Science.gov

Sample records for 1-butene 2-methylpropene trans-2-butene

  1. Metabolism of 2-methylpropene (isobutylene) by the aerobic bacterium Mycobacterium sp. strain ELW1.

    PubMed

    Kottegoda, Samanthi; Waligora, Elizabeth; Hyman, Michael

    2015-03-01

    An aerobic bacterium (Mycobacterium sp. strain ELW1) that utilizes 2-methylpropene (isobutylene) as a sole source of carbon and energy was isolated and characterized. Strain ELW1 grew on 2-methylpropene (growth rate = 0.05 h(-1)) with a yield of 0.38 mg (dry weight) mg 2-methylpropene(-1). Strain ELW1 also grew more slowly on both cis- and trans-2-butene but did not grow on any other C2 to C5 straight-chain, branched, or chlorinated alkenes tested. Resting 2-methylpropene-grown cells consumed ethene, propene, and 1-butene without a lag phase. Epoxyethane accumulated as the only detected product of ethene oxidation. Both alkene consumption and epoxyethane production were fully inhibited in cells exposed to 1-octyne, suggesting that alkene oxidation is initiated by an alkyne-sensitive, epoxide-generating monooxygenase. Kinetic analyses indicated that 1,2-epoxy-2-methylpropane is rapidly consumed during 2-methylpropene degradation, while 2-methyl-2-propen-1-ol is not a significant metabolite of 2-methylpropene catabolism. Degradation of 1,2-epoxy-2-methylpropane by 2-methylpropene-grown cells led to the accumulation and further degradation of 2-methyl-1,2-propanediol and 2-hydroxyisobutyrate, two sequential metabolites previously identified in the aerobic microbial metabolism of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA). Growth of strain ELW1 on 2-methylpropene, 1,2-epoxy-2-methylpropane, 2-methyl-1,2-propanediol, and 2-hydroxyisobutyrate was fully inhibited when cobalt ions were omitted from the growth medium, while growth on 3-hydroxybutyrate and other substrates was unaffected by the absence of added cobalt ions. Our results suggest that, like aerobic MTBE- and TBA-metabolizing bacteria, strain ELW1 utilizes a cobalt/cobalamin-dependent mutase to transform 2-hydroxyisobutyrate. Our results have been interpreted in terms of their impact on our understanding of the microbial metabolism of alkenes and ether oxygenates.

  2. Metabolism of 2-Methylpropene (Isobutylene) by the Aerobic Bacterium Mycobacterium sp. Strain ELW1

    PubMed Central

    Kottegoda, Samanthi; Waligora, Elizabeth

    2015-01-01

    An aerobic bacterium (Mycobacterium sp. strain ELW1) that utilizes 2-methylpropene (isobutylene) as a sole source of carbon and energy was isolated and characterized. Strain ELW1 grew on 2-methylpropene (growth rate = 0.05 h−1) with a yield of 0.38 mg (dry weight) mg 2-methylpropene−1. Strain ELW1 also grew more slowly on both cis- and trans-2-butene but did not grow on any other C2 to C5 straight-chain, branched, or chlorinated alkenes tested. Resting 2-methylpropene-grown cells consumed ethene, propene, and 1-butene without a lag phase. Epoxyethane accumulated as the only detected product of ethene oxidation. Both alkene consumption and epoxyethane production were fully inhibited in cells exposed to 1-octyne, suggesting that alkene oxidation is initiated by an alkyne-sensitive, epoxide-generating monooxygenase. Kinetic analyses indicated that 1,2-epoxy-2-methylpropane is rapidly consumed during 2-methylpropene degradation, while 2-methyl-2-propen-1-ol is not a significant metabolite of 2-methylpropene catabolism. Degradation of 1,2-epoxy-2-methylpropane by 2-methylpropene-grown cells led to the accumulation and further degradation of 2-methyl-1,2-propanediol and 2-hydroxyisobutyrate, two sequential metabolites previously identified in the aerobic microbial metabolism of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA). Growth of strain ELW1 on 2-methylpropene, 1,2-epoxy-2-methylpropane, 2-methyl-1,2-propanediol, and 2-hydroxyisobutyrate was fully inhibited when cobalt ions were omitted from the growth medium, while growth on 3-hydroxybutyrate and other substrates was unaffected by the absence of added cobalt ions. Our results suggest that, like aerobic MTBE- and TBA-metabolizing bacteria, strain ELW1 utilizes a cobalt/cobalamin-dependent mutase to transform 2-hydroxyisobutyrate. Our results have been interpreted in terms of their impact on our understanding of the microbial metabolism of alkenes and ether oxygenates. PMID:25576605

  3. Reinvestigation of the Unimolecular Reactions of CHF2CHF2: Identification of the 1,1-HF Elimination Component from Addition of :CFCHF2 to trans-2-Butene.

    PubMed

    Smith, Caleb A; Heard, George L; Setser, D W; Holmes, Bert E

    2016-12-01

    The recombination of ·CHF2 radicals in a room-temperature bath gas was used to generate CHF2CHF2* (where * indicates vibrational excitation) molecules with 96 kcal mol(-1) of vibrational energy. The CHF2CHF2* molecules decompose by four-centered 1,2-HF elimination and by three-centered 1,1-HF elimination reactions to give HF and either CHF═CF2 or :CFCHF2, respectively. The 1,1-HF component was identified by trapping the :CFCHF2 carbene with trans-2-butene that forms 1-fluoro-1-difluoromethyl-2,3-dimethylcyclopropane. The total rate constant for the decomposition of CHF2CHF2* was 6.0 × 10(5) s(-1), and the rate constant for the 1,1-HF pathway forming the carbene, as measured by the 1-fluoro-1-difluoromethyl-2,3-dimethylcyclopropane yield, was 1.4 × 10(5) s(-1). On the basis of matching the experimental rate constants to calculated statistical rate constants, the threshold energies for the four-centered and three-centered reactions are 78 and ≤85 kcal mol(-1), respectively.

  4. Isomerization of 1-butene on silica-alumina: Kinetic modeling and catalyst deactivation

    SciTech Connect

    Garcia-Ochoa, F.; Santos, A. . Dept. de Ingenieria Quimica)

    1995-02-01

    In the study of 1-butene isomerization on a silica-alumina catalyst 448--523 K, cis-2-butene and trans-2-butene are detected. Based on BSTR experimental data and zero-time prediction kinetic models using the Langmuir-Hinshelwood mechanism are assumed to develop kinetic equations for which a triangular reaction scheme is used. In four different mechanisms, one and two active sites take part in the surface reaction as the controlling step and then the deactivation rate determined considering two types of experimental data from BSTR and by measuring weight changes of a catalyst particle from coke deposition in an electrobalance. A coke precursor is assumed formed by reaction of adsorbed molecules (of any butene isomer) and gas-phase molecules. Activity and coke-content-time data allow one to choose a model whose activation energies of the deactivation kinetic parameter are closer in value. Coke is assumed deposited in a monolayer. The model chosen shows a triangular scheme, kinetic equations of the reaction for fresh catalyst with two active sites in the surface reaction, and the deactivation rate according to a coke formation mechanism in which a precursor is formed by reaction of 3 adsorbed molecules and 1 molecule in the gas phase. It accurately fits both BSTR conversion-time data and electrobalance coke-content data. The coke formation mechanism establishes relationships of activity vs. coke content and catalyst acidity which are supported by experimental results.

  5. The Bond Dissociation Energies of 1-Butene

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R. (Technical Monitor)

    1994-01-01

    The bond dissociation energies of 1-butene and several calibration systems are computed using the G2(MP2) approach. The agreement between the calibration systems and experiment is very good. The computed values for 1-butene are compared with calibration systems and the agreement between the computed results for 1-butene and the "rule of thumb" values from the smaller systems is remarkably good.

  6. Adsorption of 2-methylpropene and 1,3-butadiene on activated carbon

    SciTech Connect

    Olivier, M.G.; Berlier, K.; Bougard, J. . Service de Thermodynamique)

    1994-10-01

    Four adsorption isotherms at 278, 288, 293, and 303 K of 2-methylpropene and 1, 3-butadiene on activated carbon are given. The results at pressures up to 0.8P/P[sub s] are measured using an automated apparatus and correlated by the vacancy solution model of Cochran and Danner. This work aims at determining the influence of a double bond and a branched structure on the adsorption capacity. For their industrial separation by an adsorption process, it is important to have equilibrium data on the same adsorbent and at different temperatures.

  7. Vapor-Liquid Equilibrium in the Mixture 1,1-Difluoroethane C2H4F2 + C4H8 2-Methylpropene (EVLM1131, LB5730_E)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume A 'Binary Liquid Systems of Nonelectrolytes I' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Vapor-Liquid Equilibrium in the Mixture 1,1-Difluoroethane C2H4F2 + C4H8 2-Methylpropene (EVLM1131, LB5730_E)' providing data from direct measurement of pressure and mole fraction in vapor phase at variable mole fraction in liquid phase and constant temperature.

  8. Radical product yields from the ozonolysis of short chain alkenes under atmospheric boundary layer conditions.

    PubMed

    Alam, Mohammed S; Rickard, Andrew R; Camredon, Marie; Wyche, Kevin P; Carr, Timo; Hornsby, Karen E; Monks, Paul S; Bloss, William J

    2013-11-27

    The gas-phase reaction of ozone with unsaturated volatile organic compounds (VOCs), alkenes, is an important source of the critical atmospheric oxidant OH, especially at night when other photolytic radical initiation routes cannot occur. Alkene ozonolysis is also known to directly form HO2 radicals, which may be readily converted to OH through reaction with NO, but whose formation is poorly understood. We report a study of the radical (OH, HO2, and RO2) production from a series of small alkenes (propene, 1-butene, cis-2-butene, trans-2-butene, 2-methylpropene, 2,3-dimethyl-2-butene (tetramethyl ethene, TME), and isoprene). Experiments were performed in the European Photoreactor (EUPHORE) atmospheric simulation chamber, with OH and HO2 levels directly measured by laser-induced fluorescence (LIF) and HO2 + ΣRO2 levels measured by peroxy-radical chemical amplification (PERCA). OH yields were found to be in good agreement with the majority of previous studies performed under comparable conditions (atmospheric pressure, long time scales) using tracer and scavenger approaches. HO2 yields ranged from 4% (trans-2-butene) to 34% (2-methylpropene), lower than previous experimental determinations. Increasing humidity further reduced the HO2 yields obtained, by typically 50% for an RH increase from 0.5 to 30%, suggesting that HOx production from alkene ozonolysis may be lower than current models suggest under (humid) ambient atmospheric boundary layer conditions. The mechanistic origin of the OH and HO2 production observed is discussed in the context of previous experimental and theoretical studies.

  9. 21 CFR 177.1570 - Poly-1-butene resins and butene/ethylene copolymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... their characteristic infrared spectra. (ii) Viscosity. Poly-1-butene resins and the butene/ethylene copolymers have an intrinsic viscosity 1.0 to 3.2 as determined by ASTM method D1601-78, “Standard Test Method for Dilute Solution Viscosity of Ethylene Polymers,” which is incorporated by reference....

  10. 21 CFR 177.1570 - Poly-1-butene resins and butene/ethylene copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... characteristic infrared spectra. (ii) Viscosity. Poly-1-butene resins and the butene/ethylene copolymers have an intrinsic viscosity 1.0 to 3.2 as determined by ASTM method D1601-78, “Standard Test Method for Dilute Solution Viscosity of Ethylene Polymers,” which is incorporated by reference. Copies may be obtained...

  11. 21 CFR 177.1570 - Poly-1-butene resins and butene/ethylene copolymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... their characteristic infrared spectra. (ii) Viscosity. Poly-1-butene resins and the butene/ethylene copolymers have an intrinsic viscosity 1.0 to 3.2 as determined by ASTM method D1601-78, “Standard Test Method for Dilute Solution Viscosity of Ethylene Polymers,” which is incorporated by reference....

  12. 21 CFR 177.1570 - Poly-1-butene resins and butene/ethylene copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) Viscosity. Poly-1-butene resins and the butene/ethylene copolymers have an intrinsic viscosity 1.0 to 3.2 as determined by ASTM method D1601-78, “Standard Test Method for Dilute Solution Viscosity of Ethylene...

  13. 21 CFR 177.1570 - Poly-1-butene resins and butene/ethylene copolymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... their characteristic infrared spectra. (ii) Viscosity. Poly-1-butene resins and the butene/ethylene copolymers have an intrinsic viscosity 1.0 to 3.2 as determined by ASTM method D1601-78, “Standard Test Method for Dilute Solution Viscosity of Ethylene Polymers,” which is incorporated by reference....

  14. Ignition Kinetics in Fuels Oxidation

    DTIC Science & Technology

    2006-06-01

    2 . 3 . Experimental and...ignition, we have conducted a systematic study on the ignition of the four isomers of butene , namely 1- butene , cis- 2 - butene , trans- 2 - butene , and... butene , 2 - butenes and isobutene. The ignitability of cis- 2 - butene and trans- 2 - butene cannot be compared because the difference between their

  15. Selective Dimerization of Ethylene to 1-Butene with a Porous Catalyst

    PubMed Central

    2016-01-01

    Current heterogeneous catalysts lack the fine steric and electronic tuning required for catalyzing the selective dimerization of ethylene to 1-butene, which remains one of the largest industrial processes still catalyzed by homogeneous catalysts. Here, we report that a metal–organic framework catalyzes ethylene dimerization with a combination of activity and selectivity for 1-butene that is premier among heterogeneous catalysts. The capacity for mild cation exchange in the material MFU-4l (MFU-4l = Zn5Cl4(BTDD)3, H2BTDD = bis(1H-1,2,3-triazolo[4,5-b],[4′,5′-i])dibenzo[1,4]dioxin) was leveraged to create a well-defined and site-isolated Ni(II) active site bearing close structural homology to molecular tris-pyrazolylborate complexes. In the presence of ethylene and methylaluminoxane, the material consumes ethylene at a rate of 41,500 mol per mole of Ni per hour with a selectivity for 1-butene of up to 96.2%, exceeding the selectivity reported for the current industrial dimerization process. PMID:27163041

  16. Adsorption of butane, 2-methylpropane, and 1-butene on activated carbon

    SciTech Connect

    Olivier, M.G.; Berlier, K.; Jadot, R. . Service de Thermodynamique)

    1994-10-01

    Four adsorption isotherms at 278, 288, 293, and 303 K of butane, 2-methylpropane, and 1-butene are obtained on activated carbon. The results at pressures up to 0.8P/P[sub s] are measured on an automated apparatus and correlated by the vacancy solution model of Cochran and Danner. This work aims at determining the influence of a double bond and a branched structure on the adsorption capacity. For their industrial separation by an adsorption process, it is important to have equilibrium data on the same adsorbent and at different temperatures.

  17. SAXS/WAXS studies of shear-induced crystallization of poly(1-butene)

    NASA Astrophysics Data System (ADS)

    Kweon, Mu Sung; Luo, Binbin; Burghardt, Wesley

    Flow-induced crystallization of poly(1-butene) was studied in shear flow. Flow was produced using a Linkam shear cell that has been modified to allow x-ray access for in situ studies of polymer structure using synchrotron x-ray scattering techniques. After loading in the shear cell, samples were first heated well into the melt, and then cooled to a crystallization temperature selected such that negligible quiescent crystallization would occur on reasonable time scales. A short burst of shear flow was then applied at various rates, after which simultaneous wide- and small-angle x-ray scattering (WAXS and SAXS, respectively) data were collected to study the impact of both deformation rate and total applied strain on accelerated crystallization kinetics as well as the morphology of the resulting crystallites (e.g. degree of crystallite orientation). SAXS and WAXS data generally showed qualitative agreement in measures of the extent of crystallization and the degree of crystallite orientation. Average crystallite orientation was found to decrease over the course of crystallization. The crystalline volume fraction in the sample was calculated from the (i) SAXS invariant and (ii) integrated WAXS intensity profile to quantify the extent to which the sample crystallized at various flow c

  18. Epoxidation of 1-butene-3-ol over titanium silicalite TS-2 catalyst under autogenic pressure.

    PubMed

    Wróblewska, Agnieszka; Wajzberg, Joanna; Fajdek, Anna; Milchert, Eugeniusz

    2009-04-30

    Epoxidation of 1-butene-3-ol (1B3O) with 30 wt% hydrogen peroxide over TS-2 catalyst has been studied with methanol as a solvent and at elevated pressure (autogenic). The influence of temperature in the range of 20-120 degrees C, the molar ratio of 1B3O/H(2)O(2) 1:1-5:1, methanol concentration 5-90 wt%, TS-2 catalyst concentration 0.1-5.0 wt% and the reaction time 0.5-5.0 h have been investigated. The process was described by the following functions: the selectivity of transformation to 1,2-epoxybutane-3-ol (1,2EB3) in relation to 1B3O consumed, the selectivity of transformation to organic compounds in relation to H(2)O(2) consumed and the conversions of 1B3O and hydrogen peroxide. The major product of epoxidation is 1,2EB3, a compound with many applications.

  19. Mass spectrum of the 1-butene-3-yne-2-yl radical (i-C4H3; X2A')

    NASA Astrophysics Data System (ADS)

    Guo, Ying; Gu, Xibin; Kaiser, Ralf I.

    2006-03-01

    The crossed molecular beams method has been applied to produce the 1-butene-3-yne-2-yl radical, i-C4H3(X2A') under single collision conditions via the reaction of dicarbon molecules with ethylene. We recorded time-of-flight spectra of the radical at the center-of-mass angle (28.0°) of the parent ion (m/z = 51; C4H3+) and of the fragments at m/z = 50 (C4H2+), m/z = 49 (C4H+), m/z = 48 (C4+), m/z = 39 (C3H3+), m/z = 38 (C3H2+), m/z = 37 (C3H+), and m/z = 36 (C3+). This yielded relative intensity ratios of I(m/z = 51):I(m/z = 50):I(m/z = 49):I(m/z = 48):I(m/z = 39):I(m/z = 38):I(m/z = 37):I(m/z = 36) = 0.47 +/- 0.01:0.94 +/- 0.01:1.0:0.07 +/- 0.02:0.31 +/- 0.01:0.23 +/- 0.02:0.24 +/- 0.01:0.12 +/- 0.01 at 70 eV electron impact energy. Upper limits at mass-to-charge ratios between 27 and m/z = 24 and m/z = 14-12 were derived to be 0.02 +/- 0.01. Note that the intensity of the 13C isotopic peak of the 1-butene-3-yne-2-yl radical at m/z = 52 (13C12C3H3+) is about 0.04 +/- 0.01 relative to m/z = 51. Employing linear scaling methods, the absolute electron impact ionization cross section of the 1-butene-3-yne-2-yl radical was computed to be 7.8 +/- 1.6 × 10-16 cm2. These data can be employed to monitor the 1-butene-3-yne-2-yl radical in oxygen-poor combustion flames and in the framework of prospective explorations of planetary atmospheres (Jupiter, Saturn, Uranus, Neptune, Pluto) and of their moons (Titan, Triton, Oberon) in situ via matrix interval arithmetic assisted mass spectrometry.

  20. Synthesis of Lipid Based Polyols from 1-butene Metathesized Palm Oil for Use in Polyurethane Foam Applications

    NASA Astrophysics Data System (ADS)

    Sasidharan Pillai, Prasanth Kumar

    This thesis explores the use of 1-butene cross metathesized palm oil (PMTAG) as a feedstock for preparation of polyols which can be used to prepare rigid and flexible polyurethane foams. PMTAG is advantageous over its precursor feedstock, palm oil, for synthesizing polyols, especially for the preparation of rigid foams, because of the reduction of dangling chain effects associated with the omega unsaturated fatty acids. 1-butene cross metathesis results in shortening of the unsaturated fatty acid moieties, with approximately half of the unsaturated fatty acids assuming terminal double bonds. It was shown that the associated terminal OH groups introduced through epoxidation and hydroxylation result in rigid foams with a compressive strength approximately 2.5 times higher than that of rigid foams from palm and soybean oil polyols. Up to 1.5 times improvement in the compressive strength value of the rigid foams from the PMTAG polyol was further obtained following dry and/or solvent assisted fractionation of PMTAG in order to reduce the dangling chain effects associated with the saturated components of the PMTAG. Flexible foams with excellent recovery was achieved from the polyols of PMTAG and the high olein fraction of PMTAG indicating that these bio-derived polyurethane foams may be suitable for flexible foam applications. PMTAG polyols with controlled OH values prepared via an optimized green solvent free synthetic strategy provided flexible foams with lower compressive strength and higher recovery; i.e., better flexible foam potential compared to the PMTAG derived foams with non-controlled OH values. Overall, this study has revealed that the dangling chain issues of vegetable oils can be addressed in part using appropriate chemical and physical modification techniques such as cross metathesis and fractionation, respectively. In fact, the rigidity and the compressive strength of the polyurethane foams were in very close agreement with the percentage of terminal

  1. Electrical conductivity and equation of state of liquid nitrogen, oxygen, benzene, and 1-butene shocked to 60 GPa

    SciTech Connect

    Hamilton, D.C.

    1986-10-08

    Measurements are reported for the electrical conductivity of liquid nitrogen (N/sub 2/), oxygen (O/sub 2/) and benzene (C/sub 6/H/sub 6/), and Hugoniot equation of state of liquid 1-butene (C/sub 4/H/sub 8/) under shock compressed conditions. The conductivity data span 7 x 10/sup -4/ to 7 x 10/sup 1/ ..cap omega../sup -1/cm/sup -1/ over a dynamic pressure range 18.1 to 61.5 GPa and are discussed in terms of amorphous semiconduction models which include such transport phenomena as hopping, percolation, pseudogaps, and metallization. Excellent agreement is found between the equation-of-state measurements, which span a dynamic pressure range 12.3 to 53.8 GPa, and Ree's calculated values which assume a 2-phase mixture consisting of molecular hydrogen and carbon in a dense diamond-like phase. There is a 2-1/2 fold increase in the thermal pressure contribution over a less dense, stoichiometrically equivalent liquid. 90 refs., 48 figs., 8 tabs.

  2. Preparation, microstructure, and piezoresistive behavior of conductive nanocomposite foams based on poly(1-butene) and carbon black

    NASA Astrophysics Data System (ADS)

    Suo, Qianqian; Zhang, Junying; Cheng, Jue; Shi, Ling

    2017-01-01

    The pressure-sensitive nanocomposite foams based on thermoplastic poly(1-butene) (PB) and carbon black (CB) were prepared through melt blending, followed by a foaming process in supercritical carbon dioxide (CO2). The morphology and microstructure of nanocomposite foams were investigated with scanning electronic micrography, and the results indicated that the cellular structure and density of nanocomposite foams were strongly dependent on the CB content. The nanocomposite foams achieved a uniform cellular structure with a minimum cell size of 57.98 μm and a maximum cell density of 2.99 × 107 cells/cm3 at a CB content of 6 wt%. The nanocomposite foams also presented a percolation threshold at this CB content and obtained good electrical conduction when the CB content is higher than 6 wt%. The conductive sensitivity to mechanical stimulus for nanocomposite foams induced by uniaxial compression was investigated. The nanocomposite foams were found to exhibit a high stability of electrical resistance response during the multicyclic compressive loading-unloading process. The nanocomposite foams developed by this work show potential applications for strain sensors under compression deformation.

  3. Evaluated kinetics of terminal and non-terminal addition of hydrogen atoms to 1-alkenes: a shock tube study of H + 1-butene.

    PubMed

    Manion, Jeffrey A; Awan, Iftikhar A

    2015-01-22

    Single-pulse shock tube methods have been used to thermally generate hydrogen atoms and investigate the kinetics of their addition reactions with 1-butene at temperatures of 880 to 1120 K and pressures of 145 to 245 kPa. Rate parameters for the unimolecular decomposition of 1-butene are also reported. Addition of H atoms to the π bond of 1-butene results in displacement of either methyl or ethyl depending on whether addition occurs at the terminal or nonterminal position. Postshock monitoring of the initial alkene products has been used to determine the relative and absolute reaction rates. Absolute rate constants have been derived relative to the reference reaction of displacement of methyl from 1,3,5-trimethylbenzene (135TMB). With k(H + 135TMB → m-xylene + CH3) = 6.7 × 10(13) exp(-3255/T) cm(3) mol(-1) s(-1), we find the following: k(H + 1-butene → propene + CH3) = k10 = 3.93 × 10(13) exp(-1152 K/T) cm(3) mol(-1) s(-1), [880-1120 K; 145-245 kPa]; k(H + 1-butene → ethene + C2H5) = k11 = 3.44 × 10(13) exp(-1971 K/T) cm(3) mol(-1) s(-1), [971-1120 K; 145-245 kPa]; k10/k11 = 10((0.058±0.059)) exp [(818 ± 141) K/T), 971-1120 K. Uncertainties (2σ) in the absolute rate constants are about a factor of 1.5, while the relative rate constants should be accurate to within ±15%. The displacement rate constants are shown to be very close to the high pressure limiting rate constants for addition of H, and the present measurements are the first direct determination of the branching ratio for 1-olefins at high temperatures. At 1000 K, addition to the terminal site is favored over the nonterminal position by a factor of 2.59 ± 0.39, where the uncertainty is 2σ and includes possible systematic errors. Combining the present results with evaluated data from the literature pertaining to temperatures of <440 K leads us to recommend the following: k∞(H + 1-butene → 2-butyl) = 1.05 × 10(9)T(1.40) exp(-366/T) cm(3) mol(-1) s(-1), [220-2000 K]; k∞(H + 1-butene → 1

  4. Comparison of two-body and three-body decomposition of ethanedial, propanal, propenal, n-butane, 1-butene, and 1,3-butadiene

    NASA Astrophysics Data System (ADS)

    Chin, Chih-Hao; Lee, Shih-Huang

    2012-01-01

    We investigated two-body (binary) and three-body (triple) dissociations of ethanedial, propanal, propenal, n-butane, 1-butene, and 1,3-butadiene on the ground potential-energy surfaces using quantum-chemical and Rice-Ramsperger-Kassel-Marcus calculations; most attention is paid on the triple dissociation mechanisms. The triple dissociation includes elimination of a hydrogen molecule from a combination of two separate terminal hydrogen atoms; meanwhile, the rest part simultaneously decomposes to two stable fragments, e.g., C2H4, C2H2, or CO. Transition structures corresponding to the concerted triple dissociation were identified using the B3LYP/6-311G(d,p) level of theory and total energies were computed using the method CCSD(T)/6-311+G(3df, 2p). The forward barrier height of triple dissociation has a trend of ethanedial < propanal < propenal < n-butane < 1-butene < 1,3-butadiene, pertaining to the reaction enthalpy. Ratios of translational energies of three separate fragments could be estimated from the transition structure of triple dissociation. The synchronous concerted dissociation of propanal, propenal, and 1-butene leading to three different types of molecular fragments by breaking nonequivalent chemical bonds is rare. The triple dissociation of propanal, n-butane, 1-butene, and 1,3-butadiene were investigated for the first time. To outline a whole picture of dissociation mechanisms, some significant two-body dissociation channels were investigated for the calculations of product branching ratios. The triple dissociation plays an important role in the three carbonyl compounds, but plays a minor or negligible role in the three hydrocarbons.

  5. Comparison of two-body and three-body decomposition of ethanedial, propanal, propenal, n-butane, 1-butene, and 1,3-butadiene.

    PubMed

    Chin, Chih-Hao; Lee, Shih-Huang

    2012-01-14

    We investigated two-body (binary) and three-body (triple) dissociations of ethanedial, propanal, propenal, n-butane, 1-butene, and 1,3-butadiene on the ground potential-energy surfaces using quantum-chemical and Rice-Ramsperger-Kassel-Marcus calculations; most attention is paid on the triple dissociation mechanisms. The triple dissociation includes elimination of a hydrogen molecule from a combination of two separate terminal hydrogen atoms; meanwhile, the rest part simultaneously decomposes to two stable fragments, e.g., C(2)H(4), C(2)H(2), or CO. Transition structures corresponding to the concerted triple dissociation were identified using the B3LYP/6-311G(d,p) level of theory and total energies were computed using the method CCSD(T)/6-311+G(3df, 2p). The forward barrier height of triple dissociation has a trend of ethanedial < propanal < propenal < n-butane < 1-butene < 1,3-butadiene, pertaining to the reaction enthalpy. Ratios of translational energies of three separate fragments could be estimated from the transition structure of triple dissociation. The synchronous concerted dissociation of propanal, propenal, and 1-butene leading to three different types of molecular fragments by breaking nonequivalent chemical bonds is rare. The triple dissociation of propanal, n-butane, 1-butene, and 1,3-butadiene were investigated for the first time. To outline a whole picture of dissociation mechanisms, some significant two-body dissociation channels were investigated for the calculations of product branching ratios. The triple dissociation plays an important role in the three carbonyl compounds, but plays a minor or negligible role in the three hydrocarbons.

  6. Determination of thermodynamic properties of isotactic poly(1-butene) at infinite dilution using density and inverse gas chromatography.

    PubMed

    Kozłowska, Marta Karolina; Domańska, Urszula; Lempert, Małgorzata; Rogalski, Marek

    2005-03-18

    The partial molar volumes, V1(M), and the molar volume of isotactic crystalline low-molecular-weight poly(1-butene), iPBu-1, V1, have been calculated from the measured density of {iPBu-1 + solvent (n-hexane, n-heptane, n-nonane, n-decane, p-xylene, cyclohexane and chloroform)} systems. Some of the thermodynamic quantities were also obtained for the iPBu-1 with eight hydrocarbons (n-octane, n-decane, n-undecane, n-dodecane, n-tridecane, o-xylene, m-xylene, p-xylene) by the method of inverse gas chromatography at various temperatures. The weight fraction activity coefficients of the solvent at infinite dilution, omega2(infinity) and the Flory-Huggins thermodynamic interaction parameters, chi21(infinity), between polymer and solvents were determined. The partial molar free energy, deltaG2(infinity), the partial molar heat of mixing, deltaH2(infinity), at infinite dilution and the polymer solubility parameter, delta1, were calculated. Additionally, the (solid + liquid) binary mixtures equilibria, SLE, of iPBu-1 with three hydrocarbons (n-octane, n-decane and m-xylene) were studied by a dynamic method. By performing these experiments over a large concentration range, the T-x phase diagrams of the polymer-solvent systems were constructed. The excess Gibbs energy models were used to describe the nonideal behaviour of the liquid phase. The omega2(infinity) were determined from the solubility measurements and were predicted by using the UNIFAC FV model.

  7. Syntheses and pyrolyses of furan analogues of α-oxo-o-quinodimethanes. Formation of methylenecyclobutenone and 1-buten-3-yne via a vinylcarbene-cyclopropene rearrangement.

    PubMed

    Tseng, Pen-Wen; Kung, Chen-Yu; Chen, Hsing-Yin; Chou, Chin-Hsing

    2011-10-21

    Flash vacuum pyrolyses (FVP) of benzoic 2-methyl-3-furoic anhydride (12) and benzoic 3-methyl-2-furoic anhydride (13) at 550 °C and ca. 10(-2) Torr both give methylenecyclobutenone (16) and 1-buten-3-yne (17) as the main products. A mechanism involving generation of furan analogues of α-oxo-o-quinodimethane, 10 and 11, from FVP of 12 and 13, respectively, followed by elimination of a CO molecule to give the respective carbenes 34 and 36 is proposed. Carbenes 34 and 36 are interconvertible via a cyclopropene intermediate 35. A ring contraction from 36 will give 16, whereas a ring-opening of 34 followed by elimination of a CO molecule then leads to 17. The proposed mechanism is supported by substituent- and deuterium-labeling study on FVP of the derivatives of 12.

  8. High selectivity production of propylene from 2-butene: non-degenerate pathways to convert symmetric olefins via olefin metathesis.

    PubMed

    Mazoyer, Etienne; Szeto, Kai C; Basset, Jean-Marie; Nicholas, Christopher P; Taoufik, Mostafa

    2012-04-14

    The first example of propylene production from 2-butene in promising yield is described by reacting trans-2-butene over tungsten hydrides precursor W-H/Al(2)O(3) at 150 °C and different pressures in a continuous flow reactor. The tungsten carbene-hydride active site operates as a "bi-functional catalyst" through the disfavoured 2-butene isomerisation on W-hydride and 2-butenes/1-butene cross-metathesis on W-carbene.

  9. Population of the 3s state in hydrogen due to H/sup +/, H/sub 2//sup +/ and H/sub 3//sup +/ impact on ethylene, 1-butene and cis-2-butene

    SciTech Connect

    Loyd, D.H.; Dawson, H.R.

    1983-04-01

    Absolute cross sections were measured for capture or dissociation into the 3s state of atomic hydrogen due to impact of 14-28 keV H/sup +/, H/sup +//sub 2/ and H/sup +//sub 3/ ions on ethylene, 1-butene and cis-2-butene. The cross sections obtained for the butene targets were almost identical and support the additive rule for cross sections. Ethylene cross sections were 21% lower than the values predicted by the additive rule, which agrees well with the observed trend toward reduction in total electron capture cross sections for protons on these gases at much higher energies.

  10. Hydrogenolysis and homologation of 3,3-dimethyl-1-butene on Ru/SiO{sub 2} catalyst: Implications for the mechanism of carbon-carbon bond formation and cleavage on metal surfaces

    SciTech Connect

    Toyir, J.; Leconte, M.; Niccolai, G.P.; Basset, J.M.

    1995-04-01

    The reactions of 3,3-dimethyl-1-butene (neohexene) with hydrogen in the presence of zero-valent ruthenium metal particles supported on silica are reported. The predominant reaction is the hydrogenation of neohexene to neohexane. Simultaneous but slower homologation and hydrogenolysis reactions are reported. The homologation and hydrogenolysis reactions run at approximately equal rates, suggesting a mechanistic link between the two processes. The relative quantities of C{sub 1}-C{sub 5} and C{sub 7} products and the variation of these quantities with respect to varying temperature, neohexene/hydrogen ratio, and contact time are reported. The distribution of the primary products, neopentane, isobutene, and methane for hydrogenolysis and 2,2-dimethyl pentane, 2,2,3-trimethyl butane, and 4,4-dimethyl-1-pentene for homologation is discussed in terms of current thought on the mechanism of homologation and hydrogenolysis of alkanes. The most likely and strongly indicated mechanism for the hydrogenolysis of neohexene involves the deinsertion of a methylidene fragment from a ruthenium-neohexyl intermediate which is also an intermediate in the hydrogenation of neohexene. The distribution of C{sub 7} homologation products does not allow one to distinguish between a simple insertion mechanism and a mechanism passing through a metallacyclic intermediate. 19 refs., 10 figs.

  11. Unsaturated hydrocarbons adsorbed on low coordinated Pd surface: A periodic DFT study

    NASA Astrophysics Data System (ADS)

    Belelli, Patricia G.; Ferullo, Ricardo M.; Castellani, Norberto J.

    2010-02-01

    In this work, the adsorption of several unsaturated hydrocarbon molecules on a stepped Pd(4 2 2) surface was studied. Using a periodic method based on the Density Functional Theory (DFT) formalism, different adsorption geometries for ethylene, three butene isomers ( cis/ trans-2-butene and 1-butene), acetylene and 2-butyne were investigated. The results were compared with those obtained for a free defect surface as Pd(1 1 1). The 1-butene is more stable on the free defect surface than on Pd(4 2 2). On the stepped surface, the olefins adsorb tilted towards the step and increases, in almost all the cases, the magnitude of the adsorption energy. Conversely, the 3-fold site is the most stable for the alkynes adsorption on the stepped surface, as it was found on Pd(1 1 1). The analysis of the dipole moment change indicate a charge transfer from the double bond of the olefin to the metallic surface, being higher for the Pd(1 1 1) surface. In case of the alkynes, an important back-donation is produced. Except the alkynes and the 1-butene molecule, the results show the preference of ethylene and cis/ trans-2-butene to be adsorbed on the stepped surface. These observations are related with experimental catalytic results.

  12. Stabilization and isomerization of radical cations generated by fast electron irradiation of unsaturated organic molecules in a solid argon matrix

    NASA Astrophysics Data System (ADS)

    Feldman, V. I.; Sukhov, F. F.; Orlov, A. Yu.; Tyulpina, I. V.; Ivanchenko, V. K.

    2006-01-01

    Matrix isolation EPR spectroscopy was used to study the fate of "hot" unsaturated radical cations produced by fast electron irradiation in solid argon. It was found that the radical cations of cis-2-butene, trans-2-butene and ethyl vinyl ether resulting from highly exothermic hole transfer (excess energy>6 eV) underwent effective relaxation in an argon matrix. 1-Butene radical cation exhibits isomerization to cis-2-butene radical cation. The role of molecular structure of organic radical cations in excess energy relaxation is discussed.

  13. Processing-structure-property studies of: (I) submicron polymeric fibers produced by electrospinning and (II) films of linear low density polyethylenes as influenced by the short chain branch length in copolymers of ethylene/1-butene, ethylene/1-hexene and ethylene/1-octene synthesized by a single site metallocene catalyst

    NASA Astrophysics Data System (ADS)

    Gupta, Pankaj

    The overall theme of the research discussed in this dissertation has been to explore processing-structure-property relationships for submicron polymeric fibers produced by electrospinning (Part I) and to ascertain whether or not the length of the short chain branch has any effect on the physical properties of films of linear low-density polyethylenes (LLDPEs) (Part II). The research efforts discussed in Part I of this dissertation relate to some fundamental as well as more applied investigations involving electrospinning. These include investigating the effects of solution rheology on fiber formation and developing novel methodologies to fabricate polymeric mats comprising of high specific surface submicron fibers of more than one polymer, high chemical resistant substrates produced by in situ photo crosslinking during electrospinning, superparamagnetic flexible substrates by electrospinning a solution of an elastomeric polymer containing ferrite nanoparticles of Mn-Zn-Ni and substrates for filtration applications. Bicomponent electrospinning of poly(vinyl chloride)-polyurethane and poly(vinylidiene fluoride)-polyurethane was successfully performed. In addition, filtration properties of single and bicomponent electrospun mats of polyacrylonitrile and polystyrene were investigated. Results indicated lower aerosol penetration or higher filtration efficiencies of the filters based on submicron electrospun fibers in comparison to the conventional filter materials. In addition, Part II of this dissertation explores whether or not the length of the short chain branch affects the physical properties of blown and compression molded films of LLDPEs that were synthesized by a single site metallocene catalyst. Here, three resins based on copolymers of ethylene/1-butene, ethylene/1-hexene, and ethylene/1-octene were utilized that were very similar in terms of their molecular weight and distribution, melt rheology, density, crystallinity and short chain branching content and

  14. Formation of {beta}-hydroxycarbonyls from the OH radical-initiated reactions of selected alkenes

    SciTech Connect

    Aschmann, S.M.; Arey, J.; Atkinson, R.

    2000-05-01

    {beta}-Hydroxycarbonyls can be formed from the gas-phase reactions of alkenes with the OH radical, both in the presence and in the absence of NO. To date, because of analytical difficulties, few data have been reported for the formation of this class of compound from the reactions of the OH radical with alkenes. The authors have determined that {beta}-hydroxy-ketones can be readily analyzed by gas chromatography, and in this work they have shown that in 1 atm of air the {beta}-hydroxyalkoxy radicals formed in the reactions of the OH radical with trans-2-butene, trans-3-hexene, 1-butene, and {alpha}-pinene in the presence of NO primarily decompose rather than react with O{sub 2}. Rate constant ratios k{sub d}/k{sub 0{sub 2}} (or lower limits thereof), where k{sub d} and k{sub 0{sub 2}} are respectively the rate constants for the decomposition and the reaction with 0{sub 2} of the intermediate {beta}-hydroxyalkoxy radicals, have been obtained for the reactions of the CH{sub 3}CH(O)CH-(OH)CH{sub 3}, CH{sub 3}CH{sub 2}CH(O)CH{sub 2}OH, and CH{sub 3}CH{sub 2}CH(O)CH(OH)CH{sub 2}-CH{sub 3} radicals at 296 {+-} 2 K and atmospheric pressure. Using the O{sub 3} reactions with the alkenes to generate OH radicals, the reactions of the OH radical to generate OH radicals, the reactions of the OH radical with trans-2-butene, trans-3-hexene, and {alpha}-pinene in the absence of NO lead to the formation of the expected {beta}-hydroxycarbonyls and (at least for trans-2-butene) the {alpha},{beta}-diol.

  15. Reactions of OH with Butene Isomers. Measurements of the Overall Rates and a Theoretical Study

    SciTech Connect

    Vasu, Subith; Huynh, Lam; Davidson, David F.; Hanson, Ronald K.; Golden, David

    2011-03-09

    Reactions of hydroxyl (OH) radicals with 1-butene (k1), trans-2-butene (k2), and cis-2-butene (k3) were studied behind reflected shock waves over the temperature range 880-1341 K and at pressures near 2.2 atm. OH radicals were produced by shock-heating tert-butyl hydroperoxide, (CH3)3-CO-OH, and monitored by narrow-line width ring dye laser absorption of the well-characterized R1(5) line of the OH A-X (0, 0) band near 306.7 nm. OH time histories were modeled using a comprehensive C5 oxidation mechanism, and rate constants for the reaction of OH with butene isomers were extracted by matching modeled and measured OH concentration time histories. We present the first high-temperature measurement of OH + cis-2-butene and extend the temperature range of the only previous high-temperature study for both 1-butene and trans-2-butene. With the potential energy surface calculated using CCSD(T)/6-311++G(d,p)//QCISD/6-31G(d), the rate constants and branching fractions for the H-abstraction channels of the reaction of OH with 1-butene were calculated in the temperature range 300-1500 K. Corrections for variational and tunneling effects as well as hindered-rotation treatments were included. The calculations are in good agreement with current and previous experimental data and with a recent theoretical study.

  16. Mesophases in polyethylene, polypropylene, and poly(1-butene)

    SciTech Connect

    Androsch, Rene J; Di Lorenzo, Maria; Schick, Christoph; Wunderlich, Bernhard {nmn}

    2010-01-01

    This paper contains new views about the amorphous and partially ordered phases of the three polymers listed in the title. The discussion is based on information on structure, thermodynamic stability, and large-amplitude molecular motion. Polyethylene is the basic backbone of all alkene polymers, and the other two are the first members of the vinyl polymers which have stereospecifically placed alkyl side chains. Their multiphase structures consist of metastable crystals, mesophases, and surrounding rigid and mobile amorphous fractions. All these phases have sizes ranging from micrometer dimensions down to nanometers. Besides the phase structures, information about the molecular coupling between the phases must be considered. Depending on temperature, the polymer phases can vary from solid (rigid) to liquid (mobile). New knowledge is also gained by cross-comparison of the title polymers. The experimental information was gained from (a) various forms of slow, fast, and temperature-modulated thermal analysis to identify equilibrium and non-equilibrium states, (b) measurement of structure and morphology at various length scales, and (c) tracing of the large-amplitude molecular motion, the kinetics of order/disorder changes, and the liquid/solid transitions (glass transitions). It is shown that much more needs to be known about the various phases and their coupling to characterize a given polymer and to fine-tune its properties for a given application.

  17. Combustion Products Evaluation from Hull Insulation Materials Coated with Fire Retardant Paints.

    DTIC Science & Technology

    1980-09-08

    Heat Test (Hydrogen Torch Test) Ethane, Ethylene 0.8(1.2) 0.4 (1.4) 1.3 Propane, Propylene 0.3 (0.3) 0.2 (0.5) 0.9 1-Butene, 2-Methylpropene 8.5 40.7...2,2-Dimethylhexane (0.1) 0.2 (0.1) 0.3 Octene -1 0.5 - - Cycloheptane 0.4(4-) 0.2 (4-) 0.2 Octane (+-) (+-) Octene -2 (M- (4-) 4-Ethylcyclohexene...Heat Test (Hydrogen Torch Test) Methane 0.3 0.3 Ethane, Ethylene 2.7 (0.7) (1.0) Propane, Propylene 0.8 40.2) 0.2 (0.2) Isobutane -+ 1-Butene, 2

  18. Laboratory spectroscopic analyses of electron irradiated alkanes and alkenes in solar system ices

    NASA Astrophysics Data System (ADS)

    Hand, K. P.; Carlson, R. W.

    2012-03-01

    We report results from laboratory experiments of 10 keV electron irradiation of thin ice films of water and short-chain hydrocarbons at ˜10-8 Torr and temperatures ranging from 70-100 K. Hydrocarbon mixtures include water with C3H8, C3H6, C4H10 (butane and isobutane), and C4H8, (1-butene and cis/trans-2-butene). The double bonds of the alkenes in our initial mixtures were rapidly destroyed or converted to single carbon bonds, covalent bonds with hydrogen, bonds with -OH (hydroxyl), bonds with oxygen (C-O), or double bonds with oxygen (carbonyl). Spectra resulting from irradiation of alkane and alkene ices are largely indistinguishable; the initial differences in film composition are destroyed and the resulting mixture includes long-chain, branched aliphatics, aldehydes, ketones, esters, and alcohols. Methane was observed as a product during radiolysis but CO was largely absent. We find that while some of the carbon is oxidized and lost to CO2 formation, some carbon is sequestered into highly refractory, long-chain aliphatic compounds that remain as a thin residue even after the ice film has been raised to standard temperature and pressure. We conclude that the high availability of hydrogen in our experiments leads to the formation of the formyl radical which then serves as the precursor for formaldehyde and polymerization of longer hydrocarbon chains.

  19. Adsorption of alkenes on acidic zeolites. Theoretical study based on the electron charge density.

    PubMed

    Zalazar, M Fernanda; Duarte, Darío J R; Peruchena, Nélida M

    2009-12-10

    In the present work, experiments on electron density changes in the adsorption process of alkenes on acidic zeolites, in the framework of atoms in molecules theory (AIM), were carried out. Electron densities were obtained at MP2 and B3LYP levels using a 6-31++G(d,p) basis set. This study explores the energetic and the electron density redistributions associated with O-H...pi interactions. The main purpose of this work is to provide an answer to the following questions: (a) Which and how large are the changes induced on the molecular electron distribution by the formation of adsorbed alkenes? (b) Can a reasonable estimate of the adsorption energy of alkenes on the active site of zeolite be solely calculated from an analysis of the electron densities? We have used topological parameters to determine the strength and nature of the interactions in the active site of the zeolite. All the results derived from the electron density analysis show that the stabilization of the adsorbed alkenes follows the order isobutene > trans-2-butene congruent with 1-butene congruent with propene > ethene, reflecting the order of basicity of C=C bonds, i.e., (C(ter)=C(prim)) > (C(sec)=C(sec)) congruent with (C(prim)=C(sec)) > (C(prim)=C(prim)). In addition, we have found a useful set of topological parameters that are good for estimating the adsorption energy in adsorbed alkenes.

  20. Carbon K-shell electron energy loss spectra of 1- and 2-butenes, trans-1,3-butadiene, and perfluoro-2-butene. Carbon-carbon bond lengths from continuum shape resonances

    NASA Astrophysics Data System (ADS)

    Hitchcock, A. P.; Beaulieu, S.; Steel, T.; Stöhr, J.; Sette, F.

    1984-05-01

    Electron energy loss spectra of 1-butene, cis-2-butene, trans-2-butene, trans-1,3-butadiene, and perfluoro-2-butene in the region of carbon K-shell (C 1s) excitation and ionization have been recorded under dipole-dominated inelastic electron scattering conditions. The features observed below the C 1s I.P. in the spectra of the butenes and butadiene are assigned to promotions of C 1s electrons to unoccupied valence (π*) and Rydberg orbitals while broad features observed above the edge are assigned to σ(C-C) and σ(C-C) shape resonances. These spectra, along with carbon K-shell spectra of other hydrocarbons, are used to demonstrate that there is a quantitative relationship between carbon-carbon bond lengths and the location of σ shape resonances relative to the C 1s ionization threshold (I.P.). The C 1s spectrum of perfluoro-2-butene demonstrates dramatic potential barrier effects, namely suppression of Rydberg transitions and strong enhancement of σ(C-C) and σ(C-F) shape resonances in the region of the C 1s ionization threshold.

  1. Semiconductor-olefin adducts. Photoluminescent properties of cadmium sulfide and cadmium selenide in the presence of butenes

    SciTech Connect

    Meyer, G.J.; Leung, L.K.; Ellis, A.B. ); Yu, J.C. ); Lisensky, G.C. )

    1989-07-05

    Direct evidence for adduct formation between butenes and etched, single-crystal n-CdS and n-CdSe (CdS(e)) surfaces has been obtained from photoluminescence (PL) measurements. Exposure of CdS(e) to butenes causes enhancement of the solids' band edge PL relative to a N{sub 2} ambient. For 30% mixtures of the olefins in N{sub 2}, the magnitude of the enhancement follows the order 1,3-butadiene > cis-2-butene {approximately} trans-2-butene > isobutylene {approximately} 1-butene and correlates with the olefin basicities, on the basis of photoionization potentials. Enhancements in PL intensity can be fit to a dead-layer model, allowing the determination of the reduction in depletion width in the semiconductor resulting from olefin exposure; depletion width reductions reach a few hundred angstroms for adducts of 1,3-butadiene with CdS(e). The PL changes were used in conjunction with the Langmuir adsorption isotherm model to yield equilibrium constants for adduct formation of 1,3-butadiene with CdS(e) of 9 {plus minus} 4 atm{sup {minus}1} at 293 K. Surface interactions that may contribute to the observed PL changes are discussed.

  2. Effects of Beijing Olympics control measures on reducing reactive hydrocarbon species.

    PubMed

    Min, Shao; Bin, Wang; Sihua, Lu; Bin, Yuan; Ming, Wang

    2011-01-15

    Stringent air-quality control measures were implemented for the 2008 Beijing Olympic Games. This large-scale manmade experiment provided an opportunity to evaluate the effectiveness of measures to reduce the reactivity of hydrocarbons (HCs) from emission sources, which is important for ground-level ozone abatement. Photochemical initial concentrations (PICs), i.e., the levels of HCs from sources before undergoing chemical reactions, were calculated from ambient measurements. PICs obtained using the ratio method for HCs and the sequential reaction model for alkyl nitrates were in good agreement. Propene, 1-butene, iso-butene, trans-2-butene, cis-2-butene, trans-2-pentene, and m,p-xylene were identified as key reactive species in terms of their photochemical consumptions and correspondent ozone formation potentials (OFPs). During the Olympics and Paralympics, the PICs of these seven species were reduced by 27-66%, contributing 20% to the reduction in total PICs and 60% to the reduction in total OFP compared with June levels. Source apportionments from the chemical mass balance model indicated that gasoline vehicle exhaust was the predominant contributor to the key reactive species (45-78%). Reductions of gasoline vehicle exhaust during the Olympics and Paralympics explained 53-77% and 59-68% of the reductions in PICs of the key reactive HCs and total OFP, respectively.

  3. New optimization method for intermolecular potentials: Optimization of a new anisotropic united atoms potential for olefins: Prediction of equilibrium properties

    NASA Astrophysics Data System (ADS)

    Bourasseau, Emeric; Haboudou, Mehalia; Boutin, Anne; Fuchs, Alain H.; Ungerer, Philippe

    2003-02-01

    In this study, we propose a new global procedure to perform optimization of semiempirical intermolecular potential parameters on the basis of a large reference database. To obtain transferable parameters, we used the original method proposed by Ungerer [Ungerer et al., J. Chem. Phys. 112, 5499 (2000)], based on the minimization of a dimensionless error criterion. This method allows the simultaneous optimization of several parameters from a large set of reference data. However, the computational cost of such a method limits its application, because it implies the calculation of an important number of partial derivatives, calculated by finite differences between the results of several different simulations. In this work, we propose a new method to evaluate partial derivatives, in order to reduce the computing time and to obtain more consistent derivatives. This method is based on the analysis of statistical fluctuations during a single simulation. To predict equilibrium properties of olefins, we optimize the Lennard-Jones potential parameters of the unsaturated hydrocarbon groups using the anisotropic united atoms description. The resulting parameters are consistent with those previously determined for linear and branched alkanes. Test simulations have been performed at temperatures ranging from 150 to 510 K for several α-olefins (ethylene, propene, 1-butene, 1-pentene, 1-hexene, 1-octene), several β-olefins (trans-2-butene, cis-2-butene, trans-2-pentene), isobutene, and butadiene. Equilibrium properties are well predicted, and critical properties can be evaluated with a good accuracy, despite the fact that most of the results constitute pure predictions. It is concluded that the AUA potential, due to a relevant physical meaning, can be transferred to a large range of olefins with good success.

  4. Sources of C₂-C₄ alkenes, the most important ozone nonmethane hydrocarbon precursors in the Pearl River Delta region.

    PubMed

    Zhang, Yanli; Wang, Xinming; Zhang, Zhou; Lü, Sujun; Huang, Zhonghui; Li, Longfeng

    2015-01-01

    Surface ozone is becoming an increasing concern in China's megacities such as the urban centers located in the highly industrialized and densely populated Pearl River Delta (PRD) region, where previous studies suggested that ozone production is sensitive to VOC emissions with alkenes being important precursors. However, little was known about sources of alkenes. Here we present our monitoring of ambient volatile organic compounds at four representative urban, suburban and rural sites in the PRD region during November-December 2009, which experienced frequent ozone episodes. C2-C4 alkenes, whose total mixing ratios were 11-20% of non-methane hydrocarbons (NMHCs) quantified, accounted for 38-64% of ozone formation potentials (OFPs) and 30-50% of the total hydroxyl radical (OH) reactivity by NMHCs. Ethylene was the most abundant alkene, accounting for 8-15% in total mixing ratios of NMHCs and contributed 25-46% of OFPs. Correlations between C2-C4 alkenes and typical source tracers suggested that ethylene might be largely related to vehicle exhausts and industry activities, while propene and butenes were much more LPG-related. Positive Matrix Factorization (PMF) confirmed that vehicle exhaust and liquefied petroleum gas (LPG) were two major sources that altogether accounted for 52-62%, 58-77%, 73-83%, 68-79% and 73-84% for ethylene, propene, 1-butene, trans-2-butene and cis-2-butene, respectively. Vehicle exhausts alone contributed 32-49% ethylene and 35-41% propene. Industry activities contributed 13-23% ethylene and 7-20% propene. LPG instead contributed the most to butenes (38-65%) and substantially to propene (23-36%). Extensive tests confirmed high fractions of propene and butenes in LPG then used in Guangzhou and in LPG combustion plumes; therefore, limiting alkene contents in LPG would benefit regional ozone control.

  5. Comparison of Spring and Summer Hydroxyl Concentrations in the Snowpack at Summit, Greenland

    NASA Astrophysics Data System (ADS)

    Beyersdorf, A.; Blake, N.; Swanson, A.; Meinardi, S.; Dibb, J.; Blake, D. R.; Rowland, F.

    2004-12-01

    The concentration of hydroxyl radical in near-surface snowpack at Summit, Greenland (72\\deg34' N, 38\\deg28' W) was estimated during two field campaigns. The first took place in the summer (2003) when hydroxyl radical should be at its peak due to 24 hours of sunlight. The second occurred in the spring (mid-March through April) of 2004, a period when Summit goes from 12 hours of sunlight to near complete sunlight and experiences rapidly changing photochemistry. The experiment consisted of adding a carefully selected mixture of hydrocarbon gases, with a wide variety of radical reactivities, to a UV and visible transparent flow chamber containing undisturbed natural firn. The relative decrease in mixing ratios of these gases allowed estimation of the mixing ratio of hydroxyl radicals in the near- surface snowpack. Hydrocarbon samples were collected in 2L stainless steel canisters and analyzed in Irvine, CA. The residence time of gases in the chamber was characterized by injection of SF6 and monitored by an on-site GC. Graphing the decay of 1-butene, i-butene, cis-2-butene, and trans-2-butene versus their respective rate constants with hydroxyl yields a straight line with a slope equal to -[OH]×τ where [OH] is the gaseous hydroxyl concentration in the firn pore spaces and τ is the residence time of the gases in the firn. During the summer of 2003, the calculated OH mixing ratios followed a diurnal cycle. The peak hourly average was 5.0×106 molecules/cm3 between 1PM and 2PM local time. The minimum hourly average was 1.6×106 molecules/cm3 between 8PM and 9PM. Initial results from spring 2004 will be presented, and are expected to show hydroxyl radical concentrations that are significantly lower.

  6. Diosmacycloalkanes as models for the formation of hydrocarbons from surface methylenes

    SciTech Connect

    Norton, J.R.

    1989-01-01

    We have obtained a neutron diffraction data set for Os{sub 2}(CO){sub 8}({mu}-C{sub 2}H{sub 4}). While the structure is still being solved, it is already clear that the hybridization at both of the ethylene carbons is sp{sup 3}. Our first interpretation of our liquid crystal NMR results had suggested a very acute H-C-H angle. We have also obtained {sup 13}C liquid crystal data for Os{sub 2}(CO){sub 8}({mu}-C{sub 2}H{sub 4}). Liquid crystal NMR ({sup 13}C as well as {sup 1}H) spectra have been obtained for Os(CO){sub 4}(C{sub 2}H{sub 4}) and its solution structure determined, in order to test our methodology on a molecule with a rigid structure. The normal modes of Os(CO){sub 4}({mu}-C{sub 2}H{sub 4}) and its deuterated and {sup 13}C-labelled isotopomers have been completely assigned. A partial vibrational analysis of Os{sub 2}(CO){sub 8}({mu}-propene), Os{sub 2}(CO){sub 8}(trans-2-butene), and Os{sub 2}(CO){sub 8}(1-butene) has been completed. We have prepared Os(CO){sub 4}({mu}-CH{sub 2}CH{sub 2}CH{sub 2}) and its 3,3-dideuterio analog. In the course of this work the reaction of Na{sub 2}Os(CO){sub 4} with a number of 1,3-propanediol derivatives has been examined. 1,3-Propanediol ditosylate afforded much better yields of the osmacycle than did either the ditriflate or diiodide. 2,2-Dideutero-1,3-propanediol ditosylate was used to prepare the deuterium-labelled osmacyclobutane.

  7. Diosmacycloalkanes as models for the formation of hydrocarbons from surface methylenes. Progress report, April 1, 1988--March 31, 1989

    SciTech Connect

    Norton, J.R.

    1989-01-01

    We have obtained a neutron diffraction data set for Os{sub 2}(CO){sub 8}({mu}-C{sub 2}H{sub 4}). While the structure is still being solved, it is already clear that the hybridization at both of the ethylene carbons is sp{sup 3}. Our first interpretation of our liquid crystal NMR results had suggested a very acute H-C-H angle. We have also obtained {sup 13}C liquid crystal data for Os{sub 2}(CO){sub 8}({mu}-C{sub 2}H{sub 4}). Liquid crystal NMR ({sup 13}C as well as {sup 1}H) spectra have been obtained for Os(CO){sub 4}(C{sub 2}H{sub 4}) and its solution structure determined, in order to test our methodology on a molecule with a rigid structure. The normal modes of Os(CO){sub 4}({mu}-C{sub 2}H{sub 4}) and its deuterated and {sup 13}C-labelled isotopomers have been completely assigned. A partial vibrational analysis of Os{sub 2}(CO){sub 8}({mu}-propene), Os{sub 2}(CO){sub 8}(trans-2-butene), and Os{sub 2}(CO){sub 8}(1-butene) has been completed. We have prepared Os(CO){sub 4}({mu}-CH{sub 2}CH{sub 2}CH{sub 2}) and its 3,3-dideuterio analog. In the course of this work the reaction of Na{sub 2}Os(CO){sub 4} with a number of 1,3-propanediol derivatives has been examined. 1,3-Propanediol ditosylate afforded much better yields of the osmacycle than did either the ditriflate or diiodide. 2,2-Dideutero-1,3-propanediol ditosylate was used to prepare the deuterium-labelled osmacyclobutane.

  8. Reactions of volatile organic compounds in the atmosphere: Ozone-alkene reactions

    NASA Astrophysics Data System (ADS)

    Fenske, Jill Denise

    2000-08-01

    Photochemical smog cannot form without sunlight, nitrogen oxides, and volatile organic compounds (VOC). This dissertation addresses several different aspects of VOC chemistry in the atmosphere. Aside from ambient levels of VOC outdoors, VOC are also present at moderate concentrations indoors. Many studies have measured indoor air concentrations of VOC, but only one considered the effects of human breath. The major VOC in the breath of healthy individuals are isoprene (12-580 ppb), acetone (1.2-1800 ppb), ethanol (13-1000 ppb), methanol (160-2000 ppb), and other alcohols. Human emissions of VOC are negligible on a regional (less than 4%) and global scale (less than 0.3%). However, in indoor air, under fairly crowded situations, human emissions of VOC may dominate other sources of VOC. An important class of VOC in the atmosphere is alkenes, due to their high reactivity. The ozone reaction with alkenes forms OH radicals, a powerful oxidizing agent in the troposphere. OH radical formation yields from the ozonolysis of several cycloalkenes were measured using small amounts of fast-reacting aromatics and aliphatic ethers to trace OH formation. The values are 0.62 +/- 0.15, 0.54 +/- 0.13, 0.36 +/- 0.08, and 0.91 +/- 0.20 for cyclopentene, cyclohexene, cycloheptene and 1-methylcyclohexene, respectively. Density functional theory calculations at the B3LYP/6-31 G(d,p) level are presented to aid in understanding the trends observed. The pressure dependence of OH radical yields may lend insight into the formation mechanism. We have made the first study of the pressure dependence of the OH radical yield for ethene, propene, 1-butene, trans-2-butene, and 2,3-dimethyl-2- butene over the range 20-760 Torr, and trans -3-hexene, and cyclopentene over the range 200-760 Torr. The OH yields from ozonolysis of ethene and propene were pressure dependent, while the other compounds had OH yields that were independent of pressure. Ozone-alkene reactions form vibrationally excited carbonyl

  9. On-line gas chromatographic analysis of Fischer-Tropsch synthesis products formed in a supercritical reaction medium

    SciTech Connect

    Snavely, K.; Subramaniam, B.

    1997-10-01

    C{sub 1}-C{sub 30} products from Fischer-Tropsch synthesis, conducted in a supercritical n-hexane medium over an Fe catalyst in a fixed-bed reactor, are analyzed using on-line gas chromatography. A Hewlett-Packard 5890 Series II gas chromatograph (GC) is modified to minimize the effects of condensation of the on-line sample in the transfer lines. The GC is configured with a Supelco Petrocol DH capillary column connected to a flame ionization detector (FID) and two 1.83 m {times} 3.18 mm stainless steel columns placed in series, packed with 80/100 mesh HayeSep D, connected to a thermal conductivity detector (TCD). It is shown that pressure and temperature affect the elution order of oxygenates relative to hydrocarbons in the nonpolar capillary column. This phenomenon is exploited for obtaining improved resolution; several distinct methods produce similar elution orders. Ar, added to the syngas feed, is used to calculate syngas conversion. All compounds eluting before hexane (C{sub 1}-C{sub 5}, other than 2-methylpropene/1-butene and propanal/propanone) and nearly all the major peaks eluting after hexane are resolved in the capillary column. H{sub 2}, Ar, CO, CH{sub 4}, CO{sub 2}, and H{sub 2}O are resolved in the packed columns. The method provides excellent quantitative measurement of component mole fractions that are within the range of calibration.

  10. Effects of biomass burning on summertime nonmethane hydrocarbon concentrations in the Canadian wetlands

    NASA Technical Reports Server (NTRS)

    Blake, D. R.; Smith, T. W., Jr.; Chen, T.-Y.; Whipple, W. J.; Rowland, F. S.

    1994-01-01

    Approximately 900 whole air samples were collected and assayed for selected C2-C10 hydrocarbons and seven halocarbons during the 5-week Arctic Boundary Layer Expedition (ABLE) 3B conducted in eastern Canadian wetland areas. In more than half of the 46 vertical profiles flown, enhanced nonmethane hydrocarbon (NMHC) concentrations attributable to plumes from Canadian forest fires were observed. Urban plumes, also enhanced in many NMHCs, were separately identified by their high correlation with elevated levels of perchloroethene. Emission factors relative to ethane were determined for 21 hydrocarbons released from Canadian biomass burning. Using these data for ethane, ethyne, propane, n-butane, and carbon monoxide enhancements from the literature, global emissions of these four NMHCs were estimated. Because of its very short atmospheric lifetime and its below detection limit background mixing ratio, 1,3-butadiene is an excellent indicator of recent combustion. No statistically significant emissions of nitrous oxide, isoprene, or CFC 12 were observed in the biomass-burning plumes encountered during ABLE 3B. The presence of the short-lived biogenically emitted isoprene at altitudes as high as 3000 m implies that mixing within the planetary boundary layer (PBL) was rapid. Although background levels of the longer-lived NMHCs in this Canadian region increase during the fire season, isoprene still dominated local hydroxyl radical photochemistry within the PBL except in the immediate vicinity of active fires. The average biomass-burning emission ratios for hydrocarbons from an active fire sampled within minutes of combustion were, relative to ethane, ethene, 2.45; ethyne 0.57; propane, 0.25; propene, 0.73; propyne, 0.06; n-butane, 0.09; i-butane, 0.01; 1-butene, 0.14; cis-2-butene, 0.02; trans-2-butene, 0.03; i-butylene, 0.07; 1,3-butadiene, 0.12; n-pentane, 0.05; i-pentane, 0.03; 1-pentene, 0.06; n-hexane, 0.05; 1-hexene, 0.07; benzene, 0.37; toluene, 0.16.

  11. Laboratory Analysis Of Water, Hydrocarbon And Ammonia Ice Mixtures Exposed To High-energy Electron Irradiation

    NASA Astrophysics Data System (ADS)

    Hand, Kevin P.; Carlson, R. W.; Tsapin, A. I.

    2006-09-01

    Irradiation of low temperature ices in the laboratory provides insight into processes that may be occurring on icy bodies in the solar system. Here we report on results from high-energy (10keV) electron irradiation of thin ice films at 1e-8 torr and 70-120K. Mixtures include water with CO2, C3H8, C3H6, C4H10 (butane and isobutane), C4H8,(1-butene and cis/trans-2-butene), and NH3. During irradiation of H2O + alkane films at 80K, CO2 and CH4 production is observed and both species are retained in the ice, possibly trapped in clathrates. The -CH3 infrared bands initially present are seen to decrease with increasing dose. Bands associated with -CH2- persist, indicating polymerization of the initial short-chain hydrocarbons. In alkenes a similar evolution toward polymerization is observed, however the first step appears to be the destruction of the C=C bond. Upon warming of the film, mass spectra data compliment the mid-infrared data and indicate the production of H2CO, however glycolic acid is not explicitly seen in the mass spectra. When warmed to 300K, residues remained for all irradiated films except that of the H2O + CO2 mixtures. Residues were analyzed with Matrix Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI). Results show the production of large aliphatic, very refractory, hydrocarbons (with m/z up to 2500). Mid-infrared spectra of the residues indicate carbonyls and alcohols, likely due to polymerized aldehydes and carboxylic acids. Films of H2O + C3H8 + NH3 at 70K show the production of OCN- (cyanate ion), formamide, along with other possible amides and hydrocarbons. HPLC results indicate the production of racemic alanine. Finally, results of abiotic experiments are compared to results from the irradiation of bacterial spores in ice. The application to Europa and Enceladus is discussed.

  12. Fluid inclusion volatile analysis by gas chromatography with photoionization/micro-thermal conductivity detectors: Applications to magmatic MoS sub 2 and other H sub 2 O-CO sub 2 and H sub 2 O-CH sub 4 fluids

    SciTech Connect

    Bray, C.J.; Spooner, E.T.C. )

    1992-01-01

    Eighteen fluid inclusion volatile peaks have been detected and identified from 1-2 g samples (quartz) by gas chromatography using heated on-line crushing, helium carrier gas, a single porous polymer column, two temperature programmed conditions for separate sample aliquots, micro-thermal conductivity (TCD) and photoionization detectors (PID), and off-line digital peak processing. In order of retention time these volatile peaks are: N{sub 2}, Ar, CO, CH{sub 4}, CO{sub 2}, C{sub 2}H{sub 4}, C{sub 2}H{sub 6}, C{sub 2}H{sub 2}, COS, C{sub 3}H{sub 6}, C{sub 3}H{sub 8}, C{sub 3}H{sub 4} (propyne), H{sub 2}O, SO{sub 2} {plus minus} iso-C{sub 4}H{sub 10} {plus minus} C{sub 4}H{sub 8} (1-butene) {plus minus} CH{sub 3}SH, C{sub 4}H{sub 8} (iso-butylene), ( ) C{sub 4}H{sub 6} (1,3 butadiene), and {plus minus} n-C{sub 4}H{sub 10} {plus minus}C{sub 4}H{sub 8} (trans-2-butene). H{sub 2}O is analyzed directly. O{sub 2} can be analyzed cryogenically between N{sub 2} and Ar, but has not been detected in natural samples to date in this study. Initial inclusion volatile analyses of fluids of interpreted magmatic origin from the Cretaceous Boss Mtn. monzogranite stock-related MoS{sub 2} deposit, central British Columbia of 97 mol% H{sub 2}O, 3% CO{sub 2}, 140-150 ppm N{sub 2}, and 16-39 ppm CH{sub 4} are reasonable in comparison with high temperature volcanic gas analyses from four, active calc-alkaline volcanoes, e.g., the H{sub 2}O contents of volcanic gases from the White Island (New Zealand), Mount St. Helens (Washington, USA), Merapi (Bali, Indonesia), and Momotombo (Nicaragua) volcanoes are 88-95%, > 90%, 88-95% and 93%, respectively; CO{sub 2} contents are 3-10%, 1-10%, 3-8%, and 3.5%. It appears that low, but significant concentrations of alkanes, alkenes, and alkynes have been detected in magmatically derived fluids.

  13. EXTENDED ALKYLATE PRODUCTION ACTIVITY DURING FIXED-BED SUPERCRITICAL 1-BUTENE/ISOBUTANE ALKYLATION ON SOLID ACID CATALYSTS USING CARBON DIOXIDE AS DILUENT. (R824729)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  14. Transferable Potentials for Phase Equilibria. 4. United-Atom Description of Linear and Branched Alkenes and Alkylbenzenes

    SciTech Connect

    WICK,COLLIN D.; MARTIN,MARCUS G.; SIEPMANN,J. ILJA

    2000-07-12

    The Transferable Potentials for Phase Equilibria-United Atom (TraPPE-UA) force field for hydrocarbons is extended to alkenes and alkylbenzenes by introducing the following pseudo-atoms: CH{sub 2}(sp{sup 2}), CH(sp{sup 2}), CH(aro), R-C(aro) for the link to aliphatic side chains, and C(aro) for the link of two benzene rings. In this united-atom force field, the nonbonded interactions of the hydrocarbon pseudo-atoms are solely governed by Lennard-Jones 12-6 potentials, and the Lennard-Jones well depth and size parameters for the new pseudo-atoms were determined by fitting to the single-component vapor-liquid phase equilibria of a few selected model compounds. Configurational-bias Monte Carlo simulations in the NVT version of the Gibbs ensemble were carried out to calculate the single-component vapor-liquid coexistence curves for ethene, propene, 1-butene, trans- and cis-2-butene. 2-methylpropene, 1,5-hexadiene, 1-octene, benzene, toluene, ethylbenzene, propylbenzene, isopropylbenzene, o-, m-, and p-xylene, and naphthalene. The phase diagrams for the binary mixtures of (supercritical) ethene/n-heptane and benzene/n-pentane were determined from simulations in the NpT Gibbs ensemble. Although the TraPPE-UA force field is rather simple and makes use of relatively few different pseudo-atoms, its performance, as judged by comparisons to other popular force fields and available experimental data, is very satisfactory.

  15. Biogenic Emissions of Light Alkenes from a Coniferous Forest

    NASA Astrophysics Data System (ADS)

    Rhew, R. C.; Turnipseed, A. A.; Martinez, L.; Shen, S.; De Gouw, J. A.; Warneke, C.; Koss, A.; Lerner, B. M.; Miller, B. R.; Smith, J. N.; Guenther, A. B.

    2014-12-01

    Alkenes are reactive hydrocarbons that play important roles in the photochemical production of tropospheric ozone and in the formation of secondary organic aerosols. The light alkenes (C2-C4) originate from both biogenic and anthropogenic sources and include C2H4 (ethene), C3H6 (propene) and C4H8 (1-butene, 2-butene, 2-methylpropene). Light alkenes are used widely as chemical feedstocks because their double bond makes them versatile for industrial reactions. Their biogenic sources are poorly characterized, with most global emissions estimates relying on laboratory-based studies; net ecosystem emissions have been measured at only one site thus far. Here we report net ecosystem fluxes of light alkenes and isoprene from a semi-arid ponderosa pine forest in the Rocky Mountains of Colorado, USA. Canopy scale fluxes were measured using relaxed eddy accumulation (REA) techniques on the 28-meter NCAR tower in the Manitou Experimental Forest Observatory. Updrafts and downdrafts were determined by sonic anemometry and segregated into 'up' and 'down' reservoirs over the course of an hour. Samples were then measured on two separate automated gas chromatographs (GCs). The first GC measured light hydrocarbons (C2-C6 alkanes and C2-C5 alkenes) by flame ionization detection (FID). The second GC measured halocarbons (methyl chloride, CFC-12, and HCFC-22) by electron capture detection (ECD). Additional air measurements from the top of the tower included hydrocarbons and their oxidation products by Proton Transfer Reaction Mass Spectrometry (PTR-MS). Three field intensives were conducted during the summer of 2014. The REA flux measurements showed that ethene, propene and the butene emissions have significant diurnal cycles, with maximum emissions at midday. The light alkenes contribute significantly to the overall biogenic source of reactive hydrocarbons and have a temporal variability that may be associated with physical and biological parameters. These ecosystem scale measurements

  16. Production of hydrogen peroxide and organic peroxides in the gas phase reactions of ozone with natural alkenes

    SciTech Connect

    Simonaitis, R.; Olszyna, K.J.; Meagher, J.F.

    1991-01-01

    The formation of H{sub 2}O{sub 2} and organic peroxides in the reaction of O{sub 3} with trans-2-butene and naturally occurring alkenes has been studied using a 31 m{sup 3} reaction chamber. H{sub 2}O{sub 2} and organic peroxides were found to be products of the O{sub 3} reaction with trans-2-butene, isoprene, {alpha} and {beta}-pinene, and limonene. Water is necessary for the formation of H{sub 2}O{sub 2} and most of the H{sub 2}O{sub 2} is formed via a route that does not involve HO{sub 2} radicals. These results indicate that the reaction of O{sub 3} with natural alkenes may be a significant source of atmospheric H{sub 2}O{sub 2}, particularly in forest and rural areas.

  17. Gas-phase oxidation of SO/sub 2/ in the ozone-olefin reactions

    SciTech Connect

    Hatakeyama, S.; Kobayashi, H.; Akimoto, H.

    1984-09-27

    Gas-phase oxidation of SO/sub 2/ in the ozone-olefin reactions was studied, and the yield of sulfuric acid aerosol was determined for various types of olefins under atmospheric pressure. No sulfur-containing compounds other than sulfuric acid was detected. Pressure dependence of the yield of H/sub 2/SO/sub 4/ was studied for the first time for trans-2-butene. The yield decreased to zero as the total pressure of air was decreased. This fact supports the contention that only a stabilized Criegee intermediate can undergo bimolecular reactions. Stabilized fractions of CH/sub 2/O0 and CH/sub 3/CHOO in the ozone reaction of ethylene and trans-2-butene under atmospheric pressure are 0.390 +/- 0.053 and 0.185 +/- 0.028, respectively. The yield of H/sub 2/SO/sub 4/ was as low as 0.052 +/- 0.013, 0.032 +/- 0.024, and 0.029 +/- 0.015 for cyclopentane, cyclohexene, and cycloheptene, respectively. The yield of H/sub 2/SO/sub 4/ for ..cap alpha..- and ..beta..-pinene was 0.125 +/- 0.040 and 0.249 +/- 0.024, respectively. The rate constant ratio of decomposition of the initially formed hot Criegee intermediate to its collisional stabilization was obtained to be (3.9 +/- 0.8) x 10/sup 18/ molecules/cm/sup 3/ for trans-2-butene.

  18. Polybutenes

    ERIC Educational Resources Information Center

    Daniels, D. J.; And Others

    1973-01-01

    Discusses the use of aluminum chloride and other Friedel-Crafts type catalysts to polymerize 2-methylpropene and the application of such products in industry and agriculture. Includes a laboratory experiment on the polybutene preparation suitable for high school purposes. (CC)

  19. Understanding Rotation about a C=C Double Bond

    NASA Astrophysics Data System (ADS)

    Barrows, Susan E.; Eberlein, Thomas H.

    2005-09-01

    In this article, twisting about the C=C double bond and the consequential pyramidalization of sp 2 carbon atoms in alkenes were examined in a molecular modeling study using trans -2-butene as a model system. According to our trans -2-butene model and other similar work, most of the strength of a π bond is retained upon twisting, even for remarkably large C C=C C dihedral angles (up to 90°). The phenomenon of sp 2 carbon atom pyramidalization and preservation of π bond strength upon twisting a C=C double bond is well established in the literature, but is rarely discussed in introductory textbooks. This absence is noteworthy because profound manifestations of this effect do occur in compounds that are covered in an introductory organic chemistry curriculum. We present a simple method of introducing the concept of a flexible C=C π bond into beginning organic chemistry courses. We report the energetic demands of partial twisting about the C=C bond in 2-butene as calculated using DFT, LMP2, and MCSCF methods. Finally, using the results of these calculations, we assessed the degree of strain introduced by the twisted nature of the C=C bond in trans cycloalkenes.

  20. Measurement of the neutron detection sensitivity of a liquid in metastable states.

    PubMed

    Sawamura, T; Joji, T; Homma, A

    2003-01-01

    A device able to trap a liquid droplet in a host liquid in a metastable (superheated) state was developed for a better understanding of the operational principles and for an extension of the application of superheated drop detectors (SDDs). Droplets of trans-2-butene in a metastable state were exposed to Am-Be neutrons and evaporation of the droplets was observed. By measuring lifetime distributions of irradiated droplets, neutron sensitivities were derived from the distributions. The sensitivities were compared with calculations and experiments performed by using superheated emulsions. Results are discussed related to the model of radiation induced vaporisation on which the operational principles of superheated emulsions were based. The experiments in this study showed that the device developed could be applied to measure radiation sensitivities of different kinds of liquids for different kinds of radiations without any special detector preparation.

  1. Direct observation of OH production from the ozonolysis of olefins

    NASA Astrophysics Data System (ADS)

    Donahue, Neil M.; Kroll, Jesse H.; Anderson, James G.; Demerjian, Kenneth L.

    Ozone olefin reactions may be a significant source of OH in the urban atmosphere, but current evidence for OH production is indirect and contested. We report the first direct observation of OH radicals from the reaction of ozone with a series of olefins (ethene, isoprene, trans-2-butene and 2,3 dimethyl-2-butene) in 4-6 torr of nitrogen. Using LIF to directly observe the steady-state of OH produced by the initial ozone-olefin reaction and subsequently destroyed by the OH-olefin reaction, we are able to establish OH yields broadly consistent with indirect values. The identification of the OH is unequivocal, and there is no indication that it is produced by a secondary process. To support these observations, we present a complete ab-initio potential energy surface for the O3-ethene reaction, extending from the reactants to available products.

  2. Topological description of the bond-breaking and bond-forming processes of the alkene protonation reaction in zeolite chemistry: an AIM study.

    PubMed

    Zalazar, María Fernanda; Peruchena, Nélida Maria

    2011-10-01

    Density functional theory and atoms in molecules theory were used to study bond breakage and bond formation in the trans-2-butene protonation reaction in an acidic zeolitic cluster. The progress of this reaction along the intrinsic reaction coordinate, in terms of several topological properties of relevant bond critical points and atomic properties of the key atoms involved in these concerted mechanisms, were analyzed in depth. At B3LYP/6-31++G(d,p)//B3LYP/6-31G(d,p) level, the results explained the electron density redistributions associated with the progressive bond breakage and bond formation of the reaction under study, as well as the profiles of the electronic flow between the different atomic basins involved in these electron reorganization processes. In addition, we found a useful set of topological indicators that are useful to show what is happening in each bond/atom involved in the reaction site as the reaction progresses.

  3. Use of propane as a quench gas in argon-filled proportional counters and comparison with other quench gases

    NASA Technical Reports Server (NTRS)

    Agrawal, P. C.; Ramsey, B. D.

    1988-01-01

    An experimental investigation of propane and six other quench gases was carried out in argon-filled proportional counters. The objective of the study was to find the best gas mixture for optimizing the gas gain and the energy resolution as well as to understand the role of the ionization potential of quench gases in determining these parameters. It was found that the best gas gains and energy resolutions are obtained with propane, ethane, and isobutane in that order. The ionization potentials of these three lie below the argon metastable potentials and have the lowest value of resonance defect compared to the other quench gases. The better results obtained with these mixtures can be explained by an increased ionization yield resulting from the Penning effect. Propylene and trans-2-butene give inferior performance compared to the above three gases. Methane and carbon dioxide, the most commonly used quench gases in the argon-filled detectors, provide the worst results.

  4. The Effect of Supercritical Fluids on Solid Acid Catalyst Alkylation

    SciTech Connect

    Ginosar, Daniel Michael; Thompson, David Neil; Burch, Kyle Coates; Zalewski, D. J.

    2002-05-01

    The alkylation of isobutane with trans-2-butene was explored over six solid acid catalysts in the liquid, near-critical liquid, and supercritical regions through the addition of an inert cosolvent to the reaction feed mixture. The addition of supercritical cosolvents did not result in sustained catalytic alkylation activity. A modest improvement in product yield was obtained with the addition of methane in the modified-liquid region; however, catalyst longevity and product selectivity were decreased compared to cosolvent-free liquid conditions. This paper describes the catalyst screening and selection process, an exploration of catalyst performance with varying concentrations of methane, and an examination of the effects of seven supercritical fluids on catalyst performance. The catalysts included two zeolites, two sulfated metal oxides, and two Nafion catalysts. Three hydrocarbons, two fluorocarbons, carbon dioxide, and sulfur hexafluoride were explored as inert cosolvents added to the reaction mixture.

  5. Photo-oxidation of Polymers Synthesized by Plasma and Initiated CVD

    SciTech Connect

    Baxamusa, Salmaan H.; Suresh, Aravind; Ehrmann, Paul; Laurence, Ted; Hanania, Jiries; Hayes, Jeff; Harley, Stephen; Burkey, Daniel D.

    2015-11-09

    Plasma polymers are often limited by their susceptibility to spontaneous and photo-oxidation. We show that the unusual photoluminescence (PL) behavior of a plasma polymer of trans-2-butene is correlated with its photoluminescence strength. These photo-processes occur under blue light illumination (λ=405 nm), distinguishing them from traditional ultraviolet degradation of polymers. These photo-active defects are likely formed during the plasma deposition process and we show that a polymer synthesized using initiated (i)CVD, non-plasma method, has 1000× lower PL signal and enhanced photo-stability. In conclusion, non-plasma methods such as iCVD may therefore be a route to overcoming material aging issues that limit the adoption of plasma polymers.

  6. Photo-oxidation of Polymers Synthesized by Plasma and Initiated CVD

    DOE PAGES

    Baxamusa, Salmaan H.; Suresh, Aravind; Ehrmann, Paul; ...

    2015-11-09

    Plasma polymers are often limited by their susceptibility to spontaneous and photo-oxidation. We show that the unusual photoluminescence (PL) behavior of a plasma polymer of trans-2-butene is correlated with its photoluminescence strength. These photo-processes occur under blue light illumination (λ=405 nm), distinguishing them from traditional ultraviolet degradation of polymers. These photo-active defects are likely formed during the plasma deposition process and we show that a polymer synthesized using initiated (i)CVD, non-plasma method, has 1000× lower PL signal and enhanced photo-stability. In conclusion, non-plasma methods such as iCVD may therefore be a route to overcoming material aging issues that limit themore » adoption of plasma polymers.« less

  7. A Combined Experimental and Theoretical Study of the Reaction OH + 2-Butene in the 400-800 K Temperature Range.

    PubMed

    Antonov, Ivan O; Kwok, Justin; Zádor, Judit; Sheps, Leonid

    2015-07-16

    We report a combined experimental and theoretical study of the OH + cis-2-butene and OH + trans-2-butene reactions at combustion-relevant conditions: pressures of 1-20 bar and temperatures of 400-800 K. We probe the OH radical time histories by laser-induced fluorescence and analyze these experimental measurements with aid from time-dependent master-equation calculations. Importantly, our investigation covers a temperature range where experimental data on OH + alkene chemistry in general are lacking, and interpretation of such data is challenging due to the complexity of the competing reaction pathways. Guided by theory, we unravel this complex behavior and determine the temperature- and pressure-dependent rate coefficients for the three most important OH + 2-butene reaction channels at our conditions: H abstraction, OH addition to the double bond, and back-dissociation of the OH-butene adduct.

  8. H2SO4 formation from the gas-phase reaction of stabilized Criegee Intermediates with SO2: Influence of water vapour content and temperature

    NASA Astrophysics Data System (ADS)

    Berndt, Torsten; Jokinen, Tuija; Sipilä, Mikko; Mauldin, Roy L.; Herrmann, Hartmut; Stratmann, Frank; Junninen, Heikki; Kulmala, Markku

    2014-06-01

    The importance of gas-phase products from alkene ozonolysis other than OH radicals, most likely stabilized Criegee Intermediates (sCI), for the process of atmospheric SO2 oxidation to H2SO4 has been recently discovered. Subjects of this work are investigations on H2SO4 formation as a function of water vapour content (RH = 2-65%) and temperature (278-343 K) starting from the ozonolysis of trans-2-butene and 2,3-dimethyl-2-butene (TME). H2SO4 production other than via the OH radical reaction was attributed to the reaction of SO2 with sCI, i.e. acetaldehyde oxide arising from trans-2-butene ozonolysis and acetone oxide from TME. Measurements have been conducted in an atmospheric pressure flow tube using NO3--CI-APi-TOF mass spectrometry for H2SO4 detection. The sCI yields derived from H2SO4 measurements at 293 K were 0.49 ± 0.22 for acetaldehyde oxide and 0.45 ± 0.20 for acetone oxide. Our findings indicate a H2SO4 yield from sCI + SO2 of unity or close to unity. The deduced rate coefficient ratio for the reaction of sCI with H2O and SO2, k(sCI + H2O)/k(sCI + SO2), was found to be strongly dependent on the structure of the Criegee Intermediate, for acetaldehyde oxide at 293 K: (8.8 ± 0.4)·10-5 (syn- and anti-conformer in total) and for acetone oxide: <4·10-6. H2SO4 formation from sCI was pushed back with rising temperature in both reaction systems most probably due to an enhancement of sCI decomposition. The ratio k(dec)/k(sCI + SO2) increased by a factor of 34 (acetone oxide) increasing the temperature from 278 to 343 K. In the case of acetaldehyde oxide the temperature effect is less pronounced. The relevance of atmospheric H2SO4 formation via sCI + SO2 is discussed in view of its dependence on the structure of the Criegee Intermediate.

  9. 40 CFR 60.707 - Chemicals affected by subpart RRR.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Amylene 513-35-9 Amylenes, mixed Aniline 62-53-3 Benzene 71-43-2 Benzenesulfonic acid 98-11-3...-Butanediol 110-63-4 Butanes, mixed 1-Butene 106-98-9 2-Butene 25167-67-3 Butenes, mixed n-Butyl acetate 123... 123-42-2 1,4-Dichlorobutene 110-57-6 3,4-Dichloro-1-butene 64037-54-3 Dichlorodifluoromethane...

  10. 40 CFR 60.707 - Chemicals affected by subpart RRR.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Amylene 513-35-9 Amylenes, mixed Aniline 62-53-3 Benzene 71-43-2 Benzenesulfonic acid 98-11-3...-Butanediol 110-63-4 Butanes, mixed 1-Butene 106-98-9 2-Butene 25167-67-3 Butenes, mixed n-Butyl acetate 123... 123-42-2 1,4-Dichlorobutene 110-57-6 3,4-Dichloro-1-butene 64037-54-3 Dichlorodifluoromethane...

  11. 40 CFR 60.707 - Chemicals affected by subpart RRR.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Amylene 513-35-9 Amylenes, mixed Aniline 62-53-3 Benzene 71-43-2 Benzenesulfonic acid 98-11-3...-Butanediol 110-63-4 Butanes, mixed 1-Butene 106-98-9 2-Butene 25167-67-3 Butenes, mixed n-Butyl acetate 123... 123-42-2 1,4-Dichlorobutene 110-57-6 3,4-Dichloro-1-butene 64037-54-3 Dichlorodifluoromethane...

  12. 40 CFR 60.707 - Chemicals affected by subpart RRR.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Amylene 513-35-9 Amylenes, mixed Aniline 62-53-3 Benzene 71-43-2 Benzenesulfonic acid 98-11-3...-Butanediol 110-63-4 Butanes, mixed 1-Butene 106-98-9 2-Butene 25167-67-3 Butenes, mixed n-Butyl acetate 123... 123-42-2 1,4-Dichlorobutene 110-57-6 3,4-Dichloro-1-butene 64037-54-3 Dichlorodifluoromethane...

  13. 40 CFR 60.707 - Chemicals affected by subpart RRR.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Amylene 513-35-9 Amylenes, mixed Aniline 62-53-3 Benzene 71-43-2 Benzenesulfonic acid 98-11-3...-Butanediol 110-63-4 Butanes, mixed 1-Butene 106-98-9 2-Butene 25167-67-3 Butenes, mixed n-Butyl acetate 123... 123-42-2 1,4-Dichlorobutene 110-57-6 3,4-Dichloro-1-butene 64037-54-3 Dichlorodifluoromethane...

  14. The use of design-of-experiments methodology to optimize polymer capsule fabrication. 1998 summer research program for high school juniors at the University of Rochester`s Laboratory for Laser Energetics: Student research reports

    SciTech Connect

    Lai, L.

    1999-03-01

    Future inertial-fusion experiments on Omega will utilize {approximately} 1 mm-diameter cryogenic targets that have a {approximately} 100-{micro}m-thick, uniformly-frozen fuel layer on their interior. It is desired that they have a stress-free wall thickness < 1 {micro}m and an rms surface roughness < 20 nm. A design-of-experiments (DOE) approach was used to characterize a glow-discharge-polymerization coater built at LLE to fabricate smooth, stress-free capsules with submicron wall thicknesses. The DOE approach was selected because several parameters can be changed simultaneously in a manner which allows the minimum number of runs to be performed to obtain statistically-relevant data. Planar, silicon substrates were coated with {approximately} 3--5 {micro}m of polymer and profilometry was used to determine the coating rate, the film stress, and the surface roughness. The coating rate was found to depend on the trans-2-butene/hydrogen ratio, the total gas-flow rate, the total chamber pressure, and the RF power. In addition, a two-parameter interaction between the total pressure and the RF power also affects the coating rate. The film stress depends on the total chamber pressure and the total mass-flow rate. The surface roughness is independent of the parameters studied. Preliminary results indicate that capsules can be produced rapidly without affecting the smoothness of their outside surface and without residual stress in their walls.

  15. Diosmacycloalkanes as models for the formation of hydrocarbons from surface methylenes. Final report

    SciTech Connect

    Norton, J.R.

    1994-04-25

    Assignment of the vibrational modes Of Os{sub 2}(CO){sub 8}(CHCH{sub 3}) and Os(CO){sub 4}(C{sub 2}H{sub 4)} has given fingerprint vibrational spectra for the following species when chemisorbed on metal catalyst surfaces: ethylidene and ethylene bound in a metallacyclopropane mode. The formation and fragmentation of diosmacyclobutanes have been shown to involve slippage of the outgoing olefin onto a single osmium, and associative exchange of the olefin from that site. The incorporation of vinylcyclopropane without rearrangement has confirmed the absence of a diradical intermediate. The anomalous stability of the diosmacyclobutane derived from trans-2-butene has proven due to greater destabilization (by the substituent methyls) of the slipped intermediate than of the ground state. Reaction of an osmacyclobutane with 1,3- or 1,2-dienes (allenes) gives 1,2 rather than 1,4 addition to the diosmium unit. Treatment of Os(CO){sub 4}(C{sub 2}H{sub 4}) with triflic acid results in the formation of Os(CO){sub 4}(C{sub 2}H{sub 5})OTf. The authors have found that the reaction of an aryl iodine(III) reagent with propargyl stannanes or silanes results in o-iodo propargyl arenes.

  16. A sputtering derived atomic oxygen source for studying fast atom reactions

    NASA Technical Reports Server (NTRS)

    Ferrieri, Richard A.; Yung, Y. Chu; Wolf, Alfred P.

    1987-01-01

    A technique for the generation of fast atomic oxygen was developed. These atoms are created by ion beam sputtering from metal oxide surfaces. Mass resolved ion beams at energies up to 60 KeV are produced for this purpose using a 150 cm isotope separator. Studies have shown that particles sputtered with 40 KeV Ar(+) on Ta2O5 were dominantly neutral and exclusively atomic. The atomic oxygen also resided exclusively in its 3P ground state. The translational energy distribution for these atoms peaked at ca 7 eV (the metal-oxygen bond energy). Additional measurements on V2O5 yielded a bimodal distribution with the lower energy peak at ca 5 eV coinciding reasonably well with the metal-oxygen bond energy. The 7 eV source was used to investigate fast oxygen atom reactions with the 2-butene stereoisomers. Relative excitation functions for H-abstraction and pi-bond reaction were measured with trans-2-butene. The abstraction channel, although of minor relative importance at thermal energy, becomes comparable to the addition channel at 0.9 eV and dominates the high-energy regime. Structural effects on the specific channels were also found to be important at high energy.

  17. Effects of rf power on chemical composition and surface roughness of glow discharge polymer films

    NASA Astrophysics Data System (ADS)

    Zhang, Ling; He, Xiaoshan; Chen, Guo; Wang, Tao; Tang, Yongjian; He, Zhibing

    2016-03-01

    The glow discharge polymer (GDP) films for laser fusion targets were successfully fabricated by plasma enhanced chemical vapor deposition (PECVD) at different radio frequency (rf) powers. The films were deposited using trans-2-butene (T2B) mixed with hydrogen as gas sources. The composition and state of plasma were diagnosed by quadrupole mass spectrometer (QMS) and Langmuir probe during the deposition process. The composition, surface morphology and roughness were investigated by Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and white-light interferometer (WLI), respectively. Based on these observation and analyses, the growth mechanism of defects in GDP films were studied. The results show that, at low rf power, there is a larger probability for secondary polymerization and formation of multi-carbon C-H species in the plasma. In this case, the surface of GDP film turns to be cauliflower-like. With the increase of rf power, the degree of ionization is high, the relative concentration of smaller-mass hydrocarbon species increases, while the relative concentration of larger-mass hydrocarbon species decreases. At higher rf power, the energy of smaller-mass species are high and the etching effects are strong correspondingly. The GDP film's surface roughness shows a trend of decrease firstly and then increase with the increasing rf power. At rf power of 30 W, the surface root-mean-square roughness (Rq) drops to the lowest value of 12.8 nm, and no ;void; defect was observed.

  18. Evaluation of Fluidized Beds for Mass Production of IFE Targets

    SciTech Connect

    Huang, H.; Vermillion, B.A.; Brown, L.C.; Besenbruch, G.E.; Goodin, D.T.; Stemke, R.W.; Stephens, R.B.

    2005-01-15

    Of the building blocks of an inertial fusion energy (IFE) plant, target fabrication remains a significant credibility issue. For this reason, an extensive parametric study has been conducted on mass production of glow discharge polymer (GDP) shells in a vertical fluidized bed. Trans-2-butene was used as a reactant gas with hydrogen as a diluting and etching agent. Coating rates in the range of 1 to 2 {mu}m/h were demonstrated on batches of 30 shells where National Ignition Facility-quality surfaces were obtained for 3- to 5-{mu}m-thick coatings. Thick coatings up to 325 {mu}m were also demonstrated that are visually transparent, without void and stress fracture. A phenomenological understanding of the GDP growth mechanisms to guide future experiments was further established. Specifically, gas-phase precipitation and high-impact collisions were identified as the main surface-roughening mechanisms. The former produces dense cauliflower-like surface patterns that can be eliminated by adjusting the gas flow rates and the flow ratio. The latter produces isolated domelike surface defects that can be reduced by introducing concerted motion between the shells. By converting from a vertical to a horizontal configuration, fully transparent coatings were obtained on 350 shells. Collisions in a fluidized bed have been identified as the limiting factor in meeting IFE specifications, and a related-rotary kiln technique is recommended for scale-up.

  19. An extended baseline examination of indoor VOCs in a city of low ambient pollution: Perth, Western Australia

    NASA Astrophysics Data System (ADS)

    Maisey, S. J.; Saunders, S. M.; West, N.; Franklin, P. J.

    2013-12-01

    This study of indoor air quality reports VOC concentrations in 386 suburban homes located in Perth Western Australia, a city of low ambient pollution and temperate climate. Details of indoor VOC concentrations, temperature, relative humidity, and information on house characteristics and occupant activities were collected during the sampling periods. The concentration of VOCs observed in typical homes was low and individual compounds rarely exceeded 5 μg m-3. Median individual VOC concentrations ranged from 0.06 μg m-3 for 1,1,1 trichloroethane and butyl ether to 26.6 μg m-3 for cis/trans 2-butene. Recently renovated homes had higher concentrations of VOCs than non renovated homes, including ∑VOCs (p = 0.026), ∑BTEX (p = 0.03), ∑xylene (p = 0.013), toluene (p = 0.05), cyclohexane (p = 0.039), and propyl benzene (p = 0.039). Statistical analyses showed house age and attached garages were not significant factors for any of the VOCs tested. The concentrations of indoor VOCs in Perth were lower than overseas observations and those reported in recent Australian studies, with inferences made to differences in the climate and the occupant behaviour. The results are a baseline profile of indoor VOCs over the period 2006-2011, in an Australian city of low population density and of generally low ambient pollution.

  20. Moessbauer spectra of ferrite catalysts used in oxidative dehydrogenation

    NASA Technical Reports Server (NTRS)

    Cares, W. R.; Hightower, J. W.

    1971-01-01

    Room temperature Mossbauer spectroscopy was used to examine bulk changes which occur in low surface area CoFe2O4 and CuFe2O4 catalysts as a result of contact with various mixtures of trans-2-butene and O2 during oxidative dehydrogenation reactions at about 420 C. So long as there was at least some O2 in the gas phase, the CoFe2O4 spectrum was essentially unchanged. However, the spectrum changed from a random spinel in the oxidized state to an inverse spinel as it was reduced by oxide ion removal. The steady state catalyst lies very near the fully oxidized state. More dramatic solid state changes occurred as the CuFe2O4 underwent reduction. Under severe reduction, the ferrite was transformed into Cu and Fe3O4, but it could be reversibly recovered by oxidation. An intense doublet located near zero velocity persisted in all spectra of CuFe2O4 regardless of the state of reduction.

  1. Pulmonary function in normal and elastase-treated hamsters exposed to a complex mixture of olefin-ozone-sulfur dioxide reaction products

    SciTech Connect

    Raub, J.A.; Miller, F.J.; Graham, J.A.; Gardner, D.E.; O'Neil, J.J.

    1983-01-01

    An elastase-induced emphysema model was utilized to determine if hamsters with preexisting lung disease were more susceptible to lung damage from air-pollutant exposure. Male golden hamsters, divided into two treatment groups, were given a single intratracheal injection of either 6 units of porcine pancreatic elastase (EMP) or buffer (CNT). After a 4-week recovery period, equal numbers of each group were exposed 23 hr/day x 28 day to filtered air (AIR) or to the complex by-products from a dark-phase-reaction mixture of trans-2-butene, ozone, and sulfur dioxide (MIX). Lung-function measurements on the elastase-treated groups showed changes consistent with mild emphysema. There were no significant differences in lung volumes or lung compliance between the AIR- and MIX-exposed animals. However, the nitrogen washout slope decreased and the diffusing capacity for carbon monoxide increased in both the CNT and EMP hamsters exposed to the MIX. The change in diffusing capacity was greater in normal hamsters than in hamsters with emphysema, and it is hypothesized that animals with impaired lung function had a decreased ability to respond to a pulmonary insult from the mix.

  2. Enthalpy and entropy barriers explain the effects of topology on the kinetics of zeolite-catalyzed reactions.

    PubMed

    Van der Mynsbrugge, Jeroen; De Ridder, Jeroen; Hemelsoet, Karen; Waroquier, Michel; Van Speybroeck, Veronique

    2013-08-26

    The methylation of ethene, propene, and trans-2-butene on zeolites H-ZSM-58 (DDR), H-ZSM-22 (TON), and H-ZSM-5 (MFI) is studied to elucidate the particular influence of topology on the kinetics of zeolite-catalyzed reactions. H-ZSM-58 and H-ZSM-22 are found to display overall lower methylation rates compared to H-ZSM-5 and also different trends in methylation rates with increasing alkene size. These variations may be rationalized based on a decomposition of the free-energy barriers into enthalpic and entropic contributions, which reveals that the lower methylation rates on H-ZSM-58 and H-ZSM-22 have virtually opposite reasons. On H-ZSM-58, the lower methylation rates are caused by higher enthalpy barriers, owing to inefficient stabilization of the reaction intermediates in the large cage-like pores. On the other hand, on H-ZSM-22, the methylation rates mostly suffer from higher entropy barriers, because excessive entropy losses are incurred inside the narrow-channel structure. These results show that the kinetics of crucial elementary steps hinge on the balance between proper stabilization of the reaction intermediates inside the zeolite pores and the resulting entropy losses. These fundamental insights into their inner workings are indispensable for ultimately selecting or designing better zeolite catalysts.

  3. The use of conditional probability functions and potential source contribution functions to identify source regions and advection pathways of hydrocarbon emissions in Houston, Texas

    NASA Astrophysics Data System (ADS)

    Xie, Yulong; Berkowitz, Carl M.

    In this study, we demonstrate the utility of conditional probability functions (CPFs), potential source contribution functions (PSCFs), and hierarchical clustering analysis (HAC) to identify the source region and transport pathways of hydrocarbons measured at five photochemical assessment monitoring stations (PAMS) near the Houston Ship Channel from June to October 2003. In contrast to scatter plots, which only show the pair-wise correlation of species, commonality in CPF figures shows both correlation and information on the source region of the species in question. In this study, we use over 50 hourly volatile organic compound (VOC) concentrations and surface wind observations to show that VOCs with similar CPF patterns likely have common transport pathways. This was established with the multivariate technique, which uses the hierarchical clustering analysis to define clusters of VOCs having similar CPF patterns. This method revealed that alkenes, and in particular those with geometric isomers such as cis-/ trans-2-butene and cis-/ trans-2-pentene, have similar CPF patterns and hence, a common area of origin. The alkane isomers often show CPF patterns among themselves, and similarly, aromatic compounds often show similar patterns. We also show how calculated trajectory information can be used in the PSCF analysis to produce a graphic picture that identifies specific geographic areas associated with a given VOC (or other pollutant). The use of these techniques in the chemically and meteorologically complex environment of Houston, Texas, suggests its further utility in other areas with relatively simpler conditions.

  4. Computational studies of the isomerization and hydration reactions of acetaldehyde oxide and methyl vinyl carbonyl oxide.

    PubMed

    Kuwata, Keith T; Hermes, Matthew R; Carlson, Matthew J; Zogg, Cheryl K

    2010-09-02

    Alkene ozonolysis is a major source of hydroxyl radical (*OH), the most important oxidant in the troposphere. Previous experimental and computational work suggests that for many alkenes the measured *OH yields should be attributed to the combined impact of both chemically activated and thermalized syn-alkyl Criegee intermediates (CIs), even though the thermalized CI should be susceptible to trapping by molecules such as water. We have used RRKM/master equation and variational transition state theory calculations to quantify the competition between unimolecular isomerization and bimolecular hydration reactions for the syn and anti acetaldehyde oxide formed in trans-2-butene ozonolysis and for the CIs formed in isoprene ozonolysis possessing syn-methyl groups. Statistical rate theory calculations were based on quantum chemical data provided by the B3LYP, QCISD, and multicoefficient G3 methods, and thermal rate constants were corrected for tunneling effects using the Eckart method. At tropospheric temperatures and pressures, all thermalized CIs with syn-methyl groups are predicted to undergo 1,4-hydrogen shifts from 2 to 8 orders of magnitude faster than they react with water monomer at its saturation number density. For thermalized anti acetaldehyde oxide, the rates of dioxirane formation and hydration should be comparable.

  5. Combined effects of organic reactivity and NMHC/NO x ratio on photochemical oxidant formation—a modeling study

    NASA Astrophysics Data System (ADS)

    Dodge, Marcia C.

    A modeling study was undertaken to assess the effect of organic reactivity on photochemical oxidant formation. A six-component hydrocarbon model was developed and tested against data collected in a smog chamber study of irradiated auto exhaust and oxides of nitrogen (NO x) mixtures. The model was then adjusted to conditions that more closely approximated those of the urban environment. The adjusted model was used to assess the relative reactivity of various organic constituents when present in an urban-like air mass. Twelve organics were investigated in the study: ethane, propane, n-butane, ethylene, propylene, trans-2-butene, toluene, m-xylene, methanol, ethanol, formaldehyde and acetaldehyde. The findings of this study indicate that the reactivity of organics depends strongly on the hydrocarbon-to-NO x ratio of the mix in which they are reacting. At low hydrocarbon-to-NO x ratios, the organics investigated in this study displayed significantly different O 3-forming potential. At high hydrocarbon-to-NO x ratios, however, all organics exhibited comparable O 3-forming potential.

  6. Reactions of hydroxyl radicals with alkenes in low-temperature matrices

    NASA Astrophysics Data System (ADS)

    Feltham, Emma J.; Almond, Matthew J.; Marston, George; Wiltshire, Karen S.; Goldberg, Nicola

    2000-11-01

    The reactions of hydroxyl radicals with a number of stable alkenes have been studied in low-temperature matrices. The reactions were initiated by broad band UV-visible irradiation of matrices containing H 2O 2 and the alkene under investigation. The hydroxyalkyl radical products were identified principally by comparison of their spectra with the spectra of corresponding stable alcohols. Accordingly, IR spectra were recorded for the following series of alcohols isolated in argon matrices — methanol, ethanol, ethanol- d6, propan-1-ol, propan-2-ol, butan-2-ol, 2-methylpropan-1-ol ( iso-butyl alcohol), 2-methylpropan-2-ol ( tert-butyl alcohol), 2-methylbutan-2-ol ( tert-amyl alcohol), 3-methylbutan-2-ol and 2,3-dimethylbutan-2-ol. The hydroxyalkyl radicals, which appear to be formed from the alkenes studied were as follows — from ethene, 2-hydroxyethyl radical; from cis- or trans-but-2-ene, 1-methyl-2-hydroxypropyl radical; from propene, 1-methyl-2-hydroxyethyl and 2-hydroxypropyl radicals; from but-1-ene, 1-hydroxymethylpropyl and 2-hydroxybutyl radicals; from 2-methylpropene ( iso-butene), 1,1-dimethyl-2-hydroxyethyl and 2-methyl-2-hydroxypropyl radicals; the radical products from buta-1,3-diene and isoprene could not be identified. In the cases, where two radical products were possible, i.e. when propene, but-1-ene or 2-methylpropene were the substrates, it was found that the concentration of the secondary or tertiary radical always exceeded that of the primary radical. However, the relative concentration of these radicals appears to be determined by subsequent photolysis to give carbonyl compounds. There seems, therefore, to be little preference for the secondary and tertiary radicals over the primary radicals in the primary addition process. Comments on the mechanism of the transformation from radical to carbonyl compound based upon identification of intermediates within the matrix and isotopic substitution experiments are made. The characterisation of the 2

  7. Hydrogenolysis and homologation of linear and branched pentenes on Ru/SiO/sub 2/ catalysts: implication in the mechanism of C-C bond formation and cleavage on metal surfaces

    SciTech Connect

    Rodriguez, E.; Leconte, M.; Basset, J.M.; Tanaka, K.; Tanaka, K.I.

    1988-01-06

    Hydrogenolysis and homologation of 1-pentene to butenes and hexenes take place simultaneously and at the same rate over a Ru/SiO/sub 2/ catalysts at 110/sup 0/C, suggesting that these two reactions are mechanistically related. /sup 13/C labeling experiments indicate that C-C cleavage occurs at the double bond of 1-pentene-1-/sup 13/C leading to unlabeled 1-butene and labeled hexenes. The product distribution in the hydrogenolysis of 1-pentene, 2-pentenes, 3-methyl-1-butene, 2-methyl-2-butene, and 2-methyl-1-butene is accounted for by a carbene-olefin mechanism, which can therefore be considered as a reasonable common path for the formation and cleavage of carbon-carbon bonds on metal surfaces.

  8. Synthesis of the E and Z isomers of the antiestrogen tamoxifen and its metabolite, hydroxytamoxifen, in tritium-labeled form

    SciTech Connect

    Robertson, D.W.; Katzenellenbogen, J.A.

    1982-06-04

    Both isomers of the potent antiestrogen tamoxifen (1,2-diphenyl-1-(4-(2-(dimethylamino)ethoxy)phenyl)-1-butene: E isomer = ICI-47699; Z isomer = ICI-46474, Nolvadex) and its metabolite, hydroxytamoxifen (1-(4-(2-(dimethylamino)ethoxy)phenyl)-1-(4-hydroxyphenyl)-2-phenyl-1-butene), have been synthesized in a high specific activity, tritium-labeled form by catalytic tritium-halogen exchange performed on brominated precursors. The synthesis of another precursor to labeled tamoxifen which would enable the incorporation of three tritium atoms into the molecule by tritium-halogen exchange is reported.

  9. Kinetics of the gas-phase reactions of NO/sub 3/ radicals with a series of dialkenes, cycloalkenes, and monoterpenes at 295 +/- 1 K

    SciTech Connect

    Atkinson, R.; Aschmann, S.M.; Winer, A.M.; Pitts, J.N. Jr.

    1984-05-01

    Rate constants for the gas-phase reactions of the NO/sub 3/ radical, an important reactive constituent of nighttime ambient atmospheres, have been determined for the first time for a series of dialkenes, cycloalkenes, and monoterpenes by using a relative rate technique. By use of a rate constant for the reaction of NO/sub 3/ radicals with trans-2-butene of (2.11 +/- 0.24) x 10 /sup -13/ cm/sup 3/ molecule /sup -1/s/sup -1/, the rate constants obtained at 295 +/- 1 K were the following (in cm/sup 3/ molecule/sup -1/s/sup -1/ units): 1,3-butadiene, (5.34 +/- 0.62) x 10/sup -14/; isoprene, (3.23 +/- 0.38) x 10/sup -13/; cyclohexene, (2.87 +/- 0.34) x 10/sup -13/; 1,3-cyclohexadiene, (7.2 +/- 1.7) x 10/sup -12/; 1,4-cyclohexadiene, (2.89 +/- 0.35) x 10/sup -13/; 1,3-cycloheptadiene, (3.8 +/- 0.9) x 10/sup -12/; ..cap alpha..-pinene, (3.4 +/- 0.8) x 10/sup -12/; ..beta..-pinene, (1.4 +/- 0.3) x 10/sup -12/; ..delta../sup 3/-carene, (5.9 +/- 1.3) x 10/sup -12/; d-limonene, (7.7 +/- 1.7) x 10/sup -12/. These NO/sub 3/ radical rate constants for the naturally emitted hydrocarbons isoprene and the monoterpenes, in conjunction with measured ambient NO/sub 3/ radical concentrations, show that nighttime reaction with the NO/sub 3/ radical can be an important, if not dominant, loss process for these organics. Similarly, these reactions can also be an important loss process for NO/sub 3/ radicals, and hence for NO/sub x/, during nighttime hours. 43 references.

  10. Application of Pattern Recognition to Metal Ion Chemical Ionization Mass Spectra.

    DTIC Science & Technology

    1985-10-01

    experiments. ORGANICS FOR RECOGNITION OF SIX CLASSES ALJAJE AL-KE KETONE butane 1 - butene butanone pentane 1 -pentene 2-pentanone hexane 1 -hezene 2... butene cyclopentanone 1 -methyl cyclopentane cyclopentene methyl cyclopropyl k etone cyclobexane cyclohexene 3-methyl cyclopentanone * 1 -methyl...cyclobeiane vinyl cyclohexane cyclohexanone * ALDEH YDE ETHER ALCOHOL propanal ethyl ether ethanol butanal methyl butyl ether 1 -propanol pentanal ethyl

  11. The Biological Fate and Effects of Organotin Compounds in the Marine Environment.

    DTIC Science & Technology

    1983-07-01

    the a- and 8- hydroxy compounds underwent dealkylation reactions under acidic conditions to form dibutyltin derivatives and 1-butanol and 1-butene...possibly the a- hydroxybutyltributyltins. Dibutyltin diacetate underwent monooxygenase or monenzymatic cleavage to butyltin derivates. Fish et al, (1978...mercury derivatives because the lipid solubility of monomethyltins was too low. Dibutyltin dichloride was investigated for its ability to induce hepatic

  12. Studies of vanadium-phosphorus-oxygen selective oxidation catalysts by sup 31 P and sup 51 V NMR spin-echo and volume susceptibility measurements

    SciTech Connect

    Li, Juan.

    1991-10-01

    The purpose of this work is to characterize the vanadium-phosphorous oxide (V-P-O) catalysts for the selective oxidation of n-butane and 1-butene to maleic anhydride. The utility of solid state nuclear magnetic resonance as an analytical tool in this investigation lies in its sensitivity to the electronic environment surrounding the phosphorous and vanadium nuclei, and proximity of paramagnetic species. Spin-echo mapping NMR of {sup 31}p and {sup 51}v and volume magnetic susceptibility measurements were used as local microscopic probes of the presence of V{sup 5+}, V{sup 4+}, V{sup 3+} species in the model compounds: {beta}-VOPO{sub 4}, {beta}-VOPO{sub 4} treated with n-butane/1-butene, (VO){sub 2}P{sub 2}O{sub 7} treated with n-butane/1-butene; and industrial catalysts with P/V (phosphorus to vanadium) ratio of 0.9, 1.0 and 1.1, before and after treatment with n-butane and 1-butene. The NMR spectra provide a picture of how the oxidation states of vanadium are distributed in these catalysts. 73 refs., 32 figs., 8 tabs.

  13. Determination of Tamoxifen and its Major Metabolites in Exposed Fish

    EPA Science Inventory

    Tamoxifen (TAM), (Z)-1-(p-dimethylaminoethoxyphenyl)-1, 2-diphenyl-1-butene, is a nonsteroidal agent that has been used in breast cancer treatment for decades. Its major metabolites are 4-hydroxytamoxifen (4-OHT), N-desmethyltamoxifen (DMT), and endoxifen. While TAM and metabolit...

  14. Systematic preparation of selective heterogeneous catalysts. Final report, September 1, 1984--August 31, 1991

    SciTech Connect

    Augustine, R.L.

    1991-11-07

    The Single Turnover (STO) procedure, involving pulses of hydrogen and 1-butene, was developed for studying the types of active sites present on supported metal catalysts. The STO procedure was used to study direct saturated sites and other topics. Frontier molecular orbital studies were also made.

  15. Systematic preparation of selective heterogeneous catalysts

    SciTech Connect

    Augustine, R.L.

    1991-11-07

    The Single Turnover (STO) procedure, involving pulses of hydrogen and 1-butene, was developed for studying the types of active sites present on supported metal catalysts. The STO procedure was used to study direct saturated sites and other topics. Frontier molecular orbital studies were also made.

  16. The effect of cavitating ultrasound on the aqueous phase hydrogenation of cis-2-buten-1-ol and cis-2-penten-1-ol on Pd-black

    SciTech Connect

    Disselkamp, Robert S.; Denslow, Kayte M.; Hart, Todd R.; White, James F.; Peden, Charles HF.

    2005-07-15

    We have studied the effect of cavitating ultrasound on the heterogeneous aqueous hydrogenation of cis-2-buten-1-ol (C4 olefin) and cis-2-penten-1-ol (C5 olefin) on Pd-black to form the trans-olefins (trans-2-buten-1-ol and trans-2-penten-1-ol) and saturated alcohols (1-butanol and 1-pentanol, respectively). Silent (and magnetically stirred) experiments served as control experiments. As described in an earlier publication by our group, we have added an inert dopant, 1-propanol, in the reaction mixture to ensure the rapid onset of cavitation in the ultrasound-assisted reactions that can lead to altered selectivity compared to silent reaction systems [R.S. Disselkamp, Ya-Huei Chin, C.H.F. Peden, J. Catal. 227 (2004) 552]. The motivation for this study is to examine whether cavitating ultrasound can reduce the [trans-olefin/saturated alcohol] molar ratio during the course of the reaction. This could have practical application in that it may offer an alternative processing methodology of synthesizing healthier edible seed oils by reducing trans-fat content.We have observed that cavitating ultrasound results in a [(trans-olefin/saturated alcohol)ultrasound/(trans-olefin/saturated alcohol)silent] ratio quantity less than 0.5 at the reaction mid-point for both the C4 and C5 olefin systems. This indicates that ultrasound reduces trans-olefin production compared to the silent control experiment. Furthermore, there is an added 30% reduction for the C5 versus C4 olefin compounds again at reaction mid-point. We attribute differences in the ratio quantity as a moment of inertia effect. In principle, the C4 versus C5 olefins has a {approx}52% increase in moment of inertia about C2 C3 double bond slowing isomerization. Since seed oils are C18 multiple cis-olefins and have a moment of inertia even greater than our C5 olefin here, our study suggests that even a greater reduction in trans-olefin content may occur for partial hydrogenation of C18 seed oils.

  17. HIRAC - A Highly Instrumented Reactor for Atmospheric Chemistry

    NASA Astrophysics Data System (ADS)

    Hemavibool, K.; Malkin, T. L.; Glowacki, D. R.; Goddard, A.; Heard, D. E.; Seakins, P. W.; Pilling, M. J.

    2008-12-01

    Environmental chambers are an important part of an integrated and multifaceted approach to understanding chemical processes in the atmosphere, by bridging the gap between laboratory measurements of individual elementary reactions and the complexity of the real atmosphere. The University of Leeds HIRAC chamber is a 2 m3 stainless steel vessel capable of operating at a variety of temperatures and pressures, enabling wide ranging kinetics experiments. Photolysis reactions are initiated by 8 rows of internal lights positioned to maximise the volume of the cell (> 85 % ) receiving a uniform ( ± 10 % ) light intensity. HIRAC's includes a suite of analytical devices comprising of: a long path FTIR system (operating from the UV to the far IR), GC-HID and GC-FID for HCHO and hydrocarbons detection respectively, commercial NOx/O3/H2O vapour and CO analysers, and laser-induced fluorescence at low pressure (FAGE) detection system for OH and HO2 measurement (detection limit of ~106 molecule cm- 3). HIRAC aims to validate mechanisms of hydrocarbon oxidation relevant for models such as the Master Chemical Mechanism (MCM), to measure the kinetics of reactions which cannot be studied by isolated techniques such as laser flash photolysis or discharge flow, and to provide a test bed for the development and calibration of field instrumentation. This poster intends to give an insight in to the characterisation of HIRAC and initial results. Relative rate measurements have been used to measure the kinetics of OH radical and Cl atom reactions with a variety of VOCs, using GC and FTIR detection. Relative rate measurements avoid the effects of secondary reactions and the need for direct measurement of highly reactive radicals. Measurements have been made with very high precision, generating high quality fall-off curves for the pressure dependent ethene and Cl atom reactions. The reaction between O3 and trans-2-butene has been studied by the detection of reagents and product acetaldehyde

  18. [Pollution characteristics and health risk assessment of atmospheric VOCs in the downtown area of Guangzhou, China].

    PubMed

    Li, Lei; Li, Hong; Wang, Xue-Zhong; Zhang, Xin-Min; Wen, Chong

    2013-12-01

    The measurements of 31 kinds of VOCs in the ambient air of a site were carried out in the downtown of Guangzhou by online method from November 5, 2009 to November 9, 2009. The ambient level and composition characteristics, temporal variation characteristics, sources identification, and chemical reactivity of VOCs were studied, and the health risk of VOCs in the ambient air in the study area was assessed by using the international recognized health risk assessment method. Results showed that the mean and the range of the mass concentrations of 31 VOCs were 114.51 microg x m(-3) and 29.42-546.06 microg x m(-3), respectively. The mass concentrations of 31 VOCs, and those of alkanes, alkenes, and aromatics all showed a changing trend of higher in the morning and in the evening, and lower at noontime. Vehicular exhaust, gasoline and liquefied petroleum gas evaporates were the main sources of VOCs with the volatilization of paints and solvents being important emission sources. Toluene, trans-2-butene, m/p-xylene, i-butane, and 1,3,5-trimethylbenzene were the key reactive species among the 31 VOCs. Vehicular exhaust and gasoline evaporation were the main sources of VOCs leading to the formation of ozone. Health risk assessment showed that n-hexane, 1,3-butadiene, benzene, toluene, ethylbenzene, m/p-xylene and o-xylene had no appreciable risk of adverse non-cancer health effect on the exposed population, but 1, 3-butadiene and benzene had potential cancer risk. By comparing the corresponding data about health risk assessment of benzene compounds in some cities in China, it is concluded that benzene can impose relatively high cancer risk to the exposed populations in the ambient air of some cities in China. Therefore, strict countermeasures should be taken to further control the pollution of benzene in the ambient air of cities, and it is imperative to start the related studies and develop the atmospheric environmental health criteria and national ambient air quality

  19. Non-methane hydrocarbons (NMHCs) and their contribution to ozone formation potential in a petrochemical industrialized city, Northwest China

    NASA Astrophysics Data System (ADS)

    Jia, Chenhui; Mao, Xiaoxuan; Huang, Tao; Liang, Xiaoxue; Wang, Yanan; Shen, Yanjie; Jiang, Wanyanhan; Wang, Huiqin; Bai, Zhilin; Ma, Minquan; Yu, Zhousuo; Ma, Jianmin; Gao, Hong

    2016-03-01

    Hourly air concentrations of fifty-three non-methane hydrocarbons (NMHCs) were measured at downtown and suburb of Lanzhou, a petrochemical industrialized city, Northwest China in 2013. The measured data were used to investigate the seasonal characteristics of NMHCs air pollution and their contributions to the ozone formation in Lanzhou. Annually averaged NMHCs concentration was 38.29 ppbv in downtown Lanzhou. Among 53 NMHCs, alkanes, alkenes, and aromatics accounted for 57%, 23% and 20% of the total NMHCs air concentration, respectively. The atmospheric levels of toluene and propane with mean values of 4.62 and 4.56 ppbv were higher than other NMHCs, respectively. The ambient levels of NMHCs in downtown Lanzhou were compared with measured NMHCs data collected at a suburban site of Lanzhou, located near a large-scale petrochemical industry. Results show that the levels of alkanes, alkenes, and aromatics in downtown Lanzhou were lower by factors of 3-11 than that in west suburb of the city. O3-isopleth plots show that ozone was formed in VOCs control area in downtown Lanzhou and NOx control area at the west suburban site during the summertime. Propylene-equivalent (Prop-Equiv) concentration and the maximum incremental reactivity (MIR) in downtown Lanzhou indicate that cis-2-butene, propylene, and m/p-xylene were the first three compounds contributing to ozone formation potentials whereas in the petrochemical industrialized west suburb, ethane, propene, and trans-2-Butene played more important role in the summertime ozone formation. Principal component analysis (PCA) and multiple linear regression (MLR) were further applied to identify the dominant emission sources and examine their fractions in total NMHCs. Results suggest that vehicle emission, solvent usage, and industrial activities were major sources of NMHCs in the city, accounting for 58.34%, 22.19%, and 19.47% of the total monitored NMHCs in downtown Lanzhou, respectively. In the west suburb of the city

  20. The Effect of Cavitating Ultrasound on the Aqueous Phase Hydrogenation of Cis-2-buten-1-ol and Cis-2-penten-1-ol on Pd-black

    SciTech Connect

    Disselkamp, Robert S.; Denslow, Kayte M.; Hart, Todd R.; White, James F.; Peden, Charles HF.

    2005-07-15

    We have studied the effect of cavitating ultrasound on the heterogeneous aqueous hydrogenation of cis-2-buten-1-ol (C4 olefin) and cis-2-penten-1-ol (C5 olefin) on Pd-black to form the trans-olefins (trans-2-buten-1-ol and trans-2-penten-1-ol) and saturated alcohols (1-butanol and 1-pentanol, respectively). Silent (and magnetically stirred) experiments served as control experiments. As described in an earlier publication by our group, we have added an inert dopant, 1-propanol, in the reaction mixture to ensure the rapid onset of cavitation in the ultrasound-assisted reactions that can lead to altered selectivity compared to silent reaction systems [Disselkamp et al., J. Catal., 227 (2004) 552]. The motivation for this study is to examine whether cavitating ultrasound can reduce the [trans-olefin/saturated alcohol] molar ratio during the course of the reaction. This could have practical application in that it may offer an alternative processing methodology of synthesizing healthier edible seed oils by reducing trans-fat content. We have observed that cavitating ultrasound results in a [(trans-olefin/saturated alcohol)ultrasound/(trans-olefin/saturated alcohol)silent] ratio quantity less than 0.5 at the reaction mid-point for both the C4 and C5 olefin systems. This indicates that ultrasound reduces trans-olefin production compared to the silent control experiment. Furthermore, there is an added 30% reduction for the C5 versus C4 olefin compounds again at reaction mid-point. We attribute differences in the ratio quantity as a moment of inertia effect. In principle, the C4 versus C5 olefins has a {approx}52% increase in moment of inertia about C2=C3 double bond slowing isomerization. Since seed oils are C18 multiple cis olefins and have an moment of inertia even greater than our C5 olefin here, our study suggests that even a greater reduction in trans-olefin content may occur for partial hydrogenation of C18 seed oils.

  1. Study on Sources of Volatile Organic Compounds (CMB) in Pearl River Delta region, China

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Shao, M.; Lu, S.; Chang, C.; Wang, C. J.; Wang, B.

    2007-05-01

    The profiles of major Volatile organic compounds (VOCs) sources including vehicle exhaust, gasoline vapor, painting, asphalt, liquefied petroleum gas (LPG), biomass burning and petrochemical industry in Pearl River Delta were experimentally determined. Source samples were taken by using dilution chamber for mobile and stationary sources, laboratory simulation for biomass burning. The concentrations of 108 VOC species of sources were quantified by using canister with pre-concentration-GC/MS system, from which 52 PAMS hydrocarbons and one kind of chlorinated hydrocarbon were deployed to build the source profiles for source apportionment of VOCs. Based the measurement of source profiles, the possible tracers for various emission sources were identified, e.g 2-methylbutane and 1,3-butadiene were the tracers for motor vehicle exhaust, the characteristic compounds of architectural and furnishing coatings are aromatics such as toluene and m/p-xylene; the light hydrocarbons, namely n-butane, trans-2-butene and n-pentane, dominated the composition of gasoline vapor; and the nonane, decane and undecane are found to represent the asphalt emissions etc.. The CMB receptor model was applied to source apportionment of 58 hydrocarbons measured at seven sites during the PRD campaign, 2004. The 12 kinds of VOC sources include gasoline/diesel-powered vehicle exhaust, gasoline/diesel headspace vapor, vehicle evaporative emissions, liquid petroleum gas (LPG) leakage, painting vapors, asphalt emission from paved road, biomass burning, coal burning, chemical industry and petroleum refinery. Vehicle exhaust was the largest sources contributing over half of the ambient VOCs at the three urban sites (GuangZhou, FoShan and ZhongShan). LPG leakage played an important role with the percentage of 8- 16% in most sites in PRD. Contributions from solvents usage were highest at DongGuan, an industrial site. At XinKen, the solvents and coatings had the largest percentage of 31% probably due to the

  2. Amine attack on coordinated alkenes: an interconversion from anti-Markovnikoff to Markovnikoff products.

    PubMed

    Pryadun, Ruslan; Sukumaran, Dinesh; Bogadi, Robert; Atwood, Jim D

    2004-10-06

    A sequence of alkene complexes of platinum, PtCl(2)(PPh(3))(alkene) (alkene = ethylene, propene, 1-butene, cis-2-butene, 1-hexene, 1-octene, and 1-decene), has been prepared. These complexes are characterized by NMR spectroscopy, including assignment of each proton, and X-ray crystal structures of the 1-propene and 1-hexene complexes. Each complex was reacted with diethylamine. For the 1-hexene, 1-octene, and 1-decene complexes, the amine displaces the alkene. For the smaller alkenes, the diethylamine nucleophilically attacks the coordinated alkene. For propene and 1-butene, the low-temperature addition leads to the anti-Markovnikoff nucleophilic attack, which slowly converts at room temperature to the Markovnikoff product. The transformation from anti-Markovnikoff to Markovnikoff addition occurs without diethylamine dissociation.

  3. Formulation of an RP-1 Pyrolysis Surrogate from Shock Tube Measurements of Fuel and Ethylene Time Histories

    DTIC Science & Technology

    2012-04-01

    2 from [Huber 2009a] Composition, mole fraction Fluid RP-1 surrogate RP- 2 surrogate -methyldecalin 0.354 0.354 5 -methylnonane 0.150...ss S ec tio n [m 2 / m ol ] 1200800400 Temperature [K] 1-Butene Propene Ethylene 5 Fig. 3 HPST mixing tank complete evaporation check...also vary with temperature, and this is shown in Fig. 8. 6 5 4 3 2 1 0 E th yl en e Y ie ld 1600140012001000 Temperature [K] Dodecane

  4. Electrochemistry of Metal Surfaces

    DTIC Science & Technology

    1990-06-30

    1-butene (BTE), 1-pentene (PTE), l-hexene (HXE), 1-- octene (OCE) and l--decene (DCE). Vibrational spectra of the adsorbed layers were obtained by use...Surface Sci., 92, 617 (1980). 39. Electrochemical Hydrogenation of Ethylene at Well-Defined Pt(100) and Pt(111) Surfaces. Arthur T. Hubbard, Mark A...Surf Sci., 147, 241 (1984). 75. A Comparison of Gas Phase and Electrochemical Hydrogenation of Ethylene at ** Platinum Surfaces. Andrzej Wieckowski

  5. Stereochemically Defined Various Multisubstituted Alkenes Bearing a Tetrafluoroethylene (-CF2CF2-) Fragment.

    PubMed

    Sakaguchi, Yukiho; Yamada, Shigeyuki; Konno, Tsutomu; Agou, Tomohiro; Kubota, Toshio

    2017-02-03

    Highly regio- and stereoselective transformation of commercially available 4-bromo-3,3,4,4-tetrafluoro-1-butene into multisubstituted alkenes having a tetrafluoroethylene fragment through Heck reactions and/or Suzuki-Miyaura cross-coupling reactions was established. Thus, the obtained alkenes underwent a smooth reductive coupling reaction with aldehydes under the influence of MeLi/LiBr-free, affording structurally unprecedented fluorinated materials.

  6. The Thermodynamic Conjugation Stabilization of 1,3-Butadiyne Is Zero

    ERIC Educational Resources Information Center

    Rogers, Donald W.; Zavitsas, Andreas A.; Matsunaga, Nikita

    2010-01-01

    Many textbooks point out that the thermodynamic stabilization enthalpy of 1 mol of 1,3-butadiene relative to 2 mol of 1-butene or to 1 mol of 1,4-pentadiene is slightly less than 4 kcal mol[superscript -1], owing to conjugation between the double bonds in the 1,3 configuration. It is reasonable to suppose that the analogous thermochemical…

  7. Effects of Preparation on the Properties of Niobia-Alumina Binary Oxides

    DTIC Science & Technology

    1988-06-15

    acidity in binary oxides. • The characterization of oxides as model catalysts by the use of reactions such as 1 -butene isomerization. The following...Public Release; Distribution 2b. DECLASSIFICATION /DOWNGRADING SCHEDULE Unlimited 4 PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION ...REPORT NUMBER(S) 6a NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a NAME OF MONITORiNG ORGANIZATION Carnegie Mellon University (If applicable

  8. The effect of supported MoO(X) structures on the reaction pathways of propene formation in the metathesis of ethylene and 2-butene.

    PubMed

    Hahn, T; Kondratenko, E V; Linke, D

    2014-08-21

    The kind of surface MoOX structures on Al2O3-SiO2 was found to determine propene selectivity in the metathesis of ethylene and 2-butene. Compared to isolated tetrahedral MoOX species, their polymerized octahedral counterparts show significantly lower activity for isomerisation of 2- to 1-butene thus hindering non-selective metathesis of these butenes. In addition, they reveal higher ability to engage ethylene in propene formation.

  9. Replacing precious metals with carbide catalysts for hydrogenation reactions

    SciTech Connect

    Ruijun, Hou; Chen, Jingguang G.; Chang, Kuan; Wang, Tiefeng

    2015-03-03

    Molybdenum carbide (Mo₂C and Ni/Mo₂C) catalysts were compared with Pd/SiO₂ for the hydrogenation of several diene molecules, 1,3- butadiene, 1,3- and 1,4-cyclohexadiene (CHD). Compared to Pd/SiO₂, Mo₂C showed similar hydrogenation rate for 1,3-butadiene and 1,3-CHD and even higher rate for 1,4-CHD, but with significant deactivation rate for 1,3-CHD hydrogenation. However, the hydrogenation activity of Mo₂C could be completely regenerated by H₂ treatment at 723 K for the three molecules. The Ni modified Mo₂C catalysts retained similar activity for 1,3-butadiene hydrogenation with significantly enhanced selectivity for 1-butene production. The 1-butene selectivity increased with increasing Ni loading below 15%. Among the Ni modified Mo₂C catalysts, 8.6%Ni/Mo₂C showed the highest selectivity to 1-butene, which was even higher selectivity than that over Pd/SiO₂. Compared to Pd/SiO₂, both Mo₂C and Ni/Mo₂C showed combined advantages in hydrogenation activity and catalyst cost reduction, demonstrating the potential to use less expensive carbide catalysts to replace precious metals for hydrogenation reactions.

  10. Sorption and diffusion of light hydrocarbons on Na-Y zeolites

    SciTech Connect

    Palmas, S.; Polcaro, A.M.; Carta, R.; Tola, G. )

    1991-01-01

    This paper reports on the adsorption isotherms that were determined on zeolite Na-Y at 298, 313, and 333 K for propane and propylene and at 298 K for butane, trans-butene, 1-butene, and cis-butene. The pressure of the experiments ranged from 5 {times} 10{sup {minus}2} to 30 kPa. The weight of adsorbed hydrocarbons was determined by a gravimetric method with a vacuum microbalance. The Henry constants were evaluated from the equilibrium measurements in the low-concentration range, and their sequence propane {lt} butane {lt} trans-butene {lt} propylene {lt} 1-butene {lt} cis-butene, was discussed in terms of the different adsorbate-adsorbent interactions. Equilibrium data, over the whole pressure range, were correlated by using the simplified model by Ruthven, based on statistical thermodynamics, and the appropriate parameters are reported. For C4 hydrocarbons, the intracrystalline diffusion process was also investigated and the Darken equation was used to correlate the uptake curves at the higher pressures. The diffusion coefficients were found in the order butane {gt} trans-butene {gt} 1-butene {gt} cis-butene and were compared to the available values in literature.

  11. Replacing precious metals with carbide catalysts for hydrogenation reactions

    DOE PAGES

    Ruijun, Hou; Chen, Jingguang G.; Chang, Kuan; ...

    2015-03-03

    Molybdenum carbide (Mo₂C and Ni/Mo₂C) catalysts were compared with Pd/SiO₂ for the hydrogenation of several diene molecules, 1,3- butadiene, 1,3- and 1,4-cyclohexadiene (CHD). Compared to Pd/SiO₂, Mo₂C showed similar hydrogenation rate for 1,3-butadiene and 1,3-CHD and even higher rate for 1,4-CHD, but with significant deactivation rate for 1,3-CHD hydrogenation. However, the hydrogenation activity of Mo₂C could be completely regenerated by H₂ treatment at 723 K for the three molecules. The Ni modified Mo₂C catalysts retained similar activity for 1,3-butadiene hydrogenation with significantly enhanced selectivity for 1-butene production. The 1-butene selectivity increased with increasing Ni loading below 15%. Among the Nimore » modified Mo₂C catalysts, 8.6%Ni/Mo₂C showed the highest selectivity to 1-butene, which was even higher selectivity than that over Pd/SiO₂. Compared to Pd/SiO₂, both Mo₂C and Ni/Mo₂C showed combined advantages in hydrogenation activity and catalyst cost reduction, demonstrating the potential to use less expensive carbide catalysts to replace precious metals for hydrogenation reactions.« less

  12. Stereoselective synthesis and molecular modeling of chiral cyclopentanes.

    PubMed

    Abdel-Jalil, Raid J; Steinbrecher, Thomas; Al-Harthy, Thuraya; Mahal, Ahmed; Abou-Zied, Osama K; Voelter, Wolfgang

    2015-10-13

    The reaction of 3-methyseleno-2-methylselenomethyl-propene with benzyl 2,3-anhydro-4-O-triflyl-β-L-ribopyranoside provides a major convenient enantiomeric product of 1-methylene-(benzyl3,4-dideoxy-α-D-arabinopyranoso)-[3,4-c]-cyclopentane, with benzyl-2,3-anhydro-4-deoxy-4-C-(2-methyl- propen-3-yl)-α-D-lyxopyranoside as a minor product. While the reaction of 3-methyseleno-2-[methylselenomethyl]-propene with benzyl 2,3-anhydro-4-O-triflyl-α-D-ribopyranoside produces a good yield of benzyl-2,3-anhydro-4-deoxy-4-C-(2-methylpropen-3-yl)-α-D-lyxo-pyranoside. Molecular modeling and molecular dynamics simulations indicate that the intermediate in the reaction of the β-L sugar frequently occupies an optimal conformation that leads to the formation of cyclopentane, while the intermediate in the reaction of the α-D sugar has a very small probability. The results point to the dominant role of the β-L sugar intermediate in controlling the cyclopentane formation.

  13. Fermentative production of isobutene.

    PubMed

    van Leeuwen, Bianca N M; van der Wulp, Albertus M; Duijnstee, Isabelle; van Maris, Antonius J A; Straathof, Adrie J J

    2012-02-01

    Isobutene (2-methylpropene) is one of those chemicals for which bio-based production might replace the petrochemical production in the future. Currently, more than 10 million metric tons of isobutene are produced on a yearly basis. Even though bio-based production might also be achieved through chemocatalytic or thermochemical methods, this review focuses on fermentative routes from sugars. Although biological isobutene formation is known since the 1970s, extensive metabolic engineering is required to achieve economically viable yields and productivities. Two recent metabolic engineering developments may enable anaerobic production close to the theoretical stoichiometry of 1isobutene + 2CO(2) + 2H(2)O per mol of glucose. One relies on the conversion of 3-hydroxyisovalerate to isobutene as a side activity of mevalonate diphosphate decarboxylase and the other on isobutanol dehydration as a side activity of engineered oleate hydratase. The latter resembles the fermentative production of isobutanol followed by isobutanol recovery and chemocatalytic dehydration. The advantage of a completely biological route is that not isobutanol, but instead gaseous isobutene is recovered from the fermenter together with CO(2). The low aqueous solubility of isobutene might also minimize product toxicity to the microorganisms. Although developments are at their infancy, the potential of a large scale fermentative isobutene production process is assessed. The production costs estimate is 0.9 Euro kg(-1), which is reasonably competitive. About 70% of the production costs will be due to the costs of lignocellulose hydrolysate, which seems to be a preferred feedstock.

  14. Quantitative structure-activity relationships for toxicity and genotoxicity of halogenated aliphatic compounds: wing spot test of Drosophila melanogaster.

    PubMed

    Chroust, Karel; Pavlová, Martina; Prokop, Zbynek; Mendel, Jan; Bozková, Katerina; Kubát, Zdenek; Zajícková, Veronika; Damborský, Jiri

    2007-02-01

    Halogenated aliphatic compounds were evaluated for toxic and genotoxic effects in the somatic mutation and recombination test employing Drosophila melanogaster. The tested chemicals included chlorinated, brominated and iodinated; mono-, di- and tri-substituted; saturated and unsaturated alkanes: 1,2-dibromoethane, 1-bromo-2-chloroethane, 1-iodopropane, 2,3-dichloropropene, 3-bromo-1-propene, epibromohydrin, 2-iodobutane, 3-chloro-2-methylpropene, 1,2,3-trichloropropane, 1,2-dichloroethane, 1,2-dichlorobutane, 1-chloro-2-methylpropane, 1,3-dichloropropane, 1,2-dichloropropane, 2-chloroethymethylether, 1-bromo-2-methylpropane and 1-chloropentane. N-methyl-N-nitrosourea served as the positive and distilled water as the negative control. The set of chemicals for the toxicological testing was selected by the use of statistical experiment design. Group of unsaturated aliphatic hydrocarbons were generally more toxic than saturated analogues. The genotoxic effect was observed with 14 compounds in the wing spot test, while 3 substances did not show any genotoxicity by using the wing spot test at 50% lethal concentration. The highest number of wing spots was observed in genotoxicity assay with 1-bromo-2-chloroethane, 1,2-dichloroethane, 1,2-dibromoethane and 1-iodopropane. Nucleophilic superdelocalizability calculated by quantum mechanics appears to be a good parameter for prediction of both toxicity and genotoxicity effects of halogenated aliphatic compounds.

  15. OH yields in the gas-phase reactions of ozone with alkenes

    SciTech Connect

    Rickard, A.R.; Johnson, D.; McGill, C.D.; Marston, G.

    1999-09-23

    Hydroxyl radical yields are reported for the gas-phase ozonolyses of a range of alkenes. 1,3,5-Trimethylbenzene was employed as an OH tracer, and the diminution in its concentration was used to calculate OH yields by both a simple analytical kinetic expression and a numerically integrated model. The following OH yields were obtained, relative to alkene consumed: ethene (0.14), propene (0.32), 2-methylpropene (0.60), 2,3-dimethyl-2-butene (0.89), isoprene (0.44), {beta}-pinene (0.24), and {alpha}-pinene (0.83). A structure activity relationship (SAR) is presented for the estimation of OH yields based on structural moieties and reaction branching ratios. Reaction stoichiometries ({Delta}[alkene]/{Delta}[ozone]) are also reported, along with primary carbonyl yields measured in the presence and absence of excess SO{sub 2}, both under OH-free conditions. Reaction stoichiometries are shown to be correlated with alkene OH yields, and the mechanistic implications of this observation are discussed. The fractional increase in primary carbonyl yield in the presence of excess SO{sub 2} is shown to be inversely related to the OH yield and is interpreted as a measure of the fraction of the vibrationally excited Criegee intermediate that is stabilized in air at a pressure of 1 atm.

  16. Reaction and spectroscopic study of supported metal oxide catalysts

    NASA Astrophysics Data System (ADS)

    Ramani, Narayanan C.

    The role of surface structure, cation reducibility, surface acidity and the effect of the support was examined in the reaction of 1-butene over well characterized, supported metal oxide catalysts. Cr, Mo and W oxides supported on SiOsb2 were used to study the effect of structure, surface acidity and cation reducibility in the isomerization and selective oxidation of 1-butene. Supported oxides of Mo on TiOsb2,\\ Alsb2Osb3 and SiOsb2 were used to understand the role of the support in the selective oxidation of 1-butene. The surface acidity of SiOsb2 supported Cr, Mo, W and V oxide catalysts was examined by pyridine adsorption. Existing theoretical models of acidity were compared against experimental data. Over Mo(VI)/SiOsb2 and W(VI)/SiOsb2, isomerization through both a Bronsted catalyzed pathway and an allylic pathway were observed, while only the allylic pathway was observed over Cr(VI)/SiOsb2. The greater reducibility of the Cr cation compared to Mo and W cations was identified as the reason for the allylic pathway being dominant over Cr(VI)/SiOsb2. Cation reducibility was again seen to play an important role in the selective oxidation of 1-butene over SiOsb2 supported metal oxides. The turn over frequencies for 1,3-butadiene formation followed the trend in red-ox ability, with Cr > Mo > W. The activity to 1,3-butadiene formation did not change with increasing weight loading of Mo over TiOsb2 and Alsb2Osb3 supports. An analysis of the turn over frequencies of the supports and the supported cations revealed that a support effect, through the bridging oxygen ligand, dominated the intrinsic cation reducibility of Mo for these catalysts. The existence of Bronsted acidity over SiOsb2 supported Cr, Mo and V oxides was shown by an analysis of the OH region of the infrared spectrum, and by the adsorption of 1-butene and pyridine. Existing theoretical models for Bronsted acidity over supported metal oxides were shown to be inadequate to describe the observed results over

  17. Ice core records of monoterpene- and isoprene-SOA tracers from Aurora Peak in Alaska since 1660s: Implication for climate change variability in the North Pacific Rim

    NASA Astrophysics Data System (ADS)

    Pokhrel, Ambarish; Kawamura, Kimitaka; Ono, Kaori; Seki, Osamu; Fu, Pingqing; Matoba, Sumio; Shiraiwa, Takayuki

    2016-04-01

    Monoterpene and isoprene secondary organic aerosol (SOA) tracers are reported for the first time in an Alaskan ice core to better understand the biological source strength before and after the industrial revolution in the Northern Hemisphere. We found significantly high concentrations of monoterpene- and isoprene-SOA tracers (e.g., pinic, pinonic, and 2-methylglyceric acids, 2-methylthreitol and 2-methylerythritol) in the ice core, which show historical trends with good correlation to each other since 1660s. They show positive correlations with sugar compounds (e.g., mannitol, fructose, glucose, inositol and sucrose), and anti-correlations with α-dicarbonyls (glyoxal and methylglyoxal) and fatty acids (e.g., C18:1) in the same ice core. These results suggest similar sources and transport pathways for monoterpene- and isoprene-SOA tracers. In addition, we found that concentrations of C5-alkene triols (e.g., 3-methyl-2,3,4-trihydroxy-1-butene, cis-2-methyl 1,3,4-trihydroxy-1-butene and trans-2-methyl-1,3,4-trihydroxy-1-butene) in the ice core have increased after the Great Pacific Climate Shift (late 1970s). They show positive correlations with α-dicarbonyls and fatty acids (e.g., C18:1) in the ice core, suggesting that enhanced oceanic emissions of biogenic organic compounds through the marine boundary layer are recorded in the ice core from Alaska. Photochemical oxidation process for these monoterpene- and isoprene-/sesquiterpene-SOA tracers are suggested to be linked with the periodicity of multi-decadal climate oscillations and retreat of sea ice in the Northern Hemisphere.

  18. Development of a pulsed uniform supersonic gas expansion system based on an aerodynamic chopper for gas phase reaction kinetic studies at ultra-low temperatures

    NASA Astrophysics Data System (ADS)

    Jiménez, E.; Ballesteros, B.; Canosa, A.; Townsend, T. M.; Maigler, F. J.; Napal, V.; Rowe, B. R.; Albaladejo, J.

    2015-04-01

    A detailed description of a new pulsed supersonic uniform gas expansion system is presented together with the experimental validation of the setup by applying the CRESU (French acronym for Cinétique de Réaction en Ecoulement Supersonique Uniforme or Reaction Kinetics in a Uniform Supersonic Flow) technique to the gas-phase reaction of OH radicals with 1-butene at ca. 23 K and 0.63 millibars of helium (carrier gas). The carrier gas flow, containing negligible mixing ratios of OH-precursor and 1-butene, is expanded from a high pressure reservoir (337 millibars) to a low pressure region (0.63 millibars) through a convergent-divergent nozzle (Laval type). The novelty of this experimental setup is that the uniform supersonic flow is pulsed by means of a Teflon-coated aerodynamic chopper provided with two symmetrical apertures. Under these operational conditions, the designed Laval nozzle achieves a temperature of (22.4 ± 1.4) K in the gas jet. The spatial characterization of the temperature and the total gas density within the pulsed uniform supersonic flow has also been performed by both aerodynamical and spectroscopic methods. The gas consumption with this technique is considerably reduced with respect to a continuous CRESU system. The kinetics of the OH+1-butene reaction was investigated by the pulsed laser photolysis/laser induced fluorescence technique. The rotation speed of the disk is temporally synchronized with the exit of the photolysis and the probe lasers. The rate coefficient (kOH) for the reaction under investigation was then obtained and compared with the only available data at this temperature.

  19. Polymer Activated Catalysts.

    DTIC Science & Technology

    1980-11-01

    dorhodiun(I) carbonyltris(triphenylphosphine), chlororhodium(I) ethylene - 20, U. RACY (Ce1n ate en m eld. side Nea~ 019140 IdAW7 141f OFeUs ma.) Three...CpTi (Cp) Cl2 RCH2CH-CH2 , RCH=CHCH3 (mainly E.) (2)R’MgBr ization was successful with 1-butene, 1-pentene, and 1- octene . In- ternal alkenes such as 2... octene apparently do not further react. Similar behavior was noted in hydrogenation reactions. In long term experiments in which fresh charges of

  20. High-Resolution Tunable Diode Laser Spectroscopy of Methane

    DTIC Science & Technology

    1986-03-01

    quantitative data from test 14. This table shows that ethylene is by far the most abundant species, with propane and acetylene also being major species. The...Test 14 1. Ethane 2.21 2. Ethylene 77.80 3. Propane 0.75 4. Acetylene 18.61 5. Propene 26.52 6. Acetaldehyde 1.83 7. 1-Butene 5.83 8. 1,3...21. Benzene 9.07 22. l-Heptene 3.16 23. N-Heptane 0.44 24. Toluene 3.33 25. Hexanal 1.09 26. 1- Octene 2.13 27. N-Octane 0.63 28. Ethylbenzene

  1. Theoretical and experimental study of recycle capillary gas chromatography with carrier gas propelled by a peristaltic pump.

    PubMed

    Kubinec, Róbert; Sevcík, Jirí; Górová, Renáta; Addová, Gabriela; Soják, Ladislav

    2003-04-18

    A new technique of recycle capillary gas chromatography (RCGC) characterized by a very high separation efficiency of more than 10(6) theoretical plates has been developed to solve the problem of separation of isomers with similar physico-chemical properties. The technique replaces the recycle valve by a peristaltic pump that propels the carrier gas. A general model has been developed for description of RCGC characteristics and experimentally verified on the retention behaviour of methane and the separation of a test pair of 3-methyl-1-butene and 2-methylbutane.

  2. Homo-polymerization of alpha-olefins and co-polymerization of higher alpha-olefins with ethylene in the presence of CpTiCl2(OC6H4X-p)/MAO catalysts (X = CH3, Cl).

    PubMed

    Skupinski, W; Nicinski, K; Jamanek, D; Wieczorek, Z

    2005-07-04

    Cyclopentadienyl-titanium complexes containing -OC6H4X ligands (X = Cl,CH3) activated with methylaluminoxane (MAO) were used in the homo-polymerization of ethylene, propylene, 1-butene, 1-pentene, 1-butene, and 1-hexene, and also in co-polymerization of ethylene with the alpha-olefins mentioned. The -X substituents exhibit different electron donor-acceptor properties, which is described by Hammett's factor (sigma). The chlorine atom is electron acceptor, while the methyl group is electron donor. These catalysts allow the preparation of polyethylene in a good yield. Propylene in the presence of the catalysts mentioned dimerizes and oligomerizes to trimers and tetramers at 25 degrees C under normal pressure. If the propylene pressure was increased to 7 atmospheres,CpTiCl2(OC6H4CH3)/MAO catalyst at 25 degrees gave mixtures with different contents of propylene dimers, trimers and tetramers. At 70 degrees C we obtained only propylene trimer. Using the catalysts with a -OC(6)H(4)Cl ligand we obtained atactic polymers with M(w) 182,000 g/mol (at 25 degrees C) and 100,000 g/mol (at 70 degrees C). The superior activity of the CpTiCl2(OC6H4Cl)/MAO catalyst used in polymerization of propylene prompted us to check its activity in polymerization of higher alpha-olefins (1-butene, 1-pentene, 1-hexene)and in co-polymerization of these olefins with ethylene. However, when homo-polymerization was carried out in the presence of this catalyst no polymers were obtained. Gas chromatography analysis revealed the presence of dimers. The activity of the CpTiCl2(OC6H4Cl)/MAO catalyst in the co-polymerization of ethylene with higher alpha-olefins is limited by the length of the co-monomer carbon chain. Hence, the highest catalyst activities were observed in co-polymerization of ethylene with propylene (here a lower pressure of the reagents and shorter reaction time were applied to obtain catalytic activity similar to that for other co-monomers). For other co-monomers the activity of the

  3. Protonation sites and dissociation mechanisms of t-butylcarbamates in tandem mass spectrometric assays for newborn screening.

    PubMed

    Spáčil, Zdeněk; Hui, Renjie; Gelb, Michael H; Tureček, František

    2011-10-01

    Structures of tert-butylcarbamate ions in the gas-phase and methanol solution were studied for simple secondary and tertiary carbamates as well as for carbamate-containing products and internal standards for lysosomal enzyme assays used in newborn screening of a α-galactosidase A deficiency (Fabry disease), mucopolysaccharidosis I (Hurler disease), and mucopolysaccharidosis II (Hunter disease). The protonation of simple t-butylcarbamates can occur at the carbonyl group, which is the preferred site in the gas phase. Protonation in methanol solution is more favorable if occurring at the carbamate nitrogen atom. The protonation of more complex t-butylcarbamates occurs at amide and carbamate carbonyl groups, and the ions are stabilized by intramolecular hydrogen bonding, which is affected by solvation. Tertiary carbamates containing aminophenol amide groups were calculated to have substantially greater gas-phase basicities than secondary carbamates containing coumarin amide groups. The main diagnostically important ion dissociation by elimination of 2-methylpropene (isobutylene, i-C(4)H(8)) and carbon dioxide is shown by experiment and theory to proceed in two steps. Energy-resolved collision-induced dissociation of the Hurler's disease enzymatic product ion, which is a coumarin-diamine linker-t-butylcarbamate conjugate (3a(+)), indicated separate energy thresholds for the loss of i-C(4)H(8) and CO(2). Computational investigation of the potential energy surface along two presumed reaction pathways indicated kinetic preference for the migration of a t-butyl hydrogen atom to the carbamate carbonyl resulting in the isobutylene loss. The consequent loss of CO(2) required further proton migrations that had to overcome energy barriers.

  4. OH, HO2, partially speciated RO2 and OH reactivity measurements over a range of NOx during day and night (Invited)

    NASA Astrophysics Data System (ADS)

    Heard, D. E.; Whalley, L. K.; Gallaway, S.; Stone, D. J.; Ingham, T.; Walker, H.; Evans, M. J.

    2013-12-01

    partitioning. Measurements of HO2 at night made during the RONOCO campaign onboard the BAe-146 research aircraft will be reported with HO2 significantly higher in summer than in winter and with the highest HO2 observed for altitudes < 1.0 km. A strong positive correlation between HO2 and NO3 was observed (average r=0.89, as high as r=0.97 on one flight) and attributed to the production of HO2 from reactions of NO3 with alkenes, particularly trans-2-butene and other isomers of butene. Nighttime production of HO2 was dominated by NO3 in summer and O3 in winter. If time permits, field and laboratory studies of heterogeneous processing of HO2 by clouds and aerosols will be discussed. [1] S. Vaughan et al., Atmos. Chem. Phys., 12, 2149-2172, 2012.

  5. Action spectroscopy for single-molecule reactions - Experiments and theory

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Motobayashi, K.; Frederiksen, T.; Ueba, H.; Kawai, M.

    2015-05-01

    We review several representative experimental results of action spectroscopy (AS) of single molecules on metal surfaces using a scanning tunneling microscope (STM) by M. Kawai's group over last decade. The experimental procedures to observe STM-AS are described. A brief description of a low-temperature STM and experimental setup are followed by key experimental techniques of how to determine an onset bias voltage of a reaction and how to measure a current change associated with reactions and finally how to observe AS for single molecule reactions. The experimental results are presented for vibrationally mediated chemical transformation of trans-2-butene to 1.3-butadiene molecule and rotational motion of a single cis-2-butene molecule among four equivalent orientations on Pd(1 1 0). The AS obtained from the motion clearly detects more vibrational modes than inelastic electron tunneling spectroscopy with an STM. AS is demonstrated as a useful and novel single molecule vibrational spectroscopy. The AS for a lateral hopping of water dimer on Pt(1 1 1) is presented as an example of novelty. Several distinct vibrational modes are detected as the thresholds in the AS. The assignment of the vibrational modes determined from the analysis of the AS is made from a view of the adsorption geometry of hydrogen-bond donor or acceptor molecules in water dimer. A generic theory of STM-AS, i.e., a reaction rate or yield as a function of bias voltage, is presented using a single adsorbate resonance model for single molecule reactions induced by the inelastic tunneling current. Formulas for the reaction rate R (V) and Y (V) , i.e., reaction yield per electron Y (V) = eR (V) / I are derived. It provides a versatile framework to analyze any vibrationally mediated reactions of single adsorbates on metal surfaces. Numerical examples are presented to demonstrate generic features of the vibrational generation rate and Y (V) at different levels of approximations and to show how the effective

  6. Palladium-mediated hydrogenation of unsaturated hydrocarbons with hydrogen gas released during anaerobic cellulose degradation. [Neocallimastix frontalis; Ruminococcus albus; methanospirillum hungatei

    SciTech Connect

    Mountfort, D.O.; Kaspar, H.F.

    1986-10-01

    Among five hydrogenation catalysts, palladium on charcoal was the most reactive one when suspended in anaerobic culture medium, and Lindlar catalyst (Pd on CaCO/sub 3/) was the most reactive one when suspended in the gas phase of culture tubes. Palladium on charcoal in the culture medium (40 to 200 mg 10 ml/sup -1/) completely inhibited growth of Neocallimastix frontalis and partly inhibited Ruminococcus albus. Lindlar catalyst (40 to 200 mg per tube) suspended in a glass pouch above the culture medium did not affect the rate of cellulose degradation or the ration of fermentation products by these organisms. Acetylene added to tubes containing Lindlar catalyst in pouches, and either of the two organisms in monoculture or coculture with Methanospirillum hungatei, was reduced to ethylene and then ethane, followed by hydrogen production. Similar results were obtained with 1-pentene. Neither acetylene nor 1-pentene affected cellulose degradation but both inhibited methanogenesis. In the presence of Lindlar catalyst and propylene or 1-butene, fermenter-methanogen cocultures continued to produce methane at the same rate as controls and no olefin reduction occurred. Upon addition of bromoethanesulfonic acid, methanogenesis stopped and olefin reduction took place followed by hydrogen evolution. In a gas mixture consisting of propylene, 1-butene, and 1-pentene, the olefins were reduced at rates which decreased with increasing molecular size.

  7. Determination of the adsorption model of alkenes and alcohols on sulfonic copolymer by inverse gas chromatography.

    PubMed

    Słomkiewicz, P M

    2004-04-23

    The determination of a number of adsorption sites on sulfonated styrene-divinylbenzene copolymer for alkenes (propene, 1-butene, 1-pentene, 1-hexene, 1-heptene, isobutene, 2-methyl-1-butene, 2-methyl-2-butene, 2-methyl-1-pentene, 2-methyl-2-pentene and 2-methyl-2-hexene) and alcohols (methanol, ethanol and n-propanol, n-butanol, 2-butanol and tert-butanol) was performed by the saturation copolymer with vapors of adsorbate, by removing the excess of adsorbate from copolymer by blowing the inert gas through copolymer bed and by the desorption of adsorbed alcohol in the programmed increase of temperature. The adsorption measurements were performed on sulfonated ion-exchange resin (Amberlyst 15) with different concentrations of the acid group, which means with a varying number of adsorption sites. The following adsorption models for alkenes were suggested: the first in which one molecule of alkene is adsorbed by two sulfonic groups, for linear alcohols, the second in which one sulfonic group can adsorb one molecule of alcohol and for non-linear alcohols the third where one molecule of alcohol is adsorbed by two or more sulfonic groups.

  8. Lamellar Morphology of Metallocene Random Propylene Copolymers studied by Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Hosier, Ian; Alamo, Rufina

    2003-03-01

    Four sets of propylene based random copolymers with co-units of ethylene, 1-butene, 1-hexene and 1-octene, in a wide range of co-monomer contents up to 10 mol percent (including co-unit and other defects), were studied after both rapid and isothermal crystallization from the melt. Etched film surfaces were imaged so as to minimize catalyst and co-catalyst residues. As the concentration of the gamma polymorph increases with increasing comonomer content or increasing crystallization temperature, the thickness and lateral extension of the observed lamellae decreases rapidly. Spherulites are formed in copolymers with non-crystallizable units (1-hexene and 1-octene) up to 3 mol percent total defect content, and were observed right up to 7 mol percent total defect content in those with partially crystallizable co-monomers (ethylene and 1-butene). However, lamellae were observed in the surfaces of all copolymers analyzed, even in the most defective ones, highlighting the importance of the gamma polymorph in propagating lamellar crystallites in polypropylenes with a high concentration of defects. The morphology of equivalent microtomed bulk specimens will be comparatively discussed.

  9. Intercomparison of Hantzsch and fiber-laser-induced-fluorescence formaldehyde measurements

    NASA Astrophysics Data System (ADS)

    Kaiser, J.; Li, X.; Tillmann, R.; Acir, I.; Holland, F.; Rohrer, F.; Wegener, R.; Keutsch, F. N.

    2014-06-01

    Two gas-phase formaldehyde (HCHO) measurement techniques, a modified commercial wet-chemical instrument based on Hantzsch fluorimetry and a custom-built instrument based on fiber laser-induced fluorescence (FILIF), were deployed at the atmospheric simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction Chamber) to compare the instruments' performances under a range of conditions. Thermolysis of para-HCHO and ozonolysis of 1-butene were used as HCHO sources, allowing for calculations of theoretical HCHO mixing ratios. Calculated HCHO mixing ratios are compared to measurements, and the two measurements are also compared. Experiments were repeated under dry and humid conditions (RH < 2% and RH > 60%) to investigate the possibility of a water artifact in the FILIF measurements. The ozonolysis of 1-butene also allowed for the investigation of an ozone artifact seen in some Hantzsch measurements in previous intercomparisons. Results show that under all conditions the two techniques are well correlated (R2 ≥ 0.997), and linear regression statistics show measurements agree with within stated uncertainty (15% FILIF + 5% Hantzsch). No water or ozone artifacts are identified. While a slight curvature is observed in some Hantzsch vs. FILIF regressions, the potential for variable instrument sensitivity cannot be attributed to a single instrument at this time. Measurements at low concentrations highlight the need for a secondary method for testing the purity of air used in instrument zeroing and the need for further FILIF White cell outgassing experiments.

  10. Intercomparison of Hantzsch and fiber-laser-induced-fluorescence formaldehyde measurements

    NASA Astrophysics Data System (ADS)

    Kaiser, J.; Li, X.; Tillmann, R.; Acir, I.; Rohrer, F.; Wegener, R.; Keutsch, F. N.

    2014-01-01

    Two gas-phase formaldehyde (HCHO) measurement techniques, a modified commercial wet-chemical instrument based on Hantzsch Fluorimetry and a custom-built instrument based on Fiber-Laser Induced Fluorescence (FILIF), were deployed at the atmospheric simulation chamber SAPHIR to compare the instruments' performances under a range of conditions. Thermolysis of para-HCHO and ozonolysis of 1-butene were used as HCHO sources, allowing for calculations of theoretical HCHO mixing ratios. Calculated HCHO mixing ratios are compared to measurements, and the two measurements are also compared. Experiments were repeated under dry and humid conditions (RH < 2% and RH > 60%) to investigate the possibility of a water artifact in the FILIF measurements. The ozonolysis of 1-butene also allowed for the investigation of an ozone artifact seen in some Hantzsch measurements in previous intercomparisons. Results show that under all conditions the two techniques are well correlated (R2 ≥ 0.997), and linear regression statistics show measurements agree with within stated uncertainty (15% FILIF + 5% Hantzsch). No water or ozone artifacts are identified.

  11. One step formation of propene from ethene or ethanol through metathesis on nickel ion-loaded silica.

    PubMed

    Iwamoto, Masakazu

    2011-09-13

    Increased propene production is presently one of the most significant objectives in petroleum chemistry. Especially the one-step conversion of ethene to propene (ETP reaction, 3C₂H₄ →2C₃H₆) is the most desired process. In our efforts, nickel ion-loaded mesoporous silica could turn a new type of ETP reaction into reality. The one-step conversion of ethene was 68% and the propene selectivity was 48% in a continuous gas-flow system at 673 K and atmospheric pressure. The reactivity of lower olefins and the dependences of the ETP reaction on the contact time and the partial pressure of ethene were consistent with a reaction mechanism involving dimerization of ethene to 1-butene, isomerization of 1-butene to 2-butene, and metathesis of 2-butene and ethene to yield propene. The reaction was then expanded to an ethanol-to-propene reaction on the same catalyst, in which two possible reaction routes are suggested to form ethene from ethanol. The catalysts were characterized mainly by EXAFS and TPR techniques. The local structures of the nickel species active for the ETP reaction were very similar to that of layered nickel silicate, while those on the inert catalysts were the same as that of NiO particles.

  12. A simplified chemistry module for atmospheric transport and dispersion models: Proof-of-concept using SCIPUFF

    NASA Astrophysics Data System (ADS)

    Burns, Douglas S.; Rottmann, Shawn D.; Plitz, Angela B. L.; Wiseman, Floyd L.; Moore, William; Chynwat, Veeradej

    2012-09-01

    An atmospheric chemistry module was developed to predict the fate of environmentally hazardous compounds discharged into the atmosphere. The computationally efficient model captures the diurnal variation within the environment and in the degradation rates of the released compounds, follows the formation of toxic degradation products, runs rapidly, and in principle can be integrated with any atmospheric transport and dispersion model. To accomplish this, a detailed atmospheric chemistry mechanism for a target toxic industrial compound (TIC) was reduced to a simple empirical effective degradation rate term (keff). Empirically derived decay functions for keff were developed as a function of important meteorological parameters such as solar flux, temperature, humidity, and cloud cover for various land uses and locations by statistically analyzing data generated from a detailed chemistry mechanism run over a wide range of (typical) atmospheric conditions. 1-Butene and two degradation products (propanal and nitrooxybutanone) were used as representative chemicals in the algorithm development for this proof-of-concept demonstration of the capability of the model. The quality of the developed model was evaluated via comparison with experimental chamber data and the results (decay rates) compared favorably for ethene, propene, and 1-butene (within a factor of two 75% or more of the time).

  13. Near-threshold absolute photoionization cross-sections of some reaction intermediates in combustion

    NASA Astrophysics Data System (ADS)

    Wang, Juan; Yang, Bin; Cool, Terrill A.; Hansen, Nils; Kasper, Tina

    2008-02-01

    The use of photoionization mass spectrometry for the development of quantitative kinetic models for the complex combustion chemistry of both conventional hydrocarbon fuels and oxygenated biofuels requires near-threshold measurements of absolute photoionization cross-sections for numerous reaction intermediates. Near-threshold absolute cross-sections for molecular and dissociative photoionization for 20 stable reaction intermediates (methane, ethane, propane, n-butane, cyclopropane, methylcyclopentane, 1-butene, cis-2-butene, isobutene, 1-pentene, cyclohexene, 3,3-dimethyl-1-butene, 1,3-hexadiene, 1,3-cyclohexadiene, methyl acetate, ethyl acetate, tetrahydrofuran, propanal, 1-butyne, 2-butyne) are presented. Previously measured total photoionization cross-sections for 9 of these molecules are in good agreement with the present results. The measurements are performed with photoionization mass spectrometry (PIMS) using a monochromated VUV synchrotron light source with an energy resolution of 40 meV (fwhm) comparable to that used for flame-sampling molecular beam PIMS studies of flame chemistry and reaction kinetics.

  14. Type II Isopentenyl Diphosphate Isomerase: Probing the Mechanism with Alkyne/Allene Diphosphate Substrate Analogues†

    PubMed Central

    Sharma, Nagendra K.; Pan, Jian-Jung; Poulter, C. Dale

    2010-01-01

    Isopentenyl diphosphate isomerase (IDI) catalyzes the interconversion of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), the basic five-carbon building blocks of isoprenoid molecules. Two structurally unrelated classes of IDI are known. Type I IPP isomerase (IDI-1) utilizes a divalent metal in a protonation-deprotonation reaction. In contrast, the type II enzyme (IDI-2) requires reduced flavin, raising the possibility that the reaction catalyzed by IDI-2 involves the net addition/abstraction of a hydrogen atom. As part of our studies of the mechanism of isomerization for IDI-2, we synthesized allene and alkyne substrate analogues for the enzyme. These molecules are predicted to be substantially less reactive toward proton addition than IPP and DMAPP, but have similar reactivities toward hydrogen atom addition. This prediction was verified by calculations of gas phase heats of reaction for addition of a proton and of a hydrogen atom to 1-butyne (3) and 1,2-butadiene (4) to form the 1-buten-2-yl carbocation and radical, respectively, and related affinities for 2-methyl-1-butene (5) and 2-methyl-2-butene (6) using G3MP2B3 and CBS-QB3 protocols. Alkyne 1-OPP and allene 2-OPP were not substrates for Thermus thermophilus IDI-2 or Escherichia coli IDI-1, but instead were competitive inhibitors. The experimental and computational results are consistent with a protonation-deprotonation mechanism for the enzyme-catalyzed isomerization of IPP and DMAPP. PMID:20560533

  15. Volatile organic compound constituents from an integrated iron and steel facility.

    PubMed

    Tsai, Jiun-Horng; Lin, Kuo-Hsiung; Chen, Chih-Yu; Lai, Nina; Ma, Sen-Yi; Chiang, Hung-Lung

    2008-09-15

    This study measured the volatile organic compound (VOC) constituents of four processes in an integrated iron and steel industry; cokemaking, sintering, hot forming, and cold forming. Toluene, 1,2,4-trimethylbenzene, isopentane, m,p-xylene, 1-butene, ethylbenzene, and benzene were the predominant VOC species in these processes. However, some of the chlorinated compounds were high (hundreds ppbv), i.e., trichloroethylene in all four processes, carbon tetrachloride in the hot forming process, chlorobenzene in the cold forming process, and bromomethane in the sintering process. In the sintering process, the emission factors of toluene, benzene, xylene, isopentane, 1,2,4-trimethylbenzene, and ethylbenzene were over 9 g/tonne-product. In the vicinity of the manufacturing plant, toluene, isopentane, 1,2,4-trimethylbenzene, xylene and ethylbenzene were high. Toluene, 1,2,4-trimethylbenzene, xylene, 1-butene and isopentane were the major ozone formation species. Aromatic compounds were the predominant VOC groups, constituting 45-70% of the VOC concentration and contributing >70% to the high ozone formation potential in the stack exhaust and workplace air. The sequence of VOC concentration and ozone formation potential was as follows: cold forming>sintering>hot forming>cokemaking. For the workplace air, cokemaking was the highest producer, which was attributed to the fugitive emissions of the coke oven and working process release.

  16. Chemical Kinetics of Hydrogen Atom Abstraction from Allylic Sites by (3)O2; Implications for Combustion Modeling and Simulation.

    PubMed

    Zhou, Chong-Wen; Simmie, John M; Somers, Kieran P; Goldsmith, C Franklin; Curran, Henry J

    2017-03-09

    Hydrogen atom abstraction from allylic C-H bonds by molecular oxygen plays a very important role in determining the reactivity of fuel molecules having allylic hydrogen atoms. Rate constants for hydrogen atom abstraction by molecular oxygen from molecules with allylic sites have been calculated. A series of molecules with primary, secondary, tertiary, and super secondary allylic hydrogen atoms of alkene, furan, and alkylbenzene families are taken into consideration. Those molecules include propene, 2-butene, isobutene, 2-methylfuran, and toluene containing the primary allylic hydrogen atom; 1-butene, 1-pentene, 2-ethylfuran, ethylbenzene, and n-propylbenzene containing the secondary allylic hydrogen atom; 3-methyl-1-butene, 2-isopropylfuran, and isopropylbenzene containing tertiary allylic hydrogen atom; and 1-4-pentadiene containing super allylic secondary hydrogen atoms. The M06-2X/6-311++G(d,p) level of theory was used to optimize the geometries of all of the reactants, transition states, products and also the hinder rotation treatments for lower frequency modes. The G4 level of theory was used to calculate the electronic single point energies for those species to determine the 0 K barriers to reaction. Conventional transition state theory with Eckart tunnelling corrections was used to calculate the rate constants. The comparison between our calculated rate constants with the available experimental results from the literature shows good agreement for the reactions of propene and isobutene with molecular oxygen. The rate constant for toluene with O2 is about an order magnitude slower than that experimentally derived from a comprehensive model proposed by Oehlschlaeger and coauthors. The results clearly indicate the need for a more detailed investigation of the combustion kinetics of toluene oxidation and its key pyrolysis and oxidation intermediates. Despite this, our computed barriers and rate constants retain an important internal consistency. Rate constants

  17. Ice core records of monoterpene- and isoprene-SOA tracers from Aurora Peak in Alaska since 1660s: Implication for climate variability in the North Pacific Rim

    NASA Astrophysics Data System (ADS)

    Pokhrel, A.; Kawamura, K.; Seki, O.; Ono, K.; Matoba, S.; Shiraiwa, T.

    2015-12-01

    180 m long ice core (ca. 343 years old) was drilled in the saddle of the Aurora Peak of Alaska, which is located southeast of Fairbanks (63.52°N; 146.54°W, elevation: 2,825 m). Samples were directly transported to the Institute of Low Temperature Science, Hokkaido University and have been analyzed for monoterpene- and isoprene-SOA tracers using gas chromatograph (GC; HP 6890) and mass spectrometry system (GC/MS; Agilent). Ice core collected from mountain glacier has not been explored for SOA yet. We found significantly high concentrations of these tracers (e.g., pinic, pinonic, and 2-methylglyceric acids, 2-methylthreitol and 2-methylrythritol), which show historical trends with good correlation with each other since 1665-2008. They show positive correlations with sugar compounds (e.g., mannitol, glucose, fructose, inositol, and sucrose), and anti-correlations with diacids (e.g., C9), w-oxocarboxylic (wC4-wC9), a-dicarbonyls and low molecular weight fatty acids (LFAs) (e.g., C18:1). LFAs show strong correlations with MSA- and nss-SO42- in the same ice core. These results suggest source regions of SOA tracers and ice core chemistry of Alaska. Concentrations of C5-alkene triols (e.g., 3-methyl-2,3,4-trihydroxy-1-butene, cis-2-methyl 1,3,4-trihydroxy-1-butene and trans-2-methyl-1,3,4-trihydroxy-1-butene) have increased in the ice core after the Great Pacific Climate Shift (late 1970's). They show positive correlations with a-dicarbonyls and LFAs (e.g., C18:1) in the ice core, suggesting that enhanced oceanic emissions of biogenic organic compounds through the surface microlayer are recorded in the ice core. Photochemical oxidation processes for these monoterpene- and isoprene-/sesquiterpene-SOA tracers are suggested to be linked with the periodicity of multi-decadal climate oscillations (e.g., North Pacific Index) and we can look at a whole range of environmental parameters in parallel with the robust reconstructed temperature changes in the Northern Hemisphere.

  18. Corona discharge of Titan's troposphere.

    PubMed

    Navarro-Gonzalez, R; Ramirez, S I

    1997-01-01

    The atmosphere of Titan is constantly bombarded by galactic cosmic rays and Saturnian magnetospheric electrons causing the formation of free electrons and primary ions, which are then stabilized by ion cluster formation and charging of aerosols. These charged particles accumulate in drops in cloud regions of the troposphere. Their abundance can substantially increase by friction, fragmentation or collisions during convective activity. Charge separation occurs with help of convection and gravitational settling leading to development of electric fields within the cloud and between the cloud and the ground. Neutralization of these charge particles leads to corona discharges which are characterized by low current densities. These electric discharges could induce a number of chemical reactions in the troposphere and hence it is of interest to explore such effects. We have therefore, experimentally studied the corona discharge of a simulated Titan's atmosphere (10% methane and 2% argon in nitrogen) at 500 Torr and 298 K by GC-FTIR-MS techniques. The main products have been identified as hydrocarbons (ethane, ethyne, ethene, propane, propene + propyne, cyclopropane, butane, 2-methylpropane, 2-methylpropene, n-butene, 2-butene, 2,2-dimethylpropane, 2-methylbutane, 2-methylbutene, n-pentane, 2,2-dimethylbutane, 2-methylpentane, 3-methylpentane, n-hexane, 2,2-dimethylhexane, 2,2-dimethylpentane, 2,2,3-trimethylbutane, 2,3-dimethylpentane and n-heptane), nitriles (hydrogen cyanide, cyanogen, ethanenitrile, propanenitrile, 2-methylpropanenitrile and butanenitrile) and an uncharacterized film deposit. We present their trends of formation as a function of discharge time in an ample interval and have derived their initial yields of formation. These results clearly demonstrate that a complex organic chemistry can be initiated by corona processes in the lower atmosphere. Although photochemistry and charged particle chemistry occurring in the stratosphere can account for many of the

  19. Radiation-induced effects in polymers and related compounds. Final report

    SciTech Connect

    Silverman, J.

    1980-04-01

    The report is divided into two sections. The first section covers progress during the final contract period April 1, 1978-October 31, 1979; it covers work performed in conjunction with the objectives of the contract, some of which was recently completed. The second section is a general summary of the contract activities and accomplishments over the 19 year period covered by AEC-ERDA-DOE support. Studies completed or still in progress since April 1, 1979 are: ESR measurements on alkyl single crystals; work on polymer composites; studies on styrene-polyethylene grafts; experiments on the use of torque rheometry as a means of measuring the effects of ionizing radiation on polymers; investigations on the melting and crystallization behavior of irradiated polymers; and pulse radiolysis of poly(1-butene) and polyethylene.

  20. Histrionicotoxins: Roentgen-Ray Analysis of the Novel Allenic and Acetylenic Spiroalkaloids Isolated from a Colombian Frog, Dendrobates histrionicus

    PubMed Central

    Daly, John W.; Karle, Isabella; Myers, Charles W.; Tokuyama, Takashi; Waters, James A.; Witkop, Bernhard

    1971-01-01

    The structures and absolute configuration of two unique alkaloids isolated from the Colombian frog, Dendrobates histrionicus, have been elucidated by Roentgen-ray (x-ray) crystallography. Histrionicotoxin is (2pR, 6S, 7pS, 8aS)-7-(cis-1-buten-3-ynyl)-8-hydroxy-2-(cis-2-penten-4- ynyl)-1-azaspiro[5.5] undecane, while in dihydro-isohistrionicotoxin the acetylenic 2-pentenynyl side chain is replaced by an allenic 2-(3,4 pentadienyl) substituent. Dendrobates histrionicus exhibits remarkable interpopulational variations in amounts and composition of skin toxins, in behavior, and in phenotypic characters, aspects of which are illustrated in a color plate. The histrionico-toxins are the third class of alkaloids isolated from the defensive skin secretions of Neotropical (Dendrobatidae) frogs. Images PMID:5288773

  1. Gas-Phase Reactions of Silver Cluster Ions Produced by Fast Atom Bombardment

    DTIC Science & Technology

    1992-03-20

    oxide , AgO, produces Ag.* clusters with x = 1 -9 and Ag.O , y = 1 and 2 (fig. 3). Similar spectra are obtained from FAB of Ag20 and from...Ag5 + Ethene AgL4+ NR a Ag31-6+ NR NR Propene AgL2’ AgL2+ Ag3L3 + NR NR 1 - Butene AgL2+ AgL2+ Ag3 1 -3 + Ag4L+ NR Cis-2- Butene AgL2+ AgL2+ Ag3 1 -3...C)4 0 S3 C 0 CC 0: o4:rC Figure 3 C CNC CNC I).6 ( x CN Cl + + N 000 1 ( N q N LON en C.C 0 CNC CYV) 0Y CC3 cv 0C) 0 C) C0 3 C

  2. Novel Application of Topological Indices. 2. Prediction of the Threshold Soot Index for Hydrocarbon Fuels.

    DTIC Science & Technology

    1987-03-06

    5.4 0.8 0.7 0 2.785 0.000 ethylene 0.7 5.8 5.2 1 2.000 2.000 propylene 8.2 7.7 7.2 1 2.187 2.187 1,3-butadiene 35.0 25.9 25.5 2 2.732 5.464 1-butene...hexadiene 25.0 30.4 32.4 2 3.182 6.364 1- octene 5.8 12.0 11.7 1 2.616 2.616 2- octene 4.4 13.0 12.8 1 2.719 2.719 1-nonene 7.4 12.4 12.2 1 2.664 2.664

  3. Precision Polyolefin Structure: Modeling Polyethylene Containing Methyl and Ethyl Branches

    NASA Astrophysics Data System (ADS)

    Rojas, Giovanni; Wagener, Kenneth B.

    Sequenced copolymers of ethylene and diverse species have been created using acyclic diene metathesis (ADMET) polymerization, a step growth, condensation- type polymerization driven to high conversion by the removal of ethylene. ADMET permits control over branch content and branch length, which can be predetermined during the monomer synthesis, allowing sequence control in the resultant unsaturated polymer. Monomers are symmetrical α,ωdienes with a pendant functionality. Diverse functional groups are compatible with ADMET polymerization when Schrock’s or first-generation Grubb’s catalysts are used. Saturation with hydrogen after ADMET polymerization affords a polyethylene (PE) backbone bearing specific functionalities in precise places. Varying both the pendant functional group and the spacing between functionalities alters the physical and chemical properties of the polymer. Incorporation of alkyl chains into the PE backbone via ADMET leads to the study of perfect structures modeling the copolymerization of ethylene with α-olefins such as 1-propene, 1-butene, 1-hexene, and 1-octene.

  4. Crystalline Morphology of Propylene 1-Octene Random Copolymers

    NASA Astrophysics Data System (ADS)

    Jeon, Keesu; Alamo, Rufina G.

    2008-03-01

    The morphology of isotactic propylene 1-octene random copolymers has been studied by AFM, DSC, WAXS, and FTIR in an octene range of 10-20 mol %. Different morphologies were observed below and above 15 mol %. The morphological components in the higher counit copolymers are not of the lamellae-type, thicker than lamellae observed below 15 mol %, connected and isotropic in their orientation. Their global morphology is developed via nucleation and growth (NG) of spherulitic aggregates. The evolution of heat of fusion with time is also sigmoidal shape, typical of NG-type crystallization mechanism. WAXS diffractograms for the higher counit copolymers are devoid of crystalline reflections, except for small and broad peaks suggesting mesomorphic-like structures, which by FTIR show small contents of the 840 cm-1, 12 and higher units regularity bands, and hence formed of short helical sequences. The PO morphology is additionally compared with copolymers with ethylene, 1-butene and 1-hexene counits at matched contents.

  5. Polarized Raman study of random copolymers of propylene with olefins

    NASA Astrophysics Data System (ADS)

    Gen, D. E.; Chernyshov, K. B.; Prokhorov, K. A.; Nikolaeva, G. Yu.; Sagitova, E. A.; Pashinin, P. P.; Kovalchuk, A. A.; Klyamkina, A. N.; Nedorezova, P. M.; Optov, V. A.; Shklyaruk, B. F.

    2010-06-01

    The polarized Raman spectroscopy is employed in the study of structural modifications in the films of isotactic polypropylene (PP) whose chain contains ethylene, 1-butene, 1-hexene, 1-octene, and 4-metyl-pentene-1, which represents an isomer of 1-hexene. It is demonstrated that the phase and conformational compositions of copolymer molecules depend on the comonomer content and the side-chain length of the second monomer. The content of the PP molecules in the helical conformation in the crystalline and amorphous phases of the copolymers monotonically decreases with increasing content of the second monomer. The decrease in the content of helical macromolecules in the crystalline phase is faster than the decrease in the amorphous phase. At a certain content of comonomers, the total content of the helical fragments decreases with increasing length of the side chain of the second monomer. The structures and Raman spectra of the copolymers of propylene with 1-hexene and 4-methyl-1-pentene are similar.

  6. Aluminum coordination and active sites on aluminas, Y zeolites and pillared layered silicates

    SciTech Connect

    Fripiat, J.J.

    1991-01-01

    Our work has been deployed in four directions, namely, (1) Study of the distribution of aluminum within three possible kinds of coordination shells: four-fold (IV), five-fold (V), and six-fold (VI), in aluminas and dealuminated zeolites by high-resolution solid state NMR or magic angle NMR. Besides the classical one pulse spectra, nutation spectra have been studied. (2) Study of the electron deficient sites by electron paramagnetic resonance (EPR) of probe molecules on aluminas and decationated zeolites. Electron deficient sites are considered as Lewis sites. (3) Study of the model isomerization reaction 1 butene {yields} 2 cis or trans butene on the aluminas characterized in 1 and 2. (4) Synthesis of a silicate lattice in which silicon has been partially replaced by aluminum. The chosen silicate is that of the zeolite (fibrous) sepiolite. It has been characterized as indicated in 1 and 2.

  7. Response surface optimization and identification of isothiocyanates produced from broccoli sprouts.

    PubMed

    Guo, Qianghui; Guo, Liping; Wang, Zhiying; Zhuang, Yan; Gu, Zhenxin

    2013-12-01

    Isothiocyanates (ITCs) are proved as one of natural anticarcinogenic compounds, which are produced from the decomposition of glucosinolates by myrosinase. The present study optimized the enzymolysis conditions (pH, addition of EDTA and ascorbic acid) for ITCs production from glucosinolates in broccoli sprouts using response surface methodology. ITCs production was clearly enhanced by a suitable pH, addition content of EDTA and ascorbic acid. The optimal enzymolysis conditions were determined to be adding EDTA 0.02 mmol and 0.16 mg ascorbic acid to 4 ml of the homogenized phosphate-citrate buffer solution (pH 4.00). ITCs profiles were identified and seven kinds of individual ITCs were detected, among which sulforaphane accounted the most. Four kinds of individual ITCs including isobutyl isothiocyanate, 4-isothiocyanato-1-butene, 1-isothiocyanato-3-methyl-butane and 1-isothiocyanato-butane are firstly reported in broccoli sprouts.

  8. Gaseous Species Measurements of Alternative Jet Fuels in Sooting Laminar Coflow Diffusion Flames

    NASA Astrophysics Data System (ADS)

    Zabeti, Parham

    The gaseous species concentration of Jet A-1, GTL, CTL and a blend of 80 vol.% GTL and 20 vol.% hexanol jet fuels in laminar coflow diffusion flames have been measured and studied. These species are carbon monoxide, carbon dioxide, oxygen, methane, ethane, ethylene, propylene, and acetylene. Benzene and propyne concentrations were also detected in CTL flames. 1-Butene has been quantified for the blend of GTL and hexanol flame. The detailed experimental setup has been described and results from different flames are compared. The CO is produced in a same amount in all the flames. The CTL flame had the largest and GTL/hexanol flame had lowest CO2 concentrations. The results indicate that GTL and GTL hexanol blend flames produce similar concentrations for all the measured hydrocarbon species and have the highest concentration among all the jet fuels. The experimental results from Jet A-1 fuel are also compared with numerical studies by Saffaripour et al .

  9. Synthesis of an un-supported, high-flow ZSM-22 zeolite membrane

    DOEpatents

    Thoma, Steven G.; Nenoff, Tina M.

    2006-10-10

    Novel methods for synthesizing wholly un-supported, high-flow catalytic membranes consisting of 100% crystalline ZSM-22 crystals with no binder phase, having sufficient porosity to allow high Weight Hourly Space Velocities of feedstock to pass through without generating back pressure. The ZSM-22 membranes perform favorably to existing bulk ZSM-22 catalysts (e.g., via 1-butene conversion and selectivity). The method of membrane synthesis, based on Vapor Phase Transport, allows free-standing, binder-less membranes to be fabricated in varied geometries and sizes so that membranes can be tailor-made for particular geometries applications. The ZSM-22 precursor gel may be consolidated into a semi-cohesive body prior to vapor phase crystallization, for example, by uniaxial pressing. These crystalline membranes may be modified by ion exchange, pore ion exchange, framework exchange, synthesis modification techniques to incorporate other elements into the framework, such as K, H, Mg, Zn, V, Ga, and Pt.

  10. Catalytic conversion of cellulose to liquid hydrocarbon fuels by progressive removal of oxygen to facilitate separation processes and achieve high selectivities

    DOEpatents

    Dumesic, James A.; Ruiz, Juan Carlos Serrano; West, Ryan M.

    2015-06-30

    Described is a method to make liquid chemicals. The method includes deconstructing cellulose to yield a product mixture comprising levulinic acid and formic acid, converting the levulinic acid to .gamma.-valerolactone, and converting the .gamma.-valerolactone to pentanoic acid. Alternatively, the .gamma.-valerolactone can be converted to a mixture of n-butenes. The pentanoic acid can be decarboxylated yield 1-butene or ketonized to yield 5-nonanone. The 5-nonanone can be hydrodeoxygenated to yield nonane, or 5-nonanone can be reduced to yield 5-nonanol. The 5-nonanol can be dehydrated to yield nonene, which can be dimerized to yield a mixture of C.sub.9 and C.sub.18 olefins, which can be hydrogenated to yield a mixture of alkanes.

  11. Shock tube study of the fuel structure effects on the chemical kinetic mechanisms responsible for soot formation, part 2

    NASA Technical Reports Server (NTRS)

    Frenklach, M.; Clary, D. W.; Ramachandra, M. K.

    1985-01-01

    Soot formation in oxidation of allene, 1,3-butadiene, vinylacetylene and chlorobenzene and in pyrolysis of ethylene, vinylacetylene, 1-butene, chlorobenzene, acetylen-hydrogen, benzene-acetylene, benzene-butadiene and chlorobenzene-acetylene argon-diluted mixtures was studied behind reflected shock waves. The results are rationalized within the framework of the conceptual models. It is shown that vinylacetylene is much less sooty than allene, which indicates that conjugation by itself is not a sufficient factor for determining the sooting tendency of a molecule. Structural reactivity in the context of the chemical kinetics is the dominant factor in soot formation. Detailed chemical kinetic modeling of soot formation in pyrolysis of acetylene is reported. The main mass growth was found to proceed through a single dominant route composed of conventional radical reactions. The practically irreversible formation reactions of the fused polycyclic aromatics and the overshoot by hydrogen atom over its equilibrium concentration are the g-driving kinetic forces for soot formation.

  12. Catalytic conversion of cellulose to liquid hydrocarbon fuels by progressive removal of oxygen to facilitate separation processes and achieve high selectivities

    DOEpatents

    Dumesic, James A [Verona, WI; Ruiz, Juan Carlos Serrano [Madison, WI; West, Ryan M [Madison, WI

    2014-01-07

    Described is a method to make liquid chemicals. The method includes deconstructing cellulose to yield a product mixture comprising levulinic acid and formic acid, converting the levulinic acid to .gamma.-valerolactone, and converting the .gamma.-valerolactone to pentanoic acid. Alternatively, the .gamma.-valerolactone can be conveted to a mixture of n-butenes. The pentanoic acid can be decarboxylated yield 1-butene or ketonized to yield 5-nonanone. The 5-nonanone can be hydrodeoxygenated to yield nonane, or 5-nonanone can be reduced to yield 5-nonanol. The 5-nonanol can be dehydrated to yield nonene, which can be dimerized to yield a mixture of C.sub.9 and C.sub.18 olefins, which can be hydrogenated to yield a mixture of alkanes.

  13. Reaction mechanism studies of unsaturated molecules using photofragment translational spectroscopy

    SciTech Connect

    Longfellow, C.A. |

    1996-05-01

    A number of molecules have been studied using the technique of photofragment translational spectroscopy. In Chapter One a brief introduction to the experimental technique is given. In Chapter Two the infrared multiphoton dissociation (IRMPD) of acetic acid is discussed. Carbon dioxide and methane were observed for the first time as products from dissociation under collisionless conditions. Chapter Three relates an IRMPD experiment of hexafluoropropene. The predominant channel produces CFCF{sub 3} or C{sub 2}F{sub 4} and CF{sub 2}, with the heavier species undergoing further dissociation to two CF{sub 2} fragments. In Chapter Four the ultraviolet (UV) dissociation of hexafluoropropene is investigated. Chapter Five explores the IRMPD of octafluoro-1-butene and octafluoro-2-butene.

  14. Mechanisms of C-C bond formation and cleavage on metal surfaces: Formation of butenes and hexenes from linear and branched pentenes over Ru/SiO sub 2 catalysts

    SciTech Connect

    Rodriguez, E.; Leconte, M.; Basset, J. )

    1991-12-01

    Over Ru/SiO{sub 2} catalyst, at temperatures above 100-150C and in the presence of hydrogen, linear and branched pentenes (1-pentene, cis- and trans-2-pentene, 2-methyl-2-butene, 3-methyl-1-butene, and 2-methyl-1-butene) undergo isomerization, hydrogenation, hydrogenolysis, and homologation. The main primary products of these last two reactions of C-C bond cleavage and formation are methane, butenes, and hexanes. At low temperature (100-150C), the formation of methane is reduced and the major products are C{sub 4} and C{sub 6} olefinic hydrocarbons, which are obtained in roughly comparable amounts. The distribution of the butenes isomers and of the hexenes isomers strongly depends on the structure of the starting pentene (linear or branched, terminal or internal). The results confirm that hydrogenolysis and homologation of a C{sub 5} olefinic hydrocarbon occur at comparable rates and involve: (1) cleavage of mainly a terminal C-C bond of the pentene isomer leading to C{sup 4} and C{sup 1} fragments, (2) reaction of this C{sup 1} fragment with the starting C{sup 5} to give C{sup 6} hydrocarbons, and (or) (3) hydrogenation of the C{sup 1} fragment to methane. Two mechanisms, based on concepts of organometallic chemistry, can account for the results (especially for the distribution of the C{sup 4} and C{sup 6} olefinic isomers): (1) a methylene insertion-deinsertion mechanism or (2) a mechanism that involves formation and decomposition of dimetallacyclic intermediates. Several experimental results seem to be in favor of the last proposed mechanism.

  15. Inhibitory potency of 4-carbon alkanes and alkenes toward CYP2E1 activity.

    PubMed

    Hartman, Jessica H; Miller, Grover P; Boysen, Gunnar

    2014-04-06

    CYP2E1 has been implicated in the bioactivation of many small molecules into reactive metabolites which form adducts with proteins and DNA, and thus a better understanding of the molecular determinants of its selectivity are critical for accurate toxicological predictions. In this study, we determined the potency of inhibition of human CYP2E1 for various 4-carbon alkanes, alkenes and alcohols. In addition, known CYP2E1 substrates and inhibitors including 4-methylpyrazole, aniline, and dimethylnitrosamine were included to determine their relative potencies. Of the 1,3-butadiene-derived metabolites studied, 3,4-epoxy-1-butene was the strongest inhibitor with an IC50 of 110 μM compared to 1700 μM and 6600 μM for 1,2-butenediol and 1,2:3,4-diepoxybutane, respectively. Compared to known inhibitors, inhibitory potency of 3,4-epoxy-1-butene is between 4-methylpyrazole (IC50 = 1.8 μM) and dimethylnitrosamine (IC50 = 230 μM). All three butadiene metabolites inhibit CYP2E1 activity through a simple competitive mechanism. Among the 4-carbon compounds studied, the presence and location of polar groups seems to influence inhibitory potency. To further examine this notion, the investigation was extended to include structurally and chemically similar analogues, including propylene oxide and various butane alcohols. Those results demonstrated preferential recognition of CYP2E1 toward the type and location of polar and hydrophobic structural elements. Taken together, CYP2E1 metabolism may be modified in vivo by exposure to 4-carbon compounds, such as drugs, and nutritional constituents, a finding that highlights the complexity of exposure to mixtures.

  16. Pressure and temperature dependence of the reaction of vinyl radical with alkenes III: measured rates and predicted product distributions for vinyl + butene.

    PubMed

    Goldsmith, C Franklin; Ismail, Huzeifa; Green, William H

    2009-11-26

    This work reports experimental and theoretical first-order rate constants for the reaction of vinyl radical with C(4)H(8) alkenes: 1-butene, 2-butene, and isobutene. The experiments are performed over a temperature range of 300 to 700 K at 100 Torr. Vinyl radicals (H(2)C horizontal lineCH) were generated by laser photolysis of vinyl iodide (C(2)H(3)I) at 266 nm, and time-resolved absorption spectroscopy was used to probe vinyl radicals at 423.2 and 475 nm. Weighted Arrhenius fits to the experimental rate coefficients for 1-butene (k(1)), 2-butene (k(2)), and isobutene (k(3)) yield k(1) = (1.3 +/- 0.3) x 10(-12) cm(3) molecules(-1) s(-1) exp[-(2200 +/- 120) K/T]; k(2) = (1.7 +/- 0.3) x 10(-12) cm(3) molecules(-1) s(-1) exp[-(2610 +/- 120) K/T]; and k(3) = (1.0 +/- 0.1) x 10(-12) cm(3) molecules(-1) s(-1) exp[-(2130 +/- 50) K/T], respectively. C(6)H(11) potential energy surfaces (PESs) for each system were calculated using the G3 method. RRKM/ME simulations were performed for each system to predict pressure-dependent rate coefficients and branching fractions for the major channels. A generic rate rule for vinyl addition to various alkenes is recommended; a similar rate rule for the abstraction of H atoms by vinyl from alkenes is also provided. Some of the vinyl addition reactions exhibit anomalous Evans-Polanyi plots similar to those reported for previous methyl addition reactions.

  17. The elimination of water from a conformationally complex alcohol: A computational study of the gas phase dehydration of n-butanol

    NASA Astrophysics Data System (ADS)

    Moc, Jerzy; Simmie, John M.; Curran, Henry J.

    2009-06-01

    Relative stabilities of the 14 conformers of n-butanol were calculated at the CCSD(T)/cc-pVTZ//MP2/6-311G(d,p) level. The three most stable structures found, TGt, TGg and TGg' ( trans (T or t) and gauche (G or g) with respect to the CC-CC, CC-CO and CC-OH dihedral angles, respectively) lie within 0.14 kcal/mol, Δ H(0 K), with the TGt being favoured thermodynamically (the ZPVE corrections were found at the MP2 level). The rotational isomerizations to the other conformers were examined, in particular those involved in the elimination of water. The elimination of H 2O from n-butanol involving the formation of the corresponding carbene, 1-butene, methylcyclopropane and cyclobutane, 1,1-, 1,2-, 1,3- and 1,4-elimination, respectively, was systematically investigated. The 1,2-H 2O loss occurring from the TGg' conformer and involving a four-center transition state has been found to be thermodynamically and kinetically the most favoured route. This elimination which leads to the 1-butene olefin isomer is endothermic by 8.25 kcal/mol, Δ H(0 K), with an associated activation enthalpy at 0 K of 67.26 kcal/mol at the CCSD(T)/cc-pVTZ//MP2/6-311G(d,p) level (relative to the TGt conformer). The respective CBS-QB3 estimates are 7.84 and 67.88 kcal/mol.

  18. VOCs Speciation From Steam Boiler Stacks of Industries Located in Naucalpan

    NASA Astrophysics Data System (ADS)

    Mejia, G. M.; Tejeda, D. D.; Bremauntz, M. P.; Valdez, A.; Montufar, P. C.; Martinez, M. A.; Sierra, M. J.; Gonzalez, C. A.

    2007-05-01

    Results of VOCs speciation from industrial steam boiler stacks located in Naucalpan are presented and discussed. This municipality is located north of the Metropolitan Zone of the Valley of Mexico (MZVM). Speciation of VOCs is important to generate information about sources of pollution, to update emission inventories, to study the dynamics of pollutants in the atmosphere, and to estimate possible risks of population exposure. This information is valuable for decision making on air pollution control strategies. Samples from 35 steam boilers form industries burning Diesel, LPG, or CNG were taken using the US-EPA Method 18. Selected samples from the use of different fuels were analyzed using gas chromatography and flame ionization detection (GC-FID) according to US-EPA protocol TO-14. The VOCs analyzed included alkanes of 9 carbons or less, alkenes of 7 carbons or less and aromatics (families of benzene). The results show consistency on the VOCs detected on Diesel samples. The main compounds found were 1- Butene+iButylene, m/p-Xylene, Ethane, Propene, Propane, Acetylene, 2Me-1Butene, and Toluene. The average concentrations of these compounds were in the range of 130 to 385 ppbC. The results of LPG samples did not show a definite pattern of VOCs, although light components predominate and, in some samples, Toluene and Xylene. These last components were not expected for industries reporting the use of LPG, perhaps due to the use of a combination of fuels and mistakes in the reports of fuel used at the time of sampling. The analysis of CNG samples show predominance of light VOCs, in the range of 90 to 300 ppbC. As in the case of LPG, some aromatics showed high concentrations in some samples analyzed perhaps due to the use of different fuels in the boiler. The results of this study are the first results of VOCs speciation obtained form exhaust gases from stacks of Mexican industries. The data reported are valuable to analyze emission inventories of VOCs and to better

  19. Hydrogen Abstraction from Hydrocarbons by NH2.

    PubMed

    Siddique, Kamal; Altarawneh, Mohammednoor; Gore, Jeff; Westmoreland, Phillip R; Dlugogorski, Bogdan Z

    2017-03-23

    This contribution investigates thermokinetic parameters of bimolecular gas-phase reactions involving the amine (NH2) radical and a large number of saturated and unsaturated hydrocarbons. These reactions play an important role in combustion and pyrolysis of nitrogen-rich fuels, most notably biomass. Computations performed at the CBS-QB3 level and based on the conventional transition-state theory yield potential-energy surfaces and reaction rate constants, accounting for tunnelling effects and the presence of hindered rotors. In an analogy to other H abstraction systems, we demonstrate only a small influence of variational effects on the rate constants for selected reaction. The studied reactions cover the abstraction of hydrogen atoms by the NH2 radical from the C-H bonds in C1-C4 species, and four C5 hydrocarbons of 2-methylbutane, 2-methyl-1-butene, 3-methyl-1-butene, 3-methyl-2-butene, and 3-methyl-1-butyne. For the abstraction of H from methane, in the temperature windows 300-500 and 1600-2000 K, the calculated reaction rate constants concur with the available experimental measurements, i.e., kcalculated/kexperimetal = 0.3-2.5 and 1.1-1.4, and the previous theoretical estimates. Abstraction of H atom from ethane attains the ratio of kcalculated/kexperimetal equal to 0.10-1.2 and 1.3-1.5 over the temperature windows of available experimental measurements, i.e., 300-900 K and 1500-2000 K, respectively. For the remaining alkanes (propane and n-butane), the average kexperimental/kcalculated ratio remains 2.6 and 1.3 over the temperature range of experimental data. Also, comparing the calculated standard enthalpy of reaction (ΔrH°298) with the available experimental measurements for alkanes, we found the mean unsigned error of computations as 3.7 kJ mol(-1). This agreement provides an accuracy benchmark of our methodology, affording the estimation of the unreported kinetic parameters for H abstractions from alkenes and alkynes. On the basis of the Evans

  20. Vibrational state distribution and relaxation of vinoxy radicals

    NASA Astrophysics Data System (ADS)

    Su, Hongmei; Bersohn, Richard

    2001-07-01

    The vinoxy radical ṡCH2CHO is a product of the reaction of O(3P) atoms with terminal alkenes and can also be made by photodissociation of an alkyl vinyl ether. In either case it is formed in a vibrationally excited state. The nascent radical displays a rich electronic spectrum to the red of its X→B band origin consisting of bands originating from vibrationally excited states. Some transitions, true "hot bands," terminate on the vibrationless B state; others, sequence bands, terminate on vibrationally excited B states. The spectra become unobservably weak at a certain energy. The difference between that energy and the energy of the band origin is roughly the maximum vibrational energy in the radical. This is 5600 cm-1 for the vinoxy produced by photodissociation of ethyl vinyl ether at 193 nm and 3200 cm-1 for the product of the reaction of O(3P) with ethylene, propene, 1-butene, and 1-pentene. There is a remarkable cooling of the vibrations as the hydrocarbon chain lengthens. The average vibrational energy of the vinoxy product of the reaction O(3P) with ethylene, propene, 1-butene, and 1-pentene is 2100, 1800, 1570, and 1180 cm-1, respectively. This cooling implies that the reaction complex lives long enough for internal vibrational relaxation to occur. The average vibrational energy in the reaction-produced vinoxy is small, which implies that there is considerable kinetic energy. The time dependence of the intensity of the hot bands measures the relaxation rates of different energies, some of which are the energies of a single vibrational state. The ground-state population increases monotonically to an asymptote. The population of most states grows with time and then decays. The growth is due to a cascading from upper states. The populations of the highest energy states decay monotonically; the still higher energy states are almost unpopulated. These results prove that the relaxation proceeds stepwise. The magnitude of the step, ˜200-300 cm-1, can be

  1. Rate coefficients at 298 K and 1 atm for the tropospheric degradation of a series of C6, C7 and C8 biogenic unsaturated alcohols initiated by Cl atoms

    NASA Astrophysics Data System (ADS)

    Gibilisco, Rodrigo G.; Bejan, Iustinian; Barnes, Ian; Wiesen, Peter; Teruel, Mariano A.

    2014-09-01

    Rate coefficients for the gas-phase reactions of Cl atoms with a series of unsaturated biogenic alcohols at 298 ± 3 K and 1 atm have been measured by the relative technique in an environmental chamber with in situ FTIR detection of reactants. The rate coefficients obtained using 1-butene and isobutene as reference compounds were (in units of 10-10 cm3 molecule-1 s-1): k1((E)-2-hexen-1-ol) = (3.49 ± 0.82), k2((E)-3-hexen-1-ol) = (3.42 ± 0.79), k3 ((Z)-3-hexen-1-ol) = (2.94 ± 0.72), k4((Z)-3-hepten-1-ol) = (3.80 ± 0.86) and k5((Z)-3-octen-1-ol) = (4.13 ± 0.68). This work constitutes the first kinetic study of the reactions cited above. The rate coefficients are compared with those for other unsaturated alcohols and a correlation between the reactivity of unsaturated alcohols toward Cl atoms and the energy of the HOMO of the unsaturated alcohols is presented. Based on the obtained results, the atmospheric lifetimes of the unsaturated alcohols have been estimated and possible atmospheric implications assessed.

  2. Measurement of proton transfer reaction rates in a microwave cavity discharge flowing afterglow

    NASA Astrophysics Data System (ADS)

    Brooke, George M., IV

    The reaction rate coefficients between the hydronium ion and the molecules ethene (C2H4), propene (C 3H6), 1-butene (C4H8) and hydrogen sulfide (H2S) were measured at 296 K. The measured reaction rates were compared to collision rates calculated using average dipole orientation (ADO) theory. Reaction efficiency depends primarily upon the proton affinity of the molecules. All the measurements were obtained using the newly developed microwave cavity discharge flowing afterglow (MCD-FA) apparatus. This device uses an Asmussen-type microwave cavity discharge ion source that is spatially separated from the flow tube, eliminating many of the problems inherent with the original FA devices. In addition to measuring reaction rate coefficients, the MCD-FA was shown to be an effective tool for measuring trace compounds in atmospheric air. This method has many advantages over current detection techniques since compounds can be detected in almost real time, large mass ranges can be scanned quickly, and repeated calibration is not required. Preliminary measurements were made of car exhaust and exhaled alveolar air. Car exhaust showed the presence of numerous hydrocarbons, such as butene, benzene and toluene while the exhaled alveolar air showed the presence of various volatile organic compounds such as methanol and acetone.

  3. Ruta montana L. leaf essential oil and extracts: characterization of bioactive compounds and suppression of crown gall disease.

    PubMed

    Hammami, Inés; Smaoui, Slim; Hsouna, Anis Ben; Hamdi, Naceur; Triki, Mohamed Ali

    2015-01-01

    The aims of this study were to assess the antimicrobial efficacy of the leaf essential oil and the leaf extracts of R. montana against Botrytis cinerea, Fusarium oxysporum, Verticillium dahliae, Aspergillus oryzae and Fusarium solani. The oil (1.000 µg/disk) and the extracts (1.500 µg/disk) revealed a remarkable antifungal effect against the tested plant pathogenic fungi with a radial growth inhibition percentage of 40.0-80.0 % and 5.0-58.0 %, respectively along with their respective MIC values ranging from 100 to 1100 µg/mL and 250 to 3000 µg/mL. The oil had a strong detrimental effect on spore germination of all the tested plant pathogens along with the concentration as well as time-dependent kinetic inhibition of Fusarium oxysporum. Also, the oil exhibited a potent in vivo antifungal effect against Botrytis cinerea on tomato plants. Experiments carried out in plant revealed that the essential oil was slightly effective in suppression of gall formation induced by Agrobacterium tumefaciens on bitter almond. The results of this study indicate that the oil and extracts of R. montana leaves could become natural alternatives to synthetic fungicides to control certain important plant microbial diseases. The GC-MS analysis determined that 28 compounds, which represented 89.03 % of total oil, were present in the oil containing mainly 1-butene, methylcyclopropane, 2-butene and caryophyllene oxide.

  4. Effect of pretreatment with dehulling and microwaving on the flavor characteristics of cold-pressed rapeseed oil by GC-MS-PCA and electronic nose discrimination.

    PubMed

    Zhou, Qi; Yang, Mei; Huang, Fenghong; Zheng, Chang; Deng, Qianchun

    2013-07-01

    Raw and dehulled rapeseeds were treated with microwave energy (800 W) from 1 to 8 min with 1-min intervals at a frequency of 2450 MHz to investigate the influence of microwaving and dehulling pretreatment on the flavor characteristics of rapeseed oil extracted by pressing. Headspace solid phase microextraction was used to isolate the volatile compounds of rapeseed oil, which were then identified by gas chromatography-mass spectrometry analysis. The results indicated that microwave and dehulling pretreatment of rapeseed can significantly influence the kinds and content of volatile compounds. The key flavor compounds in rapeseed oil were oxidized volatiles, heterocyclic compounds, and degradation products of glucosinolates. A pungent compound, 4-isothiocyanato-1-butene, was reduced by 97% in rapeseed treated for 3 min with microwaves energy when compared to the rapeseed oil without any treatment. The pyrazine compounds in the oil appeared after 6 min of microwave pretreatment and give a pleasant roasting flavor when compared to crude oils. Principal component analysis was able to differentiate between oils obtained using 4 pretreatment processes based on volatile compounds and electronic nose. The results showed that dehulling pretreatment could improve the flavor, yet microwaving had a greater effect on the flavor of rapeseed oils.

  5. Direct oxidation of hydrocarbons in a solid-oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Park, Seungdoo; Vohs, John M.; Gorte, Raymond J.

    2000-03-01

    The direct electrochemical oxidation of dry hydrocarbon fuels to generate electrical power has the potential to accelerate substantially the use of fuel cells in transportation and distributed-power applications. Most fuel-cell research has involved the use of hydrogen as the fuel, although the practical generation and storage of hydrogen remains an important technological hurdle. Methane has been successfully oxidized electrochemically, but the susceptibility to carbon formation from other hydrocarbons that may be present or poor power densities have prevented the application of this simple fuel in practical applications. Here we report the direct, electrochemical oxidation of various hydrocarbons (methane, ethane, 1-butene, n-butane and toluene) using a solid-oxide fuel cell at 973 and 1,073 K with a composite anode of copper and ceria (or samaria-doped ceria). We demonstrate that the final products of the oxidation are CO2 and water, and that reasonable power densities can be achieved. The observation that a solid-oxide fuel cell can be operated on dry hydrocarbons, including liquid fuels, without reforming, suggests that this type of fuel cell could provide an alternative to hydrogen-based fuel-cell technologies.

  6. Substrate range and enantioselectivity of epoxidation reactions mediated by the ethene-oxidising Mycobacterium strain NBB4.

    PubMed

    Cheung, Samantha; McCarl, Victoria; Holmes, Andrew J; Coleman, Nicholas V; Rutledge, Peter J

    2013-02-01

    Mycobacterium strain NBB4 is an ethene-oxidising micro-organism isolated from estuarine sediments. In pursuit of new systems for biocatalytic epoxidation, we report the capacity of strain NBB4 to convert a diverse range of alkene substrates to epoxides. A colorimetric assay based on 4-(4-nitrobenzyl)pyridine) has been developed to allow the rapid characterisation and quantification of biocatalytic epoxide synthesis. Using this assay, we have demonstrated that ethene-grown NBB4 cells epoxidise a wide range of alkenes, including terminal (propene, 1-butene, 1-hexene, 1-octene and 1-decene), cyclic (cyclopentene, cyclohexene), aromatic (styrene, indene) and functionalised substrates (allyl alcohol, dihydropyran and isoprene). Apparent specific activities have been determined and range from 2.5 to 12.0 nmol min(-1) per milligram of cell protein. The enantioselectivity of epoxidation by Mycobacterium strain NBB4 has been established using styrene as a test substrate; (R)-styrene oxide is produced in enantiomeric excesses greater than 95%. Thus, the ethene monooxygenase of Mycobacterium NBB4 has a broad substrate range and promising enantioselectivity, confirming its potential as a biocatalyst for alkene epoxidation.

  7. Evaluation of the acid properties of porous zirconium-doped and undoped silica materials

    SciTech Connect

    Fuentes-Perujo, D.; Santamaria-Gonzalez, J.; Merida-Robles, J.; Rodriguez-Castellon, E.; Jimenez-Lopez, A.; Maireles-Torres, P. . E-mail: maireles@uma.es; Moreno-Tost, R.

    2006-07-15

    A series of porous silica and Zr-doped silica molecular sieves, belonging to the MCM-41 and MSU families, were prepared and characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and N{sub 2} adsorption at 77 K. Their acid properties have been evaluated by NH{sub 3}-TPD, adsorption of pyridine and deuterated acetonitrile coupled to FT-IR spectroscopy and the catalytic tests of isopropanol decomposition and isomerization of 1-butene. The acidity of purely siliceous solids were, in all cases, very low, while the incorporation of Zr(IV) into the siliceous framework produced an enhancement of the acidity. The adsorption of basic probe molecules and the catalytic behaviour revealed that Zr-doped MSU-type silica was more acidic than the analogous Zr-MCM-41 solid, with a similar Zr content. This high acidity observed in the case of Zr-doped silica samples is due to the presence of surface zirconium atoms with a low coordination, mainly creating Lewis acid sites. - Graphical abstract: The adsorption of basic probe molecules and the catalytic behaviour have revealed that MSU-type materials are more acidic than the analogous MCM-41 solids, mainly after the incorporation of zirconium into the silica framework.

  8. New analytical method for the determination of styrene oligomers formed from polystyrene decomposition and its application at the coastlines of the North-West Pacific ocean.

    PubMed

    Saido, Katsuhiko; Koizumi, Koshiro; Sato, Hideto; Ogawa, Naoto; Kwon, Bum Gun; Chung, Seon-Yong; Kusui, Takashi; Nishimura, Masahiko; Kodera, Yoichi

    2014-03-01

    The pollution caused by plastic debris is an environmental problem with increasing concern in the oceans. Among the plastic polymers, polystyrene (PS) is one of the most problematic plastics due to the direct public health risk associated with their dispersion, as well as the numerous adverse environmental impacts which arise both directly from the plastics and from their degradation products. Little is known about their potential distribution characteristics throughout the oceans. For the first time, we report here on the regional distribution of styrene monomer (SM), styrene dimers (SD; 2,4-diphenyl-1-butene, SD1; 1,3-diphenyl propane, SD2), and styrene trimer (2,4,6-triphenyl-1-hexene: ST1), as products of PS decomposition determined from samples of sand and seawater from the shorelines of the North-West Pacific ocean. In order to quantitatively determine SM, SD (=SD1+SD2), and ST1, a new analytical method was developed. The detection limit was 3.3 μg L(-1), based on a signal-to-noise ratio of three, which was well-suited to quantify levels of SM, SD, and ST1 in samples. Surprisingly, the concentrations of SM, SD, and ST1 in sand samples from the shorelines were consistently greater than those in seawater samples from the same location. The results of this study suggest that SM, SD, and ST1 can be widely dispersed throughout the North-West Pacific oceans.

  9. Speciated VOC emission inventory and spatial patterns of ozone formation potential in the Pearl River Delta, China.

    PubMed

    Zheng, Junyu; Shao, Min; Che, Wenwei; Zhang, Lijun; Zhong, Liuju; Zhang, Yuanhang; Streets, David

    2009-11-15

    The Pearl River Delta region (PRD) of China has long suffered from severe ground-level ozone pollution. Knowledge of the sources of volatile organic compounds (VOCs) is essential for ozone chemistry. In this work, a speciated VOC emission inventory was established on the basis of updated emissions and local VOC source profiles. The top 10 species, in terms of ozone formation potentials (OFPs), consisted of isoprene, mp-xylene, toluene, ethylene, propene, o-xylene, 1,2,4-trimethylbenzene, 2-methyl-2-butene, 1-butene, and alpha-pinene. These species contributed only 35.9% to VOCs emissions but accounted for 64.1% of the OFP in the region. The spatial patterns of the VOC source inventory agreed well with city-based source apportionment results, especially for vehicle emissions and industry plus VOC product-related emissions. Mapping of the OFPs and measured ozone concentrations indicated that the formation of higher ozone in the south and southeast of the PRD region differed from that in the Conghua area, a remote area in the north of the PRD. We recommend that the priorities for the control of VOC sources include motorcycles, gasoline vehicles, and solvent use because of their larger OFP contributions.

  10. On the performance of FAU and MFI zeolites for the adsorptive removal of a series of volatile organic compounds from air using molecular simulation.

    PubMed

    Calero, S; Gómez-Álvarez, P

    2015-10-21

    Volatile organic compound (VOC) emissions can cause serious risk to human health and the environment. In this work, we used Monte Carlo simulations to assess the performance of industrially important zeolites for the adsorption-based removal of a number of common air pollutants, particularly small saturated and unsaturated hydrocarbons: propane, butane, propene, and 1-butene. We focused on the cage-like FAU and channel-like MFI zeolites. The adsorption isotherms of the multicomponent N2/O2/Ar/VOC mixtures at real concentrations and room temperature reveal a considerable influence of the host topology and pore dimensions. While the adsorption of the VOCs from the mixture in FAU is almost negligible, it is remarkable in MFI. The adsorption selectivity of each VOC over the air compounds exhibits a maximum at about 10(6)-10(7) Pa, and then decreases to virtually zero due to entropic effects. This behaviour for selectivity is maintained regardless of the chain length and the presence of double bonds in the VOC, but the values are indeed affected. Also, we examined the selectivity at 10(7) Pa for a number of other widely used zeolites, with pore features ensuring the diffusion of the adsorbates. Apart from MFI, we also found the channel-like MEL and MTW zeolite candidates for the targeted air decontamination.

  11. Contribution of carbonyl photochemistry to aging of atmospheric secondary organic aerosol.

    PubMed

    Mang, Stephen A; Henricksen, Dana K; Bateman, Adam P; Andersen, Mads P Sulbaek; Blake, Donald R; Nizkorodov, Sergey A

    2008-09-11

    The photodegradation of secondary organic aerosol (SOA) material by actinic UV radiation was investigated. SOA was generated via the dark reaction of ozone and d-limonene, collected onto quartz-fiber filters, and exposed to wavelength-tunable radiation. Photochemical production of CO was monitored in situ by infrared cavity ring-down spectroscopy. A number of additional gas-phase products of SOA photodegradation were observed by gas chromatography, including methane, ethene, acetaldehyde, acetone, methanol, and 1-butene. The absorption spectrum of SOA material collected onto CaF2 windows was measured and compared with the photolysis action spectrum for the release of CO, a marker for Norrish type-I photocleavage of carbonyls. Both spectra had a band at approximately 300 nm corresponding to the overlapping n --> pi* transitions in nonconjugated carbonyls. The effective extinction coefficient of freshly prepared SOA was estimated to be on the order of 15 L mol(-1) cm(-1) at 300 nm, implying one carbonyl group in every SOA constituent. The absorption by the SOA material slowly increased in the visible and near-UV during storage of SOA in open air in the dark, presumably as a result of condensation reactions that increased the degree of conjugation in the SOA constituents. These observations suggest that photolysis of carbonyl functional groups represents a significant sink for monoterpene SOA compounds in the troposphere, with an estimated lifetime of several hours over the continental United States.

  12. A New Process for Maleic Anhydride Synthesis from a Renewable Building Block: The Gas-Phase Oxidehydration of Bio-1-butanol.

    PubMed

    Pavarelli, Giulia; Velasquez Ochoa, Juliana; Caldarelli, Aurora; Puzzo, Francesco; Cavani, Fabrizio; Dubois, Jean-Luc

    2015-07-08

    We investigated the synthesis of maleic anhydride by oxidehydration of a bio-alcohol, 1-butanol, as a possible alternative to the classical process of n-butane oxidation. A vanadyl pyrophosphate catalyst was used to explore the one-pot reaction, which involved two sequential steps: 1) 1-butanol dehydration to 1-butene, catalysed by acid sites, and 2) the oxidation of butenes to maleic anhydride, catalysed by redox sites. A non-negligible amount of phthalic anhydride was also formed. The effect of different experimental parameters was investigated with chemically sourced 1-butanol, and the results were then confirmed by using genuinely bio-sourced 1-butanol. In the case of bio-1-butanol, however, the purity of the product remarkably affected the yield of maleic anhydride. It was found that the reaction mechanism includes the oxidation of butenes to crotonaldehyde and the oxidation of the latter to either furan or maleic acid, both of which are transformed to produce maleic anhydride.

  13. Emission characteristics of volatile organic compounds from coal-, coal gangue-, and biomass-fired power plants in China

    NASA Astrophysics Data System (ADS)

    Yan, Yulong; Yang, Chao; Peng, Lin; Li, Rumei; Bai, Huiling

    2016-10-01

    Face the large electricity demand, thermal power generation still derives the main way of electricity supply in China, account for 78.19% of total electricity production in 2013. Three types of thermal power plants, including coal-fired power plant, coal gangue-fired power plant and biomass-fired power plant, were chosen to survey the source profile, chemical reactivity and emission factor of VOCs during the thermal power generation. The most abundant compounds generated during coal- and coal gangue-fired power generation were 1-Butene, Styrene, n-Hexane and Ethylene, while biomass-fired power generation were Propene, 1-Butenen, Ethyne and Ethylene. The ratios of B/T during thermal power generation in this study was 0.8-2.6, which could be consider as the characteristics of coal and biomass burning. The field tested VOCs emission factor from coal-, coal gangue- and biomass-fired power plant was determined to be 0.88, 0.38 and 3.49 g/GJ, or showed as 0.023, 0.005 and 0.057 g/kg, with the amount of VOCs emission was 44.07, 0.08, 0.45 Gg in 2013, respectively. The statistical results of previous emission inventory, which calculated the VOCs emission used previous emission factor, may overestimate the emission amount of VOCs from thermal power generation in China.

  14. Gas-Phase Reactions of Doubly Charged Lanthanide Cations with Alkanes and Alkenes. Trends in Metal(2+) Reactivity

    SciTech Connect

    Gibson, John K.; Marcalo, Joaquim; Santos, Marta; Pires de Matos, Antonio; Haire, Richard G.

    2008-12-08

    The gas-phase reactivity of doubly-charged lanthanide cations, Ln2+ (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu), with alkanes (methane, ethane, propane, n-butane) and alkenes (ethene, propene, 1-butene) was studied by Fourier transform ion cyclotron resonance mass spectrometry. The reaction products consisted of different combinations of doubly-charged organometallic ions?adducts or species formed via metal-ion-induced hydrogen, dihydrogen, alkyl, or alkane eliminations from the hydrocarbons?and singly-charged ions that resulted from electron, hydride, or methide transfers from the hydrocarbons to the metal ions. The only lanthanide cations capable of activating the hydrocarbons to form doubly-charged organometallic ions were La2+, Ce2+, Gd2+, and Tb2+, which have ground-state or low-lying d1 electronic configurations. Lu2+, with an accessible d1 electronic configuration but a rather high electron affinity, reacted only through transfer channels. The remaining Ln2+ reacted via transfer channels or adduct formation. The different accessibilities of d1 electronic configurations and the range of electron affinities of the Ln2+ cations allowed for a detailed analysis of the trends for metal(2+) reactivity and the conditions for occurrence of bond activation, adduct formation, and electron, hydride, and methide transfers.

  15. Synthesis and antitumor activity of 10-alkyl-10-deazaminopterins. A convenient synthesis of 10-deazaminopterin.

    PubMed

    DeGraw, J I; Brown, V H; Tagawa, H; Kisliuk, R L; Gaumont, Y; Sirotnak, F M

    1982-10-01

    Requirements for large-scale synthesis of the potent antitumor drug 10-deazaminopterin have led to development of a facile synthesis of this compound and its 10-alkyl analogues. The lithium diisopropyl amide generated dianions of appropriate p-alkylbenzoic acids were alkylated with 3-methoxyallyl chloride. The resulting 4-(p-carboxyphenyl)-1-methoxy-1-butenes were brominated at pH 7-8 to afford the 2-bromo-4-(p-carboxyphenyl)butyraldehydes. Condensation with 2,4,5,6-tetraminopyrimidine and subsequent in situ oxidation of the resulting dihydropteridines yielded crystalline 10-alkyl-10-deaza-4-amino-4-deoxypteroic acids. The pteroic acids were coupled with diethyl glutamate via the mixed anhydride method, followed by saponification at room temperature, to give the target 10-deazaminopterins. The 10-alkyl compounds were approximately equipotent to 10-deazaminopterin as growth inhibitors of folate-dependent bacteria. Their abilities to inhibit Lactobacillus casei and L1210 derived dihydrofolate reductases were also similar. Transport properties in vitro were suggestive of an improved therapeutic index for the 10-alkyl analogues. Against L1210 in mice, the percent increase in life span at the LD10 dosage was +151% (methotrexate), +178% (10-deazaminopterin), +235% (10-methyl analogue), and +211% (10-ethyl analogue). 10,10-Dimethyl-10-deazaminopterin was less effective at an equimolar dosage, but the ILS at the maximum dose tested (72 mg/kg) was +135%. It was far less toxic than the other analogues possibly because of enhanced clearance.

  16. Synthesis of novel acid electrolytes for phosphoric acid fuel cells

    NASA Astrophysics Data System (ADS)

    Adcock, James L.

    1988-11-01

    A 40 millimole per hour scale aerosol direct fluorination reactor was constructed. F-Methyl F-4-methoxybutanoate and F-4-methoxybutanoyl fluoride were synthesized by aerosol direct fluorination of methyl 4-methoxybutanoate. Basic hydrolysis of the perfluorinated derivatives produce sodium F-4 methoxybutanoate which was pyrolyzed to F-3-methoxy-1-propene. Purification and shipment of 33 grams of F-3-methoxy-1-propene followed. Syntheses by analogous methods allowed production and shipment of 5 grams of F-3-ethoxy 1-propene, 18 grams of F-3-(2-methoxy.ethoxy) 1-propene, and 37 grams of F-3,3-dimethyl 1-butene. Eighteen grams of F-2,2-dimethyl 1-chloropropane was produced directly and shipped. As suggested by other contractors, 5 grams of F-3-methoxy 1-iodopropane, and 5 grams of F-3-(2-methoxy.ethoxy) 1-iodopropane were produced by converting the respective precursor acid sodium salts produced for olefin synthesis to the silver salts and pyrolyzing them with iodine. Each of these compounds was prepared for the first time by the aerosol fluorination process during the course of the contract. These samples were provided to other Gas Research Institute (GRI) contractors for synthesis of perfluorinated sulfur (VI) and phosphorous (V) acids.

  17. Expanding the scope of metathesis: a survey of polyfunctional, single-site supported tungsten systems for hydrocarbon valorization.

    PubMed

    Popoff, Nicolas; Mazoyer, Etienne; Pelletier, Jérémie; Gauvin, Régis M; Taoufik, Mostafa

    2013-12-07

    Olefin metathesis is increasingly incorporated in polyfunctional industrial processes. The classical WO3/SiO2 olefin metathesis catalyst is combined to other catalysts in order to afford higher added-value chemicals. However, the combination of several reactions, not only in a single reactor, but also stemming from a single, multifunctional surface species is a desirable improvement regarding process issues. Well-defined surface organometallic tungsten species can be designed to implement targeted functionalities (carbene, hydride, alkyl, …). By tuning the metal's coordination sphere, it is possible to combine metathesis with several reactions, such as (de)hydrogenation, dimerization or isomerization. Novel, unconventional reactions for the production and upgrading of alkanes and alkenes have thus been uncovered. The reactivity of this library of supported catalysts is discussed based on the type of mediated transformations: monofunctional (alkene and alkyne metathesis), bifunctional (1-butene or 2-butenes to propylene), trifunctional (ethylene to propylene, alkane metathesis, …). Mechanistic considerations will be discussed to put these results in a wider perspective for future developments.

  18. Sulforaphene promotes Bax/Bcl2, MAPK-dependent human gastric cancer AGS cells apoptosis and inhibits migration via EGFR, p-ERK1/2 down-regulation.

    PubMed

    Mondal, Arindam; Biswas, Raktim; Rhee, Yun-Hee; Kim, Jongkee; Ahn, Jin-Chul

    2016-01-01

    Gastric cancer migration and invasion considered as main causes of this cancer-related death around the world. Sulforaphene (4-isothiocyanato-4R-(methylsulfinyl)-1-butene), a structural analog of sulforaphane, has been found to exhibit anticancer potential against different cancers. Our aim was to investigate whether dietary isothiocyanate sulforaphene (SFE) can promote human gastric cancer (AGS) cells apoptosis and inhibit migration. Cells were treated with various concentrations of SFE and cell viability, morphology, intracellular ROS, migration and different signaling protein expressions were investigated. The results indicate that SFE decreases AGS cell viability and induces apoptosis in a dose-dependent manner. Intracellular ROS generation, dose- and time-dependent Bax/Bcl2 alteration and signaling proteins like cytochrome c, Casp-3, Casp-8 and PARP-1 higher expression demonstrated the SFE-induced apoptotic pathway in AGS cells. Again, SFE induced apoptosis also accompanied by the phosphorylation of mitogen-activated protein kinases (MAPKs) like JNK and P-38. Moreover, dose-dependent EGFR, p-ERK1/2 down-regulation and cell migration inhibition at non-toxic concentration confirms SFE activity in AGS cell migration inhibition. Thus, this study demonstrated effective chemotherapeutic potential of SFE by inducing apoptisis as well as inhibiting migration and their preliminary mechanism for human gastric cancer management.

  19. Catalytic conversion of cellulose to liquid hydrocarbon fuels by progressive removal of oxygen to facilitate separation processes and achieve high selectivities

    DOEpatents

    Dumesic, James A [Verona, WI; Ruiz, Juan Carlos Serrano [Madison, WI; West, Ryan M [Madison, WI

    2012-04-03

    Described is a method to make liquid chemicals, such as functional intermediates, solvents, and liquid fuels from biomass-derived cellulose. The method is cascading; the product stream from an upstream reaction can be used as the feedstock in the next downstream reaction. The method includes the steps of deconstructing cellulose to yield a product mixture comprising levulinic acid and formic acid, converting the levulinic acid to .gamma.-valerolactone, and converting the .gamma.-valerolactone to pentanoic acid. Alternatively, the .gamma.-valerolactone can be converted to a mixture of n-butenes. The pentanoic acid so formed can be further reacted to yield a host of valuable products. For example, the pentanoic acid can be decarboxylated yield 1-butene or ketonized to yield 5-nonanone. The 5-nonanone can be hydrodeoxygenated to yield nonane, or 5-nonanone can be reduced to yield 5-nonanol. The 5-nonanol can be dehydrated to yield nonene, which can be dimerized to yield a mixture of C.sub.9 and C.sub.18 olefins, which can be hydrogenated to yield a mixture of alkanes. Alternatively, the nonene may be isomerized to yield a mixture of branched olefins, which can be hydrogenated to yield a mixture of branched alkanes. The mixture of n-butenes formed from .gamma.-valerolactone can also be subjected to isomerization and oligomerization to yield olefins in the gasoline, jet and Diesel fuel ranges.

  20. Kinetic and mechanistic study of the atmospheric reaction of MBO331 with Cl atoms

    NASA Astrophysics Data System (ADS)

    Rodríguez, Diana; Rodríguez, Ana; Garzón, Andrés; Granadino-Roldán, José M.; Soto, Amparo; Aranda, Alfonso; Notario, Alberto

    2012-12-01

    The present work deals with the reaction of 3-methyl-3-buten-1-ol (MBO331) with Cl atoms, which has been investigated by gas chromatography with flame ionization detection (GC-FID) at atmospheric pressure in N2 or air, using the relative rate technique. The rate constant reaction at 298 ± 1 K was found to be (5.01 ± 0.70) × 10-10 cm3 molecule-1 s-1, using cyclohexane, octane and 1-butene as a reference compounds. The temperature dependence for the reaction was studied within the 298-333 K range. Additionally, a product identification under atmospheric conditions has been performed for the first time by GC-MS, with 3-methyl-3-butenal, methacrolein and chloroacetone being observed as degradation products. A theoretical study on the reaction at the QCISD(T)/6-311G**//MP2/6-311G** level was also carried out to obtain more information on the mechanism. From the theoretical study it can be predicted that Cl addition to the double bond proceeds through lower energy barriers than H-abstraction pathways and therefore is energetically favoured. Finally, atmospheric implications of the results obtained are discussed.

  1. Ruta montana L. leaf essential oil and extracts: characterization of bioactive compounds and suppression of crown gall disease

    PubMed Central

    Hammami, Inés; Smaoui, Slim; Hsouna, Anis Ben; Hamdi, Naceur; Triki, Mohamed Ali

    2015-01-01

    The aims of this study were to assess the antimicrobial efficacy of the leaf essential oil and the leaf extracts of R. montana against Botrytis cinerea, Fusarium oxysporum, Verticillium dahliae, Aspergillus oryzae and Fusarium solani. The oil (1.000 µg/disk) and the extracts (1.500 µg/disk) revealed a remarkable antifungal effect against the tested plant pathogenic fungi with a radial growth inhibition percentage of 40.0-80.0 % and 5.0-58.0 %, respectively along with their respective MIC values ranging from 100 to 1100 µg/mL and 250 to 3000 µg/mL. The oil had a strong detrimental effect on spore germination of all the tested plant pathogens along with the concentration as well as time-dependent kinetic inhibition of Fusarium oxysporum. Also, the oil exhibited a potent in vivo antifungal effect against Botrytis cinerea on tomato plants. Experiments carried out in plant revealed that the essential oil was slightly effective in suppression of gall formation induced by Agrobacterium tumefaciens on bitter almond. The results of this study indicate that the oil and extracts of R. montana leaves could become natural alternatives to synthetic fungicides to control certain important plant microbial diseases. The GC-MS analysis determined that 28 compounds, which represented 89.03 % of total oil, were present in the oil containing mainly 1-butene, methylcyclopropane, 2-butene and caryophyllene oxide. PMID:26417353

  2. A cryogen-free refrigerating preconcentration device for the measurement of C2 to C4 hydrocarbons in ambient air.

    PubMed

    Peng, Hong; Wang, Jianwei; Shen, Zheng; Wu, Dapeng; Guan, Yafeng

    2011-02-07

    A cryogen-free refrigerating preconcentration device for the enrichment of trace amounts of highly volatile organic compounds in the atmosphere prior to analysis has been designed and evaluated. The device consists of a microtrap housed in an insulated box, which is cooled by a conventional refrigeration unit. Experimental parameters, including adsorbent mass, trapping temperature, and thermal desorption temperature, were optimized. The on-line coupling of the device to a GC allows sufficient enrichment and separation of C2 to C4 hydrocarbons in less than 40 min without a second cryotrap. The target compounds analysis showed good linearity (correlation coefficients >0.99) and repeatability (relative standard deviation <5%). Detection limits for the 10 volatile organic compounds ranged from 14 ppt to 52 ppt, under the conditions of a 500 mL sampling volume and -10 °C trapping temperature. Real air sample measurements were conducted at an urban site, and five VOCs including ethane, ethene, propane, propene and 1-butene were detected and quantified.

  3. Identification and Quantitation of Volatile Organic Compounds in Poly(methyl methacrylate) Kitchen Utensils by Headspace Gas Chromatography/Mass Spectrometry.

    PubMed

    Ohno, Hiroyuki; Mutsuga, Motoh; Kawamura, Yoko

    2014-01-01

    A headspace GC/MS method was developed for identification and quantitation of residual volatile organic compounds in poly(methyl methacrylate) (PMMA) kitchen utensils. A sample was cut into small pieces, then N,N-dimethylacetamide was added in a headspace vial and sealed. After storing for more than 1 day at room temperature, the vial was incubated for 1 h at 90°C, and the headspace gas was analyzed by GC/MS. In 24 PMMA kitchen utensils, 16 volatile organic compounds including methyl methacrylate, methyl acrylate, toluene, 2-methyl-1-butene, 2-methyl-2-butene, 2-methylpropanal, methyl propionate, methyl isobutyrate, trans-3-heptene, heptane, cis-3-heptene, trans-2-heptene, cis-2-heptene, 2,4,4-trimethyl-1-pentene, 2,4,4-trimethyl-2-pentene, and 1-octene were identified and quantitated. These 15 volatile compounds except methyl methacrylate were found for the first time in PMMA kitchen utensils. Recovery rates from spiked samples were 97.4-104.0% with CV values of 2.8-9.6%. Samples contained 190-7900 μg/g of methyl methacrylate, 26-810 μg/g of methyl acrylate, and 2-1300 μg/g of toluene; other compounds were at levels less than 100 μg/g. Methyl methacrylate was the main monomer of PMMA and methyl acrylate was a comonomer; toluene should be used as a solvent.

  4. Molecular modeling of alkyl monolayers on the Si(100)-2 x 1 surface.

    PubMed

    Lee, Michael V; Guo, Dawei; Linford, Matthew R; Zuilhof, Han

    2004-10-12

    Molecular modeling was used to simulate various surfaces derived from the addition of 1-alkenes and 1-alkynes to Si=Si dimers on the Si(100)-2 x 1 surface. The primary aim was to better understand the interactions between adsorbates on the surface and distortions of the underlying silicon crystal due to functionalization. Random addition of ethylene and acetylene was used to determine how the addition of an adduct molecule affects subsequent additions for coverages up to one molecule per silicon dimer, that is, 100% coverage. Randomization subdues the effect that the relative positions of the adsorbates have on the enthalpy of the system. For ethylene and acetylene, the enthalpy of reaction changes less than 3 and 5 kcal/mol, respectively, from the first reacted species up to 100% coverage. As a result, a (near-)complete coverage is predicted, which is in line with experimental data. When 1-alkenes and 1-alkynes add by [2 + 2] addition, the hydrocarbon chains interact differently depending on the direction they project from the surface. These effects were investigated for four-carbon chains: 1-butene and 1-butyne. As expected, the chains that would otherwise intersect bend to avoid each other, raising the enthalpy of the system. For alkyl chains longer than four carbons, the chains are able to reorient themselves in a favorable manner, thus, resulting in a steady reduction in reaction enthalpy of about 2 kcal/mol for each additional methylene unit.

  5. 32P-postlabelling of diastereomeric 7-alkylguanine adducts of butadiene monoepoxide.

    PubMed

    Kumar, R; Vodicka, P; Koivisto, P; Peltonen, K; Hemminki, K

    1996-06-01

    The reaction of 3,4-epoxy-1-butene (BMO) with deoxyguanosine-3'-monophosphate (3'-dGMP) resulted in the formation of two pairs of diastereomeric 7-alkyl-3'-dGMP derivatives corresponding to two isomers C¿-1 and C¿-2. The T4 polynucleotide kinase-mediated phosphorylation with [gamma-32P]-ATP showed preferential labelling of diastereo- mers of the C¿-1 isomer. The diastereomers 1 and 2 of the C¿-1 isomer had labelling efficiencies of 42%. However, the labelling efficiencies of diastereomers 3 and 4 of the C¿-2 isomer were 11 and 10%, respectively. The 32P-postlabelling of BMO-modified DNA yielded four isomers in the ratio of 4:4:1:1 with overall recoveries being 14%. The two isomers had a half-life of 270 min (C¿-1 isomer) and 300 min (C¿-2 isomer) which is in accordance with the stability predicted by other similar adduct experiments. The molecular modelling experiments showed more pronounced restricted rotation of butadiene residue in C¿-2 isomers due to steric interaction between butadiene residue at N-7 and O(6) atom of guanine than in C¿-1 isomer. The butadiene residue also leads to steric overcrowding at 3'-phosphate in C¿-2 isomer which probably restricts the access to the active site of T4 polynucleotide kinase.

  6. Gas-phase reactions of doubly charged actinide cations with alkanes and alkenes--probing the chemical activity of 5f electrons from Th to Cm.

    PubMed

    Marçalo, Joaquim; Santos, Marta; Gibson, John K

    2011-11-07

    Small alkanes (methane, ethane, propane, n-butane) and alkenes (ethene, propene, 1-butene) were used to probe the gas-phase reactivity of doubly charged actinide cations, An(2+) (An = Th, Pa, U, Np, Pu, Am, Cm), by means of Fourier transform ion cyclotron resonance mass spectrometry. Different combinations of doubly and singly charged ions were observed as reaction products, comprising species formed via metal-ion induced eliminations of small molecules, simple adducts and ions resulting from electron, hydride or methide transfer channels. Th(2+), Pa(2+), U(2+) and Np(2+) preferentially yielded doubly charged products of hydrocarbon activation, while Pu(2+), Am(2+) and Cm(2+) reacted mainly through transfer channels. Cm(2+) was also capable of forming doubly charged products with some of the hydrocarbons whereas Pu(2+) and Am(2+) were not, these latter two ions conversely being the only for which adduct formation was observed. The product distributions and the reaction efficiencies are discussed in relation to the electronic configurations of the metal ions, the energetics of the reactions and similar studies previously performed with doubly charged lanthanide and transition metal cations. The conditions for hydrocarbon activation to occur as related to the accessibility of electronic configurations with one or two 5f and/or 6d unpaired electrons are examined and the possible chemical activity of the 5f electrons in these early actinide ions, particularly Pa(2+), is considered.

  7. [Aluminum coordination and active sites on aluminas, Y-zeolites and pillared layered silicates]. Progress report

    SciTech Connect

    Fripiat, J.J.

    1994-02-01

    This report is organized in four sections. In the first the authors will outline structural features which are common to all fine grained alumina, as well as to non-framework alumina in zeolites. This section will be followed by a study of the surface vs. bulk coordination of aluminum. The third section will deal with measurement of the number of acid sites and the scaling of their strength. The fourth and last section will describe three model reactions: the isomerization of 1-butene and of 2 cis-butene; the isomerization and disproportionation of oxtho-xylene; and the transformation of trichloroethane into vinyl chloride followed by the polymerization of the vinyl chloride. The relationship between chemical activity and selectivity and what is known of the local structure of the active catalytic sites will be underlined. Other kinds of zeolites besides Y zeolite have been studied. Instead of the aluminum pillared silicates they found it more interesting to study the substitution of silicon by aluminum in a layered structure containing a permanent porosity (aluminated sepiolite).

  8. [Characteristics of VOCs and their photochemical reactivity in autumn in Nanjing northern suburb].

    PubMed

    Li, Yong-Yu; Zhu, Bin; An, Jun-Lin; Gao, Jin-Hui; Xia, Li; Zhang, Xiang-Zhi; Qin, Wei; Tang, Li-Li

    2013-08-01

    A continuous observation campaign was carried out with the GC5000 volatile organics online monitoring system and the EMS system for one month in November 2011 in the northern suburb of Nanjing, and 56 VOC components and reactive gases (NO(x), CO and O3) were measured. The results showed that the VOC hourly averaged volume fraction in Nanjing northern suburb was about 48.17 x 10(-9), and the minimum value of VOCs occurred at 16:00. The diurnal variation showed a bimodal characteristic, indicating the significant impact of motor vehicle emission. The VOC concentration and O3 concentration exhibited negative correlation in the daytime. The average OH consumption rate of VOCs was approximately 3.26 x 10(-12) cm3 x (molecule x s)(-1), and the largest incremental reactivity was about 3.26 mol x mol(-1); Alkenes contributed the largest-parts of the OH consumption rate (L(OH)) and the ozone formation potential (OFP), followed by aromatics. Although alkanes were the most abundant components of VOCs in the atmosphere, it is not the main contributor of L(OH) and OFP. The key active components in VOCs were ethylene, propylene, 1-butene, m,p-xylene and isoprene, etc. The dominant factor of ozone formation was VOCs in this observation.

  9. Ethylene polymerization on a SiH4-modified Phillips catalyst: detection of in situ produced α-olefins by operando FT-IR spectroscopy.

    PubMed

    Barzan, Caterina; Groppo, Elena; Quadrelli, Elsje Alessandra; Monteil, Vincent; Bordiga, Silvia

    2012-02-21

    Ethylene polymerization on a model Cr(II)/SiO(2) Phillips catalyst modified with gas phase SiH(4) leads to a waxy product containing a bimodal MW distribution of α-olefins (M(w) < 3000 g mol(-1)) and a highly branched polyethylene, LLDPE (M(w) ≈ 10(5) g mol(-1), T(m) = 123 °C), contrary to the unmodified catalyst which gives a linear and more dense PE, HDPE (M(w) = 86,000 g mol(-1) (PDI = 7), T(m) = 134 °C). Pressure and temperature resolved FT-IR spectroscopy under operando conditions (T = 130-230 K) allows us to detect α-olefins, and in particular 1-hexene and 1-butene (characteristic IR absorption bands at 3581-3574, 1638 and 1598 cm(-1)) as intermediate species before their incorporation in the polymer chains. The polymerization rate is estimated, using time resolved FT-IR spectroscopy, to be 7 times higher on the SiH(4)-modified Phillips catalyst with respect to the unmodified one.

  10. Textural and structural properties and surface acidity characterization of mesoporous silica-zirconia molecular sieves

    NASA Astrophysics Data System (ADS)

    Rodríguez-Castellón, E.; Jiménez-López, A.; Maireles-Torres, P.; Jones, D. J.; Rozière, J.; Trombetta, M.; Busca, G.; Lenarda, M.; Storaro, L.

    2003-11-01

    Homogeneous mesoporous zirconium-containing MCM-41 type silica were prepared by supramolecular templating and their textural and structural properties were studied using powder X-ray diffraction, N 2 porosimetry, atomic force microscopy, EXAFS, XPS, and UV-VIS-NIR diffuse reflectance spectroscopy. Their acid properties were also studied by using IR spectroscopy and by the use of catalytic tests such as the decomposition of isopropanol and the isomerization of 1-butene. The materials prepared show a good degree of crystallinity with a regular ordering of the pores into a hexagonal arrangement and high thermal stability. The specific surface area of the prepared materials decreases as the zirconium content rises. Zirconium atoms are in coordination 7 to 8 and located at the surface of the pores such that a high proportion of the oxygen atoms bonded to zirconium corresponds to surface non-condensed oxygen atoms. Both facts are responsible for the acid properties of the solids that show weak Brønsted and medium strong Lewis acidity.

  11. Molecular products from the thermal degradation of glutamic acid.

    PubMed

    Kibet, Joshua K; Khachatryan, Lavrent; Dellinger, Barry

    2013-08-14

    The thermal behavior of glutamic acid was investigated in N2 and 4% O2 in N2 under flow reactor conditions at a constant residence time of 0.2 s, within a total pyrolysis time of 3 min at 1 atm. The identification of the main pyrolysis products has been reported. Accordingly, the principal products for pyrolysis in order of decreasing abundance were succinimide, pyrrole, acetonitrile, and 2-pyrrolidone. For oxidative pyrolysis, the main products were succinimide, propiolactone, ethanol, and hydrogen cyanide. Whereas benzene, toluene, and a few low molecular weight hydrocarbons (propene, propane, 1-butene, and 2-butene) were detected during pyrolysis, no polycyclic aromatic hydrocarbons (PAHs) were detected. Oxidative pyrolysis yielded low molecular weight hydrocarbon products in trace amounts. The mechanistic channels describing the formation of the major product succinimide have been explored. The detection of succinimide (major product) and maleimide (minor product) from the thermal decomposition of glutamic acid has been reported for the first time in this study. Toxicological implications of some reaction products (HCN, acetonitrile, and acyrolnitrile), which are believed to form during heat treatment of food, tobacco burning, and drug processing, have been discussed in relation to the thermal degradation of glutamic acid.

  12. On the Radiolysis of Ethylene Ices by Energetic Electrons and Implications to the Extraterrestrial Hydrocarbon Chemistry

    NASA Astrophysics Data System (ADS)

    Zhou, Li; Maity, Surajit; Abplanalp, Matt; Turner, Andrew; Kaiser, Ralf I.

    2014-07-01

    The chemical processing of ethylene ices (C2H4) by energetic electrons was investigated at 11 K to simulate the energy transfer processes and synthesis of new molecules induced by secondary electrons generated in the track of galactic cosmic ray particles. A combination of Fourier transform infrared spectrometry (solid state) and quadrupole mass spectrometry (gas phase) resulted in the identification of six hydrocarbon molecules: methane (CH4), the C2 species acetylene (C2H2), ethane (C2H6), the ethyl radical (C2H5), and—for the very first time in ethylene irradiation experiments—the C4 hydrocarbons 1-butene (C4H8) and n-butane (C4H10). By tracing the temporal evolution of the newly formed molecules spectroscopically online and in situ, we were also able to fit the kinetic profiles with a system of coupled differential equations, eventually providing mechanistic information, reaction pathways, and rate constants on the radiolysis of ethylene ices and the inherent formation of smaller (C1) and more complex (C2, C4) hydrocarbons involving carbon-hydrogen bond ruptures, atomic hydrogen addition processes, and radical-radical recombination pathways. We also discuss the implications of these results on the hydrocarbon chemistry on Titan's surface and on ice-coated, methane-bearing interstellar grains as present in cold molecular clouds such as TMC-1.

  13. Photochemistry of 1 and 2-(2-methylphenyl)-1,6-heptadiene. [4a-methyl-1,2,3,4,4a,9,10,10a-octahydrophenanthrene

    SciTech Connect

    Barrows, R.D.; Hornback, J.M.

    1982-01-01

    In an attempt to synthesize partially saturated phenanthrene derivatives by an intramolecular Diels-Alder reaction between a photochemically produced o-xylylene (diene) and a tethered dienophile, it was found that 1 and 2 underwent a photochemically allowed (2 + 2) cycloaddition. Irradiation of 1 gave 6-(2-methylphenyl)bicyclo(3.2.0)heptane in 86% yield. Upon irradiation of 2, a benzvalene rearrangement of 2 first took place, producing the meta isomer 2-(3-methylphenyl)-1,6-heptadiene, followed by a (2 + 2) photocycloaddition giving 1-(3-methylphenyl)bicyclo(3.2.0)heptane in 15% yield. Direct irradiation of 2-(3-methylphenyl)-1,6-heptadiene gave the same bicyclo derivative as 2 in 34% yield. Examination of the fluorescence spectra of 1 and 2 in comparison with 1-(2-methylphenyl)propene and 2-(2-methylphenyl)-1-butene, respectively, has shown that 1 may be biased toward (2 + 2) cycloaddition where 2 is not biased toward (2 + 2) photocycloization. Attempts to produce 4a-methyl-1,2,3,4,4a,9,10,10a-octahydrophenanthrene by an intramolecular Diels-Alder reaction of the o-xylylene produced by irradiation of 3 will also be described.

  14. An extended hindered-rotor model with incorporation of Coriolis and vibrational-rotational coupling for calculating partition functions and derived quantities.

    PubMed

    Vansteenkiste, P; Van Neck, D; Van Speybroeck, V; Waroquier, M

    2006-01-28

    Large-amplitude motions, particularly internal rotations, are known to affect substantially thermodynamic functions and rate constants of reactions in which flexible molecules are involved. Up to now all methods for computing the partition functions of these motions rely on the Pitzer approximation of more than 50 years ago, in which the large-amplitude motion is treated in complete independence of the other (vibrational) degrees of freedom. In this paper an extended hindered-rotor model (EHR) is developed in which the vibrational modes, treated harmonically, are correctly separated from the large-amplitude motion and in which relaxation effects (the changes in the kinetic-energy matrix and potential curvature) are taken into account as one moves along the large-amplitude path. The model also relies on a specific coordinate system in which the Coriolis terms vanish at all times in the Hamiltonian. In this way an increased level of consistency between the various internal modes is achieved, as compared with the more usual hindered-rotor (HR) description. The method is illustrated by calculating the entropies and heat capacities on 1,3-butadiene and 1-butene (with, respectively, one and two internal rotors) and the rate constant for the addition reaction of a vinyl radical to ethene. We also discuss various variants of the one-dimensional hindered-rotor scheme existing in the literature and its relation with the EHR model. It is argued why in most cases the HR approach is already quite successful.

  15. Direct oxidation of hydrocarbons in a solid-oxide fuel cell

    PubMed

    Park; Vohs; Gorte

    2000-03-16

    The direct electrochemical oxidation of dry hydrocarbon fuels to generate electrical power has the potential to accelerate substantially the use of fuel cells in transportation and distributed-power applications. Most fuel-cell research has involved the use of hydrogen as the fuel, although the practical generation and storage of hydrogen remains an important technological hurdle. Methane has been successfully oxidized electrochemically, but the susceptibility to carbon formation from other hydrocarbons that may be present or poor power densities have prevented the application of this simple fuel in practical applications. Here we report the direct, electrochemical oxidation of various hydrocarbons (methane, ethane, 1-butene, n-butane and toluene) using a solid-oxide fuel cell at 973 and 1,073 K with a composite anode of copper and ceria (or samaria-doped ceria). We demonstrate that the final products of the oxidation are CO2 and water, and that reasonable power densities can be achieved. The observation that a solid-oxide fuel cell can be operated on dry hydrocarbons, including liquid fuels, without reforming, suggests that this type of fuel cell could provide an alternative to hydrogen-based fuel-cell technologies.

  16. Volatile hydrocarbon emissions from vehicles and vertical ventilations in the Hsuehshan traffic tunnel, Taiwan.

    PubMed

    Lai, Chia-Hsiang; Peng, Yen-Ping

    2012-07-01

    The concentrations of 56 volatile organic hydrocarbons (VOCs) were measured simultaneously in the southbound bore, the northbound bore and the exhaust air shafts of the Hsuehshan tunnel near Yilan, Taiwan during 2007 and 2008. A total of 60 integrated air samples were collected using stainless steel canisters and analyzed using GC/FID and GC/MS. The highest temperature and lowest relative humidity were observed at the exit of the tunnel owing to the accumulation in the tunnel of waste heat that was exhausted from vehicles. The five most abundant species in all samples were ethylene, acetylene, isopentane, propylene, and toluene. The exit/entrance ratios of total non-methane hydrocarbon (NMHC) concentration were 7.8 and 4.8 for the southbound and northbound bores, respectively. Furthermore, the most abundant species of emission rate (ER) is toluene (21.93-42.89 mg s(-1)), followed by isopentane, ethylene, propylene and 1-butene, with ER ranging from 2.50 to 9.31 mg s(-1) for the three shafts. The ozone formation potential (OFP)/total NMHC ratios in three exhaust air shafts show that the reactivities of these emissions are similar to those of vehicle emissions.

  17. Calculational and Experimental Investigations of the Pressure Effects on Radical - Radical Cross Combinations Reactions: C2H5 + C2H3

    NASA Technical Reports Server (NTRS)

    Fahr, Askar; Halpern, Joshua B.; Tardy, Dwight C.

    2007-01-01

    Pressure-dependent product yields have been experimentally determined for the cross-radical reaction C2H5 + C2H3. These results have been extended by calculations. It is shown that the chemically activated combination adduct, 1-C4H8*, is either stabilized by bimolecular collisions or subject to a variety of unimolecular reactions including cyclizations and decompositions. Therefore the "apparent" combination/disproportionation ratio exhibits a complex pressure dependence. The experimental studies were performed at 298 K and at selected pressures between about 4 Torr (0.5 kPa) and 760 Torr (101 kPa). Ethyl and vinyl radicals were simultaneously produced by 193 nm excimer laser photolysis of C2H5COC2H3 or photolysis of C2H3Br and C2H5COC2H5. Gas chromatograph/mass spectrometry/flame ionization detection (GC/MS/FID) were used to identify and quantify the final reaction products. The major combination reactions at pressures between 500 (66.5 kPa) and 760 Torr are (1c) C2H5 + C2H3 yields 1-butene, (2c) C2H5 + C2H5 yields n-butane, and (3c) C2H3 + C2H3 yields 1,3-butadiene. The major products of the disproportionation reactions are ethane, ethylene, and acetylene. At moderate and lower pressures, secondary products, including propene, propane, isobutene, 2-butene (cis and trans), 1-pentene, 1,4-pentadiene, and 1,5-hexadiene are also observed. Two isomers of C4H6, cyclobutene and/or 1,2-butadiene, were also among the likely products. The pressure-dependent yield of the cross-combination product, 1-butene, was compared to the yield of n-butane, the combination product of reaction (2c), which was found to be independent of pressure over the range of this study. The [ 1-C4H8]/[C4H10] ratio was reduced from approx.1.2 at 760 Torr (101 kPa) to approx.0.5 at 100 Torr (13.3 kPa) and approx.0.1 at pressures lower than about 5 Torr (approx.0.7 kPa). Electronic structure and RRKM calculations were used to simulate both unimolecular and bimolecular processes. The relative importance

  18. Polar organic marker compounds in atmospheric aerosols during the LBA-SMOCC 2002 biomass burning experiment in Rondônia, Brazil: sources and source processes, time series, diel variations and size distributions

    NASA Astrophysics Data System (ADS)

    Claeys, M.; Kourtchev, I.; Pashynska, V.; Vas, G.; Vermeylen, R.; Wang, W.; Cafmeyer, J.; Chi, X.; Artaxo, P.; Andreae, M. O.; Maenhaut, W.

    2010-04-01

    Measurements of polar organic marker compounds were performed on aerosols that were collected at a pasture site in the Amazon basin (Rondônia, Brazil) using a High-Volume dichotomous sampler (HVDS) and a Micro-Orifice Uniform Deposit Impactor (MOUDI). The samplings were conducted within the framework of the LBA-SMOCC (Large-Scale Biosphere Atmosphere Experiment in Amazônia - Smoke Aerosols, Clouds, Rainfall, and Climate: Aerosols From Biomass Burning Perturb Global and Regional Climate) campaign, which took place from 9 September till 14 November 2002, spanning the late dry season (biomass burning), the transition period, and the onset of the wet season (clean conditions). In the present study a more detailed discussion is presented compared to previous reports on the behavior of selected polar marker compounds, including: (a) levoglucosan, a tracer for biomass burning, (b) malic acid, a tracer for the oxidation of semivolatile carboxylic acids, (c) tracers for secondary organic aerosol (SOA) from isoprene, i.e., the 2-methyltetrols (2-methylthreitol and 2-methylerythritol) and the C5-alkene triols [2-methyl-1,3,4-trihydroxy-1-butene (cis and trans) and 3-methyl-2,3,4-trihydroxy-1-butene], and (d) sugar alcohols (arabitol, mannitol, and erythritol), tracers for fungal spores. The results obtained for levoglucosan are covered first with the aim to address its contrasting behavior with that of malic acid, the isoprene SOA tracers, and the fungal spore tracers. The tracer data are discussed taking into account new insights that recently became available into their stability and/or aerosol formation processes. During all three periods, levoglucosan was the most dominant identified organic species in the PM2.5 size fraction of the HVDS samples. In the dry period levoglucosan reached concentrations of up to 7.5 μg m-3 and exhibited diel variations with a nighttime prevalence. It was closely associated with the PM mass in the size-segregated samples and was mainly

  19. Controlling hydrogenation activity and selectivity of bimetallic surfaces and catalysts

    NASA Astrophysics Data System (ADS)

    Murillo, Luis E.

    Studies of bimetallic systems are of great interest in catalysis due to the novel properties that they often show in comparison with the parent metals. The goals of this dissertation are: (1) to expand the studies of self-hydrogenation and hydrogenation reactions on bimetallic surfaces under ultra high vacuum conditions (UHV) using different hydrocarbon as probe molecules; (2) to attempt to correlate the surface science findings with supported catalyst studies under more realistic conditions; and (3) to investigate the competitive hydrogenation of C=C versus C=O bonds on Pt(111) modified by different 3d transition metals. Hydrogenation studies using temperature programmed desorption (TPD) on Ni/Pt(111) bimetallic surfaces have demonstrated an enhancement in the low temperature hydrogenation activity relative to that of clean Pt(111). This novel hydrogenation pathway can be achieved under UHV conditions by controlling the structures of the bimetallic surfaces. A low temperature hydrogenation activity of 1-hexene and 1-butene has been observed on a Pt-Ni-Pt(111) subsurface structure, where Ni atoms are mainly present on the second layer of the Pt(111) single crystal. These results are in agreement with previous studies of self-hydrogenation and hydrogenation of cyclohexene. However, a much higher dehydrogenation activity is observed in the reaction of cyclohexene to produce benzene, demonstrating that the hydrocarbon structure has an effect on the reaction pathways. On the other hand, self-hydrogenation of 1-butene is not observed on the Pt-Ni-Pt(111) surface, indicating that the chain length (or molecular weight) has a significant effect on the selfhydrogenation activity. The gas phase reaction of cyclohexene on Ni/Pt supported on alumina catalysts has also shown a higher self-hydrogenation activity in comparison with the same reaction performed on supported monometallic catalysts. The effects of metal loading and impregnation sequence of the metal precursors are

  20. Energy barriers for the addition of H, *CH3, and *C2H5 to *CH2=CHX [X = H, CH3, OH] and for H-atom addition to RCH=O [R = H, CH3, *C2H5, n-C3H7]: implications for the gas-phase chemistry of enols.

    PubMed

    Simmie, John M; Curran, Henry J

    2009-07-09

    Although enols have been identified in alcohol and other flames and in interstellar space and have been implicated in the formation of carboxylic acids in the urban troposphere in the past few years, the reactions that give rise to them are virtually unknown. To address this data deficit, particularly with regard to biobutanol combustion, we have carried out a number of ab initio calculations with the multilevel methods CBS-QB3 and CBS-APNO to determine the activation enthalpies for methyl addition to the CH(2) group of CH(2)=CHX where X = H, OH, and CH(3). These average at 26.3 +/- 1.0 kJ mol(-1) and are not influenced by the nature of X; addition to the CHX end is energetically costlier and does show the influence of group X = OH and CH(3). Replacing the attacking methyl radical by ethyl makes very little difference to addition at CH(2) and follows the same trend of a higher barrier for addition to the CH(OH) end. In the case of H-addition it is more problematic to draw general conclusions since the DFT-based methodology, CBS-QB3, struggles to locate transition states for some reactions. However, the increase in barrier heights in reaction at the CHX end in comparison to addition at the methylene end is evident. For hydrogen atom reaction with the carbonyl group in the compounds methanal, ethanal, propanal, and butanal we see that for addition at the O-center the barrier heights of ca. 38 kJ mol(-1) are not influenced by the nature of the alkyl group whereas addition at the C-center is different on going from H --> alkyl but seems to be invariant at 20 kJ mol(-1) once alkylated. Rate constants for H-atom elimination from 1-hydroxyethyl, 1-hydroxypropyl, and 1-hydroxybutyl radicals, valid over the range 800-2000 K, are reported. These demonstrate that enols are more prevalent than previously suspected and that 1-buten-1-ol should be almost as abundant as its isomeric aldehyde 1-butanal during the combustion of 1-butanol and that this will also be the case for

  1. On-board measurements of gaseous pollutant emission characteristics under real driving conditions from light-duty diesel vehicles in Chinese cities.

    PubMed

    Wang, Gang; Cheng, Shuiyuan; Lang, Jianlei; Li, Song; Tian, Liang

    2016-08-01

    A total of 15 light-duty diesel vehicles (LDDVs) were tested with the goal of understanding the emission factors of real-world vehicles by conducting on-board emission measurements. The emission characteristics of hydrocarbons (HC) and nitrogen oxides (NOx) at different speeds, chemical species profiles and ozone formation potential (OFP) of volatile organic compounds (VOCs) emitted from diesel vehicles with different emission standards were analyzed. The results demonstrated that emission reductions of HC and NOx had been achieved as the control technology became more rigorous from Stage I to Stage IV. It was also found that the HC and NOx emissions and percentage of O2 dropped with the increase of speed, while the percentage of CO2 increased. The abundance of alkanes was significantly higher in diesel vehicle emissions, approximately accounting for 41.1%-45.2%, followed by aromatics and alkenes. The most abundant species were propene, ethane, n-decane, n-undecane, and n-dodecane. The maximum incremental reactivity (MIR) method was adopted to evaluate the contributions of individual VOCs to OFP. The results indicated that the largest contributors to O3 production were alkenes and aromatics, which accounted for 87.7%-91.5%. Propene, ethene, 1,2,4-trimethylbenzene, 1-butene, and 1,2,3-trimethylbenzene were the top five VOC species based on their OFP, and accounted for 54.0%-64.8% of the total OFP. The threshold dilution factor was applied to analyze the possibility of VOC stench pollution. The majority of stench components emitted from vehicle exhaust were aromatics, especially p-diethylbenzene, propylbenzene, m-ethyltoluene, and p-ethyltoluene.

  2. Cl atom initiated oxidation of 1-alkenes under atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Walavalkar, M.; Sharma, A.; Alwe, H. D.; Pushpa, K. K.; Dhanya, S.; Naik, P. D.; Bajaj, P. N.

    2013-03-01

    In view of the importance of the oxidation pathways of alkenes in the troposphere, and the significance of Cl atom as an oxidant in marine boundary layer (MBL) and polluted industrial atmosphere, the reactions of four 1-alkenes (C6-C9) with Cl atoms are investigated. The rate coefficients at 298 K are measured to be (4.0 ± 0.5), (4.4 ± 0.7), (5.5 ± 0.9) and (5.9 ± 1.7) × 10-10 cm3 molecule-1 s-1 for 1-hexene, 1-heptene, 1-octene and 1-nonene, respectively. The quoted errors include the experimental 2σ, along with the error in the reference rate coefficients. From the systematic increase in the rate coefficients with the number of carbon atoms, an approximate value for the average rate coefficient for hydrogen abstraction per CH2 group in alkenes is estimated to be (4.9 ± 0.3) × 10-11 cm3 molecule-1 s-1. Based on these rate coefficients, the contribution of Cl atom reactions towards the degradation of these molecules is found to be comparable to that of OH radical reactions, under MBL conditions. The products identified in gas phase indicate that Cl atom addition occurs mainly at the terminal carbon, leading to the formation of 1-chloro-2-ketones and 1-chloro-2-ols. The major gas phase products from the alkenyl radicals (formed by H atom abstraction) are different positional isomers of long chain enols and enones. A preference for dissociation leading to an allyl radical, resulting in aldehydes, lower by three carbon atoms, is indicated. The observed relative yields suggest that in general, the increased contribution of the reactions of Cl atoms towards degradation of 1-alkenes in NOx free air does not result in an increase in the generation of small aldehydes (carbon number < 4), including chloroethanal, as compared to that in the reaction of 1-butene.

  3. Chemical kinetic model uncertainty minimization through laminar flame speed measurements.

    PubMed

    Park, Okjoo; Veloo, Peter S; Sheen, David A; Tao, Yujie; Egolfopoulos, Fokion N; Wang, Hai

    2016-10-01

    Laminar flame speed measurements were carried for mixture of air with eight C3-4 hydrocarbons (propene, propane, 1,3-butadiene, 1-butene, 2-butene, iso-butene, n-butane, and iso-butane) at the room temperature and ambient pressure. Along with C1-2 hydrocarbon data reported in a recent study, the entire dataset was used to demonstrate how laminar flame speed data can be utilized to explore and minimize the uncertainties in a reaction model for foundation fuels. The USC Mech II kinetic model was chosen as a case study. The method of uncertainty minimization using polynomial chaos expansions (MUM-PCE) (D.A. Sheen and H. Wang, Combust. Flame 2011, 158, 2358-2374) was employed to constrain the model uncertainty for laminar flame speed predictions. Results demonstrate that a reaction model constrained only by the laminar flame speed values of methane/air flames notably reduces the uncertainty in the predictions of the laminar flame speeds of C3 and C4 alkanes, because the key chemical pathways of all of these flames are similar to each other. The uncertainty in model predictions for flames of unsaturated C3-4 hydrocarbons remain significant without considering fuel specific laminar flames speeds in the constraining target data set, because the secondary rate controlling reaction steps are different from those in the saturated alkanes. It is shown that the constraints provided by the laminar flame speeds of the foundation fuels could reduce notably the uncertainties in the predictions of laminar flame speeds of C4 alcohol/air mixtures. Furthermore, it is demonstrated that an accurate prediction of the laminar flame speed of a particular C4 alcohol/air mixture is better achieved through measurements for key molecular intermediates formed during the pyrolysis and oxidation of the parent fuel.

  4. Experimental and modeling study of the thermal decomposition of methyl decanoate

    PubMed Central

    Herbinet, Olivier; Glaude, Pierre-Alexandre; Warth, Valérie; Battin-Leclerc, Frédérique

    2013-01-01

    The experimental study of the thermal decomposition of methyl decanoate was performed in a jet-stirred reactor at temperatures ranging from 773 to 1123 K, at residence times between 1 and 4 s, at a pressure of 800 Torr (106.6 kPa) and at high dilution in helium (fuel inlet mole fraction of 0.0218). Species leaving the reactor were analyzed by gas chromatography. Main reaction products were hydrogen, carbon oxides, small hydrocarbons from C1 to C3, large 1-olefins from 1-butene to 1-nonene, and unsaturated esters with one double bond at the end of the alkyl chain from methyl-2-propenoate to methyl-8-nonenoate. At the highest temperatures, the formation of polyunsaturated species was observed: 1,3-butadiene, 1,3-cyclopentadiene, benzene, toluene, indene, and naphthalene. These results were compared with previous ones about the pyrolysis of n-dodecane, an n-alkane of similar size. The reactivity of both molecules was found to be very close. The alkane produces more olefins while the ester yields unsaturated oxygenated compounds. A detailed kinetic model for the thermal decomposition of methyl decanoate has been generated using the version of software EXGAS which was updated to take into account the specific chemistry involved in the oxidation of methyl esters. This model contains 324 species and 3231 reactions. It provided a very good prediction of the experimental data obtained in jet-stirred reactor. The formation of the major products was analyzed. The kinetic analysis showed that the retro-ene reactions of intermediate unsaturated methyl esters are of importance in low reactivity systems. PMID:23710078

  5. Catalytic oligomerization of ethylene to higher linear alpha-olefins promoted by the cationic group 4 [(eta 5-Cp-(CMe2-bridge)-Ph)MII(ethylene)2]+ (M = Ti, Zr, Hf) active catalysts: a density functional investigation of the influence of the metal on the catalytic activity and selectivity.

    PubMed

    Tobisch, Sven; Ziegler, Tom

    2004-07-28

    A detailed theoretical analysis is presented of the catalytic abilities of heavier group 4 (M = Zr, Hf) metals for linear ethylene oligomerization with the cationic [(eta(5)-C(5)H(4)-(CMe(2)-bridge)-C(6)H(5))M(IV)(CH(3))(2)](+) complex as precatalyst, employing a gradient-corrected DFT method. The parent Ti system has been reported as a highly selective catalyst for ethylene trimerization. The mechanism involving metallacycle intermediates, originally proposed by Briggs and Jolly, has been supported by the present study to be operative for the investigated class of group 4 catalysts. Metallacycle growth through bimolecular ethylene uptake and subsequent insertion is likely to occur at uniform rates for larger cycles that are furthermore comparable for Ti, Zr, and Hf catalysts. Ethylene insertion into the two smallest five- and seven-membered cycles is found to become accelerated for Zr and Hf catalysts, which is due to geometrical factors. In contrast, electronic effects act to raise the barrier for metallacycle decomposition, affording alpha-olefins upon descending group 4. This process is furthermore predicted to be kinetically more difficult for larger metallacycles. The oligomer distribution of the Zr-mediated reaction is likely to comprise predominantly 1-hexene together with 1-octene, while 1-butene and alpha-olefins of chain lengths C(10)-C(18) should occur only in negligible portions. A similar composition of alpha-olefins having C(6)-C(18) chain lengths is indicated for the Hf catalysts, but with long-chain oligomers and polymers as the prevalent fraction. Between the group 4 catalysts of the investigated type, the Zr system appears as the most promising candidate having catalytic potential for production of 1-octene, although not selectively. The influence of temperature to modulate the oligomer product composition has been evaluated.

  6. SmoXYB1C1Z of Mycobacterium sp. Strain NBB4: a Soluble Methane Monooxygenase (sMMO)-Like Enzyme, Active on C2 to C4 Alkanes and Alkenes

    PubMed Central

    Martin, Kiri E.; Ozsvar, Jazmin

    2014-01-01

    Monooxygenase (MO) enzymes initiate the aerobic oxidation of alkanes and alkenes in bacteria. A cluster of MO genes (smoXYB1C1Z) of thus-far-unknown function was found previously in the genomes of two Mycobacterium strains (NBB3 and NBB4) which grow on hydrocarbons. The predicted Smo enzymes have only moderate amino acid identity (30 to 60%) to their closest homologs, the soluble methane and butane MOs (sMMO and sBMO), and the smo gene cluster has a different organization from those of sMMO and sBMO. The smoXYB1C1Z genes of NBB4 were cloned into pMycoFos to make pSmo, which was transformed into Mycobacterium smegmatis mc2-155. Cells of mc2-155(pSmo) metabolized C2 to C4 alkanes, alkenes, and chlorinated hydrocarbons. The activities of mc2-155(pSmo) cells were 0.94, 0.57, 0.12, and 0.04 nmol/min/mg of protein with ethene, ethane, propane, and butane as substrates, respectively. The mc2-155(pSmo) cells made epoxides from ethene, propene, and 1-butene, confirming that Smo was an oxygenase. Epoxides were not produced from larger alkenes (1-octene and styrene). Vinyl chloride and 1,2-dichloroethane were biodegraded by cells expressing Smo, with production of inorganic chloride. This study shows that Smo is a functional oxygenase which is active against small hydrocarbons. M. smegmatis mc2-155(pSmo) provides a new model for studying sMMO-like monooxygenases. PMID:25015887

  7. Cytotoxic evaluation of volatile oil from Descurainia sophia seeds on MCF-7 and HeLa cell lines

    PubMed Central

    Khodarahmi, E.; Asghari, G.H.; Hassanzadeh, F.; Mirian, M.; Khodarahmi, G.A.

    2015-01-01

    Descurainia sophia is a plant widely distributed and used as folk medicine throughout the world. Different extracts of aerial parts and seeds of this plant have been shown to inhibit the growth of different cancer cell lines in vitro. In this study, cytotoxic activity of D. sophia seed volatile oil was evaluated. D. sophia seed powder was mixed with distilled water and left at 25 °C for 17 h (E1), 23 h (E2) and 28 h (E3) to autolyse. Then, the volatile fractions of E1, E2, and E3 were collected after steam distillation for 3 h. Cytotoxic effects of the volatile oils alone or in combination with doxorubicin (mixture of E1 or E2 at 50 μg/ml or E1 at 100 μg/ml with doxorubicin at 0.1, 1, 10 μM) against MCF-7 cell line were determined using MTT assay. Cytotoxic effect of E1 volatile oil was also determined on HeLa cell line. The results indicated that 1-buten-4-isothiocyanate was the major isothiocyanate found in the volatile oils. The results of cytotoxic evaluations showed that volatile constituents were more toxic on MCF-7 cells with IC50< 100 μg/ml than HeLa cells with IC50> 100 μg/ml. No significant differences were observed between cytotoxic activities of E1, E2 and E3 on MCF-7 cell line. Concomitant use of E1 and E2 (50 μg/ml) with doxurubicin (1 μM) significantly reduced the viability of MCF-7 cells compared to the negative control, doxorubicin alone, or each volatile fraction. The same result was obtained on HeLa cells, when E1 (100 μg/ml) was concurrently used with doxorubicin (1 μM). PMID:26487894

  8. PANs measurements on board theNOAA P-3 during TexAQS-II

    NASA Astrophysics Data System (ADS)

    Zheng, W.; Flocke, F. M.; Ryerson, T. B.; Trainer, M. K.; Atlas, E. L.; Schauffler, S.; Donnelly, S.; Holloway, J. S.

    2007-12-01

    Measurements of peroxycarboxylic nitric anhydrides (PANs, i.e. PAN, PPN, PiBN, APAN, MPAN, and MoPAN) were made using the NCAR PAN-CIGARette chemical ionization mass spectrometer on board the NOAA P-3 aircraft during the 2006 Texas Air Quality Study II (TexAQS-II). In this poster, we present the PANs measurements made during the flight on September 27th as a case study. Two separate plumes from Downtown Houston and the Houston Ship Channel were transported in parallel to the north on that day. The flight track crossed these plumes 8 times at increasing distances downwind, and according to the CO distribution, dilution with surrounding air masses was very slow. These conditions make this very nice case for a pollutant transport and chemistry study. The PAN/PPN ratio increased about 18% as the air mass moved away from the pollution source to the furthest leg which is about 130 km north of downtown Houston. As the photolysis rates for PAN and PPN are similar to each other and the thermal decomposition of PAN is faster than PPN, this ratio change is most likely owing to the difference in the chemistry of the source hydrocarbons for these two PAN species, and indicates a faster depletion of PPN precursors (mainly propanal and 1-butene) as the air masses get older. Also, the relative production of ozone and PANs for the Houston city plume and the ship channel plume are analyzed and compared for this flight, demonstrating the difference in the photochemical processes for urban pollution vs. petroleum industry emissions.

  9. High throughput HPLC-ESI(-)-MS/MS methodology for mercapturic acid metabolites of 1,3-butadiene: Biomarkers of exposure and bioactivation.

    PubMed

    Kotapati, Srikanth; Esades, Amanda; Matter, Brock; Le, Chap; Tretyakova, Natalia

    2015-11-05

    1,3-Butadiene (BD) is an important industrial and environmental carcinogen present in cigarette smoke, automobile exhaust, and urban air. The major urinary metabolites of BD in humans are 2-(N-acetyl-L-cystein-S-yl)-1-hydroxybut-3-ene/1-(N-acetyl-L-cystein-S-yl)-2-hydroxybut-3-ene (MHBMA), 4-(N-acetyl-L-cystein-S-yl)-1,2-dihydroxybutane (DHBMA), and 4-(N-acetyl-L-cystein-S-yl)-1,2,3-trihydroxybutyl mercapturic acid (THBMA), which are formed from the electrophilic metabolites of BD, 3,4-epoxy-1-butene (EB), hydroxymethyl vinyl ketone (HMVK), and 3,4-epoxy-1,2-diol (EBD), respectively. In the present work, a sensitive high-throughput HPLC-ESI(-)-MS/MS method was developed for simultaneous quantification of MHBMA and DHBMA in small volumes of human urine (200 μl). The method employs a 96 well Oasis HLB SPE enrichment step, followed by isotope dilution HPLC-ESI(-)-MS/MS analysis on a triple quadrupole mass spectrometer. The validated method was used to quantify MHBMA and DHBMA in urine of workers from a BD monomer and styrene-butadiene rubber production facility (40 controls and 32 occupationally exposed to BD). Urinary THBMA concentrations were also determined in the same samples. The concentrations of all three BD-mercapturic acids and the metabolic ratio (MHBMA/(MHBMA+DHBMA+THBMA)) were significantly higher in the occupationally exposed group as compared to controls and correlated with BD exposure, with each other, and with BD-hemoglobin biomarkers. This improved high throughput methodology for MHBMA and DHBMA will be useful for future epidemiological studies in smokers and occupationally exposed workers.

  10. Bis-butanediol-mercapturic acid (bis-BDMA) as a urinary biomarker of metabolic activation of butadiene to its ultimate carcinogenic species.

    PubMed

    Kotapati, Srikanth; Sangaraju, Dewakar; Esades, Amanda; Hallberg, Lance; Walker, Vernon E; Swenberg, James A; Tretyakova, Natalia Y

    2014-06-01

    Human carcinogen 1,3-butadiene (BD) undergoes metabolic activation to 3,4-epoxy-1-butene (EB), hydroxymethylvinyl ketone (HMVK), 3,4-epoxy-1,2-butanediol (EBD) and 1,2,3,4-diepoxybutane (DEB). Among these, DEB is by far the most genotoxic metabolite and is considered the ultimate carcinogenic species of BD. We have shown previously that BD-exposed laboratory mice form 8- to 10-fold more DEB-DNA adducts than rats exposed at the same conditions, which may be responsible for the enhanced sensitivity of mice to BD-mediated cancer. In the present study, we have identified 1,4-bis-(N-acetyl-L-cystein-S-yl)butane-2,3-diol (bis-BDMA) as a novel DEB-specific urinary biomarker. Isotope dilution high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry was employed to quantify bis-BDMA and three other BD-mercapturic acids, 2-(N-acetyl-L-cystein-S-yl)-1-hydroxybut-3-ene/1-(N-acetyl-L-cystein-S-yl)-2-hydroxy-but-3-ene (MHBMA, from EB), 4-(N-acetyl-L-cystein-S-yl)-1,2-dihydroxybutane (DHBMA, from HMVK) and 4-(N-acetyl-L-cystein-S-yl)-1,2,3-trihydroxybutane (THBMA, from EBD), in urine of confirmed smokers, occupationally exposed workers and BD-exposed laboratory rats. Bis-BDMA was formed in a dose-dependent manner in urine of rats exposed to 0-200 p.p.m. BD by inhalation, although it was a minor metabolite (1%) as compared with DHBMA (47%) and THBMA (37%). In humans, DHBMA was the most abundant BD-mercapturic acid excreted (93%), followed by THBMA (5%) and MHBMA (2%), whereas no bis-BDMA was detected. These results reveal significant differences in metabolism of BD between rats and humans.

  11. The adsorption of 1,3-butadiene on Pd/Ni multilayers: The interplay between spin polarization and chemisorption strength

    SciTech Connect

    Gomez, Guillermina; Belelli, Patricia G.; Cabeza, Gabriela F.; Castellani, Norberto J.

    2010-12-15

    The adsorption of 1,3-butadiene (BD) on the Pd/Ni(1 1 1) multilayers has been studied using the VASP method in the framework of the density functional theory (DFT). The adsorption on two different configurations of the Pd{sub n}/Ni{sub m}(1 1 1) systems were considered. The most stable adsorption sites are dependent on the substrate composition and on the inclusion or not of spin polarization. On Pd{sub 1}Ni{sub 3}(1 1 1) surface, di-{pi}-cis and 1,2,3,4-tetra-{sigma} adsorption structures are the most stable for non-spin polarized (NSP) and spin polarized (SP) levels of calculation, respectively. Conversely, on Pd{sub 3}Ni{sub 1}(1 1 1) surface, the 1,2,3,4-tetra-{sigma} adsorption structure is the most stable for both NSP and SP levels, respectively. The magnetization of the Pd atoms strongly modifies the adsorption energy of BD and its most stable adsorption mode. On the other hand, as a consequence of BD adsorption, the Pd magnetization decreases. The smaller adsorption energies of BD and 1-butene on the Pd{sub 1}Ni{sub 3}(1 1 1) surface than on Pd(1 1 1) can be associated to the strained Pd overlayer deposited on Ni(1 1 1). -- Graphical Abstract: The adsorption of 1,3-butadiene on Pd/Ni(1 1 1) multilayers was theoretically studied. The most stable adsorption site depends on the substrate composition and on the inclusion of spin polarization. Display Omitted

  12. SmoXYB1C1Z of Mycobacterium sp. strain NBB4: a soluble methane monooxygenase (sMMO)-like enzyme, active on C2 to C4 alkanes and alkenes.

    PubMed

    Martin, Kiri E; Ozsvar, Jazmin; Coleman, Nicholas V

    2014-09-01

    Monooxygenase (MO) enzymes initiate the aerobic oxidation of alkanes and alkenes in bacteria. A cluster of MO genes (smoXYB1C1Z) of thus-far-unknown function was found previously in the genomes of two Mycobacterium strains (NBB3 and NBB4) which grow on hydrocarbons. The predicted Smo enzymes have only moderate amino acid identity (30 to 60%) to their closest homologs, the soluble methane and butane MOs (sMMO and sBMO), and the smo gene cluster has a different organization from those of sMMO and sBMO. The smoXYB1C1Z genes of NBB4 were cloned into pMycoFos to make pSmo, which was transformed into Mycobacterium smegmatis mc(2)-155. Cells of mc(2)-155(pSmo) metabolized C2 to C4 alkanes, alkenes, and chlorinated hydrocarbons. The activities of mc(2)-155(pSmo) cells were 0.94, 0.57, 0.12, and 0.04 nmol/min/mg of protein with ethene, ethane, propane, and butane as substrates, respectively. The mc(2)-155(pSmo) cells made epoxides from ethene, propene, and 1-butene, confirming that Smo was an oxygenase. Epoxides were not produced from larger alkenes (1-octene and styrene). Vinyl chloride and 1,2-dichloroethane were biodegraded by cells expressing Smo, with production of inorganic chloride. This study shows that Smo is a functional oxygenase which is active against small hydrocarbons. M. smegmatis mc(2)-155(pSmo) provides a new model for studying sMMO-like monooxygenases.

  13. Competitive Low Pressure Oxygen Plasma Interactions with Different= Carbon-Carbon Double Bonds

    NASA Astrophysics Data System (ADS)

    Patiño, P.; Sifontes, A.; Gambús, G.

    1999-10-01

    Recently we have shown advances from reactions of O(^3P) with both, l ong-chain hydrocarbons and refinery residuum. The oxidation products of t he process, a mixture of alcohols, epoxides and carbonyl compounds, might have potential properties as additives in formulating fuels. This work s hows the results of the interactions of an oxygen plasma with double bond s, both olefin and aromatic, in the same compound. The reactions have bee n carried out by making the plasma, created by a high voltage glow discha rge, reach the low vapor pressure surface of liquid 4-phenyl-1-butene. Th is (3 mL) was cooled down to -45 ^oC in a glass reactor, applied power was 24 W, at an oxygen pressure of 20 Pa. Products were analyzed by IR, N MR and mass spectroscopies. Conversions were studied as a function of the reaction time, this ranging from 5 to 120 minutes. At short times the O( ^3P) atoms produced in the discharge only reacted with the alkene fra ction of the hydrocarbon, 4-phenyl-1,2-epoxibutane (52%) and 4-phenyl-bu tanal (48%) being the products. Reactions on the benzene ring were obser ved from about 30 minutes on, the corresponding phenols having being prod uced at ratios ortho:para:meta :: 4:1:0.7. At 120 minutes, the ol efin have been completely oxidized and a low fraction of the non-equivale nt two methylene groups have reacted to produce alcohols and ketones.

  14. Photochemical cycloaddition reactions of cyanoacetylene and dicyanoacetylene

    NASA Technical Reports Server (NTRS)

    Ferris, J. P.; Guillemin, J. C.

    1990-01-01

    Photolysis of cyanoacetylene with 185- or 206-nm light yields 1,3,5-tricyanobenzene while 254-nm radiation yields a mixture of tetracyanocyclooctatetraenes, 1,2,4- and 1,3,5-tricyanobenzene. A polymer of cyanoacetylene is the major photoproduct. 1,3,5-Tricarbomethoxybenzene was the only photoproduct identified from the irradiation of methyl propiolate at 254 nm. Mono-, di-, and tricyanobenzenes are formed by irradiation of mixtures of acetylene and cyanoacetylene at 185, 206, and 254 nm along with trace amounts of cyclooctatetraenes. No photoadducts were detected on photolysis of mixtures of cyanoacetylene and CO or HCN. The tetracyanocyclooctatetraene structures were established by UV, MS, and NMR analyses. The 1H NMR of the product mixture exhibited a singlet at delta 7.028 consistent with either 1 or 2 and two singlets at delta 6.85 and 6.91 assigned to 3. Photolysis of mixtures of dicyanoacetylene and acetylene with either 185- or 206-nm light yielded 1,2-dicyanobenzene and (E,Z)-1-buten-3-yne-1,4-dicarbonitrile. These products were also obtained using 254-nm light along with a mixture of tetracyanocyclooctatetraenes. The same three singlets were observed in this product mixture as were observed in the tetracyanocyclooctatetraenes obtained from cyanoacetylene. From this observation it was concluded that the delta 7.02 signal is due to 2 and not 1. The photolysis of cyanoacetylene and dicyanoacetylene in the presence of ethylene with 185-nm light yields 1-cyanocylobutene and 1,2-dicyanocyclobutene, respectively. 2-Cyanobutadiene and 2,3-dicyanobutadiene are the photoproducts with 254-nm light. Reaction pathways are proposed to explain these findings.

  15. Final report on EURAMET.QM-S6/1195: Bilateral comparison of liquefied hydrocarbon mixtures in constant pressure (piston) cylinders

    NASA Astrophysics Data System (ADS)

    Brown, Andrew S.; Downey, Michael L.; Milton, Martin J. T.; van der Veen, Adriaan M. H.; Zalewska, Ewelina T.; Li, Jianrong

    2013-01-01

    Traceable liquid hydrocarbon mixtures are required in order to underpin measurements of the composition and other physical properties of LPG (liquefied petroleum gas) and LNG (liquefied natural gas), thus meeting the needs of an increasingly large European industrial market. The development of traceable liquid hydrocarbon standards by National Measurement Institutes (NMIs) was still at a relatively early stage at the time this comparison was proposed in 2011. NPL and VSL, who were the only NMIs active in this area, had developed methods for the preparation and analysis of such standards in constant pressure (piston) cylinders, but neither laboratory had Calibration and Measurement Capabilities (CMCs) for these mixtures. This report presents the results of EURAMET 1195, the first comparison of liquid hydrocarbon mixtures between NMIs, which assessed the preparation and analytical capabilities of NPL and VSL for these mixtures. The comparison operated between August 2011 and January 2012. Each laboratory prepared a liquid hydrocarbon standard with nominally the same composition and these standards were exchanged for analysis. The results of the comparison show a good agreement between the laboratories' results and the comparison reference values for the six components with amount fractions greater than 1.0 cmol/mol (propane, propene, iso-butene, n-butane, iso-butane and 1-butene). Measurement of the three components with lower amount fractions (1,3-butadiene, iso-pentane and n-pentane) proved more challenging. In all but one case, the differences from the comparison reference values for these three components were greater than the expanded measurement uncertainty. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by EURAMET, according to the provisions of the CIPM Mutual

  16. Gas-phase chemistry of bare and oxo-ligated protactinium ions: a contribution to a systematic understanding of actinide chemistry.

    PubMed

    Gibson, John K; Haire, Richard G

    2002-11-04

    Gas-phase chemistry of bare and oxo-ligated protactinium ions has been studied for the first time. Comparisons were made with thorium, uranium, and neptunium ion chemistry to further the systematic understanding of 5f elements. The rates of oxidation of Pa(+) and PaO(+) by ethylene oxide compared with those of the homologous uranium ions indicate that the first and second bond dissociation energies, BDE[Pa(+)-O] and BDE[OPa(+)-O], are approximately 800 kJ mol(-1). The relatively facile fluorination of Pa(+) to PaF(4)(+) by SF(6) is consistent with the high stability of the pentavalent oxidation state of Pa. Reactions with ethene, propene, 1-butene, and iso-butene revealed that Pa(+) is a very reactive metal ion. In analogy with U(+) chemistry, ethene was trimerized by Pa(+) to give PaC(6)H(6)(+). Reactions of Pa(+) with larger alkenes resulted in secondary and tertiary products not observed for U(+) or Np(+). The bare protactinium ion is significantly more reactive with organic substrates than are heavier actinide ions. The greatest difference between Pa and heavier actinide congeners was the exceptional dehydrogenation activity of PaO(+) with alkenes; UO(+) and NpO(+) were comparatively inert. The striking reactivity of PaO(+) is attributed to the distinctive electronic structure at the metal center in this oxide, which is considered to reflect the greater availability of the 5f electrons for participation in bonding, either directly or by promotion/hybridization with higher-energy valence orbitals.

  17. Inhibition and Promotion of Pyrolysis by Hydrogen Sulfide (H2S) and Sulfanyl Radical (SH).

    PubMed

    Zeng, Zhe; Altarawneh, Mohammednoor; Oluwoye, Ibukun; Glarborg, Peter; Dlugogorski, Bogdan Z

    2016-11-17

    This study resolves the interaction of sulfanyl radical (SH) with aliphatic (C1-C4) hydrocarbons, using CBS-QB3 based calculations. We obtained the C-H dissociation enthalpies and located the weakest link in each hydrocarbon. Subsequent computations revealed that, H abstraction by SH from the weakest C-H sites in alkenes and alkynes, except for ethylene, appears noticeably exothermic. Furthermore, abstraction of H from propene, 1-butene, and iso-butene displays pronounced spontaneity (i.e., ΔrG° < -20 kJ mol(-1) between 300-1200 K) due to the relatively weak allylic hydrogen bond. However, an alkyl radical readily abstracts H atom from H2S, with H2S acting as a potent scavenger for alkyl radicals in combustion processes. That is, these reactions proceed in the opposite direction than those involving SH and alkene or alkyne species, exhibiting shallow barriers and strong spontaneity. Our findings demonstrate that the documented inhibition effect of hydrogen sulfide (H2S) on pyrolysis of alkanes does not apply to alkenes and alkynes. During interaction with hydrocarbons, the inhibitive effect of H2S and promoting interaction of SH radical depend on the reversibility of the H abstraction processes. For the three groups of hydrocarbon, Evans-Polanyi plots display linear correlations between the bond dissociation enthalpies of the abstracted hydrogens and the relevant activation energies. In the case of methane, we demonstrated that the reactivity of SH radicals toward abstracting H atoms exceeds that of HO2 but falls below those of OH and NH2 radicals.

  18. Electron Attachment to Pentafluorobenzene, to Oxygen in a Mixture of 90% Argon and 10% Methane, and to Oxygen in Various Polar/nitrogen Mixtures.

    NASA Astrophysics Data System (ADS)

    Metcalfe, Clive, III

    By means of electron swarm experiments, electron attachment to pentafluorobenzene (C(,6)HF(,5)) in nitrogen (N(,2)) and to oxygen (O(,2)) in various gas mixtures has been studied. The variation of the electron attachment rate for C(,6)HF(,5) in N(,2) with the gas pressure and with the mean electron energy was determined. The lifetime of the species C(,6)HF(,5)('-*) against autoionization was deduced and the electron attachment cross section for C(,6)HF(,5) was calculated. The influence of the permanent electric dipole of C(,6)HF(,5) upon the electron attachment process is discussed. Electron attachment to O(,2) in P-10 (90% argon + 10% methane) and in mixtures of various polar molecules with N(,2) was investigated. As a preliminary to these studies electron drift velocities in P-10 and in the various mixtures of polar species with N(,2) were determined. These drift velocities are reported and discussed. The variation of the electron attachment rate for O(,2) in P-10 with the P-10 pressure and the mean electron energy was determined. The attachment rate as a function of mean electron energy was found to possess distinct structure. Models which account for this structure and for the variation of the attachment rate with the P-10 pressure are advanced and the corresponding reaction rate constants are presented. The electron attachment rates for O(,2) in mixtures of N(,2) with 1-butene, dimethyl amine, ammonia, trifluoromethane, and acetaldehyde were measured. Models of the variation of the attachment rate with the concentration of the polar species are advanced and the corresponding reaction rate constants are presented.

  19. Quantitative analysis of trihydroxybutyl mercapturic acid, a urinary metabolite of 1, 3-butadiene, in humans

    PubMed Central

    Kotapati, Srikanth; Matter, Brock A.; Grant, Amy L.; Tretyakova, Natalia Y.

    2011-01-01

    1,3-butadiene (BD)* is a known human carcinogen present in cigarette smoke and in automobile exhaust, leading to widespread exposure of human populations. BD requires cytochrome P450-mediated metabolic activation to electrophilic species, e.g. 3,4-epoxy-1-butene (EB), hydroxymethylvinylketone (HMVK), and 3,4-epoxy-1,2-diol (EBD), which form covalent adducts with DNA. EB, HMVK, and EBD can be conjugated with glutathione and ultimately excreted in urine as monohydroxybutenyl mercapturic acid (MHBMA), dihydroxybutyl mercapturic acid (DHBMA), and trihydroxybutyl mercapturic acid (THBMA), respectively, which can serve as biomarkers of BD exposure and metabolic processing. While MHBMA and DHBMA have been found in smokers and non-smokers, THBMA has not been previously detected in humans. In the present work, an isotope dilution HPLC-ESI−-MS/MS methodology was developed and employed to quantify THBMA in urine of known smokers and non-smokers (19–27 per group). The new method has excellent sensitivity (LOQ, 1 ng/mL urine) and achieves accurate quantitation using a small sample volume (100 µl). Mean urinary THBMA concentrations in smokers and non-smokers were found to be 21.6 and 13.7 ng/mg creatinine, respectively, suggesting that there are sources of THBMA other than exposure to tobacco smoke in humans, as is also the case for DHBMA. However, THBMA concentrations are significantly greater in urine of smokers than that of non-smokers (p < 0.01). Furthermore, THBMA amounts in human urine declined 25–50 % following smoking cessation, suggesting that smoking is an important source of this metabolite in humans. The HPLC-ESI−-MS/MS methodology developed in the present work will be useful for future epidemiological studies of BD exposure and metabolism. PMID:21749114

  20. Polar organic marker compounds in atmospheric aerosols: Determination, time series, size distributions and sources

    NASA Astrophysics Data System (ADS)

    Kourtchev, Ivan

    Terrestrial vegetation releases substantial amounts of reactive volatile organic compounds (VOCs; e.g., isoprene, monoterpenes) into the atmosphere. The VOCs can be rapidly photooxidized under conditions of high solar radiation, yielding products that can participate in new particle formation and growth processes above forests. This thesis focuses on the characterization, identification and quantification of oxidation products of biogenic VOC (BVOCs) as well as other species (tracer compounds) that provide information on aerosol sources and source processes. Atmospheric aerosols from various forested sites (i.e., Hyytiala, southern Finland; Rondonia, Brazil; K-Puszta, Hungary and Julich, Germany) were analyzed with Gas Chromotography/Mass Spectrometry (GC/MS) using analytical procedure that targets polar organic compounds. The study demonstrated that isoprene (i.e., 2-methyerythritol, 2-methylthreitol, 2-methylglyceric acid and C5-alkene triols (2-methyl-1,3,4-trihydroxy-l-butene (cis and trans) and 3 methyl-2,3,4-trihydroxy-1-butene)) and monoterpene (pinic acid, norpinic acid, 3-hydroxyglutaric acid and 3-methyl-1,2,3-butanetricarboxylic acid) oxidation products were present in substantial concentrations in atmospheric aerosols suggesting that oxidation of BVOC from the vegetation is an important process in all studied sites. On the other hand, presence of levoglucosan, biomass burning marker, especially in Amazonian rain forest site at Rondonia, Brazil, pointed that all sites were affected by anthropogenic activities, namely biomass burning. Other identified compounds included plyols, arabitol, mannitol and erythritol, which are marker compounds for fungal spores and monosacharides, glucose and fructose, markers for plant polens. Temporal variations as well as mass size distributions of the detected species confirmed the possible formation mechanisms of marker compounds.

  1. Yttrium-Assisted C-H and C-C Bond Activation of Ethylene Probed by Mass-Analyzed Threshold Ionization Spectroscopy

    NASA Astrophysics Data System (ADS)

    Kim, Jong Hyun; Yang, Dong-Sheng

    2016-06-01

    The reaction between Y atom and ethylene (CH2=CH2) was performed in a laser-ablation supersonic molecular beam source. Y(C2H2), Y(C2H4), and Y(C4H6) were observed by time-of-flight mass spectrometry and investigated with mass-analyzed threshold ionization (MATI) spectroscopy and theoretical calculations. Y(C2H2) is formed by hydrogen elimination, Y(C2H4) by simple association, and La(C4H6) by C-C bond coupling and dehydrogenation. Both Y(C2H2) and Y(C2H4) have a C2v triangular structure with a C=C double bond in Y(C2H2) and a C-C single bond in Y(C2H4). Y(C4H6) has a five-membered metallacyclic structure (Cs) with Y binding to the two terminal carbon atoms of butene, which is the exactly same as that of Y(C4H6) formed in the Y + 1-butene reaction. For all three complexes, ionization has a small effect on the metal-carbon bond lengths because the rejected electron has basically a Y 5s character. The adiabatic ionization energies are measured to be 45679(5) wn for Y(C2H2), 45603(5) wn for Y(C2H4) and 43475(5) wn for Y(C4H6). The metal-ligand stretching frequencies of the three complexes are also measured from the MATI spectra.

  2. Characteristics of volatile organic compounds (VOCs) emitted from a petroleum refinery in Beijing, China

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Cheng, Shuiyuan; Li, Guohao; Wang, Gang; Wang, Haiyan

    2014-06-01

    This study made a field VOCs (volatile organic compounds) measurement for a petroleum refinery in Beijing by determining 56 PAMS VOCs, which are demanded for photochemical assessment in US, and obtained the characteristics of VOCs emitted from the whole refinery and from its inner main devices. During the monitoring period, this refinery brought about an average increase of 61 ppbv in the ambient TVOCs (sum of the PAMS VOCs) at the refinery surrounding area, while the background of TVOCs there was only 10-30 ppbv. In chemical profile, the VOCs emitted from the whole refinery was characteristic by isobutane (8.7%), n-butane (7.9%), isopentane (6.3%), n-pentane (4.9%%), n-hexane (7.6%), C6 branched alkanes (6.0%), propene (12.7%), 1-butene (4.1%), benzene (7.8%), and toluene (5.9%). On the other hand, the measurement for the inner 5 devices, catalytic cracking units (CCU2 and CCU3), catalytic reforming unit (CRU), tank farm (TF), and wastewater treatment(WT), revealed the higher level of VOCs pollutions (about several hundred ppbv of TVOCs), and the individual differences in VOCs chemical profiles. Based on the measured speciated VOCs data at the surrounding downwind area, PMF receptor model was applied to identify the VOCs sources in the refinery. Then, coupling with the VOCs chemical profiles measured at the device areas, we concluded that CCU1/3 contributes to 25.9% of the TVOCs at the surrounding downwind area by volume, followed by CCU2 (24.7%), CRU (18.9%), TF (18.3%) and WT (12.0%), which was accordant with the research of US EPA (2008). Finally, ozone formation potentials of the 5 devices were also calculated by MIR technique, which showed that catalytic cracking units, accounting for about 55.6% to photochemical ozone formation, should be given the consideration of VOCs control firstly.

  3. Are styrene oligomers in coastal sediments of an industrial area aryl hydrocarbon-receptor agonists?

    PubMed

    Hong, Seongjin; Lee, Junghyun; Lee, Changkeun; Yoon, Seo Joon; Jeon, Seungyeon; Kwon, Bong-Oh; Lee, Jong-Hyeon; Giesy, John P; Khim, Jong Seong

    2016-06-01

    Effect-directed analysis (EDA) was performed to identify the major aryl hydrocarbon receptor (AhR) agonists in sediments collected from a highly industrialized area (Lake Shihwa, Korea). Great AhR-mediated potencies were found in fractions containing aromatic compounds with log Kow values of 5-8, and relatively great concentrations of styrene oligomers (SOs) and polycyclic aromatic hydrocarbons (PAHs) were detected in those fractions. Until now, there was little information on occurrences and toxic relative potencies (RePs) of SOs in coastal environments. In the present study; i) distributions and compositions, ii) AhR binding affinities, and iii) contributions of SOs to total AhR-mediated potencies were determined in coastal sediments. Elevated concentrations of 10 SOs were detected in sediments of inland creeks ranging from 61 to 740 ng g(-1) dry mass (dm), while lesser concentrations were found in inner (mean = 33 ng g(-1) dm) and outer regions (mean = 25 ng g(-1) dm) of the lake. Concentrations of PAHs in sediments were comparable to those of SOs. 2,4-diphenyl-1-butene (SD3) was the predominant SO analogue in sediments. SOs and PAHs were accumulated in sediments near sources, and could not be transported to remote regions due to their hydrophobicity. RePs of 3 SOs could be derived, which were 1000- to 10,000-fold less than that of one representative potent AhR active PAH, benzo[a]pyrene. Although concentrations of SOs in sediments were comparable to those of PAHs, the collective contribution of SOs to total AhR-mediated potencies were rather small (<1%), primarily due to their smaller RePs. Overall, the present study provides information on distributions and AhR binding affinities for SOs as baseline data for degradation products of polystyrene plastic in the coastal environment.

  4. Chemical dynamics in time and energy space

    SciTech Connect

    Myers, James Douglas

    1993-04-01

    The development of a versatile picosecond ultraviolet/vacuum ultraviolet temporal spectrometer and its potential use for measuring internal energy redistribution in isolated molecules are described in detail. A detailed description of the double-pass Nd:YAG amplifier and the dye amplifiers is given with the pulse energies achieved in the visible, ultraviolet, and vacuum ultraviolet. The amplified visible pulses are shown to be of sub-picosecond duration and near transform limited. The instrument`s temporal response (≤10 ps) is derived from an instrument limited measurement of the dissociation lifetime of methyl iodide at 266 nm. The methyl iodide experiment is used to discuss the various sources of noise and background signals that are intrinsic to this type of experiment. Non-time-resolved experiments measuring the branching ratio and kinetic energy distributions of products from the 193 nm photodissociation of cyclopentadiene and thiophene are presented. These studies were done using the molecular beam Photofragment Translational Spectroscopy (PTS) technique. The results from the cyclopentadiene experiment confirm that H atom elimination to yield the cyclopentadienyl radical is the dominant dissociation channel. A barrier of ≥5 kcal/mol can be understood in terms of the delocalization of the radical electron of the cyclopentadienyl fragment. A concerted elimination yielding cyclopropene and acetylene was also observed and is proposed to occur via a bicyclo-[2.1.0]pent-2-ene intermediate. Two other channels, yielding acetylene plus the CH2CHCH triplet carbene, and CH2 plus 1-buten-3-yne, are postulated to occur via ring opening. The implications of the experimental results for bulk thermal oxidation and pyrolysis models are discussed. The thiophene experiment shows six competing dissociation channels. The postulated intermediates for the various thiophene dissociation channels include bicyclo, ring opened, and possibly ring contracted

  5. The Role of Field Electron Emission in Polypropylene/Aluminum Nanodielectrics Under High Electric Fields.

    PubMed

    Zhang, Guoqiang; Li, Yue; Tang, Saide; Thompson, Rhett D; Zhu, Lei

    2017-03-09

    Polymer/metallic particle nanocomposites or nanodielectrics can exhibit colossal dielectric constants with a relatively low dissipation factor under low electric fields and thus seem to be promising for high-energy density dielectric capacitors. To study this possibility, this work focused on the dielectric performance and loss mechanisms in polypropylene (PP)/aluminum nanoparticle (nAl NP) composites under high electric fields. Phosphonic acid-terminated poly(ethylene-co-1-butene) was grafted to the Al2O3 surface layer on the nAl NPs in order to achieve reasonable dispersion in the PP matrix. The dielectric breakdown study showed that the breakdown strength decreased to nearly 1/20 that of the neat PP film as the nAl content increased to 25.0 vol %. The leakage current study revealed three electronic conduction mechanisms in the PP/100 nm nAl nanocomposites, namely, ohmic conduction at low fields, hopping conduction at intermediate fields, and Fowler-Nordheim (FN) field electron emission above a critical field, depending on the filler content. Compared to the 100 nm nAl NPs, smaller (e.g., 18 nm) nAl NPs needed a much higher electric field to exhibit FN field electron emission. It was the FN electron tunneling that induced a substantial reduction in breakdown strength for the PP/nAl nanocomposites. Meanwhile, electron-tunneling injected space charges (electrons) from nAl NPs into the PP matrix, and internal electronic conduction led to significant dielectric nonlinearity at high poling fields. Although polymer/metallic NP composites are not suitable for high-field electric applications, they can be good candidates for electrical switches and quantum tunneling composites operated at relatively low electric fields.

  6. ANALYSIS OF VAPORS FROM METHYLENE CHLORIDE EXTRACTS OF NUCLEAR GRADE HEPA FILTER FIBERGLASS SAMPLES

    SciTech Connect

    FRYE JM; ANASTOS HL; GUTIERREZ FC

    2012-06-07

    While several organic compounds were detected in the vapor samples used in the reenactment of the preparation of mounts from the extracts of nuclear grade high-efficiency particulate air filter fiberglass samples, the most significant species present in the samples were methylene chloride, phenol, phenol-d6, and 2-fluorophenol. These species were all known to be present in the extracts, but were expected to have evaporated during the preparation of the mounts, as the mounts appeared to be dry before any vapor was collected. These species were present at the following percentages of their respective occupational exposure limits: methylene chloride, 2%; phenol, 0.4%; and phenol-d6, 0.6%. However, there is no established limit for 2-fluorophenol. Several other compounds were detected at low levels for which, as in the case of 2-fluorophenol, there are no established permissible exposure limits. These compounds include 2-chlorophenol; N-nitroso-1-propanamine; 2-fluoro-1,1{prime}-biphenyl; 1,2-dihydroacenaphthylene; 2,5-cyclohexadiene-1,4-dione,2,6-bis(1,1-dimethylethyl); trimethyl oxirane; n-propylpropanamine; 2-(Propylamino)ethanol; 4-methoxy-1-butene; 6-methyl-5-hepten-2-one; and 3,4-dimethylpyridine. Some of these were among those added as surrogates or spike standards as part ofthe Advanced Technologies and Laboratories International, Inc. preparation ofthe extract of the HEPA filter media and are indicated as such in the data tables in Section 2, Results; other compounds found were not previously known to be present. The main inorganic species detected (sulfate, sodium, and sulfur) are also consistent with species added in the preparation of the methylene chloride extract of the high-efficiency particulate air sample.

  7. On the radiolysis of ethylene ices by energetic electrons and implications to the extraterrestrial hydrocarbon chemistry

    SciTech Connect

    Zhou, Li; Maity, Surajit; Abplanalp, Matt; Turner, Andrew; Kaiser, Ralf I.

    2014-07-20

    The chemical processing of ethylene ices (C{sub 2}H{sub 4}) by energetic electrons was investigated at 11 K to simulate the energy transfer processes and synthesis of new molecules induced by secondary electrons generated in the track of galactic cosmic ray particles. A combination of Fourier transform infrared spectrometry (solid state) and quadrupole mass spectrometry (gas phase) resulted in the identification of six hydrocarbon molecules: methane (CH{sub 4}), the C2 species acetylene (C{sub 2}H{sub 2}), ethane (C{sub 2}H{sub 6}), the ethyl radical (C{sub 2}H{sub 5}), and—for the very first time in ethylene irradiation experiments—the C4 hydrocarbons 1-butene (C{sub 4}H{sub 8}) and n-butane (C{sub 4}H{sub 10}). By tracing the temporal evolution of the newly formed molecules spectroscopically online and in situ, we were also able to fit the kinetic profiles with a system of coupled differential equations, eventually providing mechanistic information, reaction pathways, and rate constants on the radiolysis of ethylene ices and the inherent formation of smaller (C1) and more complex (C2, C4) hydrocarbons involving carbon-hydrogen bond ruptures, atomic hydrogen addition processes, and radical-radical recombination pathways. We also discuss the implications of these results on the hydrocarbon chemistry on Titan's surface and on ice-coated, methane-bearing interstellar grains as present in cold molecular clouds such as TMC-1.

  8. NTP Toxicology and Carcinogenesis Studies of Isobutene (CAS No. 115-11-7) in F344/N Rats and B6C3F1 Mice (Inhalation Studies).

    PubMed

    1998-12-01

    was measured in the urine of male and female mice as an indicator of isobutene exposure at 6, 12t 6, 12,and 18 months. The amount of HIBA excreted increased with increasing exposure concentration. However, when HIBA concentration was normalized to isobutene exposure concentration, the relative amount of HIBA excreted decreased with increasing exposure concentration, implying nonlinear kinetics. Pathology Findings: The incidences of hyaline degeneration of the respiratory epithelium in all groups of exposed males and females were significantly greater than those in the chamber control groups. The incidences of hyaline degeneration of the olfactory epithelium in 2,000 and 8,000 ppm mice were greater than those in the chamber controls. GENETIC TOXICOLOGY: Isobutene was not mutagenic in any of four strains of S. typhimurium, with or without S9 metabolic activation, and no increase in the frequency of micronucleated erythrocytes was seen in peripheral blood of male or female mice treated with isobutene by inhalation for 14 weeks. CONCLUSIONS: Under the conditions of these 2-year inhalation studies, there was some evidence of carcinogenic activity of isobutene in male F344/N rats based on an increased incidence of follicular cell carcinoma of the thyroid gland. There was no evidence of carcinogenic activity of isobutene in female F344/N rats or male or female B6C3F1 mice exposed to 500, 2,000, or 8,000 ppm. Exposure to isobutene by inhalation for 2 years resulted in increased incidences and/or severities of nasal lesions including hyaline degeneration of the olfactory epithelium in male and female rats and mice and hyaline degeneration of the respiratory epithelium in male and female mice. Synonyms: Isobutylene, 2-methylpropene, liquified petroleum gas, g-butylene.

  9. Transferable Anisotropic United-Atom Force Field Based on the Mie Potential for Phase Equilibrium Calculations: n-Alkanes and n-Olefins.

    PubMed

    Hemmen, Andrea; Gross, Joachim

    2015-09-03

    A new transferable force field parametrization for n-alkanes and n-olefins is proposed in this work. A united-atom approach is taken, where hydrogen atoms are lumped with neighboring atoms to single interaction sites. A comprehensive study is conducted for alkanes, optimizing van der Waals force field parameters in 6 dimensions. A Mie n-6 potential is considered for the van der Waals interaction, where for n-alkanes we simultaneously optimize the energy parameters ϵCH3 and ϵCH2 as well as the size parameters σCH3 and σCH2 of the CH3(sp(3)) and CH2(sp(3)) groups. Further, the repulsive exponent n of the Mie n-6 potential is varied. Moreover, we investigate the bond length toward the terminal CH3 group as a degree of freedom. According to the AUA (anisotropic united-atom) force field, the bond length between the terminal CH3 group and the neighboring interaction site should be increased by Δl compared with the carbon-carbon distance in order to better account for the hydrogen atoms. The parameter Δl is considered as a degree of freedom. The intramolecular force field parametrization is taken from existing force fields. A single objective function for the optimization is defined as squared relative deviations in vapor pressure and in liquid density of propane, n-butane, n-hexane, and n-octane. A similar study is also done for olefins, where the objective function includes 1-butene, 1-hexene, 1-octene, cis-2-pentene, and trans-2-pentene. Molecular simulations are performed in the grand canonical ensemble with transition-matrix sampling where the phase equilibrium properties are obtained with the histogram reweighting technique. The 6-dimensional optimization of strongly correlated parameters is possible, because the analytic PC-SAFT equation of state is used to locally correlate simulation results. The procedure is iterative but leads to very efficient convergence. An implementation is proposed, where the converged result is not affected (disturbed) by the

  10. Olefin coordination in copper(I) complexes of bis(2-pyridyl)amine.

    PubMed

    Allen, John J; Barron, Andrew R

    2009-02-07

    Complexes of the type [Cu(H-dpa)(olefin)]BF4 for ethylene (1), propylene (2), 1-butene (3), 1-hexene (4), 1-octene (5), cis-2-octene (6), trans-2-octene (7), cis-3-octene (8), trans-3-octene (9), 2-norbornylene (10), 1,5-cyclooctadiene (11), styrene (12), cis-stilbene (13), trans-stilbene (14), and Ph2C=CH2 (15) have been prepared and characterized by 1H and 13C NMR, FTIR, and TGA. The crystal structures have been determined for compounds 5, 6, 8, and 10-13. With the exception of compound 11, copper atoms in each complex are coordinated to the two pyridine nitrogen atoms and the appropriate olefin; consistent with a pseudo three-coordinate Cu(I) cation. Compound 11 has a second weaker p-interaction resulting in a distorted tetrahedral geometry. Steric hindrance between the olefin and H-dpa manifests as both a twisting of the olefin out of the plane of the H-dpa ligand and a concomitant folding of the H-dpa ligand. The shifts in the nN-H IR spectral band for H-dpa ligand are consistent with the formation of N-H...F hydrogen bonded interactions observed in the crystal structures. The 1H and 13C NMR spectra of [Cu(H-dpa)(olefin)]BF4 exhibit an upfield shift in the olefin signal as compared to free olefin. A comparison of the Dd values for terminal olefins shows that the similarity of binding for H2C=CHR (R = CnH2n+1, n = 1-6) mitigates any preferential complexation of various terminal olefins using the H-dpa ligand. For octenes there is a significant difference in binding between a terminal and internal olefin, but there is little preference between binding for different internal olefins and only a modest difference between the cis and trans isomers of the same olefin. A good correlation exists between the 1HNMRDd values and the TGA data, confirming that the shift of the olefin NMR resonances upon coordination is associated with the binding strength of the complex. Ab initio calculations using four different method/basis set combinations on the structure of [Cu

  11. DNA damage induced by three major metabolites of 1,3-butadiene in human hepatocyte L02 cells.

    PubMed

    Zhang, Pan-Pan; Wen, Ying; An, Jing; Yu, Ying-Xin; Wu, Ming-Hong; Zhang, Xin-Yu

    2012-09-18

    1,3-Butadiene (BD) is a carcinogenic air pollutant. Its bioactivation produces four major metabolites, i.e., 3,4-epoxy-1-butene (EB), 3,4-epoxy-1,2-butanediol (EBD), 1,2,3,4-diepoxybutane (DEB), and 3-butene-1,2-diol (BDD). Studies have been mostly focused on DEB due to its strong mutagenicity/carcinogenicity. In contrast, studies of genotoxicity of EB, EBD, and BDD have been limited. In particular, genotoxicity of EBD and BDD using strand breaks as the endpoint has not been investigated. To obtain a more complete understanding of BD toxicity, in the present study, we used comet assay to investigate DNA damage induced by EB, EBD, and BDD in human hepatocyte L02 cells, with the aim to determine their relative potencies, the types of DNA damage, and the possible pathway to form strand breaks. Using alkaline comet assay (pH>13), it was observed that EB and EBD caused similar concentration-dependent increases in DNA migration from 50 to 1000μM. However, BDD induced a statistically significant increase only at 1000μM, and the increase itself was very small. EBD was as potent as EB at lower concentrations (≤200μM), and was slightly less potent than EB at higher concentrations. The results indicated that these metabolites could generate strand breaks in cells with the rank order of the potencies being EB>≈EBD≫BDD. All three compounds failed to cause statistically significant increases in DNA migration in pre-lysed cells, suggesting that they did not produce strand breaks through chemical pathways under our experimental conditions. By using comet assays at pH 11.9 and pH 9, it was demonstrated that EB and EBD generated both single-strand breaks (SSB) and alkali-labile sites, but BDD produced only SSB. To our knowledge, this is the first report to investigate EBD- and BDD-induced strand breaks in cells. The results implied that EBD could play an important role in toxicity of BD.

  12. Aqueous geochemistry of low molecular weight hydrocarbons at elevated temperatures and pressures: constraints from mineral buffered laboratory experiments

    NASA Astrophysics Data System (ADS)

    Seewald, Jeffrey S.

    2001-05-01

    Organic matter, water, and minerals coexist at elevated temperatures and pressures in sedimentary basins and participate in a wide range of geochemical processes that includes the generation of oil and natural gas. A series of laboratory experiments were conducted at 300 to 350°C and 350 bars to examine chemical interactions involving low molecular weight aqueous hydrocarbons with water and Fe-bearing minerals under hydrothermal conditions. Mineral buffers composed of hematite-magnetite-pyrite, hematite-magnetite, and pyrite-pyrrhotite-magnetite were added to each experiment to fix the redox state of the fluid and the activity of reduced sulfur species. During each experiment the chemical system was externally modified by addition of ethene, ethane, propene, 1-butene, or n-heptane, and variations in the abundance of aqueous organic species were monitored as a function of time and temperature. Results of the experiments indicate that decomposition of aqueous n-alkanes proceeds through a series of oxidation and hydration reactions that sequentially produce alkenes, alcohols, ketones, and organic acids as reaction intermediaries. Organic acids subsequently undergo decarboxylation and/or oxidation reactions to form carbon dioxide and shorter chain saturated hydrocarbons. This alteration assemblage is compositionally distinct from that produced by thermal cracking under anhydrous conditions, indicating that the presence of water and minerals provide alternative reaction pathways for the decomposition of hydrocarbons. The rate of hydrocarbon oxidation decreases substantially under reducing conditions and in the absence of catalytically active aqueous sulfur species. These results represent compelling evidence that the stability of aqueous hydrocarbons at elevated temperatures in natural environments is not a simple function of time and temperature alone. Under the appropriate geochemical conditions, stepwise oxidation represents a mechanism for the decomposition of low

  13. The pyrolysis of 2-methylfuran: a quantum chemical, statistical rate theory and kinetic modelling study.

    PubMed

    Somers, Kieran P; Simmie, John M; Metcalfe, Wayne K; Curran, Henry J

    2014-03-21

    Due to the rapidly growing interest in the use of biomass derived furanic compounds as potential platform chemicals and fossil fuel replacements, there is a simultaneous need to understand the pyrolysis and combustion properties of such molecules. To this end, the potential energy surfaces for the pyrolysis relevant reactions of the biofuel candidate 2-methylfuran have been characterized using quantum chemical methods (CBS-QB3, CBS-APNO and G3). Canonical transition state theory is employed to determine the high-pressure limiting kinetics, k(T), of elementary reactions. Rice-Ramsperger-Kassel-Marcus theory with an energy grained master equation is used to compute pressure-dependent rate constants, k(T,p), and product branching fractions for the multiple-well, multiple-channel reaction pathways which typify the pyrolysis reactions of the title species. The unimolecular decomposition of 2-methylfuran is shown to proceed via hydrogen atom transfer reactions through singlet carbene intermediates which readily undergo ring opening to form collisionally stabilised acyclic C5H6O isomers before further decomposition to C1-C4 species. Rate constants for abstraction by the hydrogen atom and methyl radical are reported, with abstraction from the alkyl side chain calculated to dominate. The fate of the primary abstraction product, 2-furanylmethyl radical, is shown to be thermal decomposition to the n-butadienyl radical and carbon monoxide through a series of ring opening and hydrogen atom transfer reactions. The dominant bimolecular products of hydrogen atom addition reactions are found to be furan and methyl radical, 1-butene-1-yl radical and carbon monoxide and vinyl ketene and methyl radical. A kinetic mechanism is assembled with computer simulations in good agreement with shock tube speciation profiles taken from the literature. The kinetic mechanism developed herein can be used in future chemical kinetic modelling studies on the pyrolysis and oxidation of 2-methylfuran

  14. OH Radical Reaction Rate Coefficients, Infrared Spectrum, and Global Warming Potential of (CF3)2CFCH═CHF (HFO-1438ezy(E)).

    PubMed

    Papadimitriou, Vassileios C; Burkholder, James B

    2016-08-25

    Rate coefficients, k(T), for the OH radical + (E)-(CF3)2CFCH═CHF ((E)-1,3,4,4,4-pentafluoro-3-(trifluoromethyl)-1-butene, HFO-1438ezy(E)) gas-phase reaction were measured using pulsed laser photolysis-laser-induced fluorescence (PLP-LIF) between 214 and 380 K and 50 and 450 Torr (He or N2 bath gas) and with a relative rate method at 296 K between 100 and 400 Torr (synthetic air). Over the range of pressures included in this study, no pressure dependence in k(T) was observed. k(296 K) obtained using the two techniques agreed to within ∼3% with (3.26 ± 0.26) × 10(-13) cm(3) molecule(-1) s(-1) (2σ absolute uncertainty) obtained using the PLP-LIF technique. k(T) displayed non-Arrhenius behavior that is reproduced by (7.34 ± 0.30) × 10(-19)T(2) exp[(481 ± 10)/T) cm(3) molecule(-1) s(-1). With respect to OH reactive loss, the atmospheric lifetime of HFO-1438ezy(E) is estimated to be ∼36 days and HFO-1438ezy(E) is considered a very short-lived substance (VSLS) (the actual lifetime will depend on the time and location of the HFO-1438ezy(E) emission). On the basis of the HFO-1438ezy(E) infrared absorption spectrum measured in this work and its estimated lifetime, a radiative efficiency of 0.306 W m(-2) ppb(-1) (well-mixed gas) was calculated and its 100-year time-horizon global warming potential, GWP100, was estimated to be 8.6. CF3CFO, HC(O)F, and CF2O were identified using infrared spectroscopy as stable end products in the oxidation of HFO-1438ezy(E) in the presence of O2. Two additional fluorinated products were observed and theoretical calculations of the infrared spectra of likely degradation products are presented. The photochemical ozone creation potential of HFO-1438ezy(E) was estimated to be ∼2.15.

  15. Isomerization of neopentyl chloride and neopentyl bromide by a 1,2-interchange of a halogen atom and a methyl group.

    PubMed

    Lisowski, Carmen E; Duncan, Juliana R; Ranieri, Anthony J; Heard, George L; Setser, D W; Holmes, Bert E

    2010-09-30

    The recombination of chloromethyl and t-butyl radicals at room temperature was used to generate neopentyl chloride molecules with 89 kcal mol(-1) of internal energy. The observed unimolecular reactions, which give 2-methyl-2-butene and 2-methyl-1-butene plus HCl, as products, are explained by a mechanism that involves the interchange of a methyl group and the chlorine atom to yield 2-chloro-2-methylbutane, which subsequently eliminates hydrogen chloride by the usual four-centered mechanism to give the observed products. The interchange isomerization process is the rate-limiting step. Similar experiments were done with CD(2)Cl and C(CH(3))(3) radicals to measure the kinetic-isotope effect to help corroborate the proposed mechanism. Density functional theory was employed at the B3PW91/6-31G(d',p') level to verify the Cl/CH(3) interchange mechanism and to characterize the interchange transition state. These calculations, which provide vibrational frequencies and moments of inertia of the molecule and transition state, were used to evaluate the statistical unimolecular rate constants. Matching the calculated and experimental rate constants, gave 62 ± 2 kcal mol(-1) as the threshold energy for interchange of the Cl atom and a methyl group. The calculated models also were used to reinterpret the thermal unimolecular reactions of neopentyl chloride and neopentyl bromide. The previously assumed Wagner-Meerwein rearrangement mechanism for these reactions can be replaced by a mechanism that involves the interchange of the halogen atom and a methyl group followed by HCl or HBr elimination from 2-chloro-2-methylbutane and 2-bromo-2-methylbutane. Electronic structure calculations also were done to find threshold energies for several related molecules, including 2-chloro-3,3-dimethylbutane, 1-chloro-2-methyl-2-phenylpropane, and 1-chloro-2-methyl-2-vinylpropane, to demonstrate the generality of the interchange reaction involving a methyl, or other hydrocarbon groups, and a

  16. Development and application of FI catalysts for olefin polymerization: unique catalysis and distinctive polymer formation.

    PubMed

    Makio, Haruyuki; Fujita, Terunori

    2009-10-20

    Catalysts contribute to the efficient production of chemicals and materials in almost all processes in the chemical industry. The polyolefin industry is one prominent example of the importance of catalysts. The discovery of Ziegler-Natta catalysts in the 1950s resulted in the production of high-density polyethylenes (PEs) and isotactic polypropylenes (iPPs). Since then, further catalyst development has led to the production of a new series of polyolefins, including linear low-density PEs, amorphous ethylene/1-butene copolymers, ethylene/propylene/diene elastomers, and syndiotactic PPs (sPPs). Polyolefins are now the most important and the most produced synthetic polymers. This Account describes a family of next-generation olefin polymerization catalysts (FI catalysts) that are currently being used in the commercial production of value-added olefin-based materials. An FI catalyst is a heteroatom-coordinated early transition metal complex that combines a pair of nonsymmetric phenoxy-imine [O(-), N] chelating ligands with a group 4 transition metal. The catalytically active species derived from FI catalysts is highly electrophilic and can assume up to five isomeric structures based on the coordination of the phenoxy-imine ligand. In addition, the accessibility of the ligands of the FI catalysts and their amenability to modification offers an opportunity for the design of diverse catalytic structures. FI catalysts exhibit many unique chemical characteristics: precise control over chain transfers (including highly controlled living ethylene and propylene polymerizations), extremely high selectivity for ethylene, high functional group tolerance, MAO- and borate-free polymerization catalysis, significant morphology polymer formation, controlled multimodal behavior, high incorporation ability for higher alpha-olefins and norbornene, and highly syndiospecific and isospecific polymerizations of both propylene and styrene. These reactions also occur with very high catalyst

  17. Coupling reactions of trifluoroethyl iodide on GaAs(100)

    NASA Astrophysics Data System (ADS)

    Singh, N. K.; Kemp, N. T.; Paris, N.; Balan, V.

    2004-07-01

    We report on the reactions of 2-iodo-1,1,1-trifluoroethane (CF3CH2I) on gallium-rich GaAs(100)-(4×1), studied using the techniques of temperature programmed desorption and x-ray photoelectron spectroscopy. The study is to provide evidence for the formation of a higher fluorinated alkene, 1,1,4,4,4-pentafluoro-1-butene (CF2=CHCH2CF3) and alkane, 1,1,1,4,4,4-hexafluorobutane (CF3CH2CH2CF3) from the coupling reactions of covalently bonded surface alkyl (CF3CH2•) moieties. CF3CH2I adsorbs nondissociatively at 150 K. Thermal dissociation of this weakly chemisorbed state occurs below room temperature to form adsorbed CF3CH2• and I• species. The surface CF3CH2• species undergoes β-fluoride elimination to form gaseous CF2=CH2 and this represents the major pathway for the removal of CF3CH2• species from the surface. In competition with the β-fluoride elimination process the adsorbed CF3CH2• species also undergoes, recombination with surface iodine atoms to form recombinative molecular CF3CH2I, olefin insertion reaction with CF2=CH2 to form gaseous CF2=CHCH2CF3, and last self-coupling reaction to form CF3CH2CH2CF3. The adsorbed surface iodine atoms, formed by the dissociation of the molecularly chemisorbed CF3CH2I, and fluorine atoms formed during the β-fluoride elimination reaction, both form etch products (GaI, GaF, AsI, AsF, and As2) by their reactions with the surface layer Ga atoms, subsurface As atoms, and GaAs substrate. In this article we discuss the mechanisms by which these products form from the adsorbed CF3CH2• and I• species, and the role that the GaAs surface plays in the proposed reaction pathways. We compare the reactivity of the GaAs surface with transition metals in its ability to facilitate dehydrogenation and coupling reactions in adsorbed alkyl species. .

  18. Quantitation of DNA Adducts Induced by 1,3-Butadiene

    NASA Astrophysics Data System (ADS)

    Sangaraju, Dewakar; Villalta, Peter W.; Wickramaratne, Susith; Swenberg, James; Tretyakova, Natalia

    2014-07-01

    Human exposure to 1,3-butadiene (BD) present in automobile exhaust, cigarette smoke, and forest fires is of great concern because of its potent carcinogenicity. The adverse health effects of BD are mediated by its epoxide metabolites such as 3,4-epoxy-1-butene (EB), which covalently modify genomic DNA to form promutagenic nucleobase adducts. Because of their direct role in cancer, BD-DNA adducts can be used as mechanism-based biomarkers of BD exposure. In the present work, a mass spectrometry-based methodology was developed for accurate, sensitive, and precise quantification of EB-induced N-7-(1-hydroxy-3-buten-2-yl) guanine (EB-GII) DNA adducts in vivo. In our approach, EB-GII adducts are selectively released from DNA backbone by neutral thermal hydrolysis, followed by ultrafiltration, offline HPLC purification, and isotope dilution nanoLC/ESI+-HRMS3 analysis on an Orbitrap Velos mass spectrometer. Following method validation, EB-GII lesions were quantified in human fibrosarcoma (HT1080) cells treated with micromolar concentrations of EB and in liver tissues of rats exposed to sub-ppm concentrations of BD (0.5-1.5 ppm). EB-GII concentrations increased linearly from 1.15 ± 0.23 to 10.11 ± 0.45 adducts per 106 nucleotides in HT1080 cells treated with 0.5-10 μM DEB. EB-GII concentrations in DNA of laboratory rats exposed to 0.5, 1.0, and 1.5 ppm BD were 0.17 ± 0.05, 0.33 ± 0.08, and 0.50 ± 0.04 adducts per 106 nucleotides, respectively. We also used the new method to determine the in vivo half-life of EB-GII adducts in rat liver DNA (2.20 ± 0.12 d) and to detect EB-GII in human blood DNA. To our knowledge, this is the first application of nanoLC/ESI+-HRMS3 Orbitrap methodology to quantitative analysis of DNA adducts in vivo.

  19. Complex Hydrocarbon Chemistry in Interstellar and Solar System Ices Revealed: A Combined Infrared Spectroscopy and Reflectron Time-of-flight Mass Spectrometry Analysis of Ethane (C2H6) and D6-Ethane (C2D6) Ices Exposed to Ionizing Radiation

    NASA Astrophysics Data System (ADS)

    Abplanalp, Matthew J.; Kaiser, Ralf I.

    2016-08-01

    The irradiation of pure ethane (C2H6/C2D6) ices at 5.5 K, under ultrahigh vacuum conditions was conducted to investigate the formation of complex hydrocarbons via interaction with energetic electrons simulating the secondary electrons produced in the track of galactic cosmic rays. The chemical modifications of the ices were monitored in situ using Fourier transform infrared spectroscopy (FTIR) and during temperature-programmed desorption via mass spectrometry exploiting a quadrupole mass spectrometer with electron impact ionization (EI-QMS) as well as a reflectron time-of-flight mass spectrometer coupled to a photoionization source (PI-ReTOF-MS). FTIR confirmed previous ethane studies by detecting six molecules: methane (CH4), acetylene (C2H2), ethylene (C2H4), the ethyl radical (C2H5), 1-butene (C4H8), and n-butane (C4H10). However, the TPD phase, along with EI-QMS, and most importantly, PI-ReTOF-MS, revealed the formation of at least 23 hydrocarbons, many for the first time in ethane ice, which can be arranged in four groups with an increasing carbon-to-hydrogen ratio: C n H2n+2 (n = 3, 4, 6, 8, 10), C n H2n (n = 3-10), {{{C}}}n{{{H}}}2n-2 (n = 3-10), and {{{C}}}n{{{H}}}2n-4 (n = 4-6). The processing of simple ethane ices is relevant to the hydrocarbon chemistry in the interstellar medium, as ethane has been shown to be a major product of methane, as well as in the outer solar system. These data reveal that the processing of ethane ices can synthesize several key hydrocarbons such as C3H4 and C4H6 isomers, which ha­ve been found to synthesize polycyclic aromatic hydrocarbons like indene (C9H8) and naphtha­lene (C10H8) in the ISM and in hydrocarbon-rich atmospheres of planets and their moons such as Titan.

  20. Characterization of hydrocarbons, halocarbons and carbonyls in the atmosphere of Hong Kong.

    PubMed

    Guo, H; Lee, S C; Louie, P K K; Ho, K F

    2004-12-01

    in winter motor vehicle emissions would be the major sources of the carbonyls. The photochemical reactivity of selected VOCs was estimated in this study. The largest contributors to ozone formation were formaldehyde, toluene, propene, m,p-xylene, acetaldehyde, 1-butene/i-butene, isoprene and n-butane, suggesting that motor vehicles, gasoline evaporation, use of solvents, leakage of LPG, photochemical processes and biogenic emission are sources in the production of ozone. On the other hand, VOCs from vehicles and gasoline evaporation were predominant with respect to reactions with OH radical.

  1. Pathway and Surface Mechanism Studies of 1,3-butadiene Selective Oxidation Over Vanadium-Molybdenum-Oxygen Catalysts

    SciTech Connect

    Schroeder, William David

    2001-01-01

    The partial oxidation of 1,3-butadiene has been investigated over VMoO catalysts synthesized by sol-gel techniques. Surface areas were 9-14 m2/g, and compositions were within the solid solution regime, i.e. below 15.0 mol % MoO3/(MoO3 + V2O5). Laser Raman Spectroscopy and XRD data indicated that solid solutions were formed, and pre- and post-reaction XPS data indicated that catalyst surfaces contained some V+4 and were further reduced in 1,3-butadiene oxidation. A reaction pathway for 1,3-butadiene partial oxidation to maleic anhydride was shown to involve intermediates such as 3,4-epoxy-1-butene, crotonaldehyde, furan, and 2-butene-1,4-dial. The addition of water to the reaction stream substantially increased catalyst activity and improved selectivity to crotonaldehyde and furan at specific reaction temperatures. At higher water addition concentrations, furan selectivity increased from 12% to over 25%. The catalytic effects of water addition were related to competitive adsorption with various V2O5-based surface sites, including the vanadyl V=O, corner sharing V-O-V and edge sharing V-O oxygen. Higher levels of water addition were proposed to impose acidic character by dissociative adsorption. In addition, a novel combinatorial synthesis technique for VMoO was used to investigate the phase transitions of V2O5, solid solutions of Mo in V2O5, V9Mo6O40, and other reduced VMoO compounds, characterized by laser Raman spectroscopy. The natural composition gradient imposed by the sputter deposition apparatus was used to create VMoO arrays containing 225 samples ranging from 7.0-42 mol% MoO3/(V2O5 + MoO3), determined by EDS analysis.

  2. The Stable Carbon Isotope Ratio Analysis of Atmospheric Non-Methane Hydrocarbons in Los Angeles, California

    NASA Astrophysics Data System (ADS)

    Gotoh, A. A.; Tyler, S. C.; Meinardi, S.; Gervais, K.; Blake, D. R.

    2003-12-01

    Los Angeles type photochemical air pollution is caused by non-methane hydrocarbons (NMHCs) reacting with hydroxyl radicals and nitrous oxides in the presence of light. To create more effective control strategies in reducing such air pollution, it is essential to have both a better understanding of the complex photochemical processes of NMHCs and the sources of these compounds. From the past successful studies of other atmospheric trace gases such as methane and carbon monoxide, we expect that the stable carbon ratio (13C/12C, reported as a δ 13C value) of each of these hydrocarbons will also reflect the δ 13C value of the source material and/or provide formation on chemical loss processes that fractionate C isotopes. We have developed a NMHC preconcentrator system which enables us to measure δ 13C values using a continuous-flow gas chromatography combustion isotope ratio mass spectrometer (cf-GC/C/IRMS). Our system is similar to the successful design pioneered in Rudolph et al. (1997), but is custom designed by our laboratory. Stable carbon isotope measurements of any of the C2-C5 NMHCs in field and/or lab studies are scarce to date. Our system allows us to report on δ 13C measurements of ethane, ethene, ethyne, propane, propene, n-butane, i-butane, 1-butene, n-pentane, i-pentane, and methyl chloride. To see if we can learn the specific sources contributing to the emissions of a given NMHC within a region by comparing isotopic signatures of its potential sources to δ 13C measurements of it within the local air mass, urban air samples were collected in 3 different cities of Los Angeles County, California, USA, during the summer of 2003 and analyzed for the concentrations and δ 13C values of NMHCs. To our knowledge, this is the first δ 13C analysis of ambient NMHCs conducted in the United States. We report the results of the δ 13C analyses and concentration measurements for selected NMHC species from the urban air samples, and their implications for the local

  3. Implications for Extraterrestrial Hydrocarbon Chemistry: Analysis of Ethylene (C2H4) and D4-Ethylene (C2D4) Ices Exposed to Ionizing Radiation via Combined Infrared Spectroscopy and Reflectron Time-of-flight Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Abplanalp, Matthew J.; Kaiser, Ralf I.

    2017-02-01

    The processing of the hydrocarbon ice, ethylene (C2H4/C2D4), via energetic electrons, thus simulating the processes in the track of galactic cosmic-ray particles, was carried out in an ultrahigh vacuum apparatus. The chemical evolution of the ices was monitored online and in situ utilizing Fourier transform infrared spectroscopy (FTIR) and during temperature programmed desorption, via a quadrupole mass spectrometer utilizing electron impact ionization (EI-QMS) and a reflectron time-of-flight mass spectrometer utilizing a photoionization source (PI-ReTOF-MS). Several previous in situ studies of ethylene ice irradiation using FTIR were substantiated with the detection of six products: [CH4 (CD4)], acetylene [C2H2 (C2D2)], the ethyl radical [C2H5 (C2D5)], ethane [C2H6 (C2D6)], 1-butene [C4H8 (C4D8)], and n-butane [C4H10 (C4D10)]. Contrary to previous gas phase studies, the PI-ReTOF-MS detected several groups of hydrocarbon with varying degrees of saturation: C n H2n+2 (n = 4–10), C n H2n (n = 2–12, 14, 16), C n H2n‑2 (n = 3–12, 14, 16), C n H2n‑4 (n = 4–12, 14, 16), C n H2n‑6 (n = 4–10, 12), C n H2n‑8 (n = 6–10), and C n H2n‑10 (n = 6–10). Multiple laboratory studies have shown the facile production of ethylene from methane, which is a known ice constituent in the interstellar medium. Various astrophysically interesting molecules can be associated with the groups detected here, such as allene/methylacetylene (C3H4) or 1, 3-butadiene (C4H6) and its isomers, which have been shown to lead to polycyclic aromatic hydrocarbons. Finally, several hydrocarbon groups detected here are unique to ethylene ice versus ethane ice and may provide understanding of how complex hydrocarbons form in astrophysical environments.

  4. A Unique Equation to Estimate Flash Points of Selected Pure Liquids Application to the Correction of Probably Erroneous Flash Point Values

    NASA Astrophysics Data System (ADS)

    Catoire, Laurent; Naudet, Valérie

    2004-12-01

    several flash points have been reported erroneously, whatever the reason, in one or several reference compilations. In the following lists, the currently accepted flash points for bold compounds err, or probably err, on the hazardous side by at least 10 °C and for the nonbolded compounds, the currently accepted flash points err, or probably err, on the nonhazardous side by at least 10 °C: bicyclohexyl, sec-butylamine, tert-butylamine, 2-cyclohexen-1-one, ethanethiol, 1,3-cyclohexadiene, 1,4-pentadiene, methyl formate, acetonitrile, cinnamaldehyde, 1-pentanol, diethylene glycol, diethyl fumarate, diethyl phthalate, trimethylamine, dimethylamine, 1,6-hexanediol, propylamine, methanethiol, ethylamine, bromoethane, 1-bromopropane, tert-butylbenzene, 1-chloro-2-methylpropane, diacetone alcohol, diethanolamine, 2-ethylbutanal, and formic acid. For some other compounds, no other data than the currently accepted flash points are available. Therefore, it cannot be assessed that these flash point data are erroneous but it can be stated that they are probably erroneous. At least, they need experimental re-examination. They are probably erroneous by at least 15 °C: 1,3-cyclopentadiene, di-tert-butyl sulfide, dimethyl ether, dipropyl ether, 4-heptanone, bis(2-chloroethyl)ether, 1-decanol, 1-phenyl-1-butanone, furan, ethylcyclopentane, 1-heptanethiol, 2,5-hexanediol, 3-hexanone, hexanoic acid methyl ester, 4-methyl-1,3-pentadiene, propanoyl chloride, tetramethylsilane, thiacyclopentane, 1-chloro-2-methyl-1-propene, trans-1,3-pentadiene, 2,3-dimethylheptane, triethylenetetramine, methylal, N-ethylisopropylamine, 3-methyl-2-pentene, and 2,3-dimethyl-1-butene.

  5. I. Synthesis, characterization, and base catalysis of novel zeolite supported super-basic materials II. Oxidative dehydrogenation of ethane over reduced heteropolyanion catalysts

    NASA Astrophysics Data System (ADS)

    Galownia, Jonathan M.

    This thesis is composed of two separate and unrelated projects. The first part of this thesis outlines an investigation into the synthesis and characterization of a novel zeolite supported super-base capable of carbon-carbon olefin addition to alkyl aromatics. A zeolite supported basic material capable of such reactions would benefit many fine chemical syntheses, as well as vastly improve the economics associated with production of the high performance thermoplastic polyester polyethylene naphthalate. The thermal decomposition of alkali---metal azides impregnated in zeolite X is investigated as a novel route to the synthesis of a zeolite supported super-base. Impregnation of the alkali---metal azide precursor is shown to result in azide species occluded within the pores of the zeolite support by using high speed, solid-state 23Na MAS and 2D MQMAS NMR, FTIR, and TGA characterization methods. Addition of alkali---metal azides to the zeolite results in redistribution of the extra-lattice cations in the zeolite framework. Thermal decomposition of impregnated azide species produces further cation redistribution, but no neutral metallic clusters are detected by high speed, solid-state 23Na MAS NMR following thermal activation of the materials. Instead, it is possible that inactive ionic clusters are formed. The thermally activated materials do not promote base catalysis for the isomerization of 1-butene, the ethylation of toluene and o-xylene, and the alkenylation of o-xylene with 1,3-butadiene to produce 5-ortho-tolyl-pent-2-ene (5-OTP). The lack of catalytic activity in the materials is attributed to failure of the materials to form neutral metallic clusters during thermal treatment, possibly due to preferential formation of NMR silent ionic clusters. The formation of neutral metallic clusters is found to be insensitive to synthesis technique and activation procedure. It is concluded that the impregnation of alkali---metal azides in zeolite X does not provide a

  6. Investigation of potential interferences in the detection of atmospheric ROx radicals by laser-induced fluorescence under dark conditions

    NASA Astrophysics Data System (ADS)

    Fuchs, H.; Tan, Z.; Hofzumahaus, A.; Broch, S.; Dorn, H.-P.; Holland, F.; Künstler, C.; Gomm, S.; Rohrer, F.; Schrade, S.; Tillmann, R.; Wahner, A.

    2015-11-01

    Direct detection of highly reactive, atmospheric hydroxyl radicals (OH) is widely accomplished by laser-induced fluorescence (LIF) instruments. The technique is also suitable for the indirect measurement of HO2 and RO2 peroxy radicals by chemical conversion to OH. It requires sampling of ambient air into a low pressure cell, where OH fluorescence is detected after excitation by 308 nm laser radiation. Although the residence time of air inside the fluorescence cell is typically only on the order of milliseconds, there is potential that additional OH is internally produced, which would artificially increase the measured OH concentration. Here, we present experimental studies investigating potential interferences in the detection of OH and peroxy radicals for the LIF instruments of Forschungszentrum Jülich for nighttime conditions. For laboratory experiments, the inlet of the instrument was overflown by excess synthetic air containing one or more reactants. In order to distinguish between OH produced by reactions upstream of the inlet and artificial signals produced inside the instrument, a chemical titration for OH was applied. Additional experiments were performed in the simulation chamber SAPHIR where simultaneous measurements by an open-path differential optical absorption spectrometer (DOAS) served as reference for OH to quantify potential artifacts in the LIF instrument. Experiments included the investigation of potential interferences related to the nitrate radical (NO3, N2O5), related to the ozonolysis of alkenes (ethene, propene, 1-butene, 2,3-dimethyl-2-butene, α-pinene, limonene, isoprene), and the laser photolysis of acetone. Experiments studying the laser photolysis of acetone yield OH signals in the fluorescence cell, which are equivalent to 0.05 × 106 cm-3 OH for a mixing ratio of 5 ppbv acetone. Under most atmospheric conditions, this interference is negligible. No significant interferences were found for atmospheric concentrations of reactants

  7. Investigation of potential interferences in the detection of atmospheric ROx radicals by laser-induced fluorescence under dark conditions

    NASA Astrophysics Data System (ADS)

    Fuchs, Hendrik; Tan, Zhaofeng; Hofzumahaus, Andreas; Broch, Sebastian; Dorn, Hans-Peter; Holland, Frank; Künstler, Christopher; Gomm, Sebastian; Rohrer, Franz; Schrade, Stephanie; Tillmann, Ralf; Wahner, Andreas

    2016-04-01

    Direct detection of highly reactive, atmospheric hydroxyl radicals (OH) is widely accomplished by laser-induced fluorescence (LIF) instruments. The technique is also suitable for the indirect measurement of HO2 and RO2 peroxy radicals by chemical conversion to OH. It requires sampling of ambient air into a low-pressure cell, where OH fluorescence is detected after excitation by 308 nm laser radiation. Although the residence time of air inside the fluorescence cell is typically only on the order of milliseconds, there is potential that additional OH is internally produced, which would artificially increase the measured OH concentration. Here, we present experimental studies investigating potential interferences in the detection of OH and peroxy radicals for the LIF instruments of Forschungszentrum Jülich for nighttime conditions. For laboratory experiments, the inlet of the instrument was over flowed by excess synthetic air containing one or more reactants. In order to distinguish between OH produced by reactions upstream of the inlet and artificial signals produced inside the instrument, a chemical titration for OH was applied. Additional experiments were performed in the simulation chamber SAPHIR where simultaneous measurements by an open-path differential optical absorption spectrometer (DOAS) served as reference for OH to quantify potential artifacts in the LIF instrument. Experiments included the investigation of potential interferences related to the nitrate radical (NO3, N2O5), related to the ozonolysis of alkenes (ethene, propene, 1-butene, 2,3-dimethyl-2-butene, α-pinene, limonene, isoprene), and the laser photolysis of acetone. Experiments studying the laser photolysis of acetone yield OH signals in the fluorescence cell, which are equivalent to 0.05 × 106 cm-3 OH for a mixing ratio of 5 ppbv acetone. Under most atmospheric conditions, this interference is negligible. No significant interferences were found for atmospheric concentrations of reactants

  8. Multinuclear group 4 catalysis: olefin polymerization pathways modified by strong metal-metal cooperative effects.

    PubMed

    McInnis, Jennifer P; Delferro, Massimiliano; Marks, Tobin J

    2014-08-19

    Polyolefins are produced today catalytically on a vast scale, and the manufactured polymers find use in everything from artificial limbs and food/medical packaging to automotive and electrical components and lubricants. Although polyolefin monomers are typically cheap (e.g., ethylene, propylene, α-olefins), the resulting polymer properties can be dramatically tuned by the particular polymerization catalyst employed, and reflect a rich interplay of macromolecular chemistry, materials science, and physics. For example, linear low-density polyethylene (LLDPE), produced by copolymerization of ethylene with linear α-olefin comonomers such as 1-butene, 1-hexene, or 1-octene, has small but significant levels of short alkyl branches (C2, C4, C6) along the polyethylene backbone, and is an important technology material due to outstanding rheological and mechanical properties. In 2013, the total world polyolefin production was approximately 211 million metric tons, of which about 11% was LLDPE. Historically, polyolefins were produced using ill-defined but highly active heterogeneous catalysts composed of supported groups 4 or 6 species (usually halides) activated by aluminum alkyls. In 1963, Karl Ziegler and Giulio Natta received the Nobel Prize for these discoveries. Beginning in the late 1980s, a new generation of group 4 molecule-based homogeneous olefin polymerization catalysts emerged from discoveries by Walter Kaminsky, a team led by James Stevens at The Dow Chemical Company, this Laboratory at Northwestern University, and a host of talented groups in Germany, Italy, Japan, the United Kingdom, and the United States. These new "single-site" catalysts and their activating cocatalysts were far better defined and more rationally tunable in terms of structure, mechanism, thermodynamics, and catalyst activity and selectivity than ever before possible. An explosion of research advances led to new catalysts, cocatalysts, deeper mechanistic understanding of both the

  9. Chromatography and mass spectrometry of prebiological and biological molecules

    NASA Astrophysics Data System (ADS)

    Navale, Vivek

    The detection and identification of prebiological and biological molecules are of importance for understanding chemical and biological processes occurring within the solar system. Molecular mass measurements, peptide mapping, and disulfide bond analysis of enzymes and recombinant proteins are important in the development of therapeutic drugs for human diseases. Separation of hydrocarbons (C1 to C6) and nitriles was achieved by 14%-cyanopropylphenyl-86%- dimethylpolysiloxane (CPPS-DMPS) stationary phase in a narrow bore metal capillary column. The calculation of modeling numbers enabled the differentiation of the C4 hydrocarbon isomers of 1-butene (cis and trans). The modeled retention time values for benzene, toluene, xylene, acetonitrile, propane, and propene nitriles were in good agreement with the measurements. The separation of C2 hydrocarbons (ethane and ethene) from predominantly N2 matrix was demonstrated for the first time on wall coated narrow bore low temperature glassy carbon column. Identification and accurate mass measurements of pepsin, an enzymatic protein with less number of basic amino acid residues were successfully demonstrated by matrix- assisted laser desorption ionization mass spectrometry (MALDI-MS). The molecular mass of pepsin was found to be 34,787 Da. Several decomposition products of pepsin, in m/z range of 3,500 to 4,700 were identified. Trypsin, an important endopeptidase enzyme had a mass of 46829.7 Da. Lower mass components with m/z 8047.5, 7776.6, 5722, 5446.2 and 5185 Da were also observed in trypsin spectrum. Both chemokine and growth factor recombinant proteins were mass analyzed as 8848.1 ± 3.5 and 16178.52 ± 4.1 Da, respectively. The accuracy of the measurements was in the range of 0.01 to 0.02%. Reduction and alkylation experiments on the chemokine showed the presence of six cysteines and three disulfide bonds. The two cysteines of the growth factor contained the free sulfhydryl groups and the accurate average mass of the

  10. The Low Temperature Oxidation of 2,7-Dimethyloctane in a Pressurized Flow Reactor

    NASA Astrophysics Data System (ADS)

    Farid, Farinaz

    n-decane resulted primarily in the formation of ethene near the NTC start, propene and isobutene were the major olefins produced from 2,7-DMO. A comparative analysis of experimental data with respect to a detailed chemical kinetic model for 2,7-DMO was performed and discrepancies were noted. Based on these results, a collaborative effort with Dr. Charles Westbrook (Lawrence Livermore National Laboratory) was initiated to refine the model predictions in the low temperature and NTC regimes. The effort resulted in an updated version of the 2,7-DMO mechanism, improving some of the key features such as calculated CO2 profile and final yields of iso-butene over the studied range of temperature. Fuel pyrolysis in the intermediate temperature regime, 850 -- 1000 K, also was investigated for the first time in the PFR facility. However, preliminary n-decane experiments measured only a small amount of fuel decomposition, indicating that higher temperature operation would be beneficial. The major species produced from n-decane decomposition, in descending order of molar fraction, were ethene, propene, and 1-butene. These results were compared with the predictions of two existing chemical kinetic models and the sources of variations between the experiments and the models as well as among the mechanisms were investigated. At 1000 K, the mechanisms predicted higher levels of fuel depletion and ethene production. Also, while the mechanisms were similar in their predicted pathways for fuel depletion and formation of ethene, inconsistencies were observed in relative contribution of these pathways to the final yields as well as the rate parameter determination for several sensitive reactions with respect to n-decane and ethene. Overall, the research aided in achieving a data set quantifying the oxidation characteristics of 2,7-DMO (and n-decane for comparison) as well as an elucidation of critical reaction pathways based on experimental results. Preliminary pyrolysis experiments were