{sup {minus}1} are found with fluorine-based chemistries at high ion currents. Surprisingly, Cl{sub 2}-based etching does not provide high rates, even though the potential etch products (SiCi{sub 4} and CCl{sub 4}) are volatile. Photoresist masks have poor selectivity over SiC in F{sub 2}-based plasmas under normal conditions, and ITO or Ni are preferred.

  2. Trace Chemistry

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, Krishnan; Whitefield, Philip

    1999-01-01

    The goals of the trace chemistry group were to identify the processes relevant to aerosol and aerosol precursor formation occurring within aircraft gas turbine engines; that is, within the combustor, turbine, and nozzle. The topics of discussion focused on whether the chemistry of aerosol formation is homogeneous or heterogeneous; what species are important for aerosol and aerosol precursor formation; what modeling/theoretical activities to pursue; what experiments to carry out that both support modeling activities and elucidate fundamental processes; and the role of particulates in aerosol and aerosol precursor formation. The consensus of the group was that attention should be focused on SO2, SO3, and aerosols. Of immediate concern is the measurement of the concentration of the species SO3, SO2, H2SO4 OH, HO2, H2O2, O, NO, NO2, HONO, HNO3, CO, and CO2 and particulates in various engines, both those currently in use and those in development. The recommendation was that concentration measurements should be made at both the combustor exit and the engine exit. At each location the above species were classified into one of four categories of decreasing importance, Priority I through IV, as follows: Combustor exit: Priority I species - SO3:SO2 ratio, SO3, SO2, and particulates; Priority II species: OH and O; Priority III species - NO and NO2; and Priority IV species - CO and CO2. For the Engine exit: Priority I species - SO3:SO2 ratio, SO3, SO2,H2SO4, and particulates; Priority II species: OH,HO2, H2O2, and O; Priority III species - NO, NO2, HONO, and HNO3; and Priority IV species - CO and CO2. Table I summarizes the anticipated concentration range of each of these species. For particulate matter, the quantities of interest are the number density, size distribution, and composition. In order to provide data for validating multidimensional reacting flow models, it would be desirable to make 2-D, time-resolved measurements of the concentrations of the above species and

  3. Trace Chemistry

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, Krishnan; Whitefield, Philip

    1999-01-01

    The goals of the trace chemistry group were to identify the processes relevant to aerosol and aerosol precursor formation occurring within aircraft gas turbine engines; that is, within the combustor, turbine, and nozzle. The topics of discussion focused on whether the chemistry of aerosol formation is homogeneous or heterogeneous; what species are important for aerosol and aerosol precursor formation; what modeling/theoretical activities to pursue; what experiments to carry out that both support modeling activities and elucidate fundamental processes; and the role of particulates in aerosol and aerosol precursor formation. The consensus of the group was that attention should be focused on SO2, SO3, and aerosols. Of immediate concern is the measurement of the concentration of the species SO3, SO2, H2SO4 OH, HO2, H2O2, O, NO, NO2, HONO, HNO3, CO, and CO2 and particulates in various engines, both those currently in use and those in development. The recommendation was that concentration measurements should be made at both the combustor exit and the engine exit. At each location the above species were classified into one of four categories of decreasing importance, Priority I through IV, as follows: Combustor exit: Priority I species - SO3:SO2 ratio, SO3, SO2, and particulates; Priority II species: OH and O; Priority III species - NO and NO2; and Priority IV species - CO and CO2. For the Engine exit: Priority I species - SO3:SO2 ratio, SO3, SO2,H2SO4, and particulates; Priority II species: OH,HO2, H2O2, and O; Priority III species - NO, NO2, HONO, and HNO3; and Priority IV species - CO and CO2. Table I summarizes the anticipated concentration range of each of these species. For particulate matter, the quantities of interest are the number density, size distribution, and composition. In order to provide data for validating multidimensional reacting flow models, it would be desirable to make 2-D, time-resolved measurements of the concentrations of the above species and

  4. HF-(NH₄)₂S₂O₈-HCl Mixtures for HNO₃- and NOx-free Etching of Diamond Wire- and SiC-Slurry-Sawn Silicon Wafers: Reactivity Studies, Surface Chemistry, and Unexpected Pyramidal Surface Morphologies.

    PubMed

    Stapf, André; Gondek, Christoph; Lippold, Marcus; Kroke, Edwin

    2015-04-29

    The wet-chemical treatment of silicon wafers is an important production step in photovoltaic and semiconductor industries. Solutions containing hydrofluoric acid, ammonium peroxodisulfate, and hydrochloric acid were investigated as novel acidic, NOx-free etching mixtures for texturization and polishing of monocrystalline silicon wafers. Etching rates as well as generated surface morphologies and properties are discussed in terms of the composition of the etching mixture. The solutions were analyzed with Raman and UV/vis spectroscopy as well as ion chromatography (IC). The silicon surfaces were investigated by scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM), diffuse reflection infrared spectroscopy (DRIFT), and X-ray photoelectron spectroscopy (XPS). Surprisingly, pyramidal surface structures were found after etching SiC-slurry as well as diamond wire-sawn monocrystalline Si(100) wafers with hydrochloric acid-rich HF-(NH4)2S2O8-HCl mixtures. Acidic etching solutions are generally not known for anisotropic etching. Thus, the HNO3-free mixtures might allow to replace KOH/i-propanol and similar alkaline solutions for texturization of monosilicon wafers at room temperature with less surface contamination. Besides, common HNO3-based etching mixtures may be replaced by the nitrate-free system, leading to significant economic and ecological advantages.

  5. Crystal Chemistry of the New Families of Interstitial Compounds R6Mg23C (R = La, Ce, Pr, Nd, Sm, or Gd) and Ce6Mg23Z (Z = C, Si, Ge, Sn, Pb, P, As, or Sb).

    PubMed

    Wrubl, Federico; Manfrinetti, Pietro; Pani, Marcella; Solokha, Pavlo; Saccone, Adriana

    2016-01-04

    The crystal chemical features of the new series of compounds R6Mg23C with R = La-Sm or Gd and Ce6Mg23Z with Z = C, Si, Ge, Sn, Pb, P, As, or Sb have been studied by means of single-crystal and powder X-ray diffraction techniques. All phases crystallize with the cubic Zr6Zn23Si prototype (cF120, space group Fm3̅m, Z = 4), a filled variant of the Th6Mn23 structure. While no Th6Mn23-type binary rare earth-magnesium compound is known to exist, the addition of a third element Z (only 3 atom %), located into the octahedral cavity of the Th6Mn23 cell (Wyckoff site 4a), stabilizes this structural arrangement and makes possible the formation of the ternary R6Mg23Z compounds. The results of both structural and topological analyses as well as of LMTO electronic structure calculations show that the interstitial element plays a crucial role in the stability of these phases, forming a strongly bonded [R6Z] octahedral moiety spaced by zeolite cage-like [Mg45] clusters. Considering these two building units, the crystal structure of these apparently complex intermetallics can be simplified to the NaCl-type topology. Moreover, a structural relationship between RMg3 and R6Mg23C compounds has been unveiled; the latter can be described as substitutional derivatives of the former. The geometrical distortions and the consequent symmetry reduction that accompany this transformation are explicitly described by means of the Bärnighausen formalism within group theory.

  6. Industrial Chemistry and School Chemistry: Making Chemistry Studies More Relevant

    ERIC Educational Resources Information Center

    Hofstein, Avi; Kesner, Miri

    2006-01-01

    In this paper, we present the development and implementation over the period of more than 15 years of learning materials focusing on industrial chemistry as the main theme. The work was conducted in the Department of Science Teaching at the Weizmann Institute of Science, Israel. The project's general goal was to teach chemistry concepts in the…

  7. Nuclear chemistry progress report

    SciTech Connect

    Viola, V.E.; Kwiatkowski, K.

    1993-08-01

    This is the annual progress report for the Indiana University nuclear chemistry program for the 1992/1993 year. Accomplishments include the construction, testing, and initial experimental runs of the Indiana Silicon Sphere (ISiS) 4{pi} charged particle detector. ISiS is designed to study energy dissipation and multifragmentation phenomena in light-ion-induced nuclear reactions at medium-to-high energies. Its second test run was to examine 3.6 GeV {sup 3}He beam reactions at Laboratoire National Saturne (LNS) in Saclay. The development and deployment of this system has occupied a great deal of the groups effort this reporting period. Additional work includes: calculations of isotopic IMF yields in the {sup 4}He + {sup 116,124}Sn reaction; cross sections for A = 6 - 30 fragments from the {sup 4}He + {sup 28}Si reaction at 117 and 198 MeV; charging effects of passivated silicon detectors; neck emission of intermediate-mass fragments in the fission of hot heavy nuclei.

  8. Chemistry Rocks: Redox Chemistry as a Geologic Tool.

    ERIC Educational Resources Information Center

    Burns, Mary Sue

    2001-01-01

    Applies chemistry to earth science, uses rocks in chemistry laboratories, and teaches about transition metal chemistry, oxidation states, and oxidation-reduction reactions from firsthand experiences. (YDS)

  9. Chemistry Rocks: Redox Chemistry as a Geologic Tool.

    ERIC Educational Resources Information Center

    Burns, Mary Sue

    2001-01-01

    Applies chemistry to earth science, uses rocks in chemistry laboratories, and teaches about transition metal chemistry, oxidation states, and oxidation-reduction reactions from firsthand experiences. (YDS)

  10. Analysis of temporal evolution of quantum dot surface chemistry by surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Doğan, Ilker; Gresback, Ryan; Nozaki, Tomohiro; van de Sanden, Mauritius C. M.

    2016-07-01

    Temporal evolution of surface chemistry during oxidation of silicon quantum dot (Si-QD) surfaces were probed using surface-enhanced Raman scattering (SERS). A monolayer of hydrogen and chlorine terminated plasma-synthesized Si-QDs were spin-coated on silver oxide thin films. A clearly enhanced signal of surface modes, including Si-Clx and Si-Hx modes were observed from as-synthesized Si-QDs as a result of the plasmonic enhancement of the Raman signal at Si-QD/silver oxide interface. Upon oxidation, a gradual decrease of Si-Clx and Si-Hx modes, and an emergence of Si-Ox and Si-O-Hx modes have been observed. In addition, first, second and third transverse optical modes of Si-QDs were also observed in the SERS spectra, revealing information on the crystalline morphology of Si-QDs. An absence of any of the abovementioned spectral features, but only the first transverse optical mode of Si-QDs from thick Si-QD films validated that the spectral features observed from Si-QDs on silver oxide thin films are originated from the SERS effect. These results indicate that real-time SERS is a powerful diagnostic tool and a novel approach to probe the dynamic surface/interface chemistry of quantum dots, especially when they involve in oxidative, catalytic, and electrochemical surface/interface reactions.

  11. Analysis of temporal evolution of quantum dot surface chemistry by surface-enhanced Raman scattering

    PubMed Central

    Doğan, İlker; Gresback, Ryan; Nozaki, Tomohiro; van de Sanden, Mauritius C. M.

    2016-01-01

    Temporal evolution of surface chemistry during oxidation of silicon quantum dot (Si-QD) surfaces were probed using surface-enhanced Raman scattering (SERS). A monolayer of hydrogen and chlorine terminated plasma-synthesized Si-QDs were spin-coated on silver oxide thin films. A clearly enhanced signal of surface modes, including Si-Clx and Si-Hx modes were observed from as-synthesized Si-QDs as a result of the plasmonic enhancement of the Raman signal at Si-QD/silver oxide interface. Upon oxidation, a gradual decrease of Si-Clx and Si-Hx modes, and an emergence of Si-Ox and Si-O-Hx modes have been observed. In addition, first, second and third transverse optical modes of Si-QDs were also observed in the SERS spectra, revealing information on the crystalline morphology of Si-QDs. An absence of any of the abovementioned spectral features, but only the first transverse optical mode of Si-QDs from thick Si-QD films validated that the spectral features observed from Si-QDs on silver oxide thin films are originated from the SERS effect. These results indicate that real-time SERS is a powerful diagnostic tool and a novel approach to probe the dynamic surface/interface chemistry of quantum dots, especially when they involve in oxidative, catalytic, and electrochemical surface/interface reactions. PMID:27389331

  12. Magnesium substitutions in rare-earth metal germanides with the orthorhombic Gd5Si4-type structure. Synthesis, crystal chemistry, and magnetic properties of RE(5-x)Mg(x)Ge4 (RE = Gd-Tm, Lu, and Y).

    PubMed

    Tobash, Paul H; Bobev, Svilen; Thompson, Joe D; Sarrao, John L

    2009-07-20

    A series of magnesium-substituted rare-earth metal germanides with a general formula RE(5-x)Mg(x)Ge(4) (x approximately = 1.0-2.3; RE = Gd-Tm, Lu, Y) have been synthesized by high-temperature reactions and structurally characterized by single-crystal X-ray diffraction. These compounds crystallize with the common Gd(5)Si(4) type structure in the orthorhombic space group Pnma (No. 62; Z = 4; Pearson's code oP36) and do not appear to undergo temperature-induced crystallographic phase transitions down to 120 K. Replacing rare-earth metal atoms with Mg, up to nearly 45% at., reduces the valence electron count and is clearly expressed in the subtle changes of the Ge-Ge and metal-metal bonding. Magnetization measurements as a function of the temperature and the applied field reveal complex magnetic structures at cryogenic temperatures and Curie-Weiss paramagnetic behavior at higher temperatures. The observed local moment magnetism is consistent with RE(3+) ground states in all cases. In the magnetically ordered phases, the magnetization cannot reach saturation in fields up to 50 kOe. The structural trends across the series and the variations of the magnetic properties as a function of the Mg content are also discussed.

  13. Constitutional dynamic chemistry: bridge from supramolecular chemistry to adaptive chemistry.

    PubMed

    Lehn, Jean-Marie

    2012-01-01

    Supramolecular chemistry aims at implementing highly complex chemical systems from molecular components held together by non-covalent intermolecular forces and effecting molecular recognition, catalysis and transport processes. A further step consists in the investigation of chemical systems undergoing self-organization, i.e. systems capable of spontaneously generating well-defined functional supramolecular architectures by self-assembly from their components, thus behaving as programmed chemical systems. Supramolecular chemistry is intrinsically a dynamic chemistry in view of the lability of the interactions connecting the molecular components of a supramolecular entity and the resulting ability of supramolecular species to exchange their constituents. The same holds for molecular chemistry when the molecular entity contains covalent bonds that may form and break reversibility, so as to allow a continuous change in constitution by reorganization and exchange of building blocks. These features define a Constitutional Dynamic Chemistry (CDC) on both the molecular and supramolecular levels.CDC introduces a paradigm shift with respect to constitutionally static chemistry. The latter relies on design for the generation of a target entity, whereas CDC takes advantage of dynamic diversity to allow variation and selection. The implementation of selection in chemistry introduces a fundamental change in outlook. Whereas self-organization by design strives to achieve full control over the output molecular or supramolecular entity by explicit programming, self-organization with selection operates on dynamic constitutional diversity in response to either internal or external factors to achieve adaptation.The merging of the features: -information and programmability, -dynamics and reversibility, -constitution and structural diversity, points to the emergence of adaptive and evolutive chemistry, towards a chemistry of complex matter.

  14. Mechanism of Highly Selective SiO2 Etching over Si using New Alternative Gas, C5HF7

    NASA Astrophysics Data System (ADS)

    Miyawaki, Yudai; Takeda, Keigo; Kondo, Hiroki; Ishikawa, Kenji; Sekine, Makoto; Hori, Masaru; Yamazaki, Atsuyo; Ito, Azumi; Matsumoto, Hirokazu

    2011-10-01

    Highly selective etching of oxide for a high aspect ratio contact hole formation is important technologies of IC fabrications. To realize an extreme high etch performances for the future devices, it is important to control the plasma chemistry based on the feedstock gas selection and internal parameters of the plasma. We achieved that highly selective etching of SiO2 against Si using a newly-designed gas, C5HF7, O2, and Ar gas mixture employed a dual frequency capacitively coupled plasma (CCP). For the conventional C5F8/O2/Ar plasma, the SiO2 etch rate and maximum selectivity were 453 nm/min and 9.4. In contrast, for the newly developed C5HF7/O2/Ar plasma, the maximum selectivity of 57.3 with the etch rate of 445 nm/min was obtained. Gas phase diagnostics were conducted for understanding the plasma chemistries. It was found the density of F radical (Si etchant) in C5HF7 plasma was lower than that of C5F8 plasma and appreciable amount of H containing species exist in C5HF7 plasma. It is considered F content in the CF film on Si was reduced by the H containing species and lower F radical supply, and then the Si etching was prevented. Consequently, C5HF7/O2/Ar chemistry has a great potential for highly selective SiO2 etching over Si.

  15. Environmental chemistry: Volume A

    SciTech Connect

    Yen, T.F.

    1999-08-01

    This is an extensive introduction to environmental chemistry for engineering and chemical professionals. The contents of Volume A include a brief review of basic chemistry prior to coverage of litho, atmo, hydro, pedo, and biospheres.

  16. Special Report: Brain Chemistry.

    ERIC Educational Resources Information Center

    Krassner, Michael B.

    1983-01-01

    Chemical actions in the brain result in cognitive, emotional, neuroendocrine, neuromuscular, and/or neurocirculatory effects. Developments in understanding brain chemistry are discussed, considering among others, neurotransmitter chemistry, neuropeptides, drugs and the brain, antidepressants, and actions of minor tranquilizers. (JN)

  17. Special Report: Brain Chemistry.

    ERIC Educational Resources Information Center

    Krassner, Michael B.

    1983-01-01

    Chemical actions in the brain result in cognitive, emotional, neuroendocrine, neuromuscular, and/or neurocirculatory effects. Developments in understanding brain chemistry are discussed, considering among others, neurotransmitter chemistry, neuropeptides, drugs and the brain, antidepressants, and actions of minor tranquilizers. (JN)

  18. Chemistry for Potters.

    ERIC Educational Resources Information Center

    Denio, Allen A.

    1980-01-01

    Relates pottery making to chemistry by providing chemical information about clay, its origin, composition, properties, and changes that occur during firing; also describes glaze compositions, examples of redox chemistry, salt glazing, crystalline glazes, and problems in toxicity. (CS)

  19. Organometallic Chemistry of Molybdenum.

    ERIC Educational Resources Information Center

    Lucas, C. Robert; Walsh, Kelly A.

    1987-01-01

    Suggests ways to avoid some of the problems students have learning the principles of organometallic chemistry. Provides a description of an experiment used in a third-year college chemistry laboratory on molybdenum. (TW)

  20. USSR Report, Chemistry.

    DTIC Science & Technology

    2007-11-02

    This chemistry Report from the USSR contains articles mainly on Adsorption, Analytical Chemistry, Biochemistry, Catalysis, Chemical Industry, Coal ... Gasification , Electrochemistry, Fertilizers, Food Technology, Inorganic Compounds, Nitrogen Compounds and Organometallic Compounds.

  1. Chemistry for Potters.

    ERIC Educational Resources Information Center

    Denio, Allen A.

    1980-01-01

    Relates pottery making to chemistry by providing chemical information about clay, its origin, composition, properties, and changes that occur during firing; also describes glaze compositions, examples of redox chemistry, salt glazing, crystalline glazes, and problems in toxicity. (CS)

  2. Organometallic Chemistry of Molybdenum.

    ERIC Educational Resources Information Center

    Lucas, C. Robert; Walsh, Kelly A.

    1987-01-01

    Suggests ways to avoid some of the problems students have learning the principles of organometallic chemistry. Provides a description of an experiment used in a third-year college chemistry laboratory on molybdenum. (TW)

  3. School Chemistry vs. Chemistry in Research: An Exploratory Experiment.

    ERIC Educational Resources Information Center

    Habraken, Clarisse L.; Buijs, Wim; Borkent, Hens; Ligeon, Willy; Wender, Harry; Meijer, Marijn

    2001-01-01

    Reports on a study exploring why students are not studying chemistry. Three groups of graduating high school students and their chemistry teachers stayed at a research institute working on molecular modeling and wrote essays on school chemistry versus chemistry in research. Concludes that school chemistry does not convey today's chemistry in…

  4. American Association for Clinical Chemistry

    MedlinePlus

    ... older adolescents and adults. Read more IN CLINICAL CHEMISTRY Eliminating Wild-Type DNA in Liquid Biopsies Researchers ... Online Harmonization.net Commission on Accreditation in Clinical Chemistry American Board of Clinical Chemistry Clinical Chemistry Trainee ...

  5. Chemistry as General Education

    NASA Astrophysics Data System (ADS)

    Tro, Nivaldo J.

    2004-01-01

    Science courses are common in most general education requirements. This paper addresses the role of chemistry classes in meeting these requirements. Chemistry professors have for many years questioned the appropriateness of the standard introductory chemistry course as general education, resulting in the growing popularity of specialized non-majors courses. I suggest that current non-major chemistry courses cover too much consumer chemistry and ignore some of the big contributions of chemistry to human knowledge. Majors chemistry courses, while they prepare students for majoring in science, do not address these issues either. Consequently, chemistry courses are often an ineffective and unpopular way to meet general education science requirements. Part of the reason for this dilemma is the lack of chemists who address the contributions of chemistry to human knowledge in general. I propose that faculty at liberal arts colleges engage in this important task and that non-majors chemistry textbooks incorporate questions and issues that relate chemistry to a broader view of human knowledge. If these things happen, perhaps chemistry courses will become more effective as general education.

  6. Teaching School Chemistry.

    ERIC Educational Resources Information Center

    Waddington, D. J., Ed.

    This eight-chapter book is intended for use by chemistry teachers, curriculum developers, teacher educators, and other key personnel working in the field of chemical education. The chapters are: (1) "The Changing Face of Chemistry" (J. A. Campbell); (2) "Curriculum Innovation in School Chemistry" (R. B. Ingel and A. M.…

  7. Chemistry as General Education

    ERIC Educational Resources Information Center

    Tro, Nivaldo J.

    2004-01-01

    The efficacy of different science and chemistry courses for science-major and non-major students, and the question of chemistry's contribution to general education are evaluated. Chemistry and science curriculum are too profession- and consumer-oriented, and to overcome this problem, it is advised that all disciplines must incorporate the major…

  8. Chemistry and Art.

    ERIC Educational Resources Information Center

    Berry, Martyn

    1999-01-01

    Describes a Chemistry and Art project developed for secondary students and teachers sponsored by the National Gallery and The Royal Society of Chemistry in the United Kingdom. Discusses aspects of the techniques used in creating five paintings as well as the chemistry involved in their making, deterioration, conservation, and restoration.…

  9. Chemistry as General Education

    ERIC Educational Resources Information Center

    Tro, Nivaldo J.

    2004-01-01

    The efficacy of different science and chemistry courses for science-major and non-major students, and the question of chemistry's contribution to general education are evaluated. Chemistry and science curriculum are too profession- and consumer-oriented, and to overcome this problem, it is advised that all disciplines must incorporate the major…

  10. Mechanisms in Photographic Chemistry

    ERIC Educational Resources Information Center

    Sahyun, M. R. V.

    1974-01-01

    Reviews current research interests in photographic chemistry, involving two proposed models for spectral sensitization of crystal defects and impurities in the photolysis reactivity and the mechanisms of development and complexation. Establishment of photographic chemistry in a chemistry curriculum is recommended. (CC)

  11. Green Chemistry and Education.

    ERIC Educational Resources Information Center

    Hjeresen, Dennis L.; Schutt, David L.; Boese, Janet M.

    2000-01-01

    Many students today are profoundly interested in the sustainability of their world. Introduces Green Chemistry and its principles with teaching materials. Green Chemistry is the use of chemistry for pollution prevention and the design of chemical products and processes that are environmentally benign. (ASK)

  12. Teaching School Chemistry.

    ERIC Educational Resources Information Center

    Waddington, D. J., Ed.

    This eight-chapter book is intended for use by chemistry teachers, curriculum developers, teacher educators, and other key personnel working in the field of chemical education. The chapters are: (1) "The Changing Face of Chemistry" (J. A. Campbell); (2) "Curriculum Innovation in School Chemistry" (R. B. Ingel and A. M.…

  13. Chemistry on Stamps.

    ERIC Educational Resources Information Center

    Schreck, James O.

    1986-01-01

    Suggests how postage stamps can be incorporated into chemistry teaching. Categories considered include emergence of chemistry as a science, metric system, atoms (and molecules and ions), stoichiometry, energy relationships in chemical systems, chemical bonding, nuclear chemistry, biochemistry, geochemistry, matter (gases, liquids, and solids),…

  14. Green Chemistry and Education.

    ERIC Educational Resources Information Center

    Hjeresen, Dennis L.; Schutt, David L.; Boese, Janet M.

    2000-01-01

    Many students today are profoundly interested in the sustainability of their world. Introduces Green Chemistry and its principles with teaching materials. Green Chemistry is the use of chemistry for pollution prevention and the design of chemical products and processes that are environmentally benign. (ASK)

  15. Chemistry on Stamps.

    ERIC Educational Resources Information Center

    Schreck, James O.

    1986-01-01

    Suggests how postage stamps can be incorporated into chemistry teaching. Categories considered include emergence of chemistry as a science, metric system, atoms (and molecules and ions), stoichiometry, energy relationships in chemical systems, chemical bonding, nuclear chemistry, biochemistry, geochemistry, matter (gases, liquids, and solids),…

  16. Chemistry and Art.

    ERIC Educational Resources Information Center

    Berry, Martyn

    1999-01-01

    Describes a Chemistry and Art project developed for secondary students and teachers sponsored by the National Gallery and The Royal Society of Chemistry in the United Kingdom. Discusses aspects of the techniques used in creating five paintings as well as the chemistry involved in their making, deterioration, conservation, and restoration.…

  17. Mechanisms in Photographic Chemistry

    ERIC Educational Resources Information Center

    Sahyun, M. R. V.

    1974-01-01

    Reviews current research interests in photographic chemistry, involving two proposed models for spectral sensitization of crystal defects and impurities in the photolysis reactivity and the mechanisms of development and complexation. Establishment of photographic chemistry in a chemistry curriculum is recommended. (CC)

  18. Si/SiGe MMIC's

    NASA Astrophysics Data System (ADS)

    Luy, Johann-Friedrich; Strohm, Karl M.; Sasse, Hans-Eckard; Schueppen, Andreas; Buechler, Josef; Wollitzer, Michael; Gruhle, Andreas; Schaeffler, Friedrich; Guettich, Ulrich; Klaassen, Andreas

    1995-04-01

    Silicon-based millimeter-wave integrated circuits (SIMMWIC's) can provide new solutions for near range sensor and communication applications in the frequency range above 50 GHz. This paper gives a survey on the state-of-the-art performance of this technology and on first applications. The key devices are IMPATT diodes for mm-wave power generation and detection in the self-oscillating mixer mode, p-i-n diodes for use in switches and phase shifters, and Schottky diodes in detector and mixer circuits. The silicon/silicon germanium heterobipolar transistor (SiGe HBT) with f(sub max) values of more than 90 GHz is now used for low-noise oscillators at Ka-band frequencies. First system applications are discussed.

  19. Principles of Environmental Chemistry

    NASA Astrophysics Data System (ADS)

    Hathaway, Ruth A.

    2007-07-01

    Roy M. Harrison, Editor RSC Publishing; ISBN 0854043713; × + 363 pp.; 2006; $69.95 Environmental chemistry is an interdisciplinary science that includes chemistry of the air, water, and soil. Although it may be confused with green chemistry, which deals with potential pollution reduction, environmental chemistry is the scientific study of the chemical and biochemical principles that occur in nature. Therefore, it is the study of the sources, reactions, transport, effects, and fates of chemical species in the air, water, and soil environments, and the effect of human activity on them. Environmental chemistry not only explores each of these environments, but also closely examines the interfaces and boundaries where the environments intersect.

  20. Atomic state and characterization of nitrogen at the SiC/SiO{sub 2} interface

    SciTech Connect

    Xu, Y.; Garfunkel, E. L.; Zhu, X.; Lee, H. D.; Xu, C.; Shubeita, S. M.; Gustafsson, T.; Ahyi, A. C.; Sharma, Y.; Williams, J. R.; Lu, W.; Ceesay, S.; Tuttle, B. R.; Pantelides, S. T.; Wan, A.; Feldman, L. C.

    2014-01-21

    We report on the concentration, chemical bonding, and etching behavior of N at the SiC(0001)/SiO{sub 2} interface using photoemission, ion scattering, and computational modeling. For standard NO processing of a SiC MOSFET, a sub-monolayer of nitrogen is found in a thin inter-layer between the substrate and the gate oxide (SiO{sub 2}). Photoemission shows one main nitrogen related core-level peak with two broad, higher energy satellites. Comparison to theory indicates that the main peak is assigned to nitrogen bound with three silicon neighbors, with second nearest neighbors including carbon, nitrogen, and oxygen atoms. Surprisingly, N remains at the surface after the oxide was completely etched by a buffered HF solution. This is in striking contrast to the behavior of Si(100) undergoing the same etching process. We conclude that N is bound directly to the substrate SiC, or incorporated within the first layers of SiC, as opposed to bonding within the oxide network. These observations provide insights into the chemistry and function of N as an interface passivating additive in SiC MOSFETs.

  1. The Basic SI Model

    ERIC Educational Resources Information Center

    Hurley, Maureen; Jacobs, Glen; Gilbert, Melinda

    2006-01-01

    A general overview of the SI model is provided, including the SI philosophy, essential components of the program, program structures, key roles, outcomes, and evaluation. A review of what we have learned about the importance of planning SI sessions, providing ongoing training for leaders, conducting regular SI program assessments, and implementing…

  2. SiGe growth kinetics and doping in reduced pressure-chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Hartmann, J. M.; Loup, V.; Rolland, G.; Holliger, P.; Laugier, F.; Vannuffel, C.; Séméria, M. N.

    2002-03-01

    Using a reduced pressure-chemical vapor deposition cluster tool, we have studied the growth kinetics of Si and SiGe and the n-type and p-type doping of Si with both silane and dichlorosilane chemistries. As far as Si is concerned, a conventional behavior is found for both gases, i.e. a low-temperature region where the Si growth rate is limited by the desorption of the H atoms from the growing surface (activation energy equal to 47 kcal/mol), and a high-temperature region, where the Si growth rate is mainly piloted by the incoming flow of SiH 4 or SiH 2Cl 2 (activation energy of 4 kcal/mol). The incorporation of B in Si is linear with the B 2H 6 flow (p-type doping of Si), achievable with an overall 9×10 16-4×10 19 cm -3 B ions concentration range. There is a sub-linear dependency of the P incorporation into Si with the PH 3 flow (n-type doping of Si). A 2×10 16-9×10 18 cm -3 P ions concentration range can be reached with both silicon gas sources. The growth rate of boron-doped Si is virtually unaffected by increasing B 2H 6 flow. Meanwhile, the growth rate of phosphorous-doped Si steadily drops when the PH 3 flow is increased. As far as the SiH 4+GeH 4 chemistry is concerned, the Ge concentration x in the SiGe film obeys at 650°C the following law as a function of the F(GeH 4)/F(SiH 4) mass flow ratio: x/(1- x)=2.7(F(GeH 4)/F(SiH 4)). For the SiH 2Cl 2+GeH 4 chemistry, x is linked at 750°C to the F(GeH 4)/F(SiH 2Cl 2) mass flow ratio through the following relationship: x2/(1- x)=0.55(F(GeH 4)/F(SiH 2Cl 2)). The SiGe growth rate increases strongly with an increasing GeH 4 flow, with no apparent influence of the actual SiH 4 or SiH 2Cl 2 flow. This is attributed to an increased hydrogen desorption caused by the presence of Ge atoms on the growing surface that frees nucleation sites for the incoming Ge and Si atoms.

  3. Green Chemistry Pedagogy

    NASA Astrophysics Data System (ADS)

    Kolopajlo, Larry

    2017-02-01

    This chapter attempts to show how the practice of chemistry teaching and learning is enriched by the incorporation of green chemistry (GC) into lectures and labs. To support this viewpoint, evidence from a wide range of published papers serve as a cogent argument that GC attracts and engages both science and nonscience students, enhances chemistry content knowledge, and improves the image of the field, while preparing the world for a sustainable future. Published pedagogy associated with green and sustainable chemistry is critically reviewed and discussed.

  4. Connecting Algebra and Chemistry.

    ERIC Educational Resources Information Center

    O'Connor, Sean

    2003-01-01

    Correlates high school chemistry curriculum with high school algebra curriculum and makes the case for an integrated approach to mathematics and science instruction. Focuses on process integration. (DDR)

  5. Science Update: Analytical Chemistry.

    ERIC Educational Resources Information Center

    Worthy, Ward

    1980-01-01

    Briefly discusses new instrumentation in the field of analytical chemistry. Advances in liquid chromatography, photoacoustic spectroscopy, the use of lasers, and mass spectrometry are also discussed. (CS)

  6. USSR Report, Chemistry.

    DTIC Science & Technology

    2007-11-02

    Industry, Coal Gasification , Electrochemistry, Inorganic Compounds, Nitrogen Compounds, Organophosphorus Compounds, Petroleum Processing Technology, Pharmacology and Toxicology, Polymers and Polymerization and, Radiation Chemistry.

  7. Teaching Nature of Scientific Inquiry in Chemistry: How do German chemistry teachers use labwork to teach NOSI?

    NASA Astrophysics Data System (ADS)

    Strippel, C. G.; Sommer, K.

    2015-12-01

    Learning about scientific inquiry (SI) is an important aspect of scientific literacy and there is a solid international consensus of what should be learned about it. Learning about SI comprises both the doing of science (process) and knowledge about the nature of scientific inquiry (NOSI). German reform documents promote inquiry generally but do not equally address these two sides of inquiry. This study explores how teachers incorporate learning about SI into laboratory work in the Chemistry classroom. Semi-structured interviews were conducted with 14 secondary school Chemistry teachers (8 of them holding a Ph.D. in Chemistry) from Germany. The results indicate that teaching NOSI is not a primary goal for teachers. Still, some aspects of NOSI seem to be more easily incorporated in the Chemistry classroom, for example, critical testing and hypothesis and prediction. Teachers state 2 main criteria to identify suitable chemical laboratory work for teaching NOSI: adaptable parameters and low level of required content knowledge. Surprisingly, differences can be found between Ph.D. and non-Ph.D. teachers' views on teaching inquiry. The findings of this study can be used to (a) select opportunities for targeted research on teaching NOSI in the Chemistry classroom, (b) inform curriculum material development and (c) give impetus to science teacher education and professional development.

  8. Chemistry in Microfluidic Channels

    ERIC Educational Resources Information Center

    Chia, Matthew C.; Sweeney, Christina M.; Odom, Teri W.

    2011-01-01

    General chemistry introduces principles such as acid-base chemistry, mixing, and precipitation that are usually demonstrated in bulk solutions. In this laboratory experiment, we describe how chemical reactions can be performed in a microfluidic channel to show advanced concepts such as laminar fluid flow and controlled precipitation. Three sets of…

  9. Chemistry from Issues.

    ERIC Educational Resources Information Center

    Harding, Jan; Donaldson, Jim

    1986-01-01

    Describes the "Chemistry from Issues" project at Chelsea College. Provides the background information, rationale, and overall structure of a proposed course about the importance of chemistry to common culture. Outlines one module about the British steel industry that has been taught at King's College. (TW)

  10. Infrared Lasers in Chemistry.

    ERIC Educational Resources Information Center

    John, Phillip

    1982-01-01

    Selected infrared laser chemistry topics are discussed including carbon dioxide lasers, infrared quanta and molecules, laser-induced chemistry, structural isomerization (laser purification, sensitized reactions, and dielectric breakdown), and fundamental principles of laser isotope separation, focusing on uranium isotope separation. (JN)

  11. Pre-Tech Chemistry.

    ERIC Educational Resources Information Center

    Florida Junior Coll., Jacksonville.

    This course guide is designed to aid chemistry instructors in teaching the skills and knowledge needed by those students planning to take junior college chemistry and is composed of 11 terminal performance objectives, with intermediate performance objectives and sample criterion measures. Suggestions for related laboratory activities are also…

  12. Undergraduate Chemistry Laboratory

    ERIC Educational Resources Information Center

    Bretz, Stacey Lowery; Fay, Michael; Bruck, Laura B.; Towns, Marcy H.

    2013-01-01

    Forty chemistry faculty from American Chemical Society-approved departments were interviewed to determine their goals for undergraduate chemistry laboratory. Faculty were stratified by type of institution, departmental success with regard to National Science Foundation funding for laboratory reform, and level of laboratory course. Interview…

  13. Cooking with Chemistry.

    ERIC Educational Resources Information Center

    Grosser, Arthur E.

    1984-01-01

    Suggests chemistry of cooking and analysis of culinary recipes as subject matter for introducing chemistry to an audience, especially to individuals with neutral or negative attitudes toward science. Includes sample recipes and experiments and a table listing scientific topics with related cooking examples. (JN)

  14. Career Options in Chemistry.

    ERIC Educational Resources Information Center

    Belloli, Robert C.

    1985-01-01

    Describes a credit/no credit course which focuses on career options in chemistry. The course (consisting of 15 one-hour seminar-type sessions) includes guest speakers for several sessions and an emphasis (in introductory sessions) on graduate school in chemistry, the chemical industry, resumes, and interviews. Also briefly describes an internship…

  15. Brushing Up on Chemistry.

    ERIC Educational Resources Information Center

    Trantow, Ashley

    2002-01-01

    Presents an activity designed for use during National Chemistry Week 2002 with the theme "Chemistry Keeps Us Clean". Allows students to discover more about a cleaning product they use everyday. Students make their own toothpaste and compare its properties with those of commercial toothpaste. (MM)

  16. Coupled Phenomena in Chemistry.

    ERIC Educational Resources Information Center

    Matsubara, Akira; Nomura, Kazuo

    1979-01-01

    Various phenomena in chemistry and biology can be understood through Gibbs energy utilization. Some common phenomena in chemistry are explained including neutralization, hydrolysis, oxidation and reaction, simultaneous dissociation equilibrium of two weak acids, and common ion effect on solubility. (Author/SA)

  17. Coupled Phenomena in Chemistry.

    ERIC Educational Resources Information Center

    Matsubara, Akira; Nomura, Kazuo

    1979-01-01

    Various phenomena in chemistry and biology can be understood through Gibbs energy utilization. Some common phenomena in chemistry are explained including neutralization, hydrolysis, oxidation and reaction, simultaneous dissociation equilibrium of two weak acids, and common ion effect on solubility. (Author/SA)

  18. Chemistry in Microfluidic Channels

    ERIC Educational Resources Information Center

    Chia, Matthew C.; Sweeney, Christina M.; Odom, Teri W.

    2011-01-01

    General chemistry introduces principles such as acid-base chemistry, mixing, and precipitation that are usually demonstrated in bulk solutions. In this laboratory experiment, we describe how chemical reactions can be performed in a microfluidic channel to show advanced concepts such as laminar fluid flow and controlled precipitation. Three sets of…

  19. Stratospheric chemistry and transport

    NASA Technical Reports Server (NTRS)

    Prather, Michael; Garcia, Maria M.

    1990-01-01

    A Chemical Tracer Model (CTM) that can use wind field data generated by the General Circulation Model (GCM) is developed to implement chemistry in the three dimensional GCM of the middle atmosphere. Initially, chemical tracers with simple first order losses such as N2O are used. Successive models are to incorporate more complex ozone chemistry.

  20. Bioorganic and bioinorganic chemistry.

    PubMed

    Constable, Edwin C; Housecroft, Catherine E; Creus, Marc; Gademann, Karl; Giese, Bernd; Ward, Thomas R; Woggon, Wolf D; Chougnet, Antoinette

    2010-01-01

    The interdisciplinary projects in bioinorganic and bioorganic chemistry of the Department of Chemistry, University of Basel led to the preparation of new systems that mimic biologically important processes and to the discovery of compounds from natural sources which are very promising with respect to medical applications. The advances in these areas are reported here.

  1. Chemistry of Moth Repellents

    ERIC Educational Resources Information Center

    Pinto, Gabriel

    2005-01-01

    An effective way to teach chemistry is to examine the substances used in daily life from a pedagogical viewpoint, from the overlap of science, technology, and society (STS). A study aims to engage students in the topic of moth repellents and to encourage them to investigate the chemistry in this familiar product using a set of questions.

  2. Movies in Chemistry Education

    ERIC Educational Resources Information Center

    Pekdag, Bulent; Le Marechal, Jean-Francois

    2010-01-01

    This article reviews numerous studies on chemistry movies. Movies, or moving pictures, are important elements of multimedia and signify a privileged or motivating means of presenting knowledge. Studies on chemistry movies show that the first movie productions in this field were devoted to university lectures or documentaries. Shorter movies were…

  3. Chemistry and Philosophy

    ERIC Educational Resources Information Center

    Theobald, D. W.

    1970-01-01

    In the second article of a series, the author discusses some of the interactions between chemistry and philosophy. Evaluates chemistry's role within the scientific enterprise. Traces the rise and fall of the logical atom and argues for a new way of looking at science as an educational instrument. (RR)

  4. Infrared Lasers in Chemistry.

    ERIC Educational Resources Information Center

    John, Phillip

    1982-01-01

    Selected infrared laser chemistry topics are discussed including carbon dioxide lasers, infrared quanta and molecules, laser-induced chemistry, structural isomerization (laser purification, sensitized reactions, and dielectric breakdown), and fundamental principles of laser isotope separation, focusing on uranium isotope separation. (JN)

  5. Organic Chemistry Made Easy.

    ERIC Educational Resources Information Center

    Bradt, Steve

    1998-01-01

    Student-led workshops are helping undergraduate students learn from each other as they tackle organic chemistry. Each week, small groups brainstorm tough problems in sessions guided by upper-class students who have taken and passed the course. Debating and discussing chemistry problems with peers engages students with the material and boosts…

  6. Undergraduate Chemistry Laboratory

    ERIC Educational Resources Information Center

    Bretz, Stacey Lowery; Fay, Michael; Bruck, Laura B.; Towns, Marcy H.

    2013-01-01

    Forty chemistry faculty from American Chemical Society-approved departments were interviewed to determine their goals for undergraduate chemistry laboratory. Faculty were stratified by type of institution, departmental success with regard to National Science Foundation funding for laboratory reform, and level of laboratory course. Interview…

  7. Opportunities in Chemistry.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC.

    Because of the changes occurring in the chemical sciences, a new survey of chemistry and its intellectual and economic impact was clearly needed. This report presents a current assessment of the status of chemistry and of the future opportunities in the field. This analysis contains: (1) an introductory chapter (establishing the need for the…

  8. Mathematics and Chemistry

    ERIC Educational Resources Information Center

    Henson, R.; Stumbles, A.

    1977-01-01

    The relationship between mathematics and chemistry has been changing rapidly in recent years. Some chemistry teachers have experienced difficulties in their teaching with the introduction of modern mathematics in the schools. Some suggestions for reinforcing the concepts and language of modern mathematics are put forth. (Author/MA)

  9. Movies in Chemistry Education

    ERIC Educational Resources Information Center

    Pekdag, Bulent; Le Marechal, Jean-Francois

    2010-01-01

    This article reviews numerous studies on chemistry movies. Movies, or moving pictures, are important elements of multimedia and signify a privileged or motivating means of presenting knowledge. Studies on chemistry movies show that the first movie productions in this field were devoted to university lectures or documentaries. Shorter movies were…

  10. Chemistry of Moth Repellents

    ERIC Educational Resources Information Center

    Pinto, Gabriel

    2005-01-01

    An effective way to teach chemistry is to examine the substances used in daily life from a pedagogical viewpoint, from the overlap of science, technology, and society (STS). A study aims to engage students in the topic of moth repellents and to encourage them to investigate the chemistry in this familiar product using a set of questions.

  11. Brushing Up on Chemistry.

    ERIC Educational Resources Information Center

    Trantow, Ashley

    2002-01-01

    Presents an activity designed for use during National Chemistry Week 2002 with the theme "Chemistry Keeps Us Clean". Allows students to discover more about a cleaning product they use everyday. Students make their own toothpaste and compare its properties with those of commercial toothpaste. (MM)

  12. Chemistry and Biology

    ERIC Educational Resources Information Center

    Wigston, David L.

    1970-01-01

    Discusses the relationship between chemisty and biology in the science curriculum. Points out the differences in perception of the disciplines, which the physical scientists favoring reductionism. Suggests that biology departments offer a special course for chemistry students, just as the chemistry departments have done for biology students.…

  13. Polymer precursors for SiC ceramic materials

    NASA Technical Reports Server (NTRS)

    Litt, Morton H.

    1986-01-01

    Work on precursor polymers to SiC was performed, concentrating on polymers made from decamethyl cyclohexasilyene units. The initial approach was to synthesize mixed diphenyl decamethyl cyclohexasilane, dephenylate, and polymerize. This produced polymers which had yields of up to 50 percent SiC. (Theoretical yield is 75 percent). The present approach is to make the polymer through the intermediate trans-1,4-diphenyl decamethyl cyclohexasilane. This should produce a crystalline polymer and high strength fibers. These will be thermally decomposed to SiC fibers. This requires new chemistry which is currently being studied.

  14. Biosynthetic inorganic chemistry.

    PubMed

    Lu, Yi

    2006-08-25

    Inorganic chemistry and biology can benefit greatly from each other. Although synthetic and physical inorganic chemistry have been greatly successful in clarifying the role of metal ions in biological systems, the time may now be right to utilize biological systems to advance coordination chemistry. One such example is the use of small, stable, easy-to-make, and well-characterized proteins as ligands to synthesize novel inorganic compounds. This biosynthetic inorganic chemistry is possible thanks to a number of developments in biology. This review summarizes the progress in the synthesis of close models of complex metalloproteins, followed by a description of recent advances in using the approach for making novel compounds that are unprecedented in either inorganic chemistry or biology. The focus is mainly on synthetic "tricks" learned from biology, as well as novel structures and insights obtained. The advantages and disadvantages of this biosynthetic approach are discussed.

  15. Cellular uptake: lessons from supramolecular organic chemistry.

    PubMed

    Gasparini, Giulio; Bang, Eun-Kyoung; Montenegro, Javier; Matile, Stefan

    2015-07-04

    The objective of this Feature Article is to reflect on the importance of established and emerging principles of supramolecular organic chemistry to address one of the most persistent problems in life sciences. The main topic is dynamic covalent chemistry on cell surfaces, particularly disulfide exchange for thiol-mediated uptake. Examples of boronate and hydrazone exchange are added for contrast, comparison and completion. Of equal importance are the discussions of proximity effects in polyions and counterion hopping, and more recent highlights on ring tension and ion pair-π interactions. These lessons from supramolecular organic chemistry apply to cell-penetrating peptides, particularly the origin of "arginine magic" and the "pyrenebutyrate trick," and the currently emerging complementary "disulfide magic" with cell-penetrating poly(disulfide)s. They further extend to the voltage gating of neuronal potassium channels, gene transfection, and the delivery of siRNA. The collected examples illustrate that the input from conceptually innovative chemistry is essential to address the true challenges in biology beyond incremental progress and random screening.

  16. Korean Kimchi Chemistry: A Multicultural Chemistry Connection

    ERIC Educational Resources Information Center

    Murfin, Brian

    2009-01-01

    Connecting science with different cultures is one way to interest students in science, to relate science to their lives, and at the same time to broaden their horizons in a variety of ways. In the lesson described here, students make kimchi, a delicious and popular Korean dish that can be used to explore many important chemistry concepts,…

  17. Art in Chemistry; Chemistry in Art.

    ERIC Educational Resources Information Center

    Greenberg, Barbara R.; Patterson, Dianne

    High school teachers are often challenged to motivate students who have little or no interest in a subject and are bored with traditional instruction. This unique book is designed to help educators make chemistry classes more interesting and links art curriculum to practical applications, integrating the two subjects through scores of hands-on…

  18. Korean Kimchi Chemistry: A Multicultural Chemistry Connection

    ERIC Educational Resources Information Center

    Murfin, Brian

    2009-01-01

    Connecting science with different cultures is one way to interest students in science, to relate science to their lives, and at the same time to broaden their horizons in a variety of ways. In the lesson described here, students make kimchi, a delicious and popular Korean dish that can be used to explore many important chemistry concepts,…

  19. Art in Chemistry; Chemistry in Art.

    ERIC Educational Resources Information Center

    Greenberg, Barbara R.; Patterson, Dianne

    High school teachers are often challenged to motivate students who have little or no interest in a subject and are bored with traditional instruction. This unique book is designed to help educators make chemistry classes more interesting and links art curriculum to practical applications, integrating the two subjects through scores of hands-on…

  20. EVOLVING FROM GREEN CHEMISTRY TO SUSTAINABLE CHEMISTRY

    EPA Science Inventory

    The twelve principles of green chemistry provide a foundation and pathway which allows researchers to incorporate greenness into existing reactions or when developing new technologies. Research from our laboratory has adopted many of these principles and utlizes them as a major c...

  1. EVOLVING FROM GREEN CHEMISTRY TO SUSTAINABLE CHEMISTRY

    EPA Science Inventory

    The twelve principles of green chemistry provide a foundation and pathway which allows researchers to incorporate greenness into existing reactions or when developing new technologies. Research from our laboratory has adopted many of these principles and utlizes them as a major c...

  2. Environmental chemistry. 5th edition

    SciTech Connect

    Manahan, S.E. . Dept. of Chemistry)

    1991-01-01

    This book is organized around several major sections: aquatic Chemistry, atmospheric chemistry, the geosphere and hazardous wastes, toxicological chemistry, and resources and energy. Specific topics discussed in the book include a general introduction to environment chemistry, basic principles of aquatic chemistry, water pollution and water treatment, the essential role of microorganisms in aquatic chemical phenomena, atmospheric chemistry, a discussion of major threats to the global atmosphere (particularly greenhouse gases and ozone-depleting chemicals), the geosphere and hazardous substances, soil chemistry, and the nature and sources of hazardous wastes. The environmental chemistry of hazardous wastes, their treatment, minimization, and recycling, and the effects of these hazardous substances in also presented.

  3. Interconnected bis-silylenes: a new dimension in organosilicon chemistry.

    PubMed

    Sen, Sakya S; Khan, Shabana; Nagendran, Selvarajan; Roesky, Herbert W

    2012-04-17

    The past two decades have brought remarkable advances in organosilicon chemistry with the isolation of stable silylenes, persila-allene, and disilynes. The extension of this list gives an impression that it will continue to flourish. The judicous employment of sterically appropriate ligands has enabled the synthesis and isolation of compounds with low-valent silicon. Recently, for example, interconnected bis-silylenes were isolated where the two Si atoms are connected by a σ-bond and each Si atom is possessing a lone pair of electrons. The formal oxidation state of each Si atom in the interconnected bis-silylene is +1, so bis-silylenes can be considered as the valence isomers of disilynes. In this Account, we describe the synthesis of interconnected bis-silylenes and assess their potential as a new building block in organosilicon chemistry. In 2009, we reported the isolation of a bis-silylene ((PhC(NtBu)(2))(2)Si(2)) stabilized by a sterically bulky benz-amidinato ligand with tBu substituents on the nitrogen atoms. Prior to our work, Robinson and co-workers described the synthesis of a N-heterocyclic carbene stabilized bis-silylene. In following years, just two more interconnected bis-silylenes have been reported. Density functional theory calculations to establish the geometric and electronic structures of the reported bis-silylenes have shown that the Wiberg bond index (WBI) for all the reported bis-silylenes is ~1. The synthesis of stable (PhC(NtBu)(2))(2)Si(2) prompted explorations of its reactivity. An important facet of silylene chemistry involves oxidative addition at the Si(II) center with unsaturated substrates, a reaction also available for bis-silylenes. Due to the three reaction sites (two lone pairs of electrons and a labile Si(I)-Si(I) single bond) in the interconnected bis-silylenes, we expect novel product formation. A labile Si-Si bond facilitates the reactions of (PhC(NtBu)(2))(2)Si(2) with diphenyl alkyne or adamantyl phosphaalkyne which

  4. Moderator Chemistry Program

    SciTech Connect

    Dewitt, L.V.; Gibbs, A.; Lambert, D.P.; Bohrer, S.R.; Fanning, R.L.; Houston, M.W.; Stinson, S.L.; Deible, R.W.; Abdel-Khalik, S.I.

    1990-11-01

    Over the past fifteen months, the Systems Chemistry Group of the Reactor Engineering Department has undertaken a comprehensive study of the Department`s moderator chemistry program at Savannah River Site (SRS). An internal review was developed to formalize and document this program. Objectives were as outlined in a mission statement and action plan. In addition to the mission statement and action plan, nine separate task reports have been issued during the course of this study. Each of these task reports is included in this document as a chapter. This document is an organized compilation of the individual reports issued by the Systems Chemistry Group in assessment of SRS moderator chemistry to determine if there were significant gaps in the program as ft existed in October, 1989. While these reviews found no significant gaps in that mode of operation, or any items that adversely affected safety, items were identified that could be improved. Many of the items have already been dear with or are in the process of completion under this Moderator Chemistry Program and other Reactor Restart programs. A complete list of the items of improvement found under this assessment is found in Chapter 9, along with a proposed time table for correcting remaining items that can be improved for the chemistry program of SRS reactors. An additional external review of the moderator chemistry processes, recommendations, and responses to/from the Reactor Corrosion Mitigation Committee is included as Appendix to this compilation.

  5. Moderator Chemistry Program

    SciTech Connect

    Dewitt, L.V.; Gibbs, A.; Lambert, D.P.; Bohrer, S.R.; Fanning, R.L.; Houston, M.W.; Stinson, S.L.; Deible, R.W.; Abdel-Khalik, S.I.

    1990-11-01

    Over the past fifteen months, the Systems Chemistry Group of the Reactor Engineering Department has undertaken a comprehensive study of the Department's moderator chemistry program at Savannah River Site (SRS). An internal review was developed to formalize and document this program. Objectives were as outlined in a mission statement and action plan. In addition to the mission statement and action plan, nine separate task reports have been issued during the course of this study. Each of these task reports is included in this document as a chapter. This document is an organized compilation of the individual reports issued by the Systems Chemistry Group in assessment of SRS moderator chemistry to determine if there were significant gaps in the program as ft existed in October, 1989. While these reviews found no significant gaps in that mode of operation, or any items that adversely affected safety, items were identified that could be improved. Many of the items have already been dear with or are in the process of completion under this Moderator Chemistry Program and other Reactor Restart programs. A complete list of the items of improvement found under this assessment is found in Chapter 9, along with a proposed time table for correcting remaining items that can be improved for the chemistry program of SRS reactors. An additional external review of the moderator chemistry processes, recommendations, and responses to/from the Reactor Corrosion Mitigation Committee is included as Appendix to this compilation.

  6. Computational quantum chemistry website

    SciTech Connect

    1997-08-22

    This report contains the contents of a web page related to research on the development of quantum chemistry methods for computational thermochemistry and the application of quantum chemistry methods to problems in material chemistry and chemical sciences. Research programs highlighted include: Gaussian-2 theory; Density functional theory; Molecular sieve materials; Diamond thin-film growth from buckyball precursors; Electronic structure calculations on lithium polymer electrolytes; Long-distance electronic coupling in donor/acceptor molecules; and Computational studies of NOx reactions in radioactive waste storage.

  7. Fluorine in medicinal chemistry.

    PubMed

    Swallow, Steven

    2015-01-01

    Since its first use in the steroid field in the late 1950s, the use of fluorine in medicinal chemistry has become commonplace, with the small electronegative fluorine atom being a key part of the medicinal chemist's repertoire of substitutions used to modulate all aspects of molecular properties including potency, physical chemistry and pharmacokinetics. This review will highlight the special nature of fluorine, drawing from a survey of marketed fluorinated pharmaceuticals and the medicinal chemistry literature, to illustrate key concepts exploited by medicinal chemists in their attempts to optimize drug molecules. Some of the potential pitfalls in the use of fluorine will also be highlighted.

  8. Frontiers in analytical chemistry

    SciTech Connect

    Amato, I.

    1988-12-15

    Doing more with less was the modus operandi of R. Buckminster Fuller, the late science genius, and inventor of such things as the geodesic dome. In late September, chemists described their own version of this maxim--learning more chemistry from less material and in less time--in a symposium titled Frontiers in Analytical Chemistry at the 196th National Meeting of the American Chemical Society in Los Angeles. Symposium organizer Allen J. Bard of the University of Texas at Austin assembled six speakers, himself among them, to survey pretty widely different areas of analytical chemistry.

  9. Chemistry in Novae

    NASA Astrophysics Data System (ADS)

    Rawlings, J. M. C.; Williams, D. A.

    It is shown that the 5 μm excess, which is attributed to CO in the ejecta of novae, can be modelled chemically. The principle problems involved in the modelling are: (1) the high ejecta temperature (≡104K), (2) the extremely high UV flux, and (3) the marginal self-shielding capability of H2. The authors find that the condition of H2 self-shielding alone is sufficient to allow rapid chemistry to proceed. Time-dependent chemistry calculations indicate that the chemistry is steered by the physics of the system.

  10. The international system of units (SI) in historical perspective.

    PubMed Central

    van Assendelft, O W

    1987-01-01

    American medical journals are shifting to selected SI (Système International d'Unités) units for reporting measurements. Limitation of SI units deemed suitable for use in reporting clinical laboratory results stems from recommendations put forth by the International Federation of Clinical Chemistry and the International Union of Pure and Applied Chemistry. Limitations are: 1) the liter as sole recommended unit of volume in concentration measurement; 2) substance concentration (unit mole) favored over mass concentration (submultiples of the kilogram); and 3) discouraging the use of the prefixes hecto-, deca-, deci-, and centi-. Further discussion by the American Medical Association and other organizations is required before consensus in the US medical community can be reached as to extent of and time frame for conversion to SI for reporting clinical laboratory measurements. PMID:3661791

  11. Vaporization of SiO2 and MgSiO3

    NASA Astrophysics Data System (ADS)

    Xiao, Bing; Stixrude, Lars

    2017-04-01

    Vaporization is an important process in Earth's earliest evolution during which giant impacts are thought to have produced a transient silicate atmosphere. As experimental data are very limited, little is known of the near-critical vaporization of Earth's major oxide components: MgO and SiO_2. We have performed novel ab initio molecular dynamics simulations of vapor-liquid coexistence in the SiO2 and MgSiO3 systems. The simulations, based on density functional theory using the VASP code, begin with a suitably prepared liquid slab embedded in a vacuum. During the dynamical trajectory in the canonical ensemble, we see spontaneous vaporization, leading eventually to a steady-state chemical equilibrium between the two coexisting phases. We locate the liquid-vapor critical point at 6600 K and 0.40 g/cm3 for MgSiO3 and 5300 K and 0.43 g/cm3 for SiO_2. By carefully examining the trajectories, we determine the composition and speciation of the vapor. For MgSiO_3, We find that the vapor is significantly richer in Mg, O, and atomic (non-molecular) species than extrapolation of low-temperature experimental data has suggested. These results will have important implications for our understanding of the initial chemistry of the Earth and Moon and the initial thermal state of Earth.

  12. Chemistry of Covalent Organic Frameworks.

    PubMed

    Waller, Peter J; Gándara, Felipe; Yaghi, Omar M

    2015-12-15

    Linking organic molecules by covalent bonds into extended solids typically generates amorphous, disordered materials. The ability to develop strategies for obtaining crystals of such solids is of interest because it opens the way for precise control of the geometry and functionality of the extended structure, and the stereochemical orientation of its constituents. Covalent organic frameworks (COFs) are a new class of porous covalent organic structures whose backbone is composed entirely of light elements (B, C, N, O, Si) that represent a successful demonstration of how crystalline materials of covalent solids can be achieved. COFs are made by combination of organic building units covalently linked into extended structures to make crystalline materials. The attainment of crystals is done by several techniques in which a balance is struck between the thermodynamic reversibility of the linking reactions and their kinetics. This success has led to the expansion of COF materials to include organic units linked by these strong covalent bonds: B-O, C-N, B-N, and B-O-Si. Since the organic constituents of COFs, when linked, do not undergo significant change in their overall geometry, it has been possible to predict the structures of the resulting COFs, and this advantage has facilitated their characterization using powder X-ray diffraction (PXRD) techniques. It has also allowed for the synthesis of COF structures by design and for their formation with the desired composition, pore size, and aperture. In practice, the modeled PXRD pattern for a given expected COF is compared with the experimental one, and depending on the quality of the match, this is used as a starting point for solving and then refining the crystal structure of the target COF. These characteristics make COFs an attractive class of new porous materials. Accordingly, they have been used as gas storage materials for energy applications, solid supports for catalysis, and optoelectronic devices. A large and

  13. Showing Some Chemistry

    NASA Image and Video Library

    2015-04-16

    During NASA MESSENGER four-year orbital mission, the spacecraft X-Ray Spectrometer XRS instrument mapped out the chemical composition of Mercury and discovered striking regions of chemical diversity. These maps of magnesium/silicon (left) and aluminium/silicon (right) use red colors to indicate high values and blue colors for low values. In the maps shown here, the Caloris basin can be identified as a region with low Mg/Si and high Ca/Si on the upper left of each map. An extensive region with high Mg/Si is also clearly visible in the maps but is not correlated with any visible impact basin. Instrument: X-Ray Spectrometer (XRS) and Mercury Dual Imaging System (MDIS) Left Image: Map of Mg/Si Right Image: Map of Al/Si http://photojournal.jpl.nasa.gov/catalog/PIA19417

  14. Magnetism in Chemistry

    ERIC Educational Resources Information Center

    Brookes, R. W.; McFadyen, W. D.

    1975-01-01

    Discusses the technical aspects of paramagnetism and an electrostatic model called Crystal Field Theory (CFT), very often used in the case of transition metal compounds. Suggests that this discussion be included as an option for college chemistry courses. (MLH)

  15. Supplemental instruction in chemistry

    NASA Astrophysics Data System (ADS)

    Lundeberg, Mary A.

    This study was designed to measure some effects of supplemental instruction in chemistry. Supplemental instruction is a peer-led cooperative learning program that encourages students to develop conceptual understanding by articulating both understandings and misconceptions in a think-aloud fashion. Supplemental instruction was offered three hours weekly outside of class and lab time for students in four classes of General Organic and Biological Chemistry. Over a two-year period 108 students volunteered to participate in this program; 45 students did not participate. As measured by final grades in chemistry and responses to a questionnaire, supplemental instruction was effective in increasing students' achievement in chemistry. Further research is needed to determine the in-depth effects of supplemental instruction on students' learning, problem solving, and self-esteem.

  16. General Chemistry for Engineers.

    ERIC Educational Resources Information Center

    Kybett, B. D.

    1982-01-01

    Discusses the relationship between molecular structure, intermolecular forces, and tensile strengths of a polymer and suggests that this is a logical way to introduce polymers into a general chemistry course. (Author/JN)

  17. Chemistry for Nonscientists

    ERIC Educational Resources Information Center

    Weil, Thomas A.; And Others

    1974-01-01

    Discusses the case of DDT which can be introduced to nonscience students in a chemistry course, including the development of DDT, problems associated with its adverse effects, and curtailment of its use in our environments. (CC)

  18. Indicators: Soil Chemistry

    EPA Pesticide Factsheets

    The chemical makeup of the soil can provide information on wetland condition, wetland water quality and services being provided by the wetland ecosystem. Analyzing soil chemistry reveals if the soil is contaminated with a toxic chemical or heavy metal.

  19. Frontiers in Chemistry.

    ERIC Educational Resources Information Center

    Joyce, Robert M., Ed.

    1980-01-01

    This article describes recent progress in chemical synthesis which depends on comparable advances in other areas of chemistry. Analysis and theories of chemical structure and reactions are determinants in progress in chemical synthesis and are described also. (Author/SA)

  20. Enzymes in Analytical Chemistry.

    ERIC Educational Resources Information Center

    Fishman, Myer M.

    1980-01-01

    Presents tabular information concerning recent research in the field of enzymes in analytic chemistry, with methods, substrate or reaction catalyzed, assay, comments and references listed. The table refers to 128 references. Also listed are 13 general citations. (CS)

  1. Chemistry with a Peel.

    ERIC Educational Resources Information Center

    Borer, Londa; Larsen, Eric

    1997-01-01

    Presents experiments that introduce natural product chemistry into high school classrooms. In the laboratory activities, students isolate and analyze the oil in orange peels. Students also perform a steam distillation and learn about terpenes. (DDR)

  2. Environmental Bioinorganic Chemistry

    ERIC Educational Resources Information Center

    Ochiai, Ei-Ichiro

    1974-01-01

    Discusses some important aspects of bioinorganic chemistry, including interactions of organisms with metallic and nonmetallic elements and compounds. Indicates that many environmental problems are created by human exploitation of nature and technologies if studied from a bioinorganic chemical viewpoint. (CC)

  3. Chemistry for Kids.

    ERIC Educational Resources Information Center

    Sato, Sanae; Majoros, Bela

    1988-01-01

    Reports two methods for interesting children in chemistry. Describes a method for producing large soap bubbles and films for study. Examines the use of simple stories to explain common chemical concepts with example given. Lists titles of available stories. (ML)

  4. Chemistry with a Peel.

    ERIC Educational Resources Information Center

    Borer, Londa; Larsen, Eric

    1997-01-01

    Presents experiments that introduce natural product chemistry into high school classrooms. In the laboratory activities, students isolate and analyze the oil in orange peels. Students also perform a steam distillation and learn about terpenes. (DDR)

  5. Chemistry and Detective Fiction.

    ERIC Educational Resources Information Center

    Labianca, Dominick A.; Reeves, William J.

    1981-01-01

    Describes an interdisciplinary program consisting of two courses. The first course deals with the chemistry of drugs and poisons; the second course focuses on fictional works in which these drugs and poisons are central to the plots. (SK)

  6. Uncertainty in chemistry.

    PubMed

    Menger, Fredric M

    2010-09-01

    It might come as a disappointment to some chemists, but just as there are uncertainties in physics and mathematics, there are some chemistry questions we may never know the answer to either, suggests Fredric M. Menger.

  7. Water Chemistry: Seeking Information

    ERIC Educational Resources Information Center

    Delfino, Joseph J.

    1977-01-01

    A survey of the available literature in water chemistry is presented. Materials surveyed include: texts, reference books, bibliographic resources, journals, American Chemical Society publications, proceedings, unpublished articles, and reports. (BT)

  8. Chemistry Laboratory Safety Check

    ERIC Educational Resources Information Center

    Patnoe, Richard L.

    1976-01-01

    An accident prevention/safety check list for chemistry laboratories is printed. Included are checks of equipment, facilities, storage and handling of chemicals, laboratory procedures, instruction procedures, and items to be excluded from chemical laboratories. (SL)

  9. Chemistry and Detective Fiction.

    ERIC Educational Resources Information Center

    Labianca, Dominick A.; Reeves, William J.

    1981-01-01

    Describes an interdisciplinary program consisting of two courses. The first course deals with the chemistry of drugs and poisons; the second course focuses on fictional works in which these drugs and poisons are central to the plots. (SK)

  10. Microfluidics in inorganic chemistry.

    PubMed

    Abou-Hassan, Ali; Sandre, Olivier; Cabuil, Valérie

    2010-08-23

    The application of microfluidics in chemistry has gained significant importance in the recent years. Miniaturized chemistry platforms provide controlled fluid transport, rapid chemical reactions, and cost-saving advantages over conventional reactors. The advantages of microfluidics have been clearly established in the field of analytical and bioanalytical sciences and in the field of organic synthesis. It is less true in the field of inorganic chemistry and materials science; however in inorganic chemistry it has mostly been used for the separation and selective extraction of metal ions. Microfluidics has been used in materials science mainly for the improvement of nanoparticle synthesis, namely metal, metal oxide, and semiconductor nanoparticles. Microfluidic devices can also be used for the formulation of more advanced and sophisticated inorganic materials or hybrids.

  11. General Chemistry for Engineers.

    ERIC Educational Resources Information Center

    Kybett, B. D.

    1982-01-01

    Discusses the relationship between molecular structure, intermolecular forces, and tensile strengths of a polymer and suggests that this is a logical way to introduce polymers into a general chemistry course. (Author/JN)

  12. Impact of surface chemistry.

    PubMed

    Somorjai, Gabor A; Li, Yimin

    2011-01-18

    The applications of molecular surface chemistry in heterogeneous catalyst technology, semiconductor-based technology, medical technology, anticorrosion and lubricant technology, and nanotechnology are highlighted in this perspective. The evolution of surface chemistry at the molecular level is reviewed, and the key roles of surface instrumentation developments for in situ studies of the gas-solid, liquid-solid, and solid-solid interfaces under reaction conditions are emphasized.

  13. Impact of surface chemistry

    PubMed Central

    Somorjai, Gabor A.; Li, Yimin

    2011-01-01

    The applications of molecular surface chemistry in heterogeneous catalyst technology, semiconductor-based technology, medical technology, anticorrosion and lubricant technology, and nanotechnology are highlighted in this perspective. The evolution of surface chemistry at the molecular level is reviewed, and the key roles of surface instrumentation developments for in situ studies of the gas–solid, liquid–solid, and solid–solid interfaces under reaction conditions are emphasized. PMID:20880833

  14. Chemistry, Color, and Art

    NASA Astrophysics Data System (ADS)

    Orna, Mary Virginia

    2001-10-01

    Artists' colors have been intertwined with chemistry from antiquity, both in the extraction of them from raw materials and their production by the 'manufacturing chemists' of their day. In our own time, not only has chemistry made possible the enormous expension of the artist's palette, but also has provided methods to study it scientifically with a view to restoration, preservation, authentication, and understanding of works of art.

  15. EPA Environmental Chemistry Laboratory

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Environmental Protection Agency's (EPA) Chemistry Laboratory (ECL) is a national program laboratory specializing in residue chemistry analysis under the jurisdiction of the EPA's Office of Pesticide Programs in Washington, D.C. At Stennis Space Center, the laboratory's work supports many federal anti-pollution laws. The laboratory analyzes environmental and human samples to determine the presence and amount of agricultural chemicals and related substances. Pictured, ECL chemists analyze environmental and human samples for the presence of pesticides and other pollutants.

  16. EPA Environmental Chemistry Laboratory

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Environmental Protection Agency's (EPA) Chemistry Laboratory (ECL) is a national program laboratory specializing in residue chemistry analysis under the jurisdiction of the EPA's Office of Pesticide Programs in Washington, D.C. At Stennis Space Center, the laboratory's work supports many federal anti-pollution laws. The laboratory analyzes environmental and human samples to determine the presence and amount of agricultural chemicals and related substances. Pictured, ECL chemists analyze environmental and human samples for the presence of pesticides and other pollutants.

  17. Variance in water chemistry parameters in isolated wetlands of Florida, USA, and relationships with macroinvertebrate and diatom community structure

    EPA Science Inventory

    Eighty small isolated wetlands throughout Florida were sampled in 2005 to explore within-site variability of water chemistry parameters and relate water chemistry to macroinvertebrate and diatom community structure. Three samples or measures of water were collected within each si...

  18. Variance in water chemistry parameters in isolated wetlands of Florida, USA, and relationships with macroinvertebrate and diatom community structure

    EPA Science Inventory

    Eighty small isolated wetlands throughout Florida were sampled in 2005 to explore within-site variability of water chemistry parameters and relate water chemistry to macroinvertebrate and diatom community structure. Three samples or measures of water were collected within each si...

  19. Low-thermal surface preparation, HCl etch and Si/SiGe selective epitaxy on (1 1 0) silicon surfaces

    NASA Astrophysics Data System (ADS)

    Destefanis, V.; Hartmann, J. M.; Hopstaken, M.; Delaye, V.; Bensahel, D.

    2008-10-01

    We have first investigated the influence of the in situ H2 bake temperature (between 750 °C and 850 °C) on (1 0 0) and (1 1 0) fullsheet surface preparations (after 'HF-last' wet cleaning). A strong increase of the (1 1 0) surface roughness occurred when baking between 750 and 775 °C, with high C and O contamination peaks at the Si substrate/Si overlayer interface. A high H2 bake temperature (>=800 °C) is thus mandatory for both (1 0 0) and (1 1 0) Si surfaces. We have also studied the 750 °C-950 °C, high HCl partial pressure etch of blanket Si wafers. HCl etch rates are roughly four times higher on (1 1 0) than on (1 0 0). Etch rate activation energies are however quite close to each other (57 kcal mol-1 on (1 0 0) ⇔ 59 kcal mol-1 on (1 0 0)), suggesting similar etch-limiting mechanisms. We have then investigated the low-temperature growth of high Ge content (10-37%) SiGe layers on blanket Si wafers with dichlorosilane + germane chemistry (selective versus SiO2 on patterned wafers). The SiGe growth rate on (1 1 0) bows downwards from linearity and then saturates when increasing the germane mass flow. In contrast, it almost linearly increases on (1 0 0) surfaces, reaching values more than three times higher than on (1 1 0). A parabolic relationship between experimental Ge concentrations and the F(GeH4)/F(SiH2Cl2) mass-flow ratio has been evidenced on (1 0 0). In contrast, a linear relationship links the (1 1 0) Ge concentration to the F(GeH4)/F(SiH2Cl2) mass-flow ratio. Finally, 63 and 65 kcal mol-1 activation energies are associated with the fullsheet Si growth rate increase with the inverse absolute temperature on (1 0 0) and (1 1 0) (dichlorosilane chemistry). The GR(1 1 0)/GR(1 0 0) Si growth rate ratio, ≈0.74, is close to the dangling bond surface density (DBSD) ratio (DBSD(1 1 0)/DBSD(1 0 0) ≈ 0.71). Such growth rate discrepancies are thus justified by these DBSD differences. Results obtained on fullsheet wafers have been used to selectively grow

  20. Model for a multiple-step deep Si etch process

    NASA Astrophysics Data System (ADS)

    Rauf, Shahid; Dauksher, William J.; Clemens, Stephen B.; Smith, Kenneth H.

    2002-07-01

    A multiple-step deep Si etch process involving separate etching and polymerization steps is often employed for fabrication of microelectromechanical systems, microfluidics devices, and other assorted deep structures in Si. An integrated plasma equipment-feature evolution model for this multiple-step deep Si etch process is described in this article. In the two-dimensional plasma equipment model, the etching (SF6/O2) and polymerization octafluorocyclobutane(c-C4F8) chemistries are separately simulated assuming steady-state conditions. The outputs of the equipment simulations are combined in a string-based feature profile evolution model to simulate the multiple-step deep Si etch process. In the plasma equipment models, detailed gas phase plasma chemistries including electron impact processes, ion-molecule reactions, and neutral chemistry have been considered for both the etching and polymerization gas mixtures. The plasma-surface interaction mechanisms in the feature profile evolution model are based on qualitative information available in literature and the correlation of modeling results with experimental data. Under the relevant operating conditions, F is assumed to be the primary Si etchant, film deposition in c-C4F8 is due to sticking of C, CF2, and C2F4 under ion bombardment, and the polymer is etched by energetic ions through physical sputtering. It is demonstrated that predictions of the resulting model are in close agreement with experiments. The validated model is used to understand the dynamics of the multiple-step deep Si etch process and how etching characteristics can be controlled using a variety of process parameters. Etching characteristics have been found to be quite sensitive to gas pressure, coil power, bias power, and relative step time during both etching and polymerization processes. The Si etch rate and feature sidewall angle are coupled to each other over a wide range of operating conditions. copyright 2002 American Vacuum Society.

  1. Aperiodic SiSn/Si multilayers for thermoelectric applications

    NASA Astrophysics Data System (ADS)

    Tonkikh, A. A.; Zakharov, N. D.; Eisenschmidt, C.; Leipner, H. S.; Werner, P.

    2014-04-01

    We report on novel defect-free SiSn/Si heterostructures grown pseudomorphically on Si(001) substrates using temperature-modulated molecular beam epitaxy. This approach results in a sustainable epitaxial growth for SiSn/Si multilayers. Transmission electron microscopy and electron diffraction manifest that SiSn layers possess a diamond lattice structure. X-ray diffraction reveals up to 9.5 at% Sn in the crystal lattice of SiSn layers.

  2. Chemistry Impacts in Gasoline HCCI

    SciTech Connect

    Szybist, James P; Bunting, Bruce G

    2006-09-01

    The use of homogeneous charge compression ignition (HCCI) combustion in internal combustion engines is of interest because it has the potential to produce low oxides of nitrogen (NOx) and particulate matter (PM) emissions while providing diesel-like efficiency. In HCCI combustion, a premixed charge of fuel and air auto-ignites at multiple points in the cylinder near top dead center (TDC), resulting in rapid combustion with very little flame propagation. In order to prevent excessive knocking during HCCI combustion, it must take place in a dilute environment, resulting from either operating fuel lean or providing high levels of either internal or external exhaust gas recirculation (EGR). Operating the engine in a dilute environment can substantially reduce the pumping losses, thus providing the main efficiency advantage compared to spark-ignition (SI) engines. Low NOx and PM emissions have been reported by virtually all researchers for operation under HCCI conditions. The precise emissions can vary depending on how well mixed the intake charge is, the fuel used, and the phasing of the HCCI combustion event; but it is common for there to be no measurable PM emissions and NOx emissions <10 ppm. Much of the early HCCI work was done on 2-stroke engines, and in these studies the CO and hydrocarbon emissions were reported to decrease [1]. However, in modern 4-stroke engines, the CO and hydrocarbon emissions from HCCI usually represent a marked increase compared with conventional SI combustion. This literature review does not report on HCCI emissions because the trends mentioned above are well established in the literature. The main focus of this literature review is the auto-ignition performance of gasoline-type fuels. It follows that this discussion relies heavily on the extensive information available about gasoline auto-ignition from studying knock in SI engines. Section 2 discusses hydrocarbon auto-ignition, the octane number scale, the chemistry behind it, its

  3. Vaporization of SiO2 and MgSiO3

    NASA Astrophysics Data System (ADS)

    Stixrude, L. P.; Xiao, B.

    2016-12-01

    Vaporization of SiO2 and MgSiO3B Xiaoa and L Stixrude*a, a Department of Earth Sciences, University College London, WC1E 6BT London, UK *presenting author, email: l.stixrude@ucl.ac.uk Vaporization is an important process in Earth's earliest evolution during which giant impacts are thought to have produced a transient silicate atmosphere. As experimental data are very limited, little is known of the near-critical vaporization of Earth's major oxide components: MgO and SiO2. We have performed novel ab initio molecular dynamics simulations of vapor-liquid coexistence in the SiO2 and MgSiO3 systems. The simulations, based on density functional theory using the VASP code, begin with a suitably prepared liquid slab embedded in a vacuum. During the dynamical trajectory in the canonical ensemble, we see spontaneous vaporization, leading eventually to a steady-state chemical equilibrium between the two coexisting phases. We locate the liquid-vapor critical point at 6600 K and 0.40 g/cm3 for MgSiO3 and 5300 K and 0.43 g/cm3 for SiO2. By carefully examining the trajectories, we determine the composition and speciation of the vapor. For MgSiO3, We find that the vapor is significantly richer in Mg, O, and atomic (non-molecular) species than extrapolation of low-temperature experimental data has suggested. These results will have important implications for our understanding of the initial chemistry of the Earth and Moon and the initial thermal state of Earth.

  4. Origin and chemistry of comets

    NASA Technical Reports Server (NTRS)

    Delsemme, A. H.

    1980-01-01

    Long-period and short-period comets are all derived from a steady flux of 'new' comets coming straight from the margin of a sphere whose radius is 50,000 AU (the Oort's cloud). No empirical evidence requires that the Oort's cloud be older than a few million years, but all satisfactory theories have so far linked its formation to the origin of the solar system. 'New' comets have a size distribution consistent with the accretion of planetesimals, in contrast with older comets that are consistent with a fragmentation distribution. The H, C, N, O elemental ratios to Si suggest the comets are more primitive than the most primitive meteorites, namely the C I chondrites. Their chemistry is poorly known, but observational data suggest a protosolar ratio of C/O at least as large as 0.66, and a drastic depletion of hydrogen in the solar nebula. This could for instance imply that the T Tauri phase of the sun happened prior to the condensation of comets. An alternate explanation is possible: the interstellar grains were relatively unprocessed during their contraction in the solar nebula, and their mantles, barely modified, would have followed suit in the accretion of comets.

  5. Chemistry beyond positivism.

    PubMed

    Brandt, Werner W

    2003-05-01

    Chemistry is often thought to be quite factual, and therefore might be considered close to the "positivist" ideal of a value-free science. A closer look, however, reveals that the field is coupled to the invisible realm of values, meanings, and purpose in various ways, and chemists interact with that realm loosely and unevenly. Tacit knowledge is one important locus of such interactions. We are concerned in this essay with two questions. What is the nature of the knowledge when we are in the early stages of discovery? and In what ways does the hidden reality we are seeking affect our search for an understanding of it? The first question is partly answered by Polanyi's theory of tacit knowledge, while the second one leads us to realize the limitations of our language when discussing "reality"-or certain chemical experimental results. A strictly positivist approach is of little use, but so is the opposite, the complete disregard of facts. The contrast between positivism and non-formulable aspects of scientific reasoning amounts to a paradox that needs to be analyzed and can lead to a "connected" chemistry. This in turn resembles networks described by Schweber and is more concerned than the chemistry "as it is" with aspects such as the image of chemistry, the challenges chemists face as citizens, and chemistry in liberal education.

  6. Technetium Chemistry in HLW

    SciTech Connect

    Hess, Nancy J.; Felmy, Andrew R.; Rosso, Kevin M.; Xia Yuanxian

    2005-06-06

    Tc contamination is found within the DOE complex at those sites whose mission involved extraction of plutonium from irradiated uranium fuel or isotopic enrichment of uranium. At the Hanford Site, chemical separations and extraction processes generated large amounts of high level and transuranic wastes that are currently stored in underground tanks. The waste from these extraction processes is currently stored in underground High Level Waste (HLW) tanks. However, the chemistry of the HLW in any given tank is greatly complicated by repeated efforts to reduce volume and recover isotopes. These processes ultimately resulted in mixing of waste streams from different processes. As a result, the chemistry and the fate of Tc in HLW tanks are not well understood. This lack of understanding has been made evident in the failed efforts to leach Tc from sludge and to remove Tc from supernatants prior to immobilization. Although recent interest in Tc chemistry has shifted from pretreatment chemistry to waste residuals, both needs are served by a fundamental understanding of Tc chemistry.

  7. Uranium triamidoamine chemistry.

    PubMed

    Gardner, Benedict M; Liddle, Stephen T

    2015-07-07

    Triamidoamine (Tren) complexes of the p- and d-block elements have been well-studied, and they display a diverse array of chemistry of academic, industrial and biological significance. Such in-depth investigations are not as widespread for Tren complexes of uranium, despite the general drive to better understand the chemical behaviour of uranium by virtue of its fundamental position within the nuclear sector. However, the chemistry of Tren-uranium complexes is characterised by the ability to stabilise otherwise reactive, multiply bonded main group donor atom ligands, construct uranium-metal bonds, promote small molecule activation, and support single molecule magnetism, all of which exploit the steric, electronic, thermodynamic and kinetic features of the Tren ligand system. This Feature Article presents a current account of the chemistry of Tren-uranium complexes.

  8. Reaction chemistry of cerium

    SciTech Connect

    1997-01-01

    It is truly ironic that a synthetic organic chemist likely has far greater knowledge of the reaction chemistry of cerium(IV) than an inorganic colleague. Cerium(IV) reagents have long since been employed as oxidants in effecting a wide variety of organic transformations. Conversely, prior to the late 1980s, the number of well characterized cerium(IV) complexes did not extend past a handful of known species. Though in many other areas, interest in the molecular chemistry of the 4f-elements has undergone an explosive growth over the last twenty years, the chemistry of cerium(IV) has for the most part been overlooked. This report describes reactions of cerium complexes and structure.

  9. Extragalactic Chemistry of Starbursts: the Case of M82

    NASA Astrophysics Data System (ADS)

    Usero, A.; García-Burillo, S.

    2003-09-01

    The study of Chemistry in External Galaxies has been made possible since the advent of last generation millimeter telescopes/interferometers. Going beyond CO maps is key to study the evolutionary path of massive star formation episodes in galaxies. We present here the results obtained from a high-resolution (~5'') study made in the nucleus of the starburst galaxy M82, based on observations of the silicon monoxide (SiO) and the formyl radical (HCO) species. Observations have been carried out with the IRAM Plateau de Bure interferometer. SiO and HCO are privileged tracers of shock chemistry and photon-dominated regions (PDR) environments, respectively. These maps show a sharp picture of the heavy influence of the star formation episode on the properties of the interstellar medium in M82.

  10. Collaborative Physical Chemistry Projects Involving Computational Chemistry

    NASA Astrophysics Data System (ADS)

    Whisnant, David M.; Howe, Jerry J.; Lever, Lisa S.

    2000-02-01

    The physical chemistry classes from three colleges have collaborated on two computational chemistry projects using Quantum CAChe 3.0 and Gaussian 94W running on Pentium II PCs. Online communication by email and the World Wide Web was an important part of the collaboration. In the first project, students used molecular modeling to predict benzene derivatives that might be possible hair dyes. They used PM3 and ZINDO calculations to predict the electronic spectra of the molecules and tested the predicted spectra by comparing some with experimental measurements. They also did literature searches for real hair dyes and possible health effects. In the final phase of the project they proposed a synthetic pathway for one compound. In the second project the students were asked to predict which isomer of a small carbon cluster (C3, C4, or C5) was responsible for a series of IR lines observed in the spectrum of a carbon star. After preliminary PM3 calculations, they used ab initio calculations at the HF/6-31G(d) and MP2/6-31G(d) level to model the molecules and predict their vibrational frequencies and rotational constants. A comparison of the predictions with the experimental spectra suggested that the linear isomer of the C5 molecule was responsible for the lines.

  11. Optical Properties of Silicon Nanowires Fabricated by Environment-Friendly Chemistry

    NASA Astrophysics Data System (ADS)

    Gonchar, Kirill A.; Zubairova, Alsu A.; Schleusener, Alexander; Osminkina, Liubov A.; Sivakov, Vladimir

    2016-08-01

    Silicon nanowires (SiNWs) were fabricated by metal-assisted chemical etching (MACE) where hydrofluoric acid (HF), which is typically used in this method, was changed into ammonium fluoride (NH4F). The structure and optical properties of the obtained SiNWs were investigated in details. The length of the SiNW arrays is about 2 μm for 5 min of etching, and the mean diameter of the SiNWs is between 50 and 200 nm. The formed SiNWs demonstrate a strong decrease of the total reflectance near 5-15 % in the spectral region λ < 1 μm in comparison to crystalline silicon (c-Si) substrate. The interband photoluminescence (PL) and Raman scattering intensities increase strongly for SiNWs in comparison with the corresponding values of the c-Si substrate. These effects can be interpreted as an increase of the excitation intensity of SiNWs due to the strong light scattering and the partial light localization in an inhomogeneous optical medium. Along with the interband PL was also detected the PL of SiNWs in the spectral region of 500-1100 nm with a maximum at 750 nm, which can be explained by the radiative recombination of excitons in small Si nanocrystals at nanowire sidewalls in terms of a quantum confinement model. So SiNWs, which are fabricated by environment-friendly chemistry, have a great potential for use in photovoltaic and photonics applications.

  12. The Chemistry behind the Air Bag: High Tech in First-Year Chemistry

    NASA Astrophysics Data System (ADS)

    Madlung, Andreas

    1996-04-01

    The chemical process of air bag deployment provides practical applications of gas laws and stoichiometric equations appropriate for use in first-year chemistry. In case of an accident the mixture of NaN3, KNO3, and SiO2 in the gas generator is ignited through an electrical impulse which triggers deflagration and the liberation of a precalculated volume of nitrogen gas. Subsequent reactions transform byproducts into stable, non-toxic compounds. This process lends itself as an illustration of gas laws in modern technology.

  13. Chemistry for Kids: Chemistry Activities for a Summer Enrichment Program.

    ERIC Educational Resources Information Center

    Schreck, James O.; And Others

    1984-01-01

    Describes chemistry courses offered as part of a residential summer enrichment program held at the University of Northern Colorado. A list of elementary and advanced chemistry activities completed during the courses is included. (JN)

  14. The Chemistry of Fragrances: A Group Exercise for Chemistry Students.

    ERIC Educational Resources Information Center

    Duprey, Roger; Sell, Charles S.; Lowe, Nigel D.

    2003-01-01

    Presents Fragrance Structured Learning Packages (SLPs), group activities designed to help students recognize the value of applying chemistry in a real-world setting. Developed by the Department of Chemistry at the University of York. (Author/KHR)

  15. Chemistry in the Comics: Part 2. Classic Chemistry.

    ERIC Educational Resources Information Center

    Carter, Henry A.

    1989-01-01

    Describes topics in chemistry as related in the Classics Illustrated publications. Provides a list from "The Pioneers of Science" series with issue date, number, and biograhical topic. Lists references to topics in chemistry. Presents many pages from these comics. (MVL)

  16. Chemistry WebBook

    National Institute of Standards and Technology Data Gateway

    SRD 69 NIST Chemistry WebBook (Web, free access)   The NIST Chemistry WebBook contains: Thermochemical data for over 7000 organic and small inorganic compounds; thermochemistry data for over 8000 reactions; IR spectra for over 16,000 compounds; mass spectra for over 33,000 compounds; UV/Vis spectra for over 1600 compounds; electronic and vibrational spectra for over 5000 compounds; constants of diatomic molecules(spectroscopic data) for over 600 compounds; ion energetics data for over 16,000 compounds; thermophysical property data for 74 fluids.

  17. Revitalizing chemistry laboratory instruction

    NASA Astrophysics Data System (ADS)

    McBride, Phil Blake

    This dissertation involves research in three major domains of chemical education as partial fulfillment of the requirements for the Ph.D. program in chemistry at Miami University with a major emphasis on chemical education, and concurrent study in organic chemistry. Unit I, Development and Assessment of a Column Chromatography Laboratory Activity, addresses the domain of Instructional Materials Development and Testing. This unit outlines the process of developing a publishable laboratory activity, testing and revising that activity, and subsequently sharing that activity with the chemical education community. A laboratory activity focusing on the separation of methylene blue and sodium fluorescein was developed to demonstrate the effects of both the stationary and mobile phase in conducting a separation. Unit II, Bringing Industry to the Laboratory, addresses the domain of Curriculum Development and Testing. This unit outlines the development of the Chemistry of Copper Mining module, which is intended for use in high school or undergraduate college chemistry. The module uses the learning cycle approach to present the chemistry of the industrial processes of mining copper to the students. The module includes thirteen investigations (three of which are web-based and ten which are laboratory experiments) and an accompanying interactive CD-ROM, which provides an explanation of the chemistry used in copper mining with a virtual tour of an operational copper mine. Unit III, An Alternative Method of Teaching Chemistry. Integrating Lecture and the Laboratory, is a project that addresses the domain of Research in Student Learning. Fundamental Chemistry was taught at Eastern Arizona College as an integrated lecture/laboratory course that met in two-hour blocks on Monday, Wednesday, and Friday. The students taking this integrated course were compared with students taking the traditional 1-hour lectures held on Monday, Wednesday, and Friday, with accompanying 3-hour lab on

  18. Chemistry and materials science

    SciTech Connect

    1995-01-01

    Our work in chemistry and materials science exemplifies disciplinary research and programmatic support. The disciplinary research is intended to sharpen the skills of our scientists, advance the frontiers of scientific knowledge, and provide the seeds for programs of the future. The programmatic support provides the very best scientific and engineering talent for Laboratory programs and offers the potential for new program areas. We are convinced that chemistry and materials science will be key to the future success of the Laboratory whatever its mission, and we are firmly committed to supporting this mission with the very best in scientific talent.

  19. Chemistry of Transactinides

    NASA Astrophysics Data System (ADS)

    Kratz, J. V.

    In this chapter, the chemical properties of the man-made transactinide elements rutherfordium, Rf (element 104), dubnium, Db (element 105), seaborgium, Sg (element 106), bohrium, Bh (element 107), hassium, Hs (element 108), and copernicium, Cn (element 112) are reviewed, and prospects for chemical characterizations of even heavier elements are discussed. The experimental methods to perform rapid chemical separations on the time scale of seconds are presented and comments are given on the special situation with the transactinides where chemistry has to be studied with single atoms. It follows a description of theoretical predictions and selected experimental results on the chemistry of elements 104 through 108, and element 112.

  20. Chemistry of atmospheres.

    NASA Astrophysics Data System (ADS)

    Wayne, R. P.

    Atmospheric chemistry has been the focus of much research activity in recent years. Like its predecessor, this new edition lays down the principles of atmospheric chemistry and provides the necessary background for more detailed study. New developments are covered, including the startling discovery of the "Antarctic ozone hole", and the increasingly rapid changes in the composition of the Earth's atmosphere, apparently a result of man's activities. Information gathered by the Voyager 2 and other space missions, which have provided a new understanding of the atmospheres of planets other than our own, is also discussed.

  1. Chemistry in cometary comae

    NASA Technical Reports Server (NTRS)

    Irvine, W. M.; Dickens, J. E.; Lovell, A. J.; Schloerb, F. P.; Senay, M.; Bergin, E. A.; Jewitt, D.; Matthews, H. E.

    1998-01-01

    Significant gas-phase chemistry occurs in the comae of bright comets, as is demonstrated here for the case of Comet Hale-Bopp. The abundance ratio of the two isomers, hydrogen cyanide and hydrogen isocyanide, is shown to vary with heliocentric distance in a way that is consistent with production of HNC by ion-molecule chemistry initiated by the photoionization of water. Likewise, the first maps of emission from HCO+ show an abundance and an extended distribution that are consistent with the same chemical model.

  2. The philosophy of chemistry.

    PubMed

    Schummer, Joachim

    2003-03-01

    Although chemistry is by far the largest scientific discipline according to any quantitative measure, it had, until recently, been virtually ignored by professional philosophers of science. They left both a vacuum and a one-sided picture of science tailored to physics. Since the early 1990s, the situation has changed drastically, such that philosophy of chemistry is now one of the most flourishing fields in the philosophy of science, like the philosophy of biology that emerged in the 1970s. This article narrates the development and provides a survey of the main topics and trends.

  3. Si^3+ +H collisions: role of rotational couplings

    NASA Astrophysics Data System (ADS)

    Joseph, D. C.; Saha, B. C.

    2012-06-01

    State selective charge exchange cross sections are calculated using both the quantal and the semi classical molecular orbital close coupling approaches in the adiabatic representation. In addition to radial coupling, all angular couplings are also incorporated in our close coupling calculations. The multi-reference single- and double-excitation configuration interaction (MRD-CI) method [1] is employed to describe the adiabatic electronic states of (SiH)^3+ system. Details of our findings will be reported at the conference.[4pt] [1] R. J. Buenker, in Current Aspects of Quantum Chemistry, edited by R. Carbo, in Physical and Theoretical Chemistry Vol. 21 (Elsevier, Amsterdam, 1981).

  4. Is Chemistry Attractive for Pupils? Czech Pupils' Perception of Chemistry

    ERIC Educational Resources Information Center

    Kubiatko, Milan

    2015-01-01

    Chemistry is an important subject due to understanding the composition and structure of the things around us. The main aim of the study was to find out the perception of chemistry by lower secondary school pupils. The partial aims were to find out the influence of gender, year of study and favorite subject on the perception of chemistry. The…

  5. Chemistry: Experiments, Demonstrations and Other Activities Suggested for Chemistry.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany. Bureau of Secondary Curriculum Development.

    This publication is a handbook used in conjunction with the course of study in chemistry developed through the New York State Education Department and The University of the State of New York. It contains experiments, demonstrations, and other activities for a chemistry course. Areas covered include the science of chemistry, the atomic structure of…

  6. Real World of Industrial Chemistry: Industrial Chemistry Bibliography.

    ERIC Educational Resources Information Center

    Marmor, Solomon

    1985-01-01

    Presented is a bibliography of articles published in the "Journal of Chemical Education" (1968-1983) which focused on industrial chemistry. Items are listed under these headings: real world of industrial chemistry; industrial notes; subject matter articles; industrial chemistry experiments/demonstrations; academic-industrial interface;…

  7. Emphasizing Mineral Chemistry in an Analytical Chemistry Unit.

    ERIC Educational Resources Information Center

    Dunn, Jeffrey G.; And Others

    1995-01-01

    Describes an analytical chemistry unit in the second year of the chemistry degree course at Curtin University that was designed to reflect the numerous employment opportunities for chemistry graduates in the mineral processing industries and private analytical laboratories. Presents the lecture syllabus, the laboratory course description, and…

  8. Organic Chemistry Self Instructional Package 1: Review of General Chemistry.

    ERIC Educational Resources Information Center

    Zdravkovich, V.

    This booklet is one of a series of 17 developed at Prince George's Community College, Largo, Maryland. It provides an individualized, self-paced undergraduate organic chemistry instruction module designed to augment any course in organic chemistry but particularly those taught using the text "Organic Chemistry" by Morrison and Boyd. The…

  9. Turkish Prospective Chemistry Teachers' Beliefs about Chemistry Teaching

    ERIC Educational Resources Information Center

    Boz, Yezdan; Uzuntiryaki, Esen

    2006-01-01

    In order to study the beliefs of Turkish prospective chemistry teachers about teaching chemistry, semi-structured interviews were conducted with 12 prospective teachers. Analysis of the interviews revealed that most of the prospective teachers held intermediate (transition between constructivist and traditional) beliefs about chemistry teaching.…

  10. Connected Chemistry--Incorporating Interactive Simulations into the Chemistry Classroom.

    ERIC Educational Resources Information Center

    Stieff, Mike; Wilensky, Uri

    2003-01-01

    Describes a novel modeling and simulation package and assesses its impact on students' understanding of chemistry. Connected Chemistry was implemented inside the NetLogo modeling environment. Using Connected Chemistry, students employed problem -solving techniques characterized by stronger attempts at conceptual understanding and logical…

  11. Is Chemistry Attractive for Pupils? Czech Pupils' Perception of Chemistry

    ERIC Educational Resources Information Center

    Kubiatko, Milan

    2015-01-01

    Chemistry is an important subject due to understanding the composition and structure of the things around us. The main aim of the study was to find out the perception of chemistry by lower secondary school pupils. The partial aims were to find out the influence of gender, year of study and favorite subject on the perception of chemistry. The…

  12. Industrial Chemistry Option in MSc Studies in Chemistry.

    ERIC Educational Resources Information Center

    Shani, Arnon

    1982-01-01

    Discusses the rationale for and development of an industrial chemistry program in chemistry at Ben-Gurion University of the Negev in Israel. Includes an outline of the recommended 2-year curriculum and list of courses in this industrial chemistry option leading to a master of science degree. (Author/JN)

  13. Selection of polymer binders and fabrication of SiC fiber-reinforced reaction-bonded silicon nitride matrix composites

    NASA Technical Reports Server (NTRS)

    Haggerty, John S.; Lightfoot, A.; Sigalovsky, J.

    1993-01-01

    The topics discussed include the following: effects of solvent and polymer exposures on nitriding kinetics of high purity Si powders and on resulting phase distributions; effects of solvent and polymer exposures on Si Surface Chemistry; effects of solvent and polymeric exposures on nitriding kinetics; and fabrication of flexural test samples.

  14. Interface chemistry between complex oxides and semiconductors: where chemistry and physics meet

    NASA Astrophysics Data System (ADS)

    Marchiori, Chiara

    2010-03-01

    Even though heavily based on semiconductors, microelectronics CMOS technology would not exist without the integration of thin oxide films which enable the exploitation of the semiconductor properties. Indeed, working principle of the metal-oxide-semiconductor field-effect transistor, the main building block of such a technology, is the modulation of charges at the oxide/semiconductor interface. The quality of this interface is of fundamental importance for device performance. For over four decades, SiO2 was the gate dielectric of choice and device scaling meant improving performance while lowering production costs. However, as scaling is approaching fundamental limits, direct tunneling across the dielectric becomes unacceptable. At this point, the integration of more complex and higher dielectric constant oxides - ``high-K dielectrics''- with Si or even more complex semiconductors (Ge, III-V) is the key enabler of performance gain. I will review critical issues related to the oxide/semiconductor interfaces, starting with SiO2/Si. Then, I will discuss how the level of complexity increases with the introduction of high-K dielectrics and other semiconductors in the stack. Among the issues to be addressed to fabricate high-performance devices, I will discuss the role played by: 1) interfacial chemistry and thermodynamical stability, 2) band alignment and surface band bending, 3) presence of defects at the interface and in the oxide bulk, 4) evolution of the gate stack properties upon post-deposition treatments. The impact of these parameters on electrical performance of devices will be discussed in detail. Finally, epitaxial oxide on Si will be explored as a promising approach for ultimate EOT scaling and the parameters governing the epitaxial growth of complex crystalline oxides on Si will be addressed. I will show that the development performed in this area might enable the integration of epitaxial oxides for monolithic integration, paving the way to technological

  15. Top Down Chemistry Versus Bottom up Chemistry

    NASA Astrophysics Data System (ADS)

    Oka, Takeshi; Witt, Adolf N.

    2016-06-01

    The idea of interstellar top down chemistry (TDC), in which molecules are produced from decomposition of larger molecules and dust in contrast to ordinary bottom up chemistry (BUC) in which molecules are produced synthetically from smaller molecules and atoms in the ISM, has been proposed in the chemistry of PAH and carbon chain molecules both for diffusea,c and dense cloudsb,d. A simple and natural idea, it must have occurred to many people and has been in the air for sometime. The validity of this hypothesis is apparent for diffuse clouds in view of the observed low abundance of small molecules and its rapid decrease with molecular size on the one hand and the high column densities of large carbon molecules demonstrated by the many intense diffuse interstellar bands (DIBs) on the other. Recent identification of C60^+ as the carrier of 5 near infrared DIBs with a high column density of 2×1013 cm-2 by Maier and others confirms the TDC. This means that the large molecules and dust produced in the high density high temperature environment of circumstellar envelopes are sufficiently stable to survive decompositions due to stellar UV radiaiton, cosmic rays, C-shocks etc. for a long time (≥ 10^7 year) of their migration to diffuse clouds and seems to disagree with the consensus in the field of interstellar grains. The stability of molecules and aggregates in the diffuse interstellar medium will be discussed. Duley, W. W. 2006, Faraday Discuss. 133, 415 Zhen,J., Castellanos, P., Paardekooper, D. M., Linnartz, H., Tielens, A. G. G. M. 2014, ApJL, 797, L30 Huang, J., Oka, T. 2015, Mol. Phys. 113, 2159 Guzmán, V. V., Pety, J., Goicoechea, J. R., Gerin, M., Roueff, E., Gratier, P., Öberg, K. I. 2015, ApJL, 800, L33 L. Ziurys has sent us many papers beginning Ziurys, L. M. 2006, PNAS 103, 12274 indicating she had long been a proponent of the idea. Campbell, E. K., Holz, M., Maier, J. P., Gerlich, D., Walker, G. A. H., Bohlender, D, 2016, ApJ, in press Draine, B. T. 2003

  16. Special Report: Chemistry of Comets.

    ERIC Educational Resources Information Center

    A'Hearn, Michael F.

    1984-01-01

    Discusses the chemistry of comets. How comets provide clues to the birth of the solar system, photolytic reactions on comets involving water, chemical modeling, nuclear chemistry, and research findings are among the areas considered. (JN)

  17. The Lighter Side of Chemistry.

    ERIC Educational Resources Information Center

    Lamb, William G.

    1984-01-01

    Discusses the rationale for using photochemistry to merge descriptive chemistry and molecular orbital theory in first-year chemistry courses. Includes procedures and safety information for various activities, demonstrations, and experiments involving photochemical reactions. (DH)

  18. The Lighter Side of Chemistry.

    ERIC Educational Resources Information Center

    Lamb, William G.

    1984-01-01

    Discusses the rationale for using photochemistry to merge descriptive chemistry and molecular orbital theory in first-year chemistry courses. Includes procedures and safety information for various activities, demonstrations, and experiments involving photochemical reactions. (DH)

  19. The Birthday of Organic Chemistry.

    ERIC Educational Resources Information Center

    Benfey, Otto Theodor; Kaufman, George B.

    1979-01-01

    Describes how the synthesis of urea, 150 years ago, was a major factor in breaking the artificial barrier that existed between organic and inorganic chemistry, and this contributed to the rapid growth of organic chemistry. (GA)

  20. The Art of Teaching Chemistry.

    ERIC Educational Resources Information Center

    Lloyd, Baird W., Ed.

    1994-01-01

    Contains descriptions of 11 college chemistry education programs that were awarded grants by the Pfizer Foundation because they make the introductory chemistry experience more positive and engaging for students, especially women and minorities. (LZ)

  1. A Wet Chemistry Laboratory Cell

    NASA Image and Video Library

    2008-06-26

    This picture of NASA Phoenix Mars Lander Wet Chemistry Laboratory WCL cell is labeled with components responsible for mixing Martian soil with water from Earth, adding chemicals and measuring the solution chemistry.

  2. The Birthday of Organic Chemistry.

    ERIC Educational Resources Information Center

    Benfey, Otto Theodor; Kaufman, George B.

    1979-01-01

    Describes how the synthesis of urea, 150 years ago, was a major factor in breaking the artificial barrier that existed between organic and inorganic chemistry, and this contributed to the rapid growth of organic chemistry. (GA)

  3. USSR Report, Chemistry, No. 98

    DTIC Science & Technology

    2007-11-02

    The report contains information on USSR Chemistry in generally in civil technology with particular attention to biochemistry, Catalysts, Coal ... gasification , combustion, Fertilizers, petroleum processing technology. The report also covers important issues related to polymerization, wood chemistry and Elastomer production.

  4. Special Report: Chemistry of Comets.

    ERIC Educational Resources Information Center

    A'Hearn, Michael F.

    1984-01-01

    Discusses the chemistry of comets. How comets provide clues to the birth of the solar system, photolytic reactions on comets involving water, chemical modeling, nuclear chemistry, and research findings are among the areas considered. (JN)

  5. Polymer Chemistry in High School.

    ERIC Educational Resources Information Center

    Stucki, Roger

    1984-01-01

    Discusses why polymer chemistry should be added to the general chemistry curriculum and what topics are appropriate (listing traditional with related polymer topics). Also discusses when and how these topics should be taught. (JN)

  6. The Mystery of Consumer Chemistry.

    ERIC Educational Resources Information Center

    Anderson, Carol P.

    1988-01-01

    Compares processes used to investigate issues in consumer chemistry to the solving of a puzzle in a mystery story. Suggests using similar methods to teach problem solving in consumer chemistry classes. Describes how such a process might progress. (CW)

  7. Chemistry Cook-Off

    ERIC Educational Resources Information Center

    McCormick, Cynthia

    2012-01-01

    For this activity, high school chemistry students compete in a cooking contest. They must determine the chemical and physical changes that occur in the food they prepare, present their recipe as a step-by-step procedure similar to a lab procedure, identify chemicals in the food, and present all measurements in both metric and English units. The…

  8. Getting Reactions to Chemistry.

    ERIC Educational Resources Information Center

    Smith, Walter S.

    1983-01-01

    "COMETS on Careers" describes science-related careers, introduces activities illustrating a science concept being studied, and encourages use of professional persons as activity leaders. Several COMETS chemistry activities are described. These activities, which can be performed in school or at home, focus on colloids, acid/base…

  9. Chemistry in a Nutshell.

    ERIC Educational Resources Information Center

    Rupnow, John; And Others

    1995-01-01

    Presents an activity that involves making peanut butter in the laboratory as a way to teach students the chemistry concepts of emulsification, solubility, and formulation. Enables students to realize that they can actually create or modify the physical and sensory characteristics of peanut butter and taste the differences in their work. (JRH)

  10. The Pimlico Chemistry Trail.

    ERIC Educational Resources Information Center

    Borrows, Peter

    1984-01-01

    Describes a chemistry "trail" (similar to a nature trail) which focuses on chemical phenomena in the environment. The trail includes 20 stops in and around a local school. Types of phenomena examined include building materials, air pollution, corrosion of metals, swimming pools, and others. Additional activities are also suggested. (DH)

  11. Chemistry of Meridiani Outcrops

    NASA Technical Reports Server (NTRS)

    Clark, B. C.; Squyres, S. W.; Ming, D. W.; Morris, R. V.; Yen, A.; Gellert, R.; Knoll, A.H.; Arvidson, R. E.

    2006-01-01

    The chemistry and mineralogy of the sulfate-rich sandstone outcrops at Meridiani Planum, Mars, have been inferred from data obtained by the Opportunity rover of the MER mission and reported in recent publications [1-6]. Here, we provide an update on more recent samples and results derived from this extensive data set.

  12. Getting Reactions to Chemistry.

    ERIC Educational Resources Information Center

    Smith, Walter S.

    1983-01-01

    "COMETS on Careers" describes science-related careers, introduces activities illustrating a science concept being studied, and encourages use of professional persons as activity leaders. Several COMETS chemistry activities are described. These activities, which can be performed in school or at home, focus on colloids, acid/base…

  13. Microscale Gas Chemistry

    ERIC Educational Resources Information Center

    Mattson, Bruce; Anderson, Michael P.

    2011-01-01

    The development of syringes having free movement while remaining gas-tight enabled methods in chemistry to be changed. Successfully containing and measuring volumes of gas without the need to trap them using liquids made it possible to work with smaller quantities. The invention of the LuerLok syringe cap also allowed the gas to be stored for a…

  14. Greener and Sustainable Chemistry

    EPA Science Inventory

    The special issue on Greener and Sustainable Chemistry highlights various strategies that can be adopted to address the pollution preventive measures promoting the use of energy efficient reactions that utilize benign and bio-renewable raw materials in a relatively safer reaction...

  15. The Lens of Chemistry

    ERIC Educational Resources Information Center

    Thalos, Mariam

    2013-01-01

    Chemistry possesses a distinctive theoretical lens--a distinctive set of theoretical concerns regarding the dynamics and transformations of a perplexing variety of organic and nonorganic substances--to which it must be faithful. Even if it is true that chemical facts bear a special (reductive) relationship to physical facts, nonetheless it will…

  16. Learning Chemistry Through Biochemistry

    ERIC Educational Resources Information Center

    Cody, John T.; Treagust, David F.

    1977-01-01

    Utilizes a pretest-posttest design to determine if participants (N=26) exhibit significant gains in organic, inorganic, and biological chemistry concepts as the result of a six-week summer program. Significant gains in these areas and in an understanding of the methods and procedures used in scientific explanation are found. (CP)

  17. Chemistry and Heritage

    NASA Astrophysics Data System (ADS)

    Vittoria Barbarulo, Maria

    2014-05-01

    Chemistry is the central science, as it touches every aspect of the society we live in and it is intertwined with many aspects of our culture; in particular, the strong link between Chemistry and Archaeology and Art History is being explored, offering a penetrating insight into an area of growing interest from an educational point of view. A series of vital and vibrant examples (i.e., ancient bronzes composition, colour changes due to natural pigment decomposition, marble degradation) has been proposed, on one hand, to improve student understanding of the relationship between cultural and scientific issues arising from the examination, the conservation, and the maintenance of cultural Heritage, on the other, to illustrate the role of the underlying Chemistry. In some case studies, a survey of the most relevant atmospheric factors, which are involved in the deterioration mechanisms, has also been presented to the students. First-hand laboratory experiences have been providing an invaluable means of discovering the full and varied world of Chemistry. Furthermore, the promotion of an interdisciplinary investigation of a famous painting or fresco, involving the study of its nature and significance, the definition of its historical context, any related literature, the chemical knowledge of the materials used, may be an excellent occasion to experiment the Content and Language Integrated Learning (CLIL). The aim of this approach is to convey the important message that everyone has the responsibility to care for and preserve Heritage for the benefit of present and future generations.

  18. Chemistry Cook-Off

    ERIC Educational Resources Information Center

    McCormick, Cynthia

    2012-01-01

    For this activity, high school chemistry students compete in a cooking contest. They must determine the chemical and physical changes that occur in the food they prepare, present their recipe as a step-by-step procedure similar to a lab procedure, identify chemicals in the food, and present all measurements in both metric and English units. The…

  19. The Chemistry of Health.

    ERIC Educational Resources Information Center

    National Inst. of General Medical Sciences (NIH), Bethesda, MD.

    This booklet, geared toward an advanced high school or early college-level audience, describes how basic chemistry and biochemistry research can spur a better understanding of human health. It reveals how networks of chemical reactions keep our bodies running smoothly. Some of the tools and technologies used to explore these reactions are…

  20. Greener and Sustainable Chemistry

    EPA Science Inventory

    The special issue on Greener and Sustainable Chemistry highlights various strategies that can be adopted to address the pollution preventive measures promoting the use of energy efficient reactions that utilize benign and bio-renewable raw materials in a relatively safer reaction...

  1. Computational chemistry at Janssen

    NASA Astrophysics Data System (ADS)

    van Vlijmen, Herman; Desjarlais, Renee L.; Mirzadegan, Tara

    2016-12-01

    Computer-aided drug discovery activities at Janssen are carried out by scientists in the Computational Chemistry group of the Discovery Sciences organization. This perspective gives an overview of the organizational and operational structure, the science, internal and external collaborations, and the impact of the group on Drug Discovery at Janssen.

  2. The Pimlico Chemistry Trail.

    ERIC Educational Resources Information Center

    Borrows, Peter

    1984-01-01

    Describes a chemistry "trail" (similar to a nature trail) which focuses on chemical phenomena in the environment. The trail includes 20 stops in and around a local school. Types of phenomena examined include building materials, air pollution, corrosion of metals, swimming pools, and others. Additional activities are also suggested. (DH)

  3. Water Chemistry Laboratory Manual.

    ERIC Educational Resources Information Center

    Jenkins, David; And Others

    This manual of laboratory experiments in water chemistry serves a dual function of illustrating fundamental chemical principles of dilute aqueous systems and of providing the student with some familiarity with the chemical measurements commonly used in water and wastewater analysis. Experiments are grouped in categories on the basis of similar…

  4. Chemistry: Curriculum Guide.

    ERIC Educational Resources Information Center

    Harlandale Independent School District, San Antonio, TX. Career Education Center.

    The guide is arranged in vertical columns relating the chemistry curriculum concepts to curriculum performance objectives, career concepts and career performance objectives, suggested teaching methods, and resource materials. Occupational information for 40 different occupations includes job duties, educational requirements, salary range, and…

  5. Green chemistry metrics

    EPA Science Inventory

    Synthetic chemists have always had an objective to achieve reliable and high-yielding routes to the syntheses of targeted molecules. The importance of minimal waste generation has emphasized the use of green chemistry principles and sustainable development. These directions lead ...

  6. Using Computers in Chemistry.

    ERIC Educational Resources Information Center

    Pankuch, Brian

    1985-01-01

    Describes the use of two interactive computer programs in a college chemistry course. The first is a commercially-available simulation program (for Apple microcomputers with game paddles) which demonstrates gas laws. The second is a teacher-developed molecular bonding simulation program. (JN)

  7. General Chemistry, 1970 Edition.

    ERIC Educational Resources Information Center

    Dunham, Orson W.; Franke, Douglas C.

    This publication is a syllabus for a senior high school chemistry course designed for the average ability, nonscience major. The content of the syllabus is divided into three basic core areas: Area I: Similarities and Dissimilarities of Matter (9 weeks); Area II: Preparation and Separation of Substances (10 weeks); Area III: Structure and…

  8. General Chemistry Multimedia Problems

    NASA Astrophysics Data System (ADS)

    Whisnant, David M.

    2000-10-01

    Literature Cited

    1. Moore, J. W.; Jacobsen, J. J. Chemistry Comes Alive!, J. Chem. Educ. Software 2000, SP 18 2nd ed., SP 21 2nd ed., SP 23; SP 25; and additional video in press.
    2. Summerlin, L. R.; Borgford, C. F.; Ealy, J. B. Chemical Demonstrations, Volume 2; ACS: Washington, DC, 1987.

    3. Online organic chemistry

      NASA Astrophysics Data System (ADS)

      Janowicz, Philip A.

      This is a comprehensive study of the many facets of an entirely online organic chemistry course. Online homework with structure-drawing capabilities was found to be more effective than written homework. Online lecture was found to be just as effective as in-person lecture, and students prefer an online lecture format with shorter Webcasts. Online office hours were found to be effective, and discussion sessions can be placed online as well. A model was created that explains 36.1% of student performance based on GPA, ACT Math score, grade in previous chemistry course, and attendance at various forms of discussion. Online exams have been created which test problem-solving skills and is instantly gradable. In these exams, students can submit answers until time runs out for different numbers of points. These facets were combined effectively to create an entirely online organic chemistry course which students prefer over the in-person alternative. Lastly, there is a vision for where online organic chemistry is going and what can be done to improve education for all.

    4. Online Organic Chemistry

      ERIC Educational Resources Information Center

      Janowicz, Philip A.

      2010-01-01

      This is a comprehensive study of the many facets of an entirely online organic chemistry course. Online homework with structure-drawing capabilities was found to be more effective than written homework. Online lecture was found to be just as effective as in-person lecture, and students prefer an online lecture format with shorter Webcasts. Online…

    5. News: Green Chemistry & Technology

      EPA Science Inventory

      A series of 21 articles focused on different features of green chemistry in a recent issue of Chemical Reviews. Topics extended over a wide range to include the design of sustainable synthetic processes to biocatalysis. A selection of perspectives follows as part of this colu

    6. Chemistry Is Fun.

      ERIC Educational Resources Information Center

      Yaniv, D; And Others

      1982-01-01

      Encouraging scientific thinking through open-ended experiments, allowing students access to common chemical instrumentation, and introduction to laboratory techniques are goals of a high school science laboratory program. Course content (general, inorganic, and organic chemistry), limitations, and course evaluation are discussed. (Author/JN)

    7. News: Green Chemistry & Technology

      EPA Science Inventory

      A series of 21 articles focused on different features of green chemistry in a recent issue of Chemical Reviews. Topics extended over a wide range to include the design of sustainable synthetic processes to biocatalysis. A selection of perspectives follows as part of this colu

    8. Computational chemistry at Janssen.

      PubMed

      van Vlijmen, Herman; Desjarlais, Renee L; Mirzadegan, Tara

      2017-03-01

      Computer-aided drug discovery activities at Janssen are carried out by scientists in the Computational Chemistry group of the Discovery Sciences organization. This perspective gives an overview of the organizational and operational structure, the science, internal and external collaborations, and the impact of the group on Drug Discovery at Janssen.

    9. Chemistry in a Nutshell.

      ERIC Educational Resources Information Center

      Rupnow, John; And Others

      1995-01-01

      Presents an activity that involves making peanut butter in the laboratory as a way to teach students the chemistry concepts of emulsification, solubility, and formulation. Enables students to realize that they can actually create or modify the physical and sensory characteristics of peanut butter and taste the differences in their work. (JRH)

    10. Chemistry in the Troposphere.

      ERIC Educational Resources Information Center

      Chameides, William L.; Davis, Douglas D.

      1982-01-01

      Topics addressed in this review of chemistry in the troposphere (layer of atmosphere extending from earth's surface to altitude of 10-16km) include: solar radiation/winds; earth/atmosphere interface; kinetic studies of atmospheric reactions; tropospheric free-radical photochemistry; instruments for nitric oxide detection; sampling…

    11. Chemistry and the law.

      PubMed

      Grant, James L

      2012-07-01

      The Chemistry and the Law Division of the American Chemical Society met in San Diego in March 2012. The divisional meeting was attended by patent attorneys, patent analysts and scientists who are all united by the business need to effectively deal with patent prosecution, patent research, litigation and licensing. This report highlights some of the presentations from the divisional sessions.

    12. Chemistry Curricula. Course Suggestions.

      ERIC Educational Resources Information Center

      American Chemical Society, Washington, DC.

      Listings of suggested topics aimed at helping university and college faculties plan courses in the main areas of the chemistry curricula are provided. The suggestions were originally offered as appendices to the American Chemical Society's (ACS) Committee on Professional Training's 1983 guidelines for ACS-approved schools. The course data included…

    13. The Lens of Chemistry

      ERIC Educational Resources Information Center

      Thalos, Mariam

      2013-01-01

      Chemistry possesses a distinctive theoretical lens--a distinctive set of theoretical concerns regarding the dynamics and transformations of a perplexing variety of organic and nonorganic substances--to which it must be faithful. Even if it is true that chemical facts bear a special (reductive) relationship to physical facts, nonetheless it will…

    14. Green chemistry metrics

      EPA Science Inventory

      Synthetic chemists have always had an objective to achieve reliable and high-yielding routes to the syntheses of targeted molecules. The importance of minimal waste generation has emphasized the use of green chemistry principles and sustainable development. These directions lead ...

  1. Analytical Chemistry Laboratory

    NASA Technical Reports Server (NTRS)

    Anderson, Mark

    2013-01-01

    The Analytical Chemistry and Material Development Group maintains a capability in chemical analysis, materials R&D failure analysis and contamination control. The uniquely qualified staff and facility support the needs of flight projects, science instrument development and various technical tasks, as well as Cal Tech.

  2. Chemistry and Popperism.

    ERIC Educational Resources Information Center

    Akeroyd, F. Michael

    1984-01-01

    Discusses the relationship of Karl Popper's theories to chemistry, examining scientific statements and verisimilitude (which indicates that newer theories should have a higher degree of truth content compared with older theories). Also provides examples illustrating the use of Agassi's criteria for assessing currently fashionable theories. (JN)

  3. Water Chemistry Laboratory Manual.

    ERIC Educational Resources Information Center

    Jenkins, David; And Others

    This manual of laboratory experiments in water chemistry serves a dual function of illustrating fundamental chemical principles of dilute aqueous systems and of providing the student with some familiarity with the chemical measurements commonly used in water and wastewater analysis. Experiments are grouped in categories on the basis of similar…

  4. Chemistry between the stars

    NASA Technical Reports Server (NTRS)

    Gammon, R. H.

    1976-01-01

    A unit is presented for the secondary school teacher of physics, chemistry, astronomy, or earth sciences. Included are a list of reference materials, teaching aids, and projects. Discussion questions and a glossary are also provided. Concepts developed are: the nature of interstellar space, spectroscopy, molecular signals from space and interstellar molecules and other areas of astronomy.

  5. Evaluating Environmental Chemistry Textbooks.

    ERIC Educational Resources Information Center

    Hites, Ronald A.

    2001-01-01

    A director of the Indiana University Center for Environmental Science Research reviews textbooks on environmental chemistry. Highlights clear writing, intellectual depth, presence of problem sets covering both the qualitative and quantitative aspects of the material, and full coverage of the topics of concern. Discusses the director's own approach…

  6. Analytical Chemistry Laboratory

    NASA Technical Reports Server (NTRS)

    Anderson, Mark

    2013-01-01

    The Analytical Chemistry and Material Development Group maintains a capability in chemical analysis, materials R&D failure analysis and contamination control. The uniquely qualified staff and facility support the needs of flight projects, science instrument development and various technical tasks, as well as Cal Tech.

  7. Using Computers in Chemistry.

    ERIC Educational Resources Information Center

    Pankuch, Brian

    1985-01-01

    Describes the use of two interactive computer programs in a college chemistry course. The first is a commercially-available simulation program (for Apple microcomputers with game paddles) which demonstrates gas laws. The second is a teacher-developed molecular bonding simulation program. (JN)

  8. The Language of Chemistry.

    ERIC Educational Resources Information Center

    Bretz, Stacey Lowery; Meinwald, Jerrold

    2002-01-01

    Describes a new curriculum called The Language of Chemistry designed to illustrate how problems of biological and/or medical importance can be understood on a molecular basis and to show that the logic, knowledge, and language needed are easily accessible. Among the case studies in the curriculum are the giant peacock moth, bacterial chemotaxis,…

  9. Chemistry Curricula. Course Suggestions.

    ERIC Educational Resources Information Center

    American Chemical Society, Washington, DC.

    Listings of suggested topics aimed at helping university and college faculties plan courses in the main areas of the chemistry curricula are provided. The suggestions were originally offered as appendices to the American Chemical Society's (ACS) Committee on Professional Training's 1983 guidelines for ACS-approved schools. The course data included…

  10. Epoxying Isoprene Chemistry

    EPA Science Inventory

    It seems that every few months we read about another missing aspect of atmospheric chemistry: missing products, missing reactivity, missing sources, missing understanding. Thus, it is with some relief that we read in this issue the paper of Paulot et al. The paper provides more...

  11. Epoxying Isoprene Chemistry

    EPA Science Inventory

    It seems that every few months we read about another missing aspect of atmospheric chemistry: missing products, missing reactivity, missing sources, missing understanding. Thus, it is with some relief that we read in this issue the paper of Paulot et al. The paper provides more...

  12. Chemistry "en Miniature"

    NASA Astrophysics Data System (ADS)

    Roesky, Herbert W.

    1997-04-01

    By using the video camera projector system we are improving the techniques which are employed in various schools. This is an important reason for employing "Chemistry en Miniature", as this method provides a new means of demonstrating chemical experiments in a lecture hall.

  13. Bringing chemistry to life

    PubMed Central

    Boyce, Michael; Bertozzi, Carolyn R

    2011-01-01

    Bioorthogonal chemistry allows a wide variety of biomolecules to be specifically labeled and probed in living cells and whole organisms. Here we discuss the history of bioorthogonal reactions and some of the most interesting and important advances in the field. PMID:21799498

  14. Chemistry by Computer.

    ERIC Educational Resources Information Center

    Garmon, Linda

    1981-01-01

    Describes the features of various computer chemistry programs. Utilization of computer graphics, color, digital imaging, and other innovations are discussed in programs including those which aid in the identification of unknowns, predict whether chemical reactions are feasible, and predict the biological activity of xenobiotic compounds. (CS)

  15. Chemistry in the Troposphere.

    ERIC Educational Resources Information Center

    Chameides, William L.; Davis, Douglas D.

    1982-01-01

    Topics addressed in this review of chemistry in the troposphere (layer of atmosphere extending from earth's surface to altitude of 10-16km) include: solar radiation/winds; earth/atmosphere interface; kinetic studies of atmospheric reactions; tropospheric free-radical photochemistry; instruments for nitric oxide detection; sampling…

  16. Chemistry by Computer.

    ERIC Educational Resources Information Center

    Garmon, Linda

    1981-01-01

    Describes the features of various computer chemistry programs. Utilization of computer graphics, color, digital imaging, and other innovations are discussed in programs including those which aid in the identification of unknowns, predict whether chemical reactions are feasible, and predict the biological activity of xenobiotic compounds. (CS)

  17. Microscale Gas Chemistry

    ERIC Educational Resources Information Center

    Mattson, Bruce; Anderson, Michael P.

    2011-01-01

    The development of syringes having free movement while remaining gas-tight enabled methods in chemistry to be changed. Successfully containing and measuring volumes of gas without the need to trap them using liquids made it possible to work with smaller quantities. The invention of the LuerLok syringe cap also allowed the gas to be stored for a…

  18. Polyhedra in (inorganic) chemistry.

    PubMed

    Alvarez, Santiago

    2005-07-07

    A systematic description of polyhedra with varying degrees of regularity is illustrated with examples of chemical structures, mostly from different fields of Inorganic Chemistry. Also the geometrical relationships between different polyhedra are highlighted and their application to the analysis of complex structures is discussed.

  19. Chemistry Between The Stars.

    ERIC Educational Resources Information Center

    Gammon, Richard H.

    This booklet is part of an American Astronomical Society curriculum project designed to provide teaching materials to teachers of secondary school chemistry, physics, and earth science. The following topics are covered: the physical conditions in interstellar space in comparison with those of the earth, particularly in regard to gas density,…

  20. Online Organic Chemistry

    ERIC Educational Resources Information Center

    Janowicz, Philip A.

    2010-01-01

    This is a comprehensive study of the many facets of an entirely online organic chemistry course. Online homework with structure-drawing capabilities was found to be more effective than written homework. Online lecture was found to be just as effective as in-person lecture, and students prefer an online lecture format with shorter Webcasts. Online…

  1. Get Cooking with Chemistry!

    ERIC Educational Resources Information Center

    American Chemical Society, Washington, DC.

    This book presents science activities investigating the chemical changes and reactions with powders that are used in baking. Activities include: (1) Mystery Powders; (2) Find the Fizz: Discover the Secret of Baking Powder; and (3) A Feast for Yeast and Cheese: Behold the Power of Chemistry. (YDS)

  2. Array processors in chemistry

    SciTech Connect

    Ostlund, N.S.

    1980-01-01

    The field of attached scientific processors (''array processors'') is surveyed, and an attempt is made to indicate their present and possible future use in computational chemistry. The current commercial products from Floating Point Systems, Inc., Datawest Corporation, and CSP, Inc. are discussed.

  3. The Language of Chemistry.

    ERIC Educational Resources Information Center

    Bretz, Stacey Lowery; Meinwald, Jerrold

    2002-01-01

    Describes a new curriculum called The Language of Chemistry designed to illustrate how problems of biological and/or medical importance can be understood on a molecular basis and to show that the logic, knowledge, and language needed are easily accessible. Among the case studies in the curriculum are the giant peacock moth, bacterial chemotaxis,…

  4. The Chemistry of Health

    ERIC Educational Resources Information Center

    Davis, Alison

    2009-01-01

    Do people realize that chemistry plays a key role in helping solve some of the most serious problems facing the world today? Chemists want to find the building blocks of the chemical universe--the molecules that form materials, living cells and whole organisms. Many chemists are medical explorers looking for new ways to maintain and improve…

  5. Effects of barrier composition and electroplating chemistry on adhesion and voiding in copper/dielectric diffusion barrier films

    SciTech Connect

    Birringer, Ryan P.; Dauskardt, Reinhold H.; Shaviv, Roey; Geiss, Roy H.; Read, David T.

    2011-08-15

    The effects of electroplating chemistry and dielectric diffusion barrier composition on copper voiding and barrier adhesion are reported. Adhesion was quantified using the four-point bend thin film adhesion technique, and voiding in the Cu films was quantified using scanning electron microscopy. A total of 12 different film stacks were investigated, including three different Cu electroplating chemistries and four different barrier materials (SiN, N-doped SiC, O-doped SiC, and dual-layer SiC). Both plating chemistry and barrier composition have a large effect on interface adhesion and voiding in the Cu film. X-ray photoelectron spectroscopy was used to investigate the segregation of Cu electroplating impurities, such as S and Cl, to the Cu/barrier interface. Secondary ion mass spectrometry was used to quantify oxygen content at the Cu/barrier interface in a subset of samples. This interface oxygen content is correlated with measured adhesion values.

  6. Microstructures of BN/SiC coatings on nicalon fibers

    NASA Technical Reports Server (NTRS)

    Dickerson, R. M.; Singh, M.

    1995-01-01

    The microstructures of Nicalon silicon carbide (SiC) fibers and layered coatings of boron nitride (BN) followed by chemical vapor infiltrated silicon carbide (CVI-SiC) were characterized using optical and electron microscopy. Two different precursors and reactions were used to produce the BN layers while the deposition of CVI silicon carbide was nearly identical. Coated tows were examined in cross-section to characterize the chemistry and structures of the constituents and the interfaces. One BN precursor yielded three sublayers while the other gave a relatively homogeneous nanocrystalline layer.

  7. ALMA spectral survey of Supernova 1987A - molecular inventory, chemistry, dynamics and explosive nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Matsuura, M.; Indebetouw, R.; Woosley, S.; Bujarrabal, V.; Abellán, F. J.; McCray, R.; Kamenetzky, J.; Fransson, C.; Barlow, M. J.; Gomez, H. L.; Cigan, P.; De Looze, I.; Spyromilio, J.; Staveley-Smith, L.; Zanardo, G.; Roche, P.; Larsson, J.; Viti, S.; van Loon, J. Th.; Wheeler, J. C.; Baes, M.; Chevalier, R.; Lundqvist, P.; Marcaide, J. M.; Dwek, E.; Meixner, M.; Ng, C.-Y.; Sonneborn, G.; Yates, J.

    2017-08-01

    We report the first molecular line survey of Supernova 1987A in the millimetre wavelength range. In the Atacama Large Millimeter/submillimeter Array (ALMA) 210-300 and 340-360 GHz spectra, we detected cold (20-170 K) CO, 28SiO, HCO+ and SO, with weaker lines of 29SiO from ejecta. This is the first identification of HCO+ and SO in a young supernova remnant. We find a dip in the J = 6-5 and 5-4 SiO line profiles, suggesting that the ejecta morphology is likely elongated. The difference of the CO and SiO line profiles is consistent with hydrodynamic simulations, which show that Rayleigh-Taylor instabilities cause mixing of gas, with heavier elements much more disturbed, making more elongated structure. We obtained isotopologue ratios of 28SiO/29SiO > 13, 28SiO/30SiO > 14 and 12CO/13CO > 21, with the most likely limits of 28SiO/29SiO >128, 28SiO/30SiO >189. Low 29Si and 30Si abundances in SN 1987A are consistent with nucleosynthesis models that show inefficient formation of neutron-rich isotopes in a low-metallicity environment, such as the Large Magellanic Cloud. The deduced large mass of HCO+ (∼5 × 10-6 M⊙) and small SiS mass (<6 × 10-5 M⊙) might be explained by some mixing of elements immediately after the explosion. The mixing might have caused some hydrogen from the envelope to sink into carbon- and oxygen-rich zones after the explosion, enabling the formation of a substantial mass of HCO+. Oxygen atoms may have penetrated into silicon and sulphur zones, suppressing formation of SiS. Our ALMA observations open up a new window to investigate chemistry, dynamics and explosive nucleosynthesis in supernovae.

  8. Chemistry 200, 300 Interim Guide.

    ERIC Educational Resources Information Center

    Manitoba Dept. of Education, Winnipeg.

    This guide, developed for the chemistry 200, 300 program in Manitoba, is designed to articulate with previous science courses, provide concepts, processes, and skills which will enable students to continue in chemistry-related areas, and relate chemistry to practical applications in everyday life. It includes a program overview (with program goals…

  9. Aqueous Solution Chemistry of Plutonium

    SciTech Connect

    Clark, David L.

    2014-01-28

    Things I have learned working with plutonium: Chemistry of plutonium is complex; Redox equilibria make Pu solution chemistry particularly challenging in the absence of complexing ligands; Understanding this behavior is key to successful Pu chemistry experiments; There is no suitable chemical analog for plutonium.

  10. Six Pillars of Organic Chemistry

    ERIC Educational Resources Information Center

    Mullins, Joseph J.

    2008-01-01

    This article describes an approach to teaching organic chemistry, which is to have students build their knowledge of organic chemistry upon a strong foundation of the fundamental concepts of the subject. Specifically, the article focuses upon a core set of concepts that I call "the six pillars of organic chemistry": electronegativity, polar…

  11. Chemistry Sets Face Uncertain Future.

    ERIC Educational Resources Information Center

    Stinson, Stephen C.

    1979-01-01

    Chemistry sets, often a child's first contact with chemistry, are becoming less attractive to manufacturers as the market for these items decreases. There is a tendency for recently manufactured chemistry sets to be less adequate than those selling in the same price range in past years. Manuals vary in quality among manufacturers. (RE)

  12. Chemistry 200, 300 Interim Guide.

    ERIC Educational Resources Information Center

    Manitoba Dept. of Education, Winnipeg.

    This guide, developed for the chemistry 200, 300 program in Manitoba, is designed to articulate with previous science courses, provide concepts, processes, and skills which will enable students to continue in chemistry-related areas, and relate chemistry to practical applications in everyday life. It includes a program overview (with program goals…

  13. Industrial Chemistry at Michigan Tech.

    ERIC Educational Resources Information Center

    Bates, D. K.; Ponter, A. B.

    1985-01-01

    Discusses factors leading to the development of a four-year industrial chemistry program at Michigan Technological University and provides details of its structure. Includes brief descriptions of courses required in industrial chemistry but not in the traditional chemistry program and list of optional courses. (JN)

  14. Six Pillars of Organic Chemistry

    ERIC Educational Resources Information Center

    Mullins, Joseph J.

    2008-01-01

    This article describes an approach to teaching organic chemistry, which is to have students build their knowledge of organic chemistry upon a strong foundation of the fundamental concepts of the subject. Specifically, the article focuses upon a core set of concepts that I call "the six pillars of organic chemistry": electronegativity, polar…

  15. An Advanced Chemistry Laboratory Program.

    ERIC Educational Resources Information Center

    Wise, John H.

    The Advanced Chemistry Laboratory Program is a project designed to devise experiments to coordinate the use of instruments in the laboratory programs of physical chemistry, instrumental analysis, and inorganic chemistry at the advanced undergraduate level. It is intended that such experiments would incorporate an introduction to the instrument…

  16. Defined Folate-PEG-siRNA Conjugates for Receptor-specific Gene Silencing

    PubMed Central

    Dohmen, Christian; Fröhlich, Thomas; Lächelt, Ulrich; Röhl, Ingo; Vornlocher, Hans-Peter; Hadwiger, Philipp; Wagner, Ernst

    2012-01-01

    Gene silencing mediated by small interfering RNA (siRNA) is a novel approach in the development of new cancer therapeutics. Polycations used for nucleic acid delivery still remain heterogeneous compounds, despite continuous progress in polymer synthetic technologies. Here we report the development of a structural defined folic acid polyethylene glycol (PEG) siRNA conjugate accessible via click chemistry yielding a monodisperse ligand-PEG-siRNA conjugate. The folic acid targeting ligand was synthesized by solid phase supported peptide chemistry. The conjugate was shown to be specifically internalized into folic acid receptor expressing cells. When combined with a structurally defined polycation, again synthesized with the precision of solid phase chemistry, efficient receptor specific gene silencing is achieved. PMID:23344624

  17. Optimized siRNA-PEG Conjugates for Extended Blood Circulation and Reduced Urine Excretion in Mice

    PubMed Central

    Iversen, Frank; Yang, Chuanxu; Dagnæs-Hansen, Frederik; Schaffert, David H.; Kjems, Jørgen; Gao, Shan

    2013-01-01

    Some of the main concerns with in vivo application of naked small interfering RNA are rapid degradation and urinary excretion resulting in a short plasma half-life. In this study we investigated how conjugation of polyethylene glycol (PEG) with variable chain length affects siRNA pharmacokinetics and biodistribution. The PEG chains were conjugated to chemically stabilized siRNA at the 5' terminal end of the passenger strand using click chemistry. The siRNA conjugate remained functionally active and showed significantly prolonged circulation in the blood stream after intravenous injection. siRNA conjugated with 20kDa PEG (PEG20k-siRNA) was most persistent, approximately 50% PEG20k-siRNA remained 1h post-injection, while the uncoupled siRNA was rapidly removed >90% at 15min. In vivo fluorescent imaging of the living animal showed increased concentration of siRNA in peripheral tissue and delayed urine excretion when coupled to PEG 20k. Biodistribution studies by northern blotting revealed equal distribution of conjugated siRNA in liver, kidney, spleen and lung without significant degradation 24 h post-injection. Our study demonstrates that PEG conjugated siRNA can be applied as a delivery system to improve siRNA bioavailability in vivo and may potentially increase the efficiency of siRNA in therapeutic applications. PMID:23471415

  18. Optimized siRNA-PEG conjugates for extended blood circulation and reduced urine excretion in mice.

    PubMed

    Iversen, Frank; Yang, Chuanxu; Dagnæs-Hansen, Frederik; Schaffert, David H; Kjems, Jørgen; Gao, Shan

    2013-01-01

    Some of the main concerns with in vivo application of naked small interfering RNA are rapid degradation and urinary excretion resulting in a short plasma half-life. In this study we investigated how conjugation of polyethylene glycol (PEG) with variable chain length affects siRNA pharmacokinetics and biodistribution. The PEG chains were conjugated to chemically stabilized siRNA at the 5' terminal end of the passenger strand using click chemistry. The siRNA conjugate remained functionally active and showed significantly prolonged circulation in the blood stream after intravenous injection. siRNA conjugated with 20kDa PEG (PEG20k-siRNA) was most persistent, approximately 50% PEG20k-siRNA remained 1h post-injection, while the uncoupled siRNA was rapidly removed >90% at 15min. In vivo fluorescent imaging of the living animal showed increased concentration of siRNA in peripheral tissue and delayed urine excretion when coupled to PEG 20k. Biodistribution studies by northern blotting revealed equal distribution of conjugated siRNA in liver, kidney, spleen and lung without significant degradation 24 h post-injection. Our study demonstrates that PEG conjugated siRNA can be applied as a delivery system to improve siRNA bioavailability in vivo and may potentially increase the efficiency of siRNA in therapeutic applications.

  19. Photocurrent saturation and negative differential photoconductivity in Mn4Si7-Si-Mn4Si7 and Mn4Si7-Si- M heterojunctions

    NASA Astrophysics Data System (ADS)

    Kamilov, T. S.; Klechkovskaya, V. V.; Sharipov, B. Z.; Ivakin, G. I.

    2013-06-01

    A mechanism behind the saturation of the photocurrent and occurrence of negative differential photoconductivity in Mn4Si7-Si-Mn4Si7 and Mn4Si7-Si- M heterojunctions is found. Mn4Si7-Si-Mn4Si7 and Mn4Si7-Si- M structures are studied with a model of back-to-back diodes. Photocurrent-voltage characteristics are taken at high constant and pulsed applied biases. It is found that the nonlinearity of the photocurrent-voltage characteristics and photoconductivity kinetics are due to the quenching of photoconductivity by Joule self-heating.

  20. A SiGe/Si multiple quantum well avalanche photodetector

    NASA Astrophysics Data System (ADS)

    Sun, Po-Hsing; Chang, Shu-Tong; Chen, Yu-Chun; Lin, Hongchin

    2010-10-01

    The present work investigates the performance of APDs with a SiGe/Si multi-quantum well (MQW) structure, which was fabricated using ultrahigh-vacuum chemical vapor deposition (UHV/CVD). Absorption of radiation and avalanche multiplication occur in both SiGe/Si MQW and the i-SiGe layer. Intense photoluminescence (PL) from strained, epitaxial SiGe alloys grown using UHV/CVD was reported with multiple SiGe/Si MQW and i-SiGe layer. It was found that the avalanche multiplication occurred at about 7 V, when exceeding 7 V, the responsiveness and quantum efficiency rapidly increased. An APD consisting of an epitaxial SiGe/Si MQW as the active absorption layer with intense response in the 800-1500 nm wavelength range is also demonstrated.

  1. Profiles and chemistry effects in polysilicon and tungsten silicide EPROM "stack" etching

    NASA Astrophysics Data System (ADS)

    Flamm, Daniel L.; Sadjadi, Reza M.; Perry, Jeff R.

    1993-04-01

    Specialized EPROM cell architectures lead to a host of new difficulties during pattern transfer. Results from patterning stacked gate structure multilayers of WSix, polysilicon, SiO2 and Si3N4 with etching chemistries containing HBr and Cl2 are examined. Strong effects arising from changes in feed composition and wafer temperature are discussed along with some basic mechanisms involved in these interactions.

  2. Towards "Bildung"-Oriented Chemistry Education

    ERIC Educational Resources Information Center

    Sjöström, Jesper

    2013-01-01

    This paper concerns "Bildung"-oriented chemistry education, based on a reflective and critical discourse of chemistry. It is contrasted with the dominant type of chemistry education, based on the mainstream discourse of chemistry. "Bildung"-oriented chemistry education includes not only content knowledge in chemistry, but also…

  3. Towards "Bildung"-Oriented Chemistry Education

    ERIC Educational Resources Information Center

    Sjöström, Jesper

    2013-01-01

    This paper concerns "Bildung"-oriented chemistry education, based on a reflective and critical discourse of chemistry. It is contrasted with the dominant type of chemistry education, based on the mainstream discourse of chemistry. "Bildung"-oriented chemistry education includes not only content knowledge in chemistry, but also…

  4. The chemistry of dense interstellar clouds

    NASA Technical Reports Server (NTRS)

    Irvine, W. M.

    1991-01-01

    The basic theme of this program is the study of molecular complexity and evolution in interstellar and circumstellar clouds incorporating the biogenic elements. Recent results include the identification of a new astronomical carbon-chain molecule, C4Si. This species was detected in the envelope expelled from the evolved star IRC+10216 in observations at the Nobeyama Radio Observatory in Japan. C4Si is the carrier of six unidentified lines which had previously been observed. This detection reveals the existence of a new series of carbon-chain molecules, C sub n Si (n equals 1, 2, 4). Such molecules may well be formed from the reaction of Si(+) with acetylene and acetylene derivatives. Other recent research has concentrated on the chemical composition of the cold, dark interstellar clouds, the nearest dense molecular clouds to the solar system. Such regions have very low kinetic temperatures, on the order of 10 K, and are known to be formation sites for solar-type stars. We have recently identified for the first time in such regions the species of H2S, NO, HCOOH (formic acid). The H2S abundance appears to exceed that predicted by gas-phase models of ion-molecule chemistry, perhaps suggesting the importance of synthesis on grain surfaces. Additional observations in dark clouds have studied the ratio of ortho- to para-thioformaldehyde. Since this ratio is expected to be unaffected by both radiative and ordinary collisional processes in the cloud, it may well reflect the formation conditions for this molecule. The ratio is observed to depart from that expected under conditions of chemical equilibrium at formation, perhaps reflecting efficient interchange between cold dust grains in the gas phase.

  5. Endotaxial Si nanolines in Si(001):H

    NASA Astrophysics Data System (ADS)

    Owen, James; Bianco, François; Köster, Sigrun A.; Mazur, Daniel; Renner, Christoph; Bowler, David

    2011-03-01

    The study of one dimensional wires is of great interest in the area of low-dimensional physics, and these structures also have potential applications in future nanodevices. A perfectly straight nanoline embedded in a H-terminated silicon surface has been fabricated by a process of hydrogenation of a Bi nanoline surface using an atomic H beam source, and comprises a triangular core of Si embedded in the top five layers of the Si substrate. The defect density of this nanoline is extremely low, and being H- terminated, it is stable in air for limited periods of time. Scanning Tunnelling Microscopy experimental data and Density Functional Theory calculations have been used to determine the atomic structure of this nanoline, so-called the Haiku Stripe, and have revealed that there exists a 1D state localised to the nanoline core, lying just above the conduction band minimum. This work is supported by the Swiss National Science Fundation.

  6. First Principles Calculation on Equilibrium Si Isotope Fractionation Factors and its Implementation on Si Isotope Distributions in Earth Surface Environments

    NASA Astrophysics Data System (ADS)

    Liu, Y.; He, H. T.; Zhu, C.

    2014-12-01

    Several important equilibrium Si isotope fractionation factors are calculated here. We use a so-called volume-variable-cluster-model (VVCM) method for solids and the "water-droplet" method for aqueous species for isotope fractionation calculation at the same quantum chemistry level. The calculation results show that several silicate minerals, such as quartz, feldspar, kaolinite, etc., all enrich heavy Si isotopes relative to aqueous H4SiO4 and can be up to 3.3‰ at 25°C, different from most field observations. Meanwhile stable organosilicon complexes can enrich even lighter Si isotopes than aqueous H4SiO4. For explaining the difference between the calculation results and field observations, we calculate the kinetic isotope effect (KIE) associated with the formation of amorphous silica, and find that amorphous silica will enrich extremely light Si isotopes. From amorphous silica to crystalline quartz, the structural adjustment & transition needs getting rid of small amount of Si to re-organize the structure. Light Si isotopes will be preferentially lost and let the final crystalline quartz with a little bit more heavy Si isotopes. However, such late-stage Si heavy isotope enrichment cannot erase the total isotopic signal, crystalline quartz still inherit much light Si isotopic composition from amorphous quartz. That is the reason for the discrepancy between the calculation results and the field observations, because the formation of amorphous quartz is under a non-equilibrium process but theoretical calculations are for equilibrium isotope fractionations. With accurate equilibrium fractionation factors provided here, Si isotope distributions in earth surface environments including soil, groundwater and plants can be further interpreted. We find that δ30Si variations in soil are mainly driven by secondary minerals precipitation and adsorption. Also, bulk soil δ30Si maybe have a parabolic distribution with soil age, with a minimum value at where allophane is

  7. Porphyrin conjugated SiC/SiOx nanowires for X-ray-excited photodynamic therapy

    PubMed Central

    Rossi, F.; Bedogni, E.; Bigi, F.; Rimoldi, T.; Cristofolini, L.; Pinelli, S.; Alinovi, R.; Negri, M.; Dhanabalan, S. C.; Attolini, G.; Fabbri, F.; Goldoni, M.; Mutti, A.; Benecchi, G.; Ghetti, C.; Iannotta, S.; Salviati, G.

    2015-01-01

    The development of innovative nanosystems opens new perspectives for multidisciplinary applications at the frontier between materials science and nanomedicine. Here we present a novel hybrid nanosystem based on cytocompatible inorganic SiC/SiOx core/shell nanowires conjugated via click-chemistry procedures with an organic photosensitizer, a tetracarboxyphenyl porphyrin derivative. We show that this nanosystem is an efficient source of singlet oxygen for cell oxidative stress when irradiated with 6 MV X-Rays at low doses (0.4–2 Gy). The in-vitro clonogenic survival assay on lung adenocarcinoma cells shows that 12 days after irradiation at a dose of 2 Gy, the cell population is reduced by about 75% with respect to control cells. These results demonstrate that our approach is very efficient to enhance radiation therapy effects for cancer treatments. PMID:25556299

  8. Porphyrin conjugated SiC/SiOx nanowires for X-ray-excited photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Rossi, F.; Bedogni, E.; Bigi, F.; Rimoldi, T.; Cristofolini, L.; Pinelli, S.; Alinovi, R.; Negri, M.; Dhanabalan, S. C.; Attolini, G.; Fabbri, F.; Goldoni, M.; Mutti, A.; Benecchi, G.; Ghetti, C.; Iannotta, S.; Salviati, G.

    2015-01-01

    The development of innovative nanosystems opens new perspectives for multidisciplinary applications at the frontier between materials science and nanomedicine. Here we present a novel hybrid nanosystem based on cytocompatible inorganic SiC/SiOx core/shell nanowires conjugated via click-chemistry procedures with an organic photosensitizer, a tetracarboxyphenyl porphyrin derivative. We show that this nanosystem is an efficient source of singlet oxygen for cell oxidative stress when irradiated with 6 MV X-Rays at low doses (0.4-2 Gy). The in-vitro clonogenic survival assay on lung adenocarcinoma cells shows that 12 days after irradiation at a dose of 2 Gy, the cell population is reduced by about 75% with respect to control cells. These results demonstrate that our approach is very efficient to enhance radiation therapy effects for cancer treatments.

  9. Nuclear analytical chemistry

    SciTech Connect

    Brune, D.; Forkman, B.; Persson, B.

    1984-01-01

    This book covers the general theories and techniques of nuclear chemical analysis, directed at applications in analytical chemistry, nuclear medicine, radiophysics, agriculture, environmental sciences, geological exploration, industrial process control, etc. The main principles of nuclear physics and nuclear detection on which the analysis is based are briefly outlined. An attempt is made to emphasise the fundamentals of activation analysis, detection and activation methods, as well as their applications. The book provides guidance in analytical chemistry, agriculture, environmental and biomedical sciences, etc. The contents include: the nuclear periodic system; nuclear decay; nuclear reactions; nuclear radiation sources; interaction of radiation with matter; principles of radiation detectors; nuclear electronics; statistical methods and spectral analysis; methods of radiation detection; neutron activation analysis; charged particle activation analysis; photon activation analysis; sample preparation and chemical separation; nuclear chemical analysis in biological and medical research; the use of nuclear chemical analysis in the field of criminology; nuclear chemical analysis in environmental sciences, geology and mineral exploration; and radiation protection.

  10. Heterogeneous atmospheric chemistry

    NASA Technical Reports Server (NTRS)

    Schryer, D. R.

    1982-01-01

    The present conference on heterogeneous atmospheric chemistry considers such topics concerning clusters, particles and microparticles as common problems in nucleation and growth, chemical kinetics, and catalysis, chemical reactions with aerosols, electron beam studies of natural and anthropogenic microparticles, and structural studies employing molecular beam techniques, as well as such gas-solid interaction topics as photoassisted reactions, catalyzed photolysis, and heterogeneous catalysis. Also discussed are sulfur dioxide absorption, oxidation, and oxidation inhibition in falling drops, sulfur dioxide/water equilibria, the evidence for heterogeneous catalysis in the atmosphere, the importance of heterogeneous processes to tropospheric chemistry, soot-catalyzed atmospheric reactions, and the concentrations and mechanisms of formation of sulfate in the atmospheric boundary layer.

  11. Carbohydrates in Supramolecular Chemistry.

    PubMed

    Delbianco, Martina; Bharate, Priya; Varela-Aramburu, Silvia; Seeberger, Peter H

    2016-02-24

    Carbohydrates are involved in a variety of biological processes. The ability of sugars to form a large number of hydrogen bonds has made them important components for supramolecular chemistry. We discuss recent advances in the use of carbohydrates in supramolecular chemistry and reveal that carbohydrates are useful building blocks for the stabilization of complex architectures. Systems are presented according to the scaffold that supports the glyco-conjugate: organic macrocycles, dendrimers, nanomaterials, and polymers are considered. Glyco-conjugates can form host-guest complexes, and can self-assemble by using carbohydrate-carbohydrate interactions and other weak interactions such as π-π interactions. Finally, complex supramolecular architectures based on carbohydrate-protein interactions are discussed.

  12. Heterogeneous atmospheric chemistry

    NASA Technical Reports Server (NTRS)

    Schryer, D. R.

    1982-01-01

    The present conference on heterogeneous atmospheric chemistry considers such topics concerning clusters, particles and microparticles as common problems in nucleation and growth, chemical kinetics, and catalysis, chemical reactions with aerosols, electron beam studies of natural and anthropogenic microparticles, and structural studies employing molecular beam techniques, as well as such gas-solid interaction topics as photoassisted reactions, catalyzed photolysis, and heterogeneous catalysis. Also discussed are sulfur dioxide absorption, oxidation, and oxidation inhibition in falling drops, sulfur dioxide/water equilibria, the evidence for heterogeneous catalysis in the atmosphere, the importance of heterogeneous processes to tropospheric chemistry, soot-catalyzed atmospheric reactions, and the concentrations and mechanisms of formation of sulfate in the atmospheric boundary layer.

  13. Chemistry in microstructured reactors.

    PubMed

    Jähnisch, Klaus; Hessel, Volker; Löwe, Holger; Baerns, Manfred

    2004-01-16

    The application of microstructured reactors in the chemical process industry has gained significant importance in recent years. Companies that offer not only microstructured reactors, but also entire chemical process plants and services relating to them, are already in existence. In addition, many institutes and universities are active within this field, and process-engineering-oriented reviews and a specialized book are available. Microstructured systems can be applied with particular success in the investigation of highly exothermic and fast reactions. Often the presence of temperature-induced side reactions can be significantly reduced through isothermal operations. Although microstructured reaction techniques have been shown to optimize many synthetic procedures, they have not yet received the attention they deserve in organic chemistry. For this reason, this Review aims to address this by providing an overview of the chemistry in microstructured reactors, grouped into liquid-phase, gas-phase, and gas-liquid reactions.

  14. Aqueous chemistry of iodine

    SciTech Connect

    Toth, L.M.; Pannell, K.D.; Kirkland, O.L.

    1984-01-01

    The chemistry of iodine has been examined in aqueous solutions of pH 6 to 10 containing 2500 ppM boron as H/sub 3/BO/sub 3/ at temperatures up to 150/sup 0/C using absorption spectrophotometry to identify and monitor the iodine species present. Kinetic rate constants for the disproportionation of the HOI intermediate, 3HOI= IO/sub 3//sup -/ + 2I/sup -/ + 3H/sup +/, have been measured as a function of pH even though no direct spectral evidence for HOI itself has been observed. An HOI partition coefficient >10/sup 4/ has been estimated; results of ionic strength tests are consistent with HOI being present as an uncharged triatomic species in solution. Redox and radiation effects on the aqueous iodine chemistry have also been described. 11 refs., 2 figs., 3 tabs.

  15. Fenton chemistry: an introduction.

    PubMed

    Wardman, P; Candeias, L P

    1996-05-01

    In 1876, Fenton described a colored product obtained on mixing tartaric acid with hydrogen peroxide and a low concentration of a ferrous salt. Full papers in 1894 and 1896 showed the product was dihydroxymaleic acid. Haber, Weiss and Willstätter proposed in 1932-1934 the involvement of free hydroxyl radicals in the iron(II)/hydrogen peroxide system, and Baxendale and colleagues around 1950 suggested that superoxide reduces the iron(III) formed on reaction, explaining the catalytic nature of the metal. Since Fridovich and colleagues discovered the importance of superoxide dismutase in 1968, numerous studies have sought to explain the deleterious effects of cellular oxidative stress in terms of superoxide-driven Fenton chemistry. There remain questions concerning the involvement of free hydroxyl radicals or reactions of metal/oxo intermediates. However, these outstanding questions may obscure a wider appreciation of the importance of Fenton chemistry involving hypohalous acids rather than hydrogen peroxide as the oxidant.

  16. Medicinal chemistry for 2020

    PubMed Central

    Satyanarayanajois, Seetharama D; Hill, Ronald A

    2011-01-01

    Rapid advances in our collective understanding of biomolecular structure and, in concert, of biochemical systems, coupled with developments in computational methods, have massively impacted the field of medicinal chemistry over the past two decades, with even greater changes appearing on the horizon. In this perspective, we endeavor to profile some of the most prominent determinants of change and speculate as to further evolution that may consequently occur during the next decade. The five main angles to be addressed are: protein–protein interactions; peptides and peptidomimetics; molecular diversity and pharmacological space; molecular pharmacodynamics (significance, potential and challenges); and early-stage clinical efficacy and safety. We then consider, in light of these, the future of medicinal chemistry and the educational preparation that will be required for future medicinal chemists. PMID:22004084

  17. Evolution of hydroformylation chemistry

    SciTech Connect

    Slaugh, L.H.

    1995-12-01

    A new generation of hydroformylation catalysts was discovered in 1960 at Shell Development Company which dramatically altered the chemistry of producing industrially important alcohols from synthesis gas (CO/H{sub 2}) and olefins. These new homogeneous catalysts were obtained via the use of auxiliary tertiary phosphine ligands with the conventional OXO cobalt carbonyl catalyst. This is believed to have been the first historical example illustrating the utility of phosphine ligands to modify the catalytic properties of homogenous catalysts. In contradistinction to the conventional OXO reaction, highly linear alcohols were obtained in a single-step operation with ease of catalyst recycle. Based on this discovery, an industrial process was developed to produce large volume, environmentally friendly detergent alcohols. The chemistry of this process and a comparison with other hydroformylation catalyst systems will be made. Recent results obtained with phosphine-modified cobalt catalysts for the hydroformylation of substrates other than olefins will be presented.

  18. Turbine Chemistry Modeling

    NASA Technical Reports Server (NTRS)

    Liu, Nan-Suey; Wey, Thomas

    2001-01-01

    Many of the engine exhaust species resulting in significant environmental impact exist in trace amounts. Recent research, e.g., conducted at MIT-AM, has pointed to the intra-engine environment as a possible site for important trace chemistry activity. In addition, the key processes affecting the trace species activity occurring downstream in the air passages of the turbine and exhaust nozzle are not well understood. Most recently, an effort has been initiated at NASA Glenn Research Center under the UEET Program to evaluate and further develop CFD-based technology for modeling and simulation of intra-engine trace chemical changes relevant to atmospheric effects of pollutant emissions from aircraft engines. This presentation will describe the current effort conducted at Glenn; some preliminary results relevant to the trace species chemistry in a turbine passage will also be presented to indicate the progress to date.

  19. Organic Chemistry in Space

    NASA Technical Reports Server (NTRS)

    Charnley, Steven

    2009-01-01

    Astronomical observations, theoretical modeling, laboratory simulation and analysis of extraterrestrial material have enhanced our knowledge of the inventory of organic matter in the interstellar medium (ISM) and on small bodies such as comets and asteroids (Ehrenfreund & Charnley 2000). Comets, asteroids and their fragments, meteorites and interplanetary dust particles (IDPs), contributed significant amounts of extraterrestrial organic matter to the young Earth. This material degraded and reacted in a terrestrial prebiotic chemistry to form organic structures that may have served as building blocks for life on the early Earth. In this talk I will summarize our current understanding of the organic composition and chemistry of interstellar clouds. Molecules of astrobiological relevance include the building blocks of our genetic material: nucleic acids, composed of subunits such as N-heterocycles (purines and pyrimidines), sugars and amino acids. Signatures indicative of inheritance of pristine and modified interstellar material in comets and meteorites will also be discussed.

  20. [Gaubius and medical chemistry].

    PubMed

    van Gijn, Jan; Gijselhart, Joost P

    2011-01-01

    Hieronymus David Gaub (1705-1780) was the son of a protestant cloth merchant in Heidelberg. Disliking a pietistic boarding school in Halle, Germany, he came to stay with a paternal uncle who was a physician in Amsterdam. Hieronymus studied medicine in Harderwijk and in Leiden, under the guidance of Herman Boerhaave (1668-1738). In 1731 he was appointed reader (and in 1734 professor) in chemistry at the Leiden medical faculty. After Boerhaave's death he also taught medicine, but without access to hospital beds. Gaubius correctly envisaged that chemistry would become an important discipline in medicine, but was limited by the technical constraints of his time. In his textbook of general pathology (1758) he attributed disease to disturbances of not only fluids, but also solid parts, although symptoms remained the basis of his classification. The book would remain influential for several decades, until the advent of pathological anatomy.

  1. Chemistry of silybin.

    PubMed

    Biedermann, D; Vavříková, E; Cvak, L; Křen, V

    2014-09-01

    Silybin, a secondary metabolite isolated from the seeds of the blessed milk thistle (Silybum marianum) was discovered as the first member of a new family of natural compounds called flavonolignans in 1959. Over the years it has received the research attention of many organic chemists. This research has resulted in a number of semisynthetic derivatives prepared in an effort to modulate and better target the biological activities of silybin or to improve its physical properties, such as its solubility. A fundamental breakthrough in silybin chemistry was the determination of the absolute configurations of silybin A and silybin B, and the development of methods for their separation. This review covers articles dealing with silybin chemistry and also summarizes all the derivatives prepared.

  2. Chemistry of superheavy elements.

    PubMed

    Schädel, Matthias

    2006-01-09

    The number of chemical elements has increased considerably in the last few decades. Most excitingly, these heaviest, man-made elements at the far-end of the Periodic Table are located in the area of the long-awaited superheavy elements. While physical techniques currently play a leading role in these discoveries, the chemistry of superheavy elements is now beginning to be developed. Advanced and very sensitive techniques allow the chemical properties of these elusive elements to be probed. Often, less than ten short-lived atoms, chemically separated one-atom-at-a-time, provide crucial information on basic chemical properties. These results place the architecture of the far-end of the Periodic Table on the test bench and probe the increasingly strong relativistic effects that influence the chemical properties there. This review is focused mainly on the experimental work on superheavy element chemistry. It contains a short contribution on relativistic theory, and some important historical and nuclear aspects.

  3. Organic Chemistry in Space

    NASA Technical Reports Server (NTRS)

    Charnley, Steven

    2009-01-01

    Astronomical observations, theoretical modeling, laboratory simulation and analysis of extraterrestrial material have enhanced our knowledge of the inventory of organic matter in the interstellar medium (ISM) and on small bodies such as comets and asteroids (Ehrenfreund & Charnley 2000). Comets, asteroids and their fragments, meteorites and interplanetary dust particles (IDPs), contributed significant amounts of extraterrestrial organic matter to the young Earth. This material degraded and reacted in a terrestrial prebiotic chemistry to form organic structures that may have served as building blocks for life on the early Earth. In this talk I will summarize our current understanding of the organic composition and chemistry of interstellar clouds. Molecules of astrobiological relevance include the building blocks of our genetic material: nucleic acids, composed of subunits such as N-heterocycles (purines and pyrimidines), sugars and amino acids. Signatures indicative of inheritance of pristine and modified interstellar material in comets and meteorites will also be discussed.

  4. Quo vadis, analytical chemistry?

    PubMed

    Valcárcel, Miguel

    2016-01-01

    This paper presents an open, personal, fresh approach to the future of Analytical Chemistry in the context of the deep changes Science and Technology are anticipated to experience. Its main aim is to challenge young analytical chemists because the future of our scientific discipline is in their hands. A description of not completely accurate overall conceptions of our discipline, both past and present, to be avoided is followed by a flexible, integral definition of Analytical Chemistry and its cornerstones (viz., aims and objectives, quality trade-offs, the third basic analytical reference, the information hierarchy, social responsibility, independent research, transfer of knowledge and technology, interfaces to other scientific-technical disciplines, and well-oriented education). Obsolete paradigms, and more accurate general and specific that can be expected to provide the framework for our discipline in the coming years are described. Finally, the three possible responses of analytical chemists to the proposed changes in our discipline are discussed.

  5. SiC Technology

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.

    1998-01-01

    Silicon carbide (SiC)-based semiconductor electronic devices and circuits are presently being developed for use in high-temperature, high-power, and/or high-radiation conditions under which conventional semiconductors cannot adequately perform. Silicon carbide's ability to function under such extreme conditions is expected to enable significant improvements to a far-ranging variety of applications and systems. These range from greatly improved high-voltage switching [1- 4] for energy savings in public electric power distribution and electric motor drives to more powerful microwave electronics for radar and communications [5-7] to sensors and controls for cleaner-burning more fuel-efficient jet aircraft and automobile engines. In the particular area of power devices, theoretical appraisals have indicated that SiC power MOSFET's and diode rectifiers would operate over higher voltage and temperature ranges, have superior switching characteristics, and yet have die sizes nearly 20 times smaller than correspondingly rated silicon-based devices [8]. However, these tremendous theoretical advantages have yet to be realized in experimental SiC devices, primarily due to the fact that SiC's relatively immature crystal growth and device fabrication technologies are not yet sufficiently developed to the degree required for reliable incorporation into most electronic systems [9]. This chapter briefly surveys the SiC semiconductor electronics technology. In particular, the differences (both good and bad) between SiC electronics technology and well-known silicon VLSI technology are highlighted. Projected performance benefits of SiC electronics are highlighted for several large-scale applications. Key crystal growth and device-fabrication issues that presently limit the performance and capability of high temperature and/or high power SiC electronics are identified.

  6. General chemistry students' understanding of the chemistry underlying climate science

    NASA Astrophysics Data System (ADS)

    Versprille, Ashley N.

    The purpose of this study is to investigate first-semester general chemistry students' understanding of the chemistry underlying climate change. The first part of this study involves the collection of qualitative data from twenty-four first-semester general chemistry students from a large Midwestern research institution. The semi-structured interview protocol was developed based on alternative conceptions identified in the research literature and the essential principles of climate change outlined in the U.S. Climate Change Science Program (CCSP) document which pertain to chemistry (CCSP, 2003). The analysis and findings from the interviews indicate conceptual difficulties for students, both with basic climate literacy and underlying chemistry concepts. Students seem to confuse the greenhouse effect, global warming, and the ozone layer, and in terms of chemistry concepts, they lack a particulate level understanding of greenhouse gases and their interaction with electromagnetic radiation, causing them to not fully conceptualize the greenhouse effect and climate change. Based on the findings from these interviews, a Chemistry of Climate Science Diagnostic Instrument (CCSI) was developed for use in courses that teach chemistry with a rich context such as climate science. The CCSI is designed for professors who want to teach general chemistry, while also addressing core climate literacy principles. It will help professors examine their students' prior knowledge and alternative conceptions of the chemistry concepts associated with climate science, which could then inform their teaching and instruction.

  7. Atmospheric Chemistry Data Products

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This presentation poster covers data products from the Distributed Active Archive Center (DAAC) of the Goddard Earth Sciences (GES) Data and Information Services Center (DISC). Total Ozone Mapping Spectrometer products (TOMS) introduced in the presentation include TOMS Version 8 as well as Aura, which provides 25 years of TOMS and Upper Atmosphere Research Satellite (UARS) data. The presentation lists a number of atmospheric chemistry and dynamics data sets at DAAC.

  8. Wet chemistry instrument prototype

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A wet chemistry instrument prototype for detecting amino acids in planetary soil samples was developed. The importance of amino acids and their condensation products to the development of life forms is explained. The characteristics of the instrument and the tests which were conducted to determine the materials compatibility are described. Diagrams are provided to show the construction of the instrument. Data obtained from the performance tests are reported.

  9. Green chemistry: development trajectory

    NASA Astrophysics Data System (ADS)

    Moiseev, I. I.

    2013-07-01

    Examples of applications of green chemistry methods in heavy organic synthesis are analyzed. Compounds, which can be produced by the processing of the biomass, and the criteria for the selection of the most promising products are summarized. The current status of the ethanol production and processing is considered. The possibilities of the use of high fatty acid triglycerides, glycerol, succinic acid, and isoprene are briefly discussed. The bibliography includes 67 references.

  10. ADVANCED CHEMISTRY BASINS MODEL

    SciTech Connect

    William Goddard III; Lawrence Cathles III; Mario Blanco; Paul Manhardt; Peter Meulbroek; Yongchun Tang

    2004-05-01

    The advanced Chemistry Basin Model project has been operative for 48 months. During this period, about half the project tasks are on projected schedule. On average the project is somewhat behind schedule (90%). Unanticipated issues are causing model integration to take longer then scheduled, delaying final debugging and manual development. It is anticipated that a short extension will be required to fulfill all contract obligations.

  11. Analytical Chemistry in Russia.

    PubMed

    Zolotov, Yuri

    2016-09-06

    Research in Russian analytical chemistry (AC) is carried out on a significant scale, and the analytical service solves practical tasks of geological survey, environmental protection, medicine, industry, agriculture, etc. The education system trains highly skilled professionals in AC. The development and especially manufacturing of analytical instruments should be improved; in spite of this, there are several good domestic instruments and other satisfy some requirements. Russian AC has rather good historical roots.

  12. Investigation of thin oxide layer removal from Si substrates using an SiO2 atomic layer etching approach: the importance of the reactivity of the substrate

    NASA Astrophysics Data System (ADS)

    Metzler, Dominik; Li, Chen; Lai, C. Steven; Hudson, Eric A.; Oehrlein, Gottlieb S.

    2017-06-01

    The evaluation of a plasma-based atomic layer etching (ALE) approach for native oxide surface removal from Si substrates is described. Objectives include removal of the native oxide while minimizing substrate damage, surface residues and substrate loss. Oxide thicknesses were measured using in situ ellipsometry and surface chemistry was analyzed by x-ray photoelectron spectroscopy. The cyclic ALE approach when used for removal of native oxide SiO2 from a Si substrate did not remove native oxide to the extent required. This is due to the high reactivity of the silicon substrate during the low-energy (<40 eV) ion bombardment phase of the cyclic ALE approach which leads to reoxidation of the silicon surface. A modified process, which used continuously biased Ar plasma with periodic CF4 injection, achieved significant oxygen removal from the Si surface, with some residual carbon and fluorine. A subsequent H2/Ar plasma exposure successfully removed residual carbon and fluorine while passivating the silicon surface. The combined treatment reduced oxygen and carbon levels to about half compared to as received silicon surfaces. The downside of this process sequence is a net loss of about 40 Å of Si. A generic insight of this work is the importance of the substrate and final surface chemistry in addition to precise etch control of the target film for ALE processes. By a fluorocarbon-based ALE technique, thin SiO2 layer removal at the Ångstrom level can be precisely performed from an inert substrate, e.g. a thick SiO2 layer. However, from a reactive substrate, like Si, complete removal of the thin SiO2 layer is prevented by the high reactivity of low energy Ar+ ion bombarded Si. The Si surfaces are reoxidized during the ALE ion bombardment etch step, even for very clean and ultra-low O2 process conditions.

  13. Extensible Computational Chemistry Environment

    SciTech Connect

    2012-08-09

    ECCE provides a sophisticated graphical user interface, scientific visualization tools, and the underlying data management framework enabling scientists to efficiently set up calculations and store, retrieve, and analyze the rapidly growing volumes of data produced by computational chemistry studies. ECCE was conceived as part of the Environmental Molecular Sciences Laboratory construction to solve the problem of researchers being able to effectively utilize complex computational chemistry codes and massively parallel high performance compute resources. Bringing the power of these codes and resources to the desktops of researcher and thus enabling world class research without users needing a detailed understanding of the inner workings of either the theoretical codes or the supercomputers needed to run them was a grand challenge problem in the original version of the EMSL. ECCE allows collaboration among researchers using a web-based data repository where the inputs and results for all calculations done within ECCE are organized. ECCE is a first of kind end-to-end problem solving environment for all phases of computational chemistry research: setting up calculations with sophisticated GUI and direct manipulation visualization tools, submitting and monitoring calculations on remote high performance supercomputers without having to be familiar with the details of using these compute resources, and performing results visualization and analysis including creating publication quality images. ECCE is a suite of tightly integrated applications that are employed as the user moves through the modeling process.

  14. Chemistry and cosmology.

    PubMed

    Black, John H

    2006-01-01

    The simplest elements, hydrogen and helium, offer a remarkably rich chemistry, which has controlled crucial features of the early evolution of the universe. Theoretical models of the origin of structure (stars, galaxies, clusters of galaxies, etc.) now incorporate this chemistry in some detail. In addition to the origin of structure, cosmologists are concerned with observational tests of competing world models. Primordial chemistry may give rise to some of the earliest departures from thermodynamic equilibrium in the universe. These effects may be observable as broad-band spectroscopic distortions of the cosmic background radiation, which otherwise exhibits a nearly perfect blackbody spectrum. The chemical history of the expanding universe is followed through a detailed calculation of the evolution of the abundances of H, H+, H-, H2, H2+, H3+, and other minor species. It is shown that continuous absorption by the small concentration of H- can produce a distortion in the cosmic background spectrum with a maximum at a frequency near nu/c = 9 cm-1 (wavelength 1.1 mm). The predicted effect lies only a factor of 5 below current limits. Its detection would provide an important test of our understanding of the recombination epoch of the universe.

  15. Advanced Chemistry Basins Model

    SciTech Connect

    William Goddard; Mario Blanco; Lawrence Cathles; Paul Manhardt; Peter Meulbroek; Yongchun Tang

    2002-11-10

    The DOE-funded Advanced Chemistry Basin model project is intended to develop a public domain, user-friendly basin modeling software under PC or low end workstation environment that predicts hydrocarbon generation, expulsion, migration and chemistry. The main features of the software are that it will: (1) afford users the most flexible way to choose or enter kinetic parameters for different maturity indicators; (2) afford users the most flexible way to choose or enter compositional kinetic parameters to predict hydrocarbon composition (e.g., gas/oil ratio (GOR), wax content, API gravity, etc.) at different kerogen maturities; (3) calculate the chemistry, fluxes and physical properties of all hydrocarbon phases (gas, liquid and solid) along the primary and secondary migration pathways of the basin and predict the location and intensity of phase fractionation, mixing, gas washing, etc.; and (4) predict the location and intensity of de-asphaltene processes. The project has be operative for 36 months, and is on schedule for a successful completion at the end of FY 2003.

  16. Chemistry of sex attraction.

    PubMed Central

    Roelofs, W L

    1995-01-01

    The chemical communication system used to attract mates involves not only the overt chemical signals but also indirectly a great deal of chemistry in the emitter and receiver. As an example, in emitting female moths, this includes enzymes (and cofactors, mRNA, genes) of the pheromone biosynthetic pathways, hormones (and genes) involved in controlling pheromone production, receptors and second messengers for the hormones, and host plant cues that control release of the hormone. In receiving male moths, this includes the chemistry of pheromone transportation in antennal olfactory hairs (binding proteins and sensillar esterases) and the chemistry of signal transduction, which includes specific dendritic pheromone receptors and a rapid inositol triphosphate second messenger signal. A fluctuating plume structure is an integral part of the signal since the antennal receptors need intermittent stimulation to sustain upwind flight. Input from the hundreds of thousands of sensory cells is processed and integrated with other modalities in the central nervous system, but many unknown factors modulate the information before it is fed to motor neurons for behavioral responses. An unknown brain control center for pheromone perception is discussed relative to data from behavioral-threshold studies showing modulation by biogenic amines, such as octopamine and serotonin, from genetic studies on pheromone discrimination, and from behavioral and electrophysiological studies with behavioral antagonists. Images Fig. 1 PMID:7816846

  17. Covalent Chemistry beyond Molecules.

    PubMed

    Jiang, Juncong; Zhao, Yingbo; Yaghi, Omar M

    2016-03-16

    Linking molecular building units by covalent bonds to make crystalline extended structures has given rise to metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), thus bringing the precision and versatility of covalent chemistry beyond discrete molecules to extended structures. The key advance in this regard has been the development of strategies to overcome the "crystallization problem", which is usually encountered when attempting to link molecular building units into covalent solids. Currently, numerous MOFs and COFs are made as crystalline materials in which the large size of the constituent units provides for open frameworks. The molecular units thus reticulated become part of a new environment where they have (a) lower degrees of freedom because they are fixed into position within the framework; (b) well-defined spatial arrangements where their properties are influenced by the intricacies of the pores; and (c) ordered patterns onto which functional groups can be covalently attached to produce chemical complexity. The notion of covalent chemistry beyond molecules is further strengthened by the fact that covalent reactions can be carried out on such frameworks, with full retention of their crystallinity and porosity. MOFs are exemplars of how this chemistry has led to porosity with designed metrics and functionality, chemically-rich sequences of information within their frameworks, and well-defined mesoscopic constructs in which nanoMOFs enclose inorganic nanocrystals and give them new levels of spatial definition, stability, and functionality.

  18. Interfacial reaction of eutectic AuSi solder with Si (100) and Si (111) surfaces

    NASA Astrophysics Data System (ADS)

    Jang, Jin-Wook; Hayes, Scott; Lin, Jong-Kai; Frear, Darrel R.

    2004-06-01

    The dissolution behavior of Si (100) and (111) dies by eutectic AuSi solder was investigated. On the Si (100) surface, the dissolution primarily occurred by the formation of craters resulting in a rough surface. The dissolution of the Si (111) resulted in a relatively smooth surface. The morphology of the Si (100) surface during a AuSi soldering reaction exhibited more time-dependent behavior and the etching craters on a Si (100) surface grew larger with time whereas Si (111) did not significantly change. This difference was ascribed to the surface energy differences between Si (111) and (100) surfaces that resulted in the two- and three-dimensional dissolution behaviors, respectively. This difference plays an important role in the formation of voids during the AuSi die bonding. The etching craters on Si (100) act as a AuSi solder sink and the regions surrounded by etch pits tend to become voids. For Si (111), flat surfaces were observed in the voided regions. Cross section analysis showed that no solder reaction occurred in the voided region of the Si (111) surface. This suggests the possibility of the formation of a thin inert layer in a potentially voided region prior to assembly. To achieve void-free die bonding, different parameters must be adjusted to the Si (100) and Si (111) surfaces with the AuSi alloy.

  19. Spotlight on medicinal chemistry education.

    PubMed

    Pitman, Simone; Xu, Yao-Zhong; Taylor, Peter; Turner, Nicholas; Coaker, Hannah; Crews, Kasumi

    2014-05-01

    The field of medicinal chemistry is constantly evolving and it is important for medicinal chemists to develop the skills and knowledge required to succeed and contribute to the advancement of the field. Future Medicinal Chemistry spoke with Simone Pitman (SP), Yao-Zhong Xu (YX), Peter Taylor (PT) and Nick Turner (NT) from The Open University (OU), which offers an MSc in Medicinal Chemistry. In the interview, they discuss the MSc course content, online teaching, the future of medicinal chemistry education and The OU's work towards promoting widening participation. SP is a Qualifications Manager in the Science Faculty at The OU. She joined The OU in 1993 and since 1998 has been involved in the Postgraduate Medicinal Chemistry provision at The OU. YX is a Senior Lecturer in Bioorganic Chemistry at The OU. He has been with The OU from 2001, teaching undergraduate courses of all years and chairing the master's course on medicinal chemistry. PT is a Professor of Organic Chemistry at The OU and has been involved with the production and presentation of The OU courses in Science and across the university for over 30 years, including medicinal chemistry modules at postgraduate level. NT is a Lecturer in Analytical Science at The OU since 2009 and has been involved in the production of analytical sciences courses, as well as contributing to the presentation of a number of science courses including medicinal chemistry.

  20. More Chemistry with Light! More Light in Chemistry!

    PubMed

    Bach, Thorsten

    2015-09-21

    "…︁ Why is chemistry overlooked when talking about light? Is the photon a physical particle per se? Are all important light-induced processes biological? Maybe the role of light for chemistry and the role of chemistry for light may be far less important than a few eccentric scientists would like to believe. From the perspective of a synthetically oriented photochemist, however, the facts are different …︁" Read more in the Editorial by Thorsten Bach.

  1. The role of transition metal ions chemistry on multiphase chemistry

    NASA Astrophysics Data System (ADS)

    Deguillaume, L.; Leriche, M.; Monod, A.; Chaumerliac, N.

    2003-04-01

    A modelling study of the role of transition metal ions chemistry on cloud chemistry is presented. First, new developments of the Model of Multiphase Cloud Chemistry (M2C2) are described: the transition metal ions reactivity and variable photolysis in the aqueous phase. Secondly, three summertime scenarios describing urban, remote and marine conditions are simulated. First, comparisons between results from M2C2 and from CAPRAM2.3 models for the same scenarios (Herrmann et al., 2000) show a good agreement between the two models with respect to their different chemical mechanisms. Secondly, chemical regimes in cloud are analysed to understand the role of transition metal ions chemistry on cloud chemistry. This study focuses on HOx chemistry, which afterwards influences the sulphur and the VOCs chemistry in droplets. The ratio of Fe(II)/Fe(III) exhibits a diurnal variation with values in agreement with the few measurements of Fe speciation available. In the polluted case, sensitivity tests with and without TMI chemistry, show an enhancement of OH concentration in the aqueous phase when TMI chemistry is considered. This implies a more important oxidation of VOCs in droplets, which produces the HO2 radical, the hydrogen peroxide precursor. In fact, the HO2 radical is mainly converted into hydrogen peroxide by reactions between HO2/O2- radicals with Fe(II). This production of hydrogen peroxide leads to a rapid conversion of S(IV) into S(VI) at the beginning of the simulation.

  2. Chemistry and spectroscopy of the Jovian atmosphere

    NASA Technical Reports Server (NTRS)

    Prinn, R. G.; Owen, T.

    1976-01-01

    A comprehensive review is given of the chemistry and spectroscopic studies of the Jovian atmosphere. Thermochemical equilibrium models for determining atmospheric composition are considered along with possible disequilibrating processes, and studies of the photochemistry of H2, CH4, NH3, H2S, and PH3 using the modeling methods are summarized. It is shown that photodissociation and advection are the major disequilibrating processes in Jupiter's atmosphere, that lightning and charged-particle bombardment are relatively minor factors in the planet's bulk chemistry, and that the existence of living organisms on the planet is highly improbable. Spectroscopic investigations of Jupiter are discussed, emphasizing recent observations of absorption bands due to CH4, NH3, H2, He, and D. Spectroscopic abundance determinations are examined for H2, HD, CH4, CH3D, NH3, C2H6, C2H2, and PH3. Upper limits are given for the abundances of several unobserved gases in the visible atmosphere, including H2S, HCl, SiH4, benzene, purines, pyrimidines, and their derivatives.

  3. Chemistry and spectroscopy of the Jovian atmosphere

    NASA Technical Reports Server (NTRS)

    Prinn, R. G.; Owen, T.

    1976-01-01

    A comprehensive review is given of the chemistry and spectroscopic studies of the Jovian atmosphere. Thermochemical equilibrium models for determining atmospheric composition are considered along with possible disequilibrating processes, and studies of the photochemistry of H2, CH4, NH3, H2S, and PH3 using the modeling methods are summarized. It is shown that photodissociation and advection are the major disequilibrating processes in Jupiter's atmosphere, that lightning and charged-particle bombardment are relatively minor factors in the planet's bulk chemistry, and that the existence of living organisms on the planet is highly improbable. Spectroscopic investigations of Jupiter are discussed, emphasizing recent observations of absorption bands due to CH4, NH3, H2, He, and D. Spectroscopic abundance determinations are examined for H2, HD, CH4, CH3D, NH3, C2H6, C2H2, and PH3. Upper limits are given for the abundances of several unobserved gases in the visible atmosphere, including H2S, HCl, SiH4, benzene, purines, pyrimidines, and their derivatives.

  4. Low damage, highly anisotropic dry etching of SiC

    SciTech Connect

    Wang, J.J.; Hong, J.; Lambers, E.S.; Pearton, S.J.; Ren, F.; Ostling, M.; Zetterling, C.M.; Grow, J.M.; Shul, R.J.

    1998-03-01

    A parametric study of the etching characteristics of 6H p{sup +} and n{sup +} SiC and thin film SiC{sub 0.5}N{sub 0.5} in Inductively Coupled Plasma NF{sub 3}/O{sub 2} and NF{sub 3}/Ar discharges has been performed. The etch rates in both chemistries increase monotonically with NF{sub 3} percentage and rf chuck power. The etch rates go through a maximum with increasing ICP source power, which is explained by a trade-off between the increasing ion flux and the decreasing ion energy. The anisotropy of the etched features is also a function of ion flux, ion energy and atomic fluorine neutral concentration. Indium-tin-oxide (ITO) masks display relatively good etch selectivity over SiC (maximum of {approximately} 70:1), while photoresist etches more rapidly than SiC. The surface roughness of SiC is essentially independent of plasma composition for NF3/O2 discharges, while extensive surface degradation occurs for SiCN under high NF{sub 3}:O{sub 2} conditions.

  5. Green Chemistry: Progress and Barriers

    NASA Astrophysics Data System (ADS)

    Green, Sarah A.

    2016-10-01

    Green chemistry can advance both the health of the environment and the primary objectives of the chemical enterprise: to understand the behavior of chemical substances and to use that knowledge to make useful substances. We expect chemical research and manufacturing to be done in a manner that preserves the health and safety of workers; green chemistry extends that expectation to encompass the health and safety of the planet. While green chemistry may currently be treated as an independent branch of research, it should, like safety, eventually become integral to all chemistry activities. While enormous progress has been made in shifting from "brown" to green chemistry, much more effort is needed to effect a sustainable economy. Implementation of new, greener paradigms in chemistry is slow because of lack of knowledge, ends-justify-the-means thinking, systems inertia, and lack of financial or policy incentives.

  6. Tropospheric Halogen Chemistry

    NASA Astrophysics Data System (ADS)

    von Glasow, R.; Crutzen, P. J.

    2003-12-01

    Halogens are very reactive chemicals that are known to play an important role in anthropogenic stratospheric ozone depletion chemistry, first recognized by Molina and Rowland (1974). However, they also affect the chemistry of the troposphere. They are of special interest because they are involved in many reaction cycles that can affect the oxidation power of the atmosphere indirectly by influencing the main oxidants O3 and its photolysis product OH and directly, e.g., by reactions of the Cl radical with hydrocarbons (e.g., CH4).Already by the middle of the nineteenth century, Marchand (1852) reported the presence of bromine and iodine in rain and other natural waters. He also mentions the benefits of iodine in drinking water through the prevention of goitres and cretinism. In a prophetic monograph "Air and Rain: The Beginnings of a Chemical Climatology," Smith (1872) describes measurements of chloride in rain water, which he states to originate partly from the oceans by a process that he compares with the bursting of "soap bubbles" which produces "small vehicles" that transfer small spray droplets of seawater to the air. From deviations of the sulfate-to-chloride ratio in coastal rain compared to seawater, Smith concluded that chemical processes occur once the particles are airborne.For almost a century thereafter, however, atmospheric halogens received little attention. One exception was the work by Cauer (1939), who reported that iodine pollution has been significant in Western and Central Europe due to the inefficient burning of seaweed, causing mean gas phase atmospheric concentrations as high as or greater than 0.5 μg m-3. In his classical textbook Air Chemistry and Radioactivity, Junge (1963) devoted less than three pages to halogen gas phase chemistry, discussing chlorine and iodine. As reviewed by Eriksson (1959a, b), the main atmospheric source of halogens is sea salt, derived from the bursting of bubbles of air which are produced by ocean waves and other

  7. Kapitza resistance of Si/SiO2 interface

    SciTech Connect

    Bowen Deng; Aleksandr Chenatynskiy; Marat Khafizov; David Hurley; Simon Phillpot

    2014-02-01

    A phonon wave packet dynamics method is used to characterize the Kapitza resistance of a Si/SiO2 interface in a Si/SiO2/Si heterostructure. By varying the thickness of SiO2 layer sandwiched between two Si layers, we determine the Kapitza resistance for the Si/SiO2 interface from both wave packet dynamics and a direct, non-equilibrium molecular dynamics approach. The good agreement between the two methods indicates that they have each captured the anharmonic phonon scatterings at the interface. Moreover, detailed analysis provides insights as to how individual phonon mode scatters at the interface and their contribution to the Kapitza resistance.

  8. Thermal stability and chemical bonding states of AlO xN y/Si gate stacks revealed by synchrotron radiation photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    He, G.; Toyoda, S.; Shimogaki, Y.; Oshima, M.

    2010-12-01

    Annealing-temperature dependence of the thermal stability and chemical bonding states of AlO xN y/SiO 2/Si gate stacks grown by metalorganic chemical vapor deposition (MOCVD) using new chemistry was investigated by synchrotron radiation photoemission spectroscopy (SRPES). Results have confirmed the formation of the AlN and AlNO compounds in the as-deposited samples. Annealing the AlO xN y samples in N 2 ambient in 600-800 °C promotes the formation of SiO 2 component. Meanwhile, there is no formation of Al-O-Si and Al-Si binding states, suggesting no interdiffusion of Al with the Si substrate. A thermally induced reaction between Si and AlO xN y to form volatile SiO and Al 2O is suggested to be responsible for the full disappearance of the Al component that accompanies annealing at annealing temperature of 1000 °C. The released N due to the breakage of the Al-N bonding will react with the SiO 2 interfacial layer and lead to the formation of the Si 3-N-O/Si 2-N-O components at the top of Si substrate. These results indicate high temperature processing induced evolution of the interfacial chemistry and application range of AlO xN y/Si gate stacks in future CMOS devices.

  9. Mars aqueous chemistry experiment

    NASA Technical Reports Server (NTRS)

    Clark, Benton C.; Mason, Larry W.

    1993-01-01

    The Mars Aqueous Chemistry Experiment (MACE) is designed to conduct a variety of measurements on regolith samples, encompassing mineral phase analyses, chemical interactions with H2O, and physical properties determinations. From these data, much can be learned or inferred regarding the past weathering environment, the contemporaneous soil micro-environments, and the general chemical and physical state of the Martian regolith. By analyzing both soil and duricrust samples, the nature of the latter may become more apparent. Sites may be characterized for comparative purposes and criteria could be set for selection of high priority materials on future sample return missions. Progress for the first year MACE PIDDP is reported in two major areas of effort: (1) fluids handling concepts, definition, and breadboard fabrication and (2) aqueous chemistry ion sensing technology and test facility integration. A fluids handling breadboard was designed, fabricated, and tested at Mars ambient pressure. The breadboard allows fluid manipulation scenarios to be tested under the reduced pressure conditions expected in the Martian atmosphere in order to validate valve operations, orchestrate analysis sequences, investigate sealing integrity, and to demonstrate efficacy of the fluid handling concept. Additional fluid manipulation concepts have also been developed based on updated MESUR spacecraft definition. The Mars Aqueous Chemistry Experiment Ion Selective Electrode (ISE) facility was designed as a test bed to develop a multifunction interface for measurements of chemical ion concentrations in aqueous solution. The interface allows acquisition of real time data concerning the kinetics and heats of salt dissolution, and transient response to calibration and solubility events. An array of ion selective electrodes has been interfaced and preliminary calibration studies performed.

  10. The mixed chemistry problem

    NASA Astrophysics Data System (ADS)

    Guzman-Ramirez, L.; Zijlstra, A. A.; Gesicki, K.; Lagadec, E.; Jones, D.; Millar, T. J.; Woods, P. M.; Chuimin, R. N.

    2014-04-01

    Planetary nebulae (PNe) represent the last stage of evolution of intermediate mass stars (0.8 to 8M⊙) and, hence, by their very nature are fundamental to galactic evolution. The massive envelopes ejected during their earlier evolution (AGB phase) are an important source of recycled material in the form of dust and molecular gas into the interstellar medium. A small fraction of PNe show both O- and C-rich features and are therefore classified as mixed-chemistry objects. The origin of their mixed-chemistry is still uncertain. Our chemical models show that the PAHs may form in irradiated dense tori, and HST images confirm the presence of such tori in some of the objects. Using the VISIR/VLT, we spatially resolved the precise location of the PAHs. We find a dense dusty structures in all of the objects observed. The ionised [SIV] material is located inside the dusty tori, while the PAHs are present at the outer edges of these tori. This confirms that the PAHs formation is due to the photodissociation of CO. In the Galactic Disk, very few PNe have shown to harbour these mixed-chemistry phenomenon. We propose to observe the tori of a sample of bipolar PNe from the Galactic Disk that harbour a close binary system inside them. The chemical models show that the formation of long C-chain molecules is possible to occur in O-rich environments, but the formation of these C-rich molecules require a very dense region (Av˜4). To test this theory we propose to observe the very dense tori of these Galactic Disk PNe and compare these sample with the already observed sample of PNe in the Galactic Bulge (Guzman-Ramirez, et al., 2011;Guzman-Ramirez, et al., 2013, submitted).

  11. Reactions of Hydrogen with Si-SiO2 Interfaces

    NASA Astrophysics Data System (ADS)

    Rashkeev, Sergey N.

    2001-11-01

    Three different types of behavior have been observed for H in Si-SiO2 structures: a) Radiation experiments established that H^+ released in SiO2 migrates to the Si-SiO2 interface where it induces new defects; b) For oxides exposed first to high-temperature annealing and then to molecular hydrogen, mobile positive charge believed to be H^+ can be cycled to and from the interface by reversing the oxide electric field; c) Hydrogen is known to passivate Si dangling bonds at the Si-SiO2 interface, but the subsequent arrival of H^+ at the interface causes depassivation of Si-H bonds. We report first-principles calculations that identify atomic-scale mechanisms for the different types of behavior and the conditions that are necessary for each. We show that the Si-Si bonds on the oxide side, i.e., ``suboxide bonds'', can trap H^+ in deep wells with asymmetric barrier (1.5 eV on the Si side, 1 eV on the SiO2 side). In radiation experiments these centers can act as fixed positive charge. In the mobile-positive-charge experiments, the protons can be cycled between opposite Si-SiO2 interfaces if the density of suboxide bonds is high. Also, we establish that H^+ is the only stable charge state at the interface and that H^+ reacts directly (without being neutralized by a Si electron) with a Si-H bond, forming an H2 molecule and a positively charged dangling bond (Pb center). As a result, H-induced interface-trap formation does not depend on the availability of Si electrons. This work was supported in part by AFOSR Grant F-49620-99-1-0289.

  12. SULFUR MOLECULE CHEMISTRY IN SUPERNOVA EJECTA RECORDED BY SILICON CARBIDE STARDUST

    SciTech Connect

    Hoppe, Peter; Fujiya, Wataru; Zinner, Ernst E-mail: fujiya@eps.s.u-tokyo.ac.jp

    2012-02-15

    We studied about 3400 presolar silicon carbide (SiC) grains from the Murchison CM2 meteorite for C- and Si-isotopic compositions. Among these grains we identified 7 unusual or type C SiC (U/C) grains, characterized by isotopically heavy Si, and 36 supernova type X SiC grains, characterized by isotopically light Si. Selected U/C and X grains were also measured for S-, Mg-Al-, and Ca-Ti-isotopic compositions. We show that the U/C grains incorporated radioactive {sup 44}Ti, which is evidence that they formed in the ejecta of Type II supernova (SNII) explosions. Abundances of radioactive {sup 26}Al and {sup 44}Ti are compatible with those observed in X grains. U/C and X grains carry light S with enrichments in {sup 32}S of up to a factor of 2.7. The combination of heavy Si and light S observed in U/C grains is not consistent with abundance predictions of simple supernova models. The isotope data suggest preferential trapping of S from the innermost supernova zones, the production site of radioactive {sup 44}Ti, by the growing silicon carbide particles. A way to achieve this is by sulfur molecule chemistry in the still unmixed ejecta. This confirms model predictions of molecule formation in SNII ejecta and shows that sulfur molecule chemistry operates in the harsh and hot environments of stellar explosions.

  13. Magnesium silicate dissolution investigated by Si-29 MAS, H-1-Si-29 CPMAS, Mg-25 QCPMG NMR.

    SciTech Connect

    Davis, M C; Wesolowski, David J

    2009-09-01

    Olivine-(Mg,Fe){sub 2}SiO{sub 4}-has been the subject of frequent investigation in the earth sciences because of its simple structure and rapid dissolution kinetics. Several studies have observed a preferential release of the divalent cation with respect to silicon during weathering under acidic conditions, which has been correlated to the formation of a silicon-rich leached layer. While leached layer formation has been inferred through the changing solution chemistry, a thorough spectroscopic investigation of olivine reacted under acidic conditions has not been conducted. The pure magnesium end member of the olivine series (forsterite-Mg{sub 2}SiO{sub 4}) was chosen for detailed investigations in this study because paramagnetic iron hinders NMR investigations by providing an extra mode of relaxation for neighboring nuclei, causing lineshapes to become significantly broadened and unobservable in the NMR spectrum. For reacting forsterite, spectroscopic interrogations using nuclear magnetic resonance (NMR) can elucidate the changing magnesium coordination and bonding environment. In this study, we combine analysis of the changing solution chemistry with advanced NMR techniques ({sup 29}Si MAS, {sup 1}H-{sup 29}Si CP MAS, {sup 25}Mg QCPMG, and {sup 1}H-{sup 25}Mg CP QCPMG NMR) to probe leached layer formation and secondary phase precipitation during the dissolution of forsterite at 150 C.

  14. Solvents and sustainable chemistry

    PubMed Central

    Welton, Tom

    2015-01-01

    Solvents are widely recognized to be of great environmental concern. The reduction of their use is one of the most important aims of green chemistry. In addition to this, the appropriate selection of solvent for a process can greatly improve the sustainability of a chemical production process. There has also been extensive research into the application of so-called green solvents, such as ionic liquids and supercritical fluids. However, most examples of solvent technologies that give improved sustainability come from the application of well-established solvents. It is also apparent that the successful implementation of environmentally sustainable processes must be accompanied by improvements in commercial performance. PMID:26730217

  15. Phoenix's Wet Chemistry Lab

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This is an illustration of soil analysis on NASA's Phoenix Mars Lander's Wet Chemistry Lab (WCL) on board the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) instrument. By dissolving small amounts of soil in water, WCL will attempt to determine the pH, the abundance of minerals such as magnesium and sodium cations or chloride, bromide and sulfate anions, as well as the conductivity and redox potential.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  16. Phoenix's Wet Chemistry Lab

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This is an illustration of the analytical procedure of NASA's Phoenix Mars Lander's Wet Chemistry Lab (WCL) on board the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) instrument. By dissolving small amounts of soil in water, WCL can determine the pH, the abundance of minerals such as magnesium and sodium cations or chloride, bromide and sulfate anions, as well as the conductivity and redox potential.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  17. Extended Wordsearches in Chemistry

    NASA Astrophysics Data System (ADS)

    Cotton, Simon

    1998-04-01

    Students can be encouraged to develop their factual knowledge by use of puzzles. One strategy described here is the extended wordsearch, where the wordsearch element generates a number of words or phrases from which the answers to a series of questions are selected. The wordsearch can be generated with the aid of computer programs, though in order to make them suitable for students with dyslexia or other learning difficulties, a simpler form is more appropriate. These problems can be employed in a variety of contexts, for example, as topic tests and classroom end-of-lesson fillers. An example is provided in the area of calcium chemistry. Sources of suitable software are listed.

  18. Chemistry in Bioinformatics

    PubMed Central

    Murray-Rust, Peter; Mitchell, John BO; Rzepa, Henry S

    2005-01-01

    Chemical information is now seen as critical for most areas of life sciences. But unlike Bioinformatics, where data is openly available and freely re-usable, most chemical information is closed and cannot be re-distributed without permission. This has led to a failure to adopt modern informatics and software techniques and therefore paucity of chemistry in bioinformatics. New technology, however, offers the hope of making chemical data (compounds and properties) free during the authoring process. We argue that the technology is already available; we require a collective agreement to enhance publication protocols. PMID:15941476

  19. Chemistry and Science Fiction

    NASA Astrophysics Data System (ADS)

    Stocker, Jack H.

    1998-11-01

    This lively collection looks at science as filtered through literature, film, and television. It discusses classic works in science fiction and provides an in-depth look at the chemistry depicted in popular culture, particularly in Start Trek , Star Wars , and Doctor Who . It includes an examination by Nebula Award winner Connie Willis of how science fiction authors use science, and reprints two tongue-in-cheek short stories by Isaac Asimov. The book also includes suggestions for using science fiction as an educational resource.

  20. Phoenix's Wet Chemistry Lab

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This is an illustration of soil analysis on NASA's Phoenix Mars Lander's Wet Chemistry Lab (WCL) on board the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) instrument. By dissolving small amounts of soil in water, WCL will attempt to determine the pH, the abundance of minerals such as magnesium and sodium cations or chloride, bromide and sulfate anions, as well as the conductivity and redox potential.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  1. Phoenix's Wet Chemistry Lab

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This is an illustration of the analytical procedure of NASA's Phoenix Mars Lander's Wet Chemistry Lab (WCL) on board the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) instrument. By dissolving small amounts of soil in water, WCL can determine the pH, the abundance of minerals such as magnesium and sodium cations or chloride, bromide and sulfate anions, as well as the conductivity and redox potential.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  2. Sustainable chemistry metrics.

    PubMed

    Calvo-Flores, Francisco García

    2009-01-01

    Green chemistry has developed mathematical parameters to describe the sustainability of chemical reactions and processes, in order to quantify their environmental impact. These parameters are related to mass and energy magnitudes, and enable analyses and numerical diagnoses of chemical reactions. The environmental impact factor (E factor), atom economy, and reaction mass efficiency have been the most influential metrics, and they are interconnected by mathematical equations. The ecodesign concept must also be considered for complex industrial syntheses, as a part of the sustainability of manufacturing processes. The aim of this Concept article is to identify the main parameters for evaluating undesirable environmental consequences.

  3. Inorganic Chemistry by Gary Wulfsberg

    NASA Astrophysics Data System (ADS)

    Ackermann, Martin N.

    2000-11-01

    Inorganic Chemistry is an interesting new option for teachers of advanced inorganic courses and offers the possibility of serving an introductory course as well. Since PDIC first appeared, more authors have adopted the approach of developing descriptive inorganic chemistry around common principles instead of a group-by-group treatment, which makes this text less of a departure from the traditional than PDIC was. Still, Wulfsberg offers an original and engaging perspective on inorganic chemistry. Even if this text is not adopted for a course, it deserves a place on the shelf of every teacher of inorganic chemistry, where it will be a valuable resource.

  4. Green chemistry: principles and practice.

    PubMed

    Anastas, Paul; Eghbali, Nicolas

    2010-01-01

    Green Chemistry is a relatively new emerging field that strives to work at the molecular level to achieve sustainability. The field has received widespread interest in the past decade due to its ability to harness chemical innovation to meet environmental and economic goals simultaneously. Green Chemistry has a framework of a cohesive set of Twelve Principles, which have been systematically surveyed in this critical review. This article covers the concepts of design and the scientific philosophy of Green Chemistry with a set of illustrative examples. Future trends in Green Chemistry are discussed with the challenge of using the Principles as a cohesive design system (93 references).

  5. USSR Report, Chemistry, No. 103

    DTIC Science & Technology

    1983-06-21

    The reports contains a variety of abstracts on research and development of USSR Chemistry with particular attention to coal gasification , fertilizers, organophosphorus compound synthesis, and polymerization.

  6. Weakening of Sisbnd Si bonding in exohydrogenated Si60 nanoclusters

    NASA Astrophysics Data System (ADS)

    Bainglass, Edan; Mayfield, Cedric L.; Huda, Muhammad N.

    2017-09-01

    We performed density functional theory (DFT) analyses of several hollow cage-like Si60 nanoclusters and found a favoring of exohydrogenation in terms of reduced binding energies in all the structures except the Si60 fullerene. Further investigation into the effects of exohydrogenation on the Sisbnd Si bonding network revealed a level of weakening in Sisbnd Si bonds. A correlation was established between the magnitude of this weakening and the success of exohydrogenation in stabilizing the nanocluster. In addition, we found a slightly bent chain of individual Si20 units to exhibit the lowest binding energy among the present group of Si60 clusters studied here.

  7. Quantum chemistry study of dielectric materials deposition

    NASA Astrophysics Data System (ADS)

    Widjaja, Yuniarto

    The drive to continually decrease the device dimensions of integrated circuits in the microelectronics industry requires that deposited films approach subnanometer thicknesses. Hence, a fundamental understanding of the physics and chemistry of film deposition is important to obtain better control of the properties of the deposited film. We use ab initio quantum chemistry calculations to explore chemical reactions at the atomic level. Important thermodynamic and kinetic parameters are then obtained, which can then be used as inputs in constructing first-principles based reactor models. Studies of new systems for which data are not available can be conducted as well. In this dissertation, we use quantum chemistry simulations to study the deposition of gate dielectrics for metal-oxide-semiconductor (MOS) devices. The focus of this study is on heterogeneous reactions between gaseous precursors and solid surfaces. Adsorbate-surface interactions introduce additional degrees of complexity compared to the corresponding gas-phase or solid-state reactions. The applicability and accuracy of cluster approximations to represent solid surfaces are first investigated. The majority of our results are obtained using B3LYP density functional theory (DFT). The structures of reactants, products, and transition states are obtained, followed by calculations of thermochemical and kinetic properties. Whenever experimental data are available, qualitative and/or quantitative comparisons are drawn. Atomistic mechanisms and the energetics of several reactions leading to the deposition of SiO2, Si3N4, and potential new high-kappa materials such as ZrO2, HfO2, and Al 2O3 have been explored in this dissertation. Competing reaction pathways are explored for each of the deposition reactions studied. For example, the potential energy surface (PES) for ZrO2 ALD shows that the reactions proceed through a trapping-mediated mechanism, which results in a competition between desorption and decomposition

  8. Pyrolysis chemistry of polycarbosilane polymer precursors to ceramics

    NASA Astrophysics Data System (ADS)

    Liu, Qi

    The main theme of this research work was investigation of the precursor-ceramic conversion process for some polycarbosilane polymers, (-RRsp' SiCHsb2-)sb{n}, known as the poly(silylenemethylene)s (PSMs), where R and Rsp' are either hydrogen or bridging oxygen. The pyrolysis chemistry was characterized by elemental analysis, thermogravimetric analysis, liquid and solid state NMR spectroscopy, FTIR, and mass spectrometric analysis of the gaseous pyrolysis products. The strategy included three steps: First, linear poly(silaethylene), (SiHsb2CHsb2), PSE, was synthesized by ROP and examined as potential precursor to silicon carbide. This was one of the limiting cases where in (-RRsp' SiCHsb2-)sb{n}, R=Rsp'=H. The conversion process was studied by the examination of the gaseous species evolved during pyrolysis using a mass spectrometer. The results suggested that molecular H-transfer and elimination reactions involving silylene intermediates occurred initially and caused the crosslinking of the polymer between 300 and 420sp'C. Free radical reactions became operative and were the main mechanisms occurring above 420sp'C. The unusually high ceramic yield of linear PSE (ca. 80%) suggested that the SiHsb{x} groups in this polymer provided a latent reactivity that could be "turned on" by heating, thereby allowing the formation of a network structure that resists fragmentation. Second, polycarbosilane/siloxane hybrid polymers, (Si(O)CHsb2rbracksb{n}, were synthesized by sol-gel processing and were pyrolyzed to silicon oxycarbide ceramics. This was the other limiting case where in (-RRsp' SiCHsb2-)sb{n}, R=Rsp'=bridging or terminal oxygens. The gels were converted into silicon oxycarbides that contain a statistical distribution of the five possible SiCsb{4-x}Osb{x} environments between 600 and 1000sp'C. This rearrangement of the Si environments was attributed to the redistribution reactions involving the exchange of Si-O and Si-C bonds during the latter stages of the pyrolysis

  9. SI (Metric) handbook

    NASA Technical Reports Server (NTRS)

    Artusa, Elisa A.

    1994-01-01

    This guide provides information for an understanding of SI units, symbols, and prefixes; style and usage in documentation in both the US and in the international business community; conversion techniques; limits, fits, and tolerance data; and drawing and technical writing guidelines. Also provided is information of SI usage for specialized applications like data processing and computer programming, science, engineering, and construction. Related information in the appendixes include legislative documents, historical and biographical data, a list of metric documentation, rules for determining significant digits and rounding, conversion factors, shorthand notation, and a unit index.

  10. SI (Metric) handbook

    NASA Astrophysics Data System (ADS)

    Artusa, Elisa A.

    1994-03-01

    This guide provides information for an understanding of SI units, symbols, and prefixes; style and usage in documentation in both the US and in the international business community; conversion techniques; limits, fits, and tolerance data; and drawing and technical writing guidelines. Also provided is information of SI usage for specialized applications like data processing and computer programming, science, engineering, and construction. Related information in the appendixes include legislative documents, historical and biographical data, a list of metric documentation, rules for determining significant digits and rounding, conversion factors, shorthand notation, and a unit index.

  11. Introducing Chemistry Students to the "Real World" of Chemistry

    ERIC Educational Resources Information Center

    Brown, Michael E.; Cosser, Ronald C.; Davies-Coleman, Michael T.; Kaye, Perry T.; Klein, Rosalyn; Lamprecht, Emmanuel; Lobb, Kevin; Nyokong, Tebello; Sewry, Joyce D.; Tshentu, Zenixole R.; van der Zeyde, Tino; Watkins, Gareth M.

    2010-01-01

    A majority of chemistry graduates seek employment in a rapidly changing chemical industry. Our attempts to provide the graduates with skills in entrepreneurship and the ability to understand and communicate with their chemical engineering colleagues, in addition to their fundamental knowledge of chemistry, are described. This is done at…

  12. A Quantum Chemistry Concept Inventory for Physical Chemistry Classes

    ERIC Educational Resources Information Center

    Dick-Perez, Marilu; Luxford, Cynthia J.; Windus, Theresa L.; Holme, Thomas

    2016-01-01

    A 14-item, multiple-choice diagnostic assessment tool, the quantum chemistry concept inventory or QCCI, is presented. Items were developed based on published student misconceptions and content coverage and then piloted and used in advanced physical chemistry undergraduate courses. In addition to the instrument itself, data from both a pretest,…

  13. Art in Chemistry: Chemistry in Art. Second Edition

    ERIC Educational Resources Information Center

    Greenberg, Barbara R.; Patterson, Dianne

    2008-01-01

    This textbook integrates chemistry and art with hands-on activities and fascinating demonstrations that enable students to see and understand how the science of chemistry is involved in the creation of art. It investigates such topics as color integrated with electromagnetic radiation, atoms, and ions; paints integrated with classes of matter,…

  14. Art in Chemistry: Chemistry in Art. Second Edition

    ERIC Educational Resources Information Center

    Greenberg, Barbara R.; Patterson, Dianne

    2008-01-01

    This textbook integrates chemistry and art with hands-on activities and fascinating demonstrations that enable students to see and understand how the science of chemistry is involved in the creation of art. It investigates such topics as color integrated with electromagnetic radiation, atoms, and ions; paints integrated with classes of matter,…

  15. Medicinal Chemistry/Pharmacology in Sophomore Organic Chemistry.

    ERIC Educational Resources Information Center

    Harrison, Aline M.

    1989-01-01

    Discussed is a series of lectures designed to illustrate the use of general organic chemical principles in molecular biology, introduce current research in interdisciplinary areas to the beginner, increase interest in organic chemistry, and bridge the gap between traditional organic chemistry, biology, and the consumer. An outline is presented.…

  16. A New Chemistry Course for Non-Chemistry Majors.

    ERIC Educational Resources Information Center

    Ariel, Magda; And Others

    1982-01-01

    A two-semester basic chemistry course for nonchemistry engineering majors is described. First semester provides introductory chemistry for freshmen while second semester is "customer-oriented," based on a departmental choice of three out of six independent modules. For example, aeronautical engineering "customers" would select…

  17. Chemistry in Action: Another Approach to Descriptive Chemistry.

    ERIC Educational Resources Information Center

    Pearson, Earl F.; And Others

    1988-01-01

    Discusses the need for descriptive chemistry to be included in the freshman chemistry curriculum. Suggests using a one-page written handout on a topic to be highlighted in five minutes of class time. Lists the 17 titles in the series and includes four representative papers. (ML)

  18. Influencing College Chemistry Success through High School Chemistry Teaching

    ERIC Educational Resources Information Center

    Tai, Robert H.; Sadler, Philip M.; Loehr, John F.

    2006-01-01

    The connection between high school chemistry pedagogical experiences and introductory college chemistry performance has been a topic researched in published science education literature since the 1920s. However, analysis techniques have limited the generalizability of these results. This review discusses the findings of a large-scale,…

  19. A Quantum Chemistry Concept Inventory for Physical Chemistry Classes

    ERIC Educational Resources Information Center

    Dick-Perez, Marilu; Luxford, Cynthia J.; Windus, Theresa L.; Holme, Thomas

    2016-01-01

    A 14-item, multiple-choice diagnostic assessment tool, the quantum chemistry concept inventory or QCCI, is presented. Items were developed based on published student misconceptions and content coverage and then piloted and used in advanced physical chemistry undergraduate courses. In addition to the instrument itself, data from both a pretest,…

  20. Introducing Chemistry Students to the "Real World" of Chemistry

    ERIC Educational Resources Information Center

    Brown, Michael E.; Cosser, Ronald C.; Davies-Coleman, Michael T.; Kaye, Perry T.; Klein, Rosalyn; Lamprecht, Emmanuel; Lobb, Kevin; Nyokong, Tebello; Sewry, Joyce D.; Tshentu, Zenixole R.; van der Zeyde, Tino; Watkins, Gareth M.

    2010-01-01

    A majority of chemistry graduates seek employment in a rapidly changing chemical industry. Our attempts to provide the graduates with skills in entrepreneurship and the ability to understand and communicate with their chemical engineering colleagues, in addition to their fundamental knowledge of chemistry, are described. This is done at…

  1. Chemistry and biodiversity.

    PubMed

    Schwabe, Christian

    2004-10-01

    Complex structures produced by noncatalyzed multi-step chemical processes must have highly probable origins and assembly routes. Within any frame of reference, life is easily the most-complex self-assembled structure known to man. It is not possible to calculate a finite time for biogenesis by statistical mechanics, but the abundance of life makes it reasonable to propose an accelerating principle of nature that naturally shortened the time for cell formation to a billion years or less. This hypothetical principle, which I have called valence-orbital bias, is thought to be responsible for the discrepancy between statistics and observation, and carries with it, as a conditio sine qua non, multiple origins of life.The new concept resolves the differences between the predictions based on statistical mechanics and the relatively rapid appearance of life during the post-accretion period. It suggests as well that species and variants, the units of propagation, may also have been the units of evolution. Produced in profusion by chemistry, the origins are culled by natural selection, whereby failure means extinction, not adaptation. Biodiversity, thus, becomes a direct consequence of chemistry without positive feedback from the environment and without a constructive role for mutation.

  2. Complex Protostellar Chemistry

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph A., III; Johnson, Natasha M.

    2012-01-01

    Two decades ago, our understanding of the chemistry in protostars was simple-matter either fell into the central star or was trapped in planetary-scale objects. Some minor chemical changes might occur as the dust and gas fell inward, but such effects were overwhelmed by the much larger scale processes that occurred even in bodies as small as asteroids. The chemistry that did occur in the nebula was relatively easy to model because the fall from the cold molecular cloud into the growing star was a one-way trip down a well-known temperature-pressure gradient; the only free variable was time. However, just over 10 years ago it was suggested that some material could be processed in the inner nebula, flow outward, and become incorporated into comets (1, 2). This outward flow was confirmed when the Stardust mission returned crystalline mineral fragments (3) from Comet Wild 2 that must have been processed close to the Sun before they were incorporated into the comet. In this week's Science Express, Ciesla and Sandford (4) demonstrate that even the outermost regions of the solar nebula can be a chemically active environment. Their finding could have consequences for the rest of the nebula.

  3. Complex Protostellar Chemistry

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph A., III; Johnson, Natasha M.

    2012-01-01

    Two decades ago, our understanding of the chemistry in protostars was simple-matter either fell into the central star or was trapped in planetary-scale objects. Some minor chemical changes might occur as the dust and gas fell inward, but such effects were overwhelmed by the much larger scale processes that occurred even in bodies as small as asteroids. The chemistry that did occur in the nebula was relatively easy to model because the fall from the cold molecular cloud into the growing star was a one-way trip down a well-known temperature-pressure gradient; the only free variable was time. However, just over 10 years ago it was suggested that some material could be processed in the inner nebula, flow outward, and become incorporated into comets (1, 2). This outward flow was confirmed when the Stardust mission returned crystalline mineral fragments (3) from Comet Wild 2 that must have been processed close to the Sun before they were incorporated into the comet. In this week's Science Express, Ciesla and Sandford (4) demonstrate that even the outermost regions of the solar nebula can be a chemically active environment. Their finding could have consequences for the rest of the nebula.

  4. Organometallic Neptunium Chemistry.

    PubMed

    Arnold, Polly L; Dutkiewicz, Michał S; Walter, Olaf

    2017-09-13

    Fifty years have passed since the foundation of organometallic neptunium chemistry, and yet only a handful of complexes have been reported, and even fewer have been fully characterized. Yet, increasingly, combined synthetic/spectroscopic/computational studies are demonstrating how covalently bonding, soft, carbocyclic organometallic ligands provide an excellent platform for advancing the fundamental understanding of the differences in orbital contributions and covalency in f-block metal-ligand bonding. Understanding the subtleties is the key to the safe handling and separations of the highly radioactive nuclei. This review describes the complexes that have been synthesized to date and presents a critical assessment of the successes and difficulties in their analysis and the bonding information they have provided. Because of increasing recent efforts to start new Np-capable air-sensitive inorganic chemistry laboratories, the importance of radioactivity, the basics of Np decay and its ramifications (including the radiochemical synthesis of one organometallic compound), and the available anhydrous starting materials are also surveyed. The review also highlights a range of instances in which important differences in the chemical behavior between Np and its closest neighbors, uranium and plutonium, are found.

  5. Interstellar Grain Surface Chemistry

    NASA Technical Reports Server (NTRS)

    Tielens, Alexander G. G. M.; Cuzzi, Jeffrey N. (Technical Monitor)

    1995-01-01

    Chemistry on grain surfaces plays an Important role in the formation of interstellar Ices, It can also influence the composition of the gas phase through outgassing near luminous, newly formed stars. This paper reviews the chemical processes taking place on Interstellar grain surfaces with the emphasis on those transforming CO into other hydrocarbons. At low, molecular cloud temperatures (approximately equal to 10K), physisorption processes dominate interstellar grain surface chemistry and GO is largely hydrogenated through reactions with atomic H and oxidized through reactions with atomic O. The former will lead to the formation of H2CO and CH3OH ices, while the latter results in CO2 ice. The observational evidence for these ices in molecular clouds will be discussed. Very close to protostars, the gas and grain temperatures are much higher (approximately equal to 500K) and chemisorption processes, including catalytic surface reactions, becomes important. This will be illustrated based upon our studies of the Fischer-Tropsch Synthesis of CH4 from CO on metallic surfaces. Likely, this process has played an important role in the early solar nebula. Observational consequences will be pointed out.

  6. Clinical chemistry through Clinical Chemistry: a journal timeline.

    PubMed

    Rej, Robert

    2004-12-01

    The establishment of the modern discipline of clinical chemistry was concurrent with the foundation of the journal Clinical Chemistry and that of the American Association for Clinical Chemistry in the late 1940s and early 1950s. To mark the 50th volume of this Journal, I chronicle and highlight scientific milestones, and those within the discipline, as documented in the pages of Clinical Chemistry. Amazing progress has been made in the field of laboratory diagnostics over these five decades, in many cases paralleling-as well as being bolstered by-the rapid pace in the development of computer technologies. Specific areas of laboratory medicine particularly well represented in Clinical Chemistry include lipids, endocrinology, protein markers, quality of laboratory measurements, molecular diagnostics, and general advances in methodology and instrumentation.

  7. Green Chemistry Metrics with Special Reference to Green Analytical Chemistry.

    PubMed

    Tobiszewski, Marek; Marć, Mariusz; Gałuszka, Agnieszka; Namieśnik, Jacek

    2015-06-12

    The concept of green chemistry is widely recognized in chemical laboratories. To properly measure an environmental impact of chemical processes, dedicated assessment tools are required. This paper summarizes the current state of knowledge in the field of development of green chemistry and green analytical chemistry metrics. The diverse methods used for evaluation of the greenness of organic synthesis, such as eco-footprint, E-Factor, EATOS, and Eco-Scale are described. Both the well-established and recently developed green analytical chemistry metrics, including NEMI labeling and analytical Eco-scale, are presented. Additionally, this paper focuses on the possibility of the use of multivariate statistics in evaluation of environmental impact of analytical procedures. All the above metrics are compared and discussed in terms of their advantages and disadvantages. The current needs and future perspectives in green chemistry metrics are also discussed.

  8. Chemistry of Silanes: Interfaces in Dental Polymers and Composites1

    PubMed Central

    Antonucci, Joseph M.; Dickens, Sabine H.; Fowler, Bruce O.; Xu, Hockin H. K.; McDonough, Walter G.

    2005-01-01

    The performance and service life of glass-or ceramic-filled polymeric composites depend on the nature of their resin, filler and interfacial phases as well as the efficacy of the polymerization process. The synergy that exists between the organic polymer matrix and the usually inorganic reinforcing filler phase is principally mediated by the interfacial/interphasial phase. This latter phase develops as a result of the dual reactivity of a silane coupling agent, (YRSiX3), a bifunctional molecule capable of reacting with the silanol groups of glass or ceramic fillers via its silane functional group (–SiX3) to form Si-O-Si- bonds to filler surfaces, and also with the resin phase by graft copolymerization via its Y functional group, usually a methacrylic vinyl group. In this paper, we explore some of the chemistry of organosilanes, especially that of functional organosilanes (or silane coupling agents as they are commonly known) that are used to mediate interfacial bonding in mineral reinforced polymeric composites. The chemistry of organosilanes can be quite complex involving hydrolytically initiated self-condensation reactions in solvents (including monomers) that can culminate in polymeric silsesquioxane structures, exchange reactions with hydroxylated or carboxylated monomers to form silyl ethers and esters, as well as the formation of silane derived interfaces by adhesive coupling with siliceous mineral surfaces. PMID:27308178

  9. Aryl Diazonium Chemistry for the Surface Functionalization of Glassy Biosensors

    PubMed Central

    Zheng, Wei; van den Hurk, Remko; Cao, Yong; Du, Rongbing; Sun, Xuejun; Wang, Yiyu; McDermott, Mark T.; Evoy, Stephane

    2016-01-01

    Nanostring resonator and fiber-optics-based biosensors are of interest as they offer high sensitivity, real-time measurements and the ability to integrate with electronics. However, these devices are somewhat impaired by issues related to surface modification. Both nanostring resonators and photonic sensors employ glassy materials, which are incompatible with electrochemistry. A surface chemistry approach providing strong and stable adhesion to glassy surfaces is thus required. In this work, a diazonium salt induced aryl film grafting process is employed to modify a novel SiCN glassy material. Sandwich rabbit IgG binding assays are performed on the diazonium treated SiCN surfaces. Fluorescently labelled anti-rabbit IgG and anti-rabbit IgG conjugated gold nanoparticles were used as markers to demonstrate the absorption of anti-rabbit IgG and therefore verify the successful grafting of the aryl film. The results of the experiments support the effectiveness of diazonium chemistry for the surface functionalization of SiCN surfaces. This method is applicable to other types of glassy materials and potentially can be expanded to various nanomechanical and optical biosensors. PMID:26985910

  10. Aryl Diazonium Chemistry for the Surface Functionalization of Glassy Biosensors.

    PubMed

    Zheng, Wei; van den Hurk, Remko; Cao, Yong; Du, Rongbing; Sun, Xuejun; Wang, Yiyu; McDermott, Mark T; Evoy, Stephane

    2016-03-14

    Nanostring resonator and fiber-optics-based biosensors are of interest as they offer high sensitivity, real-time measurements and the ability to integrate with electronics. However, these devices are somewhat impaired by issues related to surface modification. Both nanostring resonators and photonic sensors employ glassy materials, which are incompatible with electrochemistry. A surface chemistry approach providing strong and stable adhesion to glassy surfaces is thus required. In this work, a diazonium salt induced aryl film grafting process is employed to modify a novel SiCN glassy material. Sandwich rabbit IgG binding assays are performed on the diazonium treated SiCN surfaces. Fluorescently labelled anti-rabbit IgG and anti-rabbit IgG conjugated gold nanoparticles were used as markers to demonstrate the absorption of anti-rabbit IgG and therefore verify the successful grafting of the aryl film. The results of the experiments support the effectiveness of diazonium chemistry for the surface functionalization of SiCN surfaces. This method is applicable to other types of glassy materials and potentially can be expanded to various nanomechanical and optical biosensors.

  11. ATMOSPHERIC CHEMISTRY IN GIANT PLANETS, BROWN DWARFS, AND LOW-MASS DWARF STARS. III. IRON, MAGNESIUM, AND SILICON

    SciTech Connect

    Visscher, Channon; Lodders, Katharina; Fegley, Bruce E-mail: lodders@wustl.ed

    2010-06-20

    We use thermochemical equilibrium calculations to model iron, magnesium, and silicon chemistry in the atmospheres of giant planets, brown dwarfs, extrasolar giant planets (EGPs), and low-mass stars. The behavior of individual Fe-, Mg-, and Si-bearing gases and condensates is determined as a function of temperature, pressure, and metallicity. Our equilibrium results are thus independent of any particular model atmosphere. The condensation of Fe metal strongly affects iron chemistry by efficiently removing Fe-bearing species from the gas phase. Monatomic Fe is the most abundant Fe-bearing gas throughout the atmospheres of EGPs and L dwarfs, and in the deep atmospheres of giant planets and T dwarfs. Mg- and Si-bearing gases are effectively removed from the atmosphere by forsterite (Mg{sub 2}SiO{sub 4}) and enstatite (MgSiO{sub 3}) cloud formation. Monatomic Mg is the dominant magnesium gas throughout the atmospheres of EGPs and L dwarfs and in the deep atmospheres of giant planets and T dwarfs. Silicon monoxide (SiO) is the most abundant Si-bearing gas in the deep atmospheres of brown dwarfs and EGPs, whereas SiH{sub 4} is dominant in the deep atmosphere of Jupiter and other gas giant planets. Several other Fe-, Mg-, and Si-bearing gases become increasingly important with decreasing effective temperature. In principle, a number of Fe, Mg, and Si gases are potential tracers of weather or diagnostic of temperature in substellar atmospheres.

  12. Significant steps in the evolution of analytical chemistry--is the today's analytical chemistry only chemistry?

    PubMed

    Karayannis, Miltiades I; Efstathiou, Constantinos E

    2012-12-15

    In this review the history of chemistry and specifically the history and the significant steps of the evolution of analytical chemistry are presented. In chronological time spans, covering the ancient world, the middle ages, the period of the 19th century, and the three evolutional periods, from the verge of the 19th century to contemporary times, it is given information for the progress of chemistry and analytical chemistry. During this period, analytical chemistry moved gradually from its pure empirical nature to more rational scientific activities, transforming itself to an autonomous branch of chemistry and a separate discipline. It is also shown that analytical chemistry moved gradually from the status of exclusive serving the chemical science, towards serving, the environment, health, law, almost all areas of science and technology, and the overall society. Some recommendations are also directed to analytical chemistry educators concerning the indispensable nature of knowledge of classical analytical chemistry and the associated laboratory exercises and to analysts, in general, why it is important to use the chemical knowledge to make measurements on problems of everyday life. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. ELLIPSOMETRIC STUDY OF a-Si:H NUCLEATION, GROWTH, AND INTERFACES

    NASA Astrophysics Data System (ADS)

    Collins, R. W.

    Recent in situ and spectroscopic ellipsometry investigations of hydrogenated amorphous silicon (a-Si:H) nucleation behavior, microstructural evolution, and interface formation are reviewed. An outline of the commonly applied experimental techniques and data analysis is also presented. In situ ellipsometry reveals a nuclei formation and convergence sequence in the first 50Å of a-Si:H growth by rf plasma deposition from silane on c-Si and metal substrates. This sequence provides evidence of favorable growth chemistry that results in material with a low density of structural defects. The influence of deposition parameters and processes on the nucleation and subsequent microstructural evolution of a-Si:H is covered in detail. Among the other topics discussed include: nucleation of microcrystalline Si, evolution of surface roughness on a-Si:H, inert and reactive gas plasma modification of a-Si:H, and formation of a-Si:H heterostructures with SiO2, wide band gap alloys, and Bdoped a-Si:H.

  14. Endotaxial Si nanolines in Si(001):H

    NASA Astrophysics Data System (ADS)

    Bianco, F.; Owen, J. H. G.; Köster, S. A.; Mazur, D.; Renner, Ch.; Bowler, D. R.

    2011-07-01

    We present a detailed study of the structural and electronic properties of a self-assembled silicon nanoline embedded in the H-terminated silicon (001) surface, known as the Haiku stripe. The nanoline is a perfectly straight and defect-free endotaxial structure of huge aspect ratio; it can grow micrometer long at a constant width of exactly four Si dimers (1.54 nm). Another remarkable property is its capacity to be exposed to air without suffering any degradation. The nanoline grows independently of any step edges at tunable densities from isolated nanolines to a dense array of nanolines. In addition to these unique structural characteristics, scanning tunneling microscopy and density functional theory reveal a one-dimensional state confined along the Haiku core. This nanoline is a promising candidate for the long-sought-after electronic solid-state one-dimensional model system to explore the fascinating quantum properties emerging in such reduced dimensionality.

  15. Third-generation synchrotron x-ray diffraction of 6-μm crystal of raite, ≈Na3Mn3Ti0.25Si8O20(OH)2⋅10H2O, opens up new chemistry and physics of low-temperature minerals

    PubMed Central

    Pluth, Joseph J.; Smith, Joseph V.; Pushcharovsky, Dmitry Y.; Semenov, Eugenii I.; Bram, Andreas; Riekel, Christian; Weber, Hans-Peter; Broach, Robert W.

    1997-01-01

    The crystal structure of raite was solved and refined from data collected at Beamline Insertion Device 13 at the European Synchrotron Radiation Facility, using a 3 × 3 × 65 μm single crystal. The refined lattice constants of the monoclinic unit cell are a = 15.1(1) Å; b = 17.6(1) Å; c = 5.290(4) Å; β = 100.5(2)°; space group C2/m. The structure, including all reflections, refined to a final R = 0.07. Raite occurs in hyperalkaline rocks from the Kola peninsula, Russia. The structure consists of alternating layers of a hexagonal chicken-wire pattern of 6-membered SiO4 rings. Tetrahedral apices of a chain of Si six-rings, parallel to the c-axis, alternate in pointing up and down. Two six-ring Si layers are connected by edge-sharing octahedral bands of Na+ and Mn3+ also parallel to c. The band consists of the alternation of finite Mn–Mn and Na–Mn–Na chains. As a consequence of the misfit between octahedral and tetrahedral elements, regions of the Si–O layers are arched and form one-dimensional channels bounded by 12 Si tetrahedra and 2 Na octahedra. The channels along the short c-axis in raite are filled by isolated Na(OH,H2O)6 octahedra. The distorted octahedrally coordinated Ti4+ also resides in the channel and provides the weak linkage of these isolated Na octahedra and the mixed octahedral tetrahedral framework. Raite is structurally related to intersilite, palygorskite, sepiolite, and amphibole. PMID:11038590

  16. U-Mo/Al-Si interaction: Influence of Si concentration

    NASA Astrophysics Data System (ADS)

    Allenou, J.; Palancher, H.; Iltis, X.; Cornen, M.; Tougait, O.; Tucoulou, R.; Welcomme, E.; Martin, Ph.; Valot, C.; Charollais, F.; Anselmet, M. C.; Lemoine, P.

    2010-04-01

    Within the framework of the development of low enriched nuclear fuels for research reactors, U-Mo/Al is the most promising option that has however to be optimised. Indeed at the U-Mo/Al interfaces between U-Mo particles and the Al matrix, an interaction layer grows under irradiation inducing an unacceptable fuel swelling. Adding silicon in limited content into the Al matrix has clearly improved the in-pile fuel behaviour. This breakthrough is attributed to an U-Mo/Al-Si protective layer around U-Mo particles appeared during fuel manufacturing. In this work, the evolution of the microstructure and composition of this protective layer with increasing Si concentrations in the Al matrix has been investigated. Conclusions are based on the characterization at the micrometer scale (X-ray diffraction and energy dispersive spectroscopy) of U-Mo7/Al-Si diffusion couples obtained by thermal annealing at 450 °C. Two types of interaction layers have been evidenced depending on the Si content in the Al-Si alloy: the threshold value is found at about 5 wt.% but obviously evolves with temperature. It has been shown that for Si concentrations ranging from 2 to 10 wt.%, the U-Mo7/Al-Si interaction is bi-layered and the Si-rich part is located close to the Al-Si for low Si concentrations (below 5 wt.%) and close to the U-Mo for higher Si concentrations. For Si weight fraction in the Al alloy lower than 5 wt.%, the Si-rich sub-layer (close to Al-Si) consists of U(Al, Si) 3 + UMo 2Al 20, when the other sub-layer (close to U-Mo) is silicon free and made of UAl 3 and U 6Mo 4Al 43. For Si weight concentrations above 5 wt.%, the Si-rich part becomes U 3(Si, Al) 5 + U(Al, Si) 3 (close to U-Mo) and the other sub-layer (close to Al-Si) consists of U(Al, Si) 3 + UMo 2Al 20. On the basis of these results and of a literature survey, a scheme is proposed to explain the formation of different types of ILs between U-Mo and Al-Si alloys (i.e. different protective layers).

  17. SI: The Stellar Imager

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth G.; Schrijver, Carolus J.; Karovska, Margarita

    2006-01-01

    The ultra-sharp images of the Stellar Imager (SI) will revolutionize our view of many dynamic astrophysical processes: The 0.1 milliarcsec resolution of this deep-space telescope will transform point sources into extended sources, and simple snapshots into spellbinding evolving views. SI s science focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. SI s prime goal is to enable long-term forecasting of solar activity and the space weather that it drives in support of the Living With a Star program in the Exploration Era by imaging a sample of magnetically active stars with enough resolution to map their evolving dynamo patterns and their internal flows. By exploring the Universe at ultra-high resolution, SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magnetohydrodynamically controlled structures and processes in the Universe.

  18. Lateral Si /SiO2 quantum well solar cells

    NASA Astrophysics Data System (ADS)

    Rölver, R.; Berghoff, B.; Bätzner, D. L.; Spangenberg, B.; Kurz, H.

    2008-05-01

    The photovoltaic properties of Si /SiO2 multiple quantum wells (QWs) embedded in lateral Schottky contacts are investigated. The QWs were fabricated by remote plasma enhanced chemical vapor deposition. By subsequent rapid thermal annealing, the two-dimensional Si layers are partially recrystallized, which gives rise to distinct quantum confinement effects. Although the current extraction along the quantum layers is hampered by the incomplete recrystallization, the data collected define the route to optimized Si based QW solar cells.

  19. Thermal expansion behavior of NiSi/NiSi2

    NASA Technical Reports Server (NTRS)

    Wilson, D. F.; Cavin, O. B.

    1992-01-01

    The thermal expansion of NiSi/NiSi2 for a range of temperatures from 293 to 1223 K was determined using high-temperature X-ray diffraction. While a linear relation with temperature was found for the lattice parameter of NiSi2, third-order relationships were found for the three lattice parameters of NiSi, with one of the parameters showing a decrease with increasing temperature. The volumetric expansion of both materials exhibited linear relationships.

  20. Chemistry and the Liberal Arts

    ERIC Educational Resources Information Center

    Strong, Laurence E.

    1971-01-01

    Argues that chemistry has major implications for our understanding of the nature of things including ourselves. Illustrations have been drawn from the chemical elements, chemical equilibria, and chemical entropy. Chemistry should not be presented as something justified only by its practical results while the other sciences raise the ultimate…