Science.gov

Sample records for 1-butyl-3-methyl imidazolium room

  1. Solubilities of carbon dioxide and oxygen in the ionic liquids methyl trioctyl ammonium bis(trifluoromethylsulfonyl)imide, 1-butyl-3-methyl imidazolium bis(trifluoromethylsulfonyl)imide, and 1-butyl-3-methyl imidazolium methyl sulfate.

    PubMed

    Bahadur, Indra; Osman, Khalid; Coquelet, Christophe; Naidoo, Paramespri; Ramjugernath, Deresh

    2015-01-29

    Ionic liquids (ILs) are being considered as solvents for gas absorption processes as they have the potential, in general, for improved efficiency of gas separations, as well as lower capital and operating costs compared to current commercial processes. In this study the solvent properties of ILs are investigated for use in the absorption of carbon dioxide (CO2) and oxygen (O2). The absorption of these gases in ILs was measured in the temperature range 303.15-333.15 K and at pressures up to 1.5 MPa by gravimetric analysis. The ILs used were methyl trioctyl ammonium bis (trifluoromethylsulfonyl) imide ([MOA][Tf2N]), 1-butyl-3-methyl imidazolium bis (trifluoromethylsulfonyl) imide ([BMIM][Tf2N]), and 1-butyl-3-methyl imidazolium methyl sulfate ([BMIM][MeSO4]). The measurement technique employed in this study is fast and accurate, and requires small quantities of solvent. The results indicated that absorption of both gases increased with a decrease in operating temperature and an increase in pressure. [MOA][Tf2N] had the highest CO2 and O2 solubility. [BMIM][Tf2N] was determined to have the highest selectivity for CO2 absorption. [BMIM][MeSO4] achieved the lowest CO2 absorption with a moderate O2 absorption, revealing this IL to be the least desirable for CO2 and O2 absorption. Calculation of Henry's law constants for all systems confirmed the deductions made from absorption data analysis. Calculation of enthalpy and entropy of absorption for each system revealed CO2 absorption in [MOA][Tf2N] to be the least sensitive to temperature increases. The absorption data was modeled using the generic Redlich-Kwong cubic equation of state (RK-EOS) coupled with a group contribution method.

  2. 1-Butyl-3-Methyl Imidazolium-based Ionic Liquids Explored as Potential Solvents for Lipid Processing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Due to global environmental concerns, there is increasing interest in replacing the volatile solvents currently used to process commodity plant lipids. Room-temperature molten salts are one type of media receiving great attention as a possible replacement of the typical organic solvent. Molten sal...

  3. Effects of 1-butyl-3-methyl imidazolium tetrafluoroborate ionic liquid on Triton X-100 aqueous micelles: solvent and rotational relaxation studies.

    PubMed

    Pramanik, Rajib; Sarkar, Souravi; Ghatak, Chiranjib; Rao, Vishal Govind; Mandal, Sarthak; Sarkar, Nilmoni

    2011-06-02

    The effect of added room-temperature ionic liquids on the nature of water molecules in the palisade layer of a Triton X-100 (TX-100) micelle has been investigated using solvation and rotational relaxation studies of coumarin 153 in the presence of different wt % of [bmim][BF(4)] and thus to understand the changes in micellar palisade layer, especially the entrapped water structures in the palisade layer. It has been observed that in the presence of added [bmim][BF(4)] the solvation dynamics becomes faster. It has previously been demonstrated (Behera et al. J. Chem. Phys.2007, 127, 184501) that in the present micellar systems, in the presence of [bmim][BF(4)] micellar size and aggregation number (N(agg)) decreases giving rise to more water molecules penetrating in to the micellar phase which results in increased microfluidity. In accordance with solvation dynamics results, fluorescence anisotropy studies also indicate an increased microfluidity for the palisade layer of the TX-100 micelle with the added [bmim][BF(4)]. Wobbling-in-cone analysis of the anisotropy data also supports this finding.

  4. Interaction of ionic liquid with water with variation of water content in 1-butyl-3-methyl-imidazolium hexafluorophosphate ([bmim][PF6])/TX-100/water ternary microemulsions monitored by solvent and rotational relaxation of coumarin 153 and coumarin 490.

    PubMed

    Seth, Debabrata; Chakraborty, Anjan; Setua, Palash; Sarkar, Nilmoni

    2007-06-14

    The interaction of water with room temperature ionic liquid (RTIL) [bmim][PF6] has been studied in [bmim][PF6]/TX-100/water ternary microemulsions by solvent and rotational relaxation of coumarin 153 (C-153) and coumarin 490 (C-490). The rotational relaxation and average solvation time of C-153 and C-490 gradually decrease with increase in water content of the microemulsions. The gradual increase in the size of the microemulsion with increase in w0 (w0=[water]/[surfactant]) is evident from dynamic light scattering measurements. Consequently the mobility of the water molecules also increases. In comparison to pure water the retardation of solvation time in the RTIL containing ternary microemulsions is very less. The authors have also reported the solvation time of C-490 in neat [bmim][PF6]. The solvation time of C-490 in neat [bmim][PF6] is bimodal with time constants of 400 ps and 1.10 ns.

  5. Interaction of ionic liquid with water with variation of water content in 1-butyl-3-methyl-imidazolium hexafluorophosphate ([bmim][PF6])/TX-100/water ternary microemulsions monitored by solvent and rotational relaxation of coumarin 153 and coumarin 490

    NASA Astrophysics Data System (ADS)

    Seth, Debabrata; Chakraborty, Anjan; Setua, Palash; Sarkar, Nilmoni

    2007-06-01

    The interaction of water with room temperature ionic liquid (RTIL) [bmim][PF6] has been studied in [bmim][PF6]/TX-100/water ternary microemulsions by solvent and rotational relaxation of coumarin 153 (C-153) and coumarin 490 (C-490). The rotational relaxation and average solvation time of C-153 and C-490 gradually decrease with increase in water content of the microemulsions. The gradual increase in the size of the microemulsion with increase in w0 (w0=[water]/[surfactant]) is evident from dynamic light scattering measurements. Consequently the mobility of the water molecules also increases. In comparison to pure water the retardation of solvation time in the RTIL containing ternary microemulsions is very less. The authors have also reported the solvation time of C-490 in neat [bmim][PF6]. The solvation time of C-490 in neat [bmim][PF6] is bimodal with time constants of 400ps and 1.10ns.

  6. Morphology of poly(ethylene oxide) dissolved in a room temperature ionic liquid: a small angle neutron scattering study.

    PubMed

    Triolo, Alessandro; Russina, Olga; Keiderling, Uwe; Kohlbrecher, Joachim

    2006-02-02

    Solutions of deuterated poly(ethylene oxide) (d-PEO) in 1-butyl-3-methyl imidazolium tetrafluoroborate ([bmim][BF4]), a prototype room-temperature ionic liquid (RTIL), have been studied at room temperature over a range of polymer concentrations, using small angle neutron scattering (SANS), characterizing the conformation of PEO dissolved in RTILs. [bmim][BF4] behaves as a good solvent for d-PEO, which organizes in this solvent in non entangled random coils. These findings will help in optimizing the designing of microemulsions in these potentially environmentally friendly solvents.

  7. Effect of water on the solvent relaxation dynamics in an ionic liquid containing microemulsion of 1-butyl-3-methyl imidazolium tetrafluoroborate/TritonX-100/cyclohexane

    NASA Astrophysics Data System (ADS)

    Pramanik, Rajib; Sarkar, Souravi; Ghatak, Chiranjib; Setua, Palash; Rao, Vishal Govind; Sarkar, Nilmoni

    2010-04-01

    The dynamics of solvent and rotational relaxation have been investigated in [bmim][BF 4]/TX-100/cyclohexane microemulsions with addition of water-using steady state and time-resolved fluorescence spectroscopy as a tool and coumarin 480 (C-480) as a fluorescence probe. The added water decreases the size of the microemulsions; consequently solvent relaxation time increases. The rotational relaxation time of C-480 in microemulsions is almost unchanged with increase in amount of water in microemulsions.

  8. Terahertz and Infrared Spectroscopy of Room-Temperature Imidazolium-Based Ionic Liquids.

    PubMed

    Yamada, Toshiki; Tominari, Yukihiro; Tanaka, Shukichi; Mizuno, Maya

    2015-12-24

    The terahertz- and infrared-frequency vibrational modes of various room-temperature imidazolium-based ionic liquids with molecular anions were examined extensively. We found that the molar-concentration-normalized absorption coefficient spectra in the low-wavenumber range for imidazolium cations with different alkyl-chain lengths were nearly identical for the same anion. Regarding the overall view of a wide range of imidazolium-based ionic liquids, we found that the reduced mass of the combination of an imidazolium-ring cation and the anion and the force constant play significant roles in determining the central frequency of the broad absorption band. In addition to these findings, we also discuss the correlation between the (+)C-H stretching vibrational modes in the 3000-3300 cm(-1) range of the infrared spectra and the intermolecular vibrational band in the low-wavenumber range. Finally, we describe some interesting characteristics of the intermolecular vibrational band observed in a wide range of imidazolium-based ionic liquids.

  9. Guide to CO{sub 2} separations in imidazolium-based room-temperature ionic liquids

    SciTech Connect

    Bara, J.E.; Carlisle, T.K.; Gabriel, C.J.; Camper, D.; Finotello, A.; Gin, D.L.; Noble, R.D.

    2009-03-18

    Room-temperature ionic liquids (RTILs) are nonvolatile, tunable solvents. The solubilities of gases, particularly CO{sub 2}, N{sub 2}, and CH{sub 4}, have been studied in a number of RTILs. Process temperature and the chemical structures of the cation and anion have significant impacts on gas solubility and gas pair selectivity. Models based on regular solution theory and group contributions are useful to predict and explain CO{sub 2} solubility and selectivity in imidazolium-based RTILs. In addition to their role as a physical solvent, RTILs might also be used in supported ionic liquid membranes (SILMs) as a highly permeable and selective transport medium. Performance data for SILMs indicates that they exhibit large permeabilities as well as CO{sub 2}/N{sub 2} selectivities that outperform many polymer membranes. Furthermore, the greatest potential of RTILs for CO{sub 2} separations might lie in their ability to chemically capture CO{sub 2} when used in combination with amines. Amines can be tethered to the cation or the anion, or dissolved in RTILs, providing a wide range of chemical solvents for CO{sub 2} capture. However, despite all of their promising features, RTILs do have drawbacks to use in CO{sub 2} separations, which have been overlooked as appropriate comparisons of RTILs to common organic solvents and polymers have not been reported. A thorough summary of the capabilities-and limitations-of imidazolium-based RTILs in CO{sub 2}-based separations with respect to a variety of materials is thus provided.

  10. Molecular simulation study of dynamical properties of room temperature ionic liquids with carbon pieces

    DOE PAGES

    Feng, Guang; Zhao, Wei; Cummings, Peter T.; ...

    2016-03-29

    Room temperature ionic liquids (RTILs) with dispersed carbon pieces exhibit distinctive physiochemical properties. In order to explore the molecular mechanism, RTILs/carbon pieces mixture we investigated it by molecular dynamics (MD) simulation in this work. Rigid and flexible carbon pieces in the form of graphene with different thicknesses and carbon nanotubes in different sizes were dispersed in a representative RTIL 1-butyl-3-methyl-imidazolium dicyanamide ([Bmim][DCA]). Our study demonstrated that the diffusion coefficients of RTILs in the presence of flexible carbons are similar to those of bulk RTILs at varying temperatures, which is in contrast to the decreased diffusion of RTILs in the presencemore » of rigid carbons. In addition, interfacial ion number density at rigid carbon surfaces was higher than that at flexible ones, which is correlated with the accessible external surface area of carbon pieces. The life time of cation-anion pair in the presence of carbon pieces also exhibited a dependence on carbon flexibility. RTILs with dispersed rigid carbon pieces showed longer ion pair life time than those with flexible ones, in consistence with the observation in diffusion coefficients. Furthermore, this work highlights the necessity of including the carbon flexibility when performing MD simulation of RTILs in the presence of dispersed carbon pieces in order to obtain the reliable dynamical and interfacial structural properties.« less

  11. Molecular simulation study of dynamical properties of room temperature ionic liquids with carbon pieces

    SciTech Connect

    Feng, Guang; Zhao, Wei; Cummings, Peter T.; Li, Song

    2016-03-29

    Room temperature ionic liquids (RTILs) with dispersed carbon pieces exhibit distinctive physiochemical properties. In order to explore the molecular mechanism, RTILs/carbon pieces mixture we investigated it by molecular dynamics (MD) simulation in this work. Rigid and flexible carbon pieces in the form of graphene with different thicknesses and carbon nanotubes in different sizes were dispersed in a representative RTIL 1-butyl-3-methyl-imidazolium dicyanamide ([Bmim][DCA]). Our study demonstrated that the diffusion coefficients of RTILs in the presence of flexible carbons are similar to those of bulk RTILs at varying temperatures, which is in contrast to the decreased diffusion of RTILs in the presence of rigid carbons. In addition, interfacial ion number density at rigid carbon surfaces was higher than that at flexible ones, which is correlated with the accessible external surface area of carbon pieces. The life time of cation-anion pair in the presence of carbon pieces also exhibited a dependence on carbon flexibility. RTILs with dispersed rigid carbon pieces showed longer ion pair life time than those with flexible ones, in consistence with the observation in diffusion coefficients. Furthermore, this work highlights the necessity of including the carbon flexibility when performing MD simulation of RTILs in the presence of dispersed carbon pieces in order to obtain the reliable dynamical and interfacial structural properties.

  12. π(+)-π(+) stacking of imidazolium cations enhances molecular layering of room temperature ionic liquids at their interfaces.

    PubMed

    Tang, Fujie; Ohto, Tatsuhiko; Hasegawa, Taisuke; Bonn, Mischa; Nagata, Yuki

    2017-01-25

    The interfacial structure of room temperature ionic liquids (RTILs) controls many of the unique properties of RTILs, such as the high capacitance of RTILs and the efficiency of charge transport between RTILs and electrodes. RTILs have been experimentally shown to exhibit interfacial molecular layering structures over a 10 Å length scale. However, the driving force behind the formation of these layered structures has not been resolved. Here, we report ab initio molecular dynamics simulations of imidazolium RTIL/air and RTIL/graphene interfaces along with force field molecular dynamics simulations. We find that the π(+)-π(+) interaction of imidazolium cations enhances the layering structure of RTILs, despite the electrostatic repulsion. The length scales of the molecular layering at the RTIL/air and RTIL/graphene interfaces are very similar, manifesting the limited effect of the substrate on the interfacial organization of RTILs.

  13. Spectroscopic insight into the interaction of bovine serum albumin with imidazolium-based ionic liquids in aqueous solution.

    PubMed

    Satish, Lakkoji; Millan, Sabera; Sahoo, Harekrushna

    2016-11-03

    The study of protein-ionic liquid interactions is very important because of the widespread use of ionic liquids as protein stabilizer in the recent years. In this work, the interaction of bovine serum albumin (BSA) with different imidazolium-based ionic liquids (ILs) such as [1-ethyl-3-methyl-imidazolium ethyl sulfate (EmimESO4 ), 1-ethyl-3-methyl-imidazolium chloride (EmimCl) and 1-butyl-3-methyl-imidazolium chloride (BmimCl)] has been investigated using different spectroscopic techniques. The intrinsic fluorescence of BSA is quenched by ILs by the dynamic mechanism. The thermodynamic analysis demonstrates that very weak interactions exist between BSA and ILs. 8-Anilino-1-naphthalenesulfonic acid (ANS) fluorescence and lifetime measurements reveal the formation of the compact structure of BSA in IL medium. The conformational changes of BSA were monitored by CD analysis. Temperature-dependent ultraviolet (UV) measurements were done to study the thermal stability of BSA. The thermal stability of BSA in the presence of ILs follows the trend EmimESO4  > EmimCl > BmimCl and in the presence of more hydrophobic IL, destabilization increases rapidly as a function of concentration.

  14. Part I. Synthesis and characterization of C2 substituted imidazolium room temperature ionic liquids. Part II. Survey and analysis of organic chemistry textbooks

    NASA Astrophysics Data System (ADS)

    Ennis, Elliot G.

    Part I. Among room temperature ionic liquids (RTILs), those derived from the imidazolium cation are the most common. RTILs have generally been viewed solely as solvents, but they are able to participate in certain types of reactions, particularly due to the relatively high acidity at the imidazolium C2. Deprotonation affords N-heterocyclic carbenes (NHCs), which can cause unwanted side reactions. Consequently, the major limitation of imidazolium RTILs is that they cannot be used as solvents in highly basic reactions such as the Baylis-Hillman and Grignard reactions. This work reveals a convenient route for the preparation of C2-substituted imidazolium ionic liquids. This method involves the alkylation of N-heterocyclic carbenes, which are readily generated from the C2-unsubstituted imidazolium ionic liquids. It works well for nonfunctionalized alkyl chlorides and less well for alkyl bromides and iodides, likely due to competing elimination reactions. The resulting C2-substituted salts can be transformed into ionic liquids via standard anion metathesis reactions. Part II. Recent advances in media and the increasingly encyclopedic nature of traditional textbooks have made their role in college classes uncertain. In an effort to discover what is really being taught in organic chemistry courses across the US, a survey of organic chemistry professors in all 50 states was conducted to determine what material is covered in their organic chemistry courses for science majors. Survey Monkey, an online survey program, was used to construct a short 10-item survey which was sent to organic chemistry professors at various types of institutions across the nation. We sent out 2417 surveys and received 489 responses. The results of this survey revealed what topics the professors believe is core material and what they feel is extraneous. Additionally, this research identifies the things these professors would like to see changed in the organic chemistry texts. From the open

  15. Molecularly imprinted SPE coupled with HPLC for the selective separation and enrichment of alkyl imidazolium ionic liquids in environmental water samples.

    PubMed

    Xia, Gao; Jing, Fan; Guifen, Zhu; Xiaolong, Wang; Jianji, Wang

    2013-10-01

    A novel 1-butyl-3-methylimidazolium chloride ionic liquid surface imprinted solid-phase sorbent was synthesized. The as-prepared material was characterized by SEM, Brunauer-Emmett-Teller surface area analysis and Fourier Transform IR measurements. Then its adsorption properties for alkyl imidazolium ionic liquids, including adsorption capacities, adsorption kinetics, and properties of selective separation and enrichment were studied in detail. It was shown that the ionic liquid surface imprinted polymer exhibited high selective recognition characteristics for the imidazolium chloride ionic liquids with short alkyl chains (C(n)mimCl, n = 2, 4, 6, 8) and the adsorption equilibrium was achieved within 25 min. Various parameters were optimized for the 1-butyl-3-methylimidazolium chloride ionic liquid surface imprinted polymer SPE column, such as flow rate, eluent solvent, selectivity, and reusability of the column. Then, the SPE column coupled with HPLC was used for the determination of alkyl imidazolium ionic liquids. Experimental results showed that the existence of their structural analogs and common concomitants in environmental matrices did not affect the enrichment of 1-butyl-3-methyl imidazolium chloride ionic liquid. The average recoveries of 1-butyl-3-methylimidazolium chloride ionic liquid in spiked water samples were in the range of 92.0-102.0% with the RSD lower than 5.8%.

  16. Self-assembly of imidazolium-based surfactants in magnetic room-temperature ionic liquids: binary mixtures.

    PubMed

    Klee, Andreas; Prevost, Sylvain; Gradzielski, Michael

    2014-12-15

    The phase behaviour of binary mixtures of ionic surfactants (1-alkyl-3-imidazolium chloride, C(n)mimCl with n=14, 16 and 18) and imidazolium-based ionic liquids (1-alkyl-3-methylimidazolium tetrachloroferrate, C(n)mimFeCl4, with n=2 and 4) over a broad temperature range and the complete range of compositions is described. By using many complementary methods including differential scanning calorimetry (DSC), polarised microscopy, small-angle neutron and X-ray scattering (SANS/SAXS), and surface tension, the ability of this model system to support self-assembly is described quantitatively and this behaviour is compared with common water systems. The existence of micelles swollen by the solvent can be deduced from SANS experiments and represent a possible model for aggregates, which has barely been considered for ionic-liquid systems until now, and can be ascribed to the rather low solvophobicity of the surfactants. Our investigation shows that, in general, C(n)mimCl is a rather weak amphiphile in these ionic liquids. The amphiphilic strength increases systematically with the length of the alkyl chain, as seen from the phase behaviour, the critical micelle concentration, and also the level of definition of the aggregates formed.

  17. Solvents Polarity Governs Ion Interactions and Transport in a Solvated Room Temperature Ionic Liquid

    SciTech Connect

    Osti, Naresh C; Van Aken, Katherine; Thompson, Matthew W; Tiet, Felix; Jiang, Dr. De-en; Cummings, Peter; Gogotsi, Yury G.; Mamontov, Eugene

    2017-01-01

    We explore the influence of the solvent dipole moment on cation anion interactions and transport in 1-butyl-3-methyl-imidazolium bis-(trifluoromethylsulfonyl), [BMIM+][Tf2N ]. Free energy profiles derived from atomistic molecular dynamics (MD) simulations show a correlation of the cation anion separation and the equilibrium depth of the potential of mean force with the dipole moment of the solvent. Correlations of the ion diffusivity with the dipole moment and the concentration of the solvent were further demonstrated by classical MD simulations. Quasi-elastic neutron scattering experiments with deuterated solvents reveal a complex picture of nanophase separation into the ionic liquid-rich and solvent-rich phases. The experiment corroborates the trend of concentration- and dipole moment-dependent enhancement of ion mobility by the solvent, as suggested by the simulations. Despite the considerable structural complexity of ionic liquid solvent mixtures, we can rationalize and generalize the trends governing ionic transport in these complex electrolytes.

  18. Biodegradation, ecotoxicity and UV254/H2O2 treatment of imidazole, 1-methyl-imidazole and N,N'-alkyl-imidazolium chlorides in water.

    PubMed

    Spasiano, D; Siciliano, A; Race, M; Marotta, R; Guida, M; Andreozzi, R; Pirozzi, F

    2016-12-01

    Imidazole-based compounds are used as reagents for the manufacturing of other compounds including imidazolium-based ionic liquids, which have been recently proposed as a green alternative to conventional solvents. Since some imidazole-based compounds have been demonstrated to be harmful to aquatic organisms, the removal of imidazole, 1-methylimidazole, 1-ethyl-3-methyl-imidazolium chloride and 1-butyl-3-methyl-imidazolium chloride from aqueous solutions was attempted by biological oxidation, direct UV254 photolysis, and UV254/H2O2 process at pH 5.5 and 8.5. Results showed that UV254/H2O2 treatment is an effective tool for the removal of the selected compounds at both pHs. In fact, the kinetic constants of the reaction between the photogenerated HO radicals and the four target compounds, estimated by means of both numerical and competition kinetic method, range between 2.32·10(9) M(-1) s(-1) and 5.52 ·10(9) M(-1) s(-1). Moreover, an ecotoxicity assessment of the contaminated water before and after initial treatment without further processing was assessed by using two living aquatic organisms: Raphidocelis subcapitata and Daphnia magna. The results of this assessment not only corresponded closely to previous findings (in terms of EC50 values) reported in the literature, but also indicated that, in some cases, UV254/H2O2 oxidation by-products could be even more toxic than parent compounds.

  19. Solvents Polarity Governs Ion Interactions and Transport in a Solvated Room Temperature Ionic Liquid

    DOE PAGES

    Osti, Naresh C; Van Aken, Katherine; Thompson, Matthew W; ...

    2017-01-01

    We explore the influence of the solvent dipole moment on cation anion interactions and transport in 1-butyl-3-methyl-imidazolium bis-(trifluoromethylsulfonyl), [BMIM+][Tf2N ]. Free energy profiles derived from atomistic molecular dynamics (MD) simulations show a correlation of the cation anion separation and the equilibrium depth of the potential of mean force with the dipole moment of the solvent. Correlations of the ion diffusivity with the dipole moment and the concentration of the solvent were further demonstrated by classical MD simulations. Quasi-elastic neutron scattering experiments with deuterated solvents reveal a complex picture of nanophase separation into the ionic liquid-rich and solvent-rich phases. The experimentmore » corroborates the trend of concentration- and dipole moment-dependent enhancement of ion mobility by the solvent, as suggested by the simulations. Despite the considerable structural complexity of ionic liquid solvent mixtures, we can rationalize and generalize the trends governing ionic transport in these complex electrolytes.« less

  20. Why does a reduction in hydrogen bonding lead to an increase in viscosity for the 1-butyl-2,3-dimethyl-imidazolium-based ionic liquids?

    PubMed

    Hunt, Patricia A

    2007-05-10

    1-Butyl-3-methyl-imidazolium chloride ([C(4)C(1)im]Cl) is a prototypical ionic liquid. Substitution for a methyl group at the 2-position of the cation to form 1-butyl-2,3-dimethyl-imidazolium ([C(4)C(1)mim]+) eliminates the main hydrogen-bonding interaction between the Cl anion and the imidazolium cation. Loss of this hydrogen-bonding interaction could be expected to lead to a reduction in melting point and a decrease in viscosity; however the opposite is observed experimentally; melting points and viscosity increase. The gas-phase structure and electronic properties of ion pairs formed from [C(4)C(1)mim]+ and Cl- are investigated to offer insight into this counter-intuitive behavior. We hypothesize that the effects due to a loss in hydrogen bonding are outweighed by those due to a loss in entropy. The amount of disorder in the system is reduced in two ways: elimination of ion-pair conformers, which are stable for [C(4)C(1)im]Cl but not [C(4)C(1)mim]Cl, and an increase in the rotational barrier of the butyl chain, which limits free rotation and facilitates alkyl chain association. The reduction in entropy leads to greater ordering within the liquid raising the melting point and increasing viscosity. The relative stabilities of 15 conformers with respect to anion position and alkyl chain rotation are reported at the B3LYP/6-31++G(d,p) level for [C(4)C(1)mim]Cl. Hydrogen bonding between the cation and the anion is examined on the basis of structural criteria and the computed vibrational spectra (IR and Raman). Spectra for the substituted and unsubstituted cations and ion pairs are compared, and modes are identified for [C(4)C(1)mim]Cl that could be used to differentiate between rotational conformers. A natural bond orbital analysis has also been carried out, and the resultant charge distribution is compared with that of the unsubstituted analogue [C(4)C(1)im]Cl.

  1. Microscopic solvation environments in a prototype room-temperature ionic liquid as elucidated by resonance Raman spectroscopy of iodine and bromine

    NASA Astrophysics Data System (ADS)

    Saha, Satyen; Okajima, Hajime; Homma, Osamu; Hamaguchi, Hiro-o.

    2017-04-01

    Microscopic solvation environments in a prototype ionic liquid, bmimTf2N; 1-butyl-3-methyl-imidazolium-bis(trifluoromethanesulfonyl)imide, have been studied with the use of halides, X2 and Xn- (X = I, Br; n = 3,5), as molecular probes. Resonance Raman spectroscopy has been used to detect these halogen species existing in bmimTf2N as well as in reference solvents including heptane, cyclohexane, KX/H2O and benzene. In heptane and cyclohexane, only free X2 species are detected. In KX/H2O, only Xn- and, in benzene, only benzene-X2 complexes are detected. On the contrary, free X2 and Xn- are concomitantly detected in bmimTf2N, indicating that there are two distinct solvation environments in bmimTf2N, non-polar environments that solvate free X2 and polar environments that stabilize Xn-. These two distinct solvation environments are most likely to arise from microscopic structural heterogeneity of ionic liquids.

  2. Acetonitrile boosts conductivity of imidazolium ionic liquids.

    PubMed

    Chaban, Vitaly V; Voroshylova, Iuliia V; Kalugin, Oleg N; Prezhdo, Oleg V

    2012-07-05

    We apply a new methodology in the force field generation (Phys. Chem. Chem. Phys.2011, 13, 7910) to study binary mixtures of five imidazolium-based room-temperature ionic liquids (RTILs) with acetonitrile (ACN). Each RTIL is composed of tetrafluoroborate (BF(4)) anion and dialkylimidazolium (MMIM) cations. The first alkyl group of MIM is methyl, and the other group is ethyl (EMIM), butyl (BMIM), hexyl (HMIM), octyl (OMIM), and decyl (DMIM). Upon addition of ACN, the ionic conductivity of RTILs increases by more than 50 times. It significantly exceeds an impact of most known solvents. Unexpectedly, long-tailed imidazolium cations demonstrate the sharpest conductivity boost. This finding motivates us to revisit an application of RTIL/ACN binary systems as advanced electrolyte solutions. The conductivity correlates with a composition of ion aggregates simplifying its predictability. Addition of ACN exponentially increases diffusion and decreases viscosity of the RTIL/ACN mixtures. Large amounts of ACN stabilize ion pairs, although they ruin greater ion aggregates.

  3. Electrochemical properties of imidazolium salt electrolytes for electrochemical capacitor applications

    SciTech Connect

    McEwen, A.B.; Ngo, H.L.; LeCompte, K.; Goldman, J.L.

    1999-05-01

    The specific ionic conductivity, dynamic viscosity, and electrochemical stability of several imidazolium salts are reported as neat ionic liquids and their solutions in several organic solvents. The temperature dependence of conductivity and viscosity are analyzed for 1-ethyl-3-methylimidazolium (EMI{sup +}) and 1,2-dimethyl-3-n-propylimidazolium (DMPI{sup +}) salts, and the influence of the anions bis(trifluoromethylsulfonyl)imide (Im{sup {minus}}), bis(perfluoroethylsulfonyl)imide (Beti{sup {minus}}), hexafluoroarsenate (AsF{sub 6}{sup {minus}}), hexafluorophosphate (PF{sub 6}{sup {minus}}), and tetrafluoroborate (BF{sub 4}{sup {minus}}) on these properties are discussed. These imidazolium salts make possible electrolytes with high concentration (>3 M), high room temperature conductivity (up to 60 mS/cm), and a wide window of stability (>4 V at 20 {micro}A/cm{sup 2}). Differential scanning calorimetric results confirm a large glass phase for the ionic liquids, with substantial (>80 C) supercooling. Thermal gravimetric results indicate the imidazolium salts with Im{sup {minus}} and Beti{sup {minus}} anions to be thermally more stable than the lithium salt analogs. The Vogel-Tammann-Fulcher interpretation accurately describes the conductivity temperature dependence.

  4. Synthesis and Characterization of Imidazolium Linear Bisphenol Polycarbonate Hydroxides for Anion Exchange Membrane.

    PubMed

    Jang, Hohyoun; Hossain, Md Awlad; Lee, Soonho; Ha, Jaesung; Yoo, Jihoo; Kim, Kyungchul; Kim, Whangi

    2015-11-01

    A novel anion exchange membrane of imidazolium functionalized bisphenol polycarbonate was prepared for application in alkaline fuel cell. Di-imidazolium polycarbonate anionic membrane was synthesized by sequential interfacial polymerization, chloromethylation, substitution with 1-methylimidazole and ion exchange with 1.0 M KOH. Chloromethylation reaction was quantitative to achieve a high content of hydroxide ions. Introduction of conjugated imidazole ring in polymer plays an important role to improve both thermal and chemical stability. Bisphenol polycarbonate is a flexible polymer and shows a good solubility in polar organic solvent. The alkaline imidazolium bisphenol polycarbonate rendered an elevated molecular weight with excellent solubility in polar aprotic solvent. Different levels of substitution and ion exchange were investigated; the resulting membranes showed high ion exchange capacities (IECs) of up to 2.15 mmol g(-1). The imidazolium-functionalized copolymer membranes showed lower water affinity (14.2-42.8% at 30 degrees C) that satisfied an essential criterion for fuel cell application. The chemical structure of the imidazolium functionalized polycarbonate membrane was confirmed by 1H NMR spectroscopy, and also the membrane properties were evaluated by thermogravimetric analysis (TGA) and water uptake (WU), IEC and conductivity assessment. They exhibited hydroxide conductivity above 10(-2) S cm(-1) at room temperature and good chemical stability for up to five days without significant losses of ion conductivity.

  5. Ionothermal synthesis and crystal structure of a luminescent bipyridine bridged Zn(II) complex

    NASA Astrophysics Data System (ADS)

    Xiong, Wei; Xu, Wentao; Zhou, Youfu; Huang, Decai; Wang, Jinyun; Hong, Maochun; Xiong, Chunrong

    2014-02-01

    A luminescent complex, [Bmim]2[(ZnBr3)2(bpy)] (1) (bpy = 4,4‧-bipyridine, bmim = 1-butyl-3-methyl imidazolium), has been synthesized through ionothermal reaction and characterized systematically. Complex 1 exhibits isolated structure of bipyridine bridged zinc bromide units, stacked with 1-butyl-3-methyl imidazolium layers. The luminescent property of 1 has been investigated and supported by density functional theory (DFT) calculations, where the emissions are assigned to the halide-to-ligand charge transfer (XLCT) mixed with some metal-to-ligand charge transfer (MLCT) and intraligand-charge-transfer (ILCT).

  6. Imidazolium-Based Polymeric Materials as Alkaline Anion-Exchange Fuel Cell Membranes

    NASA Technical Reports Server (NTRS)

    Narayan, Sri R.; Yen, Shiao-Ping S.; Reddy, Prakash V.; Nair, Nanditha

    2012-01-01

    Polymer electrolyte membranes that conduct hydroxide ions have potential use in fuel cells. A variety of polystyrene-based quaternary ammonium hydroxides have been reported as anion exchange fuel cell membranes. However, the hydrolytic stability and conductivity of the commercially available membranes are not adequate to meet the requirements of fuel cell applications. When compared with commercially available membranes, polystyrene-imidazolium alkaline membrane electrolytes are more stable and more highly conducting. At the time of this reporting, this has been the first such usage for imidazolium-based polymeric materials for fuel cells. Imidazolium salts are known to be electrochemically stable over wide potential ranges. By controlling the relative ratio of imidazolium groups in polystyrene-imidazolium salts, their physiochemical properties could be modulated. Alkaline anion exchange membranes based on polystyrene-imidazolium hydroxide materials have been developed. The first step was to synthesize the poly(styrene-co-(1-((4-vinyl)methyl)-3- methylimidazolium) chloride through a free-radical polymerization. Casting of this material followed by in situ treatment of the membranes with sodium hydroxide solutions provided the corresponding hydroxide salts. Various ratios of the monomers 4-chloromoethylvinylbenzine (CMVB) and vinylbenzine (VB) provided various compositions of the polymer. The preferred material, due to the relative ease of casting the film, and its relatively low hygroscopic nature, was a 2:1 ratio of CMVB to VB. Testing confirmed that at room temperature, the new membranes outperformed commercially available membranes by a large margin. With fuel cells now in use at NASA and in transportation, and with defense potential, any improvement to fuel cell efficiency is a significant development.

  7. Imidazolium compounds are active against all stages of Trypanosoma cruzi.

    PubMed

    Faral-Tello, Paula; Liang, Mary; Mahler, Graciela; Wipf, Peter; Robello, Carlos

    2014-03-01

    Imidazolium salts are best known for their applications in organic synthesis as room-temperature ionic liquids, or as precursors of stable carbenes, but they also show important biological properties such as anti-oxidative effects, induction of mitochondrial membrane permeabilisation and inhibition of the infection cycle of Plasmodium falciparum. For these reasons, and since chemotherapy for Chagas disease is inefficient, the aim of this study was to test the use of imidazolium compounds against the kinetoplastid haemoflagellate aetiological agent for this disease, namely Trypanosoma cruzi. The results show that five of the tested compounds are more effective than the reference drug benznidazole against the epimastigote and trypomastigote forms of T. cruzi. Moreover, intracellular amastigotes were also affected by the compounds, which showed lower toxicity in host cells. Transmission electron microscopy analysis demonstrated that the tested agents induced alterations of the kinetoplast and particularly of the mitochondria, leading to extraordinary swelling of the organelle. These results further demonstrate that the test agents with the best profile are those bearing symmetrical bulky substituents at N(1) and N(3), displaying promising activity against all forms of T. cruzi, interesting selectivity indexes and exceptional activity at low doses. Accordingly, these agents represent promising candidates for the treatment of Chagas disease.

  8. Soft Ionization of Thermally Evaporated Hypergolic Ionic Liquid Aerosols

    DTIC Science & Technology

    2011-03-04

    NOTES For publication in J. Phys. Chem. A in March 2011 14. ABSTRACT Isolated ion pairs of a conventional ionic liquid, 1-Ethyl-3-Methyl- Imidazolium ...Bis(trifluoromethylsulfonyl)imide ([Emim+][Tf2N−]), and a reactive hypergolic ionic liquid, 1-Butyl-3-Methyl- Imidazolium Dicyanamide ([Bmim+][Dca...2011 TITLE RUNNING HEAD: Soft ionization of evaporated IL aerosols Isolated ion pairs of a conventional ionic liquid, 1-Ethyl-3-Methyl- Imidazolium

  9. Structural, thermal, dielectric and phonon properties of perovskite-like imidazolium magnesium formate.

    PubMed

    Mączka, Mirosław; Marinho Costa, Nathalia Leal; Gągor, Anna; Paraguassu, Waldeci; Sieradzki, Adam; Hanuza, Jerzy

    2016-05-18

    We report the synthesis and characterisation of a magnesium formate framework templated by protonated imidazole. Single-crystal X-ray diffraction data showed that this compound crystallizes in the monoclinic structure in the P21/n space group with lattice parameters a = 12.1246(4) Å, b = 12.2087(5) Å, c = 12.4991(4) Å and β = 91.39(1)°. The antiparallel arrangement of the dipole moments associated with imidazolium cations suggests the antiferroelectric character of the room-temperature phase. The studied compound undergoes a structural phase transition at 451 K associated with a halving of the c lattice parameter and the disappearance of the antiferroelectric order. The monoclinic symmetry is preserved and the new metrics are a = 12.261(7) Å, b = 12.290(4) Å, c = 6.280(4) Å, and β = 90.62(5)°. Raman and IR data are consistent with the X-ray diffraction data. They also indicate that the disorder of imidazolium cations plays a significant role in the mechanism of the phase transition. Dielectric data show that the phase transition is associated with a relaxor nature of electric ordering. We also report high-pressure Raman scattering studies of this compound that revealed the presence of two pressure-induced phase transitions near 3 and 7 GPa. The first transition is most likely associated with a rearrangement of the imidazolium cations without any significant distortion of these cations and the magnesium formate framework, whereas the second transition leads to strong distortion of both the framework and imidazolium cations. High-pressure data also show that imidazolium magnesium formate does not show any signs of amorphization up to 11.4 GPa.

  10. Imidazolium salt ion pairs in solution.

    PubMed

    Stassen, Hubert K; Ludwig, Ralf; Wulf, Alexander; Dupont, Jairton

    2015-06-01

    The formation, stabilisation and reactivity of contact ion pairs of non-protic imidazolium ionic liquids (ILs) in solution are conceptualized in light of selected experimental evidence as well theoretical calculations reported mainly in the last ten years. Electric conductivity, NMR, ESI-MS and IR data as well as theoretical calculations support not only the formation of contact ion pairs in solution, but also the presence of larger ionic and neutral aggregates even when dissolved in solvents with relatively high dielectric constants, such as acetonitrile and DMSO. The presence of larger imidazolium supramolecular aggregates is favoured at higher salt concentrations in solvents of low dielectric constant for ILs that contain shorter N-alkyl side chains associated with anions of low coordination ability. The stability and reactivity of neutral contact species are also dependent on the nature of the anion, imidazolium substituents, and are more abundant in ILs containing strong coordinating anions, in particular those that can form charge transfer complexes with the imidazolium cation. Finally, some ILs display reactivities as contact ion pairs rather than solvent-separated ions.

  11. Surfactant solvation effects and micelle formation in ionic liquids.

    PubMed

    Anderson, Jared L; Pino, Verónica; Hagberg, Erik C; Sheares, Valerie V; Armstrong, Daniel W

    2003-10-07

    The formation of micelles in 1-butyl-3-methyl imidazolium chloride (BMIM-Cl) and hexafluorophosphate (BMIM-PF6) were explored using different surfactants and the solvation behavior of the new micellar-ionic liquid solutions examined using inverse gas chromatography.

  12. Improving the alkaline stability of imidazolium cations by substitution.

    PubMed

    Dong, Huilong; Gu, Fenglou; Li, Min; Lin, Bencai; Si, Zhihong; Hou, Tingjun; Yan, Feng; Lee, Shuit-Tong; Li, Youyong

    2014-10-06

    Imidazolium cations are promising candidates for preparing anion-exchange membranes because of their good alkaline stability. Substitution of imidazolium cations is an efficient way to improve their alkaline stability. By combining density functional theory calculations with experimental results, it is found that the LUMO energy correlates with the alkaline stability of imidazolium cations. The results indicate that alkyl groups are the most suitable substituents for the N3 position of imidazolium cations, and the LUMO energies of alkyl-substituted imidazolium cations depend on the electron-donating effect and the hyperconjugation effect. Comparing 1,2-dimethylimidazolium cations (1,2-DMIm+) and 1,3-dimethylimidazolium cations (1,3-DMIm+) with the same substituents reveals that the hyperconjugation effect is more significant in influencing the LUMO energy of 1,3-DMIms. This investigation reveals that LUMO energy is a helpful aid in predicting the alkaline stability of imidazolium cations.

  13. Surface structured platinum electrodes for the electrochemical reduction of carbon dioxide in imidazolium based ionic liquids.

    PubMed

    Hanc-Scherer, Florin A; Montiel, Miguel A; Montiel, Vicente; Herrero, Enrique; Sánchez-Sánchez, Carlos M

    2015-10-07

    The direct CO2 electrochemical reduction on model platinum single crystal electrodes Pt(hkl) is studied in [C2mim(+)][NTf2(-)], a suitable room temperature ionic liquid (RTIL) medium due to its moderate viscosity, high CO2 solubility and conductivity. Single crystal electrodes represent the most convenient type of surface structured electrodes for studying the impact of RTIL ion adsorption on relevant electrocatalytic reactions, such as surface sensitive electrochemical CO2 reduction. We propose here based on cyclic voltammetry and in situ electrolysis measurements, for the first time, the formation of a stable adduct [C2mimH-CO2(-)] by a radical-radical coupling after the simultaneous reduction of CO2 and [C2mim(+)]. It means between the CO2 radical anion and the radical formed from the reduction of the cation [C2mim(+)] before forming the corresponding electrogenerated carbene. This is confirmed by the voltammetric study of a model imidazolium-2-carboxylate compound formed following the carbene pathway. The formation of that stable adduct [C2mimH-CO2(-)] blocks CO2 reduction after a single electron transfer and inhibits CO2 and imidazolium dimerization reactions. However, the electrochemical reduction of CO2 under those conditions provokes the electrochemical cathodic degradation of the imidazolium based RTIL. This important limitation in CO2 recycling by direct electrochemical reduction is overcome by adding a strong acid, [H(+)][NTf2(-)], into solution. Then, protons become preferentially adsorbed on the electrode surface by displacing the imidazolium cations and inhibiting their electrochemical reduction. This fact allows the surface sensitive electro-synthesis of HCOOH from CO2 reduction in [C2mim(+)][NTf2(-)], with Pt(110) being the most active electrode studied.

  14. Luminescent ionic liquid crystals from self-assembled BODIPY disulfonate and imidazolium frameworks.

    PubMed

    Olivier, Jean-Hubert; Camerel, Franck; Ulrich, Gilles; Barberá, Joaquín; Ziessel, Raymond

    2010-06-25

    A series of modular mesogenic salts based on the combination of anionic 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (F-BODIPY) 2,6-disulfonate dyes and trialkoxybenzyl-functionalised imidazolium cations has been designed and synthesised. Each salt contains a rigid dianionic BODIPY core associated with two imidazolium cations functionalised by 1,2,3-trialkoxybenzyl (alkyl=n-C(8), n-C(12) or n-C(16)) units or, in one case, with imidazolium cations functionalised by a trialkylgallate (3,4,5-trialkoxybenzoate) unit in which the 3,5-dialkyl groups are terminated with a polymerisable acrylate entity. All these compounds were highly fluorescent in solution with quantum yields ranging from 54 to 62%. In the solid state, the width of the emission band observed at around 650 nm is a clear signature of aggregation. With the trialkoxybenzylimidazolium cations, polarised optical microscopy (POM) and X-ray scattering experiments showed that columnar mesophases were formed. Differential scanning calorimetry (DSC) studies confirmed the mesomorphic behaviour from room temperature to about 130 degrees C for salts with alkyl chains containing 8, 12 and 16 carbon atoms. The strong luminescence of the BODIPY unit was maintained in the mesophase and fluorescence measurements confirmed the presence of J aggregates in all cases. The salt containing the gallate-functionalised imidazolium cations showed no mesomorphism but the acrylate terminal units could be used to engender photoinitiated polymerisation thereby allowing the material to be immobilised on glass plates. The polymerisation process was followed by FTIR spectroscopy and the fixed and patterned films were highly fluorescent with a solid-state emission close to that of the complex in the solid state.

  15. Strong tendency of homeotropic alignment and anisotropic lithium ion conductivity of sulfonate functionalized zwitterionic imidazolium ionic liquid crystals.

    PubMed

    Rondla, Rohini; Lin, Joseph C Y; Yang, C T; Lin, Ivan J B

    2013-09-17

    Here, we report the first attempt to investigate the liquid crystal (LC) behavior of SO3(-) functionalized imidazolium zwitterionic (SO3(-)ImZI) salts, which display homeotropic alignment on a glass slide without the aid of any aligning approach. Doping lithium salt to ImZI salts lowers the melting temperatures and raises the clearing temperatures substantially to form room temperature ImZILCs. Excellent anisotropic lithium ion conductivity is achieved; which is strengthened by their tendency for homeotropic alignment.

  16. Novel imidazolium salt--peptide conjugates and their antimicrobial activity.

    PubMed

    Reinhardt, A; Horn, M; Schmauck, J Pieper Gen; Bröhl, A; Giernoth, R; Oelkrug, C; Schubert, A; Neundorf, I

    2014-12-17

    Our study presents innovative research dealing with the synthesis and biological evaluation of conjugates out of antimicrobial peptides (AMPs) and imidazolium cations that are derived from ionic liquids. AMPs are considered as promising alternatives to common antibiotics due to their different activity mechanisms. Antibacterial effects have also been described for ionic liquids bearing imidazolium cations . Besides single coupling of carboxy-functionalized imidazolium cations to the peptide N-terminal we also developed conjugates bearing multiple copies of imidazolium cations. The combination of both compounds resulted in synergistic effects that were most pronounced when more imidazolium cations were attached to the peptides. In addition, antibacterial activity even in drug-resistant bacterial strains could be observed. Moreover, the novel compounds showed good selectivity only against bacterial cells, an observation that was further proven by lipid interaction studies using giant unilamellar vesicles.

  17. Modified normal-phase ion-pair chromatographic methods for the facile separation and purification of imidazolium-based ionic compounds

    SciTech Connect

    Urban, ND; Schenkel, MR; Robertson, LA; Noble, RD; Gin, DL

    2012-07-04

    lmidazolium- and oligo(imidazolium)-based ionic organic compounds are important in the design of room-temperature ionic liquid materials; however, the chromatographic analysis and separation of such compounds are often difficult. A convenient and inexpensive method for effective thin-layer chromatography (TLC) analysis and column chromatography separation of imidazolium-based ionic compounds is presented. Normal-phase ion-pair TLC is used to effectively analyze homologous mixtures of these ionic compounds. Subsequent separation of the mixtures is performed using ion-pair flash chromatography on normal-phase silica gel, yielding high levels of recovery. This method also results in a complete exchange of the counter anion on the imidazolium compounds to the anion of the ion-pair reagent. (C) 2012 Elsevier Ltd. All rights reserved.

  18. Direct Synthesis of Imidazolium-Functional Polyethylene by Insertion Copolymerization.

    PubMed

    Jian, Zhongbao; Leicht, Hannes; Mecking, Stefan

    2016-06-01

    Cationic imidazolium-functionalized polyethylene is accessible by insertion copolymerization of ethylene and allyl imidazolium tetrafluoroborate (AIm-BF4 ) with phosphinesulfonato palladium(II) catalyst precursors. Imidazolium-substituted repeat units are incorporated into the main chain and the initiating saturated chain end of the linear polymers, rather than the terminating unsaturated chain end. The counterion of the allyl imidazolium monomer is decisive, with the chloride analogue (AIm-Cl) no polymerization is observed. Stoichiometric studies reveal the formation of an inactive chloride complex from the catalyst precursor. An effect of moderate densities (0.5 mol%) of ionic groups on the copolymers' physical properties is exemplified by an enhanced wetting by water.

  19. Surface segregation in binary mixtures of imidazolium-based ionic liquids

    NASA Astrophysics Data System (ADS)

    Souda, Ryutaro

    2010-09-01

    Surface composition of binary mixtures of room-temperature ionic liquids has been investigated using time-of-flight secondary ion mass spectrometry at room temperature over a wide composition range. The imidazolium cations with longer aliphatic groups tend to segregate to the surface, and a bis(trifluoromethanesulfonyl)imide anion (Tf 2N -) is enriched at the surface relative to hexafluorophosphate (PF 6-). The surface of an equimolar mixture of Li[Tf 2N] and 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF 6]) has a nominal composition of [bmim][Tf 2N] because of surface segregation and ligand exchange. The surface segregation of cations and anions is likely to result from alignment of specific ligand-exchanged molecules at the topmost surface layer to exclude more hydrophobic part of the molecules.

  20. Biodegradation of imidazolium ionic liquids by activated sludge microorganisms.

    PubMed

    Liwarska-Bizukojc, Ewa; Maton, Cedric; Stevens, Christian V

    2015-11-01

    Biological properties of ionic liquids (ILs) have been usually tested with the help of standard biodegradation or ecotoxicity tests. So far, several articles on the identification of intermediate metabolites of microbiological decay of ILs have been published. Simultaneously, the number of novel ILs with unrecognized characteristics regarding biodegradability and effect on organisms and environment is still increasing. In this work, seven imidazolium ionic liquids of different chemical structure were studied. Three of them are 1-alkyl-3-methyl-imidazolium bromides, while the other four are tetra- or completely substituted imidazolium iodides. This study focused on the identification of intermediate metabolites of the aforementioned ionic liquids subjected to biodegradation in a laboratory activated sludge system. Both fully substituted ionic liquids and 1-ethyl-3-methyl-imidazolium bromide were barely biodegradable. In the case of two of them, no biotransformation products were detected. The elongation of the alkyl side chain made the IL more susceptible for microbiological decomposition. 1-Decyl-3-methyl-imidazolium bromide was biotransformed most easily. Its primary biodegradation up to 100 % could be achieved. Nevertheless, the cleavage of the imidazolium ring has not been observed.

  1. Electrostatic and non-covalent interactions in dicationic imidazolium-sulfonium salts with mixed anions.

    PubMed

    Fei, Zhaofu; Zhu, Dun-Ru; Yan, Ning; Scopelliti, Rosario; Katsuba, Sergey A; Laurenczy, Gabor; Chisholm, Danielle M; McIndoe, J Scott; Seddon, Kenneth R; Dyson, Paul J

    2014-04-07

    A series of thioether-functionalised imidazolium salts have been prepared and characterized. Subsequent reaction of the thioether-functionalised imidazolium salts with iodomethane affords imidazolium-sulfonium salts composed of doubly charged cations and two different anions. Imidazolium-sulfonium salts containing a single anion type are obtained either by a solvent extraction method or by anion exchange. The imidazolium-sulfonium salts undergo a methyl-transfer reaction on exposure to water, giving rise to a new, singly charged imidazolium salt with iodide introduced at the 2-position of the imidazolium ring. Crystal structures of some of the imidazolium-sulfonium salts were determined by X-ray crystallography providing the topology of the interactions between the dications and the anions. Electrospray ionization mass spectrometry and quantum-chemical calculations were used to rationalise the relative strength of these interactions.

  2. Tribological characteristics of aluminum alloys against steel lubricated by ammonium and imidazolium ionic liquids

    SciTech Connect

    Qu, Jun; Blau, Peter Julian; Dai, Sheng; Luo, Huimin; Meyer III, Harry M; Truhan, John J.

    2009-01-01

    Sliding friction and wear characteristics of aluminum alloys against AISI 52100 steel lubricated by ionic liquids (ILs) were investigated at both room and elevated temperatures. The tested aluminum alloys include a commercially pure aluminum Al 1100, a wrought alloy Al 6061-T6511, and a cast alloy Al 319-T6. The lubricating performance of two ILs with the same anion, one ammonium-based [C8H17]3NH.Tf2N and one imidazolium-based C10mim.Tf2N, were compared each other and benchmarked against that of a conventional fully-formulated engine oil. Significant friction (up to 35%) and wear (up to 55%) reductions were achieved by the ammonium IL when lubricating the three aluminum alloys compared to the engine oil. The imidazolium IL performed better than the oil but not as well as the ammonium IL for Al 1100 and 319 alloys. However, accelerated wear was unexpectedly observed for Al 6061 alloy when lubricated by C10mim.Tf2N. Surface chemical analyses implied complex tribochemical reactions between the aluminum surfaces and ILs during the wear testing, which has been demonstrated either beneficial by forming a protective boundary film or detrimental by causing severe tribo-corrosion. The effects of the IL cation structure, aluminum alloy composition, and tribo-testing condition on the friction and wear results have been discussed.

  3. Synthesis and properties of alkoxy- and alkenyl-substituted peralkylated imidazolium ionic liquids.

    PubMed

    Maton, Cedric; Brooks, Neil R; Van Meervelt, Luc; Binnemans, Koen; Schaltin, Stijn; Fransaer, Jan; Stevens, Christian V

    2013-10-21

    Novel peralkylated imidazolium ionic liquids bearing alkoxy and/or alkenyl side chains have been synthesized and studied. Different synthetic routes towards the imidazoles and the ionic liquids comprising bromide, iodide, methanesulfonate, bis(trifluoromethylsulfonyl)imide ([NTf2](-)), and dicyanamide {[N(CN)2](-)} as the anion were evaluated, and this led to a library of analogues, for which the melting points, viscosities, and electrochemical windows were determined. Incorporation of alkenyl moieties hindered solidification, except for cations with high symmetry. The alkoxy-derivatized ionic liquids are often crystalline; however, room-temperature ionic liquids (RTILs) were obtained with the weakly coordinating anions [NTf2](-) and [N(CN)2](-). For the viscosities of the peralkylated RTILs, an opposite trend was found, that is, the alkoxy derivatives are less viscous than their alkenyl-substituted analogues. Of the crystalline compounds, X-ray diffraction data were recorded and related to their molecular properties. Upon alkoxy substitution, the electrochemical cathodic limit potential was found to be more positive, whereas the complete electrochemical window of the alkenyl-substituted imidazolium salts was shifted to somewhat more positive potentials.

  4. Application of optically active chiral bis(imidazolium) salts as potential receptors of chiral dicarboxylate salts of biological relevance.

    PubMed

    González-Mendoza, Laura; Escorihuela, Jorge; Altava, Belén; Burguete, M Isabel; Luis, Santiago V

    2015-05-21

    A family of chiral bis(imidazolium) salts derived from natural amino acids has been synthesized by a simple synthetic approach and the corresponding bis(trifluoromethylsulfonyl)imide salts have been shown to be room temperature chiral ionic liquids (RTCILs). The structures and self-assembling properties of the resulting salts have been studied by (1)HNMR, ATR-FTIR, DSC, SEM and theoretical calculations. Moreover, these receptors have been applied to the enantiomeric recognition of dicarboxylic amino acids. The supramolecular complexes formed have been studied by (1)HNMR titration experiments, ATR-FTIR and DSC.

  5. Interactions in 1-ethyl-3-methyl imidazolium tetracyanoborate ion pair: Spectroscopic and density functional study

    SciTech Connect

    Mao, James X.; Lee, Anita S.; Kitchin, John R.; Nulwala, Hunaid B.; Luebke, David R.; Damodaran, Krishnan

    2013-01-25

    Density Functional Theory is used to investigate a weakly coordinating room-temperature ionic liquid, 1-ethyl-3-methyl imidazolium tetracyanoborate ([Emim]{sup +}[TCB]{sup -}). Four locally stable conformers of the ion pair were located. Atoms-in-molecules (AIM) and electron density analysis indicated the existence of several hydrogen bonds. Further investigation through the Natural Bond Orbital (NBO) and Natural Energy Decomposition Analysis (NEDA) calculations provided insight into the origin of interactions in the [Emim]{sup +}[TCB]{sup -} ion pair. Strength of molecular interactions in the ionic liquid was correlated with frequency shifts of the characteristic vibrations of the ion pair. Harmonic vibrations of the ion pair were also compared with the experimental Raman and Infrared spectra. Vibrational frequencies were assigned by visualizing displacements of atoms around their equilibrium positions and through Potential Energy Distribution (PED) analysis.

  6. Direct exfoliation of natural graphite into micrometer size few layers graphene sheets using ionic liquids

    SciTech Connect

    Wang, X.; Fulvio, P. F.; Baker, G. A.; Veith, G. M.; Unocic, R. R.; Mahurin, S., M.; Chi, M.; Dai, S.

    2010-01-01

    Stable high-concentration suspensions (up to 0.95 mg mL-1) of non-oxidized few layer graphene (FLG), five or less sheets, with micrometre-long edges were obtained via direct exfoliation of natural graphite flakes in ionic liquids, such as 1-butyl-3-methyl-imidazolium bis(trifluoro-methane-sulfonyl)imide ([Bmim]-[Tf2N]), by tip ultrasonication.

  7. Direct exfoliation of natural graphite into micrometer size few layers graphene sheets using ionic liquids

    SciTech Connect

    Wang, Xiqing; Fulvio, Pasquale F; Baker, Gary A; Veith, Gabriel M; Unocic, Raymond R; Mahurin, Shannon Mark; Dai, Sheng

    2010-01-01

    Stable high-concentration suspensions (up to 0.95 mg mL{sup -1}) of non-oxidized few layer graphene (FLG), five or less sheets, with micrometre-long edges were obtained via direct exfoliation of natural graphite flakes in ionic liquids, such as 1-butyl-3-methyl-imidazolium bis(trifluoro-methane-sulfonyl)imide ([Bmim]-[Tf{sub 2}N]), by tip ultrasonication.

  8. Chemical Kinetics Interpretation of Hypergolicity of Dicyanamide Ionic Liquid-based Systems (PREPRINT)

    DTIC Science & Technology

    2011-03-04

    REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 ...currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1 . REPORT DATE (DD-MM-YYYY) 04-03-2011 2. REPORT TYPE Journal...observed during hypergolic ignition of the ionic liquid; 1 -butyl-3-methyl-imidazolium dicyanamide with WFNA. Sensitivity analyses have been

  9. Versatile cation transport in imidazolium based polymerized ionic liquids

    NASA Astrophysics Data System (ADS)

    Evans, Christopher; Segalman, Rachel

    Polymerized ionic liquids (PIL) with tethered imidazolium groups are able to conduct a diverse array of cations relevant for energy applications. The well-known complexation of imidazolium with transition metals is exploited to bind ions such as H +, Li+, Cu2+, and Ni2+ by doping the neutral PIL with the appropriate Cation-TFSI- salt. Conductivities were first determined via AC impedance indicating that H+ salts lead to the highest conductivity (due to low ion mass and potential Grotthus mechanism) followed by Cu2+, Li+, Ag+, and Ni2+. The equilibrium constant for imidazolium complexation is larger for Cu2+ relative to Li-, Ag-, and Ni-imidazolium complexes leading to greater salt dissociation and higher conductivities. For LiTFSI and CuTFSI2 salts, metallic lithium or copper electrodes were employed in battery cells to pass a steady DC current and confirm that the cations are in fact carrying current. Interestingly, the divalent Cu2+ also ionically crosslinks the polymer leading to a plateau in the viscosity. Thus, divalent ions provide an unique route to high conductivity, high modulus polymeric electrolytes. Future studies involving ZnTFSI2 and MgTFSI2 for battery applications are proposed to examine how versatile the PIL platform is for cation transport.

  10. Hydroxide Degradation Pathways for Imidazolium Cations. A DFT Study

    SciTech Connect

    Long, H.; Pivovar, B.

    2014-05-15

    Imidazolium cations are promising candidates as covalently tetherable cations for application in anion exchange membranes. They have generated specific interest in alkaline membrane fuel cell applications where ammonium-based cations have been the most commonly applied but have been found to be susceptible to hydroxide attack. In the search for high stability cations, a detailed understanding of the degradation pathways and reaction barriers is required. In this work, we investigate imidazolium and benzimidazolium cations in the presence of hydroxide using density functional theory calculations for their potential in alkaline membrane fuel cells. Moreover, the dominant degradation pathway for these cations is predicted to be the nucleophilic addition–elimination pathway at the C-2 atom position on the imidazolium ring. Steric interferences, introduced by substitutions at the C-2, C-4, and C-5 atom positions, were investigated and found to have a significant, positive impact on calculated degradation energy barriers. Benzimidazolium cations, with their larger conjugated systems, are predicted to degrade much faster than their imidazolium counterparts. Our results provide important insight into designing stable cations for anion exchange membranes. Some of the molecules studied have significantly increased degradation energy barriers suggesting that they could possess significantly improved (several orders of magnitude) durability compared to traditional cations and potentially enable new applications.

  11. Selective quenching of 2-naphtholate fluorescence by imidazolium ionic liquids.

    PubMed

    Kumar, Vinod; Pandey, Siddharth

    2012-10-04

    The effect of addition of water-miscible ionic liquids (ILs), 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF(4)]), 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([bmim][OTf]), and 1-butyl-1-methylpyrrolidinium trifluoromethanesulfonate ([bmpyrr][OTf]), on photophysical properties of 2-naphthol in water at various pHs is reported. Electronic absorbance behavior of 2-naphthol dissolved in aqueous mixtures of ILs is observed to be similar to that found in water at different pHs. The excited-state properties, however, are changed dramatically as the IL is added to the milieu. The presence of imidazolium IL results in significant quenching of the fluorescence emission from 2-naphtholate. On the contrary, pyrrolidinium IL does not quench the fluorescence from the anionic species. The quenching of 2-naphtholate fluorescence by aromatic imidazolium cations in aqueous IL mixtures is found to follow simple Stern-Volmer behavior. The aromatic imidazolium cation acts as an electron/charge acceptor during the quenching process where formation of a weakly fluorescent complex between the imidazolium cation and the excited 2-naphtholate anion possibly involving the acidic C2 proton of imidazolium is proposed. Because of the absence of such an acidic proton, the nonaromatic pyrrolidinium cation is not able to form a complex with the excited 2-naphtholate and cannot act as an electron/charge acceptor. Excited-state emission intensity decay data further corroborate this hypothesis as the intensity decay fits well to a single-exponential decay with no change in recovered lifetimes as [bmpyrr][OTf] is added; a double-exponential decay is required to satisfactorily fit the decay data in the presence of [bmim][BF(4)], hinting at the presence of a weakly fluorescent complex. The uniqueness of ILs in affecting excited-state properties of the 2-naphthol system is demonstrated through comparison with NaBF(4), NaCl, and polyethylene glycol with an average molecular weight of

  12. T-shaped ionic liquid crystals based on the imidazolium motif: exploring substitution of the C-2 imidazolium carbon atom.

    PubMed

    Goossens, Karel; Wellens, Sil; Van Hecke, Kristof; Van Meervelt, Luc; Cardinaels, Thomas; Binnemans, Koen

    2011-04-04

    In this contribution the first examples of so-called rigid-core, T-shaped imidazolium ionic liquid crystals, in which the C-2 atom of the imidazolium ring is substituted with an aryl moiety decorated with one or two alkoxy chains, are described. The length of the alkoxy chain(s) was varied from six to eighteen carbon atoms (n=6, 10, 14-18). Whereas the compounds with one long alkoxy chain display only smectic A phases, the salts containing two alkoxy chains exhibit smectic A, multicontinuous cubic, as well as hexagonal columnar phases, as evidenced by polarising optical microscopy, differential scanning calorimetry, and powder X-ray diffraction. Structural models are proposed for the self-assembly of the molecules within the mesophases. The imidazolium head groups and the iodide counterions were found to adopt a peculiar orientation in the central part of the columns of the hexagonal columnar phases. The enantiotropic cubic phase shown by the 1,3-dimethyl-2-[3,4-bis(pentadecyloxy)phenyl]imidazolium iodide salt has a multicontinuous Pm ̄3m structure. To the best of our knowledge, this is the first example of a thermotropic cubic mesophase of this symmetry.

  13. Catalytically active lead(ii)-imidazolium coordination assemblies with diversified lead(ii) coordination geometries.

    PubMed

    Naga Babu, Chatla; Suresh, Paladugu; Srinivas, Katam; Sathyanarayana, Arruri; Sampath, Natarajan; Prabusankar, Ganesan

    2016-05-10

    Five Pb(ii)-imidazolium carboxylate coordination assemblies with novel structural motifs were derived from the reaction between the corresponding flexible, semi flexible or rigid imidazolium carboxylic acid ligands and lead nitrate. The imidazolium linker present in these molecules likely plays a triple role such as the counter ion to balance the metal charge, the ligand being an integral part of the final product and the catalyst facilitating carbon-carbon bond formation reaction. These lead-imidazolium coordination assemblies exhibit, variable chemical and thermal stabilities, as well as catalytic activity. These newly prepared catalysts are highly active towards benzoin condensation reactions with good functional group tolerance.

  14. Small nickel nanoparticle arrays from long chain imidazolium ionic liquids

    DOE PAGES

    Yang, Mei; Campbell, Paul S.; Santini, Catherine C.; ...

    2013-11-08

    A series of six long chain alkyl mono- and bi-cationic imidazolium based salts with bis(trifluoromethylsulfonyl)imide (NTf2–) as the anion were synthesized and characterized. Single crystal structure of 1-methyl-3-octadecylimidazolium bis(trifluoromethylsulfonyl)imide could be obtained by X-ray analysis. All these long chain alkyl imidazolium based ILs were applied in the synthesis of nickel nanoparticles via chemical decomposition of an organometallic precursor of nickel. In these media, spontaneous decomposition of Ni(COD)2 (COD = 1,5-cyclooctadiene) in the absence of H2 occurred giving small NPs (≤4 nm) with narrow size distributions. Interestingly, formation of regularly interspaced NP arrays was also observed in long chain ILs. Lastly,more » such array formation could be interesting for potential applications such as carbon nanotube growth.« less

  15. Small nickel nanoparticle arrays from long chain imidazolium ionic liquids

    SciTech Connect

    Yang, Mei; Campbell, Paul S.; Santini, Catherine C.; Mudring, Anja -Verena

    2013-11-08

    A series of six long chain alkyl mono- and bi-cationic imidazolium based salts with bis(trifluoromethylsulfonyl)imide (NTf2–) as the anion were synthesized and characterized. Single crystal structure of 1-methyl-3-octadecylimidazolium bis(trifluoromethylsulfonyl)imide could be obtained by X-ray analysis. All these long chain alkyl imidazolium based ILs were applied in the synthesis of nickel nanoparticles via chemical decomposition of an organometallic precursor of nickel. In these media, spontaneous decomposition of Ni(COD)2 (COD = 1,5-cyclooctadiene) in the absence of H2 occurred giving small NPs (≤4 nm) with narrow size distributions. Interestingly, formation of regularly interspaced NP arrays was also observed in long chain ILs. Lastly, such array formation could be interesting for potential applications such as carbon nanotube growth.

  16. Irreversible thermochromism in copper chloride Imidazolium Nanoparticle Networks.

    PubMed

    Kronstein, Martin; Kriechbaum, Konstantin; Akbarzadeh, Johanna; Peterlik, Herwig; Neouze, Marie-Alexandra

    2013-08-14

    In this work Imidazolium Nanoparticle Networks (INNs) with chloride counter-ions were used to complex copper dichloride. This complexation reaction leads to the formation of a green material. The properties of the copper INN material were compared to: first, copper imidazolium complexes, without the presence of silica nanoparticles, which are not thermochromic; second, chloride-containing INN material. The copper INN material showed irreversible thermochromic behaviour, with a clear colour change from green to yellow at 180 °C, which is due to a configuration change of the copper complex from planar to tetragonal. This structural change was studied using DSC and in situ SAXS measurements during heat treatment. The thermochromic material is stable under air up to 250 °C. This preliminary study opens the door of optical sensors for INN materials.

  17. Time Scales of Ion Transport in Imidazolium-based Polymers

    NASA Astrophysics Data System (ADS)

    Choi, U. Hyeok; Ye, Yuesheng; Lee, Minjae; Gibson, Harry; Elabd, Yossef; Runt, James; Colby, Ralph

    2011-03-01

    We synthesize and characterize ionic polymers with imidazolium cations covalently attached to the polymer chain and various ionic liquid counterions for ionic actuators. The imidazolium cations are attached to the polymers with flexible alkyl spacer chains and also have a variety of alkyl and alkyl ether termini. The anionic counterions are also varied; tetrafluoroborate (BF4) , hexafluorophosphate (PF6) and bis(trifluoromethanesulfonyl)imide (TFSI) were mainly used in this study. Dielectric relaxation spectroscopy (DRS) is utilized to measure the dielectric constant and conductivity, as a function of temperature. The 1953 Macdonald model is applied to estimate the number density of conducting ions and their mobility, from electrode polarization at low frequencies in DRS. The 1988 Dyre model is used to determine ion hopping times from the frequency-dependent conductivity at higher frequencies. The consequence of polymer structural variations will be elucidated for these vital characteristics.

  18. Solute-solvent interactions in imidazolium camphorsulfonate ionic liquids.

    PubMed

    Nobuoka, Kaoru; Kitaoka, Satoshi; Iio, Masashi; Harran, Thomas; Ishikawa, Yuichi

    2007-11-28

    We directly observe the interaction between 1-butyl-3-methylimidazolium (bmim) or 1-butyl-2,3-dimethylimidazolium (bm(2)im) and the solute, ethyl acrylate (EA), which is the popular dienophile in the Diels-Alder reaction and an H-bonding acceptor, by using specially designed electrospray mass spectrometry. In imidazolium ionic liquids, cation-anion interactions are controlled by selecting the appropriate anion, and the naked C(2)-H of imidazolium, which loosely interacts with its counterion, can readily interact with an H-bonding acceptable solute. The ion-counterion (solvent-solvent) interaction affects the ion-solute (solvent-solute) interaction. This relation is one of the key criteria for selecting the cation-anion combination in tailoring ILs.

  19. Imidazolium-based titanium substrates against bacterial colonization.

    PubMed

    Cavoue, T; Bounou Abassi, H; Vayssade, M; Nguyen Van Nhien, A; Kang, I-K; Kwon, G-W; Pourceau, G; Dubot, P; Abbad Andaloussi, S; Versace, D-L

    2017-02-28

    Nosocomial infections are often induced by the presence of pathogenic organisms on the surface of medical devices or hospital equipment. Chemical modifications of the surface are recognized as efficient strategies to prevent bacterial adhesion but they may have a negative impact on the material's interaction with living tissues. Here we have developed a photoactivated method for the modification of titanium substrates. A photoinduced technique employing a grafting-onto process has been successfully performed to covalently anchor an imidazolium-derivative siloxane onto titanium surfaces. Imidazolium surfaces showed higher bacteria-repellency performances than native titanium substrates, achieving more than 98% anti-adhesion efficiency against Escherichia coli after 24 h of incubation. In addition, these surfaces allowed for the adhesion and viability of osteoblasts cells without evidence of cytotoxicity.

  20. Effect of molecular orientation angle of imidazolium ring on frictional properties of imidazolium-based ionic liquid.

    PubMed

    Watanabe, S; Nakano, M; Miyake, K; Tsuboi, R; Sasaki, S

    2014-07-15

    Ionic liquids have significant potential as lubricants, and it is known that ionic liquids exhibit characteristic behavior at solid-liquid interfaces. Although it is believed that the structure of ionic liquids at the interface contributes to the tribological properties in the region of boundary-mixed lubrication, this contribution has not been clarified because such analysis is difficult. In this research, we clarify the lubrication mechanism of an imidazolium-based ionic liquid by comparing the results of friction tests with interfacial molecular orientation analysis using sum frequency generation spectroscopy. Consequently, we clarify that the tilt angle of the imidazolium ring affects the friction coefficient of the ionic liquid; that is, the larger tilt angle, the lower the friction coefficient.

  1. Microemulsions with an ionic liquid surfactant and room temperature ionic liquids as polar pseudo-phase.

    PubMed

    Zech, Oliver; Thomaier, Stefan; Bauduin, Pierre; Rück, Thomas; Touraud, Didier; Kunz, Werner

    2009-01-15

    In this investigation we present for the first time microemulsions comprising an ionic liquid as surfactant and a room-temperature ionic liquid as polar pseudo-phase. Microemulsions containing the long- chain ionic liquid1-hexadecyl-3-methyl-imidazolium chloride ([C16mim][Cl]) as surfactant, decanol as cosurfactant, dodecaneas continuous phase and room temperature ionic liquids (ethylammonium nitrate (EAN) and 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim

  2. Conformational Properties of a Polymer in an Ionic Liquid: Computer Simulations and Integral Equation Theory of a Coarse-Grained Model.

    PubMed

    Choi, Eunsong; Yethiraj, Arun

    2015-07-23

    We study the conformational properties of polymers in room temperature ionic liquids using theory and simulations of a coarse-grained model. Atomistic simulations have shown that single poly(ethylene oxide) (PEO) molecules in the ionic liquid 1-butyl 3-methyl imidazolium tetrafluoroborate ([BMIM][BF4]) are expanded at room temperature (i.e., the radius of gyration, Rg), scales with molecular weight, Mw, as Rg ∼ Mw(0.9), instead of the expected self-avoiding walk behavior. The simulations were restricted to fairly short chains, however, which might not be in the true scaling regime. In this work, we investigate a coarse-grained model for the behavior of PEO in [BMIM][BF4]. We use existing force fields for PEO and [BMIM][BF4] and Lorentz–Berthelot mixing rules for the cross interactions. The coarse-grained model predicts that PEO collapses in the ionic liquid. We also present an integral equation theory for the structure of the ionic liquid and the conformation properties of the polymer. The theory is in excellent agreement with the simulation results. We conclude that the properties of polymers in ionic liquids are unusually sensitive to the details of the intermolecular interactions. The integral equation theory is sufficiently accurate to be a useful guide to computational work.

  3. Novel luminescent hybrids by incorporating rare earth β-diketonates into polymers through ion pairing with an imidazolium counter ion.

    PubMed

    Li, Qiu-Ping; Yan, Bing

    2013-09-01

    A series of luminescent polymers are synthesized by incorporating rare earth complex units into polymer matrices. Firstly, we functionalize the selected polymer matrices with the imidazolium moieties, and then introduce the rare earth tetrakis(β-diketonate) complexes into polymer matrices through a mild anion exchange method. The resulting materials are characterized by FTIR, XRD, EDAX, SEM, thermogravimetric analysis, luminescence excitation spectra and emission spectra, luminescence lifetime measurements and diffuse reflectance UV-Vis spectra. The photoluminescence measurements indicate that all these rare earth complex functionalized polymers exhibit a characteristic luminescence emission originating from the corresponding rare earth ions. Among the hybrids, the europium tetrakis(TTA) complex functionalized polymers show remarkable luminescence quantum yields and relatively long (5)D0 lifetimes at room temperature.

  4. Hydrogen fluoride capture by imidazolium acetate ionic liquid

    NASA Astrophysics Data System (ADS)

    Chaban, Vitaly

    2015-04-01

    Extraction of hydrofluoric acid (HF) from oils is a drastically important problem in petroleum industry, since HF causes quick corrosion of pipe lines and brings severe health problems to humanity. Some ionic liquids (ILs) constitute promising scavenger agents thanks to strong binding to polar compounds and tunability. PM7-MD simulations and hybrid density functional theory are employed here to consider HF capture ability of ILs. Discussing the effects and impacts of the cation and the anion separately and together, we evaluate performance of imidazolium acetate and outline systematic search guidelines for efficient adsorption and extraction of HF.

  5. Room Acoustics

    NASA Astrophysics Data System (ADS)

    Kuttruff, Heinrich; Mommertz, Eckard

    The traditional task of room acoustics is to create or formulate conditions which ensure the best possible propagation of sound in a room from a sound source to a listener. Thus, objects of room acoustics are in particular assembly halls of all kinds, such as auditoria and lecture halls, conference rooms, theaters, concert halls or churches. Already at this point, it has to be pointed out that these conditions essentially depend on the question if speech or music should be transmitted; in the first case, the criterion for transmission quality is good speech intelligibility, in the other case, however, the success of room-acoustical efforts depends on other factors that cannot be quantified that easily, not least it also depends on the hearing habits of the listeners. In any case, absolutely "good acoustics" of a room do not exist.

  6. Highly Luminescent Salts Containing Well-Shielded Lanthanide-Centered Complex Anions and Bulky Imidazolium Countercations

    SciTech Connect

    Tang, Si-Fu; Lorbeer, Chantal; Wang, Xinjiao; Ghosh, Pushpal; Mudring, Anja-Verena

    2014-09-02

    Four salts containing imidazolium cations and europium(III)- or terbium(III)-centered complex anions have been successfully synthesized from an ethanol/H2O solution. The single-crystal X-ray diffraction analyses reveal that these compounds have a common formula of [R][Ln(DETCAP)4] [R = 1-ethyl-3-methylimidazolium (C2mim), Ln = Eu (1) and Tb (2); R = 1-butyl-3-methylimidazolium (C4mim), Ln = Eu (3) and Tb (4); DETCAP = diethyl-2,2,2-trichloroacetylphosphoramidate], in which the lanthanide centers are chelated by four chelating pseudo-β-diketonate ligands (DETCAP)-, forming the respective complex anions. Their thermal behaviors and stabilities were also investigated to study the role of the length of the side chain in the cations. Fluorescence measurements at both room temperature and liquid-nitrogen temperature show that these materials show intense characteristic europium(III) or terbium(III) emissions and have long decay times. Their overall quantum yields were determined to be in the range of 30–49%.

  7. Physicochemical Properties of Imidazolium-derived Ionic Liquids with Different C-2 Substitutions

    SciTech Connect

    Liao, Chen; Shao, Nan; Han, Kee Sung; Sun, Xiao-Guang; Jiang, Deen; Hagaman, Edward {Ed} W; Dai, Sheng

    2011-01-01

    Five room temperature ionic liquids based on C-2 substituted imidazolium cations and bis(trifluoromethanesulfonyl)imide (TFSI) anion were synthesized and their physicochemical properties: thermal property, density, viscosity, ionic conductivity, self-diffusion coefficients, and electrochemical stability were systematically investigated. The temperature dependence of both viscosity and ionic conductivities of these ionic liquids can be described by Vogel-Fulcher-Tamman (VFT) equation. Compared with the reference, 1-propyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, the introduction of functional groups at the C-2 position generally increased the viscosity and lowered the ionic conductivity. The introduction of ether group ( CH2OCH2CH2CH2CH3) at the C-2 position not only enhanced the reduction stability of the ionic liquids but also exhibited the lowest solid electrolyte interfacial resistance (RSEI). On the contrary, the introduction of a cyano group ( CN) at the C-2 position not only decreased the reduction stability but also adversely increased the SEI resistance. The effect of the C-2 substitution on the reduction stability was explained by the change of the energy level of the lowest unoccupied molecular orbital. The self-diffusion coefficients (D) of each ion were measured by pulsed field gradient nuclear magnetic resonance (PFG-NMR). The lithium transference number (tLi) of 0.5 M LiTFSI/IL solutions calculated from the self-diffusion coefficients was in the range of 0.04 and 0.09.

  8. Quasielastic neutron scattering studies on glass-forming ionic liquids with imidazolium cations.

    PubMed

    Kofu, Maiko; Tyagi, Madhusudan; Inamura, Yasuhiro; Miyazaki, Kyoko; Yamamuro, Osamu

    2015-12-21

    Relaxation processes for imidazolium-based ionic liquids (ILs) were investigated by means of an incoherent quasielastic neutron scattering technique. In order to clarify the cation and anion effects on the relaxation processes, ten samples were measured. For all of the samples, we found three relaxations at around 1 ps, 10 ps, and 100 ps-10 ns, each corresponding to the alkyl reorientation, the relaxation related to the imidazolium ring, and the ionic diffusion. The activation energy (Ea) for the alkyl relaxation is insensitive to both anion and alkyl chain lengths. On the other hand, for the imidazolium relaxation and the ionic diffusion processes, Ea increases as the anion size decreases but is almost independent of the alkyl chain length. This indicates that the ionic diffusion and imidazolium relaxation are governed by the Coulombic interaction between the core parts of the cations (imidazolium ring) and the anions. This is consistent with the fact that the imidazolium-based ILs have nanometer scale structures consisting of ionic and neutral (alkyl chain) domains. It is also found that there is a clear correlation between the ionic diffusion and viscosity, indicating that the ionic diffusion is mainly associated with the glass transition which is one of the characteristics of imidazolium-based ILs.

  9. Quasielastic neutron scattering studies on glass-forming ionic liquids with imidazolium cations

    NASA Astrophysics Data System (ADS)

    Kofu, Maiko; Tyagi, Madhusudan; Inamura, Yasuhiro; Miyazaki, Kyoko; Yamamuro, Osamu

    2015-12-01

    Relaxation processes for imidazolium-based ionic liquids (ILs) were investigated by means of an incoherent quasielastic neutron scattering technique. In order to clarify the cation and anion effects on the relaxation processes, ten samples were measured. For all of the samples, we found three relaxations at around 1 ps, 10 ps, and 100 ps-10 ns, each corresponding to the alkyl reorientation, the relaxation related to the imidazolium ring, and the ionic diffusion. The activation energy (Ea) for the alkyl relaxation is insensitive to both anion and alkyl chain lengths. On the other hand, for the imidazolium relaxation and the ionic diffusion processes, Ea increases as the anion size decreases but is almost independent of the alkyl chain length. This indicates that the ionic diffusion and imidazolium relaxation are governed by the Coulombic interaction between the core parts of the cations (imidazolium ring) and the anions. This is consistent with the fact that the imidazolium-based ILs have nanometer scale structures consisting of ionic and neutral (alkyl chain) domains. It is also found that there is a clear correlation between the ionic diffusion and viscosity, indicating that the ionic diffusion is mainly associated with the glass transition which is one of the characteristics of imidazolium-based ILs.

  10. Quasielastic neutron scattering studies on glass-forming ionic liquids with imidazolium cations

    SciTech Connect

    Kofu, Maiko; Inamura, Yasuhiro; Miyazaki, Kyoko; Yamamuro, Osamu; Tyagi, Madhusudan

    2015-12-21

    Relaxation processes for imidazolium-based ionic liquids (ILs) were investigated by means of an incoherent quasielastic neutron scattering technique. In order to clarify the cation and anion effects on the relaxation processes, ten samples were measured. For all of the samples, we found three relaxations at around 1 ps, 10 ps, and 100 ps-10 ns, each corresponding to the alkyl reorientation, the relaxation related to the imidazolium ring, and the ionic diffusion. The activation energy (E{sub a}) for the alkyl relaxation is insensitive to both anion and alkyl chain lengths. On the other hand, for the imidazolium relaxation and the ionic diffusion processes, E{sub a} increases as the anion size decreases but is almost independent of the alkyl chain length. This indicates that the ionic diffusion and imidazolium relaxation are governed by the Coulombic interaction between the core parts of the cations (imidazolium ring) and the anions. This is consistent with the fact that the imidazolium-based ILs have nanometer scale structures consisting of ionic and neutral (alkyl chain) domains. It is also found that there is a clear correlation between the ionic diffusion and viscosity, indicating that the ionic diffusion is mainly associated with the glass transition which is one of the characteristics of imidazolium-based ILs.

  11. Luminescent imidazolium carboxylate supported aggregate and infinite coordination networks of copper and zinc.

    PubMed

    Suresh, Paladugu; Radhakrishnan, Soumya; Naga Babu, Chatla; Sathyanarayana, Arruri; Sampath, Natarajan; Prabusankar, Ganesan

    2013-08-14

    The new copper dimer [LCu(DMF)]2(NO3)4(H2O)(DMF)2 (4), where L = [{1,1'-(CH2)2-C14H8)-3,3'-(CH2CO2)2}{(HCN)2CH}], and porous coordination polymers [{L2Cu(OH2)2}2Br2]x (5) and [{L2Zn(OH2)2}2Br2]x (6) have been isolated from reactions of luminescent imidazolium carboxylate ligand, LH2Br2 (3) and the corresponding metal precursors. The reaction between Cu(NO3)2·3H2O and LH2Br2 (3) in DMF at 100 °C yielded bluish green crystals of tetracationic discrete copper dimer 4, the structure of which contains a rare tetracationic [(DMF)Cu(ii)]2 dimer unit that is bridged by four carboxylates of two L in a "paddle-wheel" structure. When the reaction was carried out in the presence of a water-ethanol-methanol mixture, light green crystals of 5 were obtained. Molecule 5 comprises two-dimensional (2D) porous coordination polymeric sheets consisting of unique symmetrical dinuclear [(C(O)O)Cu(OH2)2(O(O)C)2]2 building blocks, which are connected by imidazolium anthracene spacers. The infinite 2D porous coordination polymeric sheets are further linked by significant intermolecular hydrogen-bonding interactions by bromide anions to form a three-dimensional supramolecular framework. Interestingly, the reaction between zinc dust and LH2Br2 (3) in H2O at room temperature gave similar structural features to those in 5, though they differ in terms of C-O bond distances and M-O-C angles. The solution-state UV-visible absorption spectra of 2-6 in water exhibits the comparable absorption pattern with decrease in the intensity of absorption from 5, 4, 3, 6 and 2, while the solid-state UV-visible absorption spectra of 2-6 are significantly different from the solution-state UV-visible absorption spectra. The considerable change in the fluorescent emission was observed upon complexation of 3 with corresponding metal precursors and the fluorescent emission was shifted towards the red region in the order of 2, 3, 6, 4 and 5 in water.

  12. Influence of substituents on cation-anion contacts in imidazolium perrhenates.

    PubMed

    Reich, Robert M; Cokoja, Mirza; Markovits, Iulius I E; Münchmeyer, Christian J; Kaposi, Marlene; Pöthig, Alexander; Herrmann, Wolfgang A; Kühn, Fritz E

    2015-05-14

    A series of imidazolium perrhenates with different substituents at the imidazolium ring were synthesised and characterised, including single crystal X-ray diffraction. The effect of the substitution pattern on the state of aggregation of the compounds, the charge delocalisation and the ion pairing interaction via hydrogen bonds was studied. Particularly the substitution at the C2 position of the imidazolium ring was shown to be crucial to fine-tune the ion contacts. Fluorinated substituents appear to exhibit enhanced interionic interactions. The ability to tune the degree of contacts of the perrhenate anion allows for adjusting the nucleophilicity of this anion.

  13. Alkyl-imidazolium glycosides: non-ionic-cationic hybrid surfactants from renewable resources.

    PubMed

    Salman, Abbas Abdulameer; Tabandeh, Mojtaba; Heidelberg, Thorsten; Hussen, Rusnah Syahila Duali; Ali, Hapipah Mohd

    2015-08-14

    A series of surfactants combining carbohydrate and imidazolium head groups were prepared and investigated on their assembly behavior. The presence of the imidazolium group dominated the interactions of the surfactants, leading to high CMCs and large molecular surface areas, reflected in curved rather than lamellar surfactant assemblies. The carbohydrate, on the other hand, stabilized molecular assemblies slightly and reduced the surface tension of surfactant solutions considerably. A comparative emulsion study discourages the use of pure alkyl imidazolium glycosides owing to reduced assembly stabilities compared with APGs. However, the surfactants are believed to have potential as component in carbohydrate based surfactant mixtures.

  14. Anti-tumor activity of lipophilic imidazolium salts on select NSCLC cell lines.

    PubMed

    Wright, Brian D; Deblock, Michael C; Wagers, Patrick O; Duah, Ernest; Robishaw, Nikki K; Shelton, Kerri L; Southerland, Marie R; DeBord, Michael A; Kersten, Kortney M; McDonald, Lucas J; Stiel, Jason A; Panzner, Matthew J; Tessier, Claire A; Paruchuri, Sailaja; Youngs, Wiley J

    2015-07-01

    The anti-tumor activity of imidazolium salts is highly dependent upon the substituents on the nitrogen atoms of the imidazolium cation. We have synthesized and characterized a series of naphthalene-substituted imidazolium salts and tested them against a variety of non-smallcell lung cancer cell lines. Several of these complexes displayed anticancer activity comparable to cisplatin. These compounds induced apoptosis in the NCI-H460 cell line as determined by Annexin V staining, caspase-3, and PARP cleavage. These results strongly suggest that this class of compounds can serve as potent chemotherapeutic agents.

  15. Gemini imidazolium surfactants: synthesis and their biophysiochemical study.

    PubMed

    Kamboj, Raman; Singh, Sukhprit; Bhadani, Avinash; Kataria, Hardeep; Kaur, Gurcharan

    2012-08-21

    New gemini imidazolium surfactants 9-13 have been synthesized by a regioselective epoxy ring-opening reaction under solvent-free conditions. The surface properties of these new gemini surfactants were evaluated by surface tension and conductivity measurements. These surfactants have been found to have low critical micelle concentration (cmc) values as compared to other categories of gemini cationic surfactants and also showed the tendency to form premicellar aggregates in solution at sufficiently low concentration below their cmc values. The thermal degradation of these surfactants was determined by thermograviometry analysis (TGA). These new cationic surfactants have a good DNA binding capability as determined by agarose gel electrophoresis and ethidium bromide exclusion experiments. They have also been found to have low cytotoxicity by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay on the C6 glioma cell line.

  16. Effect of composition and nanostructure on CO2/N-2 transport properties of supported alkyl-imidazolium block copolymer membranes

    SciTech Connect

    Nguyen, PT; Wiesenauer, EF; Gin, DL; Noble, RD

    2013-03-01

    Polymerized room-temperature ionic liquids (poly(RTIL)s) have garnered attention as new and interesting membrane materials for CO2/light gas separations because they combine the high CO2 affinity and thermal and chemical stability of RTILs, with the physical and mechanical properties of polymeric materials. Our group recently synthesized a new type of block copolymer (BCP) combining an imidazolium-based poly(RTIL) and an alkyl non-ionic polymer. These alkyl-b-ionic BCPs phase-separate into ordered nanostructures. Prior work investigating gas transport through phase-separated BCPs is very limited, and none has included RTIL-based BCP systems. However it has been shown that nanoscale phase-separation could facilitate gas transport via nanostructure orientation control or phase connectivity improvement. We have successfully made defect-free, thin-film composite membranes with these novel alkyl-imidazolium BCPs as a 3-20 mu m thick top layer, and determined their CO2/N-2 separation properties via single-gas permeability measurements and selectivity calculations. These new BCP materials were found to have distinct advantages over the analogous physical blends of the parent homopolymers with respect to membrane fabrication. The composition of the BCP top layer, which is directly connected to the type of nanostructure formed, was found to have a significant effect on CO2 permeability (i.e., it can increase CO2 permeability by two orders of magnitude up to an observed value of 9300 barrer). This improvement is mainly due to a large increase in the diffusion coefficient in the ordered nanostructures compared to amorphous BCP materials. (C) 2012 Elsevier B.V. All rights reserved.

  17. Calix[n]imidazolium as a new class of positively charged homo-calix compounds.

    PubMed

    Chun, Young; Singh, N Jiten; Hwang, In-Chul; Lee, Jung Woo; Yu, Seong Uk; Kim, Kwang S

    2013-01-01

    Macrocycles based on neutral calixarenes and calixpyrroles have been extensively explored for ion binding, molecular assembly and related applications. Given that only these two types of calix compounds and their analogs are available, the introduction of new forms of widely usable calix macrocycles is an outstanding challenge. Here we report the quadruply/quintuply charged imidazole-based homo-calix compounds, calix[4/5]imidazolium. The noncovalent (C-H)(+)/π(+)-anion interactions of the imidazolium rings with anions inside and outside the cone are the stabilizing factors for crystal packing, resulting in self-assembled arrays of cone-shaped calix-imidazolium molecules. Calix[4]imidazolium senses fluoride selectively even in aqueous solutions. Calix[5]imidazolium recognizes neutral fullerenes through π(+)-π interactions and makes them soluble in water, which could be useful in fullerene chemistry. Not only derivatization and ring expansion of calix[n]imidazolium, but also their utilization in ionic liquids, carbene chemistry and nanographite/graphene exfoliation could be exploited.

  18. Periodic imidazolium-bridged hybrid monolith for high-efficiency capillary liquid chromatography with enhanced selectivity.

    PubMed

    Qiao, Xiaoqiang; Zhang, Niu; Han, Manman; Li, Xueyun; Qin, Xinying; Shen, Shigang

    2017-03-01

    A novel periodic imidazolium-bridged hybrid monolithic column was developed. With diene imidazolium ionic liquid 1-allyl-3-vinylimidazolium bromide as both cross-linker and organic functionalized reagent, a new periodic imidazolium-bridged hybrid monolithic column was facilely prepared in capillary with homogeneously distributed cationic imidazolium by a one-step free-radical polymerization with polyhedral oligomeric silsesquioxane methacryl substituted. The successful preparation of the new column was verified by Fourier transform infrared spectroscopy, scanning electron microscopy, elemental analysis, and surface area analysis. Most interestingly, the bonded amount of 1-allyl-3-vinylimidazolium bromide of the new column is three times higher than that of the conventional imidazolium-embedded hybrid monolithic column and the specific surface area of the column reached 478 m(2) /g. The new column exhibited high stability, excellent separation efficiency, and enhanced separation selectivity. The column efficiency reached 151 000 plates/m for alkylbenzenes. Furthermore, the new column was successfully used for separation of highly polar nucleosides and nucleic acid bases with pure water as mobile phase and even bovine serum albumin tryptic digest. All these results demonstrate the periodic imidazolium-bridged hybrid monolithic column is a good separation media and can be used for chromatographic separation of small molecules and complex biological samples with high efficiency.

  19. Conjugated Polyelectrolytes with Imidazolium Solubilizing Groups. Properties and Application to Photodynamic Inactivation of Bacteria.

    PubMed

    Parthasarathy, Anand; Pappas, Harry C; Hill, Eric H; Huang, Yun; Whitten, David G; Schanze, Kirk S

    2015-12-30

    This article reports an investigation of the photophysical properties and the light- and dark-biocidal activity of two poly(phenyleneethynylene) (PPE)-based conjugated polyelectrolytes (CPEs) bearing cationic imidazolium solubilizing groups. The two polymers feature the same PPE-type backbone, but they differ in the frequency of imidazoliums on the chains: PIM-4 features two imidazolium units on every phenylene repeat, whereas PIM-2 contains two imidazolium units on every other phenylene unit. Both polymers are very soluble in water and polar organic solvents, but their propensity to aggregate in water differs with the density of the imidazolium units. The polymers are highly fluorescent, and they exhibit the amplified quenching effect when exposed to a low concentration of anionic electron-acceptor anthraquinone disulfonate. The CPEs are also quenched by a relatively low concentration of pyrophosphate by an aggregation-induced quenching mechanism. The biocidal activity of the cationic imidazolium CPEs was studied against both Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus bacteria in the dark and under blue-light illumination. Both polymers are effective biocides, exhibiting greater than 3 log kill with 30-60 min of light exposure at concentrations of ≤10 μg mL(-1).

  20. Atomic Resolution Insights into the Structural Aggregations and Optical Properties of Neat Imidazolium-Based Ionic Liquids.

    PubMed

    Du, Likai; Geng, Cuihuan; Zhang, Dongju; Lan, Zhenggang; Liu, Chengbu

    2016-07-14

    A fundamental understanding of the structural heterogeneity and optical properties of ionic liquids is crucial for their potential applications in catalysis, optical measurement, and solar cells. Herein, a synergistic approach combining molecular dynamics simulations, excited-state calculations, and statistical analysis was used to explore the explicit correlation between the structural and optical properties of one imidazolium amino acid-based ionic liquid, 1-butyl-3-methylimidazolium glycine. The estimated absorption spectrum successfully rationalizes the unusual and non-negligible absorption band beyond 300 nm for the neat imidazolium-based ionic liquid. The absorption behavior of imidazolium-based ionic liquids is shown to be sensitive to the details of their locally heterogeneous environments. We quantitatively highlight the imidazolium moiety and its various molecular aggregations, rather than the monomeric imidazolium moiety, that are responsible for the absorption characteristics. These results would improve our understanding of the preliminary interplay between structural heterogeneity and optical properties for neat imidazolium-based ionic liquids.

  1. Local structure and molecular motions in imidazolium hydrogen malonate crystal as studied by 2H and 13C NMR

    NASA Astrophysics Data System (ADS)

    Mizuno, M.; Chizuwa, M.; Umiyama, T.; Kumagai, Y.; Miyatou, T.; Ohashi, R.; Ida, T.; Tansho, M.; Shimizu, T.

    2015-04-01

    The local structure and molecular motion of the imidazolium hydrogen malonate crystal were investigated using solid-state 2H and 13C NMR. The imidazolium ion undergoes isotropic rotation, which is correlated with a defect in the crystal, as observed by 2H NMR broadline spectra above 263 K. A 180∘ flip of the imidazolium ion in the regular site was observed from 2H NMR quadrupole Carr-Purcell-Meiboom-Gill (QCPMG) spectra. The Grotthuss mechanism was accompanied by a 180∘ flip of the imidazolium ion in regular sites. Moreover, the proton transfer associated with the imidazolium ion of the defective crystal is important for proton conductivity of the imidazolium hydrogen malonate crystal.

  2. Dihalo(imidazolium)sulfuranes: A Versatile Platform for the Synthesis of New Electrophilic Group-Transfer Reagents.

    PubMed

    Talavera, Garazi; Peña, Javier; Alcarazo, Manuel

    2015-07-15

    The syntheses of imidazolium thiocyanates and imidazolium thioalkynes from dihalo(imidazolium) sulfuranes are reported and their reactivities as CN(+) and R-CC(+) synthons evaluated, respectively. The easy and scalable preparation of these electrophilic reagents, their operationally simple handling, broad substrate scope, and functional group tolerance clearly illustrate the potential of these species to become a reference for the direct electrophilic cyanation and alkynylation of organic substrates.

  3. Memory's Room.

    ERIC Educational Resources Information Center

    Carruthers, Mary

    1999-01-01

    Describes the Liberal Arts Studiolo from the Ducal Palace at Guibbio, Italy. Discusses how the room's design and decoration mirrors its educational uses. Notes that the object of education was to provide the young person with a kind of mental library of materials that could be drawn upon quickly. (RS)

  4. Crystallization control of SrCO{sub 3} nanostructure in imidazolium-based temperature ionic liquids

    SciTech Connect

    Li, Lishuo; Lin, Rongyi; Tong, Zhangfa; Feng, Qingge

    2012-11-15

    Highlights: ► Nanowhisker, nanospindle, nanosphere, sphere, spindle, rodlike SrCO{sub 3} were obtained. ► Nanowhisker, nanospindle SrCO{sub 3} were auto-assembled in [C{sub 8}mim]BF{sub 4} and [HOEtMIm]NT{sub f2}. ► Small size and rough surface particle show low starting decomposition temperature. ► This method is simple, easy to control in large-scale producing SrCO{sub 3} nanostructure. -- Abstract: Strontium carbonate nanostructures, with unique nanowhisker, nanospindle, nanosphere, sphere, spindle, and rodlike hierarchical structure, were synthesized in imidazolium-based room temperature ionic liquids [C{sub 4}mim]PF{sub 6}, [C{sub 4}mim]Cl, [C{sub 8}mim]Br, [C{sub 8}mim]BF{sub 4}, and [HOEtMIm]NT{sub f2}. The nanostructures were characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, and thermogravimetric analysis. The results show that the morphologies of SrCO{sub 3} were strongly dependent on the nature of the corresponding RILs, its content, and the reaction temperature. RILs can act as structure-directing agent, leading the auto-assembly of SrCO{sub 3} crystal. [C{sub 8}mim]BF{sub 4} and [HOEtMIm]NT{sub f2} favored the production of nanowhisker and nanospindle SrCO{sub 3}, respectively, whereas [C{sub 4}mim]PF{sub 6} favored the production of nanosphere. Small particles were obtained at high reaction temperature. Low starting decomposition temperature was observed. Finally, the formation mechanism of the SrCO{sub 3} crystal was preliminary presented.

  5. Ordered, microphase-separated, noncharged-charged diblock copolymers via the sequential ATRP of styrene and styrenic imidazolium monomers

    SciTech Connect

    Shi, ZX; Newell, BS; Bailey, TS; Gin, DL

    2014-12-15

    A series of imidazolium-based noncharged-charged diblock copolymers (1) was synthesized by the direct, sequential ATRP of styrene and styrenic imidazolium bis(trifluoromethyl)sulfonamide monomers with methyl, n-butyl, and n-decyl side-chains. Small-angle X-ray scattering studies on initial examples of 1 with a total of 50 repeat units and styrene:imidazolium-styrene repeat unit ratios of 25:25, 20:30, and 15:35 showed that their ability to form ordered nanostructures (i.e., sphere and cylinder phases) in their neat states depends on both the block ratio and the length of the alkyl side-chain on the imidazolium monomer. To our knowledge, the synthesis of imidazolium-based BCPs that form ordered, phase-separated nanostructures via direct ATRP of immiscible co-monomers is unprecedented. (C) 2014 Elsevier Ltd. All rights reserved.

  6. Basement utility room (room 24; air handling room), near the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Basement utility room (room 24; air handling room), near the west end of the combat operations center, looking southwest towards fan system one, air ducts, and walk-in filter rooms. The exterior equipment well is visible at the left - March Air Force Base, Strategic Air Command, Combat Operations Center, 5220 Riverside Drive, Moreno Valley, Riverside County, CA

  7. Imidazolium Cations with Exceptional Alkaline Stability: A Systematic Study of Structure-Stability Relationships.

    PubMed

    Hugar, Kristina M; Kostalik, Henry A; Coates, Geoffrey W

    2015-07-15

    Highly base-stable cationic moieties are a critical component of anion exchange membranes (AEMs) in alkaline fuel cells (AFCs); however, the commonly employed organic cations have limited alkaline stability. To address this problem, we synthesized and characterized the stability of a series of imidazolium cations in 1, 2, or 5 M KOH/CD3OH at 80 °C, systematically evaluating the impact of substitution on chemical stability. The substituent identity at each position of the imidazolium ring has a dramatic effect on the overall cation stability. We report imidazolium cations that have the highest alkaline stabilities reported to date, >99% cation remaining after 30 days in 5 M KOH/CD3OH at 80 °C.

  8. Imidazolium based probes for recognition of biologically and medically relevant anions.

    PubMed

    Kumar, Rahul; Sandhu, Sana; Singh, Prabhpreet; Kumar, Subodh

    2016-10-14

    The imidazolium derivatives due to their positive charge possess one of the most polarized and positively charged proton at C2-H to form strong ionic hydrogen bond (also termed as double ionic hydrogen bond) with anions and also provide opportunities for anion - π interactions with electron-deficient imidazolium ring. In the present review article, imidazolium based molecular probes for their ability to recognize inorganic anions like halides, cyanide, perchlorate, carboxylic acids, phosphate, sulfate etc. and their derived molecules viz. nucleotides, DNA, RNA, surfactants, proteins, etc have been discussed. The review covers the literature published after year 2009 and has > 130 references. The previous literature has already been discussed by Yoon et al in two review articles published in Chem. Soc. Rev. 2006 and 2010.

  9. Thermally stable organically modified layered silicates based on alkyl imidazolium salts.

    PubMed

    Goswami, Shailesh K; Ghosh, Smita; Mathias, Lon J

    2012-02-15

    A series of imidazolium salts having various substituents and functional groups were synthesized and characterized by FTIR and NMR spectroscopy. Organic modification of natural and synthetic layered silicates involving montmorillonite (MMT), laponite (lap), and synthetic mica (mica) was carried out by ion-exchange reaction. The obtained organo-clays were characterized by FTIR and powder X-ray diffraction techniques. Results indicate that these organically modified clays have much higher thermal stabilities compared to their corresponding imidazolium halides. It was also observed from TGA analysis that thermal stability does not depend on the functional group present at the 3-position of the imidazolium salts. These studies strongly supports premise that the removal of halide is necessary to improve the thermal stability of the organo-clay produced.

  10. Photoinduced electron transfer in an imidazolium ionic liquid and in its binary mixtures with water, methanol, and 2-propanol: appearance of Marcus-type of inversion.

    PubMed

    Sarkar, Souravi; Mandal, Sarthak; Ghatak, Chiranjib; Rao, Vishal Govind; Ghosh, Surajit; Sarkar, Nilmoni

    2012-02-02

    The photoinduced electron transfer (PET) reaction has been investigated in a room temperature imidazolium ionic liquid (RTIL), 1-ethyl-3-methylimidazolium ethyl sulfate ([Emim][EtSO(4)]) and also in [Emim][EtSO(4)]-co-solvents mixtures from N,N-dimethyl aniline (DMA) to different Coumarin dyes using steady state and time-resolved fluorescence quenching measurements. We have used water and methanol and 2-propanol as the cosolvents of RTILs for the PET study. On going from neat ionic liquid to the RTIL-co-solvents mixtures the electron transfer rate has been largely enhanced. In neat RTIL as well as in [Emim][EtSO(4)]-co-solvents mixtures, a Marcus type of inversion in the PET rate have been observed.

  11. Neighbor-directed histidine N(τ) alkylation. A route to imidazolium-containing phosphopeptide macrocycles

    SciTech Connect

    Qian, Wen-Jian; Park, Jung-Eun; Grant, Robert; Lai, Christopher C.; Kelley, James A.; Yaffe, Michael B.; Lee, Kyung S.; Burke, Terrence R.

    2015-07-07

    Our recently discovered, selective, on-resin route to N(τ)-alkylated imidazolium-containing histidine residues affords new strategies for peptide mimetic design. In this, we demonstrate the use of this chemistry to prepare a series of macrocyclic phosphopeptides, in which imidazolium groups serve as ring-forming junctions. These cationic moieties subsequently serve to charge-mask the phosphoamino acid group that directed their formation. Furthermore, neighbor-directed histidine N(τ)-alkylation opens the door to new families of phosphopeptidomimetics for use in a range of chemical biology contexts.

  12. Imidazolium-Based Lipid Analogues and Their Interaction with Phosphatidylcholine Membranes.

    PubMed

    Wang, Da; de Jong, Djurre H; Rühling, Andreas; Lesch, Volker; Shimizu, Karina; Wulff, Stephanie; Heuer, Andreas; Glorius, Frank; Galla, Hans-Joachim

    2016-12-06

    4,5-Dialkylated imidazolium lipid salts are a new class of lipid analogues showing distinct biological activities. The potential effects of the imidazolium lipids on artificial lipid membranes and the corresponding membrane interactions was analyzed. Therefore, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) was employed to create an established lipid monolayer model and a bilayer membrane. Mixed monolayers of DPPC and 4,5-dialkylimidazolium lipids differing by their alkyl chain length (C7, C11, and C15) were characterized by surface pressure-area (π-A) isotherms using a Wilhelmy film balance in combination with epifluorescence microscopy. Monolayer hysteresis for binary mixtures was examined by recording triplicate consecutive compression-expansion cycles. The lipid miscibility and membrane stability of DPPC/imidazolium lipids were subsequently evaluated by the excess mean molecular area (ΔA(ex)) and the excess Gibbs free energy (ΔG(ex)) of mixing. Furthermore, the thermotropic behavior of mixed liposomes of DPPC/imidazolium lipids was investigated by differential scanning calorimetry (DSC). The C15-imidazolium lipid (C15-IMe·HI) forms a thermodynamically favored and kinetically reversible Langmuir monolayer with DPPC and exhibits a rigidification effect on both DPPC monolayer and bilayer structures at low molar fractions (X ≤ 0.3). However, the incorporation of the C11-imidazolium lipid (C11-IMe·HI) causes the formation of an unstable and irreversible Langmuir-Gibbs monolayer with DPPC and disordered DPPC liposomes. The C7-imidazolium lipid (C7-IMe·HI) displays negligible membrane activity. To better understand these results on a molecular level, all-atom molecular dynamics (MD) simulations were performed. The simulations yield two opposing molecular mechanisms governing the different behavior of the three imidazolium lipids: a lateral ordering effect and a free volume/stretching effect. Overall, our study provides the first evidence that the membrane

  13. Neighbor-directed histidine N (τ)-alkylation: A route to imidazolium-containing phosphopeptide macrocycles.

    PubMed

    Qian, Wen-Jian; Park, Jung-Eun; Grant, Robert; Lai, Christopher C; Kelley, James A; Yaffe, Michael B; Lee, Kyung S; Burke, Terrence R

    2015-11-01

    Our recently discovered, selective, on-resin route to N(τ)-alkylated imidazolium-containing histidine residues affords new strategies for peptide mimetic design. In this, we demonstrate the use of this chemistry to prepare a series of macrocyclic phosphopeptides, in which imidazolium groups serve as ring-forming junctions. Interestingly, these cationic moieties subsequently serve to charge-mask the phosphoamino acid group that directed their formation. Neighbor-directed histidine N(τ)-alkylation opens the door to new families of phosphopeptidomimetics for use in a range of chemical biology contexts.

  14. Nonlinear absorption in ionic liquids with transition metallic atoms in the anion

    NASA Astrophysics Data System (ADS)

    Nóvoa-López, José A.; López Lago, Elena; Seijas, Julio A.; Pilar Vázquez-Tato, M.; Troncoso, Jacobo; de la Fuente, Raúl; Salgueiro, José R.; Michinel, Humberto

    2016-02-01

    Nonlinear absorption has been investigated by open aperture Z-scan in ionic liquids obtained by combination of 1-butyl-3-methyl-imidazolium cations with anions containing a transition metal (Co, Zn, Cu or Ni) and thiocyanate groups. The laser source was a Ti:Sapphire oscillator (80-fs pulses, λ = 810 nm, repetition rate of 80.75 MHz). All liquids present quite low heat capacities that favor the development of strong thermal effects. Thermal effects and nonlinear absorption make them potential materials for optical limiting purposes.

  15. Accelerated CO2 transport on surface of AgO nanoparticles in ionic liquid BMIMBF4

    NASA Astrophysics Data System (ADS)

    Ji, Dahye; Kang, Yong Soo; Kang, Sang Wook

    2015-11-01

    The AgO nanoparticles were utilized for a CO2 separation membrane. The AgO nanoparticles were successfully generated in ionic liquid 1-butyl-3-methyl imidazolium tetrafluoroborate (BMIMBF4) by favorable interaction between the surface of particles and the counteranion of BMIMBF4. The generated AgO nanoparticles were confirmed by TEM, and the average size was 20 nm. Coordinative interactions of dissociated AgO particles with BMIM+BF4- were investigated by FT-Raman spectroscopy. When the ionic liquid BMIMBF4 containing AgO nanoparticles was utilized as a CO2 separation membrane, the separation performance was largely enhanced.

  16. Dynamic response of a thin sessile drop of conductive liquid to an abruptly applied or removed electric field.

    PubMed

    Corson, L T; Mottram, N J; Duffy, B R; Wilson, S K; Tsakonas, C; Brown, C V

    2016-10-01

    We consider, both theoretically and experimentally, a thin sessile drop of conductive liquid that rests on the lower plate of a parallel-plate capacitor. We derive analytical expressions for both the initial deformation and the relaxation dynamics of the drop as the electric field is either abruptly applied or abruptly removed, as functions of the geometrical, electrical, and material parameters, and investigate the ranges of validity of these expressions by comparison with full numerical simulations. These expressions provide a reasonable description of the experimentally measured dynamic response of a drop of conductive ionic liquid 1-butyl-3-methyl imidazolium tetrafluoroborate.

  17. Dynamic response of a thin sessile drop of conductive liquid to an abruptly applied or removed electric field

    NASA Astrophysics Data System (ADS)

    Corson, L. T.; Mottram, N. J.; Duffy, B. R.; Wilson, S. K.; Tsakonas, C.; Brown, C. V.

    2016-10-01

    We consider, both theoretically and experimentally, a thin sessile drop of conductive liquid that rests on the lower plate of a parallel-plate capacitor. We derive analytical expressions for both the initial deformation and the relaxation dynamics of the drop as the electric field is either abruptly applied or abruptly removed, as functions of the geometrical, electrical, and material parameters, and investigate the ranges of validity of these expressions by comparison with full numerical simulations. These expressions provide a reasonable description of the experimentally measured dynamic response of a drop of conductive ionic liquid 1-butyl-3-methyl imidazolium tetrafluoroborate.

  18. Accelerated CO2 transport on surface of AgO nanoparticles in ionic liquid BMIMBF4

    PubMed Central

    Ji, Dahye; Kang, Yong Soo; Kang, Sang Wook

    2015-01-01

    The AgO nanoparticles were utilized for a CO2 separation membrane. The AgO nanoparticles were successfully generated in ionic liquid 1-butyl-3-methyl imidazolium tetrafluoroborate (BMIMBF4) by favorable interaction between the surface of particles and the counteranion of BMIMBF4. The generated AgO nanoparticles were confirmed by TEM, and the average size was 20 nm. Coordinative interactions of dissociated AgO particles with BMIM+BF4− were investigated by FT-Raman spectroscopy. When the ionic liquid BMIMBF4 containing AgO nanoparticles was utilized as a CO2 separation membrane, the separation performance was largely enhanced. PMID:26549605

  19. Imidazolium-based ionic liquids grafted on solid surfaces.

    PubMed

    Xin, Bingwei; Hao, Jingcheng

    2014-01-01

    Supported ionic liquids (SILs), which refer to ionic liquids (ILs) immobilized on supports, are among the most important derivatives of ILs. The immobilization process of ILs can transfer their desired properties to substrates. Combination of the advantages of ILs with those of support materials will derive novel performances while retaining properties of both moieties. SILs have been widely applied in almost all of fields involving ILs, and have brought about drastic expansion of the ionic liquid area. As green media in organic catalytic reactions, based on utilizing the ability of ILs to stabilize the catalysts, they have many advantages over free ILs, including avoiding the leaching of ILs, reducing their amount, and improving the recoverability and reusability of both themselves and catalysts. This has critical significance from both environmental and economical points of view. As novel functional materials in surface science and material chemistry, SILs are ideal surface modifying agents. They can modify and improve the properties of solids, such as wettability, lubricating property, separation efficiency and electrochemical response. With the achievements in the field of ILs, using magnetic nanoparticles (MNPs) to SILs has drawn increasing attention in catalytic reactions and separation technologies, and achieved substantial progress. The combination of MNPs and ILs renders magnetic SILs, which exhibit the unique properties of ILs as well as facile separation by an external magnetic field. In this article, we focus on imidazolium-based ILs covalently grafted to non-porous and porous inorganic materials. The excellent stability and durability of this kind of SILs offer a great advantage compared with free ILs and IL films physically adsorbed on substrates without covalent bonds. Including examples from our own research, we overview mainly the applications and achievements of covalent-linked SILs in catalytic reactions, surface modification, separation

  20. Universal charge quenching and stability of proteins in 1-methyl-3-alkyl (hexyl/octyl) imidazolium chloride ionic liquid solutions.

    PubMed

    Rawat, Kamla; Bohidar, H B

    2012-09-13

    This study reports pH dependent stability of protein dispersions of five common proteins, bovine serum albumin (BSA), human serum albumin (HSA), immunoglobulin (IgG), β-lactoglobulin (β-Lg), and gelatin-B (Gel-B), all having isoelectric pH, pI ≈ 5, in room temperature ionic liquid solutions of 1-methyl-3-alkyl (hexyl/octyl) imidazolium chloride (concentration 0-0.2% w/v). Molecular hydrophobicity index, (H-index = hydrophobicity/hydrophilicity) of these molecules spanned the range 0.43-0.87. Electrophoretic characteristics, surface tension data and hydrodynamic size information revealed that IL solutions provide dispersion stability owing to specific protein-IL binding which did not alter their pI values though their surface charge was considerably screened. Change in maximum (ζ(max)) and minimum (ζ(min)) zeta potential values observed at pH ~3 (maximum protonated state) and pH ~8 (maximum deprotonated state) could be described universally as function of IL concentration, c as Δζ(x) = [1 - exp(-ac)] where Δζ(x) is either |(ζ(max) - ζ(w))|/ζ(w) or |(ζ(min) - ζ(w))|/ζ(w), and ζ(w) is the corresponding value in water. Tensiometry data showed two major stages of protein-IL interactions: (i) for c < cmc of IL, the IL molecules selectively bind with imidazolium cation through electrostatic forces forming protein-IL (complex) and (ii) for c> cmc free IL-aggregates begin to form. Similarly, we can define Δγ(x) as either |(γ(max) - γ(w))|/γ(w) at pH 3 or |(γ(min) - γ(w))|/γ(w) at pH 8. Both Δζ(x) and Δγ(x) showed linear dependence with c, Δγ(min, max) (or Δζ(min, max)) = (1 - K(γ) (or K(ζ)) H-index), where the slopes K(ζ) and K(γ) defined intermolecular interactions. Hydrodynamic radii data revealed protein stabilization, circular dichroism spectra implied retention of secondary structures, and Raman spectra confirmed a marginal increase in water structure. Results concluded that selective binding of IL molecules to protein surface in

  1. Effect of water on structure of hydrophilic imidazolium-based ionic liquid.

    PubMed

    Takamuku, Toshiyuki; Kyoshoin, Yasuhiro; Shimomura, Takuya; Kittaka, Shigeharu; Yamaguchi, Toshio

    2009-08-06

    The state of water in room-temperature ionic liquid, 1-ethyl-3-methylimidazolium tetrafluoroborate (EMI(+)BF(4)(-)), has been investigated by measurements of absorption and desorption isotherms, attenuated total reflectance infrared (ATR-IR) spectroscopy, and (2)H NMR relaxation method. The absorption enthalpies of water for the ionic liquid were estimated from the absorption isotherms. The enthalpies in the water mole fraction range of x(w) approximately 0.3. In addition, the activation energies for the rotational motion of a water molecule estimated from the (2)H NMR relaxation rates have indicated that the motion of water molecules in EMI(+)BF(4)(-)-D(2)O solutions gradually becomes freer with increasing water content from x(w) = 0.10 to 0.30, but is retarded again at x(w) = 0.33. Therefore, all the present findings have suggested that the state of water molecules in EMI(+)BF(4)(-) significantly changes at x(w) approximately 0.3. On the other hand, to directly observe the effect of water on structure of EMI(+)BF(4)(-), LAXS experiments have been made on EMI(+)BF(4)(-)-water solutions. It has been suggested that the interactions between the C(2) atom within the imidazolium ring of EMI(+) and BF(4)(-) are strengthened with increasing water content, while those at the C(4) and C(5) atoms weaken. Thus, the present LAXS experiments have clarified the beginning of formation of ion pair in EMI(+)BF(4)(-) by adding water at the molecular level.

  2. Alkyl imidazolium ionic-liquid-mediated formation of gold particle superstructures.

    PubMed

    Ji, Qingmin; Acharya, Somobrata; Richards, Gary J; Zhang, Shaoling; Vieaud, Julien; Hill, Jonathan P; Ariga, Katsuhiko

    2013-06-18

    The development of new methodologies for controlling the organization of quantum materials in multiple dimensions is crucial to the advancement of device fabrication. By using a self-assembly route using selected imidazolium ionic liquids bearing long alkyl chains (C(n)Imida, n = 8, 10, 12) as ligands, we have achieved a tunable assembly of quantum-sized gold nanoparticles. The initial stabilizer of the gold nanoparticles was partially or wholly substituted depending on the concentration and alkyl chain length. π-π interactions between imidazolium rings also promote the generation of spatially controlled aggregates from the nanometer to micrometer size regimes. In particular, in the case of an imidazolium ionic liquid with decyl chains, gold particles assemble into a core-shell spherical superstructure induced by the aggregation of imidazolium ionic liquid molecules during ligand exchange. Conceptually, the assemblies of nanoparticles mimic biological systems and provide strategies for the organization of single-component nanomaterials into functional assemblies for potential applications. Our approach is general and can be applied to other types of nanomaterials for facile manipulation of the assembly processes, permitting an exploration of physicochemical properties as well as technological applications.

  3. Properties of Apolar Solutes in Alkyl Imidazolium-Based Ionic Liquids: The Importance of Local Interactions.

    PubMed

    Lesch, Volker; Heuer, Andreas; Holm, Christian; Smiatek, Jens

    2016-02-03

    The solvation and the dynamic properties of apolar model solutes in alkyl imidazolium-based ionic liquids (IL) are studied by using all-atom molecular dynamics simulations. In regards to specific IL effects, we focused on the often used 1-ethyl-3-methyl imidazolium cation in combination with the anions tetrafluoroborate, acetate, and bis(trifluoromethanesulfonyl)imide. Our findings reveal that the size of the anion crucially influences the accumulation behavior of the cations, which results in modified IL solvation properties. Deviations between the different alkyl imidazolium-based IL combinations can be also observed with regard to the results for the radial distribution functions, the number of surrounding molecules, and the molecular orientation. The analysis of the van Hove function further shows pronounced differences in the dynamic behavior of the solutes. The simulations verify that the solute mobilities are mainly influenced by the composition of the local solvent shell and the properties of the underlying Lennard-Jones interactions. Additional simulations with regard to modified short-range dispersion energies for alkyl imidazolium-based ILs validate our conclusions.

  4. Imidazolium tagged acridines: Synthesis, characterization and applications in DNA binding and anti-microbial activities

    NASA Astrophysics Data System (ADS)

    Raju, Gembali; Vishwanath, S.; Prasad, Archana; Patel, Basant K.; Prabusankar, Ganesan

    2016-03-01

    New water soluble 4,5-bis imidazolium tagged acridines have been synthesized and structurally characterized by multinuclear NMR and single crystal X-ray diffraction techniques. The DNA binding and anti-microbial activities of these acridine derivatives were investigated by fluorescence and far-UV circular dichroism studies.

  5. Decomposition of Imidazolium-Based Ionic Liquids in Contact with Lithium Metal.

    PubMed

    Schmitz, Paulo; Jakelski, Rene; Pyschik, Marcelina; Jalkanen, Kirsi; Nowak, Sascha; Winter, Martin; Bieker, Peter

    2017-03-09

    Ionic liquids (ILs) are considered to be suitable electrolyte components for lithium-metal batteries. Imidazolium cation based ILs were previously found to be applicable for battery systems with a lithium-metal negative electrode. However, herein it is shown that, in contrast to the well-known IL N-butyl-N-methylpyrrolidinium bis[(trifluoromethyl)sulfonyl]imide ([Pyr14 ][TFSI]), 1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide ([C2MIm][TFSI]) and 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide ([C4MIm][TFSI]) are chemically unstable versus metallic lithium. A lithium-metal sheet was immersed in pure imidazolium-based IL samples and aged at 60 °C for 28 days. Afterwards, the aged IL samples were investigated to deduce possible decomposition products of the imidazolium cation. The chemical instability of the ILs in contact with lithium metal and a possible decomposition starting point are shown for the first time. Furthermore, the investigated imidazolium-based ILs can be utilized for lithium-metal batteries through the addition of the solid-electrolyte interphase (SEI) film-forming additive fluoroethylene carbonate.

  6. Imidazolium-tagged glycan probes for non-covalent labeling of live cells.

    PubMed

    Benito-Alifonso, David; Tremell, Shirley; Sadler, Joanna C; Berry, Monica; Galan, M Carmen

    2016-04-07

    Selective, bioorthogonal and fast labeling of glycoconjugates in living cells is a major challenge for synthetic and cellular biology. Here we report the use imidazolium tagged-mannosamine derivative (ITag-Man) for the non-covalent, rapid and site-specific labeling of sialic acid containing glycoproteins using commercial N-nitrilotriacetate fluorescent reagents in a range of cell lines.

  7. New Insights Into the Role of Imidazolium-Based Promoters for the Electroreduction of CO2 on a Silver Electrode.

    PubMed

    Lau, Genevieve P S; Schreier, Marcel; Vasilyev, Dmitry; Scopelliti, Rosario; Grätzel, Michael; Dyson, Paul J

    2016-06-29

    The electrochemical reduction of CO2 to CO is a reaction of central importance for sustainable energy conversion and storage. Herein, structure-activity relationships of a series of imidazolium-based cocatalysts for this reaction are described, which demonstrate that the C4- and C5-protons on the imidazolium ring are vital for efficient catalysis. Further investigation of these findings led to the discovery of new imidazolium salts, which show superior activity as cocatalysts for the reaction, i.e., CO is selectively produced at significantly lower overpotentials with nearly quantitative faradaic yields for CO.

  8. Effects of substituents and substitution positions on alkaline stability of imidazolium cations and their corresponding anion-exchange membranes.

    PubMed

    Si, Zhihong; Qiu, Lihua; Dong, Huilong; Gu, Fenglou; Li, Youyong; Yan, Feng

    2014-03-26

    Imidazolium cations with butyl groups at various substitution positions (N1-, C2-, and N3-), 1-butyl-2,3-dimethylimidazolium ([N1-BDMIm](+)), 2-butyl-1,3-dimethylimidazolium ([C2-BDMIm](+)), and 3-butyl-1,2-dimethylimidazolium ([N3-BDMIm](+)), were synthesized. Quantitative (1)H NMR spectra and density functional theory calculation were applied to investigate the chemical stability of the imidazolium cations in alkaline solutions. The results suggested that the alkaline stability of the imidazolium cations was drastically affected by the C2-substitution groups. The alkaline stability of imidazolium cations with various substitution groups at the C2-position, including 2-ethyl-1-butyl-3-methylimidazolium ([C2-EBMIm](+)), 1,2-dibutyl-3-methylimidazolium ([C2-BBMIm](+)), and 2-hydroxymethyl-1-butyl-3-methylimidazolium ([C2-HMBMIm](+)), was further studied. The butyl group substituted imidazolium cation ([C2-BBMIm](+)) exhibited the highest alkaline stability at the elevated temperatures. The synthesized anion-exchange membranes based on the [C2-BBMIm](+) cation showed promising alkaline stability. These observations should pave the way to the practical application of imidazolium-based anion exchange membrane fuel cells.

  9. Multitask Imidazolium Salt Additives for Innovative Poly(l-lactide) Biomaterials: Morphology Control, Candida spp. Biofilm Inhibition, Human Mesenchymal Stem Cell Biocompatibility, and Skin Tolerance.

    PubMed

    Schrekker, Clarissa M L; Sokolovicz, Yuri C A; Raucci, Maria G; Selukar, Balaji S; Klitzke, Joice S; Lopes, William; Leal, Claudio A M; de Souza, Igor O P; Galland, Griselda B; Dos Santos, João Henrique Z; Mauler, Raquel S; Kol, Moshe; Dagorne, Samuel; Ambrosio, Luigi; Teixeira, Mário L; Morais, Jonder; Landers, Richard; Fuentefria, Alexandre M; Schrekker, Henri S

    2016-08-24

    Candida species have great ability to colonize and form biofilms on medical devices, causing infections in human hosts. In this study, poly(l-lactide) films with different imidazolium salt (1-n-hexadecyl-3-methylimidazolium chloride (C16MImCl) and 1-n-hexadecyl-3-methylimidazolium methanesulfonate (C16MImMeS)) contents were prepared, using the solvent casting process. Poly(l-lactide)-imidazolium salt films were obtained with different surface morphologies (spherical and directional), and the presence of the imidazolium salt in the surface was confirmed. These films with different concentrations of the imidazolium salts C16MImCl and C16MImMeS presented antibiofilm activity against isolates of Candida tropicalis, Candida parapsilosis, and Candida albicans. The minor antibiofilm concentration assay enabled one to determine that an increasing imidazolium salt content promoted, in general, an increase in the inhibition percentage of biofilm formation. Scanning electron microscopy micrographs confirmed the effective prevention of biofilm formation on the imidazolium salt containing biomaterials. Lower concentrations of the imidazolium salts showed no cytotoxicity, and the poly(l-lactide)-imidazolium salt films presented good cell adhesion and proliferation percentages with human mesenchymal stem cells. Furthermore, no acute microscopic lesions were identified in the histopathological evaluation after contact between the films and pig ear skin. In combination with the good morphological, physicochemical, and mechanical properties, these poly(l-lactide)-based materials with imidazolium salt additives can be considered as promising biomaterials for use in the manufacturing of medical devices.

  10. Intramolecular general acid catalysis of the hydrolysis of 2-(2'-imidazolium)phenyl phosphate, and bond length-reactivity correlations for reactions of phosphate monoester monoanions.

    PubMed

    Brandão, Tiago A S; Orth, Elisa S; Rocha, Willian R; Bortoluzzi, Adailton J; Bunton, Clifford A; Nome, Faruk

    2007-05-11

    Rate constants for the hydrolysis of 2-(2'-imidazolium)phenyl hydrogen phosphate (IMPP) in water at pH<6 indicate that activation by the imidazolium moiety disappears with the deprotonation of the phosphate group, and the reaction involves the hydrogen-bonding of the imidazolium NH with the aryl oxygen leaving group. The reaction should involve a near-planar conformation of the imidazolium and the phenyl groups in the activated complex, which favors proton-transfer. The crystal structure of IMPP was solved, and a bond length-reactivity correlation for reactions of phosphate monoester monoanions is described.

  11. Influence of oxygen functionalities on the environmental impact of imidazolium based ionic liquids.

    PubMed

    Deng, Yun; Besse-Hoggan, Pascale; Sancelme, Martine; Delort, Anne-Marie; Husson, Pascale; Gomes, Margarida F Costa

    2011-12-30

    Several physico-chemical properties relevant to determine the environmental impact of ionic liquids - aqueous solubility, octanol-water partition coefficient and diffusion coefficients in water at infinite dilution - together with toxicity and biodegradability of ionic liquids based on 1-alkyl-3-methylimidazolium cations with or without different oxygenated functional groups (hydroxyl, ester and ether) are studied in this work. The presence of oxygen groups on the imidazolium cation reduces the toxicity of ionic liquids 1-alkyl-3-methylimidazolium with bis(trifluoromethylsulfonyl)imide or octylsulfate anions and simultaneously decreases the value of their octanol-water partition coefficient. The presence of ester functions renders the ionic liquids more easily biodegradable, especially for long alkyl side-chains in the cation but leads to hydrolysis with the formation of reaction products that accumulate. The imidazolium ring is resistant to biodegradability and to abiotic degradation. The oxygen functionalised ionic liquids are more soluble in water and, diffuse more slowly in this medium.

  12. Vibrational Spectroscopic Study of Imidazolium Dicationic Ionic Liquids: Effect of Cation Alkyl Chain Length

    NASA Astrophysics Data System (ADS)

    Moumene, T.; Belarbi, E. H.; Haddad, B.; Villemin, D.; Abbas, O.; Khelifa, B.; Bresson, S.

    2016-05-01

    Two new dicationic ionic liquids were synthesized: bis-methyl imidazolium methylidene hexafluorophosphate [M(CH2)IM2 +][2PF 6 - ] and bis-methyl imidazolium propylidene hexafluorophosphate [M(CH2)3IM2 +][2PF 6 - ]. Their structures were identified by H, C, P, F NMR, FTIR/ATR, and FT-Raman spectroscopies in order to study the effect of cation alkyl chain length on vibration behaviors. Several changes were recorded, which were related to alkyl chain length. A frequency shift was observed in some modes while others remained insensitive. A greater number of peaks was found in the FTIR/ATR spectra and the FT-Raman spectra with increasing alkyl chain length, which indicated that chain length influences the N-C connection twisting. More peaks with strong intensity appeared for longer alkyl chain lengths.

  13. Infrared and Ultraviolet Spectroscopy of Gas-Phase Imidazolium and Pyridinium Ionic Liquids.

    NASA Astrophysics Data System (ADS)

    Young, Justin W.; Booth, Ryan S.; Annesley, Christopher; Stearns, Jaime A.

    2015-06-01

    Ionic liquids (ILs) are a highly variable and potentially game-changing class of molecules for a number of Air Force applications such as satellite propulsion, but the complex nature of IL structure and intermolecular interactions makes it difficult to adequately predict structure-property relationships in order to make new IL-based technology a reality. For example, methylation of imidazolium ionic liquids leads to a substantial increase in viscosity but the underlying physical mechanism is not understood. In addition, the role of hydrogen bonding in ILs, and especially its relationship to macroscopic properties, is a matter of ongoing research. Here we describe the gas-phase spectroscopy of a series of imidazolium- and pyridinium-based ILs, using a combination of infrared spectroscopy and density functional theory to establish the intermolecular interactions present in various ILs, to assess how well they are described by theory, and to relate microscopic structure to macroscopic properties.

  14. Identification of Structural Motifs of Imidazolium Based Ionic Liquids from Jet-Cooled Infrared Spectroscopy.

    NASA Astrophysics Data System (ADS)

    Young, Justin W.; Booth, Ryan S.; Annesley, Christopher; Stearns, Jaime A.

    2016-06-01

    Highly variable and potentially revolutionary, ionic liquids (IL) are a class of molecules with potential for numerous Air Force applications such as satellite propulsion, but the complex nature of IL structure and intermolecular interactions makes it difficult to adequately predict structure-property relationships in order to make new IL-based technology a reality. For example, methylation of imidazolium ionic liquids leads to a substantial increase in viscosity but the underlying physical mechanism is not understood. In addition the role of hydrogen bonding in ILs, especially its relationship to macroscopic properties, is a matter of ongoing research. Here, structural motifs are identified from jet-cooled infrared spectra of different imidazolium based ionic liquids, such as 1-ethyl-3-methylimidazolium bis(trifluoromethyl-sulfonyl)imide. Measurements of the C-H stretches indicate three structural families present in the gas phase.

  15. Electrospray mass spectral fragmentation study of N,N'-disubstituted imidazolium ionic liquids.

    PubMed

    Lesimple, Alain; Mamer, Orval; Miao, Weishi; Chan, Tak Hang

    2006-01-01

    The tandem positive electrospray mass spectrometry (ESMS(n)) fragmentation of ionic liquids incorporating the 1-methyl-imidazolium ring substituted on N(II) with an alkyl chain functionalized with an alcohol, carboxylic acid, or an iodobenzyl or iodobenzoyl ester is presented for the first time. The influence of chain length and function is studied. Esterified structures led to intense CID fragments lacking the imidazolium ring allowing full characterization of the ester moiety. Fragment ion compositions for this interesting and newly important class of compounds are established through accurate mass data and deuterium labeling. The presence of the cationic ring system produces intense even electron molecular cations in electrospray that undergo multiple stages of CID to yield fragments which often are radical cations. Unusual losses of methyl and hydrogen radicals are frequently noted.

  16. Nature of the C2-methylation effect on the properties of imidazolium ionic liquids.

    PubMed

    Rodrigues, Ana S M C; Lima, Carlos F R A C; Coutinho, João A P; Santos, Luís M N B F

    2017-02-15

    Methylation at the C2 position of 1,3-disubstituted imidazolium-based ionic liquids (ILs) is one of the structural features that has gained attention due to its drastic impact on thermophysical and transport properties. Several hypotheses have been proposed to explain this effect but there is still much discrepancy. Aiming for the rationalization of the effects of these structural features on the properties of imidazolium ILs, we present a thermodynamic and computational study of two methylated ILs at the C2 position of imidazolium, [(1)C4(2)C1(3)C1im][NTf2] and [(1)C3(2)C1(3)C1im][NTf2]. The phase behaviour (glass transition and vaporization equilibrium) and computational studies of the anion rotation around the cation and ion pair interaction energies for both ILs were explored. The results have shown that C2-methylation has no impact on the enthalpy of vaporization. However, it decreases the entropy of vaporization, which is a consequence of the change in the ion pair dynamics that affects both the liquid and gas phases. In addition, the more hindered dynamics of the ion pair are also reflected in the increase in the glass transition temperature, Tg. The entropic contribution of anion-around-cation rotation in the imidazolium [NTf2] ILs was quantified experimentally by the comparative analysis of the entropy of vaporization, and computationally by the calculation of the entropies of hindered internal rotation. The global results exclude the existence of significant H-bonding in the C2-protonated (non-methylated) ILs and explain the C2-methylation effect in terms of reduced entropy of the ion pair in the liquid and gas phases. In light of these results, the C2-methylation effect is intrinsically entropic and originates from the more hindered anion-around-cation rotation as a consequence of the substitution of the -H with a bulkier -CH3 group.

  17. Equimolar CO(2) capture by imidazolium-based ionic liquids and superbase systems

    SciTech Connect

    Dai, Sheng; Wang, Chongmin; Luo, Huimin; Luo, Xiaoyan; Li, Qing; Li, Haoran

    2010-01-01

    Imidazolium-based ionic liquids continue to attract interest in many areas of chemistry because of their low melting points, relatively low viscosities, ease of synthesis, and good stabilities against oxidative and reductive conditions. However, they are not totally inert under many conditions due to the intrinsic acidity of hydrogen at the C-2 position in the imidazolium cation. In this work, this intrinsic acidity was exploited in combination with an organic superbase for the capture of CO{sub 2} under atmospheric pressure. During the absorption of CO{sub 2}, the imidazolium-based ionic liquid containing an equimolar superbase reacted with CO{sub 2} to form a liquid carboxylate salt so that the equimolar capture of CO{sub 2} with respect to the base was achieved. The effects of ionic liquid structures, types of organic superbases, absorption times, and reaction temperatures on the capture of CO{sub 2} were investigated. Our results show that this integrated ionic liquid-superbase system is capable of rapid and reversible capture of about 1 mol CO{sub 2} per mole of ionic liquid. Furthermore, the captured CO{sub 2} can be readily released by either heating or bubbling N{sub 2}, and recycled with little loss of its capture capability. This efficient and reversible catch-and-release process using the weak acidity of the C-2 proton in nonvolatile imidazolium-based ionic liquids provides a good alternative to the current CO{sub 2} capture methods that use volatile alkanols, amines, or water.

  18. Exploiting the Imidazolium Effect in Base-free Ammonium Enolate Generation: Synthetic and Mechanistic Studies.

    PubMed

    Young, Claire M; Stark, Daniel G; West, Thomas H; Taylor, James E; Smith, Andrew D

    2016-11-07

    N-Acyl imidazoles and catalytic isothiourea hydrochloride salts function as ammonium enolate precursors in the absence of base. Enantioselective Michael addition-cyclization reactions using different α,β-unsaturated Michael acceptors have been performed to form dihydropyranones and dihydropyridinones with high stereoselectivity. Detailed mechanistic studies using RPKA have revealed the importance of the "imidazolium" effect in ammonium enolate formation and have highlighted key differences with traditional base-mediated processes.

  19. Low-frequency Raman spectra and fragility of imidazolium ionic liquids

    SciTech Connect

    Ribeiro, Mauro C. C.

    2010-07-14

    Raman spectra within the 5-200 cm{sup -1} range have been recorded as a function of temperature for different ionic liquids based on imidazolium cations. A correlation has been found between fragility and the temperature dependence of the strength of fast relaxational motions. Understanding quasielastic scattering as the relaxational contribution to ionic mean-squared displacement elucidates some effects on ionic liquids' fragility resulting from modifications in the chemical structure.

  20. Therapeutic effect of a multi-targeted imidazolium compound in hepatocellular carcinoma.

    PubMed

    Gopalan, Began; Narayanan, Karthikeyan; Ke, Zhiyuan; Lu, Ting; Zhang, Yugen; Zhuo, Lang

    2014-08-01

    Hepatocellular carcinoma (HCC) is one of the most commonly diagnosed lethal cancers in the world. We previously showed two imidazolium salts (IBN-1 and IBN-9) with a moderate efficacy for HCC. Here we report a more potent imidazolium compound IBN-65 (1-benzyl-2-phenyl-3-(4-isopropyl)-benzyl-imidazolium chloride) and the associated mechanisms of action in a mouse model of HCC. The IC50 of this compound in various liver cancer cell lines was around 5 μm. IBN-65 dose-dependently arrested cell cycle at G1 phase and was associated with the down-regulation of the cyclin-dependent kinase-4, -6, cyclin D1, and cyclin E. In addition, IBN-65 induced apoptosis by down-regulating Survivin, Bcl-2 and up-regulating Bax, leading to sequential activation of Caspase-3, Caspase-9 and the cleavage of poly(ADP-ribose) polymerase (PARP). Dysregulation of the epidermal growth factor receptor (EGFR) signaling network has been frequently reported in HCC. We found that IBN-65 displayed a profound inhibitory effect on the EGFR/Raf/MEK/ERK signaling at the phosphorylation level. In Huh7 or Hep3B cells, pretreatment with IBN-65 attenuated EGF-induced phosphorylation of both EGFR and the downstream p44/42 MAPK. A siRNA knockdown of EGFR also proved that IBN-65 induced apoptosis mostly through inhibiting downstream EGFR pathway signaling, much less at the receptor level. Infrequent administration of IBN-65 (i.p., 5 mg/kg once weekly for four weeks) to mice bearing the Huh7 cells significantly reduced the tumor volume by 65% without affecting the body weight. Critically, many of the anti-tumor signaling features observed in the HCC cell lines were recaptured in the xenografted tissues. Thus, the metal-free imidazolium compound IBN-65 could be a potential candidate towards therapeutic development for HCC.

  1. Atomistic simulations of the solid-liquid transition of 1-ethyl-3-methyl imidazolium bromide ionic liquid

    NASA Astrophysics Data System (ADS)

    Feng, Haijun; Zhou, Jian; Qian, Yu

    2011-10-01

    Achieving melting point around room temperature is important for applications of ionic liquids. In this work, molecular dynamics simulations are carried out to investigate the solid-liquid transition of ionic liquid 1-ethyl-3-methyl imidazolium bromide ([emim]Br) by direct heating, hysteresis, void-nucleation, sandwich, and microcanonical ensemble approaches. Variations of the non-bonded energy, density, diffusion coefficient, and translational order parameter of [emim]Br are analyzed as a function of temperature, and a coexisting solid-liquid system is achieved in the microcanonical ensemble method. The melting points obtained from the first three methods are 547 ± 8 K, 429 ± 8 K, and 370 ± 6 K; while for the sandwich method, the melting points are 403 ± 4 K when merging along the x-axis by anisotropic isothermal-isobaric (NPT) ensemble, 393 ± 4 K when along the y-axis by anisotropic NPT ensemble, and 375 ± 4 K when along the y-axis by isotropic NPT ensemble. For microcanonical ensemble method, when the slabs are merging along different directions (x-axis, y-axis, and z-axis), the melting points are 364 ± 3 K, 365 ± 3 K, and 367 ± 3 K, respectively, the melting points we get by different methods are approximately 55.4%, 21.9%, 5.1%, 14.5%, 11.6%, 6.5%, 3.4%, 3.7%, and 4.3% higher than the experimental value of 352 K. The advantages and disadvantages of each method are discussed. The void-nucleation and microcanonical ensemble methods are most favorable for predicting the solid-liquid transition.

  2. Synthesis of Water-Soluble Imidazolium Polyesters as Potential Nonviral Gene Delivery Vehicles.

    PubMed

    Nelson, Ashley M; Pekkanen, Allison M; Forsythe, Neil L; Herlihy, John H; Zhang, Musan; Long, Timothy E

    2017-01-09

    The inherent hydrolytic reactivity of polyesters renders them excellent candidates for a variety of biomedical applications. Incorporating ionic groups further expands their potential impact, encompassing charge-dependent function such as deoxyribonucleic acid (DNA) binding, antibacterial properties, and pH-responsiveness. Catalyst-free and solvent-free polycondensation of a bromomethyl imidazolium-containing (BrMeIm) diol with neopentylglycol (NPG) and adipic acid (AA) afforded novel charged copolyesters with pendant imidazolium sites. Varying ionic content influenced thermal properties and offered a wide-range, -41 to 40 °C, of composition-dependent glass transition temperatures (Tgs). In addition to desirable melt and thermal stability, polyesters with ionic concentrations ≥15 mol % readily dispersed in water, suggesting potential as nonviral gene delivery vectors. An electrophoretic gel shift assay confirmed the novel cationic copolyesters successfully bound DNA at an N/P ratio of 4 for 50 mol % and 75 mol % charged copolyesters (P(NA50-co-ImA50) and P(NA25-co-ImA75)), and an N/P ratio of 5 for 100 mol % Im (PImA). Polyplexes exhibited insignificant cytotoxicity even at high concentrations (200 μg/mL), and a Luciferase transfection assay revealed the ionic (co)polyesters transfected DNA significantly better than the untreated controls. The successful transfection of these novel (co)polyesters inspires future imidazolium-containing polyester design.

  3. Evaluations of imidazolium ionic liquids as novel skin permeation enhancers for drug transdermal delivery.

    PubMed

    Zhang, Ding; Wang, Huai-Ji; Cui, Xiu-Ming; Wang, Cheng-Xiao

    2016-01-13

    In this work, imidazolium ionic liquids (imidazolium ILs) were employed as the novel chemical permeation enhancers (CPEs) and their performances and mechanisms of action were deeply investigated. Testosterone was used as a model drug to investigate the transdermal delivery enhancement of twenty imdidazolium ILs. The results suggested that the promotion activity connected to the structure and composition of the ILs. The quantitative structure-activity relationship (QSAR) model revealed a good linearity between the electronic properties of ILs and their enhancements. Furthermore, the transepidermal water loss (TEWL) and scanning laser confocal microscope (CLSM) examinations showed the strong improvement of ILs on skin barrier permeability, which were well correlated with the drug penetration profiles. The total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) and atomic force microscope (AFM) evaluations of skins indicated that the ILs can disrupt the regular and compact arrangements of the corneocytes, change the surface properties of stratum corneum, and make the skin structure more permeable. Our work demonstrated the significant skin permeation promotion profiles of the imidazolium ILs, which are of great potential in transdermal drug delivery systems.

  4. Thermal properties and ionic conductivity of imidazolium bis(trifluoromethanesulfonyl)imide dicationic ionic liquids.

    PubMed

    Pitawala, Jagath; Matic, Aleksandar; Martinelli, Anna; Jacobsson, Per; Koch, Victor; Croce, Fausto

    2009-08-06

    We report on the thermal and transport properties of new dicationic ionic liquids. The new ionic liquids are based on the bis(trifluoromethanesulfonyl)imide [NTf(2)](-) anion and a cation that contains two imidazolium rings, connected by either a pentane or a decane hydrocarbon chain and different side groups. We have investigated the conductivity and the thermal properties by dielectric spectroscopy and differential scanning calorimetry, respectively. Our results show that the length of the alkyl chain on the cation has no, or weak, influence on the glass transition temperature, T(g), whereas the presence of rigid aromatic side groups has a strong influence increase T(g). The highest ionic conductivity is 5.9 x 10(-4) S cm(-1) at 298 K for an ionic liquid with a decane chain and one methyl group on each imidazolium ring. The conductivity results correlate well with the glass transition temperatures. This shows that the flexibility of the geminal cations is very important for the conductivity. However, the presence of nonflexible aromatic side groups on the imidazolium ring decreases the flexibility and hence the mobility.

  5. A Highly Reactive Imidazolium-Bridged Dinucleotide Intermediate in Nonenzymatic RNA Primer Extension.

    PubMed

    Walton, Travis; Szostak, Jack W

    2016-09-14

    Because of its importance for the origin of life, the nonenzymatic copying of RNA templates has been the subject of intense study for several decades. Previous characterizations of template-directed primer extension using 5'-phosphoryl-2-methylimidazole-activated nucleotides (2-MeImpNs) as substrates have assumed a classical in-line nucleophilic substitution mechanism, in which the 3'-hydroxyl of the primer attacks the phosphate of the incoming monomer, displacing the 2-methylimidazole leaving group. However, we have found that the initial rate of primer extension depends on the pH and concentration at which the activated monomer is maintained prior to the primer extension reaction. These and other results suggest an alternative mechanism, in which two monomers react with each other to form an imidazolium-bridged dinucleotide intermediate, which then binds to the template. Subsequent attack of the 3'-hydroxyl of the primer displaces an activated nucleotide as the leaving group and results in extension of the primer by one nucleotide. Analysis of monomer solutions by NMR indicates formation of the proposed imidazolium-bridged dinucleotide in the expected pH-dependent manner. We have used synthetic methods to prepare material that is enriched in this proposed intermediate and show that it is a highly reactive substrate for primer extension. The formation of an imidazolium-bridged dinucleotide intermediate provides a mechanistic interpretation of previously observed catalysis by an activated nucleotide located downstream from the site of primer extension.

  6. Carbon dioxide capture by aminoalkyl imidazolium-based ionic liquid: a computational investigation.

    PubMed

    Chen, Jie-Jie; Li, Wen-Wei; Li, Xue-Liang; Yu, Han-Qing

    2012-04-07

    Efficient technologies/processes for CO(2) capture are greatly desired, and ionic liquids are recognized as promising materials for this purpose. However, the mechanisms for selectively capturing CO(2) by ionic liquids are unclear. In this study, the interactions between CO(2) and 1-n-amino-alkyl-3-methyl-imidazolium tetrafluoroborate, an amino imidazolium ionic liquid (AIIL), in its CO(2) capturing process, are elucidated with both quantum chemistry and molecular dynamics approaches on the molecular level. The effects of the straight aminoalkyl chain length in imidazolium-based cations on CO(2) capture are explored, and thereby the factors governing CO(2) capture for this ionic liquid family, e.g., ionic liquid structure, charge distribution, intermolecular interactions, thermodynamic properties and absorption kinetics, are analyzed. Molecular dynamics simulations are used to study the diffusion of the involved compounds and liquid structures of the CO(2)-AIIL systems. The results show that the amino-alkyl chain length plays an important role in governing the absorption properties of AIILs, including the free energies of absorption, equilibrium constants, desorption temperature, absorption rate constants, diffusion coefficients, and organization of CO(2) around cations and anions. This study provides useful information about rational design of ionic liquids for efficient CO(2) capture.

  7. Locker Room Talk.

    ERIC Educational Resources Information Center

    Fickes, Michael

    1999-01-01

    Examines the trends in college and university sports and recreation center locker rooms as envisioned by a specialist. Features of the modern locker room and the different levels of locker room design are explained. Final comments discuss whether college and university facility managers are inclined to move to high-end locker rooms. (GR)

  8. CHARACTERIZATION AND COMPARISON OF HYDROPHILIC AND HYDROPHOBIC ROOM TEMPERATURE IONIC LIQUIDS INCORPORATING THE IMIDAZOLIUM CATION. (R828257)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  9. A general halide-to-anion switch for imidazolium-based ionic liquids and oligocationic systems using anion exchange resins (A- form).

    PubMed

    Alcalde, Ermitas; Dinarès, Immaculada; Ibáñez, Anna; Mesquida, Neus

    2011-03-21

    Further studies on the application of an AER (A(-) form) method broadened the anion exchange scope of representative ionic liquids and bis(imidazolium) systems. Depending on the hydrophobicity nature of the targeted imidazolium species and counteranions, different organic solvents were used to swap halides for assorted anions, proceeding in excellent to quantitative yields.

  10. An imidazolium based ionic liquid electrolyte for lithium batteries

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Kwang; Matic, Aleksandar; Ahn, Jou-Hyeon; Jacobsson, Per

    An electrolyte for lithium batteries based on the ionic liquid 3-methy-1-propylimidazolium bis(trifluoromethysulfony)imide (PMIMTFSI) complexed with lithium bis(trifluoromethysulfony)imide (LiTFSI) at a molar ratio of 1:1 has been investigated. The electrolyte shows a high ionic conductivity (∼1.2 × 10 -3 S cm -1) at room temperature. Over the whole investigated temperature range the ionic conductivity is more than one order of magnitude higher than for an analogue electrolyte based on N-butyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide (Py 14TFSI) complexed with LiTFSI and used here as a benchmark. Raman results indicate furthermore that the degree of lithium coordinated TFSI is slightly lower in the electrolyte based on PMIMTFSI and thus that the Li + charge carriers should be higher than in electrolytes based on Py 14TFSI. An ionic liquid gel electrolyte membrane was obtained by soaking a fibrous fully interconnected membrane, made of electrospun P(VdF-HFP), in the electrolyte. The gel electrolyte was cycled in Li/ionic liquid polymer electrolyte/Li cells over 15 days and in Li/LiFePO 4 cells demonstrating good interfacial stability and highly stable discharge capacities with a retention of >96% after 50 cycles (∼146 mAh g -1).

  11. Crystal structure of the tetra-gonal polymorph of bis-(1-ethyl-3-methyl-imidazolium) tetra-bromido-cadmate.

    PubMed

    Đorđević, Tamara; Gerger, Sabrina; Karanović, Ljiljana

    2016-07-01

    Both unique Cd atoms in the tetra-gonal polymorph of bis-(1-ethyl-3-methyl-imidazolium) tetra-bromido-cadmate, (C6H11N2)2[CdBr4], occupy special positions (site symmetry -4). The crystal structure consists of isolated tetra-hedral [CdBr4](2-) anions which are surrounded by 1-ethyl-3-methyl-imidazolium cations. The methyl and ethyl side chains of the cations show positional disorder in a 0.590 (11):0.410 (11) ratio. In the crystal, (C6H11N2)(+) cations display three weak C-H⋯Br hydrogen-bond inter-actions through the imidazolium ring H atoms with the Br(-) ligands of the surrounding complex anions. The alkyl groups of the side chains are not involved in hydrogen bonding.

  12. Synthesis and characterization of a helicene-based imidazolium salt and its application in organic molecular electronics.

    PubMed

    Storch, Jan; Zadny, Jaroslav; Strasak, Tomas; Kubala, Martin; Sykora, Jan; Dusek, Michal; Cirkva, Vladimir; Matejka, Pavel; Krbal, Milos; Vacek, Jan

    2015-02-02

    Herein we demonstrate the synthesis of a helicene-based imidazolium salt. The salt was prepared by starting from racemic 2-methyl[6]helicene, which undergoes radical bromination to yield 2-(bromomethyl)[6]helicene. Subsequent treatment with 1-butylimidazole leads to the corresponding salt 1-butyl-3-(2-methyl[6]helicenyl)-imidazolium bromide. The prepared salt was subsequently characterized by using NMR spectroscopy and X-ray analysis, various optical spectrometric techniques, and computational chemistry tools. Finally, the imidazolium salt was immobilized onto a SiO2 substrate as a crystalline or amorphous deposit. The deposited layers were used for the development of organic molecular semiconductor devices and the construction of a fully reversible humidity sensor.

  13. Locker Room Design Trends.

    ERIC Educational Resources Information Center

    Wiens, Janet

    2001-01-01

    Examines how today's college and university athletic locker rooms have become sophisticated recruiting tools that rival many professional facilities. Locker room design and location and their level of furniture, finishes, and equipment are discussed as is the trend for more environmentally friendly locker rooms. (GR)

  14. Enantioselective toxicities of chiral ionic liquids 1-alkyl-3-methyl imidazolium tartrate on Scenedesmus obliquus.

    PubMed

    Liu, Huijun; Zhang, Xiaoqiang; Dong, Ying; Chen, Caidong; Zhu, Shimin; Ma, Xiangjuan

    2015-12-01

    Ionic liquids (ILs) are being used in various industries during the last few decades, while the good solubility and high stability of ILs may pose a potential threat to the aquatic environment. Effect of chiral ionic liquids (CILs) 1-alkyl-3-methyl imidazolium tartrate (RMIM T) on Scenedesmus obliquus (S.obliquus) was studied. The growth rate inhibition and cell membrane permeability increased with increasing RMIM T concentration and increasing alkyl chain lengths. The IC50 values of D-(-)-tartrate 1-hexyl-3-methyl imidazolium (D-(-)-HMIM T) were 28.30, 12.23,10.15 and 14.41 mg/L, respectively, at 24, 48, 72 and 96h. While that of L-(+)-tartrate 1-hexyl-3-methyl imidazolium (L-(+)-HMIM T) were 15.97, 7.91, 9.43 and 12.04 mg/L respectively. The concentration of chl a, chl b and chl (a+b) decreased with increasing RMIM T concentration. The chlorophyll fluorescence parameters (F0, Fv/Fm, Fv/F0, Y(II), ETR and NPQ) were affected by RMIM T, indicating that the RMIM T will damage the PSII, inhibit the transmission of excitation energy, decrease the efficiency of photosynthesis. The results showed that there were enantioselective toxicity of RMIM T to algae, and the toxicity of L-(+)-RMIM T was greater than that of D-(-)-RMIM T, but the enantioselective difference becomes smaller with increasing exposure time, and with the increasing carbon chain length of cation, indicating that cation properties may have a larger effect on toxicity than anion properties.

  15. Thermal Stability Limits of Imidazolium Ionic Liquids Immobilized on Metal-Oxides.

    PubMed

    Babucci, Melike; Akçay, Aslı; Balci, Volkan; Uzun, Alper

    2015-08-25

    Thermal stability limits of 33 imidazolium ionic liquids (ILs) immobilized on three of the most commonly used high surface area metal-oxides, SiO2, γ-Al2O3, and MgO, were investigated. ILs were chosen from a family of 13 cations and 18 anions. Results show that the acidity of C2H of an imidazolium ring is one of the key factors controlling the thermal stability. An increase in C2H bonding strength of ILs leads to an increase in their stability limits accompanied by a decrease in interionic energy. Systematic changes in IL structure, such as changes in electronic structure and size of anion/cation, methylation on C2 site, and substitution of alkyl groups on the imidazolium ring with functional groups have significant effects on thermal stability limits. Furthermore, thermal stability limits of ILs are influenced strongly by acidic character of the metal-oxide surface. Generally, as the point of zero charge (PZC) of the metal-oxide increases from SiO2 to MgO, the interactions of IL and metal-oxide dominate over interionic interactions, and metal-oxide becomes the significant factor controlling the stability limits. However, thermal stability limits of some ILs show the opposite trend, as the chemical activities of the cation functional group or the electron donating properties of the anion alter IL/metal-oxide interactions. Results presented here can help in choosing the most suitable ILs for materials involving ILs supported on metal-oxides, such as for supported ionic liquid membranes (SILM) in separation applications or for solid catalyst with ionic liquid layer (SCILL) and supported ionic liquid phase (SILP) catalysts in catalysis.

  16. Bicyclic imidazolium ionic liquids as potential electrolytes for rechargeable lithium ion batteries

    SciTech Connect

    Liao, Chen; Shao, Nan; Bell, Jason R; Guo, Bingkun; Luo, Huimin; Jiang, Deen; Dai, Sheng

    2013-01-01

    A bicyclic imidazolium ionic liquids, 1-ethyl-2,3-trimethyleneimidazolium bis(tri fluoromethane sulfonyl)imide ([ETMIm][TFSI]), and reference imidazolium compounds, 1-ethyl-3-methylimidazolium bis(trifluoromethane sulfonyl)imide ([EMIm][TFSI]) and 1, 2-dimethyl-3-butylimidazolium bis(trifluoromethane sulfonyl)imide ([DMBIm][TFSI]), were synthesized and investigated as solvents for lithium ion batteries. Although the alkylation at the C-2 position of the imidazolium ring does not affect the thermal stability of the ionic liquids, with or without the presence of 0.5 molar lithium bis(trifluoromethane sulfonyl)imide (LiTFSI), the stereochemical structure of the molecules has shown profound influences on the electrochemical properties of the corresponding ionic liquids. [ETMIm][TFSI] shows better reduction stability than do [EMIm][TFSI] and [DMBIm][TFSI], as confirmed by both linear sweep voltammery (LSV) and theoretical calculation. The Li||Li cell impedance of 0.5M LiTFSI/[ETMIm][TFSI] is stabilized, whereas that of 0.5M LiTFSI/[DMBIm][TFSI] is still fluctuating after 20 hours, indicating a relatively stable solid electrolyte interphase (SEI) is formed in the former. Furthermore, the Li||graphite half-cell based on 0.5M LiTFSI/[BTMIm][TFSI] exhibits reversible capacity of 250mAh g-1 and 70mAh g-1 at 25 C, which increases to 330 mAh g-1 and 250 mAh g-1 at 50 C, under the current rate of C/20 and C/10, respectively. For comparison, the Li||graphite half-cell based on 0.5M LiTFSI/[DMBIm][TFSI] exhibits poor capacity retention under the same current rate at both temperatures.

  17. Selective Activation of Fluoroalkenes with N-Heterocyclic Carbenes: Synthesis of N-Heterocyclic Fluoroalkenes and Polyfluoroalkenyl Imidazolium Salts.

    PubMed

    Leclerc, Matthew C; Gorelsky, Serge I; Gabidullin, Bulat M; Korobkov, Ilia; Baker, R Tom

    2016-06-06

    Selective reactions between nucleophilic N,N'-diaryl-heterocyclic carbenes (NHCs) and electrophilic fluorinated alkenes afford NHC fluoroalkenes in high yields. These stable compounds undergo efficient and selective fluoride abstraction with Lewis acids to give polyfluoroalkenyl imidazolium salts. These salts react at Cβ with pyrrolidine to give ammonium fluoride-substituted salts, which give rise to conjugated imidazolium-enamine salts through loss of HF. Alternatively, reaction with 4-(dimethylamino)-pyridine provides a Cα-pyridinium-substituted NHC fluoroalkene. These compounds were studied using multinuclear NMR spectroscopy, mass spectrometry, and X-ray crystallography. Insight into their electronic structure and reactivity was gained through the use of DFT calculations.

  18. Neighbor-directed Histidine N(τ)–Alkylation: A Route to Imidazolium-containing Phosphopeptide Macrocycles

    PubMed Central

    Qian, Wen-Jian; Park, Jung-Eun; Grant, Robert; Lai, Christopher C.; Kelley, James A.; Yaffe, Michael B.; Lee, Kyung S.; Burke, Terrence R.

    2016-01-01

    Our recently discovered, selective, on-resin route to N(τ)-alkylated imidazolium-containing histidine residues affords new strategies for peptide mimetic design. In our current work, we demonstrate the use of this chemistry to prepare a series of macrocyclic phosphopeptides, in which imidazolium groups serve as ring-forming junctions. Interestingly, these cationic moieties subsequently serve to charge-mask the phosphoamino acid group that directed their formation. Neighbor-directed histidine N(τ)-alkylation opens the door to new families of phosphopeptidomimetics for use in a range of chemical biology contexts. PMID:26152807

  19. Crystal structure of 1-benzyl-3-methyl-1H-imidazolium hexa-fluorido-phosphate.

    PubMed

    Hillesheim, Patrick C; Scipione, Kent A

    2014-12-01

    In the title salt, C11H13N2 (+)·PF6 (-), the dihedral angle between the planes of the imidazole and benzene rings is 84.72 (4)°. In the crystal, C-H⋯F inter-actions connect the cation and anion pairs into a three-dimensional network. Weak π-π inter-actions are observed between the imidazolium ring and the aromatic benzene ring of an adjacent mol-ecule with C⋯C and C⋯N distances ranging from 3.3714 (16) to 3.4389 (15) Å.

  20. Solvent Extraction Separation of La3+ and Ba2+ using Imidazolium Ionic Liquids and TODGA Extractant

    SciTech Connect

    Bell, Jason R; Dai, Sheng; Luo, Huimin

    2012-01-01

    Solvent extractions of La3+ and Ba2+ by N,N,N ,N -tetra(n-octyl)diglycolamide (TODGA) from aqueous solutions in twelve imidazolium-based ionic liquids (ILs), 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide / bis(perfluoroethylsulfonyl)imide ([Cnmim][NTf2]/[BETI], n = 2,3, 4, 6, 8, 10) were investigated. The corresponding extraction efficiencies were found to be dependent on concentration of TODGA used, the acidity of aqueous phase, alkyl chain length on IL cation, and IL anion as well.

  1. Nature of hydrogen bonding in charged hydrogen-bonded complexes and imidazolium-based ionic liquids.

    PubMed

    Izgorodina, Ekaterina I; MacFarlane, Douglas R

    2011-12-15

    The nature of hydrogen bonding was compared in neutral complexes and negatively charged complexes consisting of either the HF molecule or the halide anion (fluoride and chloride) and the C-H bond in the methane molecule with a varying degree of fluorination (such as CH(4), CH(2)F(2), and CHF(3)). Both linear (C(3v) symmetry) and nonlinear (C(2v) symmetry) hydrogen-bonded complexes were studied. Symmetry-adapted perturbation theory was used to decompose interaction energies into fundamental components such as Coulomb, repulsion, induction and dispersion to analyze the interplay among these forces in stabilizing hydrogen bonding. In the linear charged complexes, both Coulomb attraction and induction significantly contributed to the stabilization of hydrogen bonding. In the nonlinear charged complexes, mainly Coulomb attraction contributed to the HB complex stabilization, with the inductive forces playing a less important role. Contrary to the neutral complexes, dispersion forces played only a marginal role in the charged complexes. Interplay between the fundamental forces was also investigated in the ion pairs of the imidazolium-based ionic liquid, [C(2)mim]Cl, that were categorized as either (1) typical ion-ion interaction, with the anion interacting from above or below the imidazolium plane; or (2) hydrogen-bonding interaction, with the anion interacting with the C2-H bond of the imidazolium cation. Both types of interactions were found to induce similar charge transfers, and the analysis of the energetic components revealed only a slight difference in the ion pairs studied: (1) both interactions were electrostatically driven, between 86% and 88% of the overall attractive energy, with the electrostatic component being slightly lower in the hydrogen-bonded ion pairs by ~8 kJ mol(-1); and (2) dispersion forces were found to be stronger in the typical ion-ion interactions by ~15 kJ mol(-1) and could be possible only due to the fact that the anion was able to move

  2. Imidazolium-Based Poly(Ionic Liquid)s Featuring Acetate Counter Anions: Thermally Latent and Recyclable Precursors of Polymer-Supported N-Heterocyclic Carbenes for Organocatalysis.

    PubMed

    Lambert, Romain; Coupillaud, Paul; Wirotius, Anne-Laure; Vignolle, Joan; Taton, Daniel

    2016-07-01

    Statistical copoly(ionic liquid)s (coPILs), namely, poly(styrene)-co-poly(4-vinylbenzylethylimidazolium acetate) are synthesized by free-radical copolymerization in methanolic solution. These coPILs serve to in situ generate polymer-supported N-heterocyclic carbenes (NHCs), referred to as polyNHCs, due to the noninnocent role of the weakly basic acetate counter-anion interacting with the proton in C2-position of pendant imidazolium rings. Formation of polyNHCs is first evidenced through the quantitative formation of NHC-CS2 units by chemical postmodification of acetate-containing coPILs, in the presence of CS2 as electrophilic reagent (= stoichiometric functionalization of polyNHCs). The same coPILs are also employed as masked precursors of polyNHCs in organocatalyzed reactions, including a one-pot two-step sequential reaction involving benzoin condensation followed by addition of methyl acrylate, cyanosilylation, and transesterification reactions. The catalytic activity can be switched on and off successively upon thermal activation, thanks to the deprotonation/reprotonation equilibrium in C2-position. NHC species are thus in situ released upon heating at 80 °C (deprotonation), while regeneration of the coPIL precursor occurs at room temperature (reprotonation), triggering its precipitation in tetrahydrofuran. This also allows recycling the coPIL precatalyst by simple filtration, and reusing it for further catalytic cycles. The different organocatalyzed reactions tested can thus be performed with excellent yields after several cycles.

  3. Effect of unsaturation on the absorption of ethane and ethylene in imidazolium-based ionic liquids.

    PubMed

    Moura, Leila; Mishra, Manas; Bernales, Varinia; Fuentealba, Patricio; Padua, Agilio A H; Santini, Catherine C; Costa Gomes, Margarida F

    2013-06-20

    The influence of the presence of imidazolium side chain unsaturation on the solubility of ethane and ethylene was studied in three ionic liquids: 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide-saturated alkyl side-chain in the cation; 1-methyl-3-(buten-3-yl)imidazolium bis(trifluorosulfonyl)imide-double bond in the side-chain of the cation; and 1-methyl-3-benzylimidazolium bis(trifluorosulfonyl)imide-benzyl group in the side-chain of the cation. The solubility of both gases decreases when the side-chain of the cations is functionalized with an unsaturated group. This can be explained by a less favorable enthalpy of solvation. The difference of solubility between ethane and ethylene can be explained from a balance of enthalpic and entropic factors: for the ionic liquid with the saturated alkyl side-chain and the benzyl-substituted side-chain, it is the favorable entropy of solvation that explains the larger ethylene solubility, whereas in the case of the saturated side-chain, it is the more favorable enthalpy of solvation. Molecular simulation allowed the identification of the mechanisms of solvation and the preferential solvation sites for each gas in the different ionic liquids. Simulations have shown that the entropy of solvation is more favorable when the presence of the gas weakens the cation-anion interactions or when the gas can be solvated near different sites of the ionic liquid.

  4. Antibacterial Activity of Imidazolium-Based Ionic Liquids Investigated by QSAR Modeling and Experimental Studies.

    PubMed

    Hodyna, Diana; Kovalishyn, Vasyl; Rogalsky, Sergiy; Blagodatnyi, Volodymyr; Petko, Kirill; Metelytsia, Larisa

    2016-09-01

    Predictive QSAR models for the inhibitors of B. subtilis and Ps. aeruginosa among imidazolium-based ionic liquids were developed using literary data. The regression QSAR models were created through Artificial Neural Network and k-nearest neighbor procedures. The classification QSAR models were constructed using WEKA-RF (random forest) method. The predictive ability of the models was tested by fivefold cross-validation; giving q(2) = 0.77-0.92 for regression models and accuracy 83-88% for classification models. Twenty synthesized samples of 1,3-dialkylimidazolium ionic liquids with predictive value of activity level of antimicrobial potential were evaluated. For all asymmetric 1,3-dialkylimidazolium ionic liquids, only compounds containing at least one radical with alkyl chain length of 12 carbon atoms showed high antibacterial activity. However, the activity of symmetric 1,3-dialkylimidazolium salts was found to have opposite relationship with the length of aliphatic radical being maximum for compounds based on 1,3-dioctylimidazolium cation. The obtained experimental results suggested that the application of classification QSAR models is more accurate for the prediction of activity of new imidazolium-based ILs as potential antibacterials.

  5. Growth inhibition and effect on photosystem by three imidazolium chloride ionic liquids in rice seedlings.

    PubMed

    Liu, Huijun; Zhang, Shuxian; Zhang, Xiaoqiang; Chen, Caidong

    2015-04-09

    The effects of three imidazolium chloride ionic liquids (ILs) including 1-octyl-3-methylimidazolium chloride ionic liquid ([OMIM]Cl), 1-decyl-3-methylimidazolium chloride ionic liquid ([DMIM]Cl) and 1-dodecyl-3-methylimidazolium chloride ionic liquid ([C12MIM]Cl) were studied in hydroponically grown rice seedlings. The growth inhibition rate increased and the Hill reaction activity of isolated rice chloroplasts decreased with increasing ILs concentrations. The IC50,5d for stem length was 0.70 mg/L of [OMIM]Cl, 0.15 mg/L of [DMIM]Cl, and 0.055 mg/L of [C12MIM]Cl, respectively. The SOD, POD and CAT activities of chloroplast exhibited initial increases followed by decreases in activity with increasing ILs concentrations. Chlorophyll fluorescence parameters such as the maximum effective quantum yield of PSII(Fv/Fm), the potential activity of PSII(Fv/F0), the yield of photochemical quantum [Y(II)], the photochemical quenching coefficient (qP), the non-photochemical quenching coefficient (NPQ) and the relative electron transport ratio (rETR) were affected, showing that ILs will damage the PSII. The results demonstrated that imidazolium chloride ILs are phytotoxic to rice growth and their photosystem, the toxicity increased as the alkyl chain length increased with the following order: [OMIM]Cl<[DMIM]Cl<[C12MIM]Cl. The results will help to better understand the possible role of the defense mechanism in rice caused by ILs exposure.

  6. Synthesis and investigation of anticancer potential of radiolabeled naphthalene monoimide bearing imidazolium salt.

    PubMed

    Yurt Lambrecht, Fatma; Ocakoglu, Kasim; Gokhan Colak, Suleyman; Alp Ersoz, Onur; Er, Ozge

    2017-01-09

    Imidazolium salts and derivatives have antitumor efficacy and toxic effects in different micro-organisms. In this study, an imidazolium bromide salt (NMI) was synthesized, and its antitumor potential was investigated by in vitro studies. Radiolabeling of synthesized NMI was carried out by iodogen method using (131) I radionuclide. The yield of radiolabeling was determined as 98.5 ± 0.1%. After that, cytotoxicity and intracellular uptake studies were evaluated in various cell lines. The cytotoxicity of NMI was determined as 35, 20, 10, and 1 μm for HEK-293, PC-3, CaCo-2, and MCF-7 cells, respectively. In addition, the intracellular uptake of (131) I-NMI was investigated in the cell lines, and the uptake was significantly found as 4 hr for MCF-7 and 6 hr for PC-3. In future studies, antitumor efficacy of (131) I-NMI on tumor-bearing animal model might be studied in light of these results.

  7. Functionalized imidazolium and benzimidazolium salts as paraoxonase 1 inhibitors: Synthesis, characterization and molecular docking studies.

    PubMed

    Karataş, Mert Olgun; Uslu, Harun; Alıcı, Bülent; Gökçe, Başak; Gencer, Nahit; Arslan, Oktay; Arslan, N Burcu; Özdemir, Namık

    2016-03-15

    Paraoxonase (PON) is a key enzyme in metabolism of living organisms and decreased activity of PON1 was acknowledged as a risk for atherosclerosis and organophosphate toxicity. The present study describes the synthesis, characterization, PON1 inhibitory properties and molecular docking studies of functionalized imidazolium and benzimidazolium salts (1a-5g). The structures of all compounds were elucidated by IR, NMR, elemental analysis and structures of compounds 2b and 2c were characterized by single-crystal X-ray diffraction. Compound 1c, a coumarin substituted imidazolium salt showed the best inhibitory effect on the activity of PON1 with good IC50 value (6.37 μM). Kinetic investigation was evaluated for this compound and results showed that this compound is competitive inhibitor of PON1 with Ki value of 2.39 μM. Molecular docking studies were also performed for most active compound 1c and one of least active compound 2c in order to determine the probable binding model into active site of PON1 and validation of the experimental results.

  8. Mobility and association of ions in aqueous solutions: the case of imidazolium based ionic liquids.

    PubMed

    Bešter-Rogač, Marija; Fedotova, Marina V; Kruchinin, Sergey E; Klähn, Marco

    2016-10-19

    The mobility and the mechanism of ion pairing of 1,1 electrolytes in aqueous solutions were investigated systematically on nine imidazolium based ionic liquids (ILs) from 1-methylimidazolium chloride, [MIM][Cl], to 1-dodecyl-3-methylimidazolium chloride, [1,3-DoMIM][Cl], with two isomers 1,2-dimethylimidazolium chloride, [1,2-MMIM][Cl], and 1,3-dimethylimidazolium chloride, [1,3-MMIM][Cl]. Molecular dynamics (MD) simulations, statistical mechanics calculations in the framework of the integral equation theory using one-dimensional (1D-) and three-dimensional (3D-) reference interaction site model (RISM) approaches as well as conductivity measurements were applied. From experiment and MD simulations it was found that the mobility/diffusion coefficients of cations in the limit of infinite dilution decrease with an increasing length of the cation alkyl chain, but not linearly. The aggregation tendency of cations with long alkyl chains at higher IL concentrations impedes their diffusivity. Binding free energies of imidazolium cations with the chloride anion estimated by RISM calculations, MD simulations and experiments reveal that the association of investigated ILs as model 1,1 electrolytes in water solutions is weak but evidently dependent on the molecular structure (alkyl chain length), which also strongly affects the mobility of cations.

  9. On the Extraction of Aromatic Compounds from Hydrocarbons by Imidazolium Ionic Liquids

    PubMed Central

    Cassol, Cláudia C.; Umpierre, Alexandre P.; Ebeling, Günter; Ferrera, Bauer; Chiaro, Sandra S. X.; Dupont, Jairton

    2007-01-01

    The liquid-liquid equilibrium for the ternary system formed by n-octane and aromatic (alkylbenzenes) and heteroaromatic compounds (nitrogen and sulfur containing heterocyles) and 1-alkyl-3-methylimidazolium ionic liquids (ILs) associated with various anions has been investigated. The selectivity on the extraction of a specific aromatic compound is influenced by anion volume, hydrogen bond strength between the anion and the imidazolium cation and the length of the 1-methyl-3-alkylimidazolium alkyl side chain. The interaction of alkylbenzenes and sulfur heterocyles with the IL is preferentially through CH-π hydrogen bonds and the quantity of these aromatics in the IL phase decreases with the increase of the steric hindrance imposed by the substituents on the aromatic nucleus. In the case of nitrogen heterocycles the interaction occurs preferentially through N(heteroaromatic)-H(imidazolium) hydrogen bonds and the extraction process is largely controlled by the nitrogen heterocycle pKa. Competitive extraction experiments suggest that benzene, pyridine and dibenzothiophene do not compete for the same hydrogen bond sites of the IL.

  10. Why single-walled carbon nanotubes can be dispersed in imidazolium-based ionic liquids.

    PubMed

    Wang, Jinyong; Chu, Haibin; Li, Yan

    2008-12-23

    Spectroscopic and molecular modeling studies were performed to investigate the underlying dispersion mechanism of single-walled carbon nanotubes (SWCNTs) in imidazolium-based ionic liquids. Both the experimental and the simulation evidence indicate that the ionic liquids interact with SWCNTs through weak van der Waals interaction other than the previous assumed "cation-pi" interaction. Therefore the electronic structure of SWCNTs in the dispersions can be kept intrinsically. The SWCNTs do not significantly influence the local structure of the imidazolium cations, though the local environment of anions adjacent to SWCNTs is somewhat perturbed because of the interfacial effect. The ionic liquids basically keep their overall bulk phase organization. A pi-pi interaction-shielding model is proposed to account for the dispersion of SWCNTs in the ionic liquids. The ionic liquids, which possess very high dielectric constants, can effectively shield the strong pi-pi stacking interaction among SWCNTs and thus evidently disperse the SWCNTs. The retaining of SWCNTs' intrinsic property and the higher SWCNT content make the ionic liquids ideal media for the study and application of SWCNTs.

  11. Synthesis and antitumor activity of novel N-substituted carbazole imidazolium salt derivatives

    PubMed Central

    Liu, Lan-Xiang; Wang, Xue-Quan; Zhou, Bei; Yang, Li-Juan; Li, Yan; Zhang, Hong-Bin; Yang, Xiao-Dong

    2015-01-01

    A series of novel N-substituted carbazole imidazolium salt derivatives has been prepared and investigated for their cytotoxic activity against five human tumor cell lines by MTS assay. The results indicated that the existence of 5,6-dimethyl-benzimidazole ring, substitution of the imidazolyl-3-position with a 2-bromobenzyl or naphthylacyl group, as well as alkyl chain length between carbazole and imidazole ring were important for the antitumor activity. Compound 61, bearing a 2-bromobenzyl substituent at position-3 of the 5,6-dimethyl-benzimidazole, showed powerful inhibitory activities and was more selective to HL-60, SMMC-7721, MCF-7 and SW480 cell lines with IC50 values 0.51–2.48 μM. Mechanism of action studies revealed that this new compound could remarkably induce cell cycle arrest and apoptosis in SMMC-7721 cells. This work provides alternative novel way for future drug development based on carbazole and imidazolium salt scaffolds. PMID:26287982

  12. Molecular simulations of imidazolium-based tricyanomethanide ionic liquids using an optimized classical force field.

    PubMed

    Vergadou, Niki; Androulaki, Eleni; Hill, Jörg-Rüdiger; Economou, Ioannis G

    2016-03-07

    Imidazolium-based ionic liquids (ILs) incorporating the tricyanomethanide ([TCM(-)]) anion are studied using an optimized classical force field. These ILs are very promising candidates for use in a wide range of cutting-edge technologies and, to our knowledge, it is the first time that this IL family is subject to a molecular simulation study with the use of a classical atomistic force field. The [C4mim(+)][TCM(-)] ionic liquid at 298.15 K and at atmospheric pressure was used as the basis for force field optimization which primarily involved the determination of the Lennard-Jones parameters of [TCM(-)] and the implementation of three quantum mechanical schemes for the calculation of the partial charge distribution and the identification of the appropriate scaling factor for the reduction of the total ionic charge. The optimized force field was validated by performing simulations of the 1-alkyl-3-methylimidazolium tricyanomethanide ([Cnmim(+)][TCM(-)], n = 2, 4, 6, and 8) IL family at various temperatures. The results for density, self-diffusivity and viscosity are in very good agreement with the available experimental data for all ILs verifying that the force field reliably reproduces the behaviour of the imidazolium-based [TCM(-)] IL family in a wide temperature range. Furthermore, a detailed analysis of the microscopic structure and the complex dynamic behaviour of the ILs under study was performed.

  13. Why Is CO2 so soluble in imidazolium-based ionic liquids?

    PubMed

    Cadena, Cesar; Anthony, Jennifer L; Shah, Jindal K; Morrow, Timothy I; Brennecke, Joan F; Maginn, Edward J

    2004-04-28

    Experimental and molecular modeling studies are conducted to investigate the underlying mechanisms for the high solubility of CO2 in imidazolium-based ionic liquids. CO2 absorption isotherms at 10, 25, and 50 degrees C are reported for six different ionic liquids formed by pairing three different anions with two cations that differ only in the nature of the "acidic" site at the 2-position on the imidazolium ring. Molecular dynamics simulations of these two cations paired with hexafluorophosphate in the pure state and mixed with CO2 are also described. Both the experimental and the simulation results indicate that the anion has the greatest impact on the solubility of CO2. Experimentally, it is found that the bis(trifluoromethylsulfonyl)imide anion has the greatest affinity for CO2, while there is little difference in CO2 solubility between ionic liquids having the tetrafluoroborate or hexafluorophosphate anion. The simulations show strong organization of CO2 about hexafluorophosphate anions, but only small differences in CO2 structure about the different cations. This is consistent with the experimental finding that, for a given anion, there are only small differences in CO2 solubility for the two cations. Computed and measured densities, partial molar volumes, and thermal expansion coefficients are also reported.

  14. The role of the anion in the toxicity of imidazolium ionic liquids.

    PubMed

    Biczak, Robert; Pawłowska, Barbara; Bałczewski, Piotr; Rychter, Piotr

    2014-06-15

    From the environmental protection point of view, the growing interest of ionic liquids in various industrial branches has raised concerns for the toxicity assessment of these compounds. The paper discusses the effect of salts containing the shared 1-ethyl-3-methylimidazolium [EMIM] cation as coupled with five different anions: bromide [Br], nitrate [NO3], p-toluenesulfonate (tosylate) [Ts], dimethylphosphate [dMP] and methanesulfonate [MS] on the growth and development of higher land plants - spring barley and common radish. The experiment was done according to the ISO Standard 11269-2:1995 and the OECD/OCDE Guide 208/2006. As the indications of phytotoxicity, the percentage of sprouts and the level of dry and fresh plant mass were used; in addition, the visual assessment of any signs of damage to the examined plant species, such as growth inhibition and chlorotic changes, was also made. Results of our study has proved the negative impact of ILs on the tested plants and the toxic effect of imidazolium salts was dependent primarily on the applied ionic liquids concentration. The common radish revealed the higher tolerance to the imidazolium as compared to spring barley. The anion type of ionic liquid was crucial for the toxicity against common radish.

  15. Alkyl-bis(imidazolium) salts: a new amphiphile platform that forms thermotropic and non-aqueous lyotropic bicontinuous cubic phases

    SciTech Connect

    Robertson, LA; Schenkel, MR; Wiesenauer, BR; Gin, DL

    2013-01-01

    New ionic amphiphiles with a hexyl-bridged bis(imidazolium) headgroup; Br-, BF4-, or Tf2N- anions; and a long n-alkyl tail can form thermotropic bicontinuous cubic liquid crystal phases in neat form and/or lyotropic bicontinuous cubic phases with several non-aqueous solvents or water.

  16. In vitro cytotoxicity assessment of imidazolium ionic liquids: biological effects in fish Channel Catfish Ovary (CCO) cell line.

    PubMed

    Radošević, Kristina; Cvjetko, Marina; Kopjar, Nevenka; Novak, Rudjer; Dumić, Jerka; Srček, Višnja Gaurina

    2013-06-01

    Increasing interest in the application of ionic liquids as green replacement for volatile organic solvents emphasized the need for the evaluation of their toxic effects at different biological systems in order to reduce the risk for human health and environment. To our knowledge, effects of imidazolium ionic liquids on cellular level of fish cell lines have not been studied yet. The cytotoxicity of imidazolium ionic liquids containing different anions and alkyl chain lengths as the substituent at the cation ring towards the fish CCO cell line was determined by WST-1 proliferation assay. Morphological alterations were examined by fluorescent microscopy using acridine orange/ethidium bromide staining and flow cytometry analysis was also performed. The results showed concentration-dependent cytotoxicity of ionic liquids in CCO cells, related to the type of anion and alkyl chain length, while EC50 values showed moderate to high cytotoxicity of tested imidazolium ionic liquids. Distinct morphological changes observed under fluorescence microscope and data obtained by flow cytometry suggest that the toxicity of imidazolium ionic liquids with longer alkyl chains could be related to necrosis. Results presented in here may be helpful for filling existing gaps of knowledge about ionic liquids toxicity and their impact on aquatic environment.

  17. The Upstairs Room - Room for Controversy?

    ERIC Educational Resources Information Center

    Poole, Mary F.

    1973-01-01

    Doubtless everyone is tired of the subject of censorship; but I do have to give vent to my feelings when they are as intense as they are over the selection of a book as full of profanity as a Newbery honor book ( The Upstairs Room''). (Author/SM)

  18. Unlocking the Locker Room.

    ERIC Educational Resources Information Center

    St. Clair, Dean

    1996-01-01

    Discusses locker-room design standards and common challenges when complying with the Americans with Disabilities Act. Accessibility and safety considerations for shower, toilet, and locker areas are addressed, as are entrance vestibules, drying and grooming areas, and private dressing rooms. (GR)

  19. Strengthening Weight Rooms.

    ERIC Educational Resources Information Center

    Sherman, Rachel M.

    1997-01-01

    Examines ways of giving an existing weight-training room new life without spending a lot of time and money. Tips include adding rubber floor coverings; using indirect lighting; adding windows, art work, or mirrors to open up the room; using more aesthetically pleasing ceiling tiles; upgrading ventilation; repadding or painting the equipment; and…

  20. Clean room wiping liquids

    SciTech Connect

    Harding, W.B.

    1991-12-01

    A water-based liquid containing isopropyl alcohol, ammonium hydroxide, and surfactants was developed to replace 1,1,2-trichlorotrifluoroethane for the dampening of clean room wiping cloths used to wipe clean benches, clean room equipment, and latex finger cots and gloves.

  1. Computer Room Water Protection.

    ERIC Educational Resources Information Center

    Price, Bennett J.

    1990-01-01

    Addresses the protection of computer rooms from water. Sources of water and potentially vulnerable areas in computer rooms are described. Water detection is then discussed, and several detection systems are detailed. Prices and manufacturers' telephone numbers for some of the systems are included. Water cleanup is also briefly considered. (MES)

  2. Radiation induced redox reactions and fragmentation of constituent ions in ionic liquids II. Imidazolium cations.

    SciTech Connect

    Shkrob, I. A.; Marin, T. W.; Chemerisov, S. D.; Hatcher, J.; Wishart, J.

    2011-04-14

    In part 1 of this study, radiolytic degradation of constituent anions in ionic liquids (ILs) was examined. The present study continues the themes addressed in part 1 and examines the radiation chemistry of 1,3-dialkyl substituted imidazolium cations, which currently comprise the most practically important and versatile class of ionic liquid cations. For comparison, we also examined 1,3-dimethoxy- and 2-methyl-substituted imidazolium and 1-butyl-4-methylpyridinium cations. In addition to identification of radicals using electron paramagnetic resonance spectroscopy (EPR) and selective deuterium substitution, we analyzed stable radiolytic products using {sup 1}H and {sup 13}C nuclear magnetic resonance (NMR) and tandem electrospray ionization mass spectrometry (ESMS). Our EPR studies reveal rich chemistry initiated through 'ionization of the ions': oxidation and the formation of radical dications in the aliphatic arms of the parent cations (leading to deprotonation and the formation of alkyl radicals in these arms) and reduction of the parent cation, yielding 2-imidazolyl radicals. The subsequent reactions of these radicals depend on the nature of the IL. If the cation is 2-substituted, the resulting 2-imidazolyl radical is relatively stable. If there is no substitution at C(2), the radical then either is protonated or reacts with the parent cation forming a C(2)-C(2) {sigma}{sigma}*-bound dimer radical cation. In addition to these reactions, when methoxy or C{sub {alpha}}-substituted alkyl groups occupy the N(1,3) positions, their elimination is observed. The elimination of methyl groups from N(1,3) was not observed. Product analyses of imidazolium liquids irradiated in the very-high-dose regime (6.7 MGy) reveal several detrimental processes, including volatilization, acidification, and oligomerization. The latter yields a polymer with m/z of 650 {+-} 300 whose radiolytic yield increases with dose (0.23 monomer units per 100 eV for 1-methyl-3-butylimidazolium

  3. Radiation induced redox reactions and fragmentation of constituent ions in ionic liquids. 2. Imidazolium cations.

    PubMed

    Shkrob, Ilya A; Marin, Timothy W; Chemerisov, Sergey D; Hatcher, Jasmine L; Wishart, James F

    2011-04-14

    In part 1 of this study, radiolytic degradation of constituent anions in ionic liquids (ILs) was examined. The present study continues the themes addressed in part 1 and examines the radiation chemistry of 1,3-dialkyl substituted imidazolium cations, which currently comprise the most practically important and versatile class of ionic liquid cations. For comparison, we also examined 1,3-dimethoxy- and 2-methyl-substituted imidazolium and 1-butyl-4-methylpyridinium cations. In addition to identification of radicals using electron paramagnetic resonance spectroscopy (EPR) and selective deuterium substitution, we analyzed stable radiolytic products using (1)H and (13)C nuclear magnetic resonance (NMR) and tandem electrospray ionization mass spectrometry (ESMS). Our EPR studies reveal rich chemistry initiated through "ionization of the ions": oxidation and the formation of radical dications in the aliphatic arms of the parent cations (leading to deprotonation and the formation of alkyl radicals in these arms) and reduction of the parent cation, yielding 2-imidazolyl radicals. The subsequent reactions of these radicals depend on the nature of the IL. If the cation is 2-substituted, the resulting 2-imidazolyl radical is relatively stable. If there is no substitution at C(2), the radical then either is protonated or reacts with the parent cation forming a C(2)-C(2) σσ*-bound dimer radical cation. In addition to these reactions, when methoxy or C(α)-substituted alkyl groups occupy the N(1,3) positions, their elimination is observed. The elimination of methyl groups from N(1,3) was not observed. Product analyses of imidazolium liquids irradiated in the very-high-dose regime (6.7 MGy) reveal several detrimental processes, including volatilization, acidification, and oligomerization. The latter yields a polymer with m/z of 650 ± 300 whose radiolytic yield increases with dose (~0.23 monomer units per 100 eV for 1-methyl-3-butylimidazolium trifluorosulfonate). Gradual

  4. Electrochemical reduction of CO2 to ethylene glycol on imidazolium ion-terminated self-assembly monolayer-modified Au electrodes in an aqueous solution.

    PubMed

    Tamura, Jun; Ono, Akihiko; Sugano, Yoshitsune; Huang, Chingchun; Nishizawa, Hideyuki; Mikoshiba, Satoshi

    2015-10-21

    Imidazolium ion-terminated self-assembled monolayer (SAM)-modified electrodes achieve CO2 conversion while suppressing hydrogen evolution. Immobile imidazolium ion on gold (Au) electrodes reduce CO2 at low overpotential. The distance between electrode and imidazolium ion separated by alkane thiol affects CO2 reduction activity. CO2 reduction current depends on the tunnel current rate. Although the product of CO2 reduction at the bare Au electrode is CO, SAM-modified electrodes produce ethylene glycol in aqueous electrolyte solution without CO evolution. The faradaic efficiency reached a maximum of 87%. CO2 reduction at SAM-modified electrodes is unaffected by reduction activity of Au electrode. This phenomenon shows that the reaction field of CO2 reduction is not the electrode surface but the imidazolium ion monolayer.

  5. Fe-containing ionic liquids as effective and recoverable oxidants for dissolution of UO2 in the presence of imidazolium chlorides.

    PubMed

    Yao, Aining; Chu, Taiwei

    2013-06-21

    Imidazolium-based Fe-containing ionic liquids (ILs) can directly dissolve UO2 in the presence of their corresponding imidazolium chlorides without additional oxidants. The dissolution process follows pseudo first-order kinetics initially. Raman spectroscopic studies indicate that FeCl4(2-) is the predominant reduction product after UO2 dissolution, and attenuated total reflection-Fourier transform infrared spectroscopy indicates that the UO2(2+) complex is the principal product in the ILs. The dissolved uranyl species can be successfully separated from the Fe-containing ILs via a combination of centrifugation and solvent extraction, and also, the Fe-containing ILs can be recovered easily. In conclusion, imidazolium-based Fe-containing ionic liquids in the presence of imidazolium chlorides could be used as effective and recoverable oxidants for the dissolution of UO2.

  6. Transformer room fire tests

    NASA Astrophysics Data System (ADS)

    Fustich, C. D.

    1980-03-01

    A series of transformer room fire tests are reported to demonstate the shock hazard present when automatic sprinklers operate over energized electrical equipment. Fire protection was provided by standard 0.5 inch pendent automatic sprinklers temperature rated at 135 F and installed to give approximately 150 sq ft per head coverage. A 480 v dry transformer was used in the room to provide a three phase, four wire distribution system. It is shown that the induced currents in the test room during the various tests are relatively small and pose no appreciable personnel shock hazard.

  7. Highly Efficient Catalysis of Retro-Claisen Reactions: From a Quinone Derivative to Functionalized Imidazolium Salts.

    PubMed

    Visbal, Renso; Laguna, Antonio; Gimeno, M Concepción

    2016-03-14

    A new and efficient method for the preparation of several imidazolium salts containing an ester group in the C4 position of the aromatic ring through a retro-Claisen reaction pathway between a quinone derivative and several alcohols is described. This new organic transformation proceeds in the absence of a catalyst, but it is greatly catalyzed by different Lewis acids, especially with AgOAc at a very low catalyst loading and in very short reaction times. The process takes place by the nucleophilic attack of the carbonyl groups by the alcohol functionality, thus promoting a double C-C bond cleavage and C-H and C-O bond formation. This reaction represents the first example of this type between a quinone derivative and alcohols.

  8. Structural diversity, physicochemical properties and application of imidazolium surfactants: Recent advances.

    PubMed

    Bhadani, Avinash; Misono, Takeshi; Singh, Sukhprit; Sakai, Kenichi; Sakai, Hideki; Abe, Masahiko

    2016-05-01

    The current review covers recent advances on development and investigation of cationic surfactants containing imidazolium headgroup, which are being extensively investigated for their self-aggregation properties and are currently being utilized in various conventional and non-conventional application areas. These surfactants are being used as: soft template for synthesis of mesoporous/microporous materials, drug and gene delivery agent, stabilizing agent for nanoparticles, dispersants for single/multi walled carbon nanotubes, antimicrobial and antifungal agent, viscosity modifiers, preparing nanocomposite materials, stabilizing microemulsions, corrosion inhibitors and catalyst for organic reactions. Recently several structural derivatives of these surfactants have been developed having many interesting physicochemical properties and they have demonstrated enormous potential in the area of nanotechnology, material science and biomedical science.

  9. Supramolecular ionogel lubricants with imidazolium-based ionic liquids bearing the urea group as gelator.

    PubMed

    Yu, Qiangliang; Wu, Yang; Li, DongMei; Cai, Meirong; Zhou, Feng; Liu, Weimin

    2017-02-01

    A new class of ionic liquid gels (ionogels) is prepared through the supramolecular self-assembly of imidazolium-based ionic liquids (ILs) bearing the urea group as gelators in normal ILs. The ILs gelator can self-assemble through hydrogen bonding and hydrophobic interaction to form analogous lamellar structures and solidify base ILs. The obtained ionogels exhibit superior anticorrosion and conductivity characteristics. Moreover, ionogels show fully thermoreversible and favorable thixotropic characteristics, such that they can be used as high-performance semisolid conductive lubricants. The tribological tests reveal that these ionogels lubricants can effectively reduce the friction of sliding pairs effectively and have better tribological performance than the pure ILs under harsh conditions. Ionogel lubricants not only maintain the excellent tribological properties and conductivity of ILs, but also prevent base liquids from creeping and leakage. Therefore, ionogel lubricants can be potentially used in the conductive parts of electrical equipments.

  10. Imidazolium-based ionic liquids for cellulose pretreatment: recent progresses and future perspectives.

    PubMed

    Cao, Yujin; Zhang, Rubing; Cheng, Tao; Guo, Jing; Xian, Mo; Liu, Huizhou

    2017-01-01

    As the most abundant biomass in nature, cellulose is considered to be an excellent feedstock to produce renewable fuels and fine chemicals. Due to its hydrogen-bonded supramolecular structure, cellulose is hardly soluble in water and most conventional organic solvents, limiting its further applications. The emergence of ionic liquids (ILs) provides an environmentally friendly, biodegradable solvent system to dissolve cellulose. This review summarizes recent advances concerning imidazolium-based ILs for cellulose pretreatment. The structure of cations and anions which has an influence on the solubility is emphasized. Methods to assist cellulose pretreatment with ILs are discussed. The state of art of the recovery, regeneration, and reuse aspects of ILs is also presented in this work. The current challenges and development directions of cellulose dissolution in ILs are put forward. Although further studies are still much required, commercialization of IL-based processes has made great progress in recent years.

  11. The role of hydrogen atoms in interactions involving imidazolium-based ionic liquids

    NASA Astrophysics Data System (ADS)

    Kempter, V.; Kirchner, B.

    2010-05-01

    In the first part of this report experimental results are discussed which focus onto the importance of hydrogen atoms in the interaction of imidazolium-based ionic liquids. These include examples for the cation-anion interaction in neat ionic liquids as well as the interactions between ionic liquids and their molecular environment, water in particular. Most of the studies emphasize the importance of the C(2)-H group of the imidazolium ring for the intra- and intermolecular interactions; commonly, the interactions of the type C-H … X (X =: O, halide) are attributed to "hydrogen bonding". In the second part it is analyzed whether these interactions and their consequences fulfill the criteria set by standard definitions of hydrogen bonding. Two cation-anion co-conformations at the C(2)-H group are found. One co-conformer (in-plane) often resembles a hydrogen bond while the other one (on-top) points to a non-hydrogen bonding behavior. Furthermore, the degree of hydrogen bonding for the in-plane structure is very dependent on the anion. Spatial distribution functions show that, in general, both co-conformations are occupied. However, the question of how long a particular co-conformer is populated in the liquid state has yet to be answered. Therefore, it is concluded that the term "hydrogen bond" should, at present, be treated with care to characterize the cation-anion contacts, because of the above-mentioned difficulties. Once more it must be stressed that oversimplifications and generalizations, even for this subclass of ionic liquids have to be avoided, because these liquids are more complicated than it appears from first sight.

  12. Dissolution and regeneration of hide powder/cellulose composite in Gemini imidazolium ionic liquid.

    PubMed

    Wang, Guowei; Guo, Jiarong; Zhuang, Linghua; Wang, Yan; Xu, Bin

    2015-05-01

    Gemini imidazolium ionic liquid, 3,3'-[1,2-ethanediylbis (oxy-2,1-ethanediyl)]-bis[1-methyl-imidazolium]-dibromide ([C6O2(mim)2][Br]2), was used for the dissolution and regeneration of white hide powder (from pigskin), and blend white hide powder with cellulose for the easy production of white hide powder/cellulose composite. Dissolution performance of white hide powder in [C6O2(mim)2][Br]2 was studied. The native white hide powder and [C6O2(mim)2][Br]2 regenerated white hide powder were characterized by FT-IR, XRD, DSC-TG and FE-SEM. The results showed that [C6O2(mim)2][Br]2 was a good solvent to white hide powder. The dissolution time was 55 min when the white hide powder was 8% at 120°C. The dissolution time of [C6O2(mim)2][Br]2 for white hide powder was shorter than those of common ionic liquids. The triple helical structure of white hide powder was partly destroyed during [C6O2(mim)2][Br]2 dissolution. The possible mechanism of white hide powder dissolution in [C6O2(mim)2][Br]2 and the regeneration of white hide powder in methanol had been proposed. White hide powder/cellulose composites were successfully dissolved in [C6O2(mim)2][Br]2. The performance of white hide powder/cellulose film was measured by FT-IR and TG. The tensile strength, and elongation at break of white hide powder/cellulose composite films were tested. This work demonstrated that the white hide powder/cellulose composite exhibited some potential in collagen-based tissue engineering.

  13. Solubility of CO2 and N2O in an Imidazolium-Based Lipidic Ionic Liquid.

    PubMed

    Langham, Jacob V; O'Brien, Richard A; Davis, James H; West, Kevin N

    2016-10-13

    Imidazolium-based ionic liquids have been extensively studied for their ability to dissolve a wide variety of gases and for their potential to be used as separation agents in industrial processes. For many short chain 1-alkyl-3-methylimidazolium bistriflimde salts, CO2 and N2O solublities are very similar. In this work, the solubility of CO2 and N2O has been measured in the lipidic ionic liquid 1-methyl-3-(Z-octadec-9-enyl)imidazolium bistriflimide ([oleyl-mim][NTf2]) at 298 K, 310 and 323 K up to ∼2 MPa. N2O was found to have higher solubility than CO2 under the same conditions, similar to the behavior observed when olive oil, a natural lipid, was the liquid solvent. However, the solubility of each gas on a mole fraction basis is lower in the ionic liquid than in olive oil. Comparison of the gas solubilities on a mass fraction basis demonstrates that CO2 solubility is nearly identical in both liquids; N2O solubility is higher than CO2 for both liquids, but more so in the olive oil. The difference is attributed to the high mass fraction of the olive oil that is lipid-like in character. The differential solubility of N2O/CO2 in this ionic liquid, in contrast to that of shorter chain 1-alkyl-3-methylimidazolium bistriflimide salts, gives physical insight into the solvent properties of this class of ionic liquids and provides further support for their lipid-like character.

  14. Interior. Balance room for chemistry laboratory. Storage room for glassware ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior. Balance room for chemistry laboratory. Storage room for glassware and reference room with frequently used chemistry and chemical engineering texts. - Thomas A. Edison Laboratories, Building No. 2, Main Street & Lakeside Avenue, West Orange, Essex County, NJ

  15. Carpenter in White Room

    NASA Technical Reports Server (NTRS)

    1962-01-01

    Inside Hangar S at the White Room Facility at Cape Canaveral, Florida, Mercury astronaut M. Scott Carpenter examines the honeycomb protective material on the main pressure bulkhead (heat shield) of his Mercury capsule nicknamed 'Aurora 7.'

  16. Imidazolium-Functionalized Carbon Nanohorns for the Conversion of Carbon Dioxide: Unprecedented Increase of Catalytic Activity after Recycling.

    PubMed

    Calabrese, Carla; Liotta, Leonarda F; Carbonell, Esther; Giacalone, Francesco; Gruttadauria, Michelangelo; Aprile, Carmela

    2016-11-29

    Six new hybrid materials composed of carbon nanohorns (CNHs) and highly cross-linked imidazolium salts were easily synthesized using a one-step procedure based on the radical oligomerization of bis-vinylimidazolium salts (bVImiX) in the presence of pristine CNHs. The hybrid materials were characterized and employed as the sole catalysts for the conversion of carbon dioxide into cyclic carbonate by reaction with epoxides. The solids displayed excellent turnover number and productivity. Moreover, four catalysts were investigated in recycling experiments. Two catalysts containing an octyl linker between the imidazolium units and a bromide or an iodide anion showed no loss in activity after three cycles. The other two catalysts containing a p-xylyl linker and a bromide anion and different CNHs/bVImiX ratios showed an unprecedented increase of activity after recycling.

  17. Synthesis, characterization, and in vitro SAR evaluation of N,N'-bis(arylmethyl)-C(2)-alkyl substituted imidazolium salts.

    PubMed

    DeBord, Michael A; Wagers, Patrick O; Crabtree, Steven R; Tessier, Claire A; Panzner, Matthew J; Youngs, Wiley J

    2017-01-15

    A series of C(2)-alkyl substituted N,N'-bis(arylmethyl)imidazolium salts were synthesized, characterized, and tested for their in vitro anti-cancer activity against multiple non-small cell lung cancer cell lines by our group and the National Cancer Institute's-60 human tumor cell line screen to establish a structure-activity relationship. Compounds are related to previously published N,N'-bis(arylmethyl)imidazolium salts but utilize the historical quinoline motif and anion effects to increase the aqueous solubility. Multiple derivatives displayed high anti-cancer activity with IC50 values in the nanomolar to low micromolar range against a panel of non-small cell lung cancer cell lines. Several of these derivatives have high aqueous solubilities with potent anti-proliferative properties and are ideal candidates for future in vivo xenograft studies and have high potential to progress into clinic use.

  18. Crystal structure of 1-butyl-2,3-di-methyl-imidazolium dicarba-7,8-nido-undeca-borate.

    PubMed

    Klemes, M J; Soderstrom, L; Hunting, J L; Larsen, A S

    2015-03-01

    In the title mol-ecular salt, C9H17N2 (+)·C2H12B9 (-), the carborane cage has a bridging B-H-B bond on the open B3C2 face. The butyl side chain of the cation adopts an extended conformation [C-C-C-C = 179.6 (1)°]. In the crystal, the imidazolium ring is almost coplanar with the open face of the carborane anion. The cations stack in the [010] direction and the dihedral angle between the imidazolium rings of adjacent cations is 68.45 (6)°. The butyl chains extend into the space between carborane anions.

  19. An XAFS study of nickel chloride in the ionic liquid 1-ethyl-3-methyl imidazolium chloride/ aluminum chloride

    SciTech Connect

    D Roeper; G Cheek; K Pandya; W OGrady

    2011-12-31

    Nickel chloride was studied with cyclic voltammetry and X-ray absorption spectroscopy in acidic and basic aluminum chloride/1-ethyl-3-methyl imidazolium chloride (EMIC) ionic liquids. Acidic melts display metal stripping peaks which are not observed in the basic melt. EXAFS analysis shows that the nickel is tetrahedrally coordinated with chloride ions in the basic solution. In the acidic solution the nickel is coordinated by six chloride ions that are also associated with aluminum ions.

  20. Encapsulation of a catalytic imidazolium salt into avidin: towards the development of a biohybrid catalyst active in ionic liquids.

    PubMed

    Gauchot, Vincent; Branca, Mathieu; Schmitzer, Andreea

    2014-02-03

    Herein, we report the development of biohybrid catalysts that are capable of catalyzing the aldol reaction. The use of biotinylated imidazolium salts in combination with racemic or enantiomerically pure catalytic anions allowed us to study the adaptive and cooperative positioning of the anionic catalyst inside the protein. Supramolecular encapsulation of the biotinylated catalyst into avidin resulted in good selectivity for the aldol reaction performed in ionic liquid/water mixtures.

  1. Density and molar volumes of imidazolium-based ionic liquid mixtures and prediction by the Jouyban-Acree model

    NASA Astrophysics Data System (ADS)

    Ghani, Noraini Abd; Sairi, Nor Asrina; Mat, Ahmad Nazeer Che; Khoubnasabjafari, Mehry; Jouyban, Abolghasem

    2016-11-01

    The density of imidazolium-based ionic liquid, 1-ethyl-3-methylimidazolium diethylphosphate with sulfolane were measured at atmospheric pressure. The experiments were performed at T= (293 - 343) K over the complete mole fractions. Physical and thermodynamic properties such as molar volumes, V0, and excess molar volumes, VE for this binary mixtures were derived from the experimental density data. The Jouyban-Acree model was exploited to correlate the physicochemical properties (PCPs) of binary mixtures at various mole fractions and temperatures.

  2. Effect of the structure of imidazolium cations in [BF4](-)-type ionic liquids on direct electrochemistry and electrocatalysis of horseradish peroxidase in Nafion films.

    PubMed

    Lu, Lu; Huang, Xirong; Qu, Yinbo

    2011-10-01

    The direct electrochemistry and bioelectrocatalysis of horseradish peroxidase (HRP) in Nafion films at glassy carbon electrode (GCE) was investigated in three [BF(4)](-)-type room-temperature ionic liquids (ILs) to understand the structural effect of imidazolium cations. The three ILs are 1-ethyl-3-methylimidazolium tetrafluoroborate ([Emim][BF(4)]), 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF(4)]) and 1-hexyl-3-methylimidazolium tetrafluoroborate ([Hmim][BF(4)]). A small amount of water in the three ILs is indispensable for maintaining the electrochemical activity of HRP in Nafion films, and the optimum water contents decrease with the increase of alkyl chain length on imidazole ring. Analysis shows that the optimum water contents are primarily determined by the hydrophilicity of ILs used. In contrast to aqueous medium, ILs media facilitate the direct electron transfer of HRP, and the electrochemical parameters obtained in different ILs are obviously related to the nature of ILs. The direct electron transfer between HRP and GCE is a surface-confined quasi-reversible single electron transfer process. The apparent heterogeneous electron transfer rate constant decreases gradually with the increase of alkyl chain length on imidazole ring, but the changing extent is relatively small. The electrocatalytic reduction current of H(2)O(2) at the present electrode decreases obviously with the increase of alkyl chain length, and the mass transfer of H(2)O(2) via diffusion in ILs should be responsible for the change. In addition, the modified electrode has good stability and reproducibility; the ability to tolerate high levels of F(-) has been greatly enhanced due to the use of Nafion film. When an appropriate mediator is included in the sensing layer, a sensitive nonaqueous biosensor could be fabricated.

  3. Effect of -OH functionalization, C2 methylation, and high radiation fields on the non-linear optical response of imidazolium ionic liquids

    NASA Astrophysics Data System (ADS)

    Namboodiri, Vinu V.; Guleria, Apurav; Singh, Ajay K.

    2017-04-01

    Considering the impending applications of room temperature ionic liquids (RTILs) in various areas involving high optical and radiation fields, it is pertinent to probe the structure-property correlation of these solvents exposed to such conditions. Herein, femtosecond Z-scan technique (at high pulse repetition rate, 80 MHz) was employed to investigate the non-linear optical response of imidazolium RTILs in 3 scenarios: (1) -OH functionalization, (2) C2 methylation, and (3) influence of high radiation fields. Large negative non-linear refractive values ( n 2) were observed in all the RTIL samples and have been attributed predominantly due to the thermal effects. In order to isolate and determine the contribution of electronic Kerr effect, the Z-scan experiments were also carried out at low pulse repetition rate (i.e. 500 Hz) by means of a mechanical chopper. The closed aperture transmittance profile showed the valley-peak pattern, which signifies positive non-linearity. Nonetheless, the variation in the n2 values of the RTILs follows the same trend in low pulse repetition rate as was observed in case of high pulse repetition rate. The trend in the n 2 values clearly showed the decrease in the non-linearity in the first two cases and has been attributed to the weakening of the ion-pair formation, which adversely affects the charge transfer between the ionic moieties via C2 position. However, an increase in the n 2 values was observed in case of ILs irradiated to high radiation doses. This enhancement in the non-linearity has been assigned to the formation of double bond order radiolytic products. These results clearly indicate a strong correlation between the non-linearity and the strength of cation-anion interaction amongst them. Therefore, such information about these solvents may significantly contribute to the fundamental understanding of their structure-property relationships.

  4. Degradation of imidazolium- and quaternary ammonium-functionalized poly(fluorenyl ether ketone sulfone) anion exchange membranes.

    PubMed

    Chen, Dongyang; Hickner, Michael A

    2012-11-01

    Imidazolium and quaternary ammonium-functionalized poly(fluorenyl ether ketone sulfone)s were synthesized successfully with the same degree of cationic functionalization and identical polymer backbones for a comparative study of anion exchange membranes (AEMs) for solid-state alkaline membrane fuel cells (AMFCs). Both anion exchange membranes were synthesized using a new methyl-containing monomer that avoided the use of toxic chloromethylation reagents. The polymer chemical structures were confirmed by ¹H NMR and FTIR. The derived AEMs were fully characterized by water uptake, anion conductivity, stability under aqueous basic conditions, and thermal stability. Interestingly, both the cationic groups and the polymer backbone were found to be degraded in 1 M NaOH solution at 60 °C over 48 h as measured by changes of ion exchange capacity and intrinsic viscosity. Imidazolium-functionalized poly(fluorenyl ether ketone sulfone)s had similar aqueous alkaline stability to quaternary ammonium-functionalized materials at 60 °C but much lower stability at 80 °C. This work demonstrates that quaternary ammonium and imidazolium cationic groups are not stable on poly(arylene ether sulfone) backbones under relatively mild conditions. Additionally, the poly(arylene ether sulfone) backbone, which is one of the most common polymers used in ion exchange membrane applications, is not stable in the types of molecular configurations analyzed.

  5. A conformational change in the peripheral anionic site of Torpedo californica acetylcholinesterase induced by a bis-imidazolium oxime.

    PubMed

    Legler, Patricia M; Soojhawon, Iswarduth; Millard, Charles B

    2015-09-01

    As part of ongoing efforts to design improved nerve agent antidotes, two X-ray crystal structures of Torpedo californica acetylcholinesterase (TcAChE) bound to the bis-pyridinium oxime, Ortho-7, or its experimental bis-imidazolium analogue, 2BIM-7, were determined. Bis-oximes contain two oxime groups connected by a hydrophobic linker. One oxime group of Ortho-7 binds at the entrance to the active-site gorge near Trp279, and the second binds at the bottom near Trp84 and Phe330. In the Ortho-7-TcAChE complex the oxime at the bottom of the gorge was directed towards the nucleophilic Ser200. In contrast, the oxime group of 2BIM-7 was rotated away from Ser200 and the oxime at the entrance induced a significant conformational change in the peripheral anionic site (PAS) residue Trp279. The conformational change alters the surface of the PAS and positions the imidazolium oxime of 2BIM-7 further from Ser200. The relatively weaker binding and poorer reactivation of VX-inhibited, tabun-inhibited or sarin-inhibited human acetylcholinesterase by 2BIM-7 compared with Ortho-7 may in part be owing to the unproductively bound states caught in crystallo. Overall, the reactivation efficiency of 2BIM-7 was comparable to that of 2-pyridine aldoxime methyl chloride (2-PAM), but unlike 2-PAM the bis-imidazolium oxime lacks a fixed charge, which may affect its membrane permeability.

  6. Degradation of Imidazolium- and Quaternary Ammonium-Functionalized Poly(fluorenyl ether ketone sulfone) Anion Exchange Membranes

    SciTech Connect

    Chen, DY; Hickner, MA

    2012-11-01

    Imidazolium and quaternary ammonium-functionalized poly(fluorenyl ether ketone sulfone)s were synthesized successfully with the same degree of cationic functionalization and identical polymer backbones for a comparative study of anion exchange membranes (AEMs) for solid-state alkaline membrane fuel cells (AMFCs). Both anion exchange membranes were synthesized using a new methyl-containing monomer that avoided the use of toxic chloromethylation reagents. The polymer chemical structures were confirmed by H-1 NMR and FTIR. The derived AEMs were fully characterized by water uptake, anion conductivity, stability under aqueous basic conditions, and thermal stability. Interestingly, both the cationic groups and the polymer backbone were found to be degraded in 1 M NaOH solution at 60 degrees C over 48 h as measured by changes of ion exchange capacity and intrinsic viscosity. Imidazolium-functionalized poly(fluorenyl ether ketone sulfone)s had similar aqueous alkaline stability to quaternary ammonium-functionalized materials at 60 degrees C but much lower stability at 80 degrees C. This work demonstrates that quaternary ammonium and imidazolium cationic groups are not stable on poly(arylene ether sulfone) backbones under relatively mild conditions. Additionally, the poly(arylene ether sulfone) backbone, which is one of the most common polymers used in ion exchange membrane applications, is not stable in the types of molecular configurations analyzed.

  7. Shape-Controllable Formation of Poly-imidazolium Salts for Stable Palladium N-Heterocyclic Carbene Polymers

    PubMed Central

    Zhao, Huaixia; Li, Liuyi; Wang, Yangxin; Wang, Ruihu

    2014-01-01

    The imidazolium-based main-chain organic polymers are one of promising platforms in heterogeneous catalysis, the size and outer morphology of polymer particles are known to have important effects on their physical properties and catalytic applications, but main-chain ionic polymers usually generate amorphous or spherical particles. Herein, we presented a versatile and facile synthetic route for size- and shape-controllable synthesis of main-chain poly-imidazolium particles. The wire-shaped, spherical and ribbon-shaped morphologies of poly-imidazolium particles were readily synthesized through quaternization of bis-(imidazol-1-yl)methane and 2,4,6-tris(4-(bromomethyl)phenyl)-1,3,5-triazine, and the modification of their size and morphology were realized through adjusting solvent polarity, solubility, concentration and temperatures. The direct complexation of the particles with Pd(OAc)2 produced ionic polymers containing palladium N-heterocyclic carbene units (NHCs) with intactness of original morphologies. The particle morphologies have a significant effect on catalytic performances. Wire-shaped palladium-NHC polymer shows excellent catalytic activity and recyclabilty in heterogeneous Suzuki-Miyaura cross-coupling reaction. PMID:24969738

  8. Novel polystyrene microspheres functionalized by imidazolium and the electrocatalytic activity towards H2O2 of its Prussian blue composite

    NASA Astrophysics Data System (ADS)

    Mao, Hui; Song, Jinling; Zhang, Qian; Liu, Daliang; Gong, Naiqi; Li, Ying; Wu, Qiong; Verpoort, Francis; Song, Xi-Ming

    2013-05-01

    Copolymerization of styrene (St) and 1-vinyl-3-ethylimidazolium bromide (VEIB), novel poly(St-co-VEIB) microspheres were generated. Owing to the presence of imidazolium groups, such microspheres having an average diameter of 125 nm, behave electropositively when dispersed in aqueous solution. Furthermore, due to the presence of imidazolium groups, having a capacity of ion-exchange and weak reducibility on the surface of the PS microspheres, [Fe(CN)6]3- was absorbed on the surface of poly(St-co-VEIB) microspheres, and simultaneously, Fe3+ was reduced to Fe2+. Thus, in situ growth of Prussian blue (PB) nanoparticles could occur on the surface of poly(St-co-VEIB) microspheres without the addition of any other reducing agent. This methodology, utilizing the ion-exchange and weak reducibility properties of the imidazolium groups on the surface of micro-/nanostructures is a novel general method for assembling hierarchical nanostructured materials. Finally, the electrochemical property of the strawberry-like PS/PB composite microspheres was also investigated by applying a glassy carbon electrode. A good repeatability of the cyclic voltammetry responses, having a good linearity and sensitivity, for the electrocatalytic reduction of H2O2 was obtained.

  9. Wash room, bunkhouse, first floor interior. This room is a ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Wash room, bunkhouse, first floor interior. This room is a screened porch with the original sinks extant. Light and ventilation was borrowed from the wash room into the toilets and bathing rooms. - Sespe Ranch, Bunkhouse, 2896 Telegraph Road, Fillmore, Ventura County, CA

  10. Staff corridor (room 206, representing rooms 301, 305, 401, 405, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Staff corridor (room 206, representing rooms 301, 305, 401, 405, 501, and 505), looking south towards the staff corridor vestibule (room 206A, representing rooms 305A, 405A, and 505A). - California State Office Building No. 1, 915 Capitol Mall, Sacramento, Sacramento County, CA

  11. Room-temperature ionic liquids: slow dynamics, viscosity, and the red edge effect.

    PubMed

    Hu, Zhonghan; Margulis, Claudio J

    2007-11-01

    Ionic liquids (ILs) have recently attracted significant attention from academic and industrial sources. This is because, while their vapor pressures are negligible, many of them are liquids at room temperature and can dissolve a wide range of polar and nonpolar organic and inorganic molecules. In this Account, we discuss the progress of our laboratory in understanding the dynamics, spectroscopy, and fluid dynamics of selected imidazolium-based ILs using computational and analytical tools that we have recently developed. Our results indicate that the red edge effect, the non-Newtonian behavior, and the existence of locally heterogeneous environments on a time scale relevant to chemical and photochemical reactivity are closely linked to the viscosity and highly structured character of these liquids.

  12. Free Radical Polymerization of Styrene and Methyl Methacrylate in Various Room Temperature Ionic Liquids

    SciTech Connect

    Zhang, Hongwei; Hong, Kunlun; Mays, Jimmy

    2005-01-01

    Conventional free radical polymerization of styrene and methyl methacrylate was carried out in various room temperature ionic liquids (RTILs). The RTILs used in this research encompass a wide range of cations and anions. Typical cations include imidazolium, phosphonium, pyridinium, and pyrrolidinium; typical anions include amide, borate, chloride, imide, phosphate, and phosphinate. Reactions are faster and polymers obtained usually have higher molecular weights when compared to polymerizations carried out in volatile organic solvents under the same conditions. This shows that rapid rates of polymerization and high molecular weights are general features of conventional radical polymerizations in RTILs. Attempts to correlate the polarities and viscosities of the RTILs with the polymerization behavior fail to yield discernible trends.

  13. NafionxAE-based polymer actuators with ionic liquids as solvent incorporated at room temperature

    NASA Astrophysics Data System (ADS)

    Kikuchi, Kunitomo; Tsuchitani, Shigeki

    2009-09-01

    Nafion®-based ionic polymer-metal composites (IPMCs), with ionic liquids as solvent, were fabricated by exchanging counterions to ionic liquids at room temperature. Ion exchange is performed by only immersing IPMC in a mixture of de-ionized water and ionic liquids at room temperature for 48 h. The fabricated IPMCs exhibited a bending curvature the same as or larger than that of conventional IPMCs with ionic liquids, formed by ion exchange to ionic liquids at an elevated temperature up to about 100 °C, and also had long-term stability in operation in air, with a fluctuation smaller than 21% in bending curvature during a 180 min operation. The effective ion exchange to ionic liquids in the present method is probably due to an increase in diffusion speed of ionic liquids into IPMC by adsorption of water in a Nafion® membrane. It is a surprise that among IPMCs with ionic liquids 1-ethyl-3-methyl-imidazolium tetrafluoroborate, 1-buthyl-3-methyl-imidazolium tetrafluoroborate (BMIBF4), and 1-buthyl-3-methyl-imidazolium hexafluorophosphate (BMIPF6), IPMC with water-insoluble BMIPF6 exhibited a larger bending curvature than that IPMC with water-miscible BMIBF4. This might be due to effective incorporation of BMIPF6 into IPMC, since BMIPF6 has a higher affinity with IPMC than with water in the mixture of water and BMIPF6. From measurements of complex impedance and step voltage response of the driving current of IPMCs with ionic liquid, they are expressed by an equivalent circuit of a parallel combination of a serial circuit of membrane resistance of Nafion® and electric double layer capacitance at metal electrodes, with membrane capacitance of Nafion®, in a frequency range higher than about 0.1 Hz. The difference in magnitude of bending curvature in three kinds of IPMCs with ionic liquids is mainly due to the difference in bending response speed coming from the difference in the membrane resistance.

  14. Technology Equipment Rooms.

    ERIC Educational Resources Information Center

    Day, C. William

    2001-01-01

    Examines telecommunications equipment room design features that allow for growth and can accommodate numerous equipment replacements and upgrades with minimal service disruption and with minimal cost. Considerations involving the central hub, power and lighting needs, air conditioning, and fire protection are discussed. (GR)

  15. Rooms with a View

    ERIC Educational Resources Information Center

    Hourihan, Peter; Berry, Millard, III

    2006-01-01

    When well-designed and integrated into a campus living or learning space, an atrium can function as the heart and spirit of a building, connecting interior rooms and public spaces with the outside environment. However, schools and universities should seek technological and HVAC solutions that maximize energy efficiency. This article discusses how…

  16. Locker-Room Talk.

    ERIC Educational Resources Information Center

    Lowe, Jason; Noyes, Brad

    1999-01-01

    Explains how proper athletic facility locker-room design can save time and money. Design factors that address who will be using the facility are discussed as are user requirements, such as preparation areas, total storage area per user, grooming area, and security areas. Final comments address maintenance and operations issues. (GR)

  17. Visiting Room 501

    ERIC Educational Resources Information Center

    Curwen, Margaret Sauceda

    2009-01-01

    Students in Room 501 were exploring and negotiating their lives as transnational citizens. In a globalized world of instantaneous information and communication, Latino students are shaping, morphing, and evolving into a new generation. This study highlights one group of students who were aspiring toward middle class, which is not the typical…

  18. Halogen-free bis(imidazolium)/bis(ammonium)-di[bis(salicylato)borate] ionic liquids as energy-efficient and environmentally friendly lubricant additives.

    PubMed

    Gusain, Rashi; Gupta, Piyush; Saran, Sandeep; Khatri, Om P

    2014-09-10

    Bis(imidazolium)- and bis(ammonium)-di[bis(salicylato)borate] ionic liquids with variable alkyl chain and cyclic ring structures, were synthesized and then evaluated them as potential lubricant additives. The copper strip test results revealed noncorrosive properties of these ionic liquids. Introduction of halogen content in bis(imidazolium) ionic liquid by replacement of bis(salicylato)borate (BScB) anion with hexafluorophosphate (PF6(-)), severely corroded the copper strip. Thermogravimetric results showed that bis(imidazolium) ionic liquids exhibited higher thermal stability than bis(ammonium) ionic liquids owing to compact structure provided by imidazolium rings, higher intermolecular interactions, smaller free volume and low steric hindrance. The lubrication properties of these ionic liquids as additives to synthetic lubricant poly(ethylene) glycol (PEG 200) were evaluated for steel balls. Results showed that bis(ammonium)- and bis(imidazolium)-(BScB)2 ionic liquids as additives significantly reduced both friction coefficient and wear of PEG 200. The structure of cations, particularly the variation in substituted alkyl chain length monitored the degree of reduction in friction and wear. The excellent lubrication properties were attributed to the formation of adsorbed tribo-thin film and tribochemical product during the tribo-contact. Being halogen-, phosphorus-, and sulfur-free, these ionic liquids (a) protects contact surfaces from tribo-corrosive events, (b) reduces the friction and wear, and (c) keep environment green and clean.

  19. Thickness-dependent structural arrangement in nano-confined imidazolium-based ionic liquid films.

    PubMed

    Rouha, Michael; Cummings, Peter T

    2015-02-14

    A fundamental understanding of interfacial processes in nano-confined ionic liquids is crucial to increase the performance of modern energy storage devices. It is well-known that interfaces between electrodes and ionic liquids exhibit structures distinct from that of the bulk liquid. Following the recent interest in these systems, we studied the structure of thin ionic liquid films confined in flexible uncharged carbon nano-pores by using fully-atomistic molecular dynamics simulations. We show that the interfacial ions self-assemble into a closely-packed chequerboard-like pattern, formed by both cations and anions in direct contact with the pore wall, and that within this structure we find changes dependent on the thickness of the confined films. At low coverages a dense layer is formed in which both the imidazolium-ring and its alkyl-tail lie parallel to the pore wall. With increasing coverage the alkyl-chains reorient perpendicular to the surface, making space for additional ions until a densified highly ordered layer is formed. This wall-induced self-patterning into interfacial layers with significantly higher than bulk density is consistent with recent experimental and theoretical studies of similar systems. This work reveals additional molecular-level details on the effect of the film-thickness on the structure and density of the ionic liquid.

  20. Growth, crystalline perfection, spectral, thermal and theoretical studies on imidazolium L-tartrate crystals.

    PubMed

    Meena, K; Muthu, K; Meenatchi, V; Rajasekar, M; Bhagavannarayana, G; Meenakshisundaram, S P

    2014-04-24

    Transparent optical quality single crystals of imidazolium L-tartrate (IMLT) were grown by conventional slow evaporation solution growth technique. Crystal structure of the as-grown IMLT was determined by single crystal X-ray diffraction analysis. Thermal analysis reveals the purity of the crystal and the sample is stable up to the melting point. Good transmittance in the visible region is observed and the band gap energy is estimated using diffuse reflectance data by the application of Kubelka-Munk algorithm. The powder X-ray diffraction study reveals the crystallinity of the as-grown crystal and it is compared with that of the experimental one. An additional peak in high resolution X-ray diffraction (HRXRD) indicates the presence of an internal structural low angle boundary. Second harmonic generation (SHG) activity of IMLT is significant as estimated by Kurtz and Perry powder technique. HOMO-LUMO energies and first-order molecular hyperpolarizability of IMLT have been evaluated using density functional theory (DFT) employing B3LYP functional and 6-31G(d,p) basis set. The optimized geometry closely resembles the ORTEP. The vibrational patterns present in the molecule are confirmed by FT-IR coinciding with theoretical patterns.

  1. Electrical conductivity study on micelle formation of long-chain imidazolium ionic liquids in aqueous solution.

    PubMed

    Inoue, Tohru; Ebina, Hayato; Dong, Bin; Zheng, Liqiang

    2007-10-01

    Electrical conductivity was measured for aqueous solutions of long-chain imidazolium ionic liquids (IL), 1-alkyl-3-methylimidazolium bromides with C(12)-C(16) alkyl chains. The break points appeared in specific conductivity (kappa) vs concentration (c) plot indicates that the molecular aggregates, i.e., micelles, are formed in aqueous solutions of these IL species. The critical micelle concentration (cmc) determined from the kappa vs c plot is somewhat lower than those for typical cationic surfactants, alkyltrimethylammonium bromides with the same hydrocarbon chain length. The electrical conductivity data were analyzed according to the mixed electrolyte model of micellar solution, and the aggregation number, n, and the degree of counter ion binding, beta, were estimated. The n values of the present ILs are somewhat smaller than those reported for alkyltrimethylammonium bromides, which may be attributed to bulkiness of the cationic head group of the IL species. The thermodynamic parameters for micelle formation of the present ILs were estimated using the values of cmc and beta as a function of temperature. The contribution of entropy term to the micelle formation is superior to that of enthalpy term below about 30 degrees C, and it becomes opposite at higher temperature. This coincides with the picture drawn for the micelle formation of conventional ionic surfactants.

  2. The Biginelli reaction with an imidazolium-tagged recyclable iron catalyst: kinetics, mechanism, and antitumoral activity.

    PubMed

    Ramos, Luciana M; Guido, Bruna C; Nobrega, Catharine C; Corrêa, José R; Silva, Rafael G; de Oliveira, Heibbe C B; Gomes, Alexandre F; Gozzo, Fábio C; Neto, Brenno A D

    2013-03-25

    The present work describes the synthesis, characterization, and application of a new ion-tagged iron catalyst. The catalyst was employed in the Biginelli reaction with impressive performance. High yields have been achieved when the reaction was carried out in imidazolium-based ionic liquids (BMI⋅PF6, BMI⋅NTf2, and BMI⋅BF4), thus showing that the ionic-liquid effects play a role in the reaction. Moreover, the ion-tagged catalyst could be recovered and reused up to eight times without any noticeable loss in activity. Mechanistic studies performed by using high-resolution electrospray-ionization quadrupole-time-of-flight mass (HR-EI-QTOF) spectrometry and kinetic experiments indicate only one reaction pathway and rule out the other two possibilities under the development conditions. The theoretical calculations are in accordance with the proposed mechanism of action of the iron catalyst. Finally, the 37 dihydropyrimidinone derivatives, products of the Biginelli reaction, had their cytotoxicity evaluated in assays against MCF-7 cancer cell linages with encouraging results of some derivatives, which were virtually non-toxic against healthy cell linages (fibroblasts).

  3. Imidazolium ionic liquids as solvents of pharmaceuticals: influence on HSA binding and partition coefficient of nimesulide.

    PubMed

    Azevedo, Ana M O; Ribeiro, Diogo M G; Pinto, Paula C A G; Lúcio, Marlene; Reis, Salette; Saraiva, M Lúcia M F S

    2013-02-25

    In this work, the influence of imidazolium ionic liquids (ILs) on bio-chemical parameters that influence the in vivo behavior of nimesulide was evaluated. In this context, the binding of nimesulide to human serum albumin (HSA), in IL media, was studied. In parallel, the evaluation of the interaction of drug-IL systems, with micelles of hexadecylphosphocholine (HDPC), enabled the calculation of partition coefficients (K(p)). Both assays were performed in buffered media in the absence and in the presence of emim [BF(4)], emim [Ms] and emim [TfMs] 1%. Even though there was an increase of the dissociation constant (K(d)) in IL media, nimesulide still binds to HSA by means of strong interactions. The thermodynamic analysis indicates that the interaction is spontaneous for all the tested systems. Moreover, the studied systems exhibited properties that are favorable to the interaction of the drug with biological membranes, with K(p) values 2.5-3.5 higher than in aqueous environment. The studied nimesulide-IL systems presented promising characteristics regarding the absorption and distribution of the drug in vivo, so that the studied solvents seem to be good options for drug delivery.

  4. Role of spacer length in interaction between novel gemini imidazolium surfactants and Rhizopus oryzae lipase.

    PubMed

    Adak, Sunita; Datta, Sougata; Bhattacharya, Santanu; Banerjee, Rintu

    2015-11-01

    An insight into the effects of new ionic liquid-type gemini imidazolium cationic surfactants on the structure and function of the lipases is of prime importance for their potential application. Changes in the activity, stability and structure of Rhizopus oryzae lipase in the presence of novel gemini surfactants, [C16-3-C16im]Br2 and [C16-12-C16im]Br2 were probed in the present study. Surfactant with shorter spacer length, [C16-3-C16im]Br2 was found to be better in improving the hydrolytic activity and thermal stability of the lipase. For both the surfactants, activation was concentration dependent. CD spectroscopy results showed a decrease in α-helix and an increase in β-sheet content in the presence of these surfactants. A higher structural change observed in presence of [C16-12-C16im]Br2 correlated with lower enzyme activity. Isothermal titration calorimetric studies showed the binding to be spontaneous in nature based on sequential two site binding model. The forces involved in binding were found to differ for the two surfactants proving that the spacer length is an important factor which governs the interaction. These surfactants could be used as promising components both in enzyme modification and media engineering for attaining the desired goals in biocatalytic reactions.

  5. Study of toxicity of imidazolium ionic liquids to watercress (Lepidium sativum L.).

    PubMed

    Studzińska, Sylwia; Buszewski, Bogusław

    2009-02-01

    The sensitivity of Lepidium sativum L. germination to three imidazolium ionic liquids was investigated in solutions and soils artificially contaminated with mixtures of those compounds. In case of aquatic solutions, the toxic character of analyzed compounds is connected with their hydrophobicity. The seedling growth is increasing with the decrease in ionic liquid hydrophobicity. The novelty of those studies is the application of high-performance liquid chromatography, which was used for the determination of ionic liquid quantity absorbed by cress. There was almost linear relationship between decrease in root germination and amount of ionic liquid uptaken by cress. Furthermore, the systematic studies on the influence of total organic carbon content in soil on the toxicity of ionic liquids to cress were performed for the first time. Hazardous effects appeared to be closely connected with organic matter: with the decrease of total organic carbon quantity, the inhibition of plant growth was more significant. Visual effects of ionic liquid toxic activity to garden cress are similar as in the case of nutrient deficit in plants.

  6. [Effects of imidazolium chloride ionic liquids on the acute toxicity and weight of earthworm].

    PubMed

    Huang, Ruo-Nan; Fan, Jun-Jie; Tu, Hong-Zhi; Tang, Ling-Yan; Liu, Hui-Jun; Xu, Dong-Mei

    2013-04-01

    Standard contact filter paper test of OECD and artificial soil test were used to study the acute lethal effect of three imidazolium chloride ionic liquids, 1-butyl- 3-methylimidazolium chloride ([Bmim] Cl), 1-hexyl- 3-methylimidazolium chloride ([Hmim] Cl), and 1-octyl- 3-methylimidazolium chloride ([Omim] Cl) on earthworm (Eisenia fetida), and the weight of the earthworms was measured after subtle exposure. The 24 h-LC50 values of [Bmim] Cl, [Hmim] Cl and [Omim] Cl using the contact filter paper method were 109.60, 50.38 and 7.94 microg x cm(-2), respectively. The 48 h-LC50 values were 98.52, 39.14 and 3.61 microg x cm(-2), respectively. Using the artificial soil method, the 7 d-LC50 values of [Bmim] Cl, [Hmim] Cl and [Omim] Cl were 447.78, 245.56 and 180.51 mg x kg(-1), respectively, and the 14 d-LC50 values were 288.42, 179.75, 150.35 mg x kg(-1), respectively. There were differences in poisoning symptoms of the three ionic liquids on earthworms. The growth of Eisenia fetida was inhibited and declined with increasing ionic liquid concentration. The toxicity of ionic liquids on Eisenia fetida increased with the length of carbon chain.

  7. Effects of imidazolium chloride ionic liquids and their toxicity to Scenedesmus obliquus.

    PubMed

    Liu, Huijun; Zhang, Xiaoqiang; Chen, Caidong; Du, Shaoting; Dong, Ying

    2015-12-01

    The low volatility of ionic liquids effectively eliminates a major pathway for environmental release and contamination; however, the good solubility, low degree of environmental degradation and biodegradation of ILs may pose a potential threat to the aquatic environment. The growth inhibition of the green alga Scenedesmus obliquus by five 1-alkyl-3-methylimidazolium chloride ionic liquids (ILs) ([Cnmim]Cl, n=6, 8, 10, 12, 16) was investigated, and the effect on cellular membrane permeability and the ultrastructural morphology by ILs ([Cnmim]Cl, n=8, 12, 16) were studied. The results showed that the growth inhibition rate increased with increasing IL concentration and increasing alkyl chain lengths. The relative toxicity was determined to be [C6mim]Cl<[C8mim]Cl<[C10mim]Cl<[C12mim]Cl<[C16mim]Cl. The algae were most sensitive to imidazolium chloride ILs at 48 h according to the results from the growth inhibition rate and cellular membrane permeability tests. The ultrastructural morphology showed that the ILs had negative effects on the cellular morphology and structure of the algae. The cell wall of treated algae became wavy and separated from the cell membrane. Chloroplast grana lamellae became obscure and loose, osmiophilic material was deposited in the chloroplast, and mitochondria and their cristae swelled. Additionally, electron-dense deposits were observed in the vacuoles.

  8. Investigation on growth and characterization of imidazolium picrate: An organic salt

    NASA Astrophysics Data System (ADS)

    Anandhi, S.; Shyju, T. S.; Srinivasan, T. P.; Gopalakrishnan, R.

    2011-11-01

    Organic crystal of imidazolium picrate (IP) was synthesized and successfully grown by the slow cooling solution growth method using ethanol and acetone as solvents. The structural, thermal, optical and mechanical properties were studied for the grown crystal. Cell parameters were determined using X-ray diffraction studies. HRXRD study shows the crystalline perfection. FT-IR and laser Raman studies confirm the functional groups present in the title material. The optical properties such as optical bandgap and refractive index of the title material were obtained from the UV-visible spectrum. The PL spectrum of the title compound shows green emission. The thermal stability of the crystal has been determined using TG/DTA studies. Vicker's microhardness studies were carried out to understand the mechanical properties of the grown crystal. The hardness of the title compound increases on increasing the load. Theoretical factor group analysis enumerates the possible modes of vibrations. The dielectric tensor, dielectric loss and conductivity over a range of frequencies and temperatures have been presented. Dielectric tensor components have been determined theoretically using the DFT theory.

  9. Thermodynamical and structural properties of imidazolium based ionic liquids from molecular simulation

    NASA Astrophysics Data System (ADS)

    Raabe, Gabriele; Köhler, Jürgen

    2008-04-01

    We have performed molecular dynamics simulations to determine the densities and heat of vaporization as well as structural information for the 1-alkyl-3-methyl-imidazolium based ionic liquids [amim][Cl] and [amim][BF4] in the temperature range from 298to363K. In this simulation study, we used an united atom model of Liu et al. [Phys. Chem. Chem. Phys. 8, 1096 (2006)] for the [emim+] and [bmim+] cations, which we have extended for simulation in [hmim]-ILs and combined with parameters of Canongia Lopes et al. [J. Phys. Chem. B 108, 2038 (2004)] for the [Cl-] anion. Our simulation results prove that both the original united atoms approach by Liu et al. and our extension yield reasonable predictions for the ionic liquid with a considerably reduced computational expense than that required for all atoms models. Radial distribution functions and spatial distribution functions where employed to analyze the local structure of this ionic liquid, and in which way it is influenced by the type of the anion, the size of the cation, and the temperature. Our simulations give evidence for the occurrence of tail aggregations in these ionic liquids with increasing length of the side chain and also increasing temperature.

  10. Pyrazolium- versus imidazolium-based ionic liquids: structure, dynamics and physicochemical properties.

    PubMed

    Chiappe, Cinzia; Sanzone, Angelo; Mendola, Daniele; Castiglione, Franca; Famulari, Antonino; Raos, Guido; Mele, Andrea

    2013-01-17

    Ionic liquids (ILs) composed of two different pyrazolium cations with dicyanamide and bis(trifluoromethanesulfonyl)imide anions have been synthesized and characterized by NMR, Kamlet-Taft solvatochromic parameters, conductivity and rheological measurements, as well as ab initio calculations. Density functional calculations for the two pyrazolium cations, 1-butyl-2-methylpyrazolium [bmpz] and 1-butyl-2,3,5-trimethylpyrazolium [bm(3)pz], provide a full picture of their conformational states. Homo- and heteronuclear NOE show aggregation motives sensitive to steric hindrance and the anions' nature. Self-diffusion coefficients D for the anion and the cation have been measured by pulsed field gradient spin-echo NMR (PGSE-NMR). The ionic diffusivity is influenced by their chemical structure and steric hindrance, giving the order D(cation) > D(anion) for all of the examined compounds. The measured ion diffusion coefficients, viscosities, and ionic conductivity follow the Vogel-Fulcher-Tammann (VFT) equation for the temperature dependencies, and the best-fit parameters have been determined. Solvatochromic parameters indicate an increased ion association upon going from bis(trifluoromethanesulfonyl)imide to dicyanamide-based pyrazolium salts, as well as specific hydrogen bond donor capability of H atoms on the pyrazolium ring. All of these physical properties are compared to those of an analogous series of imidazolium-based ILs.

  11. Thickness-dependent structural arrangement in nano-confined imidazolium-based ionic liquid films

    DOE PAGES

    Rouha, Michael; Cummings, Peter T.

    2014-12-24

    Here we report that a fundamental understanding of interfacial processes in nano-confined ionic liquids is crucial to increase the performance of modern energy storage devices. It is well-known that interfaces between electrodes and ionic liquids exhibit structures distinct from that of the bulk liquid. Following the recent interest in these systems, we studied the structure of thin ionic liquid films confined in flexible uncharged carbon nano-pores by using fully-atomistic molecular dynamics simulations. We show that the interfacial ions self-assemble into a closely-packed chequerboard-like pattern, formed by both cations and anions in direct contact with the pore wall, and that withinmore » this structure we find changes dependent on the thickness of the confined films. At low coverages a dense layer is formed in which both the imidazolium-ring and its alkyl-tail lie parallel to the pore wall. With increasing coverage the alkyl-chains reorient perpendicular to the surface, making space for additional ions until a densified highly ordered layer is formed. This wall-induced self-patterning into interfacial layers with significantly higher than bulk density is consistent with recent experimental and theoretical studies of similar systems. Lastly, this work reveals additional molecular-level details on the effect of the film-thickness on the structure and density of the ionic liquid.« less

  12. Thickness-dependent structural arrangement in nano-confined imidazolium-based ionic liquid films

    SciTech Connect

    Rouha, Michael; Cummings, Peter T.

    2014-12-24

    Here we report that a fundamental understanding of interfacial processes in nano-confined ionic liquids is crucial to increase the performance of modern energy storage devices. It is well-known that interfaces between electrodes and ionic liquids exhibit structures distinct from that of the bulk liquid. Following the recent interest in these systems, we studied the structure of thin ionic liquid films confined in flexible uncharged carbon nano-pores by using fully-atomistic molecular dynamics simulations. We show that the interfacial ions self-assemble into a closely-packed chequerboard-like pattern, formed by both cations and anions in direct contact with the pore wall, and that within this structure we find changes dependent on the thickness of the confined films. At low coverages a dense layer is formed in which both the imidazolium-ring and its alkyl-tail lie parallel to the pore wall. With increasing coverage the alkyl-chains reorient perpendicular to the surface, making space for additional ions until a densified highly ordered layer is formed. This wall-induced self-patterning into interfacial layers with significantly higher than bulk density is consistent with recent experimental and theoretical studies of similar systems. Lastly, this work reveals additional molecular-level details on the effect of the film-thickness on the structure and density of the ionic liquid.

  13. DFT study of the energetic and noncovalent interactions between imidazolium ionic liquids and hydrofluoric acid.

    PubMed

    Velarde, Marco V; Gallo, Marco; Alonso, P A; Miranda, A D; Dominguez, J M

    2015-04-16

    In this work, we evaluated the energetic interactions between imidazolium ionic liquids (ILs) and hydrofluoric acid, as well as the cation-anion interactions in ILs. We used DFT calculations that include dispersion corrections employing the PBE and M06 functionals. We tested 22 ILs, including [C4MIM][PF6], [C4MIM][NTf2], and [C4MIM][CH3COO], obtaining interaction energies in the range of -27 to -13 kcal/mol with the PBE functional. The NCI (noncovalent interaction) index developed by Yang and collaborators ( J. Am. Chem. Soc. 2010 , 132 , 6498 - 6506 ; J. Chem. Theory Comput. 2011 , 7 , 625 - 632 ) also was used for mapping the key noncovalent interactions (hydrogen bonds, van der Waals, and steric repulsions) between the anions and cations of ILs and also for interactions of ILs with hydrofluoric acid (HF). The results obtained show that the anions have a stronger effect with respect to cations in their capacity for interacting with hydrofluoric acid, and the strongest interaction energies occur in systems where the key noncovalent interactions are mainly hydrogen bonds. The [C4MIM][PF6], [C4MIM][NTf2], and [C4MIM][BF4] ionic liquids displayed the weakest cation-anion interactions.

  14. Interactions of Aqueous Imidazolium-Based Ionic Liquid Mixtures with Solid-Supported Phospholipid Vesicles

    PubMed Central

    Losada-Pérez, Patricia; Khorshid, Mehran; Renner, Frank Uwe

    2016-01-01

    Despite the environmentally friendly reputation of ionic liquids (ILs), their safety has been recently questioned given their potential as cytotoxic agents. The fundamental mechanisms underlying the interactions between ILs and cells are less studied and by far not completely understood. Biomimetic films are here important biophysical model systems to elucidate fundamental aspects and mechanisms relevant for a large range of biological interaction ranging from signaling to drug reception or toxicity. Here we use dissipative quartz crystal microbalance QCM-D to examine the effect of aqueous imidazolium-based ionic liquid mixtures on solid-supported biomimetic membranes. Specifically, we assess in real time the effect of the cation chain length and the anion nature on a supported vesicle layer of the model phospholipid DMPC. Results indicate that interactions are mainly driven by the hydrophobic components of the IL, which significantly distort the layer and promote vesicle rupture. Our analyses evidence the gradual decrease of the main phase transition temperature upon increasing IL concentration, reflecting increased disorder by weakening of lipid chain interactions. The degree of rupture is significant for ILs with long hydrophobic cation chains and large hydrophobic anions whose behavior is reminiscent of that of antimicrobial peptides. PMID:27684947

  15. A green approach for starch modification: Esterification by lipase and novel imidazolium surfactant.

    PubMed

    Adak, Sunita; Banerjee, Rintu

    2016-10-05

    Starch being one of the most abundant polysaccharides in nature has been subjected to modification to enhance its applicability. Modification by esterification involves acylation of hydroxyl groups of glucose units to form starch esters. Lipases, as catalysts have emerged as a promising alternative to chemical processes. Although ionic liquids and microwave assisted heating are emerging as green technology yet their use along with lipases for starch modification has not been probed. In the present study esterification of corn starch employing Rhizopus oryzae lipase, microwave irradiation and novel imidazolium surfactants has been attempted. At 80% irradiation, 1:3 starch/oleic acid molar ratio, 150 IU enzyme, and 50μmol of [C16-3-C16im]Br2 maximum degree of substitution (DS=2.75) was attained. The modified starch showed better hydrophobicity and thermoplasticity with corresponding structural changes depicted by FTIR, XRD and SEM. These properties advocate the usefulness of the modified starch in food and biopolymer sectors.

  16. Properties of columns with several pyridinium and imidazolium ionic liquid stationary phases.

    PubMed

    Shashkov, M V; Sidelnikov, V N

    2013-09-27

    Recent advances in the development of new liquid phases (ILs) made it possible to use some classes of ILs as polar stationary liquid phases (SLP). In our days only alkylimidazolium- and alkylphosphonium-based ILs are widely used as polar SLP. In present work some other types of ILs - pyridinium and cyanopropyl/hydroxypropyl imidazolium were investigated as SLP. Columns with efficiencies 2000-2500 plates/m by high-pressure static method were prepared. Polarity and selectivity of these phases were measured. Selectivity was described in terms of intermolecular interactions by using Abraham solvatation parameter model. The set of the regularities between cation structure of ionic liquid and selectivity has been shown. The number and position of methyl groups in ionic liquid pyridinium ring were shown to have the sufficient influence on all type of molecular interactions. Finally the resolutions of test mixture for the several ionic liquid SLP were obtained. For columns with some ionic liquids the dependencies of the height equivalent to a theoretical plate (HETP) and sample loading capacity were obtained and compared with the conventional phases. It was found that the optimal efficiency for the IL columns is attained at lower carrier gas velocities in comparison with traditional phases. Nevetheless sample loading capacity of IL phases is comparable to those of conventional GC phases.

  17. The Interactions between Imidazolium-Based Ionic Liquids and Stable Nitroxide Radical Species: A Theoretical Study.

    PubMed

    Zhang, Shaoze; Wang, Guimin; Lu, Yunxiang; Zhu, Weiliang; Peng, Changjun; Liu, Honglai

    2016-08-04

    In this work, the interactions between imidazolium-based ionic liquids and some stable radicals based on 2,2,6,6-tetramethylpiperidine-1-yloxyl (TEMPO) have been systematically investigated using density functional theory calculations at the level of M06-2x. Several different substitutions, such as hydrogen bonding formation substituent (OH) and ionic substituents (N(CH3)3(+) and OSO3(-)), are presented at the 4-position of the spin probe, which leads to additional hydrogen bonds or ionic interactions between these substitutions and ionic liquids. The interactions in the systems of the radicals containing ionic substitutions with ionic liquids are predicted much stronger than those in the systems of neutral radicals, resulting in a significant reduction of the mobility of ionic radicals in ionic liquids. To further understand the nature of these interactions, the natural bond order, atoms in molecules, noncovalent interaction index, electron density difference, energy decomposition analysis, and charge decomposition analysis schemes were employed. The additional ionic interactions between ionic radicals and counterions in ionic liquids are dominantly contributed from the electrostatic term, while the orbital interaction plays a major role in other interactions. The results reported herein are important to understand radical processes in ionic liquids and will be very useful in the design of task-specific ionic liquids to make the processes more efficient.

  18. Extraction of ranitidine and nizatidine with using imidazolium ionic liquids prior spectrophotometric and chromatographic detection.

    PubMed

    Kiszkiel, Ilona; Starczewska, Barbara; Leśniewska, Barbara; Późniak, Patrycja

    2015-03-15

    A new extraction medium was proposed for liquid-liquid extraction of the histamine H2 receptor antagonists ranitidine (RNT) and nizatidine (NZT). The ionic liquids with low vapor pressure and favorable solvating properties for a range of compounds such as 1-butyl-3-methylimidazolium hexafluorophosphate [C4mim][PF6] and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [C4mim][Tf2N] were tested for isolation of analytes. The extraction parameters of RNT and NZT, namely, amount of ionic liquid, pH of sample solution, shaking and centrifugation time were optimized. The isolation processes were performed with 1 mL of the ionic liquids. The extracted samples (pH values near 4) were shaken at 1750 rpm. The influence of interfering substances on the efficiency of extraction process was also studied. Methods for the histamine H2 receptor antagonists (ranitidine and nizatidine) determination after their separation using imidazolium ionic liquids by high performance liquid chromatography (HPLC) combined with UV spectrophotometry were developed. The application of ionic liquids in extraction step allows for selective isolation of analytes from aqueous matrices and their preconcentration. The above methods were applied to the determination of RNT and NZT in environmental samples (river water and wastewater after treatment).

  19. Clean room wiping cloths

    SciTech Connect

    Harding, W.B.

    1981-01-01

    The suitability of various fabrics for use as clean room wiping cloths was investigated. These fabrics included knit polyester, knit nylon, urethane foam, woven cotton, nonwoven polyester, nonwoven rayon, nonwoven polyethylene and polypropylene, and woven nylon. These materials were tested for detachable lint and fibers, deterioration, and oil content which could leave contaminating films on wiped surfaces. Well-laundered nylon and polyester cloths knitted from filamentary yarn, with hems, were found to be suitable. (LCL)

  20. 44. Launch Control Equipment Room, taken from rear of room. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    44. Launch Control Equipment Room, taken from rear of room. Lyon - Whiteman Air Force Base, Oscar O-1 Minuteman Missile Alert Facility, Southeast corner of Twelfth & Vendenberg Avenues, Knob Noster, Johnson County, MO

  1. 42. Launch Control Equipment Room, rear of room. Lyon ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. Launch Control Equipment Room, rear of room. Lyon - Whiteman Air Force Base, Oscar O-1 Minuteman Missile Alert Facility, Southeast corner of Twelfth & Vendenberg Avenues, Knob Noster, Johnson County, MO

  2. DETAIL VIEW OF OPERATIONS MANAGEMENT ROOM, FIRING ROOM NO. 4, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF OPERATIONS MANAGEMENT ROOM, FIRING ROOM NO. 4, FACING WEST - Cape Canaveral Air Force Station, Launch Complex 39, Launch Control Center, LCC Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  3. DETAIL VIEW OF OPERATIONS MANAGEMENT ROOM, FIRING ROOM NO. 3, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF OPERATIONS MANAGEMENT ROOM, FIRING ROOM NO. 3, FACING SOUTHEAST - Cape Canaveral Air Force Station, Launch Complex 39, Launch Control Center, LCC Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  4. DETAIL VIEW OF OPERATIONS MANAGEMENT ROOM, FIRING ROOM NO. 3, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF OPERATIONS MANAGEMENT ROOM, FIRING ROOM NO. 3, FACING EAST - Cape Canaveral Air Force Station, Launch Complex 39, Launch Control Center, LCC Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  5. DETAIL VIEW OF OPERATIONS MANAGEMENT ROOM, FIRING ROOM NO. 3, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF OPERATIONS MANAGEMENT ROOM, FIRING ROOM NO. 3, FACING NORTH - Cape Canaveral Air Force Station, Launch Complex 39, Launch Control Center, LCC Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  6. View from window of southeast room (bed room no. 1), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View from window of southeast room (bed room no. 1), second floor, commandant's house, looking east across parade ground. - Fort Simcoe, Commandant's House & Blockhouse, Fort Simcoe Road, White Swan, Yakima County, WA

  7. 8. GROUND FLOOR, NORTH ROOM, NORTH WALL, VIEW OF ROOM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. GROUND FLOOR, NORTH ROOM, NORTH WALL, VIEW OF ROOM LOOKING TOWARDS FIREPLACE, SHOWING PROJECTING CHIMNEY, WINDOW EMBRASURES ON EITHER SIDE AND PANELING - Ocean Hall, Bushwood, St. Mary's County, MD

  8. FACILITY 713, DINING ROOM WITH LIVING ROOM IN LEFT BACKGROUND, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FACILITY 713, DINING ROOM WITH LIVING ROOM IN LEFT BACKGROUND, VIEW FACING EAST. - Schofield Barracks Military Reservation, Central-Entry Single-Family Housing Type, Between Bragg & Grime Streets near Ayres Avenue, Wahiawa, Honolulu County, HI

  9. FACILITY 728, LIVING ROOM FROM DINING ROOM, OBLIQUE VIEW FACING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FACILITY 728, LIVING ROOM FROM DINING ROOM, OBLIQUE VIEW FACING SOUTH. - Schofield Barracks Military Reservation, Corner-Entry Single-Family Housing Type, Between Bragg & Grime Streets near Williston Avenue, Wahiawa, Honolulu County, HI

  10. FACILITY 809, DINING ROOM WITH LIVING ROOM ON RIGHT, VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FACILITY 809, DINING ROOM WITH LIVING ROOM ON RIGHT, VIEW FACING NORTH-NORTHWEST. - Schofield Barracks Military Reservation, Corner-Entry Single-Family Housing Type, Between Hamilton & Tidball Streets, & between Williston & Ayres Avenues, Wahiawa, Honolulu County, HI

  11. 8. VIEW OF ROOM 101 (ASSEMBLY ROOM) FROM NORTHEAST CORNER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. VIEW OF ROOM 101 (ASSEMBLY ROOM) FROM NORTHEAST CORNER SHOWING FLEXIBLE AIR-CONDITIONING DUCT - Vandenberg Air Force Base, Space Launch Complex 3, Vehicle Support Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  12. Interior. Storage room for glassware and reference room with frequentlyused ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior. Storage room for glassware and reference room with frequently-used chemistry and chemical engineering texts. - Thomas A. Edison Laboratories, Building No. 2, Main Street & Lakeside Avenue, West Orange, Essex County, NJ

  13. 21. Perimeter acquisition radar building room #200, electrical equipment room ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. Perimeter acquisition radar building room #200, electrical equipment room - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  14. 24. Perimeter acquisition radar building room #203, communications room ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. Perimeter acquisition radar building room #203, communications room - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  15. 34. Perimeter acquisition radar building room #325, tape handler room ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. Perimeter acquisition radar building room #325, tape handler room - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  16. 23. Perimeter acquisition radar building room #202, mechanical equipment room ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. Perimeter acquisition radar building room #202, mechanical equipment room no. 2 - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  17. INTERIOR VIEW OF A TYPICAL ROOM (ROOM NO. 209), FACING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW OF A TYPICAL ROOM (ROOM NO. 209), FACING NORTH. THE SINK AND MIRROR MAY HAVE BEEN FROM THE ORIGINAL CONSTRUCTION. - U.S. Naval Base, Pearl Harbor, Bachelor Officer Quarters, Dealy Circle, Pearl City, Honolulu County, HI

  18. Console Room, looking southwesterly into Highbay Generator Room Beale ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Console Room, looking southwesterly into Highbay Generator Room - Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Power Plant, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  19. [Virtual room of gastroenterology].

    PubMed

    Spinelli, Osvaldo Mateo; Fittipaldi, Mónica Elsa; Henderson, Eduardo; Krabshuis, Justus Hendrik

    2010-12-01

    The amount of published information and its continuing growth can no longer be managed by an individual searcher. One of today's great challenges for the academic researcher and clinician is to find a relevant scientific article using bibliographic search strategies. We aimed to design and build a Virtual Room of Gastroenterology (VRG) generating real-time automated search strategies and producing bibliographic and full text search results. These results update and complement with the latest evidence the Clinical Guideline Program of the World Gastroenterology Organisation. The HTML driven interface provides a series of pre-formulated MeSH based search strategies for each Aula. For each topic between 10 and 20 specific terms, qualifiers and subheadings are identified. The functionality of the VRG is based on the PubMed's characteristic that allows a search strategy to be captured as a web address. The VRG is available in Spanish and English, and the access is free. There are 28 rooms currently available. All together these rooms provide an advanced bibliographic access using more than 900 pre-programmed MeSH driven strategies. In a further very recent development some of the topics of VRG now allow cascade based searches. These searches look at resource sensitive options and possible ethnic difference per topic. The VRG allows significant reductions in time required to design and carry out complex bibliographic searches in the areas of gastroenterology, hepatology and endoscopy. The system updates automatically in real-time thus ensuring the currency of the results.

  20. Production of 5-hydroxymethylfurfural from corn stalk catalyzed by corn stalk-derived carbonaceous solid acid catalyst.

    PubMed

    Yan, Lulu; Liu, Nian; Wang, Yu; Machida, Hiroshi; Qi, Xinhua

    2014-12-01

    A carbonaceous solid acid was prepared by hydrothermal carbonization of corn stalk followed by sulfonation and was characterized by FT-IR, XRD, SEM and elemental analysis techniques. The as-prepared corn stalk-derived carbonaceous solid acid catalyst contained SO3H, COOH, and phenolic OH groups, and was used for the one-step conversion of intact corn stalk to 5-hydroxymethylfurfural (5-HMF) in the ionic liquid 1-butyl-3-methyl imidazolium chloride ([BMIM][Cl]), where a 5-HMF yield of 44.1% was achieved at 150 °C in 30 min reaction time. The catalytic system was applicable to initial corn stalk concentration of up to ca. 10 wt.% for the production of 5-HMF. The synthesized catalyst and the developed process of using corn stalk-derived carbon catalyst for corn stalk conversion provide a green and efficient strategy for crude biomass utilization.

  1. Black liquor-derived carbonaceous solid acid catalyst for the hydrolysis of pretreated rice straw in ionic liquid.

    PubMed

    Bai, Chenxi; Zhu, Linfeng; Shen, Feng; Qi, Xinhua

    2016-11-01

    Lignin-containing black liquor from pretreatment of rice straw by KOH aqueous solution was applied to prepare a carbonaceous solid acid catalyst, in which KOH played dual roles of extracting lignin from rice straw and developing porosity of the carbon material as an activation agent. The synthesized black liquor-derived carbon material was applied in catalytic hydrolysis of the residue solid from the pretreatment of rice straw, which was mainly composed of cellulose and hemicellulose, and showed excellent activity for the production of total reducing sugars (TRS) in ionic liquid, 1-butyl-3-methyl imidazolium chloride. The highest TRS yield of 63.4% was achieved at 140°C for 120min, which was much higher than that obtained from crude rice straw under the same reaction conditions (36.6% TRS yield). Overall, this study provides a renewable strategy for the utilization of all components of lignocellulosic biomass.

  2. Self-Assembly of Block Copolymers in an Ionic Liquid

    NASA Astrophysics Data System (ADS)

    He, Yiyong; Li, Zhibo; Lodge, Timothy P.

    2006-03-01

    Amphiphilic diblock copolymers poly((1,2-butadiene)-b-ethylene oxide) (PB-PEO) were shown to aggregate and form well-defined micelles in an ionic liquid, 1-butyl-3-methyl imidazolium hexafluorophosphate ([BMIM][PF6]). The universal sequence of micellar structures (spherical micelle, wormlike micelle, and bilayered vesicle) were all resolved by varying the block copolymer composition. For the first time, the nanostructures of PB-PEO micelles formed in an ionic liquid were directly visualized by cryogenic transmission electron microscopy (cryo-TEM). The detailed micelle structure information was extracted from cryo-TEM and dynamic light scattering (DLS) measurements, and compared to their aqueous counterparts. The work demonstrates the feasibility of controlling micellar nanostructures of amphiphilic block copolymers in ionic liquids, and also provides important knowledge for further applications of copolymers for forming microemulsions and ion gels.

  3. Regenerated cellulose/wool blend enhanced biomimetic hydroxyapatite mineralization.

    PubMed

    Salama, Ahmed; El-Sakhawy, Mohamed

    2016-11-01

    The current article investigates the effect of bioactive cellulose/wool blend on calcium phosphate biomimetic mineralization. Regenerated cellulose/wool blend was prepared by dissolution-regeneration of neat cellulose and natural wool in 1-butyl-3-methyl imidazolium chloride [Bmim][Cl], as a solvent for the two polymers. Crystalline hydroxyapatite nanofibers with a uniform size, shape and dimension were formed after immersing the bioactive blend in simulated body fluid. The cytotoxicity of cellulose/wool/hydroxyapatite was studied using animal fibroblast baby hamster kidney cells (BHK-21) and the result displayed good cytocompatability. This research work presents a green processing method for the development of novel cellulose/wool/hydroxyapatite hybrid materials for tissue engineering applications.

  4. Crystal structure of the tetra­gonal polymorph of bis­(1-ethyl-3-methyl­imidazolium) tetra­bromido­cadmate

    PubMed Central

    Đorđević, Tamara; Gerger, Sabrina; Karanović, Ljiljana

    2016-01-01

    Both unique Cd atoms in the tetra­gonal polymorph of bis­(1-ethyl-3-methyl­imidazolium) tetra­bromido­cadmate, (C6H11N2)2[CdBr4], occupy special positions (site symmetry -4). The crystal structure consists of isolated tetra­hedral [CdBr4]2− anions which are surrounded by 1-ethyl-3-methyl­imidazolium cations. The methyl and ethyl side chains of the cations show positional disorder in a 0.590 (11):0.410 (11) ratio. In the crystal, (C6H11N2)+ cations display three weak C—H⋯Br hydrogen-bond inter­actions through the imidazolium ring H atoms with the Br− ligands of the surrounding complex anions. The alkyl groups of the side chains are not involved in hydrogen bonding. PMID:27555953

  5. Room with a View: Ethical Encounters in Room 13

    ERIC Educational Resources Information Center

    Grube, Vicky

    2012-01-01

    In this article, the author describes ethical encounters in Room 13, a schoolroom where children made what they wanted, posed their own questions, and ran an art room like a small business. In Room 13 children had the responsibility to maintain all aspects of the art studio. Specific decisions fell to an annually elected management team, a small…

  6. 45. 1915 CLOTH ROOM ADJACENT TO PICKER ROOM, SECOND FLOOR, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    45. 1915 CLOTH ROOM ADJACENT TO PICKER ROOM, SECOND FLOOR, NORTH END OF MILL NO. 2, WALL ON LEFT DIVIDING CLOTH ROOM ADDED LATER (PROBABLY C. 1970s). - Prattville Manufacturing Company, Number One, 242 South Court Street, Prattville, Autauga County, AL

  7. Commander's conference room (room 202), closet and hallway to bathroom ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Commander's conference room (room 202), closet and hallway to bathroom and bedroom, leading to conference room 211. Viewing windows look down on the display area. View to north - March Air Force Base, Strategic Air Command, Combat Operations Center, 5220 Riverside Drive, Moreno Valley, Riverside County, CA

  8. Ionic Liquid-Derived Imidazolium Cation Linkers for the Layer-by-Layer Assembly of Polyoxometalate-MWCNT Composite Electrodes with High Power Capability.

    PubMed

    Genovese, Matthew; Lian, Keryn

    2016-07-27

    Imidazolium cations derived from ionic liquids were demonstrated as effective linker molecules for the layer-by-layer (LbL) deposition of polyoxometalates (POMs) to increase the charge storage of multi-walled carbon nanotube (MWCNT) electrodes. MWCNTs modified with GeMo12O40(4-) (GeMo12) via an imidazolium cation linker demonstrated highly reversible redox reactions and a capacitance of 84 F cm(-3), close to 4 times larger than bare CNT. Compared to CNT-GeMo12 composites fabricated with a conventional polyelectrolyte linker poly(diallyldimethylammonium chloride), (PDDA), the imidazolium cations resulted in lower POM loading, but higher conductivity and in turn superior performance at fast charge-discharge conditions. A polymerized imidazolium linker (PIL) was also synthesized based on the ethyl-vinyl-imidazolium monomer. CNT-GeMo12 composites fabricated with this PIL achieved high POM loading comparable to PDDA, while still maintaining the good conductivity and high rate capabilities shown by the monomer imidazolium units. The high conductivity imparted by the PIL is especially valuable for the fabrication of multilayer POM composites. Dual-layer GeMo12 O40(4-)-SiMo12O40(4-) (GeMo12-SiMo12) electrodes built with this PIL demonstrated a combined contribution of the individual POMs resulting in a capacitance of 191 F cm(-3), over nine times larger than bare MWCNT. The PIL dual layer composites also maintained 72% of this capacitance at a fast rate of 2 V s(-1), compared to just over 50% retention for similar electrodes fabricated with PDDA.

  9. Double layer in room temperature ionic liquids: influence of temperature and ionic size on the differential capacitance and electrocapillary curves.

    PubMed

    Costa, Renata; Pereira, Carlos M; Silva, Fernando

    2010-09-28

    Differential capacity-potential curves, C(E), were obtained from electrochemical impedance spectra (12 kHz-2 Hz) for the interfaces between Hg and a series of alkyl imidazolium-based room temperature ionic liquids having the same anion, bis(trifluoromethanesulfonyl) imide: 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl) imide [EMIM][Tf(2)N], 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl) imide [BMIM][Tf(2)N], 1-hexyl-3-methylimidazolium bis(trifluoromethanesulfonyl) imide [HMIM][Tf(2)N]. The electrocapillary curves were obtained from drop time measurements and the values of the pzc were calculated. The pzc apparently becomes more negative as the imidazolium alkyl chain length increases. A small effect of the cation is seen on the C(E) curves at negative potentials. The effect of the aromatic nature of the cation is assessed by comparing 1-butyl-1-methylimidazolium bis(trifluoromethanesulfonyl) imide, with 1-butyl-3-methylpyrrolidinium bis(trifluoromethanesulfonyl) imide [BMPyr][Tf(2)N]. The effects of temperature on the capacitance, drop time electrocapillary curve and on the pzc were also obtained. The capacity was found to increase with increasing temperature in the whole range of accessible potentials.

  10. Significance of weak interactions in imidazolium picrate ionic liquids: spectroscopic and theoretical studies for molecular level understanding.

    PubMed

    Panja, Sumit Kumar; Dwivedi, Nidhi; Noothalapati, Hemanth; Shigeto, Shinsuke; Sikder, A K; Saha, Abhijit; Sunkari, Sailaja S; Saha, Satyen

    2015-07-21

    The effects of interionic hydrogen bonding and π-π stacking interactions on the physical properties of a new series of picrate anion based ionic liquids (ILs) have been investigated experimentally and theoretically. The existence of aromatic (C2-HO) and aliphatic (C7-HO-N22 and C6-HO-N20) hydrogen bonding and π-π stacking interactions in these ILs has been observed using various spectroscopic techniques. The aromatic and aliphatic C-HO hydrogen bonding interactions are found to have a crucial role in binding the imidazolium cation and picrate anion together. However, the π-π stacking interactions between two successive layers are found to play a decisive role in tight packing in ILs leading to differences in physical properties. The drastic difference in the melting points of the methyl and propyl derivatives (mmimPic and pmimPic respectively) have been found to be primarily due to the difference in the strength and varieties of π-π stacking interactions. While in mmimPic, several different types of π-π stacking interactions between the aromatic rings (such as picrate-picrate, picrate-imidazole and imidazolium-imidazolium cation rings) are observed, only one type of π-π stacking interaction (picrate-picrate rings) is found to exist in the pmimPic IL. NMR spectroscopic studies reveal that the interaction of these ILs with solvent molecules is different and depends on the dielectric constant of the solvent. While an ion solvation model explains the solvation in high dielectric solvents, an ion-pair solvation model is found to be more appropriate for low dielectric constant solvents. The enhanced stability of these investigated picrate ILs compared with that of inorganic picrate salts under high doses of γ radiation clearly indicates the importance of weak interionic interactions in ILs, and also opens up the possibility of the application of picrate ILs as prospective diluents in nuclear separation for advanced fuel cycling process.

  11. Local order and long range correlations in imidazolium halide ionic liquids: a combined molecular dynamics and XAS study.

    PubMed

    Migliorati, Valentina; Serva, Alessandra; Aquilanti, Giuliana; Pascarelli, Sakura; D'Angelo, Paola

    2015-07-07

    A thorough characterization of the structural properties of alkylimidazolium halide ionic liquids (ILs), namely 1-alkyl-3-methylimidazolium bromide ([Cnmim]Br with n = 5, 6, 8, 10) and iodide ([C6mim]I), has been carried out by combining molecular dynamics simulations and EXAFS spectroscopy. The existence of a local order in [Cnmim]Br ILs has been evidenced, with anions and imidazolium head groups forming a local three-dimensional bonding pattern that is common to all the [Cnmim]Br IL family, regardless of the length of the alkyl chain attached to the cation. On the other hand, upon alkyl chain elongation significant differences have been highlighted in the long-range structure of these ILs. Theoretical X-ray structure factors have been calculated from MD simulations and a low q peak has been found for all [Cnmim]Br ILs, indicating the existence of long-range structural correlations. The low q peak moves to smaller q values corresponding to longer distances, increases in intensity and sharpens with increasing alkyl chain length on the cation. Similarities and differences between the ion three-dimensional arrangements in [C6mim]Br and [C6mim]I were highlighted and the structural arrangement of Br(-) and I(-) was found to be different in the proximity of the most acidic hydrogen atom of the imidazolium ring: the I(-) ion is preferentially located above and below the ring plane, while the Br(-) ion has a high probability also to be coplanar with the imidazolium ring. A quantitative analysis of the Br and I K-edge EXAFS spectra of alkylimidazolium halide ILs has been carried out based on the microscopic description of the systems derived from MD simulations. A very good agreement between theoretical and experimental EXAFS signals has been obtained, allowing us to assess the reliability of the MD structural results for all the alkylimidazolium halide ILs investigated in this work.

  12. Bifunctional Imidazolium-Based Ionic Liquid Decorated UiO-67 Type MOF for Selective CO2 Adsorption and Catalytic Property for CO2 Cycloaddition with Epoxides.

    PubMed

    Ding, Luo-Gang; Yao, Bing-Jian; Jiang, Wei-Ling; Li, Jiang-Tao; Fu, Qi-Juan; Li, Yan-An; Liu, Zhen-Hua; Ma, Jian-Ping; Dong, Yu-Bin

    2017-02-20

    A bifunctional robust and highly porous imidazolium-based ionic liquid decorated UiO-67 type MOF (UiO-67-IL, 1) was successfully constructed via solvothermal assembly of the imidazolium-based ligand and Zr(IV) ions. It exhibits a highly selective adsorption for CO2 over CH4 and N2. Furthermore, 1 herein can be used as a highly active heterogeneous catalyst for CO2 cycloaddition with epoxides under atmospheric pressure with or without cocatalyst TBAB (n-Bu4NBr).

  13. One Room Schools in Iowa.

    ERIC Educational Resources Information Center

    Ruth, Amy, Ed.

    1994-01-01

    This issue focuses on one-room school houses in Iowa. At one time, almost 14,000 one-room schools dotted Iowa's rural landscape. Articles explore Native American schools of the past and present, segregation of black students, and Amish schools. An article remembering one-room schools describes the early schools from 1830 to 1858, township schools…

  14. Four imidazolium iodocuprates based on anion-π and π-π interactions: Structural and spectral modulation

    NASA Astrophysics Data System (ADS)

    Liu, Fang; Hao, Pengfei; Yu, Tanlai; Guan, Qi; Fu, Yunlong

    2016-09-01

    Four imidazolium iodocuprates, [(1,3-dimethylimidazole)(Cu2I3)]n (1), [(1,2,3-trimethylimidazole)(Cu2I3)]n (2), [(1,3-dimethylimidazole)(Cu3I5)]n (3) and [(1,3-dimethylbenzimidazole)(CuI2)]n (4) have been solvothermally synthesized and optically characterized. Results exhibit that cationic spatial orientation, anion-π and π-π interactions are beneficial to structural diversity and band gap modulation of iodocuprate hybrids. The UV-vis diffuse reflectance spectra show that compounds 1-4 are potential semiconductor materials.

  15. Effect of the Methylation and N-H Acidic Group on the Physicochemical Properties of Imidazolium-Based Ionic Liquids.

    PubMed

    Rodrigues, Ana S M C; Rocha, Marisa A A; Almeida, Hugo F D; Neves, Catarina M S S; Lopes-da-Silva, José A; Freire, Mara G; Coutinho, João A P; Santos, Luís M N B F

    2015-07-16

    This work presents and highlights the differentiation of the physicochemical properties of the [C1Him][NTf2], [C2Him][NTf2], [(1)C1(2)C1Him][NTf2], and [(1)C4(2)C1(3)C1im][NTf2] that is related with the strong bulk interaction potential, which highlights the differentiation on the physicochemical arising from the presence of the acidic group (N-H) as well as the methylation in position 2, C(2), of the imidazolium ring. Densities, viscosities, refractive indices, and surface tensions in a wide range of temperatures, as well as isobaric heat capacities at 298.15 K, for this IL series are presented and discussed. It was found that the volumetric properties are barely affected by the geometric and structural isomerization, following a quite regular trend. A linear correlation between the glass transition temperature, Tg, and the alkyl chain size was found; however, ILs with the acidic N-H group present a significant higher Tg than the [(1)CN-1(3)C1im][NTf2] and [(1)CN(3)CNim][NTf2] series. It was found that the most viscous ILs, ([(1)C1Him][NTf2], [(1)C2Him][NTf2], and [(1)C1(2)C1Him][NTf2]) have an acidic N-H group in the imidazolium ring in agreement with the observed increase of energy barrier of flow. The methylation in position 2, C(2), as well as the N-H acidic group in the imidazolium ring contribute to a significant variation in the cation-anion interactions and their dynamics, which is reflected in their charge distribution and polarizability leading to a significant differentiation of the refractive indices, surface tension, and heat capacities. The observed differentiation of the physicochemical properties of the [(1)C1Him][NTf2], [(1)C2Him][NTf2], [(1)C1(2)C1Him][NTf2], and [(1)C4(2)C1(3)C1im][NTf2] are an indication of the stronger bulk interaction potential, which highlights the effect that arises from the presence of the acidic group (N-H) as well as the methylation in position 2 of the imidazolium ring.

  16. Microscopic interactions of the imidazolium-based ionic liquid with molecular liquids depending on their electron-donicity.

    PubMed

    Takamuku, Toshiyuki; Hoke, Hiroshi; Idrissi, Abdenacer; Marekha, Bogdan A; Moreau, Myriam; Honda, Yusuke; Umecky, Tatsuya; Shimomura, Takuya

    2014-11-21

    Microscopic interactions of an imidazolium-based ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (C2mimTFSI), with dimethyl sulfoxide (DMSO), methanol (MeOH), and acetonitrile (AN) have been analyzed by means of Raman, attenuated total reflectance infrared (ATR-IR), (1)H and (13)C NMR spectroscopy techniques. The magnitude of the red-shift of the C(2)-H vibration mode of the imidazolium ring and the deshielding of the C(2)-H hydrogen and carbon atoms, compared with that of the other atoms of the ring or the anion, indicated a strong interaction between the C(2)-H hydrogen atom and the molecular liquids in the following order; DMSO ≫ MeOH > AN. This correlates with the order of the electron donicities of these molecular liquids which allows us to suggest a hydrogen bonding character of these interactions. The behavior of S= O vibration of DMSO as a function of the DMSO molar fraction xDMSO also suggested that DMSO molecules are stoichiometrically hydrogen-bonded with the three hydrogen atoms, C(2,4,5)-H, of the ring. In contrast, the hydrogen bonding between MeOH and the C(4,5)-H atoms is much weaker than that in DMSO. AN hardly forms hydrogen bonds with the C(4,5)-H atoms. Instead, AN molecules may interact with the imidazolium ring through the π-π interaction. The interactions between the imidazolium ring and the molecular liquids lead to the loosening of the TFSI anion from the cation; this correlates with both the blue-shift of the S=O stretching vibration of TFSI and the deshielding of the trifluoromethyl carbon atoms with an increase in the molar fraction of the molecular liquid xML. The latter is weak in the MeOH solutions, and may be explained by the possible hydrogen bonding of the MeOH hydroxyl group as an electron-acceptor with the TFSI anion. Furthermore, the organization of MeOH molecules around the ethyl and methyl groups of the cation is discussed in terms of the chemical shift of the hydrogen and carbon atoms in these

  17. An XAFS Study of Niobium chloride in the ionic liquid 1-ethyl-3-methyl imidazolium chloride/ aluminum chloride

    SciTech Connect

    D Roeper; K Pandya; G Cheek; W OGrady

    2011-12-31

    Niobium chloride was studied with extended X-ray absorption fine structure spectroscopy (EXAFS) in acidic and basic aluminum chloride/1-ethyl-3-methyl imidazolium chloride (EMIC) ionic liquids. Although anhydrous Nb2Cl10 is more soluble in the basic melt than in the acidic melt, the EXAFS data shows that the coordination shell around the niobium does not change in the different ionic liquids. Both the acidic and basic melts show a coordination of five chlorides in the first shell. This indicates that in this series of ionic liquids, the Nb2Cl10 breaks up into two NbCl5 entities in both the acidic and the basic melts.

  18. Bulk growth, structure, optical properties and laser damage threshold of organic nonlinear optical crystals of Imidazolium L-Ascorbate

    NASA Astrophysics Data System (ADS)

    Saripalli, Ravi Kiran; Bhat, H. L.; Elizabeth, Suja

    2016-09-01

    Bulk, transparent organic nonlinear optical (NLO) single-crystals of imidazolium L-Ascorbate (ImLA) were grown using slow-evaporation. Crystal structure was determined by single crystal X-ray diffraction analysis. Preliminary linear optical measurements through UV-Visible and infrared spectroscopy revealed good optical transmittance and a low near-UV cutoff wavelength at 256 nm. Kurtz and Perry powder test revealed that ImLA is a phase-matchable NLO material with a second harmonic generation (SHG) efficiency of 1.2 times larger than that of standard KH2PO4 (KDP). Laser damage thresholds were determined for ImLA.

  19. Design of Phosphonated Imidazolium-Based Ionic Liquids Grafted on γ-Alumina: Potential Model for Hybrid Membranes

    PubMed Central

    Pizzoccaro, Marie-Alix; Drobek, Martin; Petit, Eddy; Guerrero, Gilles; Hesemann, Peter; Julbe, Anne

    2016-01-01

    Imidazolium bromide-based ionic liquids bearing phosphonyl groups on the cationic part were synthesized and grafted on γ-alumina (γ-Al2O3) powders. These powders were prepared as companion samples of conventional mesoporous γ-alumina membranes, in order to favor a possible transfer of the results to supported membrane materials, which could be used for CO2 separation applications. Effective grafting was demonstrated using energy dispersive X-ray spectrometry (EDX), N2 adsorption measurements, fourier transform infrared spectroscopy (FTIR), and special attention was paid to 31P and 13C solid state nuclear magnetic resonance spectroscopy (NMR). PMID:27472321

  20. Design of Phosphonated Imidazolium-Based Ionic Liquids Grafted on γ-Alumina: Potential Model for Hybrid Membranes.

    PubMed

    Pizzoccaro, Marie-Alix; Drobek, Martin; Petit, Eddy; Guerrero, Gilles; Hesemann, Peter; Julbe, Anne

    2016-07-27

    Imidazolium bromide-based ionic liquids bearing phosphonyl groups on the cationic part were synthesized and grafted on γ-alumina (γ-Al₂O₃) powders. These powders were prepared as companion samples of conventional mesoporous γ-alumina membranes, in order to favor a possible transfer of the results to supported membrane materials, which could be used for CO₂ separation applications. Effective grafting was demonstrated using energy dispersive X-ray spectrometry (EDX), N₂ adsorption measurements, fourier transform infrared spectroscopy (FTIR), and special attention was paid to (31)P and (13)C solid state nuclear magnetic resonance spectroscopy (NMR).

  1. Tribological properties of novel imidazolium ionic liquids bearing benzotriazole group as the antiwear/anticorrosion additive in poly(ethylene glycol) and polyurea grease for steel/steel contacts.

    PubMed

    Cai, Meirong; Liang, Yongmin; Zhou, Feng; Liu, Weimin

    2011-12-01

    The imidazolium ionic liquids (ILs) bearing benzotriazole group were synthesized and evaluated as antiwear (AW) and anticorrosion additive in poly(ethylene glycol) (PEG) and polyurea grease for steel/steel contacts at room temperature and 150 °C. The physical properties of the synthetic ILs and PEG with the additive were measured. The anticorrosion property of the synthetic ILs was assessed via the accelerated corrosion test and copper strip corrosion test, which reveals the excellent anticorrosion properties in comparison with pure PEG and the selected conventional ILs having no benzotriazole group. Tribological results indicated that these ILs as the additives could effectively reduce friction and wear of sliding pairs in PEG and also in polyurea grease. The tribological properties were generally better than the normally used zincdialkyldithiophosphate-based additive package (T204) in polyurea grease. The wear mechanisms are tentatively discussed according to the morphology observation of worn surfaces of steel discs by scanning electron microscope (SEM) and the surface composition analysis by X-ray photoelectron spectroscopy (XPS).

  2. Influence of ester functional groups on the liquid-phase structure and solvation properties of imidazolium-based ionic liquids.

    PubMed

    Pensado, Alfonso S; Pádua, Agílio A H; Costa Gomes, Margarida F

    2011-04-14

    The incorporation of ester functions in the side chains in 1-alkyl-3-methylimidazolium cations seems to increase the biodegradability of these ionic liquids. We study here how the presence of ester functional groups affects the liquid-state structure (namely, the microphase segregation between polar and nonpolar domains in these ionic liquids) and the way in which the solvation of gases can be understood in these solvents. We use molecular simulation to study the structure of the ionic liquids 3-methyl-1-(pentoxycarbonylmethyl)imidazolium octylsulfate, [C(1)COOC(5)C(1)im][C(8)SO(4)]; and 3-methyl-1-(pentoxycarbonylmethyl)imidazolium bis(trifluoromethylsulfonyl)imide, [C(1)COOC(5)C(1)im][NTf(2)] in the liquid phase and to assess the molecular mechanisms of solvation of carbon dioxide and ethane. The presence of ester functions influences the relative size of the polar and nonpolar domains in the ionic liquids, but does not significantly affect the solvation of gases.

  3. Characterization of compounds derived from copper-oxamate and imidazolium by X-ray absorption and vibrational spectroscopies

    NASA Astrophysics Data System (ADS)

    do Nascimento, Gustavo M.; do Pim, Walace D.; Reis, Daniella O.; Simões, Tatiana R. G.; Pradie, Noriberto A.; Stumpf, Humberto O.

    2015-05-01

    In this work, compounds derived from copper-oxamate anions (ortho, meta, and para)-phenylenebis (oxamate) and imidazolium cations (1-butyl-3-methylimidazolium) were synthesized. The compounds were characterized by Raman and FTIR spectroscopies and the band assignments were supported by DFT calculations. Strong IR bands from 1610 to 1700 cm-1 dominated the spectra of the complex and can be assigned to νCdbnd O vibrations of the [Cu(opba)]2- anions by the comparison with the DFT data. In opposition to the FTIR spectra, the main vibrational bands in the Raman spectra are observed in the 1350-1600 cm-1 range. All bands in this region are associated to the modified benzene vibrations of the copper-phenylenebis(oxamate) anions. X-ray absorption near edge (XANES) at different energies (NK and Cu L2,3 edges) was also used to probe the interionic interactions. XANES data show that anion-cation interaction in the Cu-oxamate-imidazolium changes the electronic structure around the sbnd Cusbnd Nsbnd sites in the oxamate anion.

  4. The effect of cation structure on the mesophase architecture of self-assembled and polymerized imidazolium-based ionic liquids.

    SciTech Connect

    Batra, D.; Seifert, S.; Firestone, M. A.; Materials Science Division

    2007-01-01

    The binary phase behavior of a series of imidazolium-based ionic liquids (ILs) has been investigated. In particular, the effect of two structural modifications of the imidazolium cation, alkyl chain length, and the introduction of a polymerizable acryloyl group at the alkyl chain terminus, has been studied using small angle X-ray scattering. Upon increasing water content, the non-polymerizable IL, 1-decyl-3-methylimidazolium chloride, adopts mesophase structures of predominately two-dimensional (2D) hexagonal symmetry, including structures intermediate in character between lamellae and 2D hexagonal micelles. Introduction of a photopolymerizable acryloyl functional group to form 1-(10-(acryloyloxy)decyl)-3-methylimidazolium chloride produces a rod-coil IL cation that yields self-assembled mesophases in which the formation of tetragonal morphologies is favored. Covalent linking of the IL cations by UV-induced polymerization converts the lyotropic mesophase into three-dimensional biocontinuous chemical gels. Reducing the alkyl chain length, as in the polymerizable IL cation 1-(8-(acryloyloxy)octyl)-3-methylimidazolium chloride, severely reduces the self-assembled mesophase order, and triggers the formation of only weakly ordered one-dimensional lamellar structures.

  5. Characterization of compounds derived from copper-oxamate and imidazolium by X-ray absorption and vibrational spectroscopies.

    PubMed

    do Nascimento, Gustavo M; do Pim, Walace D; Reis, Daniella O; Simões, Tatiana R G; Pradie, Noriberto A; Stumpf, Humberto O

    2015-05-05

    In this work, compounds derived from copper-oxamate anions (ortho, meta, and para)-phenylenebis (oxamate) and imidazolium cations (1-butyl-3-methylimidazolium) were synthesized. The compounds were characterized by Raman and FTIR spectroscopies and the band assignments were supported by DFT calculations. Strong IR bands from 1610 to 1700cm(-1) dominated the spectra of the complex and can be assigned to νCO vibrations of the [Cu(opba)](2-) anions by the comparison with the DFT data. In opposition to the FTIR spectra, the main vibrational bands in the Raman spectra are observed in the 1350-1600cm(-1) range. All bands in this region are associated to the modified benzene vibrations of the copper-phenylenebis(oxamate) anions. X-ray absorption near edge (XANES) at different energies (NK and Cu L2,3 edges) was also used to probe the interionic interactions. XANES data show that anion-cation interaction in the Cu-oxamate-imidazolium changes the electronic structure around the CuN sites in the oxamate anion.

  6. Fluorescent charge-assisted halogen-bonding macrocyclic halo-imidazolium receptors for anion recognition and sensing in aqueous media.

    PubMed

    Zapata, Fabiola; Caballero, Antonio; White, Nicholas G; Claridge, Tim D W; Costa, Paulo J; Félix, Vítor; Beer, Paul D

    2012-07-18

    The synthesis and anion binding properties of a new family of fluorescent halogen bonding (XB) macrocyclic halo-imidazolium receptors are described. The receptors contain chloro-, bromo-, and iodo-imidazolium motifs incorporated into a cyclic structure using naphthalene spacer groups. The large size of the iodine atom substituents resulted in the isolation of anti and syn conformers of the iodo-imidazoliophane, whereas the chloro- and bromo-imidazoliophane analogues exhibit solution dynamic conformational behavior. The syn iodo-imidazoliophane isomer forms novel dimeric isostructural XB complexes of 2:2 stoichiometry with bromide and iodide anions in the solid state. Solution phase DOSY NMR experiments indicate iodide recognition takes place via cooperative convergent XB-iodide 1:1 stoichiometric binding in aqueous solvent mixtures. (1)H NMR and fluorescence spectroscopic titration experiments with a variety of anions in the competitive CD(3)OD/D(2)O (9:1) aqueous solvent mixture demonstrated the bromo- and syn iodo-imidazoliophane XB receptors to bind selectively iodide and bromide respectively, and sense these halide anions exclusively via a fluorescence response. The protic-, chloro-, and anti iodo-imidazoliophane receptors proved to be ineffectual anion complexants in this aqueous methanolic solvent mixture. Computational DFT and molecular dynamics simulations corroborate the experimental observations that bromo- and syn iodo-imidazoliophane XB receptors form stable cooperative convergent XB associations with bromide and iodide.

  7. The role of hydrogen bonding propensity in tuning the morphology of crystals obtained from imidazolium based ionic liquids

    NASA Astrophysics Data System (ADS)

    Karthika, S.; Radhakrishnan, T. K.; Kalaichelvi, P.

    2017-04-01

    The pharmaceutical crystallization is quite challenging in terms of the target properties like desired habit or morphology, size and the size distribution of the resultant crystals. Controlling the dimensions along the crystallographic axes, especially for the crystals with needle shape, is desired for operational flexibility. There has been a great interest in using Ionic Liquids (ILs) as a novel crystallization media, but inter molecular interaction between ILs and pharmaceutical solids are quite complex. Interactions in ionic media can be tuned to achieve target physical properties. In this study, ibuprofen is crystallized using imidazolium based IL with PF6 anion, which produces needle shaped crystals with high aspect ratio. It is found that aspect ratio is significantly altered when a small quantity of organic solvents is added to the crystallizing media. These organic solvents prefer to interact with certain domain of IL and this interaction can be utilized in achieving the objective of reduction in aspect ratio. Use of methanol and 2-ethoxy ethyl acetate is found to provide a significant reduction in aspect ratio. The role of hydrogen bonding ability of C2 hydrogen of imidazolium ionic liquid in steering the crystal shape is discussed.

  8. Imidazolium embedded C8 based stationary phase for simultaneous reversed-phase/hydrophilic interaction mixed-mode chromatography.

    PubMed

    Qiao, Xiaoqiang; Zhang, Lu; Zhang, Niu; Wang, Xin; Qin, Xinying; Yan, Hongyuan; Liu, Haiyan

    2015-06-26

    A new imidazolium embedded C8 based stationary phase (SIL-MPS-VOL) was facilely prepared by two steps and characterized by Fourier transform infrared spectrometry and thermogravimetric analysis. Due to the introduction of quaternary imidazolium group to the traditional C8 stationary phase, the developed SIL-MPS-VOL column demonstrated both reversed-phase liquid chromatography (RPLC) and hydrophilic interaction liquid chromatography (HILIC) retention mechanisms. A series of hydrophobic and hydrophilic test samples, including benzene homologues, anilines, positional isomers, nucleosides and nucleotides, were used to evaluate the developed SIL-MPS-VOL stationary phase. A rapid separation time, high separation efficiency and planar selectivity were achieved, compared with the commercially available C8 column. Moreover, the developed stationary phase was further used to detect and separate of melamine in powdered infant formula and high polar component of secondary metabolites of Trichoderma, and improved separation efficiency was achieved, indicating the potential merits of the developed SIL-MPS-VOL stationary phase for simultaneous separation of complex hydrophobic and hydrophilic samples with high selectivity.

  9. CEBAF Control Room Renovation

    SciTech Connect

    Michael Spata; Thomas Oren

    2005-05-01

    The Machine Control Center (MCC) at Jefferson Lab's Continuous Electron Beam Accelerator Facility (CEBAF) was initially constructed in the early 1990s and based on proven technology of that era. Through our experience over the last 15 years and in our planning for the facility's 12 GeV upgrade we reevaluated the control room environment to capitalize on emerging visualization and display technologies and improve workflow processes and ergonomic attributes. This effort also sets the foundation for the redevelopment of the accelerator's control system to deliver high reliability performance with improvements in beam specifications management and information flow. The complete renovation was performed over a three-week maintenance period with no interruption to beam operations. We present the results of this effort.

  10. CEBAF Control Room Renovation

    SciTech Connect

    Michael Spata; Thomas Oren

    2005-05-01

    The Machine Control Center at Jefferson Lab's Continuous Electron Beam Accelerator Facility was initially constructed in the early 1990s and based on proven technology of that era. Through our experience over the last 15 years and in our planning for the facilities 12 GeV upgrade we reevaluated the control room environment to capitalize on emerging visualization and display technologies and improve on workflow processes and ergonomic attributes. This effort also sets the foundation for the redevelopment of the accelerator's control system to deliver high reliability performance with improvements in beam specifications management and information flow. The complete renovation was performed over a three-week period with no interruption to beam operations. We present the results of this effort.

  11. CEBAF Control Room Renovation

    SciTech Connect

    Michael Spata; Anthony Cuffe; Thomas Oren

    2005-03-22

    The Machine Control Center (MCC) at Jefferson Lab's Continuous Electron Beam Accelerator Facility (CEBAF) was constructed in the early 1990s and based on proven technology of that era. Through our experience over the last 15 years and in our planning for the facilities 12 GeV upgrade we reevaluated the control room environment to capitalize on emerging visualization and display technologies and improve on work-flow processes and ergonomic attributes. The renovation was performed in two phases during the summer of 2004, with one phase occurring during machine operations and the latter, more extensive phase, occurring during our semi-annual shutdown period. The new facility takes advantage of advances in display technology, analog and video signal management, server technology, ergonomic workspace design, lighting engineering, acoustic ceilings and raised flooring solutions to provide a marked improvement in the overall environment of machine operations.

  12. Binaural room simulation

    NASA Technical Reports Server (NTRS)

    Lehnert, H.; Blauert, Jens; Pompetzki, W.

    1991-01-01

    In every-day listening the auditory event perceived by a listener is determined not only by the sound signal that a sound emits but also by a variety of environmental parameters. These parameters are the position, orientation and directional characteristics of the sound source, the listener's position and orientation, the geometrical and acoustical properties of surfaces which affect the sound field and the sound propagation properties of the surrounding fluid. A complete set of these parameters can be called an Acoustic Environment. If the auditory event perceived by a listener is manipulated in such a way that the listener is shifted acoustically into a different acoustic environment without moving himself physically, a Virtual Acoustic Environment has been created. Here, we deal with a special technique to set up nearly arbitrary Virtual Acoustic Environments, the Binaural Room Simulation. The purpose of the Binaural Room Simulation is to compute the binaural impulse response related to a virtual acoustic environment taking into account all parameters mentioned above. One possible way to describe a Virtual Acoustic Environment is the concept of the virtual sound sources. Each of the virtual sources emits a certain signal which is correlated but not necessarily identical with the signal emitted by the direct sound source. If source and receiver are non moving, the acoustic environment becomes a linear time-invariant system. Then, the Binaural Impulse Response from the source to a listener' s eardrums contains all relevant auditory information related to the Virtual Acoustic Environment. Listening into the simulated environment can easily be achieved by convolving the Binaural Impulse Response with dry signals and representing the results via headphones.

  13. The room acoustic rendering equation.

    PubMed

    Siltanen, Samuel; Lokki, Tapio; Kiminki, Sami; Savioja, Lauri

    2007-09-01

    An integral equation generalizing a variety of known geometrical room acoustics modeling algorithms is presented. The formulation of the room acoustic rendering equation is adopted from computer graphics. Based on the room acoustic rendering equation, an acoustic radiance transfer method, which can handle both diffuse and nondiffuse reflections, is derived. In a case study, the method is used to predict several acoustic parameters of a room model. The results are compared to measured data of the actual room and to the results given by other acoustics prediction software. It is concluded that the method can predict most acoustic parameters reliably and provides results as accurate as current commercial room acoustic prediction software. Although the presented acoustic radiance transfer method relies on geometrical acoustics, it can be extended to model diffraction and transmission through materials in future.

  14. Sugarcane bagasse pretreatment using three imidazolium-based ionic liquids; mass balances and enzyme kinetics

    PubMed Central

    2012-01-01

    in the aqueous IL solution. Of the three IL studied [C2mim]OAc gave the best saccharification yield, material recovery and delignification. The effects of [C2mim]OAc pretreatment resemble those of aqueous alkali pretreatments while those of [C2mim]Cl and [C4mim]Cl resemble aqueous acid pretreatments. The use of imidazolium IL solvents with shorter alkyl chains results in accelerated dissolution, pretreatment and degradation. PMID:22920045

  15. Thermophysical properties of imidazolium tricyanomethanide ionic liquids: experiments and molecular simulation.

    PubMed

    Zubeir, Lawien F; Rocha, Marisa A A; Vergadou, Niki; Weggemans, Wilko M A; Peristeras, Loukas D; Schulz, Peter S; Economou, Ioannis G; Kroon, Maaike C

    2016-08-17

    The low-viscous tricyanomethanide ([TCM](-))-based ionic liquids (ILs) are gaining increasing interest as attractive fluids for a variety of industrial applications. The thermophysical properties (density, viscosity, surface tension, electrical conductivity and self-diffusion coefficient) of the 1-alkyl-3-methylimidazolium tricyanomethanide [Cnmim][TCM] (n = 2, 4 and 6-8) IL series were experimentally measured over the temperature range from 288 to 363 K. Moreover, a classical force field optimized for the imidazolium-based [TCM](-) ILs was used to calculate their thermodynamic, structural and transport properties (density, surface tension, self-diffusion coefficients, viscosity) in the temperature range from 300 to 366 K. The predictions were directly compared against the experimental measurements. The effects of anion and alkyl chain length on the structure and thermophysical properties have been evaluated. In cyano-based ILs, the density decreases with increasing molar mass, in contrast to the behavior of the fluorinated anions, being in agreement with the literature. The contribution per -CH2- group to the increase of the viscosity presents the following sequence: [PF6](-) > [BF4](-) > [Tf2N](-) > [DCA](-) > [TCB](-) > [TCM](-). [TCM](-)-based ILs show lower viscosity than dicyanamide ([DCA](-))- and tetracyanoborate ([TCB](-))-based ILs, while the latter two exhibit a crossover which depends both on temperature and the alkyl chain length of the cation. The surface tension of the investigated ILs decreases with increasing alkyl chain length. [C2mim][TCM] shows an outlier behavior compared to other members of the homologous series. The surface enthalpies and surface entropies for all the studied systems have been calculated based on the experimentally determined surface tensions. The relationship between molar conductivity and viscosity was analyzed using the Walden rule. The experimentally determined self-diffusion coefficients of the cations are in good

  16. 37. DINING ROOM FROM BALCONY. THE DINING ROOM ROOF IS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. DINING ROOM FROM BALCONY. THE DINING ROOM ROOF IS SUPPORTED BY A SCISSOR TRUSS SYSTEM REINFORCED WITH TURNBUCKLE IRON RODS AND GUSSET PLATES (NOTE: THIS SYSTEM DIFFERS FROM THE LOBBY). - Old Faithful Inn, 900' northeast of Snowlodge & 1050' west of Old Faithful Lodge, Lake, Teton County, WY

  17. 10. CONTROL ROOM INTERIOR. Looking into southwest corner. CONTROL ROOM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. CONTROL ROOM INTERIOR. Looking into southwest corner. CONTROL ROOM INTERIOR, SHOWING ESCAPE HATCH. Looking north along east wall. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Instrumentation & Control Building, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  18. 12. INTERIOR OF LIVING ROOM FROM DINING ROOM SHOWING OPEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. INTERIOR OF LIVING ROOM FROM DINING ROOM SHOWING OPEN FRONT DOOR AT PHOTO CENTER AND OPEN DOOR TO BEDROOM NO. 1 AT PHOTO LEFT. VIEW TO NORTH. - Bishop Creek Hydroelectric System, Plant 4, Worker Cottage, Bishop Creek, Bishop, Inyo County, CA

  19. 49. Machinery rooms on north tower. Facing north. Machinery rooms ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    49. Machinery rooms on north tower. Facing north. Machinery rooms contain all motors, motor controllers, and gears for operating one span, in this case, the north span. Note bell with continuous operating clapper for use as fog signals. - Henry Ford Bridge, Spanning Cerritos Channel, Los Angeles-Long Beach Harbor, Los Angeles, Los Angeles County, CA

  20. 2. ENGINE ROOM AND CHIPPY ENGINE ROOM OF THE DIAMOND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. ENGINE ROOM AND CHIPPY ENGINE ROOM OF THE DIAMOND MINE, LOOKING NORTH. THE MAIN HOIST USED A FLAT CABLE, WHICH WAS SCRAPPED IN THE 1950s. THE ORIGINAL DIXON CABLE STILL EXISTS IN THE CHIPPY HOIST HOUSE. - Butte Mineyards, Diamond Mine, Butte, Silver Bow County, MT

  1. Looking west in the basement utility room, room 24, overview ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking west in the basement utility room, room 24, overview of air handling system, large walk-in filter, large ducts, pipes, and gauges - March Air Force Base, Strategic Air Command, Combat Operations Center, 5220 Riverside Drive, Moreno Valley, Riverside County, CA

  2. LIVING ROOM WITH THE SLIDING DOORS TO DINING ROOM ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LIVING ROOM WITH THE SLIDING DOORS TO DINING ROOM ON THE LEFT. SHOWING THE WOOD GRILLE TO THE FOYER. VIEW FACING SOUTHEAST - Camp H.M. Smith and Navy Public Works Center Manana Title VII (Capehart) Housing, U-Shaped Two-Bedroom Duplex Type 1, Acacia Road, Birch Circle, and Cedar Drive, Pearl City, Honolulu County, HI

  3. 16. Perimeter acquisition radar building room #102, electrical equipment room; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Perimeter acquisition radar building room #102, electrical equipment room; the prime power distribution system. Excellent example of endulum-types shock isolation. The grey cabinet and barrel assemble is part of the polychlorinated biphenyl (PCB) retrofill project - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  4. 17. Perimeter acquisition radar building room #105, mechanical equipment room ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. Perimeter acquisition radar building room #105, mechanical equipment room no. 1; sign reads: Heat exchangers (shell and tube type). Provide precise temperature control of water for cooling critical electronic equipment - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  5. 16. Bus Room (also known as Switch Gear Room), view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Bus Room (also known as Switch Gear Room), view to the southeast. An air circuit breaker compressor (visible in photograph number 2) was once attached to the main bus relay visible in the background of the photograph. - Washington Water Power Clark Fork River Cabinet Gorge Hydroelectric Development, Powerhouse, North Bank of Clark Fork River at Cabinet Gorge, Cabinet, Bonner County, ID

  6. Carbene-anchored/pendent-imidazolium species as precursors to di-N-heterocyclic carbene-bridged mixed-metal complexes.

    PubMed

    Zamora, Matthew T; Ferguson, Michael J; McDonald, Robert; Cowie, Martin

    2009-09-21

    Reaction of a series of linked diimidazolium dibromide salts with one-half equivalent of [Rh(mu-OAc)(COD)](2) under reflux conditions generates a series of carbene-anchored/pendent-imidazolium complexes, [RhBr(COD)((R)C(H)-eta(1)-C(eth))][Br] ((Me)C(H)-eta(1)-C(eth) = ethylene[(N-methyl)imidazolium][(N-methyl)imidazole-2-ylidene] and (tBu)C(H)-eta(1)-C(eth) = ethylene[(N-tert-butyl)imidazolium][(N-tert-butyl)imidazole-2-ylidene]) via deprotonation of one end of the diimidazolium salt and coordination of the resulting carbene to Rh. Reaction of these complexes with carbon monoxide or the appropriate diphosphine yields either [RhBr(CO)(2)((R)C(H)-eta(1)-C(eth))][Br] (R = Me, (t)Bu) or [RhBr(P( intersection)P)((Me)C(H)-eta(1)-C(eth))][Br] (P( intersection)P = Ph(2)PCH(2)PPh(2), Ph(2)PCH(2)CH(2)PPh(2), Et(2)PCH(2)PEt(2)), respectively. The resulting diphosphine complexes readily decompose in solution. A series of palladium complexes [PdI(3-n)(PR(3))(n)(L)][I](n) (n = 1,2) and [PdI(P( intersection)P)(L)][I](2) (L = (tBu)C(H)-eta(1)-C(meth), (tBu)C(H)-eta(1)-C(eth); (tBu)C(H)-eta(1)-C(meth) = methylene[(N-tert-butyl)imidazolium][(N-tert-butyl)imidazole-2-ylidene]), containing the linked NHC-imidazolium moiety, have also been prepared by reacting the triiodo complexes, [PdI(3)((tBu)C(H)-eta(1)-C(meth))] and [PdI(3)((tBu)C(H)-eta(1)-C(eth))] with several mono- and diphosphines. Attempts to generate mixed Rh/Pd complexes using Pd(OAc)(2) to deprotonate the pendent arm of several of the above carbene-anchored/pendent-imidazolium complexes of Rh have proven unsuccessful. However, a targeted di-NHC-bridged heterobimetallic complex [PdI(2)(PEt(3))(mu-(tBu)CC(meth))RhI(COD)] ((tBu) CC(meth) = 1,1'-methylene-3,3'-di-tert-butyldiimidazol-2,2'-diylidene) can be generated by deprotonation of the imidazolium group in [PdI(2)(PEt(3))((tBu)C(H)-eta(1)-C(meth))][I] using half an equivalent of [Rh(mu-OAc)(COD)](2). The X-ray structure determination of this Pd/Rh complex confirms the

  7. system at room temperature

    NASA Astrophysics Data System (ADS)

    Li, Shaoyuan; Ma, Wenhui; Zhou, Yang; Chen, Xiuhua; Xiao, Yongyin; Ma, Mingyu; Zhu, Wenjie; Wei, Feng

    2014-04-01

    In this paper, the moderately and lightly doped porous silicon nanowires (PSiNWs) were fabricated by the `one-pot procedure' metal-assisted chemical etching (MACE) method in the HF/H2O2/AgNO3 system at room temperature. The effects of H2O2 concentration on the nanostructure of silicon nanowires (SiNWs) were investigated. The experimental results indicate that porous structure can be introduced by the addition of H2O2 and the pore structure could be controlled by adjusting the concentration of H2O2. The H2O2 species replaces Ag+ as the oxidant and the Ag nanoparticles work as catalyst during the etching. And the concentration of H2O2 influences the nucleation and motility of Ag particles, which leads to formation of different porous structure within the nanowires. A mechanism based on the lateral etching which is catalyzed by Ag particles under the motivation by H2O2 reduction is proposed to explain the PSiNWs formation.

  8. Room temperature polyesterification

    SciTech Connect

    Moore, J.S.; Stupp, S.I. . Dept. of Materials Science and Engineering)

    1990-01-01

    A new room temperature polymerization method has been developed for the synthesis of high molecular weight polyesters directly from carboxylic acids and phenols. The solution polymerization reaction proceeds under mild conditions, near neutral pH, and also avoids the use of preactivated acid derivatives for esterification. The reaction is useful in the preparation of isoregic ordered chains with translational polar symmetry and also in the polymerization of functionalized or chiral monomers. The conditions required for polymerization in the carbodiimide-based reaction included catalysis by the 1:1 molecular complex formed by 4-(dimethylamino)pyridine and p-toluenesulfonic acid. These conditions were established through studies on a model system involving esterification of p-toluic acid and p-cresol. Self-condensation of several hydroxy acid monomers by this reaction has produced routinely good yields of polyesters with molecular weights greater than 15,000. It is believed that the high extents of reaction required for significant degrees of polymerization result from suppression of the side reaction leading to N-acylurea. The utility of this reaction in the formation of polar chains from sensitive monomers is demonstrated hereby the polycondensation of a chiral hydroxy acid.

  9. Self-assembly of imidazolium-based rodlike ionic liquid crystals: transition from lamellar to micellar organization.

    PubMed

    Cheng, Xiaohong; Bai, Xueqing; Jing, Shan; Ebert, Helgard; Prehm, Marko; Tschierske, Carsten

    2010-04-19

    By using aryl-amination chemistry, a series of rodlike 1-phenyl-1H-imidazole-based liquid crystals (LCs) and related imidazolium-based ionic liquid crystals (ILCs) has been prepared. The number and length of the C-terminal chains (at the noncharged end of the rodlike core) and the length of the N-terminal chain (on the imidazolium unit in the ILCs) were modified and the influence of these structural parameters on the mode of self-assembly in LC phases was investigated by polarizing microscopy, differential scanning calorimetry, and X-ray diffraction. For the single-chain imidazole derivatives nematic phases (N) and bilayer SmA2 phases were found, but upon increasing the number of alkyl chains the LC phases were lost. For the related imidazolium salts LC phases were preserved upon increasing the number and length of the C-terminal chains and in this series it leads to the phase sequence SmA-columnar (Col)-micellar cubic (CubI /Pm3n). Elongation of the N-terminal chain gives the reversed sequence. Short N-terminal chains prefer an end-to-end packing of the mesogens in which these chains are separated from the C-terminal chains. Elongation of the N-terminal chain leads to a mixing of N- and C-terminal chains, which is accompanied by complete intercalation of the aromatic cores. In the smectic phases this gives rise to a transition from bilayer (SmA2) to monolayer smectic (SmA) phases. For the columnar and cubic phases the segregated end-to-end packing leads to core-shell aggregates. In this case, elongation of the N-terminal chains distorts core-shell formation and removes CubI and Col phases in favor of single-layer SmA phases. Hence, by tailoring the length of the N-terminal chain, a crossover from taper-shaped to polycatenar LC tectons was achieved, which provides a powerful tool for control of self-assembly in ILCs.

  10. Recurarization in the recovery room.

    PubMed

    Albaladejo, P; Kinirons, B; Brocas, E; Benhamou, D; Samii, K

    1999-07-01

    A case of recurarization in the recovery room is reported. Accumulation of atracurium in the intravenous line led to recurarization after flushing the line in the recovery room. A respiratory arrest with severe desaturation and bradycardia occurred. Circumstances leading to this event and the mechanisms enabling a neuromuscular blockade to occur, following the administration of a small dose of relaxant, are discussed.

  11. Thermophysical and Rheological Properties of Imidazolium-Based Ionic Liquids: The Effect of Aliphatic versus Aromatic Functionality

    NASA Astrophysics Data System (ADS)

    Tao, Ran; Xue, Lianjie; Tamas, George; Quitevis, Edward; Simon, Sindee

    2014-03-01

    As a material class, ionic liquids possess attractive properties and have a wide range of potential uses. In this work, a series of imidazolium-based ionic liquids with the same carbon number varying from aliphatic to aromatic functionalities are investigated. The effects of cation symmetry and larger aromatic polycyclic functionality are studied. The thermal properties, including the glass transition temperature, melting temperature, and decomposition temperature, are characterized, and the density and the ionic conductivity are measured as a function of temperature. Rheological studies are performed using both steady-state and dynamic shear modes. The Cox-Merz relationship between the steady shear viscosity and the dynamic viscosity is examined. The temperature dependence of viscosity is described by the Vogel-Fulcher-Tammann equation and the dynamic fragility is calculated for each ionic liquid and compared to the fragility obtained from calorimetry. Master curves of dynamic shear responses are also constructed and will be discussed.

  12. Selenium containing imidazolium salt in designing single source precursors for silver bromide and selenide nano-particles.

    PubMed

    Joshi, Hemant; Sharma, Kamal Nayan; Singh, Ved Vati; Singh, Pradhumn; Singh, Ajai Kumar

    2013-02-21

    The AgBr and Ag(2)Se nanoparticles (NPs) have been synthesized for the first time from two single source precursors ([Ag(2)(L)(2)Br(2)] (1) and [Ag(L-HBr)(2)]BF(4) (2) respectively) designed using the same ligand 3-benzyl-1-(2-phenylselanyl-ethyl)-3H-imidazolium bromide (L). The ODE-ODA-OA (1 : 1 : 2) and TOP-OA (1 : 2) are most suitable solvents for thermolysis of 1 and 2 respectively, resulting in the NPs. The composition of the solvent used in thermolysis affects the purity of NPs. The bonding of L in 1 is unique, as it has a pre-carbene site intact.

  13. Structural studies of the formation of lipoplexes between siRNA and selected bis-imidazolium gemini surfactants.

    PubMed

    Andrzejewska, W; Pietralik, Z; Skupin, M; Kozak, M

    2016-10-01

    Dicationic (gemini) surfactants are agents that can be used for the preparation of stable complexes of nucleic acids, particularly siRNA for therapeutic purposes. In this study, we demonstrated that bis-imidazolium gemini surfactants with variable lengths of dioxyalkyl linker groups (from dioxyethyl to dioxydodecyl) and dodecyl side chains are excellent for the complexation of siRNA. All of these compounds effectively complexed siRNA in a charge ratio range (p/n) of 1.5-10. The low resolution structure of siRNA oligomers was characterised by small angle scattering of synchrotron radiation (SR-SAXS) and ab initio modelling. The structures of the formed complexes were also analysed using SR-SAXS, circular dichroism studies and electrophoretic mobility tests. The most promising agents for complexation with siRNA were the surfactants that contained dioxyethyl and dioxyhexyl spacer groups.

  14. An XAFS Study of Tantalum Chloride in the Ionic Liquid 1-ethyl-3-methyl Imidazolium Chloride/ aluminum Chloride

    SciTech Connect

    D Roeper; K Pandya; G Cheek; W OGrady

    2011-12-31

    Tantalum chloride was studied with extended X-ray absorption fine structure spectroscopy (XAFS) in acidic and basic aluminum chloride/1-ethyl-3-methyl imidazolium chloride ionic liquids (ILs). Anhydrous Ta2Cl10 is more soluble in the basic solution than in the acidic solution and the X-ray absorption data shows that the coordination shell of chlorides around the tantalum is larger in the basic solution. In the acidic solution, tantalum has five chlorides in its coordination shell while in the basic solution; the tantalum is coordinated by seven chlorides. This indicates that the Lewis acidity of the tantalum chloride causes the Ta to coordinate differently in the acidic and the basic solutions.

  15. Imidazolium-containing, hydrophobic-ionic-hydrophilic ABC triblock copolymers: synthesis, ordered phase-separation, and supported membrane fabrication

    SciTech Connect

    Wiesenauer, EF; Nguyen, PT; Newell, BS; Bailey, TS; Nobleb, RD; Gin, DL

    2013-01-01

    Novel ABC triblock copolymers containing hydrophobic, imidazolium ionic liquid (IL)-based ionic, and non-charged hydrophilic blocks were synthesized by direct sequential, ring-opening metathesis polymerization (ROMP) of three chemically immiscible norborene monomers. The resulting ABC triblock copolymers were found by small-angle X-ray scattering to phase-separate into different nanostructures in their pure melt states, depending on their block sequence and compositions. Supported composite membranes of these triblock copolymers were successfully fabricated with defect-free, <= 20 microns thick top coatings. Preliminary CO2/light gas transport studies demonstrated the potential of this new type of IL-based block copolymer material for gas separation applications.

  16. Syntheses, characterization and energetic properties of closo-(B12H12)2- salts of imidazolium derivatives.

    PubMed

    Hanumantha Rao, Muddamarri; Muralidharan, Krishnamurthi

    2013-06-28

    The diimidazolium derivative of acetylene and its salt 3,3'-(but-2-yne-1,4-diyl)bis(1-methyl-1H-imidazol-3-ium)chloride (1) was synthesized by a solvent free sonochemical method and then the counter chloride ions were replaced by closo-dodecaborate [(B12H12)(2-)] and perchlorate (ClO4(-)) anions respectively. Along with these two ionic salts, a series of salts with closo-dodecaborate and alkyl imidazolium cations were also synthesized. All the compounds were characterized by NMR and MASS spectral data, elemental analyses and thermogravimetric analyses. In addition to that enthalpy of combustion, enthalpy of formation and heat of explosion of all the compounds were experimentally determined. Based on the properties of these compounds, they can be used as insensitive energetic materials in various fields in propellant research and technology such as solid rocket propellants and burn rate accelerators.

  17. Synthesis and Biological Evaluation of New Imidazolium and Piperazinium Salts of Pyropheophorbide-a for Photodynamic Cancer Therapy

    PubMed Central

    Sengee, Gerelt-Ireedui; Badraa, Narangerel; Shim, Young Key

    2008-01-01

    We have designed imidazolium and piperazinium salts of pyropheophorbide-a in order to develop effective photosensitizers which have good solubility in polar and non polar media and to reveal the possible influences of the piperazine and imidazole moieties on the biological activities of pyropheophorbide-a. The phototoxicity of those pyropheophorbide-a salts against A549 cells was studied in vitro and compared with that of pyropheophorbide-a. The result showed that complexing piperazine and imidazole into pyropheophorbide-a decreases its dark toxicity without greatly decreasing phototoxicity and, enhances its phototoxicity without greatly increasing dark toxicity, respectively. This work not only describes novel amphiphilic salt complexes of pyropheophobide-a which retain the biological activities of the parent compound pyropheophorbide-a and could be effective candidate for PDT, but also reveals the possibility of developing effective photosensitizers by complexing imidazole and piperazine into other hydrophobic photosensitizers. PMID:19325811

  18. Ion-Pair Halogen Bonds in 2-Halo-Functionalized Imidazolium Chloride Receptors: Substituent and Solvent Effects.

    PubMed

    Nunes, Rafael; Costa, Paulo J

    2017-03-02

    The interaction of 2-halo-functionalized imidazolium derivatives (n-X(+) ; X=Cl, Br, I) with a chloride anion through ion-pair halogen bonds (n-X⋅Cl) was studied by means of DFT and ab initio calculations. A method benchmark was performed on 2-bromo-1H-imidazol-3-ium in association with chloride (1-Br⋅Cl); MP2 yielded the best results when compared with CCSD(T) calculations. The interaction energies (ΔE) in the gas phase are high and, although the electrostatic interaction is strong owing to the ion-pair nature of the system, large X⋅⋅⋅Cl(-) Wiberg bond orders and contributions from charge transfer (nCl- →σ*C-X) are obtained. These values drop considerably in chloroform and water; this shows that solvent plays a role in modulating the interaction and that gas-phase calculations are particularly unrealistic for experimental applications. The introduction of electron-withdrawing groups in the 4,5-positions of the imidazolium (e.g., -NO2 , -F) increases the halogen-bond strength in both the gas phase and solvent, including water. The effect of the substituents on the 1,3-positions (N-H groups) also depends on the solvent. The variation of ΔE can be predicted through a two-parameter linear regression that optimizes the weights of charge-transfer and electrostatic interactions, which are different in vacuum and in solvent (chloroform and water). These results could be used in the rational design of efficient chloride receptors based on halogen bonds that work in solution, in particular, in an aqueous environment.

  19. The protonated 2-halogenated imidazolium cation as the noncovalent interaction donor: the σ-hole and π-hole interactions.

    PubMed

    Wang, Jingjing; Mo, Lixin; Li, Xiaoyan; Geng, Zongke; Zeng, Yanli

    2016-12-01

    The σ-hole and π-hole of the protonated 2-halogenated imidazolium cation (XC3H4N2(+); X = F, Cl, Br, I) were investigated and analyzed. The monomers of (CH3)3SiY(Y=F, Cl, Br, I), considered as the Lewis base, were combined with the σ-hole and π-hole of XC3H4N2(+) to form the σ-hole and π-hole interactions in the bimolecular complexes (CH3)3SiY · · · XC3H4N2(+) and (CH3)3SiY · · · C3(X)H4N2(+)(X/Y=F, Cl, Br, I), respectively. For both the σ-hole and π-hole interactions, the equilibrium geometries of complexes show regular changes according to the sequence of heavy sequence of the noncovalent interaction acceptors and donors. The electrostatic energy is the main contribution in the formation of both kinds of interactions, it has linear relations with the V S,max values of σ-hole and the V' S,max values of π-hole. Both the σ-hole and π-hole interactions belong to the closed-shell and noncovalent interactions. The π-hole interactions are stronger than the σ-hole interactions. For the π-hole interactions, the contribution percents of the dispersion energies are somewhat greater than those of the σ-hole interactions, while it is contrary for the polarization energy. Graphical Abstract The protonated 2-halogenated imidazolium cation as the noncovalent interaction donor: the σ-hole and π-hole interactionsᅟ.

  20. Mechanism of imidazolium ionic liquids toxicity in Saccharomyces cerevisiae and rational engineering of a tolerant, xylose-fermenting strain

    DOE PAGES

    Dickinson, Quinn; Bottoms, Scott; Hinchman, Li; ...

    2016-01-20

    In this study, imidazolium ionic liquids (IILs) underpin promising technologies that generate fermentable sugars from lignocellulose for future biorefineries. However, residual IILs are toxic to fermentative microbes such as Saccharomyces cerevisiae, making IIL-tolerance a key property for strain engineering. To enable rational engineering, we used chemical genomic profiling to understand the effects of IILs on S. cerevisiae. As a result, we found that IILs likely target mitochondria as their chemical genomic profiles closely resembled that of the mitochondrial membrane disrupting agent valinomycin. Further, several deletions of genes encoding mitochondrial proteins exhibited increased sensitivity to IIL. High-throughput chemical proteomics confirmed effectsmore » of IILs on mitochondrial protein levels. IILs induced abnormal mitochondrial morphology, as well as altered polarization of mitochondrial membrane potential similar to valinomycin. Deletion of the putative serine/threonine kinase PTK2 thought to activate the plasma-membrane proton efflux pump Pma1p conferred a significant IIL-fitness advantage. Conversely, overexpression of PMA1 conferred sensitivity to IILs, suggesting that hydrogen ion efflux may be coupled to influx of the toxic imidazolium cation. PTK2 deletion conferred resistance to multiple IILs, including [EMIM]Cl, [BMIM]Cl, and [EMIM]Ac. An engineered, xylose-converting ptk2Δ S. cerevisiae (Y133-IIL) strain consumed glucose and xylose faster and produced more ethanol in the presence of 1 % [BMIM]Cl than the wild-type PTK2 strain. We propose a model of IIL toxicity and resistance. In conclusion, this work demonstrates the utility of chemical genomics-guided biodesign for development of superior microbial biocatalysts for the ever-changing landscape of fermentation inhibitors.« less

  1. Molecular modeling of imidazolium-based [Tf2N-] ionic liquids: microscopic structure, thermodynamic and dynamic properties, and segmental dynamics.

    PubMed

    Logotheti, Georgia-Evangelia; Ramos, Javier; Economou, Ioannis G

    2009-05-21

    The microscopic structure, thermodynamic properties, local segmental dynamics, and self-diffusion coefficients of three ionic liquids (ILs) with a common anion, namely, the bis(trifluoromethylsulfonyl) imide ([Tf2N-]), and imidazolium-based cations that differ in the alkyl tail length, namely, the 1-butyl-3-methylimidazolium ([C4mim+]), the 1-hexyl-3-methylimidazolium ([C6mim+]), and the 1-octyl-3-methylimidazolium ([C8mim+]), are calculated over the temperature range of 298.15-333.15 K and pressure range of 0.1-60 MPa. Quantum calculations based on density functional theory are performed on isolated ion pairs, and minimum energy conformers are identified. Electronic density results are used to estimate the electrostatic potential of a molecular force field that is used subsequently for long molecular dynamics (MD) simulations of bulk ILs. Thermodynamic properties calculated from MD are shown to be in excellent agreement for the bulk density and good agreement for derivative properties when compared to experimental data. The new force field is an improvement over earlier ones for the same ILs. The microscopic structure as expressed through the radial distribution function is thoroughly calculated, and it is shown that the bulk structure characteristics are very similar to those obtained from the quantum calculations on isolated ion pairs. The segmental dynamics expressed in terms of bond and torsion angle decorrelation is shown to assume a broad range of characteristic times. Molecular segments in the alkyl tail of the cations are significantly faster than segments in the vicinity of the imidazolium ring. Finally, the new force field predicts accurately the self-diffusion coefficients of the cations and the anions over the entire temperature range examined, thus confirming its validity for a broad range of physical properties.

  2. Identification and characterization of an imidazolium by-product formed during the synthesis of 4-methylmethcathinone (mephedrone).

    PubMed

    Power, John D; Kavanagh, Pierce; McLaughlin, Gavin; O'Brien, John; Talbot, Brian; Barry, Michael; Twamley, Brendan; Dowling, Geraldine; Brandt, Simon D

    2015-10-01

    4-Methylmethcathinone (2-methylamino-1-(4-methylphenyl)propan-1-one, mephedrone) is a psychoactive substance that has been associated with recreational use worldwide. Analytical data related to mephedrone are abundantly available but the characterization of by-products obtained during organic synthesis remains to be explored. This study presents the identification of a 1,2,3,5-tetramethyl-4-(4-methylphenyl)-1H-imidazol-3-ium salt (TMMPI), which was formed during the synthesis of mephedrone. When diethyl ether was added to the crude reaction product, solid material precipitated from the solution. Analytical characterization of TMMPI employed a range of analytical techniques including chromatographic analysis in combination with various mass spectrometric detection methods, nuclear magnetic resonance spectroscopy, and crystal structure analysis. Additional confirmation was obtained from organic synthesis of the imidazolium by-product. When TMMPI was subjected to analysis by gas chromatography-mass spectrometry (GC-MS), isomerization and degradation into two distinct compounds were observed, which pointed towards thermal instability under GC conditions. A liquid chromatography-mass spectrometry (LC-MS) based investigation into a micro-scale synthesis of mephedrone and three additional analogues revealed that the corresponding TMMPI analogue was formed. Interestingly, storage of mephedrone freebase in a number of organic solvents also gave rise to TMMPI and it appeared that its formation during storage was significantly reduced in the absence of air. The present study aimed to support clandestine forensic investigations by employing analytical strategies that are applicable to manufacturing sites. The imidazolium salts will most likely be found amongst the waste products of any clandestine lab site under investigation rather than with the desired product.

  3. 33. ROOM A (WEST ROOM) LOOKING SOUTHWEST. The windows above ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. ROOM A (WEST ROOM) LOOKING SOUTHWEST. The windows above the original Ministers' Gallery were raised in 1888 when inside toilet facilities were added on the other side of the west wall. Note the sloped window sills which provided more light. Also at the rear of the Meeting House a caretaker's apartment was added in 1908. - Twelfth Street Meeting House, 20 South Twelfth Street, Philadelphia, Philadelphia County, PA

  4. Physically Gelled Room-Temperature Ionic Liquid-Based Composite Membranes for CO2/N-2 Separation: Effect of Composition and Thickness on Membrane Properties and Performance

    SciTech Connect

    Nguyen, PT; Voss, BA; Wiesenauer, EF; Gin, DL; Nobe, RD

    2013-07-03

    An aspartame-based, low molecular-weight organic gelator (LMOG) was used to form melt-infused and composite membranes with two different imidazolium-based room-temperature ionic liquids (RTILs) for CO2 separation from N-2. Previous work demonstrated that LMOGs can gel RTILs at low, loading levels, and this aspartame-based LMOG was selected because it has been reported to gel a large number of RTILs. The imidazolium-based RTILs were used because of their inherent good properties for CO2/light gas separations. Analysis of the resulting bulk RTIL/LMOG physical gels showed that these materials have high sol-gel transition temperatures (ca. 135 degrees C) suitable for flue gas applications. Gas permeabilities and burst pressure measurements of thick, melt infused membranes revealed a trade-off between high CO2 permeabilities and good mechanical stability as a function of the LMOG loading. Defect-free, composite membranes of the gelled RTILs were successfully fabricated by choosing an appropriate porous membrane support (hydrophobic PTFE) using a suitable coating technique (roller coating). The thicknesses of the applied composite gel layers ranged from 10.3 to 20.7 mu m, which represents an order of magnitude decrease in active layer thickness, compared to the original melt-infused gel RTIL membranes.

  5. 32 CFR 518.9 - Reading room.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 3 2013-07-01 2013-07-01 false Reading room. 518.9 Section 518.9 National... RELATIONS THE FREEDOM OF INFORMATION ACT PROGRAM FOIA Reading Rooms § 518.9 Reading room. (a) Reading room... the records described, DA may elect to place other records in their reading room, and also make...

  6. 32 CFR 518.9 - Reading room.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 3 2011-07-01 2009-07-01 true Reading room. 518.9 Section 518.9 National... RELATIONS THE FREEDOM OF INFORMATION ACT PROGRAM FOIA Reading Rooms § 518.9 Reading room. (a) Reading room... the records described, DA may elect to place other records in their reading room, and also make...

  7. 7 CFR 58.408 - Brine room.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Brine room. 58.408 Section 58.408 Agriculture... Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Rooms and Compartments § 58.408 Brine room. A brine room, when applicable, should be a separate room constructed so it can...

  8. What's New in Locker Rooms?

    ERIC Educational Resources Information Center

    Rittner-Heir, Robbin M.

    2001-01-01

    Discusses athletic facility design and renovation issues that exist because of increasing numbers of female athletes. Outlines renovation issues such as locker room facilities, space for sports equipment, and additional athletic fields. (GR)

  9. Nuclear reactor control room construction

    DOEpatents

    Lamuro, Robert C.; Orr, Richard

    1993-01-01

    A control room 10 for a nuclear plant is disclosed. In the control room, objects 12, 20, 22, 26, 30 are no less than four inches from walls 10.2. A ceiling 32 contains cooling fins 35 that extend downwards toward the floor from metal plates 34. A concrete slab 33 is poured over the plates. Studs 36 are welded to the plates and are encased in the concrete.

  10. Nuclear reactor control room construction

    DOEpatents

    Lamuro, R.C.; Orr, R.

    1993-11-16

    A control room for a nuclear plant is disclosed. In the control room, objects labelled 12, 20, 22, 26, 30 in the drawing are no less than four inches from walls labelled 10.2. A ceiling contains cooling fins that extend downwards toward the floor from metal plates. A concrete slab is poured over the plates. Studs are welded to the plates and are encased in the concrete. 6 figures.

  11. Solution processable semiconductor thin films: Correlation between morphological, structural, optical and charge transport properties

    NASA Astrophysics Data System (ADS)

    Isik, Dilek

    strategies for low power consuming solution based electronics and capitalizing on the expertise of the group in the synthesis of solution deposited WO3 films the electrolyte gating approach was explored in ARTICLE 3. Ionic liquids, that are molten salts at room temperature, were employed as the electrolyte. Ionic liquids are attractive for their low volatility, non-flammability, ionic conductivity and thermal and electrochemical stability. Thin films of WO3 were deposited onto pre-patterned ITO substrates (source-drain interelectrode distance, 1 mm) prepared by wet chemical etching. SEM and AFM showed an interconnected film nanostructure. Electrolyte gated WO3 thin film transistors making use of 1-butyl-3-methyl imidazolium bis(trifluoromethylsulfonyl)imide ([BMIM][TFSI]), 1-butyl-3-methyl imidazolium hexafluoro phosphate ([BMIM][PF6]), and 1-ethyl-3-methyl imidazolium bis(trifluoromethylsulfonyl)imide ([EMIM][TFSI]) showed an n-type transistor behavior. The possibility to obtain WO3 electrolyte gated transistors represents an opportunity to fabricate electronic devices working at relatively low operating voltages (about 1 V) by using simple fabrication techniques.

  12. The 'Room within a Room' Concept for Monitored Warhead Dismantlement

    SciTech Connect

    Tanner, Jennifer E.; Benz, Jacob M.; White, Helen; McOmish, Sarah; Allen, Keir; Tolk, Keith; Weeks, George E.

    2014-12-01

    Over the past 10 years, US and UK experts have engaged in a technical collaboration with the aim of improving scientific and technological abilities in support of potential future nuclear arms control and non-proliferation agreements. In 2011 a monitored dismantlement exercise provided an opportunity to develop and test potential monitoring technologies and approaches. The exercise followed a simulated nuclear object through a dismantlement process and looked to explore, with a level of realism, issues surrounding device and material monitoring, chain of custody, authentication and certification of equipment, data management and managed access. This paper focuses on the development and deployment of the ‘room-within-a-room’ system, which was designed to maintain chain of custody during disassembly operations. A key challenge for any verification regime operating within a nuclear weapon complex is to provide the monitoring party with the opportunity to gather sufficient evidence, whilst protecting sensitive or proliferative information held by the host. The requirement to address both monitoring and host party concerns led to a dual function design which: • Created a controlled boundary around the disassembly process area which could provide evidence of unauthorised diversion activities. • Shielded sensitive disassembly operations from monitoring party observation. The deployed room-within-a-room was an integrated system which combined a number of chain of custody technologies (i.e. cameras, tamper indicating panels and enclosures, seals, unique identifiers and radiation portals) and supporting deployment procedures. This paper discusses the bounding aims and constraints identified by the monitoring and host parties with respect to the disassembly phase, the design of the room-within-a-room system, lessons learned during deployment, conclusions and potential areas of future work. Overall it was agreed that the room-within-a-room approach was effective but

  13. Cytotoxicity towards CCO cells of imidazolium ionic liquids with functionalized side chains: preliminary QSTR modeling using regression and classification based approaches.

    PubMed

    Bubalo, Marina Cvjetko; Radošević, Kristina; Srček, Višnja Gaurina; Das, Rudra Narayan; Popelier, Paul; Roy, Kunal

    2015-02-01

    Within this work we evaluated the cytotoxicity towards the Channel Catfish Ovary (CCO) cell line of some imidazolium-based ionic liquids containing different functionalized and unsaturated side chains. The toxic effects were measured by the reduction of the WST-1 dye after 72 h exposure resulting in dose- and structure-dependent toxicities. The obtained data on cytotoxic effects of 14 different imidazolium ionic liquids in CCO cells, expressed as EC50 values, were used in a preliminary quantitative structure-toxicity relationship (QSTR) study employing regression- and classification-based approaches. The toxicity of ILs towards CCO was chiefly related to the shape and hydrophobicity parameters of cations. A significant influence of the quantum topological molecular similarity descriptor ellipticity (ε) of the imine bond was also observed.

  14. Infrared Spectroscopy of Ionic Liquids Consisting of Imidazolium Cations with Different Alkyl Chain Lengths and Various Halogen or Molecular Anions with and Without a Small Amount of Water.

    PubMed

    Yamada, Toshiki; Tominari, Yukihiro; Tanaka, Shukichi; Mizuno, Maya

    2017-03-27

    Infrared spectroscopy was performed on ionic liquids (ILs) that had imidazolium cations with different alkyl chain lengths and various halogen or molecular anions with and without a small amount of water. The molar concentration normalized absorbance due to +C-H vibrational modes in the range of 3000 to 3200 cm-1 was nearly identical for ILs that had imidazolium cations with different alkyl chain lengths and the same anions. A close correlation was found between the red-shifted +C-H vibrational modes, the chemical shift of +C(2)-H proton, and the energy stabilization of hydrogen-bonding interaction. The vibrational modes of the water molecules interacting with anions in the range between 3300 and 3800 cm-1 was examined. The correlation between the vibrational frequencies of water, the frequencies of +C-H vibrational modes, and the center frequency of intermolecular vibrational modes due to ion pairs was discussed.

  15. Metallosurfactant Ionogels in Imidazolium and Protic Ionic Liquids as Precursors To Synthesize Nanoceria as Catalase Mimetics for the Catalytic Decomposition of H2 O2.

    PubMed

    Wang, Xiaolin; Yang, Qiao; Cao, Yixue; Hao, Haibin; Zhou, Junhan; Hao, Jingcheng

    2016-12-05

    The gelation behavior of cationic surfactants with different counterions, Br(-) , [FeCl3 Br](-) , and [CeCl3 Br](-) , in imidazolium ionic liquids (ILs) and protic ethylammonium nitrate was investigated. Small-angle X-ray scattering measurements and freeze-fracture transmission electron microscopy observations revealed the lamellar phases of metallosurfactant ionogels. The characteristics of imidazolium ILs, including the size and type, have effects on metallosurfactant ionogel properties, such as transformation temperatures, interlayer spacing, and mechanical strength. Cubic fluorite structured cerium oxide nanoparticles (CeO2 NPs) were produced by using metallosurfactant ionogels as precursors. Cubic fluorite CeO2 exhibited good catalase mimetic activity toward H2 O2 to generate O2 , providing more multiple mimetic enzyme activities of CeO2 NPs for H2 O2 .

  16. Imidazolium Sulfonates as Environmental-Friendly Catalytic Systems for the Synthesis of Biologically Active 2-Amino-4H-chromenes: Mechanistic Insights.

    PubMed

    Velasco, Jacinto; Pérez-Mayoral, Elena; Calvino-Casilda, Vanesa; López-Peinado, Antonio J; Bañares, Miguel A; Soriano, Elena

    2015-09-10

    Ionic Liquids (ILs) are valuable reaction media extremely useful in industrial sustainable organic synthesis. We describe here the study on the multicomponent reaction (MCR) between salicylaldehyde (2) and ethyl cyanoacetate (3), catalyzed by imidazolium sulfonates, to form chromenes 1, a class of heterocyclic scaffolds exhibiting relevant biological activity. We have clarified the reaction mechanism by combining the experimental results with computational studies. The results reported herein suggest that both the imidazolium core and the sulfonate anions in the selected ILs are involved in the reaction course acting as hydrogen bond donors and acceptors, respectively. Contrarily to the most widely accepted mechanism through initial Knoevenagel condensation, the most favorable reaction pathway consists of an aldolic reaction between reagents followed by heterocyclization, subsequent dehydration, and, finally, the Michael addition of the second molecule of ethyl cyanoacetate (3) to yield the chromenes 1.

  17. Diverse manganese(II) coordination polymers derived from achiral/chiral imidazolium-carboxylate zwitterions and azide: structure and magnetic properties.

    PubMed

    Wang, Xuan; Li, Xiu-Bing; Yan, Ren-He; Wang, Yan-Qin; Gao, En-Qing

    2013-07-21

    Five Mn(II) coordination polymers containing azide and carboxylate as simultaneous bridges have been derived from different imidazolium-carboxylate zwitterionic ligands: 1-methyl-3-(carboxylatomethyl)imidazolium (L(1)), 1,3-bis(carboxylatomethyl)imidazolium (L(2)), (S,S)-, (R,R)-, and (R,S)-1,3-bis(1-carboxylatoethyl)imidazolium (S,S-L(3), R,R-L(3) and R,S-L(3)). The compounds are formulated as [Mn(L(1))(N3)2] (1), [Mn(L(2))(N3)] (2), [Mn(R,R-L(3))(N3)]·0.5CH3OH (3-R), [Mn(S,S-L(3))(N3)]·0.5CH3OH (3-S), [Mn(R,S-L(3))(N3)] (4). In compound 1, the neutral monocarboxylate zwitterion ligand (L(1)) leads to uniform chains with bis(azide)(carboxylate) bridges. For compounds 2-4, the anionic dicarboxylate zwitterions L(2) and L(3) lead to (azide)bis(carboxylate) bridges, but the overall coordination networks are different. In 2 and 3-S (or 3-R), chains with the (azide)bis(carboxylate) bridges are connected by L(2) and S,S-L(3) (or R,R-L(3)), respectively, to give achiral and chiral 2D coordination networks with different connecting topologies. In compounds 4, which is derived from the mesomeric ligand R,S-L(3), linear trinuclear units with the (azide)bis(carboxylate) bridges are linked by μ-1,3 azides to give 2D layers, and the layers are pillared into a 3D framework by the 1,3-dimethyleneimidazolium tethers. Magnetic analyses suggested that compounds 1-3 behave as 1D antiferromagnetic systems, while 4 shows canted antiferromagnetism with weak ferromagnetic ordering below T(C) = 12.4 K.

  18. Crystal structure, vibrational and magnetic properties of the monohydrated cobalt (II) complex with 1-(4-Nitrophenyl)-1H-imidazolium cation, (C9H8N3O2)2CoCl4·H2O

    NASA Astrophysics Data System (ADS)

    Amamou, W.; Chniba-Boudjada, N.; Zouari, F.

    2017-01-01

    Single crystals of organic-inorganic hybrid compound Bis(1-(4-Nitrophenyl)-1H-imidazolium) tetrachlorocobaltate monohydrate, was obtained by slow evaporation of an aqueous solution at room temperature and characterized by a single-crystal X-ray diffraction, an elemental and thermal analysis, UV-Vis spectra, FT-IR and FT-Raman spectroscopies as well as magnetic measurements. The entitled compound crystallizes into triclinic system of P-1 space group. The Co(II) ion of the [CoCl4]2- anion shows a tetrahedral coordinating geometry. The atomic arrangement can be described as an alternation of organic and inorganic layers along the c-axis. The different components are connected by Nsbnd H⋯Cl, Osbnd H⋯Cl and Osbnd H⋯O hydrogen bonds. The differential scanning calorimetry (DSC) of the title compound revealed an endothermic peak at 52 °C related with a phase transformation caused by a slight deformation of the inorganic group. The room temperature IR and Raman spectra were recorded and analyzed on the basis of literary data to gain more information about the entitled compound. The magnetic susceptibility measurements in the temperature range 2-100 K shows that the complex displays a weak antiferromagnetic exchange interaction at very low temperatures.

  19. Imidazolium-Based Porous Organic Polymers: Anion Exchange-Driven Capture and Luminescent Probe of Cr2O7(2.).

    PubMed

    Su, Yanqing; Wang, Yangxin; Li, Xiaoju; Li, Xinxiong; Wang, Ruihu

    2016-07-27

    A series of imidazolium-based porous organic polymers (POP-Ims) was synthesized through Yamamoto reaction of 1,3-bis(4-bromophenyl)imidazolium bromide and tetrakis(4-bromophenyl)ethylene. Porosities and hydrophilicity of such polymers may be well tuned by varying the ratios of two monomers. POP-Im with the highest density of imidazolium moiety (POP-Im1) exhibits the best dispersity in water and the highest efficiency in removing Cr2O7(2-). The capture capacity of 171.99 mg g(-1) and the removal efficiency of 87.9% were achieved using an equivalent amount of POP-Im1 within 5 min. However, no Cr2O7(2-) capture was observed using nonionic analogue despite its large surface area and abundant pores, suggesting that anion exchange is the driving force for the removal of Cr2O7(2-). POP-Im1 also displays excellent enrichment ability and remarkable selectivity in capturing Cr2O7(2-). Cr(VI) in acid electroplating wastewater can be removed completely using excess POP-Im1. In addition, POP-Im1 can serve as a luminescent probe for Cr2O7(2-) due to the incorporation of luminescent tetraphenylethene moiety.

  20. DFT Study of the Reaction Mechanisms of Carbon Dioxide and its Isoelectronic Molecules CS2 and OCS Dissolved in Pyrrolidinium and Imidazolium Acetate Ionic Liquids.

    PubMed

    Danten, Y; Cabaço, M I; Coutinho, J A P; Pinaud, Noël; Besnard, M

    2016-06-16

    The reaction mechanisms of CO2 and its isoelectronic molecules OCS and CS2 dissolved in N-butyl-N-methylpyrrolidinium acetate and in 1-butyl-3-methylimidazolium acetate were investigated by DFT calculations in "gas phase". The analysis of predicted multistep pathways allowed calculating energies of reaction and energy barriers of the processes. The major role played by the acetate anion in the degradation of the solutes CS2 and OCS as well as in the capture of OCS and CO2 by the imidazolium ring is highlighted. In both ionic liquids, this anion governs the conversion of CS2 into OCS and of OCS into CO2 through interatomic S-O exchanges between the anion and the solutes with formation of thioacetate anions. In imidazolium acetate, the selective capture of CS2 and OCS by the imidazolium ring competes with the S-O exchanges. From the calculated values of the energy barriers a basicity scale of the anions is proposed. The (13)C NMR chemical shifts of the predicted adducts were calculated and agree well with the experimental observations. It is argued that the scenario issued from the calculated pathways is shown qualitatively to be independent from the functionals and basis set used, constitute a valuable tool in the understanding of chemical reactions taking place in liquid phase.

  1. New Insight into the Formation Mechanism of Imidazolium-Based Ionic Liquids from N-Alkyl Imidazoles and Halogenated Hydrocarbons: A Polar Microenvironment Induced and Autopromoted Process.

    PubMed

    Mu, Xueli; Jiang, Nan; Liu, Chengbu; Zhang, Dongju

    2017-02-09

    To illustrate the formation mechanism of imidazolium-based ionic liquids (ILs) from N-alkyl imidazoles and halogenated hydrocarbons, density functional theory calculations have been carried out on a representative system, the reaction of N-methyl imidazole with chloroethane to form 1-ethyl-3-methyl imidazolium chloride ([Emim]Cl) IL. The reaction is shown to proceed via an SN2 transition state with a free energy barrier of 34.4 kcal/mol in the gas phase and 27.6 kcal/mol in toluene solvent. The reaction can be remarkably promoted by the presence of ionic products and water molecules. The calculated barriers in toluene are 22.0, 21.7, and 19.9 kcal/mol in the presence of 1-3 ionic pairs of [Emim]Cl and 23.5, 21.3, and 19.4 kcal/mol in the presence of 1-3 water molecules, respectively. These ionic pairs and water molecules do not participate directly in the reaction but provide a polar environment that favors stabilizing the transition state with large charge separation. Hence, we propose that the synthesis of imidazolium-based ILs from N-alkyl imidazoles and halogenated hydrocarbons is an autopromoted process and a polar microenvironment induced reaction, and the existence of water molecules (a highly polar solvent) in the reaction may be mainly responsible for the initiation of reaction.

  2. Theoretical Insight into the Conversion Mechanism of Glucose to Fructose Catalyzed by CrCl2 in Imidazolium Chlorine Ionic Liquids.

    PubMed

    Jing, Yaru; Gao, Jun; Liu, Chengbu; Zhang, Dongju

    2017-02-22

    To better understand the efficient transformation of glucose to fructose catalyzed by chromium chlorides in imidazolium-based ionic liquids (ILs), density functional theory calculations have been carried out on a model system which describes the catalytic reaction by CrCl2 in 1,3-dimethylimidazolium chlorine (MMImCl) ionic liquid (IL). The reaction is shown to involve three fundamental processes: ring opening, 1,2-H migration, and ring closure. The reaction is calculated to exergonic by 3.8 kcal/mol with an overall barrier of 37.1 kcal/mol. Throughout all elementary steps, both CrCl2 and MMImCl are found to play substantial roles. The Cr center, as a Lewis acid, coordinates to two hydroxyl group oxygen atoms of glucose to bidentally rivet the substrate, and the imidazolium cation plays a dual role of proton shuttle and H-bond donor due to its intrinsic acidic property, while the Cl(-) anion is identified as a Bronsted/Lewis base and also a H-bond acceptor. Our present calculations emphasize that in the rate-determining step the 1,2-H migration concertedly occurs with the deprotonation of O2-H hydroxyl group, which is in nature different from the stepwise mechanism proposed in the early literature. The present results provide a molecule-level understanding for the isomerization mechanism of glucose to fructose catalyzed by chromium chlorides in imidazolium chlorine ILs.

  3. Indirect ultraviolet detection of alkaline earth metal ions using an imidazolium ionic liquid as an ultraviolet absorption reagent in ion chromatography.

    PubMed

    Liu, Yong-Qiang; Yu, Hong

    2017-02-20

    A convenient and versatile method was developed for the separation and detection of alkaline earth metal ions by ion chromatography with indirect UV detection. The chromatographic separation of Mg(2+) , Ca(2+) , and Sr(2+) was performed on a carboxylic acid base cation exchange column using imidazolium ionic liquid/acid as the mobile phase, in which the imidazolium ionic liquid acted as an UV-absorption reagent. The effects of imidazolium ionic liquids, detection wavelength, acids in the mobile phase, and column temperature on the retention of Mg(2+) , Ca(2+) , and Sr(2+) were investigated. The main factors influencing the separation and detection were the background UV absorption reagent and the concentration of hydrogen ion in ion chromatography with indirect UV detection. The successful separation and detection of Mg(2+) , Ca(2+) , and Sr(2+) within 14 min were achieved using the selected chromatographic conditions, and the detection limits (S/N = 3) were 0.06, 0.12, and 0.23 mg/L, respectively. A new separation and detection method of alkaline earth metal ions by ion chromatography with indirect UV detection was developed, and the application range of ionic liquids was expanded.

  4. Probing electron density of H-bonding between cation-anion of imidazolium-based ionic liquids with different anions by vibrational spectroscopy.

    PubMed

    Gao, Yan; Zhang, Liqun; Wang, Yong; Li, Haoran

    2010-03-04

    Attenuated total reflection infrared spectroscopy and density functional theory calculation have been employed to study the spectral properties of imidazolium-based ionic liquids (ILs) with different anions. ILs based on 1-butyl-3-methylimidazolium cation with different anions, OH(-), CF(3)CO(2)(-), HSO(4)(-), H(2)PO(4)(-), Cl(-), PF(6)(-), and BF(4)(-), are investigated in the present work. It has been shown that the C(2)-H stretching vibration of the imidazolium ring is closely related to the electron density of H-bonding between the two closest cations and anions for pure ILs. The electron density of H-bonding between cation and anion with different anions decreases in the order [OH](-) > [H(2)PO(4)](-) > [HSO(4)](-) > [CF(3)CO(2)](-) > [Cl](-) > [BF(4)](-) > [PF(6)](-). For aqueous ILs, with increasing water content, the aromatic C-H stretching vibration of the imidazolium cation showed systematic blue-shifts. Especially for BmimOH, the nu(C(2))(-H) undergoes a drastic blue-shift by 58 cm(-1), suggesting that the formation of the strong hydrogen bonds O-H...O may greatly weaken the electron density of H-bonding between the cation and anion of ILs.

  5. Solvation Structure of Imidazolium Cation in Mixtures of [C4mim][TFSA] Ionic Liquid and Diglyme by NMR Measurements and MD Simulations.

    PubMed

    Shimomura, Takuya; Kodama, Daisuke; Kanakubo, Mitsuhiro; Tsuzuki, Seiji

    2017-04-06

    Interactions of 1-butyl-3-methylimidazolium cation ([C4mim](+)) with bis(trifluoromethanesulfonyl)amide anion ([TFSA](-)) and diethyleneglycol dimethyl ether (diglyme) in mixtures of [C4mim][TFSA] ionic liquid and diglyme have been investigated using (1)H and (13)C NMR spectroscopy and molecular dynamics (MD) simulations. The results of NMR chemical shift measurements and MD simulations showed that the diglyme oxygen atoms have contact with the imidazolium hydrogen atoms of [C4mim](+) in the mixtures. The contact between the hydrogen atoms of imidazolium and the oxygen atoms of [TFSA](-) remains even when the diglyme mole fraction (xdiglyme) increases up to 0.9. However, the coordination numbers of the hydrogen atoms of [C4mim](+) with oxygen atoms of diglyme increase with xdiglyme. The [TFSA](-) anions around [C4mim](+) are not completely replaced by diglyme even at xdiglyme > 0.9. The MD simulations revealed that the diglymes also have contact with the butyl group of [C4mim](+). The methyl groups of diglyme prefer to have contact with the terminal methyl group of the butyl group, whereas the diglyme oxygen atoms prefer to have contact with the methylene group connected to the imidazolium ring of [C4mim](+).

  6. Gutmann's Donor Numbers Correctly Assess the Effect of the Solvent on the Kinetics of SN Ar Reactions in Ionic Liquids.

    PubMed

    Alarcón-Espósito, Jazmín; Contreras, Renato; Tapia, Ricardo A; Campodónico, Paola R

    2016-09-05

    We report an experimental study on the effect of solvents on the model SN Ar reaction between 1-chloro-2,4-dinitrobenzene and morpholine in a series of pure ionic liquids (IL). A significant catalytic effect is observed with reference to the same reaction run in water, acetonitrile, and other conventional solvents. The series of IL considered include the anions, NTf2 (-) , DCN(-) , SCN(-) , CF3 SO3 (-) , PF6 (-) , and FAP(-) with the series of cations 1-butyl-3-methyl-imidazolium ([BMIM](+) ), 1-ethyl-3-methyl-imidazolium ([EMIM](+) ), 1-butyl-2,3-dimethyl-imidazolium ([BM2 IM](+) ), and 1-butyl-1-methyl-pyrrolidinium ([BMPyr](+) ). The observed solvent effects can be attributed to an "anion effect". The anion effect appears related to the anion size (polarizability) and their hydrogen-bonding (HB) abilities to the substrate. These results have been confirmed by performing a comparison of the rate constants with Gutmann's donicity numbers (DNs). The good correlation between rate constants and DN emphasizes the major role of charge transfer from the anion to the substrate.

  7. Influence of Reactive Oxygen Species on the Enzyme Stability and Activity in the Presence of Ionic Liquids

    PubMed Central

    Attri, Pankaj; Choi, Eun Ha

    2013-01-01

    In this paper, we have examined the effect of ammonium and imidazolium based ionic liquids (ILs) on the stability and activity of proteolytic enzyme α-chymotrypsin (CT) in the presence of cold atmospheric pressure plasma jet (APPJ). The present work aims to illustrate the state of art implementing the combined action of ILs and APPJ on the enzyme stability and activity. Our circular dichroism (CD), fluorescence and enzyme activity results of CT have revealed that buffer and all studied ILs {triethylammonium hydrogen sulphate (TEAS) from ammonium family and 1-butyl-3-methyl imidazolium chloride ([Bmim][Cl]), 1-methylimidazolium chloride ([Mim][Cl]) from imidazolium family} are notable to act as protective agents against the deleterious action of the APPJ, except triethylammonium dihydrogen phosphate (TEAP) ammonium IL. However, TEAP attenuates strongly the deleterious action of reactive oxygen species (ROS) created by APPJ on native structure of CT. Further, TEAP is able to retain the enzymatic activity after APPJ exposure which is absent in all the other systems.This study provides the first combined effect of APPJ and ILs on biomolecules that may generate many theoretical and experimental opportunities. Through this methodology, we can utilise both enzyme and plasma simultaneously without affecting the enzyme structure and activity on the material surface; which can prove to be applicable in various fields. PMID:24066167

  8. 26. A typical outer rod room, or rack room, showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. A typical outer rod room, or rack room, showing the racks for the nine horizontal control rods (HCRs) that would be inserted or withdrawn from the pile to control the rate of reaction. In this case, it is the 105-F Reactor in February 1945. The view is looking away from the pile, which is out of the picture on the left. Several of the cooling water hose reels for the rods can be seen at the end of the racks near the wall. D-8323 - B Reactor, Richland, Benton County, WA

  9. Room temperature terahertz polariton emitter

    SciTech Connect

    Geiser, Markus; Scalari, Giacomo; Castellano, Fabrizio; Beck, Mattias; Faist, Jerome

    2012-10-01

    Terahertz (THz) range electroluminescence from intersubband polariton states is observed in the ultra strong coupling regime, where the interaction energy between the collective excitation of a dense electron gas and a photonic mode is a significant portion of the uncoupled excitation energy. The polariton's increased emission efficiency along with a parabolic electron confinement potential allows operation up to room temperature in a nonresonant pumping scheme. This observation of room temperature electroluminescence of an intersubband device in the THz range is a promising proof of concept for more powerful THz sources.

  10. Complex soundproofing of industrial rooms

    NASA Technical Reports Server (NTRS)

    Pocsa, V.; Veres, A.; Biborosch, L.

    1974-01-01

    Some structures treated for sound absorption are described that are used to soundproof industrial rooms with a very high noise level. Soundproofing treatments for the walls and coilings or only for the ceilings are considered. In the case of relatively small rooms having a noise source with a high level, complex treatments involve, in addition to soundproofing of the walls and ceiling, suspended panels specially oriented with respect to the noise source. The efficiency of the adopted solutions is compared with calculated damping values.

  11. Isolation of a C5-Deprotonated Imidazolium, a Crystalline “Abnormal” N-Heterocyclic Carbene

    PubMed Central

    Aldeco-Perez, Eugenia; Rosenthal, Amos J.; Donnadieu, Bruno; Parameswaran, Pattiyil; Frenking, Gernot; Bertrand, Guy

    2010-01-01

    The discovery two decades ago of metal-free stable carbenes, especially imidazol-2-ylidenes [N-heterocyclic carbenes (NHCs)], has led to numerous breakthroughs in organic and organometallic catalysis. More recently, a small range of complexes has been prepared in which alternative NHC isomers, namely imidazol-5-ylidenes (also termed abnormal NHCs or aNHCs, because the carbene center is no longer located between the two nitrogens), coordinate to a transition metal. Here we report the synthesis of a metal-free aNHC that is stable at room temperature, both in the solid state and in solution. Calculations show that the aNHC is more basic than its normal NHC isomer. Because the substituent at the carbon next to the carbene center is a nonbulky phenyl group, a variety of substitution patterns should be tolerated without precluding the isolation of the corresponding aNHC. PMID:19900893

  12. 39 CFR 3004.12 - Reading room.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 39 Postal Service 1 2010-07-01 2010-07-01 false Reading room. 3004.12 Section 3004.12 Postal... Reading room. (a) The Commission maintains a public reading room at its offices (901 New York Avenue, NW., Suite 200, Washington, DC 20268-0001) and an electronic reading room at http://www.prc.gov. The...

  13. 39 CFR 3004.12 - Reading room.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 39 Postal Service 1 2012-07-01 2012-07-01 false Reading room. 3004.12 Section 3004.12 Postal... Reading room. (a) The Commission maintains a public reading room at its offices (901 New York Avenue, NW., Suite 200, Washington, DC 20268-0001) and an electronic reading room at http://www.prc.gov. The...

  14. 39 CFR 3004.12 - Reading room.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 39 Postal Service 1 2011-07-01 2011-07-01 false Reading room. 3004.12 Section 3004.12 Postal... Reading room. (a) The Commission maintains a public reading room at its offices (901 New York Avenue, NW., Suite 200, Washington, DC 20268-0001) and an electronic reading room at http://www.prc.gov. The...

  15. 39 CFR 3004.12 - Reading room.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 39 Postal Service 1 2014-07-01 2014-07-01 false Reading room. 3004.12 Section 3004.12 Postal... Reading room. (a) The Commission maintains a public reading room at its offices (901 New York Avenue, NW., Suite 200, Washington, DC 20268-0001) and an electronic reading room at http://www.prc.gov. The...

  16. 32 CFR 296.6 - Reading room.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 2 2012-07-01 2012-07-01 false Reading room. 296.6 Section 296.6 National... Reading room. (a) The NRO shall provide a reading room equipped with hard copy and electronic records as required in the “Electronic Freedom of Information Act Amendments of 1996”. The NRO Reading Room is...

  17. 32 CFR 296.6 - Reading room.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 2 2014-07-01 2014-07-01 false Reading room. 296.6 Section 296.6 National... Reading room. (a) The NRO shall provide a reading room equipped with hard copy and electronic records as required in the “Electronic Freedom of Information Act Amendments of 1996”. The NRO Reading Room is...

  18. 32 CFR 296.6 - Reading room.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 2 2013-07-01 2013-07-01 false Reading room. 296.6 Section 296.6 National... Reading room. (a) The NRO shall provide a reading room equipped with hard copy and electronic records as required in the “Electronic Freedom of Information Act Amendments of 1996”. The NRO Reading Room is...

  19. 39 CFR 3004.12 - Reading room.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 39 Postal Service 1 2013-07-01 2013-07-01 false Reading room. 3004.12 Section 3004.12 Postal... Reading room. (a) The Commission maintains a public reading room at its offices (901 New York Avenue, NW., Suite 200, Washington, DC 20268-0001) and an electronic reading room at http://www.prc.gov. The...

  20. 7 CFR 58.409 - Drying room.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Drying room. 58.409 Section 58.409 Agriculture... Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Rooms and Compartments § 58.409 Drying room. When applicable, a drying room of adequate size shall be provided to accommodate...

  1. 7 CFR 58.410 - Paraffining room.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Paraffining room. 58.410 Section 58.410 Agriculture... Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Rooms and Compartments § 58.410 Paraffining room. When applicable for rind cheese, a separate room or compartment should...

  2. 7 CFR 58.213 - Repackaging room.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Repackaging room. 58.213 Section 58.213 Agriculture... Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Rooms and Compartments § 58.213 Repackaging room. A separate room shall be provided for the filling of small packages and...

  3. Translation-rotation decoupling and nonexponentiality in room temperature ionic liquids

    SciTech Connect

    Griffin, Phillip; Agapov, Alexander L; Sokolov, Alexei P

    2012-01-01

    Using a combination of light scattering techniques and broadband dielectric spectroscopy, we have measured the temperature dependence of structural relaxation time and self diffusion in three imidazolium-based room temperature ionic liquids: [bmim][NTf2], [bmim][PF6], and [bmim][TFA]. A detailed analysis of the results demonstrates that self diffusion decouples from structural relaxation in these systems as the temperature is decreased toward Tg. The degree to which the dynamics are decoupled, however, is shown to be surprisingly weak when compared to other supercooled liquids of similar fragility. In addition to the weak decoupling, we demonstrate that the temperature dependence of the structural relaxation time in all three liquids can be well described by a single Vogel-Fulcher-Tamann function over 13 decades in time from 10 11 s up to 102 s. Furthermore, the stretching of the structural relaxation is shown to be temperature independent over the same range of time scales, i.e., time temperature superposition is valid for these ionic liquids from far above the melting point down to the glass transition temperature.We suggest that these phenomena are interconnected and all result from the same underlying mechanism strong and directional intermolecular interactions.

  4. Ideal gas solubilities and solubility selectivities in a binary mixture of room-temperature ionic liquids

    SciTech Connect

    Finotello Alexia; Bara Jason E.; Narayan Suguna; Campder Dean; Noble Richard D.

    2008-07-01

    This study focuses on the solubility behaviors of CO{sub 2}, CH{sub 4}, and N{sub 2} gases in binary mixtures of imidazolium-based room-temperature ionic liquids (RTILs) using l-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)-imide ((C{sub 2}mim)(Tf{sub 2}N)) and l-ethyl-3-methylimidazolium tetrafluoroborate ((C{sub 2}mim)(BF{sub 4})) at 40{sup o}C and low pressures (about 1 atm). The mixtures tested were 0, 25, 50, 75, 90, 95, and 100 mol % (C{sub 2}mim)(BF{sub 4}) in (C{sub 2}-mim)(Tf2{sub N}). Results show that regular solution theory (RST) can be used to describe the gas solubility and selectivity behaviors in RTIL mixtures using an average mixture solubility parameter or an average measured mixture molar volume. Interestingly, the solubility selectivity, defined as the ratio of gas mole fractions in the RTIL mixture, of CO{sub 2} with N{sub 2} or CH{sub 4} in pure (C{sub 2}mim)(BF4) can be enhanced by adding 5 mol% (C{sub 2}-mim)(Tf{sub 2}N).

  5. Electrochemical studies of hydrogen chloride gas in several room temperature ionic liquids: mechanism and sensing.

    PubMed

    Murugappan, Krishnan; Silvester, Debbie S

    2016-01-28

    The electrochemical behaviour of highly toxic hydrogen chloride (HCl) gas has been investigated in six room temperature ionic liquids (RTILs) containing imidazolium/pyrrolidinium cations and range of anions on a Pt microelectrode using cyclic voltammetry (CV). HCl gas exists in a dissociated form of H(+) and [HCl2](-) in RTILs. A peak corresponding to the oxidation of [HCl2](-) was observed, resulting in the formation of Cl2 and H(+). These species were reversibly reduced to H2 and Cl(-), respectively, on the cathodic CV scan. The H(+) reduction peak is also present initially when scanned only in the cathodic direction. In the RTILs with a tetrafluoroborate or hexafluorophosphate anion, CVs indicated a reaction of the RTIL with the analyte/electrogenerated products, suggesting that these RTILs might not be suitable solvents for the detection of HCl gas. This was supported by NMR spectroscopy experiments, which showed that the hexafluorophosphate ionic liquid underwent structural changes after HCl gas electrochemical experiments. The analytical utility was then studied in 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C2mim][NTf2]) by utilising both peaks (oxidation of [HCl2](-) and reduction of protons) and linear calibration graphs for current vs. concentration for the two processes were obtained. The reactive behaviour of some ionic liquids clearly shows that the choice of the ionic liquid is very important if employing RTILs as solvents for HCl gas detection.

  6. Surface tension of room temperature ionic liquids measured by dynamic light scattering.

    PubMed

    Osada, R; Hoshino, T; Okada, K; Ohmasa, Y; Yao, M

    2009-05-14

    Using dynamic light scattering techniques, we obtained the surface tension sigma, surface excess entropy S(sigma), surface excess enthalpy H(sigma), and viscosity eta for the following seven room temperature ionic liquids in a wide temperature range from 30 to around 140 degrees C: 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, 1-hexyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide, N,N,N-trimethyl-N-propylammonium bis(trifluoromethanesulfonyl)imide, 1-butyl-3-methylimidazolium hexafluorophosphate, 1-hexyl-3-methylimidazolium hexafluorophosphate, and 1-octyl-3-methyl imidazolium hexafluorophosphate. We have found that sigma increases systematically with decreasing the anion size and the alkyl side chain length. On the other hand, S(sigma) and eta increase with decreasing the anion size but decrease with decreasing the alkyl chain length. H(sigma) seems to decrease with increasing the anion size, but it has no clear dependence on the alkyl chain length. We discuss the bulk and surface properties, referring to the Coulomb interactions and van der Waals interactions.

  7. Surface tension of room temperature ionic liquids measured by dynamic light scattering

    NASA Astrophysics Data System (ADS)

    Osada, R.; Hoshino, T.; Okada, K.; Ohmasa, Y.; Yao, M.

    2009-05-01

    Using dynamic light scattering techniques, we obtained the surface tension σ, surface excess entropy S(σ), surface excess enthalpy H(σ), and viscosity η for the following seven room temperature ionic liquids in a wide temperature range from 30 to around 140 °C: 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, 1-hexyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide, N,N,N-trimethyl-N-propylammonium bis(trifluoromethanesulfonyl)imide, 1-butyl-3-methylimidazolium hexafluorophosphate, 1-hexyl-3-methylimidazolium hexafluorophosphate, and 1-octyl-3-methyl imidazolium hexafluorophosphate. We have found that σ increases systematically with decreasing the anion size and the alkyl side chain length. On the other hand, S(σ) and η increase with decreasing the anion size but decrease with decreasing the alkyl chain length. H(σ) seems to decrease with increasing the anion size, but it has no clear dependence on the alkyl chain length. We discuss the bulk and surface properties, referring to the Coulomb interactions and van der Waals interactions.

  8. Benzyl-Functionalized Room Temperature Ionic Liquids for CO2/N2 Separation

    SciTech Connect

    Mahurin, Shannon Mark; Dai, Thomas N; Yeary, Joshua S; Luo, Huimin; Dai, Sheng

    2011-01-01

    In this work, three classes of room temperature ionic liquids (RTILs), including imidazolium, pyridinium, and pyrrolidinium ionic liquids with a benzyl group appended to the cation, were synthesized and tested for their performance in separating CO{sub 2} and N{sub 2}. All RTILs contained the bis(trifluoromethylsulfonyl)imide anion, permitting us to distinguish the impact of the benzyl moiety attached to the cation on gas separation performance. In general, the attachment of the benzyl group increased the viscosity of the ionic liquid compared with the unfunctionalized analogs and decreased the CO{sub 2} permeability. However, all of the benzyl-modified ionic liquids exhibited enhanced CO{sub 2}/N{sub 2} selectivities compared with alkyl-based ionic liquids, with values ranging from 22.0 to 33.1. In addition, CO{sub 2} solubilities in the form of Henry's constants were also measured and compared with unfunctionalized analogs. Results of the membrane performance tests and CO{sub 2} solubility measurements demonstrate that the benzyl-functionalized RTILs have significant potential for use in the separation of carbon dioxide from combustion products.

  9. Locker Rooms: The Durable Design.

    ERIC Educational Resources Information Center

    Viklund, Roy; Coons, John

    1997-01-01

    Offers advice on heavy-use locker-room design that provides easier maintenance and vandal resistance. Design features and materials used for flooring, ceilings, and walls are addressed as are built-in systems and equipment, toilet and shower fixtures and partitions, lockers, and mechanical and electrical systems. (GR)

  10. Hotels Make Room for Fitness.

    ERIC Educational Resources Information Center

    Koszuta, Laurie Einstein

    1986-01-01

    Hotels, in hopes of gaining a competitive edge, are offering workout rooms, exercise equipment, fitness trails, and jogging tracks, but no standards have been set for safety of the facilities or staff preparedness in exercise screening, equipment use, injury prevention, or first aid. (MT)

  11. Locker Room Maintenance Made Easy.

    ERIC Educational Resources Information Center

    Theel, James

    1998-01-01

    Provides examples on ways to make locker room maintenance easier and their use more student-friendly. Improvements include use of indoor-outdoor carpeting with numerous floor drains to cut mildew buildup, adequate ventilation to reduce musty smells, better hot water management, ceramic tiles to reduce water-damage repair and painting needs, and…

  12. Effectiveness and potential of straw- and wood-based biochars for adsorption of imidazolium-type ionic liquids.

    PubMed

    Shi, Kaishun; Qiu, Yuping; Ben Li; Stenstrom, Michael K

    2016-08-01

    The growing industrial application of imidazolium-type ionic liquids (ITILs) is likely to result in their release to the environment. Water-soluble ITILs are difficult to remove from wastewaters using traditional adsorbents. In this work, we developed different biochars derived from straw and wood (named as SBB and WBB, respectively) to improve the adsorption effectiveness for removal of ITILs from wastewaters. SBB had high O/C element ratio (0.143), while WBB had high ratio of Vmicro/Vtotal (61.5%) compared with commercial activated carbon (AC). Both of them showed greater adsorption of ITILs than AC with different adsorption mechanisms. FTIR spectra revealed that electrostatic interactions were the dominant driving force in SBB adsorption, while high micropore volume promoted adsorption in WBB. The adsorption of [C2mim][BF4] on SBB and WBB was strongly enhanced by trivalent PO4(3-) anions, suggesting that PO4(3-) anions could be used as promoter to increase the removal efficiency of ITILs from wastewater. Using HCl solution (pH=0.5) as regenerant, SBB and WBB were regenerated with nearly 100% recovery of adsorption capacity over ten consecutive adsorption-desorption cycles. Straw-based biochar and wood-based biochar are efficient sorbents for removal of water-soluble ionic liquids from aqueous solutions.

  13. Effect of alkyl chain length and hydroxyl group functionalization on the surface properties of imidazolium ionic liquids.

    PubMed

    Pensado, Alfonso S; Costa Gomes, Margarida F; Canongia Lopes, José N; Malfreyt, Patrice; Pádua, Agílio A H

    2011-08-14

    Properties of the surface of ionic liquids, such as surface tension, ordering, and charge and density profiles, were studied using molecular simulation. Two types of modification in the molecular structure of imidazolium cations were studied: the length of the alkyl side chain and the presence of a polar hydroxyl group at the end of the side chain. Four ionic liquids were considered: 1-ethyl-3-methylimidazolium tetrafluoroborate, [C(2)C(1)im][BF(4)]; 1-(2-hydroxyethyl)-3-methylimidazolium tetrafluoroborate, [C(2)OHC(1)im][BF(4)]; 1-octyl-3-methylimidazolium tetrafluoroborate, [C(8)C(1)im][BF(4)] and 1-(8-hydroxyoctyl)-3-methylimidazolium tetrafluoroborate, [C(8)OHC(1)im][BF(4)]. The surface tension was calculated using both mechanical and thermodynamic definitions, with consistent treatment of the long-range corrections. The simulations reproduce the available experimental values of surface tension with a maximum deviation of ±10%. This energetic characterization of the interface is completed by microscopic structural analysis of orientational ordering at the interface and density profiles along the direction normal to the interface. The presence of the hydroxyl group modifies the local structure at the interface, leading to a less organized liquid phase. The results allow us to relate the surface tension to the structural ordering at the liquid-vacuum interface.

  14. Synthesis, growth, optical and anisotropic mechanical behaviour of organic nonlinear optical imidazolium 2-chloro-4-nitrobenzoate single crystals

    NASA Astrophysics Data System (ADS)

    Krishnakumar, Varadharajan; Jayaprakash, Jeyaram; Boobas, Singaram; Komathi, Muniraj

    2016-10-01

    The title compound, imidazolium 2-chloro-4-nitrobenzoate (I2C4NB), has been synthesized and optical quality single crystals were grown with a dimension of 4 × 2 × 1 mm3 using an ethanol and acetone (1:1) mixed solvent by slow evaporation solution growth technique. The powder XRD analysis confirmed the crystal structure and found that it is crystallized in the non-centrosymmetric space group P21 with the monoclinic system. The symmetries of molecular vibrations were confirmed by FT-IR spectrum. The CHN(S) analysis confirmed the stoichiometric composition of the grown crystal. It also exhibits a good transparency in the entire visible region (300-800nm) and it was thermally stable up to 131.1 °C. The microhardness measurement shows the anisotropic nature of I2C4NB and also that it belongs to a soft material category. Photoconductivity studies reveal a linear increase of the photocurrent with respect to the applied electric field. HOMO LUMO studies were carried out for the crystal. The second harmonic generation test by the Kurtz powder method shows that the crystal exhibits phase matching and a conversion efficiency which is 2 times that of KDP.

  15. Effects of alkyl-imidazolium ionic liquid [Omim]Cl on the functional diversity of soil microbial communities.

    PubMed

    Guo, Pengpeng; Zhu, Lusheng; Wang, Jinhua; Wang, Jun; Liu, Tong

    2015-06-01

    As low-temperature molten salts, ionic liquids (ILs) were considered to be "green" solvents and have begun to see large-scale applications in the chemical reactions, in separation processes, in electrochemistry studies, etc. In recent years, the toxicity of ILs has started to draw attention. To evaluate the effects of the ionic liquid [Omim]Cl on indigenous microbial community in soil, Biolog-ECO plate method were used with the addition of four different concentrations of [Omim]Cl after four different incubation periods (7, 14, 21, 28 days). The present results showed that the average well color development (AWCD) was strongly activated when the soil was contaminated with [Omim]Cl in the early stages of the incubation. However, the activation effect disappeared with extended incubation time. Therefore, the toxic effects of the alkyl-imidazolium ionic liquid ([Omim]Cl) on the functional diversity of soil microbial communities may be reversible. In addition, the kinetic characteristics of microorganisms that used different categories of carbon sources indicated that phenolic compounds were the main C source in the sample soil.

  16. Anion effects on anti-microbial activity of poly[1-vinyl-3-(2-sulfoethyl imidazolium betaine)].

    PubMed

    Garg, Godawari; Chauhan, Ghanshyam S; Gupta, Reena; Ahn, J-H

    2010-04-01

    Recent investigations in the anti-microbial properties of the functional polymers are predominantly focused on the structure of the cationic moieties. In the present study, we investigated that the nature of the anion present in polysulfobetaines affects activity against certain microorganisms and their anti-microbial properties have been rationalized in terms of the structure-activity relationship. Vinyl imidazolium-based polysulfobetaines were prepared by the quaternization of poly(N-vinyl imidazole) with sodium salt of 2-bromo ethanesulfonic acid. The bromide counter anion of the resulting polymer was exchanged with different anions to generate a series of polymers. These were characterized by FTIR, DSC, XRD, SEM, elemental analysis (C, H, N and S) and viscosity measurements. The anti-microbial activity studies were carried against three fungi (Aspergillus niger, Byssochlamys fulva and Mucor circenelliods) and two bacteria (Bacillus coagulans BTS-3 and Pseudomonas aeruginosa BTS-2). The nature of the anion affects the structure of polysulfobetaine by realignment of polymer chains. The anion-dependent anti-microbial properties of polysulfobetaines result from the interaction of the microbes at the polymer interface.

  17. Self-assembled thin film of imidazolium ionic liquid on a silicon surface: Low friction and remarkable wear-resistivity

    NASA Astrophysics Data System (ADS)

    Gusain, Rashi; Kokufu, Sho; Bakshi, Paramjeet S.; Utsunomiya, Toru; Ichii, Takashi; Sugimura, Hiroyuki; Khatri, Om P.

    2016-02-01

    Imidazolium-hexafluorophosphate (ImPF6) ionic liquid thin film is prepared on a silicon surface using 3-chloropropyltrimethoxysilane as a bifunctional chemical linker. XPS result revealed the covalent grafting of ImPF6 thin film on a silicon surface. The atomic force microscopic images demonstrated that the ImPF6 thin film is composed of nanoscopic pads/clusters with height of 3-7 nm. Microtribological properties in terms of coefficient of friction and wear-resistivity are probed at the mean Hertzian contact pressure of 0.35-0.6 GPa under the rotational sliding contact. The ImPF6 thin film exhibited low and steady coefficient of friction (μ = 0.11) along with remarkable wear-resistivity to protect the underlying silicon substrate. The low shear strength of ImPF6 thin film, the covalent interaction between ImPF6 ionic liquid thin film and underlying silicon substrate, and its regular grafting collectively reduced the friction and improved the anti-wear property. The covalently grafted ionic liquid thin film further shows immense potential to expand the durability and lifetime of M/NEMS based devices with significant reduction of the friction.

  18. An abnormal N-heterocyclic carbene-carbon dioxide adduct from imidazolium acetate ionic liquids: the importance of basicity.

    PubMed

    Kelemen, Zsolt; Péter-Szabó, Barbara; Székely, Edit; Hollóczki, Oldamur; Firaha, Dzmitry S; Kirchner, Barbara; Nagy, József; Nyulászi, László

    2014-09-26

    In the reaction of 1-ethyl-3-methylimidazolium acetate [C2C1Im][OAc] ionic liquid with carbon dioxide at 125 °C and 10 MPa, not only the known N-heterocyclic carbene (NHC)-CO2 adduct I, but also isomeric aNHC-CO2 adducts II and III were obtained. The abnormal NHC-CO2 adducts are stabilized by the presence of the polarizing basic acetate anion, according to static DFT calculations and ab initio molecular dynamics studies. A further possible reaction pathway is facilitated by the high basicity of the system, deprotonating the initially formed NHC-CO2 adduct I, which can then be converted in the presence of the excess of CO2 to the more stable 2-deprotonated anionic abnormal NHC-CO2 adduct via the anionic imidazolium-2,4-dicarboxylate according to DFT calculations on model compounds. This suggests a generalizable pathway to abnormal NHC complex formation.

  19. Tribological properties of self-assembled monolayers of catecholic imidazolium and the spin-coated films of ionic liquids.

    PubMed

    Liu, Jianxi; Li, Jinlong; Yu, Bo; Ma, Baodong; Zhu, Yangwen; Song, Xinwang; Cao, Xulong; Yang, Wu; Zhou, Feng

    2011-09-20

    A novel compound of an imidazolium type of ionic liquid (IL) containing a biomimetic catecholic functional group normally seen in mussel adhesive proteins was synthesized. The IL can be immobilized on a silicon surface and a variety of other engineering material surfaces via the catecholic anchor, allowing the tribological protection of these substrates for engineering applications. The surface wetting and adhesive properties and the tribological property of the synthesized self-assembled monolayers (SAMs) are successfully modulated by altering the counteranions. The chemical composition and wettability of the IL SAMs were characterized by means of X-ray photoelectron spectroscopy (XPS) and contact angle (CA) measurements. The adhesive and friction forces were measured with an atomic force microscope (AFM) on the nanometer scale. IL composite films were prepared by spin coating thin IL films on top of the SAMs. The macrotribological properties of these IL composite films were investigated with a pin-on-disk tribometer. The results indicate that the presence of IL SAMs on a surface can improve the wettability of spin-coated ionic liquids and thus the film quality and the tribological properties. These films registered a reduced friction coefficient and a significantly enhanced durability and load-carrying capacity. The tribological properties of the composite films are better than those of pure IL films because the presence of the monolayers improves the adhesion and compatibility of spin-coated IL films with substrates.

  20. Synthesis and performance of novel anion exchange membranes based on imidazolium ionic liquids for alkaline fuel cell applications

    NASA Astrophysics Data System (ADS)

    Fang, Jun; Lyu, Ming; Wang, Xin; Wu, Yongbin; Zhao, Jinbao

    2015-06-01

    Novel anion exchange membranes (AEMs) based on two types of imidazolium ionic liquids, 1-vinyl-3-methylimidazolium iodide [VMI]I and 1-vinyl-3-butylimidazolium bromide [VBI]Br, have been synthesized by copolymerization. The obtained membranes are characterized in terms of water uptake, ion exchange capacity (IEC), ionic conductivity as well as thermal and chemical stability. The conductivity reaches 0.0226 Scm-1 at 30 °C. All the membranes show excellent thermostability. The membranes are stable in 10 mol L-1 NaOH solution at 60 °C for 120 h without obvious changes in ion conductivity. Fuel cell performance using the resulting membrane has been investigated. The open circuit voltage (OCV) of the H2/O2 fuel cell is 1.07 V. A peek power density of 116 mW cm-2 is obtained at a current density of 230 mA cm-2 at 60 °C. The results demonstrate the brilliant prospect of the developed membranes for alkaline fuel cell applications.

  1. Biomedical Exploitation of Chitin and Chitosan via Mechano-Chemical Disassembly, Electrospinning, Dissolution in Imidazolium Ionic Liquids, and Supercritical Drying

    PubMed Central

    Muzzarelli, Riccardo A. A.

    2011-01-01

    Recently developed technology permits to optimize simultaneously surface area, porosity, density, rigidity and surface morphology of chitin-derived materials of biomedical interest. Safe and ecofriendly disassembly of chitin has superseded the dangerous acid hydrolysis and provides higher yields and scaling-up possibilities: the chitosan nanofibrils are finding applications in reinforced bone scaffolds and composite dressings for dermal wounds. Electrospun chitosan nanofibers, in the form of biocompatible thin mats and non-wovens, are being actively studied: composites of gelatin + chitosan + polyurethane have been proposed for cardiac valves and for nerve conduits; fibers are also manufactured from electrospun particles that self-assemble during subsequent freeze-drying. Ionic liquids (salts of alkylated imidazolium) are suitable as non-aqueous solvents that permit desirable reactions to occur for drug delivery purposes. Gel drying with supercritical CO2 leads to structures most similar to the extracellular matrix, even when the chitosan is crosslinked, or in combination with metal oxides of interest in orthopedics. PMID:22131955

  2. Synthesis of novel chiral imidazolium stationary phases and their enantioseparation evaluation by high-performance liquid chromatography.

    PubMed

    Wang, Tao; Yang, Haiyan; Qiu, Ruchen; Huang, Shaohua

    2016-11-09

    Two novel chiral stationary phases (CSPs) were prepared by bonding chiral imidazoliums on the surface of silica gel. The chiral imidazoles were derivatized from chiral amines, 1-phenylethylamine and 1-(1-naphthyl)ethylamine. The obtained CSPs were characterized by Fourier Transform Infrared (FT-IR) spectroscopy and elemental analysis (EA), demonstrating the bonding densities of CSP 1 and CSP 2 were 0.43 mmol g(-1) and 0.40 mmol g(-1), respectively. These two CSPs could be used to availably separate 8 pharmaceuticals, 7 mandelic acid/its derivatives, 2 1-phenylethylamine derivatives, 1 1,1'-bi-2-naphthol, and 1 camphorsulfonic acid in high-performance liquid chromatography (HPLC). It is found that CSP 1 could effectively enantioseparate most chiral analytes, especially the acidic components, while CSP 2 could enantiorecognize all chiral analytes, although a number of components did not achieve baseline separation. Additionally, the effects of mobile phase composition, mobile phase pH and salt content, chiral selector structures, and analyte structures on the enantiorecognitions of the two CSPs were investigated. It is found that high acetonitrile content in mobile phases was conducive to enantiorecognition. Mobile phase pH and salt content could alter the retention behaviors of different enantiomers of the same chiral compound, resulting in better enantioresolution. Moreover, both chiral selector structures and substituted groups of analytes played a significant role in the separation of chiral solutes.

  3. Synthesis, growth, structure, mechanical and optical properties of a new semi-organic 2-methyl imidazolium dihydrogen phosphate single crystal

    SciTech Connect

    Nagapandiselvi, P.; Baby, C.; Gopalakrishnan, R.

    2016-09-15

    Highlights: • 2MIDP crystals were grown by slow evaporation solution growth technique. • Single crystal XRD revealed self-assembled supramolecular framework. • Z scan technique is employed for third order nonlinear optical susceptibility. • Structure-property correlation is established. - Abstract: A new semi-organic compound, 2-methyl imidazolium dihydrogen phosphate (2MIDP), was prepared and good quality single crystals of 2MIDP were grown by slow evaporation solution growth technique. Crystal structure elucidated using Single crystal XRD showed that 2MIDP crystallizes in monoclinic system with P2{sub 1}/c space group. FT-IR, UV-Vis-NIR, Fluorescence and FT-NMR spectra confirm the molecular structure of 2MIDP. The UV-Vis-NIR spectra established the suitability of the compound for NLO applications. TG-DSC showed that 2MIDP is thermally stable up to 200 °C. Mechanical characteristics like hardness number (H{sub v}), stiffness constant (C{sub 11}), yield strength (σ{sub v}), fracture toughness (K{sub c}) and brittleness index (B{sub i}) were assessed using Vicker’s microhardness tester. Third order nonlinear optical properties determined from Z-scan measurement using femto and picosecond lasers showed two photon reverse saturable absorption. The enhancement of nonlinear optical properties in femto second laser, revealed the suitability of 2MIDP for optical limiting applications.

  4. Effect of Imidazolium-Based Silver Nanoparticles on Root Dentin Roughness in Comparison with Three Common Root Canal Irrigants

    PubMed Central

    Farshad, Melika; Abbaszadegan, Abbas; Ghahramani, Yasamin; Jamshidzadeh, Akram

    2017-01-01

    Introduction: The aim of this study was to evaluate the effect of a nanosilver-based irrigant on dentin roughness in comparison with three commonly used root canal irrigation solutions. Methods and Materials: Three common irrigants including 5.25% sodium hypochlorite (NaOCl), 17% ethylenediaminetetraacetic acid (EDTA) and 2% chlorhexidine (CHX) and also an imidazolium-based silver nanoparticle solution (ImSNP) (5.7×10 -8 mol/L), were used. Distilled water was used as control. Roots of 25 human anterior teeth were sectioned longitudinally to obtain 50 dentin samples. Roughness values were evaluated by atomic force microscopy analysis on 5 groups (n=10) after each group was treated in one of the tested irrigant solutions for 10 min. Values were statistically analyzed by One-way analysis of variance, followed by a post hoc Tukey’s test for pair-wise comparison. Results: Dentin roughness significantly increased from 95.82 nm (control) to 136.02 nm, 187.07 nm, 142.29 nm and 150.92 nm with NaOCl, CHX, ImSNP and EDTA, respectively. CHX demonstrated a significantly higher roughness value compared to the other tested irrigants while no significant differences were seen in NaOCl, ImSNP and EDTA groups (P>0.242). Conclusion: ImSNP affected the physicochemical properties of dentin and raised its surface roughness; thus, this irrigant could impact bacterial and restorative material adhesion to root canal dentin walls. PMID:28179931

  5. Water-in-ionic liquid microemulsion formation in solvent mixture of aprotic and protic imidazolium-based ionic liquids.

    PubMed

    Kusano, Takumi; Fujii, Kenta; Hashimoto, Kei; Shibayama, Mitsuhiro

    2014-10-14

    We report that water-in-ionic liquid microemulsions (MEs) are stably formed in an organic solvent-free system, i.e., a mixture of aprotic (aIL) and protic (pIL) imidazolium-based ionic liquids (ILs) containing the anionic surfactant dioctyl sulfosuccinate sodium salt (AOT). Structural investigations using dynamic light, small-angle X-ray, and small-angle neutron scatterings were performed for MEs formed in mixtures of aprotic 1-octyl-3-methylimidazolium ([C8mIm(+)]) and protic 1-alkylimidazolium ([CnImH(+)], n = 4 or 8) IL with a common anion, bis(trifluoromethanesulfonyl)amide ([TFSA(-)]). It was found that the ME structure strongly depends on the mixing composition of the aIL/pIL in the medium. The ME size appreciably increases with increasing pIL content in both [C8mIm(+)][TFSA(-)]/[C8ImH(+)][TFSA(-)] and [C8mIm(+)][TFSA(-)]/[C4ImH(+)][TFSA(-)] mixtures. The size is larger for the n = 8 system than that for the n = 4 system. These results indicate that the shell part of MEs is composed of both AOT and pIL cation, and the ME size can be tuned by pIL content in the aIL/pIL mixtures.

  6. Surface structures of equimolar mixtures of imidazolium-based ionic liquids using high-resolution Rutherford backscattering spectroscopy

    NASA Astrophysics Data System (ADS)

    Nakajima, Kaoru; Oshima, Shinichi; Suzuki, Motofumi; Kimura, Kenji

    2012-11-01

    Surface structures of equimolar mixtures of imidazolium-based ionic liquids (ILs) having a common cation (1-butyl-3-methylimidazolium ([C4MIM]) or 1-hexyl-3-methylimidazolium ([C6MIM])) and different anions (bis(trifluoromethanesulfonyl)imide ([TFSI]), hexafluorophosphate ([PF6]) or chlorine) are studied using high-resolution Rutherford backscattering spectroscopy (HRBS). Both cations and anions have the same preferential orientations at the surface as in the pure ILs. In the mixture, the larger anion is located shallower than the smaller anion. The [TFSI] anion is slightly enriched at the surface relative to [PF6] with coverage of ~ 60% for the equimolar mixtures of [C4(6)MIM] [TFSI] and [C4(6)MIM] [PF6]. No surface segregation is observed for [C6MIM] [TFSI]0.5[Cl]0.5 and [C6MIM] [PF6]0.5[Cl]0.5. These results are different from the recent TOF-SIMS measurement where very strong surface segregation of [TFSI] was concluded for the mixture of [C4MIM] [TFSI] and [C4MIM] [PF6].

  7. Fabrication of optical element from unidirectional grown imidazole-imidazolium picrate monohydrate (IIP) organic crystals for nonlinear optical applications

    NASA Astrophysics Data System (ADS)

    Vivek, P.; Murugakoothan, P.

    2014-12-01

    Nonlinear optical bulk single crystal of Imidazole-imidazolium picrate monohydrate (IIP) has been grown by Sankaranarayanan-Ramasamy (SR) method using acetonitrile as solvent. First time we report the bulk growth of IIP crystal by SR method. The transparent IIP single crystal of maximum diameter 21 mm and length 46 mm was obtained by employing SR method. The grown crystal was subjected to high resolution X-ray diffraction, UV-vis-NIR transmittance, refractive index, hardness, dielectric and laser damage threshold studies. The crystalline perfection of the grown crystal was analyzed using HRXRD. Cut off wavelength and optical transmission window of the crystal was assessed by UV-vis-NIR and the refractive index of the crystal was found. The mechanical property of the crystal was estimated by Vicker's hardness test. The dielectric property of the crystal was measured as a function of frequency. The laser damage threshold value was determined. The particle size dependent second harmonic generation efficiency for IIP was evaluated with standard reference material potassium dihydrogen phosphate (KDP) by Kurtz-Perry powder method using Nd:YAG laser, which established the existence of phase matching. The second harmonic generation (SHG) of IIP crystal was investigated by the SHG Maker fringes technique. The mechanism of growth is revealed by carrying out chemical etching using acetonitrile as etchant.

  8. Analysis of the heterogeneous dynamics of imidazolium-based [Tf2N-] ionic liquids using molecular simulation

    NASA Astrophysics Data System (ADS)

    Androulaki, Eleni; Vergadou, Niki; Economou, Ioannis G.

    2014-10-01

    The complex dynamic behaviour of the imidazolium-based ionic liquids [Cnmim+][Tf2N-], n = 4, 8, 12 is examined at various temperatures and at atmospheric pressure using molecular dynamics simulation. An existing all-atom force field is further optimised in order to attain reasonable agreement with experimental data for transport properties, such as self-diffusivities and viscosities. Dynamical heterogeneity phenomena are quantified through the calculation of the non-Gaussian parameter and the deviation of the self-part of the van Hove correlation function from the expected normal distribution. From this analysis, ions that move faster or slower than expected are detected in the system. These subsets of 'fast' and 'slow' ions form individual clusters consisting of either mobile or immobile ions. Detailed analysis of the ions' diffusion reveals preferential motion along the direction of the alkyl tail for the cation and along the vector that connects the two sulphur atoms for the anion. For the longest alkyl tails, the heterogeneity in the dynamics becomes more pronounced and is preserved for several nanoseconds, especially at low temperatures.

  9. Effects of imidazolium-based ionic surfactants on the size and dynamics of phosphatidylcholine bilayers with saturated and unsaturated chains.

    PubMed

    Lee, Hwankyu

    2015-07-01

    Imidazolium-based ionic surfactants of different sizes were simulated with 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) bilayers. Regardless of the phospholipid type, larger surfactants at higher concentrations more significantly insert into the bilayer and increase the bilayer-surface size, in agreement with experiments and previous simulations. Insertion of surfactants only slightly decreases the bilayer thickness, as also observed in experiments. Although the surfactant insertion and its effect on the bilayer size and thickness are similar in different types of bilayers, the volume fractions of surfactants in the bilayer are higher for DMPC bilayers than for POPC and DOPC bilayers. In particular, ionic surfactants with four hydrocarbons yield their volume fractions of 4.6% and 8.7%, respectively, in POPC and DMPC bilayers, in quantitative agreement with experimental values of ∼5% and ∼10%. Also, the inserted surfactants increase the lateral diffusivity of the bilayer, which depends on the bilayer type. These findings indicate that although the surfactant insertion does not depend on the bilayer type, the effects of surfactants on the volume fraction and bilayer dynamics occur more significantly in the DMPC bilayer because of the smaller area per lipid and shorter saturated tails, which helps explain the experimental observations regarding different volume fractions of surfactants in POPC and DMPC bilayers.

  10. Sputtering-deposition of Ru nanoparticles onto Al2O3 modified with imidazolium ionic liquids: synthesis, characterisation and catalysis.

    PubMed

    Foppa, Lucas; Luza, Leandro; Gual, Aitor; Weibel, Daniel E; Eberhardt, Dario; Teixeira, Sérgio R; Dupont, Jairton

    2015-02-14

    Well-distributed Ru nanoparticles (Ru-NPs) were produced over Al(2)O(3) supports modified with covalently anchored imidazolium ionic liquids (ILs) containing different anions and cation lateral alkyl chain lengths by simple sputtering from a Ru foil. These Ru-NPs were active catalysts for the hydrogenation of benzene. Furthermore, depending on the nature of the IL used to modify the support (hydrophilic or hydrophobic), different catalytic behaviours were observed. Turnover numbers (TON) as high as 27 000 with a turnover frequency (TOF) of 2.73 s(-1) were achieved with Ru-NPs of 6.4 nm supported in Al(2)O(3) modified with an IL containing the N(SO(2)CF(3))2(-) anion, whereas higher initial cyclohexene selectivities (ca. 20% at 1% benzene conversion) were attained for Ru-NPs of 6.6 nm in the case where Cl(-) and BF(4)(-) anions were used. Such observations strongly suggest that thin layers of ILs surround the NP surface, modifying the reactivity of these catalytic systems. These findings open a new window of opportunity in the development of size-controlled Ru-NPs with tuneable reactivity.

  11. 1H, 13C NMR and DFT Study of Hydrogen Bonding in Imidazolium-based Ionic Liquids.

    PubMed

    Balevičius, Vytautas; Gdaniec, Zofia; Džiaugys, Lukas; Kuliešius, Feliksas; Maršalka, Arūnas

    2011-09-01

    The ionic liquid 1-decyl-3-methyl-imidazolium bromide [C10mim][Br], the neat material, and also dissolved (~0.01 mole fraction) in various dielectric media (acetonitrile, benzene, chloroform, dichloromethane, methanol, 2-butanol and H2O) was studied using 1H and 13C NMR spectroscopy. The most important interaction in this compound is considered to be the Br-...H-C2+ hydrogen bond, which is formed between the anions and cations. The obtained results show that dielectric medium influence mostly the behavior of the Br-...H-C2+ bridge proton. The changes observed in 1H and 13C NMR spectra of [C10mim][Br] with increasing solvents polarity and temperature can be explained applying the model of the lengthening of the H2...Br- bond with the accompanying thickening of the solvation shell of bromine anion and C2-H bond contraction. The short-range order effects related to the configuration of neighboring dipoles of solvent molecules are more important for the solvation ability of small anions than the bulk solvent field effect. However, the solvents, molecules of which tend to associate via hydrogen bonding, can significantly affect the dynamics of anions.

  12. The virtual gamma camera room.

    PubMed

    Penrose, J M; Trowbridge, E A; Tindale, W B

    1996-05-01

    The installation of a gamma camera is time-consuming and costly and, once installed, the camera position is unlikely to be altered during its working life. Poor choice of camera position therefore has long-term consequences. Additional equipment such as collimators and carts, the operator's workstation and wall-mounted display monitors must also be situated to maximize access and ease of use. The layout of a gamma camera room can be optimized prior to installation by creating a virtual environment. Super-Scape VRT software running on an upgraded 486 PC microprocessor was used to create a 'virtual camera room'. The simulation included an operator's viewpoint and a controlled tour of the room. Equipment could be repositioned as required, allowing potential problems to be identified at the design stage. Access for bed-ridden patients, operator ergonomics, operator and patient visibility were addressed. The display can also be used for patient education. Creation of a virtual environment is a valuable tool which allows different camera systems to be compared interactively in terms of dimensions, extent of movement and use of a defined space. Such a system also has applications in radiopharmacy design and simulation.

  13. 'How To' Clean Room Video

    NASA Technical Reports Server (NTRS)

    McCarty, Kaley Corinne

    2013-01-01

    One of the projects that I am completing this summer is a Launch Services Program intern 'How to' set up a clean room informational video. The purpose of this video is to go along with a clean room kit that can be checked out by employees at the Kennedy Space Center and to be taken to classrooms to help educate students and intrigue them about NASA. The video will include 'how to' set up and operate a clean room at NASA. This is a group project so we will be acting as a team and contributing our own input and ideas. We will include various activities for children in classrooms to complete, while learning and having fun. Activities that we will explain and film include: helping children understand the proper way to wear a bunny suit, a brief background on cleanrooms, and the importance of maintaining the cleanliness of a space craft. This project will be shown to LSP management and co-workers; we will be presenting the video once it is completed.

  14. Trends in operating room devices.

    PubMed

    Laufman, H

    1976-01-01

    Although trends in the use of operating room devices have generally followed advances in technology, the trends are not always influenced as much by surgical need as they are by industrial expediency and commercial promotion. Nonetheless, a broad view of trends in OR devices definitely points to efforts at greater compatibility between devices made by different manufacturers. To mention a few examples, operating tables are being made more compatible with OR X-ray equipment; surgical lighting is being designed for greater compatibility with air-handling systems and video equipment; power consoles have reduced the clutter of tubes, hoses, and wires in complicated operations, and have become more functional in keeping with the trend away from electrical power and toward nitrogen power for driving surgical tools; cabinetry is being designed to employ clean-air principles; and surgical apparel and barrier materials are undergoing close scrutiny for their effectiveness against moist bacterial strike-through in lengthy wet operations. Operating room devices form an important segment of the devices classified by the FDA, and are expected to benefit by the application of standards in performance and safety. This trend will affect not only the devices themselves, but all other facets of operating room design and engineering.

  15. Polariton condensates at room temperature

    NASA Astrophysics Data System (ADS)

    Guillet, Thierry; Brimont, Christelle

    2016-10-01

    We review the recent developments of the polariton physics in microcavities featuring the exciton-photon strong coupling at room temperature, and leading to the achievement of room-temperature polariton condensates. Such cavities embed active layers with robust excitons that present a large binding energy and a large oscillator strength, i.e. wide bandgap inorganic or organic semiconductors, or organic molecules. These various systems are compared, in terms of figures of merit and of common features related to their strong oscillator strength. The various demonstrations of polariton laser are compared, as well as their condensation phase diagrams. The room-temperature operation indeed allows a detailed investigation of the thermodynamic and out-of-equilibrium regimes of the condensation process. The crucial role of the spatial dynamics of the condensate formation is discussed, as well as the debated issue of the mechanism of stimulated relaxation from the reservoir to the condensate under non-resonant excitation. Finally the prospects of polariton devices are presented.

  16. Self-diffusion and interactions in mixtures of imidazolium bis(mandelato)borate ionic liquids with polyethylene glycol: (1) H NMR study.

    PubMed

    Filippov, Andrei; Azancheev, Nail; Taher, Mamoun; Shah, Faiz Ullah; Rabét, Pauline; Glavatskih, Sergei; Antzutkin, Oleg N

    2015-07-01

    We used (1) H nuclear magnetic resonance pulsed-field gradient to study the self-diffusion of polyethylene glycol (PEG) and ions in a mixture of PEG and imidazolium bis(mandelato)borate ionic liquids (ILs) at IL concentrations from 0 to 10 wt% and temperatures from 295 to 370 K. PEG behaves as a solvent for these ILs, allowing observation of separate lines in (1) H NMR spectra assigned to the cation and anion as well as to PEG. The diffusion coefficients of PEG, as well as the imidazolium cation and bis(mandelato)borate (BMB) anion, differ under all experimental conditions tested. This demonstrates that the IL in the mixture is present in at least a partially dissociated state, while the lifetimes of the associated states of the ions and ions with PEG are less than ~30 ms. Generally, increasing the concentration of the IL leads to a decrease in the diffusion coefficients of PEG and both ions. The diffusion coefficient of the anion is less than that of the cation; the molecular mass dependence of diffusion of ions can be described by the Stokes-Einstein model. NMR chemical shift alteration analysis showed that the presence of PEG changes mainly the chemical shifts of protons belonging to imidazole ring of the cation, while chemical shifts of protons of anions and PEG remain unchanged. This demonstrated that the imidazolium cation interacts mainly with PEG, which most probably occurs through the oxygen of PEG and the imidazole ring. The BMB anion does not strongly interact with PEG, but it may be indirectly affected by PEG through interaction with the cation, which directly interacts with PEG.

  17. Probing structural patterns of ion association and solvation in mixtures of imidazolium ionic liquids with acetonitrile by means of relative (1)H and (13)C NMR chemical shifts.

    PubMed

    Marekha, Bogdan A; Kalugin, Oleg N; Bria, Marc; Idrissi, Abdenacer

    2015-09-21

    Mixtures of ionic liquids (ILs) with polar aprotic solvents in different combinations and under different conditions (concentration, temperature etc.) are used widely in electrochemistry. However, little is known about the key intermolecular interactions in such mixtures depending on the nature of the constituents and mixture composition. In order to systematically address the intermolecular interactions, the chemical shift variation of (1)H and (13)C nuclei has been followed in mixtures of imidazolium ILs 1-n-butyl-3-methylimidazolium tetrafluoroborate (BmimBF4), 1-n-butyl-3-methylimidazolium hexafluorophosphate (BmimPF6), 1-n-butyl-3-methylimidazolium trifluoromethanesulfonate (BmimTfO) and 1-n-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BmimTFSI) with molecular solvent acetonitrile (AN) over the entire composition range at 300 K. The concept of relative chemical shift variation is proposed to assess the observed effects on a unified and unbiased scale. We have found that hydrogen bonds between the imidazolium ring hydrogen atoms and electronegative atoms of anions are stronger in BmimBF4 and BmimTfO ILs than those in BmimTFSI and BmimPF6. Hydrogen atom at position 2 of the imidazolium ring is substantially more sensitive to interionic hydrogen bonding than those at positions 4-5 in the case of BmimTfO and BmimTFSI ILs. These hydrogen bonds are disrupted upon dilution in AN due to ion dissociation which is more pronounced at high dilutions. Specific solvation interactions between AN molecules and IL cations are poorly manifested.

  18. A simple guiding principle for the temperature dependence of the solubility of light gases in imidazolium-based ionic liquids derived from molecular simulations.

    PubMed

    Kerlé, Daniela; Namayandeh Jorabchi, Majid; Ludwig, Ralf; Wohlrab, Sebastian; Paschek, Dietmar

    2017-01-18

    We have determined the temperature dependence of the solvation behavior of a large collection of important light gases in imidazolium-based ionic liquids with the help of extensive molecular dynamics simulations. The motivation of our study is to unravel common features of the temperature dependent solvation under well controlled conditions, and to provide a guidance for cases, where experimental data from different sources disagree significantly. The solubility of molecular hydrogen, oxygen, nitrogen, methane, krypton, argon, neon and carbon dioxide in the imidazolium based ionic liquids of type 1-n-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([Cnmim][NTf2]) with varying alkyl side chain lengths n = 2, 4, 6, 8 is computed for a temperature range between 300 K and 500 K at 1 bar. By applying Widom's particle insertion technique and Bennet's overlapping distribution method, we are able to determine the temperature dependent solvation free energies of those selected light gases in simulated imidazolium based ionic liquids with high statistical accuracy. Our simulations demonstrate that the magnitude of the solvation free energy of a gas molecule at a chosen reference temperature and that of its temperature-derivatives are intimately related to one another. We conclude that this "universal" behavior is rooted in a solvation entropy-enthalpy compensation effect, which seems to be a defining feature of the solvation of small molecules in ionic liquids. The observations lead to simple analytical relations, determining the temperature dependence of the solubility data based on the absolute solubility at a certain reference temperature. By comparing our results with available experimental data from many sources, we can show that our approach is particularly helpful for providing reliable estimates for the solvation behavior of very light gases, such as hydrogen, where conflicting experimental data exist.

  19. Specific heat anomaly in ferroelectric: Bis(imidazolium) pentachloroantimonate(III) (C3 N2 H5)2[SbCl5

    NASA Astrophysics Data System (ADS)

    Przesławski, J.; Piecha-Bisiorek, A.; Jakubas, R.

    2016-04-01

    Single crystals of ferroelectric bis(imidazolium) pentachloroantimonate(III) (C3N2H5)2 [SbCl5 ] have been grown and the heat capacity was measured by the use of AC calorimetric method. The temperature dependence of excess heat capacity and excess entropy in the ferroelectric phase can be described in the frame of the classical Landau-Devonshire theory of phase transitions. The results of experimental studies were analyzed and the α, γ and δ values of the Landau potential coefficients were calculated. The temperature dependence of the order parameter was also evaluated from the heat capacity data.

  20. Expedient syntheses of the N-heterocyclic carbene precursor imidazolium salts IPr·HCl, IMes·HCl and IXy·HCl

    PubMed Central

    Hintermann, Lukas

    2007-01-01

    The 1,3-diaryl-imidazolium chlorides IPr·HCl (aryl = 2,6-diisopropylphenyl), IMes·HCl (aryl = 2,4,6-trimethylphenyl) and IXy·HCl (aryl = 2,6-dimethylphenyl), precursors to widely used N-heterocyclic carbene (NHC) ligands and catalysts, were prepared in high yields (81%, 69% and 89%, respectively) by the reaction of 1,4-diaryl-1, 4-diazabutadienes, paraformaldehyde and chlorotrimethylsilane in dilute ethyl acetate solution. A reaction mechanism involving a 1,5-dipolar electrocyclization is proposed. PMID:17725838

  1. The Effect of the Methylation and N-H Acidic Group on the Physicochemical Properties of Imidazolium-Based Ionic Liquids

    PubMed Central

    Rodrigues, Ana S.M.C.; Rocha, Marisa A. A.; Almeida, Hugo F. D.; Neves, Catarina M. S. S.; Lopes-da-Silva, José A.; Freire, Mara G.; Coutinho, João A. P.; Santos, Luís M. N. B. F.

    2017-01-01

    This work presents and highlights the differentiation of the physicochemical properties of the [C1Him][NTf2], [C2Him][NTf2], [1C12C1Him][NTf2], and [1C42C13C1im][NTf2] that are related with the strong bulk interaction potential, which highlights the differentiation on the physicochemical arising from the presence of the acidic group (N-H) as well as the methylation in position 2 (C(2)) of the imidazolium ring. Densities, viscosities, refractive indices and surface tensions in a wide range of temperatures, as well as, isobaric heat capacities at 298.15 K, for this IL series are presented and discussed. It was found that the volumetric properties are barely affected by the geometric and structural isomerization, following a quite regular trend. A linear correlation between the glass transition temperature, Tg, and the alkyl chain size was found; however, ILs with the acidic N-H group present a significant higher Tg than the [1CN-13C1im][NTf2] and [1CN3CNim][NTf2] series. It was found that the most viscous ILs, ([1C1Him][NTf2], [1C2Him][NTf2] and [1C12C1Him][NTf2]) have an acidic N-H group in the imidazolium ring in agreement with the observed increase of energy barrier of flow. The methylation in position 2, C(2), as well as, the N-H acidic group in the imidazolium ring, contribute to a significant variation in the cation-anion interactions and their dynamics, which is reflected in their charge distribution and polarizability leading to a significant differentiation of the refractive indices, surface tension and heat capacities. The observed differentiation of the physicochemical properties of the [1C1Him][NTf2], [1C2Him][NTf2], [1C12C1Him][NTf2], and [1C42C13C1im][NTf2] are an indication of the stronger bulk interaction potential, which highlights the effect that arises from the presence of the acidic group (N-H) as well as the methylation in position 2 of the imidazolium ring. PMID:26082427

  2. Novel room temperature ferromagnetic semiconductors

    SciTech Connect

    Gupta, Amita

    2004-06-01

    Today's information world, bits of data are processed by semiconductor chips, and stored in the magnetic disk drives. But tomorrow's information technology may see magnetism (spin) and semiconductivity (charge) combined in one 'spintronic' device that exploits both charge and 'spin' to carry data (the best of two worlds). Spintronic devices such as spin valve transistors, spin light emitting diodes, non-volatile memory, logic devices, optical isolators and ultra-fast optical switches are some of the areas of interest for introducing the ferromagnetic properties at room temperature in a semiconductor to make it multifunctional. The potential advantages of such spintronic devices will be higher speed, greater efficiency, and better stability at a reduced power consumption. This Thesis contains two main topics: In-depth understanding of magnetism in Mn doped ZnO, and our search and identification of at least six new above room temperature ferromagnetic semiconductors. Both complex doped ZnO based new materials, as well as a number of nonoxides like phosphides, and sulfides suitably doped with Mn or Cu are shown to give rise to ferromagnetism above room temperature. Some of the highlights of this work are discovery of room temperature ferromagnetism in: (1) ZnO:Mn (paper in Nature Materials, Oct issue, 2003); (2) ZnO doped with Cu (containing no magnetic elements in it); (3) GaP doped with Cu (again containing no magnetic elements in it); (4) Enhancement of Magnetization by Cu co-doping in ZnO:Mn; (5) CdS doped with Mn, and a few others not reported in this thesis. We discuss in detail the first observation of ferromagnetism above room temperature in the form of powder, bulk pellets, in 2-3 mu-m thick transparent pulsed laser deposited films of the Mn (<4 at. percent) doped ZnO. High-resolution transmission electron microscopy (HRTEM) and electron energy loss spectroscopy (EELS) spectra recorded from 2 to 200nm areas showed homogeneous distribution of Mn substituting

  3. 24 CFR 3280.109 - Room requirements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... gross floor area. (b) Rooms designed for sleeping purposes shall have a minimum gross square foot floor... of two. (c) Every room designed for sleeping purposes shall have accessible clothes hanging...

  4. 24 CFR 3280.109 - Room requirements.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... gross floor area. (b) Rooms designed for sleeping purposes shall have a minimum gross square foot floor... of two. (c) Every room designed for sleeping purposes shall have accessible clothes hanging...

  5. New thinking for the boiler room.

    PubMed

    Rose, Wayne

    2008-09-01

    Wayne Rose, marketing manager at integrated plant room manufacturer Armstrong Integrated Systems, explains how increasing use of off-site manufacture, the latest 3D modelling technology, and advances in control technology, are revolutionising boiler room design and construction.

  6. 24 CFR 3280.109 - Room requirements.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... gross floor area. (b) Rooms designed for sleeping purposes shall have a minimum gross square foot floor... of two. (c) Every room designed for sleeping purposes shall have accessible clothes hanging...

  7. 24 CFR 3280.109 - Room requirements.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... gross floor area. (b) Rooms designed for sleeping purposes shall have a minimum gross square foot floor... of two. (c) Every room designed for sleeping purposes shall have accessible clothes hanging...

  8. Hospital Room Floors May Harbor 'Superbugs'

    MedlinePlus

    ... fullstory_163886.html Hospital Room Floors May Harbor 'Superbugs' But that area often overlooked when it comes ... Hospital room floors may be more of a "superbug" threat than many hospital staffers realize, new research ...

  9. 32 CFR 701.6 - Reading rooms.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 5 2014-07-01 2014-07-01 false Reading rooms. 701.6 Section 701.6 National... Reading rooms. The FOIA requires that (a)(2) records created on or after 1 November 1996, be made available electronically (starting 1 November 1997) as well as in hard copy, in the FOIA reading room...

  10. 32 CFR 701.6 - Reading rooms.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false Reading rooms. 701.6 Section 701.6 National... Reading rooms. The FOIA requires that (a)(2) records created on or after 1 November 1996, be made available electronically (starting 1 November 1997) as well as in hard copy, in the FOIA reading room...

  11. 32 CFR 518.9 - Reading room.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 3 2012-07-01 2009-07-01 true Reading room. 518.9 Section 518.9 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY AID OF CIVIL AUTHORITIES AND PUBLIC RELATIONS THE FREEDOM OF INFORMATION ACT PROGRAM FOIA Reading Rooms § 518.9 Reading room. (a) Reading...

  12. Neutron fluxes in radiotherapy rooms.

    PubMed

    Agosteo, S; Foglio Para, A; Maggioni, B

    1993-01-01

    The spatial distribution of the neutron flux, originated in an electron accelerator therapy room when energies above the threshold of (y,n) and (e,e'n) reactions are employed, is physically due to a direct flux, coming from the accelerator head, and to a flux diffused from the walls. In this work, the flux is described to a high degree of approximation by a set of functions whose spatial behavior is univocally determined by the angular distributions of the neutrons emitted from the shield of the accelerator head and diffused from the walls. The analytical results are verified with an extended series of Monte Carlo simulations obtained with the MCNP code.

  13. Electrochemical and structural characterization of polymer gel electrolytes based on a PEO copolymer and an imidazolium-based ionic liquid for dye-sensitized solar cells.

    PubMed

    Freitas, Flavio S; de Freitas, Jilian N; Ito, Bruno I; De Paoli, Marco-A; Nogueira, Ana F

    2009-12-01

    Polymer electrolytes based on mixtures of poly(ethylene oxide-co-propylene oxide) and 1-methyl-3-propyl-imidazolium iodide (MPII) were investigated, aiming at their application in dye-sensitized solar cells (DSSC). The interactions between the copolymer and the ionic liquid were analyzed by infrared spectroscopy and (1)H NMR. The results show interactions between the ether oxygen in the polymer and the hydrogen in the imidazolium cations. The ionic conductivities, electrochemical behaviors, and thermal properties of the electrolytes containing different concentrations of MPII were investigated. The electrolyte containing 70 wt % MPII presented the highest ionic conductivity (2.4 x 10(-3) S cm(-1)) and a diffusion coefficient of 1.9 x 10(-7) cm(2) s(-1). The influence of LiI addition to the electrolytes containing different concentrations of MPII was also investigated. The DSSC assembled with the electrolyte containing 70 wt % MPII showed an efficiency of 3.84% at 100 mW cm(-2). The stability of the devices for a period of 30 days was also evaluated using sealed cells. The devices assembled with the electrolyte containing less ionic liquid showed to be more stable.

  14. Ion chromatography with the indirect ultraviolet detection of alkali metal ions and ammonium using imidazolium ionic liquid as ultraviolet absorption reagent and eluent.

    PubMed

    Liu, Yong-Qiang; Yu, Hong

    2016-08-01

    Indirect ultraviolet detection was conducted in ultraviolet-absorption-agent-added mobile phase to complete the detection of the absence of ultraviolet absorption functional group in analytes. Compared with precolumn derivatization or postcolumn derivatization, this method can be widely used, has the advantages of simple operation and good linear relationship. Chromatographic separation of Li(+) , Na(+) , K(+) , and NH4 (+) was performed on a carboxylic acid base cation exchange column using imidazolium ionic liquid/acid/organic solvent as the mobile phase, in which imidazolium ionic liquids acted as ultraviolet absorption reagent and eluting agent. The retention behaviors of four kinds of cations are discussed, and the mechanism of separation and detection are described. The main factors influencing the separation and detection were the background ultraviolet absorption reagent and the concentration of hydrogen ion in the ion chromatography-indirect ultraviolet detection. The successful separation and detection of Li(+) , Na(+) , K(+) , and NH4 (+) within 13 min was achieved using the selected chromatographic conditions, and the detection limits (S/N = 3) were 0.02, 0.11, 0.30, and 0.06 mg/L, respectively. A new separation and analysis method of alkali metal ions and ammonium by ion chromatography with indirect ultraviolet detection method was developed, and the application range of ionic liquid was expanded.

  15. Facile one-pot preparation of a novel imidazolium-based monolith by thiol-ene click chemistry for capillary liquid chromatography.

    PubMed

    Zhang, Peng; Yang, Haiguan; Chen, Tao; Qin, Yuemei; Ye, Fanggui

    2016-11-09

    In this work, a novel imidazolium-based monolith was fabricated through a simple route. With 1-vinyl-3-octadecylimidazolium bromide and ethylene dimethacrylate as monomers, pentaerythritol tetra-(3-mercaptopropionate) as crosslinker, AIBN as thermal initiator, the monolith was facilely fabricated by one-pot thiol-ene click chemistry. The influences of both the content of monomer/crosslinker and porogenic systems on the morphology, and permeability of the monolith were studied. The optimal reaction conditions were used to prepare a homogeneous and permeable monolith. The optimal preparation of monolithic column was characterized by scanning electron microscopy, Fourier transform infrared spectrometry, X-ray photoelectron spectroscopy, and thermogravimetric analysis. High efficiency and quick separation of alkylbenzenes, styrene and ethylbenzene, polycyclic aromatic hydrocarbon, phenols, anilines, and aromatic acids were achieved. The minimum plate height of this monolith were determined as 11.42 μm for thiourea and 13.26 μm for benzene. All results indicated that thiol-ene click chemistry provides a quick way for the fabrication of imidazolium-based monolith.

  16. The binding and insertion of imidazolium-based ionic surfactants into lipid bilayers: the effects of the surfactant size and salt concentration.

    PubMed

    Lee, Hwankyu; Jeon, Tae-Joon

    2015-02-28

    Imidazolium-based ionic surfactants with hydrocarbon tails of different sizes were simulated with lipid bilayers at different salt concentrations. Starting with the random position of ionic surfactants outside the bilayer, surfactants with long tails mostly insert into the bilayer, while those with short tails show the insertion of fewer surfactant molecules, indicating the effect of the tail length. In particular, surfactants with a tail of two or four hydrocarbons insert and reversibly detach from the bilayer, while the inserted longer surfactants cannot be reversibly detached because of the strong hydrophobic interaction with lipid tails, in quantitative agreement with experiments. Longer surfactants insert more deeply and irreversibly into the bilayer and thus increase lateral diffusivities of the bilayer, indicating that longer surfactants more significantly disorder lipid bilayers, which also agrees with experiments regarding the effect of the tail length of ionic surfactants on membrane permeability and toxicity. Addition of NaCl ions weakens the electrostatic interactions between headgroups of surfactants and lipids, leading to the binding of fewer surfactants into the bilayer. In particular, our simulation findings indicate that insertion of ionic surfactants can be initiated by either the hydrophobic interaction between tails of surfactants and lipids or the electrostatic binding between imidazolium heads and lipid heads, and the strength of hydrophobic and electrostatic interactions depends on the tail length of surfactants.

  17. Imidazolium-Functionalized Poly(arylene ether sulfone) Anion-Exchange Membranes Densely Grafted with Flexible Side Chains for Fuel Cells.

    PubMed

    Guo, Dong; Lai, Ao Nan; Lin, Chen Xiao; Zhang, Qiu Gen; Zhu, Ai Mei; Liu, Qing Lin

    2016-09-28

    With the intention of optimizing the performance of anion-exchange membranes (AEMs), a set of imidazolium-functionalized poly(arylene ether sulfone)s with densely distributed long flexible aliphatic side chains were synthesized. The membranes made from the as-synthesized polymers are robust, transparent, and endowed with microphase segregation capability. The ionic exchange capacity (IEC), hydroxide conductivity, water uptake, thermal stability, and alkaline resistance of the AEMs were evaluated in detail for fuel cell applications. Morphological observation with the use of atomic force microscopy and small-angle X-ray scattering reveals that the combination of high-local-density-type and side-chain-type architectures induces distinguished nanophase separation in the AEMs. The as-prepared membranes have advantages in effective water management and ionic conductivity over traditional main-chain polymers. Typically, the conductivity and IEC were in the ranges of 57.3-112.5 mS cm(-1) and 1.35-1.84 mequiv g(-1) at 80 °C, respectively. Furthermore, the membranes exhibit good thermal and alkaline stability and achieve a peak power density of 114.5 mW cm(-2) at a current density of 250.1 mA cm(-2). Therefore, the present polymers containing clustered flexible pendent aliphatic imidazolium promise to be attractive AEM materials for fuel cells.

  18. Effects of dissolution of some lignocellulosic materials with ionic liquids as green solvents on mechanical and physical properties of composite films.

    PubMed

    Abdulkhani, Ali; Marvast, Ebrahim Hojati; Ashori, Alireza; Karimi, Ali Naghi

    2013-06-05

    In this study two imidazole-based ionic liquids (ILs), namely 1-butyl-3-methyl-1-imidazolium chloride ([BMIM]Cl) and 1,3-methyl imidazolium dimethyl sulfate ([DiMIM][MeSO4]), were used to dissolve ball-milled poplar wood (PW), chemi-mechanical pulp (CMP), and cotton linter (CEL). A set of comparative experiments was carried out, and physical and mechanical properties of the composite films from three different raw materials were determined by means of optical transparency (OT), scanning electron microscopy (SEM), water absorption (WA), thickness swelling (TS), water vapor permeability (WVP), and tensile strength (σb). The overall evaluation indicates the inability of [DiMIM][MeSO4] in complete dissolution of lignocellulosic materials, and sample treatment with this solvent did not lead to water soluble degradation products. However, dissolution trials using [BMIM]Cl were able to dissolve all used lignocellulosic materials by destroying inter and intramolecular hydrogen bonds between lignocelluloses. The OT, WA, TS, and σb of regenerated CEL films were much higher than those of CMP and PW composites. In addition, CEL film showed the lowest WVP compared to WF and CMP composite films. This work demonstrated a promising route for the preparation of biodegradable green cellulose composite films.

  19. Controlling the assembly of chalcogenide anions in ionic liquids: from binary Ge/Se through ternary Ge/Sn/Se to binary Sn/Se frameworks.

    PubMed

    Lin, Yumei; Massa, Werner; Dehnen, Stefanie

    2012-10-15

    Seven compounds with binary or ternary Ge/Se, Ge/Sn/Se, or Sn/Se anionic substructures crystallized upon the ionothermal reactions of [K(4)(H(2)O)(3)][Ge(4)Se(10)] with SnCl(4)·5H(2)O or SnCl(2) in [BMMIm][BF(4)] or [BMIm][BF(4)] (BMMIm=1-butyl-2,3-dimethyl-imidazolium, BMIm=1-butyl-3-methyl-imidazolium). The products were obtained by subtly varying the reaction conditions; the nature and amount of an additional amine was the most important parameter in the product selection and in determining the Sn/Ge ratio in the isolated products. The crystal structures of these chalcogenides were based on complex anions with unprecedented topologies that varied from discrete clusters (0D) through 1D chain structures or 2D layers to 3D frameworks. The architecture and composition of the title compounds were well reflected by their optical absorption behavior. Herein, we report a convenient approach for the generation of chalcogenidometallate phases with fine-tunable electronic properties in ionic liquids, which have been inaccessible by traditional methods.

  20. Soft Ionization of Thermally Evaporated Hypergolic Ionic Liquid Aerosols

    SciTech Connect

    Koh, Christine J.; Liu, Chen-Lin; Harmon, Christopher W.; Strasser, Daniel; Golan, Amir; Kostko, Oleg; Chambreau, Steven D.; Vaghjiani, Ghanshyam L.; Leone, Stephen R.

    2011-04-20

    Isolated ion pairs of a conventional ionic liquid, 1-Ethyl-3-Methyl-Imidazolium Bis(trifluoromethylsulfonyl)imide ([Emim+][Tf2N–]), and a reactive hypergolic ionic liquid, 1-Butyl-3-Methyl-Imidazolium Dicyanamide ([Bmim+][Dca–]), are generated by vaporizing ionic liquid submicrometer aerosol particles for the first time; the vaporized species are investigated by dissociative ionization with tunable vacuum ultraviolet (VUV) light, exhibiting clear intact cations, Emim+ and Bmim+, presumably originating from intact ion pairs. Mass spectra of ion pair vapor from an effusive source of the hypergolic ionic liquid show substantial reactive decomposition due to the internal energy of the molecules emanating from the source. Also, hotoionization efficiency curves in the near threshold ionization region of isolated ion pairs of [Emim+][Tf2N] ionic liquid vapor are compared for an aerosol source and an effusive source, revealing changes in the appearance energy due to the amount of internal energy in the ion pairs. The aerosol source has a shift to higher threshold energy (~0.3 eV), attributed to reduced internal energy of the isolated ion pairs. Lastly, the method of ionic liquid submicrometer aerosol particle vaporization, for reactive ionic liquids such as hypergolic species, is a convenient, thermally “cooler” source of isolated intact ion pairs in the gas phase compared to effusive sources.

  1. Soft ionization of thermally evaporated hypergolic ionic liquid aerosols

    SciTech Connect

    University of California; ERC, Incorporated, Edwards Air Force Base; Air Force Research Laboratory, Edwards Air Force Base; National Synchrotron Radiation Research Center; Institute of Chemistry, Hebrew University; Koh, Christine J.; Liu, Chen-Lin; Harmon, Christopher W.; Strasser, Daniel; Golan, Amir; Kostko, Oleg; Chambreau, Steven D.; Vaghjiani, Ghanshyam L.; Leone, Stephen R.

    2011-07-19

    Isolated ion pairs of a conventional ionic liquid, 1-Ethyl-3-Methyl-Imidazolium Bis(trifluoromethylsulfonyl)imide ([Emim+][Tf2N?]), and a reactive hypergolic ionic liquid, 1-Butyl-3-Methyl-Imidazolium Dicyanamide ([Bmim+][Dca?]), are generated by vaporizing ionic liquid submicron aerosol particles for the first time; the vaporized species are investigated by dissociative ionization with tunable vacuum ultraviolet (VUV) light, exhibiting clear intact cations, Emim+ and Bmim+, presumably originating from intact ion pairs. Mass spectra of ion pair vapor from an effusive source of the hypergolic ionic liquid show substantial reactive decomposition due to the internal energy of the molecules emanating from the source. Photoionization efficiency curves in the near threshold ionization region of isolated ion pairs of [Emim+][Tf2N?]ionic liquid vapor are compared for an aerosol source and an effusive source, revealing changes in the appearance energy due to the amount of internal energy in the ion pairs. The aerosol source has a shift to higher threshold energy (~;;0.3 eV), attributed to reduced internal energy of the isolated ion pairs. The method of ionic liquid submicron aerosol particle vaporization, for reactive ionic liquids such as hypergolic species, is a convenient, thermally ?cooler? source of isolated intact ion pairs in the gas phase compared to effusive sources.

  2. True Cost of Amateur Clean rooms

    NASA Technical Reports Server (NTRS)

    Ramsey, W. Lawrence

    2005-01-01

    This viewgraph document reviews the cost factors for clean rooms that are not professionally built, monitored or maintained. These amateur clean rooms are built because scientist and engineers desire to create a clean room to build a part of an experiment that requires a clean room, and the program manager is looking to save money. However, in the long run these clean rooms may not save money, as the cost of maintenance may be higher due to the cost of transporting the crews, and if the materials were of lesser quality, the cost of modifications may diminish any savings, and the product may not be of the same quality. Several examples are shown of the clean rooms that show some of the problems that can arise from amateur clean rooms.

  3. Apparel for Cleaner Clean Rooms

    NASA Technical Reports Server (NTRS)

    1983-01-01

    In the 1960s NASA pioneered contamination control technology, providing a base from which aerospace contractors could develop control measures. NASA conducted special courses for clean room technicians and supervisors, and published a series of handbooks with input from various NASA field centers. These handbooks extended aerospace experience to the medical, pharmaceutical, electronics, and other industries where extreme cleanliness is important. American Hospital Supply Company (AHSC) felt that high technology products with increasingly stringent operating requirements in aerospace, electronics, pharmaceuticals and medical equipment manufacturing demanded improvement in contamination control techniques. After studying the NASA handbooks and visiting NASA facilities, the wealth of information gathered resulted in Micro-clean non-woven garments and testing equipment and procedures for evaluating effectiveness.

  4. Clean-room robot implementation

    SciTech Connect

    Comeau, J.L.

    1982-07-14

    A robot has been incorporated in a clean room operation in which vacuum tube parts are cleaned just prior to final assembly with a 60 lb/in/sup 2/ blast of argon gas. The robot is programmed to pick up the parts, manipulate/rotate them as necessary in the jet pattern and deposit them in a tray precleaned by the robot. A carefully studied implementation plan was followed in the procurement, installation, modification and programming of the robot facility. An unusual configuration of one tube part required a unique gripper design. A study indicated that the tube parts processed by the robot are 12% cleaner than those manually cleaned by an experienced operator.

  5. Demagnetization of magnetically shielded rooms

    SciTech Connect

    Thiel, F.; Schnabel, A.; Knappe-Grueneberg, S.; Stollfuss, D.; Burghoff, M.

    2007-03-15

    Magnetically shielded rooms for specific high resolution physiological measurements exploiting the magnetic field, e.g., of the brain (dc-magnetoencephalograpy), low-field NMR, or magnetic marker monitoring, need to be reproducibly demagnetized to achieve reliable measurement conditions. We propose a theoretical, experimental, and instrumental base whereupon the parameters which affect the quality of the demagnetization process are described and how they have to be handled. It is demonstrated how conventional demagnetization equipment could be improved to achieve reproducible conditions. The interrelations between the residual field and the variability at the end of the demagnetization process are explained on the basis of the physics of ferromagnetism and our theoretical predictions are evaluated experimentally.

  6. Room acoustics for the aged.

    PubMed

    Plomp, R; Duquesnoy, A J

    1980-12-01

    This article deals with the combined effects of noise and reverberation on the speech-reception threshold for sentences. It is based on a series of current investigations on: (1) the modulation-transfer function as a measure of speech intelligibility in rooms, (2) the applicability of this concept to hearing-impaired persons, and (3) hearing loss for speech in quiet and in noise as a function of age. It is shown that, generally, in auditoria, classrooms, etc. the reverberation time T, acceptable for normal-hearing listeners, has to be reduced to (0.75)DT in order to be acceptable for elderly subjects with a hearing loss of D dB for speech in noise; for listening conditions as in lounges, restaurants, etc. the corresponding value is (0.82)DT.

  7. SARS in Hospital Emergency Room

    PubMed Central

    Chen, Yee-Chun; Huang, Li-Min; Chan, Chang-Chuan; Su, Chan-Ping; Chang, Ying-Ying; Chen, Mei-Ling; Hung, Chien-Ching; Chen, Wen-Jone; Lin, Fang-Yue; Lee, Yuan-Teh

    2004-01-01

    Thirty-one cases of severe acute respiratory syndrome (SARS) occurred after exposure in the emergency room at the National Taiwan University Hospital. The index patient was linked to an outbreak at a nearby municipal hospital. Three clusters were identified over a 3-week period. The first cluster (5 patients) and the second cluster (14 patients) occurred among patients, family members, and nursing aids. The third cluster (12 patients) occurred exclusively among healthcare workers. Six healthcare workers had close contact with SARS patients. Six others, with different working patterns, indicated that they did not have contact with a SARS patient. Environmental surveys found 9 of 119 samples of inanimate objects to be positive for SARS coronavirus RNA. These observations indicate that although transmission by direct contact with known SARS patients was responsible for most cases, environmental contamination with the SARS coronavirus may have lead to infection among healthcare workers without documented contact with known hospitalized SARS patients. PMID:15200809

  8. Nuclear power station main control room habitability

    SciTech Connect

    Paschal, W.B.; Knous, W.S. )

    1989-01-01

    The main control room at a nuclear power station must remain habitable during a variety of plant conditions and postulated events. The control room habitability requirement and the function of the heating, ventilating, air-conditioning, and air treatment system are to control environmental factors, such as temperature, pressure, humidity, radiation, and toxic gas. Habitability requirements provide for the safety of personnel and enable operation of equipment required to function in the main control room. Habitability as an issue has been gaining prominence with the Advisor Committee of Reactor Safeguards and the Nuclear Regulatory Commission since the incident at Three Mile Island. Their concern is the ability of the presently installed habitability systems to control the main control room environment after an accident. This paper discusses main control room HVAC systems; the concern, requirements, and results of NRC surveys and notices; and an approach to control room habitability reviews.

  9. Noise control considerations for patient rooms

    NASA Astrophysics Data System (ADS)

    Davenny, Benjamin

    2005-09-01

    The patient room envelope is a path between outside noise sources and the patient receiver. Within the patient room there are several sources including televisions, clinical monitor alarms, medical pumps, etc. Noise control in patient rooms relies on a combination of the sound transmission loss of the patient room envelope and the level of background sound at the patient's head. Guidelines published by the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), American Institute of Architects (AIA), and the U.S. Department of Defense for background noise and sound transmission loss in patient rooms will be discussed. Appropriate levels, spectra, and temporal characteristics of background sound at the patient head location may be helpful in raising the threshold of annoying sounds. Various means of personal hearing protection for patients will be discussed. Sound-pressure levels in patient rooms reported in previous literature will also be discussed.

  10. From Baltic rooms to conference rooms: my jouney with data

    NASA Astrophysics Data System (ADS)

    Kozlowski, W. A.

    2015-12-01

    From time spent in murky, mosquito-filled mangrove swamps searching for fiddler crabs, to being transported off ships in webbed "man-baskets" on inky-black winter mornings to sample sea ice, to teaching rooms full of students the benefits of information organization, the wonders of science have long shaped my career path. Regardless of surroundings, the driving factor has always been a desire to learn new skills, then try to figure out how to use them to make work easier or more efficient for myself and hopefully others. Somewhere along the way, I've switched from doing it primarily for my "own" research projects, to a focus on helping others with theirs. Like many in this field, my route to a career in data science has influenced how I do my work. Along the way I've carried skills with me but also learned a few things that have made my journey both practical and fun. In this presentation, I'll discuss a few key factors that contribute to my current efforts as a data curation specialist in a research library, including communication (translation of "library" concepts to "science" concepts and vice versa), flexibility (ability to accomodate ideas, pace and values of those I'm working with), and prioritization (learning to balance what's valuable to researchers with principles important to libraries, curators, repositories, archives and other groups with which I interact).

  11. Room temperature ionic liquids as useful overlayers for estimating food quality from their odor analysis by quartz crystal microbalance measurements.

    PubMed

    Toniolo, Rosanna; Pizzariello, Andrea; Dossi, Nicolò; Lorenzon, Stefano; Abollino, Ornella; Bontempelli, Gino

    2013-08-06

    An array of quartz crystals coated with different room-temperature ionic liquids (RTILs) is proposed for the analysis of flavors by quartz crystal microbalance (QCM) measurements. Seven RTILs were adopted as sensing layers, all containing imidazolium or phosphonium cations, differing from one another in the length and branching of alkyl groups and neutralized by different anions. The array was at first applied to the analysis of 31 volatile organic compounds (VOCs), such as alcohols, phenols, aldehydes, esters, ketones, acids, amines, hydrocarbons and terpenes, chosen as representative components of a wide variety of food flavors. Multivariate data analysis by the principal component analysis (PCA) approach of the set of the corresponding responses led to separated clusters for these different chemical categories. To further prove the good performance of the RTIL-coated quartz crystal array as an "electronic nose", it was applied to the analysis of headspaces from cinnamon samples belonging to different botanical varieties ( Cinnamon zeylanicum and Cinnamon cassia ). PCA applied to responses recorded on different stocks of samples of both varieties showed that they could be fully discriminated.

  12. Robin Room and cannabis policy: dangerous comparisons.

    PubMed

    Hall, Wayne

    2014-11-01

    This paper describes Robin Room's contribution to cannabis policy debates over the period 1993-2010. It focuses on a controversy that erupted over a review that Room and the author undertook for the World Health Organization in the mid-1990s on the comparative harms of cannabis, alcohol, opiates and tobacco. It also briefly describes Room's recent work on global cannabis policy and ends with a brief appreciation of the character of his scholarly contributions to this field.

  13. Dispersion interactions in room-temperature ionic liquids: results from a non-empirical density functional.

    PubMed

    Kohanoff, Jorge; Pinilla, Carlos; Youngs, Tristan G A; Artacho, Emilio; Soler, José M

    2011-10-21

    The role of dispersion or van de Waals (VDW) interactions in imidazolium-based room-temperature ionic liquids is studied within the framework of density functional theory, using a recently developed non-empirical functional [M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004)], as efficiently implemented in the SIESTA code [G. Román-Pérez and J. M. Soler, Phys. Rev. Lett. 103, 096102 (2009)]. We present results for the equilibrium structure and lattice parameters of several crystalline phases, finding a general improvement with respect to both the local density (LDA) and the generalized gradient approximations (GGA). Similar to other systems characterized by VDW bonding, such as rare gas and benzene dimers as well as solid argon, equilibrium distances and volumes are consistently overestimated by ≈7%, compared to -11% within LDA and 11% within GGA. The intramolecular geometries are retained, while the intermolecular distances and orientations are significantly improved relative to LDA and GGA. The quality is superior to that achieved with tailor-made empirical VDW corrections ad hoc [M. G. Del Pópolo, C. Pinilla, and P. Ballone, J. Chem. Phys. 126, 144705 (2007)]. We also analyse the performance of an optimized version of this non-empirical functional, where the screening properties of the exchange have been tuned to reproduce high-level quantum chemical calculations [J. Klimes, D. Bowler, and A. Michaelides, J. Phys.: Condens. Matter 22, 074203 (2010)]. The results for solids are even better with volumes and geometries reproduced within 2% of experimental data. We provide some insight into the issue of polymorphism of [bmim][Cl] crystals, and we present results for the geometry and energetics of [bmim][Tf] and [mmim][Cl] neutral and charged clusters, which validate the use of empirical force fields.

  14. 24 CFR 3285.502 - Expanding rooms.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Optional Features § 3285.502 Expanding rooms. The... the home manufacturer or prepared by a registered professional engineer or registered architect,...

  15. 24 CFR 3285.502 - Expanding rooms.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Optional Features § 3285.502 Expanding rooms. The... the home manufacturer or prepared by a registered professional engineer or registered architect,...

  16. 24 CFR 3285.502 - Expanding rooms.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Optional Features § 3285.502 Expanding rooms. The... the home manufacturer or prepared by a registered professional engineer or registered architect,...

  17. Effect of Room Ventilation Rates in Rodent Rooms with Direct-Exhaust IVC Systems.

    PubMed

    Geertsema, Roger S; Lindsell, Claire E

    2015-09-01

    When IVC are directly exhausted from a rodent housing room, the air quality of the room can become independent of the intracage air quality and may reduce the need for high room ventilation rates. This study assessed the effect of decreasing the ventilation rate in rodent rooms using direct-exhaust IVC systems. The study was conducted over 16 wk and compared conditions in 8 rodent rooms that had ventilation rates of 5 to 6 air changes per hour (ACH) with those in rooms at 10 to 12 ACH. At the low ventilation rate, rooms had higher CO₂ concentrations, higher dew point temperature, and lower particulate levels and spent a greater percentage of time above the temperature set point than did rooms at the high rate. The levels of allergens and endotoxins in room air were the same regardless of the ventilation rate. Differences seen in parameters within cages at the 2 ventilation rates were operationally irrelevant. We detected no total volatile organic compounds in the room that were attributable to ammonia, regardless of the ventilation rate. Clearing the air of ethanol after a spill took longer at the low compared with high rate. However, ethanol clearance was faster at the low rate when the demand-control system was activated than at the high ventilation rate alone. Air quality in the room and in the cages were acceptable with room ventilation rates of 5 to 6 ACH in rodent rooms that use direct-exhaust IVC systems.

  18. Effect of Room Ventilation Rates in Rodent Rooms with Direct-Exhaust IVC Systems

    PubMed Central

    Geertsema, Roger S; Lindsell, Claire E

    2015-01-01

    When IVC are directly exhausted from a rodent housing room, the air quality of the room can become independent of the intracage air quality and may reduce the need for high room ventilation rates. This study assessed the effect of decreasing the ventilation rate in rodent rooms using direct-exhaust IVC systems. The study was conducted over 16 wk and compared conditions in 8 rodent rooms that had ventilation rates of 5 to 6 air changes per hour (ACH) with those in rooms at 10 to 12 ACH. At the low ventilation rate, rooms had higher CO2 concentrations, higher dew point temperature, and lower particulate levels and spent a greater percentage of time above the temperature set point than did rooms at the high rate. The levels of allergens and endotoxins in room air were the same regardless of the ventilation rate. Differences seen in parameters within cages at the 2 ventilation rates were operationally irrelevant. We detected no total volatile organic compounds in the room that were attributable to ammonia, regardless of the ventilation rate. Clearing the air of ethanol after a spill took longer at the low compared with high rate. However, ethanol clearance was faster at the low rate when the demand-control system was activated than at the high ventilation rate alone. Air quality in the room and in the cages were acceptable with room ventilation rates of 5 to 6 ACH in rodent rooms that use direct-exhaust IVC systems. PMID:26424250

  19. Topological Insulators at Room Temperature

    SciTech Connect

    Zhang, Haijun; Liu, Chao-Xing; Qi, Xiao-Liang; Dai, Xi; Fang, Zhong; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-03-25

    Topological insulators are new states of quantum matter with surface states protected by the time-reversal symmetry. In this work, we perform first-principle electronic structure calculations for Sb{sub 2}Te{sub 3}, Sb{sub 2}Se{sub 3}, Bi{sub 2}Te{sub 3} and Bi{sub 2}Se{sub 3} crystals. Our calculations predict that Sb{sub 2}Te{sub 3}, Bi{sub 2}T e{sub 3} and Bi{sub 2}Se{sub 3} are topological insulators, while Sb{sub 2}Se{sub 3} is not. In particular, Bi{sub 2}Se{sub 3} has a topologically non-trivial energy gap of 0.3eV , suitable for room temperature applications. We present a simple and unified continuum model which captures the salient topological features of this class of materials. These topological insulators have robust surface states consisting of a single Dirac cone at the {Lambda} point.

  20. Interior building details of Building D, Room D101 to Room ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior building details of Building D, Room D-101 to Room D-101c partition wall with multi-pane wood sash; westerly view - San Quentin State Prison, Building 22, Point San Quentin, San Quentin, Marin County, CA

  1. Field Test of Room-to-Room Uniformity of Ventilation Air Distribution in Two New Houses

    SciTech Connect

    Hendron, Robert; Anderson, Ren; Barley, Dennis; Rudd, Armin; Townsend, Aaron; Hancock, Ed

    2006-12-01

    This report describes a field test to characterize the uniformity of room-to-room ventilation air distribution under various operating conditions by examining multi-zone tracer gas decay curves and calculating local age-of-air.

  2. Interior building details of Building C, Room C203 to Room ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior building details of Building C, Room C-203 to Room C-204: historical partition track with folding doors, east painted wall; easterly view - San Quentin State Prison, Building 22, Point San Quentin, San Quentin, Marin County, CA

  3. The effect of C2 substitution on melting point and liquid phase dynamics of imidazolium based-ionic liquids: insights from molecular dynamics simulations

    SciTech Connect

    Zhang, Y; Maginn, EJ

    2012-01-01

    Using molecular dynamics simulations, the melting points and liquid phase dynamic properties were studied for four alkyl-imidazolium-based ionic liquids, 1-n-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]), 1-n-butyl-2,3-dimethylimidazolium hexafluorophosphate ([BMMIM][PF6]), 1-ethyl-3-methylimidazolium hexafluorophosphate ([EMIM][PF6]), and 1-ethyl-2,3-dimethylimidazolium hexafluorophosphate ([EMMIM][PF6]), respectively. Experimentally it has been observed that the substitution of a methyl group for a hydrogen at the C2 position of the cation ring leads to an increase in both the melting point and liquid phase viscosity, contrary to arguments that had been made regarding associations between the ions. The melting points of the four ionic liquids were accurately predicted using simulations, as were the trends in viscosity. The simulation results show that the origin of the effect is mainly entropic, although enthalpy also plays an important role.

  4. N,N'-alkylated Imidazolium-derivatives act as quorum-sensing inhibitors targeting the Pectobacterium atrosepticum-induced symptoms on potato tubers.

    PubMed

    des Essarts, Yannick Raoul; Sabbah, Mohamad; Comte, Arnaud; Soulère, Laurent; Queneau, Yves; Dessaux, Yves; Hélias, Valérie; Faure, Denis

    2013-10-08

    Bacteria belonging to the Pectobacterium genus are the causative agents of the blackleg and soft-rot diseases that affect potato plants and tubers worldwide. In Pectobacterium, the expression of the virulence genes is controlled by quorum-sensing (QS) and N-acylhomoserine lactones (AHLs). In this work, we screened a chemical library of QS-inhibitors (QSIs) and AHL-analogs to find novel QSIs targeting the virulence of Pectobacterium. Four N,N'-bisalkylated imidazolium salts were identified as QSIs; they were active at the µM range. In potato tuber assays, two of them were able to decrease the severity of the symptoms provoked by P. atrosepticum. This work extends the range of the QSIs acting on the Pectobacterium-induced soft-rot disease.

  5. A Cu(II) complex of an imidazolium-based ionic liquid: synthesis, X-ray structure and application in the selective electrochemical sensing of guanine.

    PubMed

    Singh, Amanpreet; Singh, Ajnesh; Singh, Narinder

    2014-11-21

    An imidazolium-based ionic liquid containing a carboxylic acid group was synthesized and complexed with Cu(II). The resulting complex R1 was fully characterized using various techniques, including IR spectroscopy and X-ray crystallography. Binding studies of the complex R1 were performed with anions and biomolecules using cyclic voltammetry, which showed no change in its voltammogram upon the addition of various anions and most biomolecules. However, a shift in the reduction peak from +0.20 to -0.15 was observed upon the addition of guanine. This selective determination of guanine by R1 was extended by using R1 as an electrochemical sensor for guanine in various voltammetric techniques, including cyclic voltammetry, LSV and DPV. The proposed sensor showed excellent reproducibility and high selectivity and sensitivity towards guanine, with a linear range of 0-20 μM and a detection limit of 45 nM.

  6. Imidazolium ionic liquid induced one-step synthesis of 𝜶 -Fe2O3 nanorods and nanorod assemblies for lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Xie, Shuting; Lu, Fei; Liu, Shaojie; Zheng, Liqiang; Jin, Mingliang; Zhou, Guofu; Shui, Lingling

    2016-12-01

    α -Fe2O3 nanorods and nanorod assemblies are prepared via a facile one-step method with the assistance of imidazolium-based ionic liquid. The aspect ratio of synthesized nanorods is determined by the alkyl chain length of [Cnmim]+. The inter-molecular π -π interaction and intra-molecular dipole-dipole interaction among imidazole rings of [C4mim]+[PhCOO]- play critical roles in both nucleation and assembly processes of α -Fe2O3 nanorods. The α -Fe2O3 nanorod assemblies show an excellent performance in lithium-ion batteries with a reversible capacity of 1007.3 mA h g-1 at the rate of 500 mA g-1 after 150 cycles.

  7. X-ray photoelectron spectroscopy of pyrrolidinium-based ionic liquids: cation-anion interactions and a comparison to imidazolium-based analogues.

    PubMed

    Men, Shuang; Lovelock, Kevin R J; Licence, Peter

    2011-09-07

    We investigate seven 1-alkyl-1-methylpyrrolidinium-based ionic liquids, [C(n)C(1)Pyrr][X], using X-ray photoelectron spectroscopy (XPS). The electronic environment for each element is analysed and a robust fitting model is developed for the C 1s region that applies to each of the ionic liquids studied. This model allows accurate charge correction and the determination of reliable and reproducible binding energies for each ionic liquid studied. The electronic interaction between the cation and anion is investigated for ionic liquids with one and also two anions. i.e., mixtures. Comparisons are made to imidazolium-based ionic liquids; in particular, a detailed comparison is made between [C(8)C(1)Pyrr][X] and [C(8)C(1)Im][X](-), where X(¬) is common to both ionic liquids.

  8. ENERGY STAR Certified Room Air Conditioners

    EPA Pesticide Factsheets

    Certified models meet all ENERGY STAR requirements as listed in the Version 4.0 ENERGY STAR Program Requirements for Room Air Conditioners that are effective as of October 26, 2015. A detailed listing of key efficiency criteria are available at http://www.energystar.gov/index.cfm?c=roomac.pr_crit_room_ac

  9. 32 CFR 701.35 - Reading room.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false Reading room. 701.35 Section 701.35 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY UNITED STATES NAVY REGULATIONS AND... DOCUMENTS AFFECTING THE PUBLIC FOIA Definitions and Terms § 701.35 Reading room. Location where...

  10. 32 CFR 701.35 - Reading room.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Reading room. 701.35 Section 701.35 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY UNITED STATES NAVY REGULATIONS AND... DOCUMENTS AFFECTING THE PUBLIC FOIA Definitions and Terms § 701.35 Reading room. Location where...

  11. 32 CFR 701.35 - Reading room.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 5 2014-07-01 2014-07-01 false Reading room. 701.35 Section 701.35 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY UNITED STATES NAVY REGULATIONS AND... DOCUMENTS AFFECTING THE PUBLIC FOIA Definitions and Terms § 701.35 Reading room. Location where...

  12. 32 CFR 701.35 - Reading room.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false Reading room. 701.35 Section 701.35 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY UNITED STATES NAVY REGULATIONS AND... DOCUMENTS AFFECTING THE PUBLIC FOIA Definitions and Terms § 701.35 Reading room. Location where...

  13. 32 CFR 701.35 - Reading room.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Reading room. 701.35 Section 701.35 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY UNITED STATES NAVY REGULATIONS AND... DOCUMENTS AFFECTING THE PUBLIC FOIA Definitions and Terms § 701.35 Reading room. Location where...

  14. PASSWORD: Organizing Exits from the Resource Room.

    ERIC Educational Resources Information Center

    Johnson, Linda K.

    1990-01-01

    The article offers a classroom management technique, PASSWORD, that facilitates the smooth transition of handicapped students from the resource room to the regular class. Students are each asked a "code question," usually a review question, the answer to which is the password for leaving the resource room. (DB)

  15. The Mini Dark Room from Holywell High

    ERIC Educational Resources Information Center

    Lane, Frank

    2011-01-01

    The mini dark room from Holywell High School costs nothing to make and has a construction time of 10 min. In spite of progress, or perhaps because of it, light experiments often have to be performed without blackout. Put this idea into practice and each pupil can have a dark room--and best of all, it's free. In this article, the author describes…

  16. Room 13: The Movement and International Network

    ERIC Educational Resources Information Center

    Gibb, Claire

    2012-01-01

    Room 13 is a global uprising of creative and entrepreneurial children who are responsible for a growing international network of student-organised art studios. Each Room 13 studio facilitates the work of young artists alongside a professional adult artist in residence, providing an exchange of ideas, skills and experience across the ages. The…

  17. The Ethics of the Collegiate Locker Room

    ERIC Educational Resources Information Center

    Roper, Larry D.

    2017-01-01

    Locker rooms are a fixture in the athletic culture of colleges and universities. Given the important roles those spaces play in the learning, growth, and development of student-athletes, collegiate leaders should consider how to influence locker room environments in positive ways.

  18. Imidazolium-based Block Copolymers as Solid-State Separators for Alkaline Fuel Cells and Lithium Ion Batteries

    NASA Astrophysics Data System (ADS)

    Nykaza, Jacob Richard

    In this study, polymerized ionic liquid (PIL) diblock copolymers were explored as solid-state polymer separators as an anion exchange membrane (AEM) for alkaline fuel cells AFCs and as a solid polymer electrolyte (SPE) for lithium-ion batteries. Polymerized ionic liquid (PIL) block copolymers are a distinct set of block copolymers that combine the properties of both ionic liquids (e.g., high conductivity, high electrochemical stability) and block copolymers (e.g., self-assembly into various nanostructures), which provides the opportunity to design highly conductive robust solid-state electrolytes that can be tuned for various applications including AFCs and lithium-ion batteries via simple anion exchange. A series of bromide conducting PIL diblock copolymers with an undecyl alkyl side chain between the polymer backbone and the imidazolium moiety were first synthesized at various compositions comprising of a PIL component and a non-ionic component. Synthesis was achieved by post-functionalization from its non-ionic precursor PIL diblock copolymer, which was synthesized via the reverse addition fragmentation chain transfer (RAFT) technique. This PIL diblock copolymer with long alkyl side chains resulted in flexible, transparent films with high mechanical strength and high bromide ion conductivity. The conductivity of the PIL diblock copolymer was three times higher than its analogous PIL homopolymer and an order of magnitude higher than a similar PIL diblock copolymer with shorter alkyl side chain length, which was due to the microphase separated morphology, more specifically, water/ion clusters within the PIL microdomains in the hydrated state. Due to the high conductivity and mechanical robustness of this novel PIL block copolymer, its application as both the ionomer and AEM in an AFC was investigated via anion exchange to hydroxide (OH-), where a maximum power density of 29.3 mW cm-1 (60 °C with H2/O2 at 25 psig (172 kPa) backpressure) was achieved. Rotating disk

  19. Micelle-vesicle-micelle transition in aqueous solution of anionic surfactant and cationic imidazolium surfactants: Alteration of the location of different fluorophores.

    PubMed

    Dutta, Rupam; Ghosh, Surajit; Banerjee, Pavel; Kundu, Sangita; Sarkar, Nilmoni

    2017-03-15

    The presence of different surfactants can alter the physicochemical behaviors of aqueous organized assemblies. In this article, we have investigated the location of hydrophobic molecule (Coumarin 153, C153) and hydrophilic molecule (Rhodamine 6G perchlorate, R6G) during micelle-vesicle-micelle transition in aqueous medium in presence of anionic surfactant, sodium dodecylbenzenesulfonate (SDBS) and cationic imidazolium-based surfactant, 1-alkyl-3-methylimidazolium chloride (CnmimCl; n=12, 16). Initially, the physicochemical properties of anionic micellar solution of SDBS has been investigated in presence of imidazolium-based surfactant, CnmimCl (n=12, 16) in aqueous medium by visual observation, turbidity measurement, zeta potential (ζ), dynamics light scattering (DLS), and transmission electron microscopy (TEM). Zeta potential (ζ) measurement clearly indicates that the incorporation efficiency of C16mimCl in SDBS micelle is better than the other one due to the involvement of strong hydrophobic as well as electrostatic interaction between the two associated molecules. Turbidity and DLS measurements clearly suggest the formation of vesicles over a wide range of concentration. Finally, the rotational motion of C153 and R6G has also been monitored at different mole fractions of CnmimCl in SDBS-CnmimCl (n=12, 16) solution mixtures. The hydrophobic C153 molecules preferentially located in the bilayer region of vesicle, whereas hydrophilic R6G can be solubilized at surface of the bilayer, inner water pool or outer surface of vesicles. It is observed that rotational motion of R6G is altered significantly in SDBS-CnmimCl solution mixtures in presence of different mole fractions of CnmimCl. Additionally, the translational diffusion motion of R6G is monitored using fluorescence correlation spectroscopy (FCS) techniques to get a complete scenario about the location and translational diffusion of R6G.

  20. Femtosecond Raman-Induced Kerr Effect Study of Temperature-Dependent Intermolecular Dynamics in Imidazolium-Based Ionic Liquids: Effects of Anion Species and Cation Alkyl Groups.

    PubMed

    Kakinuma, Shohei; Ishida, Tateki; Shirota, Hideaki

    2017-01-12

    The temperature dependence of the intermolecular vibrational dynamics in imidazolium-based ionic liquids (ILs) with 10 different anions was studied by femtosecond Raman-induced Kerr effect spectroscopy. For all ILs investigated in this study, the intensity in the low-frequency region below 50 cm(-1) increases, and the spectral density in the high-frequency region above 80 cm(-1) decreases (and shows a redshift) with increasing temperature. The first phenomenon would be attributed to the activation of the translational vibrational motions, whereas the second one is ascribed to the slowing librational motion of the imidazolium ring with increasing temperature. Calculated spectra of the density of states for the intermolecular vibrations of 1-butyl-3-methylimidazolium hexafluorophosphate, which is one of the experiment samples studied here, obtained by molecular dynamics simulation agreed well with the experimental results and confirmed the spectral assignments. When we compared the difference spectra between spectra measured at various temperatures and the spectrum measured at 293 K, a clear difference was found in the ∼50 cm(-1) region of the Kerr spectra of 1-butyl-3-methylimidazolium thiocyanate and 1-butyl-3-methylimidazolium dicyanamide from those of the other ILs. The difference might have originated from the librational motions of the corresponding anions. We also compared the temperature-dependent Kerr spectra of hexafluorophosphate salts of 1-butyl-3-methylimidazolium, 1-hexyl-3-methylimidazolium, and 1-heptyl-3-methylimidazolium cations. These ILs showed a similar temperature dependence, which was not affected by the alkyl group length. The temperature-dependent viscosities and glass transition temperatures of the ILs were also estimated to determine their fragilities.

  1. Mechanism of imidazolium ionic liquids toxicity in Saccharomyces cerevisiae and rational engineering of a tolerant, xylose-fermenting strain

    SciTech Connect

    Dickinson, Quinn; Bottoms, Scott; Hinchman, Li; McIlwain, Sean; Li, Sheena; Myers, Chad L.; Boone, Charles; Coon, Joshua J.; Hebert, Alexander; Sato, Trey K.; Landick, Robert; Piotrowski, Jeff S.

    2016-01-20

    In this study, imidazolium ionic liquids (IILs) underpin promising technologies that generate fermentable sugars from lignocellulose for future biorefineries. However, residual IILs are toxic to fermentative microbes such as Saccharomyces cerevisiae, making IIL-tolerance a key property for strain engineering. To enable rational engineering, we used chemical genomic profiling to understand the effects of IILs on S. cerevisiae. As a result, we found that IILs likely target mitochondria as their chemical genomic profiles closely resembled that of the mitochondrial membrane disrupting agent valinomycin. Further, several deletions of genes encoding mitochondrial proteins exhibited increased sensitivity to IIL. High-throughput chemical proteomics confirmed effects of IILs on mitochondrial protein levels. IILs induced abnormal mitochondrial morphology, as well as altered polarization of mitochondrial membrane potential similar to valinomycin. Deletion of the putative serine/threonine kinase PTK2 thought to activate the plasma-membrane proton efflux pump Pma1p conferred a significant IIL-fitness advantage. Conversely, overexpression of PMA1 conferred sensitivity to IILs, suggesting that hydrogen ion efflux may be coupled to influx of the toxic imidazolium cation. PTK2 deletion conferred resistance to multiple IILs, including [EMIM]Cl, [BMIM]Cl, and [EMIM]Ac. An engineered, xylose-converting ptk2Δ S. cerevisiae (Y133-IIL) strain consumed glucose and xylose faster and produced more ethanol in the presence of 1 % [BMIM]Cl than the wild-type PTK2 strain. We propose a model of IIL toxicity and resistance. In conclusion, this work demonstrates the utility of chemical genomics-guided biodesign for development of superior microbial biocatalysts for the ever-changing landscape of fermentation inhibitors.

  2. 146. View of oil filter room in basement (Room B1) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    146. View of oil filter room in basement (Room B-1) where oil used in lubrication in generator room is cleaned and recycled. The two tanks in the foreground each have capacities of 2,100 gallons. Photo by Jet Lowe, HAER, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA

  3. High Efficiency Room Air Conditioner

    SciTech Connect

    Bansal, Pradeep

    2015-01-01

    This project was undertaken as a CRADA project between UT-Battelle and Geberal Electric Company and was funded by Department of Energy to design and develop of a high efficiency room air conditioner. A number of novel elements were investigated to improve the energy efficiency of a state-of-the-art WAC with base capacity of 10,000 BTU/h. One of the major modifications was made by downgrading its capacity from 10,000 BTU/hr to 8,000 BTU/hr by replacing the original compressor with a lower capacity (8,000 BTU/hr) but high efficiency compressor having an EER of 9.7 as compared with 9.3 of the original compressor. However, all heat exchangers from the original unit were retained to provide higher EER. The other subsequent major modifications included- (i) the AC fan motor was replaced by a brushless high efficiency ECM motor along with its fan housing, (ii) the capillary tube was replaced with a needle valve to better control the refrigerant flow and refrigerant set points, and (iii) the unit was tested with a drop-in environmentally friendly binary mixture of R32 (90% molar concentration)/R125 (10% molar concentration). The WAC was tested in the environmental chambers at ORNL as per the design rating conditions of AHAM/ASHRAE (Outdoor- 95F and 40%RH, Indoor- 80F, 51.5%RH). All these modifications resulted in enhancing the EER of the WAC by up to 25%.

  4. Perceptual effects in auralization of virtual rooms

    NASA Astrophysics Data System (ADS)

    Kleiner, Mendel; Larsson, Pontus; Vastfjall, Daniel; Torres, Rendell R.

    2002-05-01

    By using various types of binaural simulation (or ``auralization'') of physical environments, it is now possible to study basic perceptual issues relevant to room acoustics, as well to simulate the acoustic conditions found in concert halls and other auditoria. Binaural simulation of physical spaces in general is also important to virtual reality systems. This presentation will begin with an overview of the issues encountered in the auralization of room and other environments. We will then discuss the influence of various approximations in room modeling, in particular, edge- and surface scattering, on the perceived room response. Finally, we will discuss cross-modal effects, such as the influence of visual cues on the perception of auditory cues, and the influence of cross-modal effects on the judgement of ``perceived presence'' and the rating of room acoustic quality.

  5. Ammonium imidazolium dichromate.

    PubMed

    Zhu, Run-Qiang

    2012-04-01

    In the crystal structure of the title compound, (C(3)H(5)N(2))(NH(4))[Cr(2)O(7)], the anions and cations are linked through N-H⋯O hydrogen bonds, resulting in a three-dimensional structure which contains three kinds of layers parallel to (001). One layer contains imidazole cations, the other two layers the ammonium cations and dichromate anions. The dichromate anion has an eclipsed conformation with a dihedral angle of 14.65 (18)° between the mean planes of the O-P-O-P-O backbone.

  6. 7 CFR 58.211 - Packaging room for bulk products.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Packaging room for bulk products. 58.211 Section 58... Service 1 Rooms and Compartments § 58.211 Packaging room for bulk products. A separate room or area shall... dust within the packaging room and where needed, a dust collector shall be provided and...

  7. IMPROVED SYNTHESIS OF ROOM TEMPERATURE IONIC LIQUIDS

    EPA Science Inventory

    Room temperature ionic liquids (RTILs), molten salts comprised of N-alkylimidazolium cations and various anions, have received significant attention due to their commercial potential in a variety of chemical applications especially as substitutes for conventional volatile organic...

  8. The Whys and Hows of Training Rooms.

    ERIC Educational Resources Information Center

    Sturgeon, Julie

    2000-01-01

    Offers advice on building and equipping a college athletic training room that can serve in preventing and treating athletic injuries. Issues concerning space utilization, protecting confidentiality, and making accommodations for amenities such as hydrotherapy pools are addressed. (GR)

  9. High Fidelity Simulation of a Computer Room

    NASA Technical Reports Server (NTRS)

    Ahmad, Jasim; Chan, William; Chaderjian, Neal; Pandya, Shishir

    2005-01-01

    This viewgraph presentation reviews NASA's Columbia supercomputer and the mesh technology used to test the adequacy of the fluid and cooling of a computer room. A technical description of the Columbia supercomputer is also presented along with its performance capability.

  10. The Portable War Room Research Project

    NASA Technical Reports Server (NTRS)

    Govers, Francis X., III; Fry, Mark

    1997-01-01

    The Portable War Room is an internal TASC project to research and develop a visualization and simulation environment to provide for decision makers the power to review the past, understand the present, and peer into the future.

  11. Room temperature creep in metals and alloys

    SciTech Connect

    Deibler, Lisa Anne

    2014-09-01

    Time dependent deformation in the form of creep and stress relaxation is not often considered a factor when designing structural alloy parts for use at room temperature. However, creep and stress relaxation do occur at room temperature (0.09-0.21 Tm for alloys in this report) in structural alloys. This report will summarize the available literature on room temperature creep, present creep data collected on various structural alloys, and finally compare the acquired data to equations used in the literature to model creep behavior. Based on evidence from the literature and fitting of various equations, the mechanism which causes room temperature creep is found to include dislocation generation as well as exhaustion.

  12. 24 CFR 3285.502 - Expanding rooms.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... support and anchoring systems for expanding rooms must be installed in accordance with designs provided by the home manufacturer or prepared by a registered professional engineer or registered architect,...

  13. Structure-Antibacterial Activity Relationships of Imidazolium-Type Ionic Liquid Monomers, Poly(ionic liquids) and Poly(ionic liquid) Membranes: Effect of Alkyl Chain Length and Cations.

    PubMed

    Zheng, Zhiqiang; Xu, Qiming; Guo, Jiangna; Qin, Jing; Mao, Hailei; Wang, Bin; Yan, Feng

    2016-05-25

    The structure-antibacterial activity relationship between the small molecular compounds and polymers are still elusive. Here, imidazolium-type ionic liquid (IL) monomers and their corresponding poly(ionic liquids) (PILs) and poly(ionic liquid) membranes were synthesized. The effect of chemical structure, including carbon chain length of substitution at the N3 position and charge density of cations (mono- or bis-imidazolium) on the antimicrobial activities against both Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) was investigated by determination of minimum inhibitory concentration (MIC). The antibacterial activities of both ILs and PILs were improved with the increase of the alkyl chain length and higher charge density (bis-cations) of imidazolium cations. Moreover, PILs exhibited lower MIC values relative to the IL monomers. However, the antibacterial activities of PIL membranes showed no correlation to those of their analogous small molecule IL monomers and PILs, which increased with the charge density (bis-cations) while decreasing with the increase of alkyl chain length. The results indicated that antibacterial property studies on small molecules and homopolymers may not provide a solid basis for evaluating that in corresponding polymer membranes.

  14. Radiation transport in a radiotherapy room

    SciTech Connect

    Agosteo, S.; Para, A.F.; Maggioni, B.

    1995-01-01

    The photoneutron dose equivalent in a linac radio-therapy room and its entrance maze was investigated by means of Monte Carlo simulations under different conditions. Particularly, the effect of neutron absorbers and moderator layers placed on the maze walls was considered. The contribution of prompt gamma rays emitted in absorption reactions of thermal neutrons was also taken into account. The simulation results are compared with some experimental measurements in the therapy room and in the maze. 13 refs., 5 figs., 5 tabs.

  15. Determining Camera Gain in Room Temperature Cameras

    SciTech Connect

    Joshua Cogliati

    2010-12-01

    James R. Janesick provides a method for determining the amplification of a CCD or CMOS camera when only access to the raw images is provided. However, the equation that is provided ignores the contribution of dark current. For CCD or CMOS cameras that are cooled well below room temperature, this is not a problem, however, the technique needs adjustment for use with room temperature cameras. This article describes the adjustment made to the equation, and a test of this method.

  16. Rethinking theatre in modern operating rooms.

    PubMed

    Riley, Robin; Manias, Elizabeth

    2005-03-01

    Metaphor is a means through which a widely accepted meaning of a word is used in a different context to add understanding that would otherwise be difficult to conceive. Through etymological and metaphorical associations, we contend that aspects of "theatre" are still relevant in the modern operating rooms and that the use of dramaturgical metaphors can add another layer of understanding about the social reality in this setting. We begin by exploring the historical roots and derivation of the word theatre as it applied to anatomical dissection and surgery. Briefly, we touch on the work of Erving Goffman and examine how his work has been used by others to explore aspects of operating room nursing. Then, drawing on data from a postmodern ethnographic study that has been used to examine communication in operating room nursing, four dramaturgical metaphors are used to illustrate the argument. They are drama, the script and learning the lines, the show must go on, and changing between back stage and front stage. To conclude, the small amount of previously published literature on this topic is compared and contrasted, and the relevance of using dramaturgical metaphors to understand modern operating rooms is discussed. Being able to distinguish between the inherent drama in operating room work and the dramatic realisation of individuals who work within, can help operating room nurses to think differently about, and perhaps re-evaluate their social situation and how they function within it.

  17. What Happens in the Operating Room? (For Kids)

    MedlinePlus

    ... Quizzes Kids' Dictionary of Medical Words En Español What Other Kids Are Reading Video: Am I Normal? ( ... Emergency Room? What Happens in the Operating Room? What Happens in the Operating Room? KidsHealth > For Kids > ...

  18. TRACES OF ORIGINAL PARTITIONS AT JUNCTURE OF FRONT ROOM, REAR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    TRACES OF ORIGINAL PARTITIONS AT JUNCTURE OF FRONT ROOM, REAR ROOM AND HALL, SECOND FLOOR. ALSO SHOWS ORIGINAL STUCCO CORNICE OF FRONT AND REAR ROOMS (LEFT) AND HALL (RIGHT) - Kid-Chandler House, 323 Walnut Street, Philadelphia, Philadelphia County, PA

  19. 75 FR 67450 - Pipeline Safety: Control Room Management Implementation Workshop

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-02

    ... Pipeline and Hazardous Materials Safety Administration Pipeline Safety: Control Room Management... of Pipeline Safety Representatives (NAPSR) on the implementation of pipeline control room management. The workshop is intended to foster an understanding of the Control Room Management Rule issued...

  20. 18 CFR 1301.2 - Public reading rooms.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... through its Web site at http://www.tva.gov. This electronic reading room contains the records that the... room records. The index is identified as the Reading Room Table of Contents on TVA's Web site and...

  1. 18 CFR 1301.2 - Public reading rooms.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... through its Web site at http://www.tva.gov. This electronic reading room contains the records that the... room records. The index is identified as the Reading Room Table of Contents on TVA's Web site and...

  2. 18 CFR 1301.2 - Public reading rooms.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... through its Web site at http://www.tva.gov. This electronic reading room contains the records that the... room records. The index is identified as the Reading Room Table of Contents on TVA's Web site and...

  3. Using acoustic information to perceive room size: effects of blindness, room reverberation time, and stimulus.

    PubMed

    Kolarik, Andrew J; Pardhan, Shahina; Cirstea, Silvia; Moore, Brian C J

    2013-01-01

    Blind participants greatly rely on sound for spatial information regarding the surrounding environment. It is not yet established whether lack of vision to calibrate audition in far space affects blind participants' internal spatial representation of acoustic room size. Furthermore, blind participants may rely more on farthest distance estimates to sound sources compared with sighted participants when perceiving room size. Here we show that judgments of apparent room size and sound distance are correlated, more so for blind than for sighted participants. Sighted participants judged a reverberant virtual room to be larger for speech than for music or noise stimuli, whereas blind participants did not. The results suggest that blindness affects the use of room reverberation for distance and room-size judgments.

  4. Carbon Dioxide Separation with Supported Ionic Liquid Membranes

    SciTech Connect

    Luebke, D.R.; Ilconich, J.B.; Myers, C.R.; Pennline, H.W.

    2007-04-01

    Supported liquid membranes are a class of materials that allow the researcher to utilize the wealth of knowledge available on liquid properties as a direct guide in the development of a capture technology. These membranes also have the advantage of liquid phase diffusivities higher than those observed in polymeric membranes which grant proportionally greater permeabilities. The primary shortcoming of the supported liquid membranes demonstrated in past research has been the lack of stability caused by volatilization of the transport liquid. Ionic liquids, which possess high carbon dioxide solubility relative to light gases such as hydrogen, are an excellent candidate for this type of membrane since they have negligible vapor pressure and are not susceptible to evaporation. A study has been conducted evaluating the use of several ionic liquids, including 1-hexyl-3-methyl-imidazolium bis(trifuoromethylsulfonyl)imide, 1-butyl-3-methyl-imidazolium nitrate, and 1-ethyl-3-methyl-imidazolium sulfate in supported ionic liquid membranes for the capture of carbon dioxide from streams containing hydrogen. In a joint project, researchers at the University of Notre Dame lent expertise in ionic liquid synthesis and characterization, and researchers at the National Energy Technology Laboratory incorporated candidate ionic liquids into supports and evaluated the resulting materials for membrane performance. Initial results have been very promising with carbon dioxide permeabilities as high as 950 barrers and significant improvements in carbon dioxide/hydrogen selectivity over conventional polymers at 37C and at elevated temperatures. Results include a comparison of the performance of several ionic liquids and a number of supports as well as a discussion of innovative fabrication techniques currently under development.

  5. Tobacco smoke removal with room air cleaners.

    PubMed

    Olander, L; Johansson, J; Johansson, R

    1988-12-01

    The ability of room air cleaners to remove gases and particles from air contaminated with tobacco smoke has been studied. Thirty-one air cleaners were tested. Various air-cleaning devices were used, ie, electrostatic precipitators, electret fiber filters, ionizers, activated carbon, impregnated alumina, ionizing lamps, and an electron generator. The airflow rates were in the range of 0-500 m3/h. The measurements covered particle sizes of 0.01-7.5 microns and the following gases: carbon monoxide, ammonia, formaldehyde, nitric oxide, nitrogen dioxide, hydrocarbons, and hydrogen cyanide. No formal standard procedure exists for testing room air cleaners; therefore the tests were made in the following way. Tobacco smoke was generated and mixed in a closed room. The room air cleaner was started, and the decay rates for the gases and particles were measured. The results were calculated as equivalent airflow rates, ie, the clean airflow rate causing the same decay rate for contaminant concentrations in a room. The equivalent airflow rates were 0-360 m3/h. The rate of ozone emission by electrostatic precipitators and ionizers was also measured. One general conclusion was that it is much more difficult to remove gases than particles.

  6. Interior building details of Building C, Room C003 and Room ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior building details of Building C, Room C-003 and Room C-002 catwalk above false ceiling, east brick retaining wall, brick north wall, 1930 retrofit pillars, wood floor joints; northeasterly view - San Quentin State Prison, Building 22, Point San Quentin, San Quentin, Marin County, CA

  7. ADM. Administration Building (TAN602). Early room layout, door and room ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ADM. Administration Building (TAN-602). Early room layout, door and room schedules. Ralph M. Parsons 902-2-ANP-602-A 31. Date: December 1952. Approved by INEEL Classification Office for public release. INEEL index code no. 033-0602-00-693-106710 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  8. A New Control Room for SLAC Accelerators

    SciTech Connect

    Erickson, Roger; Guerra, E.; Stanek, M.; Hoover, Z.Van; Warren, J.; /SLAC

    2012-06-04

    We are planning to construct a new control room at SLAC to unify and improve the operation of the LCLS, SPEAR3, and FACET accelerator facilities, and to provide the space and flexibility needed to support the LCLS-II and proposed new test beam facilities. The existing control rooms for the linac and SPEAR3 have been upgraded in various ways over the last decade, but their basic features have remained unchanged. We propose to build a larger modern Accelerator Control Room (ACR) in the new Research Support Building (RSB) which is currently under construction at SLAC. Shifting the center of control for the accelerator facilities entails both technical and administrative challenges. In this paper, we describe the history, concept, and status of this project.

  9. Method of Remotely Constructing a Room

    DOEpatents

    Michie, J. D.; De Hart, R. C.

    1971-10-05

    The testing of nuclear devices of high explosive yield has required that cavities of relatively large size be provided at considerable distances below the surface of the earth for the pre-detonation emplacement of the device. The construction of an essentially watertight chamber or room in the cavity is generally required for the actual emplacement of the device. A method is described of constructing such a room deep within the earth by personnel at the surface. A dual wall bladder of a watertight, pliable fabric material is lowered down a shaft into a selected position. The bladder is filled with a concrete grout while a heavy fluid having essentially the same density as the grout is maintained on both sides of the bladder, to facilitate complete deployment of the bladder by the grout to form a room of desired configuration. (10 claims)

  10. Method of remotely constructing a room

    DOEpatents

    Michie, J.D.; De Hart, R.C.

    1971-10-05

    The testing of nuclear devices of high explosive yield has required that cavities of relatively large size be provided at considerable distances below the surface of the earth for the pre-detonation emplacement of the device. The construction of an essentially watertight chamber or room in the cavity is generally required for the actual emplacement of the device. A method is described of constructing such a room deep within the earth by personnel at the surface. A dual wall bladder of a watertight, pliable fabric material is lowered down a shaft into a selected position. The bladder is filled with a concrete grout while a heavy fluid having essentially the same density as the grout is maintained on both sides of the bladder, to facilitate complete deployment of the bladder by the grout to form a room of desired configuration. (10 claims)

  11. Electric control of magnetism at room temperature.

    PubMed

    Wang, Liaoyu; Wang, Dunhui; Cao, Qingqi; Zheng, Yuanxia; Xuan, Haicheng; Gao, Jinlong; Du, Youwei

    2012-01-01

    In the single-phase multiferroics, the coupling between electric polarization (P) and magnetization (M) would enable the magnetoelectric (ME) effect, namely M induced and modulated by E, and conversely P by H. Especially, the manipulation of magnetization by an electric field at room-temperature is of great importance in technological applications, such as new information storage technology, four-state logic device, magnetoelectric sensors, low-power magnetoelectric device and so on. Furthermore, it can reduce power consumption and realize device miniaturization, which is very useful for the practical applications. In an M-type hexaferrite SrCo(2)Ti(2)Fe(8)O(19), large magnetization and electric polarization were observed simultaneously at room-temperature. Moreover, large effect of electric field-controlled magnetization was observed even without magnetic bias field. These results illuminate a promising potential to apply in magnetoelectric devices at room temperature and imply plentiful physics behind them.

  12. Electric control of magnetism at room temperature

    PubMed Central

    Wang, Liaoyu; Wang, Dunhui; Cao, Qingqi; Zheng, Yuanxia; Xuan, Haicheng; Gao, Jinlong; Du, Youwei

    2012-01-01

    In the single-phase multiferroics, the coupling between electric polarization (P) and magnetization (M) would enable the magnetoelectric (ME) effect, namely M induced and modulated by E, and conversely P by H. Especially, the manipulation of magnetization by an electric field at room-temperature is of great importance in technological applications, such as new information storage technology, four-state logic device, magnetoelectric sensors, low-power magnetoelectric device and so on. Furthermore, it can reduce power consumption and realize device miniaturization, which is very useful for the practical applications. In an M-type hexaferrite SrCo2Ti2Fe8O19, large magnetization and electric polarization were observed simultaneously at room-temperature. Moreover, large effect of electric field-controlled magnetization was observed even without magnetic bias field. These results illuminate a promising potential to apply in magnetoelectric devices at room temperature and imply plentiful physics behind them. PMID:22355737

  13. Preparing alkaline anion exchange membrane with enhanced hydroxide conductivity via blending imidazolium-functionalized and sulfonated poly(ether ether ketone)

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Jiang, Zhongyi; Tian, Huimin; Wang, Siwen; Zhang, Bei; Cao, Ying; He, Guangwei; Li, Zongyu; Wu, Hong

    2015-08-01

    The development of alkaline anion exchange membrane (AEM) with both high ion conductivity and stabilities is of great significance for fuel cell applications. In this study, a facile acid-base blending method is designed to improve AEM performances. Basic imidazolium-functionalized poly (ether ether ketone) with a high functionalization degree is employed as polymer matrix to pursue high ion-exchange capacity (IEC) as well as high hydroxide conductivity, meanwhile acidic sulfonated poly (ether ether ketone) (SPEEK) is employed as the cross-linking agent to enhance the stabilities of the blend membranes. Particularly, an in-situ Menshutkin/crosslinking method is exploited to prevent the flocculation in the preparation process of blend membranes. As a result, dense and defect-free blend membranes are obtained. The blend membranes exhibit high level of IEC up to 3.15 mmol g-1, and consequently possess elevated hydroxide conductivity up to 31.59 mS cm-1 at 30 °C. In addition, benefiting from the strong electrostatic interaction introduced by the acid-base blending, the stabilities and methanol resistance of blend membranes are enhanced.

  14. Synthesis, characterization, in vitro SAR and in vivo evaluation of N,N'bisnaphthylmethyl 2-alkyl substituted imidazolium salts against NSCLC.

    PubMed

    DeBord, Michael A; Southerland, Marie R; Wagers, Patrick O; Tiemann, Kristin M; Robishaw, Nikki K; Whiddon, Kyle T; Konopka, Michael C; Tessier, Claire A; Shriver, Leah P; Paruchuri, Sailaja; Hunstad, David A; Panzner, Matthew J; Youngs, Wiley J

    2017-02-15

    Alkyl- and N,N'-bisnaphthyl-substituted imidazolium salts were tested in vitro for their anti-cancer activity against four non-small cell lung cancer cell lines (NCI-H460, NCI-H1975, HCC827, A549). All compounds had potent anticancer activity with 2 having IC50 values in the nanomolar range for three of the four cell lines, a 17-fold increase in activity against NCI-H1975 cells when compared to cisplatin. Compounds 1-4 also showed high anti-cancer activity against nine NSCLC cell lines in the NCI-60 human tumor cell line screen. In vitro studies performed using the Annexin V and JC-1 assays suggested that NCI-H460 cells treated with 2 undergo an apoptotic cell death pathway and that mitochondria could be the cellular target of 2 with the mechanism of action possibly related to a disruption of the mitochondrial membrane potential. The water solubilities of 1-4 was over 4.4mg/mL using 2-hydroxypropyl-β-cyclodextrin as a chemical excipient, thereby providing sufficient solubility for systemic administration.

  15. Theoretical study of the reaction of chitosan monomer with 2,3-epoxypropyl-trimethyl quaternary ammonium chloride catalyzed by an imidazolium-based ionic liquid.

    PubMed

    Mu, Xueli; Yang, Xiaodeng; Zhang, Dongju; Liu, Chengbu

    2016-08-01

    The molecular mechanism of the graft reaction of 2,3-epoxypropyl-trimethyl quaternary ammonium chloride with chitosan monomer was investigated by performing density functional theory (DFT) calculations. The calculated results show that the -NH2 group of chitosan monomer is more reactive than its -OH and -CH2OH groups, and the graft reaction on the -NH2 group is calculated to be exothermic by 20.5kcal/mol with a free energy barrier of 42.6kcal/mol. The reaction cannot benefit from the presence of the intruded water molecule, but can be considerably assisted by 1-allyl-3-methylimidazolium chloride ([Amim]Cl) ionic liquid. The reaction catalyzed by the ion-pair is calculated to be exothermic by 36.5kcal/mol and the barrier is reduced to 29.3kcal/mol, which are further corrected to 28.0 and 29.1kcal/mol by considering the solvent effect of [Amim]Cl ionic liquid. Calculated results verified the experimental finding that imidazolium-based ionic liquids can promote the reaction of chitosan with epoxy compounds.

  16. N, N′-Olefin Functionalized Bis-Imidazolium Gold(I) Salt Is an Efficient Candidate to Control Keratitis-Associated Eye Infection

    PubMed Central

    Samanta, Tapastaru; Roymahapatra, Gourisankar; Porto, William F.; Seth, Saikat; Ghorai, Sudipta; Saha, Suman; Sengupta, Jayangshu; Franco, Octávio L.; Dinda, Joydev; Mandal, Santi M.

    2013-01-01

    Keratitis treatment has become more complicated due to the emergence of bacterial or fungal pathogens with enhanced antibiotic resistance. The pharmaceutical applications of N-heterocyclic carbene complexes have received remarkable attention due to their antimicrobial properties. In this paper, the new precursor, 3,3′-(p-phenylenedimethylene) bis{1-(2- methyl-allyl)imidazolium} bromide (1a) and its analogous PF6 salt (1b) were synthesized. Furthermore, silver(I) and gold(I) -N-heterocyclic carbene (NHC) complexes [Ag2LBr2/Au2LBr2; 2a/3a], [(Ag2L2)(PF6)2/(Au2L2)(PF6)2; 2b/3b] were developed from their corresponding ligands. All compounds were screened for their antimicrobial activities against multiple keratitis-associated human eye pathogens, including bacteria and fungi. Complexes 2a and 3a showed highest activity, and the effectiveness of 3a was also studied, focusing eradication of pathogen biofilm. Furthermore, the structures of 1a, 2a and 3b were determined using single crystal X-ray analysis, 2b and 3a were optimized theoretically. The mechanism of action of 3a was evaluated by scanning electron microscopy and docking experiments, suggesting that its target is the cell membrane. In summary, 3a may be helpful in developing antimicrobial therapies in patients suffering from keratitis-associated eye infections caused by multidrug-resistant pathogens. PMID:23554886

  17. The Structure of Nickel Chloride in the Ionic Liquid 1-Ethyl-3-methyl Imidazolium Chloride/Aluminum Chloride: X-ray Absorption Spectroscopy

    SciTech Connect

    D Roeper; K Pandya; G Cheek; W OGrady

    2011-12-31

    The structure of anhydrous nickel chloride in the ionic liquid 1-ethyl-3-methyl imidazolium chloride and aluminum chloride has been investigated with extended X-ray absorption fine structure (EXAFS) in both Lewis acid and Lewis base solutions. The EXAFS data of NiCl{sub 2} {center_dot} 6H{sub 2}O crystals were also recorded and analyzed to demonstrate the difference file technique. The difference file technique is used to obtain the structural information for the very closely spaced coordination shells of chloride and oxygen in NiCl{sub 2} {center_dot} 6H{sub 2}O and they are found to agree very closely with the X-ray diffraction data. The difference file technique is then used to analyze the nickel chloride in the ionic liquid solutions. Even though anhydrous NiCl{sub 2} is more soluble in the basic solution than in the acidic solution, the EXAFS data show a single coordination of four chlorides in a tetrahedron around the nickel atom in the basic solution. In a weak acid solution, there are six chlorides in a single octahedral coordination shell around the nickel. However, in a strong acid solution, in addition to the octahedral chloride-coordination shell, there is a second coordination shell of eight aluminum atoms in the form of a simple cube.

  18. Synthesis and in-vitro reactivation screening of imidazolium aldoximes as reactivators of sarin and VX-inhibited human acetylcholinesterase (hAChE).

    PubMed

    Sharma, Rahul; Gupta, Bhanushree; Sahu, Arvind Kumar; Acharya, Jyotiranjan; Satnami, Manmohan L; Ghosh, Kallol K

    2016-11-25

    Post-treatment of organophosphate (OP) poisoning involves the application of oxime reactivator as an antidote. Structurally different oximes are widely studied to examine their kinetic and mechanistic behavior against OP-inhibited cholinesterase enzyme. A series of structurally related 1,3-disubstituted-2-[(hydroxyiminomethyl)alkyl]imidazolium halides (5a-5e, 9a-9c) were synthesized and further evaluated for their in-vitro reactivation ability to reactivate sarin- and VX-inhibited human acetylcholinesterase (hAChE). The observed results were compared with the reactivation efficacy of standard reactivators; 2-PAM, obidoxime and HI-6. Amongst the synthesized oximes, 5a, 9a and 9b were found to be most potent reactivators against sarin-inhibited hAChE while in case of VX only 9a exhibited comparable reactivity with 2-PAM. Incorporation of pyridinium ring to the imidazole ring resulted in substantial increase in the reactivation strength of prepared reactivator. Physicochemical properties of synthesized reactivators have also been evaluated.

  19. Synthesis and structural characterization of homochiral 2D coordination polymers of zinc and copper with conformationally flexible ditopic imidazolium-based dicarboxylate ligands.

    PubMed

    Nicasio, Antonio I; Montilla, Francisco; Álvarez, Eleuterio; Colodrero, Rosario P; Galindo, Agustín

    2017-01-03

    Different novel coordination polymers containing zinc, 1-4, and copper, 5-8, metals, connected via chiral imidazolium-based dicarboxylate ligands, [L(R)](-), were isolated by reaction between zinc acetate or copper acetate and enantiomerically pure HL(R) compounds. They were characterised and structurally identified by X-ray diffraction methods (single crystal and powder). These compounds are two-dimensional homochiral coordination polymers, [M(L(R))2]n, in which the metal ions are coordinated by the two carboxylate groups of [L(R)](-) anions in a general bridging monodentate μ(2)-κ(1)-O(1),κ(1)-O(3) fashion that afforded tetrahedral metal coordination environments for zinc, 1-4, and square planar for copper, 5-8, complexes. In all the compounds the 3D supramolecular architecture is constructed by non-covalent interactions between the hydrophobic parts (R groups) of the homochiral 2D coordination polymers and, in some cases, by weak C-HO non-classical hydrogen bonds that provided, in general, a dense crystal packing. DFT calculations on the [L(R)](-) anions confirmed their conformational flexibility as ditopic linkers and this fact makes possible the formation of different coordination polymers for four-coordinated metal centers. Preliminary studies on the Zn-catalyzed synthesis of chiral α-aminophosphonates were carried out and, unfortunately, no enantioselectivity was observed in these reactions.

  20. Imidazolium-functionalized poly(ether ether ketone) as membrane and electrode ionomer for low-temperature alkaline membrane direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Yan, Xiaoming; Gu, Shuang; He, Gaohong; Wu, Xuemei; Benziger, Jay

    2014-03-01

    A series of imidazolium-functionalized poly(ether ether ketone)s (PEEK-ImOHs) were successfully synthesized by a two-step chloromethylation-Menshutkin reaction followed by hydroxide exchange. PEEK-ImOH membranes with ion exchange capacity (IEC) ranging from 1.56 to 2.24 mmol g-1 were prepared by solution casting. PEEK-ImOHs show selective solubility in aqueous solutions of acetone and tetrahydrofuran, but are insoluble in lower alcohols. PEEK-ImOH membranes with IEC of 2.03 mmol g-1 have high hydroxide conductivity (52 mS cm-1 at 20 °C), acceptable water swelling ratio (51% at 60 °C), and great tensile strength (78 MPa), and surprising flexibility (elongation-to-break of 168%), and high thermal stability (Decomposition temperature: 193 °C). In addition, PEEK-ImOH membranes show low methanol permeability (1.3-6.9 × 10-7 cm2 s-1). PEEK-ImOH membrane was tested in methanol/O2 fuel cell as both the HEM and the ionomer impregnated into the catalyst layer; the open circuit voltage is 0.84 V and the peak power density is 31 mW cm-2.

  1. Surface structures of binary mixtures of imidazolium-based ionic liquids using high-resolution Rutherford backscattering spectroscopy and time of flight secondary ion mass spectroscopy.

    PubMed

    Nakajima, Kaoru; Miyashita, Motoki; Suzuki, Motofumi; Kimura, Kenji

    2013-12-14

    Surface structures of binary mixtures of imidazolium-based ionic liquids having a common anion (bis(trifluoromethanesulfonyl)imide ([TFSI]), namely [C2MIM]1-x[C10MIM]x[TFSI] (x = 0.5 and 0.1), are studied using high-resolution Rutherford backscattering spectroscopy (HRBS) and time of flight secondary ion mass spectroscopy (TOF-SIMS). Although both measurements show surface segregation of [C10MIM] the degrees of the segregation are different. The surface fraction xsurf of [C10MIM] is estimated to be 0.6 ± 0.05 and 0.18 ± 0.02 by HRBS for x = 0.5 and 0.1, respectively. On the other hand, TOF-SIMS indicates much stronger surface segregation, namely xsurf = 0.83 ± 0.03 and 0.42 ± 0.04 for x = 0.5 and 0.1, respectively. The observed discrepancy can be attributed to the difference in the probing depth between HRBS and TOF-SIMS. The observed surface segregation can be roughly explained in terms of surface tension.

  2. Electrical conductivity of seven binary systems containing 1-ethyl-3-methyl imidazolium alkyl sulfate ionic liquids with water or ethanol at four temperatures.

    PubMed

    Rilo, E; Vila, J; García-Garabal, S; Varela, L M; Cabeza, O

    2013-02-07

    We present experimental measurements of specific electrical (or ionic) conductivity of seven binary systems of 1-ethyl-3-methyl imidazolium alkyl sulfate (EMIM-C(n)S) with water or ethanol. Electrical conductivity was measured at 298.15 K in all ranges of concentrations and selected mixtures also at 288.15, 308.15, and 318.15 K. The alkyl chains of the anions used are ethyl (EMIM-ES), butyl (EMIM-BS), hexyl (EMIM-HS), and, only for mixtures with ethanol, octyl (EMIM-OS). Let us note that the four ionic liquids (ILs) measured are miscible in water and ethanol at those temperatures and atmospheric pressure in all ranges of concentrations, but EMIM-OS jellifies for a given range of concentration with water. We compare the measured data in terms of the alkyl chain length and solvent nature. Data are compared with previously scarce results for these same systems and also for other aqueous and ethanol mixtures with ILs. In addition, we verify that our data fit the universal theoretical expression with no fitting parameters given by the pseudolattice-based Bahe-Varela model, except for IL concentrated mixtures. To fit well all ranges of concentrations, we add to the original equation two phenomenological terms with one fitting parameter each. Finally, we calculate the molar conductivity and fit it successfully with an expression derived from Onsager theory.

  3. Gemini Surfactants Based on Bis-Imidazolium Alkoxy Derivatives as Effective Agents for Delivery of Nucleic Acids: A Structural and Spectroscopic Study

    PubMed Central

    Pietralik, Zuzanna; Kołodziejska, Żaneta; Weiss, Marek; Kozak, Maciej

    2015-01-01

    The success rate of gene therapy depends on the efficient transfection of genetic material into cells. The golden mean between harmlessness and high effectiveness can be provided by synthetic lipid-like molecules that are similar to the components of biological membranes. Cationic gemini surfactants are one such moiety and because of their favourable physicochemical properties (double positive electric charge, reduced toxicity, low values of critical micelle concentration), they show great potential as delivery system components for genetic material in gene therapy. The aim of this study was to investigate the process of the complexation of cationic gemini surfactants with nucleic acids: double-stranded DNA of different sizes (21 bp, ~185 bp, ~20 kbp) and siRNA (21 bp). The tested series of dicationic surfactants consists of bis-imidazolium quaternary salts with varying lengths of hydrophobic side chains (m = 5, 6, 7, 8, 9, 11, 12, 14, 16). On the basis of the data obtained by circular dichroism spectroscopy and electrophoresis, we concluded that the studied gemini surfactants with long side chains effectively bind nucleic acids at low concentrations, which leads to the formation of stable lipoplexes. Images obtained by atomic force microscopy also confirmed the formation of vesicular structures, i.e., complexes between DNA and surfactants. The cytotoxicity of selected surfactants was also tested on HeLa cells. The surfactant toxicity significantly depends on surfactant geometry (the length of hydrophobic chain). PMID:26641889

  4. Surface structures of binary mixtures of imidazolium-based ionic liquids using high-resolution Rutherford backscattering spectroscopy and time of flight secondary ion mass spectroscopy

    NASA Astrophysics Data System (ADS)

    Nakajima, Kaoru; Miyashita, Motoki; Suzuki, Motofumi; Kimura, Kenji

    2013-12-01

    Surface structures of binary mixtures of imidazolium-based ionic liquids having a common anion (bis(trifluoromethanesulfonyl)imide ([TFSI]), namely [C2MIM]1-x[C10MIM]x[TFSI] (x = 0.5 and 0.1), are studied using high-resolution Rutherford backscattering spectroscopy (HRBS) and time of flight secondary ion mass spectroscopy (TOF-SIMS). Although both measurements show surface segregation of [C10MIM] the degrees of the segregation are different. The surface fraction xsurf of [C10MIM] is estimated to be 0.6 ± 0.05 and 0.18 ± 0.02 by HRBS for x = 0.5 and 0.1, respectively. On the other hand, TOF-SIMS indicates much stronger surface segregation, namely xsurf = 0.83 ± 0.03 and 0.42 ± 0.04 for x = 0.5 and 0.1, respectively. The observed discrepancy can be attributed to the difference in the probing depth between HRBS and TOF-SIMS. The observed surface segregation can be roughly explained in terms of surface tension.

  5. Crystal structures of imidazolium bis(trifluoromethanesulfonyl)imide 'ionic liquid' salts: the first organic salt with a cis-TFSI anion conformation.

    PubMed

    Holbrey, John D; Reichert, W Matthew; Rogers, Robin D

    2004-08-07

    Crystal structures of two examples of an important class of ionic liquids, 1,3-dimethylimidazolium and 1,2,3-triethylimidazolium bis(trifluoromethanesulfonyl)imide have been characterized by single crystal X-ray diffraction. The anion in the 1,3-dimethylimidazolium example (mp 22 degrees C), adopts an unusual cis-geometry constrained by bifurcated cation-anion C-H. . .O hydrogen-bonds from the imidazolium cation to the anion resulting in the formation of fluorous layers within the solid-state structure. In contrast, in the 1,2,3-triethylimidazolium salt (mp 57 degrees C), the ions are discretely packed with only weak C-H. . .O contacts between the ions close to the van der Waals separation distances, and with the anion adopting the twisted conformation observed for all other examples from the limited set of organic bis(trifluoromethanesulfonyl)imide crystal structures. The structures are discussed in terms of the favorable physical properties that bis(trifluoromethanesulfonyl)imide anions impart in ionic liquids.

  6. X-ray Reflectivity Study of the Interaction of an Imidazolium-Based Ionic Liquid with a Soft Supported Lipid Membrane.

    PubMed

    Bhattacharya, G; Giri, R P; Saxena, H; Agrawal, V V; Gupta, A; Mukhopadhyay, M K; Ghosh, S K

    2017-02-07

    Ionic liquids (ILs) are important for their antimicrobial activity and are found to be toxic to some microorganisms. To shed light on the mechanism of their activities, the interaction of an imidazolium-based IL 1-butyl-3-methylimidazolium tetrfluoroborate ([BMIM][BF4]) with E. coli bacteria and cell-membrane-mimicking lipid mono- and bilayers has been studied. The survival of the bacteria and corresponding growth inhibition are observed to be functions of the concentration of the IL. The IL alters the pressure-area isotherm of the monolayer formed at an air-water interface by the 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid. The in-plane elasticity of the lipid layer is reduced as a consequence of the insertion of this IL. The X-ray reflectivity study from a polymer-supported lipid bilayer shows strong perturbation in the self-assembled structure of the bilayer due to the interaction. As a consequence, there is a considerable decrease in bilayer thickness and a corresponding increase in electron density. These results, however, depend on the chain configurations of the lipid molecules.

  7. The effect of the number of alkyl substituents on imidazolium ionic liquids phytotoxicity and oxidative stress in spring barley and common radish seedlings.

    PubMed

    Biczak, Robert; Pawłowska, Barbara; Telesiński, Arkadiusz; Ciesielski, Wojciech

    2016-12-01

    Increasing amounts of two ILs: 1-butyl-3-methylimidazolium hexafluorophosphate [BMIM][PF6] and 1-butyl-2,3-dimethylimidazolium hexafluorophosphate [BMMIM][PF6], were introduced to soil in which spring barley (Hordeum vulgare) and common radish (Raphanus sativus L. subvar. radicula Pers.) seedlings were cultivated, in order to evaluate the phytotoxicity of ionic liquids with imidazolium cation with two or three alkyl substituents attached. The results of the study i.e. the inhibition of the length of plants and their roots, as well as the yield of fresh weight of plants, clearly showed that differences in the number of substituents did not affect the toxicity of these ILs. Although, radish was more resistant to the applied ionic liquids than barley. Ionic liquids led to a decrease in the content of all assimilation pigments and induced oxidative stress in the plants, as showed by an increase in malondialdehyde (MDA) content, and changes in the level of H2O2 and antioxidant enzymes: superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD). The best biomarkers of oxidative stress in both plants were the changes in chlorophyll content and the increase in POD activity. Both spring barley and radish exposed to [BMIM][PF6] and [BMMIM][PF6] accumulated a large amount of fluoride ions, which further increased the toxicity of these compounds for both plants.

  8. Gemini Surfactants Based on Bis-Imidazolium Alkoxy Derivatives as Effective Agents for Delivery of Nucleic Acids: A Structural and Spectroscopic Study.

    PubMed

    Pietralik, Zuzanna; Kołodziejska, Żaneta; Weiss, Marek; Kozak, Maciej

    2015-01-01

    The success rate of gene therapy depends on the efficient transfection of genetic material into cells. The golden mean between harmlessness and high effectiveness can be provided by synthetic lipid-like molecules that are similar to the components of biological membranes. Cationic gemini surfactants are one such moiety and because of their favourable physicochemical properties (double positive electric charge, reduced toxicity, low values of critical micelle concentration), they show great potential as delivery system components for genetic material in gene therapy. The aim of this study was to investigate the process of the complexation of cationic gemini surfactants with nucleic acids: double-stranded DNA of different sizes (21 bp, ~185 bp, ~20 kbp) and siRNA (21 bp). The tested series of dicationic surfactants consists of bis-imidazolium quaternary salts with varying lengths of hydrophobic side chains (m = 5, 6, 7, 8, 9, 11, 12, 14, 16). On the basis of the data obtained by circular dichroism spectroscopy and electrophoresis, we concluded that the studied gemini surfactants with long side chains effectively bind nucleic acids at low concentrations, which leads to the formation of stable lipoplexes. Images obtained by atomic force microscopy also confirmed the formation of vesicular structures, i.e., complexes between DNA and surfactants. The cytotoxicity of selected surfactants was also tested on HeLa cells. The surfactant toxicity significantly depends on surfactant geometry (the length of hydrophobic chain).

  9. Temperature Dependence of Low-Frequency Spectra in Molten Bis(trifluoromethylsulfonyl)amide Salts of Imidazolium Cations Studied by Femtosecond Raman-Induced Kerr Effect Spectroscopy.

    PubMed

    Shirota, Hideaki; Kakinuma, Shohei

    2015-07-30

    In this study, the temperature dependence of the low-frequency spectra of liquid bis(trifluoromethylsulfonyl)amide salts of the monocations 1-methyl-3-propylimidazolium and 1-hexyl-3-methylimidazolium and the dications 1,6-bis(3-methylimidazolium-1-yl)hexane and 1,12-bis(3-methylimidazolium-1-yl)dodecane has been investigated by means of femtosecond optical heterodyne-detected Raman-induced Kerr effect spectroscopy. The intensity in the low-frequency region below 20 cm(-1) in the spectra of the four ionic liquids increases with rising temperature. From a line-shape analysis of the broadened low-frequency spectra of the ionic liquids, it is clear that the lowest-frequency component, which peaks at approximately 5 cm(-1), contributes to the temperature dependence of the spectra. This implies that the activity of the intermolecular translational vibrational motion is increasing with rising temperature. It is also possible that decoupling in the crossover process between intermolecular vibrational motion and structural relaxation occurs as a result of a deterioration of the non-Markovian feature or the loss of memory caused by the higher temperature. The peak of the highest-frequency component, which is due mainly to the imidazolium ring libration, shifts to lower frequency with increasing temperature. This is attributed to weaker interactions of the ionic liquids at higher temperatures. Temperature-dependent viscosities from 293 to 353 K of the four ionic liquids have also been characterized.

  10. The Overriding Roles of Concentration and Hydrophobic Effect on Structure and Stability of Heme Protein Induced by Imidazolium-Based Ionic Liquids.

    PubMed

    Jha, Indrani; Kumar, Awanish; Venkatesu, Pannuru

    2015-07-02

    Spectroscopic and molecular docking investigations were carried out to characterize the effect of imidazolium-based ionic liquids (ILs) with varying chain length of the cation on the thermal stability as well as spectroscopic behavior of heme protein hemoglobin (Hb). The goal of this work is to investigate the role of concentration of ILs, the effect of alkyl chain length of the cation, and the related Hofmeister series on the structure of Hb. To achieve this goal, a series of ILs possessing same Cl(-) anion and a set of cation [Cnmim](+) with increasing chain length such as 1-ethyl-3-methylimidazolium chloride ([Emim][Cl]), 1-butyl-3-methylimidazolium chloride ([Bmim][Cl]), 1-hexyl-3-methylimidazolium chloride ([Hmim][Cl]), and 1-decyl-3-methylimidazolium chloride ([Dmim][Cl]) were used in this study. It was observed that the stability of the protein was concentration dependent as well as the hydrophobic interactions between [Cnmim](+) of ILs, and the amino acid residues in the protein played a major role in protein unfolding. As a consequence, the destabilization tendency of the ILs toward the Hb increases with increasing chain length of the cation of ILs. Additionally, the cations of the ILs obeyed the Hofmeister series when arranged in the order of providing stability to Hb structure.

  11. High resolution of racemic phenylalanine with dication imidazolium-based chiral ionic liquids in a solid-liquid two-phase system.

    PubMed

    Huang, Xiaoxia; Wu, Haoran; Wang, Zhixia; Luo, Yingjie; Song, Hang

    2017-01-06

    A novel solid-liquid two-phase system was developed for the chiral separation of racemic phenylalanine with new dication imidazolium-based chiral ionic liquids. Preliminary experiments showed distinct enantioselectivity in amino acid extraction with the novel solid-liquid two-phase system, more L-enantiomer of amino acid cooperatively interacted with ionic liquids and copper ions to be the solid phase. Various factors, including the alkyl chain length of cations of ionic liquids, the amount of copper acetate, the ratio of n(ILs)/n(Cu(2+)), the amount of water and racemic phenylalanine, the resolution time together with the resolution temperature, were systematically investigated for their influence on resolution efficiency. The results showed that, under a certain condition, the enantiomeric excess value and the yield of phenylalanine in liquid phase (mainly containing D-enantiomer) were 67.8% and 96.5%, the enantiomeric excess value and the yield of phenylalanine in solid phase (mainly containing L-enantiomer) were 99.2% and 85.2%. Finally, 2D NMR technology, infrared spectroscopy and molecular simulation method were used to study the interaction mechanism. The results indicated that L-enantiomer of phenylalanine interacts more strongly with chiral ILs and Cu(2+). The novel system has characteristics of free-organic solvent, simple operation, fast separation process and very high resolution efficiency for racemic phenylalanine. This work could provide a new and alternative resolution approach for other chiral separations.

  12. Enhanced energy transfer efficiency and stability of europium β-diketonate complex in ionic liquid-based lyotropic liquid crystals.

    PubMed

    Yi, Sijing; Wang, Jiao; Chen, Xiao

    2015-08-21

    Luminescent materials from europium β-diketonate complex in ionic liquids (ILs) could achieve enhanced luminescence efficiencies and photostabilities. However, the question of how to provide a feasible and environmentally-friendly way to distribute these lanthanide complexes uniformly and stably within IL-based matrix remains a significant challenge. Here, a soft luminescent material from IL-mediated lyotropic liquid crystals (LLCs) doped with [Bmim][Eu(TTA)4] (Bmim = 1-butyl-3-methyl imidazolium, TTA = 2-thenoyltrifluoroacetone) has been constructed by a convenient self-assembling method. The hexagonal or lamellar LLC phases could be identified by small-angle X-ray scattering (SAXS) measurements. All LLC samples exhibited intense red luminescence upon exposure to ultraviolet radiation. The good dispersibility of the complexes in LLC matrices and their good photostability (as in ILs) was verified by steady-state luminescence spectroscopy. The isolated and unique characteristics of the microenvironment within the LLCs were noteworthy to decrease the nonradiative deactivation of the excited states, thereby allowing more efficient energy transfer and longer lifetimes than those in pure complex or IL solutions. Both the luminescent property and the stability of the LLC materials were different in different phase structures, the complexes behaving better in the lamellar phase than in the hexagonal one. The findings reported herein will not only present an easy way to design novel luminescent lanthanide β-diketonate soft materials, but also provide a useful reference to better understand the LLC phase structure effects on the luminescence properties.

  13. Leaching behavior of copper from waste printed circuit boards with Brønsted acidic ionic liquid.

    PubMed

    Huang, Jinxiu; Chen, Mengjun; Chen, Haiyan; Chen, Shu; Sun, Quan

    2014-02-01

    In this work, a Brønsted acidic ionic liquid, 1-butyl-3-methyl-imidazolium hydrogen sulfate ([bmim]HSO4), was used to leach copper from waste printed circuit boards (WPCBs, mounted with electronic components) for the first time, and the leaching behavior of copper was discussed in detail. The results showed that after the pre-treatment, the metal distributions were different with the particle size: Cu, Zn and Al increased with the increasing particle size; while Ni, Sn and Pb were in the contrary. And the particle size has significant influence on copper leaching rate. Copper leaching rate was higher than 99%, almost 100%, when 1g WPCBs powder was leached under the optimum conditions: particle size of 0.1-0.25 mm, 25 mL 80% (v/v) ionic liquid, 10 mL 30% hydrogen peroxide, solid/liquid ratio of 1/25, 70°C and 2h. Copper leaching by [bmim]HSO4 can be modeled with the shrinking core model, controlled by diffusion through a solid product layer, and the kinetic apparent activation energy has been calculated to be 25.36 kJ/mol.

  14. Recovery of Metallic Values from Brass Waste Using Brønsted Acidic Ionic Liquid as Leachate

    NASA Astrophysics Data System (ADS)

    Kilicarslan, Ayfer; Saridede, Muhlis Nezihi

    2015-11-01

    The waste formed during industrial brass manufacturing is rich in copper and zinc metals. Therefore, treatment of this waste is a necessity from economic and environmental aspects. This study presents a process for recovery of zinc and copper through Brønsted ionic liquid (1-butyl-3-methyl-imidazolium hydrogen sulfate; [Bmim]HSO4), as leachate. It was found that all zinc content could be dissolved from the waste under two optimum conditions: (1) in ionic liquid (IL) concentration of 70% (v/v) at 60°C in 30 min or (2) in IL concentration of 50% (v/v) at 100°C in 60 min. On the other hand, ionic liquid leaching gave poor copper solubility under the conditions of the study. Zinc dissolution in the range 5-75 min by [Bmim]HSO4 can be explained with the shrinking core model controlled by diffusion through a product layer, and the apparent activation energy was calculated as 4.36 kJ/mol. The leach liquor was treated to obtain metallic zinc by the electrowinning method without a purification step. Scanning electron microscopy/energy dispersive x-ray spectroscopy (SEM/EDX) investigations showed that the layer of metallic zinc was plated successfully on the cathode.

  15. Feasibility studies on electrochemical recovery of uranium from solid wastes contaminated with uranium using 1-butyl-3-methylimidazorium chloride as an electrolyte

    NASA Astrophysics Data System (ADS)

    Ohashi, Yusuke; Harada, Masayuki; Asanuma, Noriko; Ikeda, Yasuhisa

    2015-09-01

    In order to examine feasibility of the electrochemical deposition method for recovering uranium from the solid wastes contaminated with uranium using ionic liquid as electrolyte, we have studied the electrochemical behavior of each solution prepared by soaking the spent NaF adsorbents and the steel waste contaminated with uranium in BMICl (1-butyl-3-methyl- imidazolium chloride). The uranyl(VI) species in BMICl solutions were found to be reduced to U(V) irreversibly around -0.8 to -1.3 V vs. Ag/AgCl. The resulting U(V) species is followed by disproportionation to U(VI) and U(IV). Based on the electrochemical data, we have performed potential controlled electrolysis of each solution prepared by soaking the spent NaF adsorbents and steel wastes in BMICl at -1.5 V vs. Ag/AgCl. Black deposit was obtained, and their composition analyses suggest that the deposit is the mixtures of U(IV) and U(VI) compounds containing O, F, Cl, and N elements. From the present study, it is expected that the solid wastes contaminated with uranium can be decontaminated by treating them in BMICl and the dissolved uranium species are recovered electrolytically.

  16. Compatibilization of starch-zein melt processed blends by an ionic liquid used as plasticizer.

    PubMed

    Leroy, Eric; Jacquet, Pierre; Coativy, Gildas; Reguerre, Anne Laure; Lourdin, Denis

    2012-07-01

    An ionic liquid (1-butyl-3-methyl imidazolium chloride [BMIM]Cl) was used as a plasticizer in starch, zein and their blends; and compared to glycerol, a classical plasticizer of starch. Thermoplastic plasticized biopolymer materials were obtained by melt processing using a twin screw microcompounder. Such a device allows simulating a twin screw extrusion process on small batches of a few grams, and to evaluate the necessary specific mechanical energy input for native starch destructurization; and the final apparent melt viscosity. Both were shown to be significantly reduced for starch in presence of [BMIM]Cl (compared to glycerol), while zein processing behavior was less sensitive to the plasticizer used. This induces significant starch/zein viscosity ratio differences, which affect melt mixing of the starch zein blends. In starch rich blends, this results in smaller zein aggregates in the case of [BMIM]Cl. The characterization of the materials indicates that, compared to glycerol, the use of [BMIM]Cl leads to less hygroscopicity, a more efficient plasticization of both starch and zein phases and a compatibilization of starch/zein blends.

  17. Adsorption of 1-butyl-3-methylimidazolium chloride ionic liquid by functional carbon microspheres from hydrothermal carbonization of cellulose.

    PubMed

    Qi, Xinhua; Li, Luyang; Tan, Tengfei; Chen, Wenting; Smith, Richard L

    2013-03-19

    Functional carbonaceous material (FCM) loaded with carboxylic groups was prepared by hydrothermal carbonization of cellulose in the presence of acrylic acid. The resulting FCM was used as adsorbent for recovery of a water-soluble ionic liquid, 1-butyl-3-methyl-imidazolium chloride ([BMIM][Cl]). The FCM consisted of microspheres (100-150 nm) and had a low surface area (ca. 20 m(2)/g), but exhibited adsorption capacity comparable to that of commercial activated carbon which can be attributed to the presence of high content of polar oxygenated groups (-OH, -C═O, -COOH) as revealed by spectral analyses. Sorption of [BMIM][Cl] onto FCM adsorbent could be well-described by pseudo-second-order kinetics. Thermodynamic and adsorption isothermal analyses revealed that the adsorption process was spontaneous, exothermic, and could be described by the Freundlich adsorption model. The FCM adsorbent could be regenerated effectively and recycled for at least three times without loss of adsorption capacity. The results of this work provide a facile method for production of functional carbonaceous materials from renewable resources that can be used for treatment of aqueous streams containing small concentrations of ionic liquid, [BMIM][Cl].

  18. The enhancement of the hydrolysis of bamboo biomass in ionic liquid with chitosan-based solid acid catalysts immobilized with metal ions.

    PubMed

    Cheng, Jie; Wang, Nan; Zhao, Dezhou; Qin, Dandan; Si, Wenqing; Tan, Yunfei; Wei, Shun'an; Wang, Dan

    2016-11-01

    Three kinds of sulfonated cross-linked chitosan (SCCR) immobilized with metal ions of Cu(2+), Fe(3+) and Zn(2+) individually were synthesized and firstly used as solid acid catalysts in the hydrolysis of bamboo biomass. FTIR spectra showed that metal ions had been introduced into SCCR and the N-metal ions coordinate bound was formed. The particle sizes of these catalysts were about 500-1000μm with a pore size of 50-160μm. All of the three kinds of catalysts performed well for bamboo hydrolysis with 1-butyl-3-methyl-imidazolium chloride used as solvent. The most effective one was sulfonated cross-linked chitosan immobilized with Fe(3+) (Fe(3+)-SCCR). TRS yields were up to 73.42% for hydrolysis of bamboo powder in [C4mim]Cl with Fe(3+)-SCCR at 120°C and 20RPM after 24h. These novel chitosan-based metal ions immobilized solid acid catalysts with ionic liquids as the solvent might be promising to facilitate cost-efficient conversion of biomass into biofuels and bioproducts.

  19. Solvents and supporting electrolytes for vanadium acetylacetonate flow batteries

    NASA Astrophysics Data System (ADS)

    Shinkle, Aaron A.; Pomaville, Timothy J.; Sleightholme, Alice E. S.; Thompson, Levi T.; Monroe, Charles W.

    2014-02-01

    Properties of supporting electrolytes and solvents were examined for use with vanadium acetylacetonate - a member of the class of metal(β-diketonate) active species - in non-aqueous redox flow batteries. Twenty supporting-electrolyte/solvent combinations were screened for ionic conductivity and supporting-electrolyte solubility. Hexane, tetrahydrofuran, and dimethylcarbonate solvents did not meet minimal conductivity and solubility criteria for any of the electrolytes used, which included tetraethylammonium tetrafluoroborate, tetrabutylammonium tetrafluoroborate, tetrabutylammonium hexafluorophosphate, and (1-butyl, 3-methyl)imidazolium bis(trifluoromethanesulfonyl)imide. Ionic conductivities and solubilities for solutions of these electrolytes passed screening criteria in acetonitrile and dimethylformamide solvents, in which maximum supporting-electrolyte and active-species solubilities were determined. Active-species electrochemistry was found to be reversible in several solvent/support systems; for some systems the voltammetric signatures of unwanted side reactions were suppressed. Correlations between supporting-solution properties and performance metrics suggest that an optimal solvent for a vanadium acetylacetonate RFB should have a low solvent molar volume for active-species solubility, and a high Hansen polarity for conductivity.

  20. A FT-IR spectroscopic study of ultrasound effect on aqueous imidazole based ionic liquids having different counter ions.

    PubMed

    Li, Kai; Kobayashi, Takaomi

    2016-01-01

    Ultrasound (US) effect on 1-butyl-3-methyl-imidazolium (BMI) ionic liquids having different counter anions, BF4(-), PF6(-) and Cl(-) in aqueous medium was studied by FT-IR spectroscopy. Their deconvolution spectra were used to analyze the change of hydrogen bond in the absence and presence of US exposure to the ionic liquid. The FT-IR spectra were measured in different water contents without and with US at 23 kHz. These results indicated that the counter anion species in the imidazole based the ionic liquids played an important role for water solvation, when the US was exposed. The US hardly changed hydrogen bonding in the aqueous BMI-PF6, while the BMI-BF4 and BMI-Cl showed obvious change in their FT-IR spectra. Especially for the BMI-Cl, significant change was observed by the US exposure in the range of 2.6 wt% to 20 wt% of water contents. The results showed that the US could break the hydrogen bond in the BMI-Cl ionic liquids. In the case of BMI-BF4, the FT-IR band at 950-1152 cm(-1) was significantly intensified under US exposure, due to that the US influenced BF4(-)-water interaction. But, it was observed that the ionic liquid having PF6(-) was very less changed in the US system.